{"dp_type": "Project", "free_text": "Ecology"}
[{"awards": "2444342 Thorne, Lesley", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 07 May 2025 00:00:00 GMT", "description": "Nontechnical abstract: This is a project jointly funded by the National Science Foundation\u2019s Directorate for Geosciences (NSF/GEO) and the National Environment Research Council (NERC) of the United Kingdom (UK) via the NSF/GEO-NERC Lead Agency Agreement. This Agreement allows a single joint US/UK proposal to be submitted and peer-reviewed by the Agency whose investigator has the largest proportion of the budget. Upon successful joint determination of an award recommendation, each Agency funds the proportion of the budget that supports scientists at institutions in their respective countries. Understanding biological responses to environmental variation is a fundamental challenge facing ecologists. To generate accurate predictions of species distribution and persistence it is necessary to understand how mechanisms such as organism interactions and physiological traits shape responses. Seabirds are key consumers in the Southern Ocean, and while changes in their populations have been correlated with environmental modes, the mechanisms underlying these relationships are not well understood. Both ocean and atmosphere conditions are important for seabirds as they forage at sea but breed on land, and changes to wind patterns and Antarctic sea ice location and extent will influence seabird life history. This project focuses on giant petrels (Macronectes spp.), large and dominant avian predators and scavengers that prey significantly on, and influence populations of, species such as penguins and albatrosses. Giant petrels are thought to rely on dynamic soaring for flight, which allows them to use the wind to move while expending little energy. However, quantitative studies demonstrating how giant petrels use wind and the role that wind plays in constraining their distribution are lacking. Also, recent studies suggest that giant petrels may rely on sea ice for foraging, but the impact of sea ice seasonal and temporal dynamics on their population is not clear. Knowledge of the mechanistic links through which sea ice and wind conditions influence giant petrel diet, habitat use, and predation pressure can improve predictive capability for their populations in Southern Ocean ecosystems. Technical Abstract: This is a project jointly funded by the National Science Foundation\u2019s Directorate for Geosciences (NSF/GEO) and the National Environment Research Council (NERC) of the United Kingdom (UK) via the NSF/GEO-NERC Lead Agency Agreement. This Agreement allows a single joint US/UK proposal to be submitted and peer-reviewed by the Agency whose investigator has the largest proportion of the budget. Upon successful joint determination of an award recommendation, each Agency funds the proportion of the budget that supports scientists at institutions in their respective countries. Despite their important ecological roles as predators and scavengers, giant petrels have received far less attention than other well-studied Southern Ocean seabird species such as albatross. This research will improve the current understanding of giant petrel ecology in the Southern Ocean by developing a mechanistic model linking environmental variability in wind and sea ice with foraging energetics. The project also aims to link those environmental drivers with petrel predation pressure on penguins and albatrosses and assess implications for population trends. The project approach will enable connection of individual energetics with landscape-scale environmental variability and will provide new insight into the role of environmental variation in structuring biological processes. Understanding the environmental effects on threatened seabird population foraging may be useful for developing effective management plans. The project will also provide a science communication internship for a graduate student, work with a science journalist to generate feature articles for popular wildlife magazines, and utilize parts of the project dataset in a graduate-level environmental modeling course. This award reflects NSF\u0027\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "ANIMAL ECOLOGY AND BEHAVIOR; South Georgia Island; Southern Ocean", "locations": "Southern Ocean; South Georgia Island", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Thorne, Lesley", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "NSFGEO-NERC: Environmental drivers of giant petrel energetics, and implications for population trends and predation pressure in the Southern Ocean", "uid": "p0010507", "west": null}, {"awards": "1344502 Ducklow, Hugh; 1142158 Cheng, Chi-Hing; 2224611 Schofield, Oscar; 1440435 Ducklow, Hugh; None TBD; 2026045 Schofield, Oscar; 1543383 Postlethwait, John; 0636696 DeVries, Arthur", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 11 Mar 2025 00:00:00 GMT", "description": "Since 1990, Palmer LTER (PAL) research has been guided by the hypothesis that variability in the polar marine ecosystem is mechanistically coupled to changes in the annual advance, retreat and spatial extent of sea ice. Since that time, the hypothesis has been modified to incorporate climate migration, i.e. the displacement of a cold, dry polar climate by a warm, moist climate regime in the northern component of the PAL region, producing fundamental changes in food web structure and elemental cycling. The observed northern changes are affecting all trophic levels and elemental cycling, and the primary mechanism of change involves match-mismatch dynamics. The proposed research builds on previous findings, with a new emphasis on process studies and modeling to elucidate the mechanistic links between teleconnections, climate change, physical oceanographic forcing and ecosystem dynamics. The proposed research will examine the hypothesis that regional warming and sea ice decline associated with historical and on-going climate migration in the northern part of the study area have altered key phenological relationships, leading to changes in species distributions, increasing trophic mismatches and changes in habitat, food availability, ecosystem dynamics and biogeochemical cycling. Through targeted process studies linked to numerical model simulations, the research also will test the hypothesis that deep cross-shelf canyons characterizing the core study region are focal areas for ecosystem processes that result in predictable, elevated food resources for top-predators. The effort includes the addition of 3 new PIs: a zooplankton ecologist with expertise in biogeochemical fluxes, a phytoplankton ecologist focusing on bio-optics and autonomous observations using gliders, and a numerical simulation modeler specializing in coupled global models of ocean circulation, plankton ecology and biogeochemical cycles. The program will add trace metal sampling and analysis, moored physical oceanographic sensors, a moored sediment trap in the south, drifting sediment traps and stable carbon (del 13C) and nitrogen (del 15N) isotope analyses. Missions lasting up to 45 days using gliders deployed before, during and after summer cruises will, along with moorings and satellite remote sensing of sea ice, ocean color, sea surface temperatures and wind fields, greatly extend the observational program in space and time. Since its inception, PAL has been a leader in Information Management to enable knowledge-building within and beyond the Antarctic, oceanographic and LTER communities. PAL has designed and deployed a new information infrastructure with a relational database architecture to facilitate data distribution and sharing. The Education and Outreach program capitalizes on the public\u0027s fascination with Antarctica to promote scientific literacy from kindergarten students to adult citizens concerned with climate change and environmental sustainability. Through communicating results to the public and working with scientific assessment bodies (e.g., IPCC) and Antarctic Treaty parties to protect Earth\u0027s last frontier, PAL researchers contribute to the national scientific agenda and the greater public benefit.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Cryonotothenioid; R/V LMG; Bellingshausen Sea; Southern Ocean; Notothenioid; FISHERIES", "locations": "Bellingshausen Sea; Southern Ocean; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Corso, Andrew; Desvignes, Thomas; McDowell, Jan; Cheng, Chi-Hing; Biesack, Ellen; Steinberg, Deborah; Hilton, Eric", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repositories": null, "science_programs": "LTER", "south": -90.0, "title": "LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem", "uid": "p0010494", "west": -180.0}, {"awards": "2333917 Dong, Xiaoli", "bounds_geometry": "POLYGON((161 -77.5,161.1 -77.5,161.2 -77.5,161.3 -77.5,161.4 -77.5,161.5 -77.5,161.6 -77.5,161.7 -77.5,161.8 -77.5,161.9 -77.5,162 -77.5,162 -77.51,162 -77.52,162 -77.53,162 -77.53999999999999,162 -77.55,162 -77.56,162 -77.57,162 -77.58,162 -77.58999999999999,162 -77.6,161.9 -77.6,161.8 -77.6,161.7 -77.6,161.6 -77.6,161.5 -77.6,161.4 -77.6,161.3 -77.6,161.2 -77.6,161.1 -77.6,161 -77.6,161 -77.58999999999999,161 -77.58,161 -77.57,161 -77.56,161 -77.55,161 -77.53999999999999,161 -77.53,161 -77.52,161 -77.51,161 -77.5))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 27 Feb 2025 00:00:00 GMT", "description": "Ecosystems worldwide are threatened by anthropogenic changes in climate. Lakes are widely regarded as sentinels of climate change and, among these, polar lakes are the most sensitive. Beneath meters of permanent ice and liquid water, many Antarctic lakes contain complex microbial communities that are already being transformed by climate change. The structurally complex spatial patterns that these microbes create provide the opportunity to pursue research questions about spatial ecology that cannot be addressed elsewhere. This project focuses on research that will advance understanding of the spatial structure of benthic communities in Antarctic lakes, their relationships with environmental conditions, and predictions for likely changes in the future. This project will also advance methods in integrating the morphology and spatial patterning of modern microbial communities in relationship to their biophysical and biochemical environments. The quantitative framework being developed has potential to refine understanding of controls on microbial community patterning and thus interpretation of both the effects of climate change and ancient fossil microbial communities in the geologic record. Such understanding will address key questions about Earth\u2019s evolutionary and environmental history and future. Lake Vanda in the McMurdo Dry Valleys, Antarctic, has modern microbial pinnacles covering its lake floor. Using existing datasets on spatial structure of benthic communities from 37 sites on the floor of Lake Vanda, the project team will apply recent theories from Spatial Ecology to investigate the mechanisms that give rise to spatial patterns of pinnacles formed by benthic microbes. The work addresses two questions: (1) What are the morphological and spatial patterns of pinnacles and how do they vary over developmental stages, along environment gradients, and from 2013 to 2023? And (2) what mechanisms give rise to the geometry of individual pinnacles and their spatial distribution? Lake Vanda provides an exceptional opportunity to address these questions. It features well characterized gradients in sedimentation, nutrients, irradiance, transport mechanism, and colonization history. Benthic communities at different locations in the lake manifest distinct spatial patterns, as they experience distinct conditions. Lake level has increased \u003e10 m in the past few decades, creating additional opportunities for a \u201cnatural experiment\u201d on pattern development by comparing relatively newly flooded substrates (pinnacles of 1 to 15 years old) with deeper, well-developed mats (\u003e 70 years old). Since microbial communities respond to environmental change rapidly, analyses can characterize changes in patterns in pinnacle spatial data collected 9 years apart (Dec 2013 and Jan 2023), providing the opportunity to directly assess responses of spatially self-organized ecosystems to environmental change. As such, Lake Vanda is a natural laboratory that allows research (1) to effectively sort out mechanisms of pattern formation affecting benthic microbial communities residing there; and (2) to test the theory of spatial self-organization: mechanisms of pattern formation and responses to perturbations, applicable to ecosystems worldwide. Research questions will be addressed by integrating existing datasets, spatial pattern analyses, Bayesian statistical models, and process-based numerical models. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 162.0, "geometry": "POINT(161.5 -77.55)", "instruments": null, "is_usap_dc": true, "keywords": "Lake Vanda; ECOLOGICAL DYNAMICS", "locations": "Lake Vanda", "north": -77.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Dong, Xiaoli; Sumner, Dawn", "platforms": null, "repositories": null, "science_programs": null, "south": -77.6, "title": "Effects of Environmental Change on Microbial Self-organized Patterns in Antarctic Lakes", "uid": "p0010499", "west": 161.0}, {"awards": "2029777 Matrai, Patricia", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 07 Feb 2025 00:00:00 GMT", "description": "This award provides funding in support of participation by U.S. graduate students and early career researchers for the 2019 Gordon Research Seminar (GRS) and Gordon Research Conference (GRC) Polar Marine Science meetings to be held in Ventura, CA May 22-28, 2021. The 2021 GRC event is entitled \u201cIntegrating Ocean Physics and Biogeochemistry to Assess Polar Ecosystem Sensitivity to Rapid Change\u201d. Gordon conferences on this topic are held every two years and provide a key forum to discuss cutting-edge and cross-disciplinary marine research highlighted as an international priority topic. The conference plan is designed to provide powerful insights into the present and future states of polar marine ecosystems, including the local and regional aspects of ocean circulation, sea ice dynamics, biogeochemical fluxes, biodiversity, ecosystem health and human well-being. This event will bring together an interdisciplinary group of students and young researchers from many fields working in Polar regions. Exchanges of this type are essential for ensuring that U.S. scientists and engineers maintain international research leadership in in polar regions. Participants will have an opportunity to present their work in the form of oral presentations or posters while interacting with some of the most eminent researchers in the field. The GRS and GRC will address fundamental aspects, which are related to the grand environmental and sustainability challenges facing mankind. Specific emphasis will be given to defining the next generation challenges in polar region research. The unique format of the Gordon Research Conferences with invited talks, limited attendance, and ample time for interactions will provide early career scientists with ample opportunities for discussions and networking. Particular emphasis will be placed on encouraging student and post-doc participation from a broad range of institutions. The GRC-PPS will be widely advertised in the community and the participation and application for travel support by junior scientists will be strongly encouraged. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Il Ciocco, Italy; Arctic; AQUATIC SCIENCES; SEA ICE; Polar; Atmosphere; MARINE SEDIMENTS; Ecology; Sea Ice; Antarctic", "locations": "Il Ciocco, Italy; Arctic; Antarctic; Polar", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Matrai, Patricia; Babin, Marcel", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "2021 Polar Marine Science GRC and GRS", "uid": "p0010496", "west": -180.0}, {"awards": "2042032 Huckstadt, Luis", "bounds_geometry": null, "dataset_titles": "Crabeater seal tracking data 2022-2023", "datasets": [{"dataset_uid": "601861", "doi": "10.15784/601861", "keywords": "Antarctica; Cryosphere", "people": "Huckstadt, Luis", "repository": "USAP-DC", "science_program": null, "title": "Crabeater seal tracking data 2022-2023", "url": "https://www.usap-dc.org/view/dataset/601861"}], "date_created": "Wed, 27 Nov 2024 00:00:00 GMT", "description": "Part I: Non-technical description: The crabeater seal is the most important predator of Antarctic krill in the western Antarctic Peninsula oceanic waters after the disappearance of large whales due to human hunting 100 years ago. The crabeater seals are expected to consume large quantities of krill due to their high abundance (about 7 million individuals), large body size (about 700 pounds in body weight), high metabolism and a diet specializing in krill. This species depends on sea ice presence all year long, living, reproducing, and diving to feed from that environment, making this marine mammal species a good indicator, or sentinel, of how the Antarctic ecosystem responds to a changing climate. As sea ice has been decreasing in the northern Antarctic Peninsula, this project aims to understand if the species food availability has changed in the last decades in response to environmental changes. In particular, the proposed work will concentrate on known populations of crabeater seals in northern (i.e., warmer, sub-polar) and southern (i.e., colder, polar) Antarctic Peninsula, 450 miles apart, making measurements on the abundance, physiology, metabolic needs and movement of the crabeater populations in both locations. The data will be combined to build models that will quantify the existing differences between northern and southern populations, as well as predict their future change, and compare present-day measurements with those collected by the British Antarctic Survey in the mid-1900s. The project is a collaboration between an international and interdisciplinary team from the United States and United Kingdom, benefitting NSF goals to facilitate collaborative geoscience research projects involving these two countries as well as aligning directly with U.S. Global Change Research Program (USGCRP) to better understand the forces shaping the global environment, both human and natural, and their impacts on society. To further increase polar literacy and education, Principal Investigators will train at least 2 graduate students and several undergraduates across two US institutions, as well as one UK-based post-doctoral researcher. Part II: Technical description: Crabeater seals (Lobodon carcinophaga) are considered an excellent sentinel species through which to examine the effects of a changing climate on the extended Antarctic krill-dependent predator community and the structure of the entire ecosystem of the western Antarctic Peninsula. Over the last forty years, there have been significant changes in the temporal and spatial patterns of primary productivity, and shifts in the population dynamics of Antarctic krill, the dominant mid-trophic level species. The impact of such changes on year-round resident species of crabeater seals (the most important predator of Antarctic krill) is more difficult to understand as they are not associated with breeding colonies where their population fluctuations could be more readily observed. The proposed research is conceived under the premise that environmental change has accentuated the differences between the northern and southern western Antarctic Peninsula crabeater seal populations due to differential reductions in sea-ice and its possible effect on prey availability. To address this question, this research will combine measurements on animal movement, stable isotope analyses, whole-animal physiology, and novel survey technologies (small Unmanned Aircraft Systems, satellite imagery) to build models. The project is a collaboration between an international and interdisciplinary team from the United States and United Kingdom. These studies will be essential to detect past, and project future, changes in the ecology of this species in response to changes in sea ice when comparing present-day measurements with those collected by the British Antarctic Survey in the mid-1900s. To further increase polar literacy and education, Principal Investigators will train at least 2 graduate students and several undergraduates across two US institutions, as well as one UK-based post-doctoral researcher. Students involved with this project will gain invaluable research experience in the lab and will have a unique opportunity to participate in Antarctic fieldwork. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "ANIMAL ECOLOGY AND BEHAVIOR; MARINE ECOSYSTEMS; Antarctica", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Huckstadt, Luis", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "NSFGEO-NERC Collaborative Research: Effects of a Changing Climate on the Habitat Utilization, Foraging Ecology and Distribution of Crabeater Seals", "uid": "p0010490", "west": null}, {"awards": "2142914 Baker, Bill; 2142912 Murray, Alison; 2142913 Tresguerres, Martin", "bounds_geometry": "POLYGON((-180 -60,-168 -60,-156 -60,-144 -60,-132 -60,-120 -60,-108 -60,-96 -60,-84 -60,-72 -60,-60 -60,-60 -62,-60 -64,-60 -66,-60 -68,-60 -70,-60 -72,-60 -74,-60 -76,-60 -78,-60 -80,-72 -80,-84 -80,-96 -80,-108 -80,-120 -80,-132 -80,-144 -80,-156 -80,-168 -80,180 -80,178 -80,176 -80,174 -80,172 -80,170 -80,168 -80,166 -80,164 -80,162 -80,160 -80,160 -78,160 -76,160 -74,160 -72,160 -70,160 -68,160 -66,160 -64,160 -62,160 -60,162 -60,164 -60,166 -60,168 -60,170 -60,172 -60,174 -60,176 -60,178 -60,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 17 Oct 2024 00:00:00 GMT", "description": "Non-technical description Marine invertebrates often have mutually beneficial partnerships with microorganisms that biosynthesize compounds with nutritive or defensive functions and are integral for survival. Additionally, these \u201cnatural products\u201d often have bioactive properties with human health applications fighting infection or different types of cancer. This project focuses on the ascidian (\u201csea squirt\u201d) Synoicum adareanum, found in the Anvers Island region of the Antarctic Peninsula, and was recently discovered to contain high levels of a natural product, palmerolide A (palA) in its tissues. The microorganism that produces palA is a new bacterial species, Candidatus Synoicihabitans palmerolidicus, found in a persistent partnership with the sea squirt. There is still much to be learned about the fundamental properties of this sea squirt-microbe-palA system including the geographical range of the animal-microbe partnership, its chemical and microbiome complexity and diversity, and the biological effect of palA in the sea squirt. To address these questions, this multidisciplinary research team will investigate the sea squirt-microbiome partnership in the Antarctic Peninsula and McMurdo Sound regions of the Ross Sea using a state-of-the-art strategy that will advance our understanding of the structural and functional features of the sea squirt and microbiome in detail, and reveal the roles that the palA natural product plays in the host ecology in its native Antarctic seafloor habitat. The project will broaden diversity and provide new opportunities for early career students and postdoctoral researchers to participate in field and laboratory-based research that builds an integrative understanding of Antarctic marine biology, ecology, physiology and chemistry. In addition, advancing the understanding of palA and its biological properties may be of future benefit to biomedicine and human health. Technical description Marine invertebrates and their associated microbiomes can produce bioactive natural products; in fact, \u003e600 such compounds have been identified in species from polar waters. Although such compounds are typically hypothesized to serve ecological roles in host survival through deterring predation, fouling, and microbial infection, in most cases neither the producing organism nor the genome-encoded biosynthetic enzymes are known. This project will study an emerging biosynthetic system from a polar ascidian-microbe association that produces palA, a natural product with bioactivity against the proton-pumping enzyme V-type H+-ATPase (VHA). The objectives include: (i) Determining the microbiome composition, metabolome complexity, palA levels, and mitochondrial DNA sequence of S. adareanum morphotypes at sites in the Antarctic Peninsula and in McMurdo Sound, (ii) Characterizing the Synoicum microbiome using a multi-omics strategy, and (iii) Assessing the potential for co-occurrence of Ca. S. palmerolidicus-palA-VHA in host tissues, and (iv) exploring the role of palA in modulating VHA activity in vivo and its effects on ascidian-microbe ecophysiology. Through a coupled study of palA-producing and non-producing S. adareanum specimens, structural and functional features of the ascidian microbiome metagenome will be characterized to better understand the relationship between predicted secondary metabolite pathways and whether they are expressed in situ using a paired metatranscriptome sequencing and secondary metabolite detection strategy. Combined with tissue co-localization results, functional ecophysiological assays aim to determine the roles that the natural product plays in the host ecology in its native Antarctic seafloor habitat. The contributions of the project will inform this intimate host-microbial association in which the ascidian host bioaccumulates VHA-inhibiting palA, yet its geo-spatial distribution, cellular localization, ecological and physiological role(s) are not known. In addition to elucidating the ecophysiological roles of palA in their native ascidian-microbe association, the results will contribute to the success of translational science, which aligns with NSF\u2019s interests in promoting basic research that leads to advances in Biotechnology and Bioeconomy. The project will also broaden diversity and provide new opportunities for early career students and postdoctoral researchers to participate in field and laboratory-based research that builds an integrative understanding of Antarctic marine biology, ecology, physiology and chemistry. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 160.0, "geometry": "POINT(-130 -70)", "instruments": null, "is_usap_dc": true, "keywords": "ECOSYSTEM FUNCTIONS; BACTERIA/ARCHAEA; BENTHIC; R/V NBP; Antarctic Peninsula; ANIMALS/INVERTEBRATES", "locations": "Antarctic Peninsula", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Baker, Bill; Murray, Alison; Tresguerres, Martin", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repositories": null, "science_programs": null, "south": -80.0, "title": "Collaborative Research: ANT LIA: Diving into the Ecology of an Antarctic Ascidian-Microbiome-Palmerolide Association using a Multi-omic and Functional Approach", "uid": "p0010485", "west": -60.0}, {"awards": "2231559 Tinto, Kirsteen; 2231558 Smith, Nathan", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 01 Sep 2023 00:00:00 GMT", "description": "The unique Antarctic environment offers insight into processes and records not seen anywhere else on Earth, and is critical to understanding our planet\u2019s history and future. The remoteness and logistics of Antarctic science brings together researchers from diverse disciplines who otherwise wouldn\u2019t be presented with opportunities for collaboration, and often rarely attend the same academic conferences. The Interdisciplinary Antarctic Earth Science (IAES) conference is a biennial gathering that supports the collaboration of U.S. bio-, cryo-, geo-, and atmospheric science researchers working in the Antarctic. This proposal will support the next two IAES conferences to be held in 2022 and 2024, as well as a paired deep-field camp planning workshop. The IAES conference is important to the mission of the NSF in supporting interdisciplinary collaboration in the Antarctic Earth sciences, but also fulfills recommendations by the National Academy for improving cross-disciplinary awareness, data sharing, and early career researcher mentoring and development. The size and scope of the IAES conference allow it to serve as a hub for novel, interdisciplinary collaboration, as well as help develop the next generation of Antarctic Earth scientists. The goals of the IAES conference are to develop and deepen scientific collaborations across the Antarctic Earth science community, and create a framework for future deep-field, as well as non-field-based research. Across a 2.5 day hybrid conference, the IAES themes will include 1) connecting surficial processes, geology, and the deep earth; 2) landscape, ice sheet, ocean and atmospheric interactions; 3) exploring the hidden continent; and 4) evolution and ecology of ancient and modern organisms, ecosystems, and environments. The conference will share science through presentations of current research and keynote talks, broaden participation through welcoming new researchers from under-represented communities and disciplines, and deepen collaboration through interdisciplinary networking highlighting potential research connections, novel mentorship activities, and promoting data re-use, and application of remote sensing and modeling. Discussions resulting from the IAES conference will be used to develop white papers on future Antarctic collaborative research and deep-field camps based on community-driven research priorities. Community surveys and feedback will be solicited throughout the project to guide the future development of the IAES conference. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "GEOMORPHIC LANDFORMS/PROCESSES; GEOCHEMISTRY; California; ICE CORE RECORDS; ECOLOGICAL DYNAMICS; GLACIERS/ICE SHEETS; PALEOCLIMATE RECONSTRUCTIONS", "locations": "California", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Smith, Nathan; Tinto, Kirsty", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Conference: Interdisciplinary Antarctic Earth Science Conference \u0026 Deep-Field Planning Workshop", "uid": "p0010432", "west": -180.0}, {"awards": "2203176 Cimino, Megan; 2203177 Steinberg, Deborah", "bounds_geometry": "POLYGON((-80 -60,-77 -60,-74 -60,-71 -60,-68 -60,-65 -60,-62 -60,-59 -60,-56 -60,-53 -60,-50 -60,-50 -61,-50 -62,-50 -63,-50 -64,-50 -65,-50 -66,-50 -67,-50 -68,-50 -69,-50 -70,-53 -70,-56 -70,-59 -70,-62 -70,-65 -70,-68 -70,-71 -70,-74 -70,-77 -70,-80 -70,-80 -69,-80 -68,-80 -67,-80 -66,-80 -65,-80 -64,-80 -63,-80 -62,-80 -61,-80 -60))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 10 Aug 2023 00:00:00 GMT", "description": "This project is co-funded by a collaboration between the Directorate for Geosciences and Office of Advanced Cyberinfrastructure to support Artificial Intelligence/Machine Learning and open science activities in the geosciences. Machine learning model will be used in this project to predict the distributions of five zooplankton species in the western Antarctic Peninsula (wAP) based on oceanographic properties. The project will take advantage of a long-term series collected by the Palmer Long-Term Ecological Research (LTER) program that collects annual data on physics, chemistry, phytoplankton (or food), zooplankton and predators (seabirds, whales and seals). By analyzing this dataset and combining it with other data collected by national and international programs, this project will provide understanding and prediction of zooplankton distribution and abundance in the wAP. The machine learning models will be based on environmental properties extracted from remote sensing images thus providing ecosystem knowledge as it decreases human footprint in Antarctica. The relationship between species distribution and habitat are key for distinguishing natural variability from climate impacts on zooplankton and their predators. This research benefits NSF mission by expanding fundamental knowledge of Antarctic systems, biota, and processes as well as aligning with data and sample reuse strategies in Polar Research. The project will benefit society by supporting two female early-career scientists, a post-doctoral fellow and a graduate student. Polar literacy will be promoted through an existing partnership with Out Of School activities that target Science, Technology, Engineering and Mathematics (STEM) education, expected to reach 120,000 students from under-represented minorities in STEM annually. The project will also contribute to evaluate the ecosystem in the proposed Marine Protected Area in the wAP, subject to krill fishery. Results will be made available publicly through an interactive web application. The Principal Investigators propose to address three main questions: 1) Can geomorphic features, winter preconditioning and summer ocean conditions be used to predict the austral summer distribution of zooplankton species along the wAP? 2) What are the spatial and temporal patterns in modeled zooplankton species distribution along the wAP? And 3) What are the patterns of overlap in zooplankton and predator species? The model will generate functional relationships between zooplankton distribution and environmental variables and provide Zooplankton Distribution Models (ZDMs) along the Antarctic Peninsula. The Palmer LTER database will be combined with the NOAA AMLR data for the northern wAP, and KRILLBASE, made public by the British Antarctic Survey\u2019s Polar Data Center. This project will generate 1) annual environmental spatial layers on the Palmer LTER resolution grid within the study region, 2) annual species-specific standardized zooplankton net data from different surveys, 3) annual species-specific predator sightings on a standardized grid, and 4) ecological model output. Ecological model output will include annual predictions of zooplankton species distributions, consisting of 3-dimensional fields (x,y,t) for the 5 main zooplankton groups, including Antarctic krill, salps and pteropods. Predictions will be derived from merging in situ survey data with environmental data, collected in situ or by remote sensing. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -50.0, "geometry": "POINT(-65 -65)", "instruments": null, "is_usap_dc": true, "keywords": "ANIMAL ECOLOGY AND BEHAVIOR; PELAGIC; BIRDS; SPECIES/POPULATION INTERACTIONS; ANIMALS/INVERTEBRATES; Antarctic Peninsula", "locations": "Antarctic Peninsula", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Cimino, Megan; Steinberg, Deborah", "platforms": null, "repositories": null, "science_programs": null, "south": -70.0, "title": "Collaborative Research: Harvesting Long-term Survey Data to Develop Zooplankton Distribution Models for the Antarctic Peninsula", "uid": "p0010429", "west": -80.0}, {"awards": "2224611 Schofield, Oscar; 2026045 Schofield, Oscar", "bounds_geometry": "POLYGON((-79.65 -63.738,-77.9728 -63.738,-76.29560000000001 -63.738,-74.61840000000001 -63.738,-72.94120000000001 -63.738,-71.26400000000001 -63.738,-69.58680000000001 -63.738,-67.9096 -63.738,-66.2324 -63.738,-64.5552 -63.738,-62.878 -63.738,-62.878 -64.3683,-62.878 -64.9986,-62.878 -65.6289,-62.878 -66.25919999999999,-62.878 -66.8895,-62.878 -67.5198,-62.878 -68.1501,-62.878 -68.7804,-62.878 -69.41069999999999,-62.878 -70.041,-64.5552 -70.041,-66.2324 -70.041,-67.9096 -70.041,-69.5868 -70.041,-71.26400000000001 -70.041,-72.94120000000001 -70.041,-74.61840000000001 -70.041,-76.29560000000001 -70.041,-77.9728 -70.041,-79.65 -70.041,-79.65 -69.41069999999999,-79.65 -68.7804,-79.65 -68.1501,-79.65 -67.5198,-79.65 -66.8895,-79.65 -66.25919999999999,-79.65 -65.6289,-79.65 -64.9986,-79.65 -64.3683,-79.65 -63.738))", "dataset_titles": "Expedition Data of LMG2301; Expedition Data of NBP2113; Palmer LTER data in the Environmental Data Initiative Repository", "datasets": [{"dataset_uid": "200367", "doi": "", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "Palmer LTER data in the Environmental Data Initiative Repository", "url": "https://portal.edirepository.org/nis/browseServlet?searchValue=PAL"}, {"dataset_uid": "200370", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP2113", "url": "https://www.rvdata.us/search/cruise/NBP2113"}, {"dataset_uid": "200371", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of LMG2301", "url": "https://www.rvdata.us/search/cruise/LMG2301"}], "date_created": "Wed, 26 Jul 2023 00:00:00 GMT", "description": "Part 1: Non-technical description The goal of all LTER sites is to conduct policy-relevant ecosystem research for questions that require tens of years of data and cover large geographical areas. The Palmer Antarctica Long Term Ecological Research (PAL-LTER) site has been in operation since 1990 and has been studying how the marine ecosystem west of the Antarctica Peninsula (WAP) is responding to a climate that is changing as rapidly as any place on the Earth. The study is evaluating how warming conditions and decreased ice cover leading to extended periods of open water are affecting many aspects of ecosystem function. The team is using combined cutting-edge approaches including yearly ship-based research cruises, small-boat weekly sampling, autonomous vehicles, animal biologging, oceanographic floats and seafloor moorings, manipulative lab-based process studies and modeling to evaluate both seasonal and annual ecosystem responses. These combined approaches are allowing for the study the ecosystem changes at scales needed to assess both short-term and long-term drivers. The study region also includes submarine canyons that are special regions of enhanced biological activity within the WAP. This research program is paired with a comprehensive education and outreach program promoting the global significance of Antarctic science and research. In addition to training for graduate and undergraduate students, they are using newly-developed Polar Literacy Principles as a foundation in a virtual schoolyard program that shares polar instructional materials and provides learning opportunities for K-12 educators. The PAL-LTER team is also leveraging the development of Out of School Time materials for afterschool and summer camp programs, sharing Palmer LTER-specific teaching materials with University, Museum, and 4-H Special Interest Club partners. Part 2: Technical description Polar ecosystems are among the most rapidly changing on Earth. The Palmer LTER (PAL-LTER) program builds on three decades of coordinated research along the western side of the Antarctic Peninsula (WAP) to gain new mechanistic and predictive understanding of ecosystem changes in response to disturbances spanning long-term decadal (\u2018press\u2019) drivers and changes due to higher-frequency (\u2018pulse\u2019) drivers, such as large storms and extreme seasonal anomaly in sea ice cover. The influence of major natural climate modes that modulate variations in sea ice, weather, and oceanographic conditions to drive changes in ecosystem structure and function (e.g., El Ni\u00f1o Southern Oscillation and Southern Annular Mode) are being studied at multiple time scales \u2013from diel, seasonal, interannual, to decadal intervals, and space scales\u2013from hemispheric to global scale investigated by remote sensing, the regional scales. Specifically, the team is evaluating how variability of physical properties (such as vertical and alongshore connectivity processes) interact to modulate biogeochemical cycling and community ecology in the WAP region. The study is providing an evaluation of ecosystem resilience and ecological responses to long-term \u201cpress-pulse\u201d drivers and a decadal-level reversal in sea ice coverage. This program is providing fundamental understanding of population and biogeochemical responses for a marine ecosystem experiencing profound change. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -62.878, "geometry": "POINT(-71.26400000000001 -66.8895)", "instruments": null, "is_usap_dc": true, "keywords": "SEA ICE; PLANKTON; PELAGIC; West Antarctic Shelf; R/V NBP; OCEAN MIXED LAYER; COMMUNITY DYNAMICS; PENGUINS; R/V LMG", "locations": "West Antarctic Shelf", "north": -63.738, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Schofield, Oscar; Steinberg, Deborah", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "EDI", "repositories": "EDI; R2R", "science_programs": "LTER", "south": -70.041, "title": "LTER: Ecological Response and Resilience to \u201cPress-Pulse\u201d Disturbances and a Recent Decadal Reversal in Sea Ice Trends Along the West Antarctic Peninsula", "uid": "p0010426", "west": -79.65}, {"awards": "2228257 Michaud, Alexander", "bounds_geometry": "POINT(-112.05 -79.28)", "dataset_titles": null, "datasets": null, "date_created": "Wed, 31 May 2023 00:00:00 GMT", "description": "Ice cores from glaciers and ice sheets provide detailed archives of past environmental conditions, furthering our understanding of Earth\u2019s climate. Microorganisms in the West Antarctic Ice Sheet are buried over glaciological time and form a stratigraphy record providing the opportunity of analysis of the order and position of layers of geological events, with potential links to Southern Hemisphere climate. However, microbial cells that land on the ice sheet are subject to the stresses of changing habitat conditions due to burial and conditions associated with long-term isolation in ice. These processes may lead to a loss of fidelity within the stratigraphic record of microbial cells. We know little about how and if microorganisms survive burial and remain alive over glacial-interglacial time periods within an ice sheet. This analysis will identify the viable and preserved community of microorganisms and core genomic adaptation that permit cell viability, which will advance knowledge in the areas of microbiology and glaciology while increasing fidelity of ice core measurements relevant to past climate and potential future global climate impacts. This exploratory endeavor has the potential to be a transformative step toward understanding the ecology of one of the most understudied environments on Earth. The project will partner with the Museum of Science, Boston, to increase public scientific literacy via education and outreach. Additionally, this project will support two early-career scientists and two undergraduates in interdisciplinary research at the intersection of microbiology and climate science. Results from this project will provide the first DNA data based on single-cell whole genomic sequencing from the Antarctic Ice Sheet and inform whether post-depositional processes impact the interpretations of paleoenvironmental conditions from microbes. The goals to determine the taxonomic identity of viable and preserved microbial cells, and decode the genetic repertoire that confers survival of burial and long-term viability within glacial ice, will be achieved by utilizing subsamples from a ~60,000 year old record of the West Antarctic Ice Sheet Divide (WD) Ice Core. WD samples will be melted using the Desert Research Institute\u2019s ice core melting system that is optimized for glaciobiological sampling. Microbial cells from the meltwater will be sorted using fluorescence-activated cell sorting, and individually sorted cells will have their genomes sequenced. The fluorescence-based methods will discern the viable (metabolically active) cells from those cells that are non-viable but preserved in the ice (DNA-containing). The genomic analysis will identify the taxonomy of each cell, presence of known genes that confer survival in permanently frozen environments, and comparatively analyze genomes to determine the core set of genes required by viable cells to persist in an ice sheet. The outcomes of this work will expand the potential for biological measurements and contamination control from archived ice cores. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -112.05, "geometry": "POINT(-112.05 -79.28)", "instruments": null, "is_usap_dc": true, "keywords": "WAIS Divide; TERRESTRIAL ECOSYSTEMS; ICE SHEETS; BACTERIA/ARCHAEA; ICE CORE RECORDS", "locations": "WAIS Divide", "north": -79.28, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Michaud, Alexander; Winski, Dominic A.", "platforms": null, "repositories": null, "science_programs": null, "south": -79.28, "title": "EAGER: ANT LIA: Persist or Perish: Records of Microbial Survival and Long-term Persistence from the West Antarctic Ice Sheet", "uid": "p0010421", "west": -112.05}, {"awards": "1643575 Kanatous, Shane; 1644004 Trumble, Stephen; 1644256 Costa, Daniel", "bounds_geometry": "POLYGON((-66.534369 -52.962091,-65.3857434 -52.962091,-64.2371178 -52.962091,-63.0884922 -52.962091,-61.9398666 -52.962091,-60.791241 -52.962091,-59.6426154 -52.962091,-58.4939898 -52.962091,-57.3453642 -52.962091,-56.1967386 -52.962091,-55.048113 -52.962091,-55.048113 -54.530129,-55.048113 -56.098167000000004,-55.048113 -57.666205000000005,-55.048113 -59.234243,-55.048113 -60.802281,-55.048113 -62.370319,-55.048113 -63.938357,-55.048113 -65.506395,-55.048113 -67.074433,-55.048113 -68.642471,-56.1967386 -68.642471,-57.3453642 -68.642471,-58.4939898 -68.642471,-59.6426154 -68.642471,-60.791241 -68.642471,-61.9398666 -68.642471,-63.0884922 -68.642471,-64.2371178 -68.642471,-65.3857434 -68.642471,-66.534369 -68.642471,-66.534369 -67.074433,-66.534369 -65.506395,-66.534369 -63.938356999999996,-66.534369 -62.370319,-66.534369 -60.802281,-66.534369 -59.234243,-66.534369 -57.666205,-66.534369 -56.098167000000004,-66.534369 -54.530129,-66.534369 -52.962091))", "dataset_titles": "Data from: Whiskers provide time-series of toxic and essential trace elements, Se:Hg molar ratios, and stable isotope values of an apex Antarctic predator, the leopard seal; Leopard Seal Diving behavior data; Leopard Seal movement data", "datasets": [{"dataset_uid": "601690", "doi": "10.15784/601690", "keywords": "Antarctica; Antarctic Peninsula; Biota; Body Mass; Diving Behavior; Leopard Seal; Seals", "people": "Costa, Daniel", "repository": "USAP-DC", "science_program": null, "title": "Leopard Seal Diving behavior data", "url": "https://www.usap-dc.org/view/dataset/601690"}, {"dataset_uid": "200361", "doi": "https://doi.org/10.5061/dryad.ksn02v75b", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Data from: Whiskers provide time-series of toxic and essential trace elements, Se:Hg molar ratios, and stable isotope values of an apex Antarctic predator, the leopard seal", "url": "https://datadryad.org/stash/dataset/doi:10.5061%2Fdryad.ksn02v75b"}, {"dataset_uid": "601689", "doi": "10.15784/601689", "keywords": "Antarctica; Antarctic Peninsula; Biota; Body Mass; Diving Behavior; Leopard Seal; Movement Data; Seals", "people": "Costa, Daniel", "repository": "USAP-DC", "science_program": null, "title": "Leopard Seal movement data", "url": "https://www.usap-dc.org/view/dataset/601689"}], "date_created": "Fri, 12 May 2023 00:00:00 GMT", "description": "This research project is a multidisciplinary effort that brings together a diverse team of scientists from multiple institutions together to understand the foraging behavior and physiology of leopard seals and their role in the Southern Ocean food web. The project will examine the physiology and behavior of leopard seals to in an effort to determine their ability to respond to potential changes in their habitat and foraging areas. Using satellite tracking devices the team will examine the movement and diving behavior of leopard seals and couple this information with measurements of their physiological capacity. The project will determine whether leopard seals- who feed on diverse range of prey- are built differently than their deep diving relatives the Weddell and elephant seal who feed on fish and squid. The team will also determine whether leopard seals are operating at or near their physiological capability to determine how much, if any, ?reserve capacity? they might have to forage and live in changing environments. A better understanding of their home ranges, movement patterns, and general behavior will also be informative to help in managing human-leopard seal interactions. The highly visual nature of the data and analysis for this project lends itself to public and educational display and outreach, particularly as they relate to the changing Antarctic habitats. The project will use the research results to educate the public on the unique physiological and ecological adaptations to extreme environments seen in diving marine mammals, including adaptations to exercise under low oxygen conditions and energy utilization, which affect and dictate the lifestyle of these exceptional organisms. The results of the project will also contribute to the broader understanding that may enhance the aims of managing marine living resources. The leopard seal is an apex predator in the Antarctic ecosystem. This project seeks to better understand the ability of the leopard seal to cope with a changing environment. The project will first examine the foraging behavior and habitat utilization of leopard seals using satellite telemetry. Specifically, satellite telemetry tags will be used to obtain dive profiles and movement data for individuals across multiple years. Diet and trophic level positions across multiple temporal scales will then be determined from physiological samples (e.g., blood, vibrissae, blubber fatty acids, stable isotopes, fecal matter). Oceanographic data will be integrated with these measures to develop habitat models that will be used to assess habitat type, habitat utilization, habitat preference, and home range areas for individual animals. Diet composition for individual seals will be evaluated to determine whether specific animals are generalists or specialists. Second, the team will investigate the physiological adaptations that allow leopard seals to be apex predators and determine to what extent leopard seals are working at or near their physiological limit. Diving behavior and physiology of leopard seals will be evaluated (for instance the aerobic dive limit for individual animals and skeletal muscle adaptations will be determined for diving under hypoxic conditions). Data from time-depth recorders will be used to determine foraging strategies for individual seals, and these diving characteristics will be related to physiological variables (e.g., blood volume, muscle oxygen stores) to better understand the link between foraging behavior and physiology. The team will compare myoglobin storage in swimming muscles associated with both forelimb and hind limb propulsion and the use of anaerobic versus aerobic metabolic systems while foraging.", "east": -55.048113, "geometry": "POINT(-60.791241 -60.802281)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Peninsula; Diving Behavior; MAMMALS; MARINE ECOSYSTEMS; Movement Patterns; Leopard Seal", "locations": "Antarctic Peninsula", "north": -52.962091, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Costa, Daniel; Trumble, Stephen J; Kanatous, Shane", "platforms": null, "repo": "USAP-DC", "repositories": "Dryad; USAP-DC", "science_programs": null, "south": -68.642471, "title": "Collaborative Research: Foraging Ecology and Physiology of the Leopard Seal", "uid": "p0010419", "west": -66.534369}, {"awards": "1644004 Trumble, Stephen", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Data from: Whiskers provide time-series of toxic and essential trace elements, Se:Hg molar ratios, and stable isotope values of an apex Antarctic predator, the leopard seal", "datasets": [{"dataset_uid": "200338", "doi": "doi:10.5061/dryad.ksn02v75b", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Data from: Whiskers provide time-series of toxic and essential trace elements, Se:Hg molar ratios, and stable isotope values of an apex Antarctic predator, the leopard seal", "url": "https://datadryad.org/stash/share/h6UwXvfhZG26jtPTtDqyXNMnx2UWknOqmv05EBz6A10"}], "date_created": "Tue, 06 Dec 2022 00:00:00 GMT", "description": "This research project is a multidisciplinary effort that brings together a diverse team of scientists from multiple institutions together to understand the foraging behavior and physiology of leopard seals and their role in the Southern Ocean food web. The project will examine the physiology and behavior of leopard seals to in an effort to determine their ability to respond to potential changes in their habitat and foraging areas. Using satellite tracking devices the team will examine the movement and diving behavior of leopard seals and couple this information with measurements of their physiological capacity. The project will determine whether leopard seals- who feed on diverse range of prey- are built differently than their deep diving relatives the Weddell and elephant seal who feed on fish and squid. The team will also determine whether leopard seals are operating at or near their physiological capability to determine how much, if any, ?reserve capacity? they might have to forage and live in changing environments. A better understanding of their home ranges, movement patterns, and general behavior will also be informative to help in managing human-leopard seal interactions. The highly visual nature of the data and analysis for this project lends itself to public and educational display and outreach, particularly as they relate to the changing Antarctic habitats. The project will use the research results to educate the public on the unique physiological and ecological adaptations to extreme environments seen in diving marine mammals, including adaptations to exercise under low oxygen conditions and energy utilization, which affect and dictate the lifestyle of these exceptional organisms. The results of the project will also contribute to the broader understanding that may enhance the aims of managing marine living resources. The leopard seal is an apex predator in the Antarctic ecosystem. This project seeks to better understand the ability of the leopard seal to cope with a changing environment. The project will first examine the foraging behavior and habitat utilization of leopard seals using satellite telemetry. Specifically, satellite telemetry tags will be used to obtain dive profiles and movement data for individuals across multiple years. Diet and trophic level positions across multiple temporal scales will then be determined from physiological samples (e.g., blood, vibrissae, blubber fatty acids, stable isotopes, fecal matter). Oceanographic data will be integrated with these measures to develop habitat models that will be used to assess habitat type, habitat utilization, habitat preference, and home range areas for individual animals. Diet composition for individual seals will be evaluated to determine whether specific animals are generalists or specialists. Second, the team will investigate the physiological adaptations that allow leopard seals to be apex predators and determine to what extent leopard seals are working at or near their physiological limit. Diving behavior and physiology of leopard seals will be evaluated (for instance the aerobic dive limit for individual animals and skeletal muscle adaptations will be determined for diving under hypoxic conditions). Data from time-depth recorders will be used to determine foraging strategies for individual seals, and these diving characteristics will be related to physiological variables (e.g., blood volume, muscle oxygen stores) to better understand the link between foraging behavior and physiology. The team will compare myoglobin storage in swimming muscles associated with both forelimb and hind limb propulsion and the use of anaerobic versus aerobic metabolic systems while foraging.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "MAMMALS; Stable Isotopes; Livingston Island", "locations": "Livingston Island", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Trumble, Stephen J", "platforms": null, "repo": "Dryad", "repositories": "Dryad", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Foraging Ecology and Physiology of the Leopard Seal", "uid": "p0010394", "west": -180.0}, {"awards": "2135695 Emslie, Steven; 2135696 Polito, Michael", "bounds_geometry": "POLYGON((-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70.8,-180 -71.6,-180 -72.4,-180 -73.2,-180 -74,-180 -74.8,-180 -75.6,-180 -76.4,-180 -77.2,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -77.2,160 -76.4,160 -75.6,160 -74.8,160 -74,160 -73.2,160 -72.4,160 -71.6,160 -70.8,160 -70,162 -70,164 -70,166 -70,168 -70,170 -70,172 -70,174 -70,176 -70,178 -70,-180 -70))", "dataset_titles": "Stable isotopes of Adelie Penguin chick bone collagen", "datasets": [{"dataset_uid": "601913", "doi": "10.15784/601913", "keywords": "Adelie Penguin; Antarctica; Cryosphere; Foraging; Polynya; Pygoscelis Adeliae; Ross Sea; Stable Isotopes", "people": "Reaves, Megan; Emslie, Steven D.; Powers, Shannon", "repository": "USAP-DC", "science_program": null, "title": "Stable isotopes of Adelie Penguin chick bone collagen", "url": "https://www.usap-dc.org/view/dataset/601913"}], "date_created": "Fri, 28 Oct 2022 00:00:00 GMT", "description": "The Ad\u00e9lie penguin (Pygoscelis adeliae) is the most abundant penguin in Antarctica, though its populations are currently facing threats from climate change, loss of sea ice habitat and food supplies. In the Ross Sea region, the cold, dry environment has allowed preservation of Ad\u00e9lie penguin bones, feathers, eggshell and even mummified remains, at active and abandoned colonies that date from before the Last Glacial Maximum (more than 45,000 years ago) to the present. A warming period at 4,000-2,000 years ago, known as the penguin \u2018optimum\u2019, reduced sea ice extent and allowed this species to access and reproduce in the southern Ross Sea. This coastline likely will be reoccupied in the future as marine conditions change with current warming trends. This project will investigate ecological responses in diet and foraging behavior of the Ad\u00e9lie penguin using well-preserved bones and other tissues that date from before, during and after the penguin \u2018optimum\u2019. The Principal investigators will collect and analyze bones, feathers and eggshells from colonies in the Ross Sea to determine changes in population size and feeding locations over millennia. Most of these colonies are associated with highly productive areas of open water surrounded by sea ice. Current warming trends are causing relatively rapid ecological responses by this species and some of the largest colonies in the Ross Sea are likely to be abandoned in the next 50 years from rising sea level. The recently established Ross Sea Marine Protected Area aims to protect Ad\u00e9lie penguins and their foraging grounds in this region from human impacts and knowledge on how this species has responded to climate change in the past will support this goal. This project benefits NSF\u2019s mission to expand fundamental knowledge of Antarctic systems, biota, and processes. In association with their research program, the Principal Investigators will create undergraduate opportunities for research-driven coursework, will design K-12 curriculum and assess the effectiveness of these activities. Two graduate students will be supported by this project to update and refine the curricula working with K-12 teachers. There is also training and partial support included for one doctorate, two master and eight undergraduate students. General public will be reached through social media and YouTube channel productions. A suite of three stable isotopes (carbon, nitrogen, and sulfur) will be analyzed in Adelie penguin bones and feathers from active and abandoned colonies to assess ecological shifts through time. Stable isotope analyses of carbon and nitrogen (\u03b413C and \u03b415N) are commonly used to investigate animal migration, foraging locations and diet, especially in marine species that can travel over great distances. Sulfur (\u03b434S) is not as commonly used but is increasingly being applied to refine and corroborate data obtained from carbon and nitrogen analyses. Collagen is one of the best tissues for these analyses as it is abundant in bone, preserves well, and can be easily extracted for analysis. Using these three isotopes from collagen, ancient and modern penguin colonies will be investigated in the southern, central and northern Ross Sea to determine changes in populations and foraging locations over millennia. Most of these colonies are associated with one of three polynyas in the Ross Sea. This study will be the first of its kind to apply multiple stable isotope analyses to investigate a living species of seabird over millennia in a region where it still exists today. Results from this project will also inform management on best practices for Adelie penguin conservation affected by climate change. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -180.0, "geometry": "POINT(170 -74)", "instruments": null, "is_usap_dc": true, "keywords": "Climate Change; Adelie Penguin; Foraging Ecology; Ross Sea; PENGUINS; Holocene; Stable Isotopes", "locations": "Ross Sea", "north": -70.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Lane, Chad S; Polito, Michael", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Using Multiple Stable Isotopes to Investigate Middle to Late Holocene Ecological Responses by Adelie Penguins in the Ross Sea", "uid": "p0010388", "west": 160.0}, {"awards": "2011454 Veit, Richard; 2011285 Santora, Jarrod", "bounds_geometry": "POLYGON((-39 -53,-38.6 -53,-38.2 -53,-37.8 -53,-37.4 -53,-37 -53,-36.6 -53,-36.2 -53,-35.8 -53,-35.4 -53,-35 -53,-35 -53.2,-35 -53.4,-35 -53.6,-35 -53.8,-35 -54,-35 -54.2,-35 -54.4,-35 -54.6,-35 -54.8,-35 -55,-35.4 -55,-35.8 -55,-36.2 -55,-36.6 -55,-37 -55,-37.4 -55,-37.8 -55,-38.2 -55,-38.6 -55,-39 -55,-39 -54.8,-39 -54.6,-39 -54.4,-39 -54.2,-39 -54,-39 -53.8,-39 -53.6,-39 -53.4,-39 -53.2,-39 -53))", "dataset_titles": "Bird, Mammal, Plankton, Oceanographic data, South Georgia, July 2023; Winter marine communities of the Antarctic Peninsula", "datasets": [{"dataset_uid": "601795", "doi": "10.15784/601795", "keywords": "Antarctica; Antarctic Krill; Antarctic Peninsula; Cryosphere; Pack Ice; Polynya; Seabirds; Sea Ice; Winter; Zooplankton", "people": "Dietrich, Kim; Santora, Jarrod; Reiss, Christian; Czapanskiy, Max", "repository": "USAP-DC", "science_program": null, "title": "Winter marine communities of the Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601795"}, {"dataset_uid": "601890", "doi": "10.15784/601890", "keywords": "Abundance; Antarctica; Antarctic Winter; Birds; Cryosphere; CTD; Mammals; Plankton; South Georgia Island", "people": "Czapanskiy, Max; Santora, Jarrod; Veit, Richard; Manne, Lisa", "repository": "USAP-DC", "science_program": null, "title": "Bird, Mammal, Plankton, Oceanographic data, South Georgia, July 2023", "url": "https://www.usap-dc.org/view/dataset/601890"}], "date_created": "Thu, 06 Oct 2022 00:00:00 GMT", "description": "Part I: Non-technical description: Ocean warming in the western Antarctic Peninsula and Scotia Sea in winter is among the highest worldwide. This project will quantify the impact of the climate warming on seabirds. The study area is in South Georgia in the South Atlantic with the largest and most diverse seabird colonies in the world. Detecting and understanding how physics and biology interact to bring positive or negative population changes to seabirds has long challenged scientists. The team in this project hypothesizes that 1) Cold water seabird species decline while warm water species increase due to ocean warming observed in the last 30 years; 2) All species decrease with ocean warming, affecting how they interact with each other and in doing so, decreasing their chances of survival; and 3) Species profiles can be predicted using multiple environmental variables and models. To collect present-day data to compare with observations done in 1985, 1991 and 1993, 2 cruises are planned in the austral winter; the personnel will include the three Principal Investigators, all experienced with sampling of seabirds, plankton and oceanography, with 2 graduate and 5 undergraduate students. Models will be developed based on the cruise data and the environmental change experienced in the last 30 years. The research will improve our understanding of seabird and marine mammal winter ecology, and how they interact with the environment. This project benefits NSF\u0027s goals to expand the fundamental knowledge of Antarctic systems, biota, and processes. The project will provide an exceptional opportunity to teach polar field skills to undergraduates by bringing 5 students to engage in the research cruises. To further increase polar literacy training and educational impacts, broader impacts include the production of an educational documentary that will be coupled to field surveys to assess public perceptions about climate change. Part II: Technical description: Ocean warming in the western Antarctic Peninsula and Scotia Sea in winter is among the highest worldwide. Based on previous work, the Principal Investigators in this project want to test the hypothesis that warming would have decreased seabird abundance and species associations in the South Georgia region of the South Atlantic. A main premise of this proposal is that because of marine environmental change, the structure of the seabird communities has also changed, and potentially in a manner that has diminished the mutually beneficial dynamics of positive interactions, with subsequent consequences to fitness and population trends. The study is structured by 3 main objectives: 1) identify changes in krill, bird and mammal abundance that have occurred from previous sampling off both ends of South Georgia during winter in 1985, 1991 and 1993, 2) identify pairings of species that benefit each other in searching for prey, and quantify how such relationships have changed since 1985, and 3) make predictions about how these changes in species pairing might continue given predicted future changes in climate. The novelty of the approach is the conceptual model that inter-species associations inform birds of food availability and that the associations decrease if bird abundance decreases, thus warming could decrease overall population fitness. These studies will be essential to establish if behavioral patterns in seabird modulate their response to climate change. The project will provide exceptional educational opportunity to undergraduates by bringing 5 students to participate on the cruises. To further increase polar literacy training and educational impacts, broader impacts include the production of an educational documentary that will be coupled to field surveys to assess public perceptions about climate change. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -35.0, "geometry": "POINT(-37 -54)", "instruments": null, "is_usap_dc": true, "keywords": "Local Enhancement; South Georgia Island; Mutualism; Climate Change; Positive Interactions; Seabirds; COMMUNITY DYNAMICS; SPECIES/POPULATION INTERACTIONS; R/V NBP", "locations": "South Georgia Island", "north": -53.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Veit, Richard; Manne, Lisa; Santora, Jarrod", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -55.0, "title": "Collaborative Research: Climate, Changing Abundance and Species Interactions of Marine Birds and Mammals at South Georgia in Winter", "uid": "p0010382", "west": -39.0}, {"awards": "2132641 Bik, Holly", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -62,180 -64,180 -66,180 -68,180 -70,180 -72,180 -74,180 -76,180 -78,180 -80,144 -80,108 -80,72 -80,36 -80,0 -80,-36 -80,-72 -80,-108 -80,-144 -80,-180 -80,-180 -78,-180 -76,-180 -74,-180 -72,-180 -70,-180 -68,-180 -66,-180 -64,-180 -62,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 30 Aug 2022 00:00:00 GMT", "description": "Non-technical Abstract: The long isolation and unique biodiversity of the Southern Ocean represents an important case study region for understanding the evolution and ecology of populations. This study uses modern -omics approaches to evaluate the biodiversity, evolution, and ecology of Antarctic marine nematodes and their host-associated microbiomes from a variety of habitats collected at different depths. The results are producing an important baseline dataset of Antarctic meiofaunal diversity. All genomic resources generated in this project will be publicly accessible as open-source datasets with the potential for long-term scientific reuse. This project supports diverse researchers from underrepresented backgrounds and produces a suite of Antarctic-focused digital public outreach products. Technical Abstract: Nematode worms are abundant and ubiquitous in marine sediment habitats worldwide, performing key functions such as nutrient cycling and sediment stability. However, study of this phylum suffers from a perpetual and severe taxonomic deficit, with less than 5,000 formally described marine species. Fauna from the Southern Ocean are especially poorly studied due to limited sampling and the general inaccessibility of the Antarctic benthos. This study is providing the first large-scale molecular-based investigation from marine nematodes in the Eastern Antarctic continental shelf, providing an important comparative dataset for the existing body of historical (morphological) taxonomic studies. This project uses a combination of classical taxonomy (microscopy) and modern -omics tools to achieve three overarching aims: 1) determine if molecular data supports high biodiversity and endemism of benthic meiofauna in Antarctic benthic ecosystems; 2) determine the proportion of marine nematode species that have a deep-sea versus shallow-water evolutionary origin on the Antarctic shelf, and assess patterns of cryptic speciation in the Southern Ocean; and 3) determine the most important drivers of the host-associated microbiome in Antarctic marine nematodes. This project is designed to rapidly advance knowledge of the evolutionary origins of Antarctic meiofauna, provide insight on population-level patterns within key indicator genera, and elucidate the potential ecological and environmental factors which may influence microbiome patterns. Broader Impacts activities include an intensive cruise- and land-based outreach program focusing on social media engagement and digital outreach products, raising awareness of Antarctic marine ecosystems and understudied microbial-animal relationships. The diverse research team includes female scientists, first-generation college students, and Latinx trainees. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "East Antarctica; BENTHIC", "locations": "East Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bik, Holly", "platforms": null, "repositories": null, "science_programs": null, "south": -80.0, "title": "ANT LIA: Do Molecular Data Support High Endemism and Divergent Evolution of Antarctic Marine Nematodes and their Host-associated Microbiomes?", "uid": "p0010372", "west": -180.0}, {"awards": "1937546 Morgan-Kiss, Rachael; 1937595 Briggs, Brandon", "bounds_geometry": "POLYGON((162 -77.616667,162.1 -77.616667,162.2 -77.616667,162.3 -77.616667,162.4 -77.616667,162.5 -77.616667,162.6 -77.616667,162.7 -77.616667,162.8 -77.616667,162.9 -77.616667,163 -77.616667,163 -77.6283336,163 -77.6400002,163 -77.6516668,163 -77.6633334,163 -77.67500000000001,163 -77.68666660000001,163 -77.69833320000001,163 -77.7099998,163 -77.7216664,163 -77.733333,162.9 -77.733333,162.8 -77.733333,162.7 -77.733333,162.6 -77.733333,162.5 -77.733333,162.4 -77.733333,162.3 -77.733333,162.2 -77.733333,162.1 -77.733333,162 -77.733333,162 -77.7216664,162 -77.7099998,162 -77.69833320000001,162 -77.68666660000001,162 -77.67500000000001,162 -77.6633334,162 -77.6516668,162 -77.6400002,162 -77.6283336,162 -77.616667))", "dataset_titles": "18S rRNA from McMurdo Dry Valley lakes", "datasets": [{"dataset_uid": "200436", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "18S rRNA from McMurdo Dry Valley lakes", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1125919/"}], "date_created": "Wed, 27 Jul 2022 00:00:00 GMT", "description": "Part I: Non-technical description: Microbial communities are of more than just a scientific curiosity. Microbes represent the single largest source of evolutionary and biochemical diversity on the planet. They are the major agents for cycling carbon, nitrogen, phosphorus, and other elements through the ecosystem. Despite their importance in ecosystem function, microbes are still generally overlooked in food web models and nutrient cycles. Moreover, microbes do not live in isolation: their growth and metabolism are influenced by complex interactions with other microorganisms. This project will focus on the ecology, activity and roles of microbial communities in Antarctic Lake ecosystems. The team will characterize the genetic underpinnings of microbial interactions and the influence of environmental gradients (e.g. light, nutrients, oxygen, sulfur) and seasons (e.g. summer vs. winter) on microbial networks in Lake Fryxell and Lake Bonney in the Taylor Valley within the McMurdo Dry Valley region. Finally, the project furthers the NSF goals of training new generations of scientists by including undergraduate and graduate students, a postdoctoral researcher and a middle school teacher in both lab and field research activities. This partnership will involve a number of other outreach training activities, including visits to classrooms and community events, participation in social media platforms, and webinars. Part II: Technical description: Ecosystem function in the extreme Antarctic Dry Valleys ecosystem is dependent on complex biogeochemical interactions between physiochemical environmental factors (e.g. light, nutrients, oxygen, sulfur), time of year (e.g. summer vs. winter) and microbes. Microbial network complexity can vary in relation to specific abiotic factors, which has important implications on the fragility and resilience of ecosystems under threat of environmental change. This project will evaluate the influence of biogeochemical factors on microbial interactions and network complexity in two Antarctic ice-covered lakes. The study will be structured by three main objectives: 1) infer positive and negative interactions from rich spatial and temporal datasets and investigate the influence of biogeochemical gradients on microbial network complexity using a variety of molecular approaches; 2) directly observe interactions among microbial eukaryotes and their partners using flow cytometry, single-cell sorting and microscopy; and 3) develop metabolic models of specific interactions using metagenomics. Outcomes from amplicon sequencing, meta-omics, and single-cell genomic approaches will be integrated to map specific microbial network complexity and define the role of interactions and metabolic activity onto trends in limnological biogeochemistry in different seasons. These studies will be essential to determine the relationship between network complexity and future climate conditions. Undergraduate researchers will be recruited from both an REU program with a track record of attracting underrepresented minorities and two minority-serving institutions. To further increase polar literacy training and educational impacts, the field team will include a teacher as part of a collaboration with the successful NSF-funded PolarTREC program and participation in activities designed for public outreach. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.0, "geometry": "POINT(162.5 -77.67500000000001)", "instruments": null, "is_usap_dc": true, "keywords": "MICROALGAE; AQUATIC ECOSYSTEMS; Antarctica; LAKE/POND; BACTERIA/ARCHAEA; COMMUNITY DYNAMICS", "locations": "Antarctica", "north": -77.616667, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Morgan-Kiss, Rachael; Briggs, Brandon", "platforms": null, "repo": "NCBI SRA", "repositories": "NCBI SRA", "science_programs": null, "south": -77.733333, "title": "ANT LIA: Collaborative Research: Genetic Underpinnings of Microbial Interactions in Chemically Stratified Antarctic Lakes", "uid": "p0010355", "west": 162.0}, {"awards": "2012365 Johnston, David; 2012247 Groff, Dulcinea; 2012444 Cimino, Megan", "bounds_geometry": "POLYGON((-65 -64.5,-64.8 -64.5,-64.6 -64.5,-64.4 -64.5,-64.2 -64.5,-64 -64.5,-63.8 -64.5,-63.6 -64.5,-63.4 -64.5,-63.2 -64.5,-63 -64.5,-63 -64.55,-63 -64.6,-63 -64.65,-63 -64.7,-63 -64.75,-63 -64.8,-63 -64.85,-63 -64.9,-63 -64.95,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.95,-65 -64.9,-65 -64.85,-65 -64.8,-65 -64.75,-65 -64.7,-65 -64.65,-65 -64.6,-65 -64.55,-65 -64.5))", "dataset_titles": "Aerial data from drone surveys of coastal habitats on the West Antarctic Peninsula during austral summer (January\u2013March 2020 and February\u2013March 2019); Data from: Terrestrial spatial distribution and summer abundance of Antarctic fur seals (Arctocephalus gazella) near Palmer Station, Antarctica, from drone surveys", "datasets": [{"dataset_uid": "200472", "doi": "10.5061/dryad.qv9s4mwp0", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Data from: Terrestrial spatial distribution and summer abundance of Antarctic fur seals (Arctocephalus gazella) near Palmer Station, Antarctica, from drone surveys", "url": "https://datadryad.org/dataset/doi:10.5061/dryad.qv9s4mwp0"}, {"dataset_uid": "200471", "doi": "10.7924/r4sf2xs2w", "keywords": null, "people": null, "repository": "Duke Research Repository", "science_program": null, "title": "Aerial data from drone surveys of coastal habitats on the West Antarctic Peninsula during austral summer (January\u2013March 2020 and February\u2013March 2019)", "url": "https://research.repository.duke.edu/concern/datasets/r207tq370?locale=en"}], "date_created": "Sun, 24 Jul 2022 00:00:00 GMT", "description": "This award is funded in whole or part under the American Rescue Plan Act of 2021 (Public Law 117-2). Part I: Non-technical description: Ad\u00e9lie penguin colonies are declining and disappearing from the western Antarctic Peninsula. However, not all colonies in a certain area decline or disappear at the same rate. This research project will evaluate the influence of terrestrial surface properties on Ad\u00e9lie penguin colonies, leveraging five decades of research on seabirds near Palmer Station where an Ad\u00e9lie colony on Litchfield Island became extinct in 2007 while other colonies nearby are still present. The researchers will combine information obtained from remote sensing, UAS (Unoccupied Aircraft System, or drones) high-resolution maps, reconstruction of past moss banks and modeling with machine learning tools to define suitable penguin and peatbank moss habitats and explore the influence of microclimate on their distributions. In particular, the researchers are asking if guano from penguin colonies could act as fertilizers of moss banks in the presence of localized wind patters that can carry airborne nitrogen to the mosses. Modeling will relate penguin and peatbank moss spatial patterns to environmental variables and provide a greater understanding of how continued environmental change could impact these communities. The project allows for documentation of terrestrial Antarctic ecosystems in support of seabirds and provisioning of such information to the broader science community that seeks to study penguins, educating graduate and undergraduate students and a post-doctoral researcher. The research team includes two young women as Principal Investigators, one of them from an under-represented ethnic minority, first time Antarctic Principal Investigator, from an EPSCoR state (Wyoming), broadening participation in Antarctic research. Researchers will serve as student mentors through the Duke Bass Connections program entitled Biogeographic Assessment of Antarctic Coastal Habitats. This program supports an interdisciplinary team of graduate and undergraduate students collaborating with project faculty and experts on cutting-edge research bridging the classroom and the real world. Part II: Technical description: This research aims to understand the changes at the microclimate scale (meters) by analyzing present and past Ad\u00e9lie penguin colonies and moss peatbanks in islands around Palmer Station in the western Antarctic Peninsula \u2013 interlinked systems that are typically considered in isolation. By integrating in situ and remote data, this project will synthesize the drivers of biogeomorphology on small islands of the Antarctic Peninsula, a region of rapid change where plants and animals often co-occur and animal presence often determines the habitation of plants. A multi-disciplinary approach combine field measurements, remote sensing, UAS (Unoccupied Aircraft Systems) maps, paleoecology and modeling with machine learning to define suitable habitats and the influence of microclimates on penguin and peatbank distributions. The link between the two aspects of this study, peatbanks and penguins, is the potential source of nutrients for peat mosses from penguin guano. Peatbank and penguin distribution will be modeled and all models will be validated using in situ information from moss samples that will identify mechanistic processes. This project leverages 5 decades of seabird research in the area and high-definition remote sensing provided by the Polar Geospatial center to study the microclimate of Litchfield Island where an Ad\u00e9lie colony became extinct in 2007 when other colonies nearby are still present. The research team includes two early career women as Principal Investigators, one of them from an under-represented ethnic minority, first time Antarctic Principal Investigator, from an EPSCoR state (Wyoming). Researchers will serve as mentors for students through the Duke Bass Connections program entitled Biogeogrpahic Assessment of Antarctic Coastal Habitats which bridges the classroom and the real world. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -63.0, "geometry": "POINT(-64 -64.75)", "instruments": null, "is_usap_dc": true, "keywords": "Palmer Station; Antarctic Peninsula; COASTAL; STABLE ISOTOPES; TOPOGRAPHIC EFFECTS; PALEOCLIMATE RECONSTRUCTIONS; MACROFOSSILS; PLANTS; PENGUINS; ISOTOPES; VISIBLE IMAGERY; RADIOCARBON; Anvers Island", "locations": "Antarctic Peninsula; Anvers Island; Palmer Station", "north": -64.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Groff, Dulcinea; Cimino, Megan; Johnston, David", "platforms": null, "repo": "Dryad", "repositories": "Dryad; Duke Research Repository", "science_programs": null, "south": -65.0, "title": "Collaborative Research: Common Environmental Drivers Determine the Occupation Chronology of Ad\u00e9lie Penguins and Moss Peatbanks on the Western Antarctic Peninsula", "uid": "p0010354", "west": -65.0}, {"awards": "9981683 Costa, Daniel; 0003956 Burns, Jennifer", "bounds_geometry": "POLYGON((-70 -65,-69.5 -65,-69 -65,-68.5 -65,-68 -65,-67.5 -65,-67 -65,-66.5 -65,-66 -65,-65.5 -65,-65 -65,-65 -65.5,-65 -66,-65 -66.5,-65 -67,-65 -67.5,-65 -68,-65 -68.5,-65 -69,-65 -69.5,-65 -70,-65.5 -70,-66 -70,-66.5 -70,-67 -70,-67.5 -70,-68 -70,-68.5 -70,-69 -70,-69.5 -70,-70 -70,-70 -69.5,-70 -69,-70 -68.5,-70 -68,-70 -67.5,-70 -67,-70 -66.5,-70 -66,-70 -65.5,-70 -65))", "dataset_titles": "Crabeater seal oxygen stores", "datasets": [{"dataset_uid": "601583", "doi": "10.15784/601583", "keywords": "Antarctica; Crabeater Seal; GLOBEC; Hemoglobin; LMG0104; LMG0106; LMG0204; LMG0205; Marguerite Bay; Myoglobin; Oxygen Stores; Seals", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Crabeater seal oxygen stores", "url": "https://www.usap-dc.org/view/dataset/601583"}], "date_created": "Wed, 29 Jun 2022 00:00:00 GMT", "description": "This collaborative study between the University of California, Santa Cruz, Duke University, the University of South Florida, the University of Alaska-Anchorage, and the University of California, San Diego will examine the identification of biological and physical features associated with the abundance and distribution of individual Antarctic predators; the identification and characterization of biological \u0027hot spots\u0027 within the Western Antarctic Peninsula; and the development of temporally and spatially explicit models of krill consumption within the WAP by vertebrate predators. It is one of several data synthesis and modeling components that use the data obtained in the course of the field work of the Southern Ocean Global Ocean Ecosystems Dynamics (SO GLOBEC) experiment.\u003cbr/\u003eSO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. It is currently in a synthesis and modeling phase. This collaborative project is concerned with understanding how predators utilize \u0027hot spots\u0027, i.e. locally intense areas of biological productivity, and how \u0027hot spots\u0027 might temporally and spatially structure krill predation rates, and will be integrated with other synthesis and modeling studies that deal with the hydrography primary production, and krill dynamics.", "east": -65.0, "geometry": "POINT(-67.5 -67.5)", "instruments": null, "is_usap_dc": true, "keywords": "Marguerite Bay; MARINE ECOSYSTEMS", "locations": "Marguerite Bay", "north": -65.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Burns, Jennifer; Costa, Daniel", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Foraging Ecology of Crabeater Seals (Lobodon Carcinophagus)", "uid": "p0010345", "west": -70.0}, {"awards": "2141555 Brooks, Cassandra", "bounds_geometry": "POLYGON((-180 -71.5,-177.1 -71.5,-174.2 -71.5,-171.3 -71.5,-168.4 -71.5,-165.5 -71.5,-162.6 -71.5,-159.7 -71.5,-156.8 -71.5,-153.9 -71.5,-151 -71.5,-151 -72.25,-151 -73,-151 -73.75,-151 -74.5,-151 -75.25,-151 -76,-151 -76.75,-151 -77.5,-151 -78.25,-151 -79,-153.9 -79,-156.8 -79,-159.7 -79,-162.6 -79,-165.5 -79,-168.4 -79,-171.3 -79,-174.2 -79,-177.1 -79,180 -79,178.1 -79,176.2 -79,174.3 -79,172.4 -79,170.5 -79,168.6 -79,166.7 -79,164.8 -79,162.9 -79,161 -79,161 -78.25,161 -77.5,161 -76.75,161 -76,161 -75.25,161 -74.5,161 -73.75,161 -73,161 -72.25,161 -71.5,162.9 -71.5,164.8 -71.5,166.7 -71.5,168.6 -71.5,170.5 -71.5,172.4 -71.5,174.3 -71.5,176.2 -71.5,178.1 -71.5,-180 -71.5))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 27 May 2022 00:00:00 GMT", "description": "The Ross Sea, Antarctica, is one of the last large intact marine ecosystems left in the world, yet is facing increasing pressure from commercial fisheries and environmental change. It is the most productive stretch of the Southern Ocean, supporting an array of marine life, including Antarctic toothfish \u2013 the region\u2019s top fish predator. While a commercial fishery for toothfish continues to grow in the Ross Sea, fundamental knowledge gaps remain regarding toothfish ecology and the impacts of toothfish fishing on the broader Ross Sea ecosystem. Recognizing the global value of the Ross Sea, a large (\u003e2 million km2) marine protected area was adopted by the multi-national Commission for the Conservation of Antarctic Marine Living Resources in 2016. This research will fill a critical gap in the knowledge of Antarctic toothfish and deepen understanding of biological-physical interactions for fish ecology, while contributing to knowledge of impacts of fishing and environmental change on the Ross Sea system. This work will further provide innovative tools for studying connectivity among geographically distinct fish populations and for synthesizing and assessing the efficacy of a large-scale marine protected area. In developing an integrated research and education program in engaged scholarship, this project seeks to train the next generation of scholars to engage across the science-policy-public interface, engage with Southern Ocean stakeholders throughout the research process, and to deepen the public\u2019s appreciation of the Antarctic. A major research priority among Ross Sea scientists is to better understand the life history of the Antarctic toothfish and test the efficacy of the Ross Sea Marine Protected Area (MPA) in protecting against the impacts of overfishing and climate change. Like growth rings of a tree, fish ear bones, called otoliths, develop annual layers of calcium carbonate that incorporates elements from their environment. Otoliths offer information on the fish\u2019s growth and the surrounding ocean conditions. Hypothesizing that much of the Antarctic toothfish life cycle is structured by ocean circulation, this research employs a multi-disciplinary approach combining age and growth work with otolith chemistry testing, while also utilizing GIS mapping. The project will measure life history parameters as well as trace elements and stable isotopes in otoliths in three distinct sets collected over the last four decades in the Ross Sea. The information will be used to quantify the transport pathways Antarctic toothfish use across their life history, and across time, in the Ross Sea. The project will assess if toothfish populations from the Ross Sea are connected more widely across the Antarctic. By comparing life history and otolith chemistry data across time, the researchers will assess change in life history parameters and spatial dynamics and seek to infer if these changes are driven by fishing or climate change. Spatially mapping of these data will allow an assessment of the efficacy of the Ross Sea MPA in protecting toothfish and where further protections might be needed. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -151.0, "geometry": "POINT(-175 -75.25)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; USA/NSF; FIELD INVESTIGATION; USAP-DC; AMD; FISHERIES; Ross Sea", "locations": "Ross Sea", "north": -71.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Brooks, Cassandra", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -79.0, "title": "CAREER: Using Otolith Chemistry to Reveal the Life History of Antarctic Toothfish in the Ross Sea, Antarctica: Testing Fisheries and Climate Change Impacts on a Top Fish Predator", "uid": "p0010329", "west": 161.0}, {"awards": "2037670 Heine, John; 2037598 Alberto, Filipe", "bounds_geometry": "POLYGON((162 -76,162.8 -76,163.6 -76,164.4 -76,165.2 -76,166 -76,166.8 -76,167.6 -76,168.4 -76,169.2 -76,170 -76,170 -76.3,170 -76.6,170 -76.9,170 -77.2,170 -77.5,170 -77.8,170 -78.1,170 -78.4,170 -78.7,170 -79,169.2 -79,168.4 -79,167.6 -79,166.8 -79,166 -79,165.2 -79,164.4 -79,163.6 -79,162.8 -79,162 -79,162 -78.7,162 -78.4,162 -78.1,162 -77.8,162 -77.5,162 -77.2,162 -76.9,162 -76.6,162 -76.3,162 -76))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 23 May 2022 00:00:00 GMT", "description": "Climate change is changing the number of sea-ice free days in coastal polar environments, which is impacting Antarctic communities. This study will evaluate the change in macroalgae (seaweed) communities to increased light availability in order to predict if macroalgae will be able to spread to newly ice-free locations faster than invertebrates (e.g., sponges, bryozoans, tunicates, and polychaetes) in shallow underwater rocky habitats. Study sites will include multiple locations in McMurdo Sound, Ross Sea, Antarctica. This study will establish patterns in plant properties, genetic diversity and reproductive characteristics of two species of seaweeds, Phyllophora antarctica and Iridaea cordata in relation to depth and light. Long-term changes will be assesed by comparing to results from a survey in 1980. This will be the first study in the region to estimate the potential effects of climate, in particular reductions in annual sea ice cover and resulting increase in light intensity and duration, on shifts in macroalgal communities in McMurdo Sound. Three-dimensional photogrammetry will also be used to evaluate benthic community structure on the newly discovered offshore Dellbridge Seamount. Visualization from the video footage will be shared with web-based interactive applications to engage and educate the public in polar ecology and factors causing changes in marine community ecosystem structure in this important region. This project is evaluating macroalgae biogeography in Antarctic coastal waters near McMurdo Sound, a relatively understudied region that is experiencing large changes in fast sea ice coverage. The population ecology and genetic diversity of nearshore shallow and deeper offshore benthic macroalgal communities of Phyllophora antarctica and Iridaea cordata will be assessed for percentage cover, biomass, blade length, and reproductive characteristics at seven locations: Cape Royds, Cape Evans, Little Razorback Islands, Turtle Rock, Arrival Heights, Granite Harbor, and Dellbridge Seamount in McMurdo Sound, Antarctica. The team is also assessing differential reproductive successes at different depths and comparing results to populations surveyed in 1980. The genetic diversity of the two species is being estimated using a combination of whole genome sequencing and species-specific microsatellite genetic markers. Samples from this study will be compared to samples collected from other regions in Antarctica such as the South Shetland Islands and Antarctic Peninsula. In addition, a macroalgal assemblage and 3D models of the community structure will be generated using photogrammetry from the newly discovered Dellbridge Seamount that is located 2 km offshore in McMurdo Sound. With the addition of photogrammetry and 3D visualization to this research, web-based applications will be used to engage and educate the public in subtidal polar ecology, population genetics, and the importance of Antarctic science to their lives. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 170.0, "geometry": "POINT(166 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; McMurdo Sound; USAP-DC; Amd/Us; COMMUNITY DYNAMICS; FIELD INVESTIGATION; MACROALGAE (SEAWEEDS); USA/NSF", "locations": "McMurdo Sound", "north": -76.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Heine, John; Goldberg, Nisse; Alberto, Filipe", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -79.0, "title": "Collaborative Research: Biogeography, Population Genetics, and Ecology of two Common Species of Fleshy Red Algae in McMurdo Sound", "uid": "p0010322", "west": 162.0}, {"awards": "1951500 Jenouvrier, Stephanie", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Data from: Individual life histories: Neither slow nor fast, just diverse; Evo-Demo Hyperstate Matrix Model Code Repository; Hyperstate matrix model reveals the influence of personality on demography; Individual life histories: neither slow nor fast, just diverse; Plastic Behaviour Buffers Climate Variability in the Wandering Albatross; Strong winds reduce foraging success in albatrosses; Subtropical anticyclone impacts life-history traits of a marine top predator; The impact of boldness on demographic rates and lifehistory outcomes in the wandering albatross", "datasets": [{"dataset_uid": "200459", "doi": "https://doi.org/10.5281/zenodo.13881532", "keywords": null, "people": null, "repository": "ZENODO", "science_program": null, "title": "Strong winds reduce foraging success in albatrosses", "url": "https://zenodo.org/records/13881532"}, {"dataset_uid": "601770", "doi": "10.15784/601770", "keywords": "Antarctica; Cryosphere; Demography; Sub-Antarctic", "people": "Joanie, Van de Walle; Jenouvrier, Stephanie", "repository": "USAP-DC", "science_program": null, "title": "The impact of boldness on demographic rates and lifehistory outcomes in the wandering albatross", "url": "https://www.usap-dc.org/view/dataset/601770"}, {"dataset_uid": "200458", "doi": "https://doi.org/10.5061/dryad.3bk3j9kpm", "keywords": null, "people": null, "repository": "DRYAD", "science_program": null, "title": "Individual life histories: neither slow nor fast, just diverse", "url": "https://doi.org/10.6084/m9.figshare.c.6181063."}, {"dataset_uid": "200457", "doi": " https://zenodo.org/doi/10.5281/zenodo.10887354", "keywords": null, "people": null, "repository": "ZENODO", "science_program": null, "title": "Plastic Behaviour Buffers Climate Variability in the Wandering Albatross", "url": "https://zenodo.org/records/14290546"}, {"dataset_uid": "200456", "doi": "", "keywords": null, "people": null, "repository": "GITHUB", "science_program": null, "title": "Subtropical anticyclone impacts life-history traits of a marine top predator", "url": "https://github.com/fledge-whoi/Alba_Mascarene-High"}, {"dataset_uid": "200455", "doi": "", "keywords": null, "people": null, "repository": "GITHUB", "science_program": null, "title": "Hyperstate matrix model reveals the influence of personality on demography", "url": "https://github.com/fledge-whoi/HyperstateWApopulationmodel"}, {"dataset_uid": "200454", "doi": "", "keywords": null, "people": null, "repository": "GITHUB", "science_program": null, "title": "Evo-Demo Hyperstate Matrix Model Code Repository", "url": "https://github.com/fledge-whoi/Eco-EvoHyperstateModel"}, {"dataset_uid": "200453", "doi": "10.5061/dryad.3bk3j9kpm", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Data from: Individual life histories: Neither slow nor fast, just diverse", "url": "https://doi.org/10.5061/dryad.3bk3j9kpm"}], "date_created": "Wed, 08 Dec 2021 00:00:00 GMT", "description": "Part I: Nontechnical description: This award represents a collaborative geoscience research effort between US NSF and UK Natural Environment Research Council (NERC) researchers with efforts in each nation funded by their respective countries (Dear Colleague Letter NSF 16-132). The research will focus on understanding the links between behavior, ecology, and evolution in a Southern Ocean wandering albatross population in response to global changes in climate and in exploitation of natural resources. The most immediate response of animals to global change typically is behavioral, and this work will provide a more comprehensive understanding of how differences individual bird behavior affect evolution and adaptation for the population under changing environments. Characterization of albatross personality, life-history traits, and population dynamics collected over long time scales will be used to develop robust forecasting of species persistence in the face of future global changes. The results of this project will feed into conservation and management decisions for endangered Southern Ocean species. The work will also be used to provide specific research training at all levels, including a postdoctoral scholar, graduate students and K-12 students. It will also support education for the public about impacts from human-induced activities on our polar ecosystems using animations, public lectures, printed and web media. Part II: Technical description Past research has shown that individual animal personalities range over a continuum of behavior, such that some individuals are consistently more aggressive, more explorative, and bolder than others. How the phenotypic distributions of personality and foraging behavior types within a population is created and maintained by ecological (demographic and phenotypic plasticity) and evolutionary (heritability) processes remain an open question. Differences in personality traits determine how individuals acquire resources and how they allocate these to reproduction and survival. Although some studies have found different foraging behaviors or breeding performances between personality types, none have established the link between personality differences in foraging behaviors and life histories (both reproduction and survival, and their covariations) in the context of global change. Furthermore, plasticity in foraging behaviors is not considered in the pace-of-life syndrome, which has potentially hampered our ability to find covariation between personality and life history trade-off. This project will fill these knowledge gaps and develop an eco-evolutionary model of the complex interactions among individual personality and foraging plasticity, heritability of personality and foraging behaviors, life history strategies, population dynamics in a changing environment (fisheries and climate) using a long-term database consisting of ~1,800 tagged wandering albatross seabirds (Diomedea exulans) with defined individual personalities and life history traits breeding in the Southern Ocean. Climate projections from IPCC atmospheric-oceanic global circulation models will be used to provide projections of population structure under future global change conditions. Specifically, the team will (1) characterize the differences in life history strategies along the shy-bold continuum of personalities and across environmental conditions; (2) develop the link between phenotypic plasticity in foraging effort and personality; (3) characterize the heritability of personality and foraging behaviors; (4) develop a stochastic eco-evolutionary model to predict population growth rates in a changing environment. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; AMD; ECOLOGICAL DYNAMICS; OCEAN TEMPERATURE; USA/NSF; Antarctica; FIELD INVESTIGATION; SPECIES/POPULATION INTERACTIONS; PENGUINS; Amd/Us", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Integrated System Science", "paleo_time": null, "persons": "Jenouvrier, Stephanie; Patrick, Samantha", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "ZENODO", "repositories": "Dryad; DRYAD; GITHUB; USAP-DC; ZENODO", "science_programs": null, "south": -90.0, "title": "NSFGEO-NERC: Integrating Individual Personality Differences in the Evolutionary Ecology of a Seabird in the Rapidly Changing Polar Environment", "uid": "p0010283", "west": -180.0}, {"awards": "2040199 Ainley, David; 2040048 Ballard, Grant; 2040571 Smith, Walker", "bounds_geometry": "POLYGON((164 -74,165.6 -74,167.2 -74,168.8 -74,170.4 -74,172 -74,173.6 -74,175.2 -74,176.8 -74,178.4 -74,180 -74,180 -74.4,180 -74.8,180 -75.2,180 -75.6,180 -76,180 -76.4,180 -76.8,180 -77.2,180 -77.6,180 -78,178.4 -78,176.8 -78,175.2 -78,173.6 -78,172 -78,170.4 -78,168.8 -78,167.2 -78,165.6 -78,164 -78,164 -77.6,164 -77.2,164 -76.8,164 -76.4,164 -76,164 -75.6,164 -75.2,164 -74.8,164 -74.4,164 -74))", "dataset_titles": "P2P 2022-2023 Adelie Penguin Biologging Data; Seaglider data from the Western Ross Sea, Antarctica, November 2022-January 2023", "datasets": [{"dataset_uid": "200418", "doi": "10.5285/0a1c43b9-4738-75e0-e063-6c86abc0ea24", "keywords": null, "people": null, "repository": "BODC", "science_program": null, "title": "Seaglider data from the Western Ross Sea, Antarctica, November 2022-January 2023", "url": "\r\nhttps://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/0a1c43b9-4738-75e0-e063-6c86abc0ea24\r\n"}, {"dataset_uid": "601928", "doi": null, "keywords": "Adelie Penguin; Antarctica; Biologging; Cape Crozier; Cryosphere; Ross Sea", "people": "Ainley, David; Ballard, Grant; Schmidt, Annie", "repository": "USAP-DC", "science_program": null, "title": "P2P 2022-2023 Adelie Penguin Biologging Data", "url": "https://www.usap-dc.org/view/dataset/601928"}], "date_created": "Mon, 25 Oct 2021 00:00:00 GMT", "description": "NSFGEO-NERC Collaborative Research: P2P: Predators to Plankton \u2013 Biophysical controls in Antarctic polynyas Part I: Non-technical description: The Ross Sea, a globally important ecological hotspot, hosts 25% to 45% of the world populations of Ad\u00e9lie and Emperor penguins, South Polar skuas, Antarctic petrels, and Weddell seals. It is also one of the few marine protected areas within the Southern Ocean, designed to protect the workings of its ecosystem. To achieve conservation requires participation in an international research and monitoring program, and more importantly integration of what is known about penguin as predators and the biological oceanography of their habitat. The project will acquire data on these species\u2019 role within the local food web through assessing of Ad\u00e9lie penguin feeding grounds and food choices, while multi-sensor ocean gliders autonomously quantify prey abundance and distribution as well as ocean properties, including phytoplankton, at the base of the food web. Additionally, satellite imagery will quantify sea ice and whales, known penguin competitors, within the penguins\u2019 foraging area. Experienced and young researchers will be involved in this project, as will a public outreach program that reaches more than 200 school groups per field season, and with an excess of one million visits to a website on penguin ecology. Lessons about ecosystem change, and how it is measured, i.e. the STEM fields, will be emphasized. Results will be distributed to the world scientific and management communities. Part II: Technical description: This project, in collaboration with the United Kingdom (UK) National Environmental Research Council (NERC), assesses food web structure in the southwestern Ross Sea, a major portion of the recently established Ross Sea Region Marine Protected Area that has been designed to protect the region\u2019s food web structure, dynamics and function. The in-depth, integrated ecological information collected in this study will contribute to the management of this system. The southwestern Ross Sea, especially the marginal ice zone of the Ross Sea Polynya (RSP), supports global populations of iconic and indicator species: 25% of Emperor penguins, 30% of Ad\u00e9lie penguins, 50% of South Polar skuas, and 45% of Weddell seals. However, while individually well researched, the role of these members as predators has been poorly integrated into understanding of Ross Sea food web dynamics and biogeochemistry. Information from multi-sensor ocean gliders, high-resolution satellite imagery, diet analysis and biologging of penguins, when integrated, will facilitate understanding of the \u2018preyscape\u2019 within the intensively investigated biogeochemistry of the RSP. UK collaborators will provide state-of-the-art glider technology, glider programming, ballasting, and operation and expertise to evaluate the oceanographic conditions of the study area. Several young scientists will be involved, as well as an existing outreach program already developed that reaches annually more than 200 K-12 school groups and has more than one million website visits per month. