{"dp_type": "Project", "free_text": "Elevation"}
[{"awards": "0087144 Conway, Howard", "bounds_geometry": "POLYGON((-150 -83.5,-148 -83.5,-146 -83.5,-144 -83.5,-142 -83.5,-140 -83.5,-138 -83.5,-136 -83.5,-134 -83.5,-132 -83.5,-130 -83.5,-130 -83.65,-130 -83.8,-130 -83.95,-130 -84.1,-130 -84.25,-130 -84.4,-130 -84.55,-130 -84.7,-130 -84.85,-130 -85,-132 -85,-134 -85,-136 -85,-138 -85,-140 -85,-142 -85,-144 -85,-146 -85,-148 -85,-150 -85,-150 -84.85,-150 -84.7,-150 -84.55,-150 -84.4,-150 -84.25,-150 -84.1,-150 -83.95,-150 -83.8,-150 -83.65,-150 -83.5))", "dataset_titles": "Impulse HF radar data from Conway Ridge", "datasets": [{"dataset_uid": "601810", "doi": null, "keywords": "Antarctica; Cryosphere; Siple Coast", "people": "Conway, Howard; Hoffman, Andrew; Christianson, Knut", "repository": "USAP-DC", "science_program": null, "title": "Impulse HF radar data from Conway Ridge", "url": "https://www.usap-dc.org/view/dataset/601810"}], "date_created": "Mon, 22 Jul 2024 00:00:00 GMT", "description": "Marine ice sheets are low-pass filters of climate variability that take centuries to adjust to interior and near-terminus changes in mass balance. Constraining these century-scale changes from satellite observations that span only the last 40 years is challenging. Here, we take a different approach of carefully synthesizing different data sets to infer changes in the configurations of van der Veen and Mercer Ice Streams on the Siple Coast over the past 3000 years from englacial features encoded in ice-penetrating radar data. Englacial radar data from Conway Ridge reveal smooth, surface conformal layers overlying disrupted stratigraphy that suggest the van der Veen Ice Stream was 40 km wider over 3000 years ago. Englacial layer dating indicates that the ice stream narrowed to its present configuration between $\\sim3000$ and $\\sim1000$ years ago. Similarly disrupted stratigraphy and buried crevasses suggest that ice flowing from Mercer to Whillans Ice Stream across the northwestern tip of the ridge slowed shortly after. Using an ice-flow model capable of simulating shear margin migration, we evaluate whether small changes in ice thickness can lead to large changes in shear margin location. Our results suggest that the tip of Conway Ridge is sensitive to thinning and thickening, and that when the basal strength at the tip of the ridge increases with the height above flotation, the ice sheet shear margins can change quickly.", "east": -130.0, "geometry": "POINT(-140 -84.25)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIER ELEVATION/ICE SHEET ELEVATION; Siple Coast", "locations": "Siple Coast", "north": -83.5, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hoffman, Andrew; Conway, Howard", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Glacial History of Ridge AB, West Antarctica", "uid": "p0010470", "west": -150.0}, {"awards": "2209726 Lindzey, Laura", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "QIceRadar Antarctic Index of Radar Depth Sounding Data", "datasets": [{"dataset_uid": "200413", "doi": " 10.5281/zenodo.12123013", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "QIceRadar Antarctic Index of Radar Depth Sounding Data", "url": "https://zenodo.org/records/12123013"}], "date_created": "Wed, 19 Jun 2024 00:00:00 GMT", "description": "Ice penetrating radar is one of the primary tools that researchers use to study ice sheets and glaciers. With radar, it is possible to see a cross-section of the ice, revealing internal layers and the shape of the rocks under the ice. Among other things, this is important for calculating how much potential sea level change is locked up in the polar ice sheets, and how stable the ice sheets are likely to be in a warming world. This type of data is logistically challenging and expensive to collect. Historically, individual research groups have obtained funding to collect these data sets, and then the data largely stayed within that institution. There has been a recent push to make more and more data openly available, enabling the same datasets to be used by multiple research groups. However, it is still difficult to figure out what data is available because there is no centralized index. Additionally, each group releases data in a different format, which creates an additional hurdle to its use. This project addresses both of those challenges to data reuse by providing a unified tool for discovering where ice penetrating radar data already exists, then allowing the researcher to download and visualize the data. It is integrated into open-source mapping software that many in the research community already use, and makes it possible for non-experts to explore these datasets. This is particularly valuable for early-career researchers and for enabling interdisciplinary work. The US alone has spent many tens of millions of dollars on direct grants to enable the acquisition and analysis of polar ice penetrating radar data, and even more on the associated infrastructure and support costs. Unfortunately, much of these data is not publicly released, and even the data that has been released is not easily accessible. There is significant technical work involved in figuring out how to locate, download and view the data. This project is developing a tool that will both lower the barrier to entry for using this data and improve the workflows of existing users. Quantarctica and QGreenland have rapidly become indispensable tools for the polar research community, making diverse data sets readily available to researchers. However, ice penetrating radar is a major category of data that is not currently supported ? it is possible to see the locations of existing survey lines, and the ice thickness maps that have been interpreted from their data, but it is not readily possible to see the radargrams themselves in context with all of the other information. This capability is important because there is far more visual information contained in a radargram than simply its interpreted basal elevation or ice thickness. This project is developing software that will enable researchers to to view radargram images and interpreted surface and basal horizons in context with the existing map-view datasets in Quantarctica and QGreenland. A data layer shows the locations of all known ice penetrating radar surveys, color-coded based on availability. This layer enables data discovery and browsing. The plugin itself interacts with the data layer, first to download selected data, then to visualize the radargrams along with a cursor that moves simultaneously along the radargram and along the map view, making it straightforward to determine the precise geolocation of radar features.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "AIRCRAFT; GLACIERS/ICE SHEETS; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Polar Cyberinfrastructure", "paleo_time": null, "persons": "Lindzey, Laura", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e AIRCRAFT", "repo": "Zenodo", "repositories": "Zenodo", "science_programs": null, "south": -90.0, "title": "Elements: Making Ice Penetrating Radar More Accessible: A tool for finding, downloading and visualizing georeferenced radargrams within the QGIS ecosystem", "uid": "p0010464", "west": -180.0}, {"awards": "2333940 Zhong, Shijie", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 08 Jan 2024 00:00:00 GMT", "description": "Satellite observations of Earth?s surface gravity and elevation changes indicate rapid melting of ice sheets in recent decades in northern Antarctica Peninsula and Amundsen Sea Embayment of West Antarctica. This rapid melting may lead to significant global sea level rise which is a major societal concern. Measurements from the Global Positioning System (GPS) show rapid land uplift in these regions as the ice sheets melt. When an ice sheet melts, the melt water flows to oceans, causing global sea level to rise. However, the sea level change at a given geographic location is also influenced by two other factors associated with the ice melting process: 1) the vertical motion of the land and 2) gravitational attraction. The vertical motion of the land is caused by the change of pressure force on the surface of the solid Earth. For example, the removal of ice mass reduces the pressure force on the land, leading to uplift of the land below the ice sheet, while the addition of water in oceans increases the pressure force on the seafloor, causing it to subside. The sea level always follows the equipotential surface of the gravity which changes as the mass on the Earth?s surface (e.g., the ice and water) or/and in its interiors (e.g., at the crust-mantle boundary) is redistributed. Additionally, the vertical motion of the land below an ice sheet has important effects on the evolution and stability of the ice sheet and may determine whether the ice sheet will rapidly collapse or gradually stabilize. The main goal of this project is to build an accurate and efficient computer model to study the displacement and deformation of the Antarctic crust and mantle in response to recent ice melting. The project will significantly improve existing and publicly available computer code, CitcomSVE. The horizontal and vertical components of the Earth?s surface displacement depends on mantle viscosity and elastic properties of the Earth. Although seismic imaging studies demonstrate that the Antarctica mantle is heterogeneous, most studies on the ice-melting induced deformation in Antarctica have assumed that mantle viscosity and elastic properties only vary with the depth due to computational limitations. In this project, the new computational method in CitcomSVE avoids such assumptions and makes it possible to include realistic 3-D mantle viscosity and elastic properties in computing the Antarctica crustal and mantle displacement. This project will interpret the GPS measurements of the surface displacements in northern Antarctica Peninsula and Amundsen Sea Embayment of West Antarctica and use the observations to place constraints on mantle viscosity and deformation mechanisms. The project will also seek to predict the future land displacement Antarctica, which will lead to a better understand of Antarctica ice sheets. Finally, the project has direct implications for the study of global sea level change and the dynamics of the Greenland ice sheet. Technical Description Glacial isostatic adjustment (GIA) is important for understanding not only fundamental science questions including mantle viscosity, mantle convection and lithospheric deformation but also societally important questions of global sea-level change, polar ice melting, climate change, and groundwater hydrology. Studies of rock deformation in laboratory experiments, post-seismic deformation, and mantle dynamics indicate that mantle viscosity is temperature- and stress-dependent. Although the effects of stress-dependent (i.e., non-Newtonian) viscosity and transient creep rheology on GIA process have been studied, observational evidence remains elusive. There has been significant ice mass loss in recent decades in northern Antarctica Peninsula (NAP) and Amundsen Sea Embayment (ASE) of West Antarctica. The ice mass loss has caused rapid bedrock uplift as measured by GPS techniques which require surprisingly small upper mantle viscosity of ~1018 Pas. The rapid uplifts may have important feedback effects on ongoing ice melting because of their influence on grounding line migration, and the inferred small viscosity may have implications for mantle rheology and deformation on decadal time scales. The main objective of the project is to test hypotheses that the GPS observations in NAP and ASE regions are controlled by 3-D non-Newtonian or/and transient creep viscosity by developing new GIA modeling capability based on finite element package CitcomSVE. The project will carry out the following three tasks: Task 1 is to build GIA models for the NAP and ASE regions to examine the effects of 3-D temperature-dependent mantle viscosity on the surface displacements and to test hypothesis that the 3-D mantle viscosity improves the fit to the GPS observations. Task 2 is to test the hypothesis that non-Newtonian or/and transient creep rheology controls GIA process on decadal time scales by computing GIA models and comparing model predictions with GPS observations for the NAP and ASE regions. Task 3 is to implement transient creep (i.e., Burgers model) rheology into finite element package CitcomSVE for modeling the GIA process on global and regional scales and to make the package publicly available to the scientific community. The project will develop the first numerical GIA model with Burgers transient rheology and use the models to examine the effects of 3-D temperature-dependent viscosity, non-Newtonian viscosity and transient rheology on GIA-induced surface displacements in Antarctica. The project will model the unique GPS observations of unusually large displacement rates in the NAP and ASE regions to place constraints on mantle rheology and to distinguish between 3-D temperature-dependent, non-Newtonian and transient mantle viscosity. The project will expand the capability of the publicly available software package CitcomSVE for modeling viscoelastic deformation and tidal deformation on global and regional scales. The project will advance our understanding in lithospheric deformation and mantle rheology on decadal time scales, which helps predict grounding line migration and understand ice sheet stability in West Antarctica. The project will strengthen the open science practice by improving the publicly available code CitcomSVE at github.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "WAIS; CRUSTAL MOTION; COMPUTERS; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE", "locations": "WAIS", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Zhong, Shijie", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Investigating Effects of Transient and Non-Newtonian Mantle Viscosity on Glacial Isostatic Adjustment Process and their Implications for GPS Observations in Antarctica", "uid": "p0010441", "west": -180.0}, {"awards": "2034874 Salesky, Scott; 2035078 Giometto, Marco", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 08 Sep 2023 00:00:00 GMT", "description": "1. A non-technical explanation of the project\u0027s broader significance and importance, that serves as a public justification for NSF funding. This part should be understandable to an educated reader who is not a scientist or engineer.\r\n\r\nKatabatic or drainage winds, carry high-density air from a higher elevation down a slope under the force of gravity. Although katabatic flows are ubiquitous in alpine and polar regions, a surface-layer similarity theory is currently lacking for these flows, undermining the accuracy of numerical weather and climate prediction models. This project is interdisciplinary, and will give graduate and undergraduate students valuable experience interacting with researchers outside their core discipline. Furthermore, this project will broaden participating in science through recruitment of students from under-represented groups at OU and CU through established programs.\r\n\r\nThe Antarctic Ice Sheet drives many processes in the Earth system through its modulation of regional and global atmospheric and oceanic circulations, storage of fresh water, and effects on global albedo and climate. An understanding of the surface mass balance of the ice sheets is critical for predicting future sea level rise and for interpreting ice core records. Yet, the evolution of the ice sheets through snow deposition, erosion, and transport in katabatic winds (which are persistent across much of the Antarctic) remains poorly understood due to the lack of an overarching theoretical framework, scarcity of in situ observational datasets, and a lack of accurate numerical modeling tools. Advances in the fundamental understanding and modeling capabilities of katabatic transport processes are urgently needed in view of the future climatic and snowfall changes that are projected to occur within the Antarctic continent. This project will leverage the expertise of a multidisciplinary team of investigators (with backgrounds spanning cryospheric science, environmental fluid mechanics, and atmospheric science) to address these knowledge gaps.\r\n\r\n\r\n2. A technical description of the project that states the problem to be studied, the goals and scope of the research, and the methods and approaches to be used. In many cases, the technical project description may be a modified version of the project summary submitted with the proposal. \r\n\r\nUsing field observations and direct numerical simulations of katabatic flow, this project is expected--- for the first time---to lead to a surface-layer similarity theory for katabatic flows relating turbulent fluxes to mean vertical gradients. The similarity theory will be used to develop surface boundary conditions for large eddy simulations (LES), enabling the first accurate LES of katabatic flow.\r\n\r\nThe numerical tools that the PIs will develop will allow them to investigate how the partitioning between snow redistribution, transport, and sublimation depends on the environmental parameters typically encountered in Antarctica (e.g. atmospheric stratification, surface sloping angles, and humidity profiles), and to develop simple models to infer snow transport based on satellite remote sensing and regional climate models\r\n\r\nThis award reflects the NSF statutory mission and has been deemed worthy of support through evaluation using the intellectual merit of the Foundation and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "TURBULENCE; ATMOSPHERIC RADIATION; DATA COLLECTIONS; SNOW/ICE; SNOW; FIELD INVESTIGATION; AIR TEMPERATURE; HUMIDITY", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Salesky, Scott; Giometto, Marco; Das, Indrani", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e DATA COLLECTIONS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Snow Transport in Katabatic Winds and Implications for the Antarctic Surface Mass Balance: Observations, Theory, and Numerical Modeling", "uid": "p0010433", "west": null}, {"awards": "1841858 Souney, Joseph; 1841844 Steig, Eric; 1841879 Aydin, Murat", "bounds_geometry": "POINT(-105 -86)", "dataset_titles": null, "datasets": null, "date_created": "Mon, 06 Feb 2023 00:00:00 GMT", "description": "The goal of this project is to drill and recover an ice core from Hercules Dome, Antarctica. The geographic setting of Hercules Dome makes it well-situated to investigate changes in the size of the West Antarctic ice sheet over long time periods. The base of the West Antarctic ice sheet lies below sea level, which makes this part of Antarctica vulnerable to melting from the relatively warm deep water of the Southern Ocean. An important research question is whether the West Antarctic Ice Sheet collapsed during Earth\u0027s last prolonged warm period, about 125,000 years ago, when the ocean was warmer and sea level was several meters higher than today. Evidence for or against such a collapse will be recorded in the chemistry and physical properties of the ice. The Hercules Dome ice core will be obtained over three to four field seasons in Antarctica using efficient drilling technology. This grant includes support for project management, pre-drilling science community engagement, ice-core recovery, and education and outreach activities. \u003cbr/\u003e\u003cbr/\u003eHercules Dome is located at the edge of the East Antarctic ice sheet, south of the Transantarctic Mountains at 86 degrees South, 105 degrees West. Glaciological conditions at Hercules Dome are simple, with well-defined layering to the bed, optimal for the recovery of a deep ice core reaching to the last interglacial period at depths between 1600 and 2800 meters. An ice core from Hercules Dome will provide a research opportunity for ice-core analysts and others to make progress on a number of science priorities, including the environmental conditions of the last interglacial period, the history of gases and aerosols, and the magnitude and timing of changes in temperature and snow accumulation over the last 150,000 years. Together with the network of ice cores obtained by U.S. and international researchers over the last few decades, results from Hercules Dome will yield improved estimates of the boundary conditions necessary for the implementation and validation of ice-sheet models critical to the projection of future Antarctic ice-sheet change and sea level.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -105.0, "geometry": "POINT(-105 -86)", "instruments": null, "is_usap_dc": true, "keywords": "ICE SHEETS; Hercules Dome; FIELD SURVEYS; AIR TEMPERATURE; SNOW/ICE CHEMISTRY; GLACIER ELEVATION/ICE SHEET ELEVATION; PALEOCLIMATE RECONSTRUCTIONS", "locations": "Hercules Dome", "north": -86.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Steig, Eric J.; Fudge, T. J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": "Hercules Dome Ice Core", "south": -86.0, "title": "Collaborative Research: An Ice Core from Hercules Dome, East Antarctica", "uid": "p0010401", "west": -105.0}, {"awards": "2152622 Morlighem, Mathieu", "bounds_geometry": "POLYGON((-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-103 -74,-102 -74,-101 -74,-100 -74,-100 -74.3,-100 -74.6,-100 -74.9,-100 -75.2,-100 -75.5,-100 -75.8,-100 -76.1,-100 -76.4,-100 -76.7,-100 -77,-101 -77,-102 -77,-103 -77,-104 -77,-105 -77,-106 -77,-107 -77,-108 -77,-109 -77,-110 -77,-110 -76.7,-110 -76.4,-110 -76.1,-110 -75.8,-110 -75.5,-110 -75.2,-110 -74.9,-110 -74.6,-110 -74.3,-110 -74))", "dataset_titles": "Sliding-Law Parameter and Airborne Radar-Derived Basal Reflectivity Data Underneath Thwaites Glacier, Antarctica", "datasets": [{"dataset_uid": "601658", "doi": "10.15784/601658", "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Thwaites; Thwaites Glacier", "people": "Das, Indrani", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Sliding-Law Parameter and Airborne Radar-Derived Basal Reflectivity Data Underneath Thwaites Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601658"}], "date_created": "Tue, 20 Dec 2022 00:00:00 GMT", "description": "This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Thwaites Glacier has been accelerating and widening over the past three decades. How fast Thwaites will disintegrate or how quickly it will find a new stable state have become some of the most important questions of the future of the West Antarctic Ice Sheet and its contribution to sea-level rise over the next decades to centuries and beyond. This project will rely on three independent numerical models of ice flow, coupled to an ocean circulation model to (1) improve our understanding of the interactions between the ice and the underlying bedrock, (2) analyze how sensitive the glacier is to external changes, (3) assess the processes that may lead to a collapse of Thwaites, and, most importantly, (4) forecast future ice loss of Thwaites. By providing predictions based on a suite of coupled ice-ocean models, this project will also assess the uncertainty in model projections.\r\n\r\nThe project will use three independent ice-sheet models: Ice Sheet System Model, Ua, and STREAMICE, coupled to the ocean circulation model of the MIT General Circulation Model. The team will first focus on the representation of key physical processes of calving, ice damage, and basal slipperiness that have either not been included, or are poorly represented, in previous ice-flow modelling work. The team will then quantify the relative role of different proposed external drivers of change (e.g., ocean-induced ice-shelf thinning, loss of ice-shelf pinning points) and explore the stability regime of Thwaites Glacier with the aim of identifying internal thresholds separating stable and unstable grounding-line retreat. Using inverse methodology, the project will produce new physically consistent high-resolution (300-m) data sets on ice-thicknesses from available radar measurements. Furthermore, the team will generate new remote sensing data sets on ice velocities and rates of elevation change. These will be used to constrain and validate the numerical models, and will also be valuable stand-alone data sets. This process will allow the numerical models to be constrained more tightly by data than has previously been possible. The resultant more robust model predictions of near-future impact of Thwaites Glacier on global sea levels can inform policy-relevant decision-making.\r\n\r\nThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -100.0, "geometry": "POINT(-105 -75.5)", "instruments": null, "is_usap_dc": true, "keywords": "COMPUTERS; Amundsen Sea; ICE SHEETS", "locations": "Amundsen Sea", "north": -74.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "NOT APPLICABLE", "persons": "Morlighem, Mathieu; Das, Indrani", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "NSF-NERC: PROcesses, drivers, Predictions: Modeling the response of Thwaites Glacier over the next Century using Ice/Ocean Coupled Models (PROPHET)", "uid": "p0010400", "west": -110.0}, {"awards": "1644234 Phillips, Fred", "bounds_geometry": "POLYGON((166.17 -77.3,166.32799999999997 -77.3,166.486 -77.3,166.644 -77.3,166.802 -77.3,166.95999999999998 -77.3,167.118 -77.3,167.276 -77.3,167.434 -77.3,167.59199999999998 -77.3,167.75 -77.3,167.75 -77.34,167.75 -77.38,167.75 -77.42,167.75 -77.46,167.75 -77.5,167.75 -77.54,167.75 -77.58,167.75 -77.62,167.75 -77.66,167.75 -77.7,167.59199999999998 -77.7,167.434 -77.7,167.276 -77.7,167.118 -77.7,166.95999999999998 -77.7,166.802 -77.7,166.644 -77.7,166.486 -77.7,166.32799999999997 -77.7,166.17 -77.7,166.17 -77.66,166.17 -77.62,166.17 -77.58,166.17 -77.54,166.17 -77.5,166.17 -77.46,166.17 -77.42,166.17 -77.38,166.17 -77.34,166.17 -77.3))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 12 Dec 2022 00:00:00 GMT", "description": "Nontechnical Description: The age of rocks and soils at the surface of the Earth can help answer multiple questions that are important for human welfare, including: when did volcanoes erupt and are they likely to erupt again? when did glaciers advance and what do they tell us about climate? what is the frequency of hazards such as landslides, floods, and debris flows? how long does it take soils to form and is erosion of soils going to make farming unsustainable? One method that is used thousands of times every year to address these questions is called \u0027cosmogenic surface-exposure dating\u0027. This method takes advantage of cosmic rays, which are powerful protons and neutrons produced by supernova that constantly bombard the Earth\u0027s atmosphere. Some cosmic rays reach Earth\u0027s surface and produce nuclear reactions that result in rare isotopes. Measuring the quantity of the rare isotopes enables the length of time that the rock or soil has been exposed to the atmosphere to be calculated. The distribution of cosmic rays around the globe depends on Earth\u0027s magnetic field, and this distribution must be accurately known if useful exposure ages are to be obtained. Currently there are two remaining theories, narrowed down from many, of how to calculate this distribution. Measurements from a site that is at both high altitude and high latitude (close to the poles) are needed to test the two theories. This study involves both field and lab research and includes a Ph.D. student and an undergraduate student. The research team will collect rocks from lava flows on an active volcano in Antarctica named Mount Erebus and measure the amounts of two rare isotopes: 36Cl and 3He. The age of eruption of the samples will be determined using a highly accurate method that does not depend on cosmic rays, called 40Ar/39Ar dating. The two cosmic-ray theories will be used to calculate the ages of the samples using the 36Cl and 3He concentrations and will then be compared to the ages calculated from the 40Ar/39Ar dating. The accurate cosmic-ray theory will be the one that gives the same ages as the 40Ar/39Ar dating. Identification of the accurate theory will enable use of the cosmogenic surface dating methods anywhere on earth. \u003cbr/\u003eTechnical Description: Nuclides produced by cosmic rays in rocks at the surface of the earth are widely used for Quaternary geochronology and geomorphic studies and their use is increasing every year. The recently completed CRONUS-Earth Project (Cosmic-Ray Produced Nuclides on Earth) has systematically evaluated the production rates and theoretical underpinnings of cosmogenic nuclides. However, the CRONUS-Earth Project was not able to discriminate between the two leading theoretical approaches: the original Lal model (St) and the new Lifton-Sato-Dunai model (LSD). Mathematical models used to scale the production of the nuclides as a function of location on the earth, elevation, and magnetic field configuration are an essential component of this dating method. The inability to distinguish between the two models was because the predicted production rates did not differ sufficiently at the location of the calibration sites. \u003cbr/\u003e\u003cbr/\u003eThe cosmogenic-nuclide production rates that are predicted by the two models differ significantly from each other at Erebus volcano, Antarctica. Mount Erebus is therefore an excellent site for testing which production model best describes actual cosmogenic-nuclide production variations over the globe. The research team recently measured 3He and 36Cl in mineral separates extracted from Erebus lava flows. The exposure ages for each nuclide were reproducible within each flow (~2% standard deviation) and in very good agreement between the 3He and the 36Cl ages. However, the ages calculated by the St and LSD scaling methods differ by ~15-25% due to the sensitivity of the production rate to the scaling at this latitude and elevation. These results lend confidence that Erebus qualifies as a suitable high- latitude/high-elevation calibration site. The remaining component that is still lacking is accurate and reliable independent (i.e., non-cosmogenic) ages, however, published 40Ar/39Ar ages are too imprecise and typically biased to older ages due to excess argon contained in melt inclusions.\u003cbr/\u003eThe research team\u0027s new 40Ar/39Ar data show that previous problems with Erebus anorthoclase geochronology are now overcome with modern mass spectrometry and better sample preparation. This indicates a high likelihood of success for this proposal in defining an accurate global scaling model. Although encouraging, much remains to be accomplished. This project will sample lava flows over 3 km in elevation and determine their 40Ar/39Ar and exposure ages. These combined data will discriminate between the two scaling methods, resulting in a preferred scaling model for global cosmogenic geochronology. The LSD method contains two sub-methods, the \u0027plain\u0027 LSD scales all nuclides the same, whereas LSDn scales each nuclide individually. The project can discriminate between these models using 3He and 36Cl data from lava flows at different elevations, because the first model predicts that the production ratio for these two nuclides will be invariant with elevation and the second that there should be ~10% difference over the range of elevations to be sampled. Finally, the project will provide a local, finite-age calibration site for cosmogenic-nuclide investigations in Antarctica.", "east": 167.75, "geometry": "POINT(166.95999999999998 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "AGE DETERMINATIONS; Mount Erebus; VOLCANO", "locations": "Mount Erebus", "north": -77.3, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Phillips, Fred; Kyle, Philip; Heizler, Matthew T", "platforms": null, "repositories": null, "science_programs": null, "south": -77.7, "title": "A Test of Global and Antarctic Models for Cosmogenic-nuclide Production Rates using High-precision Dating of 40Ar/39Ar Lava Flows from Mount Erebus", "uid": "p0010397", "west": 166.17}, {"awards": "1542756 Koutnik, Michelle", "bounds_geometry": "POLYGON((-180 -77,-179.5 -77,-179 -77,-178.5 -77,-178 -77,-177.5 -77,-177 -77,-176.5 -77,-176 -77,-175.5 -77,-175 -77,-175 -77.9,-175 -78.8,-175 -79.7,-175 -80.6,-175 -81.5,-175 -82.4,-175 -83.3,-175 -84.2,-175 -85.1,-175 -86,-175.5 -86,-176 -86,-176.5 -86,-177 -86,-177.5 -86,-178 -86,-178.5 -86,-179 -86,-179.5 -86,180 -86,177.5 -86,175 -86,172.5 -86,170 -86,167.5 -86,165 -86,162.5 -86,160 -86,157.5 -86,155 -86,155 -85.1,155 -84.2,155 -83.3,155 -82.4,155 -81.5,155 -80.6,155 -79.7,155 -78.8,155 -77.9,155 -77,157.5 -77,160 -77,162.5 -77,165 -77,167.5 -77,170 -77,172.5 -77,175 -77,177.5 -77,-180 -77))", "dataset_titles": "Beardmore Glacier model in \u0027icepack\u0027", "datasets": [{"dataset_uid": "200339", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Beardmore Glacier model in \u0027icepack\u0027", "url": "https://github.com/danshapero/beardmore"}], "date_created": "Mon, 12 Dec 2022 00:00:00 GMT", "description": "In this project we investigated glaciers that drain ice from the East Antarctic Ice Sheet through the Transantarctic Mountains into the present-day Ross Ice Shelf. The outlet glaciers that flow through the Transantarctic Mountains have thinned significantly over the past 15,000 years, especially as they retreated from Last Glacial Maximum highstands to their present-day grounding lines. At certain locations and for certain glaciers, rocks or bedrock have been sampled to provide constraints on the timing of when ice retreated from these locations. In the locations where geochronological data are available we can use these data as direct constraints on ice-flow models that simulate ice elevation change over time. The intellectual merit of this work is using ice-flow models to spatially and temporally extrapolate between these limited geochronological data points, which enables new understanding of glacier evolution. \r\n\r\nThe mountainous topography in this region is complex, and there are limited measurements of the topography beneath the ice of the Transantarctic outlet glaciers. Since the topography of the glacier bed is an important control on ice flow and is a necessary boundary condition in models we developed a new gridded bed product at Beardmore Glacier, the one location where sufficient data were available, and we compared this to continent-scale gridded bed products. We found that for this glacier, the BedMachine v1 product was reasonably similar to the Beardmore Glacier bed topography measurements; our limited evaluation suggests that the BedMachine product may be sufficient at other Transantarctic outlets where bed measurements are not available, but that other compilations of bed topography data that do not include information about ice flow directions do not provide reliable results. Using these data and available geochronological constraints we investigated Beardmore Glacier evolution since the Last Glacial Maximum using simplified (flowline) models of ice flow.\r\n\r\nIn addition to flowline modeling at Beardmore Glacier, we developed a flow-model setup using the open-source \u0027icepack\u0027 model that uses the shallow stream equations and resolves flow in both the x and y directions. The key value added over flowline (or parameterized flowband) models is that this can capture converging and diverging ice flow, variable side wall and bottom drag, and other geometric complexities. In these simulations we can evaluate the past accumulation, ice influx, and ice outflux to compare controls on deglaciation to data constraints on the chronology of deglaciation.\r\n\r\nWe also used a flowline model to investigate the Darwin-Hatherton Glacier System. Exposure ages and radiocarbon ages of glacial deposits at four locations alongside Hatherton and Darwin glaciers record several hundred meters of late Pleistocene to early Holocene thickening relative to present. Deglaciation was relatively complex at this site, and we also found that Byrd glacier likely contributed ice to the catchment of the Darwin-Hatherton glacier system during the last glacial maximum, and that subsequent convergent flow from Byrd and Mulock glaciers during deglaciation complicated the response of the Darwin-Hatherton system. These new insights can be used on their own to better understand local deglaciation, and can also be used to evaluate regional or continent-scale model calculations.\r\n\r\nSeparately, we investigated the general response of outlet glaciers to different sources of climate forcing. We found that outlet glaciers have a characteristically different response over time to surface-mass-balance forcing applied over the interior than to oceanic forcing applied at the grounding line. Our models demonstrated that ocean forcing first engages the fast, local response and then the slow adjustment of interior ice, whereas surface-mass-balance forcing is dominated by the slow interior adjustment. These insights contributed to our general understanding of how outlet glaciers may have evolved over time.\r\n\r\nOur new model investigations provide a framework that can be applied at other Transantarctic outlet glaciers where geochronological data are available. In particular, our \u0027icepack\u0027 setup is an archived and documented resource for the community. These tools are available for future investigations, including additional investigations at Beardmore Glacier and at other Transantarctic Mountain outlet glaciers. Scientific broader impacts include that this contributes to our understanding of the past behavior of East Antarctic ice, which provides an important constraint on the future evolution of Antarctica. Our team has engaged in public outreach and has engaged students in this research. Two graduate students led in aspects of this work, and have since gone on to research positions after their PhD.", "east": -175.0, "geometry": "POINT(170 -81.5)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS; Transantarctic Mountains; GLACIER THICKNESS/ICE SHEET THICKNESS", "locations": "Transantarctic Mountains", "north": -77.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Koutnik, Michelle; Smith, Ben; Conway, Howard; Shapero, Daniel", "platforms": null, "repo": "GitHub", "repositories": "GitHub", "science_programs": null, "south": -86.0, "title": "Holocene Deglaciation of the Western Ross Embayment: Constraints from East Antarctic Outlet Glaciers", "uid": "p0010398", "west": 155.0}, {"awards": "1916982 Teyssier, Christian; 1917009 Thomson, Stuart; 1917176 Siddoway, Christine", "bounds_geometry": "POLYGON((-160.16 -67.15,-154.572 -67.15,-148.984 -67.15,-143.39600000000002 -67.15,-137.808 -67.15,-132.22 -67.15,-126.632 -67.15,-121.04400000000001 -67.15,-115.456 -67.15,-109.868 -67.15,-104.28 -67.15,-104.28 -68.165,-104.28 -69.18,-104.28 -70.19500000000001,-104.28 -71.21000000000001,-104.28 -72.225,-104.28 -73.24,-104.28 -74.255,-104.28 -75.27,-104.28 -76.285,-104.28 -77.3,-109.868 -77.3,-115.456 -77.3,-121.044 -77.3,-126.632 -77.3,-132.22 -77.3,-137.808 -77.3,-143.396 -77.3,-148.98399999999998 -77.3,-154.572 -77.3,-160.16 -77.3,-160.16 -76.285,-160.16 -75.27,-160.16 -74.255,-160.16 -73.24,-160.16 -72.225,-160.16 -71.21000000000001,-160.16 -70.19500000000001,-160.16 -69.18,-160.16 -68.165,-160.16 -67.15))", "dataset_titles": "Apatite fission track thermochronology data for detrital minerals, offshore clasts, and bedrock; U-Pb detrital zircon geochronological data, obtained by LA-ICP-MS", "datasets": [{"dataset_uid": "200332", "doi": "", "keywords": null, "people": null, "repository": "in progress", "science_program": null, "title": "U-Pb detrital zircon geochronological data, obtained by LA-ICP-MS", "url": ""}, {"dataset_uid": "200333", "doi": "", "keywords": null, "people": null, "repository": "in progress", "science_program": null, "title": "Apatite fission track thermochronology data for detrital minerals, offshore clasts, and bedrock", "url": ""}], "date_created": "Wed, 19 Oct 2022 00:00:00 GMT", "description": "Sediment records off the coast of Marie Byrd Land (MBL), Antarctica suggest frequent and dramatic changes in the size of the West Antarctic Ice Sheet (WAIS) over short (tens of thousands of years) and long (millions of years) time frames in the past. WAIS currently overrides much of MBL and covers the rugged and scoured bedrock landscape. The ice sheet carved narrow linear troughs that reach depths of two to three thousand meters below sea level as outlet glaciers flowed from the interior of the continent to the oceans. As a result, large volumes of fragmented continental bedrock were carried out to the seabed. The glaciers cut downward into a region of crystalline rocks (i.e. granite) that display a significant temperature change as a function of rock depth. The strong geothermal gradient in the bedrock is favorable for determining when the bedrock became exhumed, or \"uncovered\" by action of the overriding icesheet or other processes. Our approach takes advantage of a reference horizon, or paleogeotherm, established when high-T mineral thermochronometers across Marie Byrd Land (MBL) cooled from temperatures of \u003e800\u00b0 C to 300\u00b0 C, due to rapid regional extension at ~100 Ma . The event imparted a signature through which the subsequent Cenozoic landscape history can be explored: MBL\u0027s elevated geothermal gradient, sustained during the Cenozoic, created favorable conditions for sensitive apatite and zircon low-T thermochronometers to record bedrock cooling related to glacial incision. \r\n\r\nAnalyzing the chemistry of minerals (zircon and apatite) within fragments of eroded rock will reveal the rate and timing of the bedrock erosion and development of topography in West Antarctica. This collaborative project addresses the following questions: When did the land become high enough for a large ice sheet to form? What was the regional pre-glacial topography? Under what climate conditions, and at what point in the growth of an ice sheet, did glaciers begin to cut sharply into bedrock to form the narrow troughs that flow seaward? The research will lead to greater understanding of past Antarctic ice sheet fluctuations and identify precise timing of glacial incisionm which will clarify the onset of WAIS glacier incision and assess the evolution of Cenozoic paleo-topography. The collaborative project provides training for one graduate and 8 undergraduate students in STEM. These students, together with PIs, will refine West Antarctic ice sheet history and obtain results that pertain to the international societal response to contemporary ice sheet change and its global consequences. \r\n\r\nThe methods used for the research include: \r\n\u2022Low-temperature (T) thermochronology and Pecube 3-D thermo-kinematic modeling, applied to the timing and characterizatio episodes of glacial erosional incision. \r\n\u2022Single-grain double- and triple-dating of zircon and apatite, to determine the detailed crustal thermal evolution of the region, enabling the research team to identify the comparative topographic influences on glaciation versus bedrock uplift induced by Eocene to present tectonism/magmatism. \r\n\r\nStudents and PIs employed state-of-the-art analytical facilities in Arizona and Minnesota, expanding the geo- and thermochronologic history of MBL from bedrock samples and offshore sedimentary deposits. The temperature and time data we acquired will provide constraints on paleotopography, isostasy, and the thermal evolution of MBL that will be modeled in 3D using Pecube model simulations. Within hot crust, less incision is required to expose bedrock containing the distinct thermochronometric profile; a prediction we are testing through use of inverse Pecube 3-D models of the thermal field through which bedrock and detrital samples cooled. Using results from Pecube, the ICI-Hot team will examine time-varying topography formed in response to changes in erosion rates, topographic relief, geothermal gradient and/or flexural isostatic rigidity. These effects are manifestations of dynamic processes in the WAIS, including ice sheet loading, ice volume fluctuations, relative motion upon crustal faults, and magmatism-related elevation increase across the MBL dome. The project makes use of pre-existing sample collections housed at the US Polar Rock Repository, IODP\u0027s Gulf Coast Core Repository, and the OSU Marine and Geology Repository. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -104.28, "geometry": "POINT(-132.22 -72.225)", "instruments": null, "is_usap_dc": true, "keywords": "Marie Byrd Land; GLACIERS/ICE SHEETS; Zircon; Subglacial Topography; FIELD SURVEYS; TECTONICS; Ice Sheet; Thermochronology; Apatite; ROCKS/MINERALS/CRYSTALS; Erosion; United States Of America; LABORATORY", "locations": "United States Of America; Marie Byrd Land", "north": -67.15, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC", "persons": "Siddoway, Christine; Thomson, Stuart; Teyssier, Christian", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "in progress", "repositories": "in progress", "science_programs": null, "south": -77.3, "title": "Collaborative Research: Ice sheet erosional interaction with hot geotherm in West Antarctica", "uid": "p0010386", "west": -160.16}, {"awards": "1744649 Christianson, Knut", "bounds_geometry": "POLYGON((-120 -85.5,-117.5 -85.5,-115 -85.5,-112.5 -85.5,-110 -85.5,-107.5 -85.5,-105 -85.5,-102.5 -85.5,-100 -85.5,-97.5 -85.5,-95 -85.5,-95 -85.62,-95 -85.74,-95 -85.86,-95 -85.98,-95 -86.1,-95 -86.22,-95 -86.34,-95 -86.46000000000001,-95 -86.58,-95 -86.7,-97.5 -86.7,-100 -86.7,-102.5 -86.7,-105 -86.7,-107.5 -86.7,-110 -86.7,-112.5 -86.7,-115 -86.7,-117.5 -86.7,-120 -86.7,-120 -86.58,-120 -86.46000000000001,-120 -86.34,-120 -86.22,-120 -86.1,-120 -85.98,-120 -85.86,-120 -85.74,-120 -85.62,-120 -85.5))", "dataset_titles": "Hercules Dome ApRES Data; Hercules Dome High-Frequency Impulse Ice-Penetrating Radar Data; Hercules Dome Ice-Penetrating Radar Swath Topographies; Ice Dynamics at the Intersection of the West and East Antarctic Ice Sheets; ITASE Impulse Radar Hercules Dome to South Pole", "datasets": [{"dataset_uid": "601711", "doi": "10.15784/601711", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Hercules Dome; Ice Penetrating Radar; Snow/ice; Snow/Ice", "people": "Holschuh, Nicholas; Hoffman, Andrew; Christianson, Knut; Paden, John", "repository": "USAP-DC", "science_program": "Hercules Dome Ice Core", "title": "Hercules Dome Ice-Penetrating Radar Swath Topographies", "url": "https://www.usap-dc.org/view/dataset/601711"}, {"dataset_uid": "601712", "doi": "10.15784/601712", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Hercules Dome; Ice Penetrating Radar; Snow/ice; Snow/Ice", "people": "Welch, Brian; Hoffman, Andrew; Jacobel, Robert; Christianson, Knut", "repository": "USAP-DC", "science_program": "Hercules Dome Ice Core", "title": "ITASE Impulse Radar Hercules Dome to South Pole", "url": "https://www.usap-dc.org/view/dataset/601712"}, {"dataset_uid": "601710", "doi": "10.15784/601710", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Hercules Dome; Ice Penetrating Radar; Snow/ice; Snow/Ice", "people": "Christianson, Knut; Hills, Benjamin; Hoffman, Andrew; O\u0027Connor, Gemma; Horlings, Annika; Holschuh, Nicholas; Christian, John", "repository": "USAP-DC", "science_program": "Hercules Dome Ice Core", "title": "Hercules Dome High-Frequency Impulse Ice-Penetrating Radar Data", "url": "https://www.usap-dc.org/view/dataset/601710"}, {"dataset_uid": "601739", "doi": "10.15784/601739", "keywords": "Antarctica; Apres; Crystal Orientation Fabric; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hercules Dome; Ice Dynamic; Ice Penetrating Radar; Radar Interferometry; Radar Polarimetry", "people": "Steig, Eric J.; Fudge, Tyler J; Horlings, Annika; Erwin, Emma; Christianson, Knut; Hills, Benjamin; Holschuh, Nicholas; Hoffman, Andrew", "repository": "USAP-DC", "science_program": "Hercules Dome Ice Core", "title": "Hercules Dome ApRES Data", "url": "https://www.usap-dc.org/view/dataset/601739"}, {"dataset_uid": "601606", "doi": "10.15784/601606", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Ice Penetrating Radar; Snow/ice; Snow/Ice", "people": "Christianson, Knut", "repository": "USAP-DC", "science_program": null, "title": "Ice Dynamics at the Intersection of the West and East Antarctic Ice Sheets", "url": "https://www.usap-dc.org/view/dataset/601606"}], "date_created": "Tue, 02 Aug 2022 00:00:00 GMT", "description": "The response of the Antarctic ice sheet to climate change is a central issue in projecting global sea-level rise. While much attention is focused on the ongoing rapid changes at the coastal margin of the West Antarctic Ice Sheet, obtaining records of past ice-sheet and climate change is the only way to constrain how an ice sheet changes over millennial timescales. Whether the West Antarctic Ice Sheet collapsed during the last interglacial period (~130,000 to 116,000 years ago), when temperatures were slightly warmer than today, remains a major unsolved problem in Antarctic glaciology. Hercules Dome is an ice divide located at the intersection of the East Antarctic and West Antarctic ice sheets. It is ideally situated to record the glaciological and climatic effects of changes in the West Antarctic Ice Sheet. This project will establish whether Hercules Dome experienced major changes in flow due to changes in the elevation of the two ice sheets. The project will also ascertain whether Hercules Domes is a suitable site from which to recover climate records from the last interglacial period. These records could be used to determine whether the West Antarctic Ice Sheet collapsed during that period. The project will support two early-career researchers and train students at the University of Washington. Results will be communicated through outreach programs in coordination the Ice Drilling Project Office, the University of Washington\u0027s annual Polar Science Weekend in Seattle, and art-science collaboration.\u003cbr/\u003e\u003cbr/\u003eThis project will develop a history of ice dynamics at the intersection of the East and West Antarctic ice sheets, and ascertain whether the site is suitable for a deep ice-coring operation. Ice divides provide a unique opportunity to assess the stability of past ice flow. The low deviatoric stresses and non-linearity of ice flow causes an arch (a \"Raymond Bump\") in the internal layers beneath a stable ice divide. This information can be used to determine the duration of steady ice flow. Due to the slow horizontal ice-flow velocities, ice divides also preserve old ice with internal layering that reflects past flow conditions caused by divide migration. Hercules Dome is an ice divide that is well positioned to retain information of past variations in the geometry of both the East and West Antarctic Ice Sheets. This dome is also the most promising location at which to recover an ice core that can be used to determine whether the West Antarctic Ice Sheet collapsed during the last interglacial period. Limited ice-penetrating radar data collected along a previous scientific surface traverse indicate well-preserved englacial stratigraphy and evidence suggestive of a Raymond Bump, but the previous survey was not sufficiently extensive to allow thorough characterization or determination of past changes in ice dynamics. This project will conduct a dedicated survey to map the englacial stratigraphy and subglacial topography as well as basal properties at Hercules Dome. The project will use ground-based ice-penetrating radar to 1) image internal layers and the ice-sheet basal interface, 2) accurately measure englacial attenuation, and 3) determine englacial vertical strain rates. The radar data will be combined with GPS observations for detailed topography and surface velocities and ice-flow modeling to constrain the basal characteristics and the history of past ice flow.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -95.0, "geometry": "POINT(-107.5 -86.1)", "instruments": null, "is_usap_dc": true, "keywords": "West Antarctica; ICE DEPTH/THICKNESS; East Antarctica", "locations": "West Antarctica; East Antarctica", "north": -85.5, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Christianson, Knut; Hoffman, Andrew; Holschuh, Nicholas", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.7, "title": "Ice Dynamics at the Intersection of the West and East Antarctic Ice Sheets", "uid": "p0010359", "west": -120.0}, {"awards": "1745068 Booth, Robert; 1745082 Beilman, David", "bounds_geometry": "POLYGON((-64.4 -62.4,-63.910000000000004 -62.4,-63.42 -62.4,-62.93000000000001 -62.4,-62.440000000000005 -62.4,-61.95 -62.4,-61.46 -62.4,-60.97 -62.4,-60.480000000000004 -62.4,-59.99 -62.4,-59.5 -62.4,-59.5 -62.7,-59.5 -63,-59.5 -63.3,-59.5 -63.6,-59.5 -63.900000000000006,-59.5 -64.2,-59.5 -64.5,-59.5 -64.80000000000001,-59.5 -65.10000000000001,-59.5 -65.4,-59.99 -65.4,-60.480000000000004 -65.4,-60.97 -65.4,-61.46 -65.4,-61.95 -65.4,-62.440000000000005 -65.4,-62.93000000000001 -65.4,-63.42 -65.4,-63.910000000000004 -65.4,-64.4 -65.4,-64.4 -65.10000000000001,-64.4 -64.80000000000001,-64.4 -64.5,-64.4 -64.2,-64.4 -63.900000000000006,-64.4 -63.6,-64.4 -63.3,-64.4 -63,-64.4 -62.7,-64.4 -62.4))", "dataset_titles": "LMG2002 Expedtition Data", "datasets": [{"dataset_uid": "200222", "doi": "10.7284/908802", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "LMG2002 Expedtition Data", "url": "https://www.rvdata.us/search/cruise/LMG2002"}], "date_created": "Fri, 10 Jun 2022 00:00:00 GMT", "description": "Warming on the western Antarctic Peninsula in the later 20th century has caused widespread changes in the cryosphere (ice and snow) and terrestrial ecosystems. These recent changes along with longer-term climate and ecosystem histories will be deciphered using peat deposits. Peat accumulation can be used to assess the rate of glacial retreat and provide insight into ecological processes on newly deglaciated landscapes in the Antarctic Peninsula. This project builds on data suggesting recent ecosystem transformations that are linked to past climate of the western Antarctic Peninsula and provide a timeline to assess the extent and rate of recent glacial change. The study will produce a climate record for the coastal low-elevation terrestrial region, which will refine the major climate shifts of up to 6 degrees C in the recent past (last 12,000 years). A novel terrestrial record of the recent glacial history will provide insight into observed changes in climate and sea-ice dynamics in the western Antarctic Peninsula and allow for comparison with off-shore climate records captured in sediments. Observations and discoveries from this project will be disseminated to local schools and science centers. The project provides training and career development for a postdoctoral scientist as well as graduate and undergraduate students.\u003cbr/\u003e\u003cbr/\u003eThe research presents a new systematic survey to reconstruct ecosystem and climate change for the coastal low-elevation areas on the western Antarctic Peninsula (AP) using proxy records preserved in late Holocene peat deposits. Moss and peat samples will be collected and analyzed to generate a comprehensive data set of late-Holocene climate change and ecosystem dynamics. The goal is to document and understand the transformations of landscape and terrestrial ecosystems on the western AP during the late Holocene. The testable hypothesis is that coastal regions have experienced greater climate variability than evidenced in ice-core records and that past warmth has facilitated dramatic ecosystem and cryosphere response. A primary product of the project is a robust reconstruction of late Holocene climate changes for coastal low-elevation terrestrial areas using multiple lines of evidence from peat-based biological and geochemical proxies, which will be used to compare with climate records derived from marine sediments and ice cores from the AP region. These data will be used to test several ideas related to novel peat-forming ecosystems (such as Antarctic hairgrass bogs) in past warmer climates and climate controls over ecosystem establishment and migration to help assess the nature of the Little Ice Age cooling and cryosphere response. The chronology of peat cores will be established by radiocarbon dating of macrofossils and Bayesian modeling. The high-resolution time series of ecosystem and climate changes will help put the observed recent changes into a long-term context to bridge climate dynamics over different time scales.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -59.5, "geometry": "POINT(-61.95 -63.900000000000006)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS", "is_usap_dc": true, "keywords": "ECOSYSTEM FUNCTIONS; ISOTOPES; USAP-DC; PALEOCLIMATE RECONSTRUCTIONS; SEDIMENTS; Amd/Us; FIELD INVESTIGATION; Antarctic Peninsula; AMD; TERRESTRIAL ECOSYSTEMS; USA/NSF; RADIOCARBON", "locations": "Antarctic Peninsula", "north": -62.4, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Beilman, David; Booth, Robert", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.4, "title": "Collaborative Research: Reconstructing Late Holocene Ecosystem and Climate Shifts from Peat Records in the Western Antarctic Peninsula", "uid": "p0010337", "west": -64.4}, {"awards": "2019719 Brook, Edward", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "2019-2020 Allan Hills Field Report; 2022-23 Allan Hills Intermediate Ice Core Site Selection Field Report; 2023-2024 Allan Hills End-of-Season Science Report; Airborne Radar Data: 2022-23 (CXA1) flight based HDF5/matlab format data; Airborne Radar Data: 2022-23 (CXA1) transect based (science organized) unfocused data; Airborne Radar Data: 2023-24 (CXA2) flight based data HDF5/matlab format; Airborne Radar Data: 2023-24 (CXA2) transect based (science organized) unfocused data; ALHIC2201 and ALHIC2302 3D ECM and Layer Orientations; Allan Hills 2022-23 Shallow Ice Core Field Report; Allan Hills I-188 Field Season Report 2022-2023; Allan Hills ice water stable isotope record for dD, d18O; COLDEX Raw MARFA Ice Penetrating Radar data; NSF COLDEX 2022-23 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets; NSF COLDEX 2023-24 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets; Replicate O-17-excess by continuous flow laser spectroscopy for an ice core section at Summit, Greenland; Rising Seas: Representations of Antarctica, Climate Change, and Sea Level Rise in U.S. Newspaper Coverage; Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old", "datasets": [{"dataset_uid": "601826", "doi": "10.15784/601826", "keywords": "Allan Hills; Antarctica; Cryosphere", "people": "Manos, John-Morgan; Conway, Howard; Shaya, Margot; Horlings, Annika; Epifanio, Jenna", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Allan Hills I-188 Field Season Report 2022-2023", "url": "https://www.usap-dc.org/view/dataset/601826"}, {"dataset_uid": "601854", "doi": "10.15784/601854", "keywords": "Allan Hills; Antarctica; Cryosphere", "people": "Marks Peterson, Julia; Fudge, T. J.; Carter, Austin; Shackleton, Sarah; Kirkpatrick, Liam", "repository": "USAP-DC", "science_program": "COLDEX", "title": "ALHIC2201 and ALHIC2302 3D ECM and Layer Orientations", "url": "https://www.usap-dc.org/view/dataset/601854"}, {"dataset_uid": "200434", "doi": "10.18738/T8/99IEOG", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2022-23 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets", "url": "https://doi.org/10.18738/T8/99IEOG"}, {"dataset_uid": "200435", "doi": "10.18738/T8/PNBFOL", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2023-24 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets", "url": "https://doi.org/10.18738/T8/PNBFOL"}, {"dataset_uid": "601863", "doi": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Higgins, John; Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Severinghaus, Jeffrey P.; Brook, Edward", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}, {"dataset_uid": "601863", "doi": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Mayewski, Paul A.; Severinghaus, Jeffrey P.; Kurbatov, Andrei V.; Introne, Douglas; Higgins, John; Brook, Edward", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}, {"dataset_uid": "200432", "doi": "10.18738/T8/XPMLCC", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "Airborne Radar Data: 2022-23 (CXA1) transect based (science organized) unfocused data", "url": "https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/XPMLCC"}, {"dataset_uid": "601824", "doi": "10.15784/601824", "keywords": "Allan Hills; Antarctica; Coldex; Cryosphere", "people": "Mayo, Emalia; Carter, Austin; Shackleton, Sarah; Brook, Edward J.; Higgins, John; Marks Peterson, Julia; Jayred, Michael; Morton, Elizabeth; Manos, John-Morgan; Hudak, Abigail; Banerjee, Asmita; Goverman, Ashley; Epifanio, Jenna", "repository": "USAP-DC", "science_program": "COLDEX", "title": "2023-2024 Allan Hills End-of-Season Science Report", "url": "https://www.usap-dc.org/view/dataset/601824"}, {"dataset_uid": "601819", "doi": "10.15784/601819", "keywords": "Allan Hills; Antarctica; Cryosphere", "people": "Morgan, Jacob; Higgins, John; Shackleton, Sarah; Epifanio, Jenna; Kuhl, Tanner; Morton, Elizabeth; Zajicek, Anna; Nesbitt, Ian; Carter, Austin", "repository": "USAP-DC", "science_program": "COLDEX", "title": "2019-2020 Allan Hills Field Report", "url": "https://www.usap-dc.org/view/dataset/601819"}, {"dataset_uid": "601659", "doi": "10.15784/601659", "keywords": "Antarctica; Continuous Flow; Glaciology; Greenland; Ice Core Data; Laser Spectroscopy; Oxygen Isotope; Triple Oxygen Isotopes", "people": "Davidge, Lindsey", "repository": "USAP-DC", "science_program": "Hercules Dome Ice Core", "title": "Replicate O-17-excess by continuous flow laser spectroscopy for an ice core section at Summit, Greenland", "url": "https://www.usap-dc.org/view/dataset/601659"}, {"dataset_uid": "601878", "doi": "10.15784/601878", "keywords": "Allan Hills; Antarctica; Blue Ice; Carbon Dioxide; Cryosphere; Methane", "people": "Brook, Edward; Severinghaus, Jeffrey P.; Shackleton, Sarah; Hishamunda, Valens; Kalk, Michael; Marks Peterson, Julia", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old", "url": "https://www.usap-dc.org/view/dataset/601878"}, {"dataset_uid": "200421", "doi": "10.18738/T8/J38CO5", "keywords": null, "people": null, "repository": "OPR", "science_program": null, "title": "Airborne Radar Data: 2023-24 (CXA2) flight based data HDF5/matlab format", "url": "https://data.cresis.ku.edu/data/rds/2023_Antarctica_BaslerMKB/"}, {"dataset_uid": "200420", "doi": "10.18738/T8/J38CO5", "keywords": null, "people": null, "repository": "OPR", "science_program": null, "title": "Airborne Radar Data: 2022-23 (CXA1) flight based HDF5/matlab format data", "url": "https://data.cresis.ku.edu/data/rds/2022_Antarctica_BaslerMKB/"}, {"dataset_uid": "200419", "doi": "", "keywords": null, "people": null, "repository": "University Digital Conservancy", "science_program": null, "title": "Rising Seas: Representations of Antarctica, Climate Change, and Sea Level Rise in U.S. Newspaper Coverage", "url": "https://hdl.handle.net/11299/265195"}, {"dataset_uid": "601768", "doi": null, "keywords": "Antarctica; East Antarctic Plateau", "people": "Young, Duncan A.; Blankenship, Donald D.; Greenbaum, Jamin; Kerr, Megan; Buhl, Dillon; Ng, Gregory; Kempf, Scott D.; Chan, Kristian", "repository": "USAP-DC", "science_program": null, "title": "COLDEX Raw MARFA Ice Penetrating Radar data", "url": "https://www.usap-dc.org/view/dataset/601768"}, {"dataset_uid": "601696", "doi": "10.15784/601696", "keywords": "Allan Hills; Antarctica; Ice Core", "people": "Shackleton, Sarah; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills 2022-23 Shallow Ice Core Field Report", "url": "https://www.usap-dc.org/view/dataset/601696"}, {"dataset_uid": "601697", "doi": "10.15784/601697", "keywords": "Allan Hills; Antarctica; Apres; Ice Core; Ice Penetrating Radar; Temperature Profiles", "people": "Brook, Edward J.; Conway, Howard", "repository": "USAP-DC", "science_program": "COLDEX", "title": "2022-23 Allan Hills Intermediate Ice Core Site Selection Field Report", "url": "https://www.usap-dc.org/view/dataset/601697"}, {"dataset_uid": "200433", "doi": "10.18738/T8/FV6VNT", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "Airborne Radar Data: 2023-24 (CXA2) transect based (science organized) unfocused data", "url": "https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/FV6VNT"}], "date_created": "Sat, 21 May 2022 00:00:00 GMT", "description": "Cores drilled through the Antarctic ice sheet provide a remarkable window on the evolution of Earth\u2019s climate and unique samples of the ancient atmosphere. The clear link between greenhouse gases and climate revealed by ice cores underpins much of the scientific understanding of climate change. Unfortunately, the existing data do not extend far enough back in time to reveal key features of climates warmer than today. COLDEX, the Center for Oldest Ice Exploration, will solve this problem by exploring Antarctica for sites to collect the oldest possible record of past climate recorded in the ice sheet. COLDEX will provide critical information for understanding how Earth\u2019s near-future climate may evolve and why climate varies over geologic time. New technologies will be developed for exploration and analysis that will have a long legacy for future research. An archive of old ice will stimulate new research for the next generations of polar scientists. COLDEX programs will galvanize that next generation of polar researchers, bring new results to other scientific disciplines and the public, and help to create a more inclusive and diverse scientific community.\r\n\r\nKnowledge of Earth\u2019s climate history is grounded in the geologic record. This knowledge is gained by measuring chemical, biological and physical properties of geologic materials that reflect elements of climate. Ice cores retrieved from polar ice sheets play a central role in this science and provide the best evidence for a strong link between atmospheric carbon dioxide and climate on geologic timescales. The goal of COLDEX is to extend the ice-core record of past climate to at least 1.5 million years by drilling and analyzing a continuous ice core in East Antarctica, and to much older times using discontinuous ice sections at the base and margin of the ice sheet. COLDEX will develop and deploy novel radar and melt-probe tools to rapidly explore the ice, use ice-sheet models to constrain where old ice is preserved, conduct ice coring, develop new analytical systems, and produce novel paleoclimate records from locations across East Antarctica. The search for Earth\u2019s oldest ice also provides a compelling narrative for disseminating information about past and future climate change and polar science to students, teachers, the media, policy makers and the public. COLDEX will engage and incorporate these groups through targeted professional development workshops, undergraduate research experiences, a comprehensive communication program, annual scientific meetings, scholarships, and broad collaboration nationally and internationally. COLDEX will provide a focal point for efforts to increase diversity in polar science by providing field, laboratory, mentoring and networking experiences for students and early career scientists from groups underrepresented in STEM, and by continuous engagement of the entire COLDEX community in developing a more inclusive scientific culture.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; AMD; Antarctica; Amd/Us; Coldex; USAP-DC; FIELD SURVEYS; ICE DEPTH/THICKNESS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Polar Special Initiatives", "paleo_time": null, "persons": "Brook, Edward J.; Neff, Peter", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "OPR; Texas Data Repository; University Digital Conservancy; USAP-DC", "science_programs": "COLDEX", "south": -90.0, "title": "Center for Oldest Ice Exploration", "uid": "p0010321", "west": -180.0}, {"awards": "0944150 Hall, Brenda", "bounds_geometry": "POLYGON((163.6 -77.5,163.7 -77.5,163.8 -77.5,163.9 -77.5,164 -77.5,164.1 -77.5,164.2 -77.5,164.3 -77.5,164.4 -77.5,164.5 -77.5,164.6 -77.5,164.6 -77.57,164.6 -77.64,164.6 -77.71,164.6 -77.78,164.6 -77.85,164.6 -77.92,164.6 -77.99,164.6 -78.06,164.6 -78.13,164.6 -78.2,164.5 -78.2,164.4 -78.2,164.3 -78.2,164.2 -78.2,164.1 -78.2,164 -78.2,163.9 -78.2,163.8 -78.2,163.7 -78.2,163.6 -78.2,163.6 -78.13,163.6 -78.06,163.6 -77.99,163.6 -77.92,163.6 -77.85,163.6 -77.78,163.6 -77.71,163.6 -77.64,163.6 -77.57,163.6 -77.5))", "dataset_titles": "Marshall Valley Radiocarbon Data; Marshall Valley U-Series Data; Royal Society Range Headland Moraine Belt Radiocarbon Data; Salmon Valley Radiocarbon Data", "datasets": [{"dataset_uid": "601528", "doi": "10.15784/601528", "keywords": "234U/230Th Dating; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Last Glacial Maximum; Marshall Drift; Marshall Valley; MIS 6; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Marshall Valley U-Series Data", "url": "https://www.usap-dc.org/view/dataset/601528"}, {"dataset_uid": "601555", "doi": "10.15784/601555", "keywords": "Antarctica; Last Glacial Maximum; McMurdo Sound; Radiocarbon Dates; Ross Sea Drift; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Royal Society Range Headland Moraine Belt Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601555"}, {"dataset_uid": "601556", "doi": "10.15784/601556", "keywords": "Antarctica; Last Glacial Maximum; McMurdo Sound; Radiocarbon Dates; Ross Sea Drift; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Salmon Valley Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601556"}, {"dataset_uid": "601529", "doi": "10.15784/601529", "keywords": "Algae; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marshall Valley; Radiocarbon; Ross Sea Drift; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Marshall Valley Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601529"}], "date_created": "Thu, 03 Mar 2022 00:00:00 GMT", "description": "This award supports a project to investigate the sensitivity of the Antarctic ice sheet (AIS) to global climate change over the last two Glacial/Interglacial cycles. The intellectual merit of the project is that despite its importance to Earth\u0027s climate system, we currently lack a full understanding of AIS sensitivity to global climate change. This project will reconstruct and precisely date the history of marine-based ice in the Ross Sea sector over the last two glacial/interglacial cycles, which will enable a better understanding of the potential driving mechanisms (i.e., sea-level rise, ice dynamics, ocean temperature variations) for ice fluctuations. This will also help to place present ice?]sheet behavior in a long-term context. During the last glacial maximum (LGM), the AIS is known to have filled the Ross Embayment and although much has been done both in the marine and terrestrial settings to constrain its extent, the chronology of the ice sheet, particularly the timing and duration of the maximum and the pattern of initial recession, remains uncertain. In addition, virtually nothing is known of the penultimate glaciation, other than it is presumed to have been generally similar to the LGM. These shortcomings greatly limit our ability to understand AIS evolution and the driving mechanisms behind ice sheet fluctuations. This project will develop a detailed record of ice extent and chronology in the western Ross Embayment for not only the LGM, but also for the penultimate glaciation (Stage 6), from well-dated glacial geologic data in the Royal Society Range. Chronology will come primarily from high-precision Accelerator Mass Spectrometry (AMS) Carbon-14 (14C) and multi-collector Inductively Coupled Plasma (ICP)-Mass Spectrometry (MS) 234Uranium/230Thorium dating of lake algae and carbonates known to be widespread in the proposed field area. ", "east": 164.6, "geometry": "POINT(164.1 -77.85)", "instruments": null, "is_usap_dc": true, "keywords": "LABORATORY; Amd/Us; AMD; USA/NSF; GLACIAL LANDFORMS; USAP-DC; Royal Society Range; GLACIER ELEVATION/ICE SHEET ELEVATION", "locations": "Royal Society Range", "north": -77.5, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hall, Brenda; Denton, George", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.2, "title": "Sensitivity of the Antarctic Ice Sheet to Climate Change over the Last Two Glacial/Interglacial Cycles", "uid": "p0010302", "west": 163.6}, {"awards": "1643248 Hall, Brenda", "bounds_geometry": "POLYGON((163.3 -77.8,163.43 -77.8,163.56 -77.8,163.69 -77.8,163.82 -77.8,163.95 -77.8,164.08 -77.8,164.21 -77.8,164.34 -77.8,164.47 -77.8,164.6 -77.8,164.6 -77.85,164.6 -77.9,164.6 -77.95,164.6 -78,164.6 -78.05,164.6 -78.1,164.6 -78.15,164.6 -78.2,164.6 -78.25,164.6 -78.3,164.47 -78.3,164.34 -78.3,164.21 -78.3,164.08 -78.3,163.95 -78.3,163.82 -78.3,163.69 -78.3,163.56 -78.3,163.43 -78.3,163.3 -78.3,163.3 -78.25,163.3 -78.2,163.3 -78.15,163.3 -78.1,163.3 -78.05,163.3 -78,163.3 -77.95,163.3 -77.9,163.3 -77.85,163.3 -77.8))", "dataset_titles": "Marshall Valley Radiocarbon Data; Marshall Valley U-Series Data; Pyramid Trough Radiocarbon Data; Walcott Glacier area radiocarbon data; Walcott Glacier Exposure Data", "datasets": [{"dataset_uid": "601528", "doi": "10.15784/601528", "keywords": "234U/230Th Dating; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Last Glacial Maximum; Marshall Drift; Marshall Valley; MIS 6; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Marshall Valley U-Series Data", "url": "https://www.usap-dc.org/view/dataset/601528"}, {"dataset_uid": "601616", "doi": "10.15784/601616", "keywords": "Antarctica; Beryllium-10; Exposure Age; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; McMurdo Sound; Royal Society Range; Walcott Glacier", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Walcott Glacier Exposure Data", "url": "https://www.usap-dc.org/view/dataset/601616"}, {"dataset_uid": "601614", "doi": "10.15784/601614", "keywords": "Algae; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Pyramid Trough; Radiocarbon; Radiocarbon Dates; Ross Sea Drift; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Pyramid Trough Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601614"}, {"dataset_uid": "601529", "doi": "10.15784/601529", "keywords": "Algae; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marshall Valley; Radiocarbon; Ross Sea Drift; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Marshall Valley Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601529"}, {"dataset_uid": "601615", "doi": "10.15784/601615", "keywords": "Algae; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Howchin Glacier; Radiocarbon; Radiocarbon Dates; Ross Sea Drift; Royal Society Range; Walcott Glacier", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Walcott Glacier area radiocarbon data", "url": "https://www.usap-dc.org/view/dataset/601615"}], "date_created": "Thu, 03 Mar 2022 00:00:00 GMT", "description": "The Antarctic Ice Sheet is the greatest potential contributor to sea-level change. However, the future response of the ice sheet to warming climate is recognized as one of the greatest uncertainties in sea-level projections. An understanding of past ice fluctuations can afford insight into ice-sheet response to climate change and thus is critical for improving sea-level predictions. In this project, we will reconstruct the behavior of the Antarctic Ice Sheet in the western Ross Sea region during the great global warming that ended the last ice age. Fluctuations in ice volume during this time period will allow us to characterize the factors that cause the ice sheet to advance and retreat and will enable us to distinguish between models that suggest repeated episodes of ice-sheet collapse vs those that indicate ice-sheet growth during warming climate. An understanding of the cause(s) of changes in ice volume during the warming that ended the last ice age has important implications for the future of the Antarctic Ice Sheet. ", "east": 164.6, "geometry": "POINT(163.95 -78.05)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIER ELEVATION/ICE SHEET ELEVATION; Royal Society Range; USA/NSF; USAP-DC; Amd/Us; AMD; LABORATORY; GLACIAL LANDFORMS", "locations": "Royal Society Range", "north": -77.8, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Hall, Brenda; Denton, George", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.3, "title": "Response of the Antarctic Ice Sheet to the last great global warming", "uid": "p0010301", "west": 163.3}, {"awards": "1643394 Buizert, Christo", "bounds_geometry": "POLYGON((-180 -65,-144 -65,-108 -65,-72 -65,-36 -65,0 -65,36 -65,72 -65,108 -65,144 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.5,-180 -85,-180 -82.5,-180 -80,-180 -77.5,-180 -75,-180 -72.5,-180 -70,-180 -67.5,-180 -65))", "dataset_titles": "Antarctica 40,000 Year Temperature and Elevation Reconstructions; GISP2 and WAIS Divide Ice Cores 60,000 Year Surface Temperature Reconstructions; WAIS Divide 67-6ka nssS Data and EDML, EDC and TALDICE Volcanic Tie Points", "datasets": [{"dataset_uid": "200255", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Antarctica 40,000 Year Temperature and Elevation Reconstructions", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/32632"}, {"dataset_uid": "200257", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "GISP2 and WAIS Divide Ice Cores 60,000 Year Surface Temperature Reconstructions", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/34133"}, {"dataset_uid": "200256", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "WAIS Divide 67-6ka nssS Data and EDML, EDC and TALDICE Volcanic Tie Points", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/24530"}], "date_created": "Wed, 10 Nov 2021 00:00:00 GMT", "description": "This award supports a project to use ice cores to study teleconnections between the northern hemisphere, tropics, and Antarctica during very abrupt climate events that occurred during the last ice age (from 70,000 to 11,000 years ago). The observations can be used to test scientific theories about the role of the westerly winds on atmospheric carbon dioxide. In a warming world, snow fall in Antarctica is expected to increase, which can reduce the Antarctic contribution to sea level rise, all else being equal. The study will investigate how snow fall changed in the past in response to changes in temperature and atmospheric circulation, which can help improve projections of future sea level rise. Antarctica is important for the future evolution of our planet in several ways; it has the largest inventory of land-based ice, equivalent to about 58 m of global sea level and currently contributes about 0.3 mm per year to global sea level rise, which is expected to increase in the future due to global warming. The oceans surrounding Antarctica help regulate the uptake of human-produced carbon dioxide. Shifts in the position and strength of the southern hemisphere westerly winds could change the amount of carbon dioxide that is absorbed by the ocean, which will influence the rate of global warming. The climate and winds near and over Antarctica are linked to the rest of our planet via so-called climatic teleconnections. This means that climate changes in remote places can influence the climate of Antarctica. Understanding how these climatic teleconnections work in both the ocean and atmosphere is an important goal of climate research. The funds will further contribute towards training of a postdoctoral researcher and an early-career researcher; outreach to public schools; and the communication of research findings to the general public via the media, local events, and a series of Wikipedia articles.\r\n\r\nThe project will help to fully characterize the timing and spatial pattern of millennial-scale Antarctic climate change during the deglaciation and Dansgaard-Oeschger (DO) cycles using multiple synchronized Antarctic ice cores. The phasing of Antarctic climate change relative to Greenland DO events can distinguish between fast atmospheric teleconnections on sub-decadal timescales, and slow oceanic ones on centennial time scales. Preliminary work suggests that the spatial pattern of Antarctic change can fingerprint specific changes to the atmospheric circulation; in particular, the proposed work will clarify past movements of the Southern Hemisphere westerly winds during the DO cycle, which have been hypothesized. The project will help resolve a discrepancy between two previous seminal studies on the precise timing of interhemispheric coupling between ice cores in both hemispheres. The study will further provide state-of-the-art, internally-consistent ice core chronologies for all US Antarctic ice cores, as well as stratigraphic ties that can be used to integrate them into a next-generation Antarctic-wide ice core chronological framework. Combined with ice-flow modeling, these chronologies will be used for a continent-wide study of the relationship between ice sheet accumulation and temperature during the last deglaciation.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "ISOTOPES; Antarctica; USA/NSF; AMD; ICE CORE RECORDS; USAP-DC; VOLCANIC DEPOSITS; MODELS; Amd/Us", "locations": "Antarctica", "north": -65.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Buizert, Christo; Wettstein, Justin", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "NCEI", "repositories": "NCEI", "science_programs": null, "south": -90.0, "title": "Collaborative Research: The Timing and Spatial Expression of the Bipolar Seesaw in Antarctica from Synchronized Ice Cores", "uid": "p0010279", "west": -180.0}, {"awards": "2136938 Tedesco, Marco; 2136939 Cervone, Guido; 2136940 Newman, Dava", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Surface melt-related multi-source remote-sensing and climate model data over Helheim Glacier, Greenland for segmentation and machine learning applications; Surface melt-related multi-source remote-sensing and climate model data over Larsen C Ice Shelf, Antarctica for segmentation and machine learning applications", "datasets": [{"dataset_uid": "601842", "doi": "10.15784/601842", "keywords": "Antarctica; Climate Modeling; Cryosphere; Downscaling; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Larsen C Ice Shelf; Machine Learning; MAR; Remote Sensing; Sea Level Rise; Snow/ice; Snow/Ice; Surface Melt", "people": "Antwerpen, Raphael; L\u00fctjens, Bj\u00f6rn; Tedesco, Marco; Fettweis, Xavier; Cervone, Guido; Alexander, Patrick", "repository": "USAP-DC", "science_program": null, "title": "Surface melt-related multi-source remote-sensing and climate model data over Larsen C Ice Shelf, Antarctica for segmentation and machine learning applications", "url": "https://www.usap-dc.org/view/dataset/601842"}, {"dataset_uid": "601841", "doi": "10.15784/601841", "keywords": "Antarctica; Climate Modeling; Cryosphere; Downscaling; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland; Ice Sheet; Machine Learning; MAR; Remote Sensing; Sea Level Rise; Snow/ice; Snow/Ice; Surface Melt", "people": "Antwerpen, Raphael; Fettweis, Xavier; L\u00fctjens, Bj\u00f6rn; Alexander, Patrick; Tedesco, Marco; Cervone, Guido", "repository": "USAP-DC", "science_program": null, "title": "Surface melt-related multi-source remote-sensing and climate model data over Helheim Glacier, Greenland for segmentation and machine learning applications", "url": "https://www.usap-dc.org/view/dataset/601841"}], "date_created": "Mon, 08 Nov 2021 00:00:00 GMT", "description": "Surface melting and the evolution of the surface hydrological system on Antarctica ice shelves modulate the ice sheet mass balance. Despite its importance, limitations still exist that preclude the scientific community from mapping the spatio-temporal evolution of the surface hydrological system at the required resolutions to make the necessary leap forward to address the current and future evolution of ice shelves in Antarctica (Kingslake et al., 2019). Differently from Greenland, surface melting in Antarctica does not exhibit a dependency from elevation, with most of it occurring over ice shelves, at the sea level and where little elevation gradients exist. Therefore, statistical downscaling techniques using digital elevation models - as in the case of Greenland or other mountain regions - cannot be used. Machine learning (ML) tools can help in this regard. In this project, we address this issue and propose a novel method to map the spatio-temporal evolution of surface meltwater in Antarctica on a daily basis at high spatial (30 - 100 m) resolution using a combination of remote sensing, numerical modeling and machine learning. The final product of this project will consist of daily maps of surface meltwater at resolutions of the order of 100 m for the period 2000 - 2021 that will satisfy the following constraints: a) to be physically consistent with the model prediction and with the underlying governing dynamics for the melt processes; b) to capture the temporal dynamics of the model predictions, which include the temporal sequence of a set of past time steps which lead to the target prediction time, but could also include model predictions valid for a set of future time steps; c) to reconcile the higher spatial resolution of the input satellite measurements with the lower spatial resolution of the numerical model; d) to be consistent with previously generated surface melt products, so that temporal time series can be analyzed; e) to provide a measure of uncertainty to help with testing and validation.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "MODELS; Amd/Us; AMD; USA/NSF; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; USAP-DC; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Polar Cyberinfrastructure; Polar Cyberinfrastructure; Polar Cyberinfrastructure", "paleo_time": null, "persons": "Tedesco, Marco", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning", "uid": "p0010277", "west": -180.0}, {"awards": "1744949 Campbell, Seth; 1745015 Zimmerer, Matthew; 1744927 Mitrovica, Jerry", "bounds_geometry": "POLYGON((-145 -74,-141.6 -74,-138.2 -74,-134.8 -74,-131.4 -74,-128 -74,-124.6 -74,-121.2 -74,-117.8 -74,-114.4 -74,-111 -74,-111 -74.6,-111 -75.2,-111 -75.8,-111 -76.4,-111 -77,-111 -77.6,-111 -78.2,-111 -78.8,-111 -79.4,-111 -80,-114.4 -80,-117.8 -80,-121.2 -80,-124.6 -80,-128 -80,-131.4 -80,-134.8 -80,-138.2 -80,-141.6 -80,-145 -80,-145 -79.4,-145 -78.8,-145 -78.2,-145 -77.6,-145 -77,-145 -76.4,-145 -75.8,-145 -75.2,-145 -74.6,-145 -74))", "dataset_titles": "Mt. Waesche ground-penetrating radar data 2018-2019", "datasets": [{"dataset_uid": "601490", "doi": "10.15784/601490", "keywords": "Antarctica; GPR; Mt. Waesche", "people": "Braddock, Scott", "repository": "USAP-DC", "science_program": null, "title": "Mt. Waesche ground-penetrating radar data 2018-2019", "url": "https://www.usap-dc.org/view/dataset/601490"}], "date_created": "Fri, 22 Oct 2021 00:00:00 GMT", "description": "Projecting future changes in West Antarctic Ice Sheet (WAIS) volume and global sea level rise in response to anthropogenic climate warming requires dynamic ice sheet models, which are enhanced by testing and calibrating with geologic evidence. Successfully modeling WAIS behavior during past collapse events \r\nprovides a basis for predictions of future sea level change. Exposure ages of erratics and bedrock throughout west Antarctica constrain higher-than-present WAIS geometry during the LGM and the last deglaciation. Quantifying the past surface elevation from the interior of the ice sheet is especially useful as it directly constrains ice thickness and volume where most of the mass is located. Data that determines WAIS geometry during the last interglacial, the last time that climate was warmer than present and when global sea level was 3-6 m higher, is critical for empirically constraining changes in WAIS volume and its contribution to sea level, as well as, to calibrate ice sheet models. These datasets are essentially non-\r\nexistent, as such evidence is now covered by the WAIS. Initial results from ground-penetrating radar surveys indicate ice depths around 1200 m. ", "east": -111.0, "geometry": "POINT(-128 -77)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Mt. Waesche; USA/NSF; SNOW/ICE; GLACIER THICKNESS/ICE SHEET THICKNESS; PALEOCLIMATE RECONSTRUCTIONS; LABORATORY; LAVA COMPOSITION/TEXTURE; Amd/Us; AMD; USAP-DC", "locations": "Mt. Waesche", "north": -74.