{"dp_type": "Project", "free_text": "Penguins"}
[{"awards": null, "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 12 Feb 2024 00:00:00 GMT", "description": "Undersea canyons play disproportionately important roles as oceanic biological hotspots and are critical for our understanding of many coastal ecosystems. Canyon-associated biological hotspots have persisted for thousands of years Along the Western Antarctic Peninsula, despite significant climate variability. Observations of currents over Palmer Deep canyon, a representative hotspot along the Western Antarctic Peninsula, indicate that surface phytoplankton blooms enter and exit the local hotspot on scales of ~1-2 days. This time of residence is in conflict with the prevailing idea that canyon associated hotspots are primarily maintained by phytoplankton that are locally grown in association with these features by the upwelling of deep waters rich with nutrients that fuel the phytoplankton growth. Instead, the implication is that horizontal ocean circulation is likely more important to maintaining these biological hotspots than local upwelling through its physical concentrating effects. This project seeks to better resolve the factors that create and maintain focused areas of biological activity at canyons along the Western Antarctic Peninsula and create local foraging areas for marine mammals and birds. The project focus is in the analysis of the ocean transport and concentration mechanisms that sustain these biological hotspots, connecting oceanography to phytoplankton and krill, up through the food web to one of the resident predators, penguins. In addition, the research will engage with teachers from school districts serving underrepresented and underserved students by integrating the instructors and their students completely with the science team. Students will conduct their own research with the same data over the same time as researchers on the project. Revealing the fundamental mechanisms that sustain these known hotspots will significantly advance our understanding of the observed connection between submarine canyons and persistent penguin population hotspots over ecological time, and provide a new model for how Antarctic hotspots function.\u003cbr/\u003e \u003cbr/\u003e \u003cbr/\u003eTo understand the physical mechanisms that support persistent hotspots along the Western Antarctic Peninsula (WAP), this project will integrate a modeling and field program that will target the processes responsible for transporting and concentrating phytoplankton and krill biomass to known penguin foraging locations. Within the Palmer Deep canyon, a representative hotspot, the team will deploy a High Frequency Radar (HFR) coastal surface current mapping network, uniquely equipped to identify the eddies and frontal regions that concentrate phytoplankton and krill. The field program, centered on surface features identified by the HFR, will include (i) a coordinated fleet of gliders to survey hydrography, chlorophyll fluorescence, optical backscatter, and active acoustics at the scale of the targeted convergent features; (ii) precise penguin tracking with GPS-linked satellite telemetry and time-depth recorders (TDRs); (iii) and weekly small boat surveys that adaptively target and track convergent features to measure phytoplankton, krill, and hydrography. A high resolution physical model will generalize our field measurements to other known hotspots along the WAP through simulation and determine which physical mechanisms lead to the maintenance of these hotspots. The project will also engage educators, students, and members of the general public in Antarctic research and data analysis with an education program that will advance teaching and learning as well as broadening participation of under-represented groups. This engagement includes professional development workshops, live connections to the public and classrooms, student research symposia, and program evaluation. Together the integrated research and engagement will advance our understanding of the role regional transport pathways and local depth dependent concentrating physical mechanisms play in sustaining these biological hotspots.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Palmer Station; BENTHIC; PENGUINS; FLUORESCENCE; PHYTOPLANKTON", "locations": "Palmer Station", "north": null, "nsf_funding_programs": null, "paleo_time": null, "persons": null, "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Physical Mechanisms Driving Food Web Focusing in Antarctic Biological Hotspots", "uid": "p0010448", "west": null}, {"awards": "1744989 LaRue, Michelle", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Detecting climate signals in populations: case of emperor penguin; Emperor penguin population trends (2009-2018); Landfast ice: a major driver of reproductive success in a polar seabird", "datasets": [{"dataset_uid": "601513", "doi": "10.15784/601513", "keywords": "Antarctica; Breeding Success; Emperor Penguin; Fast Sea Ice", "people": "Jenouvrier, Stephanie; Labrousse, Sara", "repository": "USAP-DC", "science_program": null, "title": "Landfast ice: a major driver of reproductive success in a polar seabird", "url": "https://www.usap-dc.org/view/dataset/601513"}, {"dataset_uid": "601491", "doi": "10.15784/601491", "keywords": "Antarctica", "people": "Jenouvrier, Stephanie", "repository": "USAP-DC", "science_program": null, "title": "Detecting climate signals in populations: case of emperor penguin", "url": "https://www.usap-dc.org/view/dataset/601491"}, {"dataset_uid": "200410", "doi": "10.5061/dryad.m63xsj48v", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Emperor penguin population trends (2009-2018)", "url": "https://doi.org/10.5061/dryad.m63xsj48v"}], "date_created": "Thu, 08 Feb 2024 00:00:00 GMT", "description": "This project on emperor penguin populations will quantify penguin presence/absence, and colony size and trajectory, across the entire Antarctic continent using high-resolution satellite imagery. For a subset of the colonies, population estimates derived from high-resolution satellite images will be compared with those determined by aerial surveys - these results have been uploaded to MAPPPD (penguinmap.com) and are freely available for use. This validated information will be used to determine population estimates for all emperor penguin colonies through iterations of supervised classification and maximum likelihood calculations on the high-resolution imagery. The effect of spatial, geophysical, and environmental variables on population size and decadal-scale trends will be assessed using generalized linear models. This research will result in a first ever empirical result for emperor penguin population trends and habitat suitability, and will leverage currently-funded NSF infrastructure and hosting sites to publish results in near-real time to the public.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "COMMUNITY DYNAMICS; USA/NSF; Amd/Us; USAP-DC; Antarctica; AMD", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "LaRue, Michelle; Ito, Emi; Jenouvrier, Stephanie", "platforms": null, "repo": "USAP-DC", "repositories": "Dryad; USAP-DC", "science_programs": null, "south": -90.0, "title": "A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins", "uid": "p0010447", "west": -180.0}, {"awards": "2026045 Schofield, Oscar; 2224611 Schofield, Oscar", "bounds_geometry": "POLYGON((-79.65 -63.738,-77.9728 -63.738,-76.29560000000001 -63.738,-74.61840000000001 -63.738,-72.94120000000001 -63.738,-71.26400000000001 -63.738,-69.58680000000001 -63.738,-67.9096 -63.738,-66.2324 -63.738,-64.5552 -63.738,-62.878 -63.738,-62.878 -64.3683,-62.878 -64.9986,-62.878 -65.6289,-62.878 -66.25919999999999,-62.878 -66.8895,-62.878 -67.5198,-62.878 -68.1501,-62.878 -68.7804,-62.878 -69.41069999999999,-62.878 -70.041,-64.5552 -70.041,-66.2324 -70.041,-67.9096 -70.041,-69.5868 -70.041,-71.26400000000001 -70.041,-72.94120000000001 -70.041,-74.61840000000001 -70.041,-76.29560000000001 -70.041,-77.9728 -70.041,-79.65 -70.041,-79.65 -69.41069999999999,-79.65 -68.7804,-79.65 -68.1501,-79.65 -67.5198,-79.65 -66.8895,-79.65 -66.25919999999999,-79.65 -65.6289,-79.65 -64.9986,-79.65 -64.3683,-79.65 -63.738))", "dataset_titles": "Expedition Data of LMG2301; Expedition Data of NBP2113; Palmer LTER data in the Environmental Data Initiative Repository", "datasets": [{"dataset_uid": "200371", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of LMG2301", "url": "https://www.rvdata.us/search/cruise/LMG2301"}, {"dataset_uid": "200370", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP2113", "url": "https://www.rvdata.us/search/cruise/NBP2113"}, {"dataset_uid": "200367", "doi": "", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "Palmer LTER data in the Environmental Data Initiative Repository", "url": "https://portal.edirepository.org/nis/browseServlet?searchValue=PAL"}], "date_created": "Wed, 26 Jul 2023 00:00:00 GMT", "description": "The goal of all LTER sites is to conduct policy-relevant ecosystem research for questions that require tens of years of data and cover large geographical areas. The Palmer Antarctica Long Term Ecological Research (PAL-LTER) site has been in operation since 1990 and has been studying how the marine ecosystem west of the Antarctica Peninsula (WAP) is responding to a climate that is changing as rapidly as any place on the Earth. The study is evaluating how warming conditions and decreased ice cover leading to extended periods of open water are affecting many aspects of ecosystem function. The team is using combined cutting-edge approaches including yearly ship-based research cruises, small-boat weekly sampling, autonomous vehicles, animal biologging, oceanographic floats and seafloor moorings, manipulative lab-based process studies and modeling to evaluate both seasonal and annual ecosystem responses. These combined approaches are allowing for the study the ecosystem changes at scales needed to assess both short-term and long-term drivers. The study region also includes submarine canyons that are special regions of enhanced biological activity within the WAP. This research program is paired with a comprehensive education and outreach program promoting the global significance of Antarctic science and research. In addition to training for graduate and undergraduate students, they are using newly-developed Polar Literacy Principles as a foundation in a virtual schoolyard program that shares polar instructional materials and provides learning opportunities for K-12 educators. The PAL-LTER team is also leveraging the development of Out of School Time materials for afterschool and summer camp programs, sharing Palmer LTER-specific teaching materials with University, Museum, and 4-H Special Interest Club partners.