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(172 -76)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; AQUATIC SCIENCES; USA/NSF; Amd/Us; Biologging; AMD; Foraging Ecology; FIELD SURVEYS; Ross Sea; Adelie Penguin", "locations": "Ross Sea", "north": -74.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ainley, David; Santora, Jarrod; Varsani, Arvind; Smith, Walker; Ballard, Grant; Schmidt, Annie", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "BODC", "repositories": "BODC; USAP-DC", "science_programs": null, "south": -78.0, "title": "NSFGEO-NERC: Collaborative Research \"P2P: Predators to Plankton -Biophysical Controls in Antarctic Polynyas\"", "uid": "p0010273", "west": 164.0}, {"awards": "1327248 Kohut, Josh; 1324313 Winsor, Peter; 1326167 Fraser, William; 1331681 Bernard, Kim; 1326541 Oliver, Matthew", "bounds_geometry": "POLYGON((-65 -62,-64.5 -62,-64 -62,-63.5 -62,-63 -62,-62.5 -62,-62 -62,-61.5 -62,-61 -62,-60.5 -62,-60 -62,-60 -62.3,-60 -62.6,-60 -62.9,-60 -63.2,-60 -63.5,-60 -63.8,-60 -64.1,-60 -64.4,-60 -64.7,-60 -65,-60.5 -65,-61 -65,-61.5 -65,-62 -65,-62.5 -65,-63 -65,-63.5 -65,-64 -65,-64.5 -65,-65 -65,-65 -64.7,-65 -64.4,-65 -64.1,-65 -63.8,-65 -63.5,-65 -63.2,-65 -62.9,-65 -62.6,-65 -62.3,-65 -62))", "dataset_titles": "Expedition Data; Expedition data of LMG1509", "datasets": [{"dataset_uid": "001378", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1509"}, {"dataset_uid": "002730", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1509", "url": "https://www.rvdata.us/search/cruise/LMG1509"}], "date_created": "Mon, 27 Sep 2021 00:00:00 GMT", "description": "The application of innovative ocean observing and animal telemetry technology over Palmer Deep (Western Antarctic Peninsula; WAP) is leading to new understanding, and also to many new questions related to polar ecosystem processes and their control by bio-physical interactions in the polar environment. This multi-platform field study will investigate the impact of coastal physical processes (e.g. tides, currents, upwelling events, sea-ice) on Ad\u00e9lie penguin foraging ecology in the vicinity of Palmer Deep, off Anvers Island, WAP. Guided by real-time surface convergence and divergences based on remotely sensed surface current maps derived from a coastal network of High Frequency Radars (HFRs), a multidisciplinary research team will adaptively sample the distribution of phytoplankton and zooplankton, which influence Ad\u00e9lie penguin foraging ecology, to understand how local oceanographic processes structure the ecosystem. Core educational objectives of this proposal are to increase awareness and understanding of (i) global climate change, (ii) the unique WAP ecosystem, (iii) innovative methods and technologies used by the researchers, and (iv) careers in ocean sciences, through interactive interviews with scientists, students, and technicians, during the field work. These activities will be directed towards instructional programming for K-16 students and their teachers. Researchers and educators will conduct formative and summative evaluation to improve the educational program and measure its impacts respectively.", "east": -60.0, "geometry": "POINT(-62.5 -63.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "R/V LMG; Palmer Station; PELAGIC; USA/NSF; Amd/Us; USAP-DC; AMD; LMG1509", "locations": "Palmer Station", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bernard, Kim; Kohut, Josh; Oliver, Matthew; Fraser, William; Winsor, Peter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.0, "title": "Collaborative Research: Impacts of Local Oceanographic Processes on Adelie Penguin Foraging Ecology Over Palmer Deep", "uid": "p0010268", "west": -65.0}, {"awards": "1947562 van Gestel, Natasja; 1643871 van Gestel, Natasja", "bounds_geometry": "POLYGON((-65 -64.5,-64.8 -64.5,-64.6 -64.5,-64.4 -64.5,-64.2 -64.5,-64 -64.5,-63.8 -64.5,-63.6 -64.5,-63.4 -64.5,-63.2 -64.5,-63 -64.5,-63 -64.55,-63 -64.6,-63 -64.65,-63 -64.7,-63 -64.75,-63 -64.8,-63 -64.85,-63 -64.9,-63 -64.95,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.95,-65 -64.9,-65 -64.85,-65 -64.8,-65 -64.75,-65 -64.7,-65 -64.65,-65 -64.6,-65 -64.55,-65 -64.5))", "dataset_titles": "2022-2023 Palmer Station terrestrial carbon fluxes - field warming experiment; Soil moisture and soil temperature data (0-5 cm) near Palmer Station, Antarctica", "datasets": [{"dataset_uid": "601853", "doi": "10.15784/601853", "keywords": "Antarctica; CO2; Cryosphere; Field Investigations; Palmer Station", "people": "van Gestel, Natasja", "repository": "USAP-DC", "science_program": null, "title": "2022-2023 Palmer Station terrestrial carbon fluxes - field warming experiment", "url": "https://www.usap-dc.org/view/dataset/601853"}, {"dataset_uid": "601877", "doi": "10.15784/601877", "keywords": "Antarctica; Antarctic Peninsula; Conductivity; Cryosphere; Palmer Station; Soil; Temperature", "people": "van Gestel, Natasja", "repository": "USAP-DC", "science_program": null, "title": "Soil moisture and soil temperature data (0-5 cm) near Palmer Station, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601877"}], "date_created": "Sat, 21 Aug 2021 00:00:00 GMT", "description": "Part I: Non-technical description: Earth\u2019s terrestrial ecosystems have the potential to either slow down or hasten the pace of climate change. The direction depends in part on both plant and microbial responses to warming. This study uses Antarctica as a model ecosystem to study the carbon balance of a simplified ecosystem (simplified compared to terrestrial ecosystems elsewhere) in response to a warming treatment. Carbon balance is dictated by sequestered carbon (through photosynthesis) and released carbon (plant and microbial respiration). Hence, to best assess plant and microbial responses to warming, this study uses a plant gradient that starts at the glacier (no plants, only soil microbes) to an old site entirely covered by plants. Experimental warming in the field is achieved by open-top chambers that warm the air and soil inside. The net ecosystem carbon exchange, the net result of sequestered and released carbon, will be measured in warmed and control plots with a state-of-the art gas exchange machine. Laboratory temperature incubation studies will supplement field work to attribute changes in carbon fluxes to individual plant species and soil microbial taxa (i.e., \u201cspecies\u201d). Data from this study will feed into earth system climate change models. The importance of this study will be shared with the broader community through the production of a video series created by an award-winning science media production company, an Antarctic blog, and through interactions with schools in the United States (on-site through Skype and in-person visits). Part II: Technical description: Responses of the carbon balance of terrestrial ecosystems to warming will feed back to the pace of climate change, but the size and direction of this feedback are poorly constrained. Least known are the effects of warming on carbon losses from soil, and clarifying the major microbial controls is an important research frontier. This study uses a series of experiments and observations to investigate microbial, including autotrophic taxa, and plant controls of net ecosystem productivity in response to warming in intact ecosystems. Field warming is achieved using open-top chambers paired with control plots, arrayed along a productivity gradient. Along this gradient, incoming and outgoing carbon fluxes will be measured at the ecosystem-level. The goal is to tie warming-induced shifts in net ecosystem carbon balance to warming effects on soil microbes and plants. The field study will be supplemented with lab temperature incubations. Because soil microbes dominate biogeochemical cycles in Antarctica, a major focus of this study is to determine warming responses of bacteria, fungi and archaea. This is achieved using a cutting-edge stable isotope technique, quantitative stable isotope probing (qSIP) developed by the proposing research team, that can identify the taxa that are active and involved in processing new carbon. This technique can identify individual microbial taxa that are actively participating in biogeochemical cycling of nutrients (through combined use of 18O-water and 13C-bicarbonate) and thus can be distinguished from those that are simply present (cold-preserved). The study further assesses photosynthetic uptake of carbon by the vegetation and their sensitivity to warming. Results will advance research in climate change, plant and soil microbial ecology, and ecosystem modeling. Science communication will be achieved through an informative video series, a daily Antarctic blog, and online- and in-person visits to schools in the United States. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -63.0, "geometry": "POINT(-64 -64.75)", "instruments": null, "is_usap_dc": true, "keywords": "Palmer Station; TERRESTRIAL ECOSYSTEMS; USA/NSF; AMD; Amd/Us; USAP-DC; FIELD SURVEYS", "locations": "Palmer Station", "north": -64.5, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Earth Sciences", "paleo_time": null, "persons": "van Gestel, Natasja", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Antarctica as a Model System for Responses of Terrestrial Carbon Balance to Warming", "uid": "p0010251", "west": -65.0}, {"awards": "2046800 Thurber, Andrew", "bounds_geometry": "POLYGON((162 -77,162.6 -77,163.2 -77,163.8 -77,164.4 -77,165 -77,165.6 -77,166.2 -77,166.8 -77,167.4 -77,168 -77,168 -77.1,168 -77.2,168 -77.3,168 -77.4,168 -77.5,168 -77.6,168 -77.7,168 -77.8,168 -77.9,168 -78,167.4 -78,166.8 -78,166.2 -78,165.6 -78,165 -78,164.4 -78,163.8 -78,163.2 -78,162.6 -78,162 -78,162 -77.9,162 -77.8,162 -77.7,162 -77.6,162 -77.5,162 -77.4,162 -77.3,162 -77.2,162 -77.1,162 -77))", "dataset_titles": null, "datasets": null, "date_created": "Sat, 21 Aug 2021 00:00:00 GMT", "description": "Part I: Non-technical description: Methane is one of the more effective atmospheric gases at retaining heat in the lower atmosphere and the earth\u2019s crust contains large quantities of methane. Research that identifies the factors that control methane\u2019s release into the atmosphere is critical to understanding and mitigating climate change. One of the most effective natural processes that inhibits the release of methane from aquatic habitats is a community of bacteria and Archaea (microbes) that use the chemical energy stored in methane, transforming methane into less-climate-sensitive compounds. The amount of methane that may be released in Antarctica is unknown, and it is unclear which microbes consume the methane before it is released from the ocean in Antarctica. This project will study one of the few methane seeps known in Antarctica to advance our understanding of which microbes inhibit the release of methane in marine environments. The research will also identify if methane is a source of energy for other Antarctic organisms. The researchers will analyze the microbial species associated with methane consumption over several years of field and laboratory research based at an Antarctic US station, McMurdo. This project clearly expands the fundamental knowledge of Antarctic systems, biota, and processes outlined as a goal in the Antarctic solicitation. This research communicates and produces educational material for K-12, college, and graduate students to inspire and inform the public about the role Antarctic ecosystems play in the global environment. This project also provides a young professor an opportunity to establish himself as an expert in the field of Antarctic microbial ecology to help solidify his academic career. Part II: Technical description: Microbes act as filter to methane release from the ocean into the atmosphere, where microbial chemosynthetic production harvests the chemical energy stored in this greenhouse gas. In spite of methane reservoirs in Antarctica being as large as Arctic permafrost, we know only a little about the taxa or dominant processes involved in methane consumption in Antarctica. The principal investigator will undertake a genomic and transcriptomic study of microbial communities developed and still developing after initiation of methane seepage in McMurdo Sound. An Antarctic methane seep was discovered at this location in 2012 after it began seeping in 2011. Five years after it began releasing methane, the methane-oxidizing microbial community was underdeveloped and methane was still escaping from the seafloor. This project will be essential in elucidating the response of microbial communities to methane release and identify how methane oxidation occurs within the constraints of the low polar temperatures. This investigation is based on 4 years of field sampling and will establish a time series of the development of cold seep microbial communities in Antarctica. A genome-to-ecosystem approach will establish how the Southern Ocean microbial community is adapted to prevent methane release into the ocean. As methane is an organic carbon source, results from this study will have implications for the Southern Ocean carbon cycle. Two graduate students will be trained and supported with undergraduates participating in laboratory activities. The researcher aims to educate, inspire and communicate about Antarctic methane seeps to a broad community. A mixed-media approach, with videos, art and education in schools will be supported in collaboration with a filmmaker, teachers and a visual artist. Students will be trained in filmmaking and K-12 students from under-represented communities will be introduced to Antarctic science through visual arts. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 168.0, "geometry": "POINT(165 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; USA/NSF; USAP-DC; BACTERIA/ARCHAEA; McMurdo Sound; BENTHIC; FIELD SURVEYS; Amd/Us; ECOSYSTEM FUNCTIONS", "locations": "McMurdo Sound", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Thurber, Andrew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -78.0, "title": "CAREER: Ecosystem Impacts of Microbial Succession and Production at Antarctic Methane Seeps", "uid": "p0010250", "west": 162.0}, {"awards": "1927709 Friedlaender, Ari; 1947453 Hunt, Kathleen; 1927742 Fleming, Alyson", "bounds_geometry": "POLYGON((150 -60,153 -60,156 -60,159 -60,162 -60,165 -60,168 -60,171 -60,174 -60,177 -60,180 -60,180 -61.5,180 -63,180 -64.5,180 -66,180 -67.5,180 -69,180 -70.5,180 -72,180 -73.5,180 -75,177 -75,174 -75,171 -75,168 -75,165 -75,162 -75,159 -75,156 -75,153 -75,150 -75,150 -73.5,150 -72,150 -70.5,150 -69,150 -67.5,150 -66,150 -64.5,150 -63,150 -61.5,150 -60))", "dataset_titles": "Bulk stable isotope data of blue and fin whales; Hormone meta data for Antarctic blue and fin whales", "datasets": [{"dataset_uid": "601908", "doi": "10.15784/601908", "keywords": "Antarctica; Biota; Blue Whale; Cryosphere; Fin Whale; Hormones; Oceans; Reproduction; Whales", "people": "Hunt, Kathleen; Fleming, Alyson", "repository": "USAP-DC", "science_program": null, "title": "Hormone meta data for Antarctic blue and fin whales", "url": "https://www.usap-dc.org/view/dataset/601908"}, {"dataset_uid": "601901", "doi": "10.15784/601901", "keywords": "Antarctica; Biota; Cryosphere; Isotope; Southern Ocean; Whales", "people": "Fleming, Alyson; Smith, Malia", "repository": "USAP-DC", "science_program": null, "title": "Bulk stable isotope data of blue and fin whales", "url": "https://www.usap-dc.org/view/dataset/601901"}], "date_created": "Tue, 10 Aug 2021 00:00:00 GMT", "description": "Blue and fin whales are the two largest animals on the planet, and the two largest krill predators in the Southern Ocean. Commercial whaling in Antarctic waters started in the early 1900?s, and by the 1970\u0027s whale populations were reduced from thousands to only a few hundred individuals. The absence of data about whale biology and ecology prior to these large population reductions has limited our understanding of how the ecosystem functioned when cetacean populations were more robust. However, an archive of baleen plates from 800 Antarctic blue and fin whales harvested between 1946 and 1948 was recently rediscovered in the Smithsonian\u0027s National Museum of Natural History that will shed insight into historic whale ecology. As baleen grows, it incorporates circulating hormones, and compounds from the whale\u0027s diet, recording continuous biological and oceanographic information across multiple years. This project will apply a suite of modern molecular techniques to these archived specimens to ask how blue and fin whale foraging and reproduction responded to climate variability, changes at the base of the food web, and whaling activities in the early 1940s. By comparison with more modern datasets, these investigations will fill major gaps in understanding of the largest krill predators, their response to disturbance and environmental change, and the impact that commercial whaling has had on the structure and function of the Antarctic marine ecosystem. This project will improve stem education through annual programming for middle and high school girls in partnership with UNCW\u0027s Marine Quest program. Public outreach will occur through partnerships with the Smithsonian and the International Association of Antarctic Tour Operators to deliver emerging research on Antarctic ecosystems and highlight the contemporary relevance and scientific value of museum collections. Examination of past conditions and adaptations of polar biota is fundamental to predictions of future climate change scenarios. The baleen record that will be used in this study forms an ideal experimental platform for studying bottom-up, top-down and anthropogenic impacts on blue and fin whales. This historic baleen archive includes years with strong climate and temperature anomalies allowing the influence of climate variability on predators and the ecosystems that support them to be examined. Additionally, the impact of commercial whaling on whale stress levels will be investigated by comparing years of intensive whaling with the non-whaling years of WWII, both of which are captured in the time series. There are three main approaches to this project. First, bulk stable isotope analysis will be used to examine the trophic dynamics of Antarctic blue and fin whales. Second, compound-specific stable isotope analyses (CSIA-AA) will characterize the biogeochemistry of the base of the Antarctic food web. Finally, analyses of hormone levels in baleen will reveal differences in stress levels and reproductive status of individuals, and inform understanding of cetacean population biology. This project will generate a new public data archive to foster research opportunities across various components of the OPP program, all free from the logistical constraints of Antarctic field work. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(165 -67.5)", "instruments": null, "is_usap_dc": true, "keywords": "ECOSYSTEM FUNCTIONS; PELAGIC; MAMMALS; LABORATORY; AMD; Amd/Us; Southern Ocean; USAP-DC; USA/NSF", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Fleming, Alyson; Friedlaender, Ari; McCarthy, Matthew; Hunt, Kathleen", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.0, "title": "Collaborative Research: A New Baseline for Antarctic Blue and Fin Whales", "uid": "p0010240", "west": 150.0}, {"awards": "1746087 Tarrant, Ann", "bounds_geometry": "POLYGON((-80 -60,-77.5 -60,-75 -60,-72.5 -60,-70 -60,-67.5 -60,-65 -60,-62.5 -60,-60 -60,-57.5 -60,-55 -60,-55 -61,-55 -62,-55 -63,-55 -64,-55 -65,-55 -66,-55 -67,-55 -68,-55 -69,-55 -70,-57.5 -70,-60 -70,-62.5 -70,-65 -70,-67.5 -70,-70 -70,-72.5 -70,-75 -70,-77.5 -70,-80 -70,-80 -69,-80 -68,-80 -67,-80 -66,-80 -65,-80 -64,-80 -63,-80 -62,-80 -61,-80 -60))", "dataset_titles": "Calanoides acutus: Transcriptome and gene expression data; BioProject PRJNA757455; Calanus propinquus: Transcriptome and gene expression data; BioProject PRJNA669816; Expedition data of LMG1901; Rhincalanus gigas: Transcriptome and gene expression data; BioProject PRJNA666170", "datasets": [{"dataset_uid": "200283", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "Calanus propinquus: Transcriptome and gene expression data; BioProject PRJNA669816", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA669816"}, {"dataset_uid": "200125", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1901", "url": "https://www.rvdata.us/search/cruise/LMG1901"}, {"dataset_uid": "200284", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "Calanoides acutus: Transcriptome and gene expression data; BioProject PRJNA757455", "url": "https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA757455"}, {"dataset_uid": "200239", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "Rhincalanus gigas: Transcriptome and gene expression data; BioProject PRJNA666170", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA666170"}], "date_created": "Fri, 06 Aug 2021 00:00:00 GMT", "description": "Animals in the polar oceans have adapted to dramatic seasonal changes in day length, food availability, and ice cover, as well as to consistently cold waters. This project focuses on the adaptations of copepods - small animals that live in the water column and are an important food source to many different predators. The field studies will take place in the western Antarctic Peninsula, an environment and ecosystem that is rapidly changing. Antarctic copepods have developed particular feeding and behavioral strategies to survive in their very seasonal environment, however it is not known how each of these species will respond to environmental change. The overall goal of this project is to examine and compare these adaptations across species and to understand how each species responds to short-term changes in food availability. The project contains three main objectives: the first objective is to compare the sets of genes across species, especially looking at genes related to storage of energy from food. The second objective is to measure and compare the responses of copepods to changes in food availability. The third objective is to determine how variation across the western Antarctic Pensinsula habitat affects the feeding condition of the copepods. To make the data more useful to the broader research community, a database will be developed enabling easy comparison of genetic information between copepod species. This project will provide hands-on training opportunities to graduate and undergraduate student and will seek to recruit students from underrepresented groups. Results and scientific concepts will be shared through outreach activities, including an expedition blog, a series of interactive animations, and public presentations. Polar marine organisms have adapted to dramatic seasonal changes in photoperiod, light intensity, and ice cover, as well as to cold but stable thermal environments. The western Antarctic Peninsula, the focal region for the field studies, has experienced rapid warming and ice melt. While it is difficult to predict exactly how physical conditions in this region will change, effects on species distributions have already been documented. Large Antarctic copepods in the families Calanidae and Rhincalanidae are dominant components of the mesozooplankton that use different metabolic and behavioral strategies to optimize their use of a highly seasonal food supply. The overall goal of this project is to leverage molecular approaches to examine the physiological and metabolic adaptations at the individual and species level. The project focuses on three main objectives: the first objective is to characterize the gene complement and stage-specific gene expression patterns in Antarctic copepods within an evolutionary context. The second objective is to measure and compare the physiological and molecular responses of juvenile copepods to variable feeding conditions. The third objective is to characterize metabolic variation within natural copepod populations. The metabolically diverse Antarctic copepods also provide an excellent opportunity to compare mechanisms regulating energy storage and utilization and to test hypotheses regarding the roles of specific genes. The field studies will aim to utilize information from an ongoing long term research program (the Palmer Long-Term Ecological Research), which complements the ongoing program and provides extensive context for this project. To make the data more useful to the research community, a database will be developed facilitating comparison of transcriptomes between copepod species. This project will provide hands-on training opportunities to graduate and undergraduate students. Efforts will be made to recruit students who are members of underrepresented minorities. Results and scientific concepts will be broadly disseminated through an expedition blog, a series of interactive animations, and public presentations. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -55.0, "geometry": "POINT(-67.5 -65)", "instruments": null, "is_usap_dc": true, "keywords": "ARTHROPODS; AMD; PELAGIC; USA/NSF; USAP-DC; PLANKTON; West Antarctic Shelf; Amd/Us; SHIPS", "locations": "West Antarctic Shelf", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Tarrant, Ann", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "NCBI", "repositories": "NCBI; R2R", "science_programs": null, "south": -70.0, "title": "Physiological Ecology of \"Herbivorous\" Antarctic Copepods", "uid": "p0010239", "west": -80.0}, {"awards": "1943550 McDonald, Birgitte", "bounds_geometry": "POLYGON((168 -77,168.3 -77,168.6 -77,168.9 -77,169.2 -77,169.5 -77,169.8 -77,170.1 -77,170.4 -77,170.7 -77,171 -77,171 -77.1,171 -77.2,171 -77.3,171 -77.4,171 -77.5,171 -77.6,171 -77.7,171 -77.8,171 -77.9,171 -78,170.7 -78,170.4 -78,170.1 -78,169.8 -78,169.5 -78,169.2 -78,168.9 -78,168.6 -78,168.3 -78,168 -78,168 -77.9,168 -77.8,168 -77.7,168 -77.6,168 -77.5,168 -77.4,168 -77.3,168 -77.2,168 -77.1,168 -77))", "dataset_titles": "Late chick-rearing foraging ecology of emperor penguins from the Cape Crozier colony; Post-molt emperor penguin foraging ecology", "datasets": [{"dataset_uid": "601688", "doi": "10.15784/601688", "keywords": "Animal Tracking; Antarctica; Biota; Emperor Penguin; GPS; Late Chick Rearing; Ross Sea", "people": "McDonald, Birgitte", "repository": "USAP-DC", "science_program": null, "title": "Late chick-rearing foraging ecology of emperor penguins from the Cape Crozier colony", "url": "https://www.usap-dc.org/view/dataset/601688"}, {"dataset_uid": "601686", "doi": "10.15784/601686", "keywords": "Antarctica; Biota; Emperor Penguin; NBP2302; Post-Molt; Ross Sea", "people": "McDonald, Birgitte", "repository": "USAP-DC", "science_program": null, "title": "Post-molt emperor penguin foraging ecology", "url": "https://www.usap-dc.org/view/dataset/601686"}], "date_created": "Tue, 20 Jul 2021 00:00:00 GMT", "description": "Part I: Non-technical Summary Understanding the mechanisms that animals use to find and acquire food is a fundamental question in ecology. The survival and success of marine predators depends on their ability to locate prey in a variable or changing environment. To do this the predators need to be able to adjust foraging behavior depending on the conditions they encounter. Emperor penguins are ice-dependent, top predators in Antarctica. However, they are vulnerable to environmental changes that alter food web or sea ice coverage, and environmental change may lead to changes in penguin foraging behavior, and ultimately survival and reproduction success. Despite their importance in the Southern Ocean ecosystem, relatively little is known about the specific mechanisms Emperor penguins use to find and acquire food. This study combines a suite of technological and analytical tools to gain essential knowledge on Ross Sea penguin foraging energetics, ecology, and habitat use during critical periods in their life history, especially during late chick-rearing periods. Energy management is particularly crucial during this time as parents need to feed both themselves and their rapidly growing offspring, while being constrained to regions near the colony. Penguin ecology and habitat preference will also be evaluated after the molt and through early reproduction. This study fills important ecological knowledge gaps on the energy balance, diet, and habitat use by penguins during these critical periods. Finally, the project furthers the NSF goals of training new generations of scientists through training of undergraduates, graduate students and a postdoctoral researcher. Public outreach activities will be aligned with another NSF funded project designed to provide science training in afterschool and camp programs that target underrepresented groups. Part II: Technical summary This project will identify behavioral and physiological variability in foraging Emperor penguins that can be directly linked to individual success in the marine environment using an ecological theoretical framework during two critical life history stages. First, this project will investigate the foraging energetics, ecology, and habitat use of Emperor penguins at Cape Crozier using fine-scale movement and video data loggers during the energetically demanding life history phase of late chick-rearing. Specifically, this study will 1) Estimate the relationship of foraging efficiency to foraging behavior and diet using an optimal foraging theory framework to identify what environmental or physiological constraints influence foraging behavior; 2) Investigate the inter- and intra-individual behavioral variability exhibited by emperor penguins, which is essential to predict how resilient these penguins are to environmental change; and 3) Integrate penguin foraging efficiency data with environmental data to identify important habitat. Next the researchers will study the ecology and habitat preference after the molt and through early reproduction using satellite-linked data loggers. The team will: 1) Investigate penguin inter- and intra-individual behavioral variability during the three-month post-molt and early winter foraging trips; and 2) Integrate penguin behavioral data with environmental data to identify which environmental features are indicative of habitat preference when penguins are not constrained to returning to the colony to feed a chick. These fine- and coarse-scale data will be combined with climate predictions to create predictive habitat models. The education objectives of this CAREER project are designed to inspire, engage, and train the next generation of scientists using the data and video generated while investigating Emperor penguins in the Antarctic ecosystem. This includes development of two university courses, training of undergraduate and graduate students, and a collaboration with the NSF funded \u201cPolar Literacy: A model for youth engagement and learning\u201d program to develop after school and camp curriculum that target undeserved and underrepresented groups. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 171.0, "geometry": "POINT(169.5 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; PENGUINS; MARINE ECOSYSTEMS; USA/NSF; Ross Sea; FIELD SURVEYS; USAP-DC; AMD", "locations": "Ross Sea", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "McDonald, Birgitte", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "CAREER: Foraging Ecology and Physiology of Emperor Penguins in the Ross Sea", "uid": "p0010232", "west": 168.0}, {"awards": "1746148 Sirovic, Ana", "bounds_geometry": "POLYGON((140 -65.5,140.8 -65.5,141.6 -65.5,142.4 -65.5,143.2 -65.5,144 -65.5,144.8 -65.5,145.6 -65.5,146.4 -65.5,147.2 -65.5,148 -65.5,148 -65.57,148 -65.64,148 -65.71,148 -65.78,148 -65.85,148 -65.92,148 -65.99,148 -66.06,148 -66.13,148 -66.2,147.2 -66.2,146.4 -66.2,145.6 -66.2,144.8 -66.2,144 -66.2,143.2 -66.2,142.4 -66.2,141.6 -66.2,140.8 -66.2,140 -66.2,140 -66.13,140 -66.06,140 -65.99,140 -65.92,140 -65.85,140 -65.78,140 -65.71,140 -65.64,140 -65.57,140 -65.5))", "dataset_titles": "Passive acoustic recording metadata from East Antarctica, Feb 2019", "datasets": [{"dataset_uid": "601465", "doi": "10.15784/601465", "keywords": "Antarctica; East Antarctica", "people": "Sirovic, Ana", "repository": "USAP-DC", "science_program": null, "title": "Passive acoustic recording metadata from East Antarctica, Feb 2019", "url": "https://www.usap-dc.org/view/dataset/601465"}], "date_created": "Tue, 13 Jul 2021 00:00:00 GMT", "description": "Understanding the interaction between blue whales and their prey is essential for understanding Antarctic ecosystem dynamics. In the austral summer of 2019 an international interdisciplinary research voyage will head to the Antarctic with the overall goal of mapping Antarctic krill and blue whale distributions to determine if foraging preferences of blue whales are dictated in part by the density and shape of Antarctic krill swarms. This research voyage will combine advanced research technologies (including autonomous underwater vehicles, short term-tags, photogrammetry, and ship-based, real-time passive listening and active echosounders) to answer questions about how the density, swarm shape and behavior of Antarctic krill influence Antarctic blue whales. U.S. participation on this voyage on an Australian research vessel will allow collection of concurrent predator and prey data through the use of passive listening and echosounders from a fixed mooring. By coupling moored data collection with the ship-based survey focusing on Antarctic blue whale behavior and krill dynamics, the project will contribute to the understanding of basic questions relating to the dynamics between blue whales and their prey as well as adding to the development of instrumentation and technologies that will enhance current capabilities for in situ observing on the continent and the surrounding ice-covered waters. The project will provide an educational platform for high school students and the general public to virtually experience Antarctica via \"virtual sailing\" through a project website and blog. Students and the general public also will be allowed the opportunity to participate in post-cruise data analysis. The Australian Antarctic Division and the University of Tasmania will lead an international voyage to the Antarctic in the austral summer of 2019. The overall goal of the voyage will be to map Antarctic krill (Euphausia superba) and blue whale (Balaenoptera musculus) distributions to determine if the foraging preferences of blue whales are dictated in part by the density and shape of Antarctic krill swarms. US participation in voyage will entail the deployment of passive and active acoustic instrumentation on a fixed mooring in concert with real-time acoustic and visual tracking and localizing of blue whales that will then allow better directing of ship operations towards aggregations of animals such that fine-scale acoustic tracking and prey field mapping can be achieved. This approach will be the first time such an acoustic system is deployed in Antarctica and used in an integrative fashion to assess foraging behaviors and krill. Thus, the project will advance understanding of the relationships between the acoustic ecology of blue whales, krill abundance, and blue whale densities. The technology deployment and testing will also be used to assess its potential use in ice-covered waters for similar studies in the future. Broader impacts of this project will occur through outreach and education, as well as through the collaborations with the broader international scientific community. The project will provide educational platforms for high school students and general public to virtually experience Antarctica. Research findings will be communicated to both the scientific community and the wider public through peer-reviewed publications, presentations, student lectures, seminars and communication through appropriate media channels by institutional communications teams. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 148.0, "geometry": "POINT(144 -65.85)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; AMD; USAP-DC; SPECIES/POPULATION INTERACTIONS; MAMMALS; PELAGIC; East Antarctica; USA/NSF; ACOUSTIC SCATTERING; FIELD SURVEYS; ARTHROPODS", "locations": "East Antarctica", "north": -65.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Sirovic, Ana; Stafford, Kathleen", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -66.2, "title": "EAGER: Collaborative Research: Acoustic Ecology of Foraging Antarctic Blue Whales in the Vicinity of Antarctic Krill", "uid": "p0010228", "west": 140.0}, {"awards": "1643877 Friedlaender, Ari", "bounds_geometry": "POLYGON((-65 -63.5,-64.5 -63.5,-64 -63.5,-63.5 -63.5,-63 -63.5,-62.5 -63.5,-62 -63.5,-61.5 -63.5,-61 -63.5,-60.5 -63.5,-60 -63.5,-60 -63.73,-60 -63.96,-60 -64.19,-60 -64.42,-60 -64.65,-60 -64.88,-60 -65.11,-60 -65.34,-60 -65.57,-60 -65.8,-60.5 -65.8,-61 -65.8,-61.5 -65.8,-62 -65.8,-62.5 -65.8,-63 -65.8,-63.5 -65.8,-64 -65.8,-64.5 -65.8,-65 -65.8,-65 -65.57,-65 -65.34,-65 -65.11,-65 -64.88,-65 -64.65,-65 -64.42,-65 -64.19,-65 -63.96,-65 -63.73,-65 -63.5))", "dataset_titles": "Motion-sensing biologging data from Antarctic minke whales, West Antarctic Peninsula", "datasets": [{"dataset_uid": "601542", "doi": "10.15784/601542", "keywords": "Antarctica; Antarctic Peninsula; Biologging; Foraging; Ice; Minke Whales", "people": "Friedlaender, Ari", "repository": "USAP-DC", "science_program": null, "title": "Motion-sensing biologging data from Antarctic minke whales, West Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601542"}], "date_created": "Fri, 25 Jun 2021 00:00:00 GMT", "description": "The Antarctic Peninsula is warming and one of the consequences is a decrease in sea ice cover. Antarctic minke whales are the largest ice-obligate krill predator in the region, yet- little is known about their foraging behavior and ecology. The goals of the project are to use a suite of new technological tools to measure the underwater behavior of the whales and better understand how they exploit the sea ice habitat. Using video-recording motion-sensing tags, the underwater movements of the whales can be reconstructed and it can be determine where and when they feed. UAS (unmanned aerial systems) will be used to generate real-time images of sea ice cover that will be linked with tag data to determine how much time whales spend in sea ice versus open water, and how the behavior of the whales changes between these two habitats. Lastly, scientific echosounders will be used to characterize the prey field that the whales are exploiting and differences in krill availability inside and out of the ice will be investigated. All of this information is critical to understand the ecological role of Antarctic minke whales so that better predictions can be made regarding impacts of climate change not only on these animals, but on the structure and function of the Antarctic marine ecosystem. The project will promote the progress of science by elucidating the ecological role of a poorly known Antarctic predator and using this information to better understand the impact of changes that are occurring in Polar Regions. The educational and outreach program will increase awareness and understanding of minke whales, Antarctic marine ecosystems, sea ice, and the dynamics of climate change through the use of film, social media, and curriculum development for formal STEM educators. To understand how changes in sea ice will manifest in the demography of predators that rely on sea ice habitat requires knowledge of their behavior and ecology. The largest ice-dependent krill predator and most abundant cetacean in the Southern Ocean is the Antarctic minke whale (AMW)- yet, virtually nothing is known of its foraging behavior or ecological role. Thus, the knowledge to understand how climate-driven changes will affect these animals and therefore the dynamics of the ecosystem as a whole is lacking. The project will use multi-sensor and video recording tags, fisheries acoustics, and unmanned aerial systems to study the foraging behavior and ecological role of minke whales in the waters of the Antarctic Peninsula. The following research questions will be posed: 1. What is the feeding performance of AMWs? 2. How important is sea ice to the foraging behavior of AMW? 3. How do AMWs feed directly under sea ice? Proven tagging and analytical approaches to characterize the underwater feeding behavior and kinematics of minke whales will be used. Combined with quantitative measurements of the prey field, the energetic costs of feeding will be measured and it will be determined how minke whales optimize energy gain. Using animal-borne video recording tags and UAS technology it will also be determined how much feeding occurs directly under sea ice and how this mode differs from open water feeding. This knowledge will: (1) significantly enhance knowledge of the least-studied Antarctic krill predator; and (2) be made directly available to international, long-term efforts to understand how climate-driven changes will affect the structure and function of the Antarctic marine ecosystem. The educational and outreach efforts aim to increase awareness and understanding of: (i) the ecological role of minke whales around the Antarctic Peninsula; (ii) the effects of environmental change on an abundant but largely unstudied marine predator; (iii) the advanced methods and technologies used by whale researchers to study these cryptic animals and their prey; and (iv) the variety of careers in the ocean sciences by sharing the experiences of scientists and students. These educational aims will be achieved by delivering continuous near-real-time delivery of project events and data to informal audiences through social media channels as well as curricula and professional development programs that will provide formal STEM educators with specific standards-compliant lesson plans.", "east": -60.0, "geometry": "POINT(-62.5 -64.65)", "instruments": null, "is_usap_dc": true, "keywords": "Andvord Bay; USAP-DC; MARINE ECOSYSTEMS; AMD; FIELD INVESTIGATION; Amd/Us; USA/NSF", "locations": "Andvord Bay", "north": -63.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Friedlaender, Ari", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.8, "title": "Foraging Behavior and Ecological Role of the Least Studied Antarctic Krill Predator, the Antarctic Minke Whale (Balaenoptera Bonaerensis)", "uid": "p0010207", "west": -65.0}, {"awards": "1840941 Murphy, David; 1840927 Weissburg, Marc; 1840949 Fields, David", "bounds_geometry": null, "dataset_titles": "", "datasets": [{"dataset_uid": "200473", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "", "url": "https://www.bco-dmo.org/project/898124"}], "date_created": "Fri, 25 Jun 2021 00:00:00 GMT", "description": "Antarctic krill (Euphausia superba) are an ecologically important component of the Southern Ocean\u0027s food web, yet little is known about their behavior in response to many features of their aquatic environment. This project will improve understanding of krill swimming and schooling behavior by examining individual responses to light levels, water flow rates, the presence of attractive and repulsive chemical cues. Flow, light and chemical conditions will be controlled and altered in specialized tanks outfitted with high speed digital camera systems so that individual krill responses to these factors can be measured in relevant schooling settings. This analysis will be used to predict preferred environments, define the capacity of krill to detect and move to them (and away from unfavorable ones). Such information will then be used to improve models that estimate the energetic costs of behaviors associated with different types of environments. Linking individual behavior to those of larger krill aggregations will also improve acoustic assessments of krill densities. Understanding the capacity of krill to respond to environmental perturbations will improve our understanding of the ecology of high latitude ecosystems and provide relevant information for the management of krill fisheries. The project will support graduate and undergraduate students and provide training for as post-doctoral associate. Curricular materials and public engagement activities will be based on the project\u0027s aims and activities. Project investigators will share model results and predictions of krill movements and school structure with experts interested in krill conservation and management. The project will use horizontal and vertical laminar flow tunnels to examine krill behavior under naturally relevant conditions. Horizontal (1-10 cm per second) and vertical (1-3 mm per second) flow velocities mimic naturally relevant current patterns, while light levels and spectral quality will be varied from complete darkness to intensities experienced across the depth range inhabited by krill. Attractive phytoplankton odor will be created by dosing the flumes to obtain background chlorophyll a levels approximating average and bloom conditions, while repulsive cues will be generated from penguin guano. Behavior of individual krill in all conditions will be video recorded with cameras visualizing X-Y and Y-Z planes, and 3D movements will be reconstructed by video motion analysis at a 5 Hz sampling rate. The distribution of horizontal and vertical swimming angles and velocities will be used to create an individual based model (IBM) of krill movement in response to each condition, where krill behavior at each model time step is based on random draws from the velocity and angular distributions. Since krill commonly travel in groups, further experiments will examine the behavior of small krill schools in these same conditions to further parameterize variables such as individual spacing. Researchers will examine krill aggregation structure from 3D video records of krill swimming in a specially designed kriesel tank, and compute nearest neighbor distances (NND) and correlations of swimming angles among individuals within the aggregation. Krill movements in the IBM will be constrained to adhere to observed NND and angular correlations. Large scale oceanographic models will be used to define spatial environments in which the modelled krill will be allowed to move using simulated schools of 1000-100,000 krill. Model output will include the school swimming speed, direction and structure (packing density, NND). Researchers will compare available acoustic data sets of krill schools in measured flow and phytoplankton abundance to evaluate the model predictions. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "ANIMAL ECOLOGY AND BEHAVIOR; AMD; FIELD INVESTIGATION; Amd/Us; USAP-DC; Palmer Station; USA/NSF", "locations": "Palmer Station", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Record, Nicholas ; Weissburg, Marc; Murphy, David", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": null, "title": "Collaborative Research: Individual Based Approaches to Understanding Krill Distributions and Aggregations", "uid": "p0010202", "west": null}, {"awards": "1640481 Rotella, Jay", "bounds_geometry": "POLYGON((162 -75,162.8 -75,163.6 -75,164.4 -75,165.2 -75,166 -75,166.8 -75,167.6 -75,168.4 -75,169.2 -75,170 -75,170 -75.38,170 -75.76,170 -76.14,170 -76.52,170 -76.9,170 -77.28,170 -77.66,170 -78.03999999999999,170 -78.42,170 -78.8,169.2 -78.8,168.4 -78.8,167.6 -78.8,166.8 -78.8,166 -78.8,165.2 -78.8,164.4 -78.8,163.6 -78.8,162.8 -78.8,162 -78.8,162 -78.42,162 -78.03999999999999,162 -77.66,162 -77.28,162 -76.9,162 -76.52,162 -76.14,162 -75.76,162 -75.38,162 -75))", "dataset_titles": "Demographic data for Weddell Seal colonies in Erebus Bay through the 2017 Antarctic field season; Demographic data for Weddell Seal colonies in Erebus Bay through the 2023 Antarctic field season", "datasets": [{"dataset_uid": "601837", "doi": "10.15784/601837", "keywords": "AMD; Amd/Us; Antarctica; Cryosphere; McMurdo Sound; Population Dynamics; USA/NSF; USAP-DC; Weddell Seal", "people": "Rotella, Jay", "repository": "USAP-DC", "science_program": null, "title": "Demographic data for Weddell Seal colonies in Erebus Bay through the 2023 Antarctic field season", "url": "https://www.usap-dc.org/view/dataset/601837"}, {"dataset_uid": "200300", "doi": " https://doi.org/10.15784/601125 ", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Demographic data for Weddell Seal colonies in Erebus Bay through the 2017 Antarctic field season", "url": "https://www.usap-dc.org/view/dataset/601125"}], "date_created": "Thu, 24 Jun 2021 00:00:00 GMT", "description": "The consequences of variation in maternal effects on the ability of offspring to survive, reproduce, and contribute to future generations has rarely been evaluated in polar marine mammals. This is due to the challenges of having adequate data on the survival and reproductive outcomes for numerous offspring born in diverse environmental conditions to mothers with known and diverse sets of traits. This research project will evaluate the survival and reproductive consequences of early-life environmental conditions and variation in offspring traits that are related to maternal attributes (e.g. birth date, birth mass, weaning mass, and swimming behavior) in a population of individually marked Weddell seals in the Ross Sea. Results will allow an evaluation of the importance of different types of individuals to the Weddell Seal\u0027s population sustenance and better assessments of factors contributing to the population dynamics in the past and into the future. The project allows for documentation of specific individual seal\u0027s unique histories and provisioning of such information to the broader science community that seeks to study these seals, educating graduate and undergraduate ecology students, producing science-outreach videos, and developing a multi-media iBook regarding the project\u0027s science activities, goals and outcomes. The research has the broad objective of evaluating the importance of diverse sources of variation in pup characteristics to survival and reproduction. The study will (1) record birth dates, body mass metrics, and time spent in the water for multiple cohorts of pups (born to known-age mothers) in years with different environmental conditions; (2) mark all pups born in the greater Erebus Bay study area and conduct repeated surveys to monitor fates of these pups through the age of first reproduction; and (3) use analyses specifically designed for data on animals that are individually marked and resighted each year to evaluate hypotheses about how variation in birth dates, pup mass, time spent in the water by pups, and environmental conditions relate to variation in early-life survival and recruitment for those pups. The research will also allow the documentation of the population status that will contribute to the unique long-term database for the local population that dates back to 1978.", "east": 170.0, "geometry": "POINT(166 -76.9)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; ANIMAL ECOLOGY AND BEHAVIOR; Amd/Us; FIELD INVESTIGATION; Ross Sea; USA/NSF; USAP-DC", "locations": "Ross Sea", "north": -75.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Rotella, Jay; Garrott, Robert", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.8, "title": "The consequences of maternal effects and environmental conditions on offspring success in an Antarctic predator", "uid": "p0010198", "west": 162.0}, {"awards": "1543459 Dugger, Katie; 1543498 Ballard, Grant; 1543541 Ainley, David", "bounds_geometry": "POLYGON((-180 -60,-177 -60,-174 -60,-171 -60,-168 -60,-165 -60,-162 -60,-159 -60,-156 -60,-153 -60,-150 -60,-150 -61.8,-150 -63.6,-150 -65.4,-150 -67.2,-150 -69,-150 -70.8,-150 -72.6,-150 -74.4,-150 -76.2,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178.5 -78,177 -78,175.5 -78,174 -78,172.5 -78,171 -78,169.5 -78,168 -78,166.5 -78,165 -78,165 -76.2,165 -74.4,165 -72.6,165 -70.8,165 -69,165 -67.2,165 -65.4,165 -63.6,165 -61.8,165 -60,166.5 -60,168 -60,169.5 -60,171 -60,172.5 -60,174 -60,175.5 -60,177 -60,178.5 -60,-180 -60))", "dataset_titles": "Adelie penguin banding data 1994-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science; Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science; Locations of Adelie penguins from geolocating dive recorders 2017-2019; Penguinscience Data Sharing Website", "datasets": [{"dataset_uid": "601482", "doi": "10.15784/601482", "keywords": "Adelie Penguin; Animal Behavior Observation; Antarctica; Biologging; Biota; Foraging Ecology; Geolocator; GPS Data; Migration; Ross Sea; Winter", "people": "Lescroel, Amelie; Ballard, Grant; Schmidt, Annie; Dugger, Katie; Ainley, David; Lisovski, Simeon", "repository": "USAP-DC", "science_program": null, "title": "Locations of Adelie penguins from geolocating dive recorders 2017-2019", "url": "https://www.usap-dc.org/view/dataset/601482"}, {"dataset_uid": "601443", "doi": "10.15784/601443", "keywords": "Adelie Penguin; Antarctica; Biota; Demography; Penguin; Ross Sea; Seabirds", "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin banding data 1994-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "url": "https://www.usap-dc.org/view/dataset/601443"}, {"dataset_uid": "601444", "doi": "10.15784/601444", "keywords": "Adelie Penguin; Antarctica; Biota; Demography; Mark-Recapture; Monitoring; Penguin; Ross Island", "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "url": "https://www.usap-dc.org/view/dataset/601444"}, {"dataset_uid": "200278", "doi": "", "keywords": null, "people": null, "repository": "California Avian Data Center", "science_program": null, "title": "Penguinscience Data Sharing Website", "url": "https://data.pointblue.org/apps/penguin_science/"}], "date_created": "Tue, 11 May 2021 00:00:00 GMT", "description": "The Ross Sea region of the Southern Ocean is experiencing growing sea ice cover in both extent and duration. These trends contrast those of the well-studied, western Antarctic Peninsula area, where sea ice has been disappearing. Unlike the latter, little is known about how expanding sea ice coverage might affect the regional Antarctic marine ecosystem. This project aims to better understand some of the potential effects of the changing ice conditions on the marine ecosystem using the widely-recognized indicator species - the Ad\u00e9lie Penguin. A four-year effort will build on previous results spanning 19 seasons at Ross Island to explore how successes or failures in each part of the penguin\u0027s annual cycle are effected by ice conditions and how these carry over to the next annual recruitment cycle, especially with respect to the penguin\u0027s condition upon arrival in the spring. Education and public outreach activities will continually be promoted through the PenguinCam and PenguinScience websites (sites with greater than 1 million hits a month) and \"NestCheck\" (a site that is logged-on by \u003e300 classrooms annually that allows students to follow penguin families in their breeding efforts). To encourage students in pursuing educational and career pathways in the Science Technology Engineering and Math fields, the project will also provide stories from the field in a Penguin Journal, develop classroom-ready activities aligned with New Generation Science Standards, increase the availability of instructional presentations as powerpoint files and short webisodes. The project will provide additional outreach activities through local, state and national speaking engagements about penguins, Antarctic science and climate change. The annual outreach efforts are aimed at reaching over 15,000 students through the website, 300 teachers through presentations and workshops, and 500 persons in the general public. The project also will train four interns (undergraduate and graduate level), two post-doctoral researchers, and a science writer/photographer. The project will accomplish three major goals, all of which relate to how Ad\u00e9lie Penguins adapt to, or cope with environmental change. Specifically the project seeks to determine 1) how changing winter sea ice conditions in the Ross Sea region affect penguin migration, behavior and survival and alter the carry-over effects (COEs) to subsequent reproduction; 2) the interplay between extrinsic and intrinsic factors influencing COEs over multiple years of an individual?s lifetime; and 3) how local environmental change may affect population change via impacts to nesting habitat, interacting with individual quality and COEs. Retrospective analyses will be conducted using 19 years of colony based data and collect additional information on individually marked, known-age and known-history penguins, from new recruits to possibly senescent individuals. Four years of new information will be gained from efforts based at two colonies (Cape Royds and Crozier), using radio frequency identification tags to automatically collect data on breeding and foraging effort of marked, known-history birds to explore penguin response to resource availability within the colony as well as between colonies (mates, nesting material, habitat availability). Additional geolocation/time-depth recorders will be used to investigate travels and foraging during winter of these birds. The combined efforts will allow an assessment of the effects of penguin behavior/success in one season on its behavior in the next (e.g. how does winter behavior affect arrival time and body condition on subsequent breeding). It is at the individual level that penguins are responding successfully, or not, to ongoing marine habitat change in the Ross Sea region.", "east": -150.0, "geometry": "POINT(-172.5 -69)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; AMD; Adelie Penguin; Amd/Us; FIELD INVESTIGATION; MARINE ECOSYSTEMS; Ross Island; USAP-DC; Penguin", "locations": "Ross Island", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Instrumentation and Support; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ballard, Grant; Ainley, David; Dugger, Katie", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "California Avian Data Center; USAP-DC", "science_programs": null, "south": -78.0, "title": "A Full Lifecycle Approach to Understanding Ad\u00e9lie Penguin Response to Changing Pack Ice Conditions in the Ross Sea.", "uid": "p0010177", "west": 165.0}, {"awards": "1842059 Huber, Matthew; 1842049 Kim, Sora; 1842115 Jahn, Alexandra; 1842176 Bizimis, Michael", "bounds_geometry": "POLYGON((-56.693516 -64.209061,-56.6823452 -64.209061,-56.6711744 -64.209061,-56.6600036 -64.209061,-56.6488328 -64.209061,-56.637662 -64.209061,-56.6264912 -64.209061,-56.6153204 -64.209061,-56.6041496 -64.209061,-56.5929788 -64.209061,-56.581808 -64.209061,-56.581808 -64.2143344,-56.581808 -64.2196078,-56.581808 -64.2248812,-56.581808 -64.2301546,-56.581808 -64.235428,-56.581808 -64.2407014,-56.581808 -64.2459748,-56.581808 -64.2512482,-56.581808 -64.2565216,-56.581808 -64.261795,-56.5929788 -64.261795,-56.6041496 -64.261795,-56.6153204 -64.261795,-56.6264912 -64.261795,-56.637662 -64.261795,-56.6488328 -64.261795,-56.6600036 -64.261795,-56.6711744 -64.261795,-56.6823452 -64.261795,-56.693516 -64.261795,-56.693516 -64.2565216,-56.693516 -64.2512482,-56.693516 -64.2459748,-56.693516 -64.2407014,-56.693516 -64.235428,-56.693516 -64.2301546,-56.693516 -64.2248812,-56.693516 -64.2196078,-56.693516 -64.2143344,-56.693516 -64.209061))", "dataset_titles": "Data from: Probing the ecology and climate of the Eocene Southern Ocean with sand tiger sharks Striatolamia macrota", "datasets": [{"dataset_uid": "200183", "doi": "https://doi.org/10.6071/M34T1Z", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Data from: Probing the ecology and climate of the Eocene Southern Ocean with sand tiger sharks Striatolamia macrota", "url": "https://datadryad.org/stash/dataset/doi:10.6071/M34T1Z"}], "date_created": "Tue, 15 Dec 2020 00:00:00 GMT", "description": "The Earth\u0027s climate has changed through time and during the Eocene Epoch (56 to 34 million years ago) there was a transition from \u0027greenhouse\u0027 to \u0027icehouse\u0027 conditions. During the Eocene, a shift to cooler temperatures at high latitudes resulted in the inception of polar glaciation. This in turn affected the environment for living organisms. This project looks to uncover the interaction between biological, oceanographic, and climate systems for the Eocene in Antarctica using chemical analysis of fossil shark teeth collected during past expeditions. The combination of paleontological and geochemical analyses will provide insight to the past ecology and ocean conditions; climate models will be applied to test the role of tectonics, greenhouse gas concentration and ocean circulation on environmental change during this time period. The study contributes to understanding the interaction of increased atmospheric carbon dioxide and ocean circulation. This project also seeks to improve diversity, equity, and inclusion within the geosciences workforce with efforts targeted to undergraduate, graduate, postdoctoral, and early career faculty. The research goal is to elucidate the processes leading from the Eocene greenhouse to Oligocene icehouse conditions. Previous explanations for this climate shift centers on Antarctica, where tectonic configurations influenced oceanic gateways, ocean circulation reduced heat transport, and/or greenhouse gas declines prompted glaciation. The team will reconstruct watermass, current, and climate fluctuations proximal to the Antarctic Peninsula using geochemical indicators (oxygen and neodymium isotope composition) from fossil shark teeth collected from Seymour Island. The approach builds on previous shark paleontological studies, incorporates geochemical analyses for environmental reconstruction (i.e., temperature gradients and ocean circulation), and tests hypotheses on Earth System dynamics using novel global climate model simulations with geochemical tracers. This project will advance global climate modeling capabilities with experiments that consider Eocene tectonic configuration within isotope-enabled climate model simulations. A comparison of geochemical results from Eocene climate simulations and empirical records of shark teeth will reveal processes and mechanisms central to the Eocene Antarctic climatic shift. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -56.581808, "geometry": "POINT(-56.637662 -64.235428)", "instruments": null, "is_usap_dc": true, "keywords": "FISH; USA/NSF; OXYGEN ISOTOPE ANALYSIS; WATER MASSES; Amd/Us; AMD; USAP-DC; OXYGEN ISOTOPES; LABORATORY; Seymour Island; Sharks; Striatolamia Macrota", "locations": "Seymour Island", "north": -64.209061, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Integrated System Science; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e PALEOGENE \u003e EOCENE", "persons": "Kim, Sora; Scher, Howard; Huber, Matthew; Jahn, Alexandra", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "Dryad", "repositories": "Dryad", "science_programs": null, "south": -64.261795, "title": "Collaborative Research: Integrating Eocene Shark Paleoecology and Climate Modeling to reveal Southern Ocean Circulation and Antarctic Glaciation", "uid": "p0010146", "west": -56.693516}, {"awards": "1644196 Cziko, Paul", "bounds_geometry": "POLYGON((163.47 -77.14,163.803 -77.14,164.136 -77.14,164.469 -77.14,164.802 -77.14,165.135 -77.14,165.468 -77.14,165.801 -77.14,166.134 -77.14,166.467 -77.14,166.8 -77.14,166.8 -77.216,166.8 -77.292,166.8 -77.368,166.8 -77.444,166.8 -77.52,166.8 -77.596,166.8 -77.672,166.8 -77.748,166.8 -77.824,166.8 -77.9,166.467 -77.9,166.134 -77.9,165.801 -77.9,165.468 -77.9,165.135 -77.9,164.802 -77.9,164.469 -77.9,164.136 -77.9,163.803 -77.9,163.47 -77.9,163.47 -77.824,163.47 -77.748,163.47 -77.672,163.47 -77.596,163.47 -77.52,163.47 -77.444,163.47 -77.368,163.47 -77.292,163.47 -77.216,163.47 -77.14))", "dataset_titles": "High-resolution nearshore benthic seawater temperature from around McMurdo Sound, Antarctica (2017-2019); Long-Term broadband underwater acoustic recordings from McMurdo Sound, Antarctica (2017-2019); Long-term underwater images from around a single mooring site in McMurdo Sound, Antarctica (2017-2019)", "datasets": [{"dataset_uid": "601417", "doi": "10.15784/601417", "keywords": "Antarctica; Benthic Ecology; Benthic Invertebrates; Biota; McMurdo Sound; Notothenioid; Notothenioid Fishes; Photo/video; Photo/Video; Rocky Reef Community; Soft-Bottom Community; Timelaps Images", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "Long-term underwater images from around a single mooring site in McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601417"}, {"dataset_uid": "601416", "doi": "10.15784/601416", "keywords": "Antarctica; Bioacoustics; Biota; Hydroacoustics; Killer Whales; Leptonychotes Weddellii; McMurdo Sound; Oceans; Orcinus Orca; Sea Ice; Weddell Seal; Whales", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "Long-Term broadband underwater acoustic recordings from McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601416"}, {"dataset_uid": "601420", "doi": "10.15784/601420", "keywords": "Antarctica; Benthic Ecology; CTD; Depth; McMurdo Sound; Oceanography; Oceans; Physical Oceanography; Pressure; Salinity; Seawater Measurements; Seawater Temperature; Supercooling; Tides", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "High-resolution nearshore benthic seawater temperature from around McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601420"}], "date_created": "Tue, 15 Dec 2020 00:00:00 GMT", "description": "Notothenioid fishes live in the world\u0027s coldest marine waters surrounding Antarctica and have evolved strategies to avoid freezing. Past studies have shown that most Antarctic notothenioids produce special antifreeze proteins that prevent the growth of ice crystals that enter the body. While these proteins help prevent individuals from being killed by growing ice crystals, it is unclear how these fish avoid the accumulation of these small ice crystals inside their tissues over time. This project will observe how ice crystal accumulation relates to the harshness of the fish\u0027s habitat and the fish\u0027s behavior within different habitats of McMurdo Sound, Antarctica. The researchers will collect fishes and ocean observations at different field sites that cover a range of habitat severity in terms of temperature and iciness. Researchers will install an underwater ocean observatory near McMurdo Station which will include a HD video camera and hydrophone. The observatory will allow continuous monitoring of ocean conditions and fish behavior that will help explain the conditions and behaviors that contribute to the acquisition and accrual of ice inside the body. Acoustic and video data from the observatory will be available to other scientists and to the public. The project will advance understanding of the many challenges life faces in extreme cold environments. This work continues a line of inquiry that has resulted in the discovery of potential medical and food preservation applications. Hundreds of antifreeze protein (AFP) structure-function studies have been conducted in the laboratory, providing a basic physical understanding of the AFP-ice interaction. How AFPs function within fishes and their range of environments, however, is far from clear. This project will provide an understanding of notothenioid\u0027s freezing avoidance mechanisms, and strategies by quantifying the acquisition, accumulation, and loss of internal ice crystals. Specifically, the goal is to determine if and how habitat severity (as defined by iciness, seawater temperature, and prevalence of supercooled water) and fish behavior influence the abundance of ice crystals in their tissues. Four locations in the McMurdo Sound with different levels of habitat severity will be sampled for oceanographic conditions and ice crystal count within fish tissues. Researchers will use a new technique to count the number of splenic ice crystals, expanding on and simplifying previous methods. Environmental data loggers will be deployed for the duration of the project at the four sites to provide context and real-time assessment of environmental conditions. An oceanographic observatory near McMurdo Station will provide year-round, real-time and archival records of oceanographic conditions, in situ video observations of anchor ice growth and ice-organism interactions, hydroacoustic recordings, and serve as proof-of concept for expanding scientific infrastructure in McMurdo Sound related to monitoring of supercooled waters and oceanographic information.", "east": 166.8, "geometry": "POINT(165.135 -77.52)", "instruments": null, "is_usap_dc": true, "keywords": "Benthic Ecology; ANIMALS/VERTEBRATES; USA/NSF; OCEAN TEMPERATURE; USAP-DC; MAMMALS; FIELD INVESTIGATION; Amd/Us; McMurdo Sound; FISH; AMD", "locations": "McMurdo Sound", "north": -77.14, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Cziko, Paul; DeVries, Arthur", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes", "uid": "p0010147", "west": 163.47}, {"awards": "1840058 Jenouvrier, Stephanie", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Causes and consequences of pair-bond disruption in a sex-skewed population of a long-lived monogamous seabird: the wandering Albatross; Demographic outputs and their variances for three life history complexes for the Southern Fulmar across contrasted sea ice conditions.; Impact of Climate Change on Pair-Bond Dynamics of Snow Petrels (Pagodroma nivea); Supplementary material from \"Boldness predicts divorce rates in wandering albatrosses", "datasets": [{"dataset_uid": "601585", "doi": "10.15784/601585", "keywords": "Antarctica; Biota; Birds; East Antarctica; Southern Fulmar", "people": "Jenouvrier, Stephanie", "repository": "USAP-DC", "science_program": null, "title": "Demographic outputs and their variances for three life history complexes for the Southern Fulmar across contrasted sea ice conditions.", "url": "https://www.usap-dc.org/view/dataset/601585"}, {"dataset_uid": "200372", "doi": "https://rs.figshare.com/collections/Supplementary_material_from_Boldness_predicts_divorce_rates_in_wandering_albatrosses_i_Diomedea_exulans_i_/6181063", "keywords": null, "people": null, "repository": "https://rs.figshare.com/", "science_program": null, "title": "Supplementary material from \"Boldness predicts divorce rates in wandering albatrosses", "url": "https://rs.figshare.com/collections/Supplementary_material_from_Boldness_predicts_divorce_rates_in_wandering_albatrosses_i_Diomedea_exulans_i_/6181063"}, {"dataset_uid": "601832", "doi": "10.15784/601832", "keywords": "Antarctica; Climate Change; Cryosphere; Ile des Petrels, Pointe Geologie Archipelago (66\u25e640\u2032 S, 140\u25e601\u2032 106 E), Terre Adelie, Antarctica.", "people": "jenouvrier, stephanie", "repository": "USAP-DC", "science_program": null, "title": "Impact of Climate Change on Pair-Bond Dynamics of Snow Petrels (Pagodroma nivea)", "url": "https://www.usap-dc.org/view/dataset/601832"}, {"dataset_uid": "601518", "doi": "10.15784/601518", "keywords": "Antarctica; Biota; Wandering Albatross", "people": "Sun, Ruijiao; Barbraud, Christophe; Delord, Karine; Jenouvrier, Stephanie", "repository": "USAP-DC", "science_program": null, "title": "Causes and consequences of pair-bond disruption in a sex-skewed population of a long-lived monogamous seabird: the wandering Albatross", "url": "https://www.usap-dc.org/view/dataset/601518"}], "date_created": "Wed, 01 Apr 2020 00:00:00 GMT", "description": "Many animals, from crustaceans to humans, engage in long-term relationships. The demographic consequences of divorce or widowhood for monogamous species are poorly understood. This research seeks to advance understanding of the drivers of partner loss and quantify its resulting effects on individual fitness and population dynamics in polar species that form life-long relationships. The project will focus on pair disruption in two seabirds that form long-last pair bonds: the wandering albatross and the snow petrel. Unique long-term individual mark-recapture data sets exist for these iconic polar species, allowing for a comprehensive study of the rates, causes and consequences of pair disruption and how they may differ among Antarctic species. Insights might be gained regarding the effects of changing environmental regimes as well as by direct and indirect effects of fisheries as a by-product of this research. The aim of the project is to better understand the implications of different drivers of pair disruption and quantify its resulting effects on individual fitness components and population growth rate and structure for two procellariiformes breeding in the Southern Ocean. The project will focus on the wandering albatross and the snow petrel, which both form long-lasting pair bonds. The unique long-term individual mark-recapture data sets allow for a study of the rates, causes and consequences of pair disruption and how they differ among species with different life histories as well as expected differences in mechanisms and rates of pair disruptions. The study will result in a detailed analysis of the impact of social monogamy and long-term pair bonds on individual fitness components (vital rates: survival, recruitment and fecundity; life-history outcomes: life expectancy, age at 1st breeding and lifetime reproductive success; and occupancy times: duration of pair bond or widowhood) and population growth and structure (e.g, sex ratio of individuals available for mating). Specifically, the project will assess: 1. Variations in pair disruption rates, and if they are related to global change (by-catch in the case of albatross widowing, and climate in the case of petrel divorce) by developing a statistical multievent mark-recapture model. 2. Impacts of pair disruption on vital rates, specifically whether i) greater familiarity and better coordination within pairs improves breeding performance and survival, ii) mating costs reduce the probability of breeding and iii) divorce is more likely to occur after a breeding failure. 3. Impacts of pair disruption on life-history outcomes and occupancy times using Markov chain stochastic life cycle models. 4. Impacts of pair disruption on population dynamics by developing a novel non-linear two-sex matrix population model. The research will include sensitivity and Life Table Response Experiment analyses to examine the respective effects of fisheries, climate, vital rates, and pair-disruption rates on life-history outcomes, occupancy times, and population growth and structure, and their variations among year and species This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e VISUAL OBSERVATIONS", "is_usap_dc": true, "keywords": "ECOLOGICAL DYNAMICS; FIELD INVESTIGATION; East Antarctica; USAP-DC", "locations": "East Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Jenouvrier, Stephanie", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "https://rs.figshare.com/; USAP-DC", "science_programs": null, "south": -90.0, "title": "Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics", "uid": "p0010090", "west": -180.0}, {"awards": "1543383 Postlethwait, John", "bounds_geometry": "POLYGON((-66 -62,-65.2 -62,-64.4 -62,-63.6 -62,-62.8 -62,-62 -62,-61.2 -62,-60.4 -62,-59.6 -62,-58.8 -62,-58 -62,-58 -62.4,-58 -62.8,-58 -63.2,-58 -63.6,-58 -64,-58 -64.4,-58 -64.8,-58 -65.2,-58 -65.6,-58 -66,-58.8 -66,-59.6 -66,-60.4 -66,-61.2 -66,-62 -66,-62.8 -66,-63.6 -66,-64.4 -66,-65.2 -66,-66 -66,-66 -65.6,-66 -65.2,-66 -64.8,-66 -64.4,-66 -64,-66 -63.6,-66 -63.2,-66 -62.8,-66 -62.4,-66 -62))", "dataset_titles": "C. aceratus pronephric kidney (head kidney) miRNA; mirtop\r\ncommand lines tool to annotate miRNAs with a standard mirna/isomir naming; Patagonotothen cornucola isolate Pcor_18_01 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial; Patagonotothen sima isolate Psim_18_11 cardiac muscle myosin heavy chain 6 (myh6) gene, partial cds; Patagonotothen sima isolate Psim_18_11 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial; Patagonotothen sima isolate Psim_18_12 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial; Prost!, a tool for miRNA annotation and next generation smallRNA sequencing experiment analysis; Quantifying expression levels of smallRNAs between tissues in Danio Rerio strain AB.; Quantifying expression levels of smallRNAs between tissues in three-spined stickleback", "datasets": [{"dataset_uid": "200130", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "C. aceratus pronephric kidney (head kidney) miRNA", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=SRP069031"}, {"dataset_uid": "200131", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Prost!, a tool for miRNA annotation and next generation smallRNA sequencing experiment analysis", "url": "https://github.com/uoregon-postlethwait/prost"}, {"dataset_uid": "200132", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "mirtop\r\ncommand lines tool to annotate miRNAs with a standard mirna/isomir naming", "url": "https://github.com/miRTop"}, {"dataset_uid": "200133", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Patagonotothen cornucola isolate Pcor_18_01 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=MN136231"}, {"dataset_uid": "200134", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Patagonotothen sima isolate Psim_18_11 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=MN136232"}, {"dataset_uid": "200135", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Patagonotothen sima isolate Psim_18_12 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=MN136233+"}, {"dataset_uid": "200136", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Patagonotothen sima isolate Psim_18_11 cardiac muscle myosin heavy chain 6 (myh6) gene, partial cds", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=MN136234+"}, {"dataset_uid": "200129", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "Quantifying expression levels of smallRNAs between tissues in Danio Rerio strain AB.", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=SRP039502"}, {"dataset_uid": "200128", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "Quantifying expression levels of smallRNAs between tissues in three-spined stickleback", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=SRP157992"}], "date_created": "Wed, 26 Feb 2020 00:00:00 GMT", "description": "Icefish live in frigid Antarctic seas, and have unique traits such as the absence of red blood cells, enlarged hearts, large diameter blood vessels, low bone mineral densities, and fat droplets that disrupt their muscles. These features would be harmful in other animals. In mammals and fish inhabiting warm waters, development of organs involved in these traits is modulated by genes that encode specific proteins, but the rate of protein production is often regulated by short RNA molecules called microRNAs (miRNAs). Genes that code for proteins must first make an RNA copy, and the actual protein is made from this RNA copy intermediate. MiRNAs regulate the amount of protein that is made by binding to the RNA intermediate and interrupting its production of protein. Binding of miRNAs to RNA depends strongly on temperature. Regulation of genes by miRNAs has not been studied in Antarctic fish, which live in seas with temperatures below the freezing point of fresh water. This project will compare miRNA regulation 1) in Antarctic fish vs. warm-water fish to learn how miRNAs regulate gene expression in constant cold; and 2) in Antarctic icefish with no red blood cells, enlarged hearts, and reduced bone density vs. closely related Antarctic fish containing red blood cells, normal hearts, and dense bones. The project will have broad impacts to science and society nationally and globally. First, this will be the first study of important factors in gene regulation (miRNAs) in Antarctic fish, which are an essential component of the entire ecology of the Southern Ocean, and will shed light on how these fish might respond to the warming of Antarctic waters. Second, it will bring Antarctic science to under-represented high school students at a local alternative downtown high school by conducting video conferences during the Antarctic field seasons and hosting student investigations of Antarctic fish in the research laboratory. microRNAs (miRNAs) are key post-transcriptional regulators of gene expression that modulate development and physiology in temperate animals. Although miRNAs act by binding to messenger RNAs (mRNAs), a process that is strongly sensitive to temperature, miRNAs have yet not been studied in Antarctic animals, including Notothenioid fish, which dominate the Southern Ocean. This project will compare miRNA regulation in 1) Antarctic vs. temperate fish to learn the roles of miRNA regulation in adaptation to constant cold; and in 2) bottom-dwelling, dense-boned, red-blooded Nototheniods vs. high buoyancy, osteopenic, white-blooded icefish to understand miRNA regulation in specialized organs after the evolution of the loss of hemoglobin genes and red blood cells, the origin of enlarged heart and vasculature, and the evolution of increased buoyancy, which arose by decreased bone mineralization and increased lipid deposition. Aim 1 is to test the hypothesis that Antarctic fish evolved miRNA-related genome specializations in response to constant cold. The project will compare four Antarctic Notothenioid species to two temperate Notothenioids and two temperate laboratory species to test the hypotheses that (a) Antarctic fish evolved miRNA genome repertoires by loss of ancestral genes and/or gain of new genes, (b) express miRNAs that are involved in cold tolerance, and (c) respond to temperature change by changing miRNA gene expression. Aim 2 is to test the hypothesis that the evolution of icefish from red-blooded bottom-dwelling ancestors was accompanied by an altered miRNA genomic repertoire, sequence, and/or expression. The project will test the hypotheses that (a) miRNAs in icefish evolved in sequence and/or in expression in icefish specializations, including head kidney (origin of red blood cells); heart (changes in vascular system), cranium and pectoral girdle (reduced bone mineral density); and skeletal muscle (lipid deposition), and (b) miRNAs that evolved in icefish specializations had ancestral functions related to their derived roles in icefish, as determined by functional tests of zebrafish orthologs of icefish miRNAs in developing zebrafish. The program will isolate, sequence, and determine the expression of miRNAs and mRNAs using high-throughput transcriptomics and novel software. Results will show how the microRNA system evolves in vertebrate animals pushed to physiological extremes and provide insights into the prospects of key species in the most rapidly warming part of the globe.", "east": -58.0, "geometry": "POINT(-62 -64)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; Palmer Station; NOT APPLICABLE; FISH", "locations": "Palmer Station", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Postlethwait, John; Desvignes, Thomas", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "NCBI SRA", "repositories": "GitHub; NCBI GenBank; NCBI SRA", "science_programs": null, "south": -66.0, "title": "Antarctic Fish and MicroRNA Control of Development and Physiology", "uid": "p0010085", "west": -66.0}, {"awards": "1443578 Schmidt, Steven", "bounds_geometry": "POLYGON((161.5 -77.5,161.7 -77.5,161.9 -77.5,162.1 -77.5,162.3 -77.5,162.5 -77.5,162.7 -77.5,162.9 -77.5,163.1 -77.5,163.3 -77.5,163.5 -77.5,163.5 -77.53,163.5 -77.56,163.5 -77.59,163.5 -77.62,163.5 -77.65,163.5 -77.68,163.5 -77.71,163.5 -77.74,163.5 -77.77,163.5 -77.8,163.3 -77.8,163.1 -77.8,162.9 -77.8,162.7 -77.8,162.5 -77.8,162.3 -77.8,162.1 -77.8,161.9 -77.8,161.7 -77.8,161.5 -77.8,161.5 -77.77,161.5 -77.74,161.5 -77.71,161.5 -77.68,161.5 -77.65,161.5 -77.62,161.5 -77.59,161.5 -77.56,161.5 -77.53,161.5 -77.5))", "dataset_titles": "16S and 18S amplicon sequencing of Antarctic cryoconite holes; Genomes of Antarctic ssDNA viruses (GenBank accession numbers MN311489-MN311492 and MN328267-MN328291); Metadata from samples (in the process of submitting to EDI; will update with DOI once completed); Microbial species-area relationships in Antarctic cryoconite holes; Soil microbial communities of a mountain landscape, McMurdo Dry Valleys, Antarctica", "datasets": [{"dataset_uid": "200279", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Metadata from samples (in the process of submitting to EDI; will update with DOI once completed)", "url": "https://github.com/pacificasommers/Cryoconite-metadata"}, {"dataset_uid": "200081", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "16S and 18S amplicon sequencing of Antarctic cryoconite holes", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA480849/"}, {"dataset_uid": "200280", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Soil microbial communities of a mountain landscape, McMurdo Dry Valleys, Antarctica", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA721735/"}, {"dataset_uid": "200281", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Microbial species-area relationships in Antarctic cryoconite holes", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA668398/"}, {"dataset_uid": "200084", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Genomes of Antarctic ssDNA viruses (GenBank accession numbers MN311489-MN311492 and MN328267-MN328291)", "url": ""}], "date_created": "Fri, 01 Nov 2019 00:00:00 GMT", "description": "Cryoconite holes are pockets of life completely encased in otherwise barren glacial ice. These pockets of life form when dust blown onto the ice melts a small, largely isolated hole that can function as its own tiny ecosystem. This dust can contain microorganisms such as bacteria, algae, or microscopic animals. The microorganisms within the hole interact and carry out functions typical of a larger ecosystem, such as a forest. Cryoconite holes are especially important in extreme cold environments such as the Antarctic Dry Valleys, where they function as repositories of life. Because cryoconite holes are mostly enclosed and persist for years, they can be tracked over time to test fundamental scientific questions about how communities of interacting organisms develop to become fully functioning ecosystems. This project will sample existing and experimentally created cryoconite holes to understand how these ecosystems develop and to what degree random processes (such as which organisms get there first) affect the final community composition and functioning. The results will not only improve our understanding of how microbial communities assemble and affect the functioning of microecosystems such as cryoconite holes, but also how the processes of community assembly affect functioning of larger ecosystems, such as forests. A better understanding of community establishment, development, and response to abiotic factors are essential to forecasting ecological responses to environmental change. It is essential to unravel the links between community assembly, biodiversity, and nutrient cycling across numerous ecosystems because these are critical factors determining ecological responses to environmental change. The unique, largely isolated nature of cryoconite holes provides an experimental system that will advance fundamental understanding of the processes (e.g., stochastic dynamics such as dispersal limitation, assembly order, and ecological drift) driving community assembly. This project will use a field sampling campaign and a number of manipulative experiments to test a hypothesis that unites theory in community and ecosystem ecology: the degree to which stochastic processes guide microbial community assembly and affects regional patterns in biodiversity and ecosystem processes. Cryoconite holes will be sampled to compare community composition, environmental factors, and ecosystem functioning between hydrologically connected and isolated holes. New cryoconite holes will also be constructed and monitored over the course of two growing seasons to specifically alter assembly order and community size, thereby pairing a unique manipulative experiment with field surveys to address questions with relevance to the Antarctic and beyond. Amplicon sequencing, metagenomics, microscopy, sensitive environmental chemistry methods, and photosynthesis and respiration measurements will be used to test a series of sub-hypotheses that relate stochasticity to patterns in regional biodiversity, heterogeneity in environmental factors, and ecosystem processes.", "east": 163.5, "geometry": "POINT(162.5 -77.65)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "GLACIERS; Antarctica; USAP-DC; FIELD INVESTIGATION", "locations": "Antarctica", "north": -77.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Schmidt, Steven; Cawley, Kaelin; Fountain, Andrew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "GitHub", "repositories": "GitHub; NCBI GenBank", "science_programs": null, "south": -77.8, "title": "Collaborative Research: Stochasticity and Cryoconite Community Assembly and Function", "uid": "p0010063", "west": 161.5}, {"awards": "1443585 Polito, Michael; 1443424 McMahon, Kelton; 1826712 McMahon, Kelton; 1443386 Emslie, Steven", "bounds_geometry": "POLYGON((-180 -60,-166 -60,-152 -60,-138 -60,-124 -60,-110 -60,-96 -60,-82 -60,-68 -60,-54 -60,-40 -60,-40 -61.8,-40 -63.6,-40 -65.4,-40 -67.2,-40 -69,-40 -70.8,-40 -72.6,-40 -74.4,-40 -76.2,-40 -78,-54 -78,-68 -78,-82 -78,-96 -78,-110 -78,-124 -78,-138 -78,-152 -78,-166 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -76.2,160 -74.4,160 -72.6,160 -70.8,160 -69,160 -67.2,160 -65.4,160 -63.6,160 -61.8,160 -60,162 -60,164 -60,166 -60,168 -60,170 -60,172 -60,174 -60,176 -60,178 -60,-180 -60))", "dataset_titles": "Amino acid nitrogen isotope values of modern and ancient Ad\u00e9lie penguin eggshells from the Ross Sea and Antarctic Peninsula regions; Amino acid nitrogen isotope values of penguins from the Antarctic Peninsula region 1930s to 2010s; Ancient Adelie penguin colony revealed by snowmelt at Cape Irizar, Ross Sea, Antarctica; Carbon and nitrogen stable isotope values of Antarctic Krill from the South Shetland Islands and the northern Antarctic Peninsula 2007 and 2009; Radiocarbon dates from pygoscelid penguin tissues excavated at Stranger Point, King George Island, Antarctic Peninsula; Radiocarbon dating and stable isotope values of penguin and seal tissues recovered from ornithogenic soils on Platter Island, Danger Islands Archipelago, Antarctic Peninsula in December 2015.; Radioisotope dates and carbon (\u03b413C) and nitrogen (\u03b415N) stable isotope values from modern and mummified Ad\u00e9lie Penguin chick carcasses and tissue from the Ross Sea, Antarctica; Radiometric dating, geochemical proxies, and predator biological remains obtained from aquatic sediment cores on South Georgia Island.; Receding ice drove parallel expansions in Southern Ocean penguin; SNP data from \"Receding ice drove parallel expansions in Southern Ocean penguins\".; Stable isotope analysis of multiple tissues from chick carcasses of three pygoscelid penguins in Antarctica; Stable isotopes of Adelie Penguin chick bone collagen; The rise and fall of an ancient Adelie penguin \u0027supercolony\u0027 at Cape Adare, Antarctica", "datasets": [{"dataset_uid": "601232", "doi": "10.15784/601232", "keywords": "Amino Acids; Antarctica; Antarctic Peninsula; Biota; Isotope Data; Nitrogen Isotopes; Oceans; Penguin; Southern Ocean; Stable Isotope Analysis", "people": "Polito, Michael; McMahon, Kelton", "repository": "USAP-DC", "science_program": null, "title": "Amino acid nitrogen isotope values of penguins from the Antarctic Peninsula region 1930s to 2010s", "url": "https://www.usap-dc.org/view/dataset/601232"}, {"dataset_uid": "601327", "doi": "10.15784/601327", "keywords": "Adelie Penguin; Antarctica; Biota; Cape Adare; East Antarctica; Population Movement; Pygoscelis Adeliae; Radiocarbon; Ross Sea; Sea Level Rise; Stable Isotopes", "people": "Patterson, William; McKenzie, Ashley; Emslie, Steven D.", "repository": "USAP-DC", "science_program": null, "title": "The rise and fall of an ancient Adelie penguin \u0027supercolony\u0027 at Cape Adare, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601327"}, {"dataset_uid": "601509", "doi": "10.15784/601509", "keywords": "Antarctica; Antarctic Fur Seal; Elemental Concentrations; King Penguin; Population Dynamics; South Atlantic Ocean; South Georgia Island; Stable Isotope Analysis; Sub-Antarctic", "people": "Polito, Michael; Kristan, Allyson; McMahon, Kelton; Maiti, Kanchan", "repository": "USAP-DC", "science_program": null, "title": "Radiometric dating, geochemical proxies, and predator biological remains obtained from aquatic sediment cores on South Georgia Island.", "url": "https://www.usap-dc.org/view/dataset/601509"}, {"dataset_uid": "601374", "doi": "10.15784/601374", "keywords": "Adelie Penguin; Antarctica; Cape Irizar; Drygalski Ice Tongue; Ross Sea; Stable Isotopes", "people": "Emslie, Steven D.", "repository": "USAP-DC", "science_program": null, "title": "Ancient Adelie penguin colony revealed by snowmelt at Cape Irizar, Ross Sea, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601374"}, {"dataset_uid": "601210", "doi": "10.15784/601210", "keywords": "Antarctica; Antarctic Krill; Antarctic Peninsula; Biota; Carbon Isotopes; Isotope Data; Krill; Nitrogen Isotopes; Oceans; Southern Ocean; Stable Isotope Analysis", "people": "Polito, Michael", "repository": "USAP-DC", "science_program": null, "title": "Carbon and nitrogen stable isotope values of Antarctic Krill from the South Shetland Islands and the northern Antarctic Peninsula 2007 and 2009", "url": "https://www.usap-dc.org/view/dataset/601210"}, {"dataset_uid": "601760", "doi": "10.15784/601760", "keywords": "Adelie Penguin; Amino Acids; Antarctica; Antarctic Peninsula; Ross Sea; Stable Isotope Analysis; Trophic Position", "people": "Emslie, Steven D.; Wonder, Michael; McCarthy, Matthew; Patterson, William; McMahon, Kelton; Michelson, Chantel; Polito, Michael", "repository": "USAP-DC", "science_program": null, "title": "Amino acid nitrogen isotope values of modern and ancient Ad\u00e9lie penguin eggshells from the Ross Sea and Antarctic Peninsula regions", "url": "https://www.usap-dc.org/view/dataset/601760"}, {"dataset_uid": "601212", "doi": "10.15784/601212", "keywords": "Abandoned Colonies; Antarctica; Antarctic Peninsula; Beach Deposit; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Holocene; Penguin; Radiocarbon; Radiocarbon Dates; Snow/ice; Snow/Ice; Stranger Point", "people": "Emslie, Steven D.", "repository": "USAP-DC", "science_program": null, "title": "Radiocarbon dates from pygoscelid penguin tissues excavated at Stranger Point, King George Island, Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601212"}, {"dataset_uid": "601382", "doi": "10.15784/601382", "keywords": "25 De Mayo/King George Island; Antarctica; Biota; Delta 13C; Delta 15N; Dietary Shifts; Opportunistic Sampling; Penguin; Pygoscelis Penguins; Stranger Point", "people": "Ciriani, Yanina; Emslie, Steven D.", "repository": "USAP-DC", "science_program": null, "title": "Stable isotope analysis of multiple tissues from chick carcasses of three pygoscelid penguins in Antarctica", "url": "https://www.usap-dc.org/view/dataset/601382"}, {"dataset_uid": "601263", "doi": "10.15784/601263", "keywords": "Abandoned Colonies; Antarctica; Holocene; Penguin; Ross Sea; Stable Isotope Analysis", "people": "Emslie, Steven D.; Patterson, William; Kristan, Allyson", "repository": "USAP-DC", "science_program": null, "title": "Radioisotope dates and carbon (\u03b413C) and nitrogen (\u03b415N) stable isotope values from modern and mummified Ad\u00e9lie Penguin chick carcasses and tissue from the Ross Sea, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601263"}, {"dataset_uid": "601364", "doi": "10.15784/601364", "keywords": "Antarctica; Antarctic Peninsula; Arctocephalus Gazella; Carbon; Holocene; Nitrogen; Paleoecology; Penguin; Pygoscelis Spp.; Stable Isotope Analysis; Weddell Sea", "people": "Clucas, Gemma; Kalvakaalva, Rohit; Polito, Michael; Herman, Rachael", "repository": "USAP-DC", "science_program": null, "title": "Radiocarbon dating and stable isotope values of penguin and seal tissues recovered from ornithogenic soils on Platter Island, Danger Islands Archipelago, Antarctic Peninsula in December 2015.", "url": "https://www.usap-dc.org/view/dataset/601364"}, {"dataset_uid": "200181", "doi": "10.6084/m9.figshare.c.4475300.v1", "keywords": null, "people": null, "repository": "Figshare", "science_program": null, "title": "SNP data from \"Receding ice drove parallel expansions in Southern Ocean penguins\".", "url": "https://doi.org/10.6084/m9.figshare.c.4475300.v1"}, {"dataset_uid": "200180", "doi": "", "keywords": null, "people": null, "repository": "NCBI BioProject", "science_program": null, "title": "Receding ice drove parallel expansions in Southern Ocean penguin", "url": "https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA589336"}, {"dataset_uid": "601913", "doi": "10.15784/601913", "keywords": "Adelie Penguin; Antarctica; Cryosphere; Foraging; Polynya; Pygoscelis Adeliae; Ross Sea; Stable Isotopes", "people": "Reaves, Megan; Emslie, Steven D.; Powers, Shannon", "repository": "USAP-DC", "science_program": null, "title": "Stable isotopes of Adelie Penguin chick bone collagen", "url": "https://www.usap-dc.org/view/dataset/601913"}], "date_created": "Thu, 08 Aug 2019 00:00:00 GMT", "description": "The Antarctic marine ecosystem is highly productive and supports a diverse range of ecologically and commercially important species. A key species in this ecosystem is Antarctic krill, which in addition to being commercially harvested, is the principle prey of a wide range of marine organisms including penguins, seals and whales. The aim of this study is to use penguins and other krill predators as sensitive indicators of past changes in the Antarctic marine food web resulting from climate variability and the historic harvesting of seals and whales by humans. Specifically this study will recover and analyze modern (\u003c20 year old), historic (20-200 year old) and ancient (200-10,000 year old) penguin and other krill predator tissues to track their past diets and population movements relative to shifts in climate and the availability of Antarctic krill. Understanding how krill predators were affected by these factors in the past will allow us to better understand how these predators, the krill they depend on, and the Antarctic marine ecosystem as a whole will respond to current challenges such as global climate change and an expanding commercial fishery for Antarctic krill. The project will further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This project will support the cross-institutional training of undergraduate and graduate students in advanced analytical techniques in the fields of ecology and biogeochemistry. In addition, this project includes educational outreach aimed encouraging participation in science careers by engaging K-12 students in scientific issues related to Antarctica, penguins, marine ecology, biogeochemistry, and global climate change. This research will help place recent ecological changes in the Southern Ocean into a larger historical context by examining decadal and millennial-scale shifts in the diets and population movements of Antarctic krill predators (penguins, seals, and squid) in concert with climate variability and commercial harvesting. This will be achieved by coupling advanced stable and radio isotope techniques, particularly compound-specific stable isotope analysis, with unprecedented access to modern, historical, and well-preserved paleo-archives of Antarctic predator tissues dating throughout the Holocene. This approach will allow the project to empirically test if observed shifts in Antarctic predator bulk tissue stable isotope values over the past millennia were caused by climate-driven shifts at the base of the food web in addition to, or rather than, shifts in predator diets due to a competitive release following the historic harvesting of krill eating whale and seals. In addition, this project will track the large-scale abandonment and reoccupation of penguin colonies around Antarctica in response to changes in climate and sea ice conditions over the past several millennia. These integrated field studies and laboratory analyses will provide new insights into the underlying mechanisms that influenced past shifts in the diets and population movements of charismatic krill predators such as penguins. This will allow for improved projections of the ecosystem consequences of future climate change and anthropogenic harvesting scenarios in the Antarctica that are likely to affect the availability of Antarctic krill.", "east": -40.0, "geometry": "POINT(-120 -69)", "instruments": null, "is_usap_dc": true, "keywords": "ANIMAL ECOLOGY AND BEHAVIOR; South Shetland Islands; Penguin; Stable Isotopes; Polar; Ross Sea; USA/NSF; Weddell Sea; AMD; MARINE ECOSYSTEMS; USAP-DC; Antarctica; PENGUINS; Southern Hemisphere; FIELD INVESTIGATION; Amd/Us; Krill; MACROFOSSILS", "locations": "Southern Hemisphere; Ross Sea; South Shetland Islands; Weddell Sea; Polar; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Polito, Michael; Kelton, McMahon; Patterson, William; McCarthy, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "Figshare; NCBI BioProject; USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators", "uid": "p0010047", "west": 160.0}, {"awards": "1643735 Li, Yun; 1643901 Zhang, Weifeng; 2021245 Li, Yun", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Dynamic fine-scale sea-icescape shapes adult emperor penguin foraging habitat in East Antarctica; Monthly Stratification Climatology (1978-2021) in Antarctic Coastal Polynyas", "datasets": [{"dataset_uid": "601209", "doi": "10.15784/601209", "keywords": "Animal Behavior Observation; Antarctica; Biota; East Antarctica; GPS; Oceans; Penguin; Southern Ocean", "people": "Pinaud, David; Wienecke, Barbara; Kirkwood, Roger; Ropert-Coudert, Yan; Resinger, Ryan; Jonsen, Ian; Porter-Smith, Rick; Barbraud, Christophe; Ji, Rubao; Jenouvrier, Stephanie; Sumner, Michael; Bost, Charles-Andr\u00e9; Labrousse, Sara; Fraser, Alexander; Tamura, Takeshi", "repository": "USAP-DC", "science_program": null, "title": "Dynamic fine-scale sea-icescape shapes adult emperor penguin foraging habitat in East Antarctica", "url": "https://www.usap-dc.org/view/dataset/601209"}, {"dataset_uid": "601628", "doi": "10.15784/601628", "keywords": "Antarctic; Antarctica; Antarctic Coastal Polynyas; Polynya", "people": "Zhang, Weifeng; Shunk, Nathan; Li, Yun", "repository": "USAP-DC", "science_program": null, "title": "Monthly Stratification Climatology (1978-2021) in Antarctic Coastal Polynyas", "url": "https://www.usap-dc.org/view/dataset/601628"}], "date_created": "Wed, 07 Aug 2019 00:00:00 GMT", "description": "During winter, sea-ice coverage along the Antarctic coast is punctuated by numerous polynyas--isolated openings of tens to hundreds of kilometer wide. These coastal polynyas are hotspots of sea ice production and the primary source regions of the bottom water in the global ocean. They also host high levels of biological activities and are the feeding grounds of Emperor penguins and marine mammals. The polynyas are a key component of the Antarctic coastal system and crucial for the survival of penguins and many other species. These features also differ dramatically from each other in timing of formation, duration, phytoplankton growth season, and overall biological productivity. Yet, the underlying reasons for differences among them are largely unknown. This project studies the fundamental biophysical processes at a variety of polynyas, examines the connection between the physical environment and the phytoplankton and penguin ecology, and investigates the mechanisms behind polynya variability. The results of this interdisciplinary study will provide a context for interpretation of field measurements in Antarctic coastal polynyas, set a baseline for future polynya studies, and examine how polynya ecosystems may respond to local and large-scale environmental changes. The project will include educational and outreach activities that convey scientific messages to a broad audience. It aims to increase public awareness of the interconnection between large-scale environmental change and Antarctic coastal systems. The main objectives of this study are to form a comprehensive understanding of the temporal and spatial variability of Antarctic coastal polynyas and the physical controls of polynya ecosystems. The project takes an interdisciplinary approach and seeks to establish a modeling system centered on the Regional Ocean Modeling System. This system links the ice and ocean conditions to the plankton ecology and penguin population. Applications of the modeling system in representative polynyas, in conjunction with analysis of existing observations, will determine the biophysical influences of individual forcing factors. In particular, this study will test a set of hypothesized effects of winds, offshore water intrusion, ice-shelf melting, sea-ice formation, glacier tongues, and ocean stratification on the timing of polynya phytoplankton bloom and the overall polynya biological productivity. The project will also examine how changing polynya state affects penguin breeding success, adult survival, and population growth. The team will conduct idealized sensitivity analysis to explore implications of forcing variability, including local and large-scale environmental change, on Antarctic coastal ecosystems.