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Braddock, Scott; Campbell, Seth; Ackert, Robert; Zimmerer, Matthew; Mitrovica, Jerry", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "Collaborative Research: Constraining West Antarctic Ice Sheet elevation during the last interglacial", "uid": "p0010272", "west": -145.0}, {"awards": "1745043 Simkins, Lauren; 1745055 Stearns, Leigh", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Circum-Antarctic grounding-line sinuosity; Elevation transects from Pine Island Bay; Pennell Trough, Ross Sea bathymetry and glacial landforms", "datasets": [{"dataset_uid": "601774", "doi": "10.15784/601774", "keywords": "Antarctica; Bed Roughness; Cryosphere; Geomorphology; Pine Island Bay", "people": "Munevar Garcia, Santiago", "repository": "USAP-DC", "science_program": null, "title": "Elevation transects from Pine Island Bay", "url": "https://www.usap-dc.org/view/dataset/601774"}, {"dataset_uid": "601474", "doi": "10.15784/601474", "keywords": "Antarctica; Bathymetry; Elevation; Geomorphology; Glacial History; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marine Geoscience; NBP1502; Pennell Trough; Ross Sea; R/v Nathaniel B. Palmer", "people": "Greenwood, Sarah; Munevar Garcia, Santiago; Eareckson, Elizabeth; Anderson, John; Simkins, Lauren; Prothro, Lindsay", "repository": "USAP-DC", "science_program": null, "title": "Pennell Trough, Ross Sea bathymetry and glacial landforms", "url": "https://www.usap-dc.org/view/dataset/601474"}, {"dataset_uid": "601484", "doi": "10.15784/601484", "keywords": "Antarctica; Bed Roughness; Bed Slope; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Pinning Points", "people": "Riverman, Kiya; Simkins, Lauren; Stearns, Leigh", "repository": "USAP-DC", "science_program": null, "title": "Circum-Antarctic grounding-line sinuosity", "url": "https://www.usap-dc.org/view/dataset/601484"}], "date_created": "Tue, 28 Sep 2021 00:00:00 GMT", "description": "The goals of this collaborative project are to merge empirical observations from the deglaciated Antarctic continental shelf and 1-D and 3-D numerical model experiments to test the sensitivity of marine-based ice sheets to subglacial topography with collaborators at the University of Kansas (L. Stearns, C. van der Veen). We focus on five glacial systems (i.e., flowlines) across the Amundsen Sea, Ross Sea, and George V Coast of Wilkes Land that extended to/near the continental shelf break at the Last Glacial Maximum \u2013 with a range of bed characteristics, topographic features, oceanographic and climatic conditions, and patterns of past ice flow and grounding line retreat. Specifically, at the University of Virginia, we (L. Simkins, S. Munevar Garcia) are: (ongoing) exploring bed roughness across the flowlines to determine the sensitivity of ice flow and grounding line behavior to different scales and wavelengths of bed topography/roughness; (upcoming) developing an empirical relationship between ice-marginal landform sediment volume and grounding line occupation time, and combining this with sedimentological analyses and new absolute age constraints to produce more comprehensive timelines of grounding line retreat, influential boundary conditions and processes, and determine the presence/absence of ice shelves; (ongoing) integrating quantitative and qualitative paleo- and offshore data to be incorporated into and/or validate 1-D and 3-D model experiments further testing the sensitivity of the five glacial systems to bed topography; and (completed) co-developing community engagement and education materials that focus on merging paleo-observations and model information of the Antarctic Ice Sheet from the LGM to the present \r\n", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "MARINE SEDIMENTS; USAP-DC; Amd/Us; GLACIERS; BATHYMETRY; GLACIAL LANDFORMS; Antarctica; AMD; USA/NSF; R/V NBP", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Simkins, Lauren; Stearns, Leigh; Anderson, John; van der Veen, Cornelis", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Topographic controls on Antarctic Ice Sheet grounding line retreat - integrating models and observations", "uid": "p0010269", "west": -180.0}, {"awards": "1542936 Goehring, Brent; 1542976 Balco, Gregory", "bounds_geometry": "POLYGON((-145.7 -64.195,-113.988 -64.195,-82.276 -64.195,-50.564 -64.195,-18.852 -64.195,12.86 -64.195,44.572 -64.195,76.284 -64.195,107.996 -64.195,139.708 -64.195,171.42 -64.195,171.42 -66.2096,171.42 -68.2242,171.42 -70.2388,171.42 -72.2534,171.42 -74.268,171.42 -76.2826,171.42 -78.2972,171.42 -80.3118,171.42 -82.3264,171.42 -84.341,139.708 -84.341,107.996 -84.341,76.284 -84.341,44.572 -84.341,12.86 -84.341,-18.852 -84.341,-50.564 -84.341,-82.276 -84.341,-113.988 -84.341,-145.7 -84.341,-145.7 -82.3264,-145.7 -80.3118,-145.7 -78.2972,-145.7 -76.2826,-145.7 -74.268,-145.7 -72.2534,-145.7 -70.2388,-145.7 -68.2242,-145.7 -66.2096,-145.7 -64.195))", "dataset_titles": "Interface for viewing observational data related to exposure ages measurements and calculated geologic ages derived therefrom", "datasets": [{"dataset_uid": "200199", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Interface for viewing observational data related to exposure ages measurements and calculated geologic ages derived therefrom", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Fri, 03 Sep 2021 00:00:00 GMT", "description": "This project focused on geochemical measurements on rock samples from Antarctica that can be used to reconstruct changes in the size and thickness of the Antarctic ice sheets during the past several thousand years. It applied relatively newly developed technology for measurement of cosmic-ray-produced carbon-14 in quartz to gather new and better information on past ice sheet change from rock samples previously collected in past research in Antarctica. Specifically, it aimed to address a lack of information on past ice sheet change from the Weddell Sea embayment, and the primary result of the project is an improved understanding of ice volume change in this sector of Antarctica during the past ca. 15,000 years. This, in turn, is important in understanding the contribution of the Antarctic ice sheets to global sea level change during this time period. ", "east": 171.42, "geometry": "POINT(12.86 -74.268)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; Cosmogenic Dating; GLACIER THICKNESS/ICE SHEET THICKNESS; AMD; USAP-DC; GLACIER ELEVATION/ICE SHEET ELEVATION; GLACIERS/ICE SHEETS; Carbon-14; USA/NSF; Weddell Sea Embayment; LABORATORY; FIELD SURVEYS; GLACIATION", "locations": "Weddell Sea Embayment", "north": -64.195, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Goehring, Brent; Balco, Gregory", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "ICE-D", "repositories": "ICE-D", "science_programs": null, "south": -84.341, "title": "COLLABORATIVE RESEARCH: Resolving Ambiguous Exposure-Age Chronologies of Antarctic Deglaciation with Measurements of In-Situ-Produced Cosmogenic Carbon-14", "uid": "p0010254", "west": -145.7}, {"awards": "2122248 Waters, Laura", "bounds_geometry": "POLYGON((-127.143608 -77.1380528,-127.1012394 -77.1380528,-127.0588708 -77.1380528,-127.0165022 -77.1380528,-126.9741336 -77.1380528,-126.931765 -77.1380528,-126.8893964 -77.1380528,-126.8470278 -77.1380528,-126.8046592 -77.1380528,-126.7622906 -77.1380528,-126.719922 -77.1380528,-126.719922 -77.14809141,-126.719922 -77.15813002,-126.719922 -77.16816863,-126.719922 -77.17820724,-126.719922 -77.18824585,-126.719922 -77.19828446,-126.719922 -77.20832307,-126.719922 -77.21836168,-126.719922 -77.22840029,-126.719922 -77.2384389,-126.7622906 -77.2384389,-126.8046592 -77.2384389,-126.8470278 -77.2384389,-126.8893964 -77.2384389,-126.931765 -77.2384389,-126.9741336 -77.2384389,-127.0165022 -77.2384389,-127.0588708 -77.2384389,-127.1012394 -77.2384389,-127.143608 -77.2384389,-127.143608 -77.22840029,-127.143608 -77.21836168,-127.143608 -77.20832307,-127.143608 -77.19828446,-127.143608 -77.18824585,-127.143608 -77.17820724,-127.143608 -77.16816863,-127.143608 -77.15813002,-127.143608 -77.14809141,-127.143608 -77.1380528))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 19 Aug 2021 00:00:00 GMT", "description": "Isotopic and sedimentary datasets reveal that volcanic activity typically increases during interglacial periods. However, the physical mechanisms through which changes in the surface loading affect volcanic magmatic plumbing systems remain unconstrained. Recently generated 40Ar/39Ar eruption ages indicate that 86% of the dated samples from Mt. Waesche, a late Quaternary volcano in Marie Byrd land, correlate with interglacial periods, suggesting this volcano uniquely responds to changes in the West Antarctic Ice Sheet. We propose to combine the petrology of Mount Waesche\u2019s volcanic record, constraints on changing ice loads through time, and geodynamic modelling to: (1) Determine how pre-eruptive storage conditions change during glacial and interglacial periods using whole rock and mineral compositions of volcanic rocks; (2) Conduct geodynamic modeling to elucidate the relationship between lithospheric structure, temporal variations in ice sheet thickness, and subsequent changes in crustal stresses and magmatic transport and, therefore, the mechanism(s) by which deglaciation impacts magmatic plumbing systems; (3) Use the outcomes of objectives (1) and (2) to provide new constraints on the changes in ice sheet thickness through time that could plausibly trigger future volcanic and magmatic activity in West Antarctica. This collaborative approach will provide a novel methodology to determine prior magnitudes and rates of ice load changes within the Marie Byrd Land region of Antarctica. Lastly, estimates of WAIS elevation changes from this study will be compared to ongoing studies at Mount Waesche focused on constraining last interglacial ice sheet draw down using cosmogenic exposure ages obtained from shallow drilling. The scope of work also includes a partnership with Mentoring Kids Works to develop several Polar and Earth Science Educational Modules aimed at improving reading skills in third grade students in New Mexico. The proposed Polar and Earth Science program consists of modules that include readings of books introducing students to Earth and Polar science themes, paired with Earth and Polar Science activities, followed by simple experiments, where students make predictions and collect data. Information required to implement our Polar and Earth Science curriculum will be made available online.", "east": -126.719922, "geometry": "POINT(-126.931765 -77.18824585)", "instruments": null, "is_usap_dc": true, "keywords": "Mt. Waesche; GEOCHEMISTRY; LITHOSPHERIC PLATE MOTION; STRESS; Amd/Us; West Antarctica; Executive Committee Range; NOT APPLICABLE; USAP-DC; AMD; MAJOR ELEMENTS; USA/NSF; ROCKS/MINERALS/CRYSTALS", "locations": "West Antarctica; Mt. Waesche; Executive Committee Range", "north": -77.1380528, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Waters, Laura; Naliboff, John; Zimmerer, Matthew", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repositories": null, "science_programs": null, "south": -77.2384389, "title": "Integrating petrologic records and geodynamics: Quantifying the effects of glaciation on crustal stress and eruptive patterns at Mt. Waesche, Executive Committee Range, Antarctica", "uid": "p0010248", "west": -127.143608}, {"awards": "1644171 Blackburn, Terrence", "bounds_geometry": "POLYGON((162 -77.5,162.2 -77.5,162.4 -77.5,162.6 -77.5,162.8 -77.5,163 -77.5,163.2 -77.5,163.4 -77.5,163.6 -77.5,163.8 -77.5,164 -77.5,164 -77.525,164 -77.55,164 -77.575,164 -77.6,164 -77.625,164 -77.65,164 -77.675,164 -77.7,164 -77.725,164 -77.75,163.8 -77.75,163.6 -77.75,163.4 -77.75,163.2 -77.75,163 -77.75,162.8 -77.75,162.6 -77.75,162.4 -77.75,162.2 -77.75,162 -77.75,162 -77.725,162 -77.7,162 -77.675,162 -77.65,162 -77.625,162 -77.6,162 -77.575,162 -77.55,162 -77.525,162 -77.5))", "dataset_titles": "Isotopic ratios for subglacial precipitates from East Antarctica; U-Th isotopes and major elements in sediments from Taylor Valley, Antarctica", "datasets": [{"dataset_uid": "601806", "doi": "10.15784/601806", "keywords": "Antarctica; Cryosphere; Erosion; Isotope Data; Major Elements; Soil; Taylor Glacier; Taylor Valley", "people": "Piccione, Gavin; Edwards, Graham; Tulaczyk, Slawek; Blackburn, Terrence", "repository": "USAP-DC", "science_program": null, "title": "U-Th isotopes and major elements in sediments from Taylor Valley, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601806"}, {"dataset_uid": "200240", "doi": "10.26022/IEDA/111548 ", "keywords": null, "people": null, "repository": "EarthChem", "science_program": null, "title": "Isotopic ratios for subglacial precipitates from East Antarctica", "url": "https://doi.org/10.26022/IEDA/111548"}], "date_created": "Fri, 13 Aug 2021 00:00:00 GMT", "description": "The primary scientific goal of the proposed project is to test whether Taylor Valley, Antarctica has experienced glacial incision in the last ~1 million years in spite of cold climate conditions. One of the Dry Valleys of the Transantarctic Mountains, Taylor Valley exhibits over 2000 m of relief from sub sea-level troughs to high polar peaks. The Dry Valleys are characterized by low mean annual temperatures, paucity of precipitation and erosion that has allowed fragile glacial landforms, now subaerially exposed at high elevations, to be preserved for as long as 15 Ma. Two end member models can explain the timing of glacial incision and the observation that Quaternary advances of Taylor Glacier have left deposits at lower valley elevations with each advance. In the first scenario, all Valley relief is generated prior to 15 Ma when non-polar climates enabled warm-based glaciers to incise and widen fluvial channels more so than peaks. In this case, Quaternary drift deposits record advances of cold-based glaciers of decreasing ice volume. Limited glacial erosion and silt generation results in drift deposits composed primarily of recycled sediments. In the second scenario, selective erosion of the valley floor continues to deepen Taylor Valley over the last 2 Ma while high elevation peaks remain uneroded in polar conditions. The \u2018bathtub rings\u2019 of Quaternary drifts reaching a progressively lower elevation through time could be due to the lowering of the valley floor by subglacial erosion and with it, production of silt which is now incorporated into these drifts. While either scenario would result in the present day topography, they differ in the implied evolution of regional glacial ice volume over time and the timing of both valley relief production and generation of fine-grained particles. Here we propose to distinguish between these two models, by placing time constrains on fine particle production using U-series comminution dating. This new geochronologic tool exploits the loss of 234U due to alpha-recoil. The deficiency in 234U only becomes detectable in particles with a sufficiently high surface-area-to-volume ratio which can incur appreciable 234U loss (\u003c50 \uf0ecm). The timing of comminution and particle size controls the magnitude of 234U loss, up to 10% in silt-sized particles comminuted over 1.5 million years ago. And while this geochronologic tool is in its infancy, the scientific goal of this proposal can be achieved by resolving between ancient and recently comminuted fine particles, a binary question that our preliminary modeling and measured data show is readily resolved.", "east": 164.0, "geometry": "POINT(163 -77.625)", "instruments": null, "is_usap_dc": true, "keywords": "ICE SHEETS; Taylor Valley", "locations": "Taylor Valley", "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Blackburn, Terrence; Tulaczyk, Slawek", "platforms": null, "repo": "USAP-DC", "repositories": "EarthChem; USAP-DC", "science_programs": null, "south": -77.75, "title": "U-Series Comminution Age Constraints on Taylor Valley Erosion", "uid": "p0010243", "west": 162.0}, {"awards": "1744878 Lazzara, Matthew; 1745097 Cassano, John", "bounds_geometry": "POLYGON((-115 -79,-114.4 -79,-113.8 -79,-113.2 -79,-112.6 -79,-112 -79,-111.4 -79,-110.8 -79,-110.2 -79,-109.6 -79,-109 -79,-109 -79.1,-109 -79.2,-109 -79.3,-109 -79.4,-109 -79.5,-109 -79.6,-109 -79.7,-109 -79.8,-109 -79.9,-109 -80,-109.6 -80,-110.2 -80,-110.8 -80,-111.4 -80,-112 -80,-112.6 -80,-113.2 -80,-113.8 -80,-114.4 -80,-115 -80,-115 -79.9,-115 -79.8,-115 -79.7,-115 -79.6,-115 -79.5,-115 -79.4,-115 -79.3,-115 -79.2,-115 -79.1,-115 -79))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 06 Jul 2021 00:00:00 GMT", "description": "An observational campaign, focused on the atmospheric boundary layer over the West Antarctic ice sheet (WAIS), is planned. A robust set of year-round, autonomous, atmospheric and surface measurements, will be made using an instrumented 30-m tall tower (TT) at the WAIS divide field camp (WAIS TT). An unmanned aerial system (UAS) field campaign will be conducted and will supplement the WAIS TT observations by sampling the entire depth of the boundary layer.\r\nThe proposed work will create a unique dataset of year-round atmospheric boundary layer measurements from a portion of the Antarctic continent that has not previously been observed in this manner. The newly acquired dataset will be used to elucidate the processes that modulate the exchange of energy between the ice sheet surface and the overlying atmosphere, to assess the relationships\r\nbetween near surface stability, winds, and radiative forcing, and to compare these relationships observed at the WAIS TT to those described for other portions of the Antarctic continent. The dataset will also be used to assess the ability of the Antarctic Mesoscale Prediction System (AMPS) operational weather forecasting model and current generation reanalyses to accurately represent surface and boundary layer processes in this region of Antarctica.\r\nIntellectual Merit\r\nThe near surface atmosphere over West Antarctica is one of the fastest warming locations on the planet and this atmospheric warming, along with oceanic forcing, is contributing to ice sheet melt and rising sea levels. Recent reports from the National Research Council and the Scientific Committee on Antarctic Research have highlighted the critical nature of these aspects of the West Antarctic climate system.\r\nThe proposed research will advance our understanding of how the atmosphere exchanges heat, moisture, and momentum with the ice sheet surface in West Antarctica and will assess our ability to represent these processes in current generation numerical weather prediction and reanalysis products, by addressing the following scientific questions:\r\n- How does the surface layer and lower portion of the atmospheric boundary layer in West Antarctica compare to that over the low elevation ice shelves and the high elevation East Antarctic plateau?\r\n- What are the dominant factors that lead to warm episodes, and potentially periods of melt, over the West Antarctic ice sheet?\r\n- How well do operational forecast models (AMPS) and reanalyses reproduce the observed near surface stability in West Antarctica?\r\n- What are the sources of errors in the modeled near surface atmospheric stability of West Antarctica?\r\nBroader Impacts:\r\nAtmospheric warming and associated melting of the West Antarctic ice sheet has the potential to raise sea level by many meters. The proposed research will explore the processes that control this warming, and as such has broad societal relevance by providing improved understanding of the processes that could lead to large sea level rise.\r\nEducational outreach activities will include classroom visits to K-12 schools and Skype sessions from Antarctica with students at these schools. Photographs, videos, and instrumentation used during this project will be brought to the classrooms. At the college and university level data from the project will be used in classes being developed as part of a new undergraduate atmospheric and oceanic science major at the University of Colorado and a graduate student will be support on this project.\r\nPublic outreach will be in the form of field blogs, media interviews, and either an article for a general interest scientific magazine, such as Scientific American, or as an electronically published book of Antarctic fieldwork photographs.", "east": -109.0, "geometry": "POINT(-112 -79.5)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; Amd/Us; HUMIDITY; ATMOSPHERIC TEMPERATURE; West Antarctic Ice Sheet; BOUNDARY LAYER TEMPERATURE; USAP-DC; ATMOSPHERIC PRESSURE MEASUREMENTS; FIELD SURVEYS; BOUNDARY LAYER WINDS; USA/NSF", "locations": "West Antarctic Ice Sheet", "north": -79.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Cassano, John; Lazzara, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -80.0, "title": "Collaborative Research: Observing the Atmospheric Boundary over the West Antarctic Ice Sheet", "uid": "p0010225", "west": -115.0}, {"awards": "1933764 Enderlin, Ellyn; 1643455 Enderlin, Ellyn", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Crane Glacier centerline observations and modeling results ; Remotely-sensed iceberg geometries and meltwater fluxes", "datasets": [{"dataset_uid": "601617", "doi": "10.15784/601617", "keywords": "Antarctica; Antarctic Peninsula; Crane Glacier; Glacier Dynamics; Glacier Mass Discharge; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Modeling; Model Output", "people": "Enderlin, Ellyn; Aberle, Rainey; Meehan, Tate; Kopera, Michal; Marshall, Hans-Peter", "repository": "USAP-DC", "science_program": null, "title": "Crane Glacier centerline observations and modeling results ", "url": "https://www.usap-dc.org/view/dataset/601617"}, {"dataset_uid": "601679", "doi": "10.15784/601679", "keywords": "Antarctica; Elevation; Glaciology; Iceberg; Meltwater; Submarine Melt", "people": "Miller, Emily; Dickson, Adam; Enderlin, Ellyn; Aberle, Rainey; Oliver, Caitlin; Dryak, Mariama", "repository": "USAP-DC", "science_program": null, "title": "Remotely-sensed iceberg geometries and meltwater fluxes", "url": "https://www.usap-dc.org/view/dataset/601679"}], "date_created": "Mon, 28 Jun 2021 00:00:00 GMT", "description": "The project uses repeat, very high-resolution (~0.5 m pixel width and length) satellite images acquired by the WorldView satellites, to estimate rates of iceberg melting in key coastal regions around Antarctica. The satellite images are used to construct maps of iceberg surface elevation change over time, which are converted to estimates of area-averaged submarine melt rates. Where ocean temperature observations are available, the melt rates are compared to these data to determine if variations in ocean temperature can explain observed iceberg melt variability. The iceberg melt rates are also compared to glacier frontal ablation rates (flow towards the terminus minus changes in terminus position over time) and integrated into a numerical ice flow model in order to assess the importance of submarine melting on recent changes in terminus position, ice flow, and dynamic mass loss. Overall, the analysis will yield insights into the effects of changes in ocean forcing on the submarine melting of Antarctic ice shelves and icebergs. The project does not require field work in Antarctica.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Amery Ice Shelf; FIELD SURVEYS; Totten Glacier; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; USAP-DC; Antarctic Peninsula; ICEBERGS; Mertz Glacier; OCEAN TEMPERATURE; USA/NSF; Amd/Us; Amundsen Sea; Ronne Ice Shelf; Filchner Ice Shelf; AMD", "locations": "Antarctic Peninsula; Totten Glacier; Ronne Ice Shelf; Filchner Ice Shelf; Amery Ice Shelf; Mertz Glacier; Amundsen Sea", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Enderlin, Ellyn", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Antarctic Submarine Melt Variability from Remote Sensing of Icebergs", "uid": "p0010210", "west": -180.0}, {"awards": "1443556 Thomson, Stuart; 1443342 Licht, Kathy", "bounds_geometry": null, "dataset_titles": "Apatite (U-Th)/He and TREE Data Central Transantarctic Mountains", "datasets": [{"dataset_uid": "601462", "doi": "10.15784/601462", "keywords": "Antarctica; Beardmore Glacier; Erosion; Landscape Evolution; Shackleton Glacier; Transantarctic Mountains; (U-Th)/He", "people": "Thomson, Stuart; He, John; Reiners, Peter; Hemming, Sidney R.; Licht, Kathy", "repository": "USAP-DC", "science_program": null, "title": "Apatite (U-Th)/He and TREE Data Central Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/601462"}], "date_created": "Wed, 09 Jun 2021 00:00:00 GMT", "description": "Antarctica is almost entirely covered by ice, in places over two miles thick. This ice hides a landscape that is less well known than the surface of Mars and represents one of Earth\u0027s last unexplored frontiers. Ice-penetrating radar images provide a remote glimpse of this landscape including ice-buried mountains larger than the European Alps and huge fjords twice as deep as the Grand Canyon. The goal of this project is to collect sediment samples derived from these landscapes to determine when and under what conditions these features formed. Specifically, the project seeks to understand the landscape in the context of the history and dynamics of the overlying ice sheet and past mountain-building episodes. This project accomplishes this goal by analyzing sand collected during previous sea-floor drilling expeditions off the coast of Antarctica. This sand was supplied from the continent interior by ancient rivers when it was ice-free over 34 million year ago, and later by glaciers. The project will also study bedrock samples from rare ice-free parts of the Transantarctic Mountains. The primary activity is to apply multiple advanced dating techniques to single mineral grains contained within this sand and rock. Different methods and minerals yield different dates that provide insight into how Antarctica?s landscape has eroded over the many tens of millions of years during which sand was deposited offshore. The dating techniques that are being developed and enhanced for this study have broad application in many branches of geoscience research and industry. The project makes cost-effective use of pre-existing sample collections housed at NSF facilities including the US Polar Rock Repository, the Gulf Coast Core Repository, and the Antarctic Marine Geology Research Facility. The project will contribute to the STEM training of two graduate and two undergraduate students, and includes collaboration among four US universities as well as international collaboration between the US and France. The project also supports outreach in the form of a two-week open workshop giving ten students the opportunity to visit the University of Arizona to conduct STEM-based analytical work and training on Antarctic-based projects. Results from both the project and workshop will be disseminated through presentations at professional meetings, peer-reviewed publications, and through public outreach and media.\r\n\r\n\r\nThe main objective of this project is to reconstruct a chronology of East Antarctic subglacial landscape evolution to understand the tectonic and climatic forcing behind landscape modification, and how it has influenced past ice sheet inception and dynamics. Our approach focuses on acquiring a record of the cooling and erosion history contained in East Antarctic-derived detrital mineral grains and clasts in offshore sediments deposited both before and after the onset of Antarctic glaciation. Samples will be taken from existing drill core and marine sediment core material from offshore Wilkes Land (100\u00b0E-160\u00b0E) and the Ross Sea. Multiple geo- and thermo-chronometers will be employed to reconstruct source region cooling history including U-Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar. This offshore record will be augmented and tested by applying the same methods to onshore bedrock samples in the Transantarctic Mountains obtained from the US Polar Rock Repository and through fieldwork. The onshore work will additionally address the debated incision history of the large glacial troughs that cut the range, now occupied by glaciers draining the East Antarctic Ice Sheet. This includes collection of samples from several age-elevation transects, apatite 4He/3He thermochronometry, and Pecube thermo-kinematic modeling. Acquiring an extensive geo- and thermo-chronologic database will also provide valuable new information on the poorly known ice-hidden geology and tectonics of subglacial East Antarctica that has implications for improving supercontinent reconstructions and understanding continental break-up.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "LABORATORY; LANDSCAPE; AGE DETERMINATIONS; FIELD INVESTIGATION; GLACIAL PROCESSES; Transantarctic Mountains; USA/NSF; Thermochronology; Amd/Us; USAP-DC; TRACE ELEMENTS; Provenance Analysis; AMD; LANDFORMS; GLACIAL LANDFORMS", "locations": "Transantarctic Mountains", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Thomson, Stuart; Reiners, Peter; Licht, Kathy", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: East Antarctic Glacial Landscape Evolution (EAGLE): A Study using Combined Thermochronology, Geochronology and Provenance Analysis", "uid": "p0010188", "west": null}, {"awards": "1643394 Buizert, Christo; 1643355 Steig, Eric", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctica 40,000 Year Temperature and Elevation Reconstructions; Layer and Thinning based Accumulation Rate Reconstructions; WAIS Divide 67-6ka nssS Data and EDML, EDC and TALDICE Volcanic Tie Points", "datasets": [{"dataset_uid": "200220", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "WAIS Divide 67-6ka nssS Data and EDML, EDC and TALDICE Volcanic Tie Points", "url": "https://www.ncdc.noaa.gov/paleo/study/24530"}, {"dataset_uid": "200219", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Antarctica 40,000 Year Temperature and Elevation Reconstructions", "url": "https://www.ncdc.noaa.gov/paleo-search/study/32632"}, {"dataset_uid": "601448", "doi": "10.15784/601448", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Snow/ice; Snow/Ice", "people": "Fudge, T. J.", "repository": "USAP-DC", "science_program": null, "title": "Layer and Thinning based Accumulation Rate Reconstructions", "url": "https://www.usap-dc.org/view/dataset/601448"}], "date_created": "Fri, 28 May 2021 00:00:00 GMT", "description": "The main objectives of the proposed work are twofold: (1) to fully characterize the timing and spatial pattern of millennial-scale Antarctic climate change during the deglaciation and Dansgaard-Oeschger (DO) cycles using multiple synchronized Antarctic ice cores; (2) to provide state-of-the-art, internally-consistent ice core chronologies for all US Antarctic ice cores. The WAIS Divide, Siple Dome, Byrd, Taylor Dome and South Pole ice cores will be synchronized using volcanic, dust and gas (CH4 and d18Oatm) markers; this synchronization will be combined with ice-flow and firn densification modeling to create gas-age and ice-age scales for these ice cores, consistent with the highly accurate WAIS Divide chronology. The grant will support ongoing efforts to synchronize the WAIS Divide core to the Dome C and Dronning Maud Land cores, which in turn have been synchronized to several East Antarctic ice cores. Using this chronological framework, the interpolar phasing of millennial-scale climate change will be investigated during the DO cycles using 6 Antarctic ice cores, and during the last deglaciation using 11 ice cores. The relationship between accumulation rate and site temperature during the natural warming of the last deglaciation will be investigated for all the Antarctic ice cores included in the framework.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Fudge, T. J.; Steig, Eric J.; Buizert, Christo", "platforms": null, "repo": "NCEI", "repositories": "NCEI; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: The Timing and Spatial Expression of the Bipolar Seesaw", "uid": "p0010183", "west": -180.0}, {"awards": "1543501 Howat, Ian", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "The Reference Model of Antarctica", "datasets": [{"dataset_uid": "200218", "doi": "", "keywords": null, "people": null, "repository": "PGC", "science_program": null, "title": "The Reference Model of Antarctica", "url": "https://www.pgc.umn.edu/data/rema/"}], "date_created": "Tue, 18 May 2021 00:00:00 GMT", "description": "The Reference Elevation Model of Antarctica (REMA) is the first continental-scale digital elevation model (DEM) at a resolution of less than 10\u2009m. REMA is created from stereophotogrammetry with submeter resolution optical, commercial satellite imagery. The higher spatial and radiometric resolutions of this imagery enable high-quality surface extraction over the low-contrast ice sheet surface. The DEMs are registered to satellite radar and laser altimetry and are mosaicked to provide a continuous surface covering nearly 95\u2009% the entire continent. The mosaic includes an error estimate and a time stamp, enabling change measurement. Typical elevation errors are less than 1\u2009m, as validated by the comparison to airborne laser altimetry. REMA provides a powerful new resource for Antarctic science and provides a proof of concept for generating accurate high-resolution repeat topography at continental scales.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Topography; AMD; USA/NSF; Amd/Us; USAP-DC; Antarctica; ICE SHEETS; COMPUTERS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Howat, Ian; Myoung-Jong Noh, ", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS", "repo": "PGC", "repositories": "PGC", "science_programs": null, "south": -90.0, "title": "The Reference Elevation Model of Antarctica", "uid": "p0010180", "west": -180.0}, {"awards": "1834986 Ballard, Grant", "bounds_geometry": "POLYGON((165 -77,165.5 -77,166 -77,166.5 -77,167 -77,167.5 -77,168 -77,168.5 -77,169 -77,169.5 -77,170 -77,170 -77.1,170 -77.2,170 -77.3,170 -77.4,170 -77.5,170 -77.6,170 -77.7,170 -77.8,170 -77.9,170 -78,169.5 -78,169 -78,168.5 -78,168 -78,167.5 -78,167 -78,166.5 -78,166 -78,165.5 -78,165 -78,165 -77.9,165 -77.8,165 -77.7,165 -77.6,165 -77.5,165 -77.4,165 -77.3,165 -77.2,165 -77.1,165 -77))", "dataset_titles": "Orthomosaics of Ross Island Penguin Colonies 2019 - 2021", "datasets": [{"dataset_uid": "601612", "doi": "10.15784/601612", "keywords": "Aerial Imagery; Aerial Survey; Antarctica; Biota; Geotiff; Penguin; Photo/video; Photo/Video; Population Count; Ross Island; UAV", "people": "Schmidt, Annie; Shah, Kunal; Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Orthomosaics of Ross Island Penguin Colonies 2019 - 2021", "url": "https://www.usap-dc.org/view/dataset/601612"}], "date_created": "Wed, 12 May 2021 00:00:00 GMT", "description": "New methodologies for the deployment of coordinated unmanned aerial vehicles will be developed with the aim of attaining whole-colony imagery that can be used to characterize nesting habitats of Adelie penguins at Cape Crozier, on Ross Island, Antarctica. This information will be used to test hypotheses regarding relationships between terrain characteristics, nesting density, and breeding success. This population, potentially the largest in the world and at the southern limit of the species\u0027 range, has doubled in size over the past 20 years while most other colonies in the region have remained stable or declined. New information gained from this project will be useful in understanding the potential of climate-driven changes in terrestrial nesting habitats for impacting Adelie penguins in the future. The project will produce, and document, open-source software tools to help automate image processing for automated counting of Adelie penguins. The project will train graduate and undergraduate students and contribute materials to ongoing educational outreach programs based on related penguin science projects. Information gained from this project will contribute towards building robust, cost-effective protocols for monitoring Adelie penguin populations, a key ecosystem indicator identified in the draft Ross Sea Marine Protected Area Research and Monitoring Plan.\r\n\r\nAdelie penguins are important indicators of ecosystem function and change in the Southern Ocean. In addition to facing rapid changes in sea ice and other factors in their pelagic environment, their terrestrial nesting habitat is also changing. Understanding the species\u0027 response to such changes is critical for assessing its ability to adapt to the changing climate. The objective of this project is to test several hypotheses about the influence of fine-scale nesting habitat, nest density, and breeding success of Adelie penguins in the Ross Sea region. To accomplish this, the project will develop algorithms to improve efficiency and safety of surveys by unmanned aerial systems and develop and disseminate an automated image processing workflow. Images collected during several UAV surveys will be used to estimate the number of nesting adults and chicks produced, as well as estimate nesting density in different parts of two colonies on Ross Island, Antarctica, that differ in size by two orders of magnitude. Imagery will be used to generate high resolution digital surface/elevation models that will allow terrain variables like flood risk and terrain complexity to be derived. Combining the surface model with the nest and chick counts at the two colonies will provide relationships between habitat covariates, nest density, and breeding success. The approaches developed will enable Adelie penguin population sizes and potentially several other indicators in the Ross Sea Marine Protected Area Research and Monitoring Plan to be determined and evaluated. The flight control algorithms developed have the potential to be used for many types of surveys, especially when large areas need to be covered in a short period with extreme weather potential and difficult landing options. Aerial images and video will be used to create useable materials to be included in outreach and educational programs. The automated image processing workflow and classification models will be developed as open source software and will be made freely available for others addressing similar wildlife monitoring challenges.", "east": 170.0, "geometry": "POINT(167.5 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "UAS; Ross Island; USA/NSF; FIELD INVESTIGATION; AMD; UAV; MARINE ECOSYSTEMS; USAP-DC; Amd/Us; Penguin", "locations": "Ross Island", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ballard, Grant; Schmidt, Annie; Schwager, Mac; McKown, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Does Nest Density Matter? Using Novel Technology to Collect Whole-colony Data on Adelie Penguins.", "uid": "p0010178", "west": 165.0}, {"awards": "1738992 Pettit, Erin C; 1929991 Pettit, Erin C", "bounds_geometry": "POLYGON((-114 -74,-113 -74,-112 -74,-111 -74,-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-104 -74.2,-104 -74.4,-104 -74.6,-104 -74.8,-104 -75,-104 -75.2,-104 -75.4,-104 -75.6,-104 -75.8,-104 -76,-105 -76,-106 -76,-107 -76,-108 -76,-109 -76,-110 -76,-111 -76,-112 -76,-113 -76,-114 -76,-114 -75.8,-114 -75.6,-114 -75.4,-114 -75.2,-114 -75,-114 -74.8,-114 -74.6,-114 -74.4,-114 -74.2,-114 -74))", "dataset_titles": "AMIGOS-IIIa \"Cavity\" Aquadopp current data Jan 2020 - Mar 2021; AMIGOS-IIIa \"Cavity\" Seabird CTD data Jan 2020 - Dec 2021; AMIGOS-III Cavity and Channel Snow Height and Thermistor Snow Temperature Data; AMIGOS-IIIc \"Channel\" Aquadopp current data Jan 2020 - Mar 2021; AMIGOS-IIIc \"Channel\" Seabird CTD data Jan 2020 - Dec 2021; CTD data from the NBP 19/02 cruise as part of the TARSAN project in the Amundsen Sea during austral summer 2018/2019; Dotson-Crosson Ice Shelf data from a tale of two ice shelves paper; SIIOS Temporary Deployment; Sub-ice-shelf seafloor elevation derived from point-source active-seismic data on Thwaites Eastern Ice Shelf and Dotson Ice Shelf, December 2019 and January 2020; Thwaites Glacier grounding lines for 2014 and 2019/20 from height above flotation; Two-year velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2001-2020; Visala WXT520 weather station data at the Cavity and Channel AMIGOS-III sites", "datasets": [{"dataset_uid": "601544", "doi": "10.15784/601544", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Salinity; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIa \"Cavity\" Seabird CTD data Jan 2020 - Dec 2021", "url": "https://www.usap-dc.org/view/dataset/601544"}, {"dataset_uid": "601545", "doi": "10.15784/601545", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Salinity; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIc \"Channel\" Seabird CTD data Jan 2020 - Dec 2021", "url": "https://www.usap-dc.org/view/dataset/601545"}, {"dataset_uid": "601547", "doi": "10.15784/601547", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIa \"Cavity\" Aquadopp current data Jan 2020 - Mar 2021", "url": "https://www.usap-dc.org/view/dataset/601547"}, {"dataset_uid": "601548", "doi": "10.15784/601548", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIc \"Channel\" Aquadopp current data Jan 2020 - Mar 2021", "url": "https://www.usap-dc.org/view/dataset/601548"}, {"dataset_uid": "601549", "doi": "10.15784/601549", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Pine Island Bay; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Visala WXT520 weather station data at the Cavity and Channel AMIGOS-III sites", "url": "https://www.usap-dc.org/view/dataset/601549"}, {"dataset_uid": "601552", "doi": "10.15784/601552", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Pine Island Bay; Snow Accumulation; Snow Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-III Cavity and Channel Snow Height and Thermistor Snow Temperature Data", "url": "https://www.usap-dc.org/view/dataset/601552"}, {"dataset_uid": "601578", "doi": "10.15784/601578", "keywords": "Antarctica; Dotson Ice Shelf; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology", "people": "Wild, Christian; Segabinazzi-Dotto, Tiago", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Dotson-Crosson Ice Shelf data from a tale of two ice shelves paper", "url": "https://www.usap-dc.org/view/dataset/601578"}, {"dataset_uid": "601499", "doi": "10.15784/601499", "keywords": "Amundsen Sea; Antarctica; Glaciology; Grounding Line; Ice Shelf; Thwaites Glacier", "people": "Scambos, Ted; Muto, Atsu; Wild, Christian; Truffer, Martin; Pettit, Erin; Alley, Karen", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Thwaites Glacier grounding lines for 2014 and 2019/20 from height above flotation", "url": "https://www.usap-dc.org/view/dataset/601499"}, {"dataset_uid": "601478", "doi": "10.15784/601478", "keywords": "Antarctica; Glaciology; Ice Shelf; Ice Velocity; Strain Rate; Thwaites Glacier", "people": "Alley, Karen; Wild, Christian; Scambos, Ted; Muto, Atsu; Pettit, Erin; Truffer, Martin; Wallin, Bruce; Klinger, Marin", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Two-year velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2001-2020", "url": "https://www.usap-dc.org/view/dataset/601478"}, {"dataset_uid": "601827", "doi": "10.15784/601827", "keywords": "Antarctica; Cryosphere; Dotson Ice Shelf; Thwaites Glacier", "people": "Wild, Christian; Muto, Atsuhiro; Alley, Karen; Roccaro, Alexander; Pettit, Erin; Truffer, Martin; Scambos, Ted; Pomraning, Dale; Wallin, Bruce", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Sub-ice-shelf seafloor elevation derived from point-source active-seismic data on Thwaites Eastern Ice Shelf and Dotson Ice Shelf, December 2019 and January 2020", "url": "https://www.usap-dc.org/view/dataset/601827"}, {"dataset_uid": "200321", "doi": "10.5285/e338af5d-8622-05de-e053-6c86abc06489", "keywords": null, "people": null, "repository": "British Oceanographic Data Centre", "science_program": null, "title": "CTD data from the NBP 19/02 cruise as part of the TARSAN project in the Amundsen Sea during austral summer 2018/2019", "url": "https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/e338af5d-8622-05de-e053-6c86abc06489/"}, {"dataset_uid": "200204", "doi": "https://doi.org/10.7914/SN/1L_2019", "keywords": null, "people": null, "repository": "International Federation of Digital Seismograph Networks", "science_program": null, "title": "SIIOS Temporary Deployment", "url": "http://www.fdsn.org/networks/detail/1L_2019/"}], "date_created": "Mon, 22 Feb 2021 00:00:00 GMT", "description": "This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Thwaites and neighboring glaciers in the Amundsen Sea Embayment are rapidly losing mass in response to recent climate warming and related changes in ocean circulation. Mass loss from the Amundsen Sea Embayment could lead to the eventual collapse of the West Antarctic Ice Sheet, raising the global sea level by up to 2.5 meters (8 feet) in as short as 500 years. The processes driving the loss appear to be warmer ocean circulation and changes in the width and flow speed of the glacier, but a better understanding of these changes is needed to refine predictions of how the glacier will evolve. One highly sensitive process is the transitional flow of glacier ice from land onto the ocean to become a floating ice shelf. This flow of ice from grounded to floating is affected by changes in air temperature and snowfall at the surface; the speed and thickness of ice feeding it from upstream; and the ocean temperature, salinity, bathymetry, and currents that the ice flows into. The project team will gather new measurements of each of these local environmental conditions so that it can better predict how future changes in air, ocean, or the ice will affect the loss of ice to the ocean in this region. \u003cbr/\u003e \u003cbr/\u003eCurrent and anticipated near-future mass loss from Thwaites Glacier and nearby Amundsen Sea Embayment region is mainly attributed to reduction in ice-shelf buttressing due to sub-ice-shelf melting by intrusion of relatively warm Circumpolar Deep Water into sub-ice-shelf cavities. Such predictions for mass loss, however, still lack understanding of the dominant processes at and near grounding zones, especially their spatial and temporal variability, as well as atmospheric and oceanic drivers of these processes. This project aims to constrain and compare these processes for the Thwaites and the Dotson Ice Shelves, which are connected through upstream ice dynamics, but influenced by different submarine troughs. The team\u0027s specific objectives are to: 1) install atmosphere-ice-ocean multi-sensor remote autonomous stations on the ice shelves for two years to provide sub-daily continuous observations of concurrent oceanic, glaciologic, and atmospheric conditions; 2) measure ocean properties on the continental shelf adjacent to ice-shelf fronts (using seal tagging, glider-based and ship-based surveys, and existing moored and conductivity-temperature-depth-cast data), 3) measure ocean properties into sub-ice-shelf cavities (using autonomous underwater vehicles) to detail ocean transports and heat fluxes; and 4) constrain current ice-shelf and sub-ice-shelf cavity geometry, ice flow, and firn properties for the ice-shelves (using radar, active-source seismic, and gravimetric methods) to better understand the impact of ocean and atmosphere on the ice-sheet change. The team will also engage the public and bring awareness to this rapidly changing component of the cryosphere through a \"Live from the Ice\" social media campaign in which the public can follow the action and data collection from the perspective of tagged seals and autonomous stations.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -104.0, "geometry": "POINT(-109 -75)", "instruments": null, "is_usap_dc": true, "keywords": "Thwaites Glacier; FIELD SURVEYS; GLACIERS/ICE SHEETS", "locations": "Thwaites Glacier", "north": -74.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Truffer, Martin; Scambos, Ted; Muto, Atsu; Heywood, Karen; Boehme, Lars; Hall, Robert; Wahlin, Anna; Lenaerts, Jan; Pettit, Erin", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "British Oceanographic Data Centre; International Federation of Digital Seismograph Networks; USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -76.0, "title": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment", "uid": "p0010162", "west": -114.0}, {"awards": "1443321 Bromley, Gordon; 1443329 Balco, Gregory", "bounds_geometry": "POLYGON((-180 -85.40705,-179.659078 -85.40705,-179.318156 -85.40705,-178.977234 -85.40705,-178.636312 -85.40705,-178.29539 -85.40705,-177.954468 -85.40705,-177.613546 -85.40705,-177.272624 -85.40705,-176.931702 -85.40705,-176.59078 -85.40705,-176.59078 -85.422615,-176.59078 -85.43818,-176.59078 -85.453745,-176.59078 -85.46931,-176.59078 -85.484875,-176.59078 -85.50044,-176.59078 -85.516005,-176.59078 -85.53157,-176.59078 -85.547135,-176.59078 -85.5627,-176.931702 -85.5627,-177.272624 -85.5627,-177.613546 -85.5627,-177.954468 -85.5627,-178.29539 -85.5627,-178.636312 -85.5627,-178.977234 -85.5627,-179.318156 -85.5627,-179.659078 -85.5627,180 -85.5627,179.277561 -85.5627,178.555122 -85.5627,177.832683 -85.5627,177.110244 -85.5627,176.387805 -85.5627,175.665366 -85.5627,174.942927 -85.5627,174.220488 -85.5627,173.498049 -85.5627,172.77561 -85.5627,172.77561 -85.547135,172.77561 -85.53157,172.77561 -85.516005,172.77561 -85.50044,172.77561 -85.484875,172.77561 -85.46931,172.77561 -85.453745,172.77561 -85.43818,172.77561 -85.422615,172.77561 -85.40705,173.498049 -85.40705,174.220488 -85.40705,174.942927 -85.40705,175.665366 -85.40705,176.387805 -85.40705,177.110244 -85.40705,177.832683 -85.40705,178.555122 -85.40705,179.277561 -85.40705,-180 -85.40705))", "dataset_titles": "Interface for viewing observational data related to exposure ages measurements and calculated geologic ages derived therefrom", "datasets": [{"dataset_uid": "200199", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Interface for viewing observational data related to exposure ages measurements and calculated geologic ages derived therefrom", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Sun, 20 Dec 2020 00:00:00 GMT", "description": "This investigation will reconstruct past behavior of the East Antarctic Ice Sheet during periods of warmer-than-present climate, such as the Pliocene, in order to better project the likely response of Earth\u0027s largest ice sheet to anthropogenic warming. Containing the equivalent of ~55 m sea-level rise, the future evolution of the East Antarctic Ice Sheet has clear societal ramifications on a global scale as temperatures continue to rise. Therefore, determining ice-sheet sensitivity to climate on the scale predicted for the next two centuries is a matter of increasing urgency, particularly in light of evidence suggesting the East Antarctic Ice Sheet is more dynamic than previously thought. This research will provide a terrestrial geologic record of long-term ice-sheet behavior from sites immediately adjacent the East Antarctic Ice Sheet in the Transantarctic Mountains, with which the project will help ascertain how the ice sheet responded to past warm periods. The project will focus primarily on the Pliocene warm period, 5 to 3 million years ago, as this represents the closest analogue to 21st Century climate conditions.\u003cbr/\u003e\u003cbr/\u003eThe proposed research will investigate glacial deposits corresponding to the East Antarctic Ice Sheet in the central Transantarctic Mountains in order to expand the geologic record of past ice-sheet behavior. The overarching research objectives are to improve understanding of the East Antarctic Ice Sheet\u0027s configuration during periods of warmer-than-present climate, such as the Pliocene warm period, and to determine whether the ice sheet underwent significant volume changes or remained relatively stable in response to warming. To address these goals, the investigation will map and date glacial deposits preserved at mountain sites immediately adjacent the ice sheet. Specifically, we will: (i) employ multiple cosmogenic nuclides (10Be, 26Al, 21Ne) to establish more fully ice-thickness histories for the upper Shackleton and Beardmore Glaciers, where they exit the ice sheet; (ii) use this record to identify periods during which the East Antarctic Ice Sheet was at least as extensive as today; and (iii) use these data to assess long-term ice-sheet variability in East Antarctica, with particular emphasis on Pliocene warm episodes. This research will require Antarctic fieldwork, glacial-geologic mapping, and cosmogenic surface-exposure dating.", "east": -176.59078, "geometry": "POINT(178.092415 -85.484875)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; Transantarctic Mountains; GLACIERS/ICE SHEETS; AMD; GLACIER THICKNESS/ICE SHEET THICKNESS; GLACIER ELEVATION/ICE SHEET ELEVATION; NOT APPLICABLE; Antarctica", "locations": "Antarctica; Transantarctic Mountains", "north": -85.40705, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Balco, Gregory; Bromley, Gorden; BROMLEY, GORDON", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "ICE-D", "repositories": "ICE-D", "science_programs": null, "south": -85.5627, "title": "Collaborative Research: Potential Direct Geologic Constraint of Ice Sheet Thickness in the Central Transantarctic Mountains during the Pliocene Warm Period", "uid": "p0010153", "west": 172.77561}, {"awards": "0838784 Balco, Gregory; 0838256 Todd, Claire; 0838783 Conway, Howard", "bounds_geometry": "POLYGON((-66.27517 -83.23921,-65.341961 -83.23921,-64.408752 -83.23921,-63.475543 -83.23921,-62.542334 -83.23921,-61.609125 -83.23921,-60.675916 -83.23921,-59.742707 -83.23921,-58.809498 -83.23921,-57.876289 -83.23921,-56.94308 -83.23921,-56.94308 -83.359865,-56.94308 -83.48052,-56.94308 -83.601175,-56.94308 -83.72183,-56.94308 -83.842485,-56.94308 -83.96314,-56.94308 -84.083795,-56.94308 -84.20445,-56.94308 -84.325105,-56.94308 -84.44576,-57.876289 -84.44576,-58.809498 -84.44576,-59.742707 -84.44576,-60.675916 -84.44576,-61.609125 -84.44576,-62.542334 -84.44576,-63.475543 -84.44576,-64.408752 -84.44576,-65.341961 -84.44576,-66.27517 -84.44576,-66.27517 -84.325105,-66.27517 -84.20445,-66.27517 -84.083795,-66.27517 -83.96314,-66.27517 -83.842485,-66.27517 -83.72183,-66.27517 -83.601175,-66.27517 -83.48052,-66.27517 -83.359865,-66.27517 -83.23921))", "dataset_titles": "Interface to observational data collected in this project and geologic age information derived therefrom. Dynamic content, continuously updated.; Web page linking to documents containing data collected in this project. Static content", "datasets": [{"dataset_uid": "200194", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Interface to observational data collected in this project and geologic age information derived therefrom. Dynamic content, continuously updated.", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "200195", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Web page linking to documents containing data collected in this project. Static content", "url": "http://noblegas.berkeley.edu/~balcs/pensacola/"}], "date_created": "Sat, 19 Dec 2020 00:00:00 GMT", "description": "This award supports a project to find and date geologic evidence of past ice-marginal positions in the Pensacola Mountains, which border the Foundation Ice Stream at the head of the Weddell Sea embayment. The project will involve glacial geologic mapping and cosmogenic-nuclide surface exposure dating of glacially transported erratics. An ice-flow model will be used to link our exposure-dating results together in a glaciologically consistent way, and to relate them to regional LGM to Holocene elevation changes. A secondary focus of the project seeks to improve the effectiveness of exposure-dating methods in understanding ice sheet change. Changes in the location of the ice margin, and thus the exposure ages that record these changes, are controlled not only by regional ice sheet mass balance, but also by local effects on snow- and icefields immediately adjacent to the exposure-dating sites. This part of the project will combine glaciological observations near the present ice margin with targeted exposure- age sampling in an effort to better understand the processes controlling the ice margin location, and improve the interpretation of very recent exposure-age data as a record of latest Holocene to present ice sheet changes. The intellectual merit of the project is that it will provide direct geologic evidence of LGM-to-Holocene ice volume change in a region of Antarctica where no such evidence now exists. The broader impacts of the work involve both gathering information needed for accurate understanding of past and present global sea level change. Secondly, this project will help to develop and maintain the human and intellectual resources necessary for continued excellence in polar research and global change education, by linking experienced Antarctic researchers with early career scientists who seek to develop their expertise in both research and education. In addition, it brings together two early career scientists whose careers are focused at opposite ends of the research-education spectrum, thus facilitating better integration of research and education both in the careers of these scientists and in the outcome of this project. This award has field work in Antarctica.", "east": -56.94308, "geometry": "POINT(-61.609125 -83.842485)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; GLACIER THICKNESS/ICE SHEET THICKNESS; NOT APPLICABLE; GLACIER ELEVATION/ICE SHEET ELEVATION; Antarctica", "locations": "Antarctica", "north": -83.23921, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Balco, Gregory; Todd, Claire; Conway, Howard", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "ICE-D", "repositories": "ICE-D; PI website", "science_programs": null, "south": -84.44576, "title": "Collaborative Research: Last Glacial Maximum and Deglaciation Chronology for the Foundation Ice Stream and Southeastern Weddell Sea Embayment", "uid": "p0010151", "west": -66.27517}, {"awards": "1341736 Adams, Byron", "bounds_geometry": "POLYGON((-177.4099 -84.4661,-177.08229 -84.4661,-176.75468 -84.4661,-176.42707 -84.4661,-176.09946 -84.4661,-175.77185 -84.4661,-175.44424 -84.4661,-175.11663000000001 -84.4661,-174.78902 -84.4661,-174.46141 -84.4661,-174.1338 -84.4661,-174.1338 -84.56828,-174.1338 -84.67045999999999,-174.1338 -84.77264,-174.1338 -84.87482,-174.1338 -84.977,-174.1338 -85.07918,-174.1338 -85.18136,-174.1338 -85.28354,-174.1338 -85.38571999999999,-174.1338 -85.4879,-174.46141 -85.4879,-174.78902 -85.4879,-175.11663000000001 -85.4879,-175.44424 -85.4879,-175.77185 -85.4879,-176.09946 -85.4879,-176.42707 -85.4879,-176.75468 -85.4879,-177.08229 -85.4879,-177.4099 -85.4879,-177.4099 -85.38571999999999,-177.4099 -85.28354,-177.4099 -85.18136,-177.4099 -85.07918,-177.4099 -84.977,-177.4099 -84.87482,-177.4099 -84.77264,-177.4099 -84.67045999999999,-177.4099 -84.56828,-177.4099 -84.4661))", "dataset_titles": "Dataset DS-TAMS: Genetic diversity of Collembola from the Transantarctic Mountains; GenBank accession numbers MN619477 to MN619610; Meteoric 10Be data of soils from the Shackleton Glacier region; Shackleton Glacier region soil water-soluble geochemical data; Shackleton Glacier region water-soluble salt isotopes; Soil invertebrate surveys from the Shackleton Glacier region of Antarctica during the 2017-2018 austral summer", "datasets": [{"dataset_uid": "200175", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "GenBank accession numbers MN619477 to MN619610", "url": "https://www.ncbi.nlm.nih.gov/nuccore/MN619477"}, {"dataset_uid": "200174", "doi": "10.5883/DS-TAMS", "keywords": null, "people": null, "repository": "Barcode of Life Datasystems (BOLD)", "science_program": null, "title": "Dataset DS-TAMS: Genetic diversity of Collembola from the Transantarctic Mountains", "url": "http://dx.doi.org/10.5883/DS-TAMS"}, {"dataset_uid": "601421", "doi": "10.15784/601421", "keywords": "Antarctica; Be-10; Beryllium-10; Cosmogenic Radionuclides; Geochemistry; Geomorphology; Shackleton Glacier; Surface Exposure Dates", "people": "Diaz, Melisa A.", "repository": "USAP-DC", "science_program": null, "title": "Meteoric 10Be data of soils from the Shackleton Glacier region", "url": "https://www.usap-dc.org/view/dataset/601421"}, {"dataset_uid": "601418", "doi": "10.15784/601418", "keywords": "Antarctica; Geochemistry; Shackleton Glacier", "people": "Lyons, W. Berry; Diaz, Melisa A.; Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "Shackleton Glacier region soil water-soluble geochemical data", "url": "https://www.usap-dc.org/view/dataset/601418"}, {"dataset_uid": "601419", "doi": "10.15784/601419", "keywords": "Antarctica; Geochemistry; Nitrate; Shackleton Glacier; Stable Isotopes; Sulfate; Transantarctic Mountains", "people": "Diaz, Melisa A.; Lyons, W. Berry; Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "Shackleton Glacier region water-soluble salt isotopes", "url": "https://www.usap-dc.org/view/dataset/601419"}, {"dataset_uid": "200258", "doi": "doi:10.6073/pasta/7959821e5f6f8d56d94bb6a26873b3ae", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "Soil invertebrate surveys from the Shackleton Glacier region of Antarctica during the 2017-2018 austral summer", "url": "https://doi.org/10.6073/pasta/7959821e5f6f8d56d94bb6a26873b3ae"}], "date_created": "Mon, 02 Nov 2020 00:00:00 GMT", "description": "The project will characterize the functional, taxonomic, biotic and abiotic drivers of soil ecosystems in the Trans Antarctic Mountains (one of the most remote and harsh terrestrial landscapes on the planet). The work will utilize new high-throughput DNA and RNA sequencing technologies to identify members of the microbial communities and determine if the microbial community structures are independent of local environmental heterogeneities. In addition the project will determine if microbial diversity and function are correlated with time since the last glacial maximum (LGM). The expected results will greatly contribute to our knowledge regarding rates of microbial succession and help define the some of the limits to life and life-maintaining processes on Earth.\u003cbr/\u003e\u003cbr/\u003eThe project will analyze genomes and RNA derived from these genomes to describe the relationships between biodiversity and ecosystem functioning from soils above and below LGM elevations and to correlate these with the environmental drivers associated with their development during the last ~18,000 years. The team will identify the taxonomic diversity and the functional genetic composition within a broad suite of soil biota and examine their patterns of assembly and distribution within the framework of their geological legacies. The project will mentor participants from undergraduate students to postdoctoral researchers and prepare them to effectively engage in research to meet their career aspirations. The project will contribute to ongoing public education efforts through relationships with K-12 teachers and administrators- to include University-Public School partnerships. Less formal activities include public lecture series and weblogs aimed at providing information on Antarctic polar desert ecosystems to the general public. Targeted classrooms near each PI\u0027s institution will participate in online, real-time discussions about current topics in Antarctic ecosystems research.", "east": -174.1338, "geometry": "POINT(-175.77185 -84.977)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; LABORATORY; AMD; Amd/Us; USA/NSF; TERRESTRIAL ECOSYSTEMS; Transantarctic Mountains; USAP-DC", "locations": "Transantarctic Mountains", "north": -84.4661, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Earth Sciences", "paleo_time": null, "persons": "Adams, Byron; Fierer, Noah; Wall, Diana; Diaz, Melisa A.; Gardner, Christopher B.; Lyons, W. Berry", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "NCBI GenBank", "repositories": "Barcode of Life Datasystems (BOLD); EDI; NCBI GenBank; USAP-DC", "science_programs": null, "south": -85.4879, "title": "Collaborative Research: The Role of Glacial History on the Structure and Functioning of Ecological Communities in the Shackleton Glacier Region of the Transantarctic Mountains", "uid": "p0010140", "west": -177.4099}, {"awards": "1644197 Simms, Alexander", "bounds_geometry": "POLYGON((-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-60 -61,-59 -61,-58 -61,-57 -61,-56 -61,-55 -61,-55 -61.4,-55 -61.8,-55 -62.2,-55 -62.6,-55 -63,-55 -63.4,-55 -63.8,-55 -64.2,-55 -64.6,-55 -65,-56 -65,-57 -65,-58 -65,-59 -65,-60 -65,-61 -65,-62 -65,-63 -65,-64 -65,-65 -65,-65 -64.6,-65 -64.2,-65 -63.8,-65 -63.4,-65 -63,-65 -62.6,-65 -62.2,-65 -61.8,-65 -61.4,-65 -61))", "dataset_titles": "Electron Microprobe Analysis of feldspar separates from rock and sediment OSL samples from Joinville and Livingston Island Beaches; Granulometry of Joinville and Livingston Island beaches; Ground-Penetrating Radar data from Livingston Island in the Antarctic Peninsula; Ground Penetrating Radar Profiles from Beaches on Joinville Island, Antarctic Peninsula; Joinville and Livingston Islands - rock and sediment OSL ages; OSL data - Joinville and Livingston Islands - Raw data; Radiocarbon Ages from Beaches on Joinville Island, Antarctic Peninsula", "datasets": [{"dataset_uid": "601531", "doi": "10.15784/601531", "keywords": "Antarctica; Geochronology; Joinville Island; Livingston Island; OSL dating; Raised Beaches", "people": "DeWitt, Regina", "repository": "USAP-DC", "science_program": null, "title": "Electron Microprobe Analysis of feldspar separates from rock and sediment OSL samples from Joinville and Livingston Island Beaches", "url": "https://www.usap-dc.org/view/dataset/601531"}, {"dataset_uid": "601633", "doi": "10.15784/601633", "keywords": "Antarctica; Joinville Island", "people": "Simms, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Ground-Penetrating Radar data from Livingston Island in the Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601633"}, {"dataset_uid": "601532", "doi": "10.15784/601532", "keywords": "Antarctica; Geochronology; Joinville Island; Livingston Island; OSL dating; Raised Beaches", "people": "DeWitt, Regina", "repository": "USAP-DC", "science_program": null, "title": "OSL data - Joinville and Livingston Islands - Raw data", "url": "https://www.usap-dc.org/view/dataset/601532"}, {"dataset_uid": "601534", "doi": "10.15784/601534", "keywords": "Antarctica; Geochronology; Joinville Island; Livingston Island; OSL dating; Raised Beaches", "people": "DeWitt, Regina", "repository": "USAP-DC", "science_program": null, "title": "Joinville and Livingston Islands - rock and sediment OSL ages", "url": "https://www.usap-dc.org/view/dataset/601534"}, {"dataset_uid": "601634", "doi": "10.15784/601634", "keywords": "Antarctica; Joinville Island; Raised Beaches; Sea Level", "people": "Simms, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Radiocarbon Ages from Beaches on Joinville Island, Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601634"}, {"dataset_uid": "601400", "doi": "10.15784/601400", "keywords": "Antarctica; Grain Size; Granulometry; Joinville Island; Livingston Island; LMG0412; Raised Beaches", "people": "Simms, Alexander; Theilen, Brittany", "repository": "USAP-DC", "science_program": null, "title": "Granulometry of Joinville and Livingston Island beaches", "url": "https://www.usap-dc.org/view/dataset/601400"}, {"dataset_uid": "601632", "doi": "10.15784/601632", "keywords": "Antarctica; Joinville Island", "people": "Simms, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Ground Penetrating Radar Profiles from Beaches on Joinville Island, Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601632"}], "date_created": "Thu, 08 Oct 2020 00:00:00 GMT", "description": "Glacier ice loss from Antarctica has the potential to lead to a significant rise in global sea level. One line of evidence for accelerated glacier ice loss has been an increase in the rate at which the land has been rising across the Antarctic Peninsula as measured by GPS receivers. However, GPS observations of uplift are limited to the last two decades. One goal of this study is to determine how these newly observed rates of uplift compare to average rates of uplift across the Antarctic Peninsula over a longer time interval. Researchers reconstructed past sea levels using the age and elevation of ancient beaches now stranded above sea level on the low-lying coastal hills of the Antarctica Peninsula and determined the rate of uplift over the last 5,000 years. The researchers analyzed the structure of the beaches using ground-penetrating radar and the characteristics of beach sediments to understand how sea-level rise and past climate changes are recorded in beach deposits. We found that unlike most views of how sea level changed across Antarctica over the last 5,000 years, its history is complex with periods of increasing rates of sea-level fall as well as short periods of potential sea-level rise. We attribute these oscillations in the nature of sea-level change across the Antarctic Peninsula to changes in the ice sheet over the last 5,000 years. These changes in sea level also suggest our understanding of the Earth structure beneath the Antarctic Peninsula need to be revised. The beach deposits themselves also record periods of climate change as reflected in the size and shape of their cobbles. This project has lead to the training of five graduate students, three undergraduate students, and outreach talks to k-12 schools in three communities.", "east": -55.0, "geometry": "POINT(-60 -63)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "Antarctic Peninsula; COASTAL LANDFORMS/PROCESSES; USAP-DC; SEA LEVEL RECONSTRUCTION; South Shetland Islands; AMD; FIELD INVESTIGATION; Amd/Us; USA/NSF", "locations": "South Shetland Islands; Antarctic Peninsula", "north": -61.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Simms, Alexander; DeWitt, Regina", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Collaborative Research: New Constraints on Post-Glacial Rebound and Holocene Environmental History along the Northern Antarctic Peninsula from Raised Beaches", "uid": "p0010132", "west": -65.0}, {"awards": "1443433 Licht, Kathy; 1443213 Kaplan, Michael", "bounds_geometry": "POLYGON((159 -83.8,159.5 -83.8,160 -83.8,160.5 -83.8,161 -83.8,161.5 -83.8,162 -83.8,162.5 -83.8,163 -83.8,163.5 -83.8,164 -83.8,164 -83.87,164 -83.94,164 -84.01,164 -84.08,164 -84.15,164 -84.22,164 -84.29,164 -84.36,164 -84.43,164 -84.5,163.5 -84.5,163 -84.5,162.5 -84.5,162 -84.5,161.5 -84.5,161 -84.5,160.5 -84.5,160 -84.5,159.5 -84.5,159 -84.5,159 -84.43,159 -84.36,159 -84.29,159 -84.22,159 -84.15,159 -84.08,159 -84.01,159 -83.94,159 -83.87,159 -83.8))", "dataset_titles": "10Be and 26Al cosmogenic nuclide surface exposure data; 3He input data", "datasets": [{"dataset_uid": "601375", "doi": "10.15784/601375", "keywords": "Antarctica; Cosmogenic Dating; Transantarctic Mountains", "people": "Schaefer, Joerg; Winckler, Gisela; Kaplan, Michael", "repository": "USAP-DC", "science_program": null, "title": "10Be and 26Al cosmogenic nuclide surface exposure data", "url": "https://www.usap-dc.org/view/dataset/601375"}, {"dataset_uid": "601376", "doi": "10.15784/601376", "keywords": "Antarctica; Transantarctic Mountains", "people": "Winckler, Gisela; Kaplan, Michael; Schaefer, Joerg", "repository": "USAP-DC", "science_program": null, "title": "3He input data", "url": "https://www.usap-dc.org/view/dataset/601376"}], "date_created": "Tue, 29 Sep 2020 00:00:00 GMT", "description": "Sediments deposited by the Antarctic ice sheet are an archive of its history with time and help geologists to determine how the remote interior of the ice sheet has changed over the past several hundred thousand years. This project will focus on the formation and dynamics of moraines (accumulations of dirt and rocks that are incorporated in the glacier surface or have been pushed along by the glacier as it moves) near the blue ice area of Mt. Achernar in the central Transantarctic Mountains in Antarctica.. The study will improve basic understanding of the formation of these moraines. Fieldwork at the site will focus on imaging the internal structure of the moraine to determine the processes by which it, and others like it, form over time. Additional analyses will include measurements of ice flow and collection of rock samples to determine the timing of debris deposition and the changes in the sources of sediments from deep within the Antarctic continent. The project will provide both graduate and undergraduate students training in paleoclimate studies, geology, and numerical modeling approaches. The broader impacts of the proposed work include hands on training in the Earth Sciences for graduate and undergraduate students, collaboration with colleagues in New Zealand and Sweden to provide an international research experience for students from the US, and three educational modules to be delivered by student researchers regarding Antarctica\u0027s role in global environments. The research is societally relevant and multidisciplinary and the topics are ideal for sharing with the public. All research findings will be made publicly available to others via timely publication in high-impact, peer-reviewed journals and all data will be submitted to the National Snow and Ice Data Center, and excess samples will be provided to the U.S. Polar Rock Repository.\u003cbr/\u003e\u003cbr/\u003eDirect observations of ice sheet history from the margins of Antarctica\u0027s polar plateau are essential for testing numerical ice sheet models, and the laterally extensive, blue-ice moraines of the Mt. Achernar Moraine complex in the central Transantarctic Mountains contain a unique and nearly untapped direct, quasi-continuous record of ice sheet change over multiple glacial cycles. The project objectives include improved understanding of processes and rates of blue ice moraine formation, as well as identifying the topographic, glaciological, and climatic controls on their evolution. Data to be collected with fieldwork in Antarctica include: imaging of internal ice structure with ground-penetrating radar, measurement of ice flow velocity and direction with a global positioning system (GPS) array, analysis of debris concentration and composition in glacier ice, state-of-the-art cosmogenic multi-nuclide analyses to determine exposure ages of moraine debris, mapping of trimlines and provenance analysis. Numerical model simulations, constrained by field data, will be used to evaluate the factors influencing changes in glacier flow that potentially impact the accumulation of the moraine debris. All together, the new data and modeling efforts will improve conceptual models of blue ice moraine formation, and thereby make them a more valuable proxy for developing a better understanding of the history of the ice sheet.", "east": 164.0, "geometry": "POINT(161.5 -84.15)", "instruments": null, "is_usap_dc": true, "keywords": "SEDIMENTS; GLACIAL PROCESSES; Mt. Achernar; ABLATION ZONES/ACCUMULATION ZONES; GLACIER ELEVATION/ICE SHEET ELEVATION; Antarctica; Antarctic Ice Sheet; Transantarctic Mountains; GLACIATION; USAP-DC; ICE MOTION; AMD; LABORATORY; Amd/Us", "locations": "Transantarctic Mountains; Antarctic Ice Sheet; Mt. Achernar; Antarctica", "north": -83.8, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Kaplan, Michael; Schaefer, Joerg; Winckler, Gisela; Licht, Kathy", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.5, "title": "Collaborative Research: Multidisciplinary Analysis of Antarctic Blue Ice Moraine Formation and their Potential as Climate Archives over Multiple Glacial Cycles", "uid": "p0010131", "west": 159.0}, {"awards": "1443690 Young, Duncan", "bounds_geometry": "POLYGON((95 -68,100.5 -68,106 -68,111.5 -68,117 -68,122.5 -68,128 -68,133.5 -68,139 -68,144.5 -68,150 -68,150 -70.2,150 -72.4,150 -74.6,150 -76.8,150 -79,150 -81.2,150 -83.4,150 -85.6,150 -87.8,150 -90,144.5 -90,139 -90,133.5 -90,128 -90,122.5 -90,117 -90,111.5 -90,106 -90,100.5 -90,95 -90,95 -87.8,95 -85.6,95 -83.4,95 -81.2,95 -79,95 -76.8,95 -74.6,95 -72.4,95 -70.2,95 -68))", "dataset_titles": "Airborne potential fields data from Titan Dome, Antarctica; ICECAP Basal Interface Specularity Content Profiles: IPY and OIB; ICECAP: Gridded boundary conditions for Little Dome C, Antarctica, and extracted subglacial lake locations; ICECAP: High resolution survey of the Little Dome C region in support of the IPICS Old Ice goal; ICECAP radargrams in support of the international old ice search at Dome C - 2016; Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau; SPICECAP/ICECAP II Instrument Measurements (LASER, MAGNETICS and POSITIONING); Titan Dome, East Antarctica, Aerogeophysical Survey", "datasets": [{"dataset_uid": "601411", "doi": "10.15784/601411", "keywords": "Antarctica; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; ICECAP; Ice Penetrating Radar; Internal Reflecting Horizons", "people": "Paden, John; Cavitte, Marie G. P; Young, Duncan A.; Mulvaney, Robert; Ritz, Catherine; Greenbaum, Jamin; Ng, Gregory; Kempf, Scott D.; Quartini, Enrica; Muldoon, Gail R.; Frezzotti, Massimo; Roberts, Jason; Tozer, Carly; Schroeder, Dustin; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau", "url": "https://www.usap-dc.org/view/dataset/601411"}, {"dataset_uid": "200235", "doi": "10.26179/jydx-yz69", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "SPICECAP/ICECAP II Instrument Measurements (LASER, MAGNETICS and POSITIONING)", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_ICECAP_OIA_Level1B_AEROGEOPHYSICS"}, {"dataset_uid": "601355", "doi": "10.15784/601355", "keywords": "Aerogeophysics; Antarctica; Bed Elevation; Bed Reflectivity; Epica Dome C; Ice Thickness", "people": "Kempf, Scott D.; Ng, Gregory; Young, Duncan A.; Tozer, Carly; Ritz, Catherine; Habbal, Feras; Roberts, Jason; Blankenship, Donald D.; van Ommen, Tas; Richter, Thomas; Greenbaum, Jamin; Cavitte, Marie G. P; Beem, Lucas H.; Quartini, Enrica", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "ICECAP: High resolution survey of the Little Dome C region in support of the IPICS Old Ice goal", "url": "https://www.usap-dc.org/view/dataset/601355"}, {"dataset_uid": "601437", "doi": "10.15784/601437", "keywords": "Airborne Laser Altimetry; Airborne Radar; Airplane; Antarctica; Bedrock Elevation; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness; Radar Echo Sounder; Surface Elevation; Titan Dome", "people": "Greenbaum, Jamin; Ng, Gregory; Blankenship, Donald D.; Cavitte, Marie G. P; Jingxue, Guo; Bo, Sun; Young, Duncan; Beem, Lucas H.; Young, Duncan A.", "repository": "USAP-DC", "science_program": null, "title": "Titan Dome, East Antarctica, Aerogeophysical Survey", "url": "https://www.usap-dc.org/view/dataset/601437"}, {"dataset_uid": "200233", "doi": "http://dx.doi.org/doi:10.26179/5wkf-7361", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "ICECAP radargrams in support of the international old ice search at Dome C - 2016", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_ICECAP_OIA_RADARGRAMS"}, {"dataset_uid": "601463", "doi": "10.15784/601463", "keywords": "Antarctica; Epica Dome C; ICECAP; Ice Penetrating Radar; Subglacial Lake", "people": "Corr, Hugh F. J.; Young, Duncan A.; Roberts, Jason; Ritz, Catherine; Frezzotti, Massimo; Quartini, Enrica; Cavitte, Marie G. P; Tozer, Carly; Steinhage, Daniel; Urbini, Stefano; Van Ommen, Tas; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "ICECAP: Gridded boundary conditions for Little Dome C, Antarctica, and extracted subglacial lake locations", "url": "https://www.usap-dc.org/view/dataset/601463"}, {"dataset_uid": "601461", "doi": "10.15784/601461", "keywords": "Antarctica; ICECAP; Titan Dome", "people": "Jingxue, Guo; Bo, Sun; Blankenship, Donald D.; Young, Duncan A.; Greenbaum, Jamin", "repository": "USAP-DC", "science_program": null, "title": "Airborne potential fields data from Titan Dome, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601461"}, {"dataset_uid": "601371", "doi": "10.15784/601371", "keywords": "Antarctica; East Antarctica; ICECAP; Ice Penetrating Radar; Radar Echo Sounder; Radar Echo Sounding; Subglacial Hydrology", "people": "Greenbaum, Jamin; Schroeder, Dustin; van Ommen, Tas; Siegert, Martin; Roberts, Jason; Blankenship, Donald D.; Young, Duncan A.", "repository": "USAP-DC", "science_program": null, "title": "ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "url": "https://www.usap-dc.org/view/dataset/601371"}], "date_created": "Tue, 07 Jul 2020 00:00:00 GMT", "description": "This study focuses on processing and interpretation of internationally collected aerogeophysical data from the Southern Plateau of the East Antarctic Ice Sheet. The data include ice penetrating radar data, laser altimetry, gravity and magnetics. The project will provide information on geological trends under the ice, the topography and character of the ice/rock interface, and the stratigraphy of the ice. The project will also provide baseline site characterization for future drilling. Future drilling sites and deep ice cores for old ice require that the base of the ice sheet be frozen to the bed (i.e. no free water at the interface between rock and ice) and the assessment will map the extent of frozen vs. thawed areas. Specifically, three main outcomes are anticipated for this project. First, the study will provide an assessment of the viability of Titan Dome, a subglacial highland region located near South Pole, as a potential old ice drilling prospect. The assessment will include determining the hydraulic context of the bed by processing and interpreting the radar data, ice sheet mass balance through time by mapping englacial reflectors in the ice and connecting them to ice stratigraphy in the recent South Pole, and ice sheet geometry using laser altimetry. Second, the study will provide an assessment of the geological context of the Titan Dome region with respect to understanding regional geologic boundaries and the potential for bedrock sampling. For these two goals, we will use data opportunistically collected by China, and the recent PolarGAP dataset. Third, the study will provide an assessment of the risk posture for RAID site targeting in the Titan Dome region, and the Dome C region. This will use a high-resolution dataset the team collected previously at Dome C, an area similar to the coarser resolution data collected at Titan Dome, and will enable an understanding of what is missed by the wide lines spacing at Titan Dome. Specifically, we will model subglacial hydrology with and without the high resolution data, and statistically examine the detection of subglacial mountains (which could preserve old ice) and subglacial lakes (which could destroy old ice), as a function of line spacing.", "east": 150.0, "geometry": "POINT(122.5 -79)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e LIDAR ALTIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e NUCLEAR PRECESSION MAGNETOMETER", "is_usap_dc": true, "keywords": "BT-67; MAGNETIC ANOMALIES; Epica Dome C; GRAVITY ANOMALIES; GLACIER ELEVATION/ICE SHEET ELEVATION; GLACIER THICKNESS/ICE SHEET THICKNESS", "locations": "Epica Dome C", "north": -68.