\r\n\r\nPolar ecosystems are among the most rapidly changing on Earth. The Palmer LTER (PAL-LTER) program builds on three decades of coordinated research along the western side of the Antarctic Peninsula (WAP) to gain new mechanistic and predictive understanding of ecosystem changes in response to disturbances spanning long-term decadal (press) drivers and changes due to higher-frequency (pulse) drivers, such as large storms and extreme seasonal anomaly in sea ice cover. The influence of major natural climate modes that modulate variations in sea ice, weather, and oceanographic conditions to drive changes in ecosystem structure and function (e.g., El Nio Southern Oscillation and Southern Annular Mode) are being studied at multiple time scales from diel, seasonal, interannual, to decadal intervals, and space scalesfrom hemispheric to global scale investigated by remote sensing, the regional scales. Specifically, the team is evaluating how variability of physical properties (such as vertical and alongshore connectivity processes) interact to modulate biogeochemical cycling and community ecology in the WAP region. The study is providing an evaluation of ecosystem resilience and ecological responses to long-term press-pulse drivers and a decadal-level reversal in sea ice coverage. This program is providing fundamental understanding of population and biogeochemical responses for a marine ecosystem experiencing profound change.", "east": -62.878, "geometry": "POINT(-71.26400000000001 -66.8895)", "instruments": null, "is_usap_dc": true, "keywords": "SEA ICE; PLANKTON; PELAGIC; West Antarctic Shelf; R/V NBP; OCEAN MIXED LAYER; COMMUNITY DYNAMICS; PENGUINS; R/V LMG", "locations": "West Antarctic Shelf", "north": -63.738, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Schofield, Oscar; Steinberg, Deborah", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "EDI; R2R", "science_programs": "LTER", "south": -70.041, "title": "LTER: Ecological Response and Resilience to \u201cPress-Pulse\u201d Disturbances and a Recent Decadal Reversal in Sea Ice Trends Along the West Antarctic Peninsula", "uid": "p0010426", "west": -79.65}, {"awards": "2135696 Polito, Michael; 2135695 Emslie, Steven", "bounds_geometry": "POLYGON((-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70.8,-180 -71.6,-180 -72.4,-180 -73.2,-180 -74,-180 -74.8,-180 -75.6,-180 -76.4,-180 -77.2,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -77.2,160 -76.4,160 -75.6,160 -74.8,160 -74,160 -73.2,160 -72.4,160 -71.6,160 -70.8,160 -70,162 -70,164 -70,166 -70,168 -70,170 -70,172 -70,174 -70,176 -70,178 -70,-180 -70))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 28 Oct 2022 00:00:00 GMT", "description": "Stable isotope analyses of carbon and nitrogen (\u03b413C and \u03b415N) are commonly used to investigate animal migration, foraging locations and diet, especially in marine species that can travel over great distances. One other stable isotope, sulfur (\u03b434S), is not as commonly used but is increasingly being applied to refine and corroborate data obtained from carbon and nitrogen analyses. Collagen is one of the best tissues for these analyses as it is abundant in bone, preserves well, and can be easily extracted for analysis. In the Ross Sea region, the cold, dry environment has been conductive for the preservation of Ad\u00e9lie penguin (Pygoscelis adeliae) bones, feathers, eggshell and even mummified remains, at active and abandoned colonies that date from before the Last Glacial Maximum (\u003e45,000 yrs ago) through the Holocene. Most of these colonies are associated with one of three polynyas, or highly productive areas of open water surrounded by sea ice in the Ross Sea. Thus, this species is an excellent bioindicator for marine conditions, past and present, and its colonies have appeared and disappeared throughout this region with changing climate and sea ice regimes for millennia. Current warming trends are inducing relatively rapid ecological responses by this species and some of the largest colonies in the Ross Sea are likely to be abandoned in the next 50 years from rising sea level. The recently established Ross Sea Marine Protected Area aims to protect Ad\u00e9lie penguins and other species in this region from human impacts and knowledge on how this species responds to climate change, past and present, will support this goal. \r\n\r\nWe propose to investigate ecological responses in diet and foraging behavior of the Ad\u00e9lie penguin to known climatic events that occurred in the middle to late Holocene, specifically, before, during and after a warming period known as the penguin \u2018optimum\u2019 at 2000 - 4000 cal yr before present (BP). We will apply for the first time a suite of three stable isotope analyses (\u03b413C, \u03b415N, \u03b434S) on chick bones and feathers, as well as prey remains, from active and abandoned colonies in the Ross Sea. We will use existing tissue samples (~60-80 bones) collected by PI Emslie with NSF support since 2001 and supplement these with newly collected samples of bones and feathers in this project. We will conduct compound-specific isotope analyses of carbon on essential amino acids from collagen from a selected sample of 30-40 bones that span the past 5000 yrs to provide corroboratory information. We will apply three-dimensional Bayesian niche models and/or community metrics using R scripts in these analyses to identify isotopic \u2018signatures\u2019 of existing and past foraging grounds and polynyas used by Ad\u00e9lie penguins in the southern, central, and northern Ross Sea. This four-year study will the first of its kind to apply multiple stable isotope analyses to investigate a living species of seabird over millennia in a region where it still exists today. \r\n\r\nBroader Impacts:\r\nThe PIs are committed to public engagement and enhancement of K-12 education in the STEM sciences. Broader impacts of this research will include support and training for one Ph.D., two M.S., and eight undergraduate students in the Department of Biology and Marine Biology, and two M.A. students in the Watson School of Education at the University of North Carolina Wilmington (UNCW). The last two students will continue to expand on a detailed polar curriculum that was initiated in previous NSF grants for 2nd and 4th grade students, and most recently for 9-12th grade students now available on PI Emslie\u2019s website (www.uncw.edu/penguins). Additional curricula for K-12 students will be designed and tested in this project, which will include visitation to local K-12 schools. As in previous awards, we will focus on schools that serve historically under-represented groups in the sciences. We will work with the UNCW Center for Education in STEM Sciences to assess the efficacy of this new curricula. All curricula will be uploaded on the Educational Resource Commons website. Field work will include blogs and active question-answer sessions with students at these schools. We will continue to post project information and updates on PI Emslie\u2019s website and YouTube channel. Our partnership with tour ship companies will provide a platform for onboard lectures on the importance of scientific research as well as citizen science opportunities for another sector of the public. This proposal requires fieldwork in the Antarctic.\r\n", "east": -180.0, "geometry": "POINT(170 -74)", "instruments": null, "is_usap_dc": true, "keywords": "Climate Change; Adelie Penguin; Foraging Ecology; Ross Sea; PENGUINS; Holocene; Stable Isotopes", "locations": "Ross Sea", "north": -70.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Emslie, Steven; Lane, Chad S; Polito, Michael", "platforms": null, "repositories": null, "science_programs": null, "south": -78.0, "title": "Collaborative Research: Using Multiple Stable Isotopes to Investigate Middle to Late Holocene Ecological Responses by Adelie Penguins in the Ross Sea", "uid": "p0010388", "west": 160.0}, {"awards": "2012365 Johnston, David; 2012444 Cimino, Megan; 2012247 Groff, Dulcinea", "bounds_geometry": "POLYGON((-65 -64.5,-64.8 -64.5,-64.6 -64.5,-64.4 -64.5,-64.2 -64.5,-64 -64.5,-63.8 -64.5,-63.6 -64.5,-63.4 -64.5,-63.2 -64.5,-63 -64.5,-63 -64.55,-63 -64.6,-63 -64.65,-63 -64.7,-63 -64.75,-63 -64.8,-63 -64.85,-63 -64.9,-63 -64.95,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.95,-65 -64.9,-65 -64.85,-65 -64.8,-65 -64.75,-65 -64.7,-65 -64.65,-65 -64.6,-65 -64.55,-65 -64.5))", "dataset_titles": null, "datasets": null, "date_created": "Sun, 24 Jul 2022 00:00:00 GMT", "description": "This award is funded in whole or part under the American Rescue Plan Act of 2021 (Public Law 117-2). \r\nPart I: Non-technical description: \r\nAdlie penguin colonies are declining and disappearing from the western Antarctic Peninsula. However, not all colonies in a certain area decline or disappear at the same rate. This research project will evaluate the influence of terrestrial surface properties on Adlie penguin colonies, leveraging five decades of research on seabirds near Palmer Station where an Adlie colony on Litchfield Island became extinct in 2007 while other colonies nearby are still present. The researchers will combine information obtained from remote sensing, UAS (Unoccupied Aircraft System, or drones) high-resolution maps, reconstruction of past moss banks and modeling with machine learning tools to define suitable penguin and peatbank moss habitats and explore the influence of microclimate on their distributions. In particular, the researchers are asking if guano from penguin colonies could act as fertilizers of moss banks in the presence of localized wind patters that can carry airborne nitrogen to the mosses. Modeling will relate penguin and peatbank moss spatial patterns to environmental variables and provide a greater understanding of how continued environmental change could impact these communities. The project allows for documentation of terrestrial Antarctic ecosystems in support of seabirds and provisioning of such information to the broader science community that seeks to study penguins, educating graduate and undergraduate students and a post-doctoral researcher. The research team includes two young women as Principal Investigators, one of them from an under-represented ethnic minority, first time Antarctic Principal Investigator, from an EPSCoR state (Wyoming), broadening participation in Antarctic research. Researchers will serve as student mentors through the Duke Bass Connections program entitled Biogeographic Assessment of Antarctic Coastal Habitats. This program supports an interdisciplinary team of graduate and undergraduate students collaborating with project faculty and experts on cutting-edge research bridging the classroom and the real world.\r\n\r\nPart II: Technical description: \r\nThis research aims to understand the changes at the microclimate scale (meters) by analyzing present and past Adlie penguin colonies and moss peatbanks in islands around Palmer Station in the western Antarctic Peninsula interlinked systems that are typically considered in isolation. By integrating in situ and remote data, this project will synthesize the drivers of biogeomorphology on small islands of the Antarctic Peninsula, a region of rapid change where plants and animals often co-occur and animal presence often determines the habitation of plants. A multi-disciplinary approach combine field measurements, remote sensing, UAS (Unoccupied Aircraft Systems) maps, paleoecology and modeling with machine learning to define suitable habitats and the influence of microclimates on penguin and peatbank distributions. The link between the two aspects of this study, peatbanks and penguins, is the potential source of nutrients for peat mosses from penguin guano. Peatbank and penguin distribution will be modeled and all models will be validated using in situ information from moss samples that will identify mechanistic processes. This project leverages 5 decades of seabird research in the area and high-definition remote sensing provided by the Polar Geospatial center to study the microclimate of Litchfield Island where an Adlie colony became extinct in 2007 when other colonies nearby are still present. The research team includes two early career women as Principal Investigators, one of them from an under-represented ethnic minority, first time Antarctic Principal Investigator, from an EPSCoR state (Wyoming). Researchers will serve as mentors for students through the Duke Bass Connections program entitled Biogeogrpahic Assessment of Antarctic Coastal Habitats which bridges the classroom and the real world.