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Southern Ocean; Animal Behavior; Penguin; FIELD INVESTIGATION; USAP-DC; COASTAL; PENGUINS; SEA ICE; Antarctica; OCEAN MIXED LAYER", "locations": "Southern Ocean; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science", "paleo_time": null, "persons": "Zhang, Weifeng; Ji, Rubao; Jenouvrier, Stephanie; Maksym, Edward; Li, Yun", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Polynyas in Coastal Antarctica (PICA): Linking Physical Dynamics to Biological Variability", "uid": "p0010044", "west": -180.0}, {"awards": "1543311 LaRue, Michelle; 1543230 Ainley, David; 1543003 Stammerjohn, Sharon; 1542791 Salas, Leonardo", "bounds_geometry": "POLYGON((-180 -64,-144 -64,-108 -64,-72 -64,-36 -64,0 -64,36 -64,72 -64,108 -64,144 -64,180 -64,180 -65.4,180 -66.8,180 -68.2,180 -69.6,180 -71,180 -72.4,180 -73.8,180 -75.2,180 -76.6,180 -78,144 -78,108 -78,72 -78,36 -78,0 -78,-36 -78,-72 -78,-108 -78,-144 -78,-180 -78,-180 -76.6,-180 -75.2,-180 -73.8,-180 -72.4,-180 -71,-180 -69.6,-180 -68.2,-180 -66.8,-180 -65.4,-180 -64))", "dataset_titles": "ContinentalWESEestimates; Counting seals from space tutorial; Fast Ice Tool; Weddell seals habitat suitability model for the Ross Sea", "datasets": [{"dataset_uid": "200047", "doi": "", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Counting seals from space tutorial", "url": "https://www.int-res.com/articles/suppl/m612p193_supp.pdf"}, {"dataset_uid": "200045", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Fast Ice Tool", "url": "https://github.com/leosalas/FastIceCovars"}, {"dataset_uid": "200046", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Weddell seals habitat suitability model for the Ross Sea", "url": "https://github.com/leosalas/WeddellSeal_SOS"}, {"dataset_uid": "200234", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "ContinentalWESEestimates", "url": "https://github.com/leosalas/ContinentalWESEestimates"}], "date_created": "Fri, 02 Aug 2019 00:00:00 GMT", "description": "The Weddell seal is the southern-most mammal in the world, having a circumpolar distribution around Antarctica; the McMurdo Sound population in Antarctica is one of the best-studied mammal populations on earth. However, despite this, an understanding of how populations around the continent will fare under climate change is poorly understood. A complicating matter is the potential effects of a commercial enterprise in the Antarctic: a fishery targeting toothfish, which are important prey for Weddell seals. Although the species is easily detected and counted during the breeding season, no reliable estimates of continent-wide Weddell seal numbers exist, due to the logistic difficulties of surveying vast regions of Antarctica. Large-scale estimates are needed to understand how seal populations are responding to the fishery and climate change, because these drivers of change operate at scales larger than any single population, and may affect seals differently in different regions of the continent. We will take advantage of the ease of detectability of darkly colored seals when they the on ice to develop estimates of abundance from satellite images. This project will generate baseline data on the global distribution and abundance of Weddell seals around the Antarctic and will link environmental variables to population changes to better understand how the species will fare as their sea ice habitat continues to change. These results will help disentangle the effects of climate change and fishery operations, results that are necessary for appropriate international policy regarding fishery catch limits, impacts on the environment, and the value of marine protected areas. The project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. It will engage \"arm-chair\" scientists of all ages through connections with several non-governmental organizations and the general public. Anyone with access to the internet, including people who are physically unable to participate in field research directly, can participate in this project while simultaneously learning about multiple aspects of polar ecology through the project\u0027s interactive website. Specifically, this research project will: 1) Quantify the distribution of Weddell seals around Antarctica and 2) Determine the impact of environmental variables (such as fast ice extent, ocean productivity, bathymetry) on habitat suitability and occupancy. To do this, the project will crowd-source counting of seals on high-resolution satellite images via a commercial citizen science platform. Variation in seal around the continent will then be related to habitat variables through generalized linear models. Specific variables, such as fast ice extent will be tested to determine their influence on population variability through both space and time. The project includes a rigorous plan for ensuring quality control in the dataset including ground truth data from other, localized projects concurrently funded by the National Science Foundation\u0027s Antarctic Science Program.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "COASTAL; Southern Ocean; COMMUNITY DYNAMICS; MAMMALS; SEA ICE; NOT APPLICABLE; Antarctica; PENGUINS; USAP-DC", "locations": "Antarctica; Southern Ocean", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "LaRue, Michelle; Stamatiou, Kostas", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "Publication", "repositories": "GitHub; Publication", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Determining Factors Affecting Distribution and Population Variability of the Ice-obligate Weddell Seal", "uid": "p0010041", "west": -180.0}, {"awards": "1543412 Reinfelder, John", "bounds_geometry": null, "dataset_titles": "16S rRNA gene libraries of krill gut microbial communities; Microbial gene libraries of krill gut microbial communities", "datasets": [{"dataset_uid": "200024", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Microbial gene libraries of krill gut microbial communities", "url": "https://nam02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fbioproject%2F531145\u0026amp;data=02%7C01%7Creinfeld%40envsci.rutgers.edu%7C7e30a0192dc748ab271408d6b9d57d08%7Cb92d2b234d35447093ff69aca6632ffe%7C1%7C0%7C636900723909188941\u0026amp;sdata=G6cNg4bBHzeikrWSCYITcT6XS3NLWwjQ1yNdwtrALPc%3D\u0026amp;reserved=0"}, {"dataset_uid": "601171", "doi": "10.15784/601171", "keywords": "Antarctica; Biota; Krill; LTER Palmer Station; Microbiome; Oceans; Southern Ocean", "people": "Reinfelder, John", "repository": "USAP-DC", "science_program": "LTER", "title": "16S rRNA gene libraries of krill gut microbial communities", "url": "https://www.usap-dc.org/view/dataset/601171"}], "date_created": "Sun, 31 Mar 2019 00:00:00 GMT", "description": "Marine food webs can concentrate monomethylmercury (MMHg), a neurotoxin in mammals, in upper trophic level consumers. Despite their remoteness, coastal Antarctic marine ecosystems accumulate and biomagnify MMHg to levels observed at lower latitudes and in the Arctic. Marine sediments and other anoxic habitats in the oceans are typical areas where methylation of mercury occurs and these are likely places where MMHg is being produced. Krill, and more specifically their digestive tracts, may be a previously unaccounted for site where the production of MMHg may be occurring in the Antarctic. If monomethylmercury production is occurring in krill, current views regarding bioaccumulation in the food web and processes leading to the production and accumulation of mercury in the Antarctic Ocean could be better informed, if not transformed. This project will conduct a preliminary assessment of the krill gut microbiomes, the microbiome\u0027s genomic content and potential for production of monomethyl mercury by detecting the genes involved in mercury transformations. By analyzing the krill gut microbiome, the project will provide insights regarding animal-microbe interactions and their potential role in globally important biogeochemical cycles. This project will conduct a preliminary assessment of the krill gut microbiomes, the microbiomes genomic content and potential for production of monomethylmercury. The diversity and metabolic profiles of microorganisms in krill digestive tracts will be evaluated using massively parallel Illumina DNA sequencing technology to produce 16S rRNA gene libraries and assembled whole metagenomes. The project will also quantify the abundance and expression of Hg methylation genes, hgcAB, and identify their taxonomic affiliations in the microbiome communities. Environmental metagenomes, 16S rRNA gene inventories produced from this project will provide the polar science community with valuable databases and experimental tools with which to examine coastal Antarctic microbial ecology and biogeochemistry. The project will seek to provide a wider window into the diversity of extremophile microbial communities and the identification of potentially unique and useful bioactive compounds. In addition to public education and outreach. This project will train graduate students and provide educational and outreach opportunities at the participating institutions", "east": -68.2816, "geometry": "POINT(-69.09295 -66.8017)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; Antarctica; NOT APPLICABLE; BACTERIA/ARCHAEA", "locations": "Antarctica", "north": -65.8708, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Schaefer, Jeffra; Reinfelder, John; Barkar, T.", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "NCBI GenBank", "repositories": "NCBI GenBank; USAP-DC", "science_programs": "LTER", "south": -67.7326, "title": "Methylmercury in Antarctic Krill Microbiomes", "uid": "p0010023", "west": -69.9043}, {"awards": "1341339 Baker, Bill; 1341333 McClintock, James", "bounds_geometry": "POLYGON((-65 -65,-64.8 -65,-64.6 -65,-64.4 -65,-64.2 -65,-64 -65,-63.8 -65,-63.6 -65,-63.4 -65,-63.2 -65,-63 -65,-63 -64.9,-63 -64.8,-63 -64.7,-63 -64.6,-63 -64.5,-63 -64.4,-63 -64.3,-63 -64.2,-63 -64.1,-63 -64,-63.2 -64,-63.4 -64,-63.6 -64,-63.8 -64,-64 -64,-64.2 -64,-64.4 -64,-64.6 -64,-64.8 -64,-65 -64,-65 -64.1,-65 -64.2,-65 -64.3,-65 -64.4,-65 -64.5,-65 -64.6,-65 -64.7,-65 -64.8,-65 -64.9,-65 -65))", "dataset_titles": "Data from Amsler et al. 2019 Antarctic Science; Plocamium cartilagineum field chemotyping; Plocamium reproductive system data and R code; Plocamium transect and transplant data; Raw gastropod collection data from Amsler et al. 2022 Antarctic Science; Supplementary information provided with Murray et al.: Discovery of an Antarctic ascidian-associated uncultivated Verrucomicrobia with antimelanoma palmerolide biosynthetic potential; Synoicum adareanum sampling underwater video Mar 2011 Palmer Station Antarctica; The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2010 experimental data; The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2010 field data; The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2011 Clad Outplant; The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2013 Chemo Phylo data", "datasets": [{"dataset_uid": "601533", "doi": "10.15784/601533", "keywords": "Antarctica; Benthos; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Raw gastropod collection data from Amsler et al. 2022 Antarctic Science", "url": "https://www.usap-dc.org/view/dataset/601533"}, {"dataset_uid": "601622", "doi": "10.15784/601622", "keywords": "Antarctica; Benthic; Biota; Macroalgae; Population Genetics", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Plocamium reproductive system data and R code", "url": "https://www.usap-dc.org/view/dataset/601622"}, {"dataset_uid": "601215", "doi": "10.15784/601215", "keywords": "Algae; Antarctica; Biota; Chemical Ecology; Chemotyping; Halogenated Monoterpenes; Natural Products; Oceans; Palmer Station; Plocamium Cartilagineum; Southern Ocean; Terpenes", "people": "Baker, Bill", "repository": "USAP-DC", "science_program": null, "title": "Plocamium cartilagineum field chemotyping", "url": "https://www.usap-dc.org/view/dataset/601215"}, {"dataset_uid": "601159", "doi": "601159", "keywords": "Antarctica; Benthic; Biota; Macroalgae; Mesograzer; Microscopy; Oceans; Zooplankton", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Data from Amsler et al. 2019 Antarctic Science", "url": "https://www.usap-dc.org/view/dataset/601159"}, {"dataset_uid": "200357", "doi": "10.5061/dryad.gxd2547gw", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Synoicum adareanum sampling underwater video Mar 2011 Palmer Station Antarctica", "url": "https://datadryad.org/stash/dataset/doi:10.5061/dryad.gxd2547gw"}, {"dataset_uid": "601621", "doi": "10.15784/601621", "keywords": "Antarctica; Benthic; Biota; Macroalgae; Mesograzer; Microscopy; Oceans; Secondary Metabolites", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Plocamium transect and transplant data", "url": "https://www.usap-dc.org/view/dataset/601621"}, {"dataset_uid": "600047", "doi": "10.15784/600047", "keywords": "Antarctica; Biota; Oceans; Southern Ocean", "people": "Baker, Bill", "repository": "USAP-DC", "science_program": null, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2010 experimental data", "url": "https://www.usap-dc.org/view/dataset/600047"}, {"dataset_uid": "600095", "doi": "10.15784/600095", "keywords": "Algae; Antarctica; Antarctic Peninsula; Biota; Oceans; Southern Ocean", "people": "Amsler, Charles; McClintock, James", "repository": "USAP-DC", "science_program": null, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2011 Clad Outplant", "url": "https://www.usap-dc.org/view/dataset/600095"}, {"dataset_uid": "600096", "doi": "10.15784/600096", "keywords": "Algae; Antarctica; Antarctic Peninsula; Biota; Oceans; Southern Ocean", "people": "Baker, Bill", "repository": "USAP-DC", "science_program": null, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2013 Chemo Phylo data", "url": "https://www.usap-dc.org/view/dataset/600096"}, {"dataset_uid": "600046", "doi": "10.15784/600046", "keywords": "Antarctica; Biota; Oceans; Southern Ocean", "people": "McClintock, James; Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2010 field data", "url": "https://www.usap-dc.org/view/dataset/600046"}, {"dataset_uid": "200356", "doi": "10.5061/dryad.8sf7m0cpp", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Supplementary information provided with Murray et al.: Discovery of an Antarctic ascidian-associated uncultivated Verrucomicrobia with antimelanoma palmerolide biosynthetic potential", "url": "https://datadryad.org/stash/dataset/doi:10.5061/dryad.8sf7m0cpp"}], "date_created": "Tue, 05 Mar 2019 00:00:00 GMT", "description": "The coastal environments of the western Antarctic Peninsula harbor rich assemblages of marine animals and algae. The importance of the interactions between these groups of organisms in the ecology of coastal Antarctica are well known and often mediated by chemical defenses in the tissues of the algae. These chemicals are meant to deter feeding by snails and other marine animals making the Antarctic Peninsula an excellent place to ask important questions about the functional and evolutionary significance of chemical compound diversity for marine communities. This project will focus on three main objectives: the first objective is to expand the current understanding of the relationship between algae and their associated marine animals. The second objective focuses on the diversity of chemical compounds used to defend algae from being consumed. The third objective seeks to understand how marine animals can benefit from these compounds by consuming the algae that contain them, and then using those compounds to chemically deter predators. The field components of this research will be performed during three expeditions to the US Palmer Station, Antarctica. During these expeditions, a variety of laboratory feeding bioassays, manipulative field and laboratory experiments, and on-site chemical analyses will be performed. The investigators will also foster opportunities to integrate their NSF research with a variety of educational activities. As in the past they will support undergraduate research, both through NSF programs as well as home, university-based, programs, and they will also continue to support and foster graduate education. Through their highly successful University of Alabama in Antarctica interactive web program (two time recipient of awards of excellence from the US Council for Advancement and Support of Education), they will continue to involve large numbers of teachers, K-12 students, and other members of the community at large in their scientific endeavors in Antarctica. In addition, the investigators have hosted K-12 teachers on their Antarctic field teams through the former NSF Teachers Experiencing Antarctica and the Arctic program and will pursue participation in PolarTREC, the successor to this valuable program. Moreover, they will actively participate in outreach efforts by presenting numerous talks on their research to local school and community groups. The near shore environments of the western Antarctic Peninsula harbor rich assemblages of macroalgae and macroinvertebrates. The importance of predator-prey interactions and chemical defenses in mediating community-wide trophic interactions makes the western Antarctic Peninsula an excellent place to ask important questions about the functional and evolutionary significance of defensive compound diversity for marine communities. This project will focus on three main objectives which are a direct outcome of the past studies of the chemical ecology of shallow-water marine macroalgae and invertebrates on the Antarctic Peninsula by this group of investigators. The first objective is to expand the current understanding of a community-wide mutualism between macroalgae and their associated amphipods to include gastropods, which are also abundant on many macroalgae. The second objective focuses on the diversity of chemical compounds used to defend macroalgae from being consumed, particularly in the common red alga Plocamium cartilagineum. The third objective seeks to understand the relationship between P. cartilagineum and the amphipod Paradexamine fissicauda, including the ecological benefits and costs to P. fissicauda resulting from the ability to consume P. cartilagineum and other chemically defended red algae. The investigators will focus on the costs and benefits related to the ability of P. fissicauda to sequester defensive compounds from the alga P. cartilagineum and use those chemicals to defend itself from predation. The field components of this research will be performed during three expeditions to Palmer Station, Antarctica. During these expeditions, a variety of laboratory feeding bioassays, manipulative field and laboratory experiments, and on-site chemical analyses will be performed. Phylogenetic analyses, detailed secondary metabolite chemical analyses and purifications, and other data analyses will also be performed at the investigators\u0027 home institutions between and after their field seasons.", "east": -63.0, "geometry": "POINT(-64 -64.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; Antarctica; BENTHIC; USAP-DC", "locations": "Antarctica", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Amsler, Charles; Baker, Bill; McClintock, James", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "Dryad; USAP-DC", "science_programs": null, "south": -65.0, "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing", "uid": "p0010016", "west": -65.0}, {"awards": "1443733 Winsor, Peter; 1443680 Smith, Craig; 1443705 Vernet, Maria", "bounds_geometry": "POLYGON((-66 -64,-65.6 -64,-65.2 -64,-64.8 -64,-64.4 -64,-64 -64,-63.6 -64,-63.2 -64,-62.8 -64,-62.4 -64,-62 -64,-62 -64.1,-62 -64.2,-62 -64.3,-62 -64.4,-62 -64.5,-62 -64.6,-62 -64.7,-62 -64.8,-62 -64.9,-62 -65,-62.4 -65,-62.8 -65,-63.2 -65,-63.6 -65,-64 -65,-64.4 -65,-64.8 -65,-65.2 -65,-65.6 -65,-66 -65,-66 -64.9,-66 -64.8,-66 -64.7,-66 -64.6,-66 -64.5,-66 -64.4,-66 -64.3,-66 -64.2,-66 -64.1,-66 -64))", "dataset_titles": "Andvord Bay Glacier Timelapse; Andvord Bay sediment core data collected during the FjordEco project (LMG1510 and NBP1603); Expedition Data; Expedition data of LMG1702; FjordEco Phytoplankton Ecology Dataset in Andvord Bay ; Fjord-Eco Sediment OrgC OrgN Data - Craig Smith; LMG1510 Expedition data; NBP1603 Expedition data; Sediment macrofaunal abundance and family richness from inner Andvord Bay to the open continental shelf", "datasets": [{"dataset_uid": "601193", "doi": "10.15784/601193", "keywords": "Antarctica; Geochronology; Grain Size; LMG1510; NBP1603; Sediment; Sediment Core Data", "people": "Nittrouer, Charles; Eidam, Emily; Smith, Craig; Homolka, Khadijah", "repository": "USAP-DC", "science_program": null, "title": "Andvord Bay sediment core data collected during the FjordEco project (LMG1510 and NBP1603)", "url": "https://www.usap-dc.org/view/dataset/601193"}, {"dataset_uid": "601157", "doi": "10.15784/601157", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Snow/ice; Snow/Ice", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "FjordEco", "title": "Fjord-Eco Sediment OrgC OrgN Data - Craig Smith", "url": "https://www.usap-dc.org/view/dataset/601157"}, {"dataset_uid": "601111", "doi": "10.15784/601111", "keywords": "Antarctica; Antarctic Peninsula; Glaciers/ice Sheet; Glaciers/Ice Sheet; Iceberg; Photo; Photo/video; Photo/Video", "people": "Truffer, Martin; Winsor, Peter", "repository": "USAP-DC", "science_program": "FjordEco", "title": "Andvord Bay Glacier Timelapse", "url": "https://www.usap-dc.org/view/dataset/601111"}, {"dataset_uid": "200040", "doi": "10.7284/907085", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "LMG1510 Expedition data", "url": "https://www.rvdata.us/search/cruise/LMG1510"}, {"dataset_uid": "601236", "doi": "10.15784/601236", "keywords": "Abundance; Andvord Bay; Antarctica; Antarctic Peninsula; Biota; Fjord; LMG1510; Marine Sediments; Oceans; Polychaete; Polychaete Family Richness; R/v Laurence M. Gould; Sediment Core Data; Sediment Macrofauna", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "FjordEco", "title": "Sediment macrofaunal abundance and family richness from inner Andvord Bay to the open continental shelf", "url": "https://www.usap-dc.org/view/dataset/601236"}, {"dataset_uid": "200039", "doi": "10.7284/907205", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1603 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1603"}, {"dataset_uid": "002733", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1702", "url": "https://www.rvdata.us/search/cruise/LMG1702"}, {"dataset_uid": "601158", "doi": "10.15784/601158", "keywords": "Antarctica; Antarctic Peninsula; Biota; Ecology; Fjord; Phytoplankton", "people": "Manck, Lauren; Vernet, Maria; Pan, B. Jack; Forsch, Kiefer", "repository": "USAP-DC", "science_program": "FjordEco", "title": "FjordEco Phytoplankton Ecology Dataset in Andvord Bay ", "url": "https://www.usap-dc.org/view/dataset/601158"}, {"dataset_uid": "001366", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1702"}, {"dataset_uid": "000402", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1702"}], "date_created": "Wed, 13 Feb 2019 00:00:00 GMT", "description": "Marine communities along the western Antarctic Peninsula are highly productive ecosystems which support a diverse assemblage of charismatic animals such as penguins, seals, and whales as well as commercial fisheries such as that on Antarctic krill. Fjords (long, narrow, deep inlets of the sea between high cliffs) along the central coast of the Peninsula appear to be intense, potentially climate sensitive, hotspots of biological production and biodiversity, yet the structure and dynamics of these fjord ecosystems are very poorly understood. Because of this intense biological activity and the charismatic fauna it supports, these fjords are also major destinations for a large Antarctic tourism industry. This project is an integrated field and modeling program to evaluate physical oceanographic processes, glacial inputs, water column community dynamics, and seafloor bottom community structure and function in these important yet little understood fjord systems. These Antarctic fjords have characteristics that are substantially different from well-studied Arctic fjords, likely yielding much different responses to climate warming. This project will provide major new insights into the dynamics and climate sensitivity of Antarctic fjord ecosystems, highlighting contrasts with Arctic sub-polar fjords, and potentially transforming our understanding of the ecological role of fjords in the rapidly warming west Antarctic coastal marine landscape. The project will also further the NSF goal of training new generations of scientists, providing scientific training for undergraduate, graduate, and postdoctoral students. This includes the unique educational opportunity for undergraduates to participate in research cruises in Antarctica and the development of a novel summer graduate course on fjord ecosystems. Internet based outreach activities will be enhanced and extended by the participation of a professional photographer who will produce magazine articles, websites, radio broadcasts, and other forms of public outreach on the fascinating Antarctic ecosystem. This project will involve a 15-month field program to test mechanistic hypotheses concerning oceanographic and glaciological forcing, and phytoplankton and benthic community response in the Antarctic fjords. Those efforts will be followed by a coupled physical/biological modeling effort to evaluate the drivers of biogeochemical cycles in the fjords and to explore their potential sensitivity to enhanced meltwater and sediment inputs. Fieldwork over two oceanographic cruises will utilize moorings, weather stations, and glacial, sea-ice and seafloor time-lapse cameras to obtain an integrated view of fjord ecosystem processes. The field team will also make multiple shipboard measurements and will use towed and autonomous underwater vehicles to intensively evaluate fjord ecosystem structure and function during spring/summer and autumn seasons. These integrated field and modeling studies are expected to elucidate fundamental properties of water column and sea bottom ecosystem structure and function in the fjords, and to identify key physical-chemical-glaciological forcing in these rapidly warming ecosystems.", "east": -62.0, "geometry": "POINT(-64 -64.5)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "OCEAN CURRENTS; Bellingshausen Sea; LMG1702; COMMUNITY DYNAMICS; FJORDS; R/V LMG; MARINE ECOSYSTEMS; USAP-DC; ECOSYSTEM FUNCTIONS; ANIMALS/INVERTEBRATES; SEDIMENTATION; NOT APPLICABLE; BENTHIC", "locations": "Bellingshausen Sea", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Winsor, Peter; Truffer, Martin; Smith, Craig; Powell, Brian; Merrifield, Mark; Vernet, Maria; Kohut, Josh", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": "FjordEco", "south": -65.0, "title": "Collaborative Research: Fjord Ecosystem Structure and Function on the West Antarctic Peninsula - Hotspots of Productivity and Biodiversity? (FjordEco)", "uid": "p0010010", "west": -66.0}, {"awards": "1246407 Jenouvrier, Stephanie", "bounds_geometry": "POINT(70.2433 -49.6875)", "dataset_titles": "Demographic outputs and their variances for three life history complexes for the Southern Fulmar across contrasted sea ice conditions.; Desprez, M., Jenouvrier, S., Barbraud, C., Delord, K. and Weimerskirch, H., 2018. Linking oceanographic conditions, migratory schedules and foraging behaviour during the non\u2010breeding season to reproductive performance in a long\u2010lived seabird. Functional ecology, 32(8), pp.2040-2053.; Jenouvrier, S., Desprez, M., Fay, R., Barbraud, C., Weimerskirch, H., Delord, K. and Caswell, H., 2018. Climate change and functional traits affect population dynamics of a long\u2010lived seabird. Journal of Animal Ecology, 87(4), pp.906-920.; Linking oceanographic conditions, migratory schedules and foraging behaviour during the non-breeding season to reproductive performance in a long-lived seabird", "datasets": [{"dataset_uid": "601140", "doi": "10.15784/601140", "keywords": "Albatross; Animal Behavior Observation; Antarctica; Biota; Birds; Black-Browed Albatross (thalassarche Melanophris); Field Investigations; Foraging; Kerguelen Island; Ocean Island/plateau; Ocean Island/Plateau; Southern Ocean", "people": "Jenouvrier, Stephanie", "repository": "USAP-DC", "science_program": null, "title": "Linking oceanographic conditions, migratory schedules and foraging behaviour during the non-breeding season to reproductive performance in a long-lived seabird", "url": "https://www.usap-dc.org/view/dataset/601140"}, {"dataset_uid": "601585", "doi": "10.15784/601585", "keywords": "Antarctica; Biota; Birds; East Antarctica; Southern Fulmar", "people": "Jenouvrier, Stephanie", "repository": "USAP-DC", "science_program": null, "title": "Demographic outputs and their variances for three life history complexes for the Southern Fulmar across contrasted sea ice conditions.", "url": "https://www.usap-dc.org/view/dataset/601585"}, {"dataset_uid": "200008", "doi": "10.1111/1365-2435.13117", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Desprez, M., Jenouvrier, S., Barbraud, C., Delord, K. and Weimerskirch, H., 2018. Linking oceanographic conditions, migratory schedules and foraging behaviour during the non\u2010breeding season to reproductive performance in a long\u2010lived seabird. Functional ecology, 32(8), pp.2040-2053.", "url": "https://datadryad.org/resource/doi:10.5061/dryad.pb209db"}, {"dataset_uid": "200007", "doi": "10.1111/1365-2656.12827.", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Jenouvrier, S., Desprez, M., Fay, R., Barbraud, C., Weimerskirch, H., Delord, K. and Caswell, H., 2018. Climate change and functional traits affect population dynamics of a long\u2010lived seabird. Journal of Animal Ecology, 87(4), pp.906-920.", "url": "https://doi.org/10.5061/dryad.h5vk5"}], "date_created": "Thu, 31 Jan 2019 00:00:00 GMT", "description": "Understanding the ecological consequences - present and future-of climate change is a central question in conservation biology. The goal of this project is to identify the effects of climate change on the Black-Browed Albatross, a seabird breeding in the Southern Ocean. The Black-Browed Albatross exhibits remarkable flight adaptations, using winds as an energy source to glide for long distances. This is the basis of their foraging strategy, by which they obtain food for themselves and their offspring. Climate change, however, is expected to modify wind patterns over the Southern Ocean. This project will analyze the effect of winds on life history traits (foraging behaviors, body conditions and demographic traits), and the effects of these traits on populations. New demographic models will provide the link between foraging behavior and the physical environment, and evaluate the persistence of this population in the face of climate change. Understanding and predicting population responses to climate change is important because the world?s climate will continue to change throughout the 21st century and beyond. To help guide conservation strategies and policy decisions in the face of climate change, reliable assessments of population extinction risks are urgently needed. The Black-Browed Albatross is considered endangered by the International Union for Conservation of Nature due to recent drastic reductions in its population size. This project will improve our understanding of the mechanisms by which climate affects the life history and populations of Black-Browed Albatross to improve prediction of extinction risks under future climate change.", "east": 70.2433, "geometry": "POINT(70.2433 -49.6875)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Southern Ocean; NOT APPLICABLE; USAP-DC; BIRDS", "locations": "Southern Ocean", "north": -49.6875, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Jenouvrier, Stephanie", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "Dryad; USAP-DC", "science_programs": null, "south": -49.6875, "title": "Linking Foraging Behaviors to Demography to understand Albatrosses Population Responses to Climate Change", "uid": "p0010002", "west": 70.2433}, {"awards": "1341612 Bowser, Samuel", "bounds_geometry": null, "dataset_titles": "Aerial survey of Explorers Cove shoreline, late January 2005; Astrammina rara genome sequencing and assembly; Astrammina triangularis genome sequencing and assembly; Crithionina delacai mitochondrial genome sequence and assembly; Scanning electron micrographs: Influence of heavy metal (Pb, Cd) exposure on shell morphogenesis in Astrammina rara, a giant agglutinated Antarctic foraminiferan protist", "datasets": [{"dataset_uid": "601229", "doi": "10.15784/601229", "keywords": "Aerial Imagery; Antarctica; Camera; Delta; Freshwater; Helicopter; Moat; Shoreline Survey; Small Ponds; Snow Melt; Tide Pools", "people": "Bowser, Samuel; Alexander, Steve", "repository": "USAP-DC", "science_program": null, "title": "Aerial survey of Explorers Cove shoreline, late January 2005", "url": "https://www.usap-dc.org/view/dataset/601229"}, {"dataset_uid": "200089", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Astrammina triangularis genome sequencing and assembly", "url": "https://dataview.ncbi.nlm.nih.gov/object/PRJNA521279?reviewer=g418tpq02sif2g6do94dpmmjdv"}, {"dataset_uid": "601138", "doi": "10.15784/601138", "keywords": "Antarctica; Biota; Foraminifera; Heavy Metal Toxicity; Scanning Electron Microscop; Scanning Electron Microscope (SEM) Images; Scanning Electron Microscopy; Transantarctic Mountains", "people": "Bowser, Samuel; Andreas, Amanda", "repository": "USAP-DC", "science_program": null, "title": "Scanning electron micrographs: Influence of heavy metal (Pb, Cd) exposure on shell morphogenesis in Astrammina rara, a giant agglutinated Antarctic foraminiferan protist", "url": "https://www.usap-dc.org/view/dataset/601138"}, {"dataset_uid": "200090", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Astrammina rara genome sequencing and assembly", "url": "https://dataview.ncbi.nlm.nih.gov/object/PRJNA521081?reviewer=25e190ih1svottjkrrpfa7huoe"}, {"dataset_uid": "200091", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Crithionina delacai mitochondrial genome sequence and assembly", "url": "https://dataview.ncbi.nlm.nih.gov/object/PRJNA592714?reviewer=ivse8455h3gfaiilg4nqle0vm1"}], "date_created": "Thu, 29 Nov 2018 00:00:00 GMT", "description": "Agglutinated foraminifera (forams for short) are early-evolving, single-celled organisms. These \"living fossils\" construct protective shells using sediment grains held together by adhesive substances that they secrete. During shell construction, agglutinated forams display amazing properties of selection - for example, some species build their shells of clear quartz grains, while other species use only grains of a specific size. Understanding how these single cells assemble complex structures may contribute to nanotechnology by enabling people to use forams as \"cellular machines\" to aid in the construction of nano-devices. This project will analyze the genomes of at least six key foram species, and then \"mine\" these genomes for technologically useful products and processes. The project will focus initially on the adhesive materials forams secrete, which may have wide application in biomedicine and biotechnology. Furthermore, the work will further develop a molecular toolkit which could open up new avenues of research on the physiology, ecology, and population dynamics of this important group of Antarctic organisms. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. Educational experiences related to the \"thrill of scientific exploration and discovery\" for students and the general public will be provided through freely-available short films and a traveling art/science exhibition. The project will also provide hands-on research opportunities for undergraduate students. Explorers Cove, situated on the western shore of McMurdo Sound, harbors a unique population of foraminiferan taxa at depths accessible by scuba diving that otherwise are primarily found in the deep sea. The project will use next-generation DNA sequencing and microdissection methods to obtain and analyze nuclear and mitochondrial genomes from crown members of two species each from three distinct, early-evolving foraminiferal groups. It will also use next generation sequencing methods to characterize the in-situ prokaryotic assemblages (microbiomes) of one of these groups and compare them to reference sediment microbiomes. The phyogenomic studies of the targeted Antarctic genera will help fill significant gaps in our current understanding of early foram evolution. Furthermore, comparative genomic analyses of these six species are expected to yield a better understanding of the physiology of single-chambered agglutinated forams, especially the bioadhesive proteins and regulatory factors involved in shell composition and morphogenesis. Additionally, the molecular basis of cold adaptation in forams will be examined, particularly with respect to key proteins.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; NOT APPLICABLE", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bowser, Samuel", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "NCBI GenBank; USAP-DC", "science_programs": null, "south": null, "title": "Assembling and Mining the Genomes of Giant Antarctic Foraminifera", "uid": "p0000004", "west": null}, {"awards": "1144177 Pettit, Erin; 1144176 Lyons, W. Berry; 1144192 Tulaczyk, Slawek; 1727387 Mikucki, Jill", "bounds_geometry": "POLYGON((161.8 -77.7,161.88 -77.7,161.96 -77.7,162.04000000000002 -77.7,162.12 -77.7,162.2 -77.7,162.28 -77.7,162.36 -77.7,162.44 -77.7,162.51999999999998 -77.7,162.6 -77.7,162.6 -77.70700000000001,162.6 -77.714,162.6 -77.721,162.6 -77.728,162.6 -77.735,162.6 -77.742,162.6 -77.749,162.6 -77.756,162.6 -77.76299999999999,162.6 -77.77,162.51999999999998 -77.77,162.44 -77.77,162.36 -77.77,162.28 -77.77,162.2 -77.77,162.12 -77.77,162.04000000000002 -77.77,161.96 -77.77,161.88 -77.77,161.8 -77.77,161.8 -77.76299999999999,161.8 -77.756,161.8 -77.749,161.8 -77.742,161.8 -77.735,161.8 -77.728,161.8 -77.721,161.8 -77.714,161.8 -77.70700000000001,161.8 -77.7))", "dataset_titles": "Ablation Stake Data from of Taylor Glacier near Blood Falls; Antarctica Support 2014/2015 - C-528 Blood Falls GPS/GNSS Observations Dataset; Blood Falls, McMurdo Dry Va. International Federation of Digital Seismograph Networks. Dataset/Seismic Network; FLIR thermal imaging data near Blood Falls, Taylor Glacier; Ground Penetrating Radar Data near Blood Falls, Taylor Glacier; Ice Temperature in Shallow Boreholes Near Blood Falls at the Terminus of Taylor Glacier, McMurdo Dry Valleys, Antarctica; NCBI short read archive -Metagenomic survey of Antarctic Groundwater; Terrestrial Radar Interferometry near Blood Falls, Taylor Glacier; The Geochemistry of englacial brine from Taylor Glacier, Antarctica; Time Lapse imagery of the Blood Falls feature, Antarctica ; Vaisala Integrated Met Station near Blood Falls, Taylor Glacier", "datasets": [{"dataset_uid": "601166", "doi": "10.15784/601166", "keywords": "Antarctica; Basal Crevassing; Glacier Hydrology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Radar; Snow/ice; Snow/Ice; Taylor Glacier", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": null, "title": "Terrestrial Radar Interferometry near Blood Falls, Taylor Glacier", "url": "https://www.usap-dc.org/view/dataset/601166"}, {"dataset_uid": "601167", "doi": "10.15784/601167", "keywords": "Antarctica; Basal Crevassing; Glacier Hydrology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Photo; Photo/video; Photo/Video; Snow/ice; Snow/Ice; Taylor Glacier; Timelaps Images", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": null, "title": "Time Lapse imagery of the Blood Falls feature, Antarctica ", "url": "https://www.usap-dc.org/view/dataset/601167"}, {"dataset_uid": "601168", "doi": "10.15784/601168", "keywords": "Antarctica; Atmosphere; Basal Crevassing; Glacier Hydrology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Meteorology; Taylor Glacier; Temperature; Weather Station Data; Wind Speed", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": null, "title": "Vaisala Integrated Met Station near Blood Falls, Taylor Glacier", "url": "https://www.usap-dc.org/view/dataset/601168"}, {"dataset_uid": "601169", "doi": "10.15784/601169", "keywords": "Antarctica; Basal Crevassing; Glacier Hydrology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Infrared Imagery; Photo/video; Photo/Video; Taylor Glacier; Thermal Camera; Timelaps Images", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": null, "title": "FLIR thermal imaging data near Blood Falls, Taylor Glacier", "url": "https://www.usap-dc.org/view/dataset/601169"}, {"dataset_uid": "601179", "doi": "10.15784/601179", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Subglacial Brine", "people": "Lyons, W. Berry; Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "The Geochemistry of englacial brine from Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601179"}, {"dataset_uid": "601139", "doi": "10.15784/601139", "keywords": "Antarctica; Borehole; Borehole Logging; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Temperature; Snow/ice; Snow/Ice; Temperature; Temperature Profiles", "people": "Tulaczyk, Slawek", "repository": "USAP-DC", "science_program": null, "title": "Ice Temperature in Shallow Boreholes Near Blood Falls at the Terminus of Taylor Glacier, McMurdo Dry Valleys, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601139"}, {"dataset_uid": "200074", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "NCBI short read archive -Metagenomic survey of Antarctic Groundwater", "url": "https://www.ncbi.nlm.nih.gov/sra/?term=SRR6667787"}, {"dataset_uid": "200029", "doi": "10.7914/SN/YW_2013", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Blood Falls, McMurdo Dry Va. International Federation of Digital Seismograph Networks. Dataset/Seismic Network", "url": "http://www.fdsn.org/networks/detail/YW_2013/"}, {"dataset_uid": "601164", "doi": "10.15784/601164", "keywords": "Antarctica; Basal Crevassing; Glacier Hydrology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Snow/ice; Snow/Ice", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": null, "title": "Ablation Stake Data from of Taylor Glacier near Blood Falls", "url": "https://www.usap-dc.org/view/dataset/601164"}, {"dataset_uid": "601165", "doi": "10.15784/601165", "keywords": "Antarctica; Basal Crevassing; Glacier Hydrology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Radar; Snow/ice; Snow/Ice; Taylor Glacier", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": null, "title": "Ground Penetrating Radar Data near Blood Falls, Taylor Glacier", "url": "https://www.usap-dc.org/view/dataset/601165"}, {"dataset_uid": "200028", "doi": "10.7283/FCEN-8050", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica Support 2014/2015 - C-528 Blood Falls GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/fcen-8050"}], "date_created": "Wed, 28 Nov 2018 00:00:00 GMT", "description": "Recent discoveries of widespread liquid water and microbial ecosystems below the Antarctic ice sheets have generated considerable interest in studying Antarctic subglacial environments. Understanding subglacial hydrology, the persistence of life in extended isolation and the evolution and stability of subglacial habitats requires an integrated, interdisciplinary approach. The collaborative project, Minimally Invasive Direct Glacial Exploration (MIDGE) of the Biogeochemistry, Hydrology and Glaciology of Blood Falls, McMurdo Dry Valleys will integrate geophysical measurements, molecular microbial ecology and geochemical analyses to explore a unique Antarctic subglacial system known as Blood Falls. Blood Falls is a hypersaline, subglacial brine that supports an active microbial community. The subglacial brine is released from a crevasse at the surface of the Taylor Glacier providing an accessible portal into an Antarctic subglacial ecosystem. Recent geochemical and molecular analyses support a marine source for the salts and microorganisms in Blood Falls. The last time marine waters inundated this part of the McMurdo Dry Valleys was during the Late Tertiary, which suggests the brine is ancient. Still, no direct samples have been collected from the subglacial source to Blood Falls and little is known about the origin of this brine or the amount of time it has been sealed below Taylor Glacier. Radar profiles collected near Blood Falls delineate a possible fault in the subglacial substrate that may help explain the localized and episodic nature of brine release. However it remains unclear what triggers the episodic release of brine exclusively at the Blood Falls crevasse or the extent to which the brine is altered as it makes its way to the surface. The MIDGE project aims to determine the mechanism of brine release at Blood Falls, evaluate changes in the geochemistry and the microbial community within the englacial conduit and assess if Blood Falls waters have a distinct impact on the thermal and stress state of Taylor Glacier, one of the most studied polar glaciers in Antarctica. The geophysical study of the glaciological structure and mechanism of brine release will use GPR, GPS, and a small passive seismic network. Together with international collaborators, the \u0027Ice Mole\u0027 team from FH Aachen University of Applied Sciences, Germany (funded by the German Aerospace Center, DLR), MIDGE will develop and deploy innovative, minimally invasive technologies for clean access and brine sample retrieval from deep within the Blood Falls drainage system. These technologies will allow for the collection of samples of the brine away from the surface (up to tens of meters) for geochemical analyses and microbial structure-function experiments. There is concern over the contamination of pristine subglacial environments from chemical and biological materials inherent in the drilling process; and MIDGE will provide data on the efficacy of thermoelectric probes for clean access and retrieval of representative subglacial samples. Antarctic subglacial environments provide an excellent opportunity for researching survivability and adaptability of microbial life and are potential terrestrial analogues for life habitats on icy planetary bodies. The MIDGE project offers a portable, versatile, clean alternative to hot water and mechanical drilling and will enable the exploration of subglacial hydrology and ecosystem function while making significant progress towards developing technologies for minimally invasive and clean sampling of icy systems.", "east": 162.6, "geometry": "POINT(162.2 -77.735)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; BACTERIA/ARCHAEA; USAP-DC", "locations": null, "north": -77.7, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Tulaczyk, Slawek; Pettit, Erin; Lyons, W. Berry; Mikucki, Jill", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "IRIS; NCBI GenBank; UNAVCO; USAP-DC", "science_programs": null, "south": -77.77, "title": "Collaborative Research: MIDGE: Minimally Invasive Direct Glacial Exploration of Biogeochemistry, Hydrology and Glaciology of Blood Falls, McMurdo Dry Valleys", "uid": "p0000002", "west": 161.8}, {"awards": "1341440 Jin, Meibing; 1341558 Ji, Rubao; 1341547 Stroeve, Julienne", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic MIZ, Pack Ice and Polynya Maps from Passive Microwave Satellite Data; Ice-ocean-ecosystem model output; Sea ice chlorophyll concentrations in Antarctic coastal polynyas and seasonal ice zones", "datasets": [{"dataset_uid": "601136", "doi": "10.15784/601136", "keywords": "Antarctica; Biota; Model Data; Oceans; Southern Ocean", "people": "Jin, Meibing", "repository": "USAP-DC", "science_program": null, "title": "Ice-ocean-ecosystem model output", "url": "https://www.usap-dc.org/view/dataset/601136"}, {"dataset_uid": "601219", "doi": "10.15784/601219", "keywords": "Antarctica; Biota; Chlorophyll; Chlorophyll Concentration; Oceans; Polynya; Sea Ice Concentration; Seasonal Ice Zone; Southern Ocean", "people": "Ji, Rubao", "repository": "USAP-DC", "science_program": null, "title": "Sea ice chlorophyll concentrations in Antarctic coastal polynyas and seasonal ice zones", "url": "https://www.usap-dc.org/view/dataset/601219"}, {"dataset_uid": "601115", "doi": "10.15784/601115", "keywords": "Antarctica; Pack Ice; Polynya; Sea Ice; Southern Ocean", "people": "Stroeve, Julienne", "repository": "USAP-DC", "science_program": null, "title": "Antarctic MIZ, Pack Ice and Polynya Maps from Passive Microwave Satellite Data", "url": "https://www.usap-dc.org/view/dataset/601115"}], "date_created": "Tue, 20 Nov 2018 00:00:00 GMT", "description": "The aim of study is to understand how climate-related changes in snow and ice affect predator populations in the Antarctic, using the Ad\u00e9lie penguin as a focal species due to its long history as a Southern Ocean \u0027sentinel\u0027 species and the number of long-term research programs monitoring its abundance, distribution, and breeding biology. Understanding the environmental factors that control predator population dynamics is critically important for projecting the state of populations under future climate change scenarios, and for designing better conservation strategies for the Antarctic ecosystem. For the first time, datasets from a network of observational sites for the Ad\u00e9lie penguin across the entire Antarctic will be combined and analyzed, with a focus on linkages among the ice environment, primary production, and the population responses of Ad\u00e9lie penguins. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. The results of this project can be used to illustrate intuitively to the general public the complex interactions between ice, ocean, pelagic food web and top predators. This project also offers an excellent platform to demonstrate the process of climate-change science - how scientists simulate climate change scenarios and interpret model results. This project supports the training of undergraduate and graduate students in the fields of polar oceanography, plankton and seabird ecology, coupled physical-biological modeling and mathematical ecology. The results will be broadly disseminated to the general oceanographic research community through scientific workshops, conferences and peer-reviewed journal articles, and to undergraduate and graduate education communities, K-12 schools and organizations, and the interested public through web-based servers using existing infrastructure at the investigators\u0027 institutions. The key question to be addressed in this project is how climate impacts the timing of periodic biological events (phenology) and how interannual variation in this periodic forcing influences the abundance of penguins in the Antarctic. The focus will be on the timing of ice algae and phytoplankton blooms because the high seasonality of sea ice and associated pulsed primary productivity are major drivers of the Antarctic food web. This study will also examine the responses of Ad\u00e9lie penguins to changes in sea ice dynamics and ice algae-phytoplankton phenology. Ad\u00e9lie penguins, like many other Antarctic seabirds, are long-lived, upper trophic-level predators that integrate the effects of sea ice on the food web at regional scales, and thus serve as a reliable biological indicator of environmental changes. The proposed approach is designed to accommodate the limits of measuring and modeling the intermediate trophic levels between phytoplankton and penguins (e.g., zooplankton and fish) at the pan-Antarctic scale, which are important but latent variables in the Southern Ocean food web. Through the use of remotely sensed and in situ data, along with state of the art statistical approaches (e.g. wavelet analysis) and numerical modeling, this highly interdisciplinary study will advance our understanding of polar ecosystems and improve the projection of future climate change scenarios.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; MARINE ECOSYSTEMS; NOT APPLICABLE; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Jin, Meibing; Stroeve, Julienne; Ji, Rubao", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Phytoplankton Phenology in the Antarctic: Drivers, Patterns, and Implications for the Adelie Penguin", "uid": "p0000001", "west": -180.0}, {"awards": "1142084 Nevitt, Gabrielle", "bounds_geometry": "POLYGON((40 -25,46 -25,52 -25,58 -25,64 -25,70 -25,76 -25,82 -25,88 -25,94 -25,100 -25,100 -28.5,100 -32,100 -35.5,100 -39,100 -42.5,100 -46,100 -49.5,100 -53,100 -56.5,100 -60,94 -60,88 -60,82 -60,76 -60,70 -60,64 -60,58 -60,52 -60,46 -60,40 -60,40 -56.5,40 -53,40 -49.5,40 -46,40 -42.5,40 -39,40 -35.5,40 -32,40 -28.5,40 -25))", "dataset_titles": "Satellite tracks of Black-browed Albatross in the Southern Indian Ocean", "datasets": [{"dataset_uid": "601093", "doi": "10.15784/601093", "keywords": "Albatross; Antarctica; Biota; Birds; Foraging; GPS Data; Southern Ocean; Stomach Temperature", "people": "Losekoot, Marcel; Nevitt, Gabrielle", "repository": "USAP-DC", "science_program": null, "title": "Satellite tracks of Black-browed Albatross in the Southern Indian Ocean", "url": "https://www.usap-dc.org/view/dataset/601093"}], "date_created": "Thu, 12 Apr 2018 00:00:00 GMT", "description": "With 70% of the Earth\u0027s surface being covered by oceans, a longstanding question of interest to the ecology of migratory seabirds is how they locate their prey across such vast distances. The project seeks to investigate the sensory strategies used in the foraging behavior of procellariiform seabirds, such as petrels, albatrosses and shearwaters. These birds routinely travel over thousands of kilometers of open ocean, apparently using their pronounced olfactory abilities (known to be up to a million times more sensitive than other birds) to identify productive marine areas or locate prey. High resolution tracking, such as provided by miniaturized GPS data loggers (+/- 5m; 10 second sampling), are needed to gain insight into some of the questions as to the sensory mechanisms birds use to locate their prey. Combining these tracking and positioning devices along with stomach temperature recorders capable of indicating prey ingestion, will provide a wealth of new behavioral information. Species specific foraging based on prey specific odors (e.g. krill vs fisheries vs. squid), and mixed strategies using olfaction and visual cues appear to be different for these different marine predators. Albatrosses are increasingly an endangered species globally, and additional information as to their foraging strategies might lead to better conservation measures such as the avoidance of by-catch by long-line fisheries. Intimate details of each species foraging activity patterns during the day and night and insight into the conservation of these top predators in pelagic Southern Ocean ecosystems are a few of the research directions these novel fine scale resolution approaches are yielding.", "east": 100.0, "geometry": "POINT(70 -42.5)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": -25.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Nevitt, Gabrielle", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -60.0, "title": "Applying High-resolution GPS Tracking to Characterize Sensory Foraging Strategies of the Black-browed Albatross, a Top Predator of the Southern Ocean Ecosystem", "uid": "p0000420", "west": 40.0}, {"awards": "1056396 Morgan-Kiss, Rachael", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Genetic sequence identifier: Accession Numbers: GU132860-GU132939; JN091926-JN091960; JQ9243533-JQ924384; KJ848331-KJ848439; KU196097-KU196166; PRJNA396917", "datasets": [{"dataset_uid": "000241", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Genetic sequence identifier: Accession Numbers: GU132860-GU132939; JN091926-JN091960; JQ9243533-JQ924384; KJ848331-KJ848439; KU196097-KU196166; PRJNA396917", "url": "https://www.ncbi.nlm.nih.gov/genbank/"}], "date_created": "Mon, 26 Feb 2018 00:00:00 GMT", "description": "This CAREER proposal will support an early career female PI to establish an integrated research and education program in the fields of polar biology and environmental microbiology, focusing on single-celled eukaryotes (protists) in high latitude ice-covered Antarctic lakes systems. Protists play important roles in energy flow and material cycling, and act as both primary producers (fixing inorganic carbon by photosynthesis) and consumers (preying on bacteria by phagotrophic digestion). The McMurdo Dry Valleys (MDV) located in Victoria Land, Antarctica, harbor microbial communities which are isolated in the unique aquatic ecosystem of perennially ice-capped lakes. The lakes support exclusively microbial consortia in chemically stratified water columns that are not influenced by seasonal mixing, allochthonous inputs, or direct human impact. This project will exploit permanently stratified biogeochemistry that is unique across the water columns of several MDV lakes to address gaps in our understanding of protist trophic function in aquatic food webs. The proposed research will examine (1) the impact of permanent biogeochemical gradients on protist trophic strategy, (2) the effect of major abiotic drivers (light and nutrients) on the distribution of two key mixotrophic and photoautotrophic protist species, and (3) the effect of episodic nutrient pulses on mixotroph communities in high latitude (ultraoligotrophic) MDV lakes versus low latitude (eutrophic) watersheds. The project will impact the fields of microbial ecology and environmental microbiology by combining results from field, laboratory and in situ incubation studies to synthesize new models for the protist trophic roles in the aquatic food web. The research component of this proposed project will be tightly integrated with the development of two new education activities designed to exploit the inherent excitement associated with polar biological research. The educational objectives are: 1) to establish a teaching module in polar biology in a core undergraduate course for microbiology majors; 2) to develop an instructional module to engage middle school girls in STEM disciplines. Undergraduates and middle school girls will also work with a doctoral student on his experiments in local Ohio watersheds.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Morgan-Kiss, Rachael", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "NCBI GenBank", "repositories": "NCBI GenBank", "science_programs": null, "south": -90.0, "title": "CAREER:Protist Nutritional Strategies in Permanently Stratified Antarctic Lakes", "uid": "p0000310", "west": -180.0}, {"awards": "0732711 Smith, Craig; 0732625 Leventer, Amy; 0732655 Mosley-Thompson, Ellen; 0732602 Truffer, Martin; 0732651 Gordon, Arnold; 0732983 Vernet, Maria", "bounds_geometry": "POLYGON((-68 -57.8,-66.78 -57.8,-65.56 -57.8,-64.34 -57.8,-63.12 -57.8,-61.9 -57.8,-60.68 -57.8,-59.46 -57.8,-58.24 -57.8,-57.02 -57.8,-55.8 -57.8,-55.8 -58.8,-55.8 -59.8,-55.8 -60.8,-55.8 -61.8,-55.8 -62.8,-55.8 -63.8,-55.8 -64.8,-55.8 -65.8,-55.8 -66.8,-55.8 -67.8,-57.02 -67.8,-58.24 -67.8,-59.46 -67.8,-60.68 -67.8,-61.9 -67.8,-63.12 -67.8,-64.34 -67.8,-65.56 -67.8,-66.78 -67.8,-68 -67.8,-68 -66.8,-68 -65.8,-68 -64.8,-68 -63.8,-68 -62.8,-68 -61.8,-68 -60.8,-68 -59.8,-68 -58.8,-68 -57.8))", "dataset_titles": "Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Marine Ecosystems; Biology Species Abundance from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expeditions NBP1001 and NBP1203; Bruce Plateau Accumulation O18 2009-1900; Easten Antarctic Peninsula Surface Sediment Diatom Data; LMG13-11 JKC-1 Paleoceanographic data; Macrofauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001; Megafauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001; NBP1001 cruise data; NBP1203 cruise data; Processed CTD Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001; Processed CTD Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203; Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001; Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203; Radioisotope data (C-14 and Pb-210) from bulk sediments, Larsen A Ice Shelf; Sediment samples (full data link not provided)", "datasets": [{"dataset_uid": "601306", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; LARISSA; Larsen Ice Shelf; Macrofauna; NBP1001; Oceans; R/v Nathaniel B. Palmer; Seafloor Sampling; Species Abundance", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Macrofauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601306"}, {"dataset_uid": "601348", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; CTD; CTD Data; LARISSA; Larsen Ice Shelf; NBP1203; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Huber, Bruce; Gordon, Arnold", "repository": "USAP-DC", "science_program": null, "title": "Processed CTD Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203", "url": "https://www.usap-dc.org/view/dataset/601348"}, {"dataset_uid": "000226", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Biology Species Abundance from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expeditions NBP1001 and NBP1203", "url": "https://doi.org/10.1594/ieda/320821"}, {"dataset_uid": "600073", "doi": "10.15784/600073", "keywords": "Antarctica; Antarctic Peninsula; Araon1304; Biota; LARISSA; Larsen B Ice Shelf; NBP1001; NBP1203; Oceans; Physical Oceanography; Southern Ocean; Weddell Sea", "people": "Vernet, Maria", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Marine Ecosystems", "url": "https://www.usap-dc.org/view/dataset/600073"}, {"dataset_uid": "600167", "doi": "10.15784/600167", "keywords": "Antarctica; Antarctic Peninsula; Bruce Plateau; Glaciology; Ice Core Records; Isotope; LARISSA; Paleoclimate; Sample/collection Description; Sample/Collection Description; Snow Accumulation", "people": "Thompson, Lonnie G.; Mosley-Thompson, Ellen", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Bruce Plateau Accumulation O18 2009-1900", "url": "https://www.usap-dc.org/view/dataset/600167"}, {"dataset_uid": "601346", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Current Measurements; LADCP; Larsen Ice Shelf; NBP1001; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer", "people": "Huber, Bruce; Gordon, Arnold", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601346"}, {"dataset_uid": "601336", "doi": "10.15784/601336", "keywords": "Antarctica; Carbon-14; Larsen Ice Shelf; Lead-210; Marine Sediments; Radioisotope Analysis", "people": "Taylor, Richard; DeMaster, David", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Radioisotope data (C-14 and Pb-210) from bulk sediments, Larsen A Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/601336"}, {"dataset_uid": "601211", "doi": "10.15784/601211", "keywords": "Antarctica; Antarctic Peninsula; Benthos; Biota; Diatom; Geology/Geophysics - Other; LMG0502; Marine Geoscience; Marine Sediments; Microscope; NBP0003; NBP0107; NBP0603; NBP1203; R/v Nathaniel B. Palmer; Surface Sediment", "people": "Leventer, Amy", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Easten Antarctic Peninsula Surface Sediment Diatom Data", "url": "https://www.usap-dc.org/view/dataset/601211"}, {"dataset_uid": "000145", "doi": "", "keywords": null, "people": null, "repository": "AMGRF", "science_program": null, "title": "Sediment samples (full data link not provided)", "url": "http://arf.fsu.edu/"}, {"dataset_uid": "000142", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1001 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP1001"}, {"dataset_uid": "601485", "doi": "10.15784/601485", "keywords": "Antarctica; Antarctic Peninsula; Delta 13C; Delta 18O; Paleoceanography; Temperature", "people": "Shevenell, Amelia", "repository": "USAP-DC", "science_program": "LARISSA", "title": "LMG13-11 JKC-1 Paleoceanographic data", "url": "https://www.usap-dc.org/view/dataset/601485"}, {"dataset_uid": "000143", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1203 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP1203"}, {"dataset_uid": "601347", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Current Measurements; LADCP; LARISSA; Larsen Ice Shelf; NBP1203; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer", "people": "Gordon, Arnold; Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203", "url": "https://www.usap-dc.org/view/dataset/601347"}, {"dataset_uid": "601305", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; LARISSA; Larsen Ice Shelf; Macrofauna; Megafauna; NBP1001; Oceans; R/v Nathaniel B. Palmer; Seafloor Sampling; Species Abundance", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Megafauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601305"}, {"dataset_uid": "601345", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; CTD; CTD Data; LARISSA; Larsen Ice Shelf; NBP1001; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Huber, Bruce; Gordon, Arnold", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Processed CTD Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601345"}], "date_created": "Thu, 01 Feb 2018 00:00:00 GMT", "description": "Like no other region on Earth, the northern Antarctic Peninsula represents a spectacular natural laboratory of climate change and provides the opportunity to study the record of past climate and ecological shifts alongside the present-day changes in one of the most rapidly warming regions on Earth. This award supports the cryospheric and oceano-graphic components of an integrated multi-disciplinary program to address these rapid and fundamental changes now taking place in Antarctic Peninsula (AP). By making use of a marine research platform (the RV NB Palmer and on-board helicopters) and additional logistical support from the Argentine Antarctic program, the project will bring glaciologists, oceanographers, marine geologists and biologists together, working collaboratively to address fundamentally interdisciplinary questions regarding climate change. The project will include gathering a new, high-resolution paleoclimate record from the Bruce Plateau of Graham Land, and using it to compare Holocene- and possibly glacial-epoch climate to the modern period; investigating the stability of the remaining Larsen Ice Shelf and rapid post-breakup glacier response ? in particular, the roles of surface melt and ice-ocean interactions in the speed-up and retreat; observing the contribution of, and response of, oceanographic systems to ice shelf disintegration and ice-glacier interactions. Helicopter support on board will allow access to a wide range of glacial and geological areas of interest adjacent to the Larsen embayment. At these locations, long-term in situ glacial monitoring, isostatic uplift, and ice flow GPS sites will be established, and high-resolution ice core records will be obtained using previously tested lightweight drilling equipment. Long-term monitoring of deep water outflow will, for the first time, be integrated into changes in ice shelf extent and thickness, bottom water formation, and multi-level circulation by linking near-source observations to distal sites of concentrated outflow. The broader impacts of this international, multidisciplinary effort are that it will significantly advance our understanding of linkages amongst the earth\u0027s systems in the Polar Regions, and are proposed with international participation (UK, Spain, Belgium, Germany and Argentina) and interdisciplinary engagement in the true spirit of the International Polar Year (IPY). It will also provide a means of engaging and educating the public in virtually all aspects of polar science and the effects of ongoing climate change. The research team has a long record of involving undergraduates in research, educating high-performing graduate students, and providing innovative and engaging outreach products to the K-12 education and public media forums. Moreover, forging the new links both in science and international Antarctic programs will provide a continuing legacy, beyond IPY, of improved understanding and cooperation in Antarctica.", "east": -55.8, "geometry": "POINT(-61.9 -62.8)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e BOX CORE; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ICE AUGERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SNOW DENSITY CUTTER", "is_usap_dc": true, "keywords": "Paleoclimate; Megafauna; USAP-DC; AMD; Amd/Us; Antarctica; Climate Change; LABORATORY; Climate Variability; Multi-Disciplinary; Cryosphere; NBP1001; FIELD SURVEYS; Not provided; Antarctic Peninsula; R/V NBP; FIELD INVESTIGATION; USA/NSF; Ice Core; Holocene", "locations": "Antarctica; Antarctic Peninsula", "north": -57.8, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Truffer, Martin; Gordon, Arnold; Huber, Bruce; Mosley-Thompson, Ellen; Leventer, Amy; Vernet, Maria; Smith, Craig; Thompson, Lonnie G.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "AMGRF; MGDS; R2R; USAP-DC", "science_programs": "LARISSA", "south": -67.8, "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans", "uid": "p0000101", "west": -68.0}, {"awards": "1245703 Manahan, Donal", "bounds_geometry": "POLYGON((-68.0574 -52.7267,-67.39775 -52.7267,-66.7381 -52.7267,-66.07845 -52.7267,-65.4188 -52.7267,-64.75915 -52.7267,-64.0995 -52.7267,-63.43985 -52.7267,-62.7802 -52.7267,-62.12055 -52.7267,-61.4609 -52.7267,-61.4609 -53.95849,-61.4609 -55.19028,-61.4609 -56.42207,-61.4609 -57.65386,-61.4609 -58.88565,-61.4609 -60.11744,-61.4609 -61.34923,-61.4609 -62.58102,-61.4609 -63.81281,-61.4609 -65.0446,-62.12055 -65.0446,-62.7802 -65.0446,-63.43985 -65.0446,-64.0995 -65.0446,-64.75915 -65.0446,-65.4188 -65.0446,-66.07845 -65.0446,-66.7381 -65.0446,-67.39775 -65.0446,-68.0574 -65.0446,-68.0574 -63.81281,-68.0574 -62.58102,-68.0574 -61.34923,-68.0574 -60.11744,-68.0574 -58.88565,-68.0574 -57.65386,-68.0574 -56.42207,-68.0574 -55.19028,-68.0574 -53.95849,-68.0574 -52.7267))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001372", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1606"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "This project will support two training courses that will introduce early-career scientists from a wide range of disciplinary backgrounds to key issues in polar science, and especially to provide the opportunity to gain hands-on experience in Antarctic field activities. Antarctica is an ideal location to study a wide variety of questions in biology. However, few students and early-career scientists have the opportunity to work on-site in Antarctica unless they are directly associated with a senior scientist who has a funded Antarctic project. The project will further the NSF goal of training new generations of scientists by providing hands-on training in Antarctica during one course at Palmer Station in 2016 and another at McMurdo Station in 2018. This represents a continuation of nine previous courses at McMurdo Station which have a proven record of introducing participants to Antarctic science under realistic field conditions, providing opportunities to understand and appreciate the complexities and logistical challenges of undertaking science in Antarctica, enhancing the professional careers of the participants, and increasing international collaborations for early-career scientists. The proposed training courses will be open to Ph.D. students and post-doctoral scientists who have interests in the study of Antarctic marine organisms to help prepare them for success in developing their own independent research programs in polar regions. Long-standing and recent questions in evolution and ecology of Antarctic organisms will be examined with 1) field collections, 2) physiological experiments on whole organisms, 3) studies of isolated cells and tissues, 4) experiments on macromolecular processes (e.g., enzymes), and 5) molecular biological analyses.", "east": -61.4609, "geometry": "POINT(-64.75915 -58.88565)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V LMG; LMG1606", "locations": null, "north": -52.7267, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Manahan, Donal", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.0446, "title": "Collaborative Research: Biological Adaptations to Environmental Change in Antarctica - An Advanced Training Program for Early Career Scientists", "uid": "p0000392", "west": -68.0574}, {"awards": "0947821 Ashworth, Allan", "bounds_geometry": "POLYGON((-180 -85.095235,-145.3719418 -85.095235,-110.7438836 -85.095235,-76.1158254 -85.095235,-41.4877672 -85.095235,-6.859709 -85.095235,27.7683492 -85.095235,62.3964074 -85.095235,97.0244656 -85.095235,131.6525238 -85.095235,166.280582 -85.095235,166.280582 -85.0996451,166.280582 -85.1040552,166.280582 -85.1084653,166.280582 -85.1128754,166.280582 -85.1172855,166.280582 -85.1216956,166.280582 -85.1261057,166.280582 -85.1305158,166.280582 -85.1349259,166.280582 -85.139336,131.6525238 -85.139336,97.0244656 -85.139336,62.3964074 -85.139336,27.7683492 -85.139336,-6.859709 -85.139336,-41.4877672 -85.139336,-76.1158254 -85.139336,-110.7438836 -85.139336,-145.3719418 -85.139336,180 -85.139336,178.6280582 -85.139336,177.2561164 -85.139336,175.8841746 -85.139336,174.5122328 -85.139336,173.140291 -85.139336,171.7683492 -85.139336,170.3964074 -85.139336,169.0244656 -85.139336,167.6525238 -85.139336,166.280582 -85.139336,166.280582 -85.1349259,166.280582 -85.1305158,166.280582 -85.1261057,166.280582 -85.1216956,166.280582 -85.1172855,166.280582 -85.1128754,166.280582 -85.1084653,166.280582 -85.1040552,166.280582 -85.0996451,166.280582 -85.095235,167.6525238 -85.095235,169.0244656 -85.095235,170.3964074 -85.095235,171.7683492 -85.095235,173.140291 -85.095235,174.5122328 -85.095235,175.8841746 -85.095235,177.2561164 -85.095235,178.6280582 -85.095235,-180 -85.095235))", "dataset_titles": "Neogene Paleoecology of the Beardmore Glacier Region", "datasets": [{"dataset_uid": "600387", "doi": "10.15784/600387", "keywords": "Antarctica; Beardmore Glacier; Biota; Fossil; GPS; Oliver Bluffs; Paleoclimate; Sample/collection Description; Sample/Collection Description; Seeds; Solid Earth; Transantarctic Mountains", "people": "Ashworth, Allan", "repository": "USAP-DC", "science_program": null, "title": "Neogene Paleoecology of the Beardmore Glacier Region", "url": "https://www.usap-dc.org/view/dataset/600387"}], "date_created": "Thu, 12 Jan 2017 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe primary goal of this project is to sample two beds in the Meyer Desert Formation, which are known to be especially fossiliferous containing plants, insects, other arthropods, freshwater mollusks, and fish. There is a possibility that the teeth and bones of a small marsupial could also be found. Previous studies have demonstrated that these horizons contain unique fossil assemblages that provide information used to reconstruct paleoenvironments and paleoclimate. The fossils represent organisms previously not found in Antarctica and consequently their study will lead to the development of new hypotheses concerning southern hemisphere biogeography. The new discoveries will also increase knowledge of paleoenvironments and paleoclimates as well as biogeographic relationships of the biota of the southern hemisphere. For some organisms, such as Nothofagus (Southern Beech) or the trechine groundbeetle, fossils would confirm that Antarctica was inhabited as part of Gondwana. For other fossils, such as the cyclorrhaphan fly or freshwater mollusks not expected to have inhabited Antarctica, the discoveries will require a reassessment of phylogenetic interpretations and a reinvestigation of the role of Antarctica in the evolutionary history of those organisms. The new fossil-based knowledge will require integration with interpretations from cladistics and molecular genetics to develop more comprehensive phylogenetic hypotheses for a range of organisms.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThe discovery of fossils in Antarctica and implications for climate change has proven to be popular with the media. This attention will help disseminate the results of this study. Before the field season, the PI will work with local media and with area schools to set up field interviews and web casts from Antarctica. The project will also involve the training of a graduate student in the field and in the follow up studies of the fossils in the laboratory.", "east": 166.280582, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -85.095235, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Ashworth, Allan", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.139336, "title": "Neogene Paleoecology of the Beardmore Glacier Region", "uid": "p0000424", "west": 166.280582}, {"awards": "1141877 Aronson, Richard", "bounds_geometry": "POLYGON((-111.18 -49.98,-105.429 -49.98,-99.678 -49.98,-93.927 -49.98,-88.176 -49.98,-82.425 -49.98,-76.674 -49.98,-70.923 -49.98,-65.172 -49.98,-59.421 -49.98,-53.67 -49.98,-53.67 -52.826,-53.67 -55.672,-53.67 -58.518,-53.67 -61.364,-53.67 -64.21,-53.67 -67.056,-53.67 -69.902,-53.67 -72.748,-53.67 -75.594,-53.67 -78.44,-59.421 -78.44,-65.172 -78.44,-70.923 -78.44,-76.674 -78.44,-82.425 -78.44,-88.176 -78.44,-93.927 -78.44,-99.678 -78.44,-105.429 -78.44,-111.18 -78.44,-111.18 -75.594,-111.18 -72.748,-111.18 -69.902,-111.18 -67.056,-111.18 -64.21,-111.18 -61.364,-111.18 -58.518,-111.18 -55.672,-111.18 -52.826,-111.18 -49.98))", "dataset_titles": "Climate Change and Predatory Invasion of the Antarctic Benthos; Expedition Data; Material properties of the exoskeleton of Paralomis birsteini", "datasets": [{"dataset_uid": "601109", "doi": "10.15784/601109", "keywords": "Antarctica; Biota; Callinectes; Exoskeleton; Fish; Glaciers/ice Sheet; Glaciers/Ice Sheet; Paralomis", "people": "Steffel, Brittan", "repository": "USAP-DC", "science_program": null, "title": "Material properties of the exoskeleton of Paralomis birsteini", "url": "https://www.usap-dc.org/view/dataset/601109"}, {"dataset_uid": "600385", "doi": "10.15784/600385", "keywords": "Antarctica; Antarctic Peninsula; Anvers Island; Benthos; Biota; Camera Tow; LMG1502; Marguerite Bay; NBP1002; NBP1310; Oceans; Photo/video; Photo/Video; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Aronson, Richard", "repository": "USAP-DC", "science_program": null, "title": "Climate Change and Predatory Invasion of the Antarctic Benthos", "url": "https://www.usap-dc.org/view/dataset/600385"}, {"dataset_uid": "001417", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1310"}, {"dataset_uid": "600171", "doi": "10.15784/600171", "keywords": "Antarctica; Antarctic Peninsula; Anvers Island; Benthos; Biota; Camera Tow; LMG1502; Marguerite Bay; NBP1002; NBP1310; Oceans; Photo/video; Photo/Video; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Aronson, Richard", "repository": "USAP-DC", "science_program": null, "title": "Climate Change and Predatory Invasion of the Antarctic Benthos", "url": "https://www.usap-dc.org/view/dataset/600171"}], "date_created": "Wed, 14 Sep 2016 00:00:00 GMT", "description": "Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials.", "east": -53.67, "geometry": "POINT(-82.425 -64.21)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "R/V NBP; Not provided", "locations": null, "north": -49.98, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Aronson, Richard", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -78.44, "title": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos", "uid": "p0000303", "west": -111.18}, {"awards": "0944659 Kiene, Ronald; 0944686 Kieber, David", "bounds_geometry": "POLYGON((-180 -68,-177 -68,-174 -68,-171 -68,-168 -68,-165 -68,-162 -68,-159 -68,-156 -68,-153 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -77,160 -76,160 -75,160 -74,160 -73,160 -72,160 -71,160 -70,160 -69,160 -68,162 -68,164 -68,166 -68,168 -68,170 -68,172 -68,174 -68,176 -68,178 -68,-180 -68))", "dataset_titles": "Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "datasets": [{"dataset_uid": "600117", "doi": "10.15784/600117", "keywords": "Biota; Ross Sea; Southern Ocean", "people": "Kieber, David John", "repository": "USAP-DC", "science_program": null, "title": "Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "url": "https://www.usap-dc.org/view/dataset/600117"}, {"dataset_uid": "600150", "doi": "10.15784/600150", "keywords": "Antarctica; Biota; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Oceans; Ross Sea", "people": "Kiene, Ronald", "repository": "USAP-DC", "science_program": null, "title": "Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "url": "https://www.usap-dc.org/view/dataset/600150"}], "date_created": "Wed, 16 Dec 2015 00:00:00 GMT", "description": "Spectacular blooms of Phaeocystis antarctica in the Ross Sea, Antarctica are the source of some of the world\u0027s highest concentrations of dimethylsulfoniopropionate (DMSP) and its volatile degradation product, dimethylsulfide (DMS). The flux of DMS from the oceans to the atmosphere in this region and its subsequent gas phase oxidation generates aerosols that have a strong influence on cloud properties and possibly climate. In the oceans, DMS and DMSP are quantitatively significant components of the carbon, sulfur, and energy flows in marine food webs, especially in the Ross Sea. Despite its central role in carbon and sulfur biogeochemistry in the Ross Sea, surprisingly little is known about the physiological functions of DMSP in P. Antarctica. The research will isolate and characterize DMSP lyases from P. antarctica, with the goal of obtaining amino acid and gene sequence information on these important enzymes. The physiological studies will focus on the effects of varying intensities of photosynthetically active radiation, with and without ultraviolet radiation as these are factors that we have found to be important controls on DMSP and DMS dynamics. The research also will examine the effects of prolonged darkness on the dynamics of DMSP and related compounds in P. antarctica, as survival of this species during the dark Antarctic winter and at sub-euphotic depths appears to be an important part of the Phaeocystis? ecology. A unique aspect of this work is the focus on measurements of intracellular MSA, which if detected, would provide strong evidence for in vivo radical scavenging functions for methyl sulfur compounds. The study will advance understanding of what controls DMSP cycling and ultimately DMS emissions from the Ross Sea and also provide information on what makes P. antarctica so successful in this extreme environment. The research will directly benefit and build on several interrelated ocean-atmosphere programs including the International Surface Ocean Lower Atmosphere Study (SOLAS) program. The PIs will participate in several activities involving K-12 education, High School teacher training, public education and podcasting through the auspices of the Dauphin Island Sea Lab Discovery Hall program and SUNY ESF. Two graduate students will be employed full time, and six undergraduates (2 each summer) will be trained as part of this project.", "east": -150.0, "geometry": "POINT(-175 -73)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; Not provided; Ecophysiology; AMD; USAP-DC; FIELD SURVEYS", "locations": null, "north": -68.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Kiene, Ronald; Kieber, David John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "uid": "p0000085", "west": 160.0}, {"awards": "0739575 Emslie, Steven", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Egg membrane and chick feather THg concentration and stable isotope composition; Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica", "datasets": [{"dataset_uid": "601459", "doi": "10.15784/601459", "keywords": "Adelie Penguin; Antarctica; Antarctic Peninsula; Mercury; Penguin", "people": "McKenzie, Ashley", "repository": "USAP-DC", "science_program": null, "title": "Egg membrane and chick feather THg concentration and stable isotope composition", "url": "https://www.usap-dc.org/view/dataset/601459"}, {"dataset_uid": "600145", "doi": "10.15784/600145", "keywords": "Antarctica; Antarctic Peninsula; Biota; Geochronology; Global; Penguin; Ross Sea; Sample/collection Description; Sample/Collection Description; Scotia Sea; Southern Ocean", "people": "Patterson, William; Emslie, Steven D.; Polito, Michael", "repository": "USAP-DC", "science_program": null, "title": "Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica", "url": "https://www.usap-dc.org/view/dataset/600145"}], "date_created": "Fri, 25 Sep 2015 00:00:00 GMT", "description": "The research combines interdisciplinary study in geology, paleontology, and biology, using stable isotope and radiocarbon analyses, to examine how climate change and resource utilization have influenced population distribution, movement, and diet in penguins during the mid-to-late Holocene. Previous investigations have demonstrated that abandoned colonies contain well-preserved remains that can be used to examine differential responses of penguins to climate change in various sectors of Antarctica. As such, the research team will investigate abandoned and active pygoscelid penguin (Adelie, Chinstrap, and Gentoo) colonies in the Antarctic Peninsula and Ross Sea regions, and possibly Prydz Bay, in collaboration with Chinese scientists during four field seasons. Stable isotope analyses will be conducted on recovered penguin tissues and prey remains in guano to address hypotheses on penguin occupation history, population movement, and diet in relation to climate change since the late Pleistocene. The study will include one Ph.D., two Masters and 16 undergraduate students in advanced research over the project period. Students will be exposed to a variety of fields, the scientific method, and international scientific research. They will complete field and lab research for individual projects or Honor\u0027s theses for academic credit. The project also will include web-based outreach, lectures to middle school students, and the development of interactive exercises that highlight hypothesis-driven research and the ecology of Antarctica. Two undergraduate students in French and Spanish languages at UNCW will be hired to assist in translating the Web page postings for broader access to this information.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; AMD; USAP-DC; FIELD INVESTIGATION; Amd/Us", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Polito, Michael; Patterson, William", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica", "uid": "p0000317", "west": -180.0}, {"awards": "1044982 Bucklin, Ann", "bounds_geometry": "POLYGON((-69.3804 -52.760597,-67.79698 -52.760597,-66.21356 -52.760597,-64.63014 -52.760597,-63.04672 -52.760597,-61.4633 -52.760597,-59.87988 -52.760597,-58.29646 -52.760597,-56.71304 -52.760597,-55.12962 -52.760597,-53.5462 -52.760597,-53.5462 -53.9928073,-53.5462 -55.2250176,-53.5462 -56.4572279,-53.5462 -57.6894382,-53.5462 -58.9216485,-53.5462 -60.1538588,-53.5462 -61.3860691,-53.5462 -62.6182794,-53.5462 -63.8504897,-53.5462 -65.0827,-55.12962 -65.0827,-56.71304 -65.0827,-58.29646 -65.0827,-59.87988 -65.0827,-61.4633 -65.0827,-63.04672 -65.0827,-64.63014 -65.0827,-66.21356 -65.0827,-67.79698 -65.0827,-69.3804 -65.0827,-69.3804 -63.8504897,-69.3804 -62.6182794,-69.3804 -61.3860691,-69.3804 -60.1538588,-69.3804 -58.9216485,-69.3804 -57.6894382,-69.3804 -56.4572279,-69.3804 -55.2250176,-69.3804 -53.9928073,-69.3804 -52.760597))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001445", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1110"}], "date_created": "Wed, 17 Jun 2015 00:00:00 GMT", "description": "The proposed research targets the molecular genetics of salps, an increasingly important member of the zooplankton in Antarctic waters who\u0027s dominance appears to be related to climate warming and sea ice loss. Specifically the research will examine genome-wide patterns of gene expression, target gene expression levels, and patterns of population genetic diversity and structure underlying the complex life history and population dynamics of S. thompsoni. The P.I.s hypothesize that (1) deep analysis of the Salpa thompsoni transcriptome will reveal significant associations among selected set of differentially expressed genes and critical life history stages and events (e.g., ontogenetic maturation, sexual reproduction, senescence) of the salp; and 2) the species will show variable levels of clonal diversity and significant genetic differentiation among populations in different regions of the Southern Ocean. Broader impacts include training of two graduate students; inclusion of undergraduates in research, and in a formal training workshop; development of a summer workshop for high school teachers in collaboration with Connecticut Sea Grant; and public outreach via postings on the Census of Marine Zooplankton homepage.", "east": -53.5462, "geometry": "POINT(-61.4633 -58.9216485)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "PLANKTON; Antarctic Peninsula; R/V LMG", "locations": "Antarctic Peninsula", "north": -52.760597, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bucklin, Ann", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.0827, "title": "Population ecology of Salpa thompsoni based on molecular indicators", "uid": "p0000508", "west": -69.3804}, {"awards": "1332492 Lohmann, Rainer", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Origin of Persistent Organic Pollutants in the Antarctic Atmosphere, Snow and Marine Food Web", "datasets": [{"dataset_uid": "600138", "doi": "10.15784/600138", "keywords": "Animal Tracking; Antarctica; Antarctic Peninsula; Atmosphere; Biota; Chemistry:fluid; Chemistry:Fluid; Human Dimensions; McMurdo Sound; Oceans; Palmer Station; Pollution; Ross Sea; Sample/collection Description; Sample/Collection Description; Seals; Southern Ocean; Weddell Sea", "people": "Lohmann, Rainer", "repository": "USAP-DC", "science_program": null, "title": "Origin of Persistent Organic Pollutants in the Antarctic Atmosphere, Snow and Marine Food Web", "url": "https://www.usap-dc.org/view/dataset/600138"}], "date_created": "Tue, 09 Jun 2015 00:00:00 GMT", "description": "Many persistent organic pollutants (POPs), though banned in the U.S. since the 1970s, remain in the environment and continue to reach hitherto pristine regions such as the Arctic and Antarctic. The overall goals of this RAPID project are to better understand the remobilization of POPs from melting glaciers in the Antarctic, and their transfer into the food-web. Legacy POPs have characteristic chemical signatures that will be used ascertain the origin of POPs in the Antarctic atmosphere and marine food-web. Samples that were collected in 2010 will be analyzed for a wide range of legacy POPs, and their behavior will be contrasted with results for emerging contaminants. The intellectual merit of the proposed research combines (a) the use of chemical signatures to assess whether melting glaciers are releasing legacy POPs back into the Antarctic marine ecosystem, and (b) a better understanding of the food-web dynamics of legacy POPs versus emerging organic pollutants. The broader impacts of the proposed research project will include the training of the next generation of scientists through support for a graduate student and a postdoctoral scholar. As well, this work will result in a better understanding of the relationship between pollutants, trophic food web ecology and global climate change in the pristine Antarctic ecosystem.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Lohmann, Rainer", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "RAPID: Origin of Persistent Organic Pollutants in the Antarctic Atmosphere, Snow and Marine Food WEB", "uid": "p0000344", "west": -180.0}, {"awards": "0944727 Arrigo, Kevin", "bounds_geometry": "POLYGON((-118.3 -71.6,-117.57 -71.6,-116.84 -71.6,-116.11 -71.6,-115.38 -71.6,-114.65 -71.6,-113.92 -71.6,-113.19 -71.6,-112.46 -71.6,-111.73 -71.6,-111 -71.6,-111 -71.86,-111 -72.12,-111 -72.38,-111 -72.64,-111 -72.9,-111 -73.16,-111 -73.42,-111 -73.68,-111 -73.94,-111 -74.2,-111.73 -74.2,-112.46 -74.2,-113.19 -74.2,-113.92 -74.2,-114.65 -74.2,-115.38 -74.2,-116.11 -74.2,-116.84 -74.2,-117.57 -74.2,-118.3 -74.2,-118.3 -73.94,-118.3 -73.68,-118.3 -73.42,-118.3 -73.16,-118.3 -72.9,-118.3 -72.64,-118.3 -72.38,-118.3 -72.12,-118.3 -71.86,-118.3 -71.6))", "dataset_titles": "Dataset: Chlorophyll a", "datasets": [{"dataset_uid": "000172", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Dataset: Chlorophyll a", "url": "http://www.bco-dmo.org/dataset/546372"}], "date_created": "Fri, 30 Jan 2015 00:00:00 GMT", "description": "ASPIRE is an NSF-funded project that will examine the ecology of the Amundsen Sea during the Austral summer of 2010. ASPIRE includes an international team of trace metal and carbon chemists, phytoplankton physiologists, microbial and zooplankton ecologists, and physical oceanographers, that will investigate why and how the Amundsen Sea Polynya is so much more productive than other polynyas and whether interannual variability can provide insight to climate-sensitive mechanisms driving carbon fluxes. This project will compliment the existing ASPIRE effort by using 1) experimental manipulations to understand photoacclimation of the dominant phytoplankton taxa under conditions of varying light and trace metal abundance, 2) nutrient addition bioassays to determine the importance of trace metal versus nitrogen limitation of phytoplankton growth, and 3) a numerical ecosystem model to understand the importance of differences in mixing regime, flow field, and Fe sources in controlling phytoplankton bloom dynamics and community composition in this unusually productive polynya system. The research strategy will integrate satellite remote sensing, field-based experimental manipulations, and numerical modeling. Outreach and education include participation in Stanford\u0027s Summer Program for Professional Development for Science Teachers, Stanford\u0027s School of Earth Sciences high school internship program, and development of curriculum for local science training centers, including the Chabot Space and Science Center. Undergraduate participation and training will include support for both graduate students and undergraduate assistants.", "east": -111.0, "geometry": "POINT(-114.65 -72.9)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -71.6, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Arrigo, Kevin", "platforms": "Not provided", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": -74.2, "title": "ASPIRE: Amundsen Sea Polynya International Research Expedition", "uid": "p0000348", "west": -118.3}, {"awards": "0944220 Ponganis, Paul", "bounds_geometry": "POLYGON((-180 -68,-147 -68,-114 -68,-81 -68,-48 -68,-15 -68,18 -68,51 -68,84 -68,117 -68,150 -68,150 -69,150 -70,150 -71,150 -72,150 -73,150 -74,150 -75,150 -76,150 -77,150 -78,117 -78,84 -78,51 -78,18 -78,-15 -78,-48 -78,-81 -78,-114 -78,-147 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -77,160 -76,160 -75,160 -74,160 -73,160 -72,160 -71,160 -70,160 -69,160 -68,162 -68,164 -68,166 -68,168 -68,170 -68,172 -68,174 -68,176 -68,178 -68,-180 -68))", "dataset_titles": "The Physiological Ecology of Two Antarctic Icons: Emperor Penguins and Leopard Seals", "datasets": [{"dataset_uid": "600113", "doi": "10.15784/600113", "keywords": "Antarctica; Biota; Electrocardiogram; Penguin; Southern Ocean", "people": "Ponganis, Paul", "repository": "USAP-DC", "science_program": null, "title": "The Physiological Ecology of Two Antarctic Icons: Emperor Penguins and Leopard Seals", "url": "https://www.usap-dc.org/view/dataset/600113"}], "date_created": "Mon, 24 Nov 2014 00:00:00 GMT", "description": "Emperor penguins (Aptenodytes forsteri) and leopard seals (Hydrurga leptonyx) are iconic, top predators in Antarctica. Understanding their physiological ecology is essential to the assessment of their adaptability to the threats of climate change, pollution, and overfishing. The proposed research has multipronged objectives. Prior results suggest that Emperor penguins have flexible (vs. static) aerobic dive limits (ADL) that vary with the type of dive, and that the role of heart rate in utilization of oxygen stores also varies with dive type. A series of physiological measurements are proposed with backpack electrocardiogram recorders, that will allow further delineation of patterns and interrelationships among heart rate, dive behavior, and oxygen stores. Importantly, the research will be done on free diving emperors, and not individuals confined to a dive hole, thereby providing a more genuine measure of diving physiology and behavior. A separate objective is to examine foraging behavior of leopard seals, using a backpack digital camera and time depth recorder. Leopard seal behavior and prey intake is poorly quantified, but known to be significant. Accordingly the research is somewhat exploratory but will provide important baseline data. Finally, the P.I. proposes to continue long term overflight censuses of Emperor penguin colonies in the Ross Sea. Broader impacts include collaboration with National Geographic television, graduate student training, and development of sedation techniques for leopard seals.", "east": 150.0, "geometry": "POINT(-25 -73)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -68.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ponganis, Paul", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "The Physiological Ecology of Two Antarctic Icons: Emperor Penguins and Leopard Seals", "uid": "p0000349", "west": 160.0}, {"awards": "0943934 Taylor, Edith; 0943935 Isbell, John", "bounds_geometry": null, "dataset_titles": "Portal to search geologic sample collections, Polar Rock Repository, Byrd Polar Research Center, The Ohio State University; Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "datasets": [{"dataset_uid": "001402", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "url": "http://biodiversity.ku.edu/paleobotany/collections/collections-search"}, {"dataset_uid": "002567", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "url": "http://biodiversity.ku.edu/paleobotany/collections/collections-search"}, {"dataset_uid": "001377", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Portal to search geologic sample collections, Polar Rock Repository, Byrd Polar Research Center, The Ohio State University", "url": "http://research.bpcrc.osu.edu/rr/"}], "date_created": "Tue, 23 Sep 2014 00:00:00 GMT", "description": "Intellectual Merit:\u003cbr/\u003eThe focus of this proposal is to collect fossil plants and palynomorphs from Permian-Triassic (P-T) rocks of the central Transantarctic Mountains (CTM), together with detailed data on sedimentologic and paleoecologic depositional environments. Fossil plants are important climate proxies that offer a unique window into the past, and the CTM fossils are an important source of data on the ways that plants responded to a strongly seasonal, polar light regime during a time of global change. The proposed project uses paleobotanical expertise, integrated with detailed sedimentology and stratigraphy, to reconstruct Permian-Triassic plant communities and their paleoenvironments. This interdisciplinary approach could uncover details of Antarctica?s complex late Paleozoic and Mesozoic environmental and climatic history which included: 1) deglaciation, 2) development and evolution of a post-glacial landscape and biota, 3) environmental and biotic change associated with the end-Permian mass extinction, 4) environmental recovery in the earliest Triassic, 5) strong, possible runaway Triassic greenhouse, and 6) widespread orogenesis and development of a foreland basin system. The PIs will collect compression floras both quantitatively and qualitatively to obtain biodiversity and abundance data. Since silicified wood is also present, the PIs will analyze tree rings and growth in a warm, high-latitude environment for which there is no modern analogue. Fossil plants from the CTM can provide biological and environmental information to: 1) interpret paleoclimate when Gondwana moved from icehouse to greenhouse conditions; 2) trace floral evolution across the P-T boundary; 3) reconstruct Antarctic plant life; 4) further understanding of plant adaptations to high latitudes. The Intellectual Merit of the research includes: 1) tracing floral evolution after the retreat of glaciers; 2) examining floral composition and diversity across the PTB; and 3) obtaining data on the recovery of these ecosystems in the Early Triassic, as well as changes in floral cover and diversity in the Early-Middle Triassic. Antarctica is the only place on Earth that includes extensive outcrops of terrestrial rocks, combined with widespread and well-preserved plant fossils, which spans this crucial time period.\u003cbr/\u003e\u003cbr/\u003eBroader impacts:\u003cbr/\u003eThe broader impacts include public outreach; teaching, and mentoring of women and underrepresented students; mentoring graduate student, postdoctoral, and new faculty women; development of an inquiry-based workshop on Antarctic paleoclimate with the Division of Education, KU Natural History Museum; continuing support of workshops for middle school girls in science via the Expanding Your Horizons Program, Emporia State University, and the TRIO program, KU; exploring Antarctic geosciences through video/computer links from McMurdo Station and satellite phone conferences from the field with K-12 science classes in Wisconsin and Kansas, and through participation in the NSF Research Experiences for Teachers program at the University of Wisconsin.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "FIELD SURVEYS; LABORATORY; Transanatarctic Basin; Paleobotany; Fossil Plants; FIELD INVESTIGATION; Sedimentology; Late Paleozoic Ice Age; Not provided; Central Transantarctic Mountains; Beardmore Glacier", "locations": "Transanatarctic Basin; Central Transantarctic Mountains; Beardmore Glacier", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Instrumentation and Support; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN; PHANEROZOIC \u003e MESOZOIC \u003e TRIASSIC; PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN; PHANEROZOIC \u003e MESOZOIC \u003e TRIASSIC", "persons": "Isbell, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "PI website", "repositories": "PI website; PRR", "science_programs": null, "south": null, "title": "Collaborative Research: Antarctic Ecosystems across the Permian-Triassic Boundary: Integrating Paleobotany, Sedimentology, and Paleoecology", "uid": "p0000372", "west": null}, {"awards": "1043532 Grzymski, Joseph", "bounds_geometry": "POINT(-64 -64.7)", "dataset_titles": "NCBI GenBank Sequences# PRJNA244317, PRJNA242746", "datasets": [{"dataset_uid": "000168", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "NCBI GenBank Sequences# PRJNA244317, PRJNA242746", "url": "http://www.ncbi.nlm.nih.gov/genbank/"}], "date_created": "Mon, 08 Sep 2014 00:00:00 GMT", "description": "The proposed research will investigate the genomic basis of the physiological and ecological transition of Antarctic marine phytoplankton from a cold dark winter to a warmer, brighter spring. During a field season at Palmer Station, functional genomics (using next generation sequencing technology to identify expressed genes) and in situ fluorometry (FRRF) will be integrated with classical ecological methods to investigate photosynthetic adaptation during phytoplankton species succession from late winter into spring. Using large data sets, this project will test whether amino acid usages differ based on expression. The specific objectives are (1) To characterize phytoplankton succession from the winter to spring transition, and (2) To correlate community gene expression profiles to adaptational differences among taxa. Broader impacts include training of a post doctoral researcher and two undergraduate science majors, with efforts to attract students from underrepresented groups. The P.I.s also will prepare presentations for the public, regarding research experiences, research results, and the importance of climate change.", "east": -64.0, "geometry": "POINT(-64 -64.7)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -64.7, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Grzymski, Joseph", "platforms": "Not provided", "repo": "NCBI GenBank", "repositories": "NCBI GenBank", "science_programs": null, "south": -64.7, "title": "Collaborative Research: Functional Genomics and Physiological Ecology of Seasonal Succession in Antarctic Phytoplankton: Adaptations to Light and Temperature", "uid": "p0000462", "west": -64.0}, {"awards": "0838996 Hollibaugh, James", "bounds_geometry": "POLYGON((-79 -63,-77.5 -63,-76 -63,-74.5 -63,-73 -63,-71.5 -63,-70 -63,-68.5 -63,-67 -63,-65.5 -63,-64 -63,-64 -63.8,-64 -64.6,-64 -65.4,-64 -66.2,-64 -67,-64 -67.8,-64 -68.6,-64 -69.4,-64 -70.2,-64 -71,-65.5 -71,-67 -71,-68.5 -71,-70 -71,-71.5 -71,-73 -71,-74.5 -71,-76 -71,-77.5 -71,-79 -71,-79 -70.2,-79 -69.4,-79 -68.6,-79 -67.8,-79 -67,-79 -66.2,-79 -65.4,-79 -64.6,-79 -63.8,-79 -63))", "dataset_titles": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula; Expedition data of LMG1006", "datasets": [{"dataset_uid": "002722", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1006", "url": "https://www.rvdata.us/search/cruise/LMG1006"}, {"dataset_uid": "600105", "doi": "10.15784/600105", "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; LMG1006; LMG1101; LTER Palmer Station; Oceans; Southern Ocean", "people": "Hollibaugh, James T.", "repository": "USAP-DC", "science_program": null, "title": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/600105"}], "date_created": "Thu, 13 Mar 2014 00:00:00 GMT", "description": "Ammonia oxidation is the first step in the conversion of regenerated nitrogen to dinitrogen gas, a 3-step pathway mediated by 3 distinct guilds of bacteria and archaea. Ammonia oxidation and the overall process of nitrification-denitrification have received relatively little attention in polar oceans where the effects of climate change on biogeochemical rates are likely to be pronounced. Previous work on Ammonia Oxidizing Archaea (AOA) in the Palmer LTER study area West of the Antarctic Peninsula (WAP), has suggested strong vertical segregation of crenarchaeote metabolism, with the \"winter water\" (WW, ~50-100 m depth range) dominated by non-AOA crenarchaeotes, while Crenarchaeota populations in the \"circumpolar deep water\" (CDW), which lies immediately below the winter water (150-3500 m), are dominated by AOA. Analysis of a limited number of samples from the Arctic Ocean did not reveal a comparable vertical segregation of AOA, and suggested that AOA and Crenarchaeota abundance is much lower there than in the Antarctic. These findings led to 3 hypotheses that will be tested in this project: 1) the apparent low abundance of Crenarchaeota and AOA in Arctic Ocean samples may be due to spatial or temporal variability in populations; 2) the WW population of Crenarchaeota in the WAP is dominated by a heterotroph; 3) the WW population of Crenarchaeota in the WAP \"grows in\" during spring and summer after this water mass forms. \u003cbr/\u003e\u003cbr/\u003eThe study will contribute substantially to understanding an important aspect of the nitrogen cycle in the Palmer LTER (Long Term Ecological Research) study area by providing insights into the ecology and physiology of AOA. The natural segregation of crenarchaeote phenotypes in waters of the WAP, coupled with metagenomic studies in progress in the same area by others (A. Murray, H. Ducklow), offers the possibility of major breakthroughs in understanding of the metabolic capabilities of these organisms. This knowledge is needed to model how water column nitrification will respond to changes in polar ecosystems accompanying global climate change. The Principal Investigator will participate fully in the education and outreach efforts of the Palmer LTER, including making highlights of our findings available for posting to their project web site and participating in outreach (for example, Schoolyard LTER). The research also will involve undergraduates (including the field work if possible) and will support high school interns in the P.I.