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Young, Duncan A.; Blankenship, Donald D.; Roberts, Jason; Bo, Sun", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e BT-67", "repo": "USAP-DC", "repositories": "AADC; USAP-DC", "science_programs": "Dome C Ice Core", "south": -90.0, "title": "Collaborative Research: Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP)", "uid": "p0010115", "west": 95.0}, {"awards": "1443576 Panter, Kurt", "bounds_geometry": "POLYGON((-154.1 -86.9,-154.03 -86.9,-153.96 -86.9,-153.89 -86.9,-153.82 -86.9,-153.75 -86.9,-153.68 -86.9,-153.61 -86.9,-153.54 -86.9,-153.47 -86.9,-153.4 -86.9,-153.4 -86.92,-153.4 -86.94,-153.4 -86.96,-153.4 -86.98,-153.4 -87,-153.4 -87.02,-153.4 -87.04,-153.4 -87.06,-153.4 -87.08,-153.4 -87.1,-153.47 -87.1,-153.54 -87.1,-153.61 -87.1,-153.68 -87.1,-153.75 -87.1,-153.82 -87.1,-153.89 -87.1,-153.96 -87.1,-154.03 -87.1,-154.1 -87.1,-154.1 -87.08,-154.1 -87.06,-154.1 -87.04,-154.1 -87.02,-154.1 -87,-154.1 -86.98,-154.1 -86.96,-154.1 -86.94,-154.1 -86.92,-154.1 -86.9))", "dataset_titles": "Volcanological and Petrological measurements on Mt. Early and Sheridan Bluff volcanoes, upper Scott Glacier, Antarctica ", "datasets": [{"dataset_uid": "601331", "doi": "10.15784/601331", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochronology; Glacial Volcanism; Magma Differentiation; Major Elements; Mantle Melting; Solid Earth; Trace Elements; Transantarctic Mountains", "people": "Panter, Kurt", "repository": "USAP-DC", "science_program": null, "title": "Volcanological and Petrological measurements on Mt. Early and Sheridan Bluff volcanoes, upper Scott Glacier, Antarctica ", "url": "https://www.usap-dc.org/view/dataset/601331"}], "date_created": "Fri, 05 Jun 2020 00:00:00 GMT", "description": "Predictions of future sea level rise require better understanding of the changing dynamics of the Greenland and Antarctic ice sheets. One way to better understand the past history of the ice sheets is to obtain records from inland ice for past geological periods, particularly in Antarctica, the world\u0027s largest remaining ice sheet. Such records are exceedingly rare, and can be acquired at volcanic outcrops in the La Gorce Mountains of the central Transantarctic Mountains. Volcanoes now exposed within the La Gorce Mountains erupted beneath the East Antarctic ice sheet and the data collected will record how thick the ice sheet was in the past. In addition, information will be used to determine the thermal conditions at the base of the ice sheet, which impacts ice sheet stability. The project will also investigate the origin of volcanic activity in Antarctica and links to the West Antarctic Rift System (WARS). The WARS is a broad area of extended (i.e. stretched) continental crust, similar to that found in East Africa, and volcanism is wide spread and long-lived (65 million years to currently active) and despite more than 50 years of research, the fundamental cause of volcanism and rifting in Antarctica is still vigorously debated. The results of this award therefore also potentially impact the study of oceanic volcanism in the entire southwestern Pacific region (e.g., New Zealand and Australia), where volcanic fields of similar composition and age have been linked by common magma sources and processes. The field program includes a graduate student who will work on the collection, analysis, and interpretation of petrological data as part of his/her Masters project. The experience and specialized analytical training being offered will improve the quality of the student\u0027s research and optimize their opportunities for their future. The proposed work fosters faculty and student national and international collaboration, including working with multi-user facilities that provide advanced technological mentoring of science students. Results will be broadly disseminated in peer-reviewed journals, public presentations at science meetings, and in outreach activities. Petrologic and geochemical data will be disseminated to be the community through the Polar Rock Repository. The study of subglacially erupted volcanic rocks has been developed to the extent that it is now the most powerful proxy methodology for establishing precise \u0027snapshots\u0027 of ice sheets, including multiple critical ice parameters. Such data should include measurements of ice thickness, surface elevation and stability, which will be used to verify, or reject, published semi-empirical models relating ice dynamics to sea level changes. In addition to establishing whether East Antarctic ice was present during the formation of the volcanoes, data will be used to derive the coeval ice thicknesses, surface elevations and basal thermal regime(s) in concert with a precise new geochronology using the 40Ar/39Ar dating method. Inferences from measurement of standard geochemical characteristics (major, trace elements and Sr, Nd, Pb, O isotopes) will be used to investigate a possible relationship between the volcanoes and the recently discovered subglacial ridge under the East Antarctic ice, which may be a rift flank uplift. The ridge has never been sampled, is undated and its significance is uncertain. The data will provide important new information about the deep Earth and geodynamic processes beneath this mostly ice covered and poorly understood sector of the Antarctic continent.", "east": -153.4, "geometry": "POINT(-153.75 -87)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; Mantle Melting; Magma Differentiation; Geochronology; Glacial Volcanism; GEOCHEMISTRY; Major Elements; ISOTOPES; Trace Elements; Transantarctic Mountains; LABORATORY; LAVA COMPOSITION/TEXTURE; USAP-DC; LAND RECORDS", "locations": "Transantarctic Mountains", "north": -86.9, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Panter, Kurt", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.1, "title": "Investigating Early Miocene Sub-ice Volcanoes in Antarctica for Improved Modeling and understanding of a Large Magmatic Province", "uid": "p0010105", "west": -154.1}, {"awards": "9978236 Bell, Robin", "bounds_geometry": "POLYGON((101 -75.5,101.9 -75.5,102.8 -75.5,103.7 -75.5,104.6 -75.5,105.5 -75.5,106.4 -75.5,107.3 -75.5,108.2 -75.5,109.1 -75.5,110 -75.5,110 -75.85,110 -76.2,110 -76.55,110 -76.9,110 -77.25,110 -77.6,110 -77.95,110 -78.3,110 -78.65,110 -79,109.1 -79,108.2 -79,107.3 -79,106.4 -79,105.5 -79,104.6 -79,103.7 -79,102.8 -79,101.9 -79,101 -79,101 -78.65,101 -78.3,101 -77.95,101 -77.6,101 -77.25,101 -76.9,101 -76.55,101 -76.2,101 -75.85,101 -75.5))", "dataset_titles": "SOAR-Lake Vostok Survey airborne radar data; SOAR-Lake Vostok Survey bed elevation data; SOAR-Lake Vostok Survey Gravity data; SOAR-Lake Vostok Survey ice thickness data; SOAR-Lake Vostok survey magnetic anomaly data; SOAR-Lake Vostok Survey surface elevation data", "datasets": [{"dataset_uid": "601295", "doi": "10.1594/IEDA/306563", "keywords": "Airborne Gravity; Airplane; Antarctica; East Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Lake Vostok; Potential Field; Solid Earth", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey Gravity data", "url": "https://www.usap-dc.org/view/dataset/601295"}, {"dataset_uid": "601297", "doi": "10.1594/IEDA/306567", "keywords": "Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Sheet; Ice Stratigraphy; Ice Thickness; Ice Thickness Distribution; Lake Vostok; Radar; Radar Altimetry; Radar Echo Sounder; SOAR; Subglacial Lake", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey ice thickness data", "url": "https://www.usap-dc.org/view/dataset/601297"}, {"dataset_uid": "601298", "doi": "10.1594/IEDA/306566", "keywords": "Airborne Altimetry; Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Ice Sheet Elevation; Ice Surface; Lake Vostok; Radar Echo Sounder; SOAR; Surface Elevation", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey surface elevation data", "url": "https://www.usap-dc.org/view/dataset/601298"}, {"dataset_uid": "601300", "doi": "10.1594/IEDA/306568", "keywords": "Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Lake Vostok; Navigation; Radar; SOAR; Subglacial Lakes", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey airborne radar data", "url": "https://www.usap-dc.org/view/dataset/601300"}, {"dataset_uid": "601299", "doi": "10.1594/IEDA/306565", "keywords": "Airborne Laser Altimeters; Airborne Laser Altimetry; Airborne Radar; Airplane; Antarctica; Bed Elevation; Bedrock Elevation; Digital Elevation Model; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Lake Vostok; Radar; Radar Echo Sounder; SOAR", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey bed elevation data", "url": "https://www.usap-dc.org/view/dataset/601299"}, {"dataset_uid": "601296", "doi": " 10.1594/IEDA/306564", "keywords": "Airborne Magnetic; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Lake Vostok; Magnetic; Magnetic Anomaly; Magnetometer; Potential Field; SOAR; Solid Earth", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok survey magnetic anomaly data", "url": "https://www.usap-dc.org/view/dataset/601296"}], "date_created": "Fri, 24 Apr 2020 00:00:00 GMT", "description": "This award, provided by the Office of Polar Programs under the Life in Extreme Environments (LExEn) Program, supports a geophysical study of Lake Vostok, a large lake beneath the East Antarctic Ice Sheet. \u003cbr/\u003e\u003cbr/\u003eSubglacial ecosystems, in particular subglacial lake ecosystems are extreme oligotrophic environments. These environments, and the ecosystems which may exist within them, should provide key insights into a range of fundamental questions about the development of Earth and other bodies in the Solar System including: 1) the processes associated with rapid evolutionary radiation after the extensive Neoproterozoic glaciations; 2) the overall carbon cycle through glacial and interglacial periods; and 3) the possible adaptations organisms may require to thrive in environments such as on Europa, the ice covered moon of Jupiter. Over 70 subglacial lakes have been identified beneath the 3-4 kilometer thick ice of Antarctica. One lake, Lake Vostok, is sufficiently large to be clearly identified from space with satellite altimetry. Lake Vostok is similar to Lake Ontario in area but with a much larger volume including measured water depths of 600 meters. The overlying ice sheet is acting as a conveyer belt continually delivering new water, nutrients, gas hydrates, sediments and microbes as the ice sheet flows across the lake. \u003cbr/\u003e\u003cbr/\u003eThe goal of this program is to determine the fundamental boundary conditions for this subglacial lake as an essential first step toward understanding the physical processes within the lake. An aerogeophysical survey over the lake and into the surrounding regions will be acquired to meet this goal. This data set includes gravity, magnetic, laser altimetry and ice penetrating radar data and will be used to compile a basic set of ice surface elevation, subglacial topography, gravity and magnetic anomaly maps. \u003cbr/\u003e\u003cbr/\u003ePotential field methods widely used in the oil industry will be modified to estimate the subglacial topography from gravity data where the ice penetrating radar will be unable to recover the depth of the lake. A similar method can be modified to estimate the thickness of the sediments beneath the lake from magnetic data. These methods will be tested and applied to subglacial lakes near South Pole prior to the Lake Vostok field campaign and will provide valuable comparisons to the planned survey. Once the methods have been adjusted for the Lake Vostok application, maps of the water cavity and sediment thickness beneath the lake will be produced.\u003cbr/\u003e\u003cbr/\u003eThese maps will become tools to explore the geologic origin of the lake. The two endmember models are, first, that the lake is an active tectonic rift such as Lake Baikal and, second, the lake is the result of glacial scouring. The distinct characteristics of an extensional rift can be easily identified with our aerogeophysical survey. The geological interpretation of the airborne geophysical survey will provide the first geological constraints of the interior of the East Antarctic continent based on modern data. In addition, the underlying geology will influence the ecosystem within the lake. \u003cbr/\u003e\u003cbr/\u003eOne of the critical issues for the ecosystem within the lake will be the flux of nutrients. A preliminary estimation of the regions of freezing and melting based on the distance between distinctive internal layers observed on the radar data will be made. These basic boundary conditions will provide guidance for a potential international effort aimed at in situ exploration of the lake and improve the understanding of East Antarctic geologic structures.", "east": 110.0, "geometry": "POINT(105.5 -77.25)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e MAGNETOMETERS \u003e MGF; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e AIRGRAV", "is_usap_dc": true, "keywords": "Gravity; GLACIERS/ICE SHEETS; East Antarctica; USAP-DC; Lake Vostok; Airborne Radar; Subglacial Lake; MAGNETIC FIELD; GRAVITY", "locations": "East Antarctica; Lake Vostok", "north": -75.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bell, Robin; Studinger, Michael S.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work\r\n", "uid": "p0010097", "west": 101.0}, {"awards": "9615832 Blankenship, Donald; 9615704 Bell, Robin", "bounds_geometry": "POLYGON((-180 -74,-176 -74,-172 -74,-168 -74,-164 -74,-160 -74,-156 -74,-152 -74,-148 -74,-144 -74,-140 -74,-140 -75.6,-140 -77.2,-140 -78.8,-140 -80.4,-140 -82,-140 -83.6,-140 -85.2,-140 -86.8,-140 -88.4,-140 -90,-144 -90,-148 -90,-152 -90,-156 -90,-160 -90,-164 -90,-168 -90,-172 -90,-176 -90,180 -90,174 -90,168 -90,162 -90,156 -90,150 -90,144 -90,138 -90,132 -90,126 -90,120 -90,120 -88.4,120 -86.8,120 -85.2,120 -83.6,120 -82,120 -80.4,120 -78.8,120 -77.2,120 -75.6,120 -74,126 -74,132 -74,138 -74,144 -74,150 -74,156 -74,162 -74,168 -74,174 -74,-180 -74))", "dataset_titles": "SOAR-PPT Airborne gravity data; SOAR-WLK Airborne gravity data", "datasets": [{"dataset_uid": "601292", "doi": "10.15784/601292", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Potential Field; Solid Earth; Transantarctic Mountains", "people": "Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-PPT Airborne gravity data", "url": "https://www.usap-dc.org/view/dataset/601292"}, {"dataset_uid": "601293", "doi": "10.15784/601293", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Potential Field; Solid Earth; Transantarctic Mountains", "people": "Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-WLK Airborne gravity data", "url": "https://www.usap-dc.org/view/dataset/601293"}], "date_created": "Fri, 24 Apr 2020 00:00:00 GMT", "description": "Continental extension produces a great variety of structures from the linear narrow rifts of the East African Rift to the diffuse extension of the Basin and Range Province of the Western U.S. Rift shoulder uplift varies dramatically between rift flanks. The cause of variable rift width and crustal thinning is fairly well explained by variable initial heat flow and crustal thickness. Mechanical stretching of the lithosphere has been linked to rift shoulder uplift but the cause of variable rift flank uplift remains poorly understood. The Transantarctic Mountains (TAM) are an extreme example of rift flank uplift, extending over 3500 km across Antarctica and reaching elevations up to 4500 m and thus constitute a unique feature of EarthOs crust. The range was formed in the extensional environment associated with the Mesozoic and Cenozoic breakup of Gondwanaland. Geological and geophysical work has shown that the TAM developed along the long-lived lithospheric boundary between East and West Antarctica reactivated by a complex history of extensional and translational microplate motions. The TAM are not uniform along strike. Along the OWilkes FrontO, the northern segment of the rift extends from North Victoria Land to Byrd Glacier. The Wilkes Front architecture consists of (1) thin, extended crust forming the Victoria Land Basin in the Ross Sea, (2) the TAM rift shoulder, and (3) a long-wavelength down- ward forming the Wilkes Basin. Contrasting structures are mapped along the OPensacola/PoleO Front, the southern segment of the rift extending from the Nimrod Glacier to the Pensacola Mountains. Along this southern section no rift basin has been mapped to date and the down-ward along the East Antarctic, or ObacksideO, edge of the mountains is less pronounced. A flexural model linking the extension in the Ross Sea to the formation of both the mountains and the Wilkes Basin has been considered as a me chanism for uplift of the entire mountain range. The variability in fundamental architecture along the TAM indicates that neither a single event nor a sequence of identical events produced the rift flank uplift. The observation of variable architecture suggests complex mechanisms and possibly a fundamental limitation in maximum sustainable rift flank elevation. The motivation for studying the TAM is to try to understand the geodynamics of this extreme elevation rift flank. Are the geodynamics of the area unique, or does the history of glaciation and related erosion contribute to the extreme uplift? With the existing data sets it is difficult to confidently constrain the geological architecture across representative sections of the TAM. Any effort to refine geodynamic mechanisms requires this basic understanding of the TAM architecture. The goal of this project is to (1) constrain the architecture of the rift system as well as the distribution and structure of sedimentary basins, glacial erosion and mafic igneous rocks surrounding the rift flank by acquiring three long wavelength geophysical transects with integrated gravity, magnetics, ice- penetrating radar, and ice surface measurements, (2) quantify the contribution of various geodynamic mechanisms to understand the geological conditions which can lead to extreme rift flank uplift, and (3) use the improved understanding of architecture and geophysical data to test geodynamic models in order to improve our understanding both of the TAM geodynamics and the general problem of the geodynamics of rift flank uplift worldwide. This project will allow development of a generalized framework for understanding the development of rift flank uplift as well as address the question of the specific geodynamic evolution of the TAM.", "east": -140.0, "geometry": "POINT(170 -82)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": true, "keywords": "USAP-DC; Transantarctic Mountains; GRAVITY FIELD; TECTONICS", "locations": "Transantarctic Mountains", "north": -74.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Bell, Robin; Buck, W. Roger; Blankenship, Donald D.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Contrasting Architecture and Dynamics of the Transantarctic Mountains", "uid": "p0010095", "west": 120.0}, {"awards": "1341602 Crockett, Elizabeth; 1341663 O\u0027Brien, Kristin", "bounds_geometry": null, "dataset_titles": "Acclimation of cardiovascular function in Notothenia coriiceps; Adrenergic and adenosinergic regulation of the cardiovascular system in the Antarctic icefish Chaenocephalus aceratus; Cardiac metabolism in Antarctic fishes in response to an acute increase in temperature; Chaenocephalus aceratus HIF-1A mRNA, complete cds; Chionodraco rastrospinosus HIF-1A mRNA, partial cds; Effects of acute warming on cardiovascular performance of Antarctic fishes; Eleginops maclovinus HIF-1A mRNA, partial cds; Gymnodraco acuticeps HIF-1A mRNA, partial cds; Hypoxia response of hearts of Antarctic fishes; Maximum cardiac performance of Antarctic fishes that lack haemoglobin and myoglobin: exploring the effect of warming on nature\u2019s natural knockouts; Measurements of splenic contraction in Antarctic fishes; Mitochondrial membranes in cardiac muscle from Antarctic notothenioid fishes vary in phospholipid composition and membrane fluidity; Notothenia coriiceps HIF-1A mRNA, complete cds; Parachaenichthys charcoti HIF-1A mRNA, partial cds; Physical, chemical, and functional properties of neuronal membranes vary between species of Antarctic notothenioids differing in thermal tolerance; Thermal sensitivity of membrane fluidity and integrity in hearts of Antarctic fishes that vary in expression of hemoglobin and myoglobin", "datasets": [{"dataset_uid": "200185", "doi": "10.5061/dryad.k90h35k", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Mitochondrial membranes in cardiac muscle from Antarctic notothenioid fishes vary in phospholipid composition and membrane fluidity", "url": "https://doi.org/10.5061/dryad.k90h35k"}, {"dataset_uid": "200190", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Parachaenichthys charcoti HIF-1A mRNA, partial cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/KX950833"}, {"dataset_uid": "200189", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Eleginops maclovinus HIF-1A mRNA, partial cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/KX950830"}, {"dataset_uid": "601410", "doi": "10.15784/601410", "keywords": "Antarctica; Antarctic Peninsula; Biota; Fish", "people": "Crockett, Elizabeth; Egginton, Stuart; Axelsson, Michael; Farrell, Anthony; Joyce, William; O\u0027Brien, Kristin", "repository": "USAP-DC", "science_program": null, "title": "Effects of acute warming on cardiovascular performance of Antarctic fishes", "url": "https://www.usap-dc.org/view/dataset/601410"}, {"dataset_uid": "200188", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Notothenia coriiceps HIF-1A mRNA, complete cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/KX950829"}, {"dataset_uid": "200187", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Chaenocephalus aceratus HIF-1A mRNA, complete cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/KX950828"}, {"dataset_uid": "200186", "doi": "10.5061/dryad.qm0b25h", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Physical, chemical, and functional properties of neuronal membranes vary between species of Antarctic notothenioids differing in thermal tolerance", "url": "https://doi.org/10.5061/dryad.qm0b25h"}, {"dataset_uid": "601414", "doi": "10.15784/601414", "keywords": "Antarctica; Antarctic Peninsula", "people": "Crockett, Elizabeth; O\u0027Brien, Kristin; Evans, Elizabeth; Farnoud, Amir", "repository": "USAP-DC", "science_program": null, "title": "Thermal sensitivity of membrane fluidity and integrity in hearts of Antarctic fishes that vary in expression of hemoglobin and myoglobin", "url": "https://www.usap-dc.org/view/dataset/601414"}, {"dataset_uid": "200184", "doi": "10.5061/dryad.83vc5", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Maximum cardiac performance of Antarctic fishes that lack haemoglobin and myoglobin: exploring the effect of warming on nature\u2019s natural knockouts", "url": "https://doi.org/10.5061/dryad.83vc5"}, {"dataset_uid": "601409", "doi": "10.15784/601409", "keywords": "Antarctica; Antarctic Peninsula", "people": "Joyce, Michael; Farrell, Anthony; Egginton, Stuart; O\u0027Brien, Kristin; Axelsson, Michael", "repository": "USAP-DC", "science_program": null, "title": "Adrenergic and adenosinergic regulation of the cardiovascular system in the Antarctic icefish Chaenocephalus aceratus", "url": "https://www.usap-dc.org/view/dataset/601409"}, {"dataset_uid": "200191", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Gymnodraco acuticeps HIF-1A mRNA, partial cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/kx950832"}, {"dataset_uid": "601408", "doi": "10.15784/601408", "keywords": "Antarctica; Antarctic Peninsula", "people": "Crockett, Elizabeth; Joyce, William; O\u0027Brien, Kristin; Egginton, Stuart; Farrell, Anthony; Axelsson, Michael", "repository": "USAP-DC", "science_program": null, "title": "Acclimation of cardiovascular function in Notothenia coriiceps", "url": "https://www.usap-dc.org/view/dataset/601408"}, {"dataset_uid": "601407", "doi": "10.15784/601407", "keywords": "Antarctica; Antarctic Peninsula", "people": "Axelsson, Michael; Joyce, William; O\u0027Brien, Kristin", "repository": "USAP-DC", "science_program": null, "title": "Measurements of splenic contraction in Antarctic fishes", "url": "https://www.usap-dc.org/view/dataset/601407"}, {"dataset_uid": "601406", "doi": "10.15784/601406", "keywords": "Antarctica; Antarctic Peninsula", "people": "O\u0027Brien, Kristin", "repository": "USAP-DC", "science_program": null, "title": "Hypoxia response of hearts of Antarctic fishes", "url": "https://www.usap-dc.org/view/dataset/601406"}, {"dataset_uid": "601405", "doi": "10.15784/601405", "keywords": "Antarctica; Antarctic Peninsula", "people": "O\u0027Brien, Kristin", "repository": "USAP-DC", "science_program": null, "title": "Cardiac metabolism in Antarctic fishes in response to an acute increase in temperature", "url": "https://www.usap-dc.org/view/dataset/601405"}, {"dataset_uid": "200192", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Chionodraco rastrospinosus HIF-1A mRNA, partial cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/kx950831"}], "date_created": "Wed, 26 Feb 2020 00:00:00 GMT", "description": "The ocean surrounding Antarctica is home to an extraordinary assemblage of fishes, dominated by a single group that are extremely well-suited to life in icy waters and which are of significant ecological importance there. Of great concern is the capacity of these fishes to withstand increases in temperature as the region of the Western Antarctic Peninsula warms at a rate faster than any other area in the Southern hemisphere. One particular group of Antarctic fishes, known as the icefishes, are particularly vulnerable to increases in temperature because unlike all other vertebrates on earth, icefishes are white-blooded due to their lack of the oxygen-binding protein hemoglobin. This greatly reduces their capacity to transport and deliver oxygen to tissues compared to red-blooded Antarctic fishes. Previous studies have shown that icefishes are indeed less tolerant to elevations in temperature but the underlying factors are completely unknown. Additionally, it is not understood if red- or white-blooded Antarctic fishes can adjust, or acclimate, to modest increases in temperature, similar to those changes in temperature the animals might experience as the earth warms. The investigators will determine if heart function and/or nervous system function limits thermal tolerance of Antarctic fishes, and will determine their capacity to acclimate to warmer temperatures. The project will further the NSF goal of training new generations of scientists by training graduate and undergraduate students. In addition, the project will collaborate with a high school biology teacher from a school which serves a largely minority student body. The students will learn about the marine environment, and will construct a camera to be used in the field to learn more about Antarctic fishes. Two students and the teacher will also attend a summer marine biology internship program.\u003cbr/\u003e\u003cbr/\u003eAntarctic fishes within the suborder Notothenioidei (called \"notothenioids\") are among the organisms on earth least able to deal with changes in temperature. The hemoglobinless icefish are even less able to withstand temperature changes than are red-blooded notothenioids. While this is well documented, the underlying physiological and biochemical mechanisms responsible are unknown. The investigators will test the hypotheses that cardiac work is significantly greater in icefishes compared to red-blooded species, and that as temperature increases, the greater cardiac work of icefishes, coupled with reduced blood oxygen-carrying capacity, results in cardiac failure at a lower temperature compared to red-blooded species. They also hypothesize that neuronal function limits thermal tolerance of red-blooded notothenioids. These hypotheses will be tested using a wide variety of experiments. For example, the investigators will measure heart rate concurrently with critical thermal maximum. They will also characterize metabolic and gene-expression responses to elevated temperature and determine if mitochondrial function contributes to thermal tolerance using a variety of techniques. To determine if neuronal function limits thermal tolerance they will quantify behavioral responses to warming of whole animals and to warming of only the brain area. They will also determine if acclimation to warmer temperatures impacts heart function and they will measure activities of a variety of enzymes from central metabolic pathways.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Amd/Us; FISH; USA/NSF; FIELD INVESTIGATION; AMD; Antarctic Peninsula; LABORATORY; USAP-DC", "locations": "Antarctica; Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Crockett, Elizabeth; O\u0027Brien, Kristin", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "Dryad", "repositories": "Dryad; GenBank; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes", "uid": "p0010084", "west": null}, {"awards": "1246111 Dalziel, Ian", "bounds_geometry": "POLYGON((-44 -53,-42.9 -53,-41.8 -53,-40.7 -53,-39.6 -53,-38.5 -53,-37.4 -53,-36.3 -53,-35.2 -53,-34.1 -53,-33 -53,-33 -53.4,-33 -53.8,-33 -54.2,-33 -54.6,-33 -55,-33 -55.4,-33 -55.8,-33 -56.2,-33 -56.6,-33 -57,-34.1 -57,-35.2 -57,-36.3 -57,-37.4 -57,-38.5 -57,-39.6 -57,-40.7 -57,-41.8 -57,-42.9 -57,-44 -57,-44 -56.6,-44 -56.2,-44 -55.8,-44 -55.4,-44 -55,-44 -54.6,-44 -54.2,-44 -53.8,-44 -53.4,-44 -53))", "dataset_titles": "BAS Geological Collection: Central Scotia Sea (full data link not provided); Nathaniel B Palmer NBP 1408; South Georgia: SOG1, SOG2, SOG3", "datasets": [{"dataset_uid": "200105", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "South Georgia: SOG1, SOG2, SOG3", "url": "https://www.unavco.org/data/gps-gnss/gps-gnss.html"}, {"dataset_uid": "200107", "doi": "", "keywords": null, "people": null, "repository": "British Antarctic Survey", "science_program": null, "title": "BAS Geological Collection: Central Scotia Sea (full data link not provided)", "url": "https://www.bas.ac.uk/data/our-data/collections/geological-collections/"}, {"dataset_uid": "200106", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Nathaniel B Palmer NBP 1408", "url": "http://www.marine-geo.org/tools/search/entry.php?id=NBP1408"}], "date_created": "Tue, 28 Jan 2020 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eOpening of Drake Passage and the West Scotia Sea south of Tierra del Fuego broke the final continental barrier to onset of a complete Antarctic Circumpolar Current (ACC). Initiation of the ACC has been associated in time with a major, abrupt, drop in global temperatures and the rapid expansion of the Antarctic ice sheets at 33-34 Ma. Events leading to the formation of the Drake Passage gateway are poorly known. Understanding the tectonic evolution of the floor of the Central Scotia Sea (CSS) and the North Scotia Ridge is a key to this understanding. Previous work has demonstrated that superimposed constructs formed a volcanic arc that likely blocked direct eastward flow from the Pacific to the Atlantic through the opening Drake Passage gateway as the active South Sandwich arc does today. The PIs propose a cruise to test, develop and refine, with further targeted mapping and dredging, their theory of CSS tectonics and the influence it had on the onset and development of the ACC. In addition they propose an installation of GPS receiver to test their paleogeographic reconstructions and determine whether South Georgia is moving as part of the South American plate. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eA graduate student will be involved in all stages of the research. Undergraduate students will also be involved as watch-standers. A community college teacher will participate in the cruise. The PIs will have a website on which there will be images of the actual ocean floor dredging in operation. The teacher will participate with web and outreach support through PolarTREC. Results of the cruise are of broad interest to paleoceanographers, paleoclimate modelers and paleobiogeographers.A network of four continuous Global Navigational Satellite Systems (GNSS) receivers was installed on the bedrock of South Georgia in the Southern Ocean in 2013 and 2014. An additional receiver on a concrete foundation provides a tie to a tide gauge, part of the United Kingdom South Atlantic Tide Gauge Network. The GNSS receivers have already provided data suggesting that the South Georgia microcontinent (SGM) is moving independent of both the South American plate to the north and the Scotia plate to the south. The data also demonstrate that the SGM is being uplifted. ", "east": -33.0, "geometry": "POINT(-38.5 -55)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Scotia Sea; PLATE BOUNDARIES; TECTONIC PROCESSES; NOT APPLICABLE; COASTAL ELEVATION; Southern Ocean; USAP-DC", "locations": "Scotia Sea; Southern Ocean", "north": -53.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Dalziel, Ian W.; Lawver, Lawrence; Krissek, Lawrence", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "UNAVCO", "repositories": "British Antarctic Survey; MGDS; UNAVCO", "science_programs": null, "south": -57.0, "title": "Collaborative Research: Role of the Central Scotia Sea Floor and North Scotia Ridge in the Onset and Development of the Antarctic Circumpolar Current", "uid": "p0010078", "west": -44.0}, {"awards": "1745137 Schroeder, Dustin", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic topographic and subglacial lake geostatistical simulations; Radar Sounding Observations of the Amundsen Sea Embayment, 2004-2005", "datasets": [{"dataset_uid": "601213", "doi": "10.15784/601213", "keywords": "Active Lakes; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; Model Data; Snow/ice; Snow/Ice; Subglacial Lakes; Topography", "people": "Schroeder, Dustin; MacKie, Emma; Caers, Jef; Siegfried, Matt; Scheidt, Celine", "repository": "USAP-DC", "science_program": null, "title": "Antarctic topographic and subglacial lake geostatistical simulations", "url": "https://www.usap-dc.org/view/dataset/601213"}, {"dataset_uid": "601436", "doi": "10.15784/601436", "keywords": "Amundsen Sea; Antarctica; Bed Reflectivity; Ice Penetrating Radar; Radar Echo Sounder", "people": "Culberg, Riley; Schroeder, Dustin; Jordan, Thomas M.; Seroussi, Helene; Young, Duncan A.; Vaughan, David G.; Chu, Winnie; Hilger, Andrew M.", "repository": "USAP-DC", "science_program": null, "title": "Radar Sounding Observations of the Amundsen Sea Embayment, 2004-2005", "url": "https://www.usap-dc.org/view/dataset/601436"}], "date_created": "Sat, 12 Oct 2019 00:00:00 GMT", "description": "Earth\u0027s geologic record shows that the great ice sheets have contributed to rates of sea-level rise that have been much higher than those observed today. That said, some sectors of the current Antarctic ice sheet are losing mass at large and accelerating rates. One of the primary challenges for placing these recent and ongoing changes in the context of geologically historic rates, and for making projections decades to centuries into the future, is the difficulty of observing conditions and processes beneath the ice sheet. Whereas satellite observations allow tracking of the ice-surface velocity and elevation on the scale of glacier catchments to ice sheets, airborne ice-penetrating radar has been the only approach for assessing conditions on this scale beneath the ice. These radar observations have been made since the late 1960s, but, because many different instruments have been used, it is difficult to track change in subglacial conditions through time. This project will develop the technical tools and approaches required to cross-compare among these measurements and thus open up opportunities for tracking and understanding changes in the critical subglacial environment. Intertwined with the research and student training on this project will be an outreach education effort to provide middle school and high school students with improved resources and enhanced exposure to geophysical, glaciological, and remote-sensing topics through partnership with the National Science Olympiad.\u003cbr/\u003e\u003cbr/\u003eThe radar sounding of ice sheets is a powerful tool for glaciological science with broad applicability across a wide range of cryosphere problems and processes. Radar sounding data have been collected with extensive spatial and temporal coverage across the West Antarctic Ice Sheet, including areas where multiple surveys provide observations that span decades in time or entire cross-catchment ice-sheet sectors. However, one major obstacle to realizing the scientific potential of existing radar sounding observations in Antarctica is the lack of analysis approaches specifically developed for cross-instrument interpretation. Radar is also spatially limited and often has gaps of many tens of kilometers between data points. Further work is needed to investigate ways of extrapolating radar information beyond the flight lines. This project aims to directly address these barriers to full utilization of the collective Antarctic radar sounding record by developing a suite of processing and interpretation techniques to enable the synthesis of radar sounding data sets collected with systems that range from incoherent to coherent, single-channel to swath-imaging, and digital to optically-recorded radar sounders. This includes a geostatistical analysis of ice sheet and radar datasets to make probabilistic predictions of conditions at the bed. The approaches will be assessed for two target regions: the Amundsen Sea Embayment and the Siple Coast. All pre- and post-processed sounding data produced by this project will be publically hosted for use by the wider research community.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IMAGING RADAR SYSTEMS", "is_usap_dc": true, "keywords": "GLACIER TOPOGRAPHY/ICE SHEET TOPOGRAPHY; Amd/Us; Airborne Radar; USA/NSF; ICE DEPTH/THICKNESS; Antarctica; Radar; AMD; USAP-DC", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Glaciology", "paleo_time": null, "persons": "Schroeder, Dustin; MacKie, Emma", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "CAREER: Cross-Instrument Synthesis of Antarctic Radar Sounding Observations", "uid": "p0010058", "west": -180.0}, {"awards": "1443248 Hall, Brenda; 1443346 Stone, John", "bounds_geometry": "POLYGON((-174 -84.2,-172.4 -84.2,-170.8 -84.2,-169.2 -84.2,-167.6 -84.2,-166 -84.2,-164.4 -84.2,-162.8 -84.2,-161.2 -84.2,-159.6 -84.2,-158 -84.2,-158 -84.36,-158 -84.52,-158 -84.68,-158 -84.84,-158 -85,-158 -85.16,-158 -85.32,-158 -85.48,-158 -85.64,-158 -85.8,-159.6 -85.8,-161.2 -85.8,-162.8 -85.8,-164.4 -85.8,-166 -85.8,-167.6 -85.8,-169.2 -85.8,-170.8 -85.8,-172.4 -85.8,-174 -85.8,-174 -85.64,-174 -85.48,-174 -85.32,-174 -85.16,-174 -85,-174 -84.84,-174 -84.68,-174 -84.52,-174 -84.36,-174 -84.2))", "dataset_titles": "Cosmogenic nuclide data from glacial deposits along the Liv Glacier coast; Ice-D Antarctic Cosmogenic Nuclide database - site DUNCAN; Ice-D Antarctic Cosmogenic Nuclide database - site MAASON; Liv and Amundsen Glacier Radiocarbon Data", "datasets": [{"dataset_uid": "601226", "doi": "10.15784/601226", "keywords": "Antarctica; Be-10; Beryllium-10; Cosmogenic; Cosmogenic Dating; Cosmogenic Radionuclides; Deglaciation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Liv Glacier; Rocks; Ross Ice Sheet; Surface Exposure Dates; Transantarctic Mountains", "people": "Stone, John", "repository": "USAP-DC", "science_program": null, "title": "Cosmogenic nuclide data from glacial deposits along the Liv Glacier coast", "url": "https://www.usap-dc.org/view/dataset/601226"}, {"dataset_uid": "200088", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Ice-D Antarctic Cosmogenic Nuclide database - site DUNCAN", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "200087", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Ice-D Antarctic Cosmogenic Nuclide database - site MAASON", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "601208", "doi": "10.15784/601208", "keywords": "Antarctica; Carbon; Glaciology; Holocene; Radiocarbon; Ross Embayment; Ross Sea; Transantarctic Mountains", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Liv and Amundsen Glacier Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601208"}], "date_created": "Thu, 05 Sep 2019 00:00:00 GMT", "description": "The response of the Antarctic Ice Sheet to future climatic changes is recognized as the greatest uncertainty in projections of future sea level. An understanding of past ice fluctuations affords insight into ice-sheet response to climate and sea-level change and thus is critical for improving sea-level predictions. This project will examine deglaciation of the southern Ross Sea over the past few thousand years to document oscillations in Antarctic ice volume during a period of relatively stable climate and sea level. We will help quantify changes in ice volume, improve understanding of the ice dynamics responsible, and examine the implications for future sea-level change. The project will train future scientists through participation of graduate students, as well as undergraduates who will develop research projects in our laboratories.\u003cbr/\u003e\u003cbr/\u003ePrevious research indicates rapid Ross Sea deglaciation as far south as Beardmore Glacier early in the Holocene epoch (which began approximately 11,700 years before present), followed by more gradual recession. However, deglaciation in the later half of the Holocene remains poorly constrained, with no chronological control on grounding-line migration between Beardmore and Scott Glaciers. Thus, we do not know if mid-Holocene recession drove the grounding line rapidly back to its present position at Scott Glacier, or if the ice sheet withdrew gradually in the absence of significant climate forcing or eustatic sea level change. The latter possibility raises concerns for future stability of the Ross Sea grounding line. To address this question, we will map and date glacial deposits on coastal mountains that constrain the thinning history of Liv and Amundsen Glaciers. By extending our chronology down to the level of floating ice at the mouths of these glaciers, we will date their thinning history from glacial maximum to present, as well as migration of the Ross Sea grounding line southwards along the Transantarctic Mountains. High-resolution dating will come from Beryllium-10 surface-exposure ages of erratics collected along elevation transects, as well as Carbon-14 dates of algae within shorelines from former ice-dammed ponds. Sites have been chosen specifically to allow close comparison of these two dating methods, which will afford constraints on Antarctic Beryllium-10 production rates.", "east": -158.0, "geometry": "POINT(-166 -85)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; NOT APPLICABLE; Antarctica; ICE SHEETS; USAP-DC", "locations": "Antarctica", "north": -84.2, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Hall, Brenda; Stone, John", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "ICE-D; USAP-DC", "science_programs": null, "south": -85.8, "title": "Collaborative Research: High-resolution Reconstruction of Holocene Deglaciation in the Southern Ross Embayment", "uid": "p0010053", "west": -174.0}, {"awards": "1341725 Guest, Peter; 1341606 Stammerjohn, Sharon; 1543483 Sedwick, Peter; 1341513 Maksym, Edward; 1341717 Ackley, Stephen", "bounds_geometry": "POLYGON((-180 -55,-177 -55,-174 -55,-171 -55,-168 -55,-165 -55,-162 -55,-159 -55,-156 -55,-153 -55,-150 -55,-150 -57.3,-150 -59.6,-150 -61.9,-150 -64.2,-150 -66.5,-150 -68.8,-150 -71.1,-150 -73.4,-150 -75.7,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -75.7,160 -73.4,160 -71.1,160 -68.8,160 -66.5,160 -64.2,160 -61.9,160 -59.6,160 -57.3,160 -55,162 -55,164 -55,166 -55,168 -55,170 -55,172 -55,174 -55,176 -55,178 -55,-180 -55))", "dataset_titles": "ASPeCt Visual Ice Observations on PIPERS Cruise NBP1704 April-June 2017; Expedition data of NBP1704; Impact of Convective Processes and Sea Ice Formation on the Distribution of Iron in the Ross Sea: Closing the Seasonal Cycle; NBP1704 CTD sensor data; NBP1704 Expedition Data; PIPERS Airborne LiDAR Data; PIPERS Meteorology Rawinsonde Data; PIPERS Meteorology Time Series; PIPERS Noble Gases; Sea Ice Layer Cakes, PIPERS 2017; SUMO unmanned aerial system (UAS) atmospheric data", "datasets": [{"dataset_uid": "601183", "doi": "10.15784/601183", "keywords": "Antarctica; Glaciology; Ice Concentration; Ice Thickness; Ice Type; NBP1704; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Sea Ice; Snow Depth; Snow/ice; Snow/Ice; Visual Observations", "people": "Ackley, Stephen", "repository": "USAP-DC", "science_program": null, "title": "ASPeCt Visual Ice Observations on PIPERS Cruise NBP1704 April-June 2017", "url": "https://www.usap-dc.org/view/dataset/601183"}, {"dataset_uid": "200150", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Impact of Convective Processes and Sea Ice Formation on the Distribution of Iron in the Ross Sea: Closing the Seasonal Cycle", "url": "https://www.bco-dmo.org/project/815403"}, {"dataset_uid": "601609", "doi": "10.15784/601609", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Mass Spectrometer; NBP1704; Noble Gas; Oceans; Ross Sea; R/v Nathaniel B. Palmer", "people": "Loose, Brice", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Noble Gases", "url": "https://www.usap-dc.org/view/dataset/601609"}, {"dataset_uid": "002663", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1704", "url": "https://www.rvdata.us/search/cruise/NBP1704"}, {"dataset_uid": "601422", "doi": "10.15784/601422", "keywords": "Antarctica; CTD; CTD Data; NBP1704; Ocean Profile Data; Ross Sea; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Stammerjohn, Sharon", "repository": "USAP-DC", "science_program": null, "title": "NBP1704 CTD sensor data", "url": "https://www.usap-dc.org/view/dataset/601422"}, {"dataset_uid": "601184", "doi": "10.15784/601184 ", "keywords": "Air Temperature; Antarctica; Atmosphere; Meteorology; Near-Surface Air Temperatures; PIPERS; Radiation; Sea Ice Temperatures; Temperature; Weather Station Data; Wind Direction; Wind Speed", "people": "Guest, Peter", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Meteorology Time Series", "url": "https://www.usap-dc.org/view/dataset/601184"}, {"dataset_uid": "601185", "doi": "10.15784/601185 ", "keywords": "Air Temperature; Antarctica; Atmosphere; Atmospheric Surface Winds; Meteorology; NBP1704; PIPERS; Pressure; Radiosonde; Rawinsonde; Relative Humidity; Ross Sea; R/v Nathaniel B. Palmer; Wind Direction; Wind Speed", "people": "Guest, Peter", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Meteorology Rawinsonde Data", "url": "https://www.usap-dc.org/view/dataset/601185"}, {"dataset_uid": "601188", "doi": "10.15784/601188", "keywords": "Aerogeophysics; Airborne Laser Altimetry; Antarctica; LIDAR; PIPERS; Ross Sea; Sea Ice", "people": "Xie, Hongjie; Bertinato, Christopher; Bell, Robin; Dhakal, Tejendra; Locke, Caitlin", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Airborne LiDAR Data", "url": "https://www.usap-dc.org/view/dataset/601188"}, {"dataset_uid": "601191", "doi": "10.15784/601191", "keywords": "Air Temperature; Antarctica; Atmosphere; Meteorology; NBP1704; PIPERS; R/v Nathaniel B. Palmer; Southern Ocean; Temperature Profiles; UAV; Unmanned Aircraft", "people": "Cassano, John", "repository": "USAP-DC", "science_program": null, "title": "SUMO unmanned aerial system (UAS) atmospheric data", "url": "https://www.usap-dc.org/view/dataset/601191"}, {"dataset_uid": "601207", "doi": "10.15784/601207", "keywords": "Antarctica; Digital Elevation Model; Glaciology; Ice; Ice Thickness; Ice Thickness Distribution; LIDAR; NBP1704; PIPERS; Ross Sea; R/v Nathaniel B. Palmer; Sea Ice; Snow; Snow Depth; Surface Elevation", "people": "Jeffrey Mei, M.; Mei, M. Jeffrey; Maksym, Edward", "repository": "USAP-DC", "science_program": null, "title": "Sea Ice Layer Cakes, PIPERS 2017", "url": "https://www.usap-dc.org/view/dataset/601207"}, {"dataset_uid": "001363", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1704 Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1704"}], "date_created": "Mon, 10 Jun 2019 00:00:00 GMT", "description": "The one place on Earth consistently showing increases in sea ice area, duration, and concentration is the Ross Sea in Antarctica. Satellite imagery shows about half of the Ross Sea increases are associated with changes in the austral fall, when the new sea ice is forming. The most pronounced changes are also located near polynyas, which are areas of open ocean surrounded by sea ice. To understand the processes driving the sea ice increase, and to determine if the increase in sea ice area is also accompanied by a change in ice thickness, this project will conduct an oceanographic cruise to the polynyas of the Ross Sea in April and May, 2017, which is the austral fall. The team will deploy state of the art research tools including unmanned airborne systems (UASs, commonly called drones), autonomous underwater vehicles (AUVs), and remotely operated underwater vehicles (ROVs). Using these tools and others, the team will study atmospheric, oceanic, and sea ice properties and processes concurrently. A change in sea ice production will necessarily change the ocean water below, which may have significant consequences for global ocean circulation patterns, a topic of international importance. All the involved institutions will be training students, and all share the goal of expanding climate literacy in the US, emphasizing the role high latitudes play in the Earth\u0027s dynamic climate.\u003cbr/\u003e\u003cbr/\u003eThe main goal of the project is to improve estimates of sea ice production and water mass transformation in the Ross Sea. The team will fully capture the spatial and temporal changes in air-ice-ocean interactions when they are initiated in the austral fall, and then track the changes into the winter and spring using ice buoys, and airborne mapping with the newly commissioned IcePod instrument system, which is deployed on the US Antarctic Program\u0027s LC-130 fleet. The oceanographic cruise will include stations in and outside of both the Terra Nova Bay and Ross Ice Shelf polynyas. Measurements to be made include air-sea boundary layer fluxes of heat, freshwater, and trace gases, radiation, and meteorology in the air; ice formation processes, ice thickness, snow depth, mass balance, and ice drift within the sea ice zone; and temperature, salinity, and momentum in the ocean below. Following collection of the field data, the team will improve both model parameterizations of air-sea-ice interactions and remote sensing algorithms. Model parameterizations are needed to determine if sea-ice production has increased in crucial areas, and if so, why (e.g., stronger winds or fresher oceans). The remote sensing validation will facilitate change detection over wider areas and verify model predictions over time. Accordingly this project will contribute to the international Southern Ocean Observing System (SOOS) goal of measuring essential climate variables continuously to monitor the state of the ocean and ice cover into the future.", "east": -150.0, "geometry": "POINT(-175 -66.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LIDAR; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "OCEAN MIXED LAYER; TRACE ELEMENTS; CARBON DIOXIDE; ATMOSPHERIC RADIATION; ICE GROWTH/MELT; AMD; BOUNDARY LAYER TEMPERATURE; SULFUR COMPOUNDS; NBP1704; HEAT FLUX; ICE DEPTH/THICKNESS; R/V NBP; USA/NSF; BOUNDARY LAYER WINDS; SNOW DEPTH; VERTICAL PROFILES; METHANE; POLYNYAS; CONDUCTIVITY; SEA ICE; Ross Sea; WATER MASSES; TURBULENCE; USAP-DC; Amd/Us", "locations": "Ross Sea", "north": -55.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science; Antarctic Instrumentation and Support; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Ackley, Stephen; Bell, Robin; Weissling, Blake; Nuss, Wendell; Maksym, Edward; Stammerjohn, Sharon; Cassano, John; Guest, Peter; Sedwick, Peter; Xie, Hongjie", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "BCO-DMO; R2R; USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica", "uid": "p0010032", "west": 160.0}, {"awards": "1246357 Bart, Philip", "bounds_geometry": null, "dataset_titles": "NBP1502 Cruise Geophysics and underway data; NBP1502 YoYo camera benthic images from Ross Sea", "datasets": [{"dataset_uid": "000245", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1502 Cruise Geophysics and underway data", "url": "https://www.rvdata.us/search/cruise/NBP1502"}, {"dataset_uid": "601182", "doi": "10.15784/601182", "keywords": "Antarctica; Benthic; Benthic Images; Benthos; Bentic Fauna; Camera Tow; Marine Geoscience; Marine Sediments; NBP1502; Photo; Photo/video; Photo/Video; Ross Sea; R/v Nathaniel B. Palmer; Southern Ocean; Yoyo Camera", "people": "Bart, Philip", "repository": "USAP-DC", "science_program": null, "title": "NBP1502 YoYo camera benthic images from Ross Sea", "url": "https://www.usap-dc.org/view/dataset/601182"}], "date_created": "Mon, 03 Jun 2019 00:00:00 GMT", "description": "Intellectual Merit:\n\nEvidence from the eastern Ross Sea continental shelf indicates that the West Antarctic Ice Sheet advanced and retreated during the last glacial cycle, but it is unclear whether the ice sheet advanced to the shelf edge or just to the middle shelf. These two end-member scenarios offer different interpretations as to why, how, and when the West Antarctic Ice Sheet oscillated. The PI proposes to acquire seismic, multibeam, and core data from Whales Deep, to evaluate the timing and duration of two advances of grounded ice to the outer and middle shelf of the Whales Deep Basin, a West Antarctic Ice Sheet paleo ice stream trough in eastern Ross Sea. Grounding events are represented by seismically resolvable Grounding Zone Wedges. The PI will collect radiocarbon dates on in situ benthic foraminifera from the grounding zone diamict as well as ramped pyrolysis radiocarbon dates on acid insoluble organics from open-marine mud overlying the grounding zone diamict. Using these data the PI will calculate the duration of the two grounding events. Furthermore, the PI will test a numerical model prediction that West Antarctic Ice Sheet retreat must have involved melting at the marine terminus of the ice sheet. Pore-water from the grounding zone diamict will be extracted from piston cores to determine salinity and \u03b418O values that should indicate if significant melting occurred at the grounding line.\n\nBroader impacts:\n\nThe data collected will provide constraints on the timing and pattern of Last Glacial Maximum advance and retreat that can be incorporated into interpretations of ice-surface elevation changes. The proposed activities will provide valuable field and research training to undergraduate/graduate students and a Louisiana high-school science teacher. The research will be interactively shared with middle- and high-school science students and with visitors to the LSU Museum of Natural Science Weekend-Science Program. ", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e AIRGUN ARRAYS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e LONG STREAMERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERA; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "STRATIGRAPHIC SEQUENCE; R/V NBP; Ross Sea; Antarctica; MICROFOSSILS; RADIOCARBON; PALEOCLIMATE RECONSTRUCTIONS; SEDIMENTS; Southern Ocean; OCEANS; GEOSCIENTIFIC INFORMATION", "locations": "Antarctica; Ross Sea; Southern Ocean", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bart, Philip; Steinberg, Deborah", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "Timing and Duration of the LGM and Post-LGM Grounding Events in Whales Deep Paleo Ice Stream, Eastern Ross Sea Middle Continental Shelf", "uid": "p0000877", "west": null}, {"awards": "1443552 Paul Winberry, J.; 1443356 Conway, Howard", "bounds_geometry": "POLYGON((-175 -82.7,-173.9 -82.7,-172.8 -82.7,-171.7 -82.7,-170.6 -82.7,-169.5 -82.7,-168.4 -82.7,-167.3 -82.7,-166.2 -82.7,-165.1 -82.7,-164 -82.7,-164 -82.77,-164 -82.84,-164 -82.91,-164 -82.98,-164 -83.05,-164 -83.12,-164 -83.19,-164 -83.26,-164 -83.33,-164 -83.4,-165.1 -83.4,-166.2 -83.4,-167.3 -83.4,-168.4 -83.4,-169.5 -83.4,-170.6 -83.4,-171.7 -83.4,-172.8 -83.4,-173.9 -83.4,-175 -83.4,-175 -83.33,-175 -83.26,-175 -83.19,-175 -83.12,-175 -83.05,-175 -82.98,-175 -82.91,-175 -82.84,-175 -82.77,-175 -82.7))", "dataset_titles": "2015_Antarctica_Ground; Geophysical data from Crary Ice Rise, Ross Sea Embayment", "datasets": [{"dataset_uid": "200177", "doi": "", "keywords": null, "people": null, "repository": "CReSIS/ku.edu", "science_program": null, "title": "2015_Antarctica_Ground", "url": "https://data.cresis.ku.edu/data/accum/2015_Antarctica_Ground/"}, {"dataset_uid": "601181", "doi": "10.15784/601181", "keywords": "Antarctica; Bed Elevation; Crary Ice Rise; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Ice Penetrating Radar; Ice Sheet Elevation; Ice Shelf; Ice Thickness; Internal Stratigraphy; Radar; Ross Ice Shelf; Snow/ice; Snow/Ice; Surface Elevation", "people": "Paden, John; Conway, Howard; Koutnik, Michelle; Winberry, Paul", "repository": "USAP-DC", "science_program": null, "title": "Geophysical data from Crary Ice Rise, Ross Sea Embayment", "url": "https://www.usap-dc.org/view/dataset/601181"}], "date_created": "Mon, 06 May 2019 00:00:00 GMT", "description": "Recent observations and model results suggest that collapse of the Amundsen Sea sector of West Antarctica may already be underway. However, the timeline of collapse and the effects of ongoing climatic and oceanographic changes are key unanswered questions. Complete disintegration of the ice sheet would raise global sea level by more than 3 m, which would have significant societal impacts. Improved understanding of the controls on ice-sheet evolution is needed to make better predictions of ice-sheet behavior. Results from numerical models show that buttressing from surrounding ice shelves and/or from small-scale grounded ice rises should act to slow the retreat and discharge of ice from the interior ice sheet. However, there are very few field observations with which to develop and validate models. Field observations conducted in the early 1980s on Crary Ice Rise in the Ross Sea Embayment are a notable exception. This project will revisit Crary Ice Rise with new tools to make a suite of measurements designed to address questions about how the ice rise affects ice discharge from the Ross Sea sector of West Antarctica. The team will include a graduate and undergraduate student, and will participate in a range of outreach activities.\u003cbr/\u003e\u003cbr/\u003eNew tools including radar, seismic, and GPS instruments will be used to conduct targeted geophysical measurements both on Crary Ice Rise and across its grounding line. The project will use these new measurements, together with available ancillary data to inform a numerical model of grounding line dynamics. The model and measurements will be used to address the (1) How has the ice rise evolved over timescales ranging from: the past few decades; the past millennia after freeze-on; and through the deglaciation? (2) What history of ice dynamics is preserved in the radar-detected internal stratigraphy? (3) What dynamical effect does the presence/absence of the ice rise have on discharge of the Ross Ice Streams today? (4) How is it contributing to the slow-down of the proximal Whillans and Mercer ice streams? (5) What dynamical response will the ice rise have under future environmental change?", "east": -164.0, "geometry": "POINT(-169.5 -83.05)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": true, "keywords": "Amd/Us; FIELD SURVEYS; Antarctica; USA/NSF; AMD; USAP-DC; Radar; GLACIERS/ICE SHEETS", "locations": "Antarctica", "north": -82.7, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard; Koutnik, Michelle; Winberry, Paul", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "CReSIS/ku.edu", "repositories": "CReSIS/ku.edu; USAP-DC", "science_programs": null, "south": -83.4, "title": "Collaborative Research: Grounding Line Dynamics: Crary Ice Rise Revisited", "uid": "p0010026", "west": -175.0}, {"awards": "0838764 Anandakrishnan, Sridhar; 0838763 Anandakrishnan, Sridhar; 0838855 Jacobel, Robert; 0838947 Tulaczyk, Slawek; 0839107 Powell, Ross; 0839059 Powell, Ross; 0839142 Tulaczyk, Slawek", "bounds_geometry": null, "dataset_titles": "Basal melt rates of the Ross Ice Shelf near the Whillans Ice Stream grounding line; Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats in W Antarctica - Lake and Ice Stream Subglacial Access Research Drilling (LISSARD); Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats - Robotic Access to Grounding-zones for Exploration and Science (RAGES); IRIS ID#s 201035, 201162, 201205; IRIS offers free and open access to a comprehensive data store of raw geophysical time-series data collected from a large variety of sensors, courtesy of a vast array of US and International scientific networks, including seismometers (permanent and temporary), tilt and strain meters, infrasound, temperature, atmospheric pressure and gravimeters, to support basic research aimed at imaging the Earth\u0027s interior.; Paleogene marine and terrestrial development of the West Antarctic Rift System: Biomarker Data Set; Paleogene marine and terrestrial development of the West Antarctic Rift System: Palynomorph Data Set; Radar Studies of Subglacial Lake Whillans and the Whillans Ice Stream Grounding Zone; The IRIS DMC archives and distributes data to support the seismological research community.; UNAVCO ID#s WHL1, WHL2, LA02, LA09 (full data link not provided)", "datasets": [{"dataset_uid": "609594", "doi": "10.7265/N54J0C2W", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; GPS; Radar; Whillans Ice Stream", "people": "Jacobel, Robert", "repository": "USAP-DC", "science_program": null, "title": "Radar Studies of Subglacial Lake Whillans and the Whillans Ice Stream Grounding Zone", "url": "https://www.usap-dc.org/view/dataset/609594"}, {"dataset_uid": "001406", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "The IRIS DMC archives and distributes data to support the seismological research community.", "url": "http://ds.iris.edu/ds/nodes/dmc/"}, {"dataset_uid": "001405", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IRIS offers free and open access to a comprehensive data store of raw geophysical time-series data collected from a large variety of sensors, courtesy of a vast array of US and International scientific networks, including seismometers (permanent and temporary), tilt and strain meters, infrasound, temperature, atmospheric pressure and gravimeters, to support basic research aimed at imaging the Earth\u0027s interior.", "url": "http://www.iris.edu/hq/data_and_software"}, {"dataset_uid": "601234", "doi": "10.15784/601234", "keywords": "ACL; Antarctica; Biomarker; BIT Index; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Stream; Whillans Ice Stream; WISSARD", "people": "Casta\u00f1eda, Isla; Coenen, Jason; Warny, Sophie; Baudoin, Patrick; Scherer, Reed Paul; Askin, Rosemary", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Paleogene marine and terrestrial development of the West Antarctic Rift System: Biomarker Data Set", "url": "https://www.usap-dc.org/view/dataset/601234"}, {"dataset_uid": "601245", "doi": "10.15784/601245", "keywords": "Antarctica; Pollen; West Antarctica; WISSARD", "people": "Scherer, Reed Paul; Baudoin, Patrick; Casta\u00f1eda, Isla; Coenen, Jason; Askin, Rosemary; Warny, Sophie", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Paleogene marine and terrestrial development of the West Antarctic Rift System: Palynomorph Data Set", "url": "https://www.usap-dc.org/view/dataset/601245"}, {"dataset_uid": "601122", "doi": "10.15784/601122", "keywords": "Antarctica; Flexure Zone; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Ice-Shelf Basal Melting; Ice-Shelf Strain Rate", "people": "Begeman, Carolyn", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Basal melt rates of the Ross Ice Shelf near the Whillans Ice Stream grounding line", "url": "https://www.usap-dc.org/view/dataset/601122"}, {"dataset_uid": "600155", "doi": "10.15784/600155", "keywords": "Antarctica; Glaciology; Oceans; Southern Ocean; WISSARD", "people": "Powell, Ross", "repository": "USAP-DC", "science_program": null, "title": "Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats - Robotic Access to Grounding-zones for Exploration and Science (RAGES)", "url": "https://www.usap-dc.org/view/dataset/600155"}, {"dataset_uid": "600154", "doi": "10.15784/600154", "keywords": "Antarctica; Biota; Diatom; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Lake Whillans; Paleoclimate; Ross Sea; Southern Ocean; Subglacial Lake; WISSARD", "people": "Powell, Ross", "repository": "USAP-DC", "science_program": null, "title": "Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats in W Antarctica - Lake and Ice Stream Subglacial Access Research Drilling (LISSARD)", "url": "https://www.usap-dc.org/view/dataset/600154"}, {"dataset_uid": "000150", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "UNAVCO ID#s WHL1, WHL2, LA02, LA09 (full data link not provided)", "url": "http://www.unavco.org/"}, {"dataset_uid": "000148", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IRIS ID#s 201035, 201162, 201205", "url": "http://ds.iris.edu/"}], "date_created": "Mon, 10 Sep 2018 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The LISSARD project (Lake and Ice Stream Subglacial Access Research Drilling) is one of three research components of the WISSARD integrative initiative (Whillans Ice Stream Subglacial Access Research Drilling) that is being funded by the Antarctic Integrated System Science Program of NSF\u0027s Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The LISSARD component of WISSARD focuses on the role of active subglacial lakes in determining how fast the West Antarctic ice sheet loses mass to the global ocean and influences global sea level changes. The importance of Antarctic subglacial lakes has only been recently recognized, and the lakes have been identified as high priority targets for scientific investigations because of their unknown contributions to ice sheet stability under future global warming scenarios. LISSARD has several primary science goals: A) To provide an observational basis for improving treatments of subglacial hydrological and mechanical processes in models of ice sheet mass balance and stability; B) To reconstruct the past history of ice stream stability by analyzing archives of past basal water and ice flow variability contained in subglacial sediments, porewater, lake water, and basal accreted ice; C) To provide background understanding of subglacial lake environments to benefit RAGES and GBASE (the other two components of the WISSARD project); and D) To synthesize data and concepts developed as part of this project to determine whether subglacial lakes play an important role in (de)stabilizing Antarctic ice sheets. We propose an unprecedented synthesis of approaches to studying ice sheet processes, including: (1) satellite remote sensing, (2) surface geophysics, (3) borehole observations and measurements and, (4) basal and subglacial sampling. \u003cbr/\u003e\u003cbr/\u003eINTELLECTUAL MERIT: The latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations. \u003cbr/\u003e\u003cbr/\u003eBROADER IMPACTS: Societal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS", "is_usap_dc": true, "keywords": "USAP-DC; Ice Penetrating Radar; Antarctic; Subglacial Lake; Subglacial Hydrology; Grounding Line; Sea Level Rise; Bed Reflectivity; Ice Sheet Stability; Stability; Radar; Sub-Ice-Shelf; Geophysics; Biogeochemical; LABORATORY; Sediment; Sea Floor Sediment; Ice Thickness; Model; Ice Stream Stability; Basal Ice; SATELLITES; Ice Sheet Thickness; Subglacial; Antarctica; NOT APPLICABLE; Antarctic Ice Sheet; Ice Sheet; FIELD SURVEYS; Surface Elevation; Geochemistry; FIELD INVESTIGATION; Not provided", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Tulaczyk, Slawek; Fisher, Andrew; Powell, Ross; Anandakrishnan, Sridhar; Jacobel, Robert; Scherer, Reed Paul", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES", "repo": "USAP-DC", "repositories": "IRIS; UNAVCO; USAP-DC", "science_programs": "WISSARD", "south": null, "title": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)", "uid": "p0000105", "west": null}, {"awards": "1246292 Cary, Stephen", "bounds_geometry": "POLYGON((161.36062 -77.20215,161.610171 -77.20215,161.859722 -77.20215,162.109273 -77.20215,162.358824 -77.20215,162.608375 -77.20215,162.857926 -77.20215,163.107477 -77.20215,163.357028 -77.20215,163.606579 -77.20215,163.85613 -77.20215,163.85613 -77.291278,163.85613 -77.380406,163.85613 -77.469534,163.85613 -77.558662,163.85613 -77.64779,163.85613 -77.736918,163.85613 -77.826046,163.85613 -77.915174,163.85613 -78.004302,163.85613 -78.09343,163.606579 -78.09343,163.357028 -78.09343,163.107477 -78.09343,162.857926 -78.09343,162.608375 -78.09343,162.358824 -78.09343,162.109273 -78.09343,161.859722 -78.09343,161.610171 -78.09343,161.36062 -78.09343,161.36062 -78.004302,161.36062 -77.915174,161.36062 -77.826046,161.36062 -77.736918,161.36062 -77.64779,161.36062 -77.558662,161.36062 -77.469534,161.36062 -77.380406,161.36062 -77.291278,161.36062 -77.20215))", "dataset_titles": "Carbon-fixation rates and associated microbial communities; Carbon-fixation rates and associated microbial communities residing in arid and ephemerally wet Antarctic Dry Valley soils; Importance of Heterotrophic and Phototrophic N2 Fixation in the McMurdo Dry Valleys ; Microbial community composition of transiently wetted Antarctic Dry Valley soils.; Microbial population dynamics along a terrestrial Antarctic moisture gradient; Microbial population dynamics along a terrestrial wetted gradient", "datasets": [{"dataset_uid": "200015", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Microbial community composition of transiently wetted Antarctic Dry Valley soils.", "url": "https://www.ncbi.nlm.nih.gov/popset/?term=KP836071%20to%20KP836108"}, {"dataset_uid": "002738", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Carbon-fixation rates and associated microbial communities", "url": "https://www.ncbi.nlm.nih.gov/protein/?term=craig%20cary"}, {"dataset_uid": "200014", "doi": "", "keywords": null, "people": null, "repository": "EMBL", "science_program": null, "title": "Microbial population dynamics along a terrestrial wetted gradient", "url": "https://www.ebi.ac.uk/ena/data/view/PRJEB7939"}, {"dataset_uid": "002737", "doi": "", "keywords": null, "people": null, "repository": "KNB", "science_program": null, "title": "Carbon-fixation rates and associated microbial communities residing in arid and ephemerally wet Antarctic Dry Valley soils", "url": "https://knb.ecoinformatics.org/view/knb.756.1"}, {"dataset_uid": "002736", "doi": "", "keywords": null, "people": null, "repository": "EMBL", "science_program": null, "title": "Microbial population dynamics along a terrestrial Antarctic moisture gradient", "url": "https://www.ebi.ac.uk/ena/data/view/PRJEB27415"}, {"dataset_uid": "200013", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Importance of Heterotrophic and Phototrophic N2 Fixation in the McMurdo Dry Valleys ", "url": "https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA505820"}], "date_created": "Wed, 14 Mar 2018 00:00:00 GMT", "description": "The McMurdo Dry Valleys in Antarctica are recognized as being the driest, coldest and probably one of the harshest environments on Earth. In addition to the lack of water, the biota in the valleys face a very limited supply of nutrients such as nitrogen compounds - necessary for protein synthesis. The glacial streams of the Dry Valleys have extensive cyanobacterial (blue green algae) mats that are a major source of carbon and nitrogen compounds to biota in this region. While cyanobacteria in streams are important as a source of these compounds, other non-photosynthetic bacteria also contribute a significant fraction (~50%) of fixed nitrogen compounds to valley biota. This research effort will involve an examination of exactly which non-phototrophic bacteria are involved in nitrogen fixation and what environmental factors are responsible for controlling nitrogen fixation by these microbes. This work will resolve the environmental factors that control the activity, abundance and diversity of nitrogen-fixing microbes across four of the McMurdo Dry Valleys. This will allow for comparisons among sites of differing latitude, temperature, elevation and exposure to water. These results will be integrated into a landscape wetness model that will help determine the impact of both cyanobacterial and non-photosynthetic nitrogen fixing microorganisms in this very harsh environment.\u003cbr/\u003e\u003cbr/\u003eThe Dry Valleys in many ways resemble the Martian environment, and understanding the primitive life and very simple nutrient cycling in the Dry Valleys has relevance for understanding how life might have once existed on other planets. Furthermore, the study of microbes from extreme environments has resulted in numerous biotechnological applications such as the polymerase chain reaction for amplifying DNA and mechanisms for freeze resistance in agricultural crops. Thus, this research should yield insights into how biota survive in extreme environments, and these insights could lead to other commercial applications.", "east": 163.85613, "geometry": "POINT(162.608375 -77.64779)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; Antarctica; USAP-DC; RIVERS/STREAM", "locations": "Antarctica", "north": -77.20215, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Cary, Stephen", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "NCBI GenBank", "repositories": "EMBL; KNB; NCBI GenBank", "science_programs": null, "south": -78.09343, "title": "Collaborative Research: Importance of Heterotrophic and Phototrophic N2 Fixation in the McMurdo Dry Valleys on Local, Regional and Landscape Scales", "uid": "p0000235", "west": 161.36062}, {"awards": "1246353 Anderson, John", "bounds_geometry": "POLYGON((-180 -74,-144.9 -74,-109.8 -74,-74.7 -74,-39.6 -74,-4.5 -74,30.6 -74,65.7 -74,100.8 -74,135.9 -74,171 -74,171 -74.3,171 -74.6,171 -74.9,171 -75.2,171 -75.5,171 -75.8,171 -76.1,171 -76.4,171 -76.7,171 -77,135.9 -77,100.8 -77,65.7 -77,30.6 -77,-4.5 -77,-39.6 -77,-74.7 -77,-109.8 -77,-144.9 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -76.7,180 -76.4,180 -76.1,180 -75.8,180 -75.5,180 -75.2,180 -74.9,180 -74.6,180 -74.3,180 -74,180 -74,180 -74,180 -74,180 -74,180 -74,180 -74,180 -74,180 -74,180 -74,-180 -74))", "dataset_titles": "Circum-Antarctic grounding-line sinuosity; NBP1502A Cruise Core Data; NBP1502 Cruise Geophysics and underway data; Pennell Trough, Ross Sea bathymetry and glacial landforms", "datasets": [{"dataset_uid": "601484", "doi": "10.15784/601484", "keywords": "Antarctica; Bed Roughness; Bed Slope; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Pinning Points", "people": "Riverman, Kiya; Simkins, Lauren; Stearns, Leigh", "repository": "USAP-DC", "science_program": null, "title": "Circum-Antarctic grounding-line sinuosity", "url": "https://www.usap-dc.org/view/dataset/601484"}, {"dataset_uid": "601474", "doi": "10.15784/601474", "keywords": "Antarctica; Bathymetry; Elevation; Geomorphology; Glacial History; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marine Geoscience; NBP1502; Pennell Trough; Ross Sea; R/v Nathaniel B. Palmer", "people": "Greenwood, Sarah; Munevar Garcia, Santiago; Eareckson, Elizabeth; Anderson, John; Simkins, Lauren; Prothro, Lindsay", "repository": "USAP-DC", "science_program": null, "title": "Pennell Trough, Ross Sea bathymetry and glacial landforms", "url": "https://www.usap-dc.org/view/dataset/601474"}, {"dataset_uid": "000245", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1502 Cruise Geophysics and underway data", "url": "https://www.rvdata.us/search/cruise/NBP1502"}, {"dataset_uid": "601083", "doi": "10.15784/601083", "keywords": "Antarctica; Chemistry:sediment; Chemistry:Sediment; Geochronology; Marine Geoscience; Marine Sediments; NBP1502; R/v Nathaniel B. Palmer; Sediment Core", "people": "Prothro, Lindsay; Anderson, John; Simkins, Lauren", "repository": "USAP-DC", "science_program": null, "title": "NBP1502A Cruise Core Data", "url": "https://www.usap-dc.org/view/dataset/601083"}], "date_created": "Tue, 06 Feb 2018 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe PI hypothesizes that bedforms found in the Central and Joides troughs can be interpreted as having been formed by rapid retreat, and possible collapse of an ice stream that occupied this area. To test this hypothesis, the PI proposes to conduct a detailed marine geological and geophysical survey of Central and Joides Troughs in the western Ross Sea. This project will bridge gaps between the small and isolated areas previously surveyed and will acquire a detailed sedimentological record of the retreating grounding line. The PI will reconstruct the retreat history of the Central and Joides troughs to century-scale resolution using radiocarbon dating methods and by looking at geomorphic features that are formed at regular time intervals. Existing multibeam, deep tow side-scan sonar, and core data will provide a framework for this research. The western Ross Sea is an ideal study area to investigate a single ice stream and the dynamics controlling its stability, including interactions between both East and West Antarctic Ice Sheets. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis proposal includes a post-doc, a graduate and two undergraduate students. The post-doc is involved with teaching an in-service K-12 teacher development and training course at Rice University for high-need teachers with a focus on curriculum enhancement. The project fosters collaboration for the PI and students with researchers at Louisiana State University and international colleagues at the Institute for Paleobiology at the Polish Academy of Sciences. The results from this project could lead to a better understanding of ice sheet and ice stream stability. This project will yield implications for society\u0027s understanding of climate change, as this work improves understanding of the behavior of ice sheets and their links to global climate.", "east": 179.99, "geometry": "POINT(175.495 -75.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e CARBON ANALYZERS", "is_usap_dc": true, "keywords": "AMD; Amd/Us; USAP-DC; USA/NSF; R/V NBP; NBP1502", "locations": null, "north": -74.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -77.0, "title": "Evidence for Paleo Ice Stream Collapse in the Western Ross Sea since the Last Glacial Maximum.", "uid": "p0000395", "west": 171.0}, {"awards": "1565576 Pettit, Erin", "bounds_geometry": "POLYGON((-62.2 -65.5,-62.12 -65.5,-62.04 -65.5,-61.96 -65.5,-61.88 -65.5,-61.8 -65.5,-61.72 -65.5,-61.64 -65.5,-61.56 -65.5,-61.48 -65.5,-61.4 -65.5,-61.4 -65.53,-61.4 -65.56,-61.4 -65.59,-61.4 -65.62,-61.4 -65.65,-61.4 -65.68,-61.4 -65.71,-61.4 -65.74,-61.4 -65.77,-61.4 -65.8,-61.48 -65.8,-61.56 -65.8,-61.64 -65.8,-61.72 -65.8,-61.8 -65.8,-61.88 -65.8,-61.96 -65.8,-62.04 -65.8,-62.12 -65.8,-62.2 -65.8,-62.2 -65.77,-62.2 -65.74,-62.2 -65.71,-62.2 -65.68,-62.2 -65.65,-62.2 -65.62,-62.2 -65.59,-62.2 -65.56,-62.2 -65.53,-62.2 -65.5))", "dataset_titles": "Scar Inlet Terrestrial Radar Interferometry; Weather data from LARISSA / SCAR Inlet Rapid AMIGOS and cGPS stations", "datasets": [{"dataset_uid": "601084", "doi": "10.15784/601084", "keywords": "Antarctica; Antarctic Peninsula; Atmosphere; Automated Weather Station; Flask Glacier; Foehn Winds; Glaciers/ice Sheet; Glaciers/Ice Sheet; LARISSA; Larsen B Ice Shelf; Meteorology; Scar Inlet; Weatherstation; Wind Speed", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Weather data from LARISSA / SCAR Inlet Rapid AMIGOS and cGPS stations", "url": "https://www.usap-dc.org/view/dataset/601084"}, {"dataset_uid": "601078", "doi": "10.15784/601078", "keywords": "Antarctica; Antarctic Peninsula; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Navigation; Radar; Radar Interferometer", "people": "Truffer, Martin", "repository": "USAP-DC", "science_program": null, "title": "Scar Inlet Terrestrial Radar Interferometry", "url": "https://www.usap-dc.org/view/dataset/601078"}], "date_created": "Wed, 20 Dec 2017 00:00:00 GMT", "description": "This award supports a Rapid Response Research (RAPID) project to observe the current weakened state of the Scar Inlet Ice Shelf, and potentially capture data during its anticipated disintegration. The Scar Inlet Ice Shelf (SIIS) is the southern remnant of the former Larsen B Ice Shelf, which disintegrated in March of 2002. Since then, the SIIS has weakened significantly but has not yet broken up. Cooler conditions than those seen prior to 2006 have reduced the chance of a disintegration in recent years, although a single warm season is likely to be enough to trigger such an event. The predicted \"Super El Nino\" for this austral summer may have significant effects on Antarctica\u0027s weather, potentially leading to a break-up or disintegration this year. Given the very weak state of the SIIS, it is urgent that we act now to better understand the processes involved in shelf disintegration or break-up of ice shelves. The goal of this work is to collect several key data sets, publish initial observations and preliminary conclusions, and then make the complete data record available to all scientists.\u003cbr/\u003e\u003cbr/\u003eExtreme changes in the stress conditions on the SIIS resulted from both the loss of the Larsen B ice plate and the continued inflow of ice from three large glaciers (Flask, Leppard, and Starbuck). The SIIS now has a number of large rifts and it is expected to break up or disintegrate in the very near future. Past research has made use of satellite data and weather instruments, establishing many of the current ideas regarding ice shelf break-ups and ice shelf weakening. Additional ground-based data to be collected under this study will test a number of hypotheses regarding pre-disintegration characteristics, triggering mechanisms, fracturing processes, runaway feedback effects, and stabilizing mechanisms. The project will collect extensive multi-instrument field observations of the SIIS and possibly capture a major disintegration event. In collaboration with the British Antarctic Survey, a team of 4 people will be deployed via Twin Otter for up to 4 weeks to a site with a broad view of the shelf and will install several temporary observing instruments there. The study derives its intellectual merit from the role of the Antarctic Peninsula as a microcosm of how other parts of Antarctica might evolve and de-glaciate in the next few centuries. The broader impacts include an opportunity to educate the public about the anticipated collapse of this remnant ice shelf and its relationship to future changes in Antarctica. The potential for wide media coverage (through a connection with the National Geographic) will underscore the critical changes scientists are observing in the crysophere driven by climate change. This proposal requires field work in Antarctica.", "east": -61.4, "geometry": "POINT(-61.8 -65.65)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -65.5, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Integrated System Science", "paleo_time": null, "persons": "Pettit, Erin", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LARISSA", "south": -65.8, "title": "RAPID: Observing the Disintegration of the Scar Inlet Ice Shelf", "uid": "p0000274", "west": -62.2}, {"awards": "1246342 Fountain, Andrew; 1246203 Gooseff, Michael; 1245749 Levy, Joseph", "bounds_geometry": "POLYGON((160.105465 -77.2119,160.7907435 -77.2119,161.476022 -77.2119,162.1613005 -77.2119,162.846579 -77.2119,163.5318575 -77.2119,164.217136 -77.2119,164.9024145 -77.2119,165.587693 -77.2119,166.2729715 -77.2119,166.95825 -77.2119,166.95825 -77.3189628,166.95825 -77.4260256,166.95825 -77.5330884,166.95825 -77.6401512,166.95825 -77.747214,166.95825 -77.8542768,166.95825 -77.9613396,166.95825 -78.0684024,166.95825 -78.1754652,166.95825 -78.282528,166.2729715 -78.282528,165.587693 -78.282528,164.9024145 -78.282528,164.217136 -78.282528,163.5318575 -78.282528,162.846579 -78.282528,162.1613005 -78.282528,161.476022 -78.282528,160.7907435 -78.282528,160.105465 -78.282528,160.105465 -78.1754652,160.105465 -78.0684024,160.105465 -77.9613396,160.105465 -77.8542768,160.105465 -77.747214,160.105465 -77.6401512,160.105465 -77.5330884,160.105465 -77.4260256,160.105465 -77.3189628,160.105465 -77.2119))", "dataset_titles": "2014-2015 lidar survey of the McMurdo Dry Valleys, Antarctica; Active Layer Temperatures from Crescent Stream banks, Taylor Valley Antarctica", "datasets": [{"dataset_uid": "000209", "doi": "", "keywords": null, "people": null, "repository": "OpenTopo", "science_program": null, "title": "2014-2015 lidar survey of the McMurdo Dry Valleys, Antarctica", "url": "http://opentopo.sdsc.edu/datasetMetadata?otCollectionID=OT.112016.3294.1"}, {"dataset_uid": "601075", "doi": "10.15784/601075", "keywords": "Antarctica; Dry Valleys; Glaciology; Paleoclimate; Permafrost; Soil Temperature; Taylor Valley", "people": "Gooseff, Michael N.", "repository": "USAP-DC", "science_program": null, "title": "Active Layer Temperatures from Crescent Stream banks, Taylor Valley Antarctica", "url": "https://www.usap-dc.org/view/dataset/601075"}], "date_created": "Wed, 20 Dec 2017 00:00:00 GMT", "description": "Collaborative Research: THE MCMURDO DRY VALLEYS: A Landscape on the Threshold of Change is supported by the Antarctic Integrated System Science (AISS) program in the Antarctic Sciences Section of the Division of Polar Programs within the Geosciences Directorate of the National Sciences Foundation (NSF). The funds will support the collection of state-of-the-art high resolution LIDAR (combining the terms light and radar) imagery of the Dry Valleys of Antarctica in the 2014/2015 Antarctic field season, with LIDAR data collection and processing being provided by the NSF-supported NCALM (National Center for Airborne Laser Mapping) facility. LIDAR images collected in 2014/2015 will be compared to images from 2001 in order to detect decadal change. Additional fieldwork will look at the distribution of buried massive ice, and the impacts that major changes like slumping are having on the biota. All field data will be used to improve models on energy balance, and hydrology.\u003cbr/\u003e\u003cbr/\u003eIntellectual Merit: There have been dramatic changes over the past decade in the McMurdo Dry Valleys: rivers are incising by more than three meters, and thermokarst slumps are appearing near several streams and lakes. These observations have all been made by researchers in the field, but none of the changes have been mapped on a valley-wide scale. This award will provide a new baseline map for the entire Dry Valley system, with high-resolution imagery provided for the valley floors, and lower resolution imagery available for the higher elevation areas that are undergoing less change. The project will test the idea that sediment-covered ice is associated with the most dramatic changes, due to differential impacts of the increased solar radiation on sediment-covered compared to clean ice, and despite the current trend of slightly cooling air temperatures within the Dry Valleys. Information collected on the topography, coupled with the GPR determined buried ice distributions, will also be incorporated into improved energy and hydrological models. In addition to providing the new high-resolution digital elevation model (DEM), the project will ultimately result in identification of areas that are susceptible to sediment-enhanced melt-driven change, providing a powerful prediction tool for the impacts of climate change.\u003cbr/\u003e\u003cbr/\u003eBroader Impacts: The new DEM will be immediately useful to a wide range of disciplines, and will provide a comprehensive new baseline against which future changes will be compared. The project will provide a tool for the whole community to use, and the investigators will work with the community to make them aware of the new assets via public presentations, and perhaps via a workshop. The map will have international interest, and will also serve as a tool for environmental managers to draw on as they consider conservation plans. Several undergraduate and graduate students will participate in the project, and one of the co-PIs is a new investigator. The imagery collected is expected to be of interest to the general public in addition to scientific researchers, and venues for outreach such as museum exhibits and the internet will be explored. The proposed work is synergistic with 1) the co-located McMurdo LTER program, and 2) the NCALM facility that is also funded by the Geosciences Directorate.", "east": 166.95825, "geometry": "POINT(163.5318575 -77.747214)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e AIRBORNE LASER SCANNER", "is_usap_dc": true, "keywords": "USAP-DC; Antarctica; Not provided; LANDFORMS; NOT APPLICABLE", "locations": "Antarctica", "north": -77.2119, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Levy, Joseph; Gooseff, Michael N.; Fountain, Andrew", "platforms": "Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "OpenTopo", "repositories": "OpenTopo; USAP-DC", "science_programs": null, "south": -78.282528, "title": "Collaborative Research: THE MCMURDO DRY VALLEYS: A landscape on the Threshold of Change", "uid": "p0000076", "west": 160.105465}, {"awards": "1543452 Blankenship, Donald", "bounds_geometry": "POLYGON((90 -64,97 -64,104 -64,111 -64,118 -64,125 -64,132 -64,139 -64,146 -64,153 -64,160 -64,160 -64.6,160 -65.2,160 -65.8,160 -66.4,160 -67,160 -67.6,160 -68.2,160 -68.8,160 -69.4,160 -70,153 -70,146 -70,139 -70,132 -70,125 -70,118 -70,111 -70,104 -70,97 -70,90 -70,90 -69.4,90 -68.8,90 -68.2,90 -67.6,90 -67,90 -66.4,90 -65.8,90 -65.2,90 -64.6,90 -64))", "dataset_titles": "EAGLE/ICECAP II GEOPHYSICAL OBSERVATIONS (SURFACE AND BED ELEVATION, ICE THICKNESS, GRAVITY DISTURBANCE AND MAGNETIC ANOMALIES); EAGLE/ICECAP II INSTRUMENT MEASUREMENTS (LASER, MAGNETICS and POSITIONING); EAGLE/ICECAP II RADARGRAMS; EAGLE/ICECAP II Raw data (gps, raw serial packet data, raw radar records, gravimeter data and camera images); ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "datasets": [{"dataset_uid": "200043", "doi": "http://dx.doi.org/doi:10.26179/5bcff4afc287d", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "EAGLE/ICECAP II RADARGRAMS", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_EAGLE_ICECAP_LEVEL2_RADAR_DATA"}, {"dataset_uid": "601371", "doi": "10.15784/601371", "keywords": "Antarctica; East Antarctica; ICECAP; Ice Penetrating Radar; Radar Echo Sounder; Radar Echo Sounding; Subglacial Hydrology", "people": "Greenbaum, Jamin; Schroeder, Dustin; van Ommen, Tas; Siegert, Martin; Roberts, Jason; Blankenship, Donald D.; Young, Duncan A.", "repository": "USAP-DC", "science_program": null, "title": "ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "url": "https://www.usap-dc.org/view/dataset/601371"}, {"dataset_uid": "200044", "doi": "https://dx.doi.org/10.26179/5bbedd001756b", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "EAGLE/ICECAP II Raw data (gps, raw serial packet data, raw radar records, gravimeter data and camera images)", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_EAGLE_ICECAP_LEVEL0_RAW_DATA"}, {"dataset_uid": "200041", "doi": "https://doi.org/10.26179/5bcfffdabcf92", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "EAGLE/ICECAP II GEOPHYSICAL OBSERVATIONS (SURFACE AND BED ELEVATION, ICE THICKNESS, GRAVITY DISTURBANCE AND MAGNETIC ANOMALIES)", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_EAGLE_ICECAP_LEVEL2_AEROGEOPHYSICS"}, {"dataset_uid": "200042", "doi": "http://dx.doi.org/doi:10.26179/5bcfef4e3a297", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "EAGLE/ICECAP II INSTRUMENT MEASUREMENTS (LASER, MAGNETICS and POSITIONING)", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_EAGLE_ICECAP_Level1B_AEROGEOPHYSICS"}], "date_created": "Tue, 05 Dec 2017 00:00:00 GMT", "description": "Previous studies of the Indo-Pacific region of Antarctica show that the margin of the ice sheet in this region has advanced and retreated into deep interior basins many times in the past. The apparent instability of this region makes it an important target for study in terms of understanding the future of the East Antarctic ice sheet and sea level rise. This project will study a number of processes that control the ice-shelf stability of this region, with the aim of improving projections of the rate and magnitude of future sea-level rise. This project will engage a range of students and train this next generation of scientists in the complex, interdisciplinary issue of ice-ocean interaction. The project will integrate geophysical data collected from aircraft over three critical sections of the East Antarctic grounding line (Totten Glacier, Denman Glacier, and Cook Ice Shelf) with an advanced ocean model. Using Australian and French assets, the team will collect new data around Denman Glacier and Cook Ice Shelf whereas analysis of Totten Glacier will be based on existing data. The project will assess three hypotheses to isolate the processes that drive the differences in observed grounding line thinning among these three glaciers: 1. bathymetry and large-scale ocean forcing control cavity circulation; 2. ice-shelf draft and basal morphology control cavity circulation; 3. subglacial freshwater input across the grounding line controls cavity circulation. The key outcomes of this new project will be to: 1. evaluate of ice-ocean coupling in areas of significant potential sea-level contribution; 2. relate volume changes of grounded and floating ice to regional oceanic heat transport and sub-ice shelf ocean dynamics in areas of significant potential sea-level and meridional overturning circulation impacts; and 3. improve boundary conditions to evaluate mass, heat, and freshwater budgets of East Antarctica\u0027s continental margins.", "east": 160.0, "geometry": "POINT(125 -67)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e MAGNETOMETERS \u003e GEOMET 823A; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": true, "keywords": "BT-67; Antarctica; GLACIER TOPOGRAPHY/ICE SHEET TOPOGRAPHY; USAP-DC; SEAFLOOR TOPOGRAPHY; GRAVITY ANOMALIES; MAGNETIC ANOMALIES; Polar; Sea Floor", "locations": "Antarctica; Sea Floor; Polar", "north": -64.0, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Young, Duncan A.; Grima, Cyril; Blankenship, Donald D.