\r\n\r\nThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -63.0, "geometry": "POINT(-64 -64.75)", "instruments": null, "is_usap_dc": true, "keywords": "Palmer Station; Antarctic Peninsula; COASTAL; STABLE ISOTOPES; TOPOGRAPHIC EFFECTS; PALEOCLIMATE RECONSTRUCTIONS; MACROFOSSILS; PLANTS; PENGUINS; ISOTOPES; VISIBLE IMAGERY; RADIOCARBON; Anvers Island", "locations": "Antarctic Peninsula; Anvers Island; Palmer Station", "north": -64.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Groff, Dulcinea; Cimino, Megan; Johnston, David", "platforms": null, "repositories": null, "science_programs": null, "south": -65.0, "title": "Collaborative Research: Common Environmental Drivers Determine the Occupation Chronology of Ad\u00e9lie Penguins and Moss Peatbanks on the Western Antarctic Peninsula", "uid": "p0010354", "west": -65.0}, {"awards": "2138277 Gallagher, Katherine", "bounds_geometry": "POLYGON((-78 -62,-76.2 -62,-74.4 -62,-72.6 -62,-70.8 -62,-69 -62,-67.2 -62,-65.4 -62,-63.6 -62,-61.8 -62,-60 -62,-60 -63,-60 -64,-60 -65,-60 -66,-60 -67,-60 -68,-60 -69,-60 -70,-60 -71,-60 -72,-61.8 -72,-63.6 -72,-65.4 -72,-67.2 -72,-69 -72,-70.8 -72,-72.6 -72,-74.4 -72,-76.2 -72,-78 -72,-78 -71,-78 -70,-78 -69,-78 -68,-78 -67,-78 -66,-78 -65,-78 -64,-78 -63,-78 -62))", "dataset_titles": "Current velocity and direction data from Regional Ocean Modeling System simulations (2006-2007 \u0026 2010-2011); Current velocity and direction data from Regional Ocean Modeling System simulations (2008-2009 \u0026 2018-2019); Passive particle trajectories from Regional Ocean Modeling System simulations 2008-2009 \u0026 2018-2019; Simulated krill trajectory data from Regional Ocean Modeling System simulations 2006-2007 \u0026 2010-2011; Simulated krill trajectory data from Regional Ocean Modeling System simulations 2008-2009 \u0026 2018-2019; Simulated marine debris trajectories along the West Antarctic Peninsula in 2008-2009 and 2018-2019", "datasets": [{"dataset_uid": "601780", "doi": "10.15784/601780", "keywords": "Antarctica; Antarctic Krill; Cryosphere; Model Data; Physical Oceanography; Regional Ocean Modeling System; ROMS; West Antarctic Shelf", "people": "Gallagher, Katherine", "repository": "USAP-DC", "science_program": null, "title": "Simulated krill trajectory data from Regional Ocean Modeling System simulations 2006-2007 \u0026 2010-2011", "url": "https://www.usap-dc.org/view/dataset/601780"}, {"dataset_uid": "601655", "doi": "10.15784/601655", "keywords": "Antarctica; Antarctic Krill; Model Data; Physical Oceanography; Regional Ocean Modeling System; ROMS; West Antarctic Shelf", "people": "Gallagher, Katherine", "repository": "USAP-DC", "science_program": null, "title": "Simulated krill trajectory data from Regional Ocean Modeling System simulations 2008-2009 \u0026 2018-2019", "url": "https://www.usap-dc.org/view/dataset/601655"}, {"dataset_uid": "601656", "doi": "10.15784/601656", "keywords": "Antarctica; Model Data; Ocean Currents; Physical Oceanography; Regional Ocean Modeling System; ROMS; West Antarctic Shelf", "people": "Gallagher, Katherine", "repository": "USAP-DC", "science_program": null, "title": "Current velocity and direction data from Regional Ocean Modeling System simulations (2008-2009 \u0026 2018-2019)", "url": "https://www.usap-dc.org/view/dataset/601656"}, {"dataset_uid": "601682", "doi": "10.15784/601682", "keywords": "Antarctica; Physical Oceanography; Regional Ocean Modeling System; ROMS", "people": "Gallagher, Katherine", "repository": "USAP-DC", "science_program": null, "title": "Passive particle trajectories from Regional Ocean Modeling System simulations 2008-2009 \u0026 2018-2019", "url": "https://www.usap-dc.org/view/dataset/601682"}, {"dataset_uid": "601779", "doi": "10.15784/601779", "keywords": "Antarctica; Cryosphere; Model Data; Ocean Currents; Physical Oceanography; Regional Ocean Modeling System; ROMS; West Antarctic Shelf", "people": "Gallagher, Katherine", "repository": "USAP-DC", "science_program": null, "title": "Current velocity and direction data from Regional Ocean Modeling System simulations (2006-2007 \u0026 2010-2011)", "url": "https://www.usap-dc.org/view/dataset/601779"}, {"dataset_uid": "601734", "doi": "10.15784/601734", "keywords": "Antarctica; Modeling; Regional Ocean Modeling System; West Antarctic Shelf", "people": "Gallagher, Katherine", "repository": "USAP-DC", "science_program": null, "title": "Simulated marine debris trajectories along the West Antarctic Peninsula in 2008-2009 and 2018-2019", "url": "https://www.usap-dc.org/view/dataset/601734"}], "date_created": "Tue, 19 Jul 2022 00:00:00 GMT", "description": "Pygoscelis penguins are central place foragers during the summer while they raise their chicks. They leave and return to the same colony location after hunting for food and rely on the availability of Antarctic krill, their primary food source. This research focuses on whether penguin diets and colony location reflect the retention of prey around and near colonies on the West Antarctic Peninsula. Eddies and other oceanographic processes may facilitate prey retention at certain locations, driving penguin colony establishment and success. \r\n\r\nThis project hypothesizes that Pygoscelis penguin diets will be composed of more Antarctic krill (Euphausia superba) when local prey retention is high, possibly due to subsurface eddies. This hypothesis will be tested using satellite-based estimates of Pygoscelis penguin diet composition using multispectral sensor data to estimate nitrogen values and infer trophic level. Prey retention will be calculated along the peninsula using the Regional Ocean Modeling System (ROMS). Simulated particles and diel vertical migration will be used to mimic krill behavior. These particles can be experimentally seeded across multiple depths in multiple years to assess residence times in the system. Using penguin colony data from the Mapping Application for Penguin Populations and Projected Dynamics (MAPPPD), the PI will correlate diet and retention metrics to local penguin colony growth and persistence and build a predictive model of where colonies may form in the future.\r\n\r\nThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -60.0, "geometry": "POINT(-69 -67)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Peninsula; PENGUINS; SPECIES/POPULATION INTERACTIONS; OCEAN CURRENTS", "locations": "Antarctic Peninsula", "north": -62.0, "nsf_funding_programs": "Post Doc/Travel", "paleo_time": null, "persons": "Gallagher, Katherine", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -72.0, "title": "OPP-PRF Pygoscelis Penguin Response to Potential Prey Retention along the West Antarctic Peninsula", "uid": "p0010349", "west": -78.0}, {"awards": "1744885 Moline, Mark", "bounds_geometry": "POLYGON((-64.643 -64.703149,-64.5388975 -64.703149,-64.43479500000001 -64.703149,-64.3306925 -64.703149,-64.22659 -64.703149,-64.1224875 -64.703149,-64.018385 -64.703149,-63.9142825 -64.703149,-63.81018 -64.703149,-63.706077500000006 -64.703149,-63.601975 -64.703149,-63.601975 -64.7258003,-63.601975 -64.7484516,-63.601975 -64.77110289999999,-63.601975 -64.7937542,-63.601975 -64.8164055,-63.601975 -64.8390568,-63.601975 -64.86170809999999,-63.601975 -64.8843594,-63.601975 -64.9070107,-63.601975 -64.929662,-63.706077500000006 -64.929662,-63.81018 -64.929662,-63.9142825 -64.929662,-64.018385 -64.929662,-64.1224875 -64.929662,-64.22659 -64.929662,-64.3306925 -64.929662,-64.43479500000001 -64.929662,-64.5388975 -64.929662,-64.643 -64.929662,-64.643 -64.9070107,-64.643 -64.8843594,-64.643 -64.86170809999999,-64.643 -64.8390568,-64.643 -64.8164055,-64.643 -64.7937542,-64.643 -64.77110289999999,-64.643 -64.7484516,-64.643 -64.7258003,-64.643 -64.703149))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 18 Jul 2022 00:00:00 GMT", "description": "This research project will use specially designed autonomous underwater vehicles (AUVs) to investigate interactions between Adelie and Gentoo penguins (the predators) and their primary food source, Antarctic krill (prey). While it has long been known that penguins feed on krill, details about how they search for food and target individual prey items is less well understood. Krill aggregate in large swarms, and the size or the depth of these swarms may influence the feeding behavior of penguins. Similarly, penguin feeding behaviors may differ based on characteristics of the environment, krill swarms, and the presence of other prey and predator species. This project will use specialized smart AUVs to simultaneously collect high-resolution observations of penguins, their prey, and environmental conditions. Data will shed light on strategies used by penguins prove foraging success during the critical summer chick-rearing period. This will improve predictions of how penguin populations may respond to changing environmental conditions in the rapidly warming Western Antarctic Peninsula region. Greater understanding of how individual behaviors shape food web structure can also inform conservation and management efforts in other marine ecosystems. This project has a robust public education and outreach plan linked with the Birch and Monterey Bay Aquariums.\u003cbr/\u003e\u003cbr/\u003ePrevious studies have shown that sub-mesoscale variability (1-10 km) in Antarctic krill densities and structure impact the foraging behavior of air-breathing predators. However, there is little understanding of how krill aggregation characteristics are linked to abundance on fine spatial scales, how these patterns are influenced by the habitat, or how prey characteristics influences the foraging behavior of predators. These data gaps remain because it is extremely challenging to collect detailed data on predators and prey simultaneously at the scale of an individual krill patch and single foraging event. Building on previously successful efforts, this project will integrate echosounders into autonomous underwater vehicles (AUVs), so that oceanographic variables and multi-frequency acoustic scattering from both prey and penguins can be collected simultaneously. This will allow for quantification of the environment at the scale of individual foraging events made by penguins during the critical 50+ day chick-rearing period. Work will be centered near Palmer Station, where long-term studies have provided significant insight into predator and prey population trends. The new data to be collected by this project will test hypotheses about how penguin prey selection and foraging behaviors are influenced by physical and biological features of their ocean habitat at extremely fine scale. By addressing the dynamic relationship between individual penguins, their prey, and habitat at the scale of individual foraging events, this study will begin to reveal the important processes regulating resource availability and identify what makes this region a profitable foraging habitat and breeding location.