\u0027s laboratory over the summer.", "east": -64.0, "geometry": "POINT(-71.5 -67)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "R/V LMG", "locations": null, "north": -63.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hollibaugh, James T.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": "LTER", "south": -71.0, "title": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula", "uid": "p0000359", "west": -79.0}, {"awards": "1250208 Friedlaender, Ari", "bounds_geometry": "POLYGON((-80 -63,-78 -63,-76 -63,-74 -63,-72 -63,-70 -63,-68 -63,-66 -63,-64 -63,-62 -63,-60 -63,-60 -63.7,-60 -64.4,-60 -65.1,-60 -65.8,-60 -66.5,-60 -67.2,-60 -67.9,-60 -68.6,-60 -69.3,-60 -70,-62 -70,-64 -70,-66 -70,-68 -70,-70 -70,-72 -70,-74 -70,-76 -70,-78 -70,-80 -70,-80 -69.3,-80 -68.6,-80 -67.9,-80 -67.2,-80 -66.5,-80 -65.8,-80 -65.1,-80 -64.4,-80 -63.7,-80 -63))", "dataset_titles": "Linking the Movement Patterns and Foraging Behavior of Humpback Whales to their Prey across Multiple Spatial Scales within the LTER Study Region", "datasets": [{"dataset_uid": "600151", "doi": "10.15784/600151", "keywords": "Antarctica; Antarctic Peninsula; Biota; Oceans; Sample/collection Description; Sample/Collection Description; Southern Ocean; Whales", "people": "Nowacek, Douglas; Johnston, David; Friedlaender, Ari", "repository": "USAP-DC", "science_program": null, "title": "Linking the Movement Patterns and Foraging Behavior of Humpback Whales to their Prey across Multiple Spatial Scales within the LTER Study Region", "url": "https://www.usap-dc.org/view/dataset/600151"}], "date_created": "Mon, 10 Mar 2014 00:00:00 GMT", "description": "Whales play a central role in the ecology and biogeochemistry of the Southern Ocean. However, little is known regarding their distribution and behavior, in part because of challenges associated with studying these organisms from large research vessels. This research will take advantage of the unique opportunity presented by the 2012-2013 test run of the smaller, more mobile R/V Point Sur. This work will use the Point Sur to investigate humpback whales in the waters studied by the Palmer Long Term Ecological Research (LTER) Station off the Western Antarctic Peninsula (WAP). Employing a combination of long-term satellite-linked tags and short-term suction cup tags, researchers will investigate the distribution, abundance and foraging behaviors of whales in this region. Whale biogeography will then be related to quantitative surveys of krill, their primary food source. Hypotheses regarding whale distribution and foraging strategies as well as physical oceanographic features will be tested. The WAP is undergoing some of the most dramatic warming on the planet, and a better understanding of the ecology of top predators is central to developing an understanding of the impacts of this change. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. Finally, this work will be coordinated with the extensive infrastructure of the Palmer LTER site, enabling outreach and educational activities.", "east": -60.0, "geometry": "POINT(-70 -66.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -63.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Friedlaender, Ari; Nowacek, Douglas; Johnston, David", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LTER", "south": -70.0, "title": "RAPID: Linking the Movement Patterns and Foraging Behavior of Humpback Whales to their Prey across Multiple Spatial Scales within the LTER Study Region", "uid": "p0000666", "west": -80.0}, {"awards": "1142107 Durbin, Edward", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP1304", "datasets": [{"dataset_uid": "002660", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1304", "url": "https://www.rvdata.us/search/cruise/NBP1304"}], "date_created": "Fri, 07 Feb 2014 00:00:00 GMT", "description": "Krill, Euphausia superba, is a keystone species in the Antarctic ecosystem and provides the trophic link between microscopic plankton and charismatic megafauna such as penguins and whales. Recent evidence suggests krill may not be exclusively planktonivorous, which introduces the potential of new pathways of carbon flux through krill based ecosystems. A change in our view of krill from one of being herbivores to omnivores opens up several questions. Climate induced change in the extent, thickness and duration of overlying sea ice coverage is expected to change the prey fields available to krill, and to have subsequent effects on the suite of predators supported by krill. The nature of this benthic prey?krill link, which may be crucial in those parts of the seasonal cycle other than the well studied spring bloom, is yet to be determined. DNA techniques will be used to identify and quantify the prey organisms. This project will measure the in situ feeding ecology and behavior of krill and, ultimately, the success of this key species. An overall goal is to investigate seasonal changes in Euphausia superba in-situ feeding and swimming behavior in the Wilhelmina Bay region of the Western Antarctic Peninsula (WAP) area, known to be a region of changing climate. Understanding the biological impacts of climate change is important to societal and economic goals. The project scientists will additionally team with a marine and environmental reporting group to design presentations for an annual journalist meeting.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Durbin, Edward", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Seasonal Trophic Roles of Euphausia Superba (STRES)", "uid": "p0000848", "west": null}, {"awards": "0739390 Davis, Randall", "bounds_geometry": "POLYGON((166.08823 -77.545,166.177124 -77.545,166.266018 -77.545,166.354912 -77.545,166.443806 -77.545,166.5327 -77.545,166.621594 -77.545,166.710488 -77.545,166.799382 -77.545,166.888276 -77.545,166.97717 -77.545,166.97717 -77.57736,166.97717 -77.60972,166.97717 -77.64208,166.97717 -77.67444,166.97717 -77.7068,166.97717 -77.73916,166.97717 -77.77152,166.97717 -77.80388,166.97717 -77.83624,166.97717 -77.8686,166.888276 -77.8686,166.799382 -77.8686,166.710488 -77.8686,166.621594 -77.8686,166.5327 -77.8686,166.443806 -77.8686,166.354912 -77.8686,166.266018 -77.8686,166.177124 -77.8686,166.08823 -77.8686,166.08823 -77.83624,166.08823 -77.80388,166.08823 -77.77152,166.08823 -77.73916,166.08823 -77.7068,166.08823 -77.67444,166.08823 -77.64208,166.08823 -77.60972,166.08823 -77.57736,166.08823 -77.545))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 17 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: Weddell seals (Leptonychotes weddellii) locate and capture sparsely distributed and mobile prey under shore-fast ice throughout the year, including the austral winter when ambient light levels are very low and access to breathing holes is highly limited. This is one of the most challenging environments occupied by an aquatic mammalian predator, and it presents unique opportunities to test hypotheses concerning: 1) behavioral strategies and energetic costs for foraging and 2) sensory modalities used for prey capture under sea ice. To accomplish these objectives, we will attach digital video and data recorders to the backs of free-ranging Weddell seals during the autumn, winter and early spring. These instruments simultaneously record video of prey pursuit and capture and three-dimensional movements, swimming performance, ambient light level and other environmental variables. Energetic costs for entire dives and portions of dives will be estimated from stroking effort and our published relationship between swimming performance and energetics for Weddell seals. The energetic cost of different dive types will be evaluated for strategies that maximize foraging efficiency, range (distance traveled), and duration of submergence. The proposed study will provide a more thorough understanding of the role of vision and changing light conditions in foraging behavior, sensory ecology, energetics and habitat use of Weddell seals and the distribution of encountered prey. It also will provide new insights into survival strategies that allow Weddell seals to inhabit the Antarctic coastal marine ecosystem throughout the year. \u003cbr/\u003e\u003cbr/\u003eBroader Impacts: The proposed study will train two graduate students and a Post-doctoral Fellow. Outreach activities will include interviews, written material and photographs provided to print and electronic media, project web sites, high school email exchanges from McMurdo Station, hosting visiting artists at our field camp, and public lectures. We will provide a weekly summary of our research findings to teachers and students in elementary school programs through our websites, one of which received an educational award. Our previous projects have attracted an extraordinary amount of press coverage that effectively brings scientific research to the public. This coverage and the video images generated by our work excite the imagination and help instill an interest in science and wildlife conservation in children and adults.", "east": 166.97717, "geometry": "POINT(166.5327 -77.7068)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.545, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Davis, Randall", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -77.8686, "title": "Collaborative Research: Hunting in Darkness: Behavioral and Energetic Strategies of Weddell Seals in Winter", "uid": "p0000357", "west": 166.08823}, {"awards": "0739515 Fagan, William", "bounds_geometry": "POLYGON((-68.383 -60.65,-66.10137 -60.65,-63.81974 -60.65,-61.53811 -60.65,-59.25648 -60.65,-56.97485 -60.65,-54.69322 -60.65,-52.41159 -60.65,-50.12996 -60.65,-47.84833 -60.65,-45.5667 -60.65,-45.5667 -61.4145,-45.5667 -62.179,-45.5667 -62.9435,-45.5667 -63.708,-45.5667 -64.4725,-45.5667 -65.237,-45.5667 -66.0015,-45.5667 -66.766,-45.5667 -67.5305,-45.5667 -68.295,-47.84833 -68.295,-50.12996 -68.295,-52.41159 -68.295,-54.69322 -68.295,-56.97485 -68.295,-59.25648 -68.295,-61.53811 -68.295,-63.81974 -68.295,-66.10137 -68.295,-68.383 -68.295,-68.383 -67.5305,-68.383 -66.766,-68.383 -66.0015,-68.383 -65.237,-68.383 -64.4725,-68.383 -63.708,-68.383 -62.9435,-68.383 -62.179,-68.383 -61.4145,-68.383 -60.65))", "dataset_titles": "Data Paper, ESA Ecology", "datasets": [{"dataset_uid": "000141", "doi": "", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Data Paper, ESA Ecology", "url": "http://dx.doi.org/10.1890/13-1108.1"}], "date_created": "Fri, 17 Jan 2014 00:00:00 GMT", "description": "This five-year project seeks to characterize decadal scale changes in penguin and seabird populations on the Antarctic Peninsula, and to identify the factors driving these long-term changes. Two interconnected research activities are proposed: 1. Continued, long-term monitoring and censusing of penguin and seabird populations at \u003e117 sites throughout the Antarctic Peninsula via opportunistic ship-based data collection. 2. Synthesis and quantitative analyses of datasets detailing long-term changes in five penguin and seabird species from diverse sites throughout the Antarctic Peninsula. When complete, the penguin/seabird database will incorporate data from the Antarctic Site Inventory (ASI), the CCAMLR database, the US AMLR database, the LTER database from Palmer Station, data from British and Argentine researchers, historic census data compiled by the Scientific Committee on Antarctic Research (SCAR), and, when possible, additional privately held datasets. Additional data for temperature change, sea ice coverage, the seasonal timing and intensity of human visitation, and other factors have been gathered and will be analyzed together with population trajectories within a spatially explicit framework. The research will include hierarchical statistical analyses to characterize the long-term population dynamics of several key polar species across multiple spatial scales (sites, regions, and the Peninsula). Analyses also will focus on specific subsets of the overall database to contrast visitor impacts on paired colonies, sites, and regions that share similar environmental conditions but differ in the intensity of tourism. \u003cbr/\u003e\u003cbr/\u003eThe Broader Impacts include (1) research training and first-time Antarctic experiences for a postdoctoral researcher and several graduate students, all of whom will then be better positioned to bring their expertise in spatial and/or quantitative/theoretical ecology to bear on questions in polar research; (2) assembly and analysis of a large, multi-season database of penguin and seabird time series from the Antarctic Peninsula that will be publicly available, (3) assistance in distinguishing the impacts of tourism versus climate change on seabird populations. Under the Environmental Protocol to the Antarctic Treaty, Treaty Parties are charged with regular and effective monitoring to assess the impacts of human activities. This project will uniquely assist Parties in fulfilling this mandate.", "east": -45.5667, "geometry": "POINT(-56.97485 -64.4725)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.65, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Fagan, William; Lynch, Heather", "platforms": "Not provided", "repo": "Publication", "repositories": "Publication", "science_programs": null, "south": -68.295, "title": "Collaborative Research: Multispecies, Multiscale Investigations of Longterm Changes in Penguin and Seabird Populations on the Antarctic Peninsula", "uid": "p0000465", "west": -68.383}, {"awards": "1019838 Wendt, Dean", "bounds_geometry": null, "dataset_titles": "Real-Time Characterization of Adelie Penguin Foraging Environment Using an Autonomous Underwater Vehicle", "datasets": [{"dataset_uid": "600120", "doi": "10.15784/600120", "keywords": "Biota; Oceans; Southern Ocean", "people": "Wendt, Dean; Moline, Mark", "repository": "USAP-DC", "science_program": null, "title": "Real-Time Characterization of Adelie Penguin Foraging Environment Using an Autonomous Underwater Vehicle", "url": "https://www.usap-dc.org/view/dataset/600120"}], "date_created": "Mon, 30 Dec 2013 00:00:00 GMT", "description": "Abstract This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The Antarctic Peninsula is among the most rapidly warming regions on earth. Increased heat from the Antarctic Circumpolar Current has elevated the temperature of the 300 m of shelf water below the permanent pycnocline by 0.7 degrees C. This trend has displaced the once dominant cold, dry continental Antarctic climate, and is causing multi-level responses in the marine ecosystem. One striking example of the ecosystem response to warming has been the local declines in ice-dependent Ad\u00e9lie penguins. The changes in these apex predators are thought to be driven by alterations in phytoplankton and zooplankton community composition, and the foraging limitations and diet differences between these species. One of the most elusive questions facing researchers interested in the foraging ecology of the Ad\u00e9lie penguin, namely, what are the biophysical properties that characterize the three dimensional foraging space of this top predator? The research will combine the real-time site and diving information from the Ad\u00e9lie penguin satellite tags with the full characterization of the oceanography and the penguins prey field using an autonomous underwater vehicle (AUV). While some of these changes have been documented over large spatial scales of the WAP, it is now thought that the causal mechanisms that favor of one life history strategy over another may actually operate over much smaller scales than previously thought, specifically on the scale of local breeding sites and over-wintering areas. Characterization of prey fields on these local scales has yet to be done and one that the AUV is ideally suited. The results will have a direct tie to the climate induced changes that are occurring in the West Antarctic Peninsula. This study will also highlight a new approach to linking an autonomous platform to bird behavior that could be expanded to include the other two species of penguins and examine the seasonal differences in their foraging behavior and prey selection. From a vehicle perspective, this effort will inform the AUV user community of new sensor suites and/or data processing approaches that are required to better evaluate foraging habitat. The project also will help transition AUV platforms into routine investigative tools for this region, which is chronically under sampled and will remain difficult to access", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; Amd/Us; USAP-DC; AMD; FIELD INVESTIGATION", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Wendt, Dean; Moline, Mark", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Real-Time Characterization of Adelie Penguin Foraging Environment Using an Autonomous Underwater Vehicle", "uid": "p0000662", "west": null}, {"awards": "0739648 Cary, Stephen", "bounds_geometry": "POINT(163 -77.5)", "dataset_titles": "Biogeochemistry of Cyanobactrial Mats and Hyporheic Zone Microbes in McMurdo Dry Valley Glacial Meltwater Streams", "datasets": [{"dataset_uid": "600079", "doi": "10.15784/600079", "keywords": "Antarctica; Biota; Cell Counts; Dry Valleys; Microbiology", "people": "Cary, S. Craig", "repository": "USAP-DC", "science_program": null, "title": "Biogeochemistry of Cyanobactrial Mats and Hyporheic Zone Microbes in McMurdo Dry Valley Glacial Meltwater Streams", "url": "https://www.usap-dc.org/view/dataset/600079"}], "date_created": "Tue, 10 Dec 2013 00:00:00 GMT", "description": "The glacial streams of the McMurdo Dry Valleys have extensive cyanobacterial mats that are a probable source of fixed C and N to the Valleys. The research will examine the interplay between the microbial mats in the ephemeral glacial streams and the microbiota of the hyporheic soils (wetted soil zone) underlying and adjacent to those mats. It is hypothesized that the mats are important sources of organic carbon and fixed nitrogen for the soil communities of the hyporheic zone, and release dissolved organic carbon (DOC) and nitrogen (DON) that serves the entire Dry Valley ecosystem. Field efforts will entail both observational and experimental components. Direct comparisons will be made between the mats and microbial populations underlying naturally rehydrated and desiccated mat areas, and between mat areas in the melt streams of the Adams and Miers Glaciers in Miers Valley. Both physiological and phylogenetic indices of the soil microbiota will be examined. Observations will include estimates of rates of mat carbon and nitrogen fixation, soil respiration and leucine and thymidine uptake (as measures of protein \u0026 DNA synthesis, respectively) by soil bacteria, bacterial densities and their molecular ecology. Experimental manipulations will include experimental re-wetting of soils and observations of the time course of response of the microbial community. The research will integrate modern molecular genetic approaches (ARISA-DNA fingerprinting and ultra deep 16S rDNA microbial phylogenetic analysis) with geochemistry to study the diversity, ecology, and function of microbial communities that thrive in these extreme environments. The broader impacts of the project include research and educational opportunities for graduate students and a postdoctoral associate. The P.I.s will involve undergraduates as work-study students and in REU programs, and will participate in educational and outreach programs.", "east": 163.0, "geometry": "POINT(163 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Cary, Stephen", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.5, "title": "Collaborative Research: Biogeochemistry of Cyanobactrial Mats and Hyporheic Zone Microbes in McMurdo Dry Valley Glacial Meltwater Streams", "uid": "p0000476", "west": 163.0}, {"awards": "0838850 Gooseff, Michael", "bounds_geometry": "POLYGON((162.32 -77.62,162.418 -77.62,162.516 -77.62,162.614 -77.62,162.712 -77.62,162.81 -77.62,162.90800000000002 -77.62,163.006 -77.62,163.104 -77.62,163.202 -77.62,163.3 -77.62,163.3 -77.631,163.3 -77.64200000000001,163.3 -77.653,163.3 -77.664,163.3 -77.67500000000001,163.3 -77.686,163.3 -77.697,163.3 -77.708,163.3 -77.71900000000001,163.3 -77.73,163.202 -77.73,163.104 -77.73,163.006 -77.73,162.90800000000002 -77.73,162.81 -77.73,162.712 -77.73,162.614 -77.73,162.516 -77.73,162.418 -77.73,162.32 -77.73,162.32 -77.71900000000001,162.32 -77.708,162.32 -77.697,162.32 -77.686,162.32 -77.67500000000001,162.32 -77.664,162.32 -77.653,162.32 -77.64200000000001,162.32 -77.631,162.32 -77.62))", "dataset_titles": "The Role of Snow Patches on the Spatial Distribution of Soil Microbial Communities and Biogeochemical Cycling in the Antarctic Dry Valleys", "datasets": [{"dataset_uid": "600100", "doi": "10.15784/600100", "keywords": "Antarctica; Critical Zone; Mps-1 Water Potential Sensor; Physical Properties; Soil Moisture; Soil Temperature", "people": "Gooseff, Michael N.", "repository": "USAP-DC", "science_program": null, "title": "The Role of Snow Patches on the Spatial Distribution of Soil Microbial Communities and Biogeochemical Cycling in the Antarctic Dry Valleys", "url": "https://www.usap-dc.org/view/dataset/600100"}], "date_created": "Tue, 26 Nov 2013 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eTwo models have been proposed to describe controls over microbial biogeography. One model proposes that microbes are ubiquitously distributed across the global environment, and that environmental conditions select for taxa physiologically adapted to local physical conditions. An alternative model predicts that dispersal is the important limitation to the distribution of microorganisms and that spatial heterogeneity of microbial communities is a result of both dispersal and local environmental limitations. According to both models, spatial heterogeneity of microbial communities may be especially pronounced in extreme ecosystems where the environmental selection for organisms with suitable physiology is most strongly manifest. We propose that Antarctic terrestrial environments are ideal places to examine microbial biogeography for 3 reasons: 1) the pristine nature and remoteness of Antarctica minimizes the prevalence of exotic species dispersed through human vectors; 2) the extreme conditions of Antarctic environments provide a strong environmental filter which limits the establishment of non-indigenous taxa; and 3) extreme heterogeneity in the terrestrial environment provides natural gradients of soil conditions (temperature, water and nutrient availability). In the proposed research we will investigate the influence of snow on the composition and spatial distribution of soil microbial communities and linked biogeochemical cycling in the McMurdo Dry Valleys. We will conduct fieldwork at the landscape scale (repeated remote sensing to characterize snow distribution), at the valley and patch scales (quantify snow patch ablation, microbial communities and biogeochemical cycling in subnivian soils). We hypothesize that snow patches play an important role in structuring the spatial distribution of soil microbial communities and their associated ecosystem functioning because of the physical and hydrological influences that snow patches have on the soil environment. The research will contribute to greater public awareness of the importance of polar research to fundamental questions of biology, ecology and hydrology through direct linkages with International Antarctic Institute public outreach activities, including dissemination of web-based learning units on environmental science and microbiology, targeted as resources for secondary and post-secondary educators. Three graduate students, one postdoctoral scholar and multiple undergraduates will participate in the research activities.", "east": 163.3, "geometry": "POINT(162.81 -77.675)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.62, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Gooseff, Michael N.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.73, "title": "Collaborative Research: The Role of Snow Patches on the Spatial Distribution of Soil Microbial Communities and Biogeochemical Cycling in the Antarctic Dry Valleys", "uid": "p0000489", "west": 162.32}, {"awards": "0739783 Junge, Karen", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Metabolic Activities and Gene Expression of Marine Psychrophiles in Cold Ice", "datasets": [{"dataset_uid": "600083", "doi": "10.15784/600083", "keywords": "Antarctica; Biota; Microbiology; Oceans; Sea Ice; Southern Ocean", "people": "Junge, Karen", "repository": "USAP-DC", "science_program": null, "title": "Metabolic Activities and Gene Expression of Marine Psychrophiles in Cold Ice", "url": "https://www.usap-dc.org/view/dataset/600083"}], "date_created": "Wed, 25 Sep 2013 00:00:00 GMT", "description": "The mechanisms enabling bacteria to be metabolically active at very low temperatures are of considerable importance to polar microbial ecology, astrobiology, climate and cryopreservation. This research program has two main objectives. The first is to investigate metabolic activities and gene expression of polar marine psychrophilic bacteria when confronted with freezing conditions at temperatures above the eutectic of seawater (\u003c54C) to unveil cold adaptation mechanisms with relevance to wintertime sea-ice ecology. The second objective is to discern if psychrophilic processes of leucine incorporation into proteins, shown to occur to -196C, amount to metabolic activity providing for the survival of cells or are merely biochemical reactions still possible in flash-frozen samples without any effect on survival. We will examine extracellular and intracellular processes of psychrophilic activity above and below the eutectic by (i) determining the temperature range of metabolic activities such as DNA synthesis, carbon utilization, respiration and ATP generation using radioactive tracer technology, including a control at liquid helium temperature (-268.9C), (ii) analyzing gene expression in ice using whole genome and microarray analyses and iii) examining the role of exopolymeric substances (EPS) and ice micro-physics for the observed activity using an in-situ microscopy technique. Results of the proposed research can be expected to aid in the determination of cellular and genetic strategies that allow cells to maintain activity at extremely low temperatures within an icy matrix and/or to resume activity again when more growth-permissive conditions are encountered. The research is an interdisciplinary collaboration involving three different institutions with participants in Oceanography, Genomics, and Geophysical Sciences. The proposed activity will support the beginning professional career of a female researcher and will serve as the basis for several undergraduate student laboratory projects.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Junge, Karen", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Metabolic Activities and Gene Expression of Marine Psychrophiles in Cold Ice", "uid": "p0000673", "west": -180.0}, {"awards": "0823101 Ducklow, Hugh", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG1301", "datasets": [{"dataset_uid": "002731", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1301", "url": "https://www.rvdata.us/search/cruise/LMG1301"}, {"dataset_uid": "001425", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1301"}], "date_created": "Mon, 24 Jun 2013 00:00:00 GMT", "description": "Since 1990, Palmer LTER (PAL) research has been guided by the hypothesis that variability in the polar marine ecosystem is mechanistically coupled to changes in the annual advance, retreat and spatial extent of sea ice. Since that time, the hypothesis has been modified to incorporate climate migration, i.e. the displacement of a cold, dry polar climate by a warm, moist climate regime in the northern component of the PAL region, producing fundamental changes in food web structure and elemental cycling. The observed northern changes are affecting all trophic levels and elemental cycling, and the primary mechanism of change involves match-mismatch dynamics. The proposed research builds on previous findings, with a new emphasis on process studies and modeling to elucidate the mechanistic links between teleconnections, climate change, physical oceanographic forcing and ecosystem dynamics. The proposed research will examine the hypothesis that regional warming and sea ice decline associated with historical and on-going climate migration in the northern part of the study area have altered key phenological relationships, leading to changes in species distributions, increasing trophic mismatches and changes in habitat, food availability, ecosystem dynamics and biogeochemical cycling. Through targeted process studies linked to numerical model simulations, the research also will test the hypothesis that deep cross-shelf canyons characterizing the core study region are focal areas for ecosystem processes that result in predictable, elevated food resources for top-predators. The effort includes the addition of 3 new PIs: a zooplankton ecologist with expertise in biogeochemical fluxes, a phytoplankton ecologist focusing on bio-optics and autonomous observations using gliders, and a numerical simulation modeler specializing in coupled global models of ocean circulation, plankton ecology and biogeochemical cycles. The program will add trace metal sampling and analysis, moored physical oceanographic sensors, a moored sediment trap in the south, drifting sediment traps and stable carbon (del 13C) and nitrogen (del 15N) isotope analyses. Missions lasting up to 45 days using gliders deployed before, during and after summer cruises will, along with moorings and satellite remote sensing of sea ice, ocean color, sea surface temperatures and wind fields, greatly extend the observational program in space and time. \u003cbr/\u003e\u003cbr/\u003eSince its inception, PAL has been a leader in Information Management to enable knowledge-building within and beyond the Antarctic, oceanographic and LTER communities. PAL has designed and deployed a new information infrastructure with a relational database architecture to facilitate data distribution and sharing. The Education and Outreach program capitalizes on the public\u0027s fascination with Antarctica to promote scientific literacy from kindergarten students to adult citizens concerned with climate change and environmental sustainability. Through communicating results to the public and working with scientific assessment bodies (e.g., IPCC) and Antarctic Treaty parties to protect Earth\u0027s last frontier, PAL researchers contribute to the national scientific agenda and the greater public benefit.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e PROFILERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ducklow, Hugh", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": "LTER", "south": null, "title": "Palmer, Antarctica Long Term Ecological Research Project", "uid": "p0000874", "west": null}, {"awards": "1043564 Karentz, Deneb", "bounds_geometry": null, "dataset_titles": "Expedition data of LMG1106A", "datasets": [{"dataset_uid": "002686", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1106A", "url": "https://www.rvdata.us/search/cruise/LMG1106A"}], "date_created": "Tue, 17 Jan 2012 00:00:00 GMT", "description": "The proposed research will investigate the genomic basis of the physiological and ecological transition of Antarctic marine phytoplankton from a cold dark winter to a warmer, brighter spring. During a field season at Palmer Station, functional genomics (using next generation sequencing technology to identify expressed genes) and in situ fluorometry (FRRF) will be integrated with classical ecological methods to investigate photosynthetic adaptation during phytoplankton species succession from late winter into spring. Using large data sets, this project will test whether amino acid usages differ based on expression. The specific objectives are (1) To characterize phytoplankton succession from the winter to spring transition, and (2) To correlate community gene expression profiles to adaptational differences among taxa. Broader impacts include training of a post doctoral researcher and two undergraduate science majors, with efforts to attract students from underrepresented groups. The P.I.s also will prepare presentations for the public, regarding research experiences, research results, and the importance of climate change.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Karentz, Deneb", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Functional Genomics and Physiological Ecology of Seasonal Succession in Antarctic Phytoplankton: Adaptations to Light and Temperature", "uid": "p0000861", "west": null}, {"awards": "0838773 McClintock, James; 0442769 McClintock, James; 0442857 Baker, Bill; 0838776 Baker, Bill", "bounds_geometry": "POLYGON((-65 -63,-64.8 -63,-64.6 -63,-64.4 -63,-64.2 -63,-64 -63,-63.8 -63,-63.6 -63,-63.4 -63,-63.2 -63,-63 -63,-63 -63.2,-63 -63.4,-63 -63.6,-63 -63.8,-63 -64,-63 -64.2,-63 -64.4,-63 -64.6,-63 -64.8,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.8,-65 -64.6,-65 -64.4,-65 -64.2,-65 -64,-65 -63.8,-65 -63.6,-65 -63.4,-65 -63.2,-65 -63))", "dataset_titles": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2010 experimental data; The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2010 field data; The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2011 Clad Outplant; The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2013 Chemo Phylo data", "datasets": [{"dataset_uid": "600095", "doi": "10.15784/600095", "keywords": "Algae; Antarctica; Antarctic Peninsula; Biota; Oceans; Southern Ocean", "people": "Amsler, Charles; McClintock, James", "repository": "USAP-DC", "science_program": null, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2011 Clad Outplant", "url": "https://www.usap-dc.org/view/dataset/600095"}, {"dataset_uid": "600047", "doi": "10.15784/600047", "keywords": "Antarctica; Biota; Oceans; Southern Ocean", "people": "Baker, Bill", "repository": "USAP-DC", "science_program": null, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2010 experimental data", "url": "https://www.usap-dc.org/view/dataset/600047"}, {"dataset_uid": "600096", "doi": "10.15784/600096", "keywords": "Algae; Antarctica; Antarctic Peninsula; Biota; Oceans; Southern Ocean", "people": "Baker, Bill", "repository": "USAP-DC", "science_program": null, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2013 Chemo Phylo data", "url": "https://www.usap-dc.org/view/dataset/600096"}, {"dataset_uid": "600046", "doi": "10.15784/600046", "keywords": "Antarctica; Biota; Oceans; Southern Ocean", "people": "McClintock, James; Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2010 field data", "url": "https://www.usap-dc.org/view/dataset/600046"}], "date_created": "Sun, 07 Nov 2010 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThe near shore environments of the western Antarctic Peninsula (WAP) harbor extremely high densities of mesograzers (small invertebrate predators approximately 1-25 mm in length) such as benthic amphipods, as well as rich assemblages of macroalgae, endophytes, and macroinvertebrates. Unlike temperate and tropical shallow marine environments, where fish and sea urchins are key grazers structuring the community, mesograzers appear to be much more important in the WAP. Accordingly, the proposed research has two main objectives: (1) To further investigate the interactions between the ecologically dominant large macrophytes, filamentous epi/endophytes, and mesograzers and (2) To determine the nature of interactions between mesograzers and sessile invertebrates. Specifically, the research will examine the following hypotheses: 1: The effects of endophytes on macrophytes are often negative, and consequently macrophytes defend against endophytic infection. 2: Mesoherbivores prevent filamentous algal species, common in the intertidal, from dominating subtidal assemblages. 3: Mesograzer predation pressure on sessile benthic macroinvertebrates, primarily sponges and tunicates, is greatest in shallow habitats dominated by macrophytes, and this impacts depth distributions of macroinvertebrate species. 4: Benthic macroinvertebrates may defend against mesograzers with secondary metabolites which effect molting and/or deter feeding.\u003cbr/\u003e\u003cbr/\u003eBroader impacts include involvement of undergraduates, including minorities, in research; training of graduate students, and continuation of the highly successful UAB IN ANTARCTICA interactive web program (two time recipient of awards of excellence from the US Council for Advancement and Support of Education). The researchers also will share their scientific endeavors with teachers, K-12 students, and other members of the community at large while in residence in Antarctica. In addition, the investigators will request the participation of a PolarTREC teacher.", "east": -63.0, "geometry": "POINT(-64 -64)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -63.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Baker, Bill; Amsler, Charles; McClintock, James", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula", "uid": "p0000475", "west": -65.0}, {"awards": "0649609 Horning, Markus", "bounds_geometry": "POLYGON((165.975 -77.54,166.0631 -77.54,166.1512 -77.54,166.2393 -77.54,166.3274 -77.54,166.4155 -77.54,166.5036 -77.54,166.5917 -77.54,166.6798 -77.54,166.7679 -77.54,166.856 -77.54,166.856 -77.5709,166.856 -77.6018,166.856 -77.6327,166.856 -77.6636,166.856 -77.6945,166.856 -77.7254,166.856 -77.7563,166.856 -77.7872,166.856 -77.8181,166.856 -77.849,166.7679 -77.849,166.6798 -77.849,166.5917 -77.849,166.5036 -77.849,166.4155 -77.849,166.3274 -77.849,166.2393 -77.849,166.1512 -77.849,166.0631 -77.849,165.975 -77.849,165.975 -77.8181,165.975 -77.7872,165.975 -77.7563,165.975 -77.7254,165.975 -77.6945,165.975 -77.6636,165.975 -77.6327,165.975 -77.6018,165.975 -77.5709,165.975 -77.54))", "dataset_titles": "Aging in Weddell Seals: Proximate Mechanisms of Age-Related Changes in Adaptations to Breath-Hold Hunting in an Extreme Environment", "datasets": [{"dataset_uid": "600071", "doi": "10.15784/600071", "keywords": "Antarctica; Biota; McMurdo; Oceans; Seals; Southern Ocean", "people": "Horning, Markus", "repository": "USAP-DC", "science_program": null, "title": "Aging in Weddell Seals: Proximate Mechanisms of Age-Related Changes in Adaptations to Breath-Hold Hunting in an Extreme Environment", "url": "https://www.usap-dc.org/view/dataset/600071"}], "date_created": "Wed, 04 Aug 2010 00:00:00 GMT", "description": "The primary objectives of this research are to investigate the proximate effects of aging on diving capability in the Weddell Seal and to describe mechanisms by which aging may influence foraging ecology, through physiology and behavior. This model pinniped species has been the focus of three decades of research in McMurdo Sound, Antarctica. Compared to the knowledge of pinniped diving physiology and ecology during early development and young adulthood, little is known about individuals nearing the upper limit of their normal reproductive age range. Evolutionary aging theories predict that elderly diving seals should exhibit senescence. This should be exacerbated by surges in the generation of oxygen free radicals via hypoxia-reoxygenation during breath-hold diving and hunting, which are implicated in age-related damage to cellular mitochondria. Surprisingly, limited observations of non-threatened pinniped populations indicate that senescence does not occur to a level where reproductive output is affected. The ability of pinnipeds to avoid apparent senescence raises two major questions: what specific physiological and morphological changes occur with advancing age in pinnipeds and what subtle adjustments are made by these animals to cope with such changes? This investigation will focus on specific, functional physiological and behavioral changes relating to dive capability with advancing age. The investigators will quantify age-related changes in general health and body condition, combined with fine scale assessments of external and internal ability to do work in the form of diving. Specifically, patterns of oxidative status and oxygen use with age will be examined. The effects of age on muscular function, contractile capacity in vascular smooth muscle, and exercise capacity via exercise performance in skeletal muscle will be examined. Data will be compared between Weddell seals in the peak, and near the end, of their reproductive age range. An assessment will be made of the ability to do external work (i.e. diving) as well as muscle functionality (ability to do internal work). The investigators hypothesize that senescence does occur in Weddell seals at the level of small-scale, proximate physiological effects and performance, but that behavioral plasticity allows for a given degree of compensation. Broader impacts include the training of students and outreach activities including interviews and articles written for the popular media. Photographs and project summaries will be available to the interested public on the project website. This study should also establish diving seals as a novel model for the study of cardiovascular and muscular physiology of aging. Research on Weddell seals could validate this model and thus develop a foundation for similar research on other species. Advancement of the understanding of aging by medical science has been impressive in recent years and the development of new models for the study of aging has tremendous potential benefits to society at large", "east": 166.856, "geometry": "POINT(166.4155 -77.6945)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.54, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Horning, Markus", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.849, "title": "Collaborative Research: Aging in Weddell Seals: Proximate Mechanisms of Age-Related Changes in Adaptations to Breath-Hold Hunting in an Extreme Environment", "uid": "p0000487", "west": 165.975}, {"awards": "0632389 Murray, Alison; 0632278 Ducklow, Hugh", "bounds_geometry": "POLYGON((-77 -62,-75.5 -62,-74 -62,-72.5 -62,-71 -62,-69.5 -62,-68 -62,-66.5 -62,-65 -62,-63.5 -62,-62 -62,-62 -62.7,-62 -63.4,-62 -64.1,-62 -64.8,-62 -65.5,-62 -66.2,-62 -66.9,-62 -67.6,-62 -68.3,-62 -69,-63.5 -69,-65 -69,-66.5 -69,-68 -69,-69.5 -69,-71 -69,-72.5 -69,-74 -69,-75.5 -69,-77 -69,-77 -68.3,-77 -67.6,-77 -66.9,-77 -66.2,-77 -65.5,-77 -64.8,-77 -64.1,-77 -63.4,-77 -62.7,-77 -62))", "dataset_titles": "IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter", "datasets": [{"dataset_uid": "600061", "doi": "10.15784/600061", "keywords": "Antarctica; Antarctic Peninsula; Biota; Chemistry:fluid; Chemistry:Fluid; Oceans; Southern Ocean", "people": "Grzymski, Joseph; Murray, Alison", "repository": "USAP-DC", "science_program": null, "title": "IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter", "url": "https://www.usap-dc.org/view/dataset/600061"}], "date_created": "Thu, 08 Jul 2010 00:00:00 GMT", "description": "The Western Antarctic Peninsula is experiencing one of the most rapid rates of climate warming on Earth, with an increase of 5degrees C in the mean winter temperature in 50 years. Impacts on upper trophic levels are evident, though there have been few, if any studies that have considered the impacts on bacterioplankton in the Southern Ocean. This proposal will characterize the winter bacterioplankton genome, transcriptome, and proteome and discover those features (community composition, genes up-regulated, and proteins expressed) that are essential to winter bacterioplankton survival and livelihood. We have assembled a polar ocean ecology and genomics network including strategic partnerships with Palmer LTER, the British Antarctic Survey\u0027s ocean metagenome program, US and Canadian scientists studying the Arctic Ocean genome, an Australian colleague who specialized in archaeal proteomics, and French colleagues studying Sub-Antarctic and Coastal Adelie Land marine bacterioplankton. The primary objectives of this program are: 1 Describe the differences in diversity and genomic content between austral winter and summer bacterioplankton communities. 2. Investigate the winter-time bacterioplankton growth and cellular signals (mRNA and proteins expressed) in order to understand the specific adaptations key to survival. \u003cbr/\u003e\u003cbr/\u003eOur results will extend from the Antarctic to the Arctic - as the cold, dark, carbon-limited deep seas linking these two systems have many common features. Education and outreach activities target (i) undergraduate and graduate students, hopefully including minority students recruited through the Diversity in Research in Environmental and Marine Sciences (DREAMS) Program at VIMS; (ii) a broad audience with our education and outreach partnerships with The Cousteau Society and with the Census for Antarctic Marine Life program. Data and links to external databases will be listed on the http://genex2.dri.edu website. Sequence data will be publicly accessible in GenBank and IMG-M databases.", "east": -62.0, "geometry": "POINT(-69.5 -65.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Murray, Alison; Grzymski, Joseph; Ducklow, Hugh", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -69.0, "title": "IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter", "uid": "p0000091", "west": -77.0}, {"awards": "0537143 Blanchette, Robert", "bounds_geometry": "POLYGON((-69 -60,-68.3 -60,-67.6 -60,-66.9 -60,-66.2 -60,-65.5 -60,-64.8 -60,-64.1 -60,-63.4 -60,-62.7 -60,-62 -60,-62 -61,-62 -62,-62 -63,-62 -64,-62 -65,-62 -66,-62 -67,-62 -68,-62 -69,-62 -70,-62.7 -70,-63.4 -70,-64.1 -70,-64.8 -70,-65.5 -70,-66.2 -70,-66.9 -70,-67.6 -70,-68.3 -70,-69 -70,-69 -69,-69 -68,-69 -67,-69 -66,-69 -65,-69 -64,-69 -63,-69 -62,-69 -61,-69 -60))", "dataset_titles": "(Arenz et al. 2006) DQ317323, DQ317324, DQ317325, DQ317326, DQ317327, DQ317328, DQ317329, DQ317330, DQ317331, DQ317332, DQ317333, DQ317334, DQ317335, DQ317336, DQ317337, DQ317338, DQ317339, DQ317340, DQ317341, DQ317342, DQ317343, DQ317344, DQ317345, DQ317346, DQ317347, DQ317348, DQ317349, DQ317350, DQ317351, DQ317352, DQ317353, DQ317354, DQ317355, DQ317356, DQ317357, DQ317358, DQ317359, DQ317360, DQ317361, DQ317362, DQ317363, DQ317364, DQ317365, DQ317366, DQ317367, DQ317368, DQ317369, DQ317370, DQ317371, DQ317372, DQ317373, DQ317374, DQ317375, DQ317376, DQ317377, DQ317378, DQ317379, DQ317380, DQ317381, DQ317382, DQ317383, DQ317384, DQ317385, DQ317386, DQ317387, DQ317388, DQ317389 (Arenz and Blanchette 2009) FJ235934, FJ235935, FJ235936, FJ235937, FJ235938, FJ235939, FJ235940, FJ235941, FJ235942, FJ235943, FJ235944, FJ235945, FJ235946, FJ235947, FJ235948, FJ235949, FJ235950, FJ235951, FJ235952, FJ235953, FJ235954, FJ235955, FJ235956, FJ235957, FJ235958, FJ235959, FJ235960, FJ235961, FJ235962, FJ235963, FJ235964, FJ235965, FJ235966, FJ235967, FJ235968, FJ235969, FJ235970, FJ235971, FJ235972, FJ235973, FJ235974, FJ235975, FJ235976, FJ235977, FJ235978, FJ235979, FJ235980, FJ235981, FJ235982, FJ235983, FJ235984, FJ235985, FJ235986, FJ235987, FJ235988, FJ235989, FJ235990, FJ235991, FJ235992, FJ235993, FJ235994, FJ235995, FJ235996, FJ235997, FJ235998, FJ235999, FJ236000, FJ236001, FJ236002, FJ236003, FJ236004, FJ236005, FJ236006, FJ236007, FJ236008, FJ236009, FJ236010, FJ236011, FJ236012, FJ236013, FJ236014 (Blanchette et al. 2010) GU212367, GU212368, GU212369, GU212370, GU212371, GU212372, GU212373, GU212374, GU212375, GU212376, GU212377, GU212378, GU212379, GU212380, GU212381, GU212382, GU212383, GU212384, GU212385, GU212386, GU212387, GU212388, GU212389, GU212390, GU212391, GU212392, GU212393, GU212394, GU212395, GU212396, GU212397, GU212398, GU212399, GU212400, GU212401, GU212402, GU212403, GU212404, GU212405, GU212406, GU212407, GU212408, GU212409, GU212410, GU212411, GU212412, GU212413, GU212414, GU212415, GU212416, GU212417, GU212418, GU212419, GU212420, GU212421, GU212422, GU212423, GU212424, GU212425, GU212426, GU212427, GU212428, GU212429, GU212430, GU212431, GU212432, GU212433, GU212434", "datasets": [{"dataset_uid": "000121", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "(Arenz et al. 2006) DQ317323, DQ317324, DQ317325, DQ317326, DQ317327, DQ317328, DQ317329, DQ317330, DQ317331, DQ317332, DQ317333, DQ317334, DQ317335, DQ317336, DQ317337, DQ317338, DQ317339, DQ317340, DQ317341, DQ317342, DQ317343, DQ317344, DQ317345, DQ317346, DQ317347, DQ317348, DQ317349, DQ317350, DQ317351, DQ317352, DQ317353, DQ317354, DQ317355, DQ317356, DQ317357, DQ317358, DQ317359, DQ317360, DQ317361, DQ317362, DQ317363, DQ317364, DQ317365, DQ317366, DQ317367, DQ317368, DQ317369, DQ317370, DQ317371, DQ317372, DQ317373, DQ317374, DQ317375, DQ317376, DQ317377, DQ317378, DQ317379, DQ317380, DQ317381, DQ317382, DQ317383, DQ317384, DQ317385, DQ317386, DQ317387, DQ317388, DQ317389 (Arenz and Blanchette 2009) FJ235934, FJ235935, FJ235936, FJ235937, FJ235938, FJ235939, FJ235940, FJ235941, FJ235942, FJ235943, FJ235944, FJ235945, FJ235946, FJ235947, FJ235948, FJ235949, FJ235950, FJ235951, FJ235952, FJ235953, FJ235954, FJ235955, FJ235956, FJ235957, FJ235958, FJ235959, FJ235960, FJ235961, FJ235962, FJ235963, FJ235964, FJ235965, FJ235966, FJ235967, FJ235968, FJ235969, FJ235970, FJ235971, FJ235972, FJ235973, FJ235974, FJ235975, FJ235976, FJ235977, FJ235978, FJ235979, FJ235980, FJ235981, FJ235982, FJ235983, FJ235984, FJ235985, FJ235986, FJ235987, FJ235988, FJ235989, FJ235990, FJ235991, FJ235992, FJ235993, FJ235994, FJ235995, FJ235996, FJ235997, FJ235998, FJ235999, FJ236000, FJ236001, FJ236002, FJ236003, FJ236004, FJ236005, FJ236006, FJ236007, FJ236008, FJ236009, FJ236010, FJ236011, FJ236012, FJ236013, FJ236014 (Blanchette et al. 2010) GU212367, GU212368, GU212369, GU212370, GU212371, GU212372, GU212373, GU212374, GU212375, GU212376, GU212377, GU212378, GU212379, GU212380, GU212381, GU212382, GU212383, GU212384, GU212385, GU212386, GU212387, GU212388, GU212389, GU212390, GU212391, GU212392, GU212393, GU212394, GU212395, GU212396, GU212397, GU212398, GU212399, GU212400, GU212401, GU212402, GU212403, GU212404, GU212405, GU212406, GU212407, GU212408, GU212409, GU212410, GU212411, GU212412, GU212413, GU212414, GU212415, GU212416, GU212417, GU212418, GU212419, GU212420, GU212421, GU212422, GU212423, GU212424, GU212425, GU212426, GU212427, GU212428, GU212429, GU212430, GU212431, GU212432, GU212433, GU212434", "url": "http://www.ncbi.nlm.nih.gov/genbank/"}], "date_created": "Mon, 24 May 2010 00:00:00 GMT", "description": "Fungi in Antarctic ecosystems are major contributors to biodiversity and have great influence on many processes such as biodegradation and nutrient cycling. It is essential for biological surveys as well as genomic and proteomic studies to be completed so a better understanding of these organisms is obtained. Previous research has identified unique fungi associated with historic wooden structures brought to Antarctica by Robert F. Scott and Ernest Shackleton during the Heroic Era of exploration. Many of the fungi found are previously undescribed species that belong to the little known genus Cadophora. The research team will obtain important new information on the fungi present in the Ross Sea and Peninsula Regions of Antarctica, particularly their role in decomposition and nutrient recycling and their mechanisms and strategies for survival in the polar environment. New tools and methods include denaturing gradient gel electrophoresis (DGGE), real-time PCR, and proteomic profiling. These analyses will reveal key details of the physiological adaptations these fungi have evolved to carry out processes such as biodegradation and nutrient cycling under conditions that would inhibit other fungi. This work, coupled with the training and learning opportunities it provides, will be of value to many fields of study including microbial ecology, polar biology, wood microbiology, environmental science, soil science, geobiochemistry, and mycology as well as fungal phylogenetics, proteomics and genomics. Results obtained will have immediate applied use to help preserve and protect Antarctica\u0027s historic monuments. The investigations proposed are a continuation of research to identify the microbes attacking these historic structures and artifacts and to elucidate their biology and ecology in the polar environment. New research will also be done at the historic Cape Adare huts, the first wooden structures to be built in Antarctica and also at East Base, an American historic site on Stonington Island from the Admiral Byrd and Ronne Expeditions of 1939-1948. The research team will conduct vital studies needed to successfully conserve the wooden structures and artifacts at these sites and protect them for future generations", "east": -62.0, "geometry": "POINT(-65.5 -65)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Blanchette, Robert", "platforms": "Not provided", "repo": "NCBI GenBank", "repositories": "NCBI GenBank", "science_programs": null, "south": -70.0, "title": "Studies of Antarctic Fungi: Adaptive Stratigies for Survival and Protecting Antarctica\u0027s Historic Structures", "uid": "p0000187", "west": -69.0}, {"awards": "9816049 DeMaster, David", "bounds_geometry": "POLYGON((-70.90654 -52.35368,-70.220384 -52.35368,-69.534228 -52.35368,-68.848072 -52.35368,-68.161916 -52.35368,-67.47576 -52.35368,-66.789604 -52.35368,-66.103448 -52.35368,-65.417292 -52.35368,-64.731136 -52.35368,-64.04498 -52.35368,-64.04498 -53.639401,-64.04498 -54.925122,-64.04498 -56.210843,-64.04498 -57.496564,-64.04498 -58.782285,-64.04498 -60.068006,-64.04498 -61.353727,-64.04498 -62.639448,-64.04498 -63.925169,-64.04498 -65.21089,-64.731136 -65.21089,-65.417292 -65.21089,-66.103448 -65.21089,-66.789604 -65.21089,-67.47576 -65.21089,-68.161916 -65.21089,-68.848072 -65.21089,-69.534228 -65.21089,-70.220384 -65.21089,-70.90654 -65.21089,-70.90654 -63.925169,-70.90654 -62.639448,-70.90654 -61.353727,-70.90654 -60.068006,-70.90654 -58.782285,-70.90654 -57.496564,-70.90654 -56.210843,-70.90654 -54.925122,-70.90654 -53.639401,-70.90654 -52.35368))", "dataset_titles": "Expedition Data; Expedition data of LMG0003", "datasets": [{"dataset_uid": "002690", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0003", "url": "https://www.rvdata.us/search/cruise/LMG0003"}, {"dataset_uid": "001983", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0004"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "OPP98-15823 P.I. Craig Smith\u003cbr/\u003eOPP98-16049 P.I. David DeMaster\u003cbr/\u003e\u003cbr/\u003ePrimary production in Antarctic coastal waters is highly seasonal, yielding an intense pulse of biogenic particles to the continental shelf floor. This seasonal pulse may have major ramifications for carbon cycling, benthic ecology and material burial on the west Antarctic Peninsula (WAP) shelf. Thus, we propose a multii-disciplinary program to evaluate the seafloor accumulation, fate and benthic community impacts of bloom material along a transect of three stations crossing the Antarctic shelf in the Palmer LTER study area. Using a seasonal series of five cruises to our transect, we will test the following hypostheses: (1) A substantial proportion of spring/summer export production is deposited ont eh WAP shelf as phytodetritus or fecal pellets. (2) The deposited bloom production is a source of labile particulate organic carbon for benthos for an extended period of time (months). (3) Large amounts of labile bloom POC are rapidly subducted into the sediment column by the deposit-feeding and caching activities of benthos. (4) Macrobenthic detritivores sustain a rapid increase in biomass and abundance following the spring/summer particulate organic carbon pulse. To test these hypotheses, we will evaluate seabed deposition and lability of particulate organic carbon, patterns of particulate organic carbon mixing into sediments, seasonal variations in macrofaunal and megafaunal abundance, biomass and reproductive condition, and rates of particulate organic carbon and silica mineralization and accumulation in the seabed. Fluxes of biogenic materials and radionuclides into midwater particle traps will be contrasted with seabed deposition and burial rates to establish water-column and seabed preservation efficiencies for these materials. The project will substantially improve our understanding of the spring/summer production pulse on the WAP shelf and its impacts on seafloor communities and carbon cycling in Antarctic coastal systems.", "east": -64.04498, "geometry": "POINT(-67.47576 -58.782285)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP; R/V LMG", "locations": null, "north": -52.35368, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "DeMaster, David; Smith, Craig", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.21089, "title": "Collaborative Research: Bentho-Pelagic Coupling on the West Antarctic Peninsula Shelf: The Impact and Fate of Bloom Material at the Seafloor", "uid": "p0000618", "west": -70.90654}, {"awards": "9816616 Trivelpiece, Wayne", "bounds_geometry": "POLYGON((-70.860664 -52.350334,-69.5007142 -52.350334,-68.1407644 -52.350334,-66.7808146 -52.350334,-65.4208648 -52.350334,-64.060915 -52.350334,-62.7009652 -52.350334,-61.3410154 -52.350334,-59.9810656 -52.350334,-58.6211158 -52.350334,-57.261166 -52.350334,-57.261166 -53.6353506,-57.261166 -54.9203672,-57.261166 -56.2053838,-57.261166 -57.4904004,-57.261166 -58.775417,-57.261166 -60.0604336,-57.261166 -61.3454502,-57.261166 -62.6304668,-57.261166 -63.9154834,-57.261166 -65.2005,-58.6211158 -65.2005,-59.9810656 -65.2005,-61.3410154 -65.2005,-62.7009652 -65.2005,-64.060915 -65.2005,-65.4208648 -65.2005,-66.7808146 -65.2005,-68.1407644 -65.2005,-69.5007142 -65.2005,-70.860664 -65.2005,-70.860664 -63.9154834,-70.860664 -62.6304668,-70.860664 -61.3454502,-70.860664 -60.0604336,-70.860664 -58.775417,-70.860664 -57.4904004,-70.860664 -56.2053838,-70.860664 -54.9203672,-70.860664 -53.6353506,-70.860664 -52.350334))", "dataset_titles": "Expedition data of LMG0009; Expedition data of LMG0108A", "datasets": [{"dataset_uid": "002692", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0108A", "url": "https://www.rvdata.us/search/cruise/LMG0108A"}, {"dataset_uid": "002689", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0009", "url": "https://www.rvdata.us/search/cruise/LMG0009"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9816616 Trivelpiece Long-term seabird research conducted at Admiralty Bay, which is located on King George Island in the Antarctic Peninsula region, has documented annual variability in the life history parameters of the breeding biology and ecology of the Adelie, gentoo and chinstrap penguins. Twenty-year records acquired on these species, including survival and recruitment, population size and breeding success, and diets and foraging ecology have enabled scientists to test key hypotheses regarding the linkage between these predator parameters and variability in the Antarctic marine ecosystem. This project will focus on understanding the linkages between the physical environment and the population biology of penguins, in particular, sea ice coverage and its impact on krill availability as a food source for penguins. Krill is a key food web species in the Antarctic oceans and accounts for nearly one hundred percent of the prey eaten by dominant predators such as baleen whales, seals and penguins. Analysis of long-term data sets has suggested that years of heavy winter sea ice favor krill recruitment, as larval krill find refuge and food in the sea ice habitat. It has also been observed that years of heavy sea ice favor Adelie penguin recruitment and not that of chinstrap penguins. Aspects of the work include analysis of diet samples, shipboard krill sampling, survival and recruitment studies of penguins, satellite tracking of penguins during the breeding season, and analysis of satellite sea ice images. Penguins are the key species used to monitor the impact of commercial fisheries activities in the region, so this study will provide useful information to the Convention for the Conservation of Antarctic Marine Living Resources, which is the part of the Antarctic Treaty System which focuses on fisheries management.", "east": -57.261166, "geometry": "POINT(-64.060915 -58.775417)", "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.350334, "nsf_funding_programs": null, "paleo_time": null, "persons": "Trivelpiece, Wayne; Smith, Craig", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.2005, "title": "Penguin-Krill-Ice Interactions: The Impact of Environmental Variability on Penguin Demography", "uid": "p0000616", "west": -70.860664}, {"awards": "0324539 Yen, Jeannette", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG0308", "datasets": [{"dataset_uid": "002709", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0308", "url": "https://www.rvdata.us/search/cruise/LMG0308"}, {"dataset_uid": "001686", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0308"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project explores the feasibility of applying fluid physical analyses to evaluate the importance of viscous forces over compensatory temperature adaptations in a polar copepod. The water of the Southern Ocean is 20 Celsius colder and nearly twice as viscous as subtropical seas, and the increased viscosity has significant implications for swimming zooplankton. In each of these warm and cold aquatic environments have evolved abundant carnivorous copepods in the family Euchaetidae. In this exploratory study, two species from the extremes of the natural temperature range (0 and 23C) will be compared to test two alternate hypotheses concerning how Antarctic plankton adapt to the low temperature-high viscosity realm of the Antarctic and to evaluate the importance of viscous forces in the evolution of plankton. How do stronger viscous forces and lower temperature affect the behavior of the Antarctic species? If the Antarctic congener is dynamically similar to its tropical relative, it will operate at the same Reynolds number (Re) as its tropical congener. Alternatively, if the adaptations of the Antarctic congener are proportional to size, they should occupy a higher Re regime, which suggests that the allometry of various processes is not constrained by having to occupy a transitional fluid regime. The experiments are designed with clearly defined outcomes regarding a number of copepod characteristics, such as swimming speed, propulsive force, and size of the sensory field. These characteristics determine not only how copepods relate to the physical world, but also structure their biological interactions. The results of this study will provide insights on major evolutionary forces affecting plankton and provide a means to evaluate the importance of the fluid physical conditions relative to compensatory measures for temperature. Fluid physical, biomechanical, and neurophysiological techniques have not been previously applied to these polar plankton. However, these approaches, if productive and feasible, will provide ways to explore the sensory ecology of polar plankton and the role of small-scale biological-physical-chemical interactions in a polar environment. Experimental evidence validating the importance of viscous effects will also justify further research using latitudinal comparisons of other congeners along a temperature gradient in the world ocean.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Yen, Jeannette", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Dynamic Similarity or Size Proportionality? Adaptations of a Polar Copepod.", "uid": "p0000867", "west": null}, {"awards": "9981683 Costa, Daniel", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG0106; Expedition data of LMG0203; Expedition data of LMG0205", "datasets": [{"dataset_uid": "001757", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0205"}, {"dataset_uid": "002698", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0106", "url": "https://www.rvdata.us/search/cruise/LMG0106"}, {"dataset_uid": "002700", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0203", "url": "https://www.rvdata.us/search/cruise/LMG0203"}, {"dataset_uid": "002701", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0205", "url": "https://www.rvdata.us/search/cruise/LMG0205"}, {"dataset_uid": "002695", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0106", "url": "https://www.rvdata.us/search/cruise/LMG0106"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on the distribution and foraging behavior of adult female crabeater seals, using a combination of satellite-linked tracking, specialized diver recorders, and stable isotopic tracers. This research will be coordinated with components focused on prey (krill) distribution and the physical environment. The results will be analyzed using an optimality model. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Costa, Daniel", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Foraging Ecology of Crabeater Seals (Lobodon Carcinophagus)", "uid": "p0000866", "west": null}, {"awards": "0344275 Trivelpiece, Wayne", "bounds_geometry": null, "dataset_titles": "Expedition data of LMG0412", "datasets": [{"dataset_uid": "002683", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0412", "url": "https://www.rvdata.us/search/cruise/LMG0412"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Seabird research conducted at Admiralty Bay, King George Island in the Antarctic Peninsula region has documented annual variability in the life history parameters of the population biology of three related penguin species: the Adelie, the gentoo and the chinstrap (Pygoscelis adeliae, P. papua and P. antarctica, respectively). This long-term study has collected twenty-five years of data on the three related species, including survival and recruitment, population size and breeding success, and diets and foraging ecology. The current project will extend the research linking penguin demography and foraging ecology to variability in the Antarctic marine ecosystem. A major focus of this work will be on the Adelie and gentoo penguin population biology data and the distribution and trophic interactions among the three Pygoscelis species during the breeding season and the non-breeding, winter period. Recent results have provided the first detailed data on the wintering distributions of Adelie and chinstrap penguins in the Antarctic Peninsula region, through the use of satellite tags and time-depth recorders to examine the post-fledging foraging. Specific topics of research include an examination of the size and sex composition of krill captured by penguins feeding chicks and krill collected concurrently by net hauls in the adjacent marine environment and the length-frequency distribution of krill collected from penguin diet samples. The over winter survival of penguin breeding adults and the recruitment of young (two to four year old) pre-breeding penguins to their natal colony will be compared to the extent of sea ice in the winter prior to the breeding season. These variables are expected to be positively correlated for the Adelie but negatively correlated to the chinstrap penguin. Detailed studies of the adult gentoo penguins, which do not disperse widely from the natal colony, will be conducted using satellite tags. The data collected in this study will improve an understanding of the structure and function of the Antarctic through research on the impact of environmental variation on the structure of upper trophic level predators such as the Pygoscelis penguins.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": null, "paleo_time": null, "persons": "Trivelpiece, Wayne", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Foraging Behavior and Demography of Pygoscelis Penguins", "uid": "p0000860", "west": null}, {"awards": "0003956 Burns, Jennifer", "bounds_geometry": "POLYGON((-76.5119 -52.3523,-74.93335 -52.3523,-73.3548 -52.3523,-71.77625 -52.3523,-70.1977 -52.3523,-68.61915 -52.3523,-67.0406 -52.3523,-65.46205 -52.3523,-63.8835 -52.3523,-62.30495 -52.3523,-60.7264 -52.3523,-60.7264 -53.99299,-60.7264 -55.63368,-60.7264 -57.27437,-60.7264 -58.91506,-60.7264 -60.55575,-60.7264 -62.19644,-60.7264 -63.83713,-60.7264 -65.47782,-60.7264 -67.11851,-60.7264 -68.7592,-62.30495 -68.7592,-63.8835 -68.7592,-65.46205 -68.7592,-67.0406 -68.7592,-68.61915 -68.7592,-70.1977 -68.7592,-71.77625 -68.7592,-73.3548 -68.7592,-74.93335 -68.7592,-76.5119 -68.7592,-76.5119 -67.11851,-76.5119 -65.47782,-76.5119 -63.83713,-76.5119 -62.19644,-76.5119 -60.55575,-76.5119 -58.91506,-76.5119 -57.27437,-76.5119 -55.63368,-76.5119 -53.99299,-76.5119 -52.3523))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001757", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0205"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on the distribution and foraging behavior of adult female crabeater seals, using a combination of satellite-linked tracking, specialized diver recorders, and stable isotopic tracers. This research will be coordinated with components focused on prey (krill) distribution and the physical environment. The results will be analyzed using an optimality model. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.", "east": -60.7264, "geometry": "POINT(-68.61915 -60.55575)", "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.3523, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Costa, Daniel", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -68.7592, "title": "Foraging Ecology of Crabeater Seals (Lobodon Carcinophagus)", "uid": "p0000599", "west": -76.5119}, {"awards": "0125985 Trivelpiece, Wayne", "bounds_geometry": "POLYGON((-70.907646 -52.351532,-69.6445116 -52.351532,-68.3813772 -52.351532,-67.1182428 -52.351532,-65.8551084 -52.351532,-64.591974 -52.351532,-63.3288396 -52.351532,-62.0657052 -52.351532,-60.8025708 -52.351532,-59.5394364 -52.351532,-58.276302 -52.351532,-58.276302 -53.6039408,-58.276302 -54.8563496,-58.276302 -56.1087584,-58.276302 -57.3611672,-58.276302 -58.613576,-58.276302 -59.8659848,-58.276302 -61.1183936,-58.276302 -62.3708024,-58.276302 -63.6232112,-58.276302 -64.87562,-59.5394364 -64.87562,-60.8025708 -64.87562,-62.0657052 -64.87562,-63.3288396 -64.87562,-64.591974 -64.87562,-65.8551084 -64.87562,-67.1182428 -64.87562,-68.3813772 -64.87562,-69.6445116 -64.87562,-70.907646 -64.87562,-70.907646 -63.6232112,-70.907646 -62.3708024,-70.907646 -61.1183936,-70.907646 -59.8659848,-70.907646 -58.613576,-70.907646 -57.3611672,-70.907646 -56.1087584,-70.907646 -54.8563496,-70.907646 -53.6039408,-70.907646 -52.351532))", "dataset_titles": "Expedition Data; Expedition data of LMG0208", "datasets": [{"dataset_uid": "001747", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0208"}, {"dataset_uid": "002724", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0208", "url": "https://www.rvdata.us/search/cruise/LMG0208"}, {"dataset_uid": "001752", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0207"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Seabird research conducted at Admiralty Bay, King George Island in the Antarctic Peninsula region has documented annual variability in the life history parameters of the population biology of three related penguin species: the Adelie, the gentoo and the chinstrap (Pygoscelis adeliae, P. papua and P. antarctica, respectively). This long-term study has collected twenty-five years of data on the three related species, including survival and recruitment, population size and breeding success, and diets and foraging ecology. The current project will extend the research linking penguin demography and foraging ecology to variability in the Antarctic marine ecosystem. A major focus of this work will be on the Adelie and gentoo penguin population biology data and the distribution and trophic interactions among the three Pygoscelis species during the breeding season and the non-breeding, winter period. Recent results have provided the first detailed data on the wintering distributions of Adelie and chinstrap penguins in the Antarctic Peninsula region, through the use of satellite tags and time-depth recorders to examine the post-fledging foraging. Specific topics of research include an examination of the size and sex composition of krill captured by penguins feeding chicks and krill collected concurrently by net hauls in the adjacent marine environment and the length-frequency distribution of krill collected from penguin diet samples. The over winter survival of penguin breeding adults and the recruitment of young (two to four year old) pre-breeding penguins to their natal colony will be compared to the extent of sea ice in the winter prior to the breeding season. These variables are expected to be positively correlated for the Adelie but negatively correlated to the chinstrap penguin. Detailed studies of the adult gentoo penguins, which do not disperse widely from the natal colony, will be conducted using satellite tags. The data collected in this study will improve an understanding of the structure and function of the Antarctic through research on the impact of environmental variation on the structure of upper trophic level predators such as the Pygoscelis penguins.", "east": -58.276302, "geometry": "POINT(-64.591974 -58.613576)", "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.351532, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Trivelpiece, Wayne; Stearns, Charles R.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -64.87562, "title": "Foraging Behavior and Demography of Pygoscelis Penguins", "uid": "p0000597", "west": -70.907646}, {"awards": "0440687 Costa, Daniel", "bounds_geometry": "POLYGON((-68.2775 -52.7602,-67.59761 -52.7602,-66.91772 -52.7602,-66.23783 -52.7602,-65.55794 -52.7602,-64.87805 -52.7602,-64.19816 -52.7602,-63.51827 -52.7602,-62.83838 -52.7602,-62.15849 -52.7602,-61.4786 -52.7602,-61.4786 -54.24701,-61.4786 -55.73382,-61.4786 -57.22063,-61.4786 -58.70744,-61.4786 -60.19425,-61.4786 -61.68106,-61.4786 -63.16787,-61.4786 -64.65468,-61.4786 -66.14149,-61.4786 -67.6283,-62.15849 -67.6283,-62.83838 -67.6283,-63.51827 -67.6283,-64.19816 -67.6283,-64.87805 -67.6283,-65.55794 -67.6283,-66.23783 -67.6283,-66.91772 -67.6283,-67.59761 -67.6283,-68.2775 -67.6283,-68.2775 -66.14149,-68.2775 -64.65468,-68.2775 -63.16787,-68.2775 -61.68106,-68.2775 -60.19425,-68.2775 -58.70744,-68.2775 -57.22063,-68.2775 -55.73382,-68.2775 -54.24701,-68.2775 -52.7602))", "dataset_titles": "Expedition Data; Expedition data of LMG0706; Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection", "datasets": [{"dataset_uid": "002713", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0706", "url": "https://www.rvdata.us/search/cruise/LMG0706"}, {"dataset_uid": "001534", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0705"}, {"dataset_uid": "600044", "doi": "10.15784/600044", "keywords": "Bellingshausen Sea; Biota; Oceans; Seals; Southern Ocean", "people": "Costa, Daniel; Crocker, Daniel; Klinck, John M.; Goebel, Michael; Hofmann, Eileen", "repository": "USAP-DC", "science_program": null, "title": "Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection", "url": "https://www.usap-dc.org/view/dataset/600044"}, {"dataset_uid": "002714", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0706", "url": "https://www.rvdata.us/search/cruise/LMG0706"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "As long-lived animals, marine mammals must be capable of accommodating broad variations in food resources over large spatial and temporal scales. While this is true of all marine mammals, variation in the physical and biological environmental is particularly profound in the Southern Ocean. A basic understanding of the foraging behavior and habitat utilization of pelagic predators requires knowledge of this spatial and temporal variation, coupled with information of how they respond to these changes. Current understanding of these associations is primarily limited to population level studies where animal abundance has been correlated with oceanography. Although these studies are informative, they cannot provide insights into the strategies employed by individual animals nor can they provide insights into the spatial or temporal course of these interactions. \u003cbr/\u003e\u003cbr/\u003eRecent technological advances in instrumentation make it possible to extend an understanding beyond the simple linkage of prey and predator distributions with environmental features. The key to understanding the processes that lead to high predator abundance is the identification of the specific foraging behaviors associated with different features of the water column. This study will accomplish these objectives by combining accurate positional data, measures of diving and foraging behavior, animal-derived water-column temperature and salinity data, and available oceanographic data. This project will examine the foraging behavior and habitat utilization of two species of contrasting foraging ecology, the southern elephant seal, Mirounga leonina, and the crabeater seal, Lobodon carcinophagus in the Western Antarctic Peninsula, a region of strong environmental gradients. Although these two species are phylogenetically related, they utilize substantially different but adjacent habitat types. Southern elephant seals are predominantly pelagic, moving throughout the southern ocean, venturing occasionally into the seasonal pack ice whereas crabeater seals range throughout the seasonal pack ice, venturing occasionally into open water. The relationship of specific foraging behaviors and animal movement patterns to oceanographic and bathymetric features develop and test models of the importance of these features in defining habitat use will be determined along with a comparison of how individuals of each species respond to annual variability in the marine environment. The physical oceanography of the Southern Ocean is inherently complex as are the biological processes that are intrinsically linked to oceanographic processes. Significant resources are currently being directed toward developing mathematical models of physical oceanographic processes with the goals of better understanding the role that the Southern Ocean plays in global climate processes, predicting the responses of ocean and global scale processes to climate change, and understanding the linkages between physical and biological oceanographic processes. These efforts have been limited by the scarcity of oceanographic data in the region, especially at high latitudes in the winter months. This study will provide new and significant oceanographic data on temperature and salinity profiles in to further the understanding of the dynamics of the upper water column of west Antarctic Peninsula continental shelf waters. Outreach activities include website development and an association with a marine education program at the Monterrey Bay Aquarium Research Institute.", "east": -61.4786, "geometry": "POINT(-64.87805 -60.19425)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "Not provided; R/V LMG", "locations": null, "north": -52.7602, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Costa, Daniel; Hofmann, Eileen; Goebel, Michael; Crocker, Daniel; Sidell, Bruce; Klinck, John M.", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -67.6283, "title": "Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection", "uid": "p0000082", "west": -68.2775}, {"awards": "0523166 Hofmann, Eileen", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0103", "datasets": [{"dataset_uid": "002601", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0103", "url": "https://www.rvdata.us/search/cruise/NBP0103"}, {"dataset_uid": "002595", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0103", "url": "https://www.rvdata.us/search/cruise/NBP0103"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The objective of the proposed work is to provide for the operation of a Planning Office for the synthesis and modeling phase of the Southern Ocean Global Ocean Ecosystems Dynamics (SO-Globec) program. The office will ensure that synthesis and integration activities that are developed as part of SO-Globec are coordinated with those undertaken by the international and U.S. Globec programs through: 1) organization of special sessions at meetings, 2) preparation of dedicated publications focused on program results, 3) maintenance of a project web site, 4) development of program outreach efforts, and 5) ensuring coordination with International Globec and other national and international programs and organizations. The office will consist of one faculty member and one program specialist.\u003cbr/\u003e\u003cbr/\u003eSO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. Extensive studies describing the ecology and physiology of important species at all trophic levels contributed to the ecosystem approach which is the essence of SO-Globec. The Planning Office will provide a central focal point for ensuring that the results from SO-Globec are made available to the broader scientific community and to the general public, and that the results will be incorporated into the planning of future Southern Ocean programs.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hofmann, Eileen", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "U.S. SO GLOBEC Synthesis and Modeling: Southern Ocean GLOBEC (SO GLOBEC) Planning Office", "uid": "p0000817", "west": null}, {"awards": "9815823 Smith, Craig", "bounds_geometry": "POLYGON((-70.90683 -52.35533,-69.8661302 -52.35533,-68.8254304 -52.35533,-67.7847306 -52.35533,-66.7440308 -52.35533,-65.703331 -52.35533,-64.6626312 -52.35533,-63.6219314 -52.35533,-62.5812316 -52.35533,-61.5405318 -52.35533,-60.499832 -52.35533,-60.499832 -53.818664,-60.499832 -55.281998,-60.499832 -56.745332,-60.499832 -58.208666,-60.499832 -59.672,-60.499832 -61.135334,-60.499832 -62.598668,-60.499832 -64.062002,-60.499832 -65.525336,-60.499832 -66.98867,-61.5405318 -66.98867,-62.5812316 -66.98867,-63.6219314 -66.98867,-64.6626312 -66.98867,-65.703331 -66.98867,-66.7440308 -66.98867,-67.7847306 -66.98867,-68.8254304 -66.98867,-69.8661302 -66.98867,-70.90683 -66.98867,-70.90683 -65.525336,-70.90683 -64.062002,-70.90683 -62.598668,-70.90683 -61.135334,-70.90683 -59.672,-70.90683 -58.208666,-70.90683 -56.745332,-70.90683 -55.281998,-70.90683 -53.818664,-70.90683 -52.35533))", "dataset_titles": "Expedition Data; Expedition data of LMG0009", "datasets": [{"dataset_uid": "001811", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0009"}, {"dataset_uid": "002689", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0009", "url": "https://www.rvdata.us/search/cruise/LMG0009"}, {"dataset_uid": "001983", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0004"}, {"dataset_uid": "001880", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0102"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "OPP98-15823 P.I. Craig Smith OPP98-16049 P.I. David DeMaster Primary production in Antarctic coastal waters is highly seasonal, yielding an intense pulse of biogenic particles to the continental shelf floor. This seasonal pulse may have major ramifications for carbon cycling, benthic ecology and material burial on the west Antarctic Peninsula (WAP) shelf. Thus, we propose a multii-disciplinary program to evaluate the seafloor accumulation, fate and benthic community impacts of bloom material along a transect of three stations crossing the Antarctic shelf in the Palmer LTER study area. Using a seasonal series of five cruises to our transect, we will test the following hypostheses: (1) A substantial proportion of spring/summer export production is deposited ont eh WAP shelf as phytodetritus or fecal pellets. (2) The deposited bloom production is a source of labile particulate organic carbon for benthos for an extended period of time (months). (3) Large amounts of labile bloom POC are rapidly subducted into the sediment column by the deposit-feeding and caching activities of benthos. (4) Macrobenthic detritivores sustain a rapid increase in biomass and abundance following the spring/summer particulate organic carbon pulse. To test these hypotheses, we will evaluate seabed deposition and lability of particulate organic carbon, patterns of particulate organic carbon mixing into sediments, seasonal variations in macrofaunal and megafaunal abundance, biomass and reproductive condition, and rates of particulate organic carbon and silica mineralization and accumulation in the seabed. Fluxes of biogenic materials and radionuclides into midwater particle traps will be contrasted with seabed deposition and burial rates to establish water-column and seabed preservation efficiencies for these materials. The project will substantially improve our understanding of the spring/summer production pulse on the WAP shelf and its impacts on seafloor communities and carbon cycling in Antarctic coastal systems.", "east": -60.499832, "geometry": "POINT(-65.703331 -59.672)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP; R/V LMG", "locations": null, "north": -52.35533, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Craig", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": "LTER", "south": -66.98867, "title": "Bentho-Pelagic Coupling on the West Antarctic Peninsula Shelf: The Impact and Fate of Bloom Material at the Seafloor", "uid": "p0000610", "west": -70.90683}, {"awards": "9908828 Aronson, Richard", "bounds_geometry": "POLYGON((-70.906 -52.350166,-69.4494 -52.350166,-67.9928 -52.350166,-66.5362 -52.350166,-65.0796 -52.350166,-63.623 -52.350166,-62.1664 -52.350166,-60.7098 -52.350166,-59.2532 -52.350166,-57.7966 -52.350166,-56.34 -52.350166,-56.34 -53.6028324,-56.34 -54.8554988,-56.34 -56.1081652,-56.34 -57.3608316,-56.34 -58.613498,-56.34 -59.8661644,-56.34 -61.1188308,-56.34 -62.3714972,-56.34 -63.6241636,-56.34 -64.87683,-57.7966 -64.87683,-59.2532 -64.87683,-60.7098 -64.87683,-62.1664 -64.87683,-63.623 -64.87683,-65.0796 -64.87683,-66.5362 -64.87683,-67.9928 -64.87683,-69.4494 -64.87683,-70.906 -64.87683,-70.906 -63.6241636,-70.906 -62.3714972,-70.906 -61.1188308,-70.906 -59.8661644,-70.906 -58.613498,-70.906 -57.3608316,-70.906 -56.1081652,-70.906 -54.8554988,-70.906 -53.6028324,-70.906 -52.350166))", "dataset_titles": "Expedition Data; Expedition data of NBP0107", "datasets": [{"dataset_uid": "001962", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0011"}, {"dataset_uid": "002656", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0107", "url": "https://www.rvdata.us/search/cruise/NBP0107"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9908828 Aronson This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a paleoecological and paleoenvironmental study of Seymour Island. Global climate change late in the Eocene epoch had an important influence in Antarctica. This was the beginning of the transition from a cool-temperate climate in Antarctica to the polar climate that exists there today. The cooling trend strongly influenced the structure of shallow-water, Antarctic marine communities, and these effects are still evident in the peculiar ecological relationships among species living in modern Antarctic communities. Cooling late in the Eocene reduced the abundance of fish and crabs, which in turn reduced skeleton-crushing predation on invertebrates. Reduced predation allowed dense populations of ophiuroids (brittlestars) and crinoids (sea lilies) to appear in shallow-water settings at the end of the Eocene. These low-predation communities appear as dense fossil echinoderm assemblages in the upper portion of the late Eocene La Meseta Formation on Seymour Island, off the Antarctic Peninsula. Today, dense ophiuroid and crinoid populations are common in shallow-water habitats in Antarctica but generally have been eliminated by predators from similar habitats at temperate and tropical latitudes; their persistence in Antarctica to this day is an important ecological legacy of climatic cooling in the Eocene. Although the influence of declining predation on Antarctic ophiuroids and crinoids is now well documented, the effects of cooling on the more abundant mollusks have not been investigated. This study will examine the evolutionary ecology of gastropods (snails) and bivalves (clams) in the late Eocene. A series of hypotheses will be tested in the La Meseta Formation, based on the predicted responses of mollusks to declining temperature and changing levels of predation. The shapes of gastropod shells, the activities of gastropods that prey on other mollusks by drilling holes in their shells, and the effects of predation on the thickness of mollusk shells should have changed significantly through late Eocene time. First, defensive features of gastropod shells, such as spines and ribbing, should decline as temperature and, therefore, the activity of skeleton-crushing predators declined. Second, drilling of bivalve prey by predatory gastropods should increase with time since the drillers should themselves have been subject to lower predation pressure as temperature declined. Drilled shells, therefore, should become more common through time. Third, patterns in the thickness of shells through time will make it possible to separate the direct, physiological effects of declining temperature (shells are more difficult to produce at cooler temperatures, and so should be thinner) from the indirect effects of temperature on evolving biological interactions (increased drilling predation should result in thicker shells). Seymour Island contains the only fossil outcrops readily accessible in Antarctica from this crucial period in Earth history. The La Meseta Formation on Seymour Island thus provides a unique opportunity to learn how climate change affected Antarctic marine communities. In practical terms, global climate change will probably increase upwelling over the next few decades to centuries in some temperate coastal regions. Recent ecological evidence suggests that the resultant lowering of sea temperatures could lower predation in those areas. Understanding the response of the La Meseta faunas to global cooling in the late Eocene will provide direct insight into the rapidly changing structure of modern benthic communities.", "east": -56.34, "geometry": "POINT(-63.623 -58.613498)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP; Hugo Island; R/V LMG; Palmer Deep", "locations": "Hugo Island", "north": -52.350166, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Aronson, Richard; Domack, Eugene Walter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -64.87683, "title": "Global Climate Change and the Evolutionary Ecology of Antarctic Mollusks in the Late Eocene", "uid": "p0000617", "west": -70.906}, {"awards": "9983751 Veit, Richard", "bounds_geometry": "POLYGON((-70.9063 -52.3528,-67.3465 -52.3528,-63.7867 -52.3528,-60.2269 -52.3528,-56.6671 -52.3528,-53.1073 -52.3528,-49.5475 -52.3528,-45.9877 -52.3528,-42.4279 -52.3528,-38.8681 -52.3528,-35.3083 -52.3528,-35.3083 -52.65918,-35.3083 -52.96556,-35.3083 -53.27194,-35.3083 -53.57832,-35.3083 -53.8847,-35.3083 -54.19108,-35.3083 -54.49746,-35.3083 -54.80384,-35.3083 -55.11022,-35.3083 -55.4166,-38.8681 -55.4166,-42.4279 -55.4166,-45.9877 -55.4166,-49.5475 -55.4166,-53.1073 -55.4166,-56.6671 -55.4166,-60.2269 -55.4166,-63.7867 -55.4166,-67.3465 -55.4166,-70.9063 -55.4166,-70.9063 -55.11022,-70.9063 -54.80384,-70.9063 -54.49746,-70.9063 -54.19108,-70.9063 -53.8847,-70.9063 -53.57832,-70.9063 -53.27194,-70.9063 -52.96556,-70.9063 -52.65918,-70.9063 -52.3528))", "dataset_titles": "Expedition Data; Expedition data of LMG0109", "datasets": [{"dataset_uid": "002699", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0109", "url": "https://www.rvdata.us/search/cruise/LMG0109"}, {"dataset_uid": "001683", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0309"}, {"dataset_uid": "002286", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9303"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The goal of this proposal to bring two groups of undergraduate students to the Antarctic, where they will participate in the collection of data on seabird abundance and behavior. This proposal combines research on the dynamics of seabirds that feed on Antarctic krill, with the teaching of mathematical modeling of foraging behavior and spatial statistics. Students will learn a broad collection of skills through collection of data on physical and biological oceanography as part of the research project that focuses on seabirds. The research goal of this proposal is to learn how foraging seabirds in the Antarctic respond to changes in the abundance and distribution of their prey, primarily Antarctic krill. The approach will be to study bird behavior in the vicinity of krill swarms, and to contrast this behavior to that in areas lacking krill. From these comparisons, foraging models that will make predictions about the dispersion of birds under differing levels of krill abundance will be built. The long-term goal is to be able to make predictions about the impact upon seabirds of future changes in krill stocks. Field work will be conducted in the vicinity of Elephant Island in two field seasons. In each season, the insular shelf north of Elephant Island will be surveyed and the abundance, distribution and behavior of seabirds will be recorded. The primary objective will be to quantify the linkage between prey abundance and bird behavior, with the long-term goal of using information on bird behavior to index long-term changes in the prey base. The teaching goal of this proposal is twofold. First, the project will expose inner city college students to a spectacular and economically important ecosystem. Through their work on an oceanographic research vessel, students will be exposed to a broad diversity of research topics and methods, ranging from behavioral ecology to physical oceanography. Second, back at Staten Island, students will participate in the development of a mathematical biology initiative at the College of Staten Island. Here students will be encouraged to apply basic mathematical reasoning and computer modeling to a real problem - that of determining how foraging choices made by seabirds can ultimately impact their reproductive success.", "east": -35.3083, "geometry": "POINT(-53.1073 -53.8847)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V NBP; R/V LMG", "locations": null, "north": -52.3528, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Veit, Richard; Blake, Daniel", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -55.4166, "title": "CAREER: Dynamics of Predator-Prey Behavior in the Antarctic Ocean", "uid": "p0000589", "west": -70.9063}, {"awards": "0338164 Sedwick, Peter", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0601", "datasets": [{"dataset_uid": "001580", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0601"}, {"dataset_uid": "002619", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0601", "url": "https://www.rvdata.us/search/cruise/NBP0601"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. \u003cbr/\u003eThis project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e WATER BOTTLES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ditullio, Giacomo", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Interactive Effects of Iron, Light and CO2 on Phytoplankton Community Dynamics in the Ross Sea", "uid": "p0000831", "west": null}, {"awards": "9909933 Ross, Robin; 9910175 Vernet, Maria", "bounds_geometry": "POLYGON((-71.077 -57.9543,-70.015 -57.9543,-68.953 -57.9543,-67.891 -57.9543,-66.829 -57.9543,-65.767 -57.9543,-64.705 -57.9543,-63.643 -57.9543,-62.581 -57.9543,-61.519 -57.9543,-60.457 -57.9543,-60.457 -58.98629,-60.457 -60.01828,-60.457 -61.05027,-60.457 -62.08226,-60.457 -63.11425,-60.457 -64.14624,-60.457 -65.17823,-60.457 -66.21022,-60.457 -67.24221,-60.457 -68.2742,-61.519 -68.2742,-62.581 -68.2742,-63.643 -68.2742,-64.705 -68.2742,-65.767 -68.2742,-66.829 -68.2742,-67.891 -68.2742,-68.953 -68.2742,-70.015 -68.2742,-71.077 -68.2742,-71.077 -67.24221,-71.077 -66.21022,-71.077 -65.17823,-71.077 -64.14624,-71.077 -63.11425,-71.077 -62.08226,-71.077 -61.05027,-71.077 -60.01828,-71.077 -58.98629,-71.077 -57.9543))", "dataset_titles": "Expedition Data; Expedition data of LMG0205; Expedition data of NBP0104; Expedition data of NBP0202; Expedition data of NBP0204", "datasets": [{"dataset_uid": "002657", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002586", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0202", "url": "https://www.rvdata.us/search/cruise/NBP0202"}, {"dataset_uid": "002704", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0205", "url": "https://www.rvdata.us/search/cruise/LMG0205"}, {"dataset_uid": "001861", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0106"}, {"dataset_uid": "001856", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0105"}, {"dataset_uid": "001757", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0205"}, {"dataset_uid": "002643", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0204", "url": "https://www.rvdata.us/search/cruise/NBP0204"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on water-column primary production using direct experimental estimates, modeling restuls from a fast repetition rate fluorometer and modeling of primary production from both optical as well as biophysical models. This research will be coordinated with components focused on sea ice production and sea ice habitat. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.", "east": -60.457, "geometry": "POINT(-65.767 -63.11425)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V LMG; R/V NBP", "locations": null, "north": -57.9543, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Vernet, Maria; Costa, Daniel; Ross, Robin Macurda; Smith, Raymond", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -68.2742, "title": "GLOBEC: Winter Ecology of Larval Krill: Quantifying their Interaction with the Pack Ice Habitat", "uid": "p0000605", "west": -71.077}, {"awards": "9614028 Dymond, Jack", "bounds_geometry": "POLYGON((-179.9993 -63.09006,-143.99946 -63.09006,-107.99962 -63.09006,-71.99978 -63.09006,-35.99994 -63.09006,-0.000100000000003 -63.09006,35.99974 -63.09006,71.99958 -63.09006,107.99942 -63.09006,143.99926 -63.09006,179.9991 -63.09006,179.9991 -64.490422,179.9991 -65.890784,179.9991 -67.291146,179.9991 -68.691508,179.9991 -70.09187,179.9991 -71.492232,179.9991 -72.892594,179.9991 -74.292956,179.9991 -75.693318,179.9991 -77.09368,143.99926 -77.09368,107.99942 -77.09368,71.99958 -77.09368,35.99974 -77.09368,-0.000100000000003 -77.09368,-35.99994 -77.09368,-71.99978 -77.09368,-107.99962 -77.09368,-143.99946 -77.09368,-179.9993 -77.09368,-179.9993 -75.693318,-179.9993 -74.292956,-179.9993 -72.892594,-179.9993 -71.492232,-179.9993 -70.09187,-179.9993 -68.691508,-179.9993 -67.291146,-179.9993 -65.890784,-179.9993 -64.490422,-179.9993 -63.09006))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002161", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9605"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "96-14028 Dymond This research project is part of the US Joint Global Ocean Flux Study (JGOFS) Southern Ocean Program aimed at (1) a better understanding of the fluxes of carbon, both organic and inorganic, in the Southern Ocean, (2) identifying the physical, ecological and biogeochemical factors and processes which regulate the magnitude and variability of these fluxes, and (3) placing these fluxes into the context of the contemporary global carbon cycle. This work is one of forty-four projects that are collaborating in the Southern Ocean Experiment, a three-year effort south of the Antarctic Polar Frontal Zone to track the flow of carbon through its organic and inorganic pathways from the air-ocean interface through the entire water column into the bottom sediment. The experiment will make use of the RVIB Nathaniel B. Palmer and the R/V Thompson. This component, a collaborative study by scientists from the Woods Hole Oceanographic Institution, Oregon State University, and the New Zealand Oceanographic Institution, concerns the export of particulate forms of carbon downward from the upper ocean. The observations will be obtained from an array of time- series sediment traps, and will be analyzed to quantify export fluxes from the Subtropical Front to the Ross Sea, over an 18- months period beginning the early austral summer of 1996. The measurement program will two annual phytoplankton blooms. The southern ocean provides a unique opportunity to investigate the processes controlling export flux in contrasting biogeochemical ocean zones demarcated by oceanic fronts. The temperature changes at the fronts coincide with gradients in nutrient concentrations and plankton ecology, resulting in a large latitudinal change in the ratio of calcium to silica taken up by the phytoplankton communities. This experiment will provide data on how the biological pump operates in the Southern Ocean and how it could potentially impact the level of atmospheric c arbon dioxide. The observed export fluxes of organic carbon, nitrogen, inorganic carbon, biogenic silica and alumina are central to the goals of the JGOFS program.", "east": 179.9991, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -63.09006, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Dymond, Jack", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.09368, "title": "Latitudinal Variations of Particle Fluxes in the Southern Ocean: A Bottom Tethered Sediment Trap Array Experiment", "uid": "p0000636", "west": -179.9993}, {"awards": "0739483 Nowacek, Douglas", "bounds_geometry": "POLYGON((-68.0013 -52.7592,-67.34925 -52.7592,-66.6972 -52.7592,-66.04515 -52.7592,-65.3931 -52.7592,-64.74105 -52.7592,-64.089 -52.7592,-63.43695 -52.7592,-62.7849 -52.7592,-62.13285 -52.7592,-61.4808 -52.7592,-61.4808 -53.99669,-61.4808 -55.23418,-61.4808 -56.47167,-61.4808 -57.70916,-61.4808 -58.94665,-61.4808 -60.18414,-61.4808 -61.42163,-61.4808 -62.65912,-61.4808 -63.89661,-61.4808 -65.1341,-62.13285 -65.1341,-62.7849 -65.1341,-63.43695 -65.1341,-64.089 -65.1341,-64.74105 -65.1341,-65.3931 -65.1341,-66.04515 -65.1341,-66.6972 -65.1341,-67.34925 -65.1341,-68.0013 -65.1341,-68.0013 -63.89661,-68.0013 -62.65912,-68.0013 -61.42163,-68.0013 -60.18414,-68.0013 -58.94665,-68.0013 -57.70916,-68.0013 -56.47167,-68.0013 -55.23418,-68.0013 -53.99669,-68.0013 -52.7592))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001467", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1003"}, {"dataset_uid": "001483", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0905"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The krill surplus hypothesis argues that the near-extirpation of baleen whales from Antarctic waters during much the twentieth century led to significant changes in the availability of krill for other predators. Over the past decade, however, overall krill abundance has decreased by over an order of magnitude around the Antarctic Peninsula, in part due to physical forces, including the duration and extent of winter sea ice cover. Krill predators are vulnerable to variability in prey and have been shown to alter their demography in response to changes in prey availability This research will use novel tagging technology combined with traditional fisheries acoustics methods to quantify the prey consumed by a poorly understood yet ecologically integral and recovering krill predator in the Antarctic, the humpback whale (Megaptera novaeangliae). It also will use a combination of advanced non-invasive tag technology to study whale behavior concurrent with hydro-acoustic techniques to map krill aggregations. The project will (1) provide direct and quantitative estimates of krill consumption rates by humpback whales and incorporate these into models for the management of krill stocks and the conservation of the Antarctic marine ecosystem; (2) provide information integral to understanding predator-prey ecology and trophic dynamics, i.e., if/how baleen whales affect the distribution and behavior of krill and/or other krill predators; (3) add significantly to the knowledge of the diving behavior and foraging ecology of baleen whales in the Antarctic; and (4) develop new geospatial tools for the construction of multi-trophic level models that account for physical as well as biological data. \u003cbr/\u003e\u003cbr/\u003eBroader Impacts: Whales are assumed to be a major predator on Antarctic krill, yet there is little understanding of how whales utilize this resource. This knowledge is critical to addressing both bottom-up and top-down questions, e.g., how climate change may affect whales or how whales may affect falling krill abundances. This program will integrate research and education by providing opportunities for undergraduate and graduate students as well as postdoctoral researchers at Duke University, the Florida State University and the University of Massachusetts at Boston. This project will also seek to integrate interactive learning through real time, seasonal and curriculum development in collaboration with the National Geographic Society as well as at the participating universities and local schools in those communities.", "east": -61.4808, "geometry": "POINT(-64.74105 -58.94665)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP; R/V LMG", "locations": null, "north": -52.7592, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Nowacek, Douglas", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.1341, "title": "Collaborative Research: The Ecological Role of a Poorly Studied Antarctic Krill Predator: The Humpback Whale, Megaptera Novaeangliae", "uid": "p0000529", "west": -68.0013}, {"awards": "9614201 Gowing, Marcia", "bounds_geometry": "POLYGON((-180 -43.56536,-144 -43.56536,-108 -43.56536,-72 -43.56536,-36 -43.56536,0 -43.56536,36 -43.56536,72 -43.56536,108 -43.56536,144 -43.56536,180 -43.56536,180 -46.976149,180 -50.386938,180 -53.797727,180 -57.208516,180 -60.619305,180 -64.030094,180 -67.440883,180 -70.851672,180 -74.262461,180 -77.67325,144 -77.67325,108 -77.67325,72 -77.67325,36 -77.67325,0 -77.67325,-36 -77.67325,-72 -77.67325,-108 -77.67325,-144 -77.67325,-180 -77.67325,-180 -74.262461,-180 -70.851672,-180 -67.440883,-180 -64.030094,-180 -60.619305,-180 -57.208516,-180 -53.797727,-180 -50.386938,-180 -46.976149,-180 -43.56536))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002003", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9901"}, {"dataset_uid": "002110", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9803"}, {"dataset_uid": "002193", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9508"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9614201 Costa Sea ice forms an extensive habitat in the Southern Ocean. Reports dating from the earliest explorations of Antarctica have described high concentrations of algae associated with sea-ice, suggesting that the ice must be an important site of production and biological activity. The magnitude and importance of ice-based production is difficult to estimate largely because the spatial and temporal distributions of ice communities have been examined in only a few regions, and the processes controlling production and community development in ice are still superficially understood. This study will examine sea ice communities in the Ross Sea region of Antarctica in conjunction with a studies of ice physics and remote sensing. The specific objectives of the study are: 1) to relate the overall distribution of ice communities in the Ross Sea to specific habitats that are formed as the result of ice formation and growth processes; 2) to study the initial formation of sea ice to document the incorporation and survival of organisms, in particular to examine winter populations within \"snow-ice\" layers to determine if there is a seed population established at the time of surface flooding; 3) to sample summer communities to determine the extent that highly productive \"snow-ice\" and \"freeboard\" communities develop in the deep water regions of the Ross Sea; 4) and to collect basic data on the biota, activity, and general physical and chemical characteristics of the ice assemblages, so that this study contributes to the general understanding of the ecology of the ice biota in pack ice regions.