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e BT-67", "repo": "AADC", "repositories": "AADC; USAP-DC", "science_programs": null, "south": -70.0, "title": "East Antarctic Grounding Line Experiment (EAGLE)", "uid": "p0000254", "west": 90.0}, {"awards": "1246170 Hall, Brenda; 1246110 Stone, John", "bounds_geometry": "POLYGON((154 -79.75,154.7 -79.75,155.4 -79.75,156.1 -79.75,156.8 -79.75,157.5 -79.75,158.2 -79.75,158.9 -79.75,159.6 -79.75,160.3 -79.75,161 -79.75,161 -79.8,161 -79.85,161 -79.9,161 -79.95,161 -80,161 -80.05,161 -80.1,161 -80.15,161 -80.2,161 -80.25,160.3 -80.25,159.6 -80.25,158.9 -80.25,158.2 -80.25,157.5 -80.25,156.8 -80.25,156.1 -80.25,155.4 -80.25,154.7 -80.25,154 -80.25,154 -80.2,154 -80.15,154 -80.1,154 -80.05,154 -80,154 -79.95,154 -79.9,154 -79.85,154 -79.8,154 -79.75))", "dataset_titles": "Darwin and Hatherton Glaciers; Hatherton Glacier Radiocarbon Data", "datasets": [{"dataset_uid": "200038", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Darwin and Hatherton Glaciers", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "601063", "doi": "10.15784/601063", "keywords": "Antarctica; Geochronology; Hatherton Glacier; Radiocarbon; Sample/collection Description; Sample/Collection Description; Transantarctic Mountains", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Hatherton Glacier Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601063"}], "date_created": "Mon, 23 Oct 2017 00:00:00 GMT", "description": "This award supports a project to reconstruct past ice-surface elevations from detailed glacial mapping and dating of moraines (using 14C dates of algae from former ice-marginal ponds and 10Be surface exposure ages) in the region of the Darwin-Hatherton Glaciers in Antarctica in order to try and resolve very different interpretations that currently exist about the glacial history in the region. The results will be integrated with existing climate and geophysical data into a flow-line model to gain insight into glacier response to climate and ice-dynamics perturbations during the Late Glacial Maximum (LGM) in Antarctica. The work will contribute to a better understanding of both LGM ice thickness and whether or not there is any evidence that Antarctica contributed to Meltwater Pulse (MWP)-1A a very controversial topic in Antarctic glacial geology. The intellectual merit of the work relates to the fact that reconstructing past fluctuations of the Antarctic Ice Sheet (AIS) is critical for understanding the sensitivity of ice volume to sea-level and climatic change. Constraints on past behavior help put ongoing changes into context and provide a basis for predicting future sea-level rise. Broader impacts include the support of two graduate and two undergraduate students, as well as a female early-career investigator. Graduate students will be involved in all stages of the project from planning and field mapping to geochronological analyses, interpretation, synthesis and reporting. Two undergraduates will work on lab-based research from the project. The project also will include visits to K-12 classrooms to talk about glaciers and climate change, correspondence with teachers and students from the field, and web-based outreach. This award has field work in Antarctica.", "east": 161.0, "geometry": "POINT(157.5 -80)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; FIELD INVESTIGATION; Antarctica", "locations": "Antarctica", "north": -79.75, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Hall, Brenda; Stone, John; Conway, Howard", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "ICE-D", "repositories": "ICE-D; USAP-DC", "science_programs": null, "south": -80.25, "title": "Collaborative Research: Assessing the Antarctic Contribution to Sea-level Changes during the Last Deglaciation: Constraints from Darwin Glacier", "uid": "p0000304", "west": 154.0}, {"awards": "1043554 Willenbring, Jane", "bounds_geometry": "POINT(161.5 -77.5)", "dataset_titles": "Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins", "datasets": [{"dataset_uid": "600379", "doi": "10.15784/600379", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Cosmogenic Radionuclides; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Isotope; Sample/collection Description; Sample/Collection Description; Transantarctic Mountains", "people": "Willenbring, Jane", "repository": "USAP-DC", "science_program": null, "title": "Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins", "url": "https://www.usap-dc.org/view/dataset/600379"}], "date_created": "Wed, 09 Nov 2016 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe PIs propose to address the question of whether ice surface melting zones developed at high elevations during warm climatic phases in the Transantarctic Mountains. Evidence from sediment cores drilled by the ANDRILL program indicates that open water in the Ross Sea could have been a source of warmth during Pliocene and Pleistocene. The question is whether marine warmth penetrated inland to the ice sheet margins. The glacial record may be ill suited to answer this question, as cold-based glaciers may respond too slowly to register brief warmth. Questions also surround possible orbital controls on regional climate and ice sheet margins. Northern Hemisphere insolation at obliquity and precession timescales is thought to control Antarctic climate through oceanic or atmospheric connections, but new thinking suggests that the duration of Southern Hemisphere summer may be more important. The PIs propose to use high elevation alluvial deposits in the Transantarctic Mountains as a proxy for inland warmth. These relatively young fans, channels, and debris flow levees stand out as visible evidence for the presence of melt water in an otherwise ancient, frozen landscape. Based on initial analyses of an alluvial fan in the Olympus Range, these deposits are sensitive recorders of rare melt events that occur at orbital timescales. For their study they will 1) map alluvial deposits using aerial photography, satellite imagery and GPS assisted field surveys to establish water sources and to quantify parameters effecting melt water production, 2) date stratigraphic sequences within these deposits using OSL, cosmogenic nuclide, and interbedded volcanic ash chronologies, 3) use paired nuclide analyses to estimate exposure and burial times, and rates of deposition and erosion, and 4) use micro and regional scale climate modeling to estimate paleoenvironmental conditions associated with melt events.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis study will produce a record of inland melting from sites adjacent to ice sheet margins to help determine controls on regional climate along margins of the East Antarctic Ice Sheet to aid ice sheet and sea level modeling studies. The proposal will support several graduate and undergraduates. A PhD student will be supported on existing funding. The PIs will work with multiple K 12 schools to conduct interviews and webcasts from Antarctica and they will make follow up visits to classrooms after the field season is complete.", "east": 161.5, "geometry": "POINT(161.5 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Willenbring, Jane", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.5, "title": "Collaborative Research: Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins", "uid": "p0000429", "west": 161.5}, {"awards": "1043517 Clark, Peter; 1043018 Pollard, David; 1043485 Curtice, Josh", "bounds_geometry": "POLYGON((163.5 -77.57,163.685 -77.57,163.87 -77.57,164.055 -77.57,164.24 -77.57,164.425 -77.57,164.61 -77.57,164.795 -77.57,164.98 -77.57,165.165 -77.57,165.35 -77.57,165.35 -77.645,165.35 -77.72,165.35 -77.795,165.35 -77.87,165.35 -77.945,165.35 -78.02,165.35 -78.095,165.35 -78.17,165.35 -78.245,165.35 -78.32,165.165 -78.32,164.98 -78.32,164.795 -78.32,164.61 -78.32,164.425 -78.32,164.24 -78.32,164.055 -78.32,163.87 -78.32,163.685 -78.32,163.5 -78.32,163.5 -78.245,163.5 -78.17,163.5 -78.095,163.5 -78.02,163.5 -77.945,163.5 -77.87,163.5 -77.795,163.5 -77.72,163.5 -77.645,163.5 -77.57))", "dataset_titles": "A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea; Ice Sheet Model Output, West Antarctic Ice Sheet Deglaciation", "datasets": [{"dataset_uid": "609639", "doi": "10.7265/N5NC5Z53", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model", "people": "Pollard, David", "repository": "USAP-DC", "science_program": null, "title": "Ice Sheet Model Output, West Antarctic Ice Sheet Deglaciation", "url": "https://www.usap-dc.org/view/dataset/609639"}, {"dataset_uid": "600123", "doi": "10.15784/600123", "keywords": "Antarctica; Cosmogenic Dating; Ross Sea; Sample/collection Description; Sample/Collection Description; Southern Ocean; WAIS", "people": "Kurz, Mark D.; Curtice, Josh", "repository": "USAP-DC", "science_program": null, "title": "A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/600123"}], "date_created": "Sat, 15 Oct 2016 00:00:00 GMT", "description": "1043517/Clark\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation.", "east": 165.35, "geometry": "POINT(164.425 -77.945)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e DATA ANALYSIS \u003e ENVIRONMENTAL MODELING \u003e COMPUTER", "is_usap_dc": true, "keywords": "Ocean Depth; Not provided; Bed Elevation; Model Output; Sea Level Rise; Surface Accumulation Rate; Surface Melt Rate; Ocean Melt Rate; Total Ice Volume; Modeling; Calving Rate; Total Ice Area; LABORATORY", "locations": null, "north": -77.57, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Pollard, David; Curtice, Josh; Clark, Peter; Kurz, Mark D.", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.32, "title": "Collaborative Research: A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea", "uid": "p0000194", "west": 163.5}, {"awards": "1043750 Chen, Jianli", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements", "datasets": [{"dataset_uid": "600159", "doi": "10.15784/600159", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; GRACE; Potential Field; Satellite Data", "people": "Chen, Jianli", "repository": "USAP-DC", "science_program": null, "title": "Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements", "url": "https://www.usap-dc.org/view/dataset/600159"}], "date_created": "Fri, 13 May 2016 00:00:00 GMT", "description": "1043750/Chen\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to improve the estimate of long-term and inter-annual variability of Antarctic ice sheet mass balance at continental, regional, and catchment scales, using satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) and other geodetic measurements. The work will improve the quantification of long-term mass change rates over Antarctica using GRACE gravity data with a longer record and newer generation(s) of products and will develop advanced numerical forward modeling techniques that can accurately correct leakage effects associated with GRACE data processing, and significantly improve spatial resolution of GRACE mass rate estimates over Antarctica. The work will also contribute to a better understanding of crustal uplift rates due to postglacial rebound (PGR) and present day ice load change over Antarctica via PGR models, GPS measurements, and combined analysis of GRACE and ICESat elevation changes. Inter-annual variations of ice mass over Antarctica will be investigated at continental and catchment scales and connections to regional climate change will be studied. The major deliverables from this study will be improved assessments of ice mass balance for the entire Antarctic ice sheet and potential contribution to global mean sea level rise. The work will also provide estimates of regional ice mass change rates over Antarctica, with a focus along the coast in the Amundsen Sea Embayment, the Peninsula in West Antarctica, and in Wilkes Land and Victoria Land in East Antarctica. Estimates of inter-annual ice mass change over Antarctica at various spatial scales, and assessments of uncertainty of GRACE ice rate estimates and PGR models errors over Antarctica will also be made. The intellectual merits of the proposed investigation include 1) providing improved assessments of Antarctic ice mass balance at different temporal and spatial scales with unprecedented accuracy, an important contribution to broad areas of polar science research; 2) combining high accuracy GPS vertical uplift measurements and PGR models to better quantify long-term crust uplift effects that are not distinguishable from ice mass changes by GRACE; and 3) unifying the work of several investigations at the forefront of quantifying ice sheet and glacier mass balance and crustal uplift based on a variety of modern space geodetic observations. The broader impacts include the fact that the project will actively involve student participation and training, through the support of two graduate students. In addition the project will contribute to general education and public outreach (E/PO) activities and the results from this investigation will help inspire future geoscientists and promote public awareness of significant manifestations of climate change.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e LASER RANGING \u003e GRACE LRR", "is_usap_dc": true, "keywords": "SATELLITES; GRACE; Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Chen, Jianli; Wilson, Clark; Blankenship, Donald D.; Tapley, Byron", "platforms": "Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e NASA EARTH SYSTEM SCIENCE PATHFINDER \u003e GRACE; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements", "uid": "p0000415", "west": -180.0}, {"awards": "1142162 Stone, John", "bounds_geometry": "POLYGON((-104.14 -81.07,-102.24 -81.07,-100.34 -81.07,-98.44 -81.07,-96.54 -81.07,-94.64 -81.07,-92.74 -81.07,-90.84 -81.07,-88.94 -81.07,-87.04 -81.07,-85.14 -81.07,-85.14 -81.207,-85.14 -81.344,-85.14 -81.481,-85.14 -81.618,-85.14 -81.755,-85.14 -81.892,-85.14 -82.029,-85.14 -82.166,-85.14 -82.303,-85.14 -82.44,-87.04 -82.44,-88.94 -82.44,-90.84 -82.44,-92.74 -82.44,-94.64 -82.44,-96.54 -82.44,-98.44 -82.44,-100.34 -82.44,-102.24 -82.44,-104.14 -82.44,-104.14 -82.303,-104.14 -82.166,-104.14 -82.029,-104.14 -81.892,-104.14 -81.755,-104.14 -81.618,-104.14 -81.481,-104.14 -81.344,-104.14 -81.207,-104.14 -81.07))", "dataset_titles": "Cosmogenic nuclide data at ICE-D; Glacial-interglacial History of West Antarctic Nunataks and Site Reconnaissance for Subglacial Bedrock Sampling", "datasets": [{"dataset_uid": "200299", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data at ICE-D", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "600162", "doi": "10.15784/600162", "keywords": "Antarctica; Be-10; Chemistry:rock; Chemistry:Rock; Cosmogenic Dating; Glaciology; Nunataks; Sample/collection Description; Sample/Collection Description; Solid Earth; Whitmore Mountains", "people": "Stone, John", "repository": "USAP-DC", "science_program": null, "title": "Glacial-interglacial History of West Antarctic Nunataks and Site Reconnaissance for Subglacial Bedrock Sampling", "url": "https://www.usap-dc.org/view/dataset/600162"}], "date_created": "Wed, 16 Mar 2016 00:00:00 GMT", "description": "1142162/Stone\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to conduct a reconnaissance geological and radar-sounding study of promising sites in West Antarctica as a prelude to a future project to conduct subglacial cosmogenic nuclide measurements. Field work will take place in the Whitmore Mountains, close to the WAIS divide, and on the Nash and Pirrit Hills, downflow from the divide in the Weddell Sea drainage. At each site geological indicators of higher (and lower) ice levels in the past will be mapped and evidence of subglacial erosion or its absence will be documented. Elevation transects of both glacial erratics and adjacent bedrock samples will be collected to establish the timing of recent deglaciation at the sites and provide a complement to similar measurements on material from depth transects obtained by future subglacial drilling. At each site, bedrock ridges will be traced into the subsurface with closely-spaced ice-penetrating radar surveys, using a combination of instruments and frequencies to obtain meter-scale surface detail, using synthetic aperture techniques. Collectively the results will define prospective sites for subglacial sampling, and maximize the potential information to be obtained from such samples in future studies. The intellectual merit of this project is that measurements of cosmogenic nuclides in subglacial bedrock hold promise for resolving the questions of whether the West Antarctic ice sheet collapsed completely in the past, whether it is prone to repeated large deglaciations, and if so, what is their magnitude and frequency. Such studies will require careful choice of targets, to locate sites where bedrock geology is favorable, cosmogenic nuclide records are likely to have been protected from subglacial erosion, and the local ice-surface response is indicative of large-scale ice sheet behavior. The broader impacts of this work include helping to determine whether subglacial surfaces in West Antarctica were ever exposed to cosmic rays, which will provide unambiguous evidence for or against a smaller ice sheet in the past. This is an important step towards establishing whether the WAIS is vulnerable to collapse in future, and will ultimately help to address uncertainty in forecasting sea level change. The results will also provide ground truth for models of ice-sheet dynamics and long-term ice sheet evolution, and will help researchers use these models to identify paleoclimate conditions responsible for WAIS deglaciation. The education and training of students (both undergraduate and graduate students) will play an important role in the project, which will involve Antarctic fieldwork, technically challenging labwork, data collection and interpretation, and communication of the outcome to scientists and the general public.", "east": -85.14, "geometry": "POINT(-94.64 -81.755)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided; Antarctica; ICE SHEETS", "locations": "Antarctica", "north": -81.07, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Stone, John; Conway, Howard; Winebrenner, Dale", "platforms": "Not provided", "repo": "ICE-D", "repositories": "ICE-D; USAP-DC", "science_programs": null, "south": -82.44, "title": "Glacial-interglacial History of West Antarctic Nunataks and Site Reconnaissance for Subglacial Bedrock Sampling", "uid": "p0000335", "west": -104.14}, {"awards": "1043649 Hock, Regine", "bounds_geometry": null, "dataset_titles": "King George and Livingston Islands: Velocities and Digital Elevation Model", "datasets": [{"dataset_uid": "609667", "doi": "10.7265/N5R49NR1", "keywords": "Antarctica; Antarctic Peninsula; Digital Elevation Model; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness; Ice Velocity", "people": "Hock, Regine; Osmanoglu, Batuhan", "repository": "USAP-DC", "science_program": null, "title": "King George and Livingston Islands: Velocities and Digital Elevation Model", "url": "https://www.usap-dc.org/view/dataset/609667"}], "date_created": "Wed, 17 Feb 2016 00:00:00 GMT", "description": "1043649/Braun\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to determine the current mass balance of selected glaciers of the Western Antarctic Peninsula (WAP) and adjacent islands, including King George Island and Livingston Island. A major goal is to discriminate the climatic and dynamic components of the current mass budget. The dynamic component will be assessed using a flux gate approach. Glacier velocity fields will be derived by offset tracking on repeat SAR satellite imagery, and ice thicknesses across grounding lines or near terminus will be approximated from a new methods based on mass continuity. The surface mass balance will be computed from a spatially distributed temperature-index mass-balance model forced by temperature and precipitation data from regional climate models. Our results will provide improved mass budget estimates of Western Antarctic Peninsula glaciers and a more thorough understanding of the ratio between the climatic and dynamic components. The techniques to be developed will be applicable to other glaciers in the region allowing regional scale mass budgets to be derived. The broader impacts of this work are that glacier wastage is currently the most important contributor to global sea level rise and the Antarctic Peninsula has been identified as one of the largest single contributors. Future sea-level rise has major societal, economic and ecological implications. The activity will foster new partnerships through collaboration with European and South American colleagues. The project will form the base of of a postdoctoral research fellowship. It will also provide training of undergraduate and graduate students through inclusion of data and results in course curriculums.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e PALSAR", "is_usap_dc": true, "keywords": "ALOS; Digital Elevation Model", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Integrated System Science", "paleo_time": null, "persons": "Hock, Regine; Osmanoglu, Batuhan", "platforms": "SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e ADVANCED LAND OBSERVING SATELLITE (ALOS) \u003e ALOS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Contribution of Western Antarctic Peninsula glaciers to sea level rise: Separation of the dynamic and climatic components", "uid": "p0000054", "west": null}, {"awards": "0229314 Stone, John", "bounds_geometry": null, "dataset_titles": "Reedy Glacier Exposure Ages, Antarctica", "datasets": [{"dataset_uid": "609601", "doi": "10.7265/N5MG7MF1", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Cosmogenic; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Reedy Glacier; Sample/collection Description; Sample/Collection Description", "people": "Stone, John", "repository": "USAP-DC", "science_program": null, "title": "Reedy Glacier Exposure Ages, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609601"}], "date_created": "Mon, 30 Mar 2015 00:00:00 GMT", "description": "The stability of the marine West Antarctic Ice Sheet (WAIS) remains an important, unresolved problem for predicting future sea level change. Recent studies indicate that the mass balance of the ice sheet today may be negative or positive. The apparent differences may stem in part from short-term fluctuations in flow. By comparison, geologic observations provide evidence of behavior over much longer time scales. Recent work involving glacial-geologic mapping, dating and ice-penetrating radar surveys suggests that deglaciation of both the Ross Sea Embayment and coastal Marie Byrd Land continued into the late Holocene, and leaves open the possibility of ongoing deglaciation and grounding-line retreat. However, previous work in the Ross Sea Embayment was based on data from just three locations that are all far to the north of the present grounding line. Additional data from farther south in the Ross Sea Embayment are needed to investigate whether recession has ended, or if the rate and pattern of deglaciation inferred from our previous study still apply to the present grounding line. This award provides support to reconstruct the evolution of Reedy Glacier, in the southern Transantarctic Mountains, since the Last Glacial Maximum (LGM). Because Reedy Glacier emerges from the mountains above the grounding line, its surface slope and elevation should record changes in thickness of grounded ice in the Ross Sea up to the present day. The deglaciation chronology of Reedy Glacier therefore can indicate whether Holocene retreat of the WAIS ended thousands of years ago, or is still continuing at present. This integrated glaciologic, glacial-geologic, and cosmogenic-isotope exposure- dating project will reconstruct past levels of Reedy Glacier. Over two field seasons, moraines will be mapped, dated and correlated at sites along the length of the glacier. Radar and GPS measurements will be made to supplement existing ice thickness and velocity data, which are needed as input for a model of glacier dynamics. The model will be used to relate geologic measurements to the grounding-line position downstream. Ultimately, the mapping, dating and ice-modeling components of the study will be integrated into a reconstruction that defines changes in ice thickness in the southern Ross Sea since the LGM, and relates these changes to the history of grounding-line retreat. This work directly addresses key goals of the West Antarctic Ice Sheet Initiative, which are to understand the dynamics, recent history and possible future behavior of the West Antarctic Ice Sheet.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "Surface Exposure Dates; FIELD SURVEYS; Aluminum-26; Erosion; Rock Samples; Beryllium-10; Exposure Age", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Stone, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Late Quaternary History of Reedy Glacier", "uid": "p0000029", "west": null}, {"awards": "0944475 Kaplan, Michael", "bounds_geometry": "POLYGON((-149.7 -84.1,-118.61 -84.1,-87.52 -84.1,-56.43 -84.1,-25.34 -84.1,5.75 -84.1,36.84 -84.1,67.93 -84.1,99.02 -84.1,130.11 -84.1,161.2 -84.1,161.2 -84.43,161.2 -84.76,161.2 -85.09,161.2 -85.42,161.2 -85.75,161.2 -86.08,161.2 -86.41,161.2 -86.74,161.2 -87.07,161.2 -87.4,130.11 -87.4,99.02 -87.4,67.93 -87.4,36.84 -87.4,5.75 -87.4,-25.34 -87.4,-56.43 -87.4,-87.52 -87.4,-118.61 -87.4,-149.7 -87.4,-149.7 -87.07,-149.7 -86.74,-149.7 -86.41,-149.7 -86.08,-149.7 -85.75,-149.7 -85.42,-149.7 -85.09,-149.7 -84.76,-149.7 -84.43,-149.7 -84.1))", "dataset_titles": "Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "datasets": [{"dataset_uid": "600115", "doi": "10.15784/600115", "keywords": "Antarctica; Cosmogenic Dating; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains", "people": "Kaplan, Michael", "repository": "USAP-DC", "science_program": null, "title": "Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "url": "https://www.usap-dc.org/view/dataset/600115"}], "date_created": "Thu, 17 Jul 2014 00:00:00 GMT", "description": "The proposed work will investigate changes in the compositional variation of glacial tills over time across two concentric sequences of Pleistocene moraines located adjacent to the heads of East Antarctic outlet glaciers in the Transantarctic Mountains (TAM). The chronologic framework for this work will be generated from cosmogenic exposure ages of boulders on prominent morainal ridges. The PIs hypothesize that variations in till composition may indicate a change in ice flow direction or a change in the composition of the original source area, while ages of the moraines provide a long-term terrestrial perspective on ice sheet dynamics. Both results are vital for modeling experiments that aim to reconstruct the East Antarctic Ice Sheet and assess its role in the global climate system and its potential impact on global sea level rise. The variation of till compositions through time also allows for a more accurate interpretation of sediment cores from the Ross Sea and the Southern Ocean. Additionally, till exposures at the head of some East Antarctic outlet glaciers have been shown to contain subglacial material derived from East Antarctic bedrock, providing a window through the ice to view East Antarctica?s inaccessible bedrock. Till samples will be collected from two well-preserved sequences of moraine crests at Mt. Howe (head of Scott Glacier) and Mt. Achernar (between Beardmore and Nimrod Glaciers). Each size fraction in glacial till provides potentially valuable information, and the PIs will measure the petrography of the clast and sand fractions, quantitative X-ray diffraction on the crushed \u003c2mm fraction, elemental abundance of the silt/clay fraction, and U/Pb of detrital zircons in the sand fraction. Data collection will rely on established methods previously used in this region and the PIs will also explore new methods to assess their efficacy. On the same moraines crests sampled for provenance studies, the PIs will sample for cosmogenic surface exposure analyses to provide a chronologic framework at the sites for provenance changes through time. \u003cbr/\u003e\u003cbr/\u003eBroader Impact \u003cbr/\u003eThe proposed research involves graduate and undergraduate training in a diverse array of laboratory methods. Students and PIs will be make presentations to community and campus groups, as well as conduct interviews with local news outlets. The proposed work also establishes a new, potentially long-term, collaboration between scientists at IUPUI and LDEO and brings a new PI (Kaplan) into the field of Antarctic Earth Sciences.", "east": 161.2, "geometry": "POINT(5.75 -85.75)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION", "locations": null, "north": -84.1, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kaplan, Michael", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.4, "title": "Collaborative Research: Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "uid": "p0000459", "west": -149.7}, {"awards": "0741301 O\u0027Brien, Kristin; 1142720 Crockett, Elizabeth", "bounds_geometry": "POLYGON((-64.45 -63.29,-64.249 -63.29,-64.048 -63.29,-63.847 -63.29,-63.646 -63.29,-63.445 -63.29,-63.244 -63.29,-63.043 -63.29,-62.842 -63.29,-62.641 -63.29,-62.44 -63.29,-62.44 -63.370999999999995,-62.44 -63.452,-62.44 -63.533,-62.44 -63.614,-62.44 -63.69499999999999,-62.44 -63.775999999999996,-62.44 -63.857,-62.44 -63.937999999999995,-62.44 -64.01899999999999,-62.44 -64.1,-62.641 -64.1,-62.842 -64.1,-63.043 -64.1,-63.244 -64.1,-63.445 -64.1,-63.646 -64.1,-63.847 -64.1,-64.048 -64.1,-64.249 -64.1,-64.45 -64.1,-64.45 -64.01899999999999,-64.45 -63.937999999999995,-64.45 -63.857,-64.45 -63.775999999999996,-64.45 -63.69499999999999,-64.45 -63.614,-64.45 -63.533,-64.45 -63.452,-64.45 -63.370999999999995,-64.45 -63.29))", "dataset_titles": "Linkages among Mitochondrial Form, Function and Thermal Tolerance of Antarctic Notothenioid Fishes", "datasets": [{"dataset_uid": "600084", "doi": "10.15784/600084", "keywords": "Biota; Oceans; Pot; Southern Ocean; Trawl", "people": "O\u0027Brien, Kristin", "repository": "USAP-DC", "science_program": null, "title": "Linkages among Mitochondrial Form, Function and Thermal Tolerance of Antarctic Notothenioid Fishes", "url": "https://www.usap-dc.org/view/dataset/600084"}], "date_created": "Sat, 30 Nov 2013 00:00:00 GMT", "description": "Antarctic notothenioid fishes have evolved in the Southern Ocean for 10-14 MY under an unusual set of circumstances. Their characteristics include the complete absence of the circulating oxygen-binding protein, hemoglobin (Hb) within the Channichthyid (Icefish) family of notothenioids. Moreover, some species within the 16 members of this family have also lost the ability to express the oxygen-binding and storage protein, myoglobin (Mb) in cardiac muscle. Our previous work has determined that the loss of Hb and/or Mb is correlated with significant increases in densities of mitochondria within oxidative tissues, and extensive remodeling of these vital organelles. To date, nothing is known about how modifications in mitochondrial architecture of icefishes affect organelle function, or more importantly, how they affect organismal-level physiology. Most critical for Antarctic fishes is that mitochondrial characteristics have been linked to how well ectotherms can withstand increases in temperature. \u003cbr/\u003e\u003cbr/\u003eThis collaborative research project will address the hypothesis that the unusual mitochondrial architecture of Antarctic Channichthyids has led to changes in function that impact their ability to withstand elevations in temperature. Specifically, the research will (1) determine if the unusual mitochondrial architecture of icefishes affects function and contributes to organismal thermal sensitivity, (2) identify differences in organismal thermal tolerance between red- and white- blooded notothenioids, (3) identify molecular mechanisms regulating changes in mitochondrial structure in icefishes. The results may establish channichthyid icefishes as a sentinel taxon for signaling the impact of global warming on the Southern Ocean. Broad impacts of this project will be realized by participation of high school biology teachers in field work through cooperation with the ARMADA project at the University of Rhode Island, as well as graduate education.", "east": -62.44, "geometry": "POINT(-63.445 -63.695)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -63.29, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Crockett, Elizabeth; O\u0027Brien, Kristin", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.1, "title": "Collaborative Research: Linkages among Mitochondrial Form, Function and Thermal Tolerance of Antarctic Notothenioid Fishes", "uid": "p0000483", "west": -64.45}, {"awards": "0838810 Hulbe, Christina", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 01 Jul 2013 00:00:00 GMT", "description": "Hulbe/0838810 \u003cbr/\u003e\u003cbr/\u003eThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a modeling study of the processes in West Antarctic grounding zones, the transition from ice resting on bedrock to ice floating on the ocean surface with an eye toward understanding the interrelated causes of rapid change in grounding line configuration and outlet flow. A combination of satellite remote sensing and numerical modeling will be used to investigate both past and ongoing patterns of change. New high-resolution surface elevation maps made from a novel combination of satellite laser altimetry and remotely observed surface shape provide a unique view of grounding zones. These data will be used to diagnose events associated with the shutdown of Kamb Ice Stream, to investigate a recent discharge event on Institute Ice Stream and to investigate ongoing change at the outlet of Whillans Ice Stream, along with other modern processes around the West Antarctic. An existing numerical model of coupled ice sheet, ice stream, and ice shelf flow will be used and improved as part of the research project. The broader impacts of the project relate to the importance of understanding the role of polar ice sheets in global sea level rise. The work will contribute to the next round of deliberations for the Intergovernmental Panel on Climate Change (IPCC). Improved views, interpretations, and insights into the physical processes that govern variability in ice sheet outlet streams will help correct the shortcomings of the last IPCC report that didn?t include the role of ice sheets in sea level rise. The PIs have a strong record of public outreach, involvement in the professional community, and student training.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "LABORATORY; Kamb Ice Stream; Grounding Line; FIELD INVESTIGATION; SATELLITES; Transition Zone; Ice Shelf Flow; Outlet Flow; Ice Sheet; Modeling; COMPUTERS; Antarctica", "locations": "Antarctica; Kamb Ice Stream", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hulbe, Christina; Fahnestock, Mark", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Mass Transit: Controls on Grounding and Ungrounding at Marine Ice Sheet Outlets", "uid": "p0000371", "west": null}, {"awards": null, "bounds_geometry": null, "dataset_titles": "Depths to Ice-cemented Soils in High-elevation Quartermain Mountains, Dry Valleys, Antarctica", "datasets": [{"dataset_uid": "609529", "doi": "10.7265/N5VX0DFJ", "repository": "USAP-DC", "science_program": null, "title": "Depths to Ice-cemented Soils in High-elevation Quartermain Mountains, Dry Valleys, Antarctica", "url": "http://www.usap-dc.org/view/dataset/609529"}], "date_created": "Mon, 18 Mar 2013 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Critical Zone; Dry Valleys; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Permafrost; Soil", "locations": "Dry Valleys; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Marinova, Margarita M.; McKay, Christopher P.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": "0838973 Nyblade, Andrew; 0838934 Wiens, Douglas", "bounds_geometry": "POLYGON((40 -76,50 -76,60 -76,70 -76,80 -76,90 -76,100 -76,110 -76,120 -76,130 -76,140 -76,140 -76.8,140 -77.6,140 -78.4,140 -79.2,140 -80,140 -80.8,140 -81.6,140 -82.4,140 -83.2,140 -84,130 -84,120 -84,110 -84,100 -84,90 -84,80 -84,70 -84,60 -84,50 -84,40 -84,40 -83.2,40 -82.4,40 -81.6,40 -80.8,40 -80,40 -79.2,40 -78.4,40 -77.6,40 -76.8,40 -76))", "dataset_titles": "Seismological Record ID# ZM 2007-12; Seismological Record Network Code# ZM (full data link not provided)", "datasets": [{"dataset_uid": "000152", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Seismological Record Network Code# ZM (full data link not provided)", "url": "http://www.iris.edu/"}, {"dataset_uid": "000149", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Seismological Record ID# ZM 2007-12", "url": "http://www.iris.edu/"}], "date_created": "Mon, 21 Jan 2013 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The high elevations of East Antarctica are critical in localizing the initial Cenozoic glaciation and stabilizing it with respect to melting during warm interglacials. However, the geological history for this region and the geophysical mechanism for maintaining the highlands are poorly understood. In 2007-2009, an array of 24 broadband seismographs (named GAMSEIS) was installed across the Gamburtsev Mountains area of the East Antarctic Plateau as part of the Antarctica?s Gamburtsev Province (AGAP) International Polar Year project. The IPY AGAP/GAMSEIS program included plans by other international partners to install seismographs at locations along the flanks of the Gamburtsev Mountains and in other East Antarctic regions. The proposed project will continue operating six of the deployed AGAP/GAMSEIS stations for two more years together with two new broadband seismic stations added to broaden the geographic scope of the array. Most stations will be located at the existing U.S. Autonomous Geophysical Observatories and the USAP fuel cache locations in order to minimize logistical support. This array, combined with seismographs deployed by China and Japan (and possibly Australia, France, and Italy in near future) will provide a sparse but large-scale network of seismometers for the longer-term studies of the crustal and upper mantle structures underneath the East Antarctic Plateau. Continued reliance on students provides a broader impact to this proposed research and firmly grounds this effort in its educational mission.", "east": 140.0, "geometry": "POINT(90 -80)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Wiens, Douglas; Nyblade, Andrew", "platforms": "Not provided", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": -84.0, "title": "Collaborative Research: Polenet East: An International Seismological Network for East Antarctica", "uid": "p0000504", "west": 40.0}, {"awards": "0733025 Blankenship, Donald", "bounds_geometry": "POLYGON((95 -65,103.5 -65,112 -65,120.5 -65,129 -65,137.5 -65,146 -65,154.5 -65,163 -65,171.5 -65,180 -65,180 -66.7,180 -68.4,180 -70.1,180 -71.8,180 -73.5,180 -75.2,180 -76.9,180 -78.6,180 -80.3,180 -82,171.5 -82,163 -82,154.5 -82,146 -82,137.5 -82,129 -82,120.5 -82,112 -82,103.5 -82,95 -82,95 -80.3,95 -78.6,95 -76.9,95 -75.2,95 -73.5,95 -71.8,95 -70.1,95 -68.4,95 -66.7,95 -65))", "dataset_titles": "Gravity anomaly data; Gravity raw data; ICECAP Basal Interface Specularity Content Profiles: IPY and OIB; ICECAP flight reports; ICECAP ice thickness data over the Darwin and Hatherton Glaciers, Transantarctic Mountains, Antarctica; ICECAP radargrams (HiCARS 1); ICECAP radargrams (HiCARS 2); Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau; Ice thickness and bed reflectivity data (HiCARS 1); Ice thickness and bed reflectivity data (HiCARS 2); Laser altimetry raw data; Laser surface elevation data; Magnetic anomaly data; Magnetic raw data", "datasets": [{"dataset_uid": "601371", "doi": "10.15784/601371", "keywords": "Antarctica; East Antarctica; ICECAP; Ice Penetrating Radar; Radar Echo Sounder; Radar Echo Sounding; Subglacial Hydrology", "people": "Greenbaum, Jamin; Schroeder, Dustin; van Ommen, Tas; Siegert, Martin; Roberts, Jason; Blankenship, Donald D.; Young, Duncan A.", "repository": "USAP-DC", "science_program": null, "title": "ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "url": "https://www.usap-dc.org/view/dataset/601371"}, {"dataset_uid": "200121", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "ICECAP flight reports", "url": "https://nsidc.org/data/ifltrpt"}, {"dataset_uid": "200120", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Laser surface elevation data", "url": "https://nsidc.org/data/ilutp2"}, {"dataset_uid": "200119", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Laser altimetry raw data", "url": "https://nsidc.org/data/ilutp1b"}, {"dataset_uid": "200118", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Gravity anomaly data", "url": "https://nsidc.org/data/igbgm2/"}, {"dataset_uid": "200117", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Gravity raw data", "url": "https://nsidc.org/data/igbgm1b/"}, {"dataset_uid": "200116", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Magnetic anomaly data", "url": "https://nsidc.org/data/imgeo2"}, {"dataset_uid": "200115", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Magnetic raw data", "url": "https://nsidc.org/data/imgeo1b"}, {"dataset_uid": "200114", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Ice thickness and bed reflectivity data (HiCARS 2)", "url": "https://nsidc.org/data/IR2HI2/versions/1"}, {"dataset_uid": "200113", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Ice thickness and bed reflectivity data (HiCARS 1)", "url": "https://nsidc.org/data/IR1HI2/versions/1"}, {"dataset_uid": "200112", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "ICECAP radargrams (HiCARS 2)", "url": "https://nsidc.org/data/IR2HI1B/versions/1"}, {"dataset_uid": "200111", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "ICECAP radargrams (HiCARS 1)", "url": "https://nsidc.org/data/IR1HI1B/versions/1"}, {"dataset_uid": "601411", "doi": "10.15784/601411", "keywords": "Antarctica; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; ICECAP; Ice Penetrating Radar; Internal Reflecting Horizons", "people": "Paden, John; Cavitte, Marie G. P; Young, Duncan A.; Mulvaney, Robert; Ritz, Catherine; Greenbaum, Jamin; Ng, Gregory; Kempf, Scott D.; Quartini, Enrica; Muldoon, Gail R.; Frezzotti, Massimo; Roberts, Jason; Tozer, Carly; Schroeder, Dustin; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau", "url": "https://www.usap-dc.org/view/dataset/601411"}, {"dataset_uid": "601605", "doi": "10.15784/601605", "keywords": "Airborne Radar; Antarctica; Basler; Darwin Glacier; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hatherton Glacier; Hicars; ICECAP; Ice Penetrating Radar; Ice Thickness; Transantarctic Mountains", "people": "Schroeder, Dustin; Siegert, Martin; Holt, John W.; Greenbaum, Jamin; Gillespie, Mette; Blankenship, Donald D.; Young, Duncan A.", "repository": "USAP-DC", "science_program": null, "title": "ICECAP ice thickness data over the Darwin and Hatherton Glaciers, Transantarctic Mountains, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601605"}], "date_created": "Tue, 04 Sep 2012 00:00:00 GMT", "description": "This project is an aerogeophysical survey to explore unknown terrain in East Antarctica to answer questions of climate change and earth science. The methods include ice-penetrating radar, gravity, and magnetic measurements. The project?s main goal is to investigate the stability and migration of ice divides that guide flow of the East Antarctic ice sheet, the world?s largest. The project also maps ice accumulation over the last interglacial, identifies subglacial lakes, and characterizes the catchment basins of the very largest glacial basins, including Wilkes and Aurora. The outcomes contribute to ice sheet models relevant to understanding sea level rise in a warming world. The work will also help understand the regional geology. Buried beneath miles-thick ice, East Antarctica is virtually uncharacterized, but is considered a keystone for tectonic reconstructions and other geologic questions. The region also hosts subglacial lakes, whose geologic histories are unknown. \u003cbr/\u003e\u003cbr/\u003eThe broader impacts are extensive, and include societal relevance for understanding sea level rise, outreach in various forms, and education at the K12 through postdoctoral levels. The project contributes to the International Polar Year (2007-2009) by addressing key IPY themes on frontiers in polar exploration and climate change. It also includes extensive international collaboration with the United Kingdom, Australia, France and other nations; and offers explicit opportunities for early career scientists.", "east": 180.0, "geometry": "POINT(137.5 -73.5)", "instruments": null, "is_usap_dc": false, "keywords": "DOME C; Aurora Subglacial Basin; BT-67; East Antarctica; Wilkes Land; Totten Glacier; ICE SHEETS; Byrd Glacier; Wilkes Subglacial Basin", "locations": "East Antarctica; DOME C; Byrd Glacier; Totten Glacier; Aurora Subglacial Basin; Wilkes Subglacial Basin; Wilkes Land", "north": -65.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Integrated System Science", "paleo_time": null, "persons": "Siegert, Martin; Roberts, Jason; Van Ommen, Tas; Warner, Roland; Richter, Thomas; Greenbaum, Jamin; Holt, John W.; Young, Duncan A.; Blankenship, Donald D.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e BT-67", "repo": "USAP-DC", "repositories": "NSIDC; USAP-DC", "science_programs": null, "south": -82.0, "title": "IPY Research: Investigating the Cryospheric Evolution of the Central Antarctic Plate (ICECAP)", "uid": "p0000719", "west": 95.0}, {"awards": "0636584 Creyts, Timothy", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 07 Aug 2012 00:00:00 GMT", "description": "Studinger/0636584\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to estimate the salinity of subglacial Lake Vostok, Lake Concordia and the 90 deg.E lake using existing airborne ice-penetrating radar and laser altimeter data. These lakes have been selected because of the availability of modern aerogeophysical data and because they are large enough for the floating ice to be unaffected by boundary stresses near the grounding lines. The proposed approach is based on the assumption that the ice sheet above large subglacial lakes is in hydrostatic equilibrium and the density and subsequently salinity of the lake\u0027s water can be estimated from the (linear) relationship between ice surface elevation and ice thickness of the floating ice. The goal of the proposed work is to estimate the salinity of Lake Vostok and determine spatial changes and to compare the salinity estimates of 3 large subglacial lakes in East Antarctica. The intellectual merits of the project are that this work will contribute to the knowledge of the physical and chemical processes operating within subglacial lake environments. Due to the inaccessibility of subglacial lakes numerical modeling of the water circulation is currently the only way forward to develop a conceptual understanding of the circulation and melting and freezing regimes in subglacial lakes. Numerical experiments show that the salinity of the lake\u0027s water is a crucial input parameter for the 3-D fluid dynamic models. Improved numerical models will contribute to our knowledge of water circulation in subglacial lakes, its effects on water and heat budgets, stratification, melting and freezing, and the conditions that support life in such extreme environments. The broader impacts of the project are that subglacial lakes have captured the interest of many people, scientists and laymen. The national and international press frequently reports about the research of the Principal Investigator. His Lake Vostok illustrations have been used in math and earth science text books. Lake Vostok will be used for education and outreach in the Earth2Class project. Earth2Class is a highly successful science/math/technology learning resource for K-12 students, teachers, and administrators in the New York metropolitan area. Earth2Class is created through collaboration by research scientists at the Lamont- Doherty Earth Observatory; curriculum and educational technology specialists from Teachers College, Columbia University; and classroom teachers in the New York metropolitan area.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LASERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RADAR ALTIMETERS", "is_usap_dc": false, "keywords": "Subglacial; Hydrostatic; Not provided; LABORATORY; Aerogeophysical; Numerical Model; FIELD SURVEYS; Salinity; Circulation", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Creyts, Timothy; Studinger, Michael S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Estimating the Salinity of Subglacial Lakes From Existing Aerogeophysical Data", "uid": "p0000704", "west": null}, {"awards": "0636724 Blankenship, Donald; 0758274 Parizek, Byron", "bounds_geometry": "POLYGON((-110.058 -74.0548,-109.57993 -74.0548,-109.10186 -74.0548,-108.62379 -74.0548,-108.14572 -74.0548,-107.66765 -74.0548,-107.18958 -74.0548,-106.71151 -74.0548,-106.23344 -74.0548,-105.75537 -74.0548,-105.2773 -74.0548,-105.2773 -74.31383,-105.2773 -74.57286,-105.2773 -74.83189,-105.2773 -75.09092,-105.2773 -75.34995,-105.2773 -75.60898,-105.2773 -75.86801,-105.2773 -76.12704,-105.2773 -76.38607,-105.2773 -76.6451,-105.75537 -76.6451,-106.23344 -76.6451,-106.71151 -76.6451,-107.18958 -76.6451,-107.66765 -76.6451,-108.14572 -76.6451,-108.62379 -76.6451,-109.10186 -76.6451,-109.57993 -76.6451,-110.058 -76.6451,-110.058 -76.38607,-110.058 -76.12704,-110.058 -75.86801,-110.058 -75.60898,-110.058 -75.34995,-110.058 -75.09092,-110.058 -74.83189,-110.058 -74.57286,-110.058 -74.31383,-110.058 -74.0548))", "dataset_titles": "Access to data; AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment; AGASEA Ice Thickness Profile Data from the Amundsen Sea Embayment, Antarctica; Airborne Laser Altimetry of the Thwaites Glacier Catchment, West Antarctica; ICECAP Basal Interface Specularity Content Profiles: IPY and OIB; Subglacial water flow paths under Thwaites Glacier, West Antarctica; Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "datasets": [{"dataset_uid": "609518", "doi": "10.7265/N5RJ4GC8", "keywords": "AGASEA; Airborne Radar; Antarctica; Elevation; Flow Paths; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Thwaites Glacier", "people": "Carter, Sasha P.; Young, Duncan A.; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "Subglacial water flow paths under Thwaites Glacier, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609518"}, {"dataset_uid": "601673", "doi": "10.15784/601673", "keywords": "Antarchitecture; Antarctica; Ice Penetrating Radar; Isochron; Layers; Radar; Radioglaciology; Thwaites Glacier", "people": "Jackson, Charles; Muldoon, Gail R.; Young, Duncan A.; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment", "url": "https://www.usap-dc.org/view/dataset/601673"}, {"dataset_uid": "002536", "doi": "", "keywords": null, "people": null, "repository": "NASA", "science_program": null, "title": "Access to data", "url": "http://www.giss.nasa.gov/tools/panoply/"}, {"dataset_uid": "601371", "doi": "10.15784/601371", "keywords": "Antarctica; East Antarctica; ICECAP; Ice Penetrating Radar; Radar Echo Sounder; Radar Echo Sounding; Subglacial Hydrology", "people": "Greenbaum, Jamin; Schroeder, Dustin; van Ommen, Tas; Siegert, Martin; Roberts, Jason; Blankenship, Donald D.; Young, Duncan A.", "repository": "USAP-DC", "science_program": null, "title": "ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "url": "https://www.usap-dc.org/view/dataset/601371"}, {"dataset_uid": "609517", "doi": "10.7265/N5W95730", "keywords": "AGASEA; Airborne Radar; Amundsen Sea; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness", "people": "Young, Duncan A.; Kempf, Scott D.; Holt, John W.; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "AGASEA Ice Thickness Profile Data from the Amundsen Sea Embayment, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609517"}, {"dataset_uid": "000248", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Access to data", "url": "http://nsidc.org/data/netcdf/tools.html"}, {"dataset_uid": "609334", "doi": "10.7265/N5HD7SK8", "keywords": "AGASEA; Airborne Altimetry; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Thwaites Glacier", "people": "Young, Duncan A.; Blankenship, Donald D.; Morse, David L.; Holt, John W.; Kempf, Scott D.", "repository": "USAP-DC", "science_program": null, "title": "Airborne Laser Altimetry of the Thwaites Glacier Catchment, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609334"}, {"dataset_uid": "609619", "doi": "10.7265/N58913TN", "keywords": "Amundsen Sea; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; Thwaites Glacier", "people": "Parizek, Byron R.; Dupont, Todd K.; Holt, John W.; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "url": "https://www.usap-dc.org/view/dataset/609619"}], "date_created": "Tue, 15 May 2012 00:00:00 GMT", "description": "This award supports a three-year study to isolate essential physical processes affecting Thwaites Glacier (TG) in the Amundsen Sea Embayment (ASE) of West Antarctica using a suite of existing numerical models in conjunction with existing and International Polar Year (IPY)-proposed data sets. Four different models will be utilized to explore the effects of embayment geometry, ice-shelf buttressing, basal-stress distribution, surface mass balance, surface climate, and inland dynamic perturbations on the present and future dynamics of TG. This particular collection of models is ideally suited for the broad nature of this investigation, as they incorporate efficient and complementary simplifications of the stress field (shallow-ice and shelf-stream), system geometry (1-d and 2-d plan-view and flowline; depth-integrated and depth-dependent), and mass-momentum energy coupling (mechanical and thermo-mechanical). The models will be constrained and validated by data sets (including regional maps of ice thickness, surface elevation, basal topography, ice surface velocity, and potential fields) and geophysical data analyses (including increasing the spatial resolution of surface elevations, improving regional estimates of geothermal flux, and characterizing the sub-glacial interface of grounded ice as well as the grounding-zone transition between grounded and floating ice). The intellectual merit of the research focuses on several of the NSF Glaciology program\u0027s emphases, including: ice dynamics, numerical modeling, and remote sensing of ice sheets. In addition, the research directly addresses the following specific NSF objectives: \"investigation of the physics of fast glacier flow with emphasis on processes at glacier beds\"; \"investigation of ice-shelf stability\"; and \"identification and quantification of the feedback between ice dynamics and climate change\". The broader impacts of this research effort will help answer societally relevant questions of future ice sheet stability and sea-level change. The research also will aid in the early career development of two young investigators and will contribute to the education of both graduate and undergraduate students directly involved in the research, and results will be incorporated into courses and informal presentations.", "east": -105.2773, "geometry": "POINT(-107.66765 -75.34995)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e RADIO \u003e INS", "is_usap_dc": true, "keywords": "Ice Sheet Thickness; Ice Sheet Elevation; Glacier Dynamics; Ice Stream; Numerical Model; West Antarctic; Surface Elevation; Basal Rheology; Ice Surface Velocity; Embayment Geometry; Amundsen Sea; Hydrology; FIELD SURVEYS; Antarctic Ice Sheet; Glacier; Subglacial; DHC-6; West Antarctic Ice Sheet; Model Output; Surface Climate; Glaciers; Basal Topography; Grounding Zone; Model Input Data; Airborne Laser Altimeters; FIELD INVESTIGATION; Thwaites Glacier; Airborne Laser Altimetry; Diagnostic; Ice-Shelf Buttressing; Ice Sheet; Prognostic; Glacier Surface; Airborne Radar Sounding; Digital Elevation Model; Ice Dynamic; Antarctica; Altimetry; Antarctica (agasea); Bed Elevation; Basal Stress; LABORATORY", "locations": "Antarctica; Thwaites Glacier; West Antarctic Ice Sheet; Antarctic Ice Sheet; West Antarctic; Amundsen Sea", "north": -74.0548, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Carter, Sasha P.; Dupont, Todd K.; Holt, John W.; Morse, David L.; Parizek, Byron R.; Young, Duncan A.; Kempf, Scott D.; Blankenship, Donald D.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "NASA; NSIDC; USAP-DC", "science_programs": null, "south": -76.6451, "title": "Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "uid": "p0000174", "west": -110.058}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": null, "dataset_titles": "Antarctic Peninsula 100 m Digital Elevation Model Derived from ASTER GDEM", "datasets": [{"dataset_uid": "609516", "doi": "10.7265/N58K7711", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Peninsula 100 m Digital Elevation Model Derived from ASTER GDEM", "url": "http://www.usap-dc.org/view/dataset/609516"}], "date_created": "Mon, 30 Apr 2012 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Antarctic Peninsula; ASTER; Digital Elevation Model; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Solid Earth", "locations": "Antarctica; Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Cook, Allison", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": "0636719 Joughin, Ian; 0636970 Tulaczyk, Slawek", "bounds_geometry": null, "dataset_titles": "Antarctic Active Subglacial Lake Inventory from ICESat Altimetry", "datasets": [{"dataset_uid": "601439", "doi": "10.15784/601439", "keywords": "Altimetry; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Icesat; Laser Altimetry; Subglacial Lake", "people": "Fricker, Helen; Tulaczyk, Slawek; Joughin, Ian; Smith, Ben", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Active Subglacial Lake Inventory from ICESat Altimetry", "url": "https://www.usap-dc.org/view/dataset/601439"}], "date_created": "Wed, 27 Jul 2011 00:00:00 GMT", "description": "Tulaczyk/0636970\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to study elevation change anomalies (henceforth ECAs), which are oval-shaped, 5-to-10 km areas observed in remote sensing images in several locations within the Ross Sea sector of the West Antarctic Ice Sheet (WAIS). Within these anomalies, surface elevation changes at rates of up to ~1 to ~2 cm per day, significantly faster than in surrounding regions. These anomalies are thought to result from filling and draining of multi-kilometer-scale subglacial water pockets. The intellectual merit of this project is that these ECA\u0027s represent an unprecedented window into the elusive world of water drainage dynamics beneath the modern Antarctic ice sheet. Although subglacial water fluxes are small compared to normal terrestrial conditions, they play an important role in controlling fast ice streaming and, potentially, stability of the ice sheet. The dearth of observational constraints on sub-ice sheet water dynamics represents one of the most important limitations on progress in quantitative modeling of ice streams and ice sheets. Such models are necessary to assess future ice sheet mass balance and to reconstruct the response of ice sheets to past climate changes. The dynamic sub-ice sheet water transport indicated by the ECAs may have also implications for studies of subglacial lakes and other subglacial environments, which may harbor life adapted to such extreme conditions. The broader impacts of this project are that it will provide advanced training opportunities to one postdoctoral fellow (UW), two female doctoral students (UCSC), who will enhance diversity in polar sciences, and at least three undergraduate students (UCSC). Project output will be relevant to broad scientific and societal interests, such as the future global sea level changes and the response of Polar Regions to climate changes. Douglas Fox, a freelance science journalist, is interested in joining the first field season to write feature articles to popular science magazines and promote the exposure of this project, and Antarctic Science in general, to mass media.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e GLAS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e GLAS", "is_usap_dc": false, "keywords": "ICESAT; Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Smith, Ben; Joughin, Ian; Tulaczyk, Slawek; SMITH, BENJAMIN", "platforms": "Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e ICE, CLOUD AND LAND ELEVATION SATELLITE (ICESAT) \u003e ICESAT", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Elevation Change Anomalies in West Antarctica and Dynamics of Subglacial Water Transport Beneath Ice Streams and their Tributaries", "uid": "p0000115", "west": null}, {"awards": "0538120 Catania, Ginny; 0538015 Hulbe, Christina", "bounds_geometry": "POLYGON((154.71 -82.78,154.79000000000002 -82.78,154.87 -82.78,154.95 -82.78,155.03 -82.78,155.11 -82.78,155.19 -82.78,155.26999999999998 -82.78,155.35 -82.78,155.43 -82.78,155.51 -82.78,155.51 -82.788,155.51 -82.796,155.51 -82.804,155.51 -82.812,155.51 -82.82,155.51 -82.828,155.51 -82.836,155.51 -82.844,155.51 -82.852,155.51 -82.86,155.43 -82.86,155.35 -82.86,155.26999999999998 -82.86,155.19 -82.86,155.11 -82.86,155.03 -82.86,154.95 -82.86,154.87 -82.86,154.79000000000002 -82.86,154.71 -82.86,154.71 -82.852,154.71 -82.844,154.71 -82.836,154.71 -82.828,154.71 -82.82,154.71 -82.812,154.71 -82.804,154.71 -82.796,154.71 -82.788,154.71 -82.78))", "dataset_titles": "Grounding Line Strain Grid Surveys, Kamb Ice Stream, Antarctica; Ice-Penetrating Radar Data Across Siple Coast Grounding Lines", "datasets": [{"dataset_uid": "609494", "doi": "10.7265/N5Z899C6", "keywords": "Antarctica; Geodesy; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Grounding Line; Kamb Ice Stream; Strain", "people": "Hulbe, Christina", "repository": "USAP-DC", "science_program": null, "title": "Grounding Line Strain Grid Surveys, Kamb Ice Stream, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609494"}, {"dataset_uid": "609474", "doi": "10.7265/N5M043BH", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; GPR; Grounding Line; Radar; Siple Coast", "people": "Catania, Ginny; Hulbe, Christina", "repository": "USAP-DC", "science_program": null, "title": "Ice-Penetrating Radar Data Across Siple Coast Grounding Lines", "url": "https://www.usap-dc.org/view/dataset/609474"}], "date_created": "Sat, 02 Jul 2011 00:00:00 GMT", "description": "0538120\u003cbr/\u003eCatania\u003cbr/\u003eThis award supports a project to identify and map ice surface and internal features that chronicle the sequence of events leading to the shut-down of Kamb ice stream. In particular, the project will study past grounding line migration and the relationship between that process and ice stream shutdown. The intellectual merits of the project include the fact that an understanding of such processes has important implications for our ability to accurately predict mass balance changes in this region. Currently, one of the five major West Antarctic ice streams, Kamb, is quiescent, and another, Whillans, is slowing in its downstream reaches. The Kamb shutdown appears to have begun at its downstream end but beyond that simple observation, it is not possible, yet, to draw meaningful comparisons between the two adjacent streams. We do not know if current events on Whillans Ice Stream are similar to what transpired during the Kamb shut-down. The work proposed here intends to bridge that gap. It is expected that this effort will yield useful insights into the influence of grounding line dynamics on ice stream flow. The work will involve a combination of field investigations using radio-echo sounding and GPS combined with computational efforts involving the interpretation of ice-surface features such as relict flow traces and crevasses. The broader impacts of the project will be in addressing a global environmental problem with critical societal implications, training the next generation of scientists and engineers to serve the nation, and encouraging women to pursue scientific or engineering careers. Participants from both institutions are involved in a range of public outreach activities.", "east": 155.51, "geometry": "POINT(155.11 -82.82)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": true, "keywords": "Not provided; Ice Sheet Elevation; West Antarctic Ice Stream; MODELS; Ice Sheet Thickness; West Antarctic Ice Sheet; Kamb Ice Stream; Antarctic Ice Sheet; Ice Sheet; Ice Stream Motion; Antarctica; Siple Dome; Grounding Line; FIELD INVESTIGATION; GPS; FIELD SURVEYS; West Antarctica; Ice Stream; Radar", "locations": "Antarctica; Kamb Ice Stream; West Antarctic Ice Stream; Antarctic Ice Sheet; West Antarctica; West Antarctic Ice Sheet; Siple Dome", "north": -82.78, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Hulbe, Christina; Catania, Ginny", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e MODELS \u003e MODELS; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.86, "title": "Collaborative Research: Grounding Line Forensics: The History of Grounding Line Retreat in the Kamb Ice Stream Outlet Region", "uid": "p0000019", "west": 154.71}, {"awards": "0337567 Jacobel, Robert", "bounds_geometry": "POLYGON((130 -78,133 -78,136 -78,139 -78,142 -78,145 -78,148 -78,151 -78,154 -78,157 -78,160 -78,160 -79.2,160 -80.4,160 -81.6,160 -82.8,160 -84,160 -85.2,160 -86.4,160 -87.6,160 -88.8,160 -90,157 -90,154 -90,151 -90,148 -90,145 -90,142 -90,139 -90,136 -90,133 -90,130 -90,130 -88.8,130 -87.6,130 -86.4,130 -85.2,130 -84,130 -82.8,130 -81.6,130 -80.4,130 -79.2,130 -78))", "dataset_titles": "Glaciological Investigations of the Bulge and Trunk of Kamb Ice Stream, West Antarctica; Radar Studies of Internal Stratigraphy and Bed Topography along the US ITASE-II Traverse", "datasets": [{"dataset_uid": "609380", "doi": "10.7265/N5ZC80SH", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Kamb Ice Stream", "people": "Jacobel, Robert", "repository": "USAP-DC", "science_program": null, "title": "Glaciological Investigations of the Bulge and Trunk of Kamb Ice Stream, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609380"}, {"dataset_uid": "609475", "doi": "10.7265/N5G73BMS", "keywords": "Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness; ITASE; South Pole; Taylor Dome", "people": "Jacobel, Robert", "repository": "USAP-DC", "science_program": "ITASE", "title": "Radar Studies of Internal Stratigraphy and Bed Topography along the US ITASE-II Traverse", "url": "https://www.usap-dc.org/view/dataset/609475"}], "date_created": "Wed, 20 Oct 2010 00:00:00 GMT", "description": "This award supports a project to test whether Kamb Ice Stream (formerly Ice Stream C (ISC)), an ice stream\u003cbr/\u003ethat is thought to have stopped ~150 years ago, may be already in the process of restarting. If yes, it will help establish what is the rate of ice stream reactivation and what mechanisms are controlling this rate. If there is no evidence for ongoing ice stream reactivation, the physical controls that are preventing it will be examined and alternative scenarios for near-future evolution of this ice stream will be explored. One such scenario is an increase in ice diversion toward the neighboring Whillans Ice Stream. Such diversion may help prevent a complete stoppage of Whillans Ice Stream,which has been slowing down for at least the last 24 years. This project will consist of two components: (1) field observations of bed properties,geometry of internal radar reflectors, as well as surface strain rates and velocity/topography changes using Ice-Penetrating Radar and differential Global Positioning System, (2) numerical modeling study of near future(~100-1000 years) evolution of Kamb Ice Stream. The field component will be focused on the bulge-to-trunk transition, which is located at the present time just downstream of the so-called camp UpC. Reactivation of Kamb Ice Stream should be reflected in a downstream migration of the bulge-trunk transition at possibly high rates (bulge migration rates of ~km/yr occur on surging mountain glaciers). The modeling\u003cbr/\u003ecomponent will be used to generate predictions regarding the near-future behavior of Kamb Ice Stream. This project will provide training opportunities for at least two undergraduate students (per year) at St. Olaf College and for one\u003cbr/\u003eundergraduate student (per year) at UCSC. This collaboration will bring together scientists from three different types of US institutions: (1) a liberal arts college (St.Olaf College), (2) a public research university (UCSC) and (3) a NASA research laboratory (JPL). The project will also help build a new glaciological research program at UCSC. Project results will be incorporated into undergraduate and graduate courses at UCSC and will be made available\u003cbr/\u003eto the general public and educators through downloadable graphics and animations posted on the research website of the UCSC PI. Field data resulting from the project will be posted in the Antarctic Glaciological Data Center for use by other investigators.", "east": 160.0, "geometry": "POINT(145 -84)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": true, "keywords": "Ice; Antarctic Glaciations; Radar; Antarctic Ice Sheet; Radar Echo Sounder; Ice Sheet Thickness; Ice Stream; Ice Sheet Elevation; Not provided; Radar Echo Sounding; Ice Stratigraphy; Antarctica; West Antarctic Ice Sheet; Continental Ice Sheet; Ice Cap; Antarctic; US ITASE; FIELD SURVEYS; Ice Thickness; FIELD INVESTIGATION", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; West Antarctic Ice Sheet", "north": -78.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Jacobel, Robert", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "Collaborative Research: Is Ice Stream C Restarting? Glaciological Investigations of the \u0027Bulge\u0027 and the Trunk of Ice Stream C, West Antartica", "uid": "p0000192", "west": 130.0}, {"awards": "0338151 Raymond, Charles", "bounds_geometry": "POINT(-112.086 -79.468)", "dataset_titles": "Englacial Layers and Attenuation Rates across the Ross and Amundsen Sea Ice-Flow Divide (WAIS Divide), West Antarctica; Surface Elevation and Ice Thickness, Western Marie Byrd Land, Antarctica", "datasets": [{"dataset_uid": "609470", "doi": "10.7265/N5416V0W", "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar; WAIS Divide", "people": "Raymond, Charles; Matsuoka, Kenichi", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Englacial Layers and Attenuation Rates across the Ross and Amundsen Sea Ice-Flow Divide (WAIS Divide), West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609470"}, {"dataset_uid": "609119", "doi": "10.7265/N5BZ63ZH", "keywords": "Airborne Radar; Airplane; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marie Byrd Land", "people": "Wilson, Douglas S.; Luyendyk, Bruce P.", "repository": "USAP-DC", "science_program": null, "title": "Surface Elevation and Ice Thickness, Western Marie Byrd Land, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609119"}], "date_created": "Tue, 11 May 2010 00:00:00 GMT", "description": "This award supports an investigation of spatial variations of ice temperature and subglacial conditions using available ice-penetrating radar data around a future deep ice coring site near the Ross and Amundsen flow divide of West Antarctic Ice Sheet. Besides geometry of reflection layers the focus will be on intensities of radar echoes from within ice deeper than several hundred meters and will also examine echoes from the bed. Preliminary studies on theory and comparison with Japanese radar data from East Antarctica suggest that large spatial variations of the vertical gradient of radar echoes from within ice exist and are caused primarily by ice temperature and secondarily by crystal-orientation fabric. The hypothesis that the vertical gradient is a proxy of ice temperature will be tested. The project will utilize an existing data set from the Support Office for Aerogeophysical Research in Antarctica (SOAR) and will complement work already underway at University of Texas to analyze the radar data. The project will provide undergraduate research experience with an emphasis on computer analysis of time series and large data sets as well as development of web-based resource of results and methods and will support an international collaboration between US and Japan through discussions on the preliminary results from their study sites. Practical procedures developed through this study will be downloadable from the project\u0027s web site in the third year and will allow investigation of other ice sheets using existing radar data sets. This project will contribute to the interpretation of the future inland West Antarctic ice core and will help in the understanding of ice sheet history and climate change.", "east": -112.086, "geometry": "POINT(-112.086 -79.468)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LASERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RADAR ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": true, "keywords": "SOAR; Ice Sheet Elevation; Antarctic Ice Sheet; Layers; USAP-DC; West Antarctic; FIELD INVESTIGATION; Amundsen; Ice Sheet; Airborne Laser Altimetry; Ice Surface; Not provided; Ice Penetrating Radar; Ice Sheet Thickness; Ice Extent; Ice Surface Elevation; Ice Cover; Ice Deformation; FIELD SURVEYS; Antarctica; Ground Ice; Subglacial; Reflection Layers; West Antarctic Ice Sheet; Ice Surface Temperature; LABORATORY; Amundsen Flow Divide; Radar Echo Sounding; Internal Layering; Radar Altimetry; Ice; Radar Echoes; Englacial; Crystal Orientation Fabric; Ice Thickness; Altimetry; Ice Temperature; Radar Echo Sounder; Ice Thickness Distribution", "locations": "Antarctic Ice Sheet; Antarctica; West Antarctic; Amundsen; Amundsen Flow Divide; West Antarctic Ice Sheet", "north": -79.468, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Raymond, Charles; Matsuoka, Kenichi; Luyendyk, Bruce P.; Wilson, Douglas S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.468, "title": "Glaciological Characteristics of the Ross/Amundsen Sea Ice-flow Divide Deduced by a New Analysis of Ice-penetrating Radar Data", "uid": "p0000017", "west": -112.086}, {"awards": "9814349 Hall, Brenda", "bounds_geometry": "POLYGON((-70.4838 -52.3532,-68.92937 -52.3532,-67.37494 -52.3532,-65.82051 -52.3532,-64.26608 -52.3532,-62.71165 -52.3532,-61.15722 -52.3532,-59.60279 -52.3532,-58.04836 -52.3532,-56.49393 -52.3532,-54.9395 -52.3532,-54.9395 -53.61625,-54.9395 -54.8793,-54.9395 -56.14235,-54.9395 -57.4054,-54.9395 -58.66845,-54.9395 -59.9315,-54.9395 -61.19455,-54.9395 -62.4576,-54.9395 -63.72065,-54.9395 -64.9837,-56.49393 -64.9837,-58.04836 -64.9837,-59.60279 -64.9837,-61.15722 -64.9837,-62.71165 -64.9837,-64.26608 -64.9837,-65.82051 -64.9837,-67.37494 -64.9837,-68.92937 -64.9837,-70.4838 -64.9837,-70.4838 -63.72065,-70.4838 -62.4576,-70.4838 -61.19455,-70.4838 -59.9315,-70.4838 -58.66845,-70.4838 -57.4054,-70.4838 -56.14235,-70.4838 -54.8793,-70.4838 -53.61625,-70.4838 -52.3532))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001743", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0209"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award supports a two year program to produce a new reconstruction of ice extent, elevation and thickness at the Last Glacial Maximum (LGM) for the South Shetland Islands in the Antarctic Peninsula. One field season on Livingston Island will involve mapping the areal extent and geomorphology of glacial drift and determining the elevation and distribution of trimlines. In addition, ice flow direction will be determined by mapping and measuring the elevation of erosional features and the position of erratic boulders. One of the main goals of this work will be to demonstrate whether or not organic material suitable for radiocarbon dating exists in the South Shetland Islands. If so, the age of the deposits will be determined by measuring the carbon-14 age of plant, algal, and fungal remains preserved at the base of the deposits, as well as incorporated marine shells, seal skin and other organic material that may be found in raised beach deposits. Another goal will be to concentrate on the development of relative sea-level curves from 2-3 key areas to show whether or not construction of such curves for the South Shetland Islands is possible. The new reconstruction of ice extent, elevation and thickness at the Last Glacial Maximum for the South Shetland Islands which will be produced by this work will be useful in studies of ocean circulation and ice dynamics in the vicinity of the Drake Passage. It will also contribute to the production of a deglacial chronology which will afford important clues about the mechanisms controlling ice retreat in this region of the southern hemisphere.", "east": -54.9395, "geometry": "POINT(-62.71165 -58.66845)", "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.3532, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hall, Brenda; Taylor, Frederick", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -64.9837, "title": "AMS Radiocarbon Chronology of Glacier Fluctuations in the South Shetland Islands During the Last Glacial/Interglacial Hemicycle:Implications for Global Climate Change", "uid": "p0000596", "west": -70.4838}, {"awards": "0094078 Bart, Philip", "bounds_geometry": "POLYGON((-179.99992 -72.00044,-143.999984 -72.00044,-108.000048 -72.00044,-72.000112 -72.00044,-36.000176 -72.00044,-0.000239999999991 -72.00044,35.999696 -72.00044,71.999632 -72.00044,107.999568 -72.00044,143.999504 -72.00044,179.99944 -72.00044,179.99944 -72.574101,179.99944 -73.147762,179.99944 -73.721423,179.99944 -74.295084,179.99944 -74.868745,179.99944 -75.442406,179.99944 -76.016067,179.99944 -76.589728,179.99944 -77.163389,179.99944 -77.73705,143.999504 -77.73705,107.999568 -77.73705,71.999632 -77.73705,35.999696 -77.73705,-0.000240000000019 -77.73705,-36.000176 -77.73705,-72.000112 -77.73705,-108.000048 -77.73705,-143.999984 -77.73705,-179.99992 -77.73705,-179.99992 -77.163389,-179.99992 -76.589728,-179.99992 -76.016067,-179.99992 -75.442406,-179.99992 -74.868745,-179.99992 -74.295084,-179.99992 -73.721423,-179.99992 -73.147762,-179.99992 -72.574101,-179.99992 -72.00044))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001648", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0301A"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "PROPOSAL NO.: 0094078\u003cbr/\u003ePRINCIPAL INVESTIGATOR: Bart, Philip\u003cbr/\u003eINSTITUTION NAME: Louisiana State University \u0026 Agricultural and Mechanical College\u003cbr/\u003eTITLE: CAREER: Relative frequency and phase of extreme expansions of the Antarctic Ice Sheets during the late Neogene\u003cbr/\u003eNSF RECEIVED DATE: 07/27/2000\u003cbr/\u003e\u003cbr/\u003ePROJECT SUMMARY\u003cbr/\u003e\u003cbr/\u003eExpansions and contractions of the Antarctic Ice Sheets (AISs) have undoubtedly had a profound influence on Earth\u0027s climate and global sea-level. However, rather than being a single entity, the Antarctic cryosphere consists of three primary elements: 1) the East Antarctic Ice Sheet (EAIS); 2) the West Antarctic Ice Sheet (WAIS); and 3) the Antarctic Peninsula Ice Cap (APIC). The distinguishing characteristics include significant differences in: 1) ice volume; 2) substratum elevation; 3) ice-surface elevation; and 4) location with respect to latitude. Various lines of evidence indicate that the AISs have undergone significant fluctuations in the past and that fluctuations will continue to occur in the future. The exact nature of the fluctuations has been the subject of many lively debates. According to one line of reasoning, the land-based EAIS has been relatively stable, experiencing only minor fluctuations since forming in the middle Miocene, whereas the marine-based WAIS has been dynamic, waxing and waning frequently since the late Miocene. According to an alternate hypothesis, the ice sheets advanced and retreated synchronously. These two views are incompatible. \u003cbr/\u003e\u003cbr/\u003eThe first objective of this proposal is to compare the long-term past behavior of the WAIS to that of the EAIS and APIC. The fluctuations of the AISs involve many aspects (the frequency of changes, the overall magnitude of ice-volume change, etc.), and the activities proposed here specifically concern the frequency and phase of extreme advances of the ice sheet to the continental shelf. The project will build upon previous seismic-stratigraphic investigations of the continental shelves. These studies have clarified many issues concerning the minimum frequency of extreme expansions for the individual ice sheets, but some important questions remain. During the course of the project, the following questions will be evaluated.\u003cbr/\u003e\u003cbr/\u003eQuestion 1) Were extreme advances of the EAIS and WAIS across the shelf of a similar frequency and coeval? This evaluation is possible because the western Ross Sea continental shelf (Northern Basin) receives drainage from the EAIS, and the eastern Ross Sea (Eastern Basin) receives drainage from the WAIS. Quantitative analyses of the extreme advances from these two areas have been conducted by Alonso et al. (1992) and Bart et al. (2000), respectively. However, the existing single-channel seismic grids are incomplete and can not be used to determine the stratigraphic correlations from Northern Basin to Eastern Basin. It is proposed that high-resolution seismic data (~2000 kms) be acquired to address this issue.\u003cbr/\u003e\u003cbr/\u003eQuestion 2) Were extreme advances of the APIC across the shelf as frequent as inferred by Bart and Anderson (1995)? Bart and Anderson (1995) inferred that the APIC advanced across the continental shelf at least 30 times since the middle Miocene. This is significant because it suggests that the advances of the small APIC were an order of magnitude more frequent than the advances of the EAIS and WAIS. Others contest the Bart and Anderson (1995) glacial-unconformity interpretation of seismic reflections, and argue that the advances of the APIC were far fewer (i.e., Larter et al., 1997). The recent drilling on the Antarctic Peninsula outer continental shelf has sampled some but not all of the glacial units, but the sediment recovery was poor, and thus, the glacial history interpretation is still ambiguous. The existing high-resolution seismic grids from the Antarctic Peninsula contain only one regional strike line on the outer continental shelf. This is inadequate to address the controversy of the glacial-unconformity interpretation and the regional correlation of the recent ODP results. It is proposed that high-resolution seismic data (~1000 kms) be acquired in a forthcoming (January 2002) cruise to the Antarctic Peninsula to address these issues.\u003cbr/\u003e\u003cbr/\u003eThe second objective of this project is 1) to expand the PI\u0027s effort to integrate his ongoing and the proposed experiments into a graduate-level course at LSU, and 2) to develop a pilot outreach program with a Baton Rouge public high school. The Louisiana Department of Education has adopted scientific standards that apply to all sciences. These standards reflect what 9th through 12th grade-level students should be able to do and know. The PI will target one of these standards, the Science As Inquiry Standard 1 Benchmark. The PI will endeavor to share with the students the excitement of conducting scientific research as a way to encourage the students to pursue earth science as a field of study at the university level.", "east": 179.99944, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -72.00044, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bart, Philip", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.73705, "title": "PECASE: Relative frequency and phase of extreme expansions of the Antarctic Ice Sheets during the late Neogene", "uid": "p0000593", "west": -179.99992}, {"awards": "0440666 Waddington, Edwin", "bounds_geometry": null, "dataset_titles": "Histories of Accumulation, Thickness, and WAIS Divide Location, Antarctica", "datasets": [{"dataset_uid": "609473", "doi": "10.7265/N5QR4V2J", "keywords": "Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; WAIS Divide; WAIS Divide Ice Core", "people": "Waddington, Edwin D.; Koutnik, Michelle", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Histories of Accumulation, Thickness, and WAIS Divide Location, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609473"}], "date_created": "Thu, 04 Mar 2010 00:00:00 GMT", "description": "This award supports development of a new modeling approach that will extract information about past snow accumulation rate in both space and time in the vicinity of the future ice core near the Ross-Amundsen divide of the West Antarctic Ice Sheet (WAIS). Internal layers, detected by ice-penetrating radar, are isochrones, or former ice-sheet surfaces that have been buried by subsequent snowfall, and distorted by ice flow. Extensive ice-penetrating radar data are available over the inland portion of the WAIS. Layers have been dated back to 17,000 years before present. The radar data add the spatial dimension to the temporally resolved accumulation record from ice cores. Accumulation rates are traditionally derived from the depths of young, shallow layers, corrected for strain using a local 1-D ice-flow model. Older, deeper layers have been more affected by flow over large horizontal distances. However, it is these deeper layers that contain information on longer-term climate patterns. This project will use geophysical inverse theory and a 2.5D flow-band ice-flow forward model comprising ice-surface and layer-evolution modules, to extract robust transient accumulation patterns by assimilating multiple deeper, more-deformed layers that have previously been intractable. Histories of divide migration, geothermal flux, and surface evolution will also be produced. The grant will support the PhD research of a female graduate student who is a mentor to female socio-economically disadvantaged high-school students interested in science, through the University of Washington Women\u0027s Center. It will also provide a research\u003cbr/\u003eexperience for an undergraduate student, and contribute to a freshman seminar on Scientific Research.