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -63.601975, "geometry": "POINT(-64.1224875 -64.8164055)", "instruments": null, "is_usap_dc": true, "keywords": "COASTAL; COMMUNITY DYNAMICS; ECOSYSTEM FUNCTIONS; SPECIES/POPULATION INTERACTIONS; Palmer Station; MICROALGAE; PENGUINS; ANIMALS/INVERTEBRATES", "locations": "Palmer Station", "north": -64.703149, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Integrated System Science", "paleo_time": null, "persons": "Moline, Mark; Benoit-Bird, Kelly; Cimino, Megan", "platforms": null, "repositories": null, "science_programs": null, "south": -64.929662, "title": "Collaborative Research: Linking Predator Behavior and Resource Distributions: Penguin-directed Exploration of an Ecological Hotspot", "uid": "p0010347", "west": -64.643}, {"awards": "1745018 Fraser, William; 1744884 Oliver, Matthew; 1745011 Klinck, John; 1745023 Hennon, Tyler; 1745081 Bernard, Kim; 1745009 Kohut, Josh", "bounds_geometry": "POLYGON((-75 -60,-73 -60,-71 -60,-69 -60,-67 -60,-65 -60,-63 -60,-61 -60,-59 -60,-57 -60,-55 -60,-55 -61,-55 -62,-55 -63,-55 -64,-55 -65,-55 -66,-55 -67,-55 -68,-55 -69,-55 -70,-57 -70,-59 -70,-61 -70,-63 -70,-65 -70,-67 -70,-69 -70,-71 -70,-73 -70,-75 -70,-75 -69,-75 -68,-75 -67,-75 -66,-75 -65,-75 -64,-75 -63,-75 -62,-75 -61,-75 -60))", "dataset_titles": "Antarctic ACROBAT data; CTD Data from IFCB Sampling; Finite Time Lyapunov Exponent Results, Calculated from High Frequency Radar Observed Surface Currents; High Frequency Radar, Palmer Deep; IFCB Image Data; Relative Particle Density; SWARM AMLR moorings - acoustic data; SWARM Glider Data near Palmer Deep; WAP model float data; Winds from Joubin and Wauwerman Islands", "datasets": [{"dataset_uid": "200394", "doi": "10.26008/1912/bco-dmo.917926.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Relative Particle Density", "url": "https://www.bco-dmo.org/dataset/917926"}, {"dataset_uid": "200395", "doi": "10.26008/1912/bco-dmo.872729.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "SWARM AMLR moorings - acoustic data", "url": "https://www.bco-dmo.org/dataset/872729"}, {"dataset_uid": "200390", "doi": "10.26008/1912/bco-dmo.865030.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "CTD Data from IFCB Sampling", "url": "https://www.bco-dmo.org/dataset/865030"}, {"dataset_uid": "200396", "doi": "10.26008/1912/bco-dmo.867442.2", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "WAP model float data", "url": "https://www.bco-dmo.org/dataset/867442"}, {"dataset_uid": "200397", "doi": "10.26008/1912/bco-dmo.865098.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Winds from Joubin and Wauwerman Islands", "url": "https://www.bco-dmo.org/dataset/865098"}, {"dataset_uid": "200398", "doi": "", "keywords": null, "people": null, "repository": "IOOS Glider DAAC", "science_program": null, "title": "SWARM Glider Data near Palmer Deep", "url": "https://gliders.ioos.us/erddap/search/index.html?page=1\u0026itemsPerPage=1000\u0026searchFor=swarm"}, {"dataset_uid": "200391", "doi": "10.26008/1912/bco-dmo.917914.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Finite Time Lyapunov Exponent Results, Calculated from High Frequency Radar Observed Surface Currents", "url": "https://www.bco-dmo.org/dataset/917914"}, {"dataset_uid": "200393", "doi": "10.26008/1912/bco-dmo.865002.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "IFCB Image Data", "url": "https://www.bco-dmo.org/dataset/865002"}, {"dataset_uid": "200389", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Antarctic ACROBAT data", "url": "https://www.bco-dmo.org/dataset/916046"}, {"dataset_uid": "200392", "doi": "10.26008/1912/bco-dmo.917884.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "High Frequency Radar, Palmer Deep", "url": "https://www.bco-dmo.org/dataset/917884"}], "date_created": "Tue, 05 Jul 2022 00:00:00 GMT", "description": "Undersea canyons play disproportionately important roles as oceanic biological hotspots and are critical for our understanding of many coastal ecosystems. Canyon-associated biological hotspots have persisted for thousands of years Along the Western Antarctic Peninsula, despite significant climate variability. Observations of currents over Palmer Deep canyon, a representative hotspot along the Western Antarctic Peninsula, indicate that surface phytoplankton blooms enter and exit the local hotspot on scales of ~1-2 days. This time of residence is in conflict with the prevailing idea that canyon associated hotspots are primarily maintained by phytoplankton that are locally grown in association with these features by the upwelling of deep waters rich with nutrients that fuel the phytoplankton growth. Instead, the implication is that horizontal ocean circulation is likely more important to maintaining these biological hotspots than local upwelling through its physical concentrating effects. This project seeks to better resolve the factors that create and maintain focused areas of biological activity at canyons along the Western Antarctic Peninsula and create local foraging areas for marine mammals and birds. The project focus is in the analysis of the ocean transport and concentration mechanisms that sustain these biological hotspots, connecting oceanography to phytoplankton and krill, up through the food web to one of the resident predators, penguins. In addition, the research will engage with teachers from school districts serving underrepresented and underserved students by integrating the instructors and their students completely with the science team. Students will conduct their own research with the same data over the same time as researchers on the project. Revealing the fundamental mechanisms that sustain these known hotspots will significantly advance our understanding of the observed connection between submarine canyons and persistent penguin population hotspots over ecological time, and provide a new model for how Antarctic hotspots function.\u003cbr/\u003e \u003cbr/\u003e \u003cbr/\u003eTo understand the physical mechanisms that support persistent hotspots along the Western Antarctic Peninsula (WAP), this project will integrate a modeling and field program that will target the processes responsible for transporting and concentrating phytoplankton and krill biomass to known penguin foraging locations. Within the Palmer Deep canyon, a representative hotspot, the team will deploy a High Frequency Radar (HFR) coastal surface current mapping network, uniquely equipped to identify the eddies and frontal regions that concentrate phytoplankton and krill. The field program, centered on surface features identified by the HFR, will include (i) a coordinated fleet of gliders to survey hydrography, chlorophyll fluorescence, optical backscatter, and active acoustics at the scale of the targeted convergent features; (ii) precise penguin tracking with GPS-linked satellite telemetry and time-depth recorders (TDRs); (iii) and weekly small boat surveys that adaptively target and track convergent features to measure phytoplankton, krill, and hydrography. A high resolution physical model will generalize our field measurements to other known hotspots along the WAP through simulation and determine which physical mechanisms lead to the maintenance of these hotspots. The project will also engage educators, students, and members of the general public in Antarctic research and data analysis with an education program that will advance teaching and learning as well as broadening participation of under-represented groups. This engagement includes professional development workshops, live connections to the public and classrooms, student research symposia, and program evaluation. Together the integrated research and engagement will advance our understanding of the role regional transport pathways and local depth dependent concentrating physical mechanisms play in sustaining these biological hotspots.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -55.0, "geometry": "POINT(-65 -65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CONDUCTIVITY SENSORS \u003e CONDUCTIVITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e RADIATION SENSORS", "is_usap_dc": true, "keywords": "MOORED; WATER TEMPERATURE; CONDUCTIVITY; FLUORESCENCE; UNCREWED VEHICLES; Palmer Station; PHOTOSYNTHETICALLY ACTIVE RADIATION; PELAGIC; OCEAN MIXED LAYER; SURFACE; SALINITY; WATER PRESSURE; LIVING ORGANISM; MODELS; ACOUSTIC SCATTERING", "locations": "Palmer Station", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Instrumentation and Support; Antarctic Organisms and Ecosystems", "paleo_time": "NOT APPLICABLE", "persons": "Bernard, Kim; Oliver, Matthew; Kohut, Josh; Fraser, William; Klinck, John M.; Statcewich, Hank", "platforms": "LIVING ORGANISM-BASED PLATFORMS \u003e LIVING ORGANISM; OTHER \u003e MODELS; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED; WATER-BASED PLATFORMS \u003e UNCREWED VEHICLES; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE", "repo": "BCO-DMO", "repositories": "BCO-DMO; IOOS Glider DAAC", "science_programs": null, "south": -70.0, "title": "Collaborative Research: Physical Mechanisms Driving Food Web Focusing in Antarctic Biological Hotspots", "uid": "p0010346", "west": -75.0}, {"awards": "9981683 Costa, Daniel; 0003956 Burns, Jennifer", "bounds_geometry": "POLYGON((-70 -65,-69.5 -65,-69 -65,-68.5 -65,-68 -65,-67.5 -65,-67 -65,-66.5 -65,-66 -65,-65.5 -65,-65 -65,-65 -65.5,-65 -66,-65 -66.5,-65 -67,-65 -67.5,-65 -68,-65 -68.5,-65 -69,-65 -69.5,-65 -70,-65.5 -70,-66 -70,-66.5 -70,-67 -70,-67.5 -70,-68 -70,-68.5 -70,-69 -70,-69.5 -70,-70 -70,-70 -69.5,-70 -69,-70 -68.5,-70 -68,-70 -67.5,-70 -67,-70 -66.5,-70 -66,-70 -65.5,-70 -65))", "dataset_titles": "Crabeater seal oxygen stores", "datasets": [{"dataset_uid": "601583", "doi": "10.15784/601583", "keywords": "Antarctica; Crabeater Seal; GLOBEC; Hemoglobin; LMG0104; LMG0106; LMG0204; LMG0205; Marguerite Bay; Myoglobin; Oxygen Stores; Seals", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Crabeater seal oxygen stores", "url": "https://www.usap-dc.org/view/dataset/601583"}], "date_created": "Wed, 29 Jun 2022 00:00:00 GMT", "description": "This collaborative study between the University of California, Santa Cruz, Duke University, the University of South Florida, the University of Alaska-Anchorage, and the University of California, San Diego will examine the identification of biological and physical features associated with the abundance and distribution of individual Antarctic predators; the identification and characterization of biological \u0027hot spots\u0027 within the Western Antarctic Peninsula; and the development of temporally and spatially explicit models of krill consumption within the WAP by vertebrate predators. It is one of several data synthesis and modeling components that use the data obtained in the course of the field work of the Southern Ocean Global Ocean Ecosystems Dynamics (SO GLOBEC) experiment.\u003cbr/\u003eSO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. It is currently in a synthesis and modeling phase. This collaborative project is concerned with understanding how predators utilize \u0027hot spots\u0027, i.e. locally intense areas of biological productivity, and how \u0027hot spots\u0027 might temporally and spatially structure krill predation rates, and will be integrated with other synthesis and modeling studies that deal with the hydrography primary production, and krill dynamics.", "east": -65.0, "geometry": "POINT(-67.5 -67.5)", "instruments": null, "is_usap_dc": true, "keywords": "Marguerite Bay; MARINE ECOSYSTEMS", "locations": "Marguerite Bay", "north": -65.