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -43.56536, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Gowing, Marcia; Garrison, David; Jeffries, Martin", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.67325, "title": "Ecological Studies of Sea Ice Communities in the Ross Sea, Antarctica", "uid": "p0000633", "west": -180.0}, {"awards": "0338350 Dunbar, Robert; 0741411 Hutchins, David; 0338097 DiTullio, Giacomo; 0338157 Smith, Walker; 0127037 Neale, Patrick", "bounds_geometry": "POLYGON((173.31833 -46.5719,173.757539 -46.5719,174.196748 -46.5719,174.635957 -46.5719,175.075166 -46.5719,175.514375 -46.5719,175.953584 -46.5719,176.392793 -46.5719,176.832002 -46.5719,177.271211 -46.5719,177.71042 -46.5719,177.71042 -48.759516,177.71042 -50.947132,177.71042 -53.134748,177.71042 -55.322364,177.71042 -57.50998,177.71042 -59.697596,177.71042 -61.885212,177.71042 -64.072828,177.71042 -66.260444,177.71042 -68.44806,177.271211 -68.44806,176.832002 -68.44806,176.392793 -68.44806,175.953584 -68.44806,175.514375 -68.44806,175.075166 -68.44806,174.635957 -68.44806,174.196748 -68.44806,173.757539 -68.44806,173.31833 -68.44806,173.31833 -66.260444,173.31833 -64.072828,173.31833 -61.885212,173.31833 -59.697596,173.31833 -57.50998,173.31833 -55.322364,173.31833 -53.134748,173.31833 -50.947132,173.31833 -48.759516,173.31833 -46.5719))", "dataset_titles": "Expedition Data; Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea; Processed Fluid Chemistry Data from the Ross Sea acquired during the Nathaniel B. Palmer expedition NBP0601", "datasets": [{"dataset_uid": "001687", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0305"}, {"dataset_uid": "001545", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0608"}, {"dataset_uid": "001584", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0508"}, {"dataset_uid": "601340", "doi": null, "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Fluid Chemistry Data; Geochemistry; NBP0601; Niskin Bottle; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Southern Ocean; Water Measurements", "people": "Smith, Walker; DiTullio, Giacomo", "repository": "USAP-DC", "science_program": null, "title": "Processed Fluid Chemistry Data from the Ross Sea acquired during the Nathaniel B. Palmer expedition NBP0601", "url": "https://www.usap-dc.org/view/dataset/601340"}, {"dataset_uid": "001580", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0601"}, {"dataset_uid": "600036", "doi": "10.15784/600036", "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; Diatom; Oceans; Phytoplankton; Ross Sea; Southern Ocean", "people": "DiTullio, Giacomo", "repository": "USAP-DC", "science_program": null, "title": "Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/600036"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. \u003cbr/\u003eThis project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images.", "east": 177.71042, "geometry": "POINT(175.514375 -57.50998)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FRRF; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FRRF", "is_usap_dc": true, "keywords": "B-15J; OCEAN PLATFORMS; FIELD SURVEYS; R/V NBP", "locations": "B-15J", "north": -46.5719, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ditullio, Giacomo; Smith, Walker; Dryer, Jennifer; Neale, Patrick", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; WATER-BASED PLATFORMS \u003e FIXED PLATFORMS \u003e SURFACE \u003e OCEAN PLATFORMS; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -68.44806, "title": "Collaborative Research: Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea", "uid": "p0000540", "west": 173.31833}, {"awards": "9615342 Neale, Patrick", "bounds_geometry": null, "dataset_titles": "Expedition data of LMG9809", "datasets": [{"dataset_uid": "002719", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG9809", "url": "https://www.rvdata.us/search/cruise/LMG9809"}, {"dataset_uid": "002720", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG9809", "url": "https://www.rvdata.us/search/cruise/LMG9809"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Neale 9615342 Increases in ultraviolet-B radiation (UV-B, 280-320) associated with the Antarctic ozone hole have been shown to inhibit the photosynthesis of phytoplankton, but the overall effect on water column production is still a matter of debate and continued investigation. Investigations have also revealed that even at \"normal\" levels of Antarctic stratospheric ozone, UV-B and UV-A (320-400 nm) appear to have strong effects on water column production. The role of UV in the ecology of phytoplankton primary production has probably been underappreciated in the past and could be particularly important to the estimation of primary production in the presence of vertical mixing. This research focuses on quantifying UV effects on photosynthesis of Antarctic phytoplankton by defining biological weighting functions for UV-inhibition. In the past, techniques were developed to describe photosynthesis as a function of UV and visible irradiance using laboratory cultures. Further experimentation with natural assemblages from McMurdo Station in Antarctica showed that biological weighting functions are strongly related to light history. Most recently, measurements in the open waters of the Southern Ocean confirmed that there is substantial variability in the susceptibility of phytoplankton assemblages to UV. It was also discovered that inhibition of photosynthesis in Antarctic phytoplankton got progressively worse on the time scale of hours, with no evidence of recovery. Even under benign conditions, losses of photosynthetic capability persisted unchanged for several hours. This was in contrast with laboratory cultures and some natural assemblages which quickly attained a steady- state rate of photosynthesis during exposure to UV, reflecting a balance between damage and recovery processes. Slow reversal of UV-induced damage has profound consequences for water-column photosynthesis, especially during vertical mixing. Results to date have been used to model th e influence of UV, ozone depletion and vertical mixing on photosynthesis in Antarctic waters. Data indicate that normal levels of UV can have a significant impact on natural phytoplankton and that the effects can be exacerbated by ozone depletion as well as vertical mixing. Critical questions remain poorly resolved, however, and these are the focus of the present proposal. New theoretical and experimental approaches will be used to investigate UV responses in both the open waters of the Weddell-Scotia confluence and coastal waters near Palmer Station. In particular, measurements will be made of the kinetics of UV inhibition and recovery on time scales ranging from minutes to days. Variability in biological weighting functions between will be calculated for pelagic and coastal phytoplankton in the Southern Ocean. The results will provide absolute estimates of photosynthesis under in situ, as well as under altered, UV irradiance; broaden the range of assemblages for which biological weighting functions have been determined; and clarify how kinetics of inhibition and recovery should be represented in mixed layer models.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Mopper, Kenneth; Neale, Patrick", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "New Approaches to Measuring and Understanding the Effects of Ultraviolet Radiation on Photosynthesis by Antarctic Phytoplankton", "uid": "p0000871", "west": null}, {"awards": "9908856 Blake, Daniel", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG0309", "datasets": [{"dataset_uid": "002675", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0309", "url": "https://www.rvdata.us/search/cruise/LMG0309"}, {"dataset_uid": "001683", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0309"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9908856 Blake This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a paleoecological and paleoenvironmental study of Seymour Island. Global climate change late in the Eocene epoch had an important influence in Antarctica. This was the beginning of the transition from a cool-temperate climate in Antarctica to the polar climate that exists there today. The cooling trend strongly influenced the structure of shallow-water, Antarctic marine communities, and these effects are still evident in the peculiar ecological relationships among species living in modern Antarctic communities. Cooling late in the Eocene reduced the abundance of fish and crabs, which in turn reduced skeleton-crushing predation on invertebrates. Reduced predation allowed dense populations of ophiuroids (brittlestars) and crinoids (sea lilies) to appear in shallow-water settings at the end of the Eocene. These low-predation communities appear as dense fossil echinoderm assemblages in the upper portion of the late Eocene La Meseta Formation on Seymour Island, off the Antarctic Peninsula. Today, dense ophiuroid and crinoid populations are common in shallow-water habitats in Antarctica but generally have been eliminated by predators from similar habitats at temperate and tropical latitudes; their persistence in Antarctica to this day is an important ecological legacy of climatic cooling in the Eocene. Although the influence of declining predation on Antarctic ophiuroids and crinoids is now well documented, the effects of cooling on the more abundant mollusks have not been investigated. This study will examine the evolutionary ecology of gastropods (snails) and bivalves (clams) in the late Eocene. A series of hypotheses will be tested in the La Meseta Formation, based on the predicted responses of mollusks to declining temperature and changing levels of predation. The shapes of gastropod shells, the activities of gastropods that prey on other mollusks by drilling holes in their shells, and the effects of predation on the thickness of mollusk shells should have changed significantly through late Eocene time. First, defensive features of gastropod shells, such as spines and ribbing, should decline as temperature and, therefore, the activity of skeleton-crushing predators declined. Second, drilling of bivalve prey by predatory gastropods should increase with time since the drillers should themselves have been subject to lower predation pressure as temperature declined. Drilled shells, therefore, should become more common through time. Third, patterns in the thickness of shells through time will make it possible to separate the direct, physiological effects of declining temperature (shells are more difficult to produce at cooler temperatures, and so should be thinner) from the indirect effects of temperature on evolving biological interactions (increased drilling predation should result in thicker shells). Seymour Island contains the only fossil outcrops readily accessible in Antarctica from this crucial period in Earth history. The La Meseta Formation on Seymour Island thus provides a unique opportunity to learn how climate change affected Antarctic marine communities. In practical terms, global climate change will probably increase upwelling over the next few decades to centuries in some temperate coastal regions. Recent ecological evidence suggests that the resultant lowering of sea temperatures could lower predation in those areas. Understanding the response of the La Meseta faunas to global cooling in the late Eocene will provide direct insight into the rapidly changing structure of modern benthic communities.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Blake, Daniel", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Global Climate Change and the Evolutionary Ecology of Antarctic Mollusks in the Late Eocene.", "uid": "p0000857", "west": null}, {"awards": "0632250 Cary, Stephen", "bounds_geometry": "POLYGON((-38.5 -72.6,-23.963 -72.6,-9.426 -72.6,5.111 -72.6,19.648 -72.6,34.185 -72.6,48.722 -72.6,63.259 -72.6,77.796 -72.6,92.333 -72.6,106.87 -72.6,106.87 -73.185,106.87 -73.77,106.87 -74.355,106.87 -74.94,106.87 -75.525,106.87 -76.11,106.87 -76.695,106.87 -77.28,106.87 -77.865,106.87 -78.45,92.333 -78.45,77.796 -78.45,63.259 -78.45,48.722 -78.45,34.185 -78.45,19.648 -78.45,5.111 -78.45,-9.426 -78.45,-23.963 -78.45,-38.5 -78.45,-38.5 -77.865,-38.5 -77.28,-38.5 -76.695,-38.5 -76.11,-38.5 -75.525,-38.5 -74.94,-38.5 -74.355,-38.5 -73.77,-38.5 -73.185,-38.5 -72.6))", "dataset_titles": "Metagenomic Data Lake Vostok Microbial Community", "datasets": [{"dataset_uid": "000136", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Metagenomic Data Lake Vostok Microbial Community", "url": "http://www.ncbi.nlm.nih.gov/genbank/"}], "date_created": "Fri, 30 Apr 2010 00:00:00 GMT", "description": "This project brings together researchers with expertise in molecular microbial ecology, Antarctic and deep sea environments, and metagenomics to address the overarching question: how do ecosystems dominated by microorganisms adapt to conditions of continuous cold and dark over evolutionarily and geologically relevant time scales? Lake Vostok, buried for at least 15 million years beneath approximately 4 km of ice that has prevented any communication with the external environment for as much as 1.5 million years, is an ideal system to study this question. Water from the lake that has frozen on to the bottom of the ice sheet (accretion ice) is available for study. Several studies have indicated the presence of low abundance, but detectable microbial communities in the accretion ice. Our central hypothesis maintains that Lake Vostok microbes are specifically adapted to life in conditions of extreme cold, dark, and oligotrophy and that signatures of those adaptations can be observed in their genome sequences at the gene, organism, and community levels. To address this hypothesis, we propose to characterize the metagenome (i.e. the genomes of all members of the community) of the accretion ice. using whole genome amplification (WGA), which can provide micrograms of unbiased metagenomic DNA from only a few cells. The results of this project have relevance to evolutionary biology and ecology, subglacial Antarctic lake exploration, biotechnology, and astrobiology. The project directly addresses priorities and themes in the International Polar Year at the national and international levels. A legacy of DNA sequence data and the metagenomic library will be created and maintained. Press releases and a publicly available web page will facilitate communication with the public. K-12 outreach will be the focus of a new, two-tiered program targeting the 7th grade classroom and on site visits to the Joint Genome Institute Production Sequencing Facility by high school juniors and seniors and community college level students. Minority undergraduate researchers will be recruited for research on this project, and support and training are provided to two graduate students, a postdoctoral scholar, and a technician.", "east": 106.87, "geometry": "POINT(34.185 -75.525)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -72.6, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Cary, Stephen", "platforms": "Not provided", "repo": "NCBI GenBank", "repositories": "NCBI GenBank", "science_programs": null, "south": -78.45, "title": "IPY: Collaborative Research: A Metagenomic Investigation of Adaptation to Prolonged Cold and Dark Conditions of the Lake Vostok Microbial Community", "uid": "p0000201", "west": -38.5}, {"awards": "0538594 Ponganis, Paul", "bounds_geometry": "POLYGON((165.983 -77.683,166.0164 -77.683,166.0498 -77.683,166.0832 -77.683,166.1166 -77.683,166.15 -77.683,166.1834 -77.683,166.2168 -77.683,166.2502 -77.683,166.2836 -77.683,166.317 -77.683,166.317 -77.6897,166.317 -77.6964,166.317 -77.7031,166.317 -77.7098,166.317 -77.7165,166.317 -77.7232,166.317 -77.7299,166.317 -77.7366,166.317 -77.7433,166.317 -77.75,166.2836 -77.75,166.2502 -77.75,166.2168 -77.75,166.1834 -77.75,166.15 -77.75,166.1166 -77.75,166.0832 -77.75,166.0498 -77.75,166.0164 -77.75,165.983 -77.75,165.983 -77.7433,165.983 -77.7366,165.983 -77.7299,165.983 -77.7232,165.983 -77.7165,165.983 -77.7098,165.983 -77.7031,165.983 -77.6964,165.983 -77.6897,165.983 -77.683))", "dataset_titles": "The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins", "datasets": [{"dataset_uid": "600057", "doi": "10.15784/600057", "keywords": "Antarctica; Biota; Oceans; Penguin; Southern Ocean", "people": "Ponganis, Paul", "repository": "USAP-DC", "science_program": null, "title": "The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins", "url": "https://www.usap-dc.org/view/dataset/600057"}], "date_created": "Sun, 20 Dec 2009 00:00:00 GMT", "description": "The research will examine blood and muscle oxygen store depletion in relation to the documented aerobic dive limit (ADL, onset of post-dive blood lactate accumulation) in diving of emperor penguins. The intellectual merits of this proposal involve its evaluation of the physiological basis of the ADL concept. The ADL is probably the most commonly-used, but rarely measured, factor to interpret and model the behavior and foraging ecology of diving animals. Based on prior studies, and on recent investigations of respiratory and blood oxygen depletion during dives of emperor penguins, it is hypothesized that the ADL is a result of the depletion of myoglobin (Mb)-bound oxygen and increased glycolysis in the primary locomotory muscles. This project will accurately define the physiological mechanisms underlying the ADL through 1) evaluation of the rate and magnitude of muscle oxygen depletion during dives in relation to the previously measured ADL, 2) characterization of the hemoglobin-oxygen dissociation curve in blood of emperor penguins and comparison of that curve to those of other diving and non-diving species, 3) application of the emperor hemoglogin-oxygen dissociation curve to previously collected oxygen and hemoglobin data in order to estimate the rate and magnitude of blood oxygen depletion during dives, and 4) measurement of muscle phosphoocreatine and glycogen concentrations in order to estimate their potential contributions to muscle energy metabolism during diving. The project also continues the census and monitoring of the emperor colonies in the Ross Sea, which is especially important in light of both fisheries activity and the movement of iceberg B15-A. Broader impacts of the project include: 1) technological development of microprocessor-based, \"backpack\" near-infrared spectrophotometer, which will be applicable not only to other species, but also to other fields (i.e., exercise physiology), 2) collaboration with the Department of Anesthesia at the U.S. Naval Hospital in San Diego in the training of anesthesia residents in research techniques, 3) the training and thesis research of two graduate students in these techniques and in Antarctic field research, and 4) a better understanding of the ADL concept and its use in the fields of diving behavior and physiology. In addition the annual census of emperor penguin colonies in the Ross Sea, in conjunction with the continued evaluation of previously developed remote cameras to monitor colony status, will form the basis of a new educational web site, and allow development of an educational outreach program to school children through SeaWorld of San Diego.", "east": 166.317, "geometry": "POINT(166.15 -77.7165)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.683, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ponganis, Paul", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.75, "title": "The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins", "uid": "p0000535", "west": 165.983}, {"awards": "0631328 Zamzow, Jill", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 10 Nov 2009 00:00:00 GMT", "description": "The applicant will use this Polar Postdoctoral Fellowship to study top-down effects on community structure (habitat choice and behavior of amphipods, the dominant mesograzers) in macroalgal communities in the vicinity of Palmer Station, Antarctica, where amphipods are not only extremely abundant, but their distributions are very different on palatable vs. unpalatable macroalgae. Pilot studies have suggested that these differences in community structure may be driven by algal chemistry and predation. The effects of algal chemistry on amphipod habitat choice, both in the presence and absence of predators will be tested experimentally, as will the question of whether amphipod host-alga choice results in any reduction of predation risk. Mesograzers in general, and amphipods in particular, are an essential trophic link in marine systems worldwide, and in particular, are a critical component of antarctic near-shore ecosystems. However despite their high abundance and species richness, little is known of their functional ecology or trophodynamics, and little research has investigated the trophic dynamics, behavior, or ecology of these organisms. This project will work out the basic biology of the system, by examining amphipod distributions on Himantothallus (a brown macroalga) and in the stomach contents of Notothenia coriiceps (a small cod-like antarctic fish) and determining whether prey selectivity of amphipod species is occurring. A series of laboratory experiments will investigate the influence(s) of predators, algal chemistry, and thallus structure on amphipod behavior and habitat choice, and test the predation risk associated with amphipod host-alga choice.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": null, "paleo_time": null, "persons": "Zamzow, Jill", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -90.0, "title": "PostDoctoral Research Fellowship", "uid": "p0000206", "west": -180.0}, {"awards": "0440711 Marchant, David", "bounds_geometry": "POLYGON((160 -76.5,160.45 -76.5,160.9 -76.5,161.35 -76.5,161.8 -76.5,162.25 -76.5,162.7 -76.5,163.15 -76.5,163.6 -76.5,164.05 -76.5,164.5 -76.5,164.5 -76.7,164.5 -76.9,164.5 -77.1,164.5 -77.3,164.5 -77.5,164.5 -77.7,164.5 -77.9,164.5 -78.1,164.5 -78.3,164.5 -78.5,164.05 -78.5,163.6 -78.5,163.15 -78.5,162.7 -78.5,162.25 -78.5,161.8 -78.5,161.35 -78.5,160.9 -78.5,160.45 -78.5,160 -78.5,160 -78.3,160 -78.1,160 -77.9,160 -77.7,160 -77.5,160 -77.3,160 -77.1,160 -76.9,160 -76.7,160 -76.5))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 01 Jul 2009 00:00:00 GMT", "description": "This project studies ancient lake deposits from the western Dry Valleys of Antarctica. These deposits are particularly exciting because they preserve flora and fauna over seven million years in age that represent the last vestiges of ecosystems that dominated this area before formation of the modern East Antarctic ice sheet. Their unique nature offers a chance to bridge modern and ancient ecology. Formed along the margin of ancient alpine glaciers, these deposits contain layers of silt, clay, and volcanic ash; as well as freeze-dried remnants of mosses, insects, and diatoms. Geological and biological analyses provide a view of the ecological and environmental conditions during mid-to-late Miocene--seven to seventeen million years ago--which spans the critical period when the East Antarctic ice sheet transitioned to its present stable form. The results place the modern lakes of the Dry Valleys into a long-term evolutionary framework, and allow for correlation and dating comparisons with other fossil-rich deposits from the Transantarctic Mountains. Chemical fingerprinting and dating of volcanic glass shards will also help date fossil- and ash-bearing horizons in nearby marine cores, such as those to be collected under the ANDRILL program. \u003cbr/\u003e\u003cbr/\u003eThe broader impacts are education at the postdoctoral, graduate, and undergraduate levels; and collaboration between a research institution and primarily undergraduate institution. The work also improves our understanding of global climate change during a critical period in the Earth\u0027s history.", "east": 164.5, "geometry": "POINT(162.25 -77.5)", "instruments": null, "is_usap_dc": false, "keywords": "Paleoclimate; Not provided; Lacustrine; Tundra; Middle Miocene; McMurdo Dry Valleys; Vegetation; Fossil; Antarctica", "locations": "Antarctica; McMurdo Dry Valleys", "north": -76.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Marchant, David", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -78.5, "title": "Collaborative Research: Deducing Late Neogene Antarctic Climate from Fossil-Rich Lacustrine Sediments in the Dry Valleys", "uid": "p0000186", "west": 160.0}, {"awards": "9221598 Mopper, Kenneth", "bounds_geometry": null, "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002282", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9306"}], "date_created": "Fri, 19 Jun 2009 00:00:00 GMT", "description": "Decreases in stratospheric ozone over the Antarctic result in an increase in the ultraviolet radiation flux in the euphotic zone of the ocean. This increase may lead to cellular damage in aquatic organisms resulting in photo-inhibition and decreased productivity. Cellular damage can occur either intracellularly, or externally at the cell surface from biomolecular reactions with externally-generated reactive transient species. Extracellular damage will depend to a large degree on the photochemistry of the seawater surrounding the cell. To date, little is known about the photochemistry of the unique Antarctic waters. This project integrates a field and laboratory approach to obtain baseline information regarding the marine photochemistry of the euphotic zone in Antarctica waters as related to changes in ultraviolet radiation levels. In situ photochemical production rates and steady state concentrations of a suite of reactive species and dissolved organic matter degradation products as well as downwelling ultraviolet radiation will be measured. Additionally, flux by in situ chemical actinometry, action spectra for photochemical production of various reactive species and dissolved organic matter degradation products, and fluorescence and absorbance properties of dissolved organic matter will be determined. This information will serve as a basis for understanding and predicting the effects of ultraviolet radiation-induced marine photochemical processes on the productivity and ecology in the euphotic zone of the Antarctic Ocean.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Mopper, Kenneth; Neale, Patrick", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Photochemistry of Antarctic Waters in Repsonse to Changing Ultraviolet Radiation Fluxes", "uid": "p0000649", "west": null}, {"awards": "0440478 Tang, Kam", "bounds_geometry": "POINT(166.66267 -77.85067)", "dataset_titles": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial Forms of Phaeocystis Antarctica", "datasets": [{"dataset_uid": "600043", "doi": "10.15784/600043", "keywords": "Biota; McMurdo Sound; Oceans; Phytoplankton; Ross Sea; Southern Ocean; Zooplankton", "people": "Smith, Walker; Tang, Kam", "repository": "USAP-DC", "science_program": null, "title": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial Forms of Phaeocystis Antarctica", "url": "https://www.usap-dc.org/view/dataset/600043"}], "date_created": "Mon, 04 May 2009 00:00:00 GMT", "description": "Phaeocystis Antarctica is a widely distributed phytoplankton that forms dense blooms and aggregates in the Southern Ocean. This phytoplankton and plays important roles in polar ecology and biogeochemistry, in part because it is a dominant primary producer, a main component of organic matter vertical fluxes, and the principal producer of volatile organic sulfur in the region. Yet P. Antarctica is also one of the lesser known species in terms of its physiology, life history and trophic relationships with other organisms; furthermore, information collected on other Phaeocystis species and from different locations may not be applicable to P. Antarctica in the Ross Sea. P. Antarctica occurs mainly as two morphotypes: solitary cells and mucilaginous colonies, which differ significantly in size, architecture and chemical composition. Relative dominance between solitary cells and colonies determines not only the size spectrum of the population, but also its carbon dynamics, nutrient uptake and utilization. Conventional thinking of the planktonic trophic processes is also challenged by the fact that colony formation could effectively alter the predator-prey interactions and interspecific competition. However, the factors that regulate the differences between solitary and colonial forms of P. Antarctica are not well-understood. The research objective of this proposal is therefore to address these over-arching questions:\u003cbr/\u003eo Do P. Antarctica solitary cells and colonies differ in growth, composition and\u003cbr/\u003ephotosynthetic rates?\u003cbr/\u003eo How do nutrients and grazers affect colony development and size distribution of P. \u003cbr/\u003eAntarctica?\u003cbr/\u003eo How do nutrients and grazers act synergistically to affect the long-term population\u003cbr/\u003edynamics of P. Antarctica? Experiments will be conducted in the McMurdo station with natural P. Antarctica assemblages and co-occurring grazers. Laboratory experiments will be conducted to study size-specific growth and photosynthetic rates of P. Antarctica, size-specific grazing mortality due to microzooplankton and mesozooplankton, the effects of macronutrients on the (nitrogen compounds) relative dominance of solitary cells and colonies, and the effects of micronutrient (Fe) and grazing related chemical signals on P. Antarctica colony development. Because this species is of critical importance in the Southern Ocean, and because this research will provide critical information on factors that regulate the role of P.Antarctica in food webs and biogeochemical cycles, a major gap in knowledge will be addressed. This project will train two marine science PhD students. The investigators will also collaborate with the School of Education and a marine science museum to communicate polar science to a broader audience.", "east": 166.66267, "geometry": "POINT(166.66267 -77.85067)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.85067, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Tang, Kam; Smith, Walker", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.85067, "title": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial forms of Phaeocystis antarctica", "uid": "p0000214", "west": 166.66267}, {"awards": "0234249 Hollibaugh, James", "bounds_geometry": "POLYGON((-73 -64,-72.1 -64,-71.2 -64,-70.3 -64,-69.4 -64,-68.5 -64,-67.6 -64,-66.7 -64,-65.8 -64,-64.9 -64,-64 -64,-64 -64.4,-64 -64.8,-64 -65.2,-64 -65.6,-64 -66,-64 -66.4,-64 -66.8,-64 -67.2,-64 -67.6,-64 -68,-64.9 -68,-65.8 -68,-66.7 -68,-67.6 -68,-68.5 -68,-69.4 -68,-70.3 -68,-71.2 -68,-72.1 -68,-73 -68,-73 -67.6,-73 -67.2,-73 -66.8,-73 -66.4,-73 -66,-73 -65.6,-73 -65.2,-73 -64.8,-73 -64.4,-73 -64))", "dataset_titles": "Ammonia Oxidizing Bacteria and Archaea Abundance", "datasets": [{"dataset_uid": "000117", "doi": "", "keywords": null, "people": null, "repository": "LTER", "science_program": null, "title": "Ammonia Oxidizing Bacteria and Archaea Abundance", "url": "http://oceaninformatics.ucsd.edu/datazoo/data/pallter/datasets?action=summary\u0026id=114"}], "date_created": "Mon, 01 Dec 2008 00:00:00 GMT", "description": "This project will investigate the distribution, phylogenetic affinities and ecological aspects of ammonium-oxidizing bacteria in the Palmer Long-Term Ecological Research study area. Ammonia oxidation is the first step in the conversion of regenerated nitrogen to dinitrogen gas via denitrification, a 3-step pathway mediated by three distinct guilds of bacteria. As such, ammonia oxidation is important to the global nitrogen cycle. Ammonia oxidation and the overall process of nitrification-denitrification have received little attention in polar oceans where it is significant and where the effects of climate change on biogeochemical rates are likely to be pronounced. The goals of the studies proposed here are A) to obtain more conclusive information concerning composition of Antarctic ammonia oxidizers; B) to begin characterizing their ecophysiology and ecology; and C) to obtain cultures of the organism for more detailed studies. Water column and sea ice AOB assemblages will be characterized phylogenetically and the different kinds of AOB in various samples will be quantified. Nitrification rates will be measured across the LTER study area in water column, sea ice and sediment samples. Grazing rates on AOB will be determined and their sensitivity to UV light evaluated. In addition, the significance of urea nitrogen as a source of reduced nitrogen to AOB will be assessed and the temperature response of nitrification over temperature ranges appropriate to polar regions will be evaluated. This work will provide insights into the ecology of AOB and the knowledge needed to model how water column nitrification will respond to changes in the polar ecosystems accompanying global climate change.", "east": -64.0, "geometry": "POINT(-68.5 -66)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hollibaugh, James T.", "platforms": "Not provided", "repo": "LTER", "repositories": "LTER", "science_programs": "LTER", "south": -68.0, "title": "Distribution And Ecology Of Ammonia Oxidizing Bacteria In The Palmer LTER Study Area", "uid": "p0000225", "west": -73.0}, {"awards": "0338267 Gooseff, Michael", "bounds_geometry": "POLYGON((161.6 -77.4,161.773 -77.4,161.946 -77.4,162.119 -77.4,162.292 -77.4,162.465 -77.4,162.638 -77.4,162.811 -77.4,162.984 -77.4,163.157 -77.4,163.33 -77.4,163.33 -77.435,163.33 -77.47,163.33 -77.505,163.33 -77.54,163.33 -77.575,163.33 -77.61,163.33 -77.645,163.33 -77.68,163.33 -77.715,163.33 -77.75,163.157 -77.75,162.984 -77.75,162.811 -77.75,162.638 -77.75,162.465 -77.75,162.292 -77.75,162.119 -77.75,161.946 -77.75,161.773 -77.75,161.6 -77.75,161.6 -77.715,161.6 -77.68,161.6 -77.645,161.6 -77.61,161.6 -77.575,161.6 -77.54,161.6 -77.505,161.6 -77.47,161.6 -77.435,161.6 -77.4))", "dataset_titles": "Antarctic Hydrologic Margin Microbiology and Biogeochemistry - data; Hydrologic Margins Research Project, 2004-2008, McMurdo Dry Valleys", "datasets": [{"dataset_uid": "000238", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Antarctic Hydrologic Margin Microbiology and Biogeochemistry - data", "url": "http://water.engr.psu.edu/gooseff/web_antarctica/data.html"}, {"dataset_uid": "600016", "doi": "", "keywords": null, "people": "Gooseff, Michael N.", "repository": "USAP-DC", "science_program": null, "title": "Hydrologic Margins Research Project, 2004-2008, McMurdo Dry Valleys", "url": "https://www.usap-dc.org/view/dataset/600016"}], "date_created": "Thu, 11 Sep 2008 00:00:00 GMT", "description": "Aquatic-terrestrial transition zones are crucial environments in understanding the biogeochemistry of landscapes. In temperate watersheds, these areas are generally dominated by riparian zones, which have been identified as regions of special interest for biogeochemistry because of the increased microbial activity in these locations, and because of the importance of these hydrological margins in facilitating and buffering hydrologic and biogeochemical exchanges between terrestrial and aquatic ecosystems. In the Antarctic Dry Valleys, terrestrial-aquatic transition zones are intriguing landscape features because of the vast importance of water in this polar desert, and because the material and energy budgets of dry valley ecosystems are linked by hydrology. Hydrological margins in aquatic-terrestrial transition zones will be studied in the Dry Valleys of Antarctica to answer two overarching questions: (1) what are the major controls over hydrologic and biogeochemical exchange across aquaticterrestrial transition zones and (2) to what extent do trends in nutrient cycling (e.g. nitrogen cycling) across these transition zones reflect differences in microbial communities or function vs. differences in the physical and chemical environment (e.g., redox potential)? The hydrologic gradients that define these interfaces provide the opportunity to assess the relative influence of physical conditions and microbial biodiversity and functioning upon biogeochemical cycling. Coordinated hydrologic, biogeochemical, and molecular microbial studies will be executed within hydrologic margins with the following research objectives: to determine the role of sediment characteristics, permafrost and active layer dynamics, and topography on sub-surface water content and distribution in hydrologic margins, to determine the extent to which transformations of nitrogen in hydrological margins are influenced by physical conditions (i.e., moisture, redox potential and pH) or by the presence of specific microbial communities (e.g., denitrifiers), and to characterize the microbial community structure and function of saturated zones.\u003cbr/\u003e\u003cbr/\u003eThis proposed research will provide an improved understanding of the interaction of liquid water, soils, microbial communities, and biogeochemistry within the important hydrologic margin landscape units of the dry valleys. Dry valleys streams and lakes are unique because there is no influence of higher vegetation on the movement of water and may therefore provide a model system for understanding physical and hydrological influences on microbial ecology and biogeochemistry. Hence the findings will contribute to Antarctic science as well as the broader study of riparian zones and hydrologic margins worldwide. Graduate students and undergraduate students will be involved with fieldwork and research projects. Information will be disseminated through a project web site, and outreach activities will include science education in local elementary, middle and high schools near the three universities involved.", "east": 163.33, "geometry": "POINT(162.465 -77.575)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": -77.4, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Gooseff, Michael N.; Barrett, John; Takacs-Vesbach, Cristina", "platforms": "Not provided", "repo": "PI website", "repositories": "PI website; USAP-DC", "science_programs": null, "south": -77.75, "title": "Collaborative Research: Hydrologic Controls over Biogeochemistry and Microbial Community Structure and Function across Terrestrial/Aquatic Interfaces in a Polar Desert", "uid": "p0000340", "west": 161.6}, {"awards": "0440609 Price, P. Buford", "bounds_geometry": "POINT(-112.06556 -79.469444)", "dataset_titles": null, "datasets": null, "date_created": "Tue, 03 Jun 2008 00:00:00 GMT", "description": "This award supports a project to use three downhole instruments - an optical logger; a\u003cbr/\u003eminiaturized biospectral logger at 420 nm (miniBSL-420); and an Acoustic TeleViewer (ATV) - to log a 350-m borehole at the WAIS Divide drill site. In addition, miniBSL-224 (at 224 nm) and miniBSL-420 will scan ice core sections at NICL to look for abrupt climate changes, volcanic ash, microbial concentrations, and correlations among them. Using the optical logger and ATV to log bubble number densities vs depth in a WAIS Divide borehole, we will detect annual layers, from which we can establish the age vs depth relation to the bottom of the borehole that will be available during the three-year grant period. With the same instruments we will search for long-period modulation of bubble and dust concentrations in order to provide definitive evidence for or against an effect of long-period variability of the sun or solar wind on climate. We will detect and accurately date ash layers in a WAIS Divide borehole. We will match them with ash layers that we previously detected in the Siple Dome borehole, and also match them with sulfate and ash layers found by others at Vostok, Dome Fuji, Dome C, and GISP2. The expected new data will allow us to extend our recent study which showed that the Antarctic record of volcanism correlates with abrupt climate change at a 95% to \u003e99.8% significance level and that the volcanic signatures at bipolar locations match at better than 3 sigma during the interval 2 to 45 kiloyears. The results to be obtained during this grant period will position us to extend an accurate age vs depth relation and volcano-climate correlations to earlier than 150 kiloyears ago in the future WAIS Divide borehole to be drilled to bedrock. Using the miniBSLs to identify biomolecules via their fluorescence, we will log a 350-m borehole at WAIS Divide, and we will scan selected lengths of ice core at NICL. Among the biomolecules the miniBSLs can identify will be chlorophyll, which will provide the first map of aerobic microbes in ice, and F420, which will provide the first map of methanogens in ice. We will collaborate with others in relating results from WAIS Divide and NICL ice cores to broader topics in climatology, volcanology, and microbial ecology. We will continue to give broad training to undergraduate and graduate students, to attract underrepresented minorities to science, engineering, and math, and to educate the press and college teachers. A deeper understanding of the causes of abrupt climate change, including a causal relationship with strong volcanic eruptions, can enable us to understand and mitigate adverse effects on climate.", "east": -112.06556, "geometry": "POINT(-112.06556 -79.469444)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUORESCENCE SPECTROSCOPY; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS", "is_usap_dc": false, "keywords": "Volcanic Ash; Dust Concentration; Antarctica; FIELD INVESTIGATION; Liquid Veins In Ice; Optical Logger; Borehole; Ash Layer; FIELD SURVEYS; Microbial Metabolism; Climate; Biospectral Logger; Not provided; Protein Fluorescence; Gas Artifacts; Aerosol Fluorescence; Volcanism; WAIS Divide; Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.469444, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bay, Ryan; Price, Buford", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repositories": null, "science_programs": null, "south": -79.469444, "title": "Climatology, Volcanism, and Microbial Life in Ice with Downhole Loggers", "uid": "p0000746", "west": -112.06556}, {"awards": "0126146 Miller, Molly", "bounds_geometry": "POINT(171 -83.75)", "dataset_titles": null, "datasets": null, "date_created": "Wed, 20 Jun 2007 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a study to investigate paleoenvironmental conditions during the late Paleozoic and Mesozoic in central interior Antarctica. The 4 km thick sequence of sedimentary rocks, known as the Beacon Supergroup, in the Beardmore Glacier area records 90 million years of Permian through Jurassic history of this high-paleolatitude sector of Gondwana. It accumulated in a foreland basin with a rate of subsidence approximately equal to the rate of deposition. The deposits have yielded diverse vertebrate fossils, in situ fossil forests, and exceptionally well preserved plant fossils. They give a unique glimpse of glacial, lake, and stream/river environments and ecosystems and preserve an unparalleled record of the depositional, paleoclimatic, and tectonic history of the area. The excellent work done to date provides a solid base of information on which to build understanding of conditions and processes.\u003cbr/\u003e\u003cbr/\u003eThis project is a collaborative study of this stratigraphic section that will integrate sedimentologic, paleontologic, and ichnologic observations to answer focused questions, including: (1) What are the stratigraphic architecture and alluvial facies of Upper Permian to Jurassic rocks in the Beardmore area?; (2) In what tectonostratigraphic setting were these rocks deposited?; (3) Did vertebrates inhabit the cold, near-polar, Permian floodplains, as indicated by vertebrate burrows, and can these burrows be used to identify, for the first time, the presence of small early mammals in Mesozoic deposits?; and (4) How did bottom-dwelling animals in lakes and streams use substrate ecospace, how did ecospace use at these high paleolatitudes differ from ecospace use in equivalent environments at low paleolatitudes, and what does burrow distribution reveal about seasonality of river flow and thus about paleoclimate? Answers to these questions will (1) clarify the paleoclimatic, basinal, and tectonic history of this part of Gondwana, (2) elucidate the colonization of near-polar ecosystems by vertebrates, (3) provide new information on the environmental and paleolatitudinal distributions of early mammals, and (4) allow semi-quantitative assessment of the activity and abundance of bottom-dwelling animals in different freshwater environments at high and low latitudes. In summary, this project will contribute significantly to an understanding of paleobiology and paleoecology at a high latitude floodplain setting during a time in Earth history when the climate was much different than today.", "east": 171.0, "geometry": "POINT(171 -83.75)", "instruments": null, "is_usap_dc": false, "keywords": "Beardmore Glacier; FIELD SURVEYS; Paleoclimate; Permian; Paleontology; FIELD INVESTIGATION; Sedimentologic; Ichnologic; Stratigraphic; Gondwana", "locations": "Beardmore Glacier", "north": -83.75, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e MESOZOIC \u003e JURASSIC; PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN; PHANEROZOIC \u003e MESOZOIC \u003e TRIASSIC", "persons": "Miller, Molly", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -83.75, "title": "Collaborative Research: Late Paleozoic-Mesozoic Fauna, Environment, Climate and Basinal History: Beardmore Glacier Area, Transantarctic Mountains", "uid": "p0000736", "west": 171.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NSFGEO-NERC: Environmental drivers of giant petrel energetics, and implications for population trends and predation pressure in the Southern Ocean
|
2444342 |
2025-05-07 | Thorne, Lesley | No dataset link provided | Nontechnical abstract: This is a project jointly funded by the National Science Foundation’s Directorate for Geosciences (NSF/GEO) and the National Environment Research Council (NERC) of the United Kingdom (UK) via the NSF/GEO-NERC Lead Agency Agreement. This Agreement allows a single joint US/UK proposal to be submitted and peer-reviewed by the Agency whose investigator has the largest proportion of the budget. Upon successful joint determination of an award recommendation, each Agency funds the proportion of the budget that supports scientists at institutions in their respective countries. Understanding biological responses to environmental variation is a fundamental challenge facing ecologists. To generate accurate predictions of species distribution and persistence it is necessary to understand how mechanisms such as organism interactions and physiological traits shape responses. Seabirds are key consumers in the Southern Ocean, and while changes in their populations have been correlated with environmental modes, the mechanisms underlying these relationships are not well understood. Both ocean and atmosphere conditions are important for seabirds as they forage at sea but breed on land, and changes to wind patterns and Antarctic sea ice location and extent will influence seabird life history. This project focuses on giant petrels (Macronectes spp.), large and dominant avian predators and scavengers that prey significantly on, and influence populations of, species such as penguins and albatrosses. Giant petrels are thought to rely on dynamic soaring for flight, which allows them to use the wind to move while expending little energy. However, quantitative studies demonstrating how giant petrels use wind and the role that wind plays in constraining their distribution are lacking. Also, recent studies suggest that giant petrels may rely on sea ice for foraging, but the impact of sea ice seasonal and temporal dynamics on their population is not clear. Knowledge of the mechanistic links through which sea ice and wind conditions influence giant petrel diet, habitat use, and predation pressure can improve predictive capability for their populations in Southern Ocean ecosystems. Technical Abstract: This is a project jointly funded by the National Science Foundation’s Directorate for Geosciences (NSF/GEO) and the National Environment Research Council (NERC) of the United Kingdom (UK) via the NSF/GEO-NERC Lead Agency Agreement. This Agreement allows a single joint US/UK proposal to be submitted and peer-reviewed by the Agency whose investigator has the largest proportion of the budget. Upon successful joint determination of an award recommendation, each Agency funds the proportion of the budget that supports scientists at institutions in their respective countries. Despite their important ecological roles as predators and scavengers, giant petrels have received far less attention than other well-studied Southern Ocean seabird species such as albatross. This research will improve the current understanding of giant petrel ecology in the Southern Ocean by developing a mechanistic model linking environmental variability in wind and sea ice with foraging energetics. The project also aims to link those environmental drivers with petrel predation pressure on penguins and albatrosses and assess implications for population trends. The project approach will enable connection of individual energetics with landscape-scale environmental variability and will provide new insight into the role of environmental variation in structuring biological processes. Understanding the environmental effects on threatened seabird population foraging may be useful for developing effective management plans. The project will also provide a science communication internship for a graduate student, work with a science journalist to generate feature articles for popular wildlife magazines, and utilize parts of the project dataset in a graduate-level environmental modeling course. This award reflects NSF''s statutory mission and has been deemed worthy of support through evaluation using the Foundation''s intellectual merit and broader impacts review criteria. | None | None | false | false | |||||||||||||||
LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem
|
1344502 1142158 2224611 1440435 None 2026045 1543383 0636696 |
2025-03-11 | Corso, Andrew; Desvignes, Thomas; McDowell, Jan; Cheng, Chi-Hing; Biesack, Ellen; Steinberg, Deborah; Hilton, Eric | No dataset link provided | Since 1990, Palmer LTER (PAL) research has been guided by the hypothesis that variability in the polar marine ecosystem is mechanistically coupled to changes in the annual advance, retreat and spatial extent of sea ice. Since that time, the hypothesis has been modified to incorporate climate migration, i.e. the displacement of a cold, dry polar climate by a warm, moist climate regime in the northern component of the PAL region, producing fundamental changes in food web structure and elemental cycling. The observed northern changes are affecting all trophic levels and elemental cycling, and the primary mechanism of change involves match-mismatch dynamics. The proposed research builds on previous findings, with a new emphasis on process studies and modeling to elucidate the mechanistic links between teleconnections, climate change, physical oceanographic forcing and ecosystem dynamics. The proposed research will examine the hypothesis that regional warming and sea ice decline associated with historical and on-going climate migration in the northern part of the study area have altered key phenological relationships, leading to changes in species distributions, increasing trophic mismatches and changes in habitat, food availability, ecosystem dynamics and biogeochemical cycling. Through targeted process studies linked to numerical model simulations, the research also will test the hypothesis that deep cross-shelf canyons characterizing the core study region are focal areas for ecosystem processes that result in predictable, elevated food resources for top-predators. The effort includes the addition of 3 new PIs: a zooplankton ecologist with expertise in biogeochemical fluxes, a phytoplankton ecologist focusing on bio-optics and autonomous observations using gliders, and a numerical simulation modeler specializing in coupled global models of ocean circulation, plankton ecology and biogeochemical cycles. The program will add trace metal sampling and analysis, moored physical oceanographic sensors, a moored sediment trap in the south, drifting sediment traps and stable carbon (del 13C) and nitrogen (del 15N) isotope analyses. Missions lasting up to 45 days using gliders deployed before, during and after summer cruises will, along with moorings and satellite remote sensing of sea ice, ocean color, sea surface temperatures and wind fields, greatly extend the observational program in space and time. Since its inception, PAL has been a leader in Information Management to enable knowledge-building within and beyond the Antarctic, oceanographic and LTER communities. PAL has designed and deployed a new information infrastructure with a relational database architecture to facilitate data distribution and sharing. The Education and Outreach program capitalizes on the public's fascination with Antarctica to promote scientific literacy from kindergarten students to adult citizens concerned with climate change and environmental sustainability. Through communicating results to the public and working with scientific assessment bodies (e.g., IPCC) and Antarctic Treaty parties to protect Earth's last frontier, PAL researchers contribute to the national scientific agenda and the greater public benefit. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||||||
Effects of Environmental Change on Microbial Self-organized Patterns in Antarctic Lakes
|
2333917 |
2025-02-27 | Dong, Xiaoli; Sumner, Dawn | No dataset link provided | Ecosystems worldwide are threatened by anthropogenic changes in climate. Lakes are widely regarded as sentinels of climate change and, among these, polar lakes are the most sensitive. Beneath meters of permanent ice and liquid water, many Antarctic lakes contain complex microbial communities that are already being transformed by climate change. The structurally complex spatial patterns that these microbes create provide the opportunity to pursue research questions about spatial ecology that cannot be addressed elsewhere. This project focuses on research that will advance understanding of the spatial structure of benthic communities in Antarctic lakes, their relationships with environmental conditions, and predictions for likely changes in the future. This project will also advance methods in integrating the morphology and spatial patterning of modern microbial communities in relationship to their biophysical and biochemical environments. The quantitative framework being developed has potential to refine understanding of controls on microbial community patterning and thus interpretation of both the effects of climate change and ancient fossil microbial communities in the geologic record. Such understanding will address key questions about Earth’s evolutionary and environmental history and future. Lake Vanda in the McMurdo Dry Valleys, Antarctic, has modern microbial pinnacles covering its lake floor. Using existing datasets on spatial structure of benthic communities from 37 sites on the floor of Lake Vanda, the project team will apply recent theories from Spatial Ecology to investigate the mechanisms that give rise to spatial patterns of pinnacles formed by benthic microbes. The work addresses two questions: (1) What are the morphological and spatial patterns of pinnacles and how do they vary over developmental stages, along environment gradients, and from 2013 to 2023? And (2) what mechanisms give rise to the geometry of individual pinnacles and their spatial distribution? Lake Vanda provides an exceptional opportunity to address these questions. It features well characterized gradients in sedimentation, nutrients, irradiance, transport mechanism, and colonization history. Benthic communities at different locations in the lake manifest distinct spatial patterns, as they experience distinct conditions. Lake level has increased >10 m in the past few decades, creating additional opportunities for a “natural experiment” on pattern development by comparing relatively newly flooded substrates (pinnacles of 1 to 15 years old) with deeper, well-developed mats (> 70 years old). Since microbial communities respond to environmental change rapidly, analyses can characterize changes in patterns in pinnacle spatial data collected 9 years apart (Dec 2013 and Jan 2023), providing the opportunity to directly assess responses of spatially self-organized ecosystems to environmental change. As such, Lake Vanda is a natural laboratory that allows research (1) to effectively sort out mechanisms of pattern formation affecting benthic microbial communities residing there; and (2) to test the theory of spatial self-organization: mechanisms of pattern formation and responses to perturbations, applicable to ecosystems worldwide. Research questions will be addressed by integrating existing datasets, spatial pattern analyses, Bayesian statistical models, and process-based numerical models. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((161 -77.5,161.1 -77.5,161.2 -77.5,161.3 -77.5,161.4 -77.5,161.5 -77.5,161.6 -77.5,161.7 -77.5,161.8 -77.5,161.9 -77.5,162 -77.5,162 -77.51,162 -77.52,162 -77.53,162 -77.53999999999999,162 -77.55,162 -77.56,162 -77.57,162 -77.58,162 -77.58999999999999,162 -77.6,161.9 -77.6,161.8 -77.6,161.7 -77.6,161.6 -77.6,161.5 -77.6,161.4 -77.6,161.3 -77.6,161.2 -77.6,161.1 -77.6,161 -77.6,161 -77.58999999999999,161 -77.58,161 -77.57,161 -77.56,161 -77.55,161 -77.53999999999999,161 -77.53,161 -77.52,161 -77.51,161 -77.5)) | POINT(161.5 -77.55) | false | false | |||||||||||||||
2021 Polar Marine Science GRC and GRS
|
2029777 |
2025-02-07 | Matrai, Patricia; Babin, Marcel | No dataset link provided | This award provides funding in support of participation by U.S. graduate students and early career researchers for the 2019 Gordon Research Seminar (GRS) and Gordon Research Conference (GRC) Polar Marine Science meetings to be held in Ventura, CA May 22-28, 2021. The 2021 GRC event is entitled “Integrating Ocean Physics and Biogeochemistry to Assess Polar Ecosystem Sensitivity to Rapid Change”. Gordon conferences on this topic are held every two years and provide a key forum to discuss cutting-edge and cross-disciplinary marine research highlighted as an international priority topic. The conference plan is designed to provide powerful insights into the present and future states of polar marine ecosystems, including the local and regional aspects of ocean circulation, sea ice dynamics, biogeochemical fluxes, biodiversity, ecosystem health and human well-being. This event will bring together an interdisciplinary group of students and young researchers from many fields working in Polar regions. Exchanges of this type are essential for ensuring that U.S. scientists and engineers maintain international research leadership in in polar regions. Participants will have an opportunity to present their work in the form of oral presentations or posters while interacting with some of the most eminent researchers in the field. The GRS and GRC will address fundamental aspects, which are related to the grand environmental and sustainability challenges facing mankind. Specific emphasis will be given to defining the next generation challenges in polar region research. The unique format of the Gordon Research Conferences with invited talks, limited attendance, and ample time for interactions will provide early career scientists with ample opportunities for discussions and networking. Particular emphasis will be placed on encouraging student and post-doc participation from a broad range of institutions. The GRC-PPS will be widely advertised in the community and the participation and application for travel support by junior scientists will be strongly encouraged. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||||||
NSFGEO-NERC Collaborative Research: Effects of a Changing Climate on the Habitat Utilization, Foraging Ecology and Distribution of Crabeater Seals
|
2042032 |
2024-11-27 | Huckstadt, Luis |
|
Part I: Non-technical description: The crabeater seal is the most important predator of Antarctic krill in the western Antarctic Peninsula oceanic waters after the disappearance of large whales due to human hunting 100 years ago. The crabeater seals are expected to consume large quantities of krill due to their high abundance (about 7 million individuals), large body size (about 700 pounds in body weight), high metabolism and a diet specializing in krill. This species depends on sea ice presence all year long, living, reproducing, and diving to feed from that environment, making this marine mammal species a good indicator, or sentinel, of how the Antarctic ecosystem responds to a changing climate. As sea ice has been decreasing in the northern Antarctic Peninsula, this project aims to understand if the species food availability has changed in the last decades in response to environmental changes. In particular, the proposed work will concentrate on known populations of crabeater seals in northern (i.e., warmer, sub-polar) and southern (i.e., colder, polar) Antarctic Peninsula, 450 miles apart, making measurements on the abundance, physiology, metabolic needs and movement of the crabeater populations in both locations. The data will be combined to build models that will quantify the existing differences between northern and southern populations, as well as predict their future change, and compare present-day measurements with those collected by the British Antarctic Survey in the mid-1900s. The project is a collaboration between an international and interdisciplinary team from the United States and United Kingdom, benefitting NSF goals to facilitate collaborative geoscience research projects involving these two countries as well as aligning directly with U.S. Global Change Research Program (USGCRP) to better understand the forces shaping the global environment, both human and natural, and their impacts on society. To further increase polar literacy and education, Principal Investigators will train at least 2 graduate students and several undergraduates across two US institutions, as well as one UK-based post-doctoral researcher. Part II: Technical description: Crabeater seals (Lobodon carcinophaga) are considered an excellent sentinel species through which to examine the effects of a changing climate on the extended Antarctic krill-dependent predator community and the structure of the entire ecosystem of the western Antarctic Peninsula. Over the last forty years, there have been significant changes in the temporal and spatial patterns of primary productivity, and shifts in the population dynamics of Antarctic krill, the dominant mid-trophic level species. The impact of such changes on year-round resident species of crabeater seals (the most important predator of Antarctic krill) is more difficult to understand as they are not associated with breeding colonies where their population fluctuations could be more readily observed. The proposed research is conceived under the premise that environmental change has accentuated the differences between the northern and southern western Antarctic Peninsula crabeater seal populations due to differential reductions in sea-ice and its possible effect on prey availability. To address this question, this research will combine measurements on animal movement, stable isotope analyses, whole-animal physiology, and novel survey technologies (small Unmanned Aircraft Systems, satellite imagery) to build models. The project is a collaboration between an international and interdisciplinary team from the United States and United Kingdom. These studies will be essential to detect past, and project future, changes in the ecology of this species in response to changes in sea ice when comparing present-day measurements with those collected by the British Antarctic Survey in the mid-1900s. To further increase polar literacy and education, Principal Investigators will train at least 2 graduate students and several undergraduates across two US institutions, as well as one UK-based post-doctoral researcher. Students involved with this project will gain invaluable research experience in the lab and will have a unique opportunity to participate in Antarctic fieldwork. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | |||||||||||||||
Collaborative Research: ANT LIA: Diving into the Ecology of an Antarctic Ascidian-Microbiome-Palmerolide Association using a Multi-omic and Functional Approach
|
2142914 2142912 2142913 |
2024-10-17 | Baker, Bill; Murray, Alison; Tresguerres, Martin | No dataset link provided | Non-technical description Marine invertebrates often have mutually beneficial partnerships with microorganisms that biosynthesize compounds with nutritive or defensive functions and are integral for survival. Additionally, these “natural products” often have bioactive properties with human health applications fighting infection or different types of cancer. This project focuses on the ascidian (“sea squirt”) Synoicum adareanum, found in the Anvers Island region of the Antarctic Peninsula, and was recently discovered to contain high levels of a natural product, palmerolide A (palA) in its tissues. The microorganism that produces palA is a new bacterial species, Candidatus Synoicihabitans palmerolidicus, found in a persistent partnership with the sea squirt. There is still much to be learned about the fundamental properties of this sea squirt-microbe-palA system including the geographical range of the animal-microbe partnership, its chemical and microbiome complexity and diversity, and the biological effect of palA in the sea squirt. To address these questions, this multidisciplinary research team will investigate the sea squirt-microbiome partnership in the Antarctic Peninsula and McMurdo Sound regions of the Ross Sea using a state-of-the-art strategy that will advance our understanding of the structural and functional features of the sea squirt and microbiome in detail, and reveal the roles that the palA natural product plays in the host ecology in its native Antarctic seafloor habitat. The project will broaden diversity and provide new opportunities for early career students and postdoctoral researchers to participate in field and laboratory-based research that builds an integrative understanding of Antarctic marine biology, ecology, physiology and chemistry. In addition, advancing the understanding of palA and its biological properties may be of future benefit to biomedicine and human health. Technical description Marine invertebrates and their associated microbiomes can produce bioactive natural products; in fact, >600 such compounds have been identified in species from polar waters. Although such compounds are typically hypothesized to serve ecological roles in host survival through deterring predation, fouling, and microbial infection, in most cases neither the producing organism nor the genome-encoded biosynthetic enzymes are known. This project will study an emerging biosynthetic system from a polar ascidian-microbe association that produces palA, a natural product with bioactivity against the proton-pumping enzyme V-type H+-ATPase (VHA). The objectives include: (i) Determining the microbiome composition, metabolome complexity, palA levels, and mitochondrial DNA sequence of S. adareanum morphotypes at sites in the Antarctic Peninsula and in McMurdo Sound, (ii) Characterizing the Synoicum microbiome using a multi-omics strategy, and (iii) Assessing the potential for co-occurrence of Ca. S. palmerolidicus-palA-VHA in host tissues, and (iv) exploring the role of palA in modulating VHA activity in vivo and its effects on ascidian-microbe ecophysiology. Through a coupled study of palA-producing and non-producing S. adareanum specimens, structural and functional features of the ascidian microbiome metagenome will be characterized to better understand the relationship between predicted secondary metabolite pathways and whether they are expressed in situ using a paired metatranscriptome sequencing and secondary metabolite detection strategy. Combined with tissue co-localization results, functional ecophysiological assays aim to determine the roles that the natural product plays in the host ecology in its native Antarctic seafloor habitat. The contributions of the project will inform this intimate host-microbial association in which the ascidian host bioaccumulates VHA-inhibiting palA, yet its geo-spatial distribution, cellular localization, ecological and physiological role(s) are not known. In addition to elucidating the ecophysiological roles of palA in their native ascidian-microbe association, the results will contribute to the success of translational science, which aligns with NSF’s interests in promoting basic research that leads to advances in Biotechnology and Bioeconomy. The project will also broaden diversity and provide new opportunities for early career students and postdoctoral researchers to participate in field and laboratory-based research that builds an integrative understanding of Antarctic marine biology, ecology, physiology and chemistry. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-168 -60,-156 -60,-144 -60,-132 -60,-120 -60,-108 -60,-96 -60,-84 -60,-72 -60,-60 -60,-60 -62,-60 -64,-60 -66,-60 -68,-60 -70,-60 -72,-60 -74,-60 -76,-60 -78,-60 -80,-72 -80,-84 -80,-96 -80,-108 -80,-120 -80,-132 -80,-144 -80,-156 -80,-168 -80,180 -80,178 -80,176 -80,174 -80,172 -80,170 -80,168 -80,166 -80,164 -80,162 -80,160 -80,160 -78,160 -76,160 -74,160 -72,160 -70,160 -68,160 -66,160 -64,160 -62,160 -60,162 -60,164 -60,166 -60,168 -60,170 -60,172 -60,174 -60,176 -60,178 -60,-180 -60)) | POINT(-130 -70) | false | false | |||||||||||||||
Collaborative Research: Conference: Interdisciplinary Antarctic Earth Science Conference & Deep-Field Planning Workshop
|
2231559 2231558 |
2023-09-01 | Smith, Nathan; Tinto, Kirsty | No dataset link provided | The unique Antarctic environment offers insight into processes and records not seen anywhere else on Earth, and is critical to understanding our planet’s history and future. The remoteness and logistics of Antarctic science brings together researchers from diverse disciplines who otherwise wouldn’t be presented with opportunities for collaboration, and often rarely attend the same academic conferences. The Interdisciplinary Antarctic Earth Science (IAES) conference is a biennial gathering that supports the collaboration of U.S. bio-, cryo-, geo-, and atmospheric science researchers working in the Antarctic. This proposal will support the next two IAES conferences to be held in 2022 and 2024, as well as a paired deep-field camp planning workshop. The IAES conference is important to the mission of the NSF in supporting interdisciplinary collaboration in the Antarctic Earth sciences, but also fulfills recommendations by the National Academy for improving cross-disciplinary awareness, data sharing, and early career researcher mentoring and development. The size and scope of the IAES conference allow it to serve as a hub for novel, interdisciplinary collaboration, as well as help develop the next generation of Antarctic Earth scientists. The goals of the IAES conference are to develop and deepen scientific collaborations across the Antarctic Earth science community, and create a framework for future deep-field, as well as non-field-based research. Across a 2.5 day hybrid conference, the IAES themes will include 1) connecting surficial processes, geology, and the deep earth; 2) landscape, ice sheet, ocean and atmospheric interactions; 3) exploring the hidden continent; and 4) evolution and ecology of ancient and modern organisms, ecosystems, and environments. The conference will share science through presentations of current research and keynote talks, broaden participation through welcoming new researchers from under-represented communities and disciplines, and deepen collaboration through interdisciplinary networking highlighting potential research connections, novel mentorship activities, and promoting data re-use, and application of remote sensing and modeling. Discussions resulting from the IAES conference will be used to develop white papers on future Antarctic collaborative research and deep-field camps based on community-driven research priorities. Community surveys and feedback will be solicited throughout the project to guide the future development of the IAES conference. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||||||
Collaborative Research: Harvesting Long-term Survey Data to Develop Zooplankton Distribution Models for the Antarctic Peninsula
|
2203176 2203177 |
2023-08-10 | Cimino, Megan; Steinberg, Deborah | No dataset link provided | This project is co-funded by a collaboration between the Directorate for Geosciences and Office of Advanced Cyberinfrastructure to support Artificial Intelligence/Machine Learning and open science activities in the geosciences. Machine learning model will be used in this project to predict the distributions of five zooplankton species in the western Antarctic Peninsula (wAP) based on oceanographic properties. The project will take advantage of a long-term series collected by the Palmer Long-Term Ecological Research (LTER) program that collects annual data on physics, chemistry, phytoplankton (or food), zooplankton and predators (seabirds, whales and seals). By analyzing this dataset and combining it with other data collected by national and international programs, this project will provide understanding and prediction of zooplankton distribution and abundance in the wAP. The machine learning models will be based on environmental properties extracted from remote sensing images thus providing ecosystem knowledge as it decreases human footprint in Antarctica. The relationship between species distribution and habitat are key for distinguishing natural variability from climate impacts on zooplankton and their predators. This research benefits NSF mission by expanding fundamental knowledge of Antarctic systems, biota, and processes as well as aligning with data and sample reuse strategies in Polar Research. The project will benefit society by supporting two female early-career scientists, a post-doctoral fellow and a graduate student. Polar literacy will be promoted through an existing partnership with Out Of School activities that target Science, Technology, Engineering and Mathematics (STEM) education, expected to reach 120,000 students from under-represented minorities in STEM annually. The project will also contribute to evaluate the ecosystem in the proposed Marine Protected Area in the wAP, subject to krill fishery. Results will be made available publicly through an interactive web application. The Principal Investigators propose to address three main questions: 1) Can geomorphic features, winter preconditioning and summer ocean conditions be used to predict the austral summer distribution of zooplankton species along the wAP? 2) What are the spatial and temporal patterns in modeled zooplankton species distribution along the wAP? And 3) What are the patterns of overlap in zooplankton and predator species? The model will generate functional relationships between zooplankton distribution and environmental variables and provide Zooplankton Distribution Models (ZDMs) along the Antarctic Peninsula. The Palmer LTER database will be combined with the NOAA AMLR data for the northern wAP, and KRILLBASE, made public by the British Antarctic Survey’s Polar Data Center. This project will generate 1) annual environmental spatial layers on the Palmer LTER resolution grid within the study region, 2) annual species-specific standardized zooplankton net data from different surveys, 3) annual species-specific predator sightings on a standardized grid, and 4) ecological model output. Ecological model output will include annual predictions of zooplankton species distributions, consisting of 3-dimensional fields (x,y,t) for the 5 main zooplankton groups, including Antarctic krill, salps and pteropods. Predictions will be derived from merging in situ survey data with environmental data, collected in situ or by remote sensing. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-80 -60,-77 -60,-74 -60,-71 -60,-68 -60,-65 -60,-62 -60,-59 -60,-56 -60,-53 -60,-50 -60,-50 -61,-50 -62,-50 -63,-50 -64,-50 -65,-50 -66,-50 -67,-50 -68,-50 -69,-50 -70,-53 -70,-56 -70,-59 -70,-62 -70,-65 -70,-68 -70,-71 -70,-74 -70,-77 -70,-80 -70,-80 -69,-80 -68,-80 -67,-80 -66,-80 -65,-80 -64,-80 -63,-80 -62,-80 -61,-80 -60)) | POINT(-65 -65) | false | false | |||||||||||||||
LTER: Ecological Response and Resilience to “Press-Pulse” Disturbances and a Recent Decadal Reversal in Sea Ice Trends Along the West Antarctic Peninsula
|
2224611 2026045 |
2023-07-26 | Schofield, Oscar; Steinberg, Deborah |
|
Part 1: Non-technical description The goal of all LTER sites is to conduct policy-relevant ecosystem research for questions that require tens of years of data and cover large geographical areas. The Palmer Antarctica Long Term Ecological Research (PAL-LTER) site has been in operation since 1990 and has been studying how the marine ecosystem west of the Antarctica Peninsula (WAP) is responding to a climate that is changing as rapidly as any place on the Earth. The study is evaluating how warming conditions and decreased ice cover leading to extended periods of open water are affecting many aspects of ecosystem function. The team is using combined cutting-edge approaches including yearly ship-based research cruises, small-boat weekly sampling, autonomous vehicles, animal biologging, oceanographic floats and seafloor moorings, manipulative lab-based process studies and modeling to evaluate both seasonal and annual ecosystem responses. These combined approaches are allowing for the study the ecosystem changes at scales needed to assess both short-term and long-term drivers. The study region also includes submarine canyons that are special regions of enhanced biological activity within the WAP. This research program is paired with a comprehensive education and outreach program promoting the global significance of Antarctic science and research. In addition to training for graduate and undergraduate students, they are using newly-developed Polar Literacy Principles as a foundation in a virtual schoolyard program that shares polar instructional materials and provides learning opportunities for K-12 educators. The PAL-LTER team is also leveraging the development of Out of School Time materials for afterschool and summer camp programs, sharing Palmer LTER-specific teaching materials with University, Museum, and 4-H Special Interest Club partners. Part 2: Technical description Polar ecosystems are among the most rapidly changing on Earth. The Palmer LTER (PAL-LTER) program builds on three decades of coordinated research along the western side of the Antarctic Peninsula (WAP) to gain new mechanistic and predictive understanding of ecosystem changes in response to disturbances spanning long-term decadal (‘press’) drivers and changes due to higher-frequency (‘pulse’) drivers, such as large storms and extreme seasonal anomaly in sea ice cover. The influence of major natural climate modes that modulate variations in sea ice, weather, and oceanographic conditions to drive changes in ecosystem structure and function (e.g., El Niño Southern Oscillation and Southern Annular Mode) are being studied at multiple time scales –from diel, seasonal, interannual, to decadal intervals, and space scales–from hemispheric to global scale investigated by remote sensing, the regional scales. Specifically, the team is evaluating how variability of physical properties (such as vertical and alongshore connectivity processes) interact to modulate biogeochemical cycling and community ecology in the WAP region. The study is providing an evaluation of ecosystem resilience and ecological responses to long-term “press-pulse” drivers and a decadal-level reversal in sea ice coverage. This program is providing fundamental understanding of population and biogeochemical responses for a marine ecosystem experiencing profound change. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-79.65 -63.738,-77.9728 -63.738,-76.29560000000001 -63.738,-74.61840000000001 -63.738,-72.94120000000001 -63.738,-71.26400000000001 -63.738,-69.58680000000001 -63.738,-67.9096 -63.738,-66.2324 -63.738,-64.5552 -63.738,-62.878 -63.738,-62.878 -64.3683,-62.878 -64.9986,-62.878 -65.6289,-62.878 -66.25919999999999,-62.878 -66.8895,-62.878 -67.5198,-62.878 -68.1501,-62.878 -68.7804,-62.878 -69.41069999999999,-62.878 -70.041,-64.5552 -70.041,-66.2324 -70.041,-67.9096 -70.041,-69.5868 -70.041,-71.26400000000001 -70.041,-72.94120000000001 -70.041,-74.61840000000001 -70.041,-76.29560000000001 -70.041,-77.9728 -70.041,-79.65 -70.041,-79.65 -69.41069999999999,-79.65 -68.7804,-79.65 -68.1501,-79.65 -67.5198,-79.65 -66.8895,-79.65 -66.25919999999999,-79.65 -65.6289,-79.65 -64.9986,-79.65 -64.3683,-79.65 -63.738)) | POINT(-71.26400000000001 -66.8895) | false | false | |||||||||||||||
EAGER: ANT LIA: Persist or Perish: Records of Microbial Survival and Long-term Persistence from the West Antarctic Ice Sheet
|
2228257 |
2023-05-31 | Michaud, Alexander; Winski, Dominic A. | No dataset link provided | Ice cores from glaciers and ice sheets provide detailed archives of past environmental conditions, furthering our understanding of Earth’s climate. Microorganisms in the West Antarctic Ice Sheet are buried over glaciological time and form a stratigraphy record providing the opportunity of analysis of the order and position of layers of geological events, with potential links to Southern Hemisphere climate. However, microbial cells that land on the ice sheet are subject to the stresses of changing habitat conditions due to burial and conditions associated with long-term isolation in ice. These processes may lead to a loss of fidelity within the stratigraphic record of microbial cells. We know little about how and if microorganisms survive burial and remain alive over glacial-interglacial time periods within an ice sheet. This analysis will identify the viable and preserved community of microorganisms and core genomic adaptation that permit cell viability, which will advance knowledge in the areas of microbiology and glaciology while increasing fidelity of ice core measurements relevant to past climate and potential future global climate impacts. This exploratory endeavor has the potential to be a transformative step toward understanding the ecology of one of the most understudied environments on Earth. The project will partner with the Museum of Science, Boston, to increase public scientific literacy via education and outreach. Additionally, this project will support two early-career scientists and two undergraduates in interdisciplinary research at the intersection of microbiology and climate science. Results from this project will provide the first DNA data based on single-cell whole genomic sequencing from the Antarctic Ice Sheet and inform whether post-depositional processes impact the interpretations of paleoenvironmental conditions from microbes. The goals to determine the taxonomic identity of viable and preserved microbial cells, and decode the genetic repertoire that confers survival of burial and long-term viability within glacial ice, will be achieved by utilizing subsamples from a ~60,000 year old record of the West Antarctic Ice Sheet Divide (WD) Ice Core. WD samples will be melted using the Desert Research Institute’s ice core melting system that is optimized for glaciobiological sampling. Microbial cells from the meltwater will be sorted using fluorescence-activated cell sorting, and individually sorted cells will have their genomes sequenced. The fluorescence-based methods will discern the viable (metabolically active) cells from those cells that are non-viable but preserved in the ice (DNA-containing). The genomic analysis will identify the taxonomy of each cell, presence of known genes that confer survival in permanently frozen environments, and comparatively analyze genomes to determine the core set of genes required by viable cells to persist in an ice sheet. The outcomes of this work will expand the potential for biological measurements and contamination control from archived ice cores. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POINT(-112.05 -79.28) | POINT(-112.05 -79.28) | false | false | |||||||||||||||
Collaborative Research: Foraging Ecology and Physiology of the Leopard Seal
|
1643575 1644004 1644256 |
2023-05-12 | Costa, Daniel; Trumble, Stephen J; Kanatous, Shane | This research project is a multidisciplinary effort that brings together a diverse team of scientists from multiple institutions together to understand the foraging behavior and physiology of leopard seals and their role in the Southern Ocean food web. The project will examine the physiology and behavior of leopard seals to in an effort to determine their ability to respond to potential changes in their habitat and foraging areas. Using satellite tracking devices the team will examine the movement and diving behavior of leopard seals and couple this information with measurements of their physiological capacity. The project will determine whether leopard seals- who feed on diverse range of prey- are built differently than their deep diving relatives the Weddell and elephant seal who feed on fish and squid. The team will also determine whether leopard seals are operating at or near their physiological capability to determine how much, if any, ?reserve capacity? they might have to forage and live in changing environments. A better understanding of their home ranges, movement patterns, and general behavior will also be informative to help in managing human-leopard seal interactions. The highly visual nature of the data and analysis for this project lends itself to public and educational display and outreach, particularly as they relate to the changing Antarctic habitats. The project will use the research results to educate the public on the unique physiological and ecological adaptations to extreme environments seen in diving marine mammals, including adaptations to exercise under low oxygen conditions and energy utilization, which affect and dictate the lifestyle of these exceptional organisms. The results of the project will also contribute to the broader understanding that may enhance the aims of managing marine living resources. The leopard seal is an apex predator in the Antarctic ecosystem. This project seeks to better understand the ability of the leopard seal to cope with a changing environment. The project will first examine the foraging behavior and habitat utilization of leopard seals using satellite telemetry. Specifically, satellite telemetry tags will be used to obtain dive profiles and movement data for individuals across multiple years. Diet and trophic level positions across multiple temporal scales will then be determined from physiological samples (e.g., blood, vibrissae, blubber fatty acids, stable isotopes, fecal matter). Oceanographic data will be integrated with these measures to develop habitat models that will be used to assess habitat type, habitat utilization, habitat preference, and home range areas for individual animals. Diet composition for individual seals will be evaluated to determine whether specific animals are generalists or specialists. Second, the team will investigate the physiological adaptations that allow leopard seals to be apex predators and determine to what extent leopard seals are working at or near their physiological limit. Diving behavior and physiology of leopard seals will be evaluated (for instance the aerobic dive limit for individual animals and skeletal muscle adaptations will be determined for diving under hypoxic conditions). Data from time-depth recorders will be used to determine foraging strategies for individual seals, and these diving characteristics will be related to physiological variables (e.g., blood volume, muscle oxygen stores) to better understand the link between foraging behavior and physiology. The team will compare myoglobin storage in swimming muscles associated with both forelimb and hind limb propulsion and the use of anaerobic versus aerobic metabolic systems while foraging. | POLYGON((-66.534369 -52.962091,-65.3857434 -52.962091,-64.2371178 -52.962091,-63.0884922 -52.962091,-61.9398666 -52.962091,-60.791241 -52.962091,-59.6426154 -52.962091,-58.4939898 -52.962091,-57.3453642 -52.962091,-56.1967386 -52.962091,-55.048113 -52.962091,-55.048113 -54.530129,-55.048113 -56.098167000000004,-55.048113 -57.666205000000005,-55.048113 -59.234243,-55.048113 -60.802281,-55.048113 -62.370319,-55.048113 -63.938357,-55.048113 -65.506395,-55.048113 -67.074433,-55.048113 -68.642471,-56.1967386 -68.642471,-57.3453642 -68.642471,-58.4939898 -68.642471,-59.6426154 -68.642471,-60.791241 -68.642471,-61.9398666 -68.642471,-63.0884922 -68.642471,-64.2371178 -68.642471,-65.3857434 -68.642471,-66.534369 -68.642471,-66.534369 -67.074433,-66.534369 -65.506395,-66.534369 -63.938356999999996,-66.534369 -62.370319,-66.534369 -60.802281,-66.534369 -59.234243,-66.534369 -57.666205,-66.534369 -56.098167000000004,-66.534369 -54.530129,-66.534369 -52.962091)) | POINT(-60.791241 -60.802281) | false | false | ||||||||||||||||
Collaborative Research: Foraging Ecology and Physiology of the Leopard Seal
|
1644004 |
2022-12-06 | Trumble, Stephen J |
|
This research project is a multidisciplinary effort that brings together a diverse team of scientists from multiple institutions together to understand the foraging behavior and physiology of leopard seals and their role in the Southern Ocean food web. The project will examine the physiology and behavior of leopard seals to in an effort to determine their ability to respond to potential changes in their habitat and foraging areas. Using satellite tracking devices the team will examine the movement and diving behavior of leopard seals and couple this information with measurements of their physiological capacity. The project will determine whether leopard seals- who feed on diverse range of prey- are built differently than their deep diving relatives the Weddell and elephant seal who feed on fish and squid. The team will also determine whether leopard seals are operating at or near their physiological capability to determine how much, if any, ?reserve capacity? they might have to forage and live in changing environments. A better understanding of their home ranges, movement patterns, and general behavior will also be informative to help in managing human-leopard seal interactions. The highly visual nature of the data and analysis for this project lends itself to public and educational display and outreach, particularly as they relate to the changing Antarctic habitats. The project will use the research results to educate the public on the unique physiological and ecological adaptations to extreme environments seen in diving marine mammals, including adaptations to exercise under low oxygen conditions and energy utilization, which affect and dictate the lifestyle of these exceptional organisms. The results of the project will also contribute to the broader understanding that may enhance the aims of managing marine living resources. The leopard seal is an apex predator in the Antarctic ecosystem. This project seeks to better understand the ability of the leopard seal to cope with a changing environment. The project will first examine the foraging behavior and habitat utilization of leopard seals using satellite telemetry. Specifically, satellite telemetry tags will be used to obtain dive profiles and movement data for individuals across multiple years. Diet and trophic level positions across multiple temporal scales will then be determined from physiological samples (e.g., blood, vibrissae, blubber fatty acids, stable isotopes, fecal matter). Oceanographic data will be integrated with these measures to develop habitat models that will be used to assess habitat type, habitat utilization, habitat preference, and home range areas for individual animals. Diet composition for individual seals will be evaluated to determine whether specific animals are generalists or specialists. Second, the team will investigate the physiological adaptations that allow leopard seals to be apex predators and determine to what extent leopard seals are working at or near their physiological limit. Diving behavior and physiology of leopard seals will be evaluated (for instance the aerobic dive limit for individual animals and skeletal muscle adaptations will be determined for diving under hypoxic conditions). Data from time-depth recorders will be used to determine foraging strategies for individual seals, and these diving characteristics will be related to physiological variables (e.g., blood volume, muscle oxygen stores) to better understand the link between foraging behavior and physiology. The team will compare myoglobin storage in swimming muscles associated with both forelimb and hind limb propulsion and the use of anaerobic versus aerobic metabolic systems while foraging. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||||||
Collaborative Research: Using Multiple Stable Isotopes to Investigate Middle to Late Holocene Ecological Responses by Adelie Penguins in the Ross Sea
|
2135695 2135696 |
2022-10-28 | Lane, Chad S; Polito, Michael |
|
The Adélie penguin (Pygoscelis adeliae) is the most abundant penguin in Antarctica, though its populations are currently facing threats from climate change, loss of sea ice habitat and food supplies. In the Ross Sea region, the cold, dry environment has allowed preservation of Adélie penguin bones, feathers, eggshell and even mummified remains, at active and abandoned colonies that date from before the Last Glacial Maximum (more than 45,000 years ago) to the present. A warming period at 4,000-2,000 years ago, known as the penguin ‘optimum’, reduced sea ice extent and allowed this species to access and reproduce in the southern Ross Sea. This coastline likely will be reoccupied in the future as marine conditions change with current warming trends. This project will investigate ecological responses in diet and foraging behavior of the Adélie penguin using well-preserved bones and other tissues that date from before, during and after the penguin ‘optimum’. The Principal investigators will collect and analyze bones, feathers and eggshells from colonies in the Ross Sea to determine changes in population size and feeding locations over millennia. Most of these colonies are associated with highly productive areas of open water surrounded by sea ice. Current warming trends are causing relatively rapid ecological responses by this species and some of the largest colonies in the Ross Sea are likely to be abandoned in the next 50 years from rising sea level. The recently established Ross Sea Marine Protected Area aims to protect Adélie penguins and their foraging grounds in this region from human impacts and knowledge on how this species has responded to climate change in the past will support this goal. This project benefits NSF’s mission to expand fundamental knowledge of Antarctic systems, biota, and processes. In association with their research program, the Principal Investigators will create undergraduate opportunities for research-driven coursework, will design K-12 curriculum and assess the effectiveness of these activities. Two graduate students will be supported by this project to update and refine the curricula working with K-12 teachers. There is also training and partial support included for one doctorate, two master and eight undergraduate students. General public will be reached through social media and YouTube channel productions. A suite of three stable isotopes (carbon, nitrogen, and sulfur) will be analyzed in Adelie penguin bones and feathers from active and abandoned colonies to assess ecological shifts through time. Stable isotope analyses of carbon and nitrogen (δ13C and δ15N) are commonly used to investigate animal migration, foraging locations and diet, especially in marine species that can travel over great distances. Sulfur (δ34S) is not as commonly used but is increasingly being applied to refine and corroborate data obtained from carbon and nitrogen analyses. Collagen is one of the best tissues for these analyses as it is abundant in bone, preserves well, and can be easily extracted for analysis. Using these three isotopes from collagen, ancient and modern penguin colonies will be investigated in the southern, central and northern Ross Sea to determine changes in populations and foraging locations over millennia. Most of these colonies are associated with one of three polynyas in the Ross Sea. This study will be the first of its kind to apply multiple stable isotope analyses to investigate a living species of seabird over millennia in a region where it still exists today. Results from this project will also inform management on best practices for Adelie penguin conservation affected by climate change. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70.8,-180 -71.6,-180 -72.4,-180 -73.2,-180 -74,-180 -74.8,-180 -75.6,-180 -76.4,-180 -77.2,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -77.2,160 -76.4,160 -75.6,160 -74.8,160 -74,160 -73.2,160 -72.4,160 -71.6,160 -70.8,160 -70,162 -70,164 -70,166 -70,168 -70,170 -70,172 -70,174 -70,176 -70,178 -70,-180 -70)) | POINT(170 -74) | false | false | |||||||||||||||
Collaborative Research: Climate, Changing Abundance and Species Interactions of Marine Birds and Mammals at South Georgia in Winter
|
2011454 2011285 |
2022-10-06 | Veit, Richard; Manne, Lisa; Santora, Jarrod |
|
Part I: Non-technical description: Ocean warming in the western Antarctic Peninsula and Scotia Sea in winter is among the highest worldwide. This project will quantify the impact of the climate warming on seabirds. The study area is in South Georgia in the South Atlantic with the largest and most diverse seabird colonies in the world. Detecting and understanding how physics and biology interact to bring positive or negative population changes to seabirds has long challenged scientists. The team in this project hypothesizes that 1) Cold water seabird species decline while warm water species increase due to ocean warming observed in the last 30 years; 2) All species decrease with ocean warming, affecting how they interact with each other and in doing so, decreasing their chances of survival; and 3) Species profiles can be predicted using multiple environmental variables and models. To collect present-day data to compare with observations done in 1985, 1991 and 1993, 2 cruises are planned in the austral winter; the personnel will include the three Principal Investigators, all experienced with sampling of seabirds, plankton and oceanography, with 2 graduate and 5 undergraduate students. Models will be developed based on the cruise data and the environmental change experienced in the last 30 years. The research will improve our understanding of seabird and marine mammal winter ecology, and how they interact with the environment. This project benefits NSF's goals to expand the fundamental knowledge of Antarctic systems, biota, and processes. The project will provide an exceptional opportunity to teach polar field skills to undergraduates by bringing 5 students to engage in the research cruises. To further increase polar literacy training and educational impacts, broader impacts include the production of an educational documentary that will be coupled to field surveys to assess public perceptions about climate change. Part II: Technical description: Ocean warming in the western Antarctic Peninsula and Scotia Sea in winter is among the highest worldwide. Based on previous work, the Principal Investigators in this project want to test the hypothesis that warming would have decreased seabird abundance and species associations in the South Georgia region of the South Atlantic. A main premise of this proposal is that because of marine environmental change, the structure of the seabird communities has also changed, and potentially in a manner that has diminished the mutually beneficial dynamics of positive interactions, with subsequent consequences to fitness and population trends. The study is structured by 3 main objectives: 1) identify changes in krill, bird and mammal abundance that have occurred from previous sampling off both ends of South Georgia during winter in 1985, 1991 and 1993, 2) identify pairings of species that benefit each other in searching for prey, and quantify how such relationships have changed since 1985, and 3) make predictions about how these changes in species pairing might continue given predicted future changes in climate. The novelty of the approach is the conceptual model that inter-species associations inform birds of food availability and that the associations decrease if bird abundance decreases, thus warming could decrease overall population fitness. These studies will be essential to establish if behavioral patterns in seabird modulate their response to climate change. The project will provide exceptional educational opportunity to undergraduates by bringing 5 students to participate on the cruises. To further increase polar literacy training and educational impacts, broader impacts include the production of an educational documentary that will be coupled to field surveys to assess public perceptions about climate change. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-39 -53,-38.6 -53,-38.2 -53,-37.8 -53,-37.4 -53,-37 -53,-36.6 -53,-36.2 -53,-35.8 -53,-35.4 -53,-35 -53,-35 -53.2,-35 -53.4,-35 -53.6,-35 -53.8,-35 -54,-35 -54.2,-35 -54.4,-35 -54.6,-35 -54.8,-35 -55,-35.4 -55,-35.8 -55,-36.2 -55,-36.6 -55,-37 -55,-37.4 -55,-37.8 -55,-38.2 -55,-38.6 -55,-39 -55,-39 -54.8,-39 -54.6,-39 -54.4,-39 -54.2,-39 -54,-39 -53.8,-39 -53.6,-39 -53.4,-39 -53.2,-39 -53)) | POINT(-37 -54) | false | false | |||||||||||||||
ANT LIA: Do Molecular Data Support High Endemism and Divergent Evolution of Antarctic Marine Nematodes and their Host-associated Microbiomes?