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS", "is_usap_dc": true, "keywords": "Ross-Amundsen Divide; FIELD SURVEYS; Internal Layers; Ice Flow Model; West Antarctic Ice Sheet; Accumulation; Glacier; Ice Penetrating Radar; Model; MODELS; Snow Accumulation; GPS; Antarctica; Isochron; Not provided; Snowfall; Radar", "locations": "West Antarctic Ice Sheet; Antarctica; Ross-Amundsen Divide", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Koutnik, Michelle; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e MODELS \u003e MODELS; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Histories of accumulation, thickness and WAIS Divide location from radar layers using a new inverse approach", "uid": "p0000018", "west": null}, {"awards": "0437887 Sidell, Bruce", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis; Expedition Data; Expedition data of LMG0705; Expedition data of LMG0706", "datasets": [{"dataset_uid": "002712", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0705", "url": "https://www.rvdata.us/search/cruise/LMG0705"}, {"dataset_uid": "002713", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0706", "url": "https://www.rvdata.us/search/cruise/LMG0706"}, {"dataset_uid": "001534", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0705"}, {"dataset_uid": "600039", "doi": "10.15784/600039", "keywords": "Biota; Oceans; Pot; Sample/collection Description; Sample/Collection Description; Southern Ocean; Trawl", "people": "Sidell, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis", "url": "https://www.usap-dc.org/view/dataset/600039"}], "date_created": "Sun, 06 Dec 2009 00:00:00 GMT", "description": "The polar ocean presently surrounding Antarctica is the coldest, most thermally stable marine environment on earth. Because oxygen solubility in seawater is inversely proportional to temperature, the cold Antarctic seas are an exceptionally oxygen-rich aquatic habitat. Eight families of a single perciform suborder, the Notothenioidei, dominate the present fish fauna surrounding Antarctica. Notothenioids account for approximately 35% of fish species and 90% of fish biomass south of the Antarctic Polar Front. Radiation of closely related notothenioid species thus has occurred rapidly and under a very unusual set of conditions: relative oceanographic isolation from other faunas due to circumpolar currents and deep ocean trenches surrounding the continent, chronically, severely cold water temperatures, very high oxygen availability, very low levels of niche competition in a Southern Ocean depauperate of species subsequent to a dramatic crash in species diversity of fishes that occurred sometime between the mid-Tertiary and present. These features make Antarctic notothenioid fishes an uniquely attractive group for the study of physiological and biochemical adaptations to cold body temperature. \u003cbr/\u003eFew distinctive features of Antarctic fishes are as unique as the pattern of expression of oxygen-binding proteins in one notothenioid family, the Channichthyidae (Antarctic icefishes). All channichthyid icefishes lack the circulating oxygen-binding protein, hemoglobin (Hb); the intracellular oxygen-binding protein, myoglobin (Mb) is not uniformly expressed in species of this family. Both proteins are normally considered essential for adequate delivery of oxygen to aerobically poised tissues of animals. To compensate for the absence of Hb, icefishes have developed large hearts, rapidly circulate a large blood volume and possess elaborate vasculature of larger lumenal diameter than is seen in red-blooded fishes. Loss of Mb expression in oxidative muscles correlates with dramatic elevation in density of mitochondria within the cell, although each individual organelle is less densely packed with respiratory proteins. \u003cbr/\u003eWithin the framework of oxygen movement, the adaptive significance of greater vascular density and mitochondrial populations is understandable but mechanisms underlying development of these characteristics remain unknown. The answer may lie in another major function of both Hb and Mb, degradation of the ubiquitous bioactive compound, nitric oxide (NO). The research will test the hypothesis that loss of hemoprotein expression in icefishes has resulted in an increase in levels of NO that mediate modification of vascular systems and expansion of mitochondrial populations in oxidative tissues. The objectives of the proposal are to quantify the vascular density of retinas in +Hb and -Hb notothenioid species, to characterize NOS isoforms and catalytic activity in retina and cardiac muscle of Antarctic notothenioid fishes, to evaluate level of expression of downstream factors implicated in angiogenesis (in retinal tissue) and mitochondrial biogenesis (in cardiac muscle), and to determine whether inhibition of NOS in vivo results in regression of angiogenic and mitochondrial biogenic responses in icefishes. Broader impacts range from basic biology, through training of young scientists, to enhanced understanding of clinically relevant biomedical processes.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS", "is_usap_dc": true, "keywords": "R/V LMG; Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Sidell, Bruce", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis.", "uid": "p0000527", "west": -180.0}, {"awards": "0122520 Gogineni, S. Prasad", "bounds_geometry": "POLYGON((-110 -62,-105 -62,-100 -62,-95 -62,-90 -62,-85 -62,-80 -62,-75 -62,-70 -62,-65 -62,-60 -62,-60 -63.5,-60 -65,-60 -66.5,-60 -68,-60 -69.5,-60 -71,-60 -72.5,-60 -74,-60 -75.5,-60 -77,-65 -77,-70 -77,-75 -77,-80 -77,-85 -77,-90 -77,-95 -77,-100 -77,-105 -77,-110 -77,-110 -75.5,-110 -74,-110 -72.5,-110 -71,-110 -69.5,-110 -68,-110 -66.5,-110 -65,-110 -63.5,-110 -62))", "dataset_titles": "Antarctic Radar Echograms and Derived Ice Thickness Data from CReSIS", "datasets": [{"dataset_uid": "609414", "doi": "", "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar", "people": "Gogineni, Prasad", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Radar Echograms and Derived Ice Thickness Data from CReSIS", "url": "https://www.usap-dc.org/view/dataset/609414"}], "date_created": "Wed, 01 Jul 2009 00:00:00 GMT", "description": "0122520\u003cbr/\u003eGogineni\u003cbr/\u003e\u003cbr/\u003eSea level has been rising over the last century. Although the immediate impact of sea level rise may be less severe than other effects of global climate change, the long-term consequences can be much more devastating since nearly 60% of the world population lives in coastal regions. Scientists have postulated that excess water is being released from polar ice sheets due to long-term, global climate change, but there are insufficient data to confirm these theories. Understanding the interactions between the ice sheets, oceans and atmosphere is essential to quantifying the role of ice sheets in sea level rise. Toward that end, this research project involves the innovative application of information technology in the development and deployment of intelligent radar sensors for measuring key glaciological parameters. \u003cbr/\u003e\u003cbr/\u003eRadar instrumentation will consist of a synthetic aperture radar (SAR) that can operate in bistatic or monostatic mode. One important application of the SAR will be in the determination of basal conditions, particularly the presence and distribution of basal water. Basal water lubricates the ice/bed interface, enhancing flow, and increasing the amount of ice discharged into the ocean. Another application of the SAR will be to measure ice thickness and map internal layers in both shallow and deep ice. Information on near-surface internal layers will be used to estimate the average, recent accumulation rate, while the deeper layers provide a history of past accumulation and flow rates. A tracked vehicle and an automated snowmobile will be used to test and demonstrate the utility of an intelligent radar in glaciological investigations.\u003cbr/\u003e\u003cbr/\u003eThe system will be developed to collect, process and analyze data in real time and in conjunction with a priori information derived from archived sources. The combined real time and archived information will be used onboard the vehicles to select and generate an optimum sensor configuration. This project thus involves innovative research in intelligent systems, sounding radars and ice sheet modeling. In addition it has a very strong public outreach and education program, which include near-real-time image broadcasts via the world wide web", "east": -60.0, "geometry": "POINT(-85 -69.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e AIRSAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IMAGING RADAR SYSTEMS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR", "is_usap_dc": true, "keywords": "Radar Echo Sounding; Not provided; FIELD SURVEYS; Airborne Radar Sounding; Radar Echo Sounder; Antarctic Ice Sheet; LABORATORY; Antarctica; Ice Sheet Thickness; Antarctic; Ice Sheet; Synthetic Aperture Radar Imagery; Radar Altimetry; Ice Sheet Elevation; FIELD INVESTIGATION; Radar", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet", "north": -62.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Gogineni, Prasad", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "ITR/SI+AP: A Mobile Sensor Web for Polar Ice Sheet Measurements", "uid": "p0000583", "west": -110.0}, {"awards": "9911617 Blankenship, Donald; 9319379 Blankenship, Donald", "bounds_geometry": null, "dataset_titles": "Antarctic Aerogeophysics Data; Antarctic Subglacial Lake Classification Inventory; RBG - Robb Glacier Survey; SOAR-Lake Vostok Survey airborne radar data; SOAR-Lake Vostok Survey bed elevation data; SOAR-Lake Vostok Survey Gravity data; SOAR-Lake Vostok Survey ice thickness data; SOAR-Lake Vostok survey magnetic anomaly data; SOAR-Lake Vostok Survey surface elevation data", "datasets": [{"dataset_uid": "601604", "doi": "10.15784/601604", "keywords": "Airborne Radar; Antarctica; Bed Elevation; Geophysics; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Surface Elevation; Ice Thickness; Robb Glacier; Transantarctic Mountains", "people": "Bell, Robin; Young, Duncan A.; Buck, W. Roger; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "RBG - Robb Glacier Survey", "url": "https://www.usap-dc.org/view/dataset/601604"}, {"dataset_uid": "601300", "doi": "10.1594/IEDA/306568", "keywords": "Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Lake Vostok; Navigation; Radar; SOAR; Subglacial Lakes", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey airborne radar data", "url": "https://www.usap-dc.org/view/dataset/601300"}, {"dataset_uid": "601299", "doi": "10.1594/IEDA/306565", "keywords": "Airborne Laser Altimeters; Airborne Laser Altimetry; Airborne Radar; Airplane; Antarctica; Bed Elevation; Bedrock Elevation; Digital Elevation Model; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Lake Vostok; Radar; Radar Echo Sounder; SOAR", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey bed elevation data", "url": "https://www.usap-dc.org/view/dataset/601299"}, {"dataset_uid": "601298", "doi": "10.1594/IEDA/306566", "keywords": "Airborne Altimetry; Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Ice Sheet Elevation; Ice Surface; Lake Vostok; Radar Echo Sounder; SOAR; Surface Elevation", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey surface elevation data", "url": "https://www.usap-dc.org/view/dataset/601298"}, {"dataset_uid": "601297", "doi": "10.1594/IEDA/306567", "keywords": "Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Sheet; Ice Stratigraphy; Ice Thickness; Ice Thickness Distribution; Lake Vostok; Radar; Radar Altimetry; Radar Echo Sounder; SOAR; Subglacial Lake", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey ice thickness data", "url": "https://www.usap-dc.org/view/dataset/601297"}, {"dataset_uid": "601296", "doi": " 10.1594/IEDA/306564", "keywords": "Airborne Magnetic; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Lake Vostok; Magnetic; Magnetic Anomaly; Magnetometer; Potential Field; SOAR; Solid Earth", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok survey magnetic anomaly data", "url": "https://www.usap-dc.org/view/dataset/601296"}, {"dataset_uid": "601295", "doi": "10.1594/IEDA/306563", "keywords": "Airborne Gravity; Airplane; Antarctica; East Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Lake Vostok; Potential Field; Solid Earth", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey Gravity data", "url": "https://www.usap-dc.org/view/dataset/601295"}, {"dataset_uid": "609240", "doi": "", "keywords": "Airborne Radar; Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Navigation; Potential Field; SOAR; Solid Earth", "people": "Morse, David L.; Dalziel, Ian W.; Blankenship, Donald D.; Holt, John W.", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Aerogeophysics Data", "url": "https://www.usap-dc.org/view/dataset/609240"}, {"dataset_uid": "609336", "doi": "10.7265/N5CN71VX", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Subglacial Lake", "people": "Blankenship, Donald D.; Holt, John W.; Carter, Sasha P.", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Subglacial Lake Classification Inventory", "url": "https://www.usap-dc.org/view/dataset/609336"}], "date_created": "Fri, 06 Feb 2009 00:00:00 GMT", "description": "9911617\u003cbr/\u003eBlankenship\u003cbr/\u003e\u003cbr/\u003eThis award, provided jointly by the Antarctic Geology and Geophysics Program, the Antarctic Glaciology Program, and the Polar Research Support Section of the Office of Polar Programs, provides funds for continuation of the Support Office for Aerogeophysical Research (SOAR). From July 1994 to July 2000, SOAR served as a facility to accomplish aerogeophysical research in Antarctica under an agreement between the University of Texas at Austin and the National Science Foundation\u0027s Office of Polar Programs (NSF/OPP). SOAR operated and maintained an aerogeophysical instrument package that consists of an ice-penetrating radar sounder, a laser altimeter, a gravimeter and a magnetometer that are tightly integrated with each other as well as with the aircraft\u0027s avionics and power packages. An array of aircraft and ground-based GPS receivers supported kinematic differential positioning using carrier-phase observations. SOAR activities included: developing aerogeophysical research projects with NSF/OPP investigators; upgrading of the aerogeophysical instrumentation package to accommodate new science projects and advances in technology; fielding this instrument package to accomplish SOAR-developed projects; and management, reduction, and analysis of the acquired aerogeophysical data. In pursuit of 9 NSF-OPP funded aerogeophysical research projects (involving 14 investigators from 9 institutions), SOAR carried out six field campaigns over a six-year period and accomplished approximately 200,000 line kilometers of aerogeophysical surveying over both East and West Antarctica in 377 flights.\u003cbr/\u003e\u003cbr/\u003eThis award supports SOAR to undertake a one year and 8 month program of aerogeophysical activities that are consistent with continuing U.S. support for geophysical research in Antarctica. \u003cbr/\u003e- SOAR will conduct an aerogeophysical campaign during the 200/01 austral summer to accomplish surveys for two SOAR-developed projects: \"Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Studies\" (Co-PI\u0027s Bell and Studinger, LDEO); and \"Collaborative Research: Seismic Investigation of the Deep Continental Structure Across the East-West Antarctic Boundary\" (Co-PI\u0027s Weins, Washington U. and Anandakrishnan, U. Alabama). After configuration and testing of the survey aircraft in McMurdo, SOAR will conduct survey flights from an NSF-supported base adjacent to the Russian Station above Lake Vostok and briefly occupy one or two remote bases on the East Antarctic ice sheet.\u003cbr/\u003e- SOAR will reduce these aerogeophysical data and produce profiles and maps of surface elevation, bed elevation, gravity and magnetic field intensity. These results will be provided to the respective project investigators within nine months of conclusion of field activities. We will also submit a technical manuscript that describes these results to a refereed scientific journal and distribute these results to appropriate national geophysical data centers within approximately 24 months of completion of field activities.\u003cbr/\u003e- SOAR will standardize all previously reduced SOAR data products and transfer them to the appropriate national geophysical data centers by the end of this grant.\u003cbr/\u003e- SOAR will convene a workshop to establish a community consensus for future U.S. Antarctic aerogeophysical research. This workshop will be co-convened by Ian Dalziel and Richard Alley and will take place during the spring of 2001.\u003cbr/\u003e- SOAR will upgrade the existing SOAR in-field quality control procedures to serve as a web-based interface for efficient browsing of many low-level SOAR data streams.\u003cbr/\u003e- SOAR will repair and/or refurbish equipment that was used during the 2000/01 field campaign.\u003cbr/\u003e\u003cbr/\u003eSupport for SOAR is essential for accomplishing major geophysical investigations in Antarctica. Following data interpretation by the science teams, these data will provide valuable insights to the structure and evolution of the Antarctic continent.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IMAGING RADAR SYSTEMS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LIDAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e PROTON MAGNETOMETER", "is_usap_dc": true, "keywords": "Ice Sheet; Ice Sheet Elevation; Surface Winds; Snow Temperature; Atmospheric Pressure; Antarctic; West Antarctic Ice Sheet; Surface Temperature Measurements; FIELD INVESTIGATION; Surface Wind Speed Measurements; Subglacial Topography; Atmospheric Humidity Measurements; Not provided; Aerogeophysics; FIELD SURVEYS; GROUND STATIONS; Antarctica; SOAR; Snow Temperature Measurements; West Antarctica; Antarctic Ice Sheet; East Antarctic Plateau", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; West Antarctica; West Antarctic Ice Sheet; East Antarctic Plateau", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Carter, Sasha P.; Holt, John W.; Blankenship, Donald D.; Morse, David L.; Dalziel, Ian W.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR)", "uid": "p0000125", "west": null}, {"awards": "0440670 Hulbe, Christina; 0440636 Fahnestock, Mark", "bounds_geometry": "POLYGON((-180 -70,-175 -70,-170 -70,-165 -70,-160 -70,-155 -70,-150 -70,-145 -70,-140 -70,-135 -70,-130 -70,-130 -71.6,-130 -73.2,-130 -74.8,-130 -76.4,-130 -78,-130 -79.6,-130 -81.2,-130 -82.8,-130 -84.4,-130 -86,-135 -86,-140 -86,-145 -86,-150 -86,-155 -86,-160 -86,-165 -86,-170 -86,-175 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -84.4,180 -82.8,180 -81.2,180 -79.6,180 -78,180 -76.4,180 -74.8,180 -73.2,180 -71.6,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,-180 -70))", "dataset_titles": "MOA-derived Structural Feature Map of the Ronne Ice Shelf; MOA-derived Structural Feature Map of the Ross Ice Shelf; Using Fracture Patterns and Ice Thickness to Study the History and Dynamics of Grounding Line Migration and Shutdown of Kamb and Whillans Ice Streams", "datasets": [{"dataset_uid": "600024", "doi": "", "keywords": null, "people": "Fahnestock, Mark", "repository": "USAP-DC", "science_program": null, "title": "Using Fracture Patterns and Ice Thickness to Study the History and Dynamics of Grounding Line Migration and Shutdown of Kamb and Whillans Ice Streams", "url": "https://www.usap-dc.org/view/dataset/600024"}, {"dataset_uid": "609497", "doi": "10.7265/N5PR7SXR", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; MOA; MODIS; Ronne Ice Shelf", "people": "Ledoux, Christine; Hulbe, Christina", "repository": "USAP-DC", "science_program": null, "title": "MOA-derived Structural Feature Map of the Ronne Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/609497"}, {"dataset_uid": "601432", "doi": "10.15784/601432", "keywords": "Antarctica", "people": "Ledoux, Christine; Hulbe, Christina; Forbes, Martin", "repository": "USAP-DC", "science_program": null, "title": "MOA-derived Structural Feature Map of the Ross Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/601432"}], "date_created": "Thu, 25 Sep 2008 00:00:00 GMT", "description": "This award supports a three year project to develop the tools required to interpret complex patterns of flow features on the Ross Ice Shelf, which record the discharge history the ice streams flowing east off of the West Antarctic Ice Sheet. This work builds on previous research that used flow features visible in satellite image mosaics and numerical models of ice shelf flow to detect changes in grounding zone dynamics and redirection of ice stream outlets over hundreds of years. Recently observed changes on Whillans Ice Stream fit within this framework. The pattern of redirection is driven by the influence of rapid downstream thinning on the basal thermal gradient in the ice and associated \"sticky spot\" (ice rise) formation. In pursuing this work, the investigators recognized other records of discharge variation on the shelf that can be used to build a more complete history and understanding of ice-stream discharge variability. The intellectual merit of the proposed work lies in the fact that these records, including fracture patterns and spatial variation in ice thickness, when understood in the proper context, will yield quantitative information about the timing and dynamics of ice stream slowdowns, grounding line retreat, and the relative history of discharge between the ice streams. New tools will help further constrain this history. The laser altimeter on NASA\u0027s IceSAT has improved our knowledge of the surface elevation of Antarctic ice. IceSAT surface elevations provide a high-resolution map of ice-shelf thickness that, along with provenance maps from ice-shelf image mosaics, will be used to estimate the volumes of ice involved in past ice-stream discharge events (slowdowns, redirections, and so on). This project will develop new numerical models for fracture propagation; these will allow past variations in ice-shelf stress state to be investigated. Together, the dynamic and volume-flux histories will provide a powerful set of observations for understanding past variations in ice stream discharge and the underlying physical processes. The broader impacts of this project center on how it contributes to the ability to estimate West Antarctic contributions to global sea level rise and to answer outstanding questions about the causes of millennial and longer-scale evolution of ice streams. This work will provide a history of the most complex record of ice discharge known. In addition to the incorporation of this research into graduate student advising and normal teaching duties, the investigators are involved in other avenues of civic engagement and education. Outreach to high school students and the community at large is promoted on an annual basis by the investigators at both institutions. New outreach projects at Portland State University are developed with the assistance of researchers with expertise in student learning and achievement in science and mathematics. The collaborative research team includes two glaciologists with experience in the pairing of high resolution satellite imagery and a variety of ice-flow models and a geologist whose focus is the mechanics of rock deformation.", "east": -130.0, "geometry": "POINT(-155 -78)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e MODIS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e MODIS", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; Fracture Patterns; Ross Ice Shelf; West Antarctic Ice Sheet; Not provided; Antarctica; TERRA; Ice Sheet; Ice Rise; LABORATORY; Ice-Stream Discharge; West Antarctica; Fracture Propagation; SATELLITES; Ice Stream Motion; Grounding Line; Ice Movement; Ice Stream; Whillans Ice Stream; Ice Stream Outlets; Basal Temperature Gradient; Numerical Model; Ice Thickness; Flow Features; Kamb Ice Stream; Antarctic Ice Sheet; Satellite Image Mosaics; Icesat; Grounding Line Migration; ICESAT", "locations": "Kamb Ice Stream; Whillans Ice Stream; Antarctica; Ross Ice Shelf; West Antarctic Ice Sheet; Antarctic Ice Sheet; West Antarctica", "north": -70.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Hulbe, Christina; Ledoux, Christine; Fahnestock, Mark", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e ICE, CLOUD AND LAND ELEVATION SATELLITE (ICESAT) \u003e ICESAT; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e TERRA", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.0, "title": "Collaborative Research: Using Fracture Patterns and Ice Thickness to Study the History and Dynamics of Grounding Line Migration and Shutdown of Kamb and Whillans Ice Streams", "uid": "p0000096", "west": 180.0}, {"awards": "0229546 MacAyeal, Douglas", "bounds_geometry": "POINT(-178 -78)", "dataset_titles": "collection of nascent rift images and description of station deployment; Continuous GPS (static) Data from the Ross Ice Shelf, Antarctica; Giant Icebergs of the Ross Sea, in situ Drift and Weather Measurements, Antarctica; Iceberg Firn Temperatures, Antarctica; Iceberg Harmonic Tremor, Seismometer Data, Antarctica; Iceberg Satellite imagery from stations and ice shelves (full data link not provided); Iceberg Tiltmeter Measurements, Antarctica; Ice Shelf Rift Time-Lapse Photography, Antarctica; Incorporated Research Institutions for Seismology; Nascent Iceberg Webcam Images available during the deployment period; Ross Ice Shelf Firn Temperature, Antarctica; The files contain a short header (number of data samples, sample rate, start time, stop time, channel title)The time series data then follow the header above.; This site mirrors the NSIDC website archive.", "datasets": [{"dataset_uid": "609352", "doi": "10.7265/N5M61H55", "keywords": "Glaciology; Iceberg; Oceans; Ross Ice Shelf; Sea Ice; Snow/ice; Snow/Ice; Southern Ocean; Temperature", "people": "Thom, Jonathan; Sergienko, Olga; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Iceberg Firn Temperatures, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609352"}, {"dataset_uid": "609353", "doi": "10.7265/N5GF0RFF", "keywords": "Glaciology; Iceberg; Oceans; Ross Ice Shelf; Sea Ice; Southern Ocean; Tiltmeter", "people": "MacAyeal, Douglas; Kim, Young-Jin; Bliss, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Iceberg Tiltmeter Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609353"}, {"dataset_uid": "609351", "doi": "10.7265/N5QV3JGV", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Photo/video; Photo/Video; Ross Ice Shelf", "people": "MacAyeal, Douglas; Brunt, Kelly", "repository": "USAP-DC", "science_program": null, "title": "Ice Shelf Rift Time-Lapse Photography, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609351"}, {"dataset_uid": "609350", "doi": "10.7265/N5VM496K", "keywords": "AWS; Glaciology; GPS; Iceberg; Meteorology; Oceans; Ross Sea; Sea Ice; Southern Ocean; Weatherstation", "people": "Bassis, Jeremy; Okal, Emile; MacAyeal, Douglas; Aster, Richard", "repository": "USAP-DC", "science_program": null, "title": "Giant Icebergs of the Ross Sea, in situ Drift and Weather Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609350"}, {"dataset_uid": "609349", "doi": "10.7265/N5445JD6", "keywords": "Geology/Geophysics - Other; Glaciology; Iceberg; Oceans; Ross Sea; Sea Ice; Seismometer; Southern Ocean", "people": "Bassis, Jeremy; Aster, Richard; MacAyeal, Douglas; Okal, Emile", "repository": "USAP-DC", "science_program": null, "title": "Iceberg Harmonic Tremor, Seismometer Data, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609349"}, {"dataset_uid": "002504", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Nascent Iceberg Webcam Images available during the deployment period", "url": "https://amrc.ssec.wisc.edu/data/iceberg.html"}, {"dataset_uid": "001685", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Incorporated Research Institutions for Seismology", "url": "http://www.iris.edu/data/sources.htm"}, {"dataset_uid": "609347", "doi": "10.7265/N57W694M", "keywords": "Antarctica; Geodesy; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ross Ice Shelf; Southern Ocean", "people": "MacAyeal, Douglas; Brunt, Kelly; King, Matthew", "repository": "USAP-DC", "science_program": null, "title": "Continuous GPS (static) Data from the Ross Ice Shelf, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609347"}, {"dataset_uid": "001684", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "This site mirrors the NSIDC website archive.", "url": "http://uwamrc.ssec.wisc.edu/"}, {"dataset_uid": "001639", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "collection of nascent rift images and description of station deployment", "url": "http://thistle.org/nascent/index.shtml"}, {"dataset_uid": "001598", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "The files contain a short header (number of data samples, sample rate, start time, stop time, channel title)The time series data then follow the header above.", "url": "http://nsidc.org"}, {"dataset_uid": "609354", "doi": "10.7265/N5BP00Q3", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ross Ice Shelf; Snow/ice; Snow/Ice; Temperature", "people": "Scambos, Ted; Sergienko, Olga; MacAyeal, Douglas; Muto, Atsu", "repository": "USAP-DC", "science_program": null, "title": "Ross Ice Shelf Firn Temperature, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609354"}, {"dataset_uid": "002568", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Iceberg Satellite imagery from stations and ice shelves (full data link not provided)", "url": "http://amrc.ssec.wisc.edu/"}], "date_created": "Fri, 19 Sep 2008 00:00:00 GMT", "description": "This award supports the study of the drift and break-up of Earth\u0027s largest icebergs, which were recently released into the Ross Sea of Antarctica as a result of calving from the Ross Ice Shelf. The scientific goals of the study are to determine the physics of iceberg motion within the dynamic context of ocean currents, winds, and sea ice, which determine the forces that drive iceberg motion, and the relationship between the iceberg and geographically and topographically determined pinning points on which the iceberg can ground. In addition, the processes by which icebergs influence the local environments (e.g., sea ice conditions near Antarctica, access to penguin rookeries, air-sea heat exchange and upwelling at iceberg margins, nutrient fluxes) will be studied. The processes by which icebergs generate globally far-reaching ocean acoustic signals that are detected within the global seismic (earthquake) sensing networks will also be studied. A featured element of the scientific research activity will be a field effort to deploy automatic weather stations, seismometer arrays and GPS-tracking stations on several of the largest icebergs presently adrift, or about to be adrift, in the Ross Sea. Data generated and relayed via satellite to home institutions in the Midwest will motivate theoretical analysis and computer simulation; and will be archived on an \"iceberg\" website (http://amrc.ssec.wisc.edu/amrc/iceberg.html) for access by scientists and the general public. At the most broad level, the study is justified by the fact that icebergs released by the Antarctic ice sheet represent the largest movements of fresh water within the natural environment (e.g., several of the icebergs to be studied, B15, C19 and others calved since 2000 CE, represent over 6000 cubic kilometers of fresh water-an amount roughly equivalent to 100 years of the flow of the Nile River). A better understanding of the impact of iceberg drift through the environment, and particularly the impact on ocean stratification and mixing, is essential to the understanding of the abrupt global climate changes witnessed by proxy during the ice age and of concern under conditions of future greenhouse warming. On a more specific level, the study will generate a knowledge base useful for the better management of Antarctic logistical resources (e.g., the shipping lanes to McMurdo Station) that can occasionally be influenced by adverse effects icebergs have on sea ice conditions.", "east": -178.0, "geometry": "POINT(-178 -78)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e MMS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e TEMPERATURE LOGGERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e TEMPERATURE PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "SEISMOLOGICAL STATIONS; Pressure; AWS; Velocity Measurements; Firn Temperature Measurements; Ice Velocity; Seismology; Ice Sheet Elevation; Harmonic Tremor; Ice Shelf Temperature; Wind Speed; Iceberg; Ice Surface Elevation; Non-Volcanic Tremor; Not provided; Antarctic; Iceberg Tremor; Solar Radiation; Antarctic Ice Sheet; Ross Ice Shelf; Elevation; GPS; Temperature Profiles; Ice Shelf Rift Camera; GROUND STATIONS; Latitude; GROUND-BASED OBSERVATIONS; Ice Shelf Weather; FIELD INVESTIGATION; ARWS; Surface Elevation; Ice Shelf Flow; Antarctica; FIELD SURVEYS; Camera; Seismometer; Iceberg Weather (aws); Ice Movement; Photo; Wind Direction; Iceberg Snow Accumulation; Tremor And Slow Slip Events; AWS Climate Data; Location; Iceberg Drift; Iceberg Collisions; Iceberg Tilt; Atmospheric Pressure; Iceberg Seismicity; Firn Temperature", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; Ross Ice Shelf", "north": -78.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Okal, Emile; Aster, Richard; Bassis, Jeremy; Kim, Young-Jin; Bliss, Andrew; Sergienko, Olga; Thom, Jonathan; Scambos, Ted; Muto, Atsu; Brunt, Kelly; King, Matthew; Parker, Tim; Okal, Marianne; Cathles, Mac; MacAyeal, Douglas", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e ARWS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS; Not provided; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "AMRDC; IRIS; NSIDC; Project website; USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research of Earth\u0027s Largest Icebergs", "uid": "p0000117", "west": -178.0}, {"awards": "0229638 Ponganis, Paul", "bounds_geometry": "POLYGON((163 -77,163.4 -77,163.8 -77,164.2 -77,164.6 -77,165 -77,165.4 -77,165.8 -77,166.2 -77,166.6 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.6 -78,166.2 -78,165.8 -78,165.4 -78,165 -78,164.6 -78,164.2 -78,163.8 -78,163.4 -78,163 -78,163 -77.9,163 -77.8,163 -77.7,163 -77.6,163 -77.5,163 -77.4,163 -77.3,163 -77.2,163 -77.1,163 -77))", "dataset_titles": "Diving Physiology and Behavior of Emperor Penguins", "datasets": [{"dataset_uid": "600031", "doi": "10.15784/600031", "keywords": "Antarctica; Biota; Oceans; Penguin; Southern Ocean", "people": "Ponganis, Paul", "repository": "USAP-DC", "science_program": null, "title": "Diving Physiology and Behavior of Emperor Penguins", "url": "https://www.usap-dc.org/view/dataset/600031"}], "date_created": "Mon, 31 Mar 2008 00:00:00 GMT", "description": "The emperor penguin, Aptenodytes forsteri, is the premier avian diver and a top predator in the Antarctic ecosystem. The routine occurrence of 500-m diver during foraging trips to sea is both a physiological and behavior enigma. The objectives of this project address how and why emperors dive as deep and long as they do. The project examines four major topics in the diving biology of emperor penguins: pressure tolerance, oxygen store management, end-organ tolerance of diving hypoxemia/ischemia, and deep-dive foraging behavior. These subjects are relevant to the role of the emperor as a top predator in the Antarctic ecosystem, and to critical concepts in diving physiology, including decompression sickness, nitrogen narcosis, shallow water blackout, hypoxemic tolerance, and extension of aerobic dive time. The following hypotheses will be tested: 1) Prevention of nitrogen narcosis and decompression sickness in emperor penguins is achieved by inhibition of pulmonary gas exchange at depth. 2) Shallow water black out does not occur because of greater cerebral hypoxemic tolerance, and, in deep dives, because of resumption of pulmonary gas exchange during final ascent. 3) The rate of depletion of the blood oxygen store is a function of depth of dive and heart rate. 4) The aerobic dive limit (ADL) reflects the onset of lactate accumulation in locomotory muscle, not total depletion of all oxygen stores. 5) Elevation of tissue antioxidant capacity and free-radical scavenging enzyme activities protect against the routine ischemia/reperfusion which occur during diving. 6) During deep dives, the Antarctic silverfish, Pleuorogramma antarcticum, is the primary prey item for emperors. \u003cbr/\u003e\u003cbr/\u003eIn addition to evaluation of the hypotheses below, the project has broader impacts in several areas such as partnership with foreign and national institutes and organizations (e.g., the National Institute of Polar Research of Japan, Centro de Investigacioines del Noroeste of Mexico, National Geographic, the University of Texas Southwestern Medical Center, and Sea World). Participation in National Geographic television documentaries will provide unique educational opportunities for the general public; development of state-of-the-art technology (e.g., blood oxygen electrode recorders, blood samplers, and miniaturized digital cameras) will lay the groundwork for future research by this group and others; and the effects of the B15 iceberg on breeding success of emperor penguins will continue to be evaluated with population censuses during planned fieldwork at several Ross Sea emperor penguin colonies.", "east": 167.0, "geometry": "POINT(165 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ponganis, Paul", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Diving Physiology and Behavior of Emperor Penguins", "uid": "p0000239", "west": 163.0}, {"awards": "9909436 Farley, Kenneth", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 11 Jul 2007 00:00:00 GMT", "description": "9909436 \u003cbr/\u003eFarley\u003cbr/\u003e\u003cbr/\u003eThis award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports an investigation of the uplift history of the Dry Valleys segment of the Transantarctic Mountains. The overall goal is to further constrain the exhumation history of the Transantarctic Mountains by using the newly developed apatite (U-Th)/He dating method on samples collected in vertical profiles. This approach, combined with existing apatite fission track information will constrain the rate and patterns of exhumation across the Transantarctic Mountains since their inception as a rift-flank uplift in the early Cenozoic.\u003cbr/\u003e\u003cbr/\u003eThis project will complement other projects and build on previous interpretations of the exhumation and tectonic history determined using apatite fission track thermochronology. It will bridge the gap between information on erosion rates determined from fission track thermochronology and from cosmogenic surface exposure dating and integrate the exhumation history of the mountains with their landscape evolution. As such, the results from this project will address an outstanding problem in Antarctic science; namely the stability of the East Antarctic Ice Sheet, and the timing of the transition from a \"warm\" dynamic ice sheet to a cold polar ice sheet. Highly relevant to this issue is the landscape evolution of the Transantarctic Mountains because many diverse lines of evidence for the rate of landscape evolution have been used to argue for a dynamic ice sheet up until either the Pliocene (the \"dynamic\" ice sheet model) or the middle Miocene (the \"stable\" ice sheet model). Understanding the past stability or dynamic fluctuations of the East Antarctic ice sheet with respect to the climate record is, of course, important for understanding how the present ice sheet may respond to global warming.\u003cbr/\u003e\u003cbr/\u003eThe specific objective of this project is to determine apatite (U-Th)/He age versus elevation trends for a number of vertical profiles from locations within the Transantarctic Mountain front and across the structural grain of the range. Fission track data already exist for all of these profiles, with apatite fission track ages ranging from 150-30 Ma. The greater precision of the (U-Th)/He technique and the fact it records information at lower temperatures (closure temperature of ~70 degrees Celsius; limits of 40-85 degrees Celsius for the He partial retention zone) will allow examination of the exhumation history of the TAM in more detail from ca 130 Ma to ~20 Ma. Another facet is to examine areas where Cretaceous exhumation is recorded and areas where the fission track profiles indicate periods of thermal and tectonic stability and minimal erosion throughout the Cretaceous. The variation of timing of the onset of more rapid exhumation accompanying uplift and formation of the Transantarctic Mountains in the early Cenozoic will also be examined.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Farley, Kenneth", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Exhumation of the Transantarctic Mountains: Constraints from (U-Th)/He Dating of Apatites", "uid": "p0000281", "west": null}, {"awards": "0229573 Mayewski, Paul", "bounds_geometry": null, "dataset_titles": "Antarctic Mean Annual Temperature Map", "datasets": [{"dataset_uid": "609318", "doi": "10.7265/N51C1TTV", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Temperature", "people": "Dixon, Daniel A.", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Mean Annual Temperature Map", "url": "https://www.usap-dc.org/view/dataset/609318"}], "date_created": "Wed, 04 Apr 2007 00:00:00 GMT", "description": "This award supports a science management office for a pilot ice-core drilling and analysis program to test the feasibility of obtaining well-dated, high-resolution isotope and chemistry records from East Antarctica. Shallow ice cores will be obtained from two locations: 1) ~100 km from South Pole towards the Pole of Inaccessibility, as an extension of the Byrd Station-to-South Pole ITASE traverse [International Trans Antarctic Scientific Expedition]; 2) at Taylor Dome, near the original deep coring site, and (3) possibly at AGO 3 and AGO 4 as part of a logistics traverse to these sites. All of the cores collected will be sampled at very high resolution (~1/2 cm) and analyzed for major ions. Results from this calibration work, along with those from another project that is analyzing stable isotopes will be used to help plan a program of larger scope, with the objective of mapping the spatial expression of climate variability in East Antarctica. Funds are also provided to organize a community workshop for coordination of the second phase of US ITASE and for one workshop per year for two years dedicated to writing and preparation of scientific papers from phase one of US ITASE. In addition, route selection activities for the follow-on traverse activities in East Antarctica will be conducted using satellite image mapping. A summary document will be produced and made available to the community to help with planning of related field programs (e.g. deep ice radar, firn radar profiling, atmospheric chemistry, ice coring, snow surface properties for satellite observations, ice surface elevation and mass balance).", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOCOUPLES \u003e THERMOCOUPLES; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS", "is_usap_dc": true, "keywords": "Antarctic Ice Sheet; West Antarctica; FIELD INVESTIGATION; West Antarctic Ice Sheet; Antarctic; Temperature; East Antarctic Plateau; FIELD SURVEYS; Antarctica; Not provided", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; West Antarctica; West Antarctic Ice Sheet; East Antarctic Plateau", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Dixon, Daniel A.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "A Science Management Office for the U. S. Component of the International Trans Antarctic Expedition (US ITASE SMO)A Collaborative Pgrm of Research from S. Pole to N. Victoria Land", "uid": "p0000199", "west": null}, {"awards": "0408475 Harry, Dennis", "bounds_geometry": "POINT(-175 -85)", "dataset_titles": null, "datasets": null, "date_created": "Tue, 06 Mar 2007 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to apply numerical modeling to constrain the uplift and exhumation history of the Transantarctic Mountains. The Transantarctic Mountains (TAM) are an anomalously high (\u003e4500 m) and relatively broad (up to 200 km) rift-flank uplift demarcating the boundary between East and West Antarctica. Dynamics of the East Antarctic ice-sheet and the climate are affected by the mountain range, and an understanding of the uplift history of the mountain range is critical to understanding these processes. This project will constrain the uplift and denudation history of the Transantarctic Mountains based on thermo-mechanical modeling held faithful to thermochronological, geological, and geophysical data. The research will be the primary responsibility of post-doctoral researcher Audrey Huerta, working in collaboration with Dennis Harry, 1 undergraduate student, and 1 graduate student.\u003cbr/\u003e\u003cbr/\u003eThermochronologic evidence of episodic Cretaceous through Cenozoic rapid cooling within the TAM indicates distinct periods of uplift and exhumation. However, a more detailed interpretation of the uplift history is difficult without an understanding of the evolving thermal structure and topography of the TAM prior to and during uplift. These aspects of the mountain range can best be constrained by an understanding of the evolving regional tectonic setting. Proximity of the TAM to the West Antarctic Rift System (WARS) suggests a link between uplift of the TAM and extension within the WARS.\u003cbr/\u003e\u003cbr/\u003eThe project will integrate two techniques: lithospheric-scale geodynamic modeling and crustal-scale thermal modeling. The lithospheric-scale deformational and thermal evolution of TAM will be modeled by a finite element model designed to track the thermal and deformational response of the Antarctic lithosphere to a protracted extensional environment. Previous investigators have linked the high elevation and broad width of the TAM to a deep level of necking in which mantle thinning is offset from the location of crustal extension. In this study, a three-dimensional dynamic model will be used to track the uplift and thermal evolution of the TAM in a setting in which necking is at a deep level, and in which extension within the crust and extension within the mantle are offset. Velocity boundary conditions applied to the edges of the model will vary through time to simulate the extensional and transtensional evolution of the WARS. Because the model is dynamic, the thermal structure, strength, and strain field, evolve naturally in response to these initial and boundary conditions.\u003cbr/\u003e\u003cbr/\u003eDynamic models are uniquely suited to understanding lithospheric deformational and thermal evolution, however kinematic models are best suited for addressing the detailed thermal and exhumation history of crustal uplifts. Thus, a 2-dimensional kinematic-thermal model will be designed to simulate the uplift history of the TAM and the resulting erosional, topographic, and thermal evolution. Uplift will be modeled as normal-fault movement on a set of discrete fault planes with uplift rate varying through time. Erosion will be modeled as a diffusive process in which erosion rates can be varied through time (simulating climate changes), and vary spatially as a linear function of gradient and distance from the drainage divide. Synthetic time-temperature (t-T) histories will be calculated to compare model results to thermochronologic data.", "east": -175.0, "geometry": "POINT(-175 -85)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": -85.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC; PHANEROZOIC \u003e MESOZOIC \u003e CRETACEOUS; PHANEROZOIC \u003e CENOZOIC \u003e PALEOGENE", "persons": "Huerta, Audrey D.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -85.0, "title": "Uplift and Exhumation of the Transantarctic Mountains and Relation to Rifting in West Antarctica", "uid": "p0000728", "west": -175.0}, {"awards": "0229292 Cressie, Noel", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 28 Feb 2007 00:00:00 GMT", "description": "Ice streams are believed to play a major role in determining the response of their parent ice sheet to climate change, and in determining global sea level by serving as regulators on the fresh water stored in the ice sheets. Ice streams are characterized by rapid, laterally confined flow which makes them uniquely identifiable within the body of the more slowly and more homogeneously flowing ice sheet. But while these characteristics enable the identification of ice streams, the processes which control ice-stream motion and evolution, and differences among ice streams in the polar regions, are only partially understood. Understanding the relative importance of lateral and basal drags, as well as the role of gradients in longitudinal stress, is essential for developing models for future evolution of the polar ice\u003cbr/\u003esheets. In this project, physical statistical models will be used to explore the processes that control ice-stream flow, and to compare these processes between seemingly different ice-stream systems. In particular, Whillans Ice Stream draining into the Ross Ice Shelf, will be compared with Recovery and RAMP glaciers draining into the Ronne-Filchner Ice Shelf, and the Northeast Ice Stream in Greenland. Geophysical models lie at the core of the approach, but are embellished by modeling various components of variability statistically. One important component comes from the uncertainty in observations on basal elevation, surface elevation, and surface velocity. In this project new observational data collected using remote-sensing techniques will be used. The various components, some of which are spatial, are combined hierarchically using Bayesian statistical methodology. All these components will be combined mathematically into a physical statistical model that yields the posterior distribution for basal, longitudinal, and lateral stress fields, and velocity fields, conditional on the data. Inference based on this distribution will be carried out via Markov chain Monte Carlo techniques, to obtain estimates of these unknown fields along with uncertainty measures associated with them.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Surface Elevation; Stress Field; Basal Elevation; DHC-6", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Cressie, Noel; Jezek, Kenneth; Berliner, L.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6", "repositories": null, "science_programs": null, "south": null, "title": "Dynamics of Ice Streams: A Physical Statistical Approach", "uid": "p0000711", "west": null}, {"awards": "0125579 Cuffey, Kurt; 0126202 Blankenship, Donald", "bounds_geometry": "POLYGON((160 -77.6,160.25 -77.6,160.5 -77.6,160.75 -77.6,161 -77.6,161.25 -77.6,161.5 -77.6,161.75 -77.6,162 -77.6,162.25 -77.6,162.5 -77.6,162.5 -77.63,162.5 -77.66,162.5 -77.69,162.5 -77.72,162.5 -77.75,162.5 -77.78,162.5 -77.81,162.5 -77.84,162.5 -77.87,162.5 -77.9,162.25 -77.9,162 -77.9,161.75 -77.9,161.5 -77.9,161.25 -77.9,161 -77.9,160.75 -77.9,160.5 -77.9,160.25 -77.9,160 -77.9,160 -77.87,160 -77.84,160 -77.81,160 -77.78,160 -77.75,160 -77.72,160 -77.69,160 -77.66,160 -77.63,160 -77.6))", "dataset_titles": "Ablation Rates of Taylor Glacier, Antarctica; Stable Isotopes of Ice on the Surface of Taylor Glacier, Antarctica; Surface Velocities of Taylor Glacier, Antarctica", "datasets": [{"dataset_uid": "609326", "doi": "10.7265/N5N29TW8", "keywords": "Ablation Poles; Ablation Rates; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Taylor Glacier", "people": "Kavanaugh, Jeffrey; Bliss, Andrew; Cuffey, Kurt M.", "repository": "USAP-DC", "science_program": null, "title": "Ablation Rates of Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609326"}, {"dataset_uid": "609324", "doi": "10.7265/N5RV0KM7", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Velocity; Taylor Glacier", "people": "Aciego, Sarah; Cuffey, Kurt M.; Bliss, Andrew; Kavanaugh, Jeffrey", "repository": "USAP-DC", "science_program": null, "title": "Surface Velocities of Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609324"}, {"dataset_uid": "609323", "doi": "10.7265/N5WM1BBZ", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Isotope; Taylor Glacier", "people": "Kavanaugh, Jeffrey; Bliss, Andrew; Cuffey, Kurt M.; Aciego, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Stable Isotopes of Ice on the Surface of Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609323"}], "date_created": "Tue, 13 Feb 2007 00:00:00 GMT", "description": "This award supports a project to significantly improve our understanding of how Taylor Glacier flows and responds to climate changes. Taylor Glacier drains the Taylor Dome region of the East Antarctic Ice Sheet and terminates in Taylor Valley, one of the Dry Valleys of Victoria Land. It provides a crucial and unique link between two intensively studied Antarctic environments: the Taylor Dome, from which a 130 kyr ice core paleoclimate record has recently been extracted, and the Dry Valleys, a pivotal Long-Term Ecological Research (LTER) site and a focus of research on geomorphology and glacial geology. The proposed work will thus make an important contribution to ongoing efforts to exploit the Taylor Dome - Dry Valleys system to build a uniquely comprehensive view of regional long-term environmental changes. The proposed work has two complementary components: field research and numerical modelling. Two field seasons will be used to measure velocity, surface strain rate, mass balance, ice thickness, glacier bed reflectance, and subglacial topography, along a nearly complete longitudinal transect of the Taylor Glacier, and along select cross-valley transects. This information will be used to constrain numerical models of ice and heat flow for the Taylor Dome - Taylor Glacier system. These calibrated models will be used to analyze the time-dependent response of the Taylor Glacier to climate changes. The synthesis of results will be aimed to improve understanding of the glacial geomorphology of Taylor Valley, and to illuminate impacts on the Taylor Valley lakes ecosystem. The project will have a major role in furthering the careers of a doctoral-level graduate student and a post-doctoral researcher.", "east": 162.5, "geometry": "POINT(161.25 -77.75)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Glacier; Glacier Surface; Glacier Surface Ablation; Ice Velocity; Velocity Measurements; Taylor Glacier; Isotope; GPS; Ice Sheet Elevation; Not provided; FIELD INVESTIGATION; Ice Surface Elevation; Ablation; Oxygen Isotope; Elevation; Deuterium; GROUND-BASED OBSERVATIONS; Glacier Surface Ablation Rate; Surface Elevation", "locations": "Taylor Glacier", "north": -77.6, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Bliss, Andrew; Kavanaugh, Jeffrey; Aciego, Sarah; Cuffey, Kurt M.; Morse, David L.; Blankenship, Donald D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Collaborative Research: Dynamics and Climatic Response of the Taylor Glacier System", "uid": "p0000084", "west": 160.0}, {"awards": "0230197 Holt, John", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment; Amundsen Sea Sector Data Set; Subglacial Topography: Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica", "datasets": [{"dataset_uid": "601673", "doi": "10.15784/601673", "keywords": "Antarchitecture; Antarctica; Ice Penetrating Radar; Isochron; Layers; Radar; Radioglaciology; Thwaites Glacier", "people": "Jackson, Charles; Muldoon, Gail R.; Young, Duncan A.; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment", "url": "https://www.usap-dc.org/view/dataset/601673"}, {"dataset_uid": "609292", "doi": "10.7265/N59W0CDC", "keywords": "AGASEA; Airborne Radar; Amundsen Sea; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Solid Earth", "people": "Holt, John W.; Young, Duncan A.; Corr, Hugh F. J.; Blankenship, Donald D.; Morse, David L.; Vaughan, David G.", "repository": "USAP-DC", "science_program": null, "title": "Subglacial Topography: Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609292"}, {"dataset_uid": "609312", "doi": "10.7265/N5J9649Q", "keywords": "Amundsen Sea; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology", "people": "Fastook, James L.", "repository": "USAP-DC", "science_program": null, "title": "Amundsen Sea Sector Data Set", "url": "https://www.usap-dc.org/view/dataset/609312"}], "date_created": "Mon, 01 Jan 2007 00:00:00 GMT", "description": "This award supports a comprehensive aerogeophysical survey of the Amundsen Sea Embayment (ASE) in West Antarctica. The University of Texas will join forces with the British Antarctic Survey to use both US and UK aircraft and instrumentation to achieve this survey. Analyses of the new aerogeophysical\u003cbr/\u003edata will result in the generation of maps of ice sheet surface, volume and bottom-interface characteristics. These maps will support the efforts of a community of US and international researchers to assess the present and predict the future behavior of the ice sheet in the ASE.\u003cbr/\u003eThe West Antarctic ice sheet has been the subject of intensive interdisciplinary study by both the European and U.S. scientific communities since it was recognized to be a potential source for up to 5 meters of sea\u003cbr/\u003elevel rise, possibly on short timescales. In terms of ice discharge, the ASE is the largest drainage system in West Antarctica. Yet it has been comparatively unstudied, primarily due to its remoteness from logistical\u003cbr/\u003ecenters. The ASE is the only major drainage to exhibit significant elevation change over the period of available satellite observations. Present knowledge of the ice thickness and subglacial boundary conditions in the ASE are insufficient to understand its evolution or its sensitivity to climatic change.\u003cbr/\u003eThe results from our surveys are required to achieve the fundamental research objectives outlined by the US scientific community in an ASE Science Plan. The surveys and analyses will be achieved through international collaboration and will involve graduate students, undergraduates and high school apprentices.\u003cbr/\u003eThrough its potential for influencing sea level, the future behavior of the ASE is of primary societal importance. Given the substantial public and scientific interest that recent reports of change in West Antarctica have generated, we expect fundamental research in the Amundsen Sea Embayment, enabled by our surveys, will have widespread impact.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RADAR ALTIMETERS", "is_usap_dc": true, "keywords": "Thwaites Glacier; Ice Velocity; Ablation; Amundsen Sea; Pine Island Glacier; Elevation; Antarctica (agasea); Ice Sheet Elevation; West Antarctic Ice Sheet; Ice Temperature; Amundsen Basin; Subglacial Topography; Ice Melt; West Antarctica; Velocity Measurements; Snow Accumulation; Antarctica; Bedrock Elevation; Modeling", "locations": "Antarctica; West Antarctica; Amundsen Basin; Pine Island Glacier; Thwaites Glacier; West Antarctic Ice Sheet; Amundsen Sea", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Blankenship, Donald D.; Fastook, James L.; Corr, Hugh F. J.; Holt, John W.; Morse, David L.; Vaughan, David G.; Young, Duncan A.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA)", "uid": "p0000243", "west": -180.0}, {"awards": "0126149 Liu, Hongxing", "bounds_geometry": null, "dataset_titles": "Access to Antarctic coastline coverage and reference documents; Access to Antarctic snow zone coverage and reference documents; Access to boundary file and reference documents; Access to ice velocity data and reference documents; Access to snow melt extent image files and reference documents", "datasets": [{"dataset_uid": "001779", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to ice velocity data and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}, {"dataset_uid": "001640", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to snow melt extent image files and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}, {"dataset_uid": "001350", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to boundary file and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}, {"dataset_uid": "001351", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to Antarctic coastline coverage and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}, {"dataset_uid": "001352", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to Antarctic snow zone coverage and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}], "date_created": "Tue, 15 Aug 2006 00:00:00 GMT", "description": "This award supports a project to characterize the morphology, ice motion velocity and mass balance of Lambert Glacier, Antarctica using state-of-the-art remote sensing and GIS techniques. Lambert Glacier is the largest ice stream in the world. Because of its size, it plays a fundamental role in the study of glacial dynamics and mass budget in response to present and future climate changes. Along with the bedrock topography and ice thickness data derived from airborne radio echo soundings and snow accumulation data compiled from ground-based measurements, the dynamic behavior and mass balance of the Lambert glacial basin in a Geographic Information Systems (GIS) environment will be examined. Specific objectives are to: (1) Extract two-dimensional ice velocity field over the entire Lambert glacial basin using speckle matching and differential interferometric SAR (InSAR) techniques, and produce a full coverage of radar coherence map over the drainage basin. With the ice velocity data, calculate the strain rate field from the initiation areas of the ice stream onto the Amery Ice Shelf; (2) Derive high-resolution digital elevation model (DEM) over the Lambert glacial drainage basin using SAR stereo, differential interferometric SAR, and GLAS laser altimetry techniques. Based on the DEM, extract ice divides and ice flow directions, delineate the snow catchment basin, and calculate the balance deformation velocity and the basal shear stress; (3) Interpolate traverse ice thickness data collected by Australian and Russian airborne radio echo sounding surveys into a regular grid, and derive a regular grid of bedrock topography in combination with the DEM; (4) Integrate newly derived ice velocity and ice thickness data as well as snow accumulation rate data compiled from previous ground-based measurements into a geographic information system (GIS), and calculate the mass flux through the ice stream at the grounding lines and net mass balance throughout the drainage basin. With these new measurements and calculations derived from advanced remote sensing techniques, we will be able to improve our understanding of dynamic behavior and current mass balance status of the Lambert glacial basin, gain an insight on the relationship between ice mass change and the variation in regional and global climate at decadal scale, and provide an evaluation on the issue of whether the Lambert glacier basin is subject to surging in the context of future climate change.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e SMMR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e SSM/I; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IFSAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR", "is_usap_dc": false, "keywords": "DEM; Not provided; RADARSAT-1", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Liu, Hongxing; Jezek, Kenneth", "platforms": "Not provided; OTHER \u003e MODELS \u003e DEM; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e RADARSAT \u003e RADARSAT-1", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": null, "title": "High-Resolution Modeling of Surface Topography, Ice Motion, and Mass Balance in the Lambert Glacial Basin using Radar Remote Sensing and GIS Techniques", "uid": "p0000204", "west": null}, {"awards": "0125570 Scambos, Ted; 0125276 Albert, Mary", "bounds_geometry": null, "dataset_titles": "Access AGDC data online by navigating to Data Sets. Data sets are arranged by Principal Investigators. Access data that are combined into multiple data sets, or compiled products.; AWS Data: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation; GPR and GPS Data: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation; Snow and Firn Permeability: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation; The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.", "datasets": [{"dataset_uid": "609283", "doi": "10.7265/N5K935F3", "keywords": "Antarctica; Atmosphere; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Meteorology; Snow/ice; Snow/Ice", "people": "Fahnestock, Mark; Haran, Terry; Bauer, Rob; Scambos, Ted", "repository": "USAP-DC", "science_program": null, "title": "AWS Data: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "url": "https://www.usap-dc.org/view/dataset/609283"}, {"dataset_uid": "001669", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Access AGDC data online by navigating to Data Sets. Data sets are arranged by Principal Investigators. Access data that are combined into multiple data sets, or compiled products.", "url": "http://nsidc.org/data/agdc_investigators.html"}, {"dataset_uid": "001343", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.", "url": "https://nsidc.org/data/agdc/"}, {"dataset_uid": "609282", "doi": "10.7265/N5Q23X5F", "keywords": "Antarctica; East Antarctic Plateau; Glaciology; GPR; GPS; Navigation; Paleoclimate; Snow/ice; Snow/Ice", "people": "Scambos, Ted; Bauer, Rob", "repository": "USAP-DC", "science_program": null, "title": "GPR and GPS Data: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation", "url": "https://www.usap-dc.org/view/dataset/609282"}, {"dataset_uid": "609299", "doi": "10.7265/N5639MPD", "keywords": "Antarctica; East Antarctic Plateau; Glaciology; Physical Properties; Snow/ice; Snow/Ice", "people": "Cathles, Mac; Courville, Zoe; Albert, Mary R.", "repository": "USAP-DC", "science_program": null, "title": "Snow and Firn Permeability: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation", "url": "https://www.usap-dc.org/view/dataset/609299"}], "date_created": "Wed, 04 Jan 2006 00:00:00 GMT", "description": "This award supports a program of field surveys of an area within the large, well-developed megadune field southeast of Vostok station. The objectives are to determine the physical characteristics of the firn across the dunes, including typical climate indicators such as stable isotopes and major chemical species, and to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. Field study will consist of surface snowpit and shallow core sampling, ground penetrating radar (GPR) profiling, GPS topographic and ice motion surveys, AWS installation, accumulation/ ablation measurements, subsurface temperature, and firn permeability studies. Field work in two successive seasons is proposed. Continent-wide remote sensing studies of the dunes will be continued, using the new group of instruments that are now, or will shortly be available (e.g., MODIS, MISR, GLAS, AMSR). The earlier study of topographic, passive microwave, and SAR characteristics will be extended, with the intent of determining the relationships of dune amplitude and wavelength to climate parameters, and further development of models of dune formation. Diffusion, ventilation, and vapor transport processes within the dune firn will be modeled as well. A robust program of outreach is planned and reporting to inform both the public and scientists of the fundamental in-situ and remote sensing characteristics of these uniquely Antarctic features will be an important part of the work. Because of their extreme nature, their broad extent, and their potential impact on the climate record, it is important to improve our current understanding of these. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on past terrestrial climate, or to processes active on other planets. Megadunes are likely to represent an end-member in firn diagenesis, and as such, may have much to teach us about the processes involved.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ICE AUGERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e SNOWPACK TEMPERATURE PROBE; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e PERMEAMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e AIR PERMEAMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e RADIO \u003e ARGOS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e WIND PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e DENSIOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e GAUGES \u003e BALANCE", "is_usap_dc": true, "keywords": "Internal Layering; ICESAT; Vapor-Redeposition; Antarctic; Wind Speed; FIELD INVESTIGATION; Surface Morphology; Antarctica; GROUND-BASED OBSERVATIONS; ARWS; Polar Firn Air; Microstructure; Gas Diffusivity; WEATHER STATIONS; Surface Temperatures; RADARSAT-2; Ice Core; Wind Direction; AWS; Ice Sheet; Snow Pit; Dunefields; Climate Record; Megadunes; GROUND STATIONS; METEOROLOGICAL STATIONS; Antarctic Ice Sheet; Density; Atmospheric Pressure; Firn Permeability; FIELD SURVEYS; Radar; Permeability; Field Survey; Firn Temperature Measurements; Snow Megadunes; Thermal Conductivity; LANDSAT; Firn; Ice Core Interpretation; East Antarctic Plateau; Not provided; Surface Winds; Sublimation; Snow Density; Ice Climate Record; Glaciology; Snow Permeability; Air Temperature; Paleoenvironment; Automated Weather Station", "locations": "Antarctica; Antarctic Ice Sheet; Antarctic; East Antarctic Plateau", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Courville, Zoe; Cathles, Mac; Scambos, Ted; Bauer, Rob; Fahnestock, Mark; Haran, Terry; Shuman, Christopher A.; Albert, Mary R.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e ARWS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e METEOROLOGICAL STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e WEATHER STATIONS; Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e ICE, CLOUD AND LAND ELEVATION SATELLITE (ICESAT) \u003e ICESAT; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e RADARSAT \u003e RADARSAT-2", "repo": "USAP-DC", "repositories": "NSIDC; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "uid": "p0000587", "west": null}, {"awards": "9909518 Raymond, Charles", "bounds_geometry": "POLYGON((-154 -80,-152 -80,-150 -80,-148 -80,-146 -80,-144 -80,-142 -80,-140 -80,-138 -80,-136 -80,-134 -80,-134 -80.5,-134 -81,-134 -81.5,-134 -82,-134 -82.5,-134 -83,-134 -83.5,-134 -84,-134 -84.5,-134 -85,-136 -85,-138 -85,-140 -85,-142 -85,-144 -85,-146 -85,-148 -85,-150 -85,-152 -85,-154 -85,-154 -84.5,-154 -84,-154 -83.5,-154 -83,-154 -82.5,-154 -82,-154 -81.5,-154 -81,-154 -80.5,-154 -80))", "dataset_titles": "Compilation of Antarctic Radar Data, Siple Coast, 2000-2002", "datasets": [{"dataset_uid": "609274", "doi": "10.7265/N5736NTS", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Radar; Siple Coast", "people": "Catania, Ginny; Conway, Howard; Raymond, Charles", "repository": "USAP-DC", "science_program": null, "title": "Compilation of Antarctic Radar Data, Siple Coast, 2000-2002", "url": "https://www.usap-dc.org/view/dataset/609274"}], "date_created": "Fri, 03 Jun 2005 00:00:00 GMT", "description": "9909518\u003cbr/\u003eRaymond\u003cbr/\u003e\u003cbr/\u003eThis award provides support for three years of funding to study the scar-like features that are well-known from the Siple Coast ice stream system in West Antarctica. The objective of the proposed field work is to identify the nature of several as yet unvisited scars, and to further characterize previously-identified margin scars that are poorly dated. Advanced Very High Resolution Radiometer (AVHRR) and Radarsat image data will be used to locate and map the features, and place them in a regional context. The study seeks to describe the recent history of the Siple Coast glaciers and investigate the causes of their changes in configuration. The main investigative tools will be low-frequency RES and high-frequency ground penetrating radar (GPR) profiles to image internal layers and measure depths to buried crevasses or disrupted layering. This, coupled with accumulation rates determined from shallow ice cores, will provide \"shutdown\" ages for the margin features. The field data will provide input parameters for simple models of ice flow for margins and inter-ice stream ridges during active shearing and after shutdown. This modeling will estimate the initial elevation of a scar at the time of shut down and the corresponding ice stream elevation at that time.", "east": -134.0, "geometry": "POINT(-144 -82.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e AVHRR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": true, "keywords": "Ice Stream; West Antarctic Ice Sheet; Radarsat; Siple Dome; Radar; Ice Floe; Not provided; AVHRR; Siple Coast; Ice Stratigraphy; Margin Scars; NOAA POES; RAMP; GROUND-BASED OBSERVATIONS; Ice Flow; Accumulation Rate; Antarctic Ice Sheet; RADARSAT-1", "locations": "Siple Coast; Antarctic Ice Sheet; Siple Dome; West Antarctic Ice Sheet", "north": -80.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Raymond, Charles; Conway, Howard; Catania, Ginny", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e POLAR ORBITING ENVIRONMENTAL SATELLITES (POES) \u003e NOAA POES; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e RADARSAT \u003e RADARSAT-1", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Collaborative Research:History and Evolution of the Siple Coast Ice Stream Systems as Recorded by Former Shear-Margin Scars", "uid": "p0000275", "west": -154.0}, {"awards": "0088035 Arcone, Steven", "bounds_geometry": "POLYGON((-135 -75,-130.5 -75,-126 -75,-121.5 -75,-117 -75,-112.5 -75,-108 -75,-103.5 -75,-99 -75,-94.5 -75,-90 -75,-90 -76.5,-90 -78,-90 -79.5,-90 -81,-90 -82.5,-90 -84,-90 -85.5,-90 -87,-90 -88.5,-90 -90,-94.5 -90,-99 -90,-103.5 -90,-108 -90,-112.5 -90,-117 -90,-121.5 -90,-126 -90,-130.5 -90,-135 -90,-135 -88.5,-135 -87,-135 -85.5,-135 -84,-135 -82.5,-135 -81,-135 -79.5,-135 -78,-135 -76.5,-135 -75))", "dataset_titles": "US International Trans-Antarctic Scientific Expedition 400 MHz Subsurface Radar Profiles; US International Trans-Antarctic Scientific Expedition (US ITASE): GPR Profiles and Accumulation Mapping", "datasets": [{"dataset_uid": "609269", "doi": "10.7265/N5GH9FV6", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; ITASE; WAIS", "people": "Kaspari, Susan; Hamilton, Gordon S.; Mayewski, Paul A.; Spikes, Vandy Blue; Arcone, Steven", "repository": "USAP-DC", "science_program": "ITASE", "title": "US International Trans-Antarctic Scientific Expedition (US ITASE): GPR Profiles and Accumulation Mapping", "url": "https://www.usap-dc.org/view/dataset/609269"}, {"dataset_uid": "609254", "doi": "10.7265/N58050J7", "keywords": "Airborne Radar; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; ITASE; Radar; WAIS", "people": "Arcone, Steven", "repository": "USAP-DC", "science_program": null, "title": "US International Trans-Antarctic Scientific Expedition 400 MHz Subsurface Radar Profiles", "url": "https://www.usap-dc.org/view/dataset/609254"}], "date_created": "Sun, 01 May 2005 00:00:00 GMT", "description": "This award supports continued acquisition of high resolution, radar reflection profiles of the snow and ice stratigraphy between core sites planned along traverse routes of the U.S. component of the International\u003cbr/\u003eTrans-Antarctic Scientific Expedition (U.S.-ITASE). The purpose is to use the profiles to establish the structure and continuity of firn stratigraphic horizons over hundreds of kilometers and to quantitatively\u003cbr/\u003eassess topographic and ice movement effects upon snow deposition. Other objectives are to establish the climatic extent that a single site represents and to investigate the cause of firn reflections. The radar\u003cbr/\u003ewill also be used to identify crevasses ahead of the traverse vehicles in order to protect the safety of the scientists and support personnel on the traverse. Collaboration with other ITASE investigators will use the radar horizons as continuous isochronic references fixed by the core dating to calculate historical snow accumulation rates. The primary radar system uses 400-MHz (center frequency) short-pulse antennas, which (with processing) gives the penetration of 50-70 meters. This is the depth which is required to exceed the 200-year deposition horizon along the traverse routes. Profiles at 200 MHz will also be recorded if depths greater than 70 meters are of interest. Processing will be accomplished by data compression (stacking) to reveal long distance stratigraphic deformation, range gain corrections to give proper weight to signal amplitudes, and GPS corrections to adjust the records for the present ice sheet topography. Near surface stratigraphy will allow topographic and ice movement effects to be separated. This work is critical to the success of the U.S.-ITASE program.", "east": -90.0, "geometry": "POINT(-112.5 -82.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": true, "keywords": "Ice; Radar Echo Sounder; USAP-DC; US ITASE; Ice Cover; West Antarctic Ice Sheet; Snow Accumulation; CRREL; Antarctic Ice Sheet; Radar; Ice Surveys; ITASE; Ice Sheet; Radar Echo Sounding; GROUND-BASED OBSERVATIONS; Ice Thickness; Mass Balance", "locations": "Antarctic Ice Sheet; West Antarctic Ice Sheet", "north": -75.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Spikes, Vandy Blue; Arcone, Steven; Kaspari, Susan; Hamilton, Gordon S.; Mayewski, Paul A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "High Resolution Radar Profiling of the Snow and Ice Stratigraphy beneath the ITASE Traverses, West Antarctic Ice Sheet", "uid": "p0000146", "west": -135.0}, {"awards": "8919147 Elliot, David", "bounds_geometry": null, "dataset_titles": "Ice Thickness and Surface Elevation, Southeastern Ross Embayment, West Antarctica", "datasets": [{"dataset_uid": "609099", "doi": "10.7265/N5WW7FKC", "keywords": "Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ross Embayment; West Antarctica", "people": "Brozena, J. M.; Studinger, Michael S.; Hodge, S. M.; Kempf, Scott D.; Morse, David L.; Peters, M. E.; Finn, C. A.; Blankenship, Donald D.; Bell, Robin; Behrendt, J. C.", "repository": "USAP-DC", "science_program": null, "title": "Ice Thickness and Surface Elevation, Southeastern Ross Embayment, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609099"}], "date_created": "Wed, 17 Mar 2004 00:00:00 GMT", "description": "This award will support a combined airborne radar and aeromagnetic survey of two 220 x 330 km regions between the Transantarctica Mountains and Marie Byrd Land during the 1990-91 and 1991-92 field seasons. These efforts will address significant problems identified in the Ross Transect Zone (RTZ) by the National Academy of Sciences (1986) report \"Antarctic Solid Earth Sciences Research,\" and by the report to NSF \"A Plan for a United States Program to Study the Structure and Evolution of the Antarctic Lithosphere (SEAL).\" The surveys will be flown using the NSF/TUD radar and an areomagnetics system mounted in a light aircraft. The grid spacing will be 5 km and navigation will be by radiopositioning. In addition to maps of subglacial topography and magnetic intensity, attempts will be made to reconstruct the position of subglacial diffractors in three dimensions. This reconstruction should give new information about the distribution of escarpments and therefore the tectonic relationships within the region, especially when combined with the magnetic results. These experiments will be conducted by the Byrd Polar Research Center of the Ohio State University and the Water Resources and Geological Divisions of the U.S. Geological Survey.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": true, "keywords": "Subglacial Topography; SOAR; Airborne Laser Altimeters; Ross Embayment; West Antarctica; Ice Stream; Surface Morphology; Airborne Laser Altimetry; Aerogeophysics; Ice Sheet Thickness; Airborne Radar Sounding; Ice Thickness; West Antarctic Ice Sheet; Ice Surface Elevation; Casertz", "locations": "Ross Embayment; West Antarctica; West Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Elliot, David; Bell, Robin; Blankenship, Donald D.; Brozena, J. M.; Finn, C. A.; Hodge, S. M.; Kempf, Scott D.; Behrendt, J. C.; Morse, David L.; Peters, M. E.; Studinger, Michael S.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Corridor Aerogeophysics of the Southeastern Ross Transect Zone (CASERTZ), Antarctica", "uid": "p0000056", "west": null}, {"awards": "9909469 Scambos, Ted", "bounds_geometry": null, "dataset_titles": "Ice Motion and Topography Near Margin Areas of Kamb Ice Stream, Antarctica", "datasets": [{"dataset_uid": "609141", "doi": "10.7265/N5WS8R52", "keywords": "Antarctica; Geodesy; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Kamb Ice Stream", "people": "Raymond, Charles; Scambos, Ted; Catania, Ginny; Conway, Howard; Gades, Anthony", "repository": "USAP-DC", "science_program": null, "title": "Ice Motion and Topography Near Margin Areas of Kamb Ice Stream, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609141"}], "date_created": "Fri, 01 Aug 2003 00:00:00 GMT", "description": "9909469\u003cbr/\u003eScambos\u003cbr/\u003e\u003cbr/\u003eThis award provides support for three years of funding to study the scar-like features that are well-known from the Siple Coast ice stream system in West Antarctica. The objective of the proposed field work is to identify the nature of several as yet unvisited scars, and to further characterize previously-identified margin scars that are poorly dated. Advanced Very High Resolution Radiometer (AVHRR) and Radarsat image data will be used to locate and map the features, and place them in a regional context. The study seeks to describe the recent history of the Siple Coast glaciers and investigate the causes of their changes in configuration. The main investigative tools will be low-frequency RES and high-frequency ground penetrating radar (GPR) profiles to image internal layers and measure depths to buried crevasses or disrupted layering. This, coupled with accumulation rates determined from shallow ice cores, will provide \"shutdown\" ages for the margin features. The field data will provide input parameters for simple models of ice flow for margins and inter-ice stream ridges during active shearing and after shutdown. This modeling will estimate the initial elevation of a scar at the time of shut down and the corresponding ice stream elevation at that time.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": true, "keywords": "Ice Velocity; Ice Acceleration; Ice Sheet Elevation; GROUND-BASED OBSERVATIONS; Ice Stream; Antarctic Ice Sheet; Ice Sheet; Ice Surface Elevation; Ice Position; Ice Surface; Ice Stream C Velocities; Ice Movement; Ice; Cryosphere", "locations": "Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Scambos, Ted; Catania, Ginny; Conway, Howard; Gades, Anthony; Raymond, Charles", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: History and Evolution of the Siple Coast Ice Stream System as Recorded by Former Shear-Margin Scars", "uid": "p0000165", "west": null}, {"awards": "9526979 White, James", "bounds_geometry": null, "dataset_titles": "Siple Dome Core Date from Measurement of the d18O of Paleoatmospheric Oxygen", "datasets": [{"dataset_uid": "609123", "doi": "10.7265/N5TX3C95", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "White, James; Bender, Michael", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Core Date from Measurement of the d18O of Paleoatmospheric Oxygen", "url": "https://www.usap-dc.org/view/dataset/609123"}], "date_created": "Mon, 16 Jun 2003 00:00:00 GMT", "description": "This award is for support for a program to measure the stable isotope (deuterium to hydrogen and oxygen-18 to oxygen-16) concentrations of ice cores retrieved from Siple Dome as part of the West Antarctic ice sheet program. In addition, the deuterium excess of samples from the Taylor Dome ice core will be determined. This project will approach the question of rapid climate change using ice cores to determine the history of temperature changes, moisture source changes, and elevational changes in the West Antarctic ice sheet. Results from ice cores taken to date in the interior of Antarctica (East and West) are surprisingly lacking in indications of abrupt climate changes, such as those that have been observed in the GISP2 ice core from Summit, Greenland. This work will address the question of whether rapid climate changes, which are known to have occurred in other parts of the southern hemi-sphere, may have also occurred in the coastal regions of West Antarctica. There is some indication from existing records of isotopes in ice cores that the West Antarctic ice sheet may have flushed ice in the past (as evidenced by large changes in elevation of the ice sheet).", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Antarctica; LABORATORY; WAISCORES; GROUND STATIONS; Siple Coast; Glaciology; Snow; D18O; Isotope; Thermometry; Ice Sheet; Siple; Accumulation; Ice Core; Siple Dome; Stratigraphy; Densification; GROUND-BASED OBSERVATIONS; Not provided", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "White, James; Bender, Michael", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Isotopic Measurements on the WAIS/Siple Dome Ice Cores", "uid": "p0000063", "west": null}, {"awards": "9615347 Conway, Howard", "bounds_geometry": null, "dataset_titles": "Roosevelt Island Bedrock and Surface Elevations; Roosevelt Island Ice Core Density and Beta Count Data", "datasets": [{"dataset_uid": "609140", "doi": "10.7265/N51J97NB", "keywords": "Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Roosevelt Island; Solid Earth", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Bedrock and Surface Elevations", "url": "https://www.usap-dc.org/view/dataset/609140"}, {"dataset_uid": "609139", "doi": "10.7265/N55718ZW", "keywords": "Antarctica; Beta Count; Density; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Roosevelt Island", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Ice Core Density and Beta Count Data", "url": "https://www.usap-dc.org/view/dataset/609139"}], "date_created": "Fri, 23 May 2003 00:00:00 GMT", "description": "This award is for two years of support to perform radar investigations across former shear margins at Roosevelt Island and Ice Stream C in order to measure changes in the configuration and continuity of internal layers and the bed. The broad goal of these investigations is to gain an understanding of ice stream flow and the timing and mechanisms of ice stream shutdown. A high-resolution short-pulse radar system will be used for detailed examination of the uppermost hundred meters of the firn and ice, and a monopulse sounding-radar system will be used to image the rest of the ice column (including internal layers) and the bed. Changes in the shape and continuity of layers will be used to interpret mechanisms and modes of ice stream flow including the possible migration of stagnation fronts and rates of shut-down. Variations in bed reflectivity will be used to deduce basal hydrology conditions across lineations. Accumulation rates deduced from snow pits and shallow cores will be used to estimate near-surface depth-age profiles. Improved understanding of ice stream history opens the possibility of linking changes in the West Antarctic ice sheet with the geologic evidence from Northern Victoria Land and the ocean record of the retreat of the grounding line in the Ross Sea.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RA; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Radioactive Decay; Radar Echo Sounder; Antarctica; Radar Altimetry; Densification; Bedrock Elevation; Ice Sheet Elevation; Satellite Radar Data; GROUND-BASED OBSERVATIONS; Radar; Ice Core; Snow Stratigraphy; Terrain Elevation; Antarctic Ice Sheet; Stable Isotopes; Ice Surface Elevation; Surface Elevation; Glaciology; Snow Densification; Ice Core Data; GROUND STATIONS; Not provided; Altimetry; Antarctic; Ice Core Stratigraphy; Ice Stratigraphy", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Radar Investigations of Former Shear Margins: Roosevelt Island and Ice Stream C", "uid": "p0000164", "west": null}, {"awards": "0096302 Tulaczyk, Slawek", "bounds_geometry": "POLYGON((-180 -62.83,-144 -62.83,-108 -62.83,-72 -62.83,-36 -62.83,0 -62.83,36 -62.83,72 -62.83,108 -62.83,144 -62.83,180 -62.83,180 -65.547,180 -68.264,180 -70.981,180 -73.698,180 -76.415,180 -79.132,180 -81.849,180 -84.566,180 -87.283,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.283,-180 -84.566,-180 -81.849,-180 -79.132,-180 -76.415,-180 -73.698,-180 -70.981,-180 -68.264,-180 -65.547,-180 -62.83))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 06 May 2003 00:00:00 GMT", "description": "Not Available", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided; Centerline Ice Stream Velocity; Till Void Ratio; Basal Temperature Gradient; Surface Elevation; Till Strength", "locations": null, "north": -62.83, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "MacAyeal, Douglas; Tulaczyk, Slawek", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -90.0, "title": "Control of Ice-Till Interactions on Evolution and Stability of Ice Streams and Ice Sheets", "uid": "p0000743", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Glacial History of Ridge AB, West Antarctica