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Burns, Jennifer; Costa, Daniel", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Foraging Ecology of Crabeater Seals (Lobodon Carcinophagus)", "uid": "p0010345", "west": -70.0}, {"awards": "1951500 Jenouvrier, Stephanie", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "The impact of boldness on demographic rates and lifehistory outcomes in the wandering albatross", "datasets": [{"dataset_uid": "601770", "doi": "10.15784/601770", "keywords": "Antarctica; Cryosphere; Demography; Sub-Antarctic", "people": "Jenouvrier, Stephanie; Joanie, Van de Walle", "repository": "USAP-DC", "science_program": null, "title": "The impact of boldness on demographic rates and lifehistory outcomes in the wandering albatross", "url": "https://www.usap-dc.org/view/dataset/601770"}], "date_created": "Wed, 08 Dec 2021 00:00:00 GMT", "description": "Overview: To date, studies that have addressed the impacts of global changes have mainly focused on linking climate variability and/or human disturbances to individual life history traits, population dynamics or distribution. However, individual behavior and plasticity mediate these responses. The goal of this project is to understand mechanisms linking environmental changes (climate \u0026 fisheries)- behavioral personality type \u2013 plasticity in foraging behaviors- life history traits \u2013 population dynamics for a seabird breeding in the southern ocean: the wandering albatross. This project will also forecast the population structure and growth rate using the most detailed mechanistic model to date for any wild species incorporating behaviors in an eco-evolutionary context. Specifically, the investigators will (1) characterize the life history strategies along the shy-bold continuum of personalities and across environmental conditions; (2) understand the link between phenotypic plasticity in foraging effort and personality; (3) characterize the heritability of personality and foraging behaviors; (4) develop a stochastic eco-evolutionary model to understand and forecast the distribution of bold and shy individuals within the population and the resulting effect on population growth rate in a changing environment by integrating processes from goals 1, 2 and 3. To date, this has been hampered by the lack of long-term data on personality and life histories in any long-lived species in the wild. For the first time ever, we have tested in a controlled environment the response to a novel situation for ~1800 individuals for more than a decade to define individual personality variation along the shy-bold continuum that we can relate to the life history traits over the entire species life cycle using unique long-term individual mark-recapture data sets for this iconic polar species. The novelty of this project thus lies in the combination of personality, foraging and demographic data to understand and forecast population responses to global change using state-of-the-art statistical analysis and eco-evolutionary modeling approaches. \r\nIntellectual Merit: While there is ubiquitous evidence of personality differences across taxa, the implications for life-history are less clear, and the consequences for population dynamics virtually unexplored empirically. How the phenotypic distributions of personality and foraging behaviors types within a population is created and maintained by ecological (demographic and phenotypic plasticity) and evolutionary (heritability) processes remain an open question. Personality traits are a crucial link between how individuals acquire resources, and how they allocate these to reproduction and survival, and this trade-off drives population dynamics. However, although some studies have found different foraging behaviors or breeding performances between personality types, none have established the link between personality- foraging behaviors \u2013 life histories (both reproduction and survival, and their covariations) in the context of climate change. Furthermore plasticity in foraging behaviors is not considered in the pace-of-life syndrome, which has potentially hampered our ability to find covariation between personality and life history trade-off. Research into the heritability of personality traits has revealed a strong heritable component, but studies looking at the heritability of foraging behaviors are lacking. For the first time ever, this project will fill these knowledge gaps and integrate in an eco-evolutionary model the complex interaction among individual personality and foraging plasticity, heritability of personality and foraging behaviors, life history strategies, population dynamics in a changing environment (fisheries and climate). Furthermore, this project will provide for the first time projections of population size and structure under future global change using state-of-the-art climate projections from IPCC-class atmospheric-oceanic global circulation models.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; NOT APPLICABLE; AMD; ECOLOGICAL DYNAMICS; OCEAN TEMPERATURE; USA/NSF; Antarctica; SPECIES/POPULATION INTERACTIONS; PENGUINS; Amd/Us", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Jenouvrier, Stephanie; Patrick, Samantha", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "NSFGEO-NERC: Integrating Individual Personality Differences in the Evolutionary Ecology of a Seabird in the Rapidly Changing Polar Environment", "uid": "p0010283", "west": -180.0}, {"awards": "2037561 Jenouvrier, Stephanie", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Code for \u015een et al. 2023; Detecting climate signals in populations: case of emperor penguin", "datasets": [{"dataset_uid": "200373", "doi": "https://doi.org/10.5281/zenodo.7803266", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Code for \u015een et al. 2023", "url": "https://zenodo.org/record/7803266"}, {"dataset_uid": "601491", "doi": "10.15784/601491", "keywords": "Antarctica", "people": "Jenouvrier, Stephanie", "repository": "USAP-DC", "science_program": null, "title": "Detecting climate signals in populations: case of emperor penguin", "url": "https://www.usap-dc.org/view/dataset/601491"}], "date_created": "Wed, 08 Dec 2021 00:00:00 GMT", "description": "Overview: We aim to provide the most detailed investigation to date of the factors that influence predictability of Antarctic climate, the coupling of climate to penguins populations, and the integration of the two to optimize ecological forecasts. This integrated understanding is critical for guiding future ecological and climate research, prioritizing bio-physical monitoring efforts, and informing conservation decision-making. Our study will reveal the influence of climate system dynamics on ecological predictability across a range of scales and will examine how this role differs among ecological processes, species and regions of Antarctica. \r\n\r\nIntellectual Merit: Many biophysical processes will change in the coming century. Yet, the mechanisms controlling the predictability of many climate processes are still poorly understood, limiting progress in climate forecasting. In parallel, ecological forecasting remains a nascent discipline. In particular, comparative assessments of predictability, both within and among species, are critically needed to understand the factors that allow (or prevent) useful ecological forecasts. While important for ecological science generally, this need is particularly pressing in Antarctica where the environment is highly dynamic, strongly coupled to biological processes, and likely to change in the future. Improved ecological forecasting therefore requires interdisciplinary efforts to understand the causes of predictability in climate, and in tandem, how climate influences the predictability of natural populations.\r\nThis proposed research will examine the predictability of Antarctic climate and its influence on penguin demographic response predictability at various temporal and spatial scales using the longest datasets available for two penguin species. Specifically, the PI will 1) identify the physical mechanisms giving rise to climate predictability in Antarctica, 2) identify the relationships between climate and ecological processes at a range of scales, and 3) reveal the factors controlling ecological predictability across a range of scales (e.g., those relevant for short-term adaptive management versus those relevant at end-of-century timescales). These objectives will be achieved using the analysis of existing climate data and Atmosphere-Ocean Global Circulation Models (AGOCMs), with coupled analysis of existing long-term demographic data for multiple seabird species that span a range of ecological niches, life histories, and study sites across the continent.\r\n", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "ECOLOGICAL DYNAMICS; PENGUINS; Amd/Us; Antarctica; USA/NSF; SEA ICE; NOT APPLICABLE; USAP-DC; AMD", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jenouvrier, Stephanie; Holland, Marika", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "Zenodo", "repositories": "USAP-DC; Zenodo", "science_programs": null, "south": -90.0, "title": "Integrating Antarctic Environmental and Biological Predictability to Obtain Optimal Forecasts", "uid": "p0010282", "west": -180.0}, {"awards": "2040048 Ballard, Grant; 2040199 Ainley, David; 2040571 Smith, Walker", "bounds_geometry": "POLYGON((164 -74,165.6 -74,167.2 -74,168.8 -74,170.4 -74,172 -74,173.6 -74,175.2 -74,176.8 -74,178.4 -74,180 -74,180 -74.4,180 -74.8,180 -75.2,180 -75.6,180 -76,180 -76.4,180 -76.8,180 -77.2,180 -77.6,180 -78,178.4 -78,176.8 -78,175.2 -78,173.6 -78,172 -78,170.4 -78,168.8 -78,167.2 -78,165.6 -78,164 -78,164 -77.6,164 -77.2,164 -76.8,164 -76.4,164 -76,164 -75.6,164 -75.2,164 -74.8,164 -74.4,164 -74))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 25 Oct 2021 00:00:00 GMT", "description": "Part I: Non-technical description: \r\nThe Ross Sea, a globally important ecological hotspot, hosts 25-45% of the world populations of Ad\u00e9lie and emperor penguins, South Polar skuas, Antarctic petrels, and Weddell seals. It is also one of the few marine protected areas designated within the Southern Ocean, designed to protect the workings of its ecosystem. To achieve that goal requires participation in an international research and monitoring program, and more importantly integration of what is known about these mesopredators, which is a lot, and the biological oceanography of their habitat, parts of which are also well known. The project will acquire data on these species\u2019 food web dynamics through assessing of Ad\u00e9lie penguin foraging behavior, an indicator species, while multi-sensor ocean gliders autonomously quantify prey abundance and distribution as well as ocean properties, including phytoplankton, at the base of the food web. Additionally, satellite imagery will quantify sea ice and whales (competitors) within the penguins\u2019 foraging area. Seasoned researchers and students will be involved, as will a public outreach program that reaches \u003e200 school groups per field season, and \u003e1M visits to the website of an ongoing, related project. Lessons about ecosystem change, and how it is measured, i.e. the STEM fields, will be emphasized. Results will be distributed to the world science and management communities. \r\n\r\nPart II: Technical description: \r\nThis project, in collaboration with the National Environmental Research Council (UK), assesses food web structure in the southwestern Ross Sea, a major portion of the recently designated Ross Sea Region Marine Protected Area, designed to protect the region\u2019s \u201cfood web structure, dynamics and function.