|
2132641 |
2022-08-30 | Bik, Holly | No dataset link provided | Non-technical Abstract: The long isolation and unique biodiversity of the Southern Ocean represents an important case study region for understanding the evolution and ecology of populations. This study uses modern -omics approaches to evaluate the biodiversity, evolution, and ecology of Antarctic marine nematodes and their host-associated microbiomes from a variety of habitats collected at different depths. The results are producing an important baseline dataset of Antarctic meiofaunal diversity. All genomic resources generated in this project will be publicly accessible as open-source datasets with the potential for long-term scientific reuse. This project supports diverse researchers from underrepresented backgrounds and produces a suite of Antarctic-focused digital public outreach products. Technical Abstract: Nematode worms are abundant and ubiquitous in marine sediment habitats worldwide, performing key functions such as nutrient cycling and sediment stability. However, study of this phylum suffers from a perpetual and severe taxonomic deficit, with less than 5,000 formally described marine species. Fauna from the Southern Ocean are especially poorly studied due to limited sampling and the general inaccessibility of the Antarctic benthos. This study is providing the first large-scale molecular-based investigation from marine nematodes in the Eastern Antarctic continental shelf, providing an important comparative dataset for the existing body of historical (morphological) taxonomic studies. This project uses a combination of classical taxonomy (microscopy) and modern -omics tools to achieve three overarching aims: 1) determine if molecular data supports high biodiversity and endemism of benthic meiofauna in Antarctic benthic ecosystems; 2) determine the proportion of marine nematode species that have a deep-sea versus shallow-water evolutionary origin on the Antarctic shelf, and assess patterns of cryptic speciation in the Southern Ocean; and 3) determine the most important drivers of the host-associated microbiome in Antarctic marine nematodes. This project is designed to rapidly advance knowledge of the evolutionary origins of Antarctic meiofauna, provide insight on population-level patterns within key indicator genera, and elucidate the potential ecological and environmental factors which may influence microbiome patterns. Broader Impacts activities include an intensive cruise- and land-based outreach program focusing on social media engagement and digital outreach products, raising awareness of Antarctic marine ecosystems and understudied microbial-animal relationships. The diverse research team includes female scientists, first-generation college students, and Latinx trainees. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -62,180 -64,180 -66,180 -68,180 -70,180 -72,180 -74,180 -76,180 -78,180 -80,144 -80,108 -80,72 -80,36 -80,0 -80,-36 -80,-72 -80,-108 -80,-144 -80,-180 -80,-180 -78,-180 -76,-180 -74,-180 -72,-180 -70,-180 -68,-180 -66,-180 -64,-180 -62,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||||||
ANT LIA: Collaborative Research: Genetic Underpinnings of Microbial Interactions in Chemically Stratified Antarctic Lakes
|
1937546 1937595 |
2022-07-27 | Morgan-Kiss, Rachael; Briggs, Brandon |
|
Part I: Non-technical description: Microbial communities are of more than just a scientific curiosity. Microbes represent the single largest source of evolutionary and biochemical diversity on the planet. They are the major agents for cycling carbon, nitrogen, phosphorus, and other elements through the ecosystem. Despite their importance in ecosystem function, microbes are still generally overlooked in food web models and nutrient cycles. Moreover, microbes do not live in isolation: their growth and metabolism are influenced by complex interactions with other microorganisms. This project will focus on the ecology, activity and roles of microbial communities in Antarctic Lake ecosystems. The team will characterize the genetic underpinnings of microbial interactions and the influence of environmental gradients (e.g. light, nutrients, oxygen, sulfur) and seasons (e.g. summer vs. winter) on microbial networks in Lake Fryxell and Lake Bonney in the Taylor Valley within the McMurdo Dry Valley region. Finally, the project furthers the NSF goals of training new generations of scientists by including undergraduate and graduate students, a postdoctoral researcher and a middle school teacher in both lab and field research activities. This partnership will involve a number of other outreach training activities, including visits to classrooms and community events, participation in social media platforms, and webinars. Part II: Technical description: Ecosystem function in the extreme Antarctic Dry Valleys ecosystem is dependent on complex biogeochemical interactions between physiochemical environmental factors (e.g. light, nutrients, oxygen, sulfur), time of year (e.g. summer vs. winter) and microbes. Microbial network complexity can vary in relation to specific abiotic factors, which has important implications on the fragility and resilience of ecosystems under threat of environmental change. This project will evaluate the influence of biogeochemical factors on microbial interactions and network complexity in two Antarctic ice-covered lakes. The study will be structured by three main objectives: 1) infer positive and negative interactions from rich spatial and temporal datasets and investigate the influence of biogeochemical gradients on microbial network complexity using a variety of molecular approaches; 2) directly observe interactions among microbial eukaryotes and their partners using flow cytometry, single-cell sorting and microscopy; and 3) develop metabolic models of specific interactions using metagenomics. Outcomes from amplicon sequencing, meta-omics, and single-cell genomic approaches will be integrated to map specific microbial network complexity and define the role of interactions and metabolic activity onto trends in limnological biogeochemistry in different seasons. These studies will be essential to determine the relationship between network complexity and future climate conditions. Undergraduate researchers will be recruited from both an REU program with a track record of attracting underrepresented minorities and two minority-serving institutions. To further increase polar literacy training and educational impacts, the field team will include a teacher as part of a collaboration with the successful NSF-funded PolarTREC program and participation in activities designed for public outreach. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((162 -77.616667,162.1 -77.616667,162.2 -77.616667,162.3 -77.616667,162.4 -77.616667,162.5 -77.616667,162.6 -77.616667,162.7 -77.616667,162.8 -77.616667,162.9 -77.616667,163 -77.616667,163 -77.6283336,163 -77.6400002,163 -77.6516668,163 -77.6633334,163 -77.67500000000001,163 -77.68666660000001,163 -77.69833320000001,163 -77.7099998,163 -77.7216664,163 -77.733333,162.9 -77.733333,162.8 -77.733333,162.7 -77.733333,162.6 -77.733333,162.5 -77.733333,162.4 -77.733333,162.3 -77.733333,162.2 -77.733333,162.1 -77.733333,162 -77.733333,162 -77.7216664,162 -77.7099998,162 -77.69833320000001,162 -77.68666660000001,162 -77.67500000000001,162 -77.6633334,162 -77.6516668,162 -77.6400002,162 -77.6283336,162 -77.616667)) | POINT(162.5 -77.67500000000001) | false | false | |||||||||||||||
Collaborative Research: Common Environmental Drivers Determine the Occupation Chronology of Adélie Penguins and Moss Peatbanks on the Western Antarctic Peninsula
|
2012365 2012247 2012444 |
2022-07-24 | Groff, Dulcinea; Cimino, Megan; Johnston, David | This award is funded in whole or part under the American Rescue Plan Act of 2021 (Public Law 117-2). Part I: Non-technical description: Adélie penguin colonies are declining and disappearing from the western Antarctic Peninsula. However, not all colonies in a certain area decline or disappear at the same rate. This research project will evaluate the influence of terrestrial surface properties on Adélie penguin colonies, leveraging five decades of research on seabirds near Palmer Station where an Adélie colony on Litchfield Island became extinct in 2007 while other colonies nearby are still present. The researchers will combine information obtained from remote sensing, UAS (Unoccupied Aircraft System, or drones) high-resolution maps, reconstruction of past moss banks and modeling with machine learning tools to define suitable penguin and peatbank moss habitats and explore the influence of microclimate on their distributions. In particular, the researchers are asking if guano from penguin colonies could act as fertilizers of moss banks in the presence of localized wind patters that can carry airborne nitrogen to the mosses. Modeling will relate penguin and peatbank moss spatial patterns to environmental variables and provide a greater understanding of how continued environmental change could impact these communities. The project allows for documentation of terrestrial Antarctic ecosystems in support of seabirds and provisioning of such information to the broader science community that seeks to study penguins, educating graduate and undergraduate students and a post-doctoral researcher. The research team includes two young women as Principal Investigators, one of them from an under-represented ethnic minority, first time Antarctic Principal Investigator, from an EPSCoR state (Wyoming), broadening participation in Antarctic research. Researchers will serve as student mentors through the Duke Bass Connections program entitled Biogeographic Assessment of Antarctic Coastal Habitats. This program supports an interdisciplinary team of graduate and undergraduate students collaborating with project faculty and experts on cutting-edge research bridging the classroom and the real world. Part II: Technical description: This research aims to understand the changes at the microclimate scale (meters) by analyzing present and past Adélie penguin colonies and moss peatbanks in islands around Palmer Station in the western Antarctic Peninsula – interlinked systems that are typically considered in isolation. By integrating in situ and remote data, this project will synthesize the drivers of biogeomorphology on small islands of the Antarctic Peninsula, a region of rapid change where plants and animals often co-occur and animal presence often determines the habitation of plants. A multi-disciplinary approach combine field measurements, remote sensing, UAS (Unoccupied Aircraft Systems) maps, paleoecology and modeling with machine learning to define suitable habitats and the influence of microclimates on penguin and peatbank distributions. The link between the two aspects of this study, peatbanks and penguins, is the potential source of nutrients for peat mosses from penguin guano. Peatbank and penguin distribution will be modeled and all models will be validated using in situ information from moss samples that will identify mechanistic processes. This project leverages 5 decades of seabird research in the area and high-definition remote sensing provided by the Polar Geospatial center to study the microclimate of Litchfield Island where an Adélie colony became extinct in 2007 when other colonies nearby are still present. The research team includes two early career women as Principal Investigators, one of them from an under-represented ethnic minority, first time Antarctic Principal Investigator, from an EPSCoR state (Wyoming). Researchers will serve as mentors for students through the Duke Bass Connections program entitled Biogeogrpahic Assessment of Antarctic Coastal Habitats which bridges the classroom and the real world. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-65 -64.5,-64.8 -64.5,-64.6 -64.5,-64.4 -64.5,-64.2 -64.5,-64 -64.5,-63.8 -64.5,-63.6 -64.5,-63.4 -64.5,-63.2 -64.5,-63 -64.5,-63 -64.55,-63 -64.6,-63 -64.65,-63 -64.7,-63 -64.75,-63 -64.8,-63 -64.85,-63 -64.9,-63 -64.95,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.95,-65 -64.9,-65 -64.85,-65 -64.8,-65 -64.75,-65 -64.7,-65 -64.65,-65 -64.6,-65 -64.55,-65 -64.5)) | POINT(-64 -64.75) | false | false | ||||||||||||||||
Foraging Ecology of Crabeater Seals (Lobodon Carcinophagus)
|
9981683 0003956 |
2022-06-29 | Burns, Jennifer; Costa, Daniel |
|
This collaborative study between the University of California, Santa Cruz, Duke University, the University of South Florida, the University of Alaska-Anchorage, and the University of California, San Diego will examine the identification of biological and physical features associated with the abundance and distribution of individual Antarctic predators; the identification and characterization of biological 'hot spots' within the Western Antarctic Peninsula; and the development of temporally and spatially explicit models of krill consumption within the WAP by vertebrate predators. It is one of several data synthesis and modeling components that use the data obtained in the course of the field work of the Southern Ocean Global Ocean Ecosystems Dynamics (SO GLOBEC) experiment.<br/>SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. It is currently in a synthesis and modeling phase. This collaborative project is concerned with understanding how predators utilize 'hot spots', i.e. locally intense areas of biological productivity, and how 'hot spots' might temporally and spatially structure krill predation rates, and will be integrated with other synthesis and modeling studies that deal with the hydrography primary production, and krill dynamics. | POLYGON((-70 -65,-69.5 -65,-69 -65,-68.5 -65,-68 -65,-67.5 -65,-67 -65,-66.5 -65,-66 -65,-65.5 -65,-65 -65,-65 -65.5,-65 -66,-65 -66.5,-65 -67,-65 -67.5,-65 -68,-65 -68.5,-65 -69,-65 -69.5,-65 -70,-65.5 -70,-66 -70,-66.5 -70,-67 -70,-67.5 -70,-68 -70,-68.5 -70,-69 -70,-69.5 -70,-70 -70,-70 -69.5,-70 -69,-70 -68.5,-70 -68,-70 -67.5,-70 -67,-70 -66.5,-70 -66,-70 -65.5,-70 -65)) | POINT(-67.5 -67.5) | false | false | |||||||||||||||
CAREER: Using Otolith Chemistry to Reveal the Life History of Antarctic Toothfish in the Ross Sea, Antarctica: Testing Fisheries and Climate Change Impacts on a Top Fish Predator
|
2141555 |
2022-05-27 | Brooks, Cassandra | No dataset link provided | The Ross Sea, Antarctica, is one of the last large intact marine ecosystems left in the world, yet is facing increasing pressure from commercial fisheries and environmental change. It is the most productive stretch of the Southern Ocean, supporting an array of marine life, including Antarctic toothfish – the region’s top fish predator. While a commercial fishery for toothfish continues to grow in the Ross Sea, fundamental knowledge gaps remain regarding toothfish ecology and the impacts of toothfish fishing on the broader Ross Sea ecosystem. Recognizing the global value of the Ross Sea, a large (>2 million km2) marine protected area was adopted by the multi-national Commission for the Conservation of Antarctic Marine Living Resources in 2016. This research will fill a critical gap in the knowledge of Antarctic toothfish and deepen understanding of biological-physical interactions for fish ecology, while contributing to knowledge of impacts of fishing and environmental change on the Ross Sea system. This work will further provide innovative tools for studying connectivity among geographically distinct fish populations and for synthesizing and assessing the efficacy of a large-scale marine protected area. In developing an integrated research and education program in engaged scholarship, this project seeks to train the next generation of scholars to engage across the science-policy-public interface, engage with Southern Ocean stakeholders throughout the research process, and to deepen the public’s appreciation of the Antarctic. A major research priority among Ross Sea scientists is to better understand the life history of the Antarctic toothfish and test the efficacy of the Ross Sea Marine Protected Area (MPA) in protecting against the impacts of overfishing and climate change. Like growth rings of a tree, fish ear bones, called otoliths, develop annual layers of calcium carbonate that incorporates elements from their environment. Otoliths offer information on the fish’s growth and the surrounding ocean conditions. Hypothesizing that much of the Antarctic toothfish life cycle is structured by ocean circulation, this research employs a multi-disciplinary approach combining age and growth work with otolith chemistry testing, while also utilizing GIS mapping. The project will measure life history parameters as well as trace elements and stable isotopes in otoliths in three distinct sets collected over the last four decades in the Ross Sea. The information will be used to quantify the transport pathways Antarctic toothfish use across their life history, and across time, in the Ross Sea. The project will assess if toothfish populations from the Ross Sea are connected more widely across the Antarctic. By comparing life history and otolith chemistry data across time, the researchers will assess change in life history parameters and spatial dynamics and seek to infer if these changes are driven by fishing or climate change. Spatially mapping of these data will allow an assessment of the efficacy of the Ross Sea MPA in protecting toothfish and where further protections might be needed. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -71.5,-177.1 -71.5,-174.2 -71.5,-171.3 -71.5,-168.4 -71.5,-165.5 -71.5,-162.6 -71.5,-159.7 -71.5,-156.8 -71.5,-153.9 -71.5,-151 -71.5,-151 -72.25,-151 -73,-151 -73.75,-151 -74.5,-151 -75.25,-151 -76,-151 -76.75,-151 -77.5,-151 -78.25,-151 -79,-153.9 -79,-156.8 -79,-159.7 -79,-162.6 -79,-165.5 -79,-168.4 -79,-171.3 -79,-174.2 -79,-177.1 -79,180 -79,178.1 -79,176.2 -79,174.3 -79,172.4 -79,170.5 -79,168.6 -79,166.7 -79,164.8 -79,162.9 -79,161 -79,161 -78.25,161 -77.5,161 -76.75,161 -76,161 -75.25,161 -74.5,161 -73.75,161 -73,161 -72.25,161 -71.5,162.9 -71.5,164.8 -71.5,166.7 -71.5,168.6 -71.5,170.5 -71.5,172.4 -71.5,174.3 -71.5,176.2 -71.5,178.1 -71.5,-180 -71.5)) | POINT(-175 -75.25) | false | false | |||||||||||||||
Collaborative Research: Biogeography, Population Genetics, and Ecology of two Common Species of Fleshy Red Algae in McMurdo Sound
|
2037670 2037598 |
2022-05-23 | Heine, John; Goldberg, Nisse; Alberto, Filipe | No dataset link provided | Climate change is changing the number of sea-ice free days in coastal polar environments, which is impacting Antarctic communities. This study will evaluate the change in macroalgae (seaweed) communities to increased light availability in order to predict if macroalgae will be able to spread to newly ice-free locations faster than invertebrates (e.g., sponges, bryozoans, tunicates, and polychaetes) in shallow underwater rocky habitats. Study sites will include multiple locations in McMurdo Sound, Ross Sea, Antarctica. This study will establish patterns in plant properties, genetic diversity and reproductive characteristics of two species of seaweeds, Phyllophora antarctica and Iridaea cordata in relation to depth and light. Long-term changes will be assesed by comparing to results from a survey in 1980. This will be the first study in the region to estimate the potential effects of climate, in particular reductions in annual sea ice cover and resulting increase in light intensity and duration, on shifts in macroalgal communities in McMurdo Sound. Three-dimensional photogrammetry will also be used to evaluate benthic community structure on the newly discovered offshore Dellbridge Seamount. Visualization from the video footage will be shared with web-based interactive applications to engage and educate the public in polar ecology and factors causing changes in marine community ecosystem structure in this important region. This project is evaluating macroalgae biogeography in Antarctic coastal waters near McMurdo Sound, a relatively understudied region that is experiencing large changes in fast sea ice coverage. The population ecology and genetic diversity of nearshore shallow and deeper offshore benthic macroalgal communities of Phyllophora antarctica and Iridaea cordata will be assessed for percentage cover, biomass, blade length, and reproductive characteristics at seven locations: Cape Royds, Cape Evans, Little Razorback Islands, Turtle Rock, Arrival Heights, Granite Harbor, and Dellbridge Seamount in McMurdo Sound, Antarctica. The team is also assessing differential reproductive successes at different depths and comparing results to populations surveyed in 1980. The genetic diversity of the two species is being estimated using a combination of whole genome sequencing and species-specific microsatellite genetic markers. Samples from this study will be compared to samples collected from other regions in Antarctica such as the South Shetland Islands and Antarctic Peninsula. In addition, a macroalgal assemblage and 3D models of the community structure will be generated using photogrammetry from the newly discovered Dellbridge Seamount that is located 2 km offshore in McMurdo Sound. With the addition of photogrammetry and 3D visualization to this research, web-based applications will be used to engage and educate the public in subtidal polar ecology, population genetics, and the importance of Antarctic science to their lives. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((162 -76,162.8 -76,163.6 -76,164.4 -76,165.2 -76,166 -76,166.8 -76,167.6 -76,168.4 -76,169.2 -76,170 -76,170 -76.3,170 -76.6,170 -76.9,170 -77.2,170 -77.5,170 -77.8,170 -78.1,170 -78.4,170 -78.7,170 -79,169.2 -79,168.4 -79,167.6 -79,166.8 -79,166 -79,165.2 -79,164.4 -79,163.6 -79,162.8 -79,162 -79,162 -78.7,162 -78.4,162 -78.1,162 -77.8,162 -77.5,162 -77.2,162 -76.9,162 -76.6,162 -76.3,162 -76)) | POINT(166 -77.5) | false | false | |||||||||||||||
NSFGEO-NERC: Integrating Individual Personality Differences in the Evolutionary Ecology of a Seabird in the Rapidly Changing Polar Environment
|
1951500 |
2021-12-08 | Jenouvrier, Stephanie; Patrick, Samantha | Part I: Nontechnical description: This award represents a collaborative geoscience research effort between US NSF and UK Natural Environment Research Council (NERC) researchers with efforts in each nation funded by their respective countries (Dear Colleague Letter NSF 16-132). The research will focus on understanding the links between behavior, ecology, and evolution in a Southern Ocean wandering albatross population in response to global changes in climate and in exploitation of natural resources. The most immediate response of animals to global change typically is behavioral, and this work will provide a more comprehensive understanding of how differences individual bird behavior affect evolution and adaptation for the population under changing environments. Characterization of albatross personality, life-history traits, and population dynamics collected over long time scales will be used to develop robust forecasting of species persistence in the face of future global changes. The results of this project will feed into conservation and management decisions for endangered Southern Ocean species. The work will also be used to provide specific research training at all levels, including a postdoctoral scholar, graduate students and K-12 students. It will also support education for the public about impacts from human-induced activities on our polar ecosystems using animations, public lectures, printed and web media. Part II: Technical description Past research has shown that individual animal personalities range over a continuum of behavior, such that some individuals are consistently more aggressive, more explorative, and bolder than others. How the phenotypic distributions of personality and foraging behavior types within a population is created and maintained by ecological (demographic and phenotypic plasticity) and evolutionary (heritability) processes remain an open question. Differences in personality traits determine how individuals acquire resources and how they allocate these to reproduction and survival. Although some studies have found different foraging behaviors or breeding performances between personality types, none have established the link between personality differences in foraging behaviors and life histories (both reproduction and survival, and their covariations) in the context of global change. Furthermore, plasticity in foraging behaviors is not considered in the pace-of-life syndrome, which has potentially hampered our ability to find covariation between personality and life history trade-off. This project will fill these knowledge gaps and develop an eco-evolutionary model of the complex interactions among individual personality and foraging plasticity, heritability of personality and foraging behaviors, life history strategies, population dynamics in a changing environment (fisheries and climate) using a long-term database consisting of ~1,800 tagged wandering albatross seabirds (Diomedea exulans) with defined individual personalities and life history traits breeding in the Southern Ocean. Climate projections from IPCC atmospheric-oceanic global circulation models will be used to provide projections of population structure under future global change conditions. Specifically, the team will (1) characterize the differences in life history strategies along the shy-bold continuum of personalities and across environmental conditions; (2) develop the link between phenotypic plasticity in foraging effort and personality; (3) characterize the heritability of personality and foraging behaviors; (4) develop a stochastic eco-evolutionary model to predict population growth rates in a changing environment. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||||||||||||
NSFGEO-NERC: Collaborative Research "P2P: Predators to Plankton -Biophysical Controls in Antarctic Polynyas"
|
2040199 2040048 2040571 |
2021-10-25 | Ainley, David; Santora, Jarrod; Varsani, Arvind; Smith, Walker; Ballard, Grant; Schmidt, Annie |
|
NSFGEO-NERC Collaborative Research: P2P: Predators to Plankton – Biophysical controls in Antarctic polynyas Part I: Non-technical description: The Ross Sea, a globally important ecological hotspot, hosts 25% to 45% of the world populations of Adélie and Emperor penguins, South Polar skuas, Antarctic petrels, and Weddell seals. It is also one of the few marine protected areas within the Southern Ocean, designed to protect the workings of its ecosystem. To achieve conservation requires participation in an international research and monitoring program, and more importantly integration of what is known about penguin as predators and the biological oceanography of their habitat. The project will acquire data on these species’ role within the local food web through assessing of Adélie penguin feeding grounds and food choices, while multi-sensor ocean gliders autonomously quantify prey abundance and distribution as well as ocean properties, including phytoplankton, at the base of the food web. Additionally, satellite imagery will quantify sea ice and whales, known penguin competitors, within the penguins’ foraging area. Experienced and young researchers will be involved in this project, as will a public outreach program that reaches more than 200 school groups per field season, and with an excess of one million visits to a website on penguin ecology. Lessons about ecosystem change, and how it is measured, i.e. the STEM fields, will be emphasized. Results will be distributed to the world scientific and management communities. Part II: Technical description: This project, in collaboration with the United Kingdom (UK) National Environmental Research Council (NERC), assesses food web structure in the southwestern Ross Sea, a major portion of the recently established Ross Sea Region Marine Protected Area that has been designed to protect the region’s food web structure, dynamics and function. The in-depth, integrated ecological information collected in this study will contribute to the management of this system. The southwestern Ross Sea, especially the marginal ice zone of the Ross Sea Polynya (RSP), supports global populations of iconic and indicator species: 25% of Emperor penguins, 30% of Adélie penguins, 50% of South Polar skuas, and 45% of Weddell seals. However, while individually well researched, the role of these members as predators has been poorly integrated into understanding of Ross Sea food web dynamics and biogeochemistry. Information from multi-sensor ocean gliders, high-resolution satellite imagery, diet analysis and biologging of penguins, when integrated, will facilitate understanding of the ‘preyscape’ within the intensively investigated biogeochemistry of the RSP. UK collaborators will provide state-of-the-art glider technology, glider programming, ballasting, and operation and expertise to evaluate the oceanographic conditions of the study area. Several young scientists will be involved, as well as an existing outreach program already developed that reaches annually more than 200 K-12 school groups and has more than one million website visits per month. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((164 -74,165.6 -74,167.2 -74,168.8 -74,170.4 -74,172 -74,173.6 -74,175.2 -74,176.8 -74,178.4 -74,180 -74,180 -74.4,180 -74.8,180 -75.2,180 -75.6,180 -76,180 -76.4,180 -76.8,180 -77.2,180 -77.6,180 -78,178.4 -78,176.8 -78,175.2 -78,173.6 -78,172 -78,170.4 -78,168.8 -78,167.2 -78,165.6 -78,164 -78,164 -77.6,164 -77.2,164 -76.8,164 -76.4,164 -76,164 -75.6,164 -75.2,164 -74.8,164 -74.4,164 -74)) | POINT(172 -76) | false | false | |||||||||||||||
Collaborative Research: Impacts of Local Oceanographic Processes on Adelie Penguin Foraging Ecology Over Palmer Deep
|
1327248 1324313 1326167 1331681 1326541 |
2021-09-27 | Bernard, Kim; Kohut, Josh; Oliver, Matthew; Fraser, William; Winsor, Peter |
|
The application of innovative ocean observing and animal telemetry technology over Palmer Deep (Western Antarctic Peninsula; WAP) is leading to new understanding, and also to many new questions related to polar ecosystem processes and their control by bio-physical interactions in the polar environment. This multi-platform field study will investigate the impact of coastal physical processes (e.g. tides, currents, upwelling events, sea-ice) on Adélie penguin foraging ecology in the vicinity of Palmer Deep, off Anvers Island, WAP. Guided by real-time surface convergence and divergences based on remotely sensed surface current maps derived from a coastal network of High Frequency Radars (HFRs), a multidisciplinary research team will adaptively sample the distribution of phytoplankton and zooplankton, which influence Adélie penguin foraging ecology, to understand how local oceanographic processes structure the ecosystem. Core educational objectives of this proposal are to increase awareness and understanding of (i) global climate change, (ii) the unique WAP ecosystem, (iii) innovative methods and technologies used by the researchers, and (iv) careers in ocean sciences, through interactive interviews with scientists, students, and technicians, during the field work. These activities will be directed towards instructional programming for K-16 students and their teachers. Researchers and educators will conduct formative and summative evaluation to improve the educational program and measure its impacts respectively. | POLYGON((-65 -62,-64.5 -62,-64 -62,-63.5 -62,-63 -62,-62.5 -62,-62 -62,-61.5 -62,-61 -62,-60.5 -62,-60 -62,-60 -62.3,-60 -62.6,-60 -62.9,-60 -63.2,-60 -63.5,-60 -63.8,-60 -64.1,-60 -64.4,-60 -64.7,-60 -65,-60.5 -65,-61 -65,-61.5 -65,-62 -65,-62.5 -65,-63 -65,-63.5 -65,-64 -65,-64.5 -65,-65 -65,-65 -64.7,-65 -64.4,-65 -64.1,-65 -63.8,-65 -63.5,-65 -63.2,-65 -62.9,-65 -62.6,-65 -62.3,-65 -62)) | POINT(-62.5 -63.5) | false | false | |||||||||||||||
Antarctica as a Model System for Responses of Terrestrial Carbon Balance to Warming
|
1947562 1643871 |
2021-08-21 | van Gestel, Natasja |
|
Part I: Non-technical description: Earth’s terrestrial ecosystems have the potential to either slow down or hasten the pace of climate change. The direction depends in part on both plant and microbial responses to warming. This study uses Antarctica as a model ecosystem to study the carbon balance of a simplified ecosystem (simplified compared to terrestrial ecosystems elsewhere) in response to a warming treatment. Carbon balance is dictated by sequestered carbon (through photosynthesis) and released carbon (plant and microbial respiration). Hence, to best assess plant and microbial responses to warming, this study uses a plant gradient that starts at the glacier (no plants, only soil microbes) to an old site entirely covered by plants. Experimental warming in the field is achieved by open-top chambers that warm the air and soil inside. The net ecosystem carbon exchange, the net result of sequestered and released carbon, will be measured in warmed and control plots with a state-of-the art gas exchange machine. Laboratory temperature incubation studies will supplement field work to attribute changes in carbon fluxes to individual plant species and soil microbial taxa (i.e., “species”). Data from this study will feed into earth system climate change models. The importance of this study will be shared with the broader community through the production of a video series created by an award-winning science media production company, an Antarctic blog, and through interactions with schools in the United States (on-site through Skype and in-person visits). Part II: Technical description: Responses of the carbon balance of terrestrial ecosystems to warming will feed back to the pace of climate change, but the size and direction of this feedback are poorly constrained. Least known are the effects of warming on carbon losses from soil, and clarifying the major microbial controls is an important research frontier. This study uses a series of experiments and observations to investigate microbial, including autotrophic taxa, and plant controls of net ecosystem productivity in response to warming in intact ecosystems. Field warming is achieved using open-top chambers paired with control plots, arrayed along a productivity gradient. Along this gradient, incoming and outgoing carbon fluxes will be measured at the ecosystem-level. The goal is to tie warming-induced shifts in net ecosystem carbon balance to warming effects on soil microbes and plants. The field study will be supplemented with lab temperature incubations. Because soil microbes dominate biogeochemical cycles in Antarctica, a major focus of this study is to determine warming responses of bacteria, fungi and archaea. This is achieved using a cutting-edge stable isotope technique, quantitative stable isotope probing (qSIP) developed by the proposing research team, that can identify the taxa that are active and involved in processing new carbon. This technique can identify individual microbial taxa that are actively participating in biogeochemical cycling of nutrients (through combined use of 18O-water and 13C-bicarbonate) and thus can be distinguished from those that are simply present (cold-preserved). The study further assesses photosynthetic uptake of carbon by the vegetation and their sensitivity to warming. Results will advance research in climate change, plant and soil microbial ecology, and ecosystem modeling. Science communication will be achieved through an informative video series, a daily Antarctic blog, and online- and in-person visits to schools in the United States. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-65 -64.5,-64.8 -64.5,-64.6 -64.5,-64.4 -64.5,-64.2 -64.5,-64 -64.5,-63.8 -64.5,-63.6 -64.5,-63.4 -64.5,-63.2 -64.5,-63 -64.5,-63 -64.55,-63 -64.6,-63 -64.65,-63 -64.7,-63 -64.75,-63 -64.8,-63 -64.85,-63 -64.9,-63 -64.95,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.95,-65 -64.9,-65 -64.85,-65 -64.8,-65 -64.75,-65 -64.7,-65 -64.65,-65 -64.6,-65 -64.55,-65 -64.5)) | POINT(-64 -64.75) | false | false | |||||||||||||||
CAREER: Ecosystem Impacts of Microbial Succession and Production at Antarctic Methane Seeps
|
2046800 |
2021-08-21 | Thurber, Andrew | No dataset link provided | Part I: Non-technical description: Methane is one of the more effective atmospheric gases at retaining heat in the lower atmosphere and the earth’s crust contains large quantities of methane. Research that identifies the factors that control methane’s release into the atmosphere is critical to understanding and mitigating climate change. One of the most effective natural processes that inhibits the release of methane from aquatic habitats is a community of bacteria and Archaea (microbes) that use the chemical energy stored in methane, transforming methane into less-climate-sensitive compounds. The amount of methane that may be released in Antarctica is unknown, and it is unclear which microbes consume the methane before it is released from the ocean in Antarctica. This project will study one of the few methane seeps known in Antarctica to advance our understanding of which microbes inhibit the release of methane in marine environments. The research will also identify if methane is a source of energy for other Antarctic organisms. The researchers will analyze the microbial species associated with methane consumption over several years of field and laboratory research based at an Antarctic US station, McMurdo. This project clearly expands the fundamental knowledge of Antarctic systems, biota, and processes outlined as a goal in the Antarctic solicitation. This research communicates and produces educational material for K-12, college, and graduate students to inspire and inform the public about the role Antarctic ecosystems play in the global environment. This project also provides a young professor an opportunity to establish himself as an expert in the field of Antarctic microbial ecology to help solidify his academic career. Part II: Technical description: Microbes act as filter to methane release from the ocean into the atmosphere, where microbial chemosynthetic production harvests the chemical energy stored in this greenhouse gas. In spite of methane reservoirs in Antarctica being as large as Arctic permafrost, we know only a little about the taxa or dominant processes involved in methane consumption in Antarctica. The principal investigator will undertake a genomic and transcriptomic study of microbial communities developed and still developing after initiation of methane seepage in McMurdo Sound. An Antarctic methane seep was discovered at this location in 2012 after it began seeping in 2011. Five years after it began releasing methane, the methane-oxidizing microbial community was underdeveloped and methane was still escaping from the seafloor. This project will be essential in elucidating the response of microbial communities to methane release and identify how methane oxidation occurs within the constraints of the low polar temperatures. This investigation is based on 4 years of field sampling and will establish a time series of the development of cold seep microbial communities in Antarctica. A genome-to-ecosystem approach will establish how the Southern Ocean microbial community is adapted to prevent methane release into the ocean. As methane is an organic carbon source, results from this study will have implications for the Southern Ocean carbon cycle. Two graduate students will be trained and supported with undergraduates participating in laboratory activities. The researcher aims to educate, inspire and communicate about Antarctic methane seeps to a broad community. A mixed-media approach, with videos, art and education in schools will be supported in collaboration with a filmmaker, teachers and a visual artist. Students will be trained in filmmaking and K-12 students from under-represented communities will be introduced to Antarctic science through visual arts. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((162 -77,162.6 -77,163.2 -77,163.8 -77,164.4 -77,165 -77,165.6 -77,166.2 -77,166.8 -77,167.4 -77,168 -77,168 -77.1,168 -77.2,168 -77.3,168 -77.4,168 -77.5,168 -77.6,168 -77.7,168 -77.8,168 -77.9,168 -78,167.4 -78,166.8 -78,166.2 -78,165.6 -78,165 -78,164.4 -78,163.8 -78,163.2 -78,162.6 -78,162 -78,162 -77.9,162 -77.8,162 -77.7,162 -77.6,162 -77.5,162 -77.4,162 -77.3,162 -77.2,162 -77.1,162 -77)) | POINT(165 -77.5) | false | false | |||||||||||||||
Collaborative Research: A New Baseline for Antarctic Blue and Fin Whales
|
1927709 1947453 1927742 |
2021-08-10 | Fleming, Alyson; Friedlaender, Ari; McCarthy, Matthew; Hunt, Kathleen |
|
Blue and fin whales are the two largest animals on the planet, and the two largest krill predators in the Southern Ocean. Commercial whaling in Antarctic waters started in the early 1900?s, and by the 1970's whale populations were reduced from thousands to only a few hundred individuals. The absence of data about whale biology and ecology prior to these large population reductions has limited our understanding of how the ecosystem functioned when cetacean populations were more robust. However, an archive of baleen plates from 800 Antarctic blue and fin whales harvested between 1946 and 1948 was recently rediscovered in the Smithsonian's National Museum of Natural History that will shed insight into historic whale ecology. As baleen grows, it incorporates circulating hormones, and compounds from the whale's diet, recording continuous biological and oceanographic information across multiple years. This project will apply a suite of modern molecular techniques to these archived specimens to ask how blue and fin whale foraging and reproduction responded to climate variability, changes at the base of the food web, and whaling activities in the early 1940s. By comparison with more modern datasets, these investigations will fill major gaps in understanding of the largest krill predators, their response to disturbance and environmental change, and the impact that commercial whaling has had on the structure and function of the Antarctic marine ecosystem. This project will improve stem education through annual programming for middle and high school girls in partnership with UNCW's Marine Quest program. Public outreach will occur through partnerships with the Smithsonian and the International Association of Antarctic Tour Operators to deliver emerging research on Antarctic ecosystems and highlight the contemporary relevance and scientific value of museum collections. Examination of past conditions and adaptations of polar biota is fundamental to predictions of future climate change scenarios. The baleen record that will be used in this study forms an ideal experimental platform for studying bottom-up, top-down and anthropogenic impacts on blue and fin whales. This historic baleen archive includes years with strong climate and temperature anomalies allowing the influence of climate variability on predators and the ecosystems that support them to be examined. Additionally, the impact of commercial whaling on whale stress levels will be investigated by comparing years of intensive whaling with the non-whaling years of WWII, both of which are captured in the time series. There are three main approaches to this project. First, bulk stable isotope analysis will be used to examine the trophic dynamics of Antarctic blue and fin whales. Second, compound-specific stable isotope analyses (CSIA-AA) will characterize the biogeochemistry of the base of the Antarctic food web. Finally, analyses of hormone levels in baleen will reveal differences in stress levels and reproductive status of individuals, and inform understanding of cetacean population biology. This project will generate a new public data archive to foster research opportunities across various components of the OPP program, all free from the logistical constraints of Antarctic field work. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((150 -60,153 -60,156 -60,159 -60,162 -60,165 -60,168 -60,171 -60,174 -60,177 -60,180 -60,180 -61.5,180 -63,180 -64.5,180 -66,180 -67.5,180 -69,180 -70.5,180 -72,180 -73.5,180 -75,177 -75,174 -75,171 -75,168 -75,165 -75,162 -75,159 -75,156 -75,153 -75,150 -75,150 -73.5,150 -72,150 -70.5,150 -69,150 -67.5,150 -66,150 -64.5,150 -63,150 -61.5,150 -60)) | POINT(165 -67.5) | false | false | |||||||||||||||
Physiological Ecology of "Herbivorous" Antarctic Copepods
|
1746087 |
2021-08-06 | Tarrant, Ann | Animals in the polar oceans have adapted to dramatic seasonal changes in day length, food availability, and ice cover, as well as to consistently cold waters. This project focuses on the adaptations of copepods - small animals that live in the water column and are an important food source to many different predators. The field studies will take place in the western Antarctic Peninsula, an environment and ecosystem that is rapidly changing. Antarctic copepods have developed particular feeding and behavioral strategies to survive in their very seasonal environment, however it is not known how each of these species will respond to environmental change. The overall goal of this project is to examine and compare these adaptations across species and to understand how each species responds to short-term changes in food availability. The project contains three main objectives: the first objective is to compare the sets of genes across species, especially looking at genes related to storage of energy from food. The second objective is to measure and compare the responses of copepods to changes in food availability. The third objective is to determine how variation across the western Antarctic Pensinsula habitat affects the feeding condition of the copepods. To make the data more useful to the broader research community, a database will be developed enabling easy comparison of genetic information between copepod species. This project will provide hands-on training opportunities to graduate and undergraduate student and will seek to recruit students from underrepresented groups. Results and scientific concepts will be shared through outreach activities, including an expedition blog, a series of interactive animations, and public presentations. Polar marine organisms have adapted to dramatic seasonal changes in photoperiod, light intensity, and ice cover, as well as to cold but stable thermal environments. The western Antarctic Peninsula, the focal region for the field studies, has experienced rapid warming and ice melt. While it is difficult to predict exactly how physical conditions in this region will change, effects on species distributions have already been documented. Large Antarctic copepods in the families Calanidae and Rhincalanidae are dominant components of the mesozooplankton that use different metabolic and behavioral strategies to optimize their use of a highly seasonal food supply. The overall goal of this project is to leverage molecular approaches to examine the physiological and metabolic adaptations at the individual and species level. The project focuses on three main objectives: the first objective is to characterize the gene complement and stage-specific gene expression patterns in Antarctic copepods within an evolutionary context. The second objective is to measure and compare the physiological and molecular responses of juvenile copepods to variable feeding conditions. The third objective is to characterize metabolic variation within natural copepod populations. The metabolically diverse Antarctic copepods also provide an excellent opportunity to compare mechanisms regulating energy storage and utilization and to test hypotheses regarding the roles of specific genes. The field studies will aim to utilize information from an ongoing long term research program (the Palmer Long-Term Ecological Research), which complements the ongoing program and provides extensive context for this project. To make the data more useful to the research community, a database will be developed facilitating comparison of transcriptomes between copepod species. This project will provide hands-on training opportunities to graduate and undergraduate students. Efforts will be made to recruit students who are members of underrepresented minorities. Results and scientific concepts will be broadly disseminated through an expedition blog, a series of interactive animations, and public presentations. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-80 -60,-77.5 -60,-75 -60,-72.5 -60,-70 -60,-67.5 -60,-65 -60,-62.5 -60,-60 -60,-57.5 -60,-55 -60,-55 -61,-55 -62,-55 -63,-55 -64,-55 -65,-55 -66,-55 -67,-55 -68,-55 -69,-55 -70,-57.5 -70,-60 -70,-62.5 -70,-65 -70,-67.5 -70,-70 -70,-72.5 -70,-75 -70,-77.5 -70,-80 -70,-80 -69,-80 -68,-80 -67,-80 -66,-80 -65,-80 -64,-80 -63,-80 -62,-80 -61,-80 -60)) | POINT(-67.5 -65) | false | false | ||||||||||||||||
CAREER: Foraging Ecology and Physiology of Emperor Penguins in the Ross Sea
|
1943550 |
2021-07-20 | McDonald, Birgitte |
|
Part I: Non-technical Summary Understanding the mechanisms that animals use to find and acquire food is a fundamental question in ecology. The survival and success of marine predators depends on their ability to locate prey in a variable or changing environment. To do this the predators need to be able to adjust foraging behavior depending on the conditions they encounter. Emperor penguins are ice-dependent, top predators in Antarctica. However, they are vulnerable to environmental changes that alter food web or sea ice coverage, and environmental change may lead to changes in penguin foraging behavior, and ultimately survival and reproduction success. Despite their importance in the Southern Ocean ecosystem, relatively little is known about the specific mechanisms Emperor penguins use to find and acquire food. This study combines a suite of technological and analytical tools to gain essential knowledge on Ross Sea penguin foraging energetics, ecology, and habitat use during critical periods in their life history, especially during late chick-rearing periods. Energy management is particularly crucial during this time as parents need to feed both themselves and their rapidly growing offspring, while being constrained to regions near the colony. Penguin ecology and habitat preference will also be evaluated after the molt and through early reproduction. This study fills important ecological knowledge gaps on the energy balance, diet, and habitat use by penguins during these critical periods. Finally, the project furthers the NSF goals of training new generations of scientists through training of undergraduates, graduate students and a postdoctoral researcher. Public outreach activities will be aligned with another NSF funded project designed to provide science training in afterschool and camp programs that target underrepresented groups. Part II: Technical summary This project will identify behavioral and physiological variability in foraging Emperor penguins that can be directly linked to individual success in the marine environment using an ecological theoretical framework during two critical life history stages. First, this project will investigate the foraging energetics, ecology, and habitat use of Emperor penguins at Cape Crozier using fine-scale movement and video data loggers during the energetically demanding life history phase of late chick-rearing. Specifically, this study will 1) Estimate the relationship of foraging efficiency to foraging behavior and diet using an optimal foraging theory framework to identify what environmental or physiological constraints influence foraging behavior; 2) Investigate the inter- and intra-individual behavioral variability exhibited by emperor penguins, which is essential to predict how resilient these penguins are to environmental change; and 3) Integrate penguin foraging efficiency data with environmental data to identify important habitat. Next the researchers will study the ecology and habitat preference after the molt and through early reproduction using satellite-linked data loggers. The team will: 1) Investigate penguin inter- and intra-individual behavioral variability during the three-month post-molt and early winter foraging trips; and 2) Integrate penguin behavioral data with environmental data to identify which environmental features are indicative of habitat preference when penguins are not constrained to returning to the colony to feed a chick. These fine- and coarse-scale data will be combined with climate predictions to create predictive habitat models. The education objectives of this CAREER project are designed to inspire, engage, and train the next generation of scientists using the data and video generated while investigating Emperor penguins in the Antarctic ecosystem. This includes development of two university courses, training of undergraduate and graduate students, and a collaboration with the NSF funded “Polar Literacy: A model for youth engagement and learning” program to develop after school and camp curriculum that target undeserved and underrepresented groups. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((168 -77,168.3 -77,168.6 -77,168.9 -77,169.2 -77,169.5 -77,169.8 -77,170.1 -77,170.4 -77,170.7 -77,171 -77,171 -77.1,171 -77.2,171 -77.3,171 -77.4,171 -77.5,171 -77.6,171 -77.7,171 -77.8,171 -77.9,171 -78,170.7 -78,170.4 -78,170.1 -78,169.8 -78,169.5 -78,169.2 -78,168.9 -78,168.6 -78,168.3 -78,168 -78,168 -77.9,168 -77.8,168 -77.7,168 -77.6,168 -77.5,168 -77.4,168 -77.3,168 -77.2,168 -77.1,168 -77)) | POINT(169.5 -77.5) | false | false | |||||||||||||||
EAGER: Collaborative Research: Acoustic Ecology of Foraging Antarctic Blue Whales in the Vicinity of Antarctic Krill
|
1746148 |
2021-07-13 | Sirovic, Ana; Stafford, Kathleen |
|
Understanding the interaction between blue whales and their prey is essential for understanding Antarctic ecosystem dynamics. In the austral summer of 2019 an international interdisciplinary research voyage will head to the Antarctic with the overall goal of mapping Antarctic krill and blue whale distributions to determine if foraging preferences of blue whales are dictated in part by the density and shape of Antarctic krill swarms. This research voyage will combine advanced research technologies (including autonomous underwater vehicles, short term-tags, photogrammetry, and ship-based, real-time passive listening and active echosounders) to answer questions about how the density, swarm shape and behavior of Antarctic krill influence Antarctic blue whales. U.S. participation on this voyage on an Australian research vessel will allow collection of concurrent predator and prey data through the use of passive listening and echosounders from a fixed mooring. By coupling moored data collection with the ship-based survey focusing on Antarctic blue whale behavior and krill dynamics, the project will contribute to the understanding of basic questions relating to the dynamics between blue whales and their prey as well as adding to the development of instrumentation and technologies that will enhance current capabilities for in situ observing on the continent and the surrounding ice-covered waters. The project will provide an educational platform for high school students and the general public to virtually experience Antarctica via "virtual sailing" through a project website and blog. Students and the general public also will be allowed the opportunity to participate in post-cruise data analysis. The Australian Antarctic Division and the University of Tasmania will lead an international voyage to the Antarctic in the austral summer of 2019. The overall goal of the voyage will be to map Antarctic krill (Euphausia superba) and blue whale (Balaenoptera musculus) distributions to determine if the foraging preferences of blue whales are dictated in part by the density and shape of Antarctic krill swarms. US participation in voyage will entail the deployment of passive and active acoustic instrumentation on a fixed mooring in concert with real-time acoustic and visual tracking and localizing of blue whales that will then allow better directing of ship operations towards aggregations of animals such that fine-scale acoustic tracking and prey field mapping can be achieved. This approach will be the first time such an acoustic system is deployed in Antarctica and used in an integrative fashion to assess foraging behaviors and krill. Thus, the project will advance understanding of the relationships between the acoustic ecology of blue whales, krill abundance, and blue whale densities. The technology deployment and testing will also be used to assess its potential use in ice-covered waters for similar studies in the future. Broader impacts of this project will occur through outreach and education, as well as through the collaborations with the broader international scientific community. The project will provide educational platforms for high school students and general public to virtually experience Antarctica. Research findings will be communicated to both the scientific community and the wider public through peer-reviewed publications, presentations, student lectures, seminars and communication through appropriate media channels by institutional communications teams. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((140 -65.5,140.8 -65.5,141.6 -65.5,142.4 -65.5,143.2 -65.5,144 -65.5,144.8 -65.5,145.6 -65.5,146.4 -65.5,147.2 -65.5,148 -65.5,148 -65.57,148 -65.64,148 -65.71,148 -65.78,148 -65.85,148 -65.92,148 -65.99,148 -66.06,148 -66.13,148 -66.2,147.2 -66.2,146.4 -66.2,145.6 -66.2,144.8 -66.2,144 -66.2,143.2 -66.2,142.4 -66.2,141.6 -66.2,140.8 -66.2,140 -66.2,140 -66.13,140 -66.06,140 -65.99,140 -65.92,140 -65.85,140 -65.78,140 -65.71,140 -65.64,140 -65.57,140 -65.5)) | POINT(144 -65.85) | false | false | |||||||||||||||
Foraging Behavior and Ecological Role of the Least Studied Antarctic Krill Predator, the Antarctic Minke Whale (Balaenoptera Bonaerensis)
|
1643877 |
2021-06-25 | Friedlaender, Ari |
|
The Antarctic Peninsula is warming and one of the consequences is a decrease in sea ice cover. Antarctic minke whales are the largest ice-obligate krill predator in the region, yet- little is known about their foraging behavior and ecology. The goals of the project are to use a suite of new technological tools to measure the underwater behavior of the whales and better understand how they exploit the sea ice habitat. Using video-recording motion-sensing tags, the underwater movements of the whales can be reconstructed and it can be determine where and when they feed. UAS (unmanned aerial systems) will be used to generate real-time images of sea ice cover that will be linked with tag data to determine how much time whales spend in sea ice versus open water, and how the behavior of the whales changes between these two habitats. Lastly, scientific echosounders will be used to characterize the prey field that the whales are exploiting and differences in krill availability inside and out of the ice will be investigated. All of this information is critical to understand the ecological role of Antarctic minke whales so that better predictions can be made regarding impacts of climate change not only on these animals, but on the structure and function of the Antarctic marine ecosystem. The project will promote the progress of science by elucidating the ecological role of a poorly known Antarctic predator and using this information to better understand the impact of changes that are occurring in Polar Regions. The educational and outreach program will increase awareness and understanding of minke whales, Antarctic marine ecosystems, sea ice, and the dynamics of climate change through the use of film, social media, and curriculum development for formal STEM educators. To understand how changes in sea ice will manifest in the demography of predators that rely on sea ice habitat requires knowledge of their behavior and ecology. The largest ice-dependent krill predator and most abundant cetacean in the Southern Ocean is the Antarctic minke whale (AMW)- yet, virtually nothing is known of its foraging behavior or ecological role. Thus, the knowledge to understand how climate-driven changes will affect these animals and therefore the dynamics of the ecosystem as a whole is lacking. The project will use multi-sensor and video recording tags, fisheries acoustics, and unmanned aerial systems to study the foraging behavior and ecological role of minke whales in the waters of the Antarctic Peninsula. The following research questions will be posed: 1. What is the feeding performance of AMWs? 2. How important is sea ice to the foraging behavior of AMW? 3. How do AMWs feed directly under sea ice? Proven tagging and analytical approaches to characterize the underwater feeding behavior and kinematics of minke whales will be used. Combined with quantitative measurements of the prey field, the energetic costs of feeding will be measured and it will be determined how minke whales optimize energy gain. Using animal-borne video recording tags and UAS technology it will also be determined how much feeding occurs directly under sea ice and how this mode differs from open water feeding. This knowledge will: (1) significantly enhance knowledge of the least-studied Antarctic krill predator; and (2) be made directly available to international, long-term efforts to understand how climate-driven changes will affect the structure and function of the Antarctic marine ecosystem. The educational and outreach efforts aim to increase awareness and understanding of: (i) the ecological role of minke whales around the Antarctic Peninsula; (ii) the effects of environmental change on an abundant but largely unstudied marine predator; (iii) the advanced methods and technologies used by whale researchers to study these cryptic animals and their prey; and (iv) the variety of careers in the ocean sciences by sharing the experiences of scientists and students. These educational aims will be achieved by delivering continuous near-real-time delivery of project events and data to informal audiences through social media channels as well as curricula and professional development programs that will provide formal STEM educators with specific standards-compliant lesson plans. | POLYGON((-65 -63.5,-64.5 -63.5,-64 -63.5,-63.5 -63.5,-63 -63.5,-62.5 -63.5,-62 -63.5,-61.5 -63.5,-61 -63.5,-60.5 -63.5,-60 -63.5,-60 -63.73,-60 -63.96,-60 -64.19,-60 -64.42,-60 -64.65,-60 -64.88,-60 -65.11,-60 -65.34,-60 -65.57,-60 -65.8,-60.5 -65.8,-61 -65.8,-61.5 -65.8,-62 -65.8,-62.5 -65.8,-63 -65.8,-63.5 -65.8,-64 -65.8,-64.5 -65.8,-65 -65.8,-65 -65.57,-65 -65.34,-65 -65.11,-65 -64.88,-65 -64.65,-65 -64.42,-65 -64.19,-65 -63.96,-65 -63.73,-65 -63.5)) | POINT(-62.5 -64.65) | false | false | |||||||||||||||
Collaborative Research: Individual Based Approaches to Understanding Krill Distributions and Aggregations
|
1840941 1840927 1840949 |
2021-06-25 | Record, Nicholas ; Weissburg, Marc; Murphy, David |
|
Antarctic krill (Euphausia superba) are an ecologically important component of the Southern Ocean's food web, yet little is known about their behavior in response to many features of their aquatic environment. This project will improve understanding of krill swimming and schooling behavior by examining individual responses to light levels, water flow rates, the presence of attractive and repulsive chemical cues. Flow, light and chemical conditions will be controlled and altered in specialized tanks outfitted with high speed digital camera systems so that individual krill responses to these factors can be measured in relevant schooling settings. This analysis will be used to predict preferred environments, define the capacity of krill to detect and move to them (and away from unfavorable ones). Such information will then be used to improve models that estimate the energetic costs of behaviors associated with different types of environments. Linking individual behavior to those of larger krill aggregations will also improve acoustic assessments of krill densities. Understanding the capacity of krill to respond to environmental perturbations will improve our understanding of the ecology of high latitude ecosystems and provide relevant information for the management of krill fisheries. The project will support graduate and undergraduate students and provide training for as post-doctoral associate. Curricular materials and public engagement activities will be based on the project's aims and activities. Project investigators will share model results and predictions of krill movements and school structure with experts interested in krill conservation and management. The project will use horizontal and vertical laminar flow tunnels to examine krill behavior under naturally relevant conditions. Horizontal (1-10 cm per second) and vertical (1-3 mm per second) flow velocities mimic naturally relevant current patterns, while light levels and spectral quality will be varied from complete darkness to intensities experienced across the depth range inhabited by krill. Attractive phytoplankton odor will be created by dosing the flumes to obtain background chlorophyll a levels approximating average and bloom conditions, while repulsive cues will be generated from penguin guano. Behavior of individual krill in all conditions will be video recorded with cameras visualizing X-Y and Y-Z planes, and 3D movements will be reconstructed by video motion analysis at a 5 Hz sampling rate. The distribution of horizontal and vertical swimming angles and velocities will be used to create an individual based model (IBM) of krill movement in response to each condition, where krill behavior at each model time step is based on random draws from the velocity and angular distributions. Since krill commonly travel in groups, further experiments will examine the behavior of small krill schools in these same conditions to further parameterize variables such as individual spacing. Researchers will examine krill aggregation structure from 3D video records of krill swimming in a specially designed kriesel tank, and compute nearest neighbor distances (NND) and correlations of swimming angles among individuals within the aggregation. Krill movements in the IBM will be constrained to adhere to observed NND and angular correlations. Large scale oceanographic models will be used to define spatial environments in which the modelled krill will be allowed to move using simulated schools of 1000-100,000 krill. Model output will include the school swimming speed, direction and structure (packing density, NND). Researchers will compare available acoustic data sets of krill schools in measured flow and phytoplankton abundance to evaluate the model predictions. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | |||||||||||||||
The consequences of maternal effects and environmental conditions on offspring success in an Antarctic predator
|
1640481 |
2021-06-24 | Rotella, Jay; Garrott, Robert | The consequences of variation in maternal effects on the ability of offspring to survive, reproduce, and contribute to future generations has rarely been evaluated in polar marine mammals. This is due to the challenges of having adequate data on the survival and reproductive outcomes for numerous offspring born in diverse environmental conditions to mothers with known and diverse sets of traits. This research project will evaluate the survival and reproductive consequences of early-life environmental conditions and variation in offspring traits that are related to maternal attributes (e.g. birth date, birth mass, weaning mass, and swimming behavior) in a population of individually marked Weddell seals in the Ross Sea. Results will allow an evaluation of the importance of different types of individuals to the Weddell Seal's population sustenance and better assessments of factors contributing to the population dynamics in the past and into the future. The project allows for documentation of specific individual seal's unique histories and provisioning of such information to the broader science community that seeks to study these seals, educating graduate and undergraduate ecology students, producing science-outreach videos, and developing a multi-media iBook regarding the project's science activities, goals and outcomes. The research has the broad objective of evaluating the importance of diverse sources of variation in pup characteristics to survival and reproduction. The study will (1) record birth dates, body mass metrics, and time spent in the water for multiple cohorts of pups (born to known-age mothers) in years with different environmental conditions; (2) mark all pups born in the greater Erebus Bay study area and conduct repeated surveys to monitor fates of these pups through the age of first reproduction; and (3) use analyses specifically designed for data on animals that are individually marked and resighted each year to evaluate hypotheses about how variation in birth dates, pup mass, time spent in the water by pups, and environmental conditions relate to variation in early-life survival and recruitment for those pups. The research will also allow the documentation of the population status that will contribute to the unique long-term database for the local population that dates back to 1978. | POLYGON((162 -75,162.8 -75,163.6 -75,164.4 -75,165.2 -75,166 -75,166.8 -75,167.6 -75,168.4 -75,169.2 -75,170 -75,170 -75.38,170 -75.76,170 -76.14,170 -76.52,170 -76.9,170 -77.28,170 -77.66,170 -78.03999999999999,170 -78.42,170 -78.8,169.2 -78.8,168.4 -78.8,167.6 -78.8,166.8 -78.8,166 -78.8,165.2 -78.8,164.4 -78.8,163.6 -78.8,162.8 -78.8,162 -78.8,162 -78.42,162 -78.03999999999999,162 -77.66,162 -77.28,162 -76.9,162 -76.52,162 -76.14,162 -75.76,162 -75.38,162 -75)) | POINT(166 -76.9) | false | false | ||||||||||||||||
A Full Lifecycle Approach to Understanding Adélie Penguin Response to Changing Pack Ice Conditions in the Ross Sea.