|
0087144 |
2024-07-22 | Hoffman, Andrew; Conway, Howard |
|
Marine ice sheets are low-pass filters of climate variability that take centuries to adjust to interior and near-terminus changes in mass balance. Constraining these century-scale changes from satellite observations that span only the last 40 years is challenging. Here, we take a different approach of carefully synthesizing different data sets to infer changes in the configurations of van der Veen and Mercer Ice Streams on the Siple Coast over the past 3000 years from englacial features encoded in ice-penetrating radar data. Englacial radar data from Conway Ridge reveal smooth, surface conformal layers overlying disrupted stratigraphy that suggest the van der Veen Ice Stream was 40 km wider over 3000 years ago. Englacial layer dating indicates that the ice stream narrowed to its present configuration between $\sim3000$ and $\sim1000$ years ago. Similarly disrupted stratigraphy and buried crevasses suggest that ice flowing from Mercer to Whillans Ice Stream across the northwestern tip of the ridge slowed shortly after. Using an ice-flow model capable of simulating shear margin migration, we evaluate whether small changes in ice thickness can lead to large changes in shear margin location. Our results suggest that the tip of Conway Ridge is sensitive to thinning and thickening, and that when the basal strength at the tip of the ridge increases with the height above flotation, the ice sheet shear margins can change quickly. | POLYGON((-150 -83.5,-148 -83.5,-146 -83.5,-144 -83.5,-142 -83.5,-140 -83.5,-138 -83.5,-136 -83.5,-134 -83.5,-132 -83.5,-130 -83.5,-130 -83.65,-130 -83.8,-130 -83.95,-130 -84.1,-130 -84.25,-130 -84.4,-130 -84.55,-130 -84.7,-130 -84.85,-130 -85,-132 -85,-134 -85,-136 -85,-138 -85,-140 -85,-142 -85,-144 -85,-146 -85,-148 -85,-150 -85,-150 -84.85,-150 -84.7,-150 -84.55,-150 -84.4,-150 -84.25,-150 -84.1,-150 -83.95,-150 -83.8,-150 -83.65,-150 -83.5)) | POINT(-140 -84.25) | false | false | |||||||||||
Elements: Making Ice Penetrating Radar More Accessible: A tool for finding, downloading and visualizing georeferenced radargrams within the QGIS ecosystem
|
2209726 |
2024-06-19 | Lindzey, Laura |
|
Ice penetrating radar is one of the primary tools that researchers use to study ice sheets and glaciers. With radar, it is possible to see a cross-section of the ice, revealing internal layers and the shape of the rocks under the ice. Among other things, this is important for calculating how much potential sea level change is locked up in the polar ice sheets, and how stable the ice sheets are likely to be in a warming world. This type of data is logistically challenging and expensive to collect. Historically, individual research groups have obtained funding to collect these data sets, and then the data largely stayed within that institution. There has been a recent push to make more and more data openly available, enabling the same datasets to be used by multiple research groups. However, it is still difficult to figure out what data is available because there is no centralized index. Additionally, each group releases data in a different format, which creates an additional hurdle to its use. This project addresses both of those challenges to data reuse by providing a unified tool for discovering where ice penetrating radar data already exists, then allowing the researcher to download and visualize the data. It is integrated into open-source mapping software that many in the research community already use, and makes it possible for non-experts to explore these datasets. This is particularly valuable for early-career researchers and for enabling interdisciplinary work. The US alone has spent many tens of millions of dollars on direct grants to enable the acquisition and analysis of polar ice penetrating radar data, and even more on the associated infrastructure and support costs. Unfortunately, much of these data is not publicly released, and even the data that has been released is not easily accessible. There is significant technical work involved in figuring out how to locate, download and view the data. This project is developing a tool that will both lower the barrier to entry for using this data and improve the workflows of existing users. Quantarctica and QGreenland have rapidly become indispensable tools for the polar research community, making diverse data sets readily available to researchers. However, ice penetrating radar is a major category of data that is not currently supported ? it is possible to see the locations of existing survey lines, and the ice thickness maps that have been interpreted from their data, but it is not readily possible to see the radargrams themselves in context with all of the other information. This capability is important because there is far more visual information contained in a radargram than simply its interpreted basal elevation or ice thickness. This project is developing software that will enable researchers to to view radargram images and interpreted surface and basal horizons in context with the existing map-view datasets in Quantarctica and QGreenland. A data layer shows the locations of all known ice penetrating radar surveys, color-coded based on availability. This layer enables data discovery and browsing. The plugin itself interacts with the data layer, first to download selected data, then to visualize the radargrams along with a cursor that moves simultaneously along the radargram and along the map view, making it straightforward to determine the precise geolocation of radar features. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||
Investigating Effects of Transient and Non-Newtonian Mantle Viscosity on Glacial Isostatic Adjustment Process and their Implications for GPS Observations in Antarctica
|
2333940 |
2024-01-08 | Zhong, Shijie | No dataset link provided | Satellite observations of Earth?s surface gravity and elevation changes indicate rapid melting of ice sheets in recent decades in northern Antarctica Peninsula and Amundsen Sea Embayment of West Antarctica. This rapid melting may lead to significant global sea level rise which is a major societal concern. Measurements from the Global Positioning System (GPS) show rapid land uplift in these regions as the ice sheets melt. When an ice sheet melts, the melt water flows to oceans, causing global sea level to rise. However, the sea level change at a given geographic location is also influenced by two other factors associated with the ice melting process: 1) the vertical motion of the land and 2) gravitational attraction. The vertical motion of the land is caused by the change of pressure force on the surface of the solid Earth. For example, the removal of ice mass reduces the pressure force on the land, leading to uplift of the land below the ice sheet, while the addition of water in oceans increases the pressure force on the seafloor, causing it to subside. The sea level always follows the equipotential surface of the gravity which changes as the mass on the Earth?s surface (e.g., the ice and water) or/and in its interiors (e.g., at the crust-mantle boundary) is redistributed. Additionally, the vertical motion of the land below an ice sheet has important effects on the evolution and stability of the ice sheet and may determine whether the ice sheet will rapidly collapse or gradually stabilize. The main goal of this project is to build an accurate and efficient computer model to study the displacement and deformation of the Antarctic crust and mantle in response to recent ice melting. The project will significantly improve existing and publicly available computer code, CitcomSVE. The horizontal and vertical components of the Earth?s surface displacement depends on mantle viscosity and elastic properties of the Earth. Although seismic imaging studies demonstrate that the Antarctica mantle is heterogeneous, most studies on the ice-melting induced deformation in Antarctica have assumed that mantle viscosity and elastic properties only vary with the depth due to computational limitations. In this project, the new computational method in CitcomSVE avoids such assumptions and makes it possible to include realistic 3-D mantle viscosity and elastic properties in computing the Antarctica crustal and mantle displacement. This project will interpret the GPS measurements of the surface displacements in northern Antarctica Peninsula and Amundsen Sea Embayment of West Antarctica and use the observations to place constraints on mantle viscosity and deformation mechanisms. The project will also seek to predict the future land displacement Antarctica, which will lead to a better understand of Antarctica ice sheets. Finally, the project has direct implications for the study of global sea level change and the dynamics of the Greenland ice sheet. Technical Description Glacial isostatic adjustment (GIA) is important for understanding not only fundamental science questions including mantle viscosity, mantle convection and lithospheric deformation but also societally important questions of global sea-level change, polar ice melting, climate change, and groundwater hydrology. Studies of rock deformation in laboratory experiments, post-seismic deformation, and mantle dynamics indicate that mantle viscosity is temperature- and stress-dependent. Although the effects of stress-dependent (i.e., non-Newtonian) viscosity and transient creep rheology on GIA process have been studied, observational evidence remains elusive. There has been significant ice mass loss in recent decades in northern Antarctica Peninsula (NAP) and Amundsen Sea Embayment (ASE) of West Antarctica. The ice mass loss has caused rapid bedrock uplift as measured by GPS techniques which require surprisingly small upper mantle viscosity of ~1018 Pas. The rapid uplifts may have important feedback effects on ongoing ice melting because of their influence on grounding line migration, and the inferred small viscosity may have implications for mantle rheology and deformation on decadal time scales. The main objective of the project is to test hypotheses that the GPS observations in NAP and ASE regions are controlled by 3-D non-Newtonian or/and transient creep viscosity by developing new GIA modeling capability based on finite element package CitcomSVE. The project will carry out the following three tasks: Task 1 is to build GIA models for the NAP and ASE regions to examine the effects of 3-D temperature-dependent mantle viscosity on the surface displacements and to test hypothesis that the 3-D mantle viscosity improves the fit to the GPS observations. Task 2 is to test the hypothesis that non-Newtonian or/and transient creep rheology controls GIA process on decadal time scales by computing GIA models and comparing model predictions with GPS observations for the NAP and ASE regions. Task 3 is to implement transient creep (i.e., Burgers model) rheology into finite element package CitcomSVE for modeling the GIA process on global and regional scales and to make the package publicly available to the scientific community. The project will develop the first numerical GIA model with Burgers transient rheology and use the models to examine the effects of 3-D temperature-dependent viscosity, non-Newtonian viscosity and transient rheology on GIA-induced surface displacements in Antarctica. The project will model the unique GPS observations of unusually large displacement rates in the NAP and ASE regions to place constraints on mantle rheology and to distinguish between 3-D temperature-dependent, non-Newtonian and transient mantle viscosity. The project will expand the capability of the publicly available software package CitcomSVE for modeling viscoelastic deformation and tidal deformation on global and regional scales. The project will advance our understanding in lithospheric deformation and mantle rheology on decadal time scales, which helps predict grounding line migration and understand ice sheet stability in West Antarctica. The project will strengthen the open science practice by improving the publicly available code CitcomSVE at github. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||
Collaborative Research: Snow Transport in Katabatic Winds and Implications for the Antarctic Surface Mass Balance: Observations, Theory, and Numerical Modeling
|
2034874 2035078 |
2023-09-08 | Salesky, Scott; Giometto, Marco; Das, Indrani | No dataset link provided | 1. A non-technical explanation of the project's broader significance and importance, that serves as a public justification for NSF funding. This part should be understandable to an educated reader who is not a scientist or engineer. Katabatic or drainage winds, carry high-density air from a higher elevation down a slope under the force of gravity. Although katabatic flows are ubiquitous in alpine and polar regions, a surface-layer similarity theory is currently lacking for these flows, undermining the accuracy of numerical weather and climate prediction models. This project is interdisciplinary, and will give graduate and undergraduate students valuable experience interacting with researchers outside their core discipline. Furthermore, this project will broaden participating in science through recruitment of students from under-represented groups at OU and CU through established programs. The Antarctic Ice Sheet drives many processes in the Earth system through its modulation of regional and global atmospheric and oceanic circulations, storage of fresh water, and effects on global albedo and climate. An understanding of the surface mass balance of the ice sheets is critical for predicting future sea level rise and for interpreting ice core records. Yet, the evolution of the ice sheets through snow deposition, erosion, and transport in katabatic winds (which are persistent across much of the Antarctic) remains poorly understood due to the lack of an overarching theoretical framework, scarcity of in situ observational datasets, and a lack of accurate numerical modeling tools. Advances in the fundamental understanding and modeling capabilities of katabatic transport processes are urgently needed in view of the future climatic and snowfall changes that are projected to occur within the Antarctic continent. This project will leverage the expertise of a multidisciplinary team of investigators (with backgrounds spanning cryospheric science, environmental fluid mechanics, and atmospheric science) to address these knowledge gaps. 2. A technical description of the project that states the problem to be studied, the goals and scope of the research, and the methods and approaches to be used. In many cases, the technical project description may be a modified version of the project summary submitted with the proposal. Using field observations and direct numerical simulations of katabatic flow, this project is expected--- for the first time---to lead to a surface-layer similarity theory for katabatic flows relating turbulent fluxes to mean vertical gradients. The similarity theory will be used to develop surface boundary conditions for large eddy simulations (LES), enabling the first accurate LES of katabatic flow. The numerical tools that the PIs will develop will allow them to investigate how the partitioning between snow redistribution, transport, and sublimation depends on the environmental parameters typically encountered in Antarctica (e.g. atmospheric stratification, surface sloping angles, and humidity profiles), and to develop simple models to infer snow transport based on satellite remote sensing and regional climate models This award reflects the NSF statutory mission and has been deemed worthy of support through evaluation using the intellectual merit of the Foundation and broader impacts review criteria. | None | None | false | false | |||||||||||
Collaborative Research: An Ice Core from Hercules Dome, East Antarctica
|
1841858 1841844 1841879 |
2023-02-06 | Steig, Eric J.; Fudge, T. J. | No dataset link provided | The goal of this project is to drill and recover an ice core from Hercules Dome, Antarctica. The geographic setting of Hercules Dome makes it well-situated to investigate changes in the size of the West Antarctic ice sheet over long time periods. The base of the West Antarctic ice sheet lies below sea level, which makes this part of Antarctica vulnerable to melting from the relatively warm deep water of the Southern Ocean. An important research question is whether the West Antarctic Ice Sheet collapsed during Earth's last prolonged warm period, about 125,000 years ago, when the ocean was warmer and sea level was several meters higher than today. Evidence for or against such a collapse will be recorded in the chemistry and physical properties of the ice. The Hercules Dome ice core will be obtained over three to four field seasons in Antarctica using efficient drilling technology. This grant includes support for project management, pre-drilling science community engagement, ice-core recovery, and education and outreach activities. <br/><br/>Hercules Dome is located at the edge of the East Antarctic ice sheet, south of the Transantarctic Mountains at 86 degrees South, 105 degrees West. Glaciological conditions at Hercules Dome are simple, with well-defined layering to the bed, optimal for the recovery of a deep ice core reaching to the last interglacial period at depths between 1600 and 2800 meters. An ice core from Hercules Dome will provide a research opportunity for ice-core analysts and others to make progress on a number of science priorities, including the environmental conditions of the last interglacial period, the history of gases and aerosols, and the magnitude and timing of changes in temperature and snow accumulation over the last 150,000 years. Together with the network of ice cores obtained by U.S. and international researchers over the last few decades, results from Hercules Dome will yield improved estimates of the boundary conditions necessary for the implementation and validation of ice-sheet models critical to the projection of future Antarctic ice-sheet change and sea level.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POINT(-105 -86) | POINT(-105 -86) | false | false | |||||||||||
NSF-NERC: PROcesses, drivers, Predictions: Modeling the response of Thwaites Glacier over the next Century using Ice/Ocean Coupled Models (PROPHET)
|
2152622 |
2022-12-20 | Morlighem, Mathieu; Das, Indrani |
|
This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Thwaites Glacier has been accelerating and widening over the past three decades. How fast Thwaites will disintegrate or how quickly it will find a new stable state have become some of the most important questions of the future of the West Antarctic Ice Sheet and its contribution to sea-level rise over the next decades to centuries and beyond. This project will rely on three independent numerical models of ice flow, coupled to an ocean circulation model to (1) improve our understanding of the interactions between the ice and the underlying bedrock, (2) analyze how sensitive the glacier is to external changes, (3) assess the processes that may lead to a collapse of Thwaites, and, most importantly, (4) forecast future ice loss of Thwaites. By providing predictions based on a suite of coupled ice-ocean models, this project will also assess the uncertainty in model projections. The project will use three independent ice-sheet models: Ice Sheet System Model, Ua, and STREAMICE, coupled to the ocean circulation model of the MIT General Circulation Model. The team will first focus on the representation of key physical processes of calving, ice damage, and basal slipperiness that have either not been included, or are poorly represented, in previous ice-flow modelling work. The team will then quantify the relative role of different proposed external drivers of change (e.g., ocean-induced ice-shelf thinning, loss of ice-shelf pinning points) and explore the stability regime of Thwaites Glacier with the aim of identifying internal thresholds separating stable and unstable grounding-line retreat. Using inverse methodology, the project will produce new physically consistent high-resolution (300-m) data sets on ice-thicknesses from available radar measurements. Furthermore, the team will generate new remote sensing data sets on ice velocities and rates of elevation change. These will be used to constrain and validate the numerical models, and will also be valuable stand-alone data sets. This process will allow the numerical models to be constrained more tightly by data than has previously been possible. The resultant more robust model predictions of near-future impact of Thwaites Glacier on global sea levels can inform policy-relevant decision-making. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-103 -74,-102 -74,-101 -74,-100 -74,-100 -74.3,-100 -74.6,-100 -74.9,-100 -75.2,-100 -75.5,-100 -75.8,-100 -76.1,-100 -76.4,-100 -76.7,-100 -77,-101 -77,-102 -77,-103 -77,-104 -77,-105 -77,-106 -77,-107 -77,-108 -77,-109 -77,-110 -77,-110 -76.7,-110 -76.4,-110 -76.1,-110 -75.8,-110 -75.5,-110 -75.2,-110 -74.9,-110 -74.6,-110 -74.3,-110 -74)) | POINT(-105 -75.5) | false | false | |||||||||||
A Test of Global and Antarctic Models for Cosmogenic-nuclide Production Rates using High-precision Dating of 40Ar/39Ar Lava Flows from Mount Erebus
|
1644234 |
2022-12-12 | Phillips, Fred; Kyle, Philip; Heizler, Matthew T | No dataset link provided | Nontechnical Description: The age of rocks and soils at the surface of the Earth can help answer multiple questions that are important for human welfare, including: when did volcanoes erupt and are they likely to erupt again? when did glaciers advance and what do they tell us about climate? what is the frequency of hazards such as landslides, floods, and debris flows? how long does it take soils to form and is erosion of soils going to make farming unsustainable? One method that is used thousands of times every year to address these questions is called 'cosmogenic surface-exposure dating'. This method takes advantage of cosmic rays, which are powerful protons and neutrons produced by supernova that constantly bombard the Earth's atmosphere. Some cosmic rays reach Earth's surface and produce nuclear reactions that result in rare isotopes. Measuring the quantity of the rare isotopes enables the length of time that the rock or soil has been exposed to the atmosphere to be calculated. The distribution of cosmic rays around the globe depends on Earth's magnetic field, and this distribution must be accurately known if useful exposure ages are to be obtained. Currently there are two remaining theories, narrowed down from many, of how to calculate this distribution. Measurements from a site that is at both high altitude and high latitude (close to the poles) are needed to test the two theories. This study involves both field and lab research and includes a Ph.D. student and an undergraduate student. The research team will collect rocks from lava flows on an active volcano in Antarctica named Mount Erebus and measure the amounts of two rare isotopes: 36Cl and 3He. The age of eruption of the samples will be determined using a highly accurate method that does not depend on cosmic rays, called 40Ar/39Ar dating. The two cosmic-ray theories will be used to calculate the ages of the samples using the 36Cl and 3He concentrations and will then be compared to the ages calculated from the 40Ar/39Ar dating. The accurate cosmic-ray theory will be the one that gives the same ages as the 40Ar/39Ar dating. Identification of the accurate theory will enable use of the cosmogenic surface dating methods anywhere on earth. <br/>Technical Description: Nuclides produced by cosmic rays in rocks at the surface of the earth are widely used for Quaternary geochronology and geomorphic studies and their use is increasing every year. The recently completed CRONUS-Earth Project (Cosmic-Ray Produced Nuclides on Earth) has systematically evaluated the production rates and theoretical underpinnings of cosmogenic nuclides. However, the CRONUS-Earth Project was not able to discriminate between the two leading theoretical approaches: the original Lal model (St) and the new Lifton-Sato-Dunai model (LSD). Mathematical models used to scale the production of the nuclides as a function of location on the earth, elevation, and magnetic field configuration are an essential component of this dating method. The inability to distinguish between the two models was because the predicted production rates did not differ sufficiently at the location of the calibration sites. <br/><br/>The cosmogenic-nuclide production rates that are predicted by the two models differ significantly from each other at Erebus volcano, Antarctica. Mount Erebus is therefore an excellent site for testing which production model best describes actual cosmogenic-nuclide production variations over the globe. The research team recently measured 3He and 36Cl in mineral separates extracted from Erebus lava flows. The exposure ages for each nuclide were reproducible within each flow (~2% standard deviation) and in very good agreement between the 3He and the 36Cl ages. However, the ages calculated by the St and LSD scaling methods differ by ~15-25% due to the sensitivity of the production rate to the scaling at this latitude and elevation. These results lend confidence that Erebus qualifies as a suitable high- latitude/high-elevation calibration site. The remaining component that is still lacking is accurate and reliable independent (i.e., non-cosmogenic) ages, however, published 40Ar/39Ar ages are too imprecise and typically biased to older ages due to excess argon contained in melt inclusions.<br/>The research team's new 40Ar/39Ar data show that previous problems with Erebus anorthoclase geochronology are now overcome with modern mass spectrometry and better sample preparation. This indicates a high likelihood of success for this proposal in defining an accurate global scaling model. Although encouraging, much remains to be accomplished. This project will sample lava flows over 3 km in elevation and determine their 40Ar/39Ar and exposure ages. These combined data will discriminate between the two scaling methods, resulting in a preferred scaling model for global cosmogenic geochronology. The LSD method contains two sub-methods, the 'plain' LSD scales all nuclides the same, whereas LSDn scales each nuclide individually. The project can discriminate between these models using 3He and 36Cl data from lava flows at different elevations, because the first model predicts that the production ratio for these two nuclides will be invariant with elevation and the second that there should be ~10% difference over the range of elevations to be sampled. Finally, the project will provide a local, finite-age calibration site for cosmogenic-nuclide investigations in Antarctica. | POLYGON((166.17 -77.3,166.32799999999997 -77.3,166.486 -77.3,166.644 -77.3,166.802 -77.3,166.95999999999998 -77.3,167.118 -77.3,167.276 -77.3,167.434 -77.3,167.59199999999998 -77.3,167.75 -77.3,167.75 -77.34,167.75 -77.38,167.75 -77.42,167.75 -77.46,167.75 -77.5,167.75 -77.54,167.75 -77.58,167.75 -77.62,167.75 -77.66,167.75 -77.7,167.59199999999998 -77.7,167.434 -77.7,167.276 -77.7,167.118 -77.7,166.95999999999998 -77.7,166.802 -77.7,166.644 -77.7,166.486 -77.7,166.32799999999997 -77.7,166.17 -77.7,166.17 -77.66,166.17 -77.62,166.17 -77.58,166.17 -77.54,166.17 -77.5,166.17 -77.46,166.17 -77.42,166.17 -77.38,166.17 -77.34,166.17 -77.3)) | POINT(166.95999999999998 -77.5) | false | false | |||||||||||
Holocene Deglaciation of the Western Ross Embayment: Constraints from East Antarctic Outlet Glaciers
|
1542756 |
2022-12-12 | Koutnik, Michelle; Smith, Ben; Conway, Howard; Shapero, Daniel |
|
In this project we investigated glaciers that drain ice from the East Antarctic Ice Sheet through the Transantarctic Mountains into the present-day Ross Ice Shelf. The outlet glaciers that flow through the Transantarctic Mountains have thinned significantly over the past 15,000 years, especially as they retreated from Last Glacial Maximum highstands to their present-day grounding lines. At certain locations and for certain glaciers, rocks or bedrock have been sampled to provide constraints on the timing of when ice retreated from these locations. In the locations where geochronological data are available we can use these data as direct constraints on ice-flow models that simulate ice elevation change over time. The intellectual merit of this work is using ice-flow models to spatially and temporally extrapolate between these limited geochronological data points, which enables new understanding of glacier evolution. The mountainous topography in this region is complex, and there are limited measurements of the topography beneath the ice of the Transantarctic outlet glaciers. Since the topography of the glacier bed is an important control on ice flow and is a necessary boundary condition in models we developed a new gridded bed product at Beardmore Glacier, the one location where sufficient data were available, and we compared this to continent-scale gridded bed products. We found that for this glacier, the BedMachine v1 product was reasonably similar to the Beardmore Glacier bed topography measurements; our limited evaluation suggests that the BedMachine product may be sufficient at other Transantarctic outlets where bed measurements are not available, but that other compilations of bed topography data that do not include information about ice flow directions do not provide reliable results. Using these data and available geochronological constraints we investigated Beardmore Glacier evolution since the Last Glacial Maximum using simplified (flowline) models of ice flow. In addition to flowline modeling at Beardmore Glacier, we developed a flow-model setup using the open-source 'icepack' model that uses the shallow stream equations and resolves flow in both the x and y directions. The key value added over flowline (or parameterized flowband) models is that this can capture converging and diverging ice flow, variable side wall and bottom drag, and other geometric complexities. In these simulations we can evaluate the past accumulation, ice influx, and ice outflux to compare controls on deglaciation to data constraints on the chronology of deglaciation. We also used a flowline model to investigate the Darwin-Hatherton Glacier System. Exposure ages and radiocarbon ages of glacial deposits at four locations alongside Hatherton and Darwin glaciers record several hundred meters of late Pleistocene to early Holocene thickening relative to present. Deglaciation was relatively complex at this site, and we also found that Byrd glacier likely contributed ice to the catchment of the Darwin-Hatherton glacier system during the last glacial maximum, and that subsequent convergent flow from Byrd and Mulock glaciers during deglaciation complicated the response of the Darwin-Hatherton system. These new insights can be used on their own to better understand local deglaciation, and can also be used to evaluate regional or continent-scale model calculations. Separately, we investigated the general response of outlet glaciers to different sources of climate forcing. We found that outlet glaciers have a characteristically different response over time to surface-mass-balance forcing applied over the interior than to oceanic forcing applied at the grounding line. Our models demonstrated that ocean forcing first engages the fast, local response and then the slow adjustment of interior ice, whereas surface-mass-balance forcing is dominated by the slow interior adjustment. These insights contributed to our general understanding of how outlet glaciers may have evolved over time. Our new model investigations provide a framework that can be applied at other Transantarctic outlet glaciers where geochronological data are available. In particular, our 'icepack' setup is an archived and documented resource for the community. These tools are available for future investigations, including additional investigations at Beardmore Glacier and at other Transantarctic Mountain outlet glaciers. Scientific broader impacts include that this contributes to our understanding of the past behavior of East Antarctic ice, which provides an important constraint on the future evolution of Antarctica. Our team has engaged in public outreach and has engaged students in this research. Two graduate students led in aspects of this work, and have since gone on to research positions after their PhD. | POLYGON((-180 -77,-179.5 -77,-179 -77,-178.5 -77,-178 -77,-177.5 -77,-177 -77,-176.5 -77,-176 -77,-175.5 -77,-175 -77,-175 -77.9,-175 -78.8,-175 -79.7,-175 -80.6,-175 -81.5,-175 -82.4,-175 -83.3,-175 -84.2,-175 -85.1,-175 -86,-175.5 -86,-176 -86,-176.5 -86,-177 -86,-177.5 -86,-178 -86,-178.5 -86,-179 -86,-179.5 -86,180 -86,177.5 -86,175 -86,172.5 -86,170 -86,167.5 -86,165 -86,162.5 -86,160 -86,157.5 -86,155 -86,155 -85.1,155 -84.2,155 -83.3,155 -82.4,155 -81.5,155 -80.6,155 -79.7,155 -78.8,155 -77.9,155 -77,157.5 -77,160 -77,162.5 -77,165 -77,167.5 -77,170 -77,172.5 -77,175 -77,177.5 -77,-180 -77)) | POINT(170 -81.5) | false | false | |||||||||||
Collaborative Research: Ice sheet erosional interaction with hot geotherm in West Antarctica
|
1916982 1917009 1917176 |
2022-10-19 | Siddoway, Christine; Thomson, Stuart; Teyssier, Christian |
|
Sediment records off the coast of Marie Byrd Land (MBL), Antarctica suggest frequent and dramatic changes in the size of the West Antarctic Ice Sheet (WAIS) over short (tens of thousands of years) and long (millions of years) time frames in the past. WAIS currently overrides much of MBL and covers the rugged and scoured bedrock landscape. The ice sheet carved narrow linear troughs that reach depths of two to three thousand meters below sea level as outlet glaciers flowed from the interior of the continent to the oceans. As a result, large volumes of fragmented continental bedrock were carried out to the seabed. The glaciers cut downward into a region of crystalline rocks (i.e. granite) that display a significant temperature change as a function of rock depth. The strong geothermal gradient in the bedrock is favorable for determining when the bedrock became exhumed, or "uncovered" by action of the overriding icesheet or other processes. Our approach takes advantage of a reference horizon, or paleogeotherm, established when high-T mineral thermochronometers across Marie Byrd Land (MBL) cooled from temperatures of >800° C to 300° C, due to rapid regional extension at ~100 Ma . The event imparted a signature through which the subsequent Cenozoic landscape history can be explored: MBL's elevated geothermal gradient, sustained during the Cenozoic, created favorable conditions for sensitive apatite and zircon low-T thermochronometers to record bedrock cooling related to glacial incision. Analyzing the chemistry of minerals (zircon and apatite) within fragments of eroded rock will reveal the rate and timing of the bedrock erosion and development of topography in West Antarctica. This collaborative project addresses the following questions: When did the land become high enough for a large ice sheet to form? What was the regional pre-glacial topography? Under what climate conditions, and at what point in the growth of an ice sheet, did glaciers begin to cut sharply into bedrock to form the narrow troughs that flow seaward? The research will lead to greater understanding of past Antarctic ice sheet fluctuations and identify precise timing of glacial incisionm which will clarify the onset of WAIS glacier incision and assess the evolution of Cenozoic paleo-topography. The collaborative project provides training for one graduate and 8 undergraduate students in STEM. These students, together with PIs, will refine West Antarctic ice sheet history and obtain results that pertain to the international societal response to contemporary ice sheet change and its global consequences. The methods used for the research include: •Low-temperature (T) thermochronology and Pecube 3-D thermo-kinematic modeling, applied to the timing and characterizatio episodes of glacial erosional incision. •Single-grain double- and triple-dating of zircon and apatite, to determine the detailed crustal thermal evolution of the region, enabling the research team to identify the comparative topographic influences on glaciation versus bedrock uplift induced by Eocene to present tectonism/magmatism. Students and PIs employed state-of-the-art analytical facilities in Arizona and Minnesota, expanding the geo- and thermochronologic history of MBL from bedrock samples and offshore sedimentary deposits. The temperature and time data we acquired will provide constraints on paleotopography, isostasy, and the thermal evolution of MBL that will be modeled in 3D using Pecube model simulations. Within hot crust, less incision is required to expose bedrock containing the distinct thermochronometric profile; a prediction we are testing through use of inverse Pecube 3-D models of the thermal field through which bedrock and detrital samples cooled. Using results from Pecube, the ICI-Hot team will examine time-varying topography formed in response to changes in erosion rates, topographic relief, geothermal gradient and/or flexural isostatic rigidity. These effects are manifestations of dynamic processes in the WAIS, including ice sheet loading, ice volume fluctuations, relative motion upon crustal faults, and magmatism-related elevation increase across the MBL dome. The project makes use of pre-existing sample collections housed at the US Polar Rock Repository, IODP's Gulf Coast Core Repository, and the OSU Marine and Geology Repository. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-160.16 -67.15,-154.572 -67.15,-148.984 -67.15,-143.39600000000002 -67.15,-137.808 -67.15,-132.22 -67.15,-126.632 -67.15,-121.04400000000001 -67.15,-115.456 -67.15,-109.868 -67.15,-104.28 -67.15,-104.28 -68.165,-104.28 -69.18,-104.28 -70.19500000000001,-104.28 -71.21000000000001,-104.28 -72.225,-104.28 -73.24,-104.28 -74.255,-104.28 -75.27,-104.28 -76.285,-104.28 -77.3,-109.868 -77.3,-115.456 -77.3,-121.044 -77.3,-126.632 -77.3,-132.22 -77.3,-137.808 -77.3,-143.396 -77.3,-148.98399999999998 -77.3,-154.572 -77.3,-160.16 -77.3,-160.16 -76.285,-160.16 -75.27,-160.16 -74.255,-160.16 -73.24,-160.16 -72.225,-160.16 -71.21000000000001,-160.16 -70.19500000000001,-160.16 -69.18,-160.16 -68.165,-160.16 -67.15)) | POINT(-132.22 -72.225) | false | false | |||||||||||
Ice Dynamics at the Intersection of the West and East Antarctic Ice Sheets
|
1744649 |
2022-08-02 | Christianson, Knut; Hoffman, Andrew; Holschuh, Nicholas | The response of the Antarctic ice sheet to climate change is a central issue in projecting global sea-level rise. While much attention is focused on the ongoing rapid changes at the coastal margin of the West Antarctic Ice Sheet, obtaining records of past ice-sheet and climate change is the only way to constrain how an ice sheet changes over millennial timescales. Whether the West Antarctic Ice Sheet collapsed during the last interglacial period (~130,000 to 116,000 years ago), when temperatures were slightly warmer than today, remains a major unsolved problem in Antarctic glaciology. Hercules Dome is an ice divide located at the intersection of the East Antarctic and West Antarctic ice sheets. It is ideally situated to record the glaciological and climatic effects of changes in the West Antarctic Ice Sheet. This project will establish whether Hercules Dome experienced major changes in flow due to changes in the elevation of the two ice sheets. The project will also ascertain whether Hercules Domes is a suitable site from which to recover climate records from the last interglacial period. These records could be used to determine whether the West Antarctic Ice Sheet collapsed during that period. The project will support two early-career researchers and train students at the University of Washington. Results will be communicated through outreach programs in coordination the Ice Drilling Project Office, the University of Washington's annual Polar Science Weekend in Seattle, and art-science collaboration.<br/><br/>This project will develop a history of ice dynamics at the intersection of the East and West Antarctic ice sheets, and ascertain whether the site is suitable for a deep ice-coring operation. Ice divides provide a unique opportunity to assess the stability of past ice flow. The low deviatoric stresses and non-linearity of ice flow causes an arch (a "Raymond Bump") in the internal layers beneath a stable ice divide. This information can be used to determine the duration of steady ice flow. Due to the slow horizontal ice-flow velocities, ice divides also preserve old ice with internal layering that reflects past flow conditions caused by divide migration. Hercules Dome is an ice divide that is well positioned to retain information of past variations in the geometry of both the East and West Antarctic Ice Sheets. This dome is also the most promising location at which to recover an ice core that can be used to determine whether the West Antarctic Ice Sheet collapsed during the last interglacial period. Limited ice-penetrating radar data collected along a previous scientific surface traverse indicate well-preserved englacial stratigraphy and evidence suggestive of a Raymond Bump, but the previous survey was not sufficiently extensive to allow thorough characterization or determination of past changes in ice dynamics. This project will conduct a dedicated survey to map the englacial stratigraphy and subglacial topography as well as basal properties at Hercules Dome. The project will use ground-based ice-penetrating radar to 1) image internal layers and the ice-sheet basal interface, 2) accurately measure englacial attenuation, and 3) determine englacial vertical strain rates. The radar data will be combined with GPS observations for detailed topography and surface velocities and ice-flow modeling to constrain the basal characteristics and the history of past ice flow.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-120 -85.5,-117.5 -85.5,-115 -85.5,-112.5 -85.5,-110 -85.5,-107.5 -85.5,-105 -85.5,-102.5 -85.5,-100 -85.5,-97.5 -85.5,-95 -85.5,-95 -85.62,-95 -85.74,-95 -85.86,-95 -85.98,-95 -86.1,-95 -86.22,-95 -86.34,-95 -86.46000000000001,-95 -86.58,-95 -86.7,-97.5 -86.7,-100 -86.7,-102.5 -86.7,-105 -86.7,-107.5 -86.7,-110 -86.7,-112.5 -86.7,-115 -86.7,-117.5 -86.7,-120 -86.7,-120 -86.58,-120 -86.46000000000001,-120 -86.34,-120 -86.22,-120 -86.1,-120 -85.98,-120 -85.86,-120 -85.74,-120 -85.62,-120 -85.5)) | POINT(-107.5 -86.1) | false | false | ||||||||||||
Collaborative Research: Reconstructing Late Holocene Ecosystem and Climate Shifts from Peat Records in the Western Antarctic Peninsula
|
1745068 1745082 |
2022-06-10 | Beilman, David; Booth, Robert |
|
Warming on the western Antarctic Peninsula in the later 20th century has caused widespread changes in the cryosphere (ice and snow) and terrestrial ecosystems. These recent changes along with longer-term climate and ecosystem histories will be deciphered using peat deposits. Peat accumulation can be used to assess the rate of glacial retreat and provide insight into ecological processes on newly deglaciated landscapes in the Antarctic Peninsula. This project builds on data suggesting recent ecosystem transformations that are linked to past climate of the western Antarctic Peninsula and provide a timeline to assess the extent and rate of recent glacial change. The study will produce a climate record for the coastal low-elevation terrestrial region, which will refine the major climate shifts of up to 6 degrees C in the recent past (last 12,000 years). A novel terrestrial record of the recent glacial history will provide insight into observed changes in climate and sea-ice dynamics in the western Antarctic Peninsula and allow for comparison with off-shore climate records captured in sediments. Observations and discoveries from this project will be disseminated to local schools and science centers. The project provides training and career development for a postdoctoral scientist as well as graduate and undergraduate students.<br/><br/>The research presents a new systematic survey to reconstruct ecosystem and climate change for the coastal low-elevation areas on the western Antarctic Peninsula (AP) using proxy records preserved in late Holocene peat deposits. Moss and peat samples will be collected and analyzed to generate a comprehensive data set of late-Holocene climate change and ecosystem dynamics. The goal is to document and understand the transformations of landscape and terrestrial ecosystems on the western AP during the late Holocene. The testable hypothesis is that coastal regions have experienced greater climate variability than evidenced in ice-core records and that past warmth has facilitated dramatic ecosystem and cryosphere response. A primary product of the project is a robust reconstruction of late Holocene climate changes for coastal low-elevation terrestrial areas using multiple lines of evidence from peat-based biological and geochemical proxies, which will be used to compare with climate records derived from marine sediments and ice cores from the AP region. These data will be used to test several ideas related to novel peat-forming ecosystems (such as Antarctic hairgrass bogs) in past warmer climates and climate controls over ecosystem establishment and migration to help assess the nature of the Little Ice Age cooling and cryosphere response. The chronology of peat cores will be established by radiocarbon dating of macrofossils and Bayesian modeling. The high-resolution time series of ecosystem and climate changes will help put the observed recent changes into a long-term context to bridge climate dynamics over different time scales.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-64.4 -62.4,-63.910000000000004 -62.4,-63.42 -62.4,-62.93000000000001 -62.4,-62.440000000000005 -62.4,-61.95 -62.4,-61.46 -62.4,-60.97 -62.4,-60.480000000000004 -62.4,-59.99 -62.4,-59.5 -62.4,-59.5 -62.7,-59.5 -63,-59.5 -63.3,-59.5 -63.6,-59.5 -63.900000000000006,-59.5 -64.2,-59.5 -64.5,-59.5 -64.80000000000001,-59.5 -65.10000000000001,-59.5 -65.4,-59.99 -65.4,-60.480000000000004 -65.4,-60.97 -65.4,-61.46 -65.4,-61.95 -65.4,-62.440000000000005 -65.4,-62.93000000000001 -65.4,-63.42 -65.4,-63.910000000000004 -65.4,-64.4 -65.4,-64.4 -65.10000000000001,-64.4 -64.80000000000001,-64.4 -64.5,-64.4 -64.2,-64.4 -63.900000000000006,-64.4 -63.6,-64.4 -63.3,-64.4 -63,-64.4 -62.7,-64.4 -62.4)) | POINT(-61.95 -63.900000000000006) | false | false | |||||||||||
Center for Oldest Ice Exploration
|
2019719 |
2022-05-21 | Brook, Edward J.; Neff, Peter | Cores drilled through the Antarctic ice sheet provide a remarkable window on the evolution of Earth’s climate and unique samples of the ancient atmosphere. The clear link between greenhouse gases and climate revealed by ice cores underpins much of the scientific understanding of climate change. Unfortunately, the existing data do not extend far enough back in time to reveal key features of climates warmer than today. COLDEX, the Center for Oldest Ice Exploration, will solve this problem by exploring Antarctica for sites to collect the oldest possible record of past climate recorded in the ice sheet. COLDEX will provide critical information for understanding how Earth’s near-future climate may evolve and why climate varies over geologic time. New technologies will be developed for exploration and analysis that will have a long legacy for future research. An archive of old ice will stimulate new research for the next generations of polar scientists. COLDEX programs will galvanize that next generation of polar researchers, bring new results to other scientific disciplines and the public, and help to create a more inclusive and diverse scientific community. Knowledge of Earth’s climate history is grounded in the geologic record. This knowledge is gained by measuring chemical, biological and physical properties of geologic materials that reflect elements of climate. Ice cores retrieved from polar ice sheets play a central role in this science and provide the best evidence for a strong link between atmospheric carbon dioxide and climate on geologic timescales. The goal of COLDEX is to extend the ice-core record of past climate to at least 1.5 million years by drilling and analyzing a continuous ice core in East Antarctica, and to much older times using discontinuous ice sections at the base and margin of the ice sheet. COLDEX will develop and deploy novel radar and melt-probe tools to rapidly explore the ice, use ice-sheet models to constrain where old ice is preserved, conduct ice coring, develop new analytical systems, and produce novel paleoclimate records from locations across East Antarctica. The search for Earth’s oldest ice also provides a compelling narrative for disseminating information about past and future climate change and polar science to students, teachers, the media, policy makers and the public. COLDEX will engage and incorporate these groups through targeted professional development workshops, undergraduate research experiences, a comprehensive communication program, annual scientific meetings, scholarships, and broad collaboration nationally and internationally. COLDEX will provide a focal point for efforts to increase diversity in polar science by providing field, laboratory, mentoring and networking experiences for students and early career scientists from groups underrepresented in STEM, and by continuous engagement of the entire COLDEX community in developing a more inclusive scientific culture. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||||||||
Sensitivity of the Antarctic Ice Sheet to Climate Change over the Last Two Glacial/Interglacial Cycles
|
0944150 |
2022-03-03 | Hall, Brenda; Denton, George |
|
This award supports a project to investigate the sensitivity of the Antarctic ice sheet (AIS) to global climate change over the last two Glacial/Interglacial cycles. The intellectual merit of the project is that despite its importance to Earth's climate system, we currently lack a full understanding of AIS sensitivity to global climate change. This project will reconstruct and precisely date the history of marine-based ice in the Ross Sea sector over the last two glacial/interglacial cycles, which will enable a better understanding of the potential driving mechanisms (i.e., sea-level rise, ice dynamics, ocean temperature variations) for ice fluctuations. This will also help to place present ice?]sheet behavior in a long-term context. During the last glacial maximum (LGM), the AIS is known to have filled the Ross Embayment and although much has been done both in the marine and terrestrial settings to constrain its extent, the chronology of the ice sheet, particularly the timing and duration of the maximum and the pattern of initial recession, remains uncertain. In addition, virtually nothing is known of the penultimate glaciation, other than it is presumed to have been generally similar to the LGM. These shortcomings greatly limit our ability to understand AIS evolution and the driving mechanisms behind ice sheet fluctuations. This project will develop a detailed record of ice extent and chronology in the western Ross Embayment for not only the LGM, but also for the penultimate glaciation (Stage 6), from well-dated glacial geologic data in the Royal Society Range. Chronology will come primarily from high-precision Accelerator Mass Spectrometry (AMS) Carbon-14 (14C) and multi-collector Inductively Coupled Plasma (ICP)-Mass Spectrometry (MS) 234Uranium/230Thorium dating of lake algae and carbonates known to be widespread in the proposed field area. | POLYGON((163.6 -77.5,163.7 -77.5,163.8 -77.5,163.9 -77.5,164 -77.5,164.1 -77.5,164.2 -77.5,164.3 -77.5,164.4 -77.5,164.5 -77.5,164.6 -77.5,164.6 -77.57,164.6 -77.64,164.6 -77.71,164.6 -77.78,164.6 -77.85,164.6 -77.92,164.6 -77.99,164.6 -78.06,164.6 -78.13,164.6 -78.2,164.5 -78.2,164.4 -78.2,164.3 -78.2,164.2 -78.2,164.1 -78.2,164 -78.2,163.9 -78.2,163.8 -78.2,163.7 -78.2,163.6 -78.2,163.6 -78.13,163.6 -78.06,163.6 -77.99,163.6 -77.92,163.6 -77.85,163.6 -77.78,163.6 -77.71,163.6 -77.64,163.6 -77.57,163.6 -77.5)) | POINT(164.1 -77.85) | false | false | |||||||||||
Response of the Antarctic Ice Sheet to the last great global warming
|
1643248 |
2022-03-03 | Hall, Brenda; Denton, George |
|
The Antarctic Ice Sheet is the greatest potential contributor to sea-level change. However, the future response of the ice sheet to warming climate is recognized as one of the greatest uncertainties in sea-level projections. An understanding of past ice fluctuations can afford insight into ice-sheet response to climate change and thus is critical for improving sea-level predictions. In this project, we will reconstruct the behavior of the Antarctic Ice Sheet in the western Ross Sea region during the great global warming that ended the last ice age. Fluctuations in ice volume during this time period will allow us to characterize the factors that cause the ice sheet to advance and retreat and will enable us to distinguish between models that suggest repeated episodes of ice-sheet collapse vs those that indicate ice-sheet growth during warming climate. An understanding of the cause(s) of changes in ice volume during the warming that ended the last ice age has important implications for the future of the Antarctic Ice Sheet. | POLYGON((163.3 -77.8,163.43 -77.8,163.56 -77.8,163.69 -77.8,163.82 -77.8,163.95 -77.8,164.08 -77.8,164.21 -77.8,164.34 -77.8,164.47 -77.8,164.6 -77.8,164.6 -77.85,164.6 -77.9,164.6 -77.95,164.6 -78,164.6 -78.05,164.6 -78.1,164.6 -78.15,164.6 -78.2,164.6 -78.25,164.6 -78.3,164.47 -78.3,164.34 -78.3,164.21 -78.3,164.08 -78.3,163.95 -78.3,163.82 -78.3,163.69 -78.3,163.56 -78.3,163.43 -78.3,163.3 -78.3,163.3 -78.25,163.3 -78.2,163.3 -78.15,163.3 -78.1,163.3 -78.05,163.3 -78,163.3 -77.95,163.3 -77.9,163.3 -77.85,163.3 -77.8)) | POINT(163.95 -78.05) | false | false | |||||||||||
Collaborative Research: The Timing and Spatial Expression of the Bipolar Seesaw in Antarctica from Synchronized Ice Cores
|
1643394 |
2021-11-10 | Buizert, Christo; Wettstein, Justin | This award supports a project to use ice cores to study teleconnections between the northern hemisphere, tropics, and Antarctica during very abrupt climate events that occurred during the last ice age (from 70,000 to 11,000 years ago). The observations can be used to test scientific theories about the role of the westerly winds on atmospheric carbon dioxide. In a warming world, snow fall in Antarctica is expected to increase, which can reduce the Antarctic contribution to sea level rise, all else being equal. The study will investigate how snow fall changed in the past in response to changes in temperature and atmospheric circulation, which can help improve projections of future sea level rise. Antarctica is important for the future evolution of our planet in several ways; it has the largest inventory of land-based ice, equivalent to about 58 m of global sea level and currently contributes about 0.3 mm per year to global sea level rise, which is expected to increase in the future due to global warming. The oceans surrounding Antarctica help regulate the uptake of human-produced carbon dioxide. Shifts in the position and strength of the southern hemisphere westerly winds could change the amount of carbon dioxide that is absorbed by the ocean, which will influence the rate of global warming. The climate and winds near and over Antarctica are linked to the rest of our planet via so-called climatic teleconnections. This means that climate changes in remote places can influence the climate of Antarctica. Understanding how these climatic teleconnections work in both the ocean and atmosphere is an important goal of climate research. The funds will further contribute towards training of a postdoctoral researcher and an early-career researcher; outreach to public schools; and the communication of research findings to the general public via the media, local events, and a series of Wikipedia articles. The project will help to fully characterize the timing and spatial pattern of millennial-scale Antarctic climate change during the deglaciation and Dansgaard-Oeschger (DO) cycles using multiple synchronized Antarctic ice cores. The phasing of Antarctic climate change relative to Greenland DO events can distinguish between fast atmospheric teleconnections on sub-decadal timescales, and slow oceanic ones on centennial time scales. Preliminary work suggests that the spatial pattern of Antarctic change can fingerprint specific changes to the atmospheric circulation; in particular, the proposed work will clarify past movements of the Southern Hemisphere westerly winds during the DO cycle, which have been hypothesized. The project will help resolve a discrepancy between two previous seminal studies on the precise timing of interhemispheric coupling between ice cores in both hemispheres. The study will further provide state-of-the-art, internally-consistent ice core chronologies for all US Antarctic ice cores, as well as stratigraphic ties that can be used to integrate them into a next-generation Antarctic-wide ice core chronological framework. Combined with ice-flow modeling, these chronologies will be used for a continent-wide study of the relationship between ice sheet accumulation and temperature during the last deglaciation. | POLYGON((-180 -65,-144 -65,-108 -65,-72 -65,-36 -65,0 -65,36 -65,72 -65,108 -65,144 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.5,-180 -85,-180 -82.5,-180 -80,-180 -77.5,-180 -75,-180 -72.5,-180 -70,-180 -67.5,-180 -65)) | POINT(0 -89.999) | false | false | ||||||||||||
Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning
|
2136938 2136939 2136940 |
2021-11-08 | Tedesco, Marco | Surface melting and the evolution of the surface hydrological system on Antarctica ice shelves modulate the ice sheet mass balance. Despite its importance, limitations still exist that preclude the scientific community from mapping the spatio-temporal evolution of the surface hydrological system at the required resolutions to make the necessary leap forward to address the current and future evolution of ice shelves in Antarctica (Kingslake et al., 2019). Differently from Greenland, surface melting in Antarctica does not exhibit a dependency from elevation, with most of it occurring over ice shelves, at the sea level and where little elevation gradients exist. Therefore, statistical downscaling techniques using digital elevation models - as in the case of Greenland or other mountain regions - cannot be used. Machine learning (ML) tools can help in this regard. In this project, we address this issue and propose a novel method to map the spatio-temporal evolution of surface meltwater in Antarctica on a daily basis at high spatial (30 - 100 m) resolution using a combination of remote sensing, numerical modeling and machine learning. The final product of this project will consist of daily maps of surface meltwater at resolutions of the order of 100 m for the period 2000 - 2021 that will satisfy the following constraints: a) to be physically consistent with the model prediction and with the underlying governing dynamics for the melt processes; b) to capture the temporal dynamics of the model predictions, which include the temporal sequence of a set of past time steps which lead to the target prediction time, but could also include model predictions valid for a set of future time steps; c) to reconcile the higher spatial resolution of the input satellite measurements with the lower spatial resolution of the numerical model; d) to be consistent with previously generated surface melt products, so that temporal time series can be analyzed; e) to provide a measure of uncertainty to help with testing and validation. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||||||||
Collaborative Research: Constraining West Antarctic Ice Sheet elevation during the last interglacial
|
1744949 1745015 1744927 |
2021-10-22 | Braddock, Scott; Campbell, Seth; Ackert, Robert; Zimmerer, Matthew; Mitrovica, Jerry |
|
Projecting future changes in West Antarctic Ice Sheet (WAIS) volume and global sea level rise in response to anthropogenic climate warming requires dynamic ice sheet models, which are enhanced by testing and calibrating with geologic evidence. Successfully modeling WAIS behavior during past collapse events provides a basis for predictions of future sea level change. Exposure ages of erratics and bedrock throughout west Antarctica constrain higher-than-present WAIS geometry during the LGM and the last deglaciation. Quantifying the past surface elevation from the interior of the ice sheet is especially useful as it directly constrains ice thickness and volume where most of the mass is located. Data that determines WAIS geometry during the last interglacial, the last time that climate was warmer than present and when global sea level was 3-6 m higher, is critical for empirically constraining changes in WAIS volume and its contribution to sea level, as well as, to calibrate ice sheet models. These datasets are essentially non- existent, as such evidence is now covered by the WAIS. Initial results from ground-penetrating radar surveys indicate ice depths around 1200 m. | POLYGON((-145 -74,-141.6 -74,-138.2 -74,-134.8 -74,-131.4 -74,-128 -74,-124.6 -74,-121.2 -74,-117.8 -74,-114.4 -74,-111 -74,-111 -74.6,-111 -75.2,-111 -75.8,-111 -76.4,-111 -77,-111 -77.6,-111 -78.2,-111 -78.8,-111 -79.4,-111 -80,-114.4 -80,-117.8 -80,-121.2 -80,-124.6 -80,-128 -80,-131.4 -80,-134.8 -80,-138.2 -80,-141.6 -80,-145 -80,-145 -79.4,-145 -78.8,-145 -78.2,-145 -77.6,-145 -77,-145 -76.4,-145 -75.8,-145 -75.2,-145 -74.6,-145 -74)) | POINT(-128 -77) | false | false | |||||||||||
Collaborative Research: Topographic controls on Antarctic Ice Sheet grounding line retreat - integrating models and observations
|
1745043 1745055 |
2021-09-28 | Simkins, Lauren; Stearns, Leigh; Anderson, John; van der Veen, Cornelis |
|
The goals of this collaborative project are to merge empirical observations from the deglaciated Antarctic continental shelf and 1-D and 3-D numerical model experiments to test the sensitivity of marine-based ice sheets to subglacial topography with collaborators at the University of Kansas (L. Stearns, C. van der Veen). We focus on five glacial systems (i.e., flowlines) across the Amundsen Sea, Ross Sea, and George V Coast of Wilkes Land that extended to/near the continental shelf break at the Last Glacial Maximum – with a range of bed characteristics, topographic features, oceanographic and climatic conditions, and patterns of past ice flow and grounding line retreat. Specifically, at the University of Virginia, we (L. Simkins, S. Munevar Garcia) are: (ongoing) exploring bed roughness across the flowlines to determine the sensitivity of ice flow and grounding line behavior to different scales and wavelengths of bed topography/roughness; (upcoming) developing an empirical relationship between ice-marginal landform sediment volume and grounding line occupation time, and combining this with sedimentological analyses and new absolute age constraints to produce more comprehensive timelines of grounding line retreat, influential boundary conditions and processes, and determine the presence/absence of ice shelves; (ongoing) integrating quantitative and qualitative paleo- and offshore data to be incorporated into and/or validate 1-D and 3-D model experiments further testing the sensitivity of the five glacial systems to bed topography; and (completed) co-developing community engagement and education materials that focus on merging paleo-observations and model information of the Antarctic Ice Sheet from the LGM to the present | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||
COLLABORATIVE RESEARCH: Resolving Ambiguous Exposure-Age Chronologies of Antarctic Deglaciation with Measurements of In-Situ-Produced Cosmogenic Carbon-14
|
1542936 1542976 |
2021-09-03 | Goehring, Brent; Balco, Gregory |
|
This project focused on geochemical measurements on rock samples from Antarctica that can be used to reconstruct changes in the size and thickness of the Antarctic ice sheets during the past several thousand years. It applied relatively newly developed technology for measurement of cosmic-ray-produced carbon-14 in quartz to gather new and better information on past ice sheet change from rock samples previously collected in past research in Antarctica. Specifically, it aimed to address a lack of information on past ice sheet change from the Weddell Sea embayment, and the primary result of the project is an improved understanding of ice volume change in this sector of Antarctica during the past ca. 15,000 years. This, in turn, is important in understanding the contribution of the Antarctic ice sheets to global sea level change during this time period. | POLYGON((-145.7 -64.195,-113.988 -64.195,-82.276 -64.195,-50.564 -64.195,-18.852 -64.195,12.86 -64.195,44.572 -64.195,76.284 -64.195,107.996 -64.195,139.708 -64.195,171.42 -64.195,171.42 -66.2096,171.42 -68.2242,171.42 -70.2388,171.42 -72.2534,171.42 -74.268,171.42 -76.2826,171.42 -78.2972,171.42 -80.3118,171.42 -82.3264,171.42 -84.341,139.708 -84.341,107.996 -84.341,76.284 -84.341,44.572 -84.341,12.86 -84.341,-18.852 -84.341,-50.564 -84.341,-82.276 -84.341,-113.988 -84.341,-145.7 -84.341,-145.7 -82.3264,-145.7 -80.3118,-145.7 -78.2972,-145.7 -76.2826,-145.7 -74.268,-145.7 -72.2534,-145.7 -70.2388,-145.7 -68.2242,-145.7 -66.2096,-145.7 -64.195)) | POINT(12.86 -74.268) | false | false | |||||||||||
Integrating petrologic records and geodynamics: Quantifying the effects of glaciation on crustal stress and eruptive patterns at Mt. Waesche, Executive Committee Range, Antarctica
|
2122248 |
2021-08-19 | Waters, Laura; Naliboff, John; Zimmerer, Matthew | No dataset link provided | Isotopic and sedimentary datasets reveal that volcanic activity typically increases during interglacial periods. However, the physical mechanisms through which changes in the surface loading affect volcanic magmatic plumbing systems remain unconstrained. Recently generated 40Ar/39Ar eruption ages indicate that 86% of the dated samples from Mt. Waesche, a late Quaternary volcano in Marie Byrd land, correlate with interglacial periods, suggesting this volcano uniquely responds to changes in the West Antarctic Ice Sheet. We propose to combine the petrology of Mount Waesche’s volcanic record, constraints on changing ice loads through time, and geodynamic modelling to: (1) Determine how pre-eruptive storage conditions change during glacial and interglacial periods using whole rock and mineral compositions of volcanic rocks; (2) Conduct geodynamic modeling to elucidate the relationship between lithospheric structure, temporal variations in ice sheet thickness, and subsequent changes in crustal stresses and magmatic transport and, therefore, the mechanism(s) by which deglaciation impacts magmatic plumbing systems; (3) Use the outcomes of objectives (1) and (2) to provide new constraints on the changes in ice sheet thickness through time that could plausibly trigger future volcanic and magmatic activity in West Antarctica. This collaborative approach will provide a novel methodology to determine prior magnitudes and rates of ice load changes within the Marie Byrd Land region of Antarctica. Lastly, estimates of WAIS elevation changes from this study will be compared to ongoing studies at Mount Waesche focused on constraining last interglacial ice sheet draw down using cosmogenic exposure ages obtained from shallow drilling. The scope of work also includes a partnership with Mentoring Kids Works to develop several Polar and Earth Science Educational Modules aimed at improving reading skills in third grade students in New Mexico. The proposed Polar and Earth Science program consists of modules that include readings of books introducing students to Earth and Polar science themes, paired with Earth and Polar Science activities, followed by simple experiments, where students make predictions and collect data. Information required to implement our Polar and Earth Science curriculum will be made available online. | POLYGON((-127.143608 -77.1380528,-127.1012394 -77.1380528,-127.0588708 -77.1380528,-127.0165022 -77.1380528,-126.9741336 -77.1380528,-126.931765 -77.1380528,-126.8893964 -77.1380528,-126.8470278 -77.1380528,-126.8046592 -77.1380528,-126.7622906 -77.1380528,-126.719922 -77.1380528,-126.719922 -77.14809141,-126.719922 -77.15813002,-126.719922 -77.16816863,-126.719922 -77.17820724,-126.719922 -77.18824585,-126.719922 -77.19828446,-126.719922 -77.20832307,-126.719922 -77.21836168,-126.719922 -77.22840029,-126.719922 -77.2384389,-126.7622906 -77.2384389,-126.8046592 -77.2384389,-126.8470278 -77.2384389,-126.8893964 -77.2384389,-126.931765 -77.2384389,-126.9741336 -77.2384389,-127.0165022 -77.2384389,-127.0588708 -77.2384389,-127.1012394 -77.2384389,-127.143608 -77.2384389,-127.143608 -77.22840029,-127.143608 -77.21836168,-127.143608 -77.20832307,-127.143608 -77.19828446,-127.143608 -77.18824585,-127.143608 -77.17820724,-127.143608 -77.16816863,-127.143608 -77.15813002,-127.143608 -77.14809141,-127.143608 -77.1380528)) | POINT(-126.931765 -77.18824585) | false | false | |||||||||||
U-Series Comminution Age Constraints on Taylor Valley Erosion
|
1644171 |
2021-08-13 | Blackburn, Terrence; Tulaczyk, Slawek |
|
The primary scientific goal of the proposed project is to test whether Taylor Valley, Antarctica has experienced glacial incision in the last ~1 million years in spite of cold climate conditions. One of the Dry Valleys of the Transantarctic Mountains, Taylor Valley exhibits over 2000 m of relief from sub sea-level troughs to high polar peaks. The Dry Valleys are characterized by low mean annual temperatures, paucity of precipitation and erosion that has allowed fragile glacial landforms, now subaerially exposed at high elevations, to be preserved for as long as 15 Ma. Two end member models can explain the timing of glacial incision and the observation that Quaternary advances of Taylor Glacier have left deposits at lower valley elevations with each advance. In the first scenario, all Valley relief is generated prior to 15 Ma when non-polar climates enabled warm-based glaciers to incise and widen fluvial channels more so than peaks. In this case, Quaternary drift deposits record advances of cold-based glaciers of decreasing ice volume. Limited glacial erosion and silt generation results in drift deposits composed primarily of recycled sediments. In the second scenario, selective erosion of the valley floor continues to deepen Taylor Valley over the last 2 Ma while high elevation peaks remain uneroded in polar conditions. The ‘bathtub rings’ of Quaternary drifts reaching a progressively lower elevation through time could be due to the lowering of the valley floor by subglacial erosion and with it, production of silt which is now incorporated into these drifts. While either scenario would result in the present day topography, they differ in the implied evolution of regional glacial ice volume over time and the timing of both valley relief production and generation of fine-grained particles. Here we propose to distinguish between these two models, by placing time constrains on fine particle production using U-series comminution dating. This new geochronologic tool exploits the loss of 234U due to alpha-recoil. The deficiency in 234U only becomes detectable in particles with a sufficiently high surface-area-to-volume ratio which can incur appreciable 234U loss (<50 m). The timing of comminution and particle size controls the magnitude of 234U loss, up to 10% in silt-sized particles comminuted over 1.5 million years ago. And while this geochronologic tool is in its infancy, the scientific goal of this proposal can be achieved by resolving between ancient and recently comminuted fine particles, a binary question that our preliminary modeling and measured data show is readily resolved. | POLYGON((162 -77.5,162.2 -77.5,162.4 -77.5,162.6 -77.5,162.8 -77.5,163 -77.5,163.2 -77.5,163.4 -77.5,163.6 -77.5,163.8 -77.5,164 -77.5,164 -77.525,164 -77.55,164 -77.575,164 -77.6,164 -77.625,164 -77.65,164 -77.675,164 -77.7,164 -77.725,164 -77.75,163.8 -77.75,163.6 -77.75,163.4 -77.75,163.2 -77.75,163 -77.75,162.8 -77.75,162.6 -77.75,162.4 -77.75,162.2 -77.75,162 -77.75,162 -77.725,162 -77.7,162 -77.675,162 -77.65,162 -77.625,162 -77.6,162 -77.575,162 -77.55,162 -77.525,162 -77.5)) | POINT(163 -77.625) | false | false | |||||||||||
Collaborative Research: Observing the Atmospheric Boundary over the West Antarctic Ice Sheet
|
1744878 1745097 |
2021-07-06 | Cassano, John; Lazzara, Matthew | No dataset link provided | An observational campaign, focused on the atmospheric boundary layer over the West Antarctic ice sheet (WAIS), is planned. A robust set of year-round, autonomous, atmospheric and surface measurements, will be made using an instrumented 30-m tall tower (TT) at the WAIS divide field camp (WAIS TT). An unmanned aerial system (UAS) field campaign will be conducted and will supplement the WAIS TT observations by sampling the entire depth of the boundary layer. The proposed work will create a unique dataset of year-round atmospheric boundary layer measurements from a portion of the Antarctic continent that has not previously been observed in this manner. The newly acquired dataset will be used to elucidate the processes that modulate the exchange of energy between the ice sheet surface and the overlying atmosphere, to assess the relationships between near surface stability, winds, and radiative forcing, and to compare these relationships observed at the WAIS TT to those described for other portions of the Antarctic continent. The dataset will also be used to assess the ability of the Antarctic Mesoscale Prediction System (AMPS) operational weather forecasting model and current generation reanalyses to accurately represent surface and boundary layer processes in this region of Antarctica. Intellectual Merit The near surface atmosphere over West Antarctica is one of the fastest warming locations on the planet and this atmospheric warming, along with oceanic forcing, is contributing to ice sheet melt and rising sea levels. Recent reports from the National Research Council and the Scientific Committee on Antarctic Research have highlighted the critical nature of these aspects of the West Antarctic climate system. The proposed research will advance our understanding of how the atmosphere exchanges heat, moisture, and momentum with the ice sheet surface in West Antarctica and will assess our ability to represent these processes in current generation numerical weather prediction and reanalysis products, by addressing the following scientific questions: - How does the surface layer and lower portion of the atmospheric boundary layer in West Antarctica compare to that over the low elevation ice shelves and the high elevation East Antarctic plateau? - What are the dominant factors that lead to warm episodes, and potentially periods of melt, over the West Antarctic ice sheet? - How well do operational forecast models (AMPS) and reanalyses reproduce the observed near surface stability in West Antarctica? - What are the sources of errors in the modeled near surface atmospheric stability of West Antarctica? Broader Impacts: Atmospheric warming and associated melting of the West Antarctic ice sheet has the potential to raise sea level by many meters. The proposed research will explore the processes that control this warming, and as such has broad societal relevance by providing improved understanding of the processes that could lead to large sea level rise. Educational outreach activities will include classroom visits to K-12 schools and Skype sessions from Antarctica with students at these schools. Photographs, videos, and instrumentation used during this project will be brought to the classrooms. At the college and university level data from the project will be used in classes being developed as part of a new undergraduate atmospheric and oceanic science major at the University of Colorado and a graduate student will be support on this project. Public outreach will be in the form of field blogs, media interviews, and either an article for a general interest scientific magazine, such as Scientific American, or as an electronically published book of Antarctic fieldwork photographs. | POLYGON((-115 -79,-114.4 -79,-113.8 -79,-113.2 -79,-112.6 -79,-112 -79,-111.4 -79,-110.8 -79,-110.2 -79,-109.6 -79,-109 -79,-109 -79.1,-109 -79.2,-109 -79.3,-109 -79.4,-109 -79.5,-109 -79.6,-109 -79.7,-109 -79.8,-109 -79.9,-109 -80,-109.6 -80,-110.2 -80,-110.8 -80,-111.4 -80,-112 -80,-112.6 -80,-113.2 -80,-113.8 -80,-114.4 -80,-115 -80,-115 -79.9,-115 -79.8,-115 -79.7,-115 -79.6,-115 -79.5,-115 -79.4,-115 -79.3,-115 -79.2,-115 -79.1,-115 -79)) | POINT(-112 -79.5) | false | false | |||||||||||
Antarctic Submarine Melt Variability from Remote Sensing of Icebergs
|
1933764 1643455 |
2021-06-28 | Enderlin, Ellyn |
|
The project uses repeat, very high-resolution (~0.5 m pixel width and length) satellite images acquired by the WorldView satellites, to estimate rates of iceberg melting in key coastal regions around Antarctica. The satellite images are used to construct maps of iceberg surface elevation change over time, which are converted to estimates of area-averaged submarine melt rates. Where ocean temperature observations are available, the melt rates are compared to these data to determine if variations in ocean temperature can explain observed iceberg melt variability. The iceberg melt rates are also compared to glacier frontal ablation rates (flow towards the terminus minus changes in terminus position over time) and integrated into a numerical ice flow model in order to assess the importance of submarine melting on recent changes in terminus position, ice flow, and dynamic mass loss. Overall, the analysis will yield insights into the effects of changes in ocean forcing on the submarine melting of Antarctic ice shelves and icebergs. The project does not require field work in Antarctica. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||
Collaborative Research: East Antarctic Glacial Landscape Evolution (EAGLE): A Study using Combined Thermochronology, Geochronology and Provenance Analysis
|
1443556 1443342 |
2021-06-09 | Thomson, Stuart; Reiners, Peter; Licht, Kathy |
|
Antarctica is almost entirely covered by ice, in places over two miles thick. This ice hides a landscape that is less well known than the surface of Mars and represents one of Earth's last unexplored frontiers. Ice-penetrating radar images provide a remote glimpse of this landscape including ice-buried mountains larger than the European Alps and huge fjords twice as deep as the Grand Canyon. The goal of this project is to collect sediment samples derived from these landscapes to determine when and under what conditions these features formed. Specifically, the project seeks to understand the landscape in the context of the history and dynamics of the overlying ice sheet and past mountain-building episodes. This project accomplishes this goal by analyzing sand collected during previous sea-floor drilling expeditions off the coast of Antarctica. This sand was supplied from the continent interior by ancient rivers when it was ice-free over 34 million year ago, and later by glaciers. The project will also study bedrock samples from rare ice-free parts of the Transantarctic Mountains. The primary activity is to apply multiple advanced dating techniques to single mineral grains contained within this sand and rock. Different methods and minerals yield different dates that provide insight into how Antarctica?s landscape has eroded over the many tens of millions of years during which sand was deposited offshore. The dating techniques that are being developed and enhanced for this study have broad application in many branches of geoscience research and industry. The project makes cost-effective use of pre-existing sample collections housed at NSF facilities including the US Polar Rock Repository, the Gulf Coast Core Repository, and the Antarctic Marine Geology Research Facility. The project will contribute to the STEM training of two graduate and two undergraduate students, and includes collaboration among four US universities as well as international collaboration between the US and France. The project also supports outreach in the form of a two-week open workshop giving ten students the opportunity to visit the University of Arizona to conduct STEM-based analytical work and training on Antarctic-based projects. Results from both the project and workshop will be disseminated through presentations at professional meetings, peer-reviewed publications, and through public outreach and media. The main objective of this project is to reconstruct a chronology of East Antarctic subglacial landscape evolution to understand the tectonic and climatic forcing behind landscape modification, and how it has influenced past ice sheet inception and dynamics. Our approach focuses on acquiring a record of the cooling and erosion history contained in East Antarctic-derived detrital mineral grains and clasts in offshore sediments deposited both before and after the onset of Antarctic glaciation. Samples will be taken from existing drill core and marine sediment core material from offshore Wilkes Land (100°E-160°E) and the Ross Sea. Multiple geo- and thermo-chronometers will be employed to reconstruct source region cooling history including U-Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar. This offshore record will be augmented and tested by applying the same methods to onshore bedrock samples in the Transantarctic Mountains obtained from the US Polar Rock Repository and through fieldwork. The onshore work will additionally address the debated incision history of the large glacial troughs that cut the range, now occupied by glaciers draining the East Antarctic Ice Sheet. This includes collection of samples from several age-elevation transects, apatite 4He/3He thermochronometry, and Pecube thermo-kinematic modeling. Acquiring an extensive geo- and thermo-chronologic database will also provide valuable new information on the poorly known ice-hidden geology and tectonics of subglacial East Antarctica that has implications for improving supercontinent reconstructions and understanding continental break-up. | None | None | false | false | |||||||||||
Collaborative Research: The Timing and Spatial Expression of the Bipolar Seesaw
|
1643394 1643355 |
2021-05-28 | Fudge, T. J.; Steig, Eric J.; Buizert, Christo | The main objectives of the proposed work are twofold: (1) to fully characterize the timing and spatial pattern of millennial-scale Antarctic climate change during the deglaciation and Dansgaard-Oeschger (DO) cycles using multiple synchronized Antarctic ice cores; (2) to provide state-of-the-art, internally-consistent ice core chronologies for all US Antarctic ice cores. The WAIS Divide, Siple Dome, Byrd, Taylor Dome and South Pole ice cores will be synchronized using volcanic, dust and gas (CH4 and d18Oatm) markers; this synchronization will be combined with ice-flow and firn densification modeling to create gas-age and ice-age scales for these ice cores, consistent with the highly accurate WAIS Divide chronology. The grant will support ongoing efforts to synchronize the WAIS Divide core to the Dome C and Dronning Maud Land cores, which in turn have been synchronized to several East Antarctic ice cores. Using this chronological framework, the interpolar phasing of millennial-scale climate change will be investigated during the DO cycles using 6 Antarctic ice cores, and during the last deglaciation using 11 ice cores. The relationship between accumulation rate and site temperature during the natural warming of the last deglaciation will be investigated for all the Antarctic ice cores included in the framework. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||||||||
The Reference Elevation Model of Antarctica
|
1543501 |
2021-05-18 | Howat, Ian; Myoung-Jong Noh, |
|
The Reference Elevation Model of Antarctica (REMA) is the first continental-scale digital elevation model (DEM) at a resolution of less than 10 m. REMA is created from stereophotogrammetry with submeter resolution optical, commercial satellite imagery. The higher spatial and radiometric resolutions of this imagery enable high-quality surface extraction over the low-contrast ice sheet surface. The DEMs are registered to satellite radar and laser altimetry and are mosaicked to provide a continuous surface covering nearly 95 % the entire continent. The mosaic includes an error estimate and a time stamp, enabling change measurement. Typical elevation errors are less than 1 m, as validated by the comparison to airborne laser altimetry. REMA provides a powerful new resource for Antarctic science and provides a proof of concept for generating accurate high-resolution repeat topography at continental scales. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||
Does Nest Density Matter? Using Novel Technology to Collect Whole-colony Data on Adelie Penguins.