\u201d Success requires in-depth, integated ecological information. The western Ross Sea, especially the marginal ice zone of the Ross Sea Polynya (RSP), supports global populations of iconic and indicator species: 25% of emperor penguins, 30% of Ad\u00e9lie penguins, 50% of South Polar skuas, and 45% of Weddell seals. However, while individually well researched, for these members of the upper food web information has been poorly integrated into understanding of Ross Sea food web dynamics and biogeochemistry. Information from multi-sensor ocean gliders, high-resolution satellite imagery, diet analysis and biologging of penguins, when integrated will facilitate understanding of the preyscape within the intensively investigated biogeochemistry of the RSP. UK participation covers a number of glider functions (e.g., providing a state-of-the-art glider at minimal cost, glider programming, ballasting, and operation) and supplies expertise to evaluate the oceanographic conditions of the study area. Several student will be involved, as well as an existing outreach program in a related penguin research project reaching annually \u003e200 school groups and \u003e1M website visits. \r\n", "east": 180.0, "geometry": "POINT(172 -76)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; AQUATIC SCIENCES; USA/NSF; Amd/Us; Biologging; AMD; Foraging Ecology; FIELD SURVEYS; Ross Sea; Adelie Penguin", "locations": "Ross Sea", "north": -74.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ainley, David; Santora, Jarrod; Varsani, Arvind; Smith, Walker; Ballard, Grant; Schmidt, Annie", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -78.0, "title": "NSFGEO-NERC: Collaborative Research \"P2P: Predators to Plankton -Biophysical Controls in Antarctic Polynyas\"", "uid": "p0010273", "west": 164.0}, {"awards": "2046437 Zitterbart, Daniel", "bounds_geometry": "POLYGON((-60 -55,-53 -55,-46 -55,-39 -55,-32 -55,-25 -55,-18 -55,-11 -55,-4 -55,3 -55,10 -55,10 -57.5,10 -60,10 -62.5,10 -65,10 -67.5,10 -70,10 -72.5,10 -75,10 -77.5,10 -80,3 -80,-4 -80,-11 -80,-18 -80,-25 -80,-32 -80,-39 -80,-46 -80,-53 -80,-60 -80,-60 -77.5,-60 -75,-60 -72.5,-60 -70,-60 -67.5,-60 -65,-60 -62.5,-60 -60,-60 -57.5,-60 -55))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 16 Aug 2021 00:00:00 GMT", "description": "Polar ecosystems currently experience significant impacts due to global changes. Measurable negative effects on polar wildlife have already occurred, such as population decreases of numerous seabird species, including the complete loss of colonies of one of the most emblematic species of the Antarctic, the emperor penguin. These existing impacts on polar species are alarming, especially because many polar species still remain poorly studied due to technical and logistical challenges imposed by the harsh environment and extreme remoteness. Developing technologies and tools for monitoring such wildlife populations is, therefore, a matter of urgency.\r\nThis project aims to help close major knowledge gaps about the emperor penguin, in particular about their adaptive capability to a changing environment, by the development of next-generation tools to remotely study entire colonies. Specifically, the main goal of this project is to implement and test an autonomous unmanned ground vehicle equipped with Radio-frequency identification (RFID) antennas and wireless mesh communication data-loggers to: 1) identify RFID-tagged emperor penguins during breeding to studying population dynamics without human presence; and 2) receive GPS-TDR datasets from VHF-GPS-TDR data-loggers without human presence to study animal behavior and distribution at sea. The autonomous vehicles navigation through the colony will be aided by an existing remote penguin observatory (SPOT). Properly implemented, this technology can be used to study of the life history of individual penguins, and therefore gather data for behavioral and population dynamic studies.\r\nThe education objectives of this CAREER project are designed to increase the interest in a STEM education for the next generation of scientists by combining the charisma of the emperor penguin with robotics research. Within this project, a new class on ecosystem robotics will be developed and taught, Robotics boot-camps will allow undergraduate students to remotely participate in Antarctic field trips, and an annual curriculum will be developed that allows K-12 students to follow the life of the emperor penguin during the breeding cycle, powered by real-time data obtained using the unmanned ground vehicle as well as the existing emperor penguin observatory.\r\n", "east": 10.0, "geometry": "POINT(-25 -67.5)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; Antarctica; Dronning Maud Land; FIELD SURVEYS; Amd/Us; Atka Bay; MARINE ECOSYSTEMS; USAP-DC; USA/NSF", "locations": "Atka Bay; Antarctica; Dronning Maud Land", "north": -55.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Zitterbart, Daniel", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -80.0, "title": "\r\nCAREER: Development of Unmanned Ground Vehicles for Assessing the Health of Secluded Ecosystems (ECHO)", "uid": "p0010245", "west": -60.0}, {"awards": "1643532 Ponganis, Paul", "bounds_geometry": "POLYGON((163 -77,163.4 -77,163.8 -77,164.2 -77,164.6 -77,165 -77,165.4 -77,165.8 -77,166.2 -77,166.6 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.6 -78,166.2 -78,165.8 -78,165.4 -78,165 -78,164.6 -78,164.2 -78,163.8 -78,163.4 -78,163 -78,163 -77.9,163 -77.8,163 -77.7,163 -77.6,163 -77.5,163 -77.4,163 -77.3,163 -77.2,163 -77.1,163 -77))", "dataset_titles": "Blood oxygen transport and depletion in diving emperor penguins; Emperor penguin air sac oxygen", "datasets": [{"dataset_uid": "200409", "doi": "10.5061/dryad.qv9s4mwnp", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Blood oxygen transport and depletion in diving emperor penguins", "url": "https://doi.org/10.5061/dryad.qv9s4mwnp"}, {"dataset_uid": "200236", "doi": "10.5061/dryad.3tx95x6f5", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Emperor penguin air sac oxygen", "url": "https://doi.org/10.6076/D1H01Z"}], "date_created": "Fri, 30 Jul 2021 00:00:00 GMT", "description": "Part 1: Air sac-to-tissue oxygen delivery is essential to the dive capacity and foraging strategy of any penguin species as well as to flight and migration in other birds. Such transport of oxygen is dependent on the complex, highly efficient avian respiratory system (air sacs and lungs) and on the cardiovascular system. This delivery of oxygen allows emperor penguins to dive deeper than 500 meters and bar-headed geese to fly over the Himalayas. However, the physiological mechanisms underlying the transfer of oxygen from air sacs to blood and the subsequent distribution of oxygen to tissues are poorly understood. The emperor penguin is ideal for investigation of this oxygen cascade because of its body size, dive capacity, physiological data base, and the prior development of research techniques and protocols for this species. This study should provide insight into a) the mechanisms underlying the efficiency of the bird oxygen transport system, b) the physiological basis of penguin dive behavior, and the ability of penguins to adapt to environmental change, and c) perhaps, even the design of better therapeutic strategies and tools for treatment of respiratory disease. The project also includes educational exhibits and lecture programs on penguin biology at SeaWorld of San Diego. These educational programs at SeaWorld have outreach to diverse groups of grade school and high school students.\r\n\r\nPart 2: This project will examine the transport of oxygen from air sacs to tissues in a series of studies with temporarily captive emperor penguins that are free-diving at an isolated dive hole research camp in McMurdo Sound. Physiological data will be obtained with application of backpack recorders for the partial pressure of oxygen (PO2) in air sacs and/or blood, and backpack heart rate/stroke rate recorders. This experimental approach will be transformative in avian biology because it will also lay the groundwork for future investigations of air sac to lung to blood oxygen transfer during exercise of volant and cursorial birds.\r\n\r\nFour major topics are examined in this project: a) air sac oxygen distribution/depletion and the movement of air between anterior and posterior air sacs, b) anterior air sac to arterial PO2 differences and parabronchial gas exchange, c) blood oxygen transport and depletion throughout dives, and the nature of the aerobic dive limit, and d) the relationship of venous oxygen depletion patterns to both heart rate and stroke effort during dives. \r\n\r\nSpecific educational outreach goals include a) short video features to be displayed in the Penguin Encounter exhibit at SeaWorld of San Diego, and b) lectures, video presentations, and pre- and post-course evaluations for student campers and participants in SeaWorld\u2019s education programs. Underwater video for exhibits/presentations with be obtained with use of a penguin backpack camera in the Antarctic.\r\n", "east": 167.0, "geometry": "POINT(165 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "McMurdo Sound; USAP-DC; FIELD SURVEYS; USA/NSF; Amd/Us; AMD; PENGUINS", "locations": "McMurdo Sound", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ponganis, Paul", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "Dryad", "repositories": "Dryad", "science_programs": null, "south": -78.0, "title": "From Air Sacs to Tissues: Oxygen Transfer and Utilization in Diving Emperor Penguins", "uid": "p0010236", "west": 163.0}, {"awards": "1943550 McDonald, Birgitte", "bounds_geometry": "POLYGON((168 -77,168.3 -77,168.6 -77,168.9 -77,169.2 -77,169.5 -77,169.8 -77,170.1 -77,170.4 -77,170.7 -77,171 -77,171 -77.1,171 -77.2,171 -77.3,171 -77.4,171 -77.5,171 -77.6,171 -77.7,171 -77.8,171 -77.9,171 -78,170.7 -78,170.4 -78,170.1 -78,169.8 -78,169.5 -78,169.2 -78,168.9 -78,168.6 -78,168.3 -78,168 -78,168 -77.9,168 -77.8,168 -77.7,168 -77.6,168 -77.5,168 -77.4,168 -77.3,168 -77.2,168 -77.1,168 -77))", "dataset_titles": "Late chick-rearing foraging ecology of emperor penguins from the Cape Crozier colony; Post-molt emperor penguin foraging ecology", "datasets": [{"dataset_uid": "601688", "doi": "10.15784/601688", "keywords": "Animal Tracking; Antarctica; Biota; Emperor Penguin; GPS; Late Chick Rearing; Ross Sea", "people": "McDonald, Birgitte", "repository": "USAP-DC", "science_program": null, "title": "Late chick-rearing foraging ecology of emperor penguins from the Cape Crozier colony", "url": "https://www.usap-dc.org/view/dataset/601688"}, {"dataset_uid": "601686", "doi": "10.15784/601686", "keywords": "Antarctica; Biota; Emperor Penguin; NBP2302; Post-Molt; Ross Sea", "people": "McDonald, Birgitte", "repository": "USAP-DC", "science_program": null, "title": "Post-molt emperor penguin foraging ecology", "url": "https://www.usap-dc.org/view/dataset/601686"}], "date_created": "Tue, 20 Jul 2021 00:00:00 GMT", "description": "This project will identify behavioral and physiological variability in foraging Emperor Penguins that can be directly linked to individual success in the marine environment using an optimal foraging theory framework during two critical life history stages. First, this project will investigate the foraging energetics, ecology, and habitat use of Emperor Penguins at Cape Crozier using fine-scale movement and video data loggers during late chick-rearing, an energetically demanding life history phase. Specifically, this study will 1) Estimate the foraging efficiency and examine its relationship to foraging behavior and diet using an optimal foraging theory framework to identify what environmental or physiological constraints influence foraging behavior; 2) Investigate the inter- and intra-individual behavioral variability exhibited by emperor penguins, which is essential to predict how resilient they will be to climate change; and 3) Integrate penguin foraging efficiency data with environmental data to identify important habitat. Next the researchers will study the ecology and habitat preference after the molt and through early reproduction using satellite-linked data loggers. The researchers will: 1) Investigate the inter- and intra-individual behavioral variability exhibited by Emperor Penguins during the three-month post-molt and early winter foraging trips; and 2) Integrate penguin behavioral data with environmental data to identify which environmental features are indicative of habitat preference when penguins are not constrained to returning to the colony to feed a chick. These fine- and coarse-scale data will be combined with climate predictions to create predictive habitat models. The education objectives of this CAREER project are designed to inspire, engage, and train the next generation of scientists using the data and video generated while investigating Emperor Penguins in the Antarctic ecosystem. This includes development of two courses (general education and advanced techniques), training of undergraduate and graduate students, and a collaboration with the NSF funded \u201cPolar Literacy: A model for youth engagement and learning\u201d program to develop afterschool and camp curriculum that target underserved and underrepresented groups.