|
1543459 1543498 1543541 |
2021-05-11 | Ballard, Grant; Ainley, David; Dugger, Katie | The Ross Sea region of the Southern Ocean is experiencing growing sea ice cover in both extent and duration. These trends contrast those of the well-studied, western Antarctic Peninsula area, where sea ice has been disappearing. Unlike the latter, little is known about how expanding sea ice coverage might affect the regional Antarctic marine ecosystem. This project aims to better understand some of the potential effects of the changing ice conditions on the marine ecosystem using the widely-recognized indicator species - the Adélie Penguin. A four-year effort will build on previous results spanning 19 seasons at Ross Island to explore how successes or failures in each part of the penguin's annual cycle are effected by ice conditions and how these carry over to the next annual recruitment cycle, especially with respect to the penguin's condition upon arrival in the spring. Education and public outreach activities will continually be promoted through the PenguinCam and PenguinScience websites (sites with greater than 1 million hits a month) and "NestCheck" (a site that is logged-on by >300 classrooms annually that allows students to follow penguin families in their breeding efforts). To encourage students in pursuing educational and career pathways in the Science Technology Engineering and Math fields, the project will also provide stories from the field in a Penguin Journal, develop classroom-ready activities aligned with New Generation Science Standards, increase the availability of instructional presentations as powerpoint files and short webisodes. The project will provide additional outreach activities through local, state and national speaking engagements about penguins, Antarctic science and climate change. The annual outreach efforts are aimed at reaching over 15,000 students through the website, 300 teachers through presentations and workshops, and 500 persons in the general public. The project also will train four interns (undergraduate and graduate level), two post-doctoral researchers, and a science writer/photographer. The project will accomplish three major goals, all of which relate to how Adélie Penguins adapt to, or cope with environmental change. Specifically the project seeks to determine 1) how changing winter sea ice conditions in the Ross Sea region affect penguin migration, behavior and survival and alter the carry-over effects (COEs) to subsequent reproduction; 2) the interplay between extrinsic and intrinsic factors influencing COEs over multiple years of an individual?s lifetime; and 3) how local environmental change may affect population change via impacts to nesting habitat, interacting with individual quality and COEs. Retrospective analyses will be conducted using 19 years of colony based data and collect additional information on individually marked, known-age and known-history penguins, from new recruits to possibly senescent individuals. Four years of new information will be gained from efforts based at two colonies (Cape Royds and Crozier), using radio frequency identification tags to automatically collect data on breeding and foraging effort of marked, known-history birds to explore penguin response to resource availability within the colony as well as between colonies (mates, nesting material, habitat availability). Additional geolocation/time-depth recorders will be used to investigate travels and foraging during winter of these birds. The combined efforts will allow an assessment of the effects of penguin behavior/success in one season on its behavior in the next (e.g. how does winter behavior affect arrival time and body condition on subsequent breeding). It is at the individual level that penguins are responding successfully, or not, to ongoing marine habitat change in the Ross Sea region. | POLYGON((-180 -60,-177 -60,-174 -60,-171 -60,-168 -60,-165 -60,-162 -60,-159 -60,-156 -60,-153 -60,-150 -60,-150 -61.8,-150 -63.6,-150 -65.4,-150 -67.2,-150 -69,-150 -70.8,-150 -72.6,-150 -74.4,-150 -76.2,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178.5 -78,177 -78,175.5 -78,174 -78,172.5 -78,171 -78,169.5 -78,168 -78,166.5 -78,165 -78,165 -76.2,165 -74.4,165 -72.6,165 -70.8,165 -69,165 -67.2,165 -65.4,165 -63.6,165 -61.8,165 -60,166.5 -60,168 -60,169.5 -60,171 -60,172.5 -60,174 -60,175.5 -60,177 -60,178.5 -60,-180 -60)) | POINT(-172.5 -69) | false | false | ||||||||||||||||
Collaborative Research: Integrating Eocene Shark Paleoecology and Climate Modeling to reveal Southern Ocean Circulation and Antarctic Glaciation
|
1842059 1842049 1842115 1842176 |
2020-12-15 | Kim, Sora; Scher, Howard; Huber, Matthew; Jahn, Alexandra |
|
The Earth's climate has changed through time and during the Eocene Epoch (56 to 34 million years ago) there was a transition from 'greenhouse' to 'icehouse' conditions. During the Eocene, a shift to cooler temperatures at high latitudes resulted in the inception of polar glaciation. This in turn affected the environment for living organisms. This project looks to uncover the interaction between biological, oceanographic, and climate systems for the Eocene in Antarctica using chemical analysis of fossil shark teeth collected during past expeditions. The combination of paleontological and geochemical analyses will provide insight to the past ecology and ocean conditions; climate models will be applied to test the role of tectonics, greenhouse gas concentration and ocean circulation on environmental change during this time period. The study contributes to understanding the interaction of increased atmospheric carbon dioxide and ocean circulation. This project also seeks to improve diversity, equity, and inclusion within the geosciences workforce with efforts targeted to undergraduate, graduate, postdoctoral, and early career faculty. The research goal is to elucidate the processes leading from the Eocene greenhouse to Oligocene icehouse conditions. Previous explanations for this climate shift centers on Antarctica, where tectonic configurations influenced oceanic gateways, ocean circulation reduced heat transport, and/or greenhouse gas declines prompted glaciation. The team will reconstruct watermass, current, and climate fluctuations proximal to the Antarctic Peninsula using geochemical indicators (oxygen and neodymium isotope composition) from fossil shark teeth collected from Seymour Island. The approach builds on previous shark paleontological studies, incorporates geochemical analyses for environmental reconstruction (i.e., temperature gradients and ocean circulation), and tests hypotheses on Earth System dynamics using novel global climate model simulations with geochemical tracers. This project will advance global climate modeling capabilities with experiments that consider Eocene tectonic configuration within isotope-enabled climate model simulations. A comparison of geochemical results from Eocene climate simulations and empirical records of shark teeth will reveal processes and mechanisms central to the Eocene Antarctic climatic shift. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-56.693516 -64.209061,-56.6823452 -64.209061,-56.6711744 -64.209061,-56.6600036 -64.209061,-56.6488328 -64.209061,-56.637662 -64.209061,-56.6264912 -64.209061,-56.6153204 -64.209061,-56.6041496 -64.209061,-56.5929788 -64.209061,-56.581808 -64.209061,-56.581808 -64.2143344,-56.581808 -64.2196078,-56.581808 -64.2248812,-56.581808 -64.2301546,-56.581808 -64.235428,-56.581808 -64.2407014,-56.581808 -64.2459748,-56.581808 -64.2512482,-56.581808 -64.2565216,-56.581808 -64.261795,-56.5929788 -64.261795,-56.6041496 -64.261795,-56.6153204 -64.261795,-56.6264912 -64.261795,-56.637662 -64.261795,-56.6488328 -64.261795,-56.6600036 -64.261795,-56.6711744 -64.261795,-56.6823452 -64.261795,-56.693516 -64.261795,-56.693516 -64.2565216,-56.693516 -64.2512482,-56.693516 -64.2459748,-56.693516 -64.2407014,-56.693516 -64.235428,-56.693516 -64.2301546,-56.693516 -64.2248812,-56.693516 -64.2196078,-56.693516 -64.2143344,-56.693516 -64.209061)) | POINT(-56.637662 -64.235428) | false | false | |||||||||||||||
Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes
|
1644196 |
2020-12-15 | Cziko, Paul; DeVries, Arthur | Notothenioid fishes live in the world's coldest marine waters surrounding Antarctica and have evolved strategies to avoid freezing. Past studies have shown that most Antarctic notothenioids produce special antifreeze proteins that prevent the growth of ice crystals that enter the body. While these proteins help prevent individuals from being killed by growing ice crystals, it is unclear how these fish avoid the accumulation of these small ice crystals inside their tissues over time. This project will observe how ice crystal accumulation relates to the harshness of the fish's habitat and the fish's behavior within different habitats of McMurdo Sound, Antarctica. The researchers will collect fishes and ocean observations at different field sites that cover a range of habitat severity in terms of temperature and iciness. Researchers will install an underwater ocean observatory near McMurdo Station which will include a HD video camera and hydrophone. The observatory will allow continuous monitoring of ocean conditions and fish behavior that will help explain the conditions and behaviors that contribute to the acquisition and accrual of ice inside the body. Acoustic and video data from the observatory will be available to other scientists and to the public. The project will advance understanding of the many challenges life faces in extreme cold environments. This work continues a line of inquiry that has resulted in the discovery of potential medical and food preservation applications. Hundreds of antifreeze protein (AFP) structure-function studies have been conducted in the laboratory, providing a basic physical understanding of the AFP-ice interaction. How AFPs function within fishes and their range of environments, however, is far from clear. This project will provide an understanding of notothenioid's freezing avoidance mechanisms, and strategies by quantifying the acquisition, accumulation, and loss of internal ice crystals. Specifically, the goal is to determine if and how habitat severity (as defined by iciness, seawater temperature, and prevalence of supercooled water) and fish behavior influence the abundance of ice crystals in their tissues. Four locations in the McMurdo Sound with different levels of habitat severity will be sampled for oceanographic conditions and ice crystal count within fish tissues. Researchers will use a new technique to count the number of splenic ice crystals, expanding on and simplifying previous methods. Environmental data loggers will be deployed for the duration of the project at the four sites to provide context and real-time assessment of environmental conditions. An oceanographic observatory near McMurdo Station will provide year-round, real-time and archival records of oceanographic conditions, in situ video observations of anchor ice growth and ice-organism interactions, hydroacoustic recordings, and serve as proof-of concept for expanding scientific infrastructure in McMurdo Sound related to monitoring of supercooled waters and oceanographic information. | POLYGON((163.47 -77.14,163.803 -77.14,164.136 -77.14,164.469 -77.14,164.802 -77.14,165.135 -77.14,165.468 -77.14,165.801 -77.14,166.134 -77.14,166.467 -77.14,166.8 -77.14,166.8 -77.216,166.8 -77.292,166.8 -77.368,166.8 -77.444,166.8 -77.52,166.8 -77.596,166.8 -77.672,166.8 -77.748,166.8 -77.824,166.8 -77.9,166.467 -77.9,166.134 -77.9,165.801 -77.9,165.468 -77.9,165.135 -77.9,164.802 -77.9,164.469 -77.9,164.136 -77.9,163.803 -77.9,163.47 -77.9,163.47 -77.824,163.47 -77.748,163.47 -77.672,163.47 -77.596,163.47 -77.52,163.47 -77.444,163.47 -77.368,163.47 -77.292,163.47 -77.216,163.47 -77.14)) | POINT(165.135 -77.52) | false | false | ||||||||||||||||
Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics
|
1840058 |
2020-04-01 | Jenouvrier, Stephanie | Many animals, from crustaceans to humans, engage in long-term relationships. The demographic consequences of divorce or widowhood for monogamous species are poorly understood. This research seeks to advance understanding of the drivers of partner loss and quantify its resulting effects on individual fitness and population dynamics in polar species that form life-long relationships. The project will focus on pair disruption in two seabirds that form long-last pair bonds: the wandering albatross and the snow petrel. Unique long-term individual mark-recapture data sets exist for these iconic polar species, allowing for a comprehensive study of the rates, causes and consequences of pair disruption and how they may differ among Antarctic species. Insights might be gained regarding the effects of changing environmental regimes as well as by direct and indirect effects of fisheries as a by-product of this research. The aim of the project is to better understand the implications of different drivers of pair disruption and quantify its resulting effects on individual fitness components and population growth rate and structure for two procellariiformes breeding in the Southern Ocean. The project will focus on the wandering albatross and the snow petrel, which both form long-lasting pair bonds. The unique long-term individual mark-recapture data sets allow for a study of the rates, causes and consequences of pair disruption and how they differ among species with different life histories as well as expected differences in mechanisms and rates of pair disruptions. The study will result in a detailed analysis of the impact of social monogamy and long-term pair bonds on individual fitness components (vital rates: survival, recruitment and fecundity; life-history outcomes: life expectancy, age at 1st breeding and lifetime reproductive success; and occupancy times: duration of pair bond or widowhood) and population growth and structure (e.g, sex ratio of individuals available for mating). Specifically, the project will assess: 1. Variations in pair disruption rates, and if they are related to global change (by-catch in the case of albatross widowing, and climate in the case of petrel divorce) by developing a statistical multievent mark-recapture model. 2. Impacts of pair disruption on vital rates, specifically whether i) greater familiarity and better coordination within pairs improves breeding performance and survival, ii) mating costs reduce the probability of breeding and iii) divorce is more likely to occur after a breeding failure. 3. Impacts of pair disruption on life-history outcomes and occupancy times using Markov chain stochastic life cycle models. 4. Impacts of pair disruption on population dynamics by developing a novel non-linear two-sex matrix population model. The research will include sensitivity and Life Table Response Experiment analyses to examine the respective effects of fisheries, climate, vital rates, and pair-disruption rates on life-history outcomes, occupancy times, and population growth and structure, and their variations among year and species This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||||||||||||
Antarctic Fish and MicroRNA Control of Development and Physiology
|
1543383 |
2020-02-26 | Postlethwait, John; Desvignes, Thomas | Icefish live in frigid Antarctic seas, and have unique traits such as the absence of red blood cells, enlarged hearts, large diameter blood vessels, low bone mineral densities, and fat droplets that disrupt their muscles. These features would be harmful in other animals. In mammals and fish inhabiting warm waters, development of organs involved in these traits is modulated by genes that encode specific proteins, but the rate of protein production is often regulated by short RNA molecules called microRNAs (miRNAs). Genes that code for proteins must first make an RNA copy, and the actual protein is made from this RNA copy intermediate. MiRNAs regulate the amount of protein that is made by binding to the RNA intermediate and interrupting its production of protein. Binding of miRNAs to RNA depends strongly on temperature. Regulation of genes by miRNAs has not been studied in Antarctic fish, which live in seas with temperatures below the freezing point of fresh water. This project will compare miRNA regulation 1) in Antarctic fish vs. warm-water fish to learn how miRNAs regulate gene expression in constant cold; and 2) in Antarctic icefish with no red blood cells, enlarged hearts, and reduced bone density vs. closely related Antarctic fish containing red blood cells, normal hearts, and dense bones. The project will have broad impacts to science and society nationally and globally. First, this will be the first study of important factors in gene regulation (miRNAs) in Antarctic fish, which are an essential component of the entire ecology of the Southern Ocean, and will shed light on how these fish might respond to the warming of Antarctic waters. Second, it will bring Antarctic science to under-represented high school students at a local alternative downtown high school by conducting video conferences during the Antarctic field seasons and hosting student investigations of Antarctic fish in the research laboratory. microRNAs (miRNAs) are key post-transcriptional regulators of gene expression that modulate development and physiology in temperate animals. Although miRNAs act by binding to messenger RNAs (mRNAs), a process that is strongly sensitive to temperature, miRNAs have yet not been studied in Antarctic animals, including Notothenioid fish, which dominate the Southern Ocean. This project will compare miRNA regulation in 1) Antarctic vs. temperate fish to learn the roles of miRNA regulation in adaptation to constant cold; and in 2) bottom-dwelling, dense-boned, red-blooded Nototheniods vs. high buoyancy, osteopenic, white-blooded icefish to understand miRNA regulation in specialized organs after the evolution of the loss of hemoglobin genes and red blood cells, the origin of enlarged heart and vasculature, and the evolution of increased buoyancy, which arose by decreased bone mineralization and increased lipid deposition. Aim 1 is to test the hypothesis that Antarctic fish evolved miRNA-related genome specializations in response to constant cold. The project will compare four Antarctic Notothenioid species to two temperate Notothenioids and two temperate laboratory species to test the hypotheses that (a) Antarctic fish evolved miRNA genome repertoires by loss of ancestral genes and/or gain of new genes, (b) express miRNAs that are involved in cold tolerance, and (c) respond to temperature change by changing miRNA gene expression. Aim 2 is to test the hypothesis that the evolution of icefish from red-blooded bottom-dwelling ancestors was accompanied by an altered miRNA genomic repertoire, sequence, and/or expression. The project will test the hypotheses that (a) miRNAs in icefish evolved in sequence and/or in expression in icefish specializations, including head kidney (origin of red blood cells); heart (changes in vascular system), cranium and pectoral girdle (reduced bone mineral density); and skeletal muscle (lipid deposition), and (b) miRNAs that evolved in icefish specializations had ancestral functions related to their derived roles in icefish, as determined by functional tests of zebrafish orthologs of icefish miRNAs in developing zebrafish. The program will isolate, sequence, and determine the expression of miRNAs and mRNAs using high-throughput transcriptomics and novel software. Results will show how the microRNA system evolves in vertebrate animals pushed to physiological extremes and provide insights into the prospects of key species in the most rapidly warming part of the globe. | POLYGON((-66 -62,-65.2 -62,-64.4 -62,-63.6 -62,-62.8 -62,-62 -62,-61.2 -62,-60.4 -62,-59.6 -62,-58.8 -62,-58 -62,-58 -62.4,-58 -62.8,-58 -63.2,-58 -63.6,-58 -64,-58 -64.4,-58 -64.8,-58 -65.2,-58 -65.6,-58 -66,-58.8 -66,-59.6 -66,-60.4 -66,-61.2 -66,-62 -66,-62.8 -66,-63.6 -66,-64.4 -66,-65.2 -66,-66 -66,-66 -65.6,-66 -65.2,-66 -64.8,-66 -64.4,-66 -64,-66 -63.6,-66 -63.2,-66 -62.8,-66 -62.4,-66 -62)) | POINT(-62 -64) | false | false | ||||||||||||||||
Collaborative Research: Stochasticity and Cryoconite Community Assembly and Function
|
1443578 |
2019-11-01 | Schmidt, Steven; Cawley, Kaelin; Fountain, Andrew |
|
Cryoconite holes are pockets of life completely encased in otherwise barren glacial ice. These pockets of life form when dust blown onto the ice melts a small, largely isolated hole that can function as its own tiny ecosystem. This dust can contain microorganisms such as bacteria, algae, or microscopic animals. The microorganisms within the hole interact and carry out functions typical of a larger ecosystem, such as a forest. Cryoconite holes are especially important in extreme cold environments such as the Antarctic Dry Valleys, where they function as repositories of life. Because cryoconite holes are mostly enclosed and persist for years, they can be tracked over time to test fundamental scientific questions about how communities of interacting organisms develop to become fully functioning ecosystems. This project will sample existing and experimentally created cryoconite holes to understand how these ecosystems develop and to what degree random processes (such as which organisms get there first) affect the final community composition and functioning. The results will not only improve our understanding of how microbial communities assemble and affect the functioning of microecosystems such as cryoconite holes, but also how the processes of community assembly affect functioning of larger ecosystems, such as forests. A better understanding of community establishment, development, and response to abiotic factors are essential to forecasting ecological responses to environmental change. It is essential to unravel the links between community assembly, biodiversity, and nutrient cycling across numerous ecosystems because these are critical factors determining ecological responses to environmental change. The unique, largely isolated nature of cryoconite holes provides an experimental system that will advance fundamental understanding of the processes (e.g., stochastic dynamics such as dispersal limitation, assembly order, and ecological drift) driving community assembly. This project will use a field sampling campaign and a number of manipulative experiments to test a hypothesis that unites theory in community and ecosystem ecology: the degree to which stochastic processes guide microbial community assembly and affects regional patterns in biodiversity and ecosystem processes. Cryoconite holes will be sampled to compare community composition, environmental factors, and ecosystem functioning between hydrologically connected and isolated holes. New cryoconite holes will also be constructed and monitored over the course of two growing seasons to specifically alter assembly order and community size, thereby pairing a unique manipulative experiment with field surveys to address questions with relevance to the Antarctic and beyond. Amplicon sequencing, metagenomics, microscopy, sensitive environmental chemistry methods, and photosynthesis and respiration measurements will be used to test a series of sub-hypotheses that relate stochasticity to patterns in regional biodiversity, heterogeneity in environmental factors, and ecosystem processes. | POLYGON((161.5 -77.5,161.7 -77.5,161.9 -77.5,162.1 -77.5,162.3 -77.5,162.5 -77.5,162.7 -77.5,162.9 -77.5,163.1 -77.5,163.3 -77.5,163.5 -77.5,163.5 -77.53,163.5 -77.56,163.5 -77.59,163.5 -77.62,163.5 -77.65,163.5 -77.68,163.5 -77.71,163.5 -77.74,163.5 -77.77,163.5 -77.8,163.3 -77.8,163.1 -77.8,162.9 -77.8,162.7 -77.8,162.5 -77.8,162.3 -77.8,162.1 -77.8,161.9 -77.8,161.7 -77.8,161.5 -77.8,161.5 -77.77,161.5 -77.74,161.5 -77.71,161.5 -77.68,161.5 -77.65,161.5 -77.62,161.5 -77.59,161.5 -77.56,161.5 -77.53,161.5 -77.5)) | POINT(162.5 -77.65) | false | false | |||||||||||||||
Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators
|
1443585 1443424 1826712 1443386 |
2019-08-08 | Polito, Michael; Kelton, McMahon; Patterson, William; McCarthy, Matthew | The Antarctic marine ecosystem is highly productive and supports a diverse range of ecologically and commercially important species. A key species in this ecosystem is Antarctic krill, which in addition to being commercially harvested, is the principle prey of a wide range of marine organisms including penguins, seals and whales. The aim of this study is to use penguins and other krill predators as sensitive indicators of past changes in the Antarctic marine food web resulting from climate variability and the historic harvesting of seals and whales by humans. Specifically this study will recover and analyze modern (<20 year old), historic (20-200 year old) and ancient (200-10,000 year old) penguin and other krill predator tissues to track their past diets and population movements relative to shifts in climate and the availability of Antarctic krill. Understanding how krill predators were affected by these factors in the past will allow us to better understand how these predators, the krill they depend on, and the Antarctic marine ecosystem as a whole will respond to current challenges such as global climate change and an expanding commercial fishery for Antarctic krill. The project will further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This project will support the cross-institutional training of undergraduate and graduate students in advanced analytical techniques in the fields of ecology and biogeochemistry. In addition, this project includes educational outreach aimed encouraging participation in science careers by engaging K-12 students in scientific issues related to Antarctica, penguins, marine ecology, biogeochemistry, and global climate change. This research will help place recent ecological changes in the Southern Ocean into a larger historical context by examining decadal and millennial-scale shifts in the diets and population movements of Antarctic krill predators (penguins, seals, and squid) in concert with climate variability and commercial harvesting. This will be achieved by coupling advanced stable and radio isotope techniques, particularly compound-specific stable isotope analysis, with unprecedented access to modern, historical, and well-preserved paleo-archives of Antarctic predator tissues dating throughout the Holocene. This approach will allow the project to empirically test if observed shifts in Antarctic predator bulk tissue stable isotope values over the past millennia were caused by climate-driven shifts at the base of the food web in addition to, or rather than, shifts in predator diets due to a competitive release following the historic harvesting of krill eating whale and seals. In addition, this project will track the large-scale abandonment and reoccupation of penguin colonies around Antarctica in response to changes in climate and sea ice conditions over the past several millennia. These integrated field studies and laboratory analyses will provide new insights into the underlying mechanisms that influenced past shifts in the diets and population movements of charismatic krill predators such as penguins. This will allow for improved projections of the ecosystem consequences of future climate change and anthropogenic harvesting scenarios in the Antarctica that are likely to affect the availability of Antarctic krill. | POLYGON((-180 -60,-166 -60,-152 -60,-138 -60,-124 -60,-110 -60,-96 -60,-82 -60,-68 -60,-54 -60,-40 -60,-40 -61.8,-40 -63.6,-40 -65.4,-40 -67.2,-40 -69,-40 -70.8,-40 -72.6,-40 -74.4,-40 -76.2,-40 -78,-54 -78,-68 -78,-82 -78,-96 -78,-110 -78,-124 -78,-138 -78,-152 -78,-166 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -76.2,160 -74.4,160 -72.6,160 -70.8,160 -69,160 -67.2,160 -65.4,160 -63.6,160 -61.8,160 -60,162 -60,164 -60,166 -60,168 -60,170 -60,172 -60,174 -60,176 -60,178 -60,-180 -60)) | POINT(-120 -69) | false | false | ||||||||||||||||
Collaborative Research: Polynyas in Coastal Antarctica (PICA): Linking Physical Dynamics to Biological Variability
|
1643735 1643901 2021245 |
2019-08-07 | Zhang, Weifeng; Ji, Rubao; Jenouvrier, Stephanie; Maksym, Edward; Li, Yun |
|
During winter, sea-ice coverage along the Antarctic coast is punctuated by numerous polynyas--isolated openings of tens to hundreds of kilometer wide. These coastal polynyas are hotspots of sea ice production and the primary source regions of the bottom water in the global ocean. They also host high levels of biological activities and are the feeding grounds of Emperor penguins and marine mammals. The polynyas are a key component of the Antarctic coastal system and crucial for the survival of penguins and many other species. These features also differ dramatically from each other in timing of formation, duration, phytoplankton growth season, and overall biological productivity. Yet, the underlying reasons for differences among them are largely unknown. This project studies the fundamental biophysical processes at a variety of polynyas, examines the connection between the physical environment and the phytoplankton and penguin ecology, and investigates the mechanisms behind polynya variability. The results of this interdisciplinary study will provide a context for interpretation of field measurements in Antarctic coastal polynyas, set a baseline for future polynya studies, and examine how polynya ecosystems may respond to local and large-scale environmental changes. The project will include educational and outreach activities that convey scientific messages to a broad audience. It aims to increase public awareness of the interconnection between large-scale environmental change and Antarctic coastal systems. The main objectives of this study are to form a comprehensive understanding of the temporal and spatial variability of Antarctic coastal polynyas and the physical controls of polynya ecosystems. The project takes an interdisciplinary approach and seeks to establish a modeling system centered on the Regional Ocean Modeling System. This system links the ice and ocean conditions to the plankton ecology and penguin population. Applications of the modeling system in representative polynyas, in conjunction with analysis of existing observations, will determine the biophysical influences of individual forcing factors. In particular, this study will test a set of hypothesized effects of winds, offshore water intrusion, ice-shelf melting, sea-ice formation, glacier tongues, and ocean stratification on the timing of polynya phytoplankton bloom and the overall polynya biological productivity. The project will also examine how changing polynya state affects penguin breeding success, adult survival, and population growth. The team will conduct idealized sensitivity analysis to explore implications of forcing variability, including local and large-scale environmental change, on Antarctic coastal ecosystems. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||||||
Collaborative Research: Determining Factors Affecting Distribution and Population Variability of the Ice-obligate Weddell Seal
|
1543311 1543230 1543003 1542791 |
2019-08-02 | LaRue, Michelle; Stamatiou, Kostas |
|
The Weddell seal is the southern-most mammal in the world, having a circumpolar distribution around Antarctica; the McMurdo Sound population in Antarctica is one of the best-studied mammal populations on earth. However, despite this, an understanding of how populations around the continent will fare under climate change is poorly understood. A complicating matter is the potential effects of a commercial enterprise in the Antarctic: a fishery targeting toothfish, which are important prey for Weddell seals. Although the species is easily detected and counted during the breeding season, no reliable estimates of continent-wide Weddell seal numbers exist, due to the logistic difficulties of surveying vast regions of Antarctica. Large-scale estimates are needed to understand how seal populations are responding to the fishery and climate change, because these drivers of change operate at scales larger than any single population, and may affect seals differently in different regions of the continent. We will take advantage of the ease of detectability of darkly colored seals when they the on ice to develop estimates of abundance from satellite images. This project will generate baseline data on the global distribution and abundance of Weddell seals around the Antarctic and will link environmental variables to population changes to better understand how the species will fare as their sea ice habitat continues to change. These results will help disentangle the effects of climate change and fishery operations, results that are necessary for appropriate international policy regarding fishery catch limits, impacts on the environment, and the value of marine protected areas. The project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. It will engage "arm-chair" scientists of all ages through connections with several non-governmental organizations and the general public. Anyone with access to the internet, including people who are physically unable to participate in field research directly, can participate in this project while simultaneously learning about multiple aspects of polar ecology through the project's interactive website. Specifically, this research project will: 1) Quantify the distribution of Weddell seals around Antarctica and 2) Determine the impact of environmental variables (such as fast ice extent, ocean productivity, bathymetry) on habitat suitability and occupancy. To do this, the project will crowd-source counting of seals on high-resolution satellite images via a commercial citizen science platform. Variation in seal around the continent will then be related to habitat variables through generalized linear models. Specific variables, such as fast ice extent will be tested to determine their influence on population variability through both space and time. The project includes a rigorous plan for ensuring quality control in the dataset including ground truth data from other, localized projects concurrently funded by the National Science Foundation's Antarctic Science Program. | POLYGON((-180 -64,-144 -64,-108 -64,-72 -64,-36 -64,0 -64,36 -64,72 -64,108 -64,144 -64,180 -64,180 -65.4,180 -66.8,180 -68.2,180 -69.6,180 -71,180 -72.4,180 -73.8,180 -75.2,180 -76.6,180 -78,144 -78,108 -78,72 -78,36 -78,0 -78,-36 -78,-72 -78,-108 -78,-144 -78,-180 -78,-180 -76.6,-180 -75.2,-180 -73.8,-180 -72.4,-180 -71,-180 -69.6,-180 -68.2,-180 -66.8,-180 -65.4,-180 -64)) | POINT(0 -89.999) | false | false | |||||||||||||||
Methylmercury in Antarctic Krill Microbiomes
|
1543412 |
2019-03-31 | Schaefer, Jeffra; Reinfelder, John; Barkar, T. |
|
Marine food webs can concentrate monomethylmercury (MMHg), a neurotoxin in mammals, in upper trophic level consumers. Despite their remoteness, coastal Antarctic marine ecosystems accumulate and biomagnify MMHg to levels observed at lower latitudes and in the Arctic. Marine sediments and other anoxic habitats in the oceans are typical areas where methylation of mercury occurs and these are likely places where MMHg is being produced. Krill, and more specifically their digestive tracts, may be a previously unaccounted for site where the production of MMHg may be occurring in the Antarctic. If monomethylmercury production is occurring in krill, current views regarding bioaccumulation in the food web and processes leading to the production and accumulation of mercury in the Antarctic Ocean could be better informed, if not transformed. This project will conduct a preliminary assessment of the krill gut microbiomes, the microbiome's genomic content and potential for production of monomethyl mercury by detecting the genes involved in mercury transformations. By analyzing the krill gut microbiome, the project will provide insights regarding animal-microbe interactions and their potential role in globally important biogeochemical cycles. This project will conduct a preliminary assessment of the krill gut microbiomes, the microbiomes genomic content and potential for production of monomethylmercury. The diversity and metabolic profiles of microorganisms in krill digestive tracts will be evaluated using massively parallel Illumina DNA sequencing technology to produce 16S rRNA gene libraries and assembled whole metagenomes. The project will also quantify the abundance and expression of Hg methylation genes, hgcAB, and identify their taxonomic affiliations in the microbiome communities. Environmental metagenomes, 16S rRNA gene inventories produced from this project will provide the polar science community with valuable databases and experimental tools with which to examine coastal Antarctic microbial ecology and biogeochemistry. The project will seek to provide a wider window into the diversity of extremophile microbial communities and the identification of potentially unique and useful bioactive compounds. In addition to public education and outreach. This project will train graduate students and provide educational and outreach opportunities at the participating institutions | None | POINT(-69.09295 -66.8017) | false | false | |||||||||||||||
Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing
|
1341339 1341333 |
2019-03-05 | Amsler, Charles; Baker, Bill; McClintock, James | The coastal environments of the western Antarctic Peninsula harbor rich assemblages of marine animals and algae. The importance of the interactions between these groups of organisms in the ecology of coastal Antarctica are well known and often mediated by chemical defenses in the tissues of the algae. These chemicals are meant to deter feeding by snails and other marine animals making the Antarctic Peninsula an excellent place to ask important questions about the functional and evolutionary significance of chemical compound diversity for marine communities. This project will focus on three main objectives: the first objective is to expand the current understanding of the relationship between algae and their associated marine animals. The second objective focuses on the diversity of chemical compounds used to defend algae from being consumed. The third objective seeks to understand how marine animals can benefit from these compounds by consuming the algae that contain them, and then using those compounds to chemically deter predators. The field components of this research will be performed during three expeditions to the US Palmer Station, Antarctica. During these expeditions, a variety of laboratory feeding bioassays, manipulative field and laboratory experiments, and on-site chemical analyses will be performed. The investigators will also foster opportunities to integrate their NSF research with a variety of educational activities. As in the past they will support undergraduate research, both through NSF programs as well as home, university-based, programs, and they will also continue to support and foster graduate education. Through their highly successful University of Alabama in Antarctica interactive web program (two time recipient of awards of excellence from the US Council for Advancement and Support of Education), they will continue to involve large numbers of teachers, K-12 students, and other members of the community at large in their scientific endeavors in Antarctica. In addition, the investigators have hosted K-12 teachers on their Antarctic field teams through the former NSF Teachers Experiencing Antarctica and the Arctic program and will pursue participation in PolarTREC, the successor to this valuable program. Moreover, they will actively participate in outreach efforts by presenting numerous talks on their research to local school and community groups. The near shore environments of the western Antarctic Peninsula harbor rich assemblages of macroalgae and macroinvertebrates. The importance of predator-prey interactions and chemical defenses in mediating community-wide trophic interactions makes the western Antarctic Peninsula an excellent place to ask important questions about the functional and evolutionary significance of defensive compound diversity for marine communities. This project will focus on three main objectives which are a direct outcome of the past studies of the chemical ecology of shallow-water marine macroalgae and invertebrates on the Antarctic Peninsula by this group of investigators. The first objective is to expand the current understanding of a community-wide mutualism between macroalgae and their associated amphipods to include gastropods, which are also abundant on many macroalgae. The second objective focuses on the diversity of chemical compounds used to defend macroalgae from being consumed, particularly in the common red alga Plocamium cartilagineum. The third objective seeks to understand the relationship between P. cartilagineum and the amphipod Paradexamine fissicauda, including the ecological benefits and costs to P. fissicauda resulting from the ability to consume P. cartilagineum and other chemically defended red algae. The investigators will focus on the costs and benefits related to the ability of P. fissicauda to sequester defensive compounds from the alga P. cartilagineum and use those chemicals to defend itself from predation. The field components of this research will be performed during three expeditions to Palmer Station, Antarctica. During these expeditions, a variety of laboratory feeding bioassays, manipulative field and laboratory experiments, and on-site chemical analyses will be performed. Phylogenetic analyses, detailed secondary metabolite chemical analyses and purifications, and other data analyses will also be performed at the investigators' home institutions between and after their field seasons. | POLYGON((-65 -65,-64.8 -65,-64.6 -65,-64.4 -65,-64.2 -65,-64 -65,-63.8 -65,-63.6 -65,-63.4 -65,-63.2 -65,-63 -65,-63 -64.9,-63 -64.8,-63 -64.7,-63 -64.6,-63 -64.5,-63 -64.4,-63 -64.3,-63 -64.2,-63 -64.1,-63 -64,-63.2 -64,-63.4 -64,-63.6 -64,-63.8 -64,-64 -64,-64.2 -64,-64.4 -64,-64.6 -64,-64.8 -64,-65 -64,-65 -64.1,-65 -64.2,-65 -64.3,-65 -64.4,-65 -64.5,-65 -64.6,-65 -64.7,-65 -64.8,-65 -64.9,-65 -65)) | POINT(-64 -64.5) | false | false | ||||||||||||||||
Collaborative Research: Fjord Ecosystem Structure and Function on the West Antarctic Peninsula - Hotspots of Productivity and Biodiversity? (FjordEco)
|
1443733 1443680 1443705 |
2019-02-13 | Winsor, Peter; Truffer, Martin; Smith, Craig; Powell, Brian; Merrifield, Mark; Vernet, Maria; Kohut, Josh | Marine communities along the western Antarctic Peninsula are highly productive ecosystems which support a diverse assemblage of charismatic animals such as penguins, seals, and whales as well as commercial fisheries such as that on Antarctic krill. Fjords (long, narrow, deep inlets of the sea between high cliffs) along the central coast of the Peninsula appear to be intense, potentially climate sensitive, hotspots of biological production and biodiversity, yet the structure and dynamics of these fjord ecosystems are very poorly understood. Because of this intense biological activity and the charismatic fauna it supports, these fjords are also major destinations for a large Antarctic tourism industry. This project is an integrated field and modeling program to evaluate physical oceanographic processes, glacial inputs, water column community dynamics, and seafloor bottom community structure and function in these important yet little understood fjord systems. These Antarctic fjords have characteristics that are substantially different from well-studied Arctic fjords, likely yielding much different responses to climate warming. This project will provide major new insights into the dynamics and climate sensitivity of Antarctic fjord ecosystems, highlighting contrasts with Arctic sub-polar fjords, and potentially transforming our understanding of the ecological role of fjords in the rapidly warming west Antarctic coastal marine landscape. The project will also further the NSF goal of training new generations of scientists, providing scientific training for undergraduate, graduate, and postdoctoral students. This includes the unique educational opportunity for undergraduates to participate in research cruises in Antarctica and the development of a novel summer graduate course on fjord ecosystems. Internet based outreach activities will be enhanced and extended by the participation of a professional photographer who will produce magazine articles, websites, radio broadcasts, and other forms of public outreach on the fascinating Antarctic ecosystem. This project will involve a 15-month field program to test mechanistic hypotheses concerning oceanographic and glaciological forcing, and phytoplankton and benthic community response in the Antarctic fjords. Those efforts will be followed by a coupled physical/biological modeling effort to evaluate the drivers of biogeochemical cycles in the fjords and to explore their potential sensitivity to enhanced meltwater and sediment inputs. Fieldwork over two oceanographic cruises will utilize moorings, weather stations, and glacial, sea-ice and seafloor time-lapse cameras to obtain an integrated view of fjord ecosystem processes. The field team will also make multiple shipboard measurements and will use towed and autonomous underwater vehicles to intensively evaluate fjord ecosystem structure and function during spring/summer and autumn seasons. These integrated field and modeling studies are expected to elucidate fundamental properties of water column and sea bottom ecosystem structure and function in the fjords, and to identify key physical-chemical-glaciological forcing in these rapidly warming ecosystems. | POLYGON((-66 -64,-65.6 -64,-65.2 -64,-64.8 -64,-64.4 -64,-64 -64,-63.6 -64,-63.2 -64,-62.8 -64,-62.4 -64,-62 -64,-62 -64.1,-62 -64.2,-62 -64.3,-62 -64.4,-62 -64.5,-62 -64.6,-62 -64.7,-62 -64.8,-62 -64.9,-62 -65,-62.4 -65,-62.8 -65,-63.2 -65,-63.6 -65,-64 -65,-64.4 -65,-64.8 -65,-65.2 -65,-65.6 -65,-66 -65,-66 -64.9,-66 -64.8,-66 -64.7,-66 -64.6,-66 -64.5,-66 -64.4,-66 -64.3,-66 -64.2,-66 -64.1,-66 -64)) | POINT(-64 -64.5) | false | false | ||||||||||||||||
Linking Foraging Behaviors to Demography to understand Albatrosses Population Responses to Climate Change
|
1246407 |
2019-01-31 | Jenouvrier, Stephanie | Understanding the ecological consequences - present and future-of climate change is a central question in conservation biology. The goal of this project is to identify the effects of climate change on the Black-Browed Albatross, a seabird breeding in the Southern Ocean. The Black-Browed Albatross exhibits remarkable flight adaptations, using winds as an energy source to glide for long distances. This is the basis of their foraging strategy, by which they obtain food for themselves and their offspring. Climate change, however, is expected to modify wind patterns over the Southern Ocean. This project will analyze the effect of winds on life history traits (foraging behaviors, body conditions and demographic traits), and the effects of these traits on populations. New demographic models will provide the link between foraging behavior and the physical environment, and evaluate the persistence of this population in the face of climate change. Understanding and predicting population responses to climate change is important because the world?s climate will continue to change throughout the 21st century and beyond. To help guide conservation strategies and policy decisions in the face of climate change, reliable assessments of population extinction risks are urgently needed. The Black-Browed Albatross is considered endangered by the International Union for Conservation of Nature due to recent drastic reductions in its population size. This project will improve our understanding of the mechanisms by which climate affects the life history and populations of Black-Browed Albatross to improve prediction of extinction risks under future climate change. | POINT(70.2433 -49.6875) | POINT(70.2433 -49.6875) | false | false | ||||||||||||||||
Assembling and Mining the Genomes of Giant Antarctic Foraminifera
|
1341612 |
2018-11-29 | Bowser, Samuel | Agglutinated foraminifera (forams for short) are early-evolving, single-celled organisms. These "living fossils" construct protective shells using sediment grains held together by adhesive substances that they secrete. During shell construction, agglutinated forams display amazing properties of selection - for example, some species build their shells of clear quartz grains, while other species use only grains of a specific size. Understanding how these single cells assemble complex structures may contribute to nanotechnology by enabling people to use forams as "cellular machines" to aid in the construction of nano-devices. This project will analyze the genomes of at least six key foram species, and then "mine" these genomes for technologically useful products and processes. The project will focus initially on the adhesive materials forams secrete, which may have wide application in biomedicine and biotechnology. Furthermore, the work will further develop a molecular toolkit which could open up new avenues of research on the physiology, ecology, and population dynamics of this important group of Antarctic organisms. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. Educational experiences related to the "thrill of scientific exploration and discovery" for students and the general public will be provided through freely-available short films and a traveling art/science exhibition. The project will also provide hands-on research opportunities for undergraduate students. Explorers Cove, situated on the western shore of McMurdo Sound, harbors a unique population of foraminiferan taxa at depths accessible by scuba diving that otherwise are primarily found in the deep sea. The project will use next-generation DNA sequencing and microdissection methods to obtain and analyze nuclear and mitochondrial genomes from crown members of two species each from three distinct, early-evolving foraminiferal groups. It will also use next generation sequencing methods to characterize the in-situ prokaryotic assemblages (microbiomes) of one of these groups and compare them to reference sediment microbiomes. The phyogenomic studies of the targeted Antarctic genera will help fill significant gaps in our current understanding of early foram evolution. Furthermore, comparative genomic analyses of these six species are expected to yield a better understanding of the physiology of single-chambered agglutinated forams, especially the bioadhesive proteins and regulatory factors involved in shell composition and morphogenesis. Additionally, the molecular basis of cold adaptation in forams will be examined, particularly with respect to key proteins. | None | None | false | false | ||||||||||||||||
Collaborative Research: MIDGE: Minimally Invasive Direct Glacial Exploration of Biogeochemistry, Hydrology and Glaciology of Blood Falls, McMurdo Dry Valleys
|
1144177 1144176 1144192 1727387 |
2018-11-28 | Tulaczyk, Slawek; Pettit, Erin; Lyons, W. Berry; Mikucki, Jill | Recent discoveries of widespread liquid water and microbial ecosystems below the Antarctic ice sheets have generated considerable interest in studying Antarctic subglacial environments. Understanding subglacial hydrology, the persistence of life in extended isolation and the evolution and stability of subglacial habitats requires an integrated, interdisciplinary approach. The collaborative project, Minimally Invasive Direct Glacial Exploration (MIDGE) of the Biogeochemistry, Hydrology and Glaciology of Blood Falls, McMurdo Dry Valleys will integrate geophysical measurements, molecular microbial ecology and geochemical analyses to explore a unique Antarctic subglacial system known as Blood Falls. Blood Falls is a hypersaline, subglacial brine that supports an active microbial community. The subglacial brine is released from a crevasse at the surface of the Taylor Glacier providing an accessible portal into an Antarctic subglacial ecosystem. Recent geochemical and molecular analyses support a marine source for the salts and microorganisms in Blood Falls. The last time marine waters inundated this part of the McMurdo Dry Valleys was during the Late Tertiary, which suggests the brine is ancient. Still, no direct samples have been collected from the subglacial source to Blood Falls and little is known about the origin of this brine or the amount of time it has been sealed below Taylor Glacier. Radar profiles collected near Blood Falls delineate a possible fault in the subglacial substrate that may help explain the localized and episodic nature of brine release. However it remains unclear what triggers the episodic release of brine exclusively at the Blood Falls crevasse or the extent to which the brine is altered as it makes its way to the surface. The MIDGE project aims to determine the mechanism of brine release at Blood Falls, evaluate changes in the geochemistry and the microbial community within the englacial conduit and assess if Blood Falls waters have a distinct impact on the thermal and stress state of Taylor Glacier, one of the most studied polar glaciers in Antarctica. The geophysical study of the glaciological structure and mechanism of brine release will use GPR, GPS, and a small passive seismic network. Together with international collaborators, the 'Ice Mole' team from FH Aachen University of Applied Sciences, Germany (funded by the German Aerospace Center, DLR), MIDGE will develop and deploy innovative, minimally invasive technologies for clean access and brine sample retrieval from deep within the Blood Falls drainage system. These technologies will allow for the collection of samples of the brine away from the surface (up to tens of meters) for geochemical analyses and microbial structure-function experiments. There is concern over the contamination of pristine subglacial environments from chemical and biological materials inherent in the drilling process; and MIDGE will provide data on the efficacy of thermoelectric probes for clean access and retrieval of representative subglacial samples. Antarctic subglacial environments provide an excellent opportunity for researching survivability and adaptability of microbial life and are potential terrestrial analogues for life habitats on icy planetary bodies. The MIDGE project offers a portable, versatile, clean alternative to hot water and mechanical drilling and will enable the exploration of subglacial hydrology and ecosystem function while making significant progress towards developing technologies for minimally invasive and clean sampling of icy systems. | POLYGON((161.8 -77.7,161.88 -77.7,161.96 -77.7,162.04000000000002 -77.7,162.12 -77.7,162.2 -77.7,162.28 -77.7,162.36 -77.7,162.44 -77.7,162.51999999999998 -77.7,162.6 -77.7,162.6 -77.70700000000001,162.6 -77.714,162.6 -77.721,162.6 -77.728,162.6 -77.735,162.6 -77.742,162.6 -77.749,162.6 -77.756,162.6 -77.76299999999999,162.6 -77.77,162.51999999999998 -77.77,162.44 -77.77,162.36 -77.77,162.28 -77.77,162.2 -77.77,162.12 -77.77,162.04000000000002 -77.77,161.96 -77.77,161.88 -77.77,161.8 -77.77,161.8 -77.76299999999999,161.8 -77.756,161.8 -77.749,161.8 -77.742,161.8 -77.735,161.8 -77.728,161.8 -77.721,161.8 -77.714,161.8 -77.70700000000001,161.8 -77.7)) | POINT(162.2 -77.735) | false | false | ||||||||||||||||
Collaborative Research: Phytoplankton Phenology in the Antarctic: Drivers, Patterns, and Implications for the Adelie Penguin
|
1341440 1341558 1341547 |
2018-11-20 | Jin, Meibing; Stroeve, Julienne; Ji, Rubao | The aim of study is to understand how climate-related changes in snow and ice affect predator populations in the Antarctic, using the Adélie penguin as a focal species due to its long history as a Southern Ocean 'sentinel' species and the number of long-term research programs monitoring its abundance, distribution, and breeding biology. Understanding the environmental factors that control predator population dynamics is critically important for projecting the state of populations under future climate change scenarios, and for designing better conservation strategies for the Antarctic ecosystem. For the first time, datasets from a network of observational sites for the Adélie penguin across the entire Antarctic will be combined and analyzed, with a focus on linkages among the ice environment, primary production, and the population responses of Adélie penguins. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. The results of this project can be used to illustrate intuitively to the general public the complex interactions between ice, ocean, pelagic food web and top predators. This project also offers an excellent platform to demonstrate the process of climate-change science - how scientists simulate climate change scenarios and interpret model results. This project supports the training of undergraduate and graduate students in the fields of polar oceanography, plankton and seabird ecology, coupled physical-biological modeling and mathematical ecology. The results will be broadly disseminated to the general oceanographic research community through scientific workshops, conferences and peer-reviewed journal articles, and to undergraduate and graduate education communities, K-12 schools and organizations, and the interested public through web-based servers using existing infrastructure at the investigators' institutions. The key question to be addressed in this project is how climate impacts the timing of periodic biological events (phenology) and how interannual variation in this periodic forcing influences the abundance of penguins in the Antarctic. The focus will be on the timing of ice algae and phytoplankton blooms because the high seasonality of sea ice and associated pulsed primary productivity are major drivers of the Antarctic food web. This study will also examine the responses of Adélie penguins to changes in sea ice dynamics and ice algae-phytoplankton phenology. Adélie penguins, like many other Antarctic seabirds, are long-lived, upper trophic-level predators that integrate the effects of sea ice on the food web at regional scales, and thus serve as a reliable biological indicator of environmental changes. The proposed approach is designed to accommodate the limits of measuring and modeling the intermediate trophic levels between phytoplankton and penguins (e.g., zooplankton and fish) at the pan-Antarctic scale, which are important but latent variables in the Southern Ocean food web. Through the use of remotely sensed and in situ data, along with state of the art statistical approaches (e.g. wavelet analysis) and numerical modeling, this highly interdisciplinary study will advance our understanding of polar ecosystems and improve the projection of future climate change scenarios. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||||||||||||
Applying High-resolution GPS Tracking to Characterize Sensory Foraging Strategies of the Black-browed Albatross, a Top Predator of the Southern Ocean Ecosystem
|
1142084 |
2018-04-12 | Nevitt, Gabrielle |
|
With 70% of the Earth's surface being covered by oceans, a longstanding question of interest to the ecology of migratory seabirds is how they locate their prey across such vast distances. The project seeks to investigate the sensory strategies used in the foraging behavior of procellariiform seabirds, such as petrels, albatrosses and shearwaters. These birds routinely travel over thousands of kilometers of open ocean, apparently using their pronounced olfactory abilities (known to be up to a million times more sensitive than other birds) to identify productive marine areas or locate prey. High resolution tracking, such as provided by miniaturized GPS data loggers (+/- 5m; 10 second sampling), are needed to gain insight into some of the questions as to the sensory mechanisms birds use to locate their prey. Combining these tracking and positioning devices along with stomach temperature recorders capable of indicating prey ingestion, will provide a wealth of new behavioral information. Species specific foraging based on prey specific odors (e.g. krill vs fisheries vs. squid), and mixed strategies using olfaction and visual cues appear to be different for these different marine predators. Albatrosses are increasingly an endangered species globally, and additional information as to their foraging strategies might lead to better conservation measures such as the avoidance of by-catch by long-line fisheries. Intimate details of each species foraging activity patterns during the day and night and insight into the conservation of these top predators in pelagic Southern Ocean ecosystems are a few of the research directions these novel fine scale resolution approaches are yielding. | POLYGON((40 -25,46 -25,52 -25,58 -25,64 -25,70 -25,76 -25,82 -25,88 -25,94 -25,100 -25,100 -28.5,100 -32,100 -35.5,100 -39,100 -42.5,100 -46,100 -49.5,100 -53,100 -56.5,100 -60,94 -60,88 -60,82 -60,76 -60,70 -60,64 -60,58 -60,52 -60,46 -60,40 -60,40 -56.5,40 -53,40 -49.5,40 -46,40 -42.5,40 -39,40 -35.5,40 -32,40 -28.5,40 -25)) | POINT(70 -42.5) | false | false | |||||||||||||||
CAREER:Protist Nutritional Strategies in Permanently Stratified Antarctic Lakes
|
1056396 |
2018-02-26 | Morgan-Kiss, Rachael |
|
This CAREER proposal will support an early career female PI to establish an integrated research and education program in the fields of polar biology and environmental microbiology, focusing on single-celled eukaryotes (protists) in high latitude ice-covered Antarctic lakes systems. Protists play important roles in energy flow and material cycling, and act as both primary producers (fixing inorganic carbon by photosynthesis) and consumers (preying on bacteria by phagotrophic digestion). The McMurdo Dry Valleys (MDV) located in Victoria Land, Antarctica, harbor microbial communities which are isolated in the unique aquatic ecosystem of perennially ice-capped lakes. The lakes support exclusively microbial consortia in chemically stratified water columns that are not influenced by seasonal mixing, allochthonous inputs, or direct human impact. This project will exploit permanently stratified biogeochemistry that is unique across the water columns of several MDV lakes to address gaps in our understanding of protist trophic function in aquatic food webs. The proposed research will examine (1) the impact of permanent biogeochemical gradients on protist trophic strategy, (2) the effect of major abiotic drivers (light and nutrients) on the distribution of two key mixotrophic and photoautotrophic protist species, and (3) the effect of episodic nutrient pulses on mixotroph communities in high latitude (ultraoligotrophic) MDV lakes versus low latitude (eutrophic) watersheds. The project will impact the fields of microbial ecology and environmental microbiology by combining results from field, laboratory and in situ incubation studies to synthesize new models for the protist trophic roles in the aquatic food web. The research component of this proposed project will be tightly integrated with the development of two new education activities designed to exploit the inherent excitement associated with polar biological research. The educational objectives are: 1) to establish a teaching module in polar biology in a core undergraduate course for microbiology majors; 2) to develop an instructional module to engage middle school girls in STEM disciplines. Undergraduates and middle school girls will also work with a doctoral student on his experiments in local Ohio watersheds. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||||||
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans
|
0732711 0732625 0732655 0732602 0732651 0732983 |
2018-02-01 | Truffer, Martin; Gordon, Arnold; Huber, Bruce; Mosley-Thompson, Ellen; Leventer, Amy; Vernet, Maria; Smith, Craig; Thompson, Lonnie G. | Like no other region on Earth, the northern Antarctic Peninsula represents a spectacular natural laboratory of climate change and provides the opportunity to study the record of past climate and ecological shifts alongside the present-day changes in one of the most rapidly warming regions on Earth. This award supports the cryospheric and oceano-graphic components of an integrated multi-disciplinary program to address these rapid and fundamental changes now taking place in Antarctic Peninsula (AP). By making use of a marine research platform (the RV NB Palmer and on-board helicopters) and additional logistical support from the Argentine Antarctic program, the project will bring glaciologists, oceanographers, marine geologists and biologists together, working collaboratively to address fundamentally interdisciplinary questions regarding climate change. The project will include gathering a new, high-resolution paleoclimate record from the Bruce Plateau of Graham Land, and using it to compare Holocene- and possibly glacial-epoch climate to the modern period; investigating the stability of the remaining Larsen Ice Shelf and rapid post-breakup glacier response ? in particular, the roles of surface melt and ice-ocean interactions in the speed-up and retreat; observing the contribution of, and response of, oceanographic systems to ice shelf disintegration and ice-glacier interactions. Helicopter support on board will allow access to a wide range of glacial and geological areas of interest adjacent to the Larsen embayment. At these locations, long-term in situ glacial monitoring, isostatic uplift, and ice flow GPS sites will be established, and high-resolution ice core records will be obtained using previously tested lightweight drilling equipment. Long-term monitoring of deep water outflow will, for the first time, be integrated into changes in ice shelf extent and thickness, bottom water formation, and multi-level circulation by linking near-source observations to distal sites of concentrated outflow. The broader impacts of this international, multidisciplinary effort are that it will significantly advance our understanding of linkages amongst the earth's systems in the Polar Regions, and are proposed with international participation (UK, Spain, Belgium, Germany and Argentina) and interdisciplinary engagement in the true spirit of the International Polar Year (IPY). It will also provide a means of engaging and educating the public in virtually all aspects of polar science and the effects of ongoing climate change. The research team has a long record of involving undergraduates in research, educating high-performing graduate students, and providing innovative and engaging outreach products to the K-12 education and public media forums. Moreover, forging the new links both in science and international Antarctic programs will provide a continuing legacy, beyond IPY, of improved understanding and cooperation in Antarctica. | POLYGON((-68 -57.8,-66.78 -57.8,-65.56 -57.8,-64.34 -57.8,-63.12 -57.8,-61.9 -57.8,-60.68 -57.8,-59.46 -57.8,-58.24 -57.8,-57.02 -57.8,-55.8 -57.8,-55.8 -58.8,-55.8 -59.8,-55.8 -60.8,-55.8 -61.8,-55.8 -62.8,-55.8 -63.8,-55.8 -64.8,-55.8 -65.8,-55.8 -66.8,-55.8 -67.8,-57.02 -67.8,-58.24 -67.8,-59.46 -67.8,-60.68 -67.8,-61.9 -67.8,-63.12 -67.8,-64.34 -67.8,-65.56 -67.8,-66.78 -67.8,-68 -67.8,-68 -66.8,-68 -65.8,-68 -64.8,-68 -63.8,-68 -62.8,-68 -61.8,-68 -60.8,-68 -59.8,-68 -58.8,-68 -57.8)) | POINT(-61.9 -62.8) | false | false | ||||||||||||||||
Collaborative Research: Biological Adaptations to Environmental Change in Antarctica - An Advanced Training Program for Early Career Scientists
|
1245703 |
2017-12-29 | Manahan, Donal |
|
This project will support two training courses that will introduce early-career scientists from a wide range of disciplinary backgrounds to key issues in polar science, and especially to provide the opportunity to gain hands-on experience in Antarctic field activities. Antarctica is an ideal location to study a wide variety of questions in biology. However, few students and early-career scientists have the opportunity to work on-site in Antarctica unless they are directly associated with a senior scientist who has a funded Antarctic project. The project will further the NSF goal of training new generations of scientists by providing hands-on training in Antarctica during one course at Palmer Station in 2016 and another at McMurdo Station in 2018. This represents a continuation of nine previous courses at McMurdo Station which have a proven record of introducing participants to Antarctic science under realistic field conditions, providing opportunities to understand and appreciate the complexities and logistical challenges of undertaking science in Antarctica, enhancing the professional careers of the participants, and increasing international collaborations for early-career scientists. The proposed training courses will be open to Ph.D. students and post-doctoral scientists who have interests in the study of Antarctic marine organisms to help prepare them for success in developing their own independent research programs in polar regions. Long-standing and recent questions in evolution and ecology of Antarctic organisms will be examined with 1) field collections, 2) physiological experiments on whole organisms, 3) studies of isolated cells and tissues, 4) experiments on macromolecular processes (e.g., enzymes), and 5) molecular biological analyses. | POLYGON((-68.0574 -52.7267,-67.39775 -52.7267,-66.7381 -52.7267,-66.07845 -52.7267,-65.4188 -52.7267,-64.75915 -52.7267,-64.0995 -52.7267,-63.43985 -52.7267,-62.7802 -52.7267,-62.12055 -52.7267,-61.4609 -52.7267,-61.4609 -53.95849,-61.4609 -55.19028,-61.4609 -56.42207,-61.4609 -57.65386,-61.4609 -58.88565,-61.4609 -60.11744,-61.4609 -61.34923,-61.4609 -62.58102,-61.4609 -63.81281,-61.4609 -65.0446,-62.12055 -65.0446,-62.7802 -65.0446,-63.43985 -65.0446,-64.0995 -65.0446,-64.75915 -65.0446,-65.4188 -65.0446,-66.07845 -65.0446,-66.7381 -65.0446,-67.39775 -65.0446,-68.0574 -65.0446,-68.0574 -63.81281,-68.0574 -62.58102,-68.0574 -61.34923,-68.0574 -60.11744,-68.0574 -58.88565,-68.0574 -57.65386,-68.0574 -56.42207,-68.0574 -55.19028,-68.0574 -53.95849,-68.0574 -52.7267)) | POINT(-64.75915 -58.88565) | false | false | |||||||||||||||
Neogene Paleoecology of the Beardmore Glacier Region
|
0947821 |
2017-01-12 | Ashworth, Allan |
|
Intellectual Merit: <br/>The primary goal of this project is to sample two beds in the Meyer Desert Formation, which are known to be especially fossiliferous containing plants, insects, other arthropods, freshwater mollusks, and fish. There is a possibility that the teeth and bones of a small marsupial could also be found. Previous studies have demonstrated that these horizons contain unique fossil assemblages that provide information used to reconstruct paleoenvironments and paleoclimate. The fossils represent organisms previously not found in Antarctica and consequently their study will lead to the development of new hypotheses concerning southern hemisphere biogeography. The new discoveries will also increase knowledge of paleoenvironments and paleoclimates as well as biogeographic relationships of the biota of the southern hemisphere. For some organisms, such as Nothofagus (Southern Beech) or the trechine groundbeetle, fossils would confirm that Antarctica was inhabited as part of Gondwana. For other fossils, such as the cyclorrhaphan fly or freshwater mollusks not expected to have inhabited Antarctica, the discoveries will require a reassessment of phylogenetic interpretations and a reinvestigation of the role of Antarctica in the evolutionary history of those organisms. The new fossil-based knowledge will require integration with interpretations from cladistics and molecular genetics to develop more comprehensive phylogenetic hypotheses for a range of organisms.<br/><br/>Broader impacts: <br/>The discovery of fossils in Antarctica and implications for climate change has proven to be popular with the media. This attention will help disseminate the results of this study. Before the field season, the PI will work with local media and with area schools to set up field interviews and web casts from Antarctica. The project will also involve the training of a graduate student in the field and in the follow up studies of the fossils in the laboratory. | POLYGON((-180 -85.095235,-145.3719418 -85.095235,-110.7438836 -85.095235,-76.1158254 -85.095235,-41.4877672 -85.095235,-6.859709 -85.095235,27.7683492 -85.095235,62.3964074 -85.095235,97.0244656 -85.095235,131.6525238 -85.095235,166.280582 -85.095235,166.280582 -85.0996451,166.280582 -85.1040552,166.280582 -85.1084653,166.280582 -85.1128754,166.280582 -85.1172855,166.280582 -85.1216956,166.280582 -85.1261057,166.280582 -85.1305158,166.280582 -85.1349259,166.280582 -85.139336,131.6525238 -85.139336,97.0244656 -85.139336,62.3964074 -85.139336,27.7683492 -85.139336,-6.859709 -85.139336,-41.4877672 -85.139336,-76.1158254 -85.139336,-110.7438836 -85.139336,-145.3719418 -85.139336,180 -85.139336,178.6280582 -85.139336,177.2561164 -85.139336,175.8841746 -85.139336,174.5122328 -85.139336,173.140291 -85.139336,171.7683492 -85.139336,170.3964074 -85.139336,169.0244656 -85.139336,167.6525238 -85.139336,166.280582 -85.139336,166.280582 -85.1349259,166.280582 -85.1305158,166.280582 -85.1261057,166.280582 -85.1216956,166.280582 -85.1172855,166.280582 -85.1128754,166.280582 -85.1084653,166.280582 -85.1040552,166.280582 -85.0996451,166.280582 -85.095235,167.6525238 -85.095235,169.0244656 -85.095235,170.3964074 -85.095235,171.7683492 -85.095235,173.140291 -85.095235,174.5122328 -85.095235,175.8841746 -85.095235,177.2561164 -85.095235,178.6280582 -85.095235,-180 -85.095235)) | POINT(0 -89.999) | false | false | |||||||||||||||
Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos
|
1141877 |
2016-09-14 | Aronson, Richard | Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials. | POLYGON((-111.18 -49.98,-105.429 -49.98,-99.678 -49.98,-93.927 -49.98,-88.176 -49.98,-82.425 -49.98,-76.674 -49.98,-70.923 -49.98,-65.172 -49.98,-59.421 -49.98,-53.67 -49.98,-53.67 -52.826,-53.67 -55.672,-53.67 -58.518,-53.67 -61.364,-53.67 -64.21,-53.67 -67.056,-53.67 -69.902,-53.67 -72.748,-53.67 -75.594,-53.67 -78.44,-59.421 -78.44,-65.172 -78.44,-70.923 -78.44,-76.674 -78.44,-82.425 -78.44,-88.176 -78.44,-93.927 -78.44,-99.678 -78.44,-105.429 -78.44,-111.18 -78.44,-111.18 -75.594,-111.18 -72.748,-111.18 -69.902,-111.18 -67.056,-111.18 -64.21,-111.18 -61.364,-111.18 -58.518,-111.18 -55.672,-111.18 -52.826,-111.18 -49.98)) | POINT(-82.425 -64.21) | false | false | ||||||||||||||||
Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica
|
0944659 0944686 |
2015-12-16 | Kiene, Ronald; Kieber, David John | Spectacular blooms of Phaeocystis antarctica in the Ross Sea, Antarctica are the source of some of the world's highest concentrations of dimethylsulfoniopropionate (DMSP) and its volatile degradation product, dimethylsulfide (DMS). The flux of DMS from the oceans to the atmosphere in this region and its subsequent gas phase oxidation generates aerosols that have a strong influence on cloud properties and possibly climate. In the oceans, DMS and DMSP are quantitatively significant components of the carbon, sulfur, and energy flows in marine food webs, especially in the Ross Sea. Despite its central role in carbon and sulfur biogeochemistry in the Ross Sea, surprisingly little is known about the physiological functions of DMSP in P. Antarctica. The research will isolate and characterize DMSP lyases from P. antarctica, with the goal of obtaining amino acid and gene sequence information on these important enzymes. The physiological studies will focus on the effects of varying intensities of photosynthetically active radiation, with and without ultraviolet radiation as these are factors that we have found to be important controls on DMSP and DMS dynamics. The research also will examine the effects of prolonged darkness on the dynamics of DMSP and related compounds in P. antarctica, as survival of this species during the dark Antarctic winter and at sub-euphotic depths appears to be an important part of the Phaeocystis? ecology. A unique aspect of this work is the focus on measurements of intracellular MSA, which if detected, would provide strong evidence for in vivo radical scavenging functions for methyl sulfur compounds. The study will advance understanding of what controls DMSP cycling and ultimately DMS emissions from the Ross Sea and also provide information on what makes P. antarctica so successful in this extreme environment. The research will directly benefit and build on several interrelated ocean-atmosphere programs including the International Surface Ocean Lower Atmosphere Study (SOLAS) program. The PIs will participate in several activities involving K-12 education, High School teacher training, public education and podcasting through the auspices of the Dauphin Island Sea Lab Discovery Hall program and SUNY ESF. Two graduate students will be employed full time, and six undergraduates (2 each summer) will be trained as part of this project. | POLYGON((-180 -68,-177 -68,-174 -68,-171 -68,-168 -68,-165 -68,-162 -68,-159 -68,-156 -68,-153 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -77,160 -76,160 -75,160 -74,160 -73,160 -72,160 -71,160 -70,160 -69,160 -68,162 -68,164 -68,166 -68,168 -68,170 -68,172 -68,174 -68,176 -68,178 -68,-180 -68)) | POINT(-175 -73) | false | false | ||||||||||||||||
Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica
|
0739575 |
2015-09-25 | Polito, Michael; Patterson, William |
|
The research combines interdisciplinary study in geology, paleontology, and biology, using stable isotope and radiocarbon analyses, to examine how climate change and resource utilization have influenced population distribution, movement, and diet in penguins during the mid-to-late Holocene. Previous investigations have demonstrated that abandoned colonies contain well-preserved remains that can be used to examine differential responses of penguins to climate change in various sectors of Antarctica. As such, the research team will investigate abandoned and active pygoscelid penguin (Adelie, Chinstrap, and Gentoo) colonies in the Antarctic Peninsula and Ross Sea regions, and possibly Prydz Bay, in collaboration with Chinese scientists during four field seasons. Stable isotope analyses will be conducted on recovered penguin tissues and prey remains in guano to address hypotheses on penguin occupation history, population movement, and diet in relation to climate change since the late Pleistocene. The study will include one Ph.D., two Masters and 16 undergraduate students in advanced research over the project period. Students will be exposed to a variety of fields, the scientific method, and international scientific research. They will complete field and lab research for individual projects or Honor's theses for academic credit. The project also will include web-based outreach, lectures to middle school students, and the development of interactive exercises that highlight hypothesis-driven research and the ecology of Antarctica. Two undergraduate students in French and Spanish languages at UNCW will be hired to assist in translating the Web page postings for broader access to this information. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||||||
Population ecology of Salpa thompsoni based on molecular indicators
|
1044982 |
2015-06-17 | Bucklin, Ann |
|
The proposed research targets the molecular genetics of salps, an increasingly important member of the zooplankton in Antarctic waters who's dominance appears to be related to climate warming and sea ice loss. Specifically the research will examine genome-wide patterns of gene expression, target gene expression levels, and patterns of population genetic diversity and structure underlying the complex life history and population dynamics of S. thompsoni. The P.I.s hypothesize that (1) deep analysis of the Salpa thompsoni transcriptome will reveal significant associations among selected set of differentially expressed genes and critical life history stages and events (e.g., ontogenetic maturation, sexual reproduction, senescence) of the salp; and 2) the species will show variable levels of clonal diversity and significant genetic differentiation among populations in different regions of the Southern Ocean. Broader impacts include training of two graduate students; inclusion of undergraduates in research, and in a formal training workshop; development of a summer workshop for high school teachers in collaboration with Connecticut Sea Grant; and public outreach via postings on the Census of Marine Zooplankton homepage. | POLYGON((-69.3804 -52.760597,-67.79698 -52.760597,-66.21356 -52.760597,-64.63014 -52.760597,-63.04672 -52.760597,-61.4633 -52.760597,-59.87988 -52.760597,-58.29646 -52.760597,-56.71304 -52.760597,-55.12962 -52.760597,-53.5462 -52.760597,-53.5462 -53.9928073,-53.5462 -55.2250176,-53.5462 -56.4572279,-53.5462 -57.6894382,-53.5462 -58.9216485,-53.5462 -60.1538588,-53.5462 -61.3860691,-53.5462 -62.6182794,-53.5462 -63.8504897,-53.5462 -65.0827,-55.12962 -65.0827,-56.71304 -65.0827,-58.29646 -65.0827,-59.87988 -65.0827,-61.4633 -65.0827,-63.04672 -65.0827,-64.63014 -65.0827,-66.21356 -65.0827,-67.79698 -65.0827,-69.3804 -65.0827,-69.3804 -63.8504897,-69.3804 -62.6182794,-69.3804 -61.3860691,-69.3804 -60.1538588,-69.3804 -58.9216485,-69.3804 -57.6894382,-69.3804 -56.4572279,-69.3804 -55.2250176,-69.3804 -53.9928073,-69.3804 -52.760597)) | POINT(-61.4633 -58.9216485) | false | false | |||||||||||||||
RAPID: Origin of Persistent Organic Pollutants in the Antarctic Atmosphere, Snow and Marine Food WEB
|
1332492 |
2015-06-09 | Lohmann, Rainer |
|
Many persistent organic pollutants (POPs), though banned in the U.S. since the 1970s, remain in the environment and continue to reach hitherto pristine regions such as the Arctic and Antarctic. The overall goals of this RAPID project are to better understand the remobilization of POPs from melting glaciers in the Antarctic, and their transfer into the food-web. Legacy POPs have characteristic chemical signatures that will be used ascertain the origin of POPs in the Antarctic atmosphere and marine food-web. Samples that were collected in 2010 will be analyzed for a wide range of legacy POPs, and their behavior will be contrasted with results for emerging contaminants. The intellectual merit of the proposed research combines (a) the use of chemical signatures to assess whether melting glaciers are releasing legacy POPs back into the Antarctic marine ecosystem, and (b) a better understanding of the food-web dynamics of legacy POPs versus emerging organic pollutants. The broader impacts of the proposed research project will include the training of the next generation of scientists through support for a graduate student and a postdoctoral scholar. As well, this work will result in a better understanding of the relationship between pollutants, trophic food web ecology and global climate change in the pristine Antarctic ecosystem. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||||||
ASPIRE: Amundsen Sea Polynya International Research Expedition
|
0944727 |
2015-01-30 | Arrigo, Kevin |
|
ASPIRE is an NSF-funded project that will examine the ecology of the Amundsen Sea during the Austral summer of 2010. ASPIRE includes an international team of trace metal and carbon chemists, phytoplankton physiologists, microbial and zooplankton ecologists, and physical oceanographers, that will investigate why and how the Amundsen Sea Polynya is so much more productive than other polynyas and whether interannual variability can provide insight to climate-sensitive mechanisms driving carbon fluxes. This project will compliment the existing ASPIRE effort by using 1) experimental manipulations to understand photoacclimation of the dominant phytoplankton taxa under conditions of varying light and trace metal abundance, 2) nutrient addition bioassays to determine the importance of trace metal versus nitrogen limitation of phytoplankton growth, and 3) a numerical ecosystem model to understand the importance of differences in mixing regime, flow field, and Fe sources in controlling phytoplankton bloom dynamics and community composition in this unusually productive polynya system. The research strategy will integrate satellite remote sensing, field-based experimental manipulations, and numerical modeling. Outreach and education include participation in Stanford's Summer Program for Professional Development for Science Teachers, Stanford's School of Earth Sciences high school internship program, and development of curriculum for local science training centers, including the Chabot Space and Science Center. Undergraduate participation and training will include support for both graduate students and undergraduate assistants. | POLYGON((-118.3 -71.6,-117.57 -71.6,-116.84 -71.6,-116.11 -71.6,-115.38 -71.6,-114.65 -71.6,-113.92 -71.6,-113.19 -71.6,-112.46 -71.6,-111.73 -71.6,-111 -71.6,-111 -71.86,-111 -72.12,-111 -72.38,-111 -72.64,-111 -72.9,-111 -73.16,-111 -73.42,-111 -73.68,-111 -73.94,-111 -74.2,-111.73 -74.2,-112.46 -74.2,-113.19 -74.2,-113.92 -74.2,-114.65 -74.2,-115.38 -74.2,-116.11 -74.2,-116.84 -74.2,-117.57 -74.2,-118.3 -74.2,-118.3 -73.94,-118.3 -73.68,-118.3 -73.42,-118.3 -73.16,-118.3 -72.9,-118.3 -72.64,-118.3 -72.38,-118.3 -72.12,-118.3 -71.86,-118.3 -71.6)) | POINT(-114.65 -72.9) | false | false | |||||||||||||||
The Physiological Ecology of Two Antarctic Icons: Emperor Penguins and Leopard Seals
|
0944220 |
2014-11-24 | Ponganis, Paul |
|
Emperor penguins (Aptenodytes forsteri) and leopard seals (Hydrurga leptonyx) are iconic, top predators in Antarctica. Understanding their physiological ecology is essential to the assessment of their adaptability to the threats of climate change, pollution, and overfishing. The proposed research has multipronged objectives. Prior results suggest that Emperor penguins have flexible (vs. static) aerobic dive limits (ADL) that vary with the type of dive, and that the role of heart rate in utilization of oxygen stores also varies with dive type. A series of physiological measurements are proposed with backpack electrocardiogram recorders, that will allow further delineation of patterns and interrelationships among heart rate, dive behavior, and oxygen stores. Importantly, the research will be done on free diving emperors, and not individuals confined to a dive hole, thereby providing a more genuine measure of diving physiology and behavior. A separate objective is to examine foraging behavior of leopard seals, using a backpack digital camera and time depth recorder. Leopard seal behavior and prey intake is poorly quantified, but known to be significant. Accordingly the research is somewhat exploratory but will provide important baseline data. Finally, the P.I. proposes to continue long term overflight censuses of Emperor penguin colonies in the Ross Sea. Broader impacts include collaboration with National Geographic television, graduate student training, and development of sedation techniques for leopard seals. | POLYGON((-180 -68,-147 -68,-114 -68,-81 -68,-48 -68,-15 -68,18 -68,51 -68,84 -68,117 -68,150 -68,150 -69,150 -70,150 -71,150 -72,150 -73,150 -74,150 -75,150 -76,150 -77,150 -78,117 -78,84 -78,51 -78,18 -78,-15 -78,-48 -78,-81 -78,-114 -78,-147 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -77,160 -76,160 -75,160 -74,160 -73,160 -72,160 -71,160 -70,160 -69,160 -68,162 -68,164 -68,166 -68,168 -68,170 -68,172 -68,174 -68,176 -68,178 -68,-180 -68)) | POINT(-25 -73) | false | false | |||||||||||||||
Collaborative Research: Antarctic Ecosystems across the Permian-Triassic Boundary: Integrating Paleobotany, Sedimentology, and Paleoecology
|
0943934 0943935 |
2014-09-23 | Isbell, John | Intellectual Merit:<br/>The focus of this proposal is to collect fossil plants and palynomorphs from Permian-Triassic (P-T) rocks of the central Transantarctic Mountains (CTM), together with detailed data on sedimentologic and paleoecologic depositional environments. Fossil plants are important climate proxies that offer a unique window into the past, and the CTM fossils are an important source of data on the ways that plants responded to a strongly seasonal, polar light regime during a time of global change. The proposed project uses paleobotanical expertise, integrated with detailed sedimentology and stratigraphy, to reconstruct Permian-Triassic plant communities and their paleoenvironments. This interdisciplinary approach could uncover details of Antarctica?s complex late Paleozoic and Mesozoic environmental and climatic history which included: 1) deglaciation, 2) development and evolution of a post-glacial landscape and biota, 3) environmental and biotic change associated with the end-Permian mass extinction, 4) environmental recovery in the earliest Triassic, 5) strong, possible runaway Triassic greenhouse, and 6) widespread orogenesis and development of a foreland basin system. The PIs will collect compression floras both quantitatively and qualitatively to obtain biodiversity and abundance data. Since silicified wood is also present, the PIs will analyze tree rings and growth in a warm, high-latitude environment for which there is no modern analogue. Fossil plants from the CTM can provide biological and environmental information to: 1) interpret paleoclimate when Gondwana moved from icehouse to greenhouse conditions; 2) trace floral evolution across the P-T boundary; 3) reconstruct Antarctic plant life; 4) further understanding of plant adaptations to high latitudes. The Intellectual Merit of the research includes: 1) tracing floral evolution after the retreat of glaciers; 2) examining floral composition and diversity across the PTB; and 3) obtaining data on the recovery of these ecosystems in the Early Triassic, as well as changes in floral cover and diversity in the Early-Middle Triassic. Antarctica is the only place on Earth that includes extensive outcrops of terrestrial rocks, combined with widespread and well-preserved plant fossils, which spans this crucial time period.<br/><br/>Broader impacts:<br/>The broader impacts include public outreach; teaching, and mentoring of women and underrepresented students; mentoring graduate student, postdoctoral, and new faculty women; development of an inquiry-based workshop on Antarctic paleoclimate with the Division of Education, KU Natural History Museum; continuing support of workshops for middle school girls in science via the Expanding Your Horizons Program, Emporia State University, and the TRIO program, KU; exploring Antarctic geosciences through video/computer links from McMurdo Station and satellite phone conferences from the field with K-12 science classes in Wisconsin and Kansas, and through participation in the NSF Research Experiences for Teachers program at the University of Wisconsin. | None | None | false | false | ||||||||||||||||
Collaborative Research: Functional Genomics and Physiological Ecology of Seasonal Succession in Antarctic Phytoplankton: Adaptations to Light and Temperature
|
1043532 |
2014-09-08 | Grzymski, Joseph |
|
The proposed research will investigate the genomic basis of the physiological and ecological transition of Antarctic marine phytoplankton from a cold dark winter to a warmer, brighter spring. During a field season at Palmer Station, functional genomics (using next generation sequencing technology to identify expressed genes) and in situ fluorometry (FRRF) will be integrated with classical ecological methods to investigate photosynthetic adaptation during phytoplankton species succession from late winter into spring. Using large data sets, this project will test whether amino acid usages differ based on expression. The specific objectives are (1) To characterize phytoplankton succession from the winter to spring transition, and (2) To correlate community gene expression profiles to adaptational differences among taxa. Broader impacts include training of a post doctoral researcher and two undergraduate science majors, with efforts to attract students from underrepresented groups. The P.I.s also will prepare presentations for the public, regarding research experiences, research results, and the importance of climate change. | POINT(-64 -64.7) | POINT(-64 -64.7) | false | false | |||||||||||||||
Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula
|
0838996 |
2014-03-13 | Hollibaugh, James T. |
|
Ammonia oxidation is the first step in the conversion of regenerated nitrogen to dinitrogen gas, a 3-step pathway mediated by 3 distinct guilds of bacteria and archaea. Ammonia oxidation and the overall process of nitrification-denitrification have received relatively little attention in polar oceans where the effects of climate change on biogeochemical rates are likely to be pronounced. Previous work on Ammonia Oxidizing Archaea (AOA) in the Palmer LTER study area West of the Antarctic Peninsula (WAP), has suggested strong vertical segregation of crenarchaeote metabolism, with the "winter water" (WW, ~50-100 m depth range) dominated by non-AOA crenarchaeotes, while Crenarchaeota populations in the "circumpolar deep water" (CDW), which lies immediately below the winter water (150-3500 m), are dominated by AOA. Analysis of a limited number of samples from the Arctic Ocean did not reveal a comparable vertical segregation of AOA, and suggested that AOA and Crenarchaeota abundance is much lower there than in the Antarctic. These findings led to 3 hypotheses that will be tested in this project: 1) the apparent low abundance of Crenarchaeota and AOA in Arctic Ocean samples may be due to spatial or temporal variability in populations; 2) the WW population of Crenarchaeota in the WAP is dominated by a heterotroph; 3) the WW population of Crenarchaeota in the WAP "grows in" during spring and summer after this water mass forms. <br/><br/>The study will contribute substantially to understanding an important aspect of the nitrogen cycle in the Palmer LTER (Long Term Ecological Research) study area by providing insights into the ecology and physiology of AOA. The natural segregation of crenarchaeote phenotypes in waters of the WAP, coupled with metagenomic studies in progress in the same area by others (A. Murray, H. Ducklow), offers the possibility of major breakthroughs in understanding of the metabolic capabilities of these organisms. This knowledge is needed to model how water column nitrification will respond to changes in polar ecosystems accompanying global climate change. The Principal Investigator will participate fully in the education and outreach efforts of the Palmer LTER, including making highlights of our findings available for posting to their project web site and participating in outreach (for example, Schoolyard LTER). The research also will involve undergraduates (including the field work if possible) and will support high school interns in the P.I.'s laboratory over the summer. | POLYGON((-79 -63,-77.5 -63,-76 -63,-74.5 -63,-73 -63,-71.5 -63,-70 -63,-68.5 -63,-67 -63,-65.5 -63,-64 -63,-64 -63.8,-64 -64.6,-64 -65.4,-64 -66.2,-64 -67,-64 -67.8,-64 -68.6,-64 -69.4,-64 -70.2,-64 -71,-65.5 -71,-67 -71,-68.5 -71,-70 -71,-71.5 -71,-73 -71,-74.5 -71,-76 -71,-77.5 -71,-79 -71,-79 -70.2,-79 -69.4,-79 -68.6,-79 -67.8,-79 -67,-79 -66.2,-79 -65.4,-79 -64.6,-79 -63.8,-79 -63)) | POINT(-71.5 -67) | false | false | |||||||||||||||
RAPID: Linking the Movement Patterns and Foraging Behavior of Humpback Whales to their Prey across Multiple Spatial Scales within the LTER Study Region
|
1250208 |
2014-03-10 | Friedlaender, Ari; Nowacek, Douglas; Johnston, David |
|
Whales play a central role in the ecology and biogeochemistry of the Southern Ocean. However, little is known regarding their distribution and behavior, in part because of challenges associated with studying these organisms from large research vessels. This research will take advantage of the unique opportunity presented by the 2012-2013 test run of the smaller, more mobile R/V Point Sur. This work will use the Point Sur to investigate humpback whales in the waters studied by the Palmer Long Term Ecological Research (LTER) Station off the Western Antarctic Peninsula (WAP). Employing a combination of long-term satellite-linked tags and short-term suction cup tags, researchers will investigate the distribution, abundance and foraging behaviors of whales in this region. Whale biogeography will then be related to quantitative surveys of krill, their primary food source. Hypotheses regarding whale distribution and foraging strategies as well as physical oceanographic features will be tested. The WAP is undergoing some of the most dramatic warming on the planet, and a better understanding of the ecology of top predators is central to developing an understanding of the impacts of this change. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. Finally, this work will be coordinated with the extensive infrastructure of the Palmer LTER site, enabling outreach and educational activities. | POLYGON((-80 -63,-78 -63,-76 -63,-74 -63,-72 -63,-70 -63,-68 -63,-66 -63,-64 -63,-62 -63,-60 -63,-60 -63.7,-60 -64.4,-60 -65.1,-60 -65.8,-60 -66.5,-60 -67.2,-60 -67.9,-60 -68.6,-60 -69.3,-60 -70,-62 -70,-64 -70,-66 -70,-68 -70,-70 -70,-72 -70,-74 -70,-76 -70,-78 -70,-80 -70,-80 -69.3,-80 -68.6,-80 -67.9,-80 -67.2,-80 -66.5,-80 -65.8,-80 -65.1,-80 -64.4,-80 -63.7,-80 -63)) | POINT(-70 -66.5) | false | false | |||||||||||||||
Collaborative Research: Seasonal Trophic Roles of Euphausia Superba (STRES)
|
1142107 |
2014-02-07 | Durbin, Edward |
|
Krill, Euphausia superba, is a keystone species in the Antarctic ecosystem and provides the trophic link between microscopic plankton and charismatic megafauna such as penguins and whales. Recent evidence suggests krill may not be exclusively planktonivorous, which introduces the potential of new pathways of carbon flux through krill based ecosystems. A change in our view of krill from one of being herbivores to omnivores opens up several questions. Climate induced change in the extent, thickness and duration of overlying sea ice coverage is expected to change the prey fields available to krill, and to have subsequent effects on the suite of predators supported by krill. The nature of this benthic prey?krill link, which may be crucial in those parts of the seasonal cycle other than the well studied spring bloom, is yet to be determined. DNA techniques will be used to identify and quantify the prey organisms. This project will measure the in situ feeding ecology and behavior of krill and, ultimately, the success of this key species. An overall goal is to investigate seasonal changes in Euphausia superba in-situ feeding and swimming behavior in the Wilhelmina Bay region of the Western Antarctic Peninsula (WAP) area, known to be a region of changing climate. Understanding the biological impacts of climate change is important to societal and economic goals. The project scientists will additionally team with a marine and environmental reporting group to design presentations for an annual journalist meeting. | None | None | false | false | |||||||||||||||
Collaborative Research: Hunting in Darkness: Behavioral and Energetic Strategies of Weddell Seals in Winter
|
0739390 |
2014-01-17 | Davis, Randall | No dataset link provided | Intellectual Merit: Weddell seals (Leptonychotes weddellii) locate and capture sparsely distributed and mobile prey under shore-fast ice throughout the year, including the austral winter when ambient light levels are very low and access to breathing holes is highly limited. This is one of the most challenging environments occupied by an aquatic mammalian predator, and it presents unique opportunities to test hypotheses concerning: 1) behavioral strategies and energetic costs for foraging and 2) sensory modalities used for prey capture under sea ice. To accomplish these objectives, we will attach digital video and data recorders to the backs of free-ranging Weddell seals during the autumn, winter and early spring. These instruments simultaneously record video of prey pursuit and capture and three-dimensional movements, swimming performance, ambient light level and other environmental variables. Energetic costs for entire dives and portions of dives will be estimated from stroking effort and our published relationship between swimming performance and energetics for Weddell seals. The energetic cost of different dive types will be evaluated for strategies that maximize foraging efficiency, range (distance traveled), and duration of submergence. The proposed study will provide a more thorough understanding of the role of vision and changing light conditions in foraging behavior, sensory ecology, energetics and habitat use of Weddell seals and the distribution of encountered prey. It also will provide new insights into survival strategies that allow Weddell seals to inhabit the Antarctic coastal marine ecosystem throughout the year. <br/><br/>Broader Impacts: The proposed study will train two graduate students and a Post-doctoral Fellow. Outreach activities will include interviews, written material and photographs provided to print and electronic media, project web sites, high school email exchanges from McMurdo Station, hosting visiting artists at our field camp, and public lectures. We will provide a weekly summary of our research findings to teachers and students in elementary school programs through our websites, one of which received an educational award. Our previous projects have attracted an extraordinary amount of press coverage that effectively brings scientific research to the public. This coverage and the video images generated by our work excite the imagination and help instill an interest in science and wildlife conservation in children and adults. | POLYGON((166.08823 -77.545,166.177124 -77.545,166.266018 -77.545,166.354912 -77.545,166.443806 -77.545,166.5327 -77.545,166.621594 -77.545,166.710488 -77.545,166.799382 -77.545,166.888276 -77.545,166.97717 -77.545,166.97717 -77.57736,166.97717 -77.60972,166.97717 -77.64208,166.97717 -77.67444,166.97717 -77.7068,166.97717 -77.73916,166.97717 -77.77152,166.97717 -77.80388,166.97717 -77.83624,166.97717 -77.8686,166.888276 -77.8686,166.799382 -77.8686,166.710488 -77.8686,166.621594 -77.8686,166.5327 -77.8686,166.443806 -77.8686,166.354912 -77.8686,166.266018 -77.8686,166.177124 -77.8686,166.08823 -77.8686,166.08823 -77.83624,166.08823 -77.80388,166.08823 -77.77152,166.08823 -77.73916,166.08823 -77.7068,166.08823 -77.67444,166.08823 -77.64208,166.08823 -77.60972,166.08823 -77.57736,166.08823 -77.545)) | POINT(166.5327 -77.7068) | false | false | |||||||||||||||
Collaborative Research: Multispecies, Multiscale Investigations of Longterm Changes in Penguin and Seabird Populations on the Antarctic Peninsula
|
0739515 |
2014-01-17 | Fagan, William; Lynch, Heather |
|
This five-year project seeks to characterize decadal scale changes in penguin and seabird populations on the Antarctic Peninsula, and to identify the factors driving these long-term changes. Two interconnected research activities are proposed: 1. Continued, long-term monitoring and censusing of penguin and seabird populations at >117 sites throughout the Antarctic Peninsula via opportunistic ship-based data collection. 2. Synthesis and quantitative analyses of datasets detailing long-term changes in five penguin and seabird species from diverse sites throughout the Antarctic Peninsula. When complete, the penguin/seabird database will incorporate data from the Antarctic Site Inventory (ASI), the CCAMLR database, the US AMLR database, the LTER database from Palmer Station, data from British and Argentine researchers, historic census data compiled by the Scientific Committee on Antarctic Research (SCAR), and, when possible, additional privately held datasets. Additional data for temperature change, sea ice coverage, the seasonal timing and intensity of human visitation, and other factors have been gathered and will be analyzed together with population trajectories within a spatially explicit framework. The research will include hierarchical statistical analyses to characterize the long-term population dynamics of several key polar species across multiple spatial scales (sites, regions, and the Peninsula). Analyses also will focus on specific subsets of the overall database to contrast visitor impacts on paired colonies, sites, and regions that share similar environmental conditions but differ in the intensity of tourism. <br/><br/>The Broader Impacts include (1) research training and first-time Antarctic experiences for a postdoctoral researcher and several graduate students, all of whom will then be better positioned to bring their expertise in spatial and/or quantitative/theoretical ecology to bear on questions in polar research; (2) assembly and analysis of a large, multi-season database of penguin and seabird time series from the Antarctic Peninsula that will be publicly available, (3) assistance in distinguishing the impacts of tourism versus climate change on seabird populations. Under the Environmental Protocol to the Antarctic Treaty, Treaty Parties are charged with regular and effective monitoring to assess the impacts of human activities. This project will uniquely assist Parties in fulfilling this mandate. | POLYGON((-68.383 -60.65,-66.10137 -60.65,-63.81974 -60.65,-61.53811 -60.65,-59.25648 -60.65,-56.97485 -60.65,-54.69322 -60.65,-52.41159 -60.65,-50.12996 -60.65,-47.84833 -60.65,-45.5667 -60.65,-45.5667 -61.4145,-45.5667 -62.179,-45.5667 -62.9435,-45.5667 -63.708,-45.5667 -64.4725,-45.5667 -65.237,-45.5667 -66.0015,-45.5667 -66.766,-45.5667 -67.5305,-45.5667 -68.295,-47.84833 -68.295,-50.12996 -68.295,-52.41159 -68.295,-54.69322 -68.295,-56.97485 -68.295,-59.25648 -68.295,-61.53811 -68.295,-63.81974 -68.295,-66.10137 -68.295,-68.383 -68.295,-68.383 -67.5305,-68.383 -66.766,-68.383 -66.0015,-68.383 -65.237,-68.383 -64.4725,-68.383 -63.708,-68.383 -62.9435,-68.383 -62.179,-68.383 -61.4145,-68.383 -60.65)) | POINT(-56.97485 -64.4725) | false | false | |||||||||||||||
Real-Time Characterization of Adelie Penguin Foraging Environment Using an Autonomous Underwater Vehicle
|
1019838 |
2013-12-30 | Wendt, Dean; Moline, Mark |
|
Abstract This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The Antarctic Peninsula is among the most rapidly warming regions on earth. Increased heat from the Antarctic Circumpolar Current has elevated the temperature of the 300 m of shelf water below the permanent pycnocline by 0.7 degrees C. This trend has displaced the once dominant cold, dry continental Antarctic climate, and is causing multi-level responses in the marine ecosystem. One striking example of the ecosystem response to warming has been the local declines in ice-dependent Adélie penguins. The changes in these apex predators are thought to be driven by alterations in phytoplankton and zooplankton community composition, and the foraging limitations and diet differences between these species. One of the most elusive questions facing researchers interested in the foraging ecology of the Adélie penguin, namely, what are the biophysical properties that characterize the three dimensional foraging space of this top predator? The research will combine the real-time site and diving information from the Adélie penguin satellite tags with the full characterization of the oceanography and the penguins prey field using an autonomous underwater vehicle (AUV). While some of these changes have been documented over large spatial scales of the WAP, it is now thought that the causal mechanisms that favor of one life history strategy over another may actually operate over much smaller scales than previously thought, specifically on the scale of local breeding sites and over-wintering areas. Characterization of prey fields on these local scales has yet to be done and one that the AUV is ideally suited. The results will have a direct tie to the climate induced changes that are occurring in the West Antarctic Peninsula. This study will also highlight a new approach to linking an autonomous platform to bird behavior that could be expanded to include the other two species of penguins and examine the seasonal differences in their foraging behavior and prey selection. From a vehicle perspective, this effort will inform the AUV user community of new sensor suites and/or data processing approaches that are required to better evaluate foraging habitat. The project also will help transition AUV platforms into routine investigative tools for this region, which is chronically under sampled and will remain difficult to access | None | None | false | false | |||||||||||||||
Collaborative Research: Biogeochemistry of Cyanobactrial Mats and Hyporheic Zone Microbes in McMurdo Dry Valley Glacial Meltwater Streams
|
0739648 |
2013-12-10 | Cary, Stephen |
|
The glacial streams of the McMurdo Dry Valleys have extensive cyanobacterial mats that are a probable source of fixed C and N to the Valleys. The research will examine the interplay between the microbial mats in the ephemeral glacial streams and the microbiota of the hyporheic soils (wetted soil zone) underlying and adjacent to those mats. It is hypothesized that the mats are important sources of organic carbon and fixed nitrogen for the soil communities of the hyporheic zone, and release dissolved organic carbon (DOC) and nitrogen (DON) that serves the entire Dry Valley ecosystem. Field efforts will entail both observational and experimental components. Direct comparisons will be made between the mats and microbial populations underlying naturally rehydrated and desiccated mat areas, and between mat areas in the melt streams of the Adams and Miers Glaciers in Miers Valley. Both physiological and phylogenetic indices of the soil microbiota will be examined. Observations will include estimates of rates of mat carbon and nitrogen fixation, soil respiration and leucine and thymidine uptake (as measures of protein & DNA synthesis, respectively) by soil bacteria, bacterial densities and their molecular ecology. Experimental manipulations will include experimental re-wetting of soils and observations of the time course of response of the microbial community. The research will integrate modern molecular genetic approaches (ARISA-DNA fingerprinting and ultra deep 16S rDNA microbial phylogenetic analysis) with geochemistry to study the diversity, ecology, and function of microbial communities that thrive in these extreme environments. The broader impacts of the project include research and educational opportunities for graduate students and a postdoctoral associate. The P.I.s will involve undergraduates as work-study students and in REU programs, and will participate in educational and outreach programs. | POINT(163 -77.5) | POINT(163 -77.5) | false | false | |||||||||||||||
Collaborative Research: The Role of Snow Patches on the Spatial Distribution of Soil Microbial Communities and Biogeochemical Cycling in the Antarctic Dry Valleys
|
0838850 |
2013-11-26 | Gooseff, Michael N. |
|
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>Two models have been proposed to describe controls over microbial biogeography. One model proposes that microbes are ubiquitously distributed across the global environment, and that environmental conditions select for taxa physiologically adapted to local physical conditions. An alternative model predicts that dispersal is the important limitation to the distribution of microorganisms and that spatial heterogeneity of microbial communities is a result of both dispersal and local environmental limitations. According to both models, spatial heterogeneity of microbial communities may be especially pronounced in extreme ecosystems where the environmental selection for organisms with suitable physiology is most strongly manifest. We propose that Antarctic terrestrial environments are ideal places to examine microbial biogeography for 3 reasons: 1) the pristine nature and remoteness of Antarctica minimizes the prevalence of exotic species dispersed through human vectors; 2) the extreme conditions of Antarctic environments provide a strong environmental filter which limits the establishment of non-indigenous taxa; and 3) extreme heterogeneity in the terrestrial environment provides natural gradients of soil conditions (temperature, water and nutrient availability). In the proposed research we will investigate the influence of snow on the composition and spatial distribution of soil microbial communities and linked biogeochemical cycling in the McMurdo Dry Valleys. We will conduct fieldwork at the landscape scale (repeated remote sensing to characterize snow distribution), at the valley and patch scales (quantify snow patch ablation, microbial communities and biogeochemical cycling in subnivian soils). We hypothesize that snow patches play an important role in structuring the spatial distribution of soil microbial communities and their associated ecosystem functioning because of the physical and hydrological influences that snow patches have on the soil environment. The research will contribute to greater public awareness of the importance of polar research to fundamental questions of biology, ecology and hydrology through direct linkages with International Antarctic Institute public outreach activities, including dissemination of web-based learning units on environmental science and microbiology, targeted as resources for secondary and post-secondary educators. Three graduate students, one postdoctoral scholar and multiple undergraduates will participate in the research activities. | POLYGON((162.32 -77.62,162.418 -77.62,162.516 -77.62,162.614 -77.62,162.712 -77.62,162.81 -77.62,162.90800000000002 -77.62,163.006 -77.62,163.104 -77.62,163.202 -77.62,163.3 -77.62,163.3 -77.631,163.3 -77.64200000000001,163.3 -77.653,163.3 -77.664,163.3 -77.67500000000001,163.3 -77.686,163.3 -77.697,163.3 -77.708,163.3 -77.71900000000001,163.3 -77.73,163.202 -77.73,163.104 -77.73,163.006 -77.73,162.90800000000002 -77.73,162.81 -77.73,162.712 -77.73,162.614 -77.73,162.516 -77.73,162.418 -77.73,162.32 -77.73,162.32 -77.71900000000001,162.32 -77.708,162.32 -77.697,162.32 -77.686,162.32 -77.67500000000001,162.32 -77.664,162.32 -77.653,162.32 -77.64200000000001,162.32 -77.631,162.32 -77.62)) | POINT(162.81 -77.675) | false | false | |||||||||||||||
Metabolic Activities and Gene Expression of Marine Psychrophiles in Cold Ice
|
0739783 |
2013-09-25 | Junge, Karen |
|
The mechanisms enabling bacteria to be metabolically active at very low temperatures are of considerable importance to polar microbial ecology, astrobiology, climate and cryopreservation. This research program has two main objectives. The first is to investigate metabolic activities and gene expression of polar marine psychrophilic bacteria when confronted with freezing conditions at temperatures above the eutectic of seawater (<54C) to unveil cold adaptation mechanisms with relevance to wintertime sea-ice ecology. The second objective is to discern if psychrophilic processes of leucine incorporation into proteins, shown to occur to -196C, amount to metabolic activity providing for the survival of cells or are merely biochemical reactions still possible in flash-frozen samples without any effect on survival. We will examine extracellular and intracellular processes of psychrophilic activity above and below the eutectic by (i) determining the temperature range of metabolic activities such as DNA synthesis, carbon utilization, respiration and ATP generation using radioactive tracer technology, including a control at liquid helium temperature (-268.9C), (ii) analyzing gene expression in ice using whole genome and microarray analyses and iii) examining the role of exopolymeric substances (EPS) and ice micro-physics for the observed activity using an in-situ microscopy technique. Results of the proposed research can be expected to aid in the determination of cellular and genetic strategies that allow cells to maintain activity at extremely low temperatures within an icy matrix and/or to resume activity again when more growth-permissive conditions are encountered. The research is an interdisciplinary collaboration involving three different institutions with participants in Oceanography, Genomics, and Geophysical Sciences. The proposed activity will support the beginning professional career of a female researcher and will serve as the basis for several undergraduate student laboratory projects. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||||||
Palmer, Antarctica Long Term Ecological Research Project
|
0823101 |
2013-06-24 | Ducklow, Hugh |
|
Since 1990, Palmer LTER (PAL) research has been guided by the hypothesis that variability in the polar marine ecosystem is mechanistically coupled to changes in the annual advance, retreat and spatial extent of sea ice. Since that time, the hypothesis has been modified to incorporate climate migration, i.e. the displacement of a cold, dry polar climate by a warm, moist climate regime in the northern component of the PAL region, producing fundamental changes in food web structure and elemental cycling. The observed northern changes are affecting all trophic levels and elemental cycling, and the primary mechanism of change involves match-mismatch dynamics. The proposed research builds on previous findings, with a new emphasis on process studies and modeling to elucidate the mechanistic links between teleconnections, climate change, physical oceanographic forcing and ecosystem dynamics. The proposed research will examine the hypothesis that regional warming and sea ice decline associated with historical and on-going climate migration in the northern part of the study area have altered key phenological relationships, leading to changes in species distributions, increasing trophic mismatches and changes in habitat, food availability, ecosystem dynamics and biogeochemical cycling. Through targeted process studies linked to numerical model simulations, the research also will test the hypothesis that deep cross-shelf canyons characterizing the core study region are focal areas for ecosystem processes that result in predictable, elevated food resources for top-predators. The effort includes the addition of 3 new PIs: a zooplankton ecologist with expertise in biogeochemical fluxes, a phytoplankton ecologist focusing on bio-optics and autonomous observations using gliders, and a numerical simulation modeler specializing in coupled global models of ocean circulation, plankton ecology and biogeochemical cycles. The program will add trace metal sampling and analysis, moored physical oceanographic sensors, a moored sediment trap in the south, drifting sediment traps and stable carbon (del 13C) and nitrogen (del 15N) isotope analyses. Missions lasting up to 45 days using gliders deployed before, during and after summer cruises will, along with moorings and satellite remote sensing of sea ice, ocean color, sea surface temperatures and wind fields, greatly extend the observational program in space and time. <br/><br/>Since its inception, PAL has been a leader in Information Management to enable knowledge-building within and beyond the Antarctic, oceanographic and LTER communities. PAL has designed and deployed a new information infrastructure with a relational database architecture to facilitate data distribution and sharing. The Education and Outreach program capitalizes on the public's fascination with Antarctica to promote scientific literacy from kindergarten students to adult citizens concerned with climate change and environmental sustainability. Through communicating results to the public and working with scientific assessment bodies (e.g., IPCC) and Antarctic Treaty parties to protect Earth's last frontier, PAL researchers contribute to the national scientific agenda and the greater public benefit. | None | None | false | false | |||||||||||||||
Collaborative Research: Functional Genomics and Physiological Ecology of Seasonal Succession in Antarctic Phytoplankton: Adaptations to Light and Temperature
|
1043564 |
2012-01-17 | Karentz, Deneb |
|
The proposed research will investigate the genomic basis of the physiological and ecological transition of Antarctic marine phytoplankton from a cold dark winter to a warmer, brighter spring. During a field season at Palmer Station, functional genomics (using next generation sequencing technology to identify expressed genes) and in situ fluorometry (FRRF) will be integrated with classical ecological methods to investigate photosynthetic adaptation during phytoplankton species succession from late winter into spring. Using large data sets, this project will test whether amino acid usages differ based on expression. The specific objectives are (1) To characterize phytoplankton succession from the winter to spring transition, and (2) To correlate community gene expression profiles to adaptational differences among taxa. Broader impacts include training of a post doctoral researcher and two undergraduate science majors, with efforts to attract students from underrepresented groups. The P.I.s also will prepare presentations for the public, regarding research experiences, research results, and the importance of climate change. | None | None | false | false | |||||||||||||||
Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula
|
0838773 0442769 0442857 0838776 |
2010-11-07 | Baker, Bill; Amsler, Charles; McClintock, James | This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>The near shore environments of the western Antarctic Peninsula (WAP) harbor extremely high densities of mesograzers (small invertebrate predators approximately 1-25 mm in length) such as benthic amphipods, as well as rich assemblages of macroalgae, endophytes, and macroinvertebrates. Unlike temperate and tropical shallow marine environments, where fish and sea urchins are key grazers structuring the community, mesograzers appear to be much more important in the WAP. Accordingly, the proposed research has two main objectives: (1) To further investigate the interactions between the ecologically dominant large macrophytes, filamentous epi/endophytes, and mesograzers and (2) To determine the nature of interactions between mesograzers and sessile invertebrates. Specifically, the research will examine the following hypotheses: 1: The effects of endophytes on macrophytes are often negative, and consequently macrophytes defend against endophytic infection. 2: Mesoherbivores prevent filamentous algal species, common in the intertidal, from dominating subtidal assemblages. 3: Mesograzer predation pressure on sessile benthic macroinvertebrates, primarily sponges and tunicates, is greatest in shallow habitats dominated by macrophytes, and this impacts depth distributions of macroinvertebrate species. 4: Benthic macroinvertebrates may defend against mesograzers with secondary metabolites which effect molting and/or deter feeding.<br/><br/>Broader impacts include involvement of undergraduates, including minorities, in research; training of graduate students, and continuation of the highly successful UAB IN ANTARCTICA interactive web program (two time recipient of awards of excellence from the US Council for Advancement and Support of Education). The researchers also will share their scientific endeavors with teachers, K-12 students, and other members of the community at large while in residence in Antarctica. In addition, the investigators will request the participation of a PolarTREC teacher. | POLYGON((-65 -63,-64.8 -63,-64.6 -63,-64.4 -63,-64.2 -63,-64 -63,-63.8 -63,-63.6 -63,-63.4 -63,-63.2 -63,-63 -63,-63 -63.2,-63 -63.4,-63 -63.6,-63 -63.8,-63 -64,-63 -64.2,-63 -64.4,-63 -64.6,-63 -64.8,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.8,-65 -64.6,-65 -64.4,-65 -64.2,-65 -64,-65 -63.8,-65 -63.6,-65 -63.4,-65 -63.2,-65 -63)) | POINT(-64 -64) | false | false | ||||||||||||||||
Collaborative Research: Aging in Weddell Seals: Proximate Mechanisms of Age-Related Changes in Adaptations to Breath-Hold Hunting in an Extreme Environment
|
0649609 |
2010-08-04 | Horning, Markus |
|
The primary objectives of this research are to investigate the proximate effects of aging on diving capability in the Weddell Seal and to describe mechanisms by which aging may influence foraging ecology, through physiology and behavior. This model pinniped species has been the focus of three decades of research in McMurdo Sound, Antarctica. Compared to the knowledge of pinniped diving physiology and ecology during early development and young adulthood, little is known about individuals nearing the upper limit of their normal reproductive age range. Evolutionary aging theories predict that elderly diving seals should exhibit senescence. This should be exacerbated by surges in the generation of oxygen free radicals via hypoxia-reoxygenation during breath-hold diving and hunting, which are implicated in age-related damage to cellular mitochondria. Surprisingly, limited observations of non-threatened pinniped populations indicate that senescence does not occur to a level where reproductive output is affected. The ability of pinnipeds to avoid apparent senescence raises two major questions: what specific physiological and morphological changes occur with advancing age in pinnipeds and what subtle adjustments are made by these animals to cope with such changes? This investigation will focus on specific, functional physiological and behavioral changes relating to dive capability with advancing age. The investigators will quantify age-related changes in general health and body condition, combined with fine scale assessments of external and internal ability to do work in the form of diving. Specifically, patterns of oxidative status and oxygen use with age will be examined. The effects of age on muscular function, contractile capacity in vascular smooth muscle, and exercise capacity via exercise performance in skeletal muscle will be examined. Data will be compared between Weddell seals in the peak, and near the end, of their reproductive age range. An assessment will be made of the ability to do external work (i.e. diving) as well as muscle functionality (ability to do internal work). The investigators hypothesize that senescence does occur in Weddell seals at the level of small-scale, proximate physiological effects and performance, but that behavioral plasticity allows for a given degree of compensation. Broader impacts include the training of students and outreach activities including interviews and articles written for the popular media. Photographs and project summaries will be available to the interested public on the project website. This study should also establish diving seals as a novel model for the study of cardiovascular and muscular physiology of aging. Research on Weddell seals could validate this model and thus develop a foundation for similar research on other species. Advancement of the understanding of aging by medical science has been impressive in recent years and the development of new models for the study of aging has tremendous potential benefits to society at large | POLYGON((165.975 -77.54,166.0631 -77.54,166.1512 -77.54,166.2393 -77.54,166.3274 -77.54,166.4155 -77.54,166.5036 -77.54,166.5917 -77.54,166.6798 -77.54,166.7679 -77.54,166.856 -77.54,166.856 -77.5709,166.856 -77.6018,166.856 -77.6327,166.856 -77.6636,166.856 -77.6945,166.856 -77.7254,166.856 -77.7563,166.856 -77.7872,166.856 -77.8181,166.856 -77.849,166.7679 -77.849,166.6798 -77.849,166.5917 -77.849,166.5036 -77.849,166.4155 -77.849,166.3274 -77.849,166.2393 -77.849,166.1512 -77.849,166.0631 -77.849,165.975 -77.849,165.975 -77.8181,165.975 -77.7872,165.975 -77.7563,165.975 -77.7254,165.975 -77.6945,165.975 -77.6636,165.975 -77.6327,165.975 -77.6018,165.975 -77.5709,165.975 -77.54)) | POINT(166.4155 -77.6945) | false | false | |||||||||||||||
IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter
|
0632389 0632278 |
2010-07-08 | Murray, Alison; Grzymski, Joseph; Ducklow, Hugh |
|
The Western Antarctic Peninsula is experiencing one of the most rapid rates of climate warming on Earth, with an increase of 5degrees C in the mean winter temperature in 50 years. Impacts on upper trophic levels are evident, though there have been few, if any studies that have considered the impacts on bacterioplankton in the Southern Ocean. This proposal will characterize the winter bacterioplankton genome, transcriptome, and proteome and discover those features (community composition, genes up-regulated, and proteins expressed) that are essential to winter bacterioplankton survival and livelihood. We have assembled a polar ocean ecology and genomics network including strategic partnerships with Palmer LTER, the British Antarctic Survey's ocean metagenome program, US and Canadian scientists studying the Arctic Ocean genome, an Australian colleague who specialized in archaeal proteomics, and French colleagues studying Sub-Antarctic and Coastal Adelie Land marine bacterioplankton. The primary objectives of this program are: 1 Describe the differences in diversity and genomic content between austral winter and summer bacterioplankton communities. 2. Investigate the winter-time bacterioplankton growth and cellular signals (mRNA and proteins expressed) in order to understand the specific adaptations key to survival. <br/><br/>Our results will extend from the Antarctic to the Arctic - as the cold, dark, carbon-limited deep seas linking these two systems have many common features. Education and outreach activities target (i) undergraduate and graduate students, hopefully including minority students recruited through the Diversity in Research in Environmental and Marine Sciences (DREAMS) Program at VIMS; (ii) a broad audience with our education and outreach partnerships with The Cousteau Society and with the Census for Antarctic Marine Life program. Data and links to external databases will be listed on the http://genex2.dri.edu website. Sequence data will be publicly accessible in GenBank and IMG-M databases. | POLYGON((-77 -62,-75.5 -62,-74 -62,-72.5 -62,-71 -62,-69.5 -62,-68 -62,-66.5 -62,-65 -62,-63.5 -62,-62 -62,-62 -62.7,-62 -63.4,-62 -64.1,-62 -64.8,-62 -65.5,-62 -66.2,-62 -66.9,-62 -67.6,-62 -68.3,-62 -69,-63.5 -69,-65 -69,-66.5 -69,-68 -69,-69.5 -69,-71 -69,-72.5 -69,-74 -69,-75.5 -69,-77 -69,-77 -68.3,-77 -67.6,-77 -66.9,-77 -66.2,-77 -65.5,-77 -64.8,-77 -64.1,-77 -63.4,-77 -62.7,-77 -62)) | POINT(-69.5 -65.5) | false | false | |||||||||||||||
Studies of Antarctic Fungi: Adaptive Stratigies for Survival and Protecting Antarctica's Historic Structures
|
0537143 |
2010-05-24 | Blanchette, Robert | Fungi in Antarctic ecosystems are major contributors to biodiversity and have great influence on many processes such as biodegradation and nutrient cycling. It is essential for biological surveys as well as genomic and proteomic studies to be completed so a better understanding of these organisms is obtained. Previous research has identified unique fungi associated with historic wooden structures brought to Antarctica by Robert F. Scott and Ernest Shackleton during the Heroic Era of exploration. Many of the fungi found are previously undescribed species that belong to the little known genus Cadophora. The research team will obtain important new information on the fungi present in the Ross Sea and Peninsula Regions of Antarctica, particularly their role in decomposition and nutrient recycling and their mechanisms and strategies for survival in the polar environment. New tools and methods include denaturing gradient gel electrophoresis (DGGE), real-time PCR, and proteomic profiling. These analyses will reveal key details of the physiological adaptations these fungi have evolved to carry out processes such as biodegradation and nutrient cycling under conditions that would inhibit other fungi. This work, coupled with the training and learning opportunities it provides, will be of value to many fields of study including microbial ecology, polar biology, wood microbiology, environmental science, soil science, geobiochemistry, and mycology as well as fungal phylogenetics, proteomics and genomics. Results obtained will have immediate applied use to help preserve and protect Antarctica's historic monuments. The investigations proposed are a continuation of research to identify the microbes attacking these historic structures and artifacts and to elucidate their biology and ecology in the polar environment. New research will also be done at the historic Cape Adare huts, the first wooden structures to be built in Antarctica and also at East Base, an American historic site on Stonington Island from the Admiral Byrd and Ronne Expeditions of 1939-1948. The research team will conduct vital studies needed to successfully conserve the wooden structures and artifacts at these sites and protect them for future generations | POLYGON((-69 -60,-68.3 -60,-67.6 -60,-66.9 -60,-66.2 -60,-65.5 -60,-64.8 -60,-64.1 -60,-63.4 -60,-62.7 -60,-62 -60,-62 -61,-62 -62,-62 -63,-62 -64,-62 -65,-62 -66,-62 -67,-62 -68,-62 -69,-62 -70,-62.7 -70,-63.4 -70,-64.1 -70,-64.8 -70,-65.5 -70,-66.2 -70,-66.9 -70,-67.6 -70,-68.3 -70,-69 -70,-69 -69,-69 -68,-69 -67,-69 -66,-69 -65,-69 -64,-69 -63,-69 -62,-69 -61,-69 -60)) | POINT(-65.5 -65) | false | false | ||||||||||||||||
Collaborative Research: Bentho-Pelagic Coupling on the West Antarctic Peninsula Shelf: The Impact and Fate of Bloom Material at the Seafloor
|
9816049 |
2010-05-04 | DeMaster, David; Smith, Craig |
|
OPP98-15823 P.I. Craig Smith<br/>OPP98-16049 P.I. David DeMaster<br/><br/>Primary production in Antarctic coastal waters is highly seasonal, yielding an intense pulse of biogenic particles to the continental shelf floor. This seasonal pulse may have major ramifications for carbon cycling, benthic ecology and material burial on the west Antarctic Peninsula (WAP) shelf. Thus, we propose a multii-disciplinary program to evaluate the seafloor accumulation, fate and benthic community impacts of bloom material along a transect of three stations crossing the Antarctic shelf in the Palmer LTER study area. Using a seasonal series of five cruises to our transect, we will test the following hypostheses: (1) A substantial proportion of spring/summer export production is deposited ont eh WAP shelf as phytodetritus or fecal pellets. (2) The deposited bloom production is a source of labile particulate organic carbon for benthos for an extended period of time (months). (3) Large amounts of labile bloom POC are rapidly subducted into the sediment column by the deposit-feeding and caching activities of benthos. (4) Macrobenthic detritivores sustain a rapid increase in biomass and abundance following the spring/summer particulate organic carbon pulse. To test these hypotheses, we will evaluate seabed deposition and lability of particulate organic carbon, patterns of particulate organic carbon mixing into sediments, seasonal variations in macrofaunal and megafaunal abundance, biomass and reproductive condition, and rates of particulate organic carbon and silica mineralization and accumulation in the seabed. Fluxes of biogenic materials and radionuclides into midwater particle traps will be contrasted with seabed deposition and burial rates to establish water-column and seabed preservation efficiencies for these materials. The project will substantially improve our understanding of the spring/summer production pulse on the WAP shelf and its impacts on seafloor communities and carbon cycling in Antarctic coastal systems. | POLYGON((-70.90654 -52.35368,-70.220384 -52.35368,-69.534228 -52.35368,-68.848072 -52.35368,-68.161916 -52.35368,-67.47576 -52.35368,-66.789604 -52.35368,-66.103448 -52.35368,-65.417292 -52.35368,-64.731136 -52.35368,-64.04498 -52.35368,-64.04498 -53.639401,-64.04498 -54.925122,-64.04498 -56.210843,-64.04498 -57.496564,-64.04498 -58.782285,-64.04498 -60.068006,-64.04498 -61.353727,-64.04498 -62.639448,-64.04498 -63.925169,-64.04498 -65.21089,-64.731136 -65.21089,-65.417292 -65.21089,-66.103448 -65.21089,-66.789604 -65.21089,-67.47576 -65.21089,-68.161916 -65.21089,-68.848072 -65.21089,-69.534228 -65.21089,-70.220384 -65.21089,-70.90654 -65.21089,-70.90654 -63.925169,-70.90654 -62.639448,-70.90654 -61.353727,-70.90654 -60.068006,-70.90654 -58.782285,-70.90654 -57.496564,-70.90654 -56.210843,-70.90654 -54.925122,-70.90654 -53.639401,-70.90654 -52.35368)) | POINT(-67.47576 -58.782285) | false | false | |||||||||||||||
Penguin-Krill-Ice Interactions: The Impact of Environmental Variability on Penguin Demography
|
9816616 |
2010-05-04 | Trivelpiece, Wayne; Smith, Craig |
|
9816616 Trivelpiece Long-term seabird research conducted at Admiralty Bay, which is located on King George Island in the Antarctic Peninsula region, has documented annual variability in the life history parameters of the breeding biology and ecology of the Adelie, gentoo and chinstrap penguins. Twenty-year records acquired on these species, including survival and recruitment, population size and breeding success, and diets and foraging ecology have enabled scientists to test key hypotheses regarding the linkage between these predator parameters and variability in the Antarctic marine ecosystem. This project will focus on understanding the linkages between the physical environment and the population biology of penguins, in particular, sea ice coverage and its impact on krill availability as a food source for penguins. Krill is a key food web species in the Antarctic oceans and accounts for nearly one hundred percent of the prey eaten by dominant predators such as baleen whales, seals and penguins. Analysis of long-term data sets has suggested that years of heavy winter sea ice favor krill recruitment, as larval krill find refuge and food in the sea ice habitat. It has also been observed that years of heavy sea ice favor Adelie penguin recruitment and not that of chinstrap penguins. Aspects of the work include analysis of diet samples, shipboard krill sampling, survival and recruitment studies of penguins, satellite tracking of penguins during the breeding season, and analysis of satellite sea ice images. Penguins are the key species used to monitor the impact of commercial fisheries activities in the region, so this study will provide useful information to the Convention for the Conservation of Antarctic Marine Living Resources, which is the part of the Antarctic Treaty System which focuses on fisheries management. | POLYGON((-70.860664 -52.350334,-69.5007142 -52.350334,-68.1407644 -52.350334,-66.7808146 -52.350334,-65.4208648 -52.350334,-64.060915 -52.350334,-62.7009652 -52.350334,-61.3410154 -52.350334,-59.9810656 -52.350334,-58.6211158 -52.350334,-57.261166 -52.350334,-57.261166 -53.6353506,-57.261166 -54.9203672,-57.261166 -56.2053838,-57.261166 -57.4904004,-57.261166 -58.775417,-57.261166 -60.0604336,-57.261166 -61.3454502,-57.261166 -62.6304668,-57.261166 -63.9154834,-57.261166 -65.2005,-58.6211158 -65.2005,-59.9810656 -65.2005,-61.3410154 -65.2005,-62.7009652 -65.2005,-64.060915 -65.2005,-65.4208648 -65.2005,-66.7808146 -65.2005,-68.1407644 -65.2005,-69.5007142 -65.2005,-70.860664 -65.2005,-70.860664 -63.9154834,-70.860664 -62.6304668,-70.860664 -61.3454502,-70.860664 -60.0604336,-70.860664 -58.775417,-70.860664 -57.4904004,-70.860664 -56.2053838,-70.860664 -54.9203672,-70.860664 -53.6353506,-70.860664 -52.350334)) | POINT(-64.060915 -58.775417) | false | false | |||||||||||||||
Dynamic Similarity or Size Proportionality? Adaptations of a Polar Copepod.