|
1834986 |
2021-05-12 | Ballard, Grant; Schmidt, Annie; Schwager, Mac; McKown, Matthew |
|
New methodologies for the deployment of coordinated unmanned aerial vehicles will be developed with the aim of attaining whole-colony imagery that can be used to characterize nesting habitats of Adelie penguins at Cape Crozier, on Ross Island, Antarctica. This information will be used to test hypotheses regarding relationships between terrain characteristics, nesting density, and breeding success. This population, potentially the largest in the world and at the southern limit of the species' range, has doubled in size over the past 20 years while most other colonies in the region have remained stable or declined. New information gained from this project will be useful in understanding the potential of climate-driven changes in terrestrial nesting habitats for impacting Adelie penguins in the future. The project will produce, and document, open-source software tools to help automate image processing for automated counting of Adelie penguins. The project will train graduate and undergraduate students and contribute materials to ongoing educational outreach programs based on related penguin science projects. Information gained from this project will contribute towards building robust, cost-effective protocols for monitoring Adelie penguin populations, a key ecosystem indicator identified in the draft Ross Sea Marine Protected Area Research and Monitoring Plan. Adelie penguins are important indicators of ecosystem function and change in the Southern Ocean. In addition to facing rapid changes in sea ice and other factors in their pelagic environment, their terrestrial nesting habitat is also changing. Understanding the species' response to such changes is critical for assessing its ability to adapt to the changing climate. The objective of this project is to test several hypotheses about the influence of fine-scale nesting habitat, nest density, and breeding success of Adelie penguins in the Ross Sea region. To accomplish this, the project will develop algorithms to improve efficiency and safety of surveys by unmanned aerial systems and develop and disseminate an automated image processing workflow. Images collected during several UAV surveys will be used to estimate the number of nesting adults and chicks produced, as well as estimate nesting density in different parts of two colonies on Ross Island, Antarctica, that differ in size by two orders of magnitude. Imagery will be used to generate high resolution digital surface/elevation models that will allow terrain variables like flood risk and terrain complexity to be derived. Combining the surface model with the nest and chick counts at the two colonies will provide relationships between habitat covariates, nest density, and breeding success. The approaches developed will enable Adelie penguin population sizes and potentially several other indicators in the Ross Sea Marine Protected Area Research and Monitoring Plan to be determined and evaluated. The flight control algorithms developed have the potential to be used for many types of surveys, especially when large areas need to be covered in a short period with extreme weather potential and difficult landing options. Aerial images and video will be used to create useable materials to be included in outreach and educational programs. The automated image processing workflow and classification models will be developed as open source software and will be made freely available for others addressing similar wildlife monitoring challenges. | POLYGON((165 -77,165.5 -77,166 -77,166.5 -77,167 -77,167.5 -77,168 -77,168.5 -77,169 -77,169.5 -77,170 -77,170 -77.1,170 -77.2,170 -77.3,170 -77.4,170 -77.5,170 -77.6,170 -77.7,170 -77.8,170 -77.9,170 -78,169.5 -78,169 -78,168.5 -78,168 -78,167.5 -78,167 -78,166.5 -78,166 -78,165.5 -78,165 -78,165 -77.9,165 -77.8,165 -77.7,165 -77.6,165 -77.5,165 -77.4,165 -77.3,165 -77.2,165 -77.1,165 -77)) | POINT(167.5 -77.5) | false | false | |||||||||||
NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment
|
1738992 1929991 |
2021-02-22 | Truffer, Martin; Scambos, Ted; Muto, Atsu; Heywood, Karen; Boehme, Lars; Hall, Robert; Wahlin, Anna; Lenaerts, Jan; Pettit, Erin | This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Thwaites and neighboring glaciers in the Amundsen Sea Embayment are rapidly losing mass in response to recent climate warming and related changes in ocean circulation. Mass loss from the Amundsen Sea Embayment could lead to the eventual collapse of the West Antarctic Ice Sheet, raising the global sea level by up to 2.5 meters (8 feet) in as short as 500 years. The processes driving the loss appear to be warmer ocean circulation and changes in the width and flow speed of the glacier, but a better understanding of these changes is needed to refine predictions of how the glacier will evolve. One highly sensitive process is the transitional flow of glacier ice from land onto the ocean to become a floating ice shelf. This flow of ice from grounded to floating is affected by changes in air temperature and snowfall at the surface; the speed and thickness of ice feeding it from upstream; and the ocean temperature, salinity, bathymetry, and currents that the ice flows into. The project team will gather new measurements of each of these local environmental conditions so that it can better predict how future changes in air, ocean, or the ice will affect the loss of ice to the ocean in this region. <br/> <br/>Current and anticipated near-future mass loss from Thwaites Glacier and nearby Amundsen Sea Embayment region is mainly attributed to reduction in ice-shelf buttressing due to sub-ice-shelf melting by intrusion of relatively warm Circumpolar Deep Water into sub-ice-shelf cavities. Such predictions for mass loss, however, still lack understanding of the dominant processes at and near grounding zones, especially their spatial and temporal variability, as well as atmospheric and oceanic drivers of these processes. This project aims to constrain and compare these processes for the Thwaites and the Dotson Ice Shelves, which are connected through upstream ice dynamics, but influenced by different submarine troughs. The team's specific objectives are to: 1) install atmosphere-ice-ocean multi-sensor remote autonomous stations on the ice shelves for two years to provide sub-daily continuous observations of concurrent oceanic, glaciologic, and atmospheric conditions; 2) measure ocean properties on the continental shelf adjacent to ice-shelf fronts (using seal tagging, glider-based and ship-based surveys, and existing moored and conductivity-temperature-depth-cast data), 3) measure ocean properties into sub-ice-shelf cavities (using autonomous underwater vehicles) to detail ocean transports and heat fluxes; and 4) constrain current ice-shelf and sub-ice-shelf cavity geometry, ice flow, and firn properties for the ice-shelves (using radar, active-source seismic, and gravimetric methods) to better understand the impact of ocean and atmosphere on the ice-sheet change. The team will also engage the public and bring awareness to this rapidly changing component of the cryosphere through a "Live from the Ice" social media campaign in which the public can follow the action and data collection from the perspective of tagged seals and autonomous stations.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-114 -74,-113 -74,-112 -74,-111 -74,-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-104 -74.2,-104 -74.4,-104 -74.6,-104 -74.8,-104 -75,-104 -75.2,-104 -75.4,-104 -75.6,-104 -75.8,-104 -76,-105 -76,-106 -76,-107 -76,-108 -76,-109 -76,-110 -76,-111 -76,-112 -76,-113 -76,-114 -76,-114 -75.8,-114 -75.6,-114 -75.4,-114 -75.2,-114 -75,-114 -74.8,-114 -74.6,-114 -74.4,-114 -74.2,-114 -74)) | POINT(-109 -75) | false | false | ||||||||||||
Collaborative Research: Potential Direct Geologic Constraint of Ice Sheet Thickness in the Central Transantarctic Mountains during the Pliocene Warm Period
|
1443321 1443329 |
2020-12-20 | Balco, Gregory; Bromley, Gorden; BROMLEY, GORDON |
|
This investigation will reconstruct past behavior of the East Antarctic Ice Sheet during periods of warmer-than-present climate, such as the Pliocene, in order to better project the likely response of Earth's largest ice sheet to anthropogenic warming. Containing the equivalent of ~55 m sea-level rise, the future evolution of the East Antarctic Ice Sheet has clear societal ramifications on a global scale as temperatures continue to rise. Therefore, determining ice-sheet sensitivity to climate on the scale predicted for the next two centuries is a matter of increasing urgency, particularly in light of evidence suggesting the East Antarctic Ice Sheet is more dynamic than previously thought. This research will provide a terrestrial geologic record of long-term ice-sheet behavior from sites immediately adjacent the East Antarctic Ice Sheet in the Transantarctic Mountains, with which the project will help ascertain how the ice sheet responded to past warm periods. The project will focus primarily on the Pliocene warm period, 5 to 3 million years ago, as this represents the closest analogue to 21st Century climate conditions.<br/><br/>The proposed research will investigate glacial deposits corresponding to the East Antarctic Ice Sheet in the central Transantarctic Mountains in order to expand the geologic record of past ice-sheet behavior. The overarching research objectives are to improve understanding of the East Antarctic Ice Sheet's configuration during periods of warmer-than-present climate, such as the Pliocene warm period, and to determine whether the ice sheet underwent significant volume changes or remained relatively stable in response to warming. To address these goals, the investigation will map and date glacial deposits preserved at mountain sites immediately adjacent the ice sheet. Specifically, we will: (i) employ multiple cosmogenic nuclides (10Be, 26Al, 21Ne) to establish more fully ice-thickness histories for the upper Shackleton and Beardmore Glaciers, where they exit the ice sheet; (ii) use this record to identify periods during which the East Antarctic Ice Sheet was at least as extensive as today; and (iii) use these data to assess long-term ice-sheet variability in East Antarctica, with particular emphasis on Pliocene warm episodes. This research will require Antarctic fieldwork, glacial-geologic mapping, and cosmogenic surface-exposure dating. | POLYGON((-180 -85.40705,-179.659078 -85.40705,-179.318156 -85.40705,-178.977234 -85.40705,-178.636312 -85.40705,-178.29539 -85.40705,-177.954468 -85.40705,-177.613546 -85.40705,-177.272624 -85.40705,-176.931702 -85.40705,-176.59078 -85.40705,-176.59078 -85.422615,-176.59078 -85.43818,-176.59078 -85.453745,-176.59078 -85.46931,-176.59078 -85.484875,-176.59078 -85.50044,-176.59078 -85.516005,-176.59078 -85.53157,-176.59078 -85.547135,-176.59078 -85.5627,-176.931702 -85.5627,-177.272624 -85.5627,-177.613546 -85.5627,-177.954468 -85.5627,-178.29539 -85.5627,-178.636312 -85.5627,-178.977234 -85.5627,-179.318156 -85.5627,-179.659078 -85.5627,180 -85.5627,179.277561 -85.5627,178.555122 -85.5627,177.832683 -85.5627,177.110244 -85.5627,176.387805 -85.5627,175.665366 -85.5627,174.942927 -85.5627,174.220488 -85.5627,173.498049 -85.5627,172.77561 -85.5627,172.77561 -85.547135,172.77561 -85.53157,172.77561 -85.516005,172.77561 -85.50044,172.77561 -85.484875,172.77561 -85.46931,172.77561 -85.453745,172.77561 -85.43818,172.77561 -85.422615,172.77561 -85.40705,173.498049 -85.40705,174.220488 -85.40705,174.942927 -85.40705,175.665366 -85.40705,176.387805 -85.40705,177.110244 -85.40705,177.832683 -85.40705,178.555122 -85.40705,179.277561 -85.40705,-180 -85.40705)) | POINT(178.092415 -85.484875) | false | false | |||||||||||
Collaborative Research: Last Glacial Maximum and Deglaciation Chronology for the Foundation Ice Stream and Southeastern Weddell Sea Embayment
|
0838784 0838256 0838783 |
2020-12-19 | Balco, Gregory; Todd, Claire; Conway, Howard | This award supports a project to find and date geologic evidence of past ice-marginal positions in the Pensacola Mountains, which border the Foundation Ice Stream at the head of the Weddell Sea embayment. The project will involve glacial geologic mapping and cosmogenic-nuclide surface exposure dating of glacially transported erratics. An ice-flow model will be used to link our exposure-dating results together in a glaciologically consistent way, and to relate them to regional LGM to Holocene elevation changes. A secondary focus of the project seeks to improve the effectiveness of exposure-dating methods in understanding ice sheet change. Changes in the location of the ice margin, and thus the exposure ages that record these changes, are controlled not only by regional ice sheet mass balance, but also by local effects on snow- and icefields immediately adjacent to the exposure-dating sites. This part of the project will combine glaciological observations near the present ice margin with targeted exposure- age sampling in an effort to better understand the processes controlling the ice margin location, and improve the interpretation of very recent exposure-age data as a record of latest Holocene to present ice sheet changes. The intellectual merit of the project is that it will provide direct geologic evidence of LGM-to-Holocene ice volume change in a region of Antarctica where no such evidence now exists. The broader impacts of the work involve both gathering information needed for accurate understanding of past and present global sea level change. Secondly, this project will help to develop and maintain the human and intellectual resources necessary for continued excellence in polar research and global change education, by linking experienced Antarctic researchers with early career scientists who seek to develop their expertise in both research and education. In addition, it brings together two early career scientists whose careers are focused at opposite ends of the research-education spectrum, thus facilitating better integration of research and education both in the careers of these scientists and in the outcome of this project. This award has field work in Antarctica. | POLYGON((-66.27517 -83.23921,-65.341961 -83.23921,-64.408752 -83.23921,-63.475543 -83.23921,-62.542334 -83.23921,-61.609125 -83.23921,-60.675916 -83.23921,-59.742707 -83.23921,-58.809498 -83.23921,-57.876289 -83.23921,-56.94308 -83.23921,-56.94308 -83.359865,-56.94308 -83.48052,-56.94308 -83.601175,-56.94308 -83.72183,-56.94308 -83.842485,-56.94308 -83.96314,-56.94308 -84.083795,-56.94308 -84.20445,-56.94308 -84.325105,-56.94308 -84.44576,-57.876289 -84.44576,-58.809498 -84.44576,-59.742707 -84.44576,-60.675916 -84.44576,-61.609125 -84.44576,-62.542334 -84.44576,-63.475543 -84.44576,-64.408752 -84.44576,-65.341961 -84.44576,-66.27517 -84.44576,-66.27517 -84.325105,-66.27517 -84.20445,-66.27517 -84.083795,-66.27517 -83.96314,-66.27517 -83.842485,-66.27517 -83.72183,-66.27517 -83.601175,-66.27517 -83.48052,-66.27517 -83.359865,-66.27517 -83.23921)) | POINT(-61.609125 -83.842485) | false | false | ||||||||||||
Collaborative Research: The Role of Glacial History on the Structure and Functioning of Ecological Communities in the Shackleton Glacier Region of the Transantarctic Mountains
|
1341736 |
2020-11-02 | Adams, Byron; Fierer, Noah; Wall, Diana; Diaz, Melisa A.; Gardner, Christopher B.; Lyons, W. Berry | The project will characterize the functional, taxonomic, biotic and abiotic drivers of soil ecosystems in the Trans Antarctic Mountains (one of the most remote and harsh terrestrial landscapes on the planet). The work will utilize new high-throughput DNA and RNA sequencing technologies to identify members of the microbial communities and determine if the microbial community structures are independent of local environmental heterogeneities. In addition the project will determine if microbial diversity and function are correlated with time since the last glacial maximum (LGM). The expected results will greatly contribute to our knowledge regarding rates of microbial succession and help define the some of the limits to life and life-maintaining processes on Earth.<br/><br/>The project will analyze genomes and RNA derived from these genomes to describe the relationships between biodiversity and ecosystem functioning from soils above and below LGM elevations and to correlate these with the environmental drivers associated with their development during the last ~18,000 years. The team will identify the taxonomic diversity and the functional genetic composition within a broad suite of soil biota and examine their patterns of assembly and distribution within the framework of their geological legacies. The project will mentor participants from undergraduate students to postdoctoral researchers and prepare them to effectively engage in research to meet their career aspirations. The project will contribute to ongoing public education efforts through relationships with K-12 teachers and administrators- to include University-Public School partnerships. Less formal activities include public lecture series and weblogs aimed at providing information on Antarctic polar desert ecosystems to the general public. Targeted classrooms near each PI's institution will participate in online, real-time discussions about current topics in Antarctic ecosystems research. | POLYGON((-177.4099 -84.4661,-177.08229 -84.4661,-176.75468 -84.4661,-176.42707 -84.4661,-176.09946 -84.4661,-175.77185 -84.4661,-175.44424 -84.4661,-175.11663000000001 -84.4661,-174.78902 -84.4661,-174.46141 -84.4661,-174.1338 -84.4661,-174.1338 -84.56828,-174.1338 -84.67045999999999,-174.1338 -84.77264,-174.1338 -84.87482,-174.1338 -84.977,-174.1338 -85.07918,-174.1338 -85.18136,-174.1338 -85.28354,-174.1338 -85.38571999999999,-174.1338 -85.4879,-174.46141 -85.4879,-174.78902 -85.4879,-175.11663000000001 -85.4879,-175.44424 -85.4879,-175.77185 -85.4879,-176.09946 -85.4879,-176.42707 -85.4879,-176.75468 -85.4879,-177.08229 -85.4879,-177.4099 -85.4879,-177.4099 -85.38571999999999,-177.4099 -85.28354,-177.4099 -85.18136,-177.4099 -85.07918,-177.4099 -84.977,-177.4099 -84.87482,-177.4099 -84.77264,-177.4099 -84.67045999999999,-177.4099 -84.56828,-177.4099 -84.4661)) | POINT(-175.77185 -84.977) | false | false | ||||||||||||
Collaborative Research: New Constraints on Post-Glacial Rebound and Holocene Environmental History along the Northern Antarctic Peninsula from Raised Beaches
|
1644197 |
2020-10-08 | Simms, Alexander; DeWitt, Regina | Glacier ice loss from Antarctica has the potential to lead to a significant rise in global sea level. One line of evidence for accelerated glacier ice loss has been an increase in the rate at which the land has been rising across the Antarctic Peninsula as measured by GPS receivers. However, GPS observations of uplift are limited to the last two decades. One goal of this study is to determine how these newly observed rates of uplift compare to average rates of uplift across the Antarctic Peninsula over a longer time interval. Researchers reconstructed past sea levels using the age and elevation of ancient beaches now stranded above sea level on the low-lying coastal hills of the Antarctica Peninsula and determined the rate of uplift over the last 5,000 years. The researchers analyzed the structure of the beaches using ground-penetrating radar and the characteristics of beach sediments to understand how sea-level rise and past climate changes are recorded in beach deposits. We found that unlike most views of how sea level changed across Antarctica over the last 5,000 years, its history is complex with periods of increasing rates of sea-level fall as well as short periods of potential sea-level rise. We attribute these oscillations in the nature of sea-level change across the Antarctic Peninsula to changes in the ice sheet over the last 5,000 years. These changes in sea level also suggest our understanding of the Earth structure beneath the Antarctic Peninsula need to be revised. The beach deposits themselves also record periods of climate change as reflected in the size and shape of their cobbles. This project has lead to the training of five graduate students, three undergraduate students, and outreach talks to k-12 schools in three communities. | POLYGON((-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-60 -61,-59 -61,-58 -61,-57 -61,-56 -61,-55 -61,-55 -61.4,-55 -61.8,-55 -62.2,-55 -62.6,-55 -63,-55 -63.4,-55 -63.8,-55 -64.2,-55 -64.6,-55 -65,-56 -65,-57 -65,-58 -65,-59 -65,-60 -65,-61 -65,-62 -65,-63 -65,-64 -65,-65 -65,-65 -64.6,-65 -64.2,-65 -63.8,-65 -63.4,-65 -63,-65 -62.6,-65 -62.2,-65 -61.8,-65 -61.4,-65 -61)) | POINT(-60 -63) | false | false | ||||||||||||
Collaborative Research: Multidisciplinary Analysis of Antarctic Blue Ice Moraine Formation and their Potential as Climate Archives over Multiple Glacial Cycles
|
1443433 1443213 |
2020-09-29 | Kaplan, Michael; Schaefer, Joerg; Winckler, Gisela; Licht, Kathy |
|
Sediments deposited by the Antarctic ice sheet are an archive of its history with time and help geologists to determine how the remote interior of the ice sheet has changed over the past several hundred thousand years. This project will focus on the formation and dynamics of moraines (accumulations of dirt and rocks that are incorporated in the glacier surface or have been pushed along by the glacier as it moves) near the blue ice area of Mt. Achernar in the central Transantarctic Mountains in Antarctica.. The study will improve basic understanding of the formation of these moraines. Fieldwork at the site will focus on imaging the internal structure of the moraine to determine the processes by which it, and others like it, form over time. Additional analyses will include measurements of ice flow and collection of rock samples to determine the timing of debris deposition and the changes in the sources of sediments from deep within the Antarctic continent. The project will provide both graduate and undergraduate students training in paleoclimate studies, geology, and numerical modeling approaches. The broader impacts of the proposed work include hands on training in the Earth Sciences for graduate and undergraduate students, collaboration with colleagues in New Zealand and Sweden to provide an international research experience for students from the US, and three educational modules to be delivered by student researchers regarding Antarctica's role in global environments. The research is societally relevant and multidisciplinary and the topics are ideal for sharing with the public. All research findings will be made publicly available to others via timely publication in high-impact, peer-reviewed journals and all data will be submitted to the National Snow and Ice Data Center, and excess samples will be provided to the U.S. Polar Rock Repository.<br/><br/>Direct observations of ice sheet history from the margins of Antarctica's polar plateau are essential for testing numerical ice sheet models, and the laterally extensive, blue-ice moraines of the Mt. Achernar Moraine complex in the central Transantarctic Mountains contain a unique and nearly untapped direct, quasi-continuous record of ice sheet change over multiple glacial cycles. The project objectives include improved understanding of processes and rates of blue ice moraine formation, as well as identifying the topographic, glaciological, and climatic controls on their evolution. Data to be collected with fieldwork in Antarctica include: imaging of internal ice structure with ground-penetrating radar, measurement of ice flow velocity and direction with a global positioning system (GPS) array, analysis of debris concentration and composition in glacier ice, state-of-the-art cosmogenic multi-nuclide analyses to determine exposure ages of moraine debris, mapping of trimlines and provenance analysis. Numerical model simulations, constrained by field data, will be used to evaluate the factors influencing changes in glacier flow that potentially impact the accumulation of the moraine debris. All together, the new data and modeling efforts will improve conceptual models of blue ice moraine formation, and thereby make them a more valuable proxy for developing a better understanding of the history of the ice sheet. | POLYGON((159 -83.8,159.5 -83.8,160 -83.8,160.5 -83.8,161 -83.8,161.5 -83.8,162 -83.8,162.5 -83.8,163 -83.8,163.5 -83.8,164 -83.8,164 -83.87,164 -83.94,164 -84.01,164 -84.08,164 -84.15,164 -84.22,164 -84.29,164 -84.36,164 -84.43,164 -84.5,163.5 -84.5,163 -84.5,162.5 -84.5,162 -84.5,161.5 -84.5,161 -84.5,160.5 -84.5,160 -84.5,159.5 -84.5,159 -84.5,159 -84.43,159 -84.36,159 -84.29,159 -84.22,159 -84.15,159 -84.08,159 -84.01,159 -83.94,159 -83.87,159 -83.8)) | POINT(161.5 -84.15) | false | false | |||||||||||
Collaborative Research: Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP)
|
1443690 |
2020-07-07 | Young, Duncan A.; Blankenship, Donald D.; Roberts, Jason; Bo, Sun | This study focuses on processing and interpretation of internationally collected aerogeophysical data from the Southern Plateau of the East Antarctic Ice Sheet. The data include ice penetrating radar data, laser altimetry, gravity and magnetics. The project will provide information on geological trends under the ice, the topography and character of the ice/rock interface, and the stratigraphy of the ice. The project will also provide baseline site characterization for future drilling. Future drilling sites and deep ice cores for old ice require that the base of the ice sheet be frozen to the bed (i.e. no free water at the interface between rock and ice) and the assessment will map the extent of frozen vs. thawed areas. Specifically, three main outcomes are anticipated for this project. First, the study will provide an assessment of the viability of Titan Dome, a subglacial highland region located near South Pole, as a potential old ice drilling prospect. The assessment will include determining the hydraulic context of the bed by processing and interpreting the radar data, ice sheet mass balance through time by mapping englacial reflectors in the ice and connecting them to ice stratigraphy in the recent South Pole, and ice sheet geometry using laser altimetry. Second, the study will provide an assessment of the geological context of the Titan Dome region with respect to understanding regional geologic boundaries and the potential for bedrock sampling. For these two goals, we will use data opportunistically collected by China, and the recent PolarGAP dataset. Third, the study will provide an assessment of the risk posture for RAID site targeting in the Titan Dome region, and the Dome C region. This will use a high-resolution dataset the team collected previously at Dome C, an area similar to the coarser resolution data collected at Titan Dome, and will enable an understanding of what is missed by the wide lines spacing at Titan Dome. Specifically, we will model subglacial hydrology with and without the high resolution data, and statistically examine the detection of subglacial mountains (which could preserve old ice) and subglacial lakes (which could destroy old ice), as a function of line spacing. | POLYGON((95 -68,100.5 -68,106 -68,111.5 -68,117 -68,122.5 -68,128 -68,133.5 -68,139 -68,144.5 -68,150 -68,150 -70.2,150 -72.4,150 -74.6,150 -76.8,150 -79,150 -81.2,150 -83.4,150 -85.6,150 -87.8,150 -90,144.5 -90,139 -90,133.5 -90,128 -90,122.5 -90,117 -90,111.5 -90,106 -90,100.5 -90,95 -90,95 -87.8,95 -85.6,95 -83.4,95 -81.2,95 -79,95 -76.8,95 -74.6,95 -72.4,95 -70.2,95 -68)) | POINT(122.5 -79) | false | false | ||||||||||||
Investigating Early Miocene Sub-ice Volcanoes in Antarctica for Improved Modeling and understanding of a Large Magmatic Province
|
1443576 |
2020-06-05 | Panter, Kurt |
|
Predictions of future sea level rise require better understanding of the changing dynamics of the Greenland and Antarctic ice sheets. One way to better understand the past history of the ice sheets is to obtain records from inland ice for past geological periods, particularly in Antarctica, the world's largest remaining ice sheet. Such records are exceedingly rare, and can be acquired at volcanic outcrops in the La Gorce Mountains of the central Transantarctic Mountains. Volcanoes now exposed within the La Gorce Mountains erupted beneath the East Antarctic ice sheet and the data collected will record how thick the ice sheet was in the past. In addition, information will be used to determine the thermal conditions at the base of the ice sheet, which impacts ice sheet stability. The project will also investigate the origin of volcanic activity in Antarctica and links to the West Antarctic Rift System (WARS). The WARS is a broad area of extended (i.e. stretched) continental crust, similar to that found in East Africa, and volcanism is wide spread and long-lived (65 million years to currently active) and despite more than 50 years of research, the fundamental cause of volcanism and rifting in Antarctica is still vigorously debated. The results of this award therefore also potentially impact the study of oceanic volcanism in the entire southwestern Pacific region (e.g., New Zealand and Australia), where volcanic fields of similar composition and age have been linked by common magma sources and processes. The field program includes a graduate student who will work on the collection, analysis, and interpretation of petrological data as part of his/her Masters project. The experience and specialized analytical training being offered will improve the quality of the student's research and optimize their opportunities for their future. The proposed work fosters faculty and student national and international collaboration, including working with multi-user facilities that provide advanced technological mentoring of science students. Results will be broadly disseminated in peer-reviewed journals, public presentations at science meetings, and in outreach activities. Petrologic and geochemical data will be disseminated to be the community through the Polar Rock Repository. The study of subglacially erupted volcanic rocks has been developed to the extent that it is now the most powerful proxy methodology for establishing precise 'snapshots' of ice sheets, including multiple critical ice parameters. Such data should include measurements of ice thickness, surface elevation and stability, which will be used to verify, or reject, published semi-empirical models relating ice dynamics to sea level changes. In addition to establishing whether East Antarctic ice was present during the formation of the volcanoes, data will be used to derive the coeval ice thicknesses, surface elevations and basal thermal regime(s) in concert with a precise new geochronology using the 40Ar/39Ar dating method. Inferences from measurement of standard geochemical characteristics (major, trace elements and Sr, Nd, Pb, O isotopes) will be used to investigate a possible relationship between the volcanoes and the recently discovered subglacial ridge under the East Antarctic ice, which may be a rift flank uplift. The ridge has never been sampled, is undated and its significance is uncertain. The data will provide important new information about the deep Earth and geodynamic processes beneath this mostly ice covered and poorly understood sector of the Antarctic continent. | POLYGON((-154.1 -86.9,-154.03 -86.9,-153.96 -86.9,-153.89 -86.9,-153.82 -86.9,-153.75 -86.9,-153.68 -86.9,-153.61 -86.9,-153.54 -86.9,-153.47 -86.9,-153.4 -86.9,-153.4 -86.92,-153.4 -86.94,-153.4 -86.96,-153.4 -86.98,-153.4 -87,-153.4 -87.02,-153.4 -87.04,-153.4 -87.06,-153.4 -87.08,-153.4 -87.1,-153.47 -87.1,-153.54 -87.1,-153.61 -87.1,-153.68 -87.1,-153.75 -87.1,-153.82 -87.1,-153.89 -87.1,-153.96 -87.1,-154.03 -87.1,-154.1 -87.1,-154.1 -87.08,-154.1 -87.06,-154.1 -87.04,-154.1 -87.02,-154.1 -87,-154.1 -86.98,-154.1 -86.96,-154.1 -86.94,-154.1 -86.92,-154.1 -86.9)) | POINT(-153.75 -87) | false | false | |||||||||||
Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work
|
9978236 |
2020-04-24 | Bell, Robin; Studinger, Michael S. | This award, provided by the Office of Polar Programs under the Life in Extreme Environments (LExEn) Program, supports a geophysical study of Lake Vostok, a large lake beneath the East Antarctic Ice Sheet. <br/><br/>Subglacial ecosystems, in particular subglacial lake ecosystems are extreme oligotrophic environments. These environments, and the ecosystems which may exist within them, should provide key insights into a range of fundamental questions about the development of Earth and other bodies in the Solar System including: 1) the processes associated with rapid evolutionary radiation after the extensive Neoproterozoic glaciations; 2) the overall carbon cycle through glacial and interglacial periods; and 3) the possible adaptations organisms may require to thrive in environments such as on Europa, the ice covered moon of Jupiter. Over 70 subglacial lakes have been identified beneath the 3-4 kilometer thick ice of Antarctica. One lake, Lake Vostok, is sufficiently large to be clearly identified from space with satellite altimetry. Lake Vostok is similar to Lake Ontario in area but with a much larger volume including measured water depths of 600 meters. The overlying ice sheet is acting as a conveyer belt continually delivering new water, nutrients, gas hydrates, sediments and microbes as the ice sheet flows across the lake. <br/><br/>The goal of this program is to determine the fundamental boundary conditions for this subglacial lake as an essential first step toward understanding the physical processes within the lake. An aerogeophysical survey over the lake and into the surrounding regions will be acquired to meet this goal. This data set includes gravity, magnetic, laser altimetry and ice penetrating radar data and will be used to compile a basic set of ice surface elevation, subglacial topography, gravity and magnetic anomaly maps. <br/><br/>Potential field methods widely used in the oil industry will be modified to estimate the subglacial topography from gravity data where the ice penetrating radar will be unable to recover the depth of the lake. A similar method can be modified to estimate the thickness of the sediments beneath the lake from magnetic data. These methods will be tested and applied to subglacial lakes near South Pole prior to the Lake Vostok field campaign and will provide valuable comparisons to the planned survey. Once the methods have been adjusted for the Lake Vostok application, maps of the water cavity and sediment thickness beneath the lake will be produced.<br/><br/>These maps will become tools to explore the geologic origin of the lake. The two endmember models are, first, that the lake is an active tectonic rift such as Lake Baikal and, second, the lake is the result of glacial scouring. The distinct characteristics of an extensional rift can be easily identified with our aerogeophysical survey. The geological interpretation of the airborne geophysical survey will provide the first geological constraints of the interior of the East Antarctic continent based on modern data. In addition, the underlying geology will influence the ecosystem within the lake. <br/><br/>One of the critical issues for the ecosystem within the lake will be the flux of nutrients. A preliminary estimation of the regions of freezing and melting based on the distance between distinctive internal layers observed on the radar data will be made. These basic boundary conditions will provide guidance for a potential international effort aimed at in situ exploration of the lake and improve the understanding of East Antarctic geologic structures. | POLYGON((101 -75.5,101.9 -75.5,102.8 -75.5,103.7 -75.5,104.6 -75.5,105.5 -75.5,106.4 -75.5,107.3 -75.5,108.2 -75.5,109.1 -75.5,110 -75.5,110 -75.85,110 -76.2,110 -76.55,110 -76.9,110 -77.25,110 -77.6,110 -77.95,110 -78.3,110 -78.65,110 -79,109.1 -79,108.2 -79,107.3 -79,106.4 -79,105.5 -79,104.6 -79,103.7 -79,102.8 -79,101.9 -79,101 -79,101 -78.65,101 -78.3,101 -77.95,101 -77.6,101 -77.25,101 -76.9,101 -76.55,101 -76.2,101 -75.85,101 -75.5)) | POINT(105.5 -77.25) | false | false | ||||||||||||
Contrasting Architecture and Dynamics of the Transantarctic Mountains
|
9615832 9615704 |
2020-04-24 | Bell, Robin; Buck, W. Roger; Blankenship, Donald D. |
|
Continental extension produces a great variety of structures from the linear narrow rifts of the East African Rift to the diffuse extension of the Basin and Range Province of the Western U.S. Rift shoulder uplift varies dramatically between rift flanks. The cause of variable rift width and crustal thinning is fairly well explained by variable initial heat flow and crustal thickness. Mechanical stretching of the lithosphere has been linked to rift shoulder uplift but the cause of variable rift flank uplift remains poorly understood. The Transantarctic Mountains (TAM) are an extreme example of rift flank uplift, extending over 3500 km across Antarctica and reaching elevations up to 4500 m and thus constitute a unique feature of EarthOs crust. The range was formed in the extensional environment associated with the Mesozoic and Cenozoic breakup of Gondwanaland. Geological and geophysical work has shown that the TAM developed along the long-lived lithospheric boundary between East and West Antarctica reactivated by a complex history of extensional and translational microplate motions. The TAM are not uniform along strike. Along the OWilkes FrontO, the northern segment of the rift extends from North Victoria Land to Byrd Glacier. The Wilkes Front architecture consists of (1) thin, extended crust forming the Victoria Land Basin in the Ross Sea, (2) the TAM rift shoulder, and (3) a long-wavelength down- ward forming the Wilkes Basin. Contrasting structures are mapped along the OPensacola/PoleO Front, the southern segment of the rift extending from the Nimrod Glacier to the Pensacola Mountains. Along this southern section no rift basin has been mapped to date and the down-ward along the East Antarctic, or ObacksideO, edge of the mountains is less pronounced. A flexural model linking the extension in the Ross Sea to the formation of both the mountains and the Wilkes Basin has been considered as a me chanism for uplift of the entire mountain range. The variability in fundamental architecture along the TAM indicates that neither a single event nor a sequence of identical events produced the rift flank uplift. The observation of variable architecture suggests complex mechanisms and possibly a fundamental limitation in maximum sustainable rift flank elevation. The motivation for studying the TAM is to try to understand the geodynamics of this extreme elevation rift flank. Are the geodynamics of the area unique, or does the history of glaciation and related erosion contribute to the extreme uplift? With the existing data sets it is difficult to confidently constrain the geological architecture across representative sections of the TAM. Any effort to refine geodynamic mechanisms requires this basic understanding of the TAM architecture. The goal of this project is to (1) constrain the architecture of the rift system as well as the distribution and structure of sedimentary basins, glacial erosion and mafic igneous rocks surrounding the rift flank by acquiring three long wavelength geophysical transects with integrated gravity, magnetics, ice- penetrating radar, and ice surface measurements, (2) quantify the contribution of various geodynamic mechanisms to understand the geological conditions which can lead to extreme rift flank uplift, and (3) use the improved understanding of architecture and geophysical data to test geodynamic models in order to improve our understanding both of the TAM geodynamics and the general problem of the geodynamics of rift flank uplift worldwide. This project will allow development of a generalized framework for understanding the development of rift flank uplift as well as address the question of the specific geodynamic evolution of the TAM. | POLYGON((-180 -74,-176 -74,-172 -74,-168 -74,-164 -74,-160 -74,-156 -74,-152 -74,-148 -74,-144 -74,-140 -74,-140 -75.6,-140 -77.2,-140 -78.8,-140 -80.4,-140 -82,-140 -83.6,-140 -85.2,-140 -86.8,-140 -88.4,-140 -90,-144 -90,-148 -90,-152 -90,-156 -90,-160 -90,-164 -90,-168 -90,-172 -90,-176 -90,180 -90,174 -90,168 -90,162 -90,156 -90,150 -90,144 -90,138 -90,132 -90,126 -90,120 -90,120 -88.4,120 -86.8,120 -85.2,120 -83.6,120 -82,120 -80.4,120 -78.8,120 -77.2,120 -75.6,120 -74,126 -74,132 -74,138 -74,144 -74,150 -74,156 -74,162 -74,168 -74,174 -74,-180 -74)) | POINT(170 -82) | false | false | |||||||||||
Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes
|
1341602 1341663 |
2020-02-26 | Crockett, Elizabeth; O'Brien, Kristin | The ocean surrounding Antarctica is home to an extraordinary assemblage of fishes, dominated by a single group that are extremely well-suited to life in icy waters and which are of significant ecological importance there. Of great concern is the capacity of these fishes to withstand increases in temperature as the region of the Western Antarctic Peninsula warms at a rate faster than any other area in the Southern hemisphere. One particular group of Antarctic fishes, known as the icefishes, are particularly vulnerable to increases in temperature because unlike all other vertebrates on earth, icefishes are white-blooded due to their lack of the oxygen-binding protein hemoglobin. This greatly reduces their capacity to transport and deliver oxygen to tissues compared to red-blooded Antarctic fishes. Previous studies have shown that icefishes are indeed less tolerant to elevations in temperature but the underlying factors are completely unknown. Additionally, it is not understood if red- or white-blooded Antarctic fishes can adjust, or acclimate, to modest increases in temperature, similar to those changes in temperature the animals might experience as the earth warms. The investigators will determine if heart function and/or nervous system function limits thermal tolerance of Antarctic fishes, and will determine their capacity to acclimate to warmer temperatures. The project will further the NSF goal of training new generations of scientists by training graduate and undergraduate students. In addition, the project will collaborate with a high school biology teacher from a school which serves a largely minority student body. The students will learn about the marine environment, and will construct a camera to be used in the field to learn more about Antarctic fishes. Two students and the teacher will also attend a summer marine biology internship program.<br/><br/>Antarctic fishes within the suborder Notothenioidei (called "notothenioids") are among the organisms on earth least able to deal with changes in temperature. The hemoglobinless icefish are even less able to withstand temperature changes than are red-blooded notothenioids. While this is well documented, the underlying physiological and biochemical mechanisms responsible are unknown. The investigators will test the hypotheses that cardiac work is significantly greater in icefishes compared to red-blooded species, and that as temperature increases, the greater cardiac work of icefishes, coupled with reduced blood oxygen-carrying capacity, results in cardiac failure at a lower temperature compared to red-blooded species. They also hypothesize that neuronal function limits thermal tolerance of red-blooded notothenioids. These hypotheses will be tested using a wide variety of experiments. For example, the investigators will measure heart rate concurrently with critical thermal maximum. They will also characterize metabolic and gene-expression responses to elevated temperature and determine if mitochondrial function contributes to thermal tolerance using a variety of techniques. To determine if neuronal function limits thermal tolerance they will quantify behavioral responses to warming of whole animals and to warming of only the brain area. They will also determine if acclimation to warmer temperatures impacts heart function and they will measure activities of a variety of enzymes from central metabolic pathways. | None | None | false | false | ||||||||||||
Collaborative Research: Role of the Central Scotia Sea Floor and North Scotia Ridge in the Onset and Development of the Antarctic Circumpolar Current
|
1246111 |
2020-01-28 | Dalziel, Ian W.; Lawver, Lawrence; Krissek, Lawrence |
|
Intellectual Merit: <br/>Opening of Drake Passage and the West Scotia Sea south of Tierra del Fuego broke the final continental barrier to onset of a complete Antarctic Circumpolar Current (ACC). Initiation of the ACC has been associated in time with a major, abrupt, drop in global temperatures and the rapid expansion of the Antarctic ice sheets at 33-34 Ma. Events leading to the formation of the Drake Passage gateway are poorly known. Understanding the tectonic evolution of the floor of the Central Scotia Sea (CSS) and the North Scotia Ridge is a key to this understanding. Previous work has demonstrated that superimposed constructs formed a volcanic arc that likely blocked direct eastward flow from the Pacific to the Atlantic through the opening Drake Passage gateway as the active South Sandwich arc does today. The PIs propose a cruise to test, develop and refine, with further targeted mapping and dredging, their theory of CSS tectonics and the influence it had on the onset and development of the ACC. In addition they propose an installation of GPS receiver to test their paleogeographic reconstructions and determine whether South Georgia is moving as part of the South American plate. <br/><br/>Broader impacts: <br/>A graduate student will be involved in all stages of the research. Undergraduate students will also be involved as watch-standers. A community college teacher will participate in the cruise. The PIs will have a website on which there will be images of the actual ocean floor dredging in operation. The teacher will participate with web and outreach support through PolarTREC. Results of the cruise are of broad interest to paleoceanographers, paleoclimate modelers and paleobiogeographers.A network of four continuous Global Navigational Satellite Systems (GNSS) receivers was installed on the bedrock of South Georgia in the Southern Ocean in 2013 and 2014. An additional receiver on a concrete foundation provides a tie to a tide gauge, part of the United Kingdom South Atlantic Tide Gauge Network. The GNSS receivers have already provided data suggesting that the South Georgia microcontinent (SGM) is moving independent of both the South American plate to the north and the Scotia plate to the south. The data also demonstrate that the SGM is being uplifted. | POLYGON((-44 -53,-42.9 -53,-41.8 -53,-40.7 -53,-39.6 -53,-38.5 -53,-37.4 -53,-36.3 -53,-35.2 -53,-34.1 -53,-33 -53,-33 -53.4,-33 -53.8,-33 -54.2,-33 -54.6,-33 -55,-33 -55.4,-33 -55.8,-33 -56.2,-33 -56.6,-33 -57,-34.1 -57,-35.2 -57,-36.3 -57,-37.4 -57,-38.5 -57,-39.6 -57,-40.7 -57,-41.8 -57,-42.9 -57,-44 -57,-44 -56.6,-44 -56.2,-44 -55.8,-44 -55.4,-44 -55,-44 -54.6,-44 -54.2,-44 -53.8,-44 -53.4,-44 -53)) | POINT(-38.5 -55) | false | false | |||||||||||
CAREER: Cross-Instrument Synthesis of Antarctic Radar Sounding Observations
|
1745137 |
2019-10-12 | Schroeder, Dustin; MacKie, Emma |
|
Earth's geologic record shows that the great ice sheets have contributed to rates of sea-level rise that have been much higher than those observed today. That said, some sectors of the current Antarctic ice sheet are losing mass at large and accelerating rates. One of the primary challenges for placing these recent and ongoing changes in the context of geologically historic rates, and for making projections decades to centuries into the future, is the difficulty of observing conditions and processes beneath the ice sheet. Whereas satellite observations allow tracking of the ice-surface velocity and elevation on the scale of glacier catchments to ice sheets, airborne ice-penetrating radar has been the only approach for assessing conditions on this scale beneath the ice. These radar observations have been made since the late 1960s, but, because many different instruments have been used, it is difficult to track change in subglacial conditions through time. This project will develop the technical tools and approaches required to cross-compare among these measurements and thus open up opportunities for tracking and understanding changes in the critical subglacial environment. Intertwined with the research and student training on this project will be an outreach education effort to provide middle school and high school students with improved resources and enhanced exposure to geophysical, glaciological, and remote-sensing topics through partnership with the National Science Olympiad.<br/><br/>The radar sounding of ice sheets is a powerful tool for glaciological science with broad applicability across a wide range of cryosphere problems and processes. Radar sounding data have been collected with extensive spatial and temporal coverage across the West Antarctic Ice Sheet, including areas where multiple surveys provide observations that span decades in time or entire cross-catchment ice-sheet sectors. However, one major obstacle to realizing the scientific potential of existing radar sounding observations in Antarctica is the lack of analysis approaches specifically developed for cross-instrument interpretation. Radar is also spatially limited and often has gaps of many tens of kilometers between data points. Further work is needed to investigate ways of extrapolating radar information beyond the flight lines. This project aims to directly address these barriers to full utilization of the collective Antarctic radar sounding record by developing a suite of processing and interpretation techniques to enable the synthesis of radar sounding data sets collected with systems that range from incoherent to coherent, single-channel to swath-imaging, and digital to optically-recorded radar sounders. This includes a geostatistical analysis of ice sheet and radar datasets to make probabilistic predictions of conditions at the bed. The approaches will be assessed for two target regions: the Amundsen Sea Embayment and the Siple Coast. All pre- and post-processed sounding data produced by this project will be publically hosted for use by the wider research community.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||
Collaborative Research: High-resolution Reconstruction of Holocene Deglaciation in the Southern Ross Embayment
|
1443248 1443346 |
2019-09-05 | Hall, Brenda; Stone, John | The response of the Antarctic Ice Sheet to future climatic changes is recognized as the greatest uncertainty in projections of future sea level. An understanding of past ice fluctuations affords insight into ice-sheet response to climate and sea-level change and thus is critical for improving sea-level predictions. This project will examine deglaciation of the southern Ross Sea over the past few thousand years to document oscillations in Antarctic ice volume during a period of relatively stable climate and sea level. We will help quantify changes in ice volume, improve understanding of the ice dynamics responsible, and examine the implications for future sea-level change. The project will train future scientists through participation of graduate students, as well as undergraduates who will develop research projects in our laboratories.<br/><br/>Previous research indicates rapid Ross Sea deglaciation as far south as Beardmore Glacier early in the Holocene epoch (which began approximately 11,700 years before present), followed by more gradual recession. However, deglaciation in the later half of the Holocene remains poorly constrained, with no chronological control on grounding-line migration between Beardmore and Scott Glaciers. Thus, we do not know if mid-Holocene recession drove the grounding line rapidly back to its present position at Scott Glacier, or if the ice sheet withdrew gradually in the absence of significant climate forcing or eustatic sea level change. The latter possibility raises concerns for future stability of the Ross Sea grounding line. To address this question, we will map and date glacial deposits on coastal mountains that constrain the thinning history of Liv and Amundsen Glaciers. By extending our chronology down to the level of floating ice at the mouths of these glaciers, we will date their thinning history from glacial maximum to present, as well as migration of the Ross Sea grounding line southwards along the Transantarctic Mountains. High-resolution dating will come from Beryllium-10 surface-exposure ages of erratics collected along elevation transects, as well as Carbon-14 dates of algae within shorelines from former ice-dammed ponds. Sites have been chosen specifically to allow close comparison of these two dating methods, which will afford constraints on Antarctic Beryllium-10 production rates. | POLYGON((-174 -84.2,-172.4 -84.2,-170.8 -84.2,-169.2 -84.2,-167.6 -84.2,-166 -84.2,-164.4 -84.2,-162.8 -84.2,-161.2 -84.2,-159.6 -84.2,-158 -84.2,-158 -84.36,-158 -84.52,-158 -84.68,-158 -84.84,-158 -85,-158 -85.16,-158 -85.32,-158 -85.48,-158 -85.64,-158 -85.8,-159.6 -85.8,-161.2 -85.8,-162.8 -85.8,-164.4 -85.8,-166 -85.8,-167.6 -85.8,-169.2 -85.8,-170.8 -85.8,-172.4 -85.8,-174 -85.8,-174 -85.64,-174 -85.48,-174 -85.32,-174 -85.16,-174 -85,-174 -84.84,-174 -84.68,-174 -84.52,-174 -84.36,-174 -84.2)) | POINT(-166 -85) | false | false | ||||||||||||
Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica
|
1341725 1341606 1543483 1341513 1341717 |
2019-06-10 | Ackley, Stephen; Bell, Robin; Weissling, Blake; Nuss, Wendell; Maksym, Edward; Stammerjohn, Sharon; Cassano, John; Guest, Peter; Sedwick, Peter; Xie, Hongjie | The one place on Earth consistently showing increases in sea ice area, duration, and concentration is the Ross Sea in Antarctica. Satellite imagery shows about half of the Ross Sea increases are associated with changes in the austral fall, when the new sea ice is forming. The most pronounced changes are also located near polynyas, which are areas of open ocean surrounded by sea ice. To understand the processes driving the sea ice increase, and to determine if the increase in sea ice area is also accompanied by a change in ice thickness, this project will conduct an oceanographic cruise to the polynyas of the Ross Sea in April and May, 2017, which is the austral fall. The team will deploy state of the art research tools including unmanned airborne systems (UASs, commonly called drones), autonomous underwater vehicles (AUVs), and remotely operated underwater vehicles (ROVs). Using these tools and others, the team will study atmospheric, oceanic, and sea ice properties and processes concurrently. A change in sea ice production will necessarily change the ocean water below, which may have significant consequences for global ocean circulation patterns, a topic of international importance. All the involved institutions will be training students, and all share the goal of expanding climate literacy in the US, emphasizing the role high latitudes play in the Earth's dynamic climate.<br/><br/>The main goal of the project is to improve estimates of sea ice production and water mass transformation in the Ross Sea. The team will fully capture the spatial and temporal changes in air-ice-ocean interactions when they are initiated in the austral fall, and then track the changes into the winter and spring using ice buoys, and airborne mapping with the newly commissioned IcePod instrument system, which is deployed on the US Antarctic Program's LC-130 fleet. The oceanographic cruise will include stations in and outside of both the Terra Nova Bay and Ross Ice Shelf polynyas. Measurements to be made include air-sea boundary layer fluxes of heat, freshwater, and trace gases, radiation, and meteorology in the air; ice formation processes, ice thickness, snow depth, mass balance, and ice drift within the sea ice zone; and temperature, salinity, and momentum in the ocean below. Following collection of the field data, the team will improve both model parameterizations of air-sea-ice interactions and remote sensing algorithms. Model parameterizations are needed to determine if sea-ice production has increased in crucial areas, and if so, why (e.g., stronger winds or fresher oceans). The remote sensing validation will facilitate change detection over wider areas and verify model predictions over time. Accordingly this project will contribute to the international Southern Ocean Observing System (SOOS) goal of measuring essential climate variables continuously to monitor the state of the ocean and ice cover into the future. | POLYGON((-180 -55,-177 -55,-174 -55,-171 -55,-168 -55,-165 -55,-162 -55,-159 -55,-156 -55,-153 -55,-150 -55,-150 -57.3,-150 -59.6,-150 -61.9,-150 -64.2,-150 -66.5,-150 -68.8,-150 -71.1,-150 -73.4,-150 -75.7,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -75.7,160 -73.4,160 -71.1,160 -68.8,160 -66.5,160 -64.2,160 -61.9,160 -59.6,160 -57.3,160 -55,162 -55,164 -55,166 -55,168 -55,170 -55,172 -55,174 -55,176 -55,178 -55,-180 -55)) | POINT(-175 -66.5) | false | false | ||||||||||||
Timing and Duration of the LGM and Post-LGM Grounding Events in Whales Deep Paleo Ice Stream, Eastern Ross Sea Middle Continental Shelf
|
1246357 |
2019-06-03 | Bart, Philip; Steinberg, Deborah |
|
Intellectual Merit: Evidence from the eastern Ross Sea continental shelf indicates that the West Antarctic Ice Sheet advanced and retreated during the last glacial cycle, but it is unclear whether the ice sheet advanced to the shelf edge or just to the middle shelf. These two end-member scenarios offer different interpretations as to why, how, and when the West Antarctic Ice Sheet oscillated. The PI proposes to acquire seismic, multibeam, and core data from Whales Deep, to evaluate the timing and duration of two advances of grounded ice to the outer and middle shelf of the Whales Deep Basin, a West Antarctic Ice Sheet paleo ice stream trough in eastern Ross Sea. Grounding events are represented by seismically resolvable Grounding Zone Wedges. The PI will collect radiocarbon dates on in situ benthic foraminifera from the grounding zone diamict as well as ramped pyrolysis radiocarbon dates on acid insoluble organics from open-marine mud overlying the grounding zone diamict. Using these data the PI will calculate the duration of the two grounding events. Furthermore, the PI will test a numerical model prediction that West Antarctic Ice Sheet retreat must have involved melting at the marine terminus of the ice sheet. Pore-water from the grounding zone diamict will be extracted from piston cores to determine salinity and δ18O values that should indicate if significant melting occurred at the grounding line. Broader impacts: The data collected will provide constraints on the timing and pattern of Last Glacial Maximum advance and retreat that can be incorporated into interpretations of ice-surface elevation changes. The proposed activities will provide valuable field and research training to undergraduate/graduate students and a Louisiana high-school science teacher. The research will be interactively shared with middle- and high-school science students and with visitors to the LSU Museum of Natural Science Weekend-Science Program. | None | None | false | false | |||||||||||
Collaborative Research: Grounding Line Dynamics: Crary Ice Rise Revisited
|
1443552 1443356 |
2019-05-06 | Conway, Howard; Koutnik, Michelle; Winberry, Paul |
|
Recent observations and model results suggest that collapse of the Amundsen Sea sector of West Antarctica may already be underway. However, the timeline of collapse and the effects of ongoing climatic and oceanographic changes are key unanswered questions. Complete disintegration of the ice sheet would raise global sea level by more than 3 m, which would have significant societal impacts. Improved understanding of the controls on ice-sheet evolution is needed to make better predictions of ice-sheet behavior. Results from numerical models show that buttressing from surrounding ice shelves and/or from small-scale grounded ice rises should act to slow the retreat and discharge of ice from the interior ice sheet. However, there are very few field observations with which to develop and validate models. Field observations conducted in the early 1980s on Crary Ice Rise in the Ross Sea Embayment are a notable exception. This project will revisit Crary Ice Rise with new tools to make a suite of measurements designed to address questions about how the ice rise affects ice discharge from the Ross Sea sector of West Antarctica. The team will include a graduate and undergraduate student, and will participate in a range of outreach activities.<br/><br/>New tools including radar, seismic, and GPS instruments will be used to conduct targeted geophysical measurements both on Crary Ice Rise and across its grounding line. The project will use these new measurements, together with available ancillary data to inform a numerical model of grounding line dynamics. The model and measurements will be used to address the (1) How has the ice rise evolved over timescales ranging from: the past few decades; the past millennia after freeze-on; and through the deglaciation? (2) What history of ice dynamics is preserved in the radar-detected internal stratigraphy? (3) What dynamical effect does the presence/absence of the ice rise have on discharge of the Ross Ice Streams today? (4) How is it contributing to the slow-down of the proximal Whillans and Mercer ice streams? (5) What dynamical response will the ice rise have under future environmental change? | POLYGON((-175 -82.7,-173.9 -82.7,-172.8 -82.7,-171.7 -82.7,-170.6 -82.7,-169.5 -82.7,-168.4 -82.7,-167.3 -82.7,-166.2 -82.7,-165.1 -82.7,-164 -82.7,-164 -82.77,-164 -82.84,-164 -82.91,-164 -82.98,-164 -83.05,-164 -83.12,-164 -83.19,-164 -83.26,-164 -83.33,-164 -83.4,-165.1 -83.4,-166.2 -83.4,-167.3 -83.4,-168.4 -83.4,-169.5 -83.4,-170.6 -83.4,-171.7 -83.4,-172.8 -83.4,-173.9 -83.4,-175 -83.4,-175 -83.33,-175 -83.26,-175 -83.19,-175 -83.12,-175 -83.05,-175 -82.98,-175 -82.91,-175 -82.84,-175 -82.77,-175 -82.7)) | POINT(-169.5 -83.05) | false | false | |||||||||||
Collaborative Research: Integrative Study of Marine Ice Sheet Stability & Subglacial Life Habitats in W Antarctica - Lake & Ice Stream Subglacial Access Research Drilling (LISSARD)
|
0838764 0838763 0838855 0838947 0839107 0839059 0839142 |
2018-09-10 | Tulaczyk, Slawek; Fisher, Andrew; Powell, Ross; Anandakrishnan, Sridhar; Jacobel, Robert; Scherer, Reed Paul | This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The LISSARD project (Lake and Ice Stream Subglacial Access Research Drilling) is one of three research components of the WISSARD integrative initiative (Whillans Ice Stream Subglacial Access Research Drilling) that is being funded by the Antarctic Integrated System Science Program of NSF's Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The LISSARD component of WISSARD focuses on the role of active subglacial lakes in determining how fast the West Antarctic ice sheet loses mass to the global ocean and influences global sea level changes. The importance of Antarctic subglacial lakes has only been recently recognized, and the lakes have been identified as high priority targets for scientific investigations because of their unknown contributions to ice sheet stability under future global warming scenarios. LISSARD has several primary science goals: A) To provide an observational basis for improving treatments of subglacial hydrological and mechanical processes in models of ice sheet mass balance and stability; B) To reconstruct the past history of ice stream stability by analyzing archives of past basal water and ice flow variability contained in subglacial sediments, porewater, lake water, and basal accreted ice; C) To provide background understanding of subglacial lake environments to benefit RAGES and GBASE (the other two components of the WISSARD project); and D) To synthesize data and concepts developed as part of this project to determine whether subglacial lakes play an important role in (de)stabilizing Antarctic ice sheets. We propose an unprecedented synthesis of approaches to studying ice sheet processes, including: (1) satellite remote sensing, (2) surface geophysics, (3) borehole observations and measurements and, (4) basal and subglacial sampling. <br/><br/>INTELLECTUAL MERIT: The latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations. <br/><br/>BROADER IMPACTS: Societal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars. | None | None | false | false | ||||||||||||
Collaborative Research: Importance of Heterotrophic and Phototrophic N2 Fixation in the McMurdo Dry Valleys on Local, Regional and Landscape Scales
|
1246292 |
2018-03-14 | Cary, Stephen | The McMurdo Dry Valleys in Antarctica are recognized as being the driest, coldest and probably one of the harshest environments on Earth. In addition to the lack of water, the biota in the valleys face a very limited supply of nutrients such as nitrogen compounds - necessary for protein synthesis. The glacial streams of the Dry Valleys have extensive cyanobacterial (blue green algae) mats that are a major source of carbon and nitrogen compounds to biota in this region. While cyanobacteria in streams are important as a source of these compounds, other non-photosynthetic bacteria also contribute a significant fraction (~50%) of fixed nitrogen compounds to valley biota. This research effort will involve an examination of exactly which non-phototrophic bacteria are involved in nitrogen fixation and what environmental factors are responsible for controlling nitrogen fixation by these microbes. This work will resolve the environmental factors that control the activity, abundance and diversity of nitrogen-fixing microbes across four of the McMurdo Dry Valleys. This will allow for comparisons among sites of differing latitude, temperature, elevation and exposure to water. These results will be integrated into a landscape wetness model that will help determine the impact of both cyanobacterial and non-photosynthetic nitrogen fixing microorganisms in this very harsh environment.<br/><br/>The Dry Valleys in many ways resemble the Martian environment, and understanding the primitive life and very simple nutrient cycling in the Dry Valleys has relevance for understanding how life might have once existed on other planets. Furthermore, the study of microbes from extreme environments has resulted in numerous biotechnological applications such as the polymerase chain reaction for amplifying DNA and mechanisms for freeze resistance in agricultural crops. Thus, this research should yield insights into how biota survive in extreme environments, and these insights could lead to other commercial applications. | POLYGON((161.36062 -77.20215,161.610171 -77.20215,161.859722 -77.20215,162.109273 -77.20215,162.358824 -77.20215,162.608375 -77.20215,162.857926 -77.20215,163.107477 -77.20215,163.357028 -77.20215,163.606579 -77.20215,163.85613 -77.20215,163.85613 -77.291278,163.85613 -77.380406,163.85613 -77.469534,163.85613 -77.558662,163.85613 -77.64779,163.85613 -77.736918,163.85613 -77.826046,163.85613 -77.915174,163.85613 -78.004302,163.85613 -78.09343,163.606579 -78.09343,163.357028 -78.09343,163.107477 -78.09343,162.857926 -78.09343,162.608375 -78.09343,162.358824 -78.09343,162.109273 -78.09343,161.859722 -78.09343,161.610171 -78.09343,161.36062 -78.09343,161.36062 -78.004302,161.36062 -77.915174,161.36062 -77.826046,161.36062 -77.736918,161.36062 -77.64779,161.36062 -77.558662,161.36062 -77.469534,161.36062 -77.380406,161.36062 -77.291278,161.36062 -77.20215)) | POINT(162.608375 -77.64779) | false | false | ||||||||||||
Evidence for Paleo Ice Stream Collapse in the Western Ross Sea since the Last Glacial Maximum.