\r\n\r\n", "east": 171.0, "geometry": "POINT(169.5 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; PENGUINS; MARINE ECOSYSTEMS; USA/NSF; Ross Sea; FIELD SURVEYS; USAP-DC; AMD", "locations": "Ross Sea", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "McDonald, Birgitte", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "CAREER: Foraging Ecology and Physiology of Emperor Penguins in the Ross Sea", "uid": "p0010232", "west": 168.0}, {"awards": "1744794 Jenouvrier, Stephanie; 1744989 LaRue, Michelle", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Detecting climate signals in populations: case of emperor penguin; Emperor penguin population trends (2009-2018); Landfast ice: a major driver of reproductive success in a polar seabird", "datasets": [{"dataset_uid": "601491", "doi": "10.15784/601491", "keywords": "Antarctica", "people": "Jenouvrier, Stephanie", "repository": "USAP-DC", "science_program": null, "title": "Detecting climate signals in populations: case of emperor penguin", "url": "https://www.usap-dc.org/view/dataset/601491"}, {"dataset_uid": "601513", "doi": "10.15784/601513", "keywords": "Antarctica; Breeding Success; Emperor Penguin; Fast Sea Ice", "people": "Jenouvrier, Stephanie; Labrousse, Sara", "repository": "USAP-DC", "science_program": null, "title": "Landfast ice: a major driver of reproductive success in a polar seabird", "url": "https://www.usap-dc.org/view/dataset/601513"}, {"dataset_uid": "200388", "doi": "", "keywords": null, "people": null, "repository": "Github", "science_program": null, "title": "Emperor penguin population trends (2009-2018)", "url": "https://github.com/davidiles/EMPE_Global"}], "date_created": "Wed, 14 Jul 2021 00:00:00 GMT", "description": "This project on emperor penguin populations will quantify penguin presence/absence, and colony size and trajectory, across the entire Antarctic continent using high-resolution satellite imagery. For a subset of the colonies, population estimates derived from high-resolution satellite images will be compared with those determined by aerial surveys - these results have been uploaded to MAPPPD (penguinmap.com) and are freely available for use. This validated information will be used to determine population estimates for all emperor penguin colonies through iterations of supervised classification and maximum likelihood calculations on the high-resolution imagery. The effect of spatial, geophysical, and environmental variables on population size and decadal-scale trends will be assessed using generalized linear models. This research will result in a first ever empirical result for emperor penguin population trends and habitat suitability, and will leverage currently-funded NSF infrastructure and hosting sites to publish results in near-real time to the public.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; Ross Sea; USAP-DC; AMD; COMMUNITY DYNAMICS; Amd/Us", "locations": "Ross Sea", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "LaRue, Michelle; Ito, Emi; Jenouvrier, Stephanie", "platforms": null, "repo": "USAP-DC", "repositories": "Github; USAP-DC", "science_programs": null, "south": -90.0, "title": "A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins", "uid": "p0010229", "west": -180.0}, {"awards": "1834986 Ballard, Grant", "bounds_geometry": "POLYGON((165 -77,165.5 -77,166 -77,166.5 -77,167 -77,167.5 -77,168 -77,168.5 -77,169 -77,169.5 -77,170 -77,170 -77.1,170 -77.2,170 -77.3,170 -77.4,170 -77.5,170 -77.6,170 -77.7,170 -77.8,170 -77.9,170 -78,169.5 -78,169 -78,168.5 -78,168 -78,167.5 -78,167 -78,166.5 -78,166 -78,165.5 -78,165 -78,165 -77.9,165 -77.8,165 -77.7,165 -77.6,165 -77.5,165 -77.4,165 -77.3,165 -77.2,165 -77.1,165 -77))", "dataset_titles": "Orthomosaics of Ross Island Penguin Colonies 2019 - 2021", "datasets": [{"dataset_uid": "601612", "doi": "10.15784/601612", "keywords": "Aerial Imagery; Aerial Survey; Antarctica; Biota; Geotiff; Penguin; Photo/video; Photo/Video; Population Count; Ross Island; UAV", "people": "Ballard, Grant; Shah, Kunal; Schmidt, Annie", "repository": "USAP-DC", "science_program": null, "title": "Orthomosaics of Ross Island Penguin Colonies 2019 - 2021", "url": "https://www.usap-dc.org/view/dataset/601612"}], "date_created": "Wed, 12 May 2021 00:00:00 GMT", "description": "New methodologies for the deployment of coordinated unmanned aerial vehicles will be developed with the aim of attaining whole-colony imagery that can be used to characterize nesting habitats of Adelie penguins at Cape Crozier, on Ross Island, Antarctica. This information will be used to test hypotheses regarding relationships between terrain characteristics, nesting density, and breeding success. This population, potentially the largest in the world and at the southern limit of the species\u0027 range, has doubled in size over the past 20 years while most other colonies in the region have remained stable or declined. New information gained from this project will be useful in understanding the potential of climate-driven changes in terrestrial nesting habitats for impacting Adelie penguins in the future. The project will produce, and document, open-source software tools to help automate image processing for automated counting of Adelie penguins. The project will train graduate and undergraduate students and contribute materials to ongoing educational outreach programs based on related penguin science projects. Information gained from this project will contribute towards building robust, cost-effective protocols for monitoring Adelie penguin populations, a key ecosystem indicator identified in the draft Ross Sea Marine Protected Area Research and Monitoring Plan.\r\n\r\nAdelie penguins are important indicators of ecosystem function and change in the Southern Ocean. In addition to facing rapid changes in sea ice and other factors in their pelagic environment, their terrestrial nesting habitat is also changing. Understanding the species\u0027 response to such changes is critical for assessing its ability to adapt to the changing climate. The objective of this project is to test several hypotheses about the influence of fine-scale nesting habitat, nest density, and breeding success of Adelie penguins in the Ross Sea region. To accomplish this, the project will develop algorithms to improve efficiency and safety of surveys by unmanned aerial systems and develop and disseminate an automated image processing workflow. Images collected during several UAV surveys will be used to estimate the number of nesting adults and chicks produced, as well as estimate nesting density in different parts of two colonies on Ross Island, Antarctica, that differ in size by two orders of magnitude. Imagery will be used to generate high resolution digital surface/elevation models that will allow terrain variables like flood risk and terrain complexity to be derived. Combining the surface model with the nest and chick counts at the two colonies will provide relationships between habitat covariates, nest density, and breeding success. The approaches developed will enable Adelie penguin population sizes and potentially several other indicators in the Ross Sea Marine Protected Area Research and Monitoring Plan to be determined and evaluated. The flight control algorithms developed have the potential to be used for many types of surveys, especially when large areas need to be covered in a short period with extreme weather potential and difficult landing options. Aerial images and video will be used to create useable materials to be included in outreach and educational programs. The automated image processing workflow and classification models will be developed as open source software and will be made freely available for others addressing similar wildlife monitoring challenges.", "east": 170.0, "geometry": "POINT(167.5 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "UAS; Ross Island; USA/NSF; FIELD INVESTIGATION; AMD; UAV; MARINE ECOSYSTEMS; USAP-DC; Amd/Us; Penguin", "locations": "Ross Island", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ballard, Grant; Schmidt, Annie; Schwager, Mac; McKown, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Does Nest Density Matter? Using Novel Technology to Collect Whole-colony Data on Adelie Penguins.", "uid": "p0010178", "west": 165.0}, {"awards": "1935870 Ballard, Grant; 1935901 Dugger, Katie", "bounds_geometry": "POLYGON((-180 -60,-177 -60,-174 -60,-171 -60,-168 -60,-165 -60,-162 -60,-159 -60,-156 -60,-153 -60,-150 -60,-150 -61.8,-150 -63.6,-150 -65.4,-150 -67.2,-150 -69,-150 -70.8,-150 -72.6,-150 -74.4,-150 -76.2,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178.5 -78,177 -78,175.5 -78,174 -78,172.5 -78,171 -78,169.5 -78,168 -78,166.5 -78,165 -78,165 -76.2,165 -74.4,165 -72.6,165 -70.8,165 -69,165 -67.2,165 -65.4,165 -63.6,165 -61.8,165 -60,166.5 -60,168 -60,169.5 -60,171 -60,172.5 -60,174 -60,175.5 -60,177 -60,178.5 -60,-180 -60))", "dataset_titles": "Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "datasets": [{"dataset_uid": "601444", "doi": "10.15784/601444", "keywords": "Adelie Penguin; Antarctica; Biota; Demography; Mark-Recapture; Monitoring; Penguin; Ross Island", "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "url": "https://www.usap-dc.org/view/dataset/601444"}], "date_created": "Wed, 12 May 2021 00:00:00 GMT", "description": "Polar regions are experiencing some of the most dramatic effects of climate change resulting in large-scale changes in sea ice cover. Despite this, there are relatively few long-term studies on polar species that evaluate the full scope of these effects. Over the last two decades, this team has conducted globally unique demographic studies of Ad\u00e9lie penguins in the Ross Sea, Antarctica, to explore several potential mechanisms for population change. This five-year project will use penguin-borne sensors to evaluate foraging conditions and behavior and environmental conditions on early life stages of Ad\u00e9lie penguins. Results will help to better understand population dynamics and how populations might respond to future environmental change. To promote STEM literacy, education and public outreach efforts will include multiple activities. The PenguinCam and PenguinScience.com website (impacts of \u003e1 million hits per month and use by \u003e300 classrooms/~10,000 students) will be continued. Each field season will also have \u2018Live From the Penguins\u2019 Skype calls to classes (~120/season). Classroom-ready activities that are aligned with Next Generation Science Standards will be developed with media products and science journal papers translated to grade 5-8 literacy level. The project will also train early career scientists, postdoctoral scholars, graduate students and post-graduate interns. Finally, in partnership with an Environmental Leadership Program, the team will host 2-year Roger Arliner Young Conservation Fellow, which is a program designed to increase opportunities for recent college graduates of color to learn about, engage with, and enter the environmental conservation sector.