|
0324539 |
2010-05-04 | Yen, Jeannette |
|
This project explores the feasibility of applying fluid physical analyses to evaluate the importance of viscous forces over compensatory temperature adaptations in a polar copepod. The water of the Southern Ocean is 20 Celsius colder and nearly twice as viscous as subtropical seas, and the increased viscosity has significant implications for swimming zooplankton. In each of these warm and cold aquatic environments have evolved abundant carnivorous copepods in the family Euchaetidae. In this exploratory study, two species from the extremes of the natural temperature range (0 and 23C) will be compared to test two alternate hypotheses concerning how Antarctic plankton adapt to the low temperature-high viscosity realm of the Antarctic and to evaluate the importance of viscous forces in the evolution of plankton. How do stronger viscous forces and lower temperature affect the behavior of the Antarctic species? If the Antarctic congener is dynamically similar to its tropical relative, it will operate at the same Reynolds number (Re) as its tropical congener. Alternatively, if the adaptations of the Antarctic congener are proportional to size, they should occupy a higher Re regime, which suggests that the allometry of various processes is not constrained by having to occupy a transitional fluid regime. The experiments are designed with clearly defined outcomes regarding a number of copepod characteristics, such as swimming speed, propulsive force, and size of the sensory field. These characteristics determine not only how copepods relate to the physical world, but also structure their biological interactions. The results of this study will provide insights on major evolutionary forces affecting plankton and provide a means to evaluate the importance of the fluid physical conditions relative to compensatory measures for temperature. Fluid physical, biomechanical, and neurophysiological techniques have not been previously applied to these polar plankton. However, these approaches, if productive and feasible, will provide ways to explore the sensory ecology of polar plankton and the role of small-scale biological-physical-chemical interactions in a polar environment. Experimental evidence validating the importance of viscous effects will also justify further research using latitudinal comparisons of other congeners along a temperature gradient in the world ocean. | None | None | false | false | |||||||||||||||
Foraging Ecology of Crabeater Seals (Lobodon Carcinophagus)
|
9981683 |
2010-05-04 | Costa, Daniel |
|
The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on the distribution and foraging behavior of adult female crabeater seals, using a combination of satellite-linked tracking, specialized diver recorders, and stable isotopic tracers. This research will be coordinated with components focused on prey (krill) distribution and the physical environment. The results will be analyzed using an optimality model. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts. | None | None | false | false | |||||||||||||||
Foraging Behavior and Demography of Pygoscelis Penguins
|
0344275 |
2010-05-04 | Trivelpiece, Wayne |
|
Seabird research conducted at Admiralty Bay, King George Island in the Antarctic Peninsula region has documented annual variability in the life history parameters of the population biology of three related penguin species: the Adelie, the gentoo and the chinstrap (Pygoscelis adeliae, P. papua and P. antarctica, respectively). This long-term study has collected twenty-five years of data on the three related species, including survival and recruitment, population size and breeding success, and diets and foraging ecology. The current project will extend the research linking penguin demography and foraging ecology to variability in the Antarctic marine ecosystem. A major focus of this work will be on the Adelie and gentoo penguin population biology data and the distribution and trophic interactions among the three Pygoscelis species during the breeding season and the non-breeding, winter period. Recent results have provided the first detailed data on the wintering distributions of Adelie and chinstrap penguins in the Antarctic Peninsula region, through the use of satellite tags and time-depth recorders to examine the post-fledging foraging. Specific topics of research include an examination of the size and sex composition of krill captured by penguins feeding chicks and krill collected concurrently by net hauls in the adjacent marine environment and the length-frequency distribution of krill collected from penguin diet samples. The over winter survival of penguin breeding adults and the recruitment of young (two to four year old) pre-breeding penguins to their natal colony will be compared to the extent of sea ice in the winter prior to the breeding season. These variables are expected to be positively correlated for the Adelie but negatively correlated to the chinstrap penguin. Detailed studies of the adult gentoo penguins, which do not disperse widely from the natal colony, will be conducted using satellite tags. The data collected in this study will improve an understanding of the structure and function of the Antarctic through research on the impact of environmental variation on the structure of upper trophic level predators such as the Pygoscelis penguins. | None | None | false | false | |||||||||||||||
Foraging Ecology of Crabeater Seals (Lobodon Carcinophagus)
|
0003956 |
2010-05-04 | Costa, Daniel |
|
The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on the distribution and foraging behavior of adult female crabeater seals, using a combination of satellite-linked tracking, specialized diver recorders, and stable isotopic tracers. This research will be coordinated with components focused on prey (krill) distribution and the physical environment. The results will be analyzed using an optimality model. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts. | POLYGON((-76.5119 -52.3523,-74.93335 -52.3523,-73.3548 -52.3523,-71.77625 -52.3523,-70.1977 -52.3523,-68.61915 -52.3523,-67.0406 -52.3523,-65.46205 -52.3523,-63.8835 -52.3523,-62.30495 -52.3523,-60.7264 -52.3523,-60.7264 -53.99299,-60.7264 -55.63368,-60.7264 -57.27437,-60.7264 -58.91506,-60.7264 -60.55575,-60.7264 -62.19644,-60.7264 -63.83713,-60.7264 -65.47782,-60.7264 -67.11851,-60.7264 -68.7592,-62.30495 -68.7592,-63.8835 -68.7592,-65.46205 -68.7592,-67.0406 -68.7592,-68.61915 -68.7592,-70.1977 -68.7592,-71.77625 -68.7592,-73.3548 -68.7592,-74.93335 -68.7592,-76.5119 -68.7592,-76.5119 -67.11851,-76.5119 -65.47782,-76.5119 -63.83713,-76.5119 -62.19644,-76.5119 -60.55575,-76.5119 -58.91506,-76.5119 -57.27437,-76.5119 -55.63368,-76.5119 -53.99299,-76.5119 -52.3523)) | POINT(-68.61915 -60.55575) | false | false | |||||||||||||||
Foraging Behavior and Demography of Pygoscelis Penguins
|
0125985 |
2010-05-04 | Trivelpiece, Wayne; Stearns, Charles R. |
|
Seabird research conducted at Admiralty Bay, King George Island in the Antarctic Peninsula region has documented annual variability in the life history parameters of the population biology of three related penguin species: the Adelie, the gentoo and the chinstrap (Pygoscelis adeliae, P. papua and P. antarctica, respectively). This long-term study has collected twenty-five years of data on the three related species, including survival and recruitment, population size and breeding success, and diets and foraging ecology. The current project will extend the research linking penguin demography and foraging ecology to variability in the Antarctic marine ecosystem. A major focus of this work will be on the Adelie and gentoo penguin population biology data and the distribution and trophic interactions among the three Pygoscelis species during the breeding season and the non-breeding, winter period. Recent results have provided the first detailed data on the wintering distributions of Adelie and chinstrap penguins in the Antarctic Peninsula region, through the use of satellite tags and time-depth recorders to examine the post-fledging foraging. Specific topics of research include an examination of the size and sex composition of krill captured by penguins feeding chicks and krill collected concurrently by net hauls in the adjacent marine environment and the length-frequency distribution of krill collected from penguin diet samples. The over winter survival of penguin breeding adults and the recruitment of young (two to four year old) pre-breeding penguins to their natal colony will be compared to the extent of sea ice in the winter prior to the breeding season. These variables are expected to be positively correlated for the Adelie but negatively correlated to the chinstrap penguin. Detailed studies of the adult gentoo penguins, which do not disperse widely from the natal colony, will be conducted using satellite tags. The data collected in this study will improve an understanding of the structure and function of the Antarctic through research on the impact of environmental variation on the structure of upper trophic level predators such as the Pygoscelis penguins. | POLYGON((-70.907646 -52.351532,-69.6445116 -52.351532,-68.3813772 -52.351532,-67.1182428 -52.351532,-65.8551084 -52.351532,-64.591974 -52.351532,-63.3288396 -52.351532,-62.0657052 -52.351532,-60.8025708 -52.351532,-59.5394364 -52.351532,-58.276302 -52.351532,-58.276302 -53.6039408,-58.276302 -54.8563496,-58.276302 -56.1087584,-58.276302 -57.3611672,-58.276302 -58.613576,-58.276302 -59.8659848,-58.276302 -61.1183936,-58.276302 -62.3708024,-58.276302 -63.6232112,-58.276302 -64.87562,-59.5394364 -64.87562,-60.8025708 -64.87562,-62.0657052 -64.87562,-63.3288396 -64.87562,-64.591974 -64.87562,-65.8551084 -64.87562,-67.1182428 -64.87562,-68.3813772 -64.87562,-69.6445116 -64.87562,-70.907646 -64.87562,-70.907646 -63.6232112,-70.907646 -62.3708024,-70.907646 -61.1183936,-70.907646 -59.8659848,-70.907646 -58.613576,-70.907646 -57.3611672,-70.907646 -56.1087584,-70.907646 -54.8563496,-70.907646 -53.6039408,-70.907646 -52.351532)) | POINT(-64.591974 -58.613576) | false | false | |||||||||||||||
Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection
|
0440687 |
2010-05-04 | Costa, Daniel; Hofmann, Eileen; Goebel, Michael; Crocker, Daniel; Sidell, Bruce; Klinck, John M. | As long-lived animals, marine mammals must be capable of accommodating broad variations in food resources over large spatial and temporal scales. While this is true of all marine mammals, variation in the physical and biological environmental is particularly profound in the Southern Ocean. A basic understanding of the foraging behavior and habitat utilization of pelagic predators requires knowledge of this spatial and temporal variation, coupled with information of how they respond to these changes. Current understanding of these associations is primarily limited to population level studies where animal abundance has been correlated with oceanography. Although these studies are informative, they cannot provide insights into the strategies employed by individual animals nor can they provide insights into the spatial or temporal course of these interactions. <br/><br/>Recent technological advances in instrumentation make it possible to extend an understanding beyond the simple linkage of prey and predator distributions with environmental features. The key to understanding the processes that lead to high predator abundance is the identification of the specific foraging behaviors associated with different features of the water column. This study will accomplish these objectives by combining accurate positional data, measures of diving and foraging behavior, animal-derived water-column temperature and salinity data, and available oceanographic data. This project will examine the foraging behavior and habitat utilization of two species of contrasting foraging ecology, the southern elephant seal, Mirounga leonina, and the crabeater seal, Lobodon carcinophagus in the Western Antarctic Peninsula, a region of strong environmental gradients. Although these two species are phylogenetically related, they utilize substantially different but adjacent habitat types. Southern elephant seals are predominantly pelagic, moving throughout the southern ocean, venturing occasionally into the seasonal pack ice whereas crabeater seals range throughout the seasonal pack ice, venturing occasionally into open water. The relationship of specific foraging behaviors and animal movement patterns to oceanographic and bathymetric features develop and test models of the importance of these features in defining habitat use will be determined along with a comparison of how individuals of each species respond to annual variability in the marine environment. The physical oceanography of the Southern Ocean is inherently complex as are the biological processes that are intrinsically linked to oceanographic processes. Significant resources are currently being directed toward developing mathematical models of physical oceanographic processes with the goals of better understanding the role that the Southern Ocean plays in global climate processes, predicting the responses of ocean and global scale processes to climate change, and understanding the linkages between physical and biological oceanographic processes. These efforts have been limited by the scarcity of oceanographic data in the region, especially at high latitudes in the winter months. This study will provide new and significant oceanographic data on temperature and salinity profiles in to further the understanding of the dynamics of the upper water column of west Antarctic Peninsula continental shelf waters. Outreach activities include website development and an association with a marine education program at the Monterrey Bay Aquarium Research Institute. | POLYGON((-68.2775 -52.7602,-67.59761 -52.7602,-66.91772 -52.7602,-66.23783 -52.7602,-65.55794 -52.7602,-64.87805 -52.7602,-64.19816 -52.7602,-63.51827 -52.7602,-62.83838 -52.7602,-62.15849 -52.7602,-61.4786 -52.7602,-61.4786 -54.24701,-61.4786 -55.73382,-61.4786 -57.22063,-61.4786 -58.70744,-61.4786 -60.19425,-61.4786 -61.68106,-61.4786 -63.16787,-61.4786 -64.65468,-61.4786 -66.14149,-61.4786 -67.6283,-62.15849 -67.6283,-62.83838 -67.6283,-63.51827 -67.6283,-64.19816 -67.6283,-64.87805 -67.6283,-65.55794 -67.6283,-66.23783 -67.6283,-66.91772 -67.6283,-67.59761 -67.6283,-68.2775 -67.6283,-68.2775 -66.14149,-68.2775 -64.65468,-68.2775 -63.16787,-68.2775 -61.68106,-68.2775 -60.19425,-68.2775 -58.70744,-68.2775 -57.22063,-68.2775 -55.73382,-68.2775 -54.24701,-68.2775 -52.7602)) | POINT(-64.87805 -60.19425) | false | false | ||||||||||||||||
U.S. SO GLOBEC Synthesis and Modeling: Southern Ocean GLOBEC (SO GLOBEC) Planning Office
|
0523166 |
2010-05-04 | Hofmann, Eileen |
|
The objective of the proposed work is to provide for the operation of a Planning Office for the synthesis and modeling phase of the Southern Ocean Global Ocean Ecosystems Dynamics (SO-Globec) program. The office will ensure that synthesis and integration activities that are developed as part of SO-Globec are coordinated with those undertaken by the international and U.S. Globec programs through: 1) organization of special sessions at meetings, 2) preparation of dedicated publications focused on program results, 3) maintenance of a project web site, 4) development of program outreach efforts, and 5) ensuring coordination with International Globec and other national and international programs and organizations. The office will consist of one faculty member and one program specialist.<br/><br/>SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. Extensive studies describing the ecology and physiology of important species at all trophic levels contributed to the ecosystem approach which is the essence of SO-Globec. The Planning Office will provide a central focal point for ensuring that the results from SO-Globec are made available to the broader scientific community and to the general public, and that the results will be incorporated into the planning of future Southern Ocean programs. | None | None | false | false | |||||||||||||||
Bentho-Pelagic Coupling on the West Antarctic Peninsula Shelf: The Impact and Fate of Bloom Material at the Seafloor
|
9815823 |
2010-05-04 | Smith, Craig |
|
OPP98-15823 P.I. Craig Smith OPP98-16049 P.I. David DeMaster Primary production in Antarctic coastal waters is highly seasonal, yielding an intense pulse of biogenic particles to the continental shelf floor. This seasonal pulse may have major ramifications for carbon cycling, benthic ecology and material burial on the west Antarctic Peninsula (WAP) shelf. Thus, we propose a multii-disciplinary program to evaluate the seafloor accumulation, fate and benthic community impacts of bloom material along a transect of three stations crossing the Antarctic shelf in the Palmer LTER study area. Using a seasonal series of five cruises to our transect, we will test the following hypostheses: (1) A substantial proportion of spring/summer export production is deposited ont eh WAP shelf as phytodetritus or fecal pellets. (2) The deposited bloom production is a source of labile particulate organic carbon for benthos for an extended period of time (months). (3) Large amounts of labile bloom POC are rapidly subducted into the sediment column by the deposit-feeding and caching activities of benthos. (4) Macrobenthic detritivores sustain a rapid increase in biomass and abundance following the spring/summer particulate organic carbon pulse. To test these hypotheses, we will evaluate seabed deposition and lability of particulate organic carbon, patterns of particulate organic carbon mixing into sediments, seasonal variations in macrofaunal and megafaunal abundance, biomass and reproductive condition, and rates of particulate organic carbon and silica mineralization and accumulation in the seabed. Fluxes of biogenic materials and radionuclides into midwater particle traps will be contrasted with seabed deposition and burial rates to establish water-column and seabed preservation efficiencies for these materials. The project will substantially improve our understanding of the spring/summer production pulse on the WAP shelf and its impacts on seafloor communities and carbon cycling in Antarctic coastal systems. | POLYGON((-70.90683 -52.35533,-69.8661302 -52.35533,-68.8254304 -52.35533,-67.7847306 -52.35533,-66.7440308 -52.35533,-65.703331 -52.35533,-64.6626312 -52.35533,-63.6219314 -52.35533,-62.5812316 -52.35533,-61.5405318 -52.35533,-60.499832 -52.35533,-60.499832 -53.818664,-60.499832 -55.281998,-60.499832 -56.745332,-60.499832 -58.208666,-60.499832 -59.672,-60.499832 -61.135334,-60.499832 -62.598668,-60.499832 -64.062002,-60.499832 -65.525336,-60.499832 -66.98867,-61.5405318 -66.98867,-62.5812316 -66.98867,-63.6219314 -66.98867,-64.6626312 -66.98867,-65.703331 -66.98867,-66.7440308 -66.98867,-67.7847306 -66.98867,-68.8254304 -66.98867,-69.8661302 -66.98867,-70.90683 -66.98867,-70.90683 -65.525336,-70.90683 -64.062002,-70.90683 -62.598668,-70.90683 -61.135334,-70.90683 -59.672,-70.90683 -58.208666,-70.90683 -56.745332,-70.90683 -55.281998,-70.90683 -53.818664,-70.90683 -52.35533)) | POINT(-65.703331 -59.672) | false | false | |||||||||||||||
Global Climate Change and the Evolutionary Ecology of Antarctic Mollusks in the Late Eocene
|
9908828 |
2010-05-04 | Aronson, Richard; Domack, Eugene Walter |
|
9908828 Aronson This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a paleoecological and paleoenvironmental study of Seymour Island. Global climate change late in the Eocene epoch had an important influence in Antarctica. This was the beginning of the transition from a cool-temperate climate in Antarctica to the polar climate that exists there today. The cooling trend strongly influenced the structure of shallow-water, Antarctic marine communities, and these effects are still evident in the peculiar ecological relationships among species living in modern Antarctic communities. Cooling late in the Eocene reduced the abundance of fish and crabs, which in turn reduced skeleton-crushing predation on invertebrates. Reduced predation allowed dense populations of ophiuroids (brittlestars) and crinoids (sea lilies) to appear in shallow-water settings at the end of the Eocene. These low-predation communities appear as dense fossil echinoderm assemblages in the upper portion of the late Eocene La Meseta Formation on Seymour Island, off the Antarctic Peninsula. Today, dense ophiuroid and crinoid populations are common in shallow-water habitats in Antarctica but generally have been eliminated by predators from similar habitats at temperate and tropical latitudes; their persistence in Antarctica to this day is an important ecological legacy of climatic cooling in the Eocene. Although the influence of declining predation on Antarctic ophiuroids and crinoids is now well documented, the effects of cooling on the more abundant mollusks have not been investigated. This study will examine the evolutionary ecology of gastropods (snails) and bivalves (clams) in the late Eocene. A series of hypotheses will be tested in the La Meseta Formation, based on the predicted responses of mollusks to declining temperature and changing levels of predation. The shapes of gastropod shells, the activities of gastropods that prey on other mollusks by drilling holes in their shells, and the effects of predation on the thickness of mollusk shells should have changed significantly through late Eocene time. First, defensive features of gastropod shells, such as spines and ribbing, should decline as temperature and, therefore, the activity of skeleton-crushing predators declined. Second, drilling of bivalve prey by predatory gastropods should increase with time since the drillers should themselves have been subject to lower predation pressure as temperature declined. Drilled shells, therefore, should become more common through time. Third, patterns in the thickness of shells through time will make it possible to separate the direct, physiological effects of declining temperature (shells are more difficult to produce at cooler temperatures, and so should be thinner) from the indirect effects of temperature on evolving biological interactions (increased drilling predation should result in thicker shells). Seymour Island contains the only fossil outcrops readily accessible in Antarctica from this crucial period in Earth history. The La Meseta Formation on Seymour Island thus provides a unique opportunity to learn how climate change affected Antarctic marine communities. In practical terms, global climate change will probably increase upwelling over the next few decades to centuries in some temperate coastal regions. Recent ecological evidence suggests that the resultant lowering of sea temperatures could lower predation in those areas. Understanding the response of the La Meseta faunas to global cooling in the late Eocene will provide direct insight into the rapidly changing structure of modern benthic communities. | POLYGON((-70.906 -52.350166,-69.4494 -52.350166,-67.9928 -52.350166,-66.5362 -52.350166,-65.0796 -52.350166,-63.623 -52.350166,-62.1664 -52.350166,-60.7098 -52.350166,-59.2532 -52.350166,-57.7966 -52.350166,-56.34 -52.350166,-56.34 -53.6028324,-56.34 -54.8554988,-56.34 -56.1081652,-56.34 -57.3608316,-56.34 -58.613498,-56.34 -59.8661644,-56.34 -61.1188308,-56.34 -62.3714972,-56.34 -63.6241636,-56.34 -64.87683,-57.7966 -64.87683,-59.2532 -64.87683,-60.7098 -64.87683,-62.1664 -64.87683,-63.623 -64.87683,-65.0796 -64.87683,-66.5362 -64.87683,-67.9928 -64.87683,-69.4494 -64.87683,-70.906 -64.87683,-70.906 -63.6241636,-70.906 -62.3714972,-70.906 -61.1188308,-70.906 -59.8661644,-70.906 -58.613498,-70.906 -57.3608316,-70.906 -56.1081652,-70.906 -54.8554988,-70.906 -53.6028324,-70.906 -52.350166)) | POINT(-63.623 -58.613498) | false | false | |||||||||||||||
CAREER: Dynamics of Predator-Prey Behavior in the Antarctic Ocean
|
9983751 |
2010-05-04 | Veit, Richard; Blake, Daniel |
|
The goal of this proposal to bring two groups of undergraduate students to the Antarctic, where they will participate in the collection of data on seabird abundance and behavior. This proposal combines research on the dynamics of seabirds that feed on Antarctic krill, with the teaching of mathematical modeling of foraging behavior and spatial statistics. Students will learn a broad collection of skills through collection of data on physical and biological oceanography as part of the research project that focuses on seabirds. The research goal of this proposal is to learn how foraging seabirds in the Antarctic respond to changes in the abundance and distribution of their prey, primarily Antarctic krill. The approach will be to study bird behavior in the vicinity of krill swarms, and to contrast this behavior to that in areas lacking krill. From these comparisons, foraging models that will make predictions about the dispersion of birds under differing levels of krill abundance will be built. The long-term goal is to be able to make predictions about the impact upon seabirds of future changes in krill stocks. Field work will be conducted in the vicinity of Elephant Island in two field seasons. In each season, the insular shelf north of Elephant Island will be surveyed and the abundance, distribution and behavior of seabirds will be recorded. The primary objective will be to quantify the linkage between prey abundance and bird behavior, with the long-term goal of using information on bird behavior to index long-term changes in the prey base. The teaching goal of this proposal is twofold. First, the project will expose inner city college students to a spectacular and economically important ecosystem. Through their work on an oceanographic research vessel, students will be exposed to a broad diversity of research topics and methods, ranging from behavioral ecology to physical oceanography. Second, back at Staten Island, students will participate in the development of a mathematical biology initiative at the College of Staten Island. Here students will be encouraged to apply basic mathematical reasoning and computer modeling to a real problem - that of determining how foraging choices made by seabirds can ultimately impact their reproductive success. | POLYGON((-70.9063 -52.3528,-67.3465 -52.3528,-63.7867 -52.3528,-60.2269 -52.3528,-56.6671 -52.3528,-53.1073 -52.3528,-49.5475 -52.3528,-45.9877 -52.3528,-42.4279 -52.3528,-38.8681 -52.3528,-35.3083 -52.3528,-35.3083 -52.65918,-35.3083 -52.96556,-35.3083 -53.27194,-35.3083 -53.57832,-35.3083 -53.8847,-35.3083 -54.19108,-35.3083 -54.49746,-35.3083 -54.80384,-35.3083 -55.11022,-35.3083 -55.4166,-38.8681 -55.4166,-42.4279 -55.4166,-45.9877 -55.4166,-49.5475 -55.4166,-53.1073 -55.4166,-56.6671 -55.4166,-60.2269 -55.4166,-63.7867 -55.4166,-67.3465 -55.4166,-70.9063 -55.4166,-70.9063 -55.11022,-70.9063 -54.80384,-70.9063 -54.49746,-70.9063 -54.19108,-70.9063 -53.8847,-70.9063 -53.57832,-70.9063 -53.27194,-70.9063 -52.96556,-70.9063 -52.65918,-70.9063 -52.3528)) | POINT(-53.1073 -53.8847) | false | false | |||||||||||||||
Collaborative Research: Interactive Effects of Iron, Light and CO2 on Phytoplankton Community Dynamics in the Ross Sea
|
0338164 |
2010-05-04 | Ditullio, Giacomo |
|
The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. <br/>This project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images. | None | None | false | false | |||||||||||||||
GLOBEC: Winter Ecology of Larval Krill: Quantifying their Interaction with the Pack Ice Habitat
|
9909933 9910175 |
2010-05-04 | Vernet, Maria; Costa, Daniel; Ross, Robin Macurda; Smith, Raymond |
|
The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on water-column primary production using direct experimental estimates, modeling restuls from a fast repetition rate fluorometer and modeling of primary production from both optical as well as biophysical models. This research will be coordinated with components focused on sea ice production and sea ice habitat. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts. | POLYGON((-71.077 -57.9543,-70.015 -57.9543,-68.953 -57.9543,-67.891 -57.9543,-66.829 -57.9543,-65.767 -57.9543,-64.705 -57.9543,-63.643 -57.9543,-62.581 -57.9543,-61.519 -57.9543,-60.457 -57.9543,-60.457 -58.98629,-60.457 -60.01828,-60.457 -61.05027,-60.457 -62.08226,-60.457 -63.11425,-60.457 -64.14624,-60.457 -65.17823,-60.457 -66.21022,-60.457 -67.24221,-60.457 -68.2742,-61.519 -68.2742,-62.581 -68.2742,-63.643 -68.2742,-64.705 -68.2742,-65.767 -68.2742,-66.829 -68.2742,-67.891 -68.2742,-68.953 -68.2742,-70.015 -68.2742,-71.077 -68.2742,-71.077 -67.24221,-71.077 -66.21022,-71.077 -65.17823,-71.077 -64.14624,-71.077 -63.11425,-71.077 -62.08226,-71.077 -61.05027,-71.077 -60.01828,-71.077 -58.98629,-71.077 -57.9543)) | POINT(-65.767 -63.11425) | false | false | |||||||||||||||
Latitudinal Variations of Particle Fluxes in the Southern Ocean: A Bottom Tethered Sediment Trap Array Experiment
|
9614028 |
2010-05-04 | Dymond, Jack |
|
96-14028 Dymond This research project is part of the US Joint Global Ocean Flux Study (JGOFS) Southern Ocean Program aimed at (1) a better understanding of the fluxes of carbon, both organic and inorganic, in the Southern Ocean, (2) identifying the physical, ecological and biogeochemical factors and processes which regulate the magnitude and variability of these fluxes, and (3) placing these fluxes into the context of the contemporary global carbon cycle. This work is one of forty-four projects that are collaborating in the Southern Ocean Experiment, a three-year effort south of the Antarctic Polar Frontal Zone to track the flow of carbon through its organic and inorganic pathways from the air-ocean interface through the entire water column into the bottom sediment. The experiment will make use of the RVIB Nathaniel B. Palmer and the R/V Thompson. This component, a collaborative study by scientists from the Woods Hole Oceanographic Institution, Oregon State University, and the New Zealand Oceanographic Institution, concerns the export of particulate forms of carbon downward from the upper ocean. The observations will be obtained from an array of time- series sediment traps, and will be analyzed to quantify export fluxes from the Subtropical Front to the Ross Sea, over an 18- months period beginning the early austral summer of 1996. The measurement program will two annual phytoplankton blooms. The southern ocean provides a unique opportunity to investigate the processes controlling export flux in contrasting biogeochemical ocean zones demarcated by oceanic fronts. The temperature changes at the fronts coincide with gradients in nutrient concentrations and plankton ecology, resulting in a large latitudinal change in the ratio of calcium to silica taken up by the phytoplankton communities. This experiment will provide data on how the biological pump operates in the Southern Ocean and how it could potentially impact the level of atmospheric c arbon dioxide. The observed export fluxes of organic carbon, nitrogen, inorganic carbon, biogenic silica and alumina are central to the goals of the JGOFS program. | POLYGON((-179.9993 -63.09006,-143.99946 -63.09006,-107.99962 -63.09006,-71.99978 -63.09006,-35.99994 -63.09006,-0.000100000000003 -63.09006,35.99974 -63.09006,71.99958 -63.09006,107.99942 -63.09006,143.99926 -63.09006,179.9991 -63.09006,179.9991 -64.490422,179.9991 -65.890784,179.9991 -67.291146,179.9991 -68.691508,179.9991 -70.09187,179.9991 -71.492232,179.9991 -72.892594,179.9991 -74.292956,179.9991 -75.693318,179.9991 -77.09368,143.99926 -77.09368,107.99942 -77.09368,71.99958 -77.09368,35.99974 -77.09368,-0.000100000000003 -77.09368,-35.99994 -77.09368,-71.99978 -77.09368,-107.99962 -77.09368,-143.99946 -77.09368,-179.9993 -77.09368,-179.9993 -75.693318,-179.9993 -74.292956,-179.9993 -72.892594,-179.9993 -71.492232,-179.9993 -70.09187,-179.9993 -68.691508,-179.9993 -67.291146,-179.9993 -65.890784,-179.9993 -64.490422,-179.9993 -63.09006)) | POINT(0 -89.999) | false | false | |||||||||||||||
Collaborative Research: The Ecological Role of a Poorly Studied Antarctic Krill Predator: The Humpback Whale, Megaptera Novaeangliae
|
0739483 |
2010-05-04 | Nowacek, Douglas |
|
The krill surplus hypothesis argues that the near-extirpation of baleen whales from Antarctic waters during much the twentieth century led to significant changes in the availability of krill for other predators. Over the past decade, however, overall krill abundance has decreased by over an order of magnitude around the Antarctic Peninsula, in part due to physical forces, including the duration and extent of winter sea ice cover. Krill predators are vulnerable to variability in prey and have been shown to alter their demography in response to changes in prey availability This research will use novel tagging technology combined with traditional fisheries acoustics methods to quantify the prey consumed by a poorly understood yet ecologically integral and recovering krill predator in the Antarctic, the humpback whale (Megaptera novaeangliae). It also will use a combination of advanced non-invasive tag technology to study whale behavior concurrent with hydro-acoustic techniques to map krill aggregations. The project will (1) provide direct and quantitative estimates of krill consumption rates by humpback whales and incorporate these into models for the management of krill stocks and the conservation of the Antarctic marine ecosystem; (2) provide information integral to understanding predator-prey ecology and trophic dynamics, i.e., if/how baleen whales affect the distribution and behavior of krill and/or other krill predators; (3) add significantly to the knowledge of the diving behavior and foraging ecology of baleen whales in the Antarctic; and (4) develop new geospatial tools for the construction of multi-trophic level models that account for physical as well as biological data. <br/><br/>Broader Impacts: Whales are assumed to be a major predator on Antarctic krill, yet there is little understanding of how whales utilize this resource. This knowledge is critical to addressing both bottom-up and top-down questions, e.g., how climate change may affect whales or how whales may affect falling krill abundances. This program will integrate research and education by providing opportunities for undergraduate and graduate students as well as postdoctoral researchers at Duke University, the Florida State University and the University of Massachusetts at Boston. This project will also seek to integrate interactive learning through real time, seasonal and curriculum development in collaboration with the National Geographic Society as well as at the participating universities and local schools in those communities. | POLYGON((-68.0013 -52.7592,-67.34925 -52.7592,-66.6972 -52.7592,-66.04515 -52.7592,-65.3931 -52.7592,-64.74105 -52.7592,-64.089 -52.7592,-63.43695 -52.7592,-62.7849 -52.7592,-62.13285 -52.7592,-61.4808 -52.7592,-61.4808 -53.99669,-61.4808 -55.23418,-61.4808 -56.47167,-61.4808 -57.70916,-61.4808 -58.94665,-61.4808 -60.18414,-61.4808 -61.42163,-61.4808 -62.65912,-61.4808 -63.89661,-61.4808 -65.1341,-62.13285 -65.1341,-62.7849 -65.1341,-63.43695 -65.1341,-64.089 -65.1341,-64.74105 -65.1341,-65.3931 -65.1341,-66.04515 -65.1341,-66.6972 -65.1341,-67.34925 -65.1341,-68.0013 -65.1341,-68.0013 -63.89661,-68.0013 -62.65912,-68.0013 -61.42163,-68.0013 -60.18414,-68.0013 -58.94665,-68.0013 -57.70916,-68.0013 -56.47167,-68.0013 -55.23418,-68.0013 -53.99669,-68.0013 -52.7592)) | POINT(-64.74105 -58.94665) | false | false | |||||||||||||||
Ecological Studies of Sea Ice Communities in the Ross Sea, Antarctica
|
9614201 |
2010-05-04 | Gowing, Marcia; Garrison, David; Jeffries, Martin |
|
9614201 Costa Sea ice forms an extensive habitat in the Southern Ocean. Reports dating from the earliest explorations of Antarctica have described high concentrations of algae associated with sea-ice, suggesting that the ice must be an important site of production and biological activity. The magnitude and importance of ice-based production is difficult to estimate largely because the spatial and temporal distributions of ice communities have been examined in only a few regions, and the processes controlling production and community development in ice are still superficially understood. This study will examine sea ice communities in the Ross Sea region of Antarctica in conjunction with a studies of ice physics and remote sensing. The specific objectives of the study are: 1) to relate the overall distribution of ice communities in the Ross Sea to specific habitats that are formed as the result of ice formation and growth processes; 2) to study the initial formation of sea ice to document the incorporation and survival of organisms, in particular to examine winter populations within "snow-ice" layers to determine if there is a seed population established at the time of surface flooding; 3) to sample summer communities to determine the extent that highly productive "snow-ice" and "freeboard" communities develop in the deep water regions of the Ross Sea; 4) and to collect basic data on the biota, activity, and general physical and chemical characteristics of the ice assemblages, so that this study contributes to the general understanding of the ecology of the ice biota in pack ice regions. | POLYGON((-180 -43.56536,-144 -43.56536,-108 -43.56536,-72 -43.56536,-36 -43.56536,0 -43.56536,36 -43.56536,72 -43.56536,108 -43.56536,144 -43.56536,180 -43.56536,180 -46.976149,180 -50.386938,180 -53.797727,180 -57.208516,180 -60.619305,180 -64.030094,180 -67.440883,180 -70.851672,180 -74.262461,180 -77.67325,144 -77.67325,108 -77.67325,72 -77.67325,36 -77.67325,0 -77.67325,-36 -77.67325,-72 -77.67325,-108 -77.67325,-144 -77.67325,-180 -77.67325,-180 -74.262461,-180 -70.851672,-180 -67.440883,-180 -64.030094,-180 -60.619305,-180 -57.208516,-180 -53.797727,-180 -50.386938,-180 -46.976149,-180 -43.56536)) | POINT(0 -89.999) | false | false | |||||||||||||||
Collaborative Research: Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea
|
0338350 0741411 0338097 0338157 0127037 |
2010-05-04 | Ditullio, Giacomo; Smith, Walker; Dryer, Jennifer; Neale, Patrick | The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. <br/>This project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images. | POLYGON((173.31833 -46.5719,173.757539 -46.5719,174.196748 -46.5719,174.635957 -46.5719,175.075166 -46.5719,175.514375 -46.5719,175.953584 -46.5719,176.392793 -46.5719,176.832002 -46.5719,177.271211 -46.5719,177.71042 -46.5719,177.71042 -48.759516,177.71042 -50.947132,177.71042 -53.134748,177.71042 -55.322364,177.71042 -57.50998,177.71042 -59.697596,177.71042 -61.885212,177.71042 -64.072828,177.71042 -66.260444,177.71042 -68.44806,177.271211 -68.44806,176.832002 -68.44806,176.392793 -68.44806,175.953584 -68.44806,175.514375 -68.44806,175.075166 -68.44806,174.635957 -68.44806,174.196748 -68.44806,173.757539 -68.44806,173.31833 -68.44806,173.31833 -66.260444,173.31833 -64.072828,173.31833 -61.885212,173.31833 -59.697596,173.31833 -57.50998,173.31833 -55.322364,173.31833 -53.134748,173.31833 -50.947132,173.31833 -48.759516,173.31833 -46.5719)) | POINT(175.514375 -57.50998) | false | false | ||||||||||||||||
New Approaches to Measuring and Understanding the Effects of Ultraviolet Radiation on Photosynthesis by Antarctic Phytoplankton
|
9615342 |
2010-05-04 | Mopper, Kenneth; Neale, Patrick |
|
Neale 9615342 Increases in ultraviolet-B radiation (UV-B, 280-320) associated with the Antarctic ozone hole have been shown to inhibit the photosynthesis of phytoplankton, but the overall effect on water column production is still a matter of debate and continued investigation. Investigations have also revealed that even at "normal" levels of Antarctic stratospheric ozone, UV-B and UV-A (320-400 nm) appear to have strong effects on water column production. The role of UV in the ecology of phytoplankton primary production has probably been underappreciated in the past and could be particularly important to the estimation of primary production in the presence of vertical mixing. This research focuses on quantifying UV effects on photosynthesis of Antarctic phytoplankton by defining biological weighting functions for UV-inhibition. In the past, techniques were developed to describe photosynthesis as a function of UV and visible irradiance using laboratory cultures. Further experimentation with natural assemblages from McMurdo Station in Antarctica showed that biological weighting functions are strongly related to light history. Most recently, measurements in the open waters of the Southern Ocean confirmed that there is substantial variability in the susceptibility of phytoplankton assemblages to UV. It was also discovered that inhibition of photosynthesis in Antarctic phytoplankton got progressively worse on the time scale of hours, with no evidence of recovery. Even under benign conditions, losses of photosynthetic capability persisted unchanged for several hours. This was in contrast with laboratory cultures and some natural assemblages which quickly attained a steady- state rate of photosynthesis during exposure to UV, reflecting a balance between damage and recovery processes. Slow reversal of UV-induced damage has profound consequences for water-column photosynthesis, especially during vertical mixing. Results to date have been used to model th e influence of UV, ozone depletion and vertical mixing on photosynthesis in Antarctic waters. Data indicate that normal levels of UV can have a significant impact on natural phytoplankton and that the effects can be exacerbated by ozone depletion as well as vertical mixing. Critical questions remain poorly resolved, however, and these are the focus of the present proposal. New theoretical and experimental approaches will be used to investigate UV responses in both the open waters of the Weddell-Scotia confluence and coastal waters near Palmer Station. In particular, measurements will be made of the kinetics of UV inhibition and recovery on time scales ranging from minutes to days. Variability in biological weighting functions between will be calculated for pelagic and coastal phytoplankton in the Southern Ocean. The results will provide absolute estimates of photosynthesis under in situ, as well as under altered, UV irradiance; broaden the range of assemblages for which biological weighting functions have been determined; and clarify how kinetics of inhibition and recovery should be represented in mixed layer models. | None | None | false | false | |||||||||||||||
Global Climate Change and the Evolutionary Ecology of Antarctic Mollusks in the Late Eocene.
|
9908856 |
2010-05-04 | Blake, Daniel |
|
9908856 Blake This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a paleoecological and paleoenvironmental study of Seymour Island. Global climate change late in the Eocene epoch had an important influence in Antarctica. This was the beginning of the transition from a cool-temperate climate in Antarctica to the polar climate that exists there today. The cooling trend strongly influenced the structure of shallow-water, Antarctic marine communities, and these effects are still evident in the peculiar ecological relationships among species living in modern Antarctic communities. Cooling late in the Eocene reduced the abundance of fish and crabs, which in turn reduced skeleton-crushing predation on invertebrates. Reduced predation allowed dense populations of ophiuroids (brittlestars) and crinoids (sea lilies) to appear in shallow-water settings at the end of the Eocene. These low-predation communities appear as dense fossil echinoderm assemblages in the upper portion of the late Eocene La Meseta Formation on Seymour Island, off the Antarctic Peninsula. Today, dense ophiuroid and crinoid populations are common in shallow-water habitats in Antarctica but generally have been eliminated by predators from similar habitats at temperate and tropical latitudes; their persistence in Antarctica to this day is an important ecological legacy of climatic cooling in the Eocene. Although the influence of declining predation on Antarctic ophiuroids and crinoids is now well documented, the effects of cooling on the more abundant mollusks have not been investigated. This study will examine the evolutionary ecology of gastropods (snails) and bivalves (clams) in the late Eocene. A series of hypotheses will be tested in the La Meseta Formation, based on the predicted responses of mollusks to declining temperature and changing levels of predation. The shapes of gastropod shells, the activities of gastropods that prey on other mollusks by drilling holes in their shells, and the effects of predation on the thickness of mollusk shells should have changed significantly through late Eocene time. First, defensive features of gastropod shells, such as spines and ribbing, should decline as temperature and, therefore, the activity of skeleton-crushing predators declined. Second, drilling of bivalve prey by predatory gastropods should increase with time since the drillers should themselves have been subject to lower predation pressure as temperature declined. Drilled shells, therefore, should become more common through time. Third, patterns in the thickness of shells through time will make it possible to separate the direct, physiological effects of declining temperature (shells are more difficult to produce at cooler temperatures, and so should be thinner) from the indirect effects of temperature on evolving biological interactions (increased drilling predation should result in thicker shells). Seymour Island contains the only fossil outcrops readily accessible in Antarctica from this crucial period in Earth history. The La Meseta Formation on Seymour Island thus provides a unique opportunity to learn how climate change affected Antarctic marine communities. In practical terms, global climate change will probably increase upwelling over the next few decades to centuries in some temperate coastal regions. Recent ecological evidence suggests that the resultant lowering of sea temperatures could lower predation in those areas. Understanding the response of the La Meseta faunas to global cooling in the late Eocene will provide direct insight into the rapidly changing structure of modern benthic communities. | None | None | false | false | |||||||||||||||
IPY: Collaborative Research: A Metagenomic Investigation of Adaptation to Prolonged Cold and Dark Conditions of the Lake Vostok Microbial Community
|
0632250 |
2010-04-30 | Cary, Stephen |
|
This project brings together researchers with expertise in molecular microbial ecology, Antarctic and deep sea environments, and metagenomics to address the overarching question: how do ecosystems dominated by microorganisms adapt to conditions of continuous cold and dark over evolutionarily and geologically relevant time scales? Lake Vostok, buried for at least 15 million years beneath approximately 4 km of ice that has prevented any communication with the external environment for as much as 1.5 million years, is an ideal system to study this question. Water from the lake that has frozen on to the bottom of the ice sheet (accretion ice) is available for study. Several studies have indicated the presence of low abundance, but detectable microbial communities in the accretion ice. Our central hypothesis maintains that Lake Vostok microbes are specifically adapted to life in conditions of extreme cold, dark, and oligotrophy and that signatures of those adaptations can be observed in their genome sequences at the gene, organism, and community levels. To address this hypothesis, we propose to characterize the metagenome (i.e. the genomes of all members of the community) of the accretion ice. using whole genome amplification (WGA), which can provide micrograms of unbiased metagenomic DNA from only a few cells. The results of this project have relevance to evolutionary biology and ecology, subglacial Antarctic lake exploration, biotechnology, and astrobiology. The project directly addresses priorities and themes in the International Polar Year at the national and international levels. A legacy of DNA sequence data and the metagenomic library will be created and maintained. Press releases and a publicly available web page will facilitate communication with the public. K-12 outreach will be the focus of a new, two-tiered program targeting the 7th grade classroom and on site visits to the Joint Genome Institute Production Sequencing Facility by high school juniors and seniors and community college level students. Minority undergraduate researchers will be recruited for research on this project, and support and training are provided to two graduate students, a postdoctoral scholar, and a technician. | POLYGON((-38.5 -72.6,-23.963 -72.6,-9.426 -72.6,5.111 -72.6,19.648 -72.6,34.185 -72.6,48.722 -72.6,63.259 -72.6,77.796 -72.6,92.333 -72.6,106.87 -72.6,106.87 -73.185,106.87 -73.77,106.87 -74.355,106.87 -74.94,106.87 -75.525,106.87 -76.11,106.87 -76.695,106.87 -77.28,106.87 -77.865,106.87 -78.45,92.333 -78.45,77.796 -78.45,63.259 -78.45,48.722 -78.45,34.185 -78.45,19.648 -78.45,5.111 -78.45,-9.426 -78.45,-23.963 -78.45,-38.5 -78.45,-38.5 -77.865,-38.5 -77.28,-38.5 -76.695,-38.5 -76.11,-38.5 -75.525,-38.5 -74.94,-38.5 -74.355,-38.5 -73.77,-38.5 -73.185,-38.5 -72.6)) | POINT(34.185 -75.525) | false | false | |||||||||||||||
The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins
|
0538594 |
2009-12-20 | Ponganis, Paul |
|
The research will examine blood and muscle oxygen store depletion in relation to the documented aerobic dive limit (ADL, onset of post-dive blood lactate accumulation) in diving of emperor penguins. The intellectual merits of this proposal involve its evaluation of the physiological basis of the ADL concept. The ADL is probably the most commonly-used, but rarely measured, factor to interpret and model the behavior and foraging ecology of diving animals. Based on prior studies, and on recent investigations of respiratory and blood oxygen depletion during dives of emperor penguins, it is hypothesized that the ADL is a result of the depletion of myoglobin (Mb)-bound oxygen and increased glycolysis in the primary locomotory muscles. This project will accurately define the physiological mechanisms underlying the ADL through 1) evaluation of the rate and magnitude of muscle oxygen depletion during dives in relation to the previously measured ADL, 2) characterization of the hemoglobin-oxygen dissociation curve in blood of emperor penguins and comparison of that curve to those of other diving and non-diving species, 3) application of the emperor hemoglogin-oxygen dissociation curve to previously collected oxygen and hemoglobin data in order to estimate the rate and magnitude of blood oxygen depletion during dives, and 4) measurement of muscle phosphoocreatine and glycogen concentrations in order to estimate their potential contributions to muscle energy metabolism during diving. The project also continues the census and monitoring of the emperor colonies in the Ross Sea, which is especially important in light of both fisheries activity and the movement of iceberg B15-A. Broader impacts of the project include: 1) technological development of microprocessor-based, "backpack" near-infrared spectrophotometer, which will be applicable not only to other species, but also to other fields (i.e., exercise physiology), 2) collaboration with the Department of Anesthesia at the U.S. Naval Hospital in San Diego in the training of anesthesia residents in research techniques, 3) the training and thesis research of two graduate students in these techniques and in Antarctic field research, and 4) a better understanding of the ADL concept and its use in the fields of diving behavior and physiology. In addition the annual census of emperor penguin colonies in the Ross Sea, in conjunction with the continued evaluation of previously developed remote cameras to monitor colony status, will form the basis of a new educational web site, and allow development of an educational outreach program to school children through SeaWorld of San Diego. | POLYGON((165.983 -77.683,166.0164 -77.683,166.0498 -77.683,166.0832 -77.683,166.1166 -77.683,166.15 -77.683,166.1834 -77.683,166.2168 -77.683,166.2502 -77.683,166.2836 -77.683,166.317 -77.683,166.317 -77.6897,166.317 -77.6964,166.317 -77.7031,166.317 -77.7098,166.317 -77.7165,166.317 -77.7232,166.317 -77.7299,166.317 -77.7366,166.317 -77.7433,166.317 -77.75,166.2836 -77.75,166.2502 -77.75,166.2168 -77.75,166.1834 -77.75,166.15 -77.75,166.1166 -77.75,166.0832 -77.75,166.0498 -77.75,166.0164 -77.75,165.983 -77.75,165.983 -77.7433,165.983 -77.7366,165.983 -77.7299,165.983 -77.7232,165.983 -77.7165,165.983 -77.7098,165.983 -77.7031,165.983 -77.6964,165.983 -77.6897,165.983 -77.683)) | POINT(166.15 -77.7165) | false | false | |||||||||||||||
PostDoctoral Research Fellowship
|
0631328 |
2009-11-10 | Zamzow, Jill | No dataset link provided | The applicant will use this Polar Postdoctoral Fellowship to study top-down effects on community structure (habitat choice and behavior of amphipods, the dominant mesograzers) in macroalgal communities in the vicinity of Palmer Station, Antarctica, where amphipods are not only extremely abundant, but their distributions are very different on palatable vs. unpalatable macroalgae. Pilot studies have suggested that these differences in community structure may be driven by algal chemistry and predation. The effects of algal chemistry on amphipod habitat choice, both in the presence and absence of predators will be tested experimentally, as will the question of whether amphipod host-alga choice results in any reduction of predation risk. Mesograzers in general, and amphipods in particular, are an essential trophic link in marine systems worldwide, and in particular, are a critical component of antarctic near-shore ecosystems. However despite their high abundance and species richness, little is known of their functional ecology or trophodynamics, and little research has investigated the trophic dynamics, behavior, or ecology of these organisms. This project will work out the basic biology of the system, by examining amphipod distributions on Himantothallus (a brown macroalga) and in the stomach contents of Notothenia coriiceps (a small cod-like antarctic fish) and determining whether prey selectivity of amphipod species is occurring. A series of laboratory experiments will investigate the influence(s) of predators, algal chemistry, and thallus structure on amphipod behavior and habitat choice, and test the predation risk associated with amphipod host-alga choice. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||||||
Collaborative Research: Deducing Late Neogene Antarctic Climate from Fossil-Rich Lacustrine Sediments in the Dry Valleys
|
0440711 |
2009-07-01 | Marchant, David | No dataset link provided | This project studies ancient lake deposits from the western Dry Valleys of Antarctica. These deposits are particularly exciting because they preserve flora and fauna over seven million years in age that represent the last vestiges of ecosystems that dominated this area before formation of the modern East Antarctic ice sheet. Their unique nature offers a chance to bridge modern and ancient ecology. Formed along the margin of ancient alpine glaciers, these deposits contain layers of silt, clay, and volcanic ash; as well as freeze-dried remnants of mosses, insects, and diatoms. Geological and biological analyses provide a view of the ecological and environmental conditions during mid-to-late Miocene--seven to seventeen million years ago--which spans the critical period when the East Antarctic ice sheet transitioned to its present stable form. The results place the modern lakes of the Dry Valleys into a long-term evolutionary framework, and allow for correlation and dating comparisons with other fossil-rich deposits from the Transantarctic Mountains. Chemical fingerprinting and dating of volcanic glass shards will also help date fossil- and ash-bearing horizons in nearby marine cores, such as those to be collected under the ANDRILL program. <br/><br/>The broader impacts are education at the postdoctoral, graduate, and undergraduate levels; and collaboration between a research institution and primarily undergraduate institution. The work also improves our understanding of global climate change during a critical period in the Earth's history. | POLYGON((160 -76.5,160.45 -76.5,160.9 -76.5,161.35 -76.5,161.8 -76.5,162.25 -76.5,162.7 -76.5,163.15 -76.5,163.6 -76.5,164.05 -76.5,164.5 -76.5,164.5 -76.7,164.5 -76.9,164.5 -77.1,164.5 -77.3,164.5 -77.5,164.5 -77.7,164.5 -77.9,164.5 -78.1,164.5 -78.3,164.5 -78.5,164.05 -78.5,163.6 -78.5,163.15 -78.5,162.7 -78.5,162.25 -78.5,161.8 -78.5,161.35 -78.5,160.9 -78.5,160.45 -78.5,160 -78.5,160 -78.3,160 -78.1,160 -77.9,160 -77.7,160 -77.5,160 -77.3,160 -77.1,160 -76.9,160 -76.7,160 -76.5)) | POINT(162.25 -77.5) | false | false | |||||||||||||||
Photochemistry of Antarctic Waters in Repsonse to Changing Ultraviolet Radiation Fluxes
|
9221598 |
2009-06-19 | Mopper, Kenneth; Neale, Patrick |
|
Decreases in stratospheric ozone over the Antarctic result in an increase in the ultraviolet radiation flux in the euphotic zone of the ocean. This increase may lead to cellular damage in aquatic organisms resulting in photo-inhibition and decreased productivity. Cellular damage can occur either intracellularly, or externally at the cell surface from biomolecular reactions with externally-generated reactive transient species. Extracellular damage will depend to a large degree on the photochemistry of the seawater surrounding the cell. To date, little is known about the photochemistry of the unique Antarctic waters. This project integrates a field and laboratory approach to obtain baseline information regarding the marine photochemistry of the euphotic zone in Antarctica waters as related to changes in ultraviolet radiation levels. In situ photochemical production rates and steady state concentrations of a suite of reactive species and dissolved organic matter degradation products as well as downwelling ultraviolet radiation will be measured. Additionally, flux by in situ chemical actinometry, action spectra for photochemical production of various reactive species and dissolved organic matter degradation products, and fluorescence and absorbance properties of dissolved organic matter will be determined. This information will serve as a basis for understanding and predicting the effects of ultraviolet radiation-induced marine photochemical processes on the productivity and ecology in the euphotic zone of the Antarctic Ocean. | None | None | false | false | |||||||||||||||
Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial forms of Phaeocystis antarctica
|
0440478 |
2009-05-04 | Tang, Kam; Smith, Walker |
|
Phaeocystis Antarctica is a widely distributed phytoplankton that forms dense blooms and aggregates in the Southern Ocean. This phytoplankton and plays important roles in polar ecology and biogeochemistry, in part because it is a dominant primary producer, a main component of organic matter vertical fluxes, and the principal producer of volatile organic sulfur in the region. Yet P. Antarctica is also one of the lesser known species in terms of its physiology, life history and trophic relationships with other organisms; furthermore, information collected on other Phaeocystis species and from different locations may not be applicable to P. Antarctica in the Ross Sea. P. Antarctica occurs mainly as two morphotypes: solitary cells and mucilaginous colonies, which differ significantly in size, architecture and chemical composition. Relative dominance between solitary cells and colonies determines not only the size spectrum of the population, but also its carbon dynamics, nutrient uptake and utilization. Conventional thinking of the planktonic trophic processes is also challenged by the fact that colony formation could effectively alter the predator-prey interactions and interspecific competition. However, the factors that regulate the differences between solitary and colonial forms of P. Antarctica are not well-understood. The research objective of this proposal is therefore to address these over-arching questions:<br/>o Do P. Antarctica solitary cells and colonies differ in growth, composition and<br/>photosynthetic rates?<br/>o How do nutrients and grazers affect colony development and size distribution of P. <br/>Antarctica?<br/>o How do nutrients and grazers act synergistically to affect the long-term population<br/>dynamics of P. Antarctica? Experiments will be conducted in the McMurdo station with natural P. Antarctica assemblages and co-occurring grazers. Laboratory experiments will be conducted to study size-specific growth and photosynthetic rates of P. Antarctica, size-specific grazing mortality due to microzooplankton and mesozooplankton, the effects of macronutrients on the (nitrogen compounds) relative dominance of solitary cells and colonies, and the effects of micronutrient (Fe) and grazing related chemical signals on P. Antarctica colony development. Because this species is of critical importance in the Southern Ocean, and because this research will provide critical information on factors that regulate the role of P.Antarctica in food webs and biogeochemical cycles, a major gap in knowledge will be addressed. This project will train two marine science PhD students. The investigators will also collaborate with the School of Education and a marine science museum to communicate polar science to a broader audience. | POINT(166.66267 -77.85067) | POINT(166.66267 -77.85067) | false | false | |||||||||||||||
Distribution And Ecology Of Ammonia Oxidizing Bacteria In The Palmer LTER Study Area
|
0234249 |
2008-12-01 | Hollibaugh, James T. |
|
This project will investigate the distribution, phylogenetic affinities and ecological aspects of ammonium-oxidizing bacteria in the Palmer Long-Term Ecological Research study area. Ammonia oxidation is the first step in the conversion of regenerated nitrogen to dinitrogen gas via denitrification, a 3-step pathway mediated by three distinct guilds of bacteria. As such, ammonia oxidation is important to the global nitrogen cycle. Ammonia oxidation and the overall process of nitrification-denitrification have received little attention in polar oceans where it is significant and where the effects of climate change on biogeochemical rates are likely to be pronounced. The goals of the studies proposed here are A) to obtain more conclusive information concerning composition of Antarctic ammonia oxidizers; B) to begin characterizing their ecophysiology and ecology; and C) to obtain cultures of the organism for more detailed studies. Water column and sea ice AOB assemblages will be characterized phylogenetically and the different kinds of AOB in various samples will be quantified. Nitrification rates will be measured across the LTER study area in water column, sea ice and sediment samples. Grazing rates on AOB will be determined and their sensitivity to UV light evaluated. In addition, the significance of urea nitrogen as a source of reduced nitrogen to AOB will be assessed and the temperature response of nitrification over temperature ranges appropriate to polar regions will be evaluated. This work will provide insights into the ecology of AOB and the knowledge needed to model how water column nitrification will respond to changes in the polar ecosystems accompanying global climate change. | POLYGON((-73 -64,-72.1 -64,-71.2 -64,-70.3 -64,-69.4 -64,-68.5 -64,-67.6 -64,-66.7 -64,-65.8 -64,-64.9 -64,-64 -64,-64 -64.4,-64 -64.8,-64 -65.2,-64 -65.6,-64 -66,-64 -66.4,-64 -66.8,-64 -67.2,-64 -67.6,-64 -68,-64.9 -68,-65.8 -68,-66.7 -68,-67.6 -68,-68.5 -68,-69.4 -68,-70.3 -68,-71.2 -68,-72.1 -68,-73 -68,-73 -67.6,-73 -67.2,-73 -66.8,-73 -66.4,-73 -66,-73 -65.6,-73 -65.2,-73 -64.8,-73 -64.4,-73 -64)) | POINT(-68.5 -66) | false | false | |||||||||||||||
Collaborative Research: Hydrologic Controls over Biogeochemistry and Microbial Community Structure and Function across Terrestrial/Aquatic Interfaces in a Polar Desert
|
0338267 |
2008-09-11 | Gooseff, Michael N.; Barrett, John; Takacs-Vesbach, Cristina |
|
Aquatic-terrestrial transition zones are crucial environments in understanding the biogeochemistry of landscapes. In temperate watersheds, these areas are generally dominated by riparian zones, which have been identified as regions of special interest for biogeochemistry because of the increased microbial activity in these locations, and because of the importance of these hydrological margins in facilitating and buffering hydrologic and biogeochemical exchanges between terrestrial and aquatic ecosystems. In the Antarctic Dry Valleys, terrestrial-aquatic transition zones are intriguing landscape features because of the vast importance of water in this polar desert, and because the material and energy budgets of dry valley ecosystems are linked by hydrology. Hydrological margins in aquatic-terrestrial transition zones will be studied in the Dry Valleys of Antarctica to answer two overarching questions: (1) what are the major controls over hydrologic and biogeochemical exchange across aquaticterrestrial transition zones and (2) to what extent do trends in nutrient cycling (e.g. nitrogen cycling) across these transition zones reflect differences in microbial communities or function vs. differences in the physical and chemical environment (e.g., redox potential)? The hydrologic gradients that define these interfaces provide the opportunity to assess the relative influence of physical conditions and microbial biodiversity and functioning upon biogeochemical cycling. Coordinated hydrologic, biogeochemical, and molecular microbial studies will be executed within hydrologic margins with the following research objectives: to determine the role of sediment characteristics, permafrost and active layer dynamics, and topography on sub-surface water content and distribution in hydrologic margins, to determine the extent to which transformations of nitrogen in hydrological margins are influenced by physical conditions (i.e., moisture, redox potential and pH) or by the presence of specific microbial communities (e.g., denitrifiers), and to characterize the microbial community structure and function of saturated zones.<br/><br/>This proposed research will provide an improved understanding of the interaction of liquid water, soils, microbial communities, and biogeochemistry within the important hydrologic margin landscape units of the dry valleys. Dry valleys streams and lakes are unique because there is no influence of higher vegetation on the movement of water and may therefore provide a model system for understanding physical and hydrological influences on microbial ecology and biogeochemistry. Hence the findings will contribute to Antarctic science as well as the broader study of riparian zones and hydrologic margins worldwide. Graduate students and undergraduate students will be involved with fieldwork and research projects. Information will be disseminated through a project web site, and outreach activities will include science education in local elementary, middle and high schools near the three universities involved. | POLYGON((161.6 -77.4,161.773 -77.4,161.946 -77.4,162.119 -77.4,162.292 -77.4,162.465 -77.4,162.638 -77.4,162.811 -77.4,162.984 -77.4,163.157 -77.4,163.33 -77.4,163.33 -77.435,163.33 -77.47,163.33 -77.505,163.33 -77.54,163.33 -77.575,163.33 -77.61,163.33 -77.645,163.33 -77.68,163.33 -77.715,163.33 -77.75,163.157 -77.75,162.984 -77.75,162.811 -77.75,162.638 -77.75,162.465 -77.75,162.292 -77.75,162.119 -77.75,161.946 -77.75,161.773 -77.75,161.6 -77.75,161.6 -77.715,161.6 -77.68,161.6 -77.645,161.6 -77.61,161.6 -77.575,161.6 -77.54,161.6 -77.505,161.6 -77.47,161.6 -77.435,161.6 -77.4)) | POINT(162.465 -77.575) | false | false | |||||||||||||||
Climatology, Volcanism, and Microbial Life in Ice with Downhole Loggers
|
0440609 |
2008-06-03 | Bay, Ryan; Price, Buford | No dataset link provided | This award supports a project to use three downhole instruments - an optical logger; a<br/>miniaturized biospectral logger at 420 nm (miniBSL-420); and an Acoustic TeleViewer (ATV) - to log a 350-m borehole at the WAIS Divide drill site. In addition, miniBSL-224 (at 224 nm) and miniBSL-420 will scan ice core sections at NICL to look for abrupt climate changes, volcanic ash, microbial concentrations, and correlations among them. Using the optical logger and ATV to log bubble number densities vs depth in a WAIS Divide borehole, we will detect annual layers, from which we can establish the age vs depth relation to the bottom of the borehole that will be available during the three-year grant period. With the same instruments we will search for long-period modulation of bubble and dust concentrations in order to provide definitive evidence for or against an effect of long-period variability of the sun or solar wind on climate. We will detect and accurately date ash layers in a WAIS Divide borehole. We will match them with ash layers that we previously detected in the Siple Dome borehole, and also match them with sulfate and ash layers found by others at Vostok, Dome Fuji, Dome C, and GISP2. The expected new data will allow us to extend our recent study which showed that the Antarctic record of volcanism correlates with abrupt climate change at a 95% to >99.8% significance level and that the volcanic signatures at bipolar locations match at better than 3 sigma during the interval 2 to 45 kiloyears. The results to be obtained during this grant period will position us to extend an accurate age vs depth relation and volcano-climate correlations to earlier than 150 kiloyears ago in the future WAIS Divide borehole to be drilled to bedrock. Using the miniBSLs to identify biomolecules via their fluorescence, we will log a 350-m borehole at WAIS Divide, and we will scan selected lengths of ice core at NICL. Among the biomolecules the miniBSLs can identify will be chlorophyll, which will provide the first map of aerobic microbes in ice, and F420, which will provide the first map of methanogens in ice. We will collaborate with others in relating results from WAIS Divide and NICL ice cores to broader topics in climatology, volcanology, and microbial ecology. We will continue to give broad training to undergraduate and graduate students, to attract underrepresented minorities to science, engineering, and math, and to educate the press and college teachers. A deeper understanding of the causes of abrupt climate change, including a causal relationship with strong volcanic eruptions, can enable us to understand and mitigate adverse effects on climate. | POINT(-112.06556 -79.469444) | POINT(-112.06556 -79.469444) | false | false | |||||||||||||||
Collaborative Research: Late Paleozoic-Mesozoic Fauna, Environment, Climate and Basinal History: Beardmore Glacier Area, Transantarctic Mountains
|
0126146 |
2007-06-20 | Miller, Molly | No dataset link provided | This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a study to investigate paleoenvironmental conditions during the late Paleozoic and Mesozoic in central interior Antarctica. The 4 km thick sequence of sedimentary rocks, known as the Beacon Supergroup, in the Beardmore Glacier area records 90 million years of Permian through Jurassic history of this high-paleolatitude sector of Gondwana. It accumulated in a foreland basin with a rate of subsidence approximately equal to the rate of deposition. The deposits have yielded diverse vertebrate fossils, in situ fossil forests, and exceptionally well preserved plant fossils. They give a unique glimpse of glacial, lake, and stream/river environments and ecosystems and preserve an unparalleled record of the depositional, paleoclimatic, and tectonic history of the area. The excellent work done to date provides a solid base of information on which to build understanding of conditions and processes.<br/><br/>This project is a collaborative study of this stratigraphic section that will integrate sedimentologic, paleontologic, and ichnologic observations to answer focused questions, including: (1) What are the stratigraphic architecture and alluvial facies of Upper Permian to Jurassic rocks in the Beardmore area?; (2) In what tectonostratigraphic setting were these rocks deposited?; (3) Did vertebrates inhabit the cold, near-polar, Permian floodplains, as indicated by vertebrate burrows, and can these burrows be used to identify, for the first time, the presence of small early mammals in Mesozoic deposits?; and (4) How did bottom-dwelling animals in lakes and streams use substrate ecospace, how did ecospace use at these high paleolatitudes differ from ecospace use in equivalent environments at low paleolatitudes, and what does burrow distribution reveal about seasonality of river flow and thus about paleoclimate? Answers to these questions will (1) clarify the paleoclimatic, basinal, and tectonic history of this part of Gondwana, (2) elucidate the colonization of near-polar ecosystems by vertebrates, (3) provide new information on the environmental and paleolatitudinal distributions of early mammals, and (4) allow semi-quantitative assessment of the activity and abundance of bottom-dwelling animals in different freshwater environments at high and low latitudes. In summary, this project will contribute significantly to an understanding of paleobiology and paleoecology at a high latitude floodplain setting during a time in Earth history when the climate was much different than today. | POINT(171 -83.75) | POINT(171 -83.75) | false | false |