|
1246353 |
2018-02-06 | Anderson, John |
|
Intellectual Merit: <br/>The PI hypothesizes that bedforms found in the Central and Joides troughs can be interpreted as having been formed by rapid retreat, and possible collapse of an ice stream that occupied this area. To test this hypothesis, the PI proposes to conduct a detailed marine geological and geophysical survey of Central and Joides Troughs in the western Ross Sea. This project will bridge gaps between the small and isolated areas previously surveyed and will acquire a detailed sedimentological record of the retreating grounding line. The PI will reconstruct the retreat history of the Central and Joides troughs to century-scale resolution using radiocarbon dating methods and by looking at geomorphic features that are formed at regular time intervals. Existing multibeam, deep tow side-scan sonar, and core data will provide a framework for this research. The western Ross Sea is an ideal study area to investigate a single ice stream and the dynamics controlling its stability, including interactions between both East and West Antarctic Ice Sheets. <br/><br/>Broader impacts: <br/>This proposal includes a post-doc, a graduate and two undergraduate students. The post-doc is involved with teaching an in-service K-12 teacher development and training course at Rice University for high-need teachers with a focus on curriculum enhancement. The project fosters collaboration for the PI and students with researchers at Louisiana State University and international colleagues at the Institute for Paleobiology at the Polish Academy of Sciences. The results from this project could lead to a better understanding of ice sheet and ice stream stability. This project will yield implications for society's understanding of climate change, as this work improves understanding of the behavior of ice sheets and their links to global climate. | POLYGON((-180 -74,-144.9 -74,-109.8 -74,-74.7 -74,-39.6 -74,-4.5 -74,30.6 -74,65.7 -74,100.8 -74,135.9 -74,171 -74,171 -74.3,171 -74.6,171 -74.9,171 -75.2,171 -75.5,171 -75.8,171 -76.1,171 -76.4,171 -76.7,171 -77,135.9 -77,100.8 -77,65.7 -77,30.6 -77,-4.5 -77,-39.6 -77,-74.7 -77,-109.8 -77,-144.9 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -76.7,180 -76.4,180 -76.1,180 -75.8,180 -75.5,180 -75.2,180 -74.9,180 -74.6,180 -74.3,180 -74,180 -74,180 -74,180 -74,180 -74,180 -74,180 -74,180 -74,180 -74,180 -74,-180 -74)) | POINT(175.495 -75.5) | false | false | |||||||||||
RAPID: Observing the Disintegration of the Scar Inlet Ice Shelf
|
1565576 |
2017-12-20 | Pettit, Erin |
|
This award supports a Rapid Response Research (RAPID) project to observe the current weakened state of the Scar Inlet Ice Shelf, and potentially capture data during its anticipated disintegration. The Scar Inlet Ice Shelf (SIIS) is the southern remnant of the former Larsen B Ice Shelf, which disintegrated in March of 2002. Since then, the SIIS has weakened significantly but has not yet broken up. Cooler conditions than those seen prior to 2006 have reduced the chance of a disintegration in recent years, although a single warm season is likely to be enough to trigger such an event. The predicted "Super El Nino" for this austral summer may have significant effects on Antarctica's weather, potentially leading to a break-up or disintegration this year. Given the very weak state of the SIIS, it is urgent that we act now to better understand the processes involved in shelf disintegration or break-up of ice shelves. The goal of this work is to collect several key data sets, publish initial observations and preliminary conclusions, and then make the complete data record available to all scientists.<br/><br/>Extreme changes in the stress conditions on the SIIS resulted from both the loss of the Larsen B ice plate and the continued inflow of ice from three large glaciers (Flask, Leppard, and Starbuck). The SIIS now has a number of large rifts and it is expected to break up or disintegrate in the very near future. Past research has made use of satellite data and weather instruments, establishing many of the current ideas regarding ice shelf break-ups and ice shelf weakening. Additional ground-based data to be collected under this study will test a number of hypotheses regarding pre-disintegration characteristics, triggering mechanisms, fracturing processes, runaway feedback effects, and stabilizing mechanisms. The project will collect extensive multi-instrument field observations of the SIIS and possibly capture a major disintegration event. In collaboration with the British Antarctic Survey, a team of 4 people will be deployed via Twin Otter for up to 4 weeks to a site with a broad view of the shelf and will install several temporary observing instruments there. The study derives its intellectual merit from the role of the Antarctic Peninsula as a microcosm of how other parts of Antarctica might evolve and de-glaciate in the next few centuries. The broader impacts include an opportunity to educate the public about the anticipated collapse of this remnant ice shelf and its relationship to future changes in Antarctica. The potential for wide media coverage (through a connection with the National Geographic) will underscore the critical changes scientists are observing in the crysophere driven by climate change. This proposal requires field work in Antarctica. | POLYGON((-62.2 -65.5,-62.12 -65.5,-62.04 -65.5,-61.96 -65.5,-61.88 -65.5,-61.8 -65.5,-61.72 -65.5,-61.64 -65.5,-61.56 -65.5,-61.48 -65.5,-61.4 -65.5,-61.4 -65.53,-61.4 -65.56,-61.4 -65.59,-61.4 -65.62,-61.4 -65.65,-61.4 -65.68,-61.4 -65.71,-61.4 -65.74,-61.4 -65.77,-61.4 -65.8,-61.48 -65.8,-61.56 -65.8,-61.64 -65.8,-61.72 -65.8,-61.8 -65.8,-61.88 -65.8,-61.96 -65.8,-62.04 -65.8,-62.12 -65.8,-62.2 -65.8,-62.2 -65.77,-62.2 -65.74,-62.2 -65.71,-62.2 -65.68,-62.2 -65.65,-62.2 -65.62,-62.2 -65.59,-62.2 -65.56,-62.2 -65.53,-62.2 -65.5)) | POINT(-61.8 -65.65) | false | false | |||||||||||
Collaborative Research: THE MCMURDO DRY VALLEYS: A landscape on the Threshold of Change
|
1246342 1246203 1245749 |
2017-12-20 | Levy, Joseph; Gooseff, Michael N.; Fountain, Andrew |
|
Collaborative Research: THE MCMURDO DRY VALLEYS: A Landscape on the Threshold of Change is supported by the Antarctic Integrated System Science (AISS) program in the Antarctic Sciences Section of the Division of Polar Programs within the Geosciences Directorate of the National Sciences Foundation (NSF). The funds will support the collection of state-of-the-art high resolution LIDAR (combining the terms light and radar) imagery of the Dry Valleys of Antarctica in the 2014/2015 Antarctic field season, with LIDAR data collection and processing being provided by the NSF-supported NCALM (National Center for Airborne Laser Mapping) facility. LIDAR images collected in 2014/2015 will be compared to images from 2001 in order to detect decadal change. Additional fieldwork will look at the distribution of buried massive ice, and the impacts that major changes like slumping are having on the biota. All field data will be used to improve models on energy balance, and hydrology.<br/><br/>Intellectual Merit: There have been dramatic changes over the past decade in the McMurdo Dry Valleys: rivers are incising by more than three meters, and thermokarst slumps are appearing near several streams and lakes. These observations have all been made by researchers in the field, but none of the changes have been mapped on a valley-wide scale. This award will provide a new baseline map for the entire Dry Valley system, with high-resolution imagery provided for the valley floors, and lower resolution imagery available for the higher elevation areas that are undergoing less change. The project will test the idea that sediment-covered ice is associated with the most dramatic changes, due to differential impacts of the increased solar radiation on sediment-covered compared to clean ice, and despite the current trend of slightly cooling air temperatures within the Dry Valleys. Information collected on the topography, coupled with the GPR determined buried ice distributions, will also be incorporated into improved energy and hydrological models. In addition to providing the new high-resolution digital elevation model (DEM), the project will ultimately result in identification of areas that are susceptible to sediment-enhanced melt-driven change, providing a powerful prediction tool for the impacts of climate change.<br/><br/>Broader Impacts: The new DEM will be immediately useful to a wide range of disciplines, and will provide a comprehensive new baseline against which future changes will be compared. The project will provide a tool for the whole community to use, and the investigators will work with the community to make them aware of the new assets via public presentations, and perhaps via a workshop. The map will have international interest, and will also serve as a tool for environmental managers to draw on as they consider conservation plans. Several undergraduate and graduate students will participate in the project, and one of the co-PIs is a new investigator. The imagery collected is expected to be of interest to the general public in addition to scientific researchers, and venues for outreach such as museum exhibits and the internet will be explored. The proposed work is synergistic with 1) the co-located McMurdo LTER program, and 2) the NCALM facility that is also funded by the Geosciences Directorate. | POLYGON((160.105465 -77.2119,160.7907435 -77.2119,161.476022 -77.2119,162.1613005 -77.2119,162.846579 -77.2119,163.5318575 -77.2119,164.217136 -77.2119,164.9024145 -77.2119,165.587693 -77.2119,166.2729715 -77.2119,166.95825 -77.2119,166.95825 -77.3189628,166.95825 -77.4260256,166.95825 -77.5330884,166.95825 -77.6401512,166.95825 -77.747214,166.95825 -77.8542768,166.95825 -77.9613396,166.95825 -78.0684024,166.95825 -78.1754652,166.95825 -78.282528,166.2729715 -78.282528,165.587693 -78.282528,164.9024145 -78.282528,164.217136 -78.282528,163.5318575 -78.282528,162.846579 -78.282528,162.1613005 -78.282528,161.476022 -78.282528,160.7907435 -78.282528,160.105465 -78.282528,160.105465 -78.1754652,160.105465 -78.0684024,160.105465 -77.9613396,160.105465 -77.8542768,160.105465 -77.747214,160.105465 -77.6401512,160.105465 -77.5330884,160.105465 -77.4260256,160.105465 -77.3189628,160.105465 -77.2119)) | POINT(163.5318575 -77.747214) | false | false | |||||||||||
East Antarctic Grounding Line Experiment (EAGLE)
|
1543452 |
2017-12-05 | Young, Duncan A.; Grima, Cyril; Blankenship, Donald D. | Previous studies of the Indo-Pacific region of Antarctica show that the margin of the ice sheet in this region has advanced and retreated into deep interior basins many times in the past. The apparent instability of this region makes it an important target for study in terms of understanding the future of the East Antarctic ice sheet and sea level rise. This project will study a number of processes that control the ice-shelf stability of this region, with the aim of improving projections of the rate and magnitude of future sea-level rise. This project will engage a range of students and train this next generation of scientists in the complex, interdisciplinary issue of ice-ocean interaction. The project will integrate geophysical data collected from aircraft over three critical sections of the East Antarctic grounding line (Totten Glacier, Denman Glacier, and Cook Ice Shelf) with an advanced ocean model. Using Australian and French assets, the team will collect new data around Denman Glacier and Cook Ice Shelf whereas analysis of Totten Glacier will be based on existing data. The project will assess three hypotheses to isolate the processes that drive the differences in observed grounding line thinning among these three glaciers: 1. bathymetry and large-scale ocean forcing control cavity circulation; 2. ice-shelf draft and basal morphology control cavity circulation; 3. subglacial freshwater input across the grounding line controls cavity circulation. The key outcomes of this new project will be to: 1. evaluate of ice-ocean coupling in areas of significant potential sea-level contribution; 2. relate volume changes of grounded and floating ice to regional oceanic heat transport and sub-ice shelf ocean dynamics in areas of significant potential sea-level and meridional overturning circulation impacts; and 3. improve boundary conditions to evaluate mass, heat, and freshwater budgets of East Antarctica's continental margins. | POLYGON((90 -64,97 -64,104 -64,111 -64,118 -64,125 -64,132 -64,139 -64,146 -64,153 -64,160 -64,160 -64.6,160 -65.2,160 -65.8,160 -66.4,160 -67,160 -67.6,160 -68.2,160 -68.8,160 -69.4,160 -70,153 -70,146 -70,139 -70,132 -70,125 -70,118 -70,111 -70,104 -70,97 -70,90 -70,90 -69.4,90 -68.8,90 -68.2,90 -67.6,90 -67,90 -66.4,90 -65.8,90 -65.2,90 -64.6,90 -64)) | POINT(125 -67) | false | false | ||||||||||||
Collaborative Research: Assessing the Antarctic Contribution to Sea-level Changes during the Last Deglaciation: Constraints from Darwin Glacier
|
1246170 1246110 |
2017-10-23 | Hall, Brenda; Stone, John; Conway, Howard |
|
This award supports a project to reconstruct past ice-surface elevations from detailed glacial mapping and dating of moraines (using 14C dates of algae from former ice-marginal ponds and 10Be surface exposure ages) in the region of the Darwin-Hatherton Glaciers in Antarctica in order to try and resolve very different interpretations that currently exist about the glacial history in the region. The results will be integrated with existing climate and geophysical data into a flow-line model to gain insight into glacier response to climate and ice-dynamics perturbations during the Late Glacial Maximum (LGM) in Antarctica. The work will contribute to a better understanding of both LGM ice thickness and whether or not there is any evidence that Antarctica contributed to Meltwater Pulse (MWP)-1A a very controversial topic in Antarctic glacial geology. The intellectual merit of the work relates to the fact that reconstructing past fluctuations of the Antarctic Ice Sheet (AIS) is critical for understanding the sensitivity of ice volume to sea-level and climatic change. Constraints on past behavior help put ongoing changes into context and provide a basis for predicting future sea-level rise. Broader impacts include the support of two graduate and two undergraduate students, as well as a female early-career investigator. Graduate students will be involved in all stages of the project from planning and field mapping to geochronological analyses, interpretation, synthesis and reporting. Two undergraduates will work on lab-based research from the project. The project also will include visits to K-12 classrooms to talk about glaciers and climate change, correspondence with teachers and students from the field, and web-based outreach. This award has field work in Antarctica. | POLYGON((154 -79.75,154.7 -79.75,155.4 -79.75,156.1 -79.75,156.8 -79.75,157.5 -79.75,158.2 -79.75,158.9 -79.75,159.6 -79.75,160.3 -79.75,161 -79.75,161 -79.8,161 -79.85,161 -79.9,161 -79.95,161 -80,161 -80.05,161 -80.1,161 -80.15,161 -80.2,161 -80.25,160.3 -80.25,159.6 -80.25,158.9 -80.25,158.2 -80.25,157.5 -80.25,156.8 -80.25,156.1 -80.25,155.4 -80.25,154.7 -80.25,154 -80.25,154 -80.2,154 -80.15,154 -80.1,154 -80.05,154 -80,154 -79.95,154 -79.9,154 -79.85,154 -79.8,154 -79.75)) | POINT(157.5 -80) | false | false | |||||||||||
Collaborative Research: Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins
|
1043554 |
2016-11-09 | Willenbring, Jane |
|
Intellectual Merit: <br/>The PIs propose to address the question of whether ice surface melting zones developed at high elevations during warm climatic phases in the Transantarctic Mountains. Evidence from sediment cores drilled by the ANDRILL program indicates that open water in the Ross Sea could have been a source of warmth during Pliocene and Pleistocene. The question is whether marine warmth penetrated inland to the ice sheet margins. The glacial record may be ill suited to answer this question, as cold-based glaciers may respond too slowly to register brief warmth. Questions also surround possible orbital controls on regional climate and ice sheet margins. Northern Hemisphere insolation at obliquity and precession timescales is thought to control Antarctic climate through oceanic or atmospheric connections, but new thinking suggests that the duration of Southern Hemisphere summer may be more important. The PIs propose to use high elevation alluvial deposits in the Transantarctic Mountains as a proxy for inland warmth. These relatively young fans, channels, and debris flow levees stand out as visible evidence for the presence of melt water in an otherwise ancient, frozen landscape. Based on initial analyses of an alluvial fan in the Olympus Range, these deposits are sensitive recorders of rare melt events that occur at orbital timescales. For their study they will 1) map alluvial deposits using aerial photography, satellite imagery and GPS assisted field surveys to establish water sources and to quantify parameters effecting melt water production, 2) date stratigraphic sequences within these deposits using OSL, cosmogenic nuclide, and interbedded volcanic ash chronologies, 3) use paired nuclide analyses to estimate exposure and burial times, and rates of deposition and erosion, and 4) use micro and regional scale climate modeling to estimate paleoenvironmental conditions associated with melt events.<br/><br/>Broader impacts: <br/>This study will produce a record of inland melting from sites adjacent to ice sheet margins to help determine controls on regional climate along margins of the East Antarctic Ice Sheet to aid ice sheet and sea level modeling studies. The proposal will support several graduate and undergraduates. A PhD student will be supported on existing funding. The PIs will work with multiple K 12 schools to conduct interviews and webcasts from Antarctica and they will make follow up visits to classrooms after the field season is complete. | POINT(161.5 -77.5) | POINT(161.5 -77.5) | false | false | |||||||||||
Collaborative Research: A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea
|
1043517 1043018 1043485 |
2016-10-15 | Pollard, David; Curtice, Josh; Clark, Peter; Kurz, Mark D. |
|
1043517/Clark<br/><br/>This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation. | POLYGON((163.5 -77.57,163.685 -77.57,163.87 -77.57,164.055 -77.57,164.24 -77.57,164.425 -77.57,164.61 -77.57,164.795 -77.57,164.98 -77.57,165.165 -77.57,165.35 -77.57,165.35 -77.645,165.35 -77.72,165.35 -77.795,165.35 -77.87,165.35 -77.945,165.35 -78.02,165.35 -78.095,165.35 -78.17,165.35 -78.245,165.35 -78.32,165.165 -78.32,164.98 -78.32,164.795 -78.32,164.61 -78.32,164.425 -78.32,164.24 -78.32,164.055 -78.32,163.87 -78.32,163.685 -78.32,163.5 -78.32,163.5 -78.245,163.5 -78.17,163.5 -78.095,163.5 -78.02,163.5 -77.945,163.5 -77.87,163.5 -77.795,163.5 -77.72,163.5 -77.645,163.5 -77.57)) | POINT(164.425 -77.945) | false | false | |||||||||||
Collaborative Research: Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements
|
1043750 |
2016-05-13 | Chen, Jianli; Wilson, Clark; Blankenship, Donald D.; Tapley, Byron |
|
1043750/Chen<br/><br/>This award supports a project to improve the estimate of long-term and inter-annual variability of Antarctic ice sheet mass balance at continental, regional, and catchment scales, using satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) and other geodetic measurements. The work will improve the quantification of long-term mass change rates over Antarctica using GRACE gravity data with a longer record and newer generation(s) of products and will develop advanced numerical forward modeling techniques that can accurately correct leakage effects associated with GRACE data processing, and significantly improve spatial resolution of GRACE mass rate estimates over Antarctica. The work will also contribute to a better understanding of crustal uplift rates due to postglacial rebound (PGR) and present day ice load change over Antarctica via PGR models, GPS measurements, and combined analysis of GRACE and ICESat elevation changes. Inter-annual variations of ice mass over Antarctica will be investigated at continental and catchment scales and connections to regional climate change will be studied. The major deliverables from this study will be improved assessments of ice mass balance for the entire Antarctic ice sheet and potential contribution to global mean sea level rise. The work will also provide estimates of regional ice mass change rates over Antarctica, with a focus along the coast in the Amundsen Sea Embayment, the Peninsula in West Antarctica, and in Wilkes Land and Victoria Land in East Antarctica. Estimates of inter-annual ice mass change over Antarctica at various spatial scales, and assessments of uncertainty of GRACE ice rate estimates and PGR models errors over Antarctica will also be made. The intellectual merits of the proposed investigation include 1) providing improved assessments of Antarctic ice mass balance at different temporal and spatial scales with unprecedented accuracy, an important contribution to broad areas of polar science research; 2) combining high accuracy GPS vertical uplift measurements and PGR models to better quantify long-term crust uplift effects that are not distinguishable from ice mass changes by GRACE; and 3) unifying the work of several investigations at the forefront of quantifying ice sheet and glacier mass balance and crustal uplift based on a variety of modern space geodetic observations. The broader impacts include the fact that the project will actively involve student participation and training, through the support of two graduate students. In addition the project will contribute to general education and public outreach (E/PO) activities and the results from this investigation will help inspire future geoscientists and promote public awareness of significant manifestations of climate change. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||
Glacial-interglacial History of West Antarctic Nunataks and Site Reconnaissance for Subglacial Bedrock Sampling
|
1142162 |
2016-03-16 | Stone, John; Conway, Howard; Winebrenner, Dale |
|
1142162/Stone<br/><br/>This award supports a project to conduct a reconnaissance geological and radar-sounding study of promising sites in West Antarctica as a prelude to a future project to conduct subglacial cosmogenic nuclide measurements. Field work will take place in the Whitmore Mountains, close to the WAIS divide, and on the Nash and Pirrit Hills, downflow from the divide in the Weddell Sea drainage. At each site geological indicators of higher (and lower) ice levels in the past will be mapped and evidence of subglacial erosion or its absence will be documented. Elevation transects of both glacial erratics and adjacent bedrock samples will be collected to establish the timing of recent deglaciation at the sites and provide a complement to similar measurements on material from depth transects obtained by future subglacial drilling. At each site, bedrock ridges will be traced into the subsurface with closely-spaced ice-penetrating radar surveys, using a combination of instruments and frequencies to obtain meter-scale surface detail, using synthetic aperture techniques. Collectively the results will define prospective sites for subglacial sampling, and maximize the potential information to be obtained from such samples in future studies. The intellectual merit of this project is that measurements of cosmogenic nuclides in subglacial bedrock hold promise for resolving the questions of whether the West Antarctic ice sheet collapsed completely in the past, whether it is prone to repeated large deglaciations, and if so, what is their magnitude and frequency. Such studies will require careful choice of targets, to locate sites where bedrock geology is favorable, cosmogenic nuclide records are likely to have been protected from subglacial erosion, and the local ice-surface response is indicative of large-scale ice sheet behavior. The broader impacts of this work include helping to determine whether subglacial surfaces in West Antarctica were ever exposed to cosmic rays, which will provide unambiguous evidence for or against a smaller ice sheet in the past. This is an important step towards establishing whether the WAIS is vulnerable to collapse in future, and will ultimately help to address uncertainty in forecasting sea level change. The results will also provide ground truth for models of ice-sheet dynamics and long-term ice sheet evolution, and will help researchers use these models to identify paleoclimate conditions responsible for WAIS deglaciation. The education and training of students (both undergraduate and graduate students) will play an important role in the project, which will involve Antarctic fieldwork, technically challenging labwork, data collection and interpretation, and communication of the outcome to scientists and the general public. | POLYGON((-104.14 -81.07,-102.24 -81.07,-100.34 -81.07,-98.44 -81.07,-96.54 -81.07,-94.64 -81.07,-92.74 -81.07,-90.84 -81.07,-88.94 -81.07,-87.04 -81.07,-85.14 -81.07,-85.14 -81.207,-85.14 -81.344,-85.14 -81.481,-85.14 -81.618,-85.14 -81.755,-85.14 -81.892,-85.14 -82.029,-85.14 -82.166,-85.14 -82.303,-85.14 -82.44,-87.04 -82.44,-88.94 -82.44,-90.84 -82.44,-92.74 -82.44,-94.64 -82.44,-96.54 -82.44,-98.44 -82.44,-100.34 -82.44,-102.24 -82.44,-104.14 -82.44,-104.14 -82.303,-104.14 -82.166,-104.14 -82.029,-104.14 -81.892,-104.14 -81.755,-104.14 -81.618,-104.14 -81.481,-104.14 -81.344,-104.14 -81.207,-104.14 -81.07)) | POINT(-94.64 -81.755) | false | false | |||||||||||
Contribution of Western Antarctic Peninsula glaciers to sea level rise: Separation of the dynamic and climatic components
|
1043649 |
2016-02-17 | Hock, Regine; Osmanoglu, Batuhan |
|
1043649/Braun<br/><br/><br/>This award supports a project to determine the current mass balance of selected glaciers of the Western Antarctic Peninsula (WAP) and adjacent islands, including King George Island and Livingston Island. A major goal is to discriminate the climatic and dynamic components of the current mass budget. The dynamic component will be assessed using a flux gate approach. Glacier velocity fields will be derived by offset tracking on repeat SAR satellite imagery, and ice thicknesses across grounding lines or near terminus will be approximated from a new methods based on mass continuity. The surface mass balance will be computed from a spatially distributed temperature-index mass-balance model forced by temperature and precipitation data from regional climate models. Our results will provide improved mass budget estimates of Western Antarctic Peninsula glaciers and a more thorough understanding of the ratio between the climatic and dynamic components. The techniques to be developed will be applicable to other glaciers in the region allowing regional scale mass budgets to be derived. The broader impacts of this work are that glacier wastage is currently the most important contributor to global sea level rise and the Antarctic Peninsula has been identified as one of the largest single contributors. Future sea-level rise has major societal, economic and ecological implications. The activity will foster new partnerships through collaboration with European and South American colleagues. The project will form the base of of a postdoctoral research fellowship. It will also provide training of undergraduate and graduate students through inclusion of data and results in course curriculums. | None | None | false | false | |||||||||||
Collaborative Research: Late Quaternary History of Reedy Glacier
|
0229314 |
2015-03-30 | Stone, John |
|
The stability of the marine West Antarctic Ice Sheet (WAIS) remains an important, unresolved problem for predicting future sea level change. Recent studies indicate that the mass balance of the ice sheet today may be negative or positive. The apparent differences may stem in part from short-term fluctuations in flow. By comparison, geologic observations provide evidence of behavior over much longer time scales. Recent work involving glacial-geologic mapping, dating and ice-penetrating radar surveys suggests that deglaciation of both the Ross Sea Embayment and coastal Marie Byrd Land continued into the late Holocene, and leaves open the possibility of ongoing deglaciation and grounding-line retreat. However, previous work in the Ross Sea Embayment was based on data from just three locations that are all far to the north of the present grounding line. Additional data from farther south in the Ross Sea Embayment are needed to investigate whether recession has ended, or if the rate and pattern of deglaciation inferred from our previous study still apply to the present grounding line. This award provides support to reconstruct the evolution of Reedy Glacier, in the southern Transantarctic Mountains, since the Last Glacial Maximum (LGM). Because Reedy Glacier emerges from the mountains above the grounding line, its surface slope and elevation should record changes in thickness of grounded ice in the Ross Sea up to the present day. The deglaciation chronology of Reedy Glacier therefore can indicate whether Holocene retreat of the WAIS ended thousands of years ago, or is still continuing at present. This integrated glaciologic, glacial-geologic, and cosmogenic-isotope exposure- dating project will reconstruct past levels of Reedy Glacier. Over two field seasons, moraines will be mapped, dated and correlated at sites along the length of the glacier. Radar and GPS measurements will be made to supplement existing ice thickness and velocity data, which are needed as input for a model of glacier dynamics. The model will be used to relate geologic measurements to the grounding-line position downstream. Ultimately, the mapping, dating and ice-modeling components of the study will be integrated into a reconstruction that defines changes in ice thickness in the southern Ross Sea since the LGM, and relates these changes to the history of grounding-line retreat. This work directly addresses key goals of the West Antarctic Ice Sheet Initiative, which are to understand the dynamics, recent history and possible future behavior of the West Antarctic Ice Sheet. | None | None | false | false | |||||||||||
Collaborative Research: Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines
|
0944475 |
2014-07-17 | Kaplan, Michael |
|
The proposed work will investigate changes in the compositional variation of glacial tills over time across two concentric sequences of Pleistocene moraines located adjacent to the heads of East Antarctic outlet glaciers in the Transantarctic Mountains (TAM). The chronologic framework for this work will be generated from cosmogenic exposure ages of boulders on prominent morainal ridges. The PIs hypothesize that variations in till composition may indicate a change in ice flow direction or a change in the composition of the original source area, while ages of the moraines provide a long-term terrestrial perspective on ice sheet dynamics. Both results are vital for modeling experiments that aim to reconstruct the East Antarctic Ice Sheet and assess its role in the global climate system and its potential impact on global sea level rise. The variation of till compositions through time also allows for a more accurate interpretation of sediment cores from the Ross Sea and the Southern Ocean. Additionally, till exposures at the head of some East Antarctic outlet glaciers have been shown to contain subglacial material derived from East Antarctic bedrock, providing a window through the ice to view East Antarctica?s inaccessible bedrock. Till samples will be collected from two well-preserved sequences of moraine crests at Mt. Howe (head of Scott Glacier) and Mt. Achernar (between Beardmore and Nimrod Glaciers). Each size fraction in glacial till provides potentially valuable information, and the PIs will measure the petrography of the clast and sand fractions, quantitative X-ray diffraction on the crushed <2mm fraction, elemental abundance of the silt/clay fraction, and U/Pb of detrital zircons in the sand fraction. Data collection will rely on established methods previously used in this region and the PIs will also explore new methods to assess their efficacy. On the same moraines crests sampled for provenance studies, the PIs will sample for cosmogenic surface exposure analyses to provide a chronologic framework at the sites for provenance changes through time. <br/><br/>Broader Impact <br/>The proposed research involves graduate and undergraduate training in a diverse array of laboratory methods. Students and PIs will be make presentations to community and campus groups, as well as conduct interviews with local news outlets. The proposed work also establishes a new, potentially long-term, collaboration between scientists at IUPUI and LDEO and brings a new PI (Kaplan) into the field of Antarctic Earth Sciences. | POLYGON((-149.7 -84.1,-118.61 -84.1,-87.52 -84.1,-56.43 -84.1,-25.34 -84.1,5.75 -84.1,36.84 -84.1,67.93 -84.1,99.02 -84.1,130.11 -84.1,161.2 -84.1,161.2 -84.43,161.2 -84.76,161.2 -85.09,161.2 -85.42,161.2 -85.75,161.2 -86.08,161.2 -86.41,161.2 -86.74,161.2 -87.07,161.2 -87.4,130.11 -87.4,99.02 -87.4,67.93 -87.4,36.84 -87.4,5.75 -87.4,-25.34 -87.4,-56.43 -87.4,-87.52 -87.4,-118.61 -87.4,-149.7 -87.4,-149.7 -87.07,-149.7 -86.74,-149.7 -86.41,-149.7 -86.08,-149.7 -85.75,-149.7 -85.42,-149.7 -85.09,-149.7 -84.76,-149.7 -84.43,-149.7 -84.1)) | POINT(5.75 -85.75) | false | false | |||||||||||
Collaborative Research: Linkages among Mitochondrial Form, Function and Thermal Tolerance of Antarctic Notothenioid Fishes
|
0741301 1142720 |
2013-11-30 | Crockett, Elizabeth; O'Brien, Kristin |
|
Antarctic notothenioid fishes have evolved in the Southern Ocean for 10-14 MY under an unusual set of circumstances. Their characteristics include the complete absence of the circulating oxygen-binding protein, hemoglobin (Hb) within the Channichthyid (Icefish) family of notothenioids. Moreover, some species within the 16 members of this family have also lost the ability to express the oxygen-binding and storage protein, myoglobin (Mb) in cardiac muscle. Our previous work has determined that the loss of Hb and/or Mb is correlated with significant increases in densities of mitochondria within oxidative tissues, and extensive remodeling of these vital organelles. To date, nothing is known about how modifications in mitochondrial architecture of icefishes affect organelle function, or more importantly, how they affect organismal-level physiology. Most critical for Antarctic fishes is that mitochondrial characteristics have been linked to how well ectotherms can withstand increases in temperature. <br/><br/>This collaborative research project will address the hypothesis that the unusual mitochondrial architecture of Antarctic Channichthyids has led to changes in function that impact their ability to withstand elevations in temperature. Specifically, the research will (1) determine if the unusual mitochondrial architecture of icefishes affects function and contributes to organismal thermal sensitivity, (2) identify differences in organismal thermal tolerance between red- and white- blooded notothenioids, (3) identify molecular mechanisms regulating changes in mitochondrial structure in icefishes. The results may establish channichthyid icefishes as a sentinel taxon for signaling the impact of global warming on the Southern Ocean. Broad impacts of this project will be realized by participation of high school biology teachers in field work through cooperation with the ARMADA project at the University of Rhode Island, as well as graduate education. | POLYGON((-64.45 -63.29,-64.249 -63.29,-64.048 -63.29,-63.847 -63.29,-63.646 -63.29,-63.445 -63.29,-63.244 -63.29,-63.043 -63.29,-62.842 -63.29,-62.641 -63.29,-62.44 -63.29,-62.44 -63.370999999999995,-62.44 -63.452,-62.44 -63.533,-62.44 -63.614,-62.44 -63.69499999999999,-62.44 -63.775999999999996,-62.44 -63.857,-62.44 -63.937999999999995,-62.44 -64.01899999999999,-62.44 -64.1,-62.641 -64.1,-62.842 -64.1,-63.043 -64.1,-63.244 -64.1,-63.445 -64.1,-63.646 -64.1,-63.847 -64.1,-64.048 -64.1,-64.249 -64.1,-64.45 -64.1,-64.45 -64.01899999999999,-64.45 -63.937999999999995,-64.45 -63.857,-64.45 -63.775999999999996,-64.45 -63.69499999999999,-64.45 -63.614,-64.45 -63.533,-64.45 -63.452,-64.45 -63.370999999999995,-64.45 -63.29)) | POINT(-63.445 -63.695) | false | false | |||||||||||
Collaborative Research: Mass Transit: Controls on Grounding and Ungrounding at Marine Ice Sheet Outlets
|
0838810 |
2013-07-01 | Hulbe, Christina; Fahnestock, Mark | No dataset link provided | Hulbe/0838810 <br/><br/>This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>This award supports a modeling study of the processes in West Antarctic grounding zones, the transition from ice resting on bedrock to ice floating on the ocean surface with an eye toward understanding the interrelated causes of rapid change in grounding line configuration and outlet flow. A combination of satellite remote sensing and numerical modeling will be used to investigate both past and ongoing patterns of change. New high-resolution surface elevation maps made from a novel combination of satellite laser altimetry and remotely observed surface shape provide a unique view of grounding zones. These data will be used to diagnose events associated with the shutdown of Kamb Ice Stream, to investigate a recent discharge event on Institute Ice Stream and to investigate ongoing change at the outlet of Whillans Ice Stream, along with other modern processes around the West Antarctic. An existing numerical model of coupled ice sheet, ice stream, and ice shelf flow will be used and improved as part of the research project. The broader impacts of the project relate to the importance of understanding the role of polar ice sheets in global sea level rise. The work will contribute to the next round of deliberations for the Intergovernmental Panel on Climate Change (IPCC). Improved views, interpretations, and insights into the physical processes that govern variability in ice sheet outlet streams will help correct the shortcomings of the last IPCC report that didn?t include the role of ice sheets in sea level rise. The PIs have a strong record of public outreach, involvement in the professional community, and student training. | None | None | false | false | |||||||||||
None
|
None | 2013-03-18 | Marinova, Margarita M.; McKay, Christopher P. |
|
None | None | None | false | false | |||||||||||
Collaborative Research: Polenet East: An International Seismological Network for East Antarctica
|
0838973 0838934 |
2013-01-21 | Wiens, Douglas; Nyblade, Andrew |
|
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The high elevations of East Antarctica are critical in localizing the initial Cenozoic glaciation and stabilizing it with respect to melting during warm interglacials. However, the geological history for this region and the geophysical mechanism for maintaining the highlands are poorly understood. In 2007-2009, an array of 24 broadband seismographs (named GAMSEIS) was installed across the Gamburtsev Mountains area of the East Antarctic Plateau as part of the Antarctica?s Gamburtsev Province (AGAP) International Polar Year project. The IPY AGAP/GAMSEIS program included plans by other international partners to install seismographs at locations along the flanks of the Gamburtsev Mountains and in other East Antarctic regions. The proposed project will continue operating six of the deployed AGAP/GAMSEIS stations for two more years together with two new broadband seismic stations added to broaden the geographic scope of the array. Most stations will be located at the existing U.S. Autonomous Geophysical Observatories and the USAP fuel cache locations in order to minimize logistical support. This array, combined with seismographs deployed by China and Japan (and possibly Australia, France, and Italy in near future) will provide a sparse but large-scale network of seismometers for the longer-term studies of the crustal and upper mantle structures underneath the East Antarctic Plateau. Continued reliance on students provides a broader impact to this proposed research and firmly grounds this effort in its educational mission. | POLYGON((40 -76,50 -76,60 -76,70 -76,80 -76,90 -76,100 -76,110 -76,120 -76,130 -76,140 -76,140 -76.8,140 -77.6,140 -78.4,140 -79.2,140 -80,140 -80.8,140 -81.6,140 -82.4,140 -83.2,140 -84,130 -84,120 -84,110 -84,100 -84,90 -84,80 -84,70 -84,60 -84,50 -84,40 -84,40 -83.2,40 -82.4,40 -81.6,40 -80.8,40 -80,40 -79.2,40 -78.4,40 -77.6,40 -76.8,40 -76)) | POINT(90 -80) | false | false | |||||||||||
IPY Research: Investigating the Cryospheric Evolution of the Central Antarctic Plate (ICECAP)
|
0733025 |
2012-09-04 | Siegert, Martin; Roberts, Jason; Van Ommen, Tas; Warner, Roland; Richter, Thomas; Greenbaum, Jamin; Holt, John W.; Young, Duncan A.; Blankenship, Donald D. | This project is an aerogeophysical survey to explore unknown terrain in East Antarctica to answer questions of climate change and earth science. The methods include ice-penetrating radar, gravity, and magnetic measurements. The project?s main goal is to investigate the stability and migration of ice divides that guide flow of the East Antarctic ice sheet, the world?s largest. The project also maps ice accumulation over the last interglacial, identifies subglacial lakes, and characterizes the catchment basins of the very largest glacial basins, including Wilkes and Aurora. The outcomes contribute to ice sheet models relevant to understanding sea level rise in a warming world. The work will also help understand the regional geology. Buried beneath miles-thick ice, East Antarctica is virtually uncharacterized, but is considered a keystone for tectonic reconstructions and other geologic questions. The region also hosts subglacial lakes, whose geologic histories are unknown. <br/><br/>The broader impacts are extensive, and include societal relevance for understanding sea level rise, outreach in various forms, and education at the K12 through postdoctoral levels. The project contributes to the International Polar Year (2007-2009) by addressing key IPY themes on frontiers in polar exploration and climate change. It also includes extensive international collaboration with the United Kingdom, Australia, France and other nations; and offers explicit opportunities for early career scientists. | POLYGON((95 -65,103.5 -65,112 -65,120.5 -65,129 -65,137.5 -65,146 -65,154.5 -65,163 -65,171.5 -65,180 -65,180 -66.7,180 -68.4,180 -70.1,180 -71.8,180 -73.5,180 -75.2,180 -76.9,180 -78.6,180 -80.3,180 -82,171.5 -82,163 -82,154.5 -82,146 -82,137.5 -82,129 -82,120.5 -82,112 -82,103.5 -82,95 -82,95 -80.3,95 -78.6,95 -76.9,95 -75.2,95 -73.5,95 -71.8,95 -70.1,95 -68.4,95 -66.7,95 -65)) | POINT(137.5 -73.5) | false | false | ||||||||||||
Estimating the Salinity of Subglacial Lakes From Existing Aerogeophysical Data
|
0636584 |
2012-08-07 | Creyts, Timothy; Studinger, Michael S. | No dataset link provided | Studinger/0636584<br/><br/>This award supports a project to estimate the salinity of subglacial Lake Vostok, Lake Concordia and the 90 deg.E lake using existing airborne ice-penetrating radar and laser altimeter data. These lakes have been selected because of the availability of modern aerogeophysical data and because they are large enough for the floating ice to be unaffected by boundary stresses near the grounding lines. The proposed approach is based on the assumption that the ice sheet above large subglacial lakes is in hydrostatic equilibrium and the density and subsequently salinity of the lake's water can be estimated from the (linear) relationship between ice surface elevation and ice thickness of the floating ice. The goal of the proposed work is to estimate the salinity of Lake Vostok and determine spatial changes and to compare the salinity estimates of 3 large subglacial lakes in East Antarctica. The intellectual merits of the project are that this work will contribute to the knowledge of the physical and chemical processes operating within subglacial lake environments. Due to the inaccessibility of subglacial lakes numerical modeling of the water circulation is currently the only way forward to develop a conceptual understanding of the circulation and melting and freezing regimes in subglacial lakes. Numerical experiments show that the salinity of the lake's water is a crucial input parameter for the 3-D fluid dynamic models. Improved numerical models will contribute to our knowledge of water circulation in subglacial lakes, its effects on water and heat budgets, stratification, melting and freezing, and the conditions that support life in such extreme environments. The broader impacts of the project are that subglacial lakes have captured the interest of many people, scientists and laymen. The national and international press frequently reports about the research of the Principal Investigator. His Lake Vostok illustrations have been used in math and earth science text books. Lake Vostok will be used for education and outreach in the Earth2Class project. Earth2Class is a highly successful science/math/technology learning resource for K-12 students, teachers, and administrators in the New York metropolitan area. Earth2Class is created through collaboration by research scientists at the Lamont- Doherty Earth Observatory; curriculum and educational technology specialists from Teachers College, Columbia University; and classroom teachers in the New York metropolitan area. | None | None | false | false | |||||||||||
Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System
|
0636724 0758274 |
2012-05-15 | Carter, Sasha P.; Dupont, Todd K.; Holt, John W.; Morse, David L.; Parizek, Byron R.; Young, Duncan A.; Kempf, Scott D.; Blankenship, Donald D. | This award supports a three-year study to isolate essential physical processes affecting Thwaites Glacier (TG) in the Amundsen Sea Embayment (ASE) of West Antarctica using a suite of existing numerical models in conjunction with existing and International Polar Year (IPY)-proposed data sets. Four different models will be utilized to explore the effects of embayment geometry, ice-shelf buttressing, basal-stress distribution, surface mass balance, surface climate, and inland dynamic perturbations on the present and future dynamics of TG. This particular collection of models is ideally suited for the broad nature of this investigation, as they incorporate efficient and complementary simplifications of the stress field (shallow-ice and shelf-stream), system geometry (1-d and 2-d plan-view and flowline; depth-integrated and depth-dependent), and mass-momentum energy coupling (mechanical and thermo-mechanical). The models will be constrained and validated by data sets (including regional maps of ice thickness, surface elevation, basal topography, ice surface velocity, and potential fields) and geophysical data analyses (including increasing the spatial resolution of surface elevations, improving regional estimates of geothermal flux, and characterizing the sub-glacial interface of grounded ice as well as the grounding-zone transition between grounded and floating ice). The intellectual merit of the research focuses on several of the NSF Glaciology program's emphases, including: ice dynamics, numerical modeling, and remote sensing of ice sheets. In addition, the research directly addresses the following specific NSF objectives: "investigation of the physics of fast glacier flow with emphasis on processes at glacier beds"; "investigation of ice-shelf stability"; and "identification and quantification of the feedback between ice dynamics and climate change". The broader impacts of this research effort will help answer societally relevant questions of future ice sheet stability and sea-level change. The research also will aid in the early career development of two young investigators and will contribute to the education of both graduate and undergraduate students directly involved in the research, and results will be incorporated into courses and informal presentations. | POLYGON((-110.058 -74.0548,-109.57993 -74.0548,-109.10186 -74.0548,-108.62379 -74.0548,-108.14572 -74.0548,-107.66765 -74.0548,-107.18958 -74.0548,-106.71151 -74.0548,-106.23344 -74.0548,-105.75537 -74.0548,-105.2773 -74.0548,-105.2773 -74.31383,-105.2773 -74.57286,-105.2773 -74.83189,-105.2773 -75.09092,-105.2773 -75.34995,-105.2773 -75.60898,-105.2773 -75.86801,-105.2773 -76.12704,-105.2773 -76.38607,-105.2773 -76.6451,-105.75537 -76.6451,-106.23344 -76.6451,-106.71151 -76.6451,-107.18958 -76.6451,-107.66765 -76.6451,-108.14572 -76.6451,-108.62379 -76.6451,-109.10186 -76.6451,-109.57993 -76.6451,-110.058 -76.6451,-110.058 -76.38607,-110.058 -76.12704,-110.058 -75.86801,-110.058 -75.60898,-110.058 -75.34995,-110.058 -75.09092,-110.058 -74.83189,-110.058 -74.57286,-110.058 -74.31383,-110.058 -74.0548)) | POINT(-107.66765 -75.34995) | false | false | ||||||||||||
None
|
None | 2012-04-30 | Cook, Allison |
|
None | None | None | false | false | |||||||||||
Collaborative Research: Elevation Change Anomalies in West Antarctica and Dynamics of Subglacial Water Transport Beneath Ice Streams and their Tributaries
|
0636719 0636970 |
2011-07-27 | Smith, Ben; Joughin, Ian; Tulaczyk, Slawek; SMITH, BENJAMIN |
|
Tulaczyk/0636970<br/><br/>This award supports a project to study elevation change anomalies (henceforth ECAs), which are oval-shaped, 5-to-10 km areas observed in remote sensing images in several locations within the Ross Sea sector of the West Antarctic Ice Sheet (WAIS). Within these anomalies, surface elevation changes at rates of up to ~1 to ~2 cm per day, significantly faster than in surrounding regions. These anomalies are thought to result from filling and draining of multi-kilometer-scale subglacial water pockets. The intellectual merit of this project is that these ECA's represent an unprecedented window into the elusive world of water drainage dynamics beneath the modern Antarctic ice sheet. Although subglacial water fluxes are small compared to normal terrestrial conditions, they play an important role in controlling fast ice streaming and, potentially, stability of the ice sheet. The dearth of observational constraints on sub-ice sheet water dynamics represents one of the most important limitations on progress in quantitative modeling of ice streams and ice sheets. Such models are necessary to assess future ice sheet mass balance and to reconstruct the response of ice sheets to past climate changes. The dynamic sub-ice sheet water transport indicated by the ECAs may have also implications for studies of subglacial lakes and other subglacial environments, which may harbor life adapted to such extreme conditions. The broader impacts of this project are that it will provide advanced training opportunities to one postdoctoral fellow (UW), two female doctoral students (UCSC), who will enhance diversity in polar sciences, and at least three undergraduate students (UCSC). Project output will be relevant to broad scientific and societal interests, such as the future global sea level changes and the response of Polar Regions to climate changes. Douglas Fox, a freelance science journalist, is interested in joining the first field season to write feature articles to popular science magazines and promote the exposure of this project, and Antarctic Science in general, to mass media. | None | None | false | false | |||||||||||
Collaborative Research: Grounding Line Forensics: The History of Grounding Line Retreat in the Kamb Ice Stream Outlet Region
|
0538120 0538015 |
2011-07-02 | Hulbe, Christina; Catania, Ginny |
|
0538120<br/>Catania<br/>This award supports a project to identify and map ice surface and internal features that chronicle the sequence of events leading to the shut-down of Kamb ice stream. In particular, the project will study past grounding line migration and the relationship between that process and ice stream shutdown. The intellectual merits of the project include the fact that an understanding of such processes has important implications for our ability to accurately predict mass balance changes in this region. Currently, one of the five major West Antarctic ice streams, Kamb, is quiescent, and another, Whillans, is slowing in its downstream reaches. The Kamb shutdown appears to have begun at its downstream end but beyond that simple observation, it is not possible, yet, to draw meaningful comparisons between the two adjacent streams. We do not know if current events on Whillans Ice Stream are similar to what transpired during the Kamb shut-down. The work proposed here intends to bridge that gap. It is expected that this effort will yield useful insights into the influence of grounding line dynamics on ice stream flow. The work will involve a combination of field investigations using radio-echo sounding and GPS combined with computational efforts involving the interpretation of ice-surface features such as relict flow traces and crevasses. The broader impacts of the project will be in addressing a global environmental problem with critical societal implications, training the next generation of scientists and engineers to serve the nation, and encouraging women to pursue scientific or engineering careers. Participants from both institutions are involved in a range of public outreach activities. | POLYGON((154.71 -82.78,154.79000000000002 -82.78,154.87 -82.78,154.95 -82.78,155.03 -82.78,155.11 -82.78,155.19 -82.78,155.26999999999998 -82.78,155.35 -82.78,155.43 -82.78,155.51 -82.78,155.51 -82.788,155.51 -82.796,155.51 -82.804,155.51 -82.812,155.51 -82.82,155.51 -82.828,155.51 -82.836,155.51 -82.844,155.51 -82.852,155.51 -82.86,155.43 -82.86,155.35 -82.86,155.26999999999998 -82.86,155.19 -82.86,155.11 -82.86,155.03 -82.86,154.95 -82.86,154.87 -82.86,154.79000000000002 -82.86,154.71 -82.86,154.71 -82.852,154.71 -82.844,154.71 -82.836,154.71 -82.828,154.71 -82.82,154.71 -82.812,154.71 -82.804,154.71 -82.796,154.71 -82.788,154.71 -82.78)) | POINT(155.11 -82.82) | false | false | |||||||||||
Collaborative Research: Is Ice Stream C Restarting? Glaciological Investigations of the 'Bulge' and the Trunk of Ice Stream C, West Antartica
|
0337567 |
2010-10-20 | Jacobel, Robert |
|
This award supports a project to test whether Kamb Ice Stream (formerly Ice Stream C (ISC)), an ice stream<br/>that is thought to have stopped ~150 years ago, may be already in the process of restarting. If yes, it will help establish what is the rate of ice stream reactivation and what mechanisms are controlling this rate. If there is no evidence for ongoing ice stream reactivation, the physical controls that are preventing it will be examined and alternative scenarios for near-future evolution of this ice stream will be explored. One such scenario is an increase in ice diversion toward the neighboring Whillans Ice Stream. Such diversion may help prevent a complete stoppage of Whillans Ice Stream,which has been slowing down for at least the last 24 years. This project will consist of two components: (1) field observations of bed properties,geometry of internal radar reflectors, as well as surface strain rates and velocity/topography changes using Ice-Penetrating Radar and differential Global Positioning System, (2) numerical modeling study of near future(~100-1000 years) evolution of Kamb Ice Stream. The field component will be focused on the bulge-to-trunk transition, which is located at the present time just downstream of the so-called camp UpC. Reactivation of Kamb Ice Stream should be reflected in a downstream migration of the bulge-trunk transition at possibly high rates (bulge migration rates of ~km/yr occur on surging mountain glaciers). The modeling<br/>component will be used to generate predictions regarding the near-future behavior of Kamb Ice Stream. This project will provide training opportunities for at least two undergraduate students (per year) at St. Olaf College and for one<br/>undergraduate student (per year) at UCSC. This collaboration will bring together scientists from three different types of US institutions: (1) a liberal arts college (St.Olaf College), (2) a public research university (UCSC) and (3) a NASA research laboratory (JPL). The project will also help build a new glaciological research program at UCSC. Project results will be incorporated into undergraduate and graduate courses at UCSC and will be made available<br/>to the general public and educators through downloadable graphics and animations posted on the research website of the UCSC PI. Field data resulting from the project will be posted in the Antarctic Glaciological Data Center for use by other investigators. | POLYGON((130 -78,133 -78,136 -78,139 -78,142 -78,145 -78,148 -78,151 -78,154 -78,157 -78,160 -78,160 -79.2,160 -80.4,160 -81.6,160 -82.8,160 -84,160 -85.2,160 -86.4,160 -87.6,160 -88.8,160 -90,157 -90,154 -90,151 -90,148 -90,145 -90,142 -90,139 -90,136 -90,133 -90,130 -90,130 -88.8,130 -87.6,130 -86.4,130 -85.2,130 -84,130 -82.8,130 -81.6,130 -80.4,130 -79.2,130 -78)) | POINT(145 -84) | false | false | |||||||||||
Glaciological Characteristics of the Ross/Amundsen Sea Ice-flow Divide Deduced by a New Analysis of Ice-penetrating Radar Data
|
0338151 |
2010-05-11 | Raymond, Charles; Matsuoka, Kenichi; Luyendyk, Bruce P.; Wilson, Douglas S. | This award supports an investigation of spatial variations of ice temperature and subglacial conditions using available ice-penetrating radar data around a future deep ice coring site near the Ross and Amundsen flow divide of West Antarctic Ice Sheet. Besides geometry of reflection layers the focus will be on intensities of radar echoes from within ice deeper than several hundred meters and will also examine echoes from the bed. Preliminary studies on theory and comparison with Japanese radar data from East Antarctica suggest that large spatial variations of the vertical gradient of radar echoes from within ice exist and are caused primarily by ice temperature and secondarily by crystal-orientation fabric. The hypothesis that the vertical gradient is a proxy of ice temperature will be tested. The project will utilize an existing data set from the Support Office for Aerogeophysical Research in Antarctica (SOAR) and will complement work already underway at University of Texas to analyze the radar data. The project will provide undergraduate research experience with an emphasis on computer analysis of time series and large data sets as well as development of web-based resource of results and methods and will support an international collaboration between US and Japan through discussions on the preliminary results from their study sites. Practical procedures developed through this study will be downloadable from the project's web site in the third year and will allow investigation of other ice sheets using existing radar data sets. This project will contribute to the interpretation of the future inland West Antarctic ice core and will help in the understanding of ice sheet history and climate change. | POINT(-112.086 -79.468) | POINT(-112.086 -79.468) | false | false | ||||||||||||
AMS Radiocarbon Chronology of Glacier Fluctuations in the South Shetland Islands During the Last Glacial/Interglacial Hemicycle:Implications for Global Climate Change
|
9814349 |
2010-05-04 | Hall, Brenda; Taylor, Frederick |
|
This award supports a two year program to produce a new reconstruction of ice extent, elevation and thickness at the Last Glacial Maximum (LGM) for the South Shetland Islands in the Antarctic Peninsula. One field season on Livingston Island will involve mapping the areal extent and geomorphology of glacial drift and determining the elevation and distribution of trimlines. In addition, ice flow direction will be determined by mapping and measuring the elevation of erosional features and the position of erratic boulders. One of the main goals of this work will be to demonstrate whether or not organic material suitable for radiocarbon dating exists in the South Shetland Islands. If so, the age of the deposits will be determined by measuring the carbon-14 age of plant, algal, and fungal remains preserved at the base of the deposits, as well as incorporated marine shells, seal skin and other organic material that may be found in raised beach deposits. Another goal will be to concentrate on the development of relative sea-level curves from 2-3 key areas to show whether or not construction of such curves for the South Shetland Islands is possible. The new reconstruction of ice extent, elevation and thickness at the Last Glacial Maximum for the South Shetland Islands which will be produced by this work will be useful in studies of ocean circulation and ice dynamics in the vicinity of the Drake Passage. It will also contribute to the production of a deglacial chronology which will afford important clues about the mechanisms controlling ice retreat in this region of the southern hemisphere. | POLYGON((-70.4838 -52.3532,-68.92937 -52.3532,-67.37494 -52.3532,-65.82051 -52.3532,-64.26608 -52.3532,-62.71165 -52.3532,-61.15722 -52.3532,-59.60279 -52.3532,-58.04836 -52.3532,-56.49393 -52.3532,-54.9395 -52.3532,-54.9395 -53.61625,-54.9395 -54.8793,-54.9395 -56.14235,-54.9395 -57.4054,-54.9395 -58.66845,-54.9395 -59.9315,-54.9395 -61.19455,-54.9395 -62.4576,-54.9395 -63.72065,-54.9395 -64.9837,-56.49393 -64.9837,-58.04836 -64.9837,-59.60279 -64.9837,-61.15722 -64.9837,-62.71165 -64.9837,-64.26608 -64.9837,-65.82051 -64.9837,-67.37494 -64.9837,-68.92937 -64.9837,-70.4838 -64.9837,-70.4838 -63.72065,-70.4838 -62.4576,-70.4838 -61.19455,-70.4838 -59.9315,-70.4838 -58.66845,-70.4838 -57.4054,-70.4838 -56.14235,-70.4838 -54.8793,-70.4838 -53.61625,-70.4838 -52.3532)) | POINT(-62.71165 -58.66845) | false | false | |||||||||||
PECASE: Relative frequency and phase of extreme expansions of the Antarctic Ice Sheets during the late Neogene
|
0094078 |
2010-05-04 | Bart, Philip |
|
PROPOSAL NO.: 0094078<br/>PRINCIPAL INVESTIGATOR: Bart, Philip<br/>INSTITUTION NAME: Louisiana State University & Agricultural and Mechanical College<br/>TITLE: CAREER: Relative frequency and phase of extreme expansions of the Antarctic Ice Sheets during the late Neogene<br/>NSF RECEIVED DATE: 07/27/2000<br/><br/>PROJECT SUMMARY<br/><br/>Expansions and contractions of the Antarctic Ice Sheets (AISs) have undoubtedly had a profound influence on Earth's climate and global sea-level. However, rather than being a single entity, the Antarctic cryosphere consists of three primary elements: 1) the East Antarctic Ice Sheet (EAIS); 2) the West Antarctic Ice Sheet (WAIS); and 3) the Antarctic Peninsula Ice Cap (APIC). The distinguishing characteristics include significant differences in: 1) ice volume; 2) substratum elevation; 3) ice-surface elevation; and 4) location with respect to latitude. Various lines of evidence indicate that the AISs have undergone significant fluctuations in the past and that fluctuations will continue to occur in the future. The exact nature of the fluctuations has been the subject of many lively debates. According to one line of reasoning, the land-based EAIS has been relatively stable, experiencing only minor fluctuations since forming in the middle Miocene, whereas the marine-based WAIS has been dynamic, waxing and waning frequently since the late Miocene. According to an alternate hypothesis, the ice sheets advanced and retreated synchronously. These two views are incompatible. <br/><br/>The first objective of this proposal is to compare the long-term past behavior of the WAIS to that of the EAIS and APIC. The fluctuations of the AISs involve many aspects (the frequency of changes, the overall magnitude of ice-volume change, etc.), and the activities proposed here specifically concern the frequency and phase of extreme advances of the ice sheet to the continental shelf. The project will build upon previous seismic-stratigraphic investigations of the continental shelves. These studies have clarified many issues concerning the minimum frequency of extreme expansions for the individual ice sheets, but some important questions remain. During the course of the project, the following questions will be evaluated.<br/><br/>Question 1) Were extreme advances of the EAIS and WAIS across the shelf of a similar frequency and coeval? This evaluation is possible because the western Ross Sea continental shelf (Northern Basin) receives drainage from the EAIS, and the eastern Ross Sea (Eastern Basin) receives drainage from the WAIS. Quantitative analyses of the extreme advances from these two areas have been conducted by Alonso et al. (1992) and Bart et al. (2000), respectively. However, the existing single-channel seismic grids are incomplete and can not be used to determine the stratigraphic correlations from Northern Basin to Eastern Basin. It is proposed that high-resolution seismic data (~2000 kms) be acquired to address this issue.<br/><br/>Question 2) Were extreme advances of the APIC across the shelf as frequent as inferred by Bart and Anderson (1995)? Bart and Anderson (1995) inferred that the APIC advanced across the continental shelf at least 30 times since the middle Miocene. This is significant because it suggests that the advances of the small APIC were an order of magnitude more frequent than the advances of the EAIS and WAIS. Others contest the Bart and Anderson (1995) glacial-unconformity interpretation of seismic reflections, and argue that the advances of the APIC were far fewer (i.e., Larter et al., 1997). The recent drilling on the Antarctic Peninsula outer continental shelf has sampled some but not all of the glacial units, but the sediment recovery was poor, and thus, the glacial history interpretation is still ambiguous. The existing high-resolution seismic grids from the Antarctic Peninsula contain only one regional strike line on the outer continental shelf. This is inadequate to address the controversy of the glacial-unconformity interpretation and the regional correlation of the recent ODP results. It is proposed that high-resolution seismic data (~1000 kms) be acquired in a forthcoming (January 2002) cruise to the Antarctic Peninsula to address these issues.<br/><br/>The second objective of this project is 1) to expand the PI's effort to integrate his ongoing and the proposed experiments into a graduate-level course at LSU, and 2) to develop a pilot outreach program with a Baton Rouge public high school. The Louisiana Department of Education has adopted scientific standards that apply to all sciences. These standards reflect what 9th through 12th grade-level students should be able to do and know. The PI will target one of these standards, the Science As Inquiry Standard 1 Benchmark. The PI will endeavor to share with the students the excitement of conducting scientific research as a way to encourage the students to pursue earth science as a field of study at the university level. | POLYGON((-179.99992 -72.00044,-143.999984 -72.00044,-108.000048 -72.00044,-72.000112 -72.00044,-36.000176 -72.00044,-0.000239999999991 -72.00044,35.999696 -72.00044,71.999632 -72.00044,107.999568 -72.00044,143.999504 -72.00044,179.99944 -72.00044,179.99944 -72.574101,179.99944 -73.147762,179.99944 -73.721423,179.99944 -74.295084,179.99944 -74.868745,179.99944 -75.442406,179.99944 -76.016067,179.99944 -76.589728,179.99944 -77.163389,179.99944 -77.73705,143.999504 -77.73705,107.999568 -77.73705,71.999632 -77.73705,35.999696 -77.73705,-0.000240000000019 -77.73705,-36.000176 -77.73705,-72.000112 -77.73705,-108.000048 -77.73705,-143.999984 -77.73705,-179.99992 -77.73705,-179.99992 -77.163389,-179.99992 -76.589728,-179.99992 -76.016067,-179.99992 -75.442406,-179.99992 -74.868745,-179.99992 -74.295084,-179.99992 -73.721423,-179.99992 -73.147762,-179.99992 -72.574101,-179.99992 -72.00044)) | POINT(0 -89.999) | false | false | |||||||||||
Histories of accumulation, thickness and WAIS Divide location from radar layers using a new inverse approach
|
0440666 |
2010-03-04 | Koutnik, Michelle; Waddington, Edwin D. |
|
This award supports development of a new modeling approach that will extract information about past snow accumulation rate in both space and time in the vicinity of the future ice core near the Ross-Amundsen divide of the West Antarctic Ice Sheet (WAIS). Internal layers, detected by ice-penetrating radar, are isochrones, or former ice-sheet surfaces that have been buried by subsequent snowfall, and distorted by ice flow. Extensive ice-penetrating radar data are available over the inland portion of the WAIS. Layers have been dated back to 17,000 years before present. The radar data add the spatial dimension to the temporally resolved accumulation record from ice cores. Accumulation rates are traditionally derived from the depths of young, shallow layers, corrected for strain using a local 1-D ice-flow model. Older, deeper layers have been more affected by flow over large horizontal distances. However, it is these deeper layers that contain information on longer-term climate patterns. This project will use geophysical inverse theory and a 2.5D flow-band ice-flow forward model comprising ice-surface and layer-evolution modules, to extract robust transient accumulation patterns by assimilating multiple deeper, more-deformed layers that have previously been intractable. Histories of divide migration, geothermal flux, and surface evolution will also be produced. The grant will support the PhD research of a female graduate student who is a mentor to female socio-economically disadvantaged high-school students interested in science, through the University of Washington Women's Center. It will also provide a research<br/>experience for an undergraduate student, and contribute to a freshman seminar on Scientific Research. | None | None | false | false | |||||||||||
Collaborative Research: Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis.
|
0437887 |
2009-12-06 | Sidell, Bruce | The polar ocean presently surrounding Antarctica is the coldest, most thermally stable marine environment on earth. Because oxygen solubility in seawater is inversely proportional to temperature, the cold Antarctic seas are an exceptionally oxygen-rich aquatic habitat. Eight families of a single perciform suborder, the Notothenioidei, dominate the present fish fauna surrounding Antarctica. Notothenioids account for approximately 35% of fish species and 90% of fish biomass south of the Antarctic Polar Front. Radiation of closely related notothenioid species thus has occurred rapidly and under a very unusual set of conditions: relative oceanographic isolation from other faunas due to circumpolar currents and deep ocean trenches surrounding the continent, chronically, severely cold water temperatures, very high oxygen availability, very low levels of niche competition in a Southern Ocean depauperate of species subsequent to a dramatic crash in species diversity of fishes that occurred sometime between the mid-Tertiary and present. These features make Antarctic notothenioid fishes an uniquely attractive group for the study of physiological and biochemical adaptations to cold body temperature. <br/>Few distinctive features of Antarctic fishes are as unique as the pattern of expression of oxygen-binding proteins in one notothenioid family, the Channichthyidae (Antarctic icefishes). All channichthyid icefishes lack the circulating oxygen-binding protein, hemoglobin (Hb); the intracellular oxygen-binding protein, myoglobin (Mb) is not uniformly expressed in species of this family. Both proteins are normally considered essential for adequate delivery of oxygen to aerobically poised tissues of animals. To compensate for the absence of Hb, icefishes have developed large hearts, rapidly circulate a large blood volume and possess elaborate vasculature of larger lumenal diameter than is seen in red-blooded fishes. Loss of Mb expression in oxidative muscles correlates with dramatic elevation in density of mitochondria within the cell, although each individual organelle is less densely packed with respiratory proteins. <br/>Within the framework of oxygen movement, the adaptive significance of greater vascular density and mitochondrial populations is understandable but mechanisms underlying development of these characteristics remain unknown. The answer may lie in another major function of both Hb and Mb, degradation of the ubiquitous bioactive compound, nitric oxide (NO). The research will test the hypothesis that loss of hemoprotein expression in icefishes has resulted in an increase in levels of NO that mediate modification of vascular systems and expansion of mitochondrial populations in oxidative tissues. The objectives of the proposal are to quantify the vascular density of retinas in +Hb and -Hb notothenioid species, to characterize NOS isoforms and catalytic activity in retina and cardiac muscle of Antarctic notothenioid fishes, to evaluate level of expression of downstream factors implicated in angiogenesis (in retinal tissue) and mitochondrial biogenesis (in cardiac muscle), and to determine whether inhibition of NOS in vivo results in regression of angiogenic and mitochondrial biogenic responses in icefishes. Broader impacts range from basic biology, through training of young scientists, to enhanced understanding of clinically relevant biomedical processes. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||||||||
ITR/SI+AP: A Mobile Sensor Web for Polar Ice Sheet Measurements
|
0122520 |
2009-07-01 | Gogineni, Prasad |
|
0122520<br/>Gogineni<br/><br/>Sea level has been rising over the last century. Although the immediate impact of sea level rise may be less severe than other effects of global climate change, the long-term consequences can be much more devastating since nearly 60% of the world population lives in coastal regions. Scientists have postulated that excess water is being released from polar ice sheets due to long-term, global climate change, but there are insufficient data to confirm these theories. Understanding the interactions between the ice sheets, oceans and atmosphere is essential to quantifying the role of ice sheets in sea level rise. Toward that end, this research project involves the innovative application of information technology in the development and deployment of intelligent radar sensors for measuring key glaciological parameters. <br/><br/>Radar instrumentation will consist of a synthetic aperture radar (SAR) that can operate in bistatic or monostatic mode. One important application of the SAR will be in the determination of basal conditions, particularly the presence and distribution of basal water. Basal water lubricates the ice/bed interface, enhancing flow, and increasing the amount of ice discharged into the ocean. Another application of the SAR will be to measure ice thickness and map internal layers in both shallow and deep ice. Information on near-surface internal layers will be used to estimate the average, recent accumulation rate, while the deeper layers provide a history of past accumulation and flow rates. A tracked vehicle and an automated snowmobile will be used to test and demonstrate the utility of an intelligent radar in glaciological investigations.<br/><br/>The system will be developed to collect, process and analyze data in real time and in conjunction with a priori information derived from archived sources. The combined real time and archived information will be used onboard the vehicles to select and generate an optimum sensor configuration. This project thus involves innovative research in intelligent systems, sounding radars and ice sheet modeling. In addition it has a very strong public outreach and education program, which include near-real-time image broadcasts via the world wide web | POLYGON((-110 -62,-105 -62,-100 -62,-95 -62,-90 -62,-85 -62,-80 -62,-75 -62,-70 -62,-65 -62,-60 -62,-60 -63.5,-60 -65,-60 -66.5,-60 -68,-60 -69.5,-60 -71,-60 -72.5,-60 -74,-60 -75.5,-60 -77,-65 -77,-70 -77,-75 -77,-80 -77,-85 -77,-90 -77,-95 -77,-100 -77,-105 -77,-110 -77,-110 -75.5,-110 -74,-110 -72.5,-110 -71,-110 -69.5,-110 -68,-110 -66.5,-110 -65,-110 -63.5,-110 -62)) | POINT(-85 -69.5) | false | false | |||||||||||
Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR)
|
9911617 9319379 |
2009-02-06 | Carter, Sasha P.; Holt, John W.; Blankenship, Donald D.; Morse, David L.; Dalziel, Ian W. | 9911617<br/>Blankenship<br/><br/>This award, provided jointly by the Antarctic Geology and Geophysics Program, the Antarctic Glaciology Program, and the Polar Research Support Section of the Office of Polar Programs, provides funds for continuation of the Support Office for Aerogeophysical Research (SOAR). From July 1994 to July 2000, SOAR served as a facility to accomplish aerogeophysical research in Antarctica under an agreement between the University of Texas at Austin and the National Science Foundation's Office of Polar Programs (NSF/OPP). SOAR operated and maintained an aerogeophysical instrument package that consists of an ice-penetrating radar sounder, a laser altimeter, a gravimeter and a magnetometer that are tightly integrated with each other as well as with the aircraft's avionics and power packages. An array of aircraft and ground-based GPS receivers supported kinematic differential positioning using carrier-phase observations. SOAR activities included: developing aerogeophysical research projects with NSF/OPP investigators; upgrading of the aerogeophysical instrumentation package to accommodate new science projects and advances in technology; fielding this instrument package to accomplish SOAR-developed projects; and management, reduction, and analysis of the acquired aerogeophysical data. In pursuit of 9 NSF-OPP funded aerogeophysical research projects (involving 14 investigators from 9 institutions), SOAR carried out six field campaigns over a six-year period and accomplished approximately 200,000 line kilometers of aerogeophysical surveying over both East and West Antarctica in 377 flights.<br/><br/>This award supports SOAR to undertake a one year and 8 month program of aerogeophysical activities that are consistent with continuing U.S. support for geophysical research in Antarctica. <br/>- SOAR will conduct an aerogeophysical campaign during the 200/01 austral summer to accomplish surveys for two SOAR-developed projects: "Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Studies" (Co-PI's Bell and Studinger, LDEO); and "Collaborative Research: Seismic Investigation of the Deep Continental Structure Across the East-West Antarctic Boundary" (Co-PI's Weins, Washington U. and Anandakrishnan, U. Alabama). After configuration and testing of the survey aircraft in McMurdo, SOAR will conduct survey flights from an NSF-supported base adjacent to the Russian Station above Lake Vostok and briefly occupy one or two remote bases on the East Antarctic ice sheet.<br/>- SOAR will reduce these aerogeophysical data and produce profiles and maps of surface elevation, bed elevation, gravity and magnetic field intensity. These results will be provided to the respective project investigators within nine months of conclusion of field activities. We will also submit a technical manuscript that describes these results to a refereed scientific journal and distribute these results to appropriate national geophysical data centers within approximately 24 months of completion of field activities.<br/>- SOAR will standardize all previously reduced SOAR data products and transfer them to the appropriate national geophysical data centers by the end of this grant.<br/>- SOAR will convene a workshop to establish a community consensus for future U.S. Antarctic aerogeophysical research. This workshop will be co-convened by Ian Dalziel and Richard Alley and will take place during the spring of 2001.<br/>- SOAR will upgrade the existing SOAR in-field quality control procedures to serve as a web-based interface for efficient browsing of many low-level SOAR data streams.<br/>- SOAR will repair and/or refurbish equipment that was used during the 2000/01 field campaign.<br/><br/>Support for SOAR is essential for accomplishing major geophysical investigations in Antarctica. Following data interpretation by the science teams, these data will provide valuable insights to the structure and evolution of the Antarctic continent. | None | None | false | false | ||||||||||||
Collaborative Research: Using Fracture Patterns and Ice Thickness to Study the History and Dynamics of Grounding Line Migration and Shutdown of Kamb and Whillans Ice Streams
|
0440670 0440636 |
2008-09-25 | Hulbe, Christina; Ledoux, Christine; Fahnestock, Mark | This award supports a three year project to develop the tools required to interpret complex patterns of flow features on the Ross Ice Shelf, which record the discharge history the ice streams flowing east off of the West Antarctic Ice Sheet. This work builds on previous research that used flow features visible in satellite image mosaics and numerical models of ice shelf flow to detect changes in grounding zone dynamics and redirection of ice stream outlets over hundreds of years. Recently observed changes on Whillans Ice Stream fit within this framework. The pattern of redirection is driven by the influence of rapid downstream thinning on the basal thermal gradient in the ice and associated "sticky spot" (ice rise) formation. In pursuing this work, the investigators recognized other records of discharge variation on the shelf that can be used to build a more complete history and understanding of ice-stream discharge variability. The intellectual merit of the proposed work lies in the fact that these records, including fracture patterns and spatial variation in ice thickness, when understood in the proper context, will yield quantitative information about the timing and dynamics of ice stream slowdowns, grounding line retreat, and the relative history of discharge between the ice streams. New tools will help further constrain this history. The laser altimeter on NASA's IceSAT has improved our knowledge of the surface elevation of Antarctic ice. IceSAT surface elevations provide a high-resolution map of ice-shelf thickness that, along with provenance maps from ice-shelf image mosaics, will be used to estimate the volumes of ice involved in past ice-stream discharge events (slowdowns, redirections, and so on). This project will develop new numerical models for fracture propagation; these will allow past variations in ice-shelf stress state to be investigated. Together, the dynamic and volume-flux histories will provide a powerful set of observations for understanding past variations in ice stream discharge and the underlying physical processes. The broader impacts of this project center on how it contributes to the ability to estimate West Antarctic contributions to global sea level rise and to answer outstanding questions about the causes of millennial and longer-scale evolution of ice streams. This work will provide a history of the most complex record of ice discharge known. In addition to the incorporation of this research into graduate student advising and normal teaching duties, the investigators are involved in other avenues of civic engagement and education. Outreach to high school students and the community at large is promoted on an annual basis by the investigators at both institutions. New outreach projects at Portland State University are developed with the assistance of researchers with expertise in student learning and achievement in science and mathematics. The collaborative research team includes two glaciologists with experience in the pairing of high resolution satellite imagery and a variety of ice-flow models and a geologist whose focus is the mechanics of rock deformation. | POLYGON((-180 -70,-175 -70,-170 -70,-165 -70,-160 -70,-155 -70,-150 -70,-145 -70,-140 -70,-135 -70,-130 -70,-130 -71.6,-130 -73.2,-130 -74.8,-130 -76.4,-130 -78,-130 -79.6,-130 -81.2,-130 -82.8,-130 -84.4,-130 -86,-135 -86,-140 -86,-145 -86,-150 -86,-155 -86,-160 -86,-165 -86,-170 -86,-175 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -84.4,180 -82.8,180 -81.2,180 -79.6,180 -78,180 -76.4,180 -74.8,180 -73.2,180 -71.6,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,-180 -70)) | POINT(-155 -78) | false | false | ||||||||||||
Collaborative Research of Earth's Largest Icebergs
|
0229546 |
2008-09-19 | Okal, Emile; Aster, Richard; Bassis, Jeremy; Kim, Young-Jin; Bliss, Andrew; Sergienko, Olga; Thom, Jonathan; Scambos, Ted; Muto, Atsu; Brunt, Kelly; King, Matthew; Parker, Tim; Okal, Marianne; Cathles, Mac; MacAyeal, Douglas | This award supports the study of the drift and break-up of Earth's largest icebergs, which were recently released into the Ross Sea of Antarctica as a result of calving from the Ross Ice Shelf. The scientific goals of the study are to determine the physics of iceberg motion within the dynamic context of ocean currents, winds, and sea ice, which determine the forces that drive iceberg motion, and the relationship between the iceberg and geographically and topographically determined pinning points on which the iceberg can ground. In addition, the processes by which icebergs influence the local environments (e.g., sea ice conditions near Antarctica, access to penguin rookeries, air-sea heat exchange and upwelling at iceberg margins, nutrient fluxes) will be studied. The processes by which icebergs generate globally far-reaching ocean acoustic signals that are detected within the global seismic (earthquake) sensing networks will also be studied. A featured element of the scientific research activity will be a field effort to deploy automatic weather stations, seismometer arrays and GPS-tracking stations on several of the largest icebergs presently adrift, or about to be adrift, in the Ross Sea. Data generated and relayed via satellite to home institutions in the Midwest will motivate theoretical analysis and computer simulation; and will be archived on an "iceberg" website (http://amrc.ssec.wisc.edu/amrc/iceberg.html) for access by scientists and the general public. At the most broad level, the study is justified by the fact that icebergs released by the Antarctic ice sheet represent the largest movements of fresh water within the natural environment (e.g., several of the icebergs to be studied, B15, C19 and others calved since 2000 CE, represent over 6000 cubic kilometers of fresh water-an amount roughly equivalent to 100 years of the flow of the Nile River). A better understanding of the impact of iceberg drift through the environment, and particularly the impact on ocean stratification and mixing, is essential to the understanding of the abrupt global climate changes witnessed by proxy during the ice age and of concern under conditions of future greenhouse warming. On a more specific level, the study will generate a knowledge base useful for the better management of Antarctic logistical resources (e.g., the shipping lanes to McMurdo Station) that can occasionally be influenced by adverse effects icebergs have on sea ice conditions. | POINT(-178 -78) | POINT(-178 -78) | false | false | ||||||||||||
Diving Physiology and Behavior of Emperor Penguins
|
0229638 |
2008-03-31 | Ponganis, Paul |
|
The emperor penguin, Aptenodytes forsteri, is the premier avian diver and a top predator in the Antarctic ecosystem. The routine occurrence of 500-m diver during foraging trips to sea is both a physiological and behavior enigma. The objectives of this project address how and why emperors dive as deep and long as they do. The project examines four major topics in the diving biology of emperor penguins: pressure tolerance, oxygen store management, end-organ tolerance of diving hypoxemia/ischemia, and deep-dive foraging behavior. These subjects are relevant to the role of the emperor as a top predator in the Antarctic ecosystem, and to critical concepts in diving physiology, including decompression sickness, nitrogen narcosis, shallow water blackout, hypoxemic tolerance, and extension of aerobic dive time. The following hypotheses will be tested: 1) Prevention of nitrogen narcosis and decompression sickness in emperor penguins is achieved by inhibition of pulmonary gas exchange at depth. 2) Shallow water black out does not occur because of greater cerebral hypoxemic tolerance, and, in deep dives, because of resumption of pulmonary gas exchange during final ascent. 3) The rate of depletion of the blood oxygen store is a function of depth of dive and heart rate. 4) The aerobic dive limit (ADL) reflects the onset of lactate accumulation in locomotory muscle, not total depletion of all oxygen stores. 5) Elevation of tissue antioxidant capacity and free-radical scavenging enzyme activities protect against the routine ischemia/reperfusion which occur during diving. 6) During deep dives, the Antarctic silverfish, Pleuorogramma antarcticum, is the primary prey item for emperors. <br/><br/>In addition to evaluation of the hypotheses below, the project has broader impacts in several areas such as partnership with foreign and national institutes and organizations (e.g., the National Institute of Polar Research of Japan, Centro de Investigacioines del Noroeste of Mexico, National Geographic, the University of Texas Southwestern Medical Center, and Sea World). Participation in National Geographic television documentaries will provide unique educational opportunities for the general public; development of state-of-the-art technology (e.g., blood oxygen electrode recorders, blood samplers, and miniaturized digital cameras) will lay the groundwork for future research by this group and others; and the effects of the B15 iceberg on breeding success of emperor penguins will continue to be evaluated with population censuses during planned fieldwork at several Ross Sea emperor penguin colonies. | POLYGON((163 -77,163.4 -77,163.8 -77,164.2 -77,164.6 -77,165 -77,165.4 -77,165.8 -77,166.2 -77,166.6 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.6 -78,166.2 -78,165.8 -78,165.4 -78,165 -78,164.6 -78,164.2 -78,163.8 -78,163.4 -78,163 -78,163 -77.9,163 -77.8,163 -77.7,163 -77.6,163 -77.5,163 -77.4,163 -77.3,163 -77.2,163 -77.1,163 -77)) | POINT(165 -77.5) | false | false | |||||||||||
Collaborative Research: Exhumation of the Transantarctic Mountains: Constraints from (U-Th)/He Dating of Apatites
|
9909436 |
2007-07-11 | Farley, Kenneth | No dataset link provided | 9909436 <br/>Farley<br/><br/>This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports an investigation of the uplift history of the Dry Valleys segment of the Transantarctic Mountains. The overall goal is to further constrain the exhumation history of the Transantarctic Mountains by using the newly developed apatite (U-Th)/He dating method on samples collected in vertical profiles. This approach, combined with existing apatite fission track information will constrain the rate and patterns of exhumation across the Transantarctic Mountains since their inception as a rift-flank uplift in the early Cenozoic.<br/><br/>This project will complement other projects and build on previous interpretations of the exhumation and tectonic history determined using apatite fission track thermochronology. It will bridge the gap between information on erosion rates determined from fission track thermochronology and from cosmogenic surface exposure dating and integrate the exhumation history of the mountains with their landscape evolution. As such, the results from this project will address an outstanding problem in Antarctic science; namely the stability of the East Antarctic Ice Sheet, and the timing of the transition from a "warm" dynamic ice sheet to a cold polar ice sheet. Highly relevant to this issue is the landscape evolution of the Transantarctic Mountains because many diverse lines of evidence for the rate of landscape evolution have been used to argue for a dynamic ice sheet up until either the Pliocene (the "dynamic" ice sheet model) or the middle Miocene (the "stable" ice sheet model). Understanding the past stability or dynamic fluctuations of the East Antarctic ice sheet with respect to the climate record is, of course, important for understanding how the present ice sheet may respond to global warming.<br/><br/>The specific objective of this project is to determine apatite (U-Th)/He age versus elevation trends for a number of vertical profiles from locations within the Transantarctic Mountain front and across the structural grain of the range. Fission track data already exist for all of these profiles, with apatite fission track ages ranging from 150-30 Ma. The greater precision of the (U-Th)/He technique and the fact it records information at lower temperatures (closure temperature of ~70 degrees Celsius; limits of 40-85 degrees Celsius for the He partial retention zone) will allow examination of the exhumation history of the TAM in more detail from ca 130 Ma to ~20 Ma. Another facet is to examine areas where Cretaceous exhumation is recorded and areas where the fission track profiles indicate periods of thermal and tectonic stability and minimal erosion throughout the Cretaceous. The variation of timing of the onset of more rapid exhumation accompanying uplift and formation of the Transantarctic Mountains in the early Cenozoic will also be examined. | None | None | false | false | |||||||||||
A Science Management Office for the U. S. Component of the International Trans Antarctic Expedition (US ITASE SMO)A Collaborative Pgrm of Research from S. Pole to N. Victoria Land
|
0229573 |
2007-04-04 | Dixon, Daniel A. |
|
This award supports a science management office for a pilot ice-core drilling and analysis program to test the feasibility of obtaining well-dated, high-resolution isotope and chemistry records from East Antarctica. Shallow ice cores will be obtained from two locations: 1) ~100 km from South Pole towards the Pole of Inaccessibility, as an extension of the Byrd Station-to-South Pole ITASE traverse [International Trans Antarctic Scientific Expedition]; 2) at Taylor Dome, near the original deep coring site, and (3) possibly at AGO 3 and AGO 4 as part of a logistics traverse to these sites. All of the cores collected will be sampled at very high resolution (~1/2 cm) and analyzed for major ions. Results from this calibration work, along with those from another project that is analyzing stable isotopes will be used to help plan a program of larger scope, with the objective of mapping the spatial expression of climate variability in East Antarctica. Funds are also provided to organize a community workshop for coordination of the second phase of US ITASE and for one workshop per year for two years dedicated to writing and preparation of scientific papers from phase one of US ITASE. In addition, route selection activities for the follow-on traverse activities in East Antarctica will be conducted using satellite image mapping. A summary document will be produced and made available to the community to help with planning of related field programs (e.g. deep ice radar, firn radar profiling, atmospheric chemistry, ice coring, snow surface properties for satellite observations, ice surface elevation and mass balance). | None | None | false | false | |||||||||||
Uplift and Exhumation of the Transantarctic Mountains and Relation to Rifting in West Antarctica
|
0408475 |
2007-03-06 | Huerta, Audrey D. | No dataset link provided | This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to apply numerical modeling to constrain the uplift and exhumation history of the Transantarctic Mountains. The Transantarctic Mountains (TAM) are an anomalously high (>4500 m) and relatively broad (up to 200 km) rift-flank uplift demarcating the boundary between East and West Antarctica. Dynamics of the East Antarctic ice-sheet and the climate are affected by the mountain range, and an understanding of the uplift history of the mountain range is critical to understanding these processes. This project will constrain the uplift and denudation history of the Transantarctic Mountains based on thermo-mechanical modeling held faithful to thermochronological, geological, and geophysical data. The research will be the primary responsibility of post-doctoral researcher Audrey Huerta, working in collaboration with Dennis Harry, 1 undergraduate student, and 1 graduate student.<br/><br/>Thermochronologic evidence of episodic Cretaceous through Cenozoic rapid cooling within the TAM indicates distinct periods of uplift and exhumation. However, a more detailed interpretation of the uplift history is difficult without an understanding of the evolving thermal structure and topography of the TAM prior to and during uplift. These aspects of the mountain range can best be constrained by an understanding of the evolving regional tectonic setting. Proximity of the TAM to the West Antarctic Rift System (WARS) suggests a link between uplift of the TAM and extension within the WARS.<br/><br/>The project will integrate two techniques: lithospheric-scale geodynamic modeling and crustal-scale thermal modeling. The lithospheric-scale deformational and thermal evolution of TAM will be modeled by a finite element model designed to track the thermal and deformational response of the Antarctic lithosphere to a protracted extensional environment. Previous investigators have linked the high elevation and broad width of the TAM to a deep level of necking in which mantle thinning is offset from the location of crustal extension. In this study, a three-dimensional dynamic model will be used to track the uplift and thermal evolution of the TAM in a setting in which necking is at a deep level, and in which extension within the crust and extension within the mantle are offset. Velocity boundary conditions applied to the edges of the model will vary through time to simulate the extensional and transtensional evolution of the WARS. Because the model is dynamic, the thermal structure, strength, and strain field, evolve naturally in response to these initial and boundary conditions.<br/><br/>Dynamic models are uniquely suited to understanding lithospheric deformational and thermal evolution, however kinematic models are best suited for addressing the detailed thermal and exhumation history of crustal uplifts. Thus, a 2-dimensional kinematic-thermal model will be designed to simulate the uplift history of the TAM and the resulting erosional, topographic, and thermal evolution. Uplift will be modeled as normal-fault movement on a set of discrete fault planes with uplift rate varying through time. Erosion will be modeled as a diffusive process in which erosion rates can be varied through time (simulating climate changes), and vary spatially as a linear function of gradient and distance from the drainage divide. Synthetic time-temperature (t-T) histories will be calculated to compare model results to thermochronologic data. | POINT(-175 -85) | POINT(-175 -85) | false | false | |||||||||||
Dynamics of Ice Streams: A Physical Statistical Approach
|
0229292 |
2007-02-28 | Cressie, Noel; Jezek, Kenneth; Berliner, L. | No dataset link provided | Ice streams are believed to play a major role in determining the response of their parent ice sheet to climate change, and in determining global sea level by serving as regulators on the fresh water stored in the ice sheets. Ice streams are characterized by rapid, laterally confined flow which makes them uniquely identifiable within the body of the more slowly and more homogeneously flowing ice sheet. But while these characteristics enable the identification of ice streams, the processes which control ice-stream motion and evolution, and differences among ice streams in the polar regions, are only partially understood. Understanding the relative importance of lateral and basal drags, as well as the role of gradients in longitudinal stress, is essential for developing models for future evolution of the polar ice<br/>sheets. In this project, physical statistical models will be used to explore the processes that control ice-stream flow, and to compare these processes between seemingly different ice-stream systems. In particular, Whillans Ice Stream draining into the Ross Ice Shelf, will be compared with Recovery and RAMP glaciers draining into the Ronne-Filchner Ice Shelf, and the Northeast Ice Stream in Greenland. Geophysical models lie at the core of the approach, but are embellished by modeling various components of variability statistically. One important component comes from the uncertainty in observations on basal elevation, surface elevation, and surface velocity. In this project new observational data collected using remote-sensing techniques will be used. The various components, some of which are spatial, are combined hierarchically using Bayesian statistical methodology. All these components will be combined mathematically into a physical statistical model that yields the posterior distribution for basal, longitudinal, and lateral stress fields, and velocity fields, conditional on the data. Inference based on this distribution will be carried out via Markov chain Monte Carlo techniques, to obtain estimates of these unknown fields along with uncertainty measures associated with them. | None | None | false | false | |||||||||||
Collaborative Research: Dynamics and Climatic Response of the Taylor Glacier System
|
0125579 0126202 |
2007-02-13 | Bliss, Andrew; Kavanaugh, Jeffrey; Aciego, Sarah; Cuffey, Kurt M.; Morse, David L.; Blankenship, Donald D. |
|
This award supports a project to significantly improve our understanding of how Taylor Glacier flows and responds to climate changes. Taylor Glacier drains the Taylor Dome region of the East Antarctic Ice Sheet and terminates in Taylor Valley, one of the Dry Valleys of Victoria Land. It provides a crucial and unique link between two intensively studied Antarctic environments: the Taylor Dome, from which a 130 kyr ice core paleoclimate record has recently been extracted, and the Dry Valleys, a pivotal Long-Term Ecological Research (LTER) site and a focus of research on geomorphology and glacial geology. The proposed work will thus make an important contribution to ongoing efforts to exploit the Taylor Dome - Dry Valleys system to build a uniquely comprehensive view of regional long-term environmental changes. The proposed work has two complementary components: field research and numerical modelling. Two field seasons will be used to measure velocity, surface strain rate, mass balance, ice thickness, glacier bed reflectance, and subglacial topography, along a nearly complete longitudinal transect of the Taylor Glacier, and along select cross-valley transects. This information will be used to constrain numerical models of ice and heat flow for the Taylor Dome - Taylor Glacier system. These calibrated models will be used to analyze the time-dependent response of the Taylor Glacier to climate changes. The synthesis of results will be aimed to improve understanding of the glacial geomorphology of Taylor Valley, and to illuminate impacts on the Taylor Valley lakes ecosystem. The project will have a major role in furthering the careers of a doctoral-level graduate student and a post-doctoral researcher. | POLYGON((160 -77.6,160.25 -77.6,160.5 -77.6,160.75 -77.6,161 -77.6,161.25 -77.6,161.5 -77.6,161.75 -77.6,162 -77.6,162.25 -77.6,162.5 -77.6,162.5 -77.63,162.5 -77.66,162.5 -77.69,162.5 -77.72,162.5 -77.75,162.5 -77.78,162.5 -77.81,162.5 -77.84,162.5 -77.87,162.5 -77.9,162.25 -77.9,162 -77.9,161.75 -77.9,161.5 -77.9,161.25 -77.9,161 -77.9,160.75 -77.9,160.5 -77.9,160.25 -77.9,160 -77.9,160 -77.87,160 -77.84,160 -77.81,160 -77.78,160 -77.75,160 -77.72,160 -77.69,160 -77.66,160 -77.63,160 -77.6)) | POINT(161.25 -77.75) | false | false | |||||||||||
Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA)
|
0230197 |
2007-01-01 | Blankenship, Donald D.; Fastook, James L.; Corr, Hugh F. J.; Holt, John W.; Morse, David L.; Vaughan, David G.; Young, Duncan A. | This award supports a comprehensive aerogeophysical survey of the Amundsen Sea Embayment (ASE) in West Antarctica. The University of Texas will join forces with the British Antarctic Survey to use both US and UK aircraft and instrumentation to achieve this survey. Analyses of the new aerogeophysical<br/>data will result in the generation of maps of ice sheet surface, volume and bottom-interface characteristics. These maps will support the efforts of a community of US and international researchers to assess the present and predict the future behavior of the ice sheet in the ASE.<br/>The West Antarctic ice sheet has been the subject of intensive interdisciplinary study by both the European and U.S. scientific communities since it was recognized to be a potential source for up to 5 meters of sea<br/>level rise, possibly on short timescales. In terms of ice discharge, the ASE is the largest drainage system in West Antarctica. Yet it has been comparatively unstudied, primarily due to its remoteness from logistical<br/>centers. The ASE is the only major drainage to exhibit significant elevation change over the period of available satellite observations. Present knowledge of the ice thickness and subglacial boundary conditions in the ASE are insufficient to understand its evolution or its sensitivity to climatic change.<br/>The results from our surveys are required to achieve the fundamental research objectives outlined by the US scientific community in an ASE Science Plan. The surveys and analyses will be achieved through international collaboration and will involve graduate students, undergraduates and high school apprentices.<br/>Through its potential for influencing sea level, the future behavior of the ASE is of primary societal importance. Given the substantial public and scientific interest that recent reports of change in West Antarctica have generated, we expect fundamental research in the Amundsen Sea Embayment, enabled by our surveys, will have widespread impact. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||||||||
High-Resolution Modeling of Surface Topography, Ice Motion, and Mass Balance in the Lambert Glacial Basin using Radar Remote Sensing and GIS Techniques
|
0126149 |
2006-08-15 | Liu, Hongxing; Jezek, Kenneth | This award supports a project to characterize the morphology, ice motion velocity and mass balance of Lambert Glacier, Antarctica using state-of-the-art remote sensing and GIS techniques. Lambert Glacier is the largest ice stream in the world. Because of its size, it plays a fundamental role in the study of glacial dynamics and mass budget in response to present and future climate changes. Along with the bedrock topography and ice thickness data derived from airborne radio echo soundings and snow accumulation data compiled from ground-based measurements, the dynamic behavior and mass balance of the Lambert glacial basin in a Geographic Information Systems (GIS) environment will be examined. Specific objectives are to: (1) Extract two-dimensional ice velocity field over the entire Lambert glacial basin using speckle matching and differential interferometric SAR (InSAR) techniques, and produce a full coverage of radar coherence map over the drainage basin. With the ice velocity data, calculate the strain rate field from the initiation areas of the ice stream onto the Amery Ice Shelf; (2) Derive high-resolution digital elevation |