\r\n", "east": -150.0, "geometry": "POINT(-172.5 -69)", "instruments": null, "is_usap_dc": true, "keywords": "Ross Island; AMD; MARINE ECOSYSTEMS; Amd/Us; Adelie Penguin; USAP-DC; USA/NSF; FIELD SURVEYS", "locations": "Ross Island", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ballard, Grant; Schmidt, Annie; Varsani, Arvind; Dugger, Katie; Orben, Rachael", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Population Growth at the Southern Extreme: Effects of Early Life Conditions on Adelie penguin Individuals and Colonies", "uid": "p0010179", "west": 165.0}, {"awards": "1543541 Ainley, David; 1543459 Dugger, Katie; 1543498 Ballard, Grant", "bounds_geometry": "POLYGON((-180 -60,-177 -60,-174 -60,-171 -60,-168 -60,-165 -60,-162 -60,-159 -60,-156 -60,-153 -60,-150 -60,-150 -61.8,-150 -63.6,-150 -65.4,-150 -67.2,-150 -69,-150 -70.8,-150 -72.6,-150 -74.4,-150 -76.2,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178.5 -78,177 -78,175.5 -78,174 -78,172.5 -78,171 -78,169.5 -78,168 -78,166.5 -78,165 -78,165 -76.2,165 -74.4,165 -72.6,165 -70.8,165 -69,165 -67.2,165 -65.4,165 -63.6,165 -61.8,165 -60,166.5 -60,168 -60,169.5 -60,171 -60,172.5 -60,174 -60,175.5 -60,177 -60,178.5 -60,-180 -60))", "dataset_titles": "Adelie penguin banding data 1994-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science; Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science; Locations of Adelie penguins from geolocating dive recorders 2017-2019; Penguinscience Data Sharing Website", "datasets": [{"dataset_uid": "601482", "doi": "10.15784/601482", "keywords": "Adelie Penguin; Animal Behavior Observation; Antarctica; Biologging; Biota; Foraging Ecology; Geolocator; GPS Data; Migration; Ross Sea; Winter", "people": "Schmidt, Annie; Dugger, Katie; Lisovski, Simeon; Ainley, David; Ballard, Grant; Lescroel, Amelie", "repository": "USAP-DC", "science_program": null, "title": "Locations of Adelie penguins from geolocating dive recorders 2017-2019", "url": "https://www.usap-dc.org/view/dataset/601482"}, {"dataset_uid": "200278", "doi": "", "keywords": null, "people": null, "repository": "California Avian Data Center", "science_program": null, "title": "Penguinscience Data Sharing Website", "url": "https://data.pointblue.org/apps/penguin_science/"}, {"dataset_uid": "601443", "doi": "10.15784/601443", "keywords": "Adelie Penguin; Antarctica; Biota; Demography; Penguin; Ross Sea; Seabirds", "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin banding data 1994-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "url": "https://www.usap-dc.org/view/dataset/601443"}, {"dataset_uid": "601444", "doi": "10.15784/601444", "keywords": "Adelie Penguin; Antarctica; Biota; Demography; Mark-Recapture; Monitoring; Penguin; Ross Island", "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "url": "https://www.usap-dc.org/view/dataset/601444"}], "date_created": "Tue, 11 May 2021 00:00:00 GMT", "description": "The Ross Sea region of the Southern Ocean is experiencing growing sea ice cover in both extent and duration. These trends contrast those of the well-studied, western Antarctic Peninsula area, where sea ice has been disappearing. Unlike the latter, little is known about how expanding sea ice coverage might affect the regional Antarctic marine ecosystem. This project aims to better understand some of the potential effects of the changing ice conditions on the marine ecosystem using the widely-recognized indicator species - the Ad\u00e9lie Penguin. A four-year effort will build on previous results spanning 19 seasons at Ross Island to explore how successes or failures in each part of the penguin\u0027s annual cycle are effected by ice conditions and how these carry over to the next annual recruitment cycle, especially with respect to the penguin\u0027s condition upon arrival in the spring. Education and public outreach activities will continually be promoted through the PenguinCam and PenguinScience websites (sites with greater than 1 million hits a month) and \"NestCheck\" (a site that is logged-on by \u003e300 classrooms annually that allows students to follow penguin families in their breeding efforts). To encourage students in pursuing educational and career pathways in the Science Technology Engineering and Math fields, the project will also provide stories from the field in a Penguin Journal, develop classroom-ready activities aligned with New Generation Science Standards, increase the availability of instructional presentations as powerpoint files and short webisodes. The project will provide additional outreach activities through local, state and national speaking engagements about penguins, Antarctic science and climate change. The annual outreach efforts are aimed at reaching over 15,000 students through the website, 300 teachers through presentations and workshops, and 500 persons in the general public. The project also will train four interns (undergraduate and graduate level), two post-doctoral researchers, and a science writer/photographer. \u003cbr/\u003e\u003cbr/\u003eThe project will accomplish three major goals, all of which relate to how Ad\u00e9lie Penguins adapt to, or cope with environmental change. Specifically the project seeks to determine 1) how changing winter sea ice conditions in the Ross Sea region affect penguin migration, behavior and survival and alter the carry-over effects (COEs) to subsequent reproduction; 2) the interplay between extrinsic and intrinsic factors influencing COEs over multiple years of an individual\u0027s lifetime; and 3) how local environmental change may affect population change via impacts to nesting habitat, interacting with individual quality and COEs. Retrospective analyses will be conducted using 19 years of colony based data and collect additional information on individually marked, known-age and known-history penguins, from new recruits to possibly senescent individuals. Four years of new information will be gained from efforts based at two colonies (Cape Royds and Crozier), using radio frequency identification tags to automatically collect data on breeding and foraging effort of marked, known-history birds to explore penguin response to resource availability within the colony as well as between colonies (mates, nesting material, habitat availability). Additional geolocation/time-depth recorders will be used to investigate travels and foraging during winter of these birds. The combined efforts will allow an assessment of the effects of penguin behavior/success in one season on its behavior in the next (e.g. how does winter behavior affect arrival time and body condition on subsequent breeding). It is at the individual level that penguins are responding successfully, or not, to ongoing marine habitat change in the Ross Sea region.", "east": -150.0, "geometry": "POINT(-172.5 -69)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; AMD; Adelie Penguin; Amd/Us; FIELD INVESTIGATION; MARINE ECOSYSTEMS; Ross Island; USAP-DC; Penguin", "locations": "Ross Island", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Instrumentation and Support; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ballard, Grant; Ainley, David; Dugger, Katie", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "California Avian Data Center; USAP-DC", "science_programs": null, "south": -78.0, "title": "A Full Lifecycle Approach to Understanding Ad\u00e9lie Penguin Response to Changing Pack Ice Conditions in the Ross Sea.", "uid": "p0010177", "west": 165.0}, {"awards": "1743035 Saba, Grace", "bounds_geometry": "POLYGON((164 -72.2,165 -72.2,166 -72.2,167 -72.2,168 -72.2,169 -72.2,170 -72.2,171 -72.2,172 -72.2,173 -72.2,174 -72.2,174 -72.74,174 -73.28,174 -73.82,174 -74.36,174 -74.9,174 -75.44,174 -75.98,174 -76.52,174 -77.06,174 -77.6,173 -77.6,172 -77.6,171 -77.6,170 -77.6,169 -77.6,168 -77.6,167 -77.6,166 -77.6,165 -77.6,164 -77.6,164 -77.06,164 -76.52,164 -75.98,164 -75.44,164 -74.9,164 -74.36,164 -73.82,164 -73.28,164 -72.74,164 -72.2))", "dataset_titles": "Grazing rates of Euphausia crystallorophias from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, Jan.-Feb. 2018; NBP1801 Expedition data; ru32-20180109T0531; Zooplankton abundance from Isaacs-Kid Midwater Trawl (IKMT) hauls from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, Jan.-Feb. 2018; Zooplankton abundance from ring net tows from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, January 2018", "datasets": [{"dataset_uid": "200138", "doi": "10.1575/1912/bco-dmo.792385.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Zooplankton abundance from Isaacs-Kid Midwater Trawl (IKMT) hauls from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, Jan.-Feb. 2018", "url": "https://www.bco-dmo.org/dataset/792385"}, {"dataset_uid": "200056", "doi": "10.7284/907753", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1801 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1801"}, {"dataset_uid": "200139", "doi": "10.1575/1912/bco-dmo.792478.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Grazing rates of Euphausia crystallorophias from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, Jan.-Feb. 2018", "url": "https://www.bco-dmo.org/dataset/792478"}, {"dataset_uid": "200140", "doi": "", "keywords": null, "people": null, "repository": "ERDDAP", "science_program": null, "title": "ru32-20180109T0531", "url": "http://slocum-data.marine.rutgers.edu/erddap/tabledap/ru32-20180109T0531-profile-sci-delayed.html"}, {"dataset_uid": "200137", "doi": "10.1575/1912/bco-dmo.789299.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Zooplankton abundance from ring net tows from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, January 2018", "url": "https://www.bco-dmo.org/dataset/789299"}], "date_created": "Thu, 27 Feb 2020 00:00:00 GMT", "description": "Terra Nova Bay (western Ross Sea, Antarctica) supports dense populations of several key species in the Ross Sea food web, including copepods, crystal krill (Euphausia crystallorophias), Antarctic silverfish (Pleuragramma antarcticum), and colonies of Ad\u00e9lie and Emperor penguins that feed primarily on crystal krill and silverfish. Absent from our understanding of the Ross Sea food web is zooplankton and silverfish mesoscale distribution, spatial structure of age/maturity classes, and their interactions with physical drivers and each other. The quantitative linkages between primary producers and the higher trophic levels, specifically, the processes responsible for the regulation of abundance and rates of middle trophic levels dominated by copepods and crystal krill (Euphausia crystallorophias), is virtually unknown. Given that the next century will see extensive changes in the Ross Sea\u2019s ice distributions and oceanography as a result of climate change, understanding the basic controls of zooplankton and silverfish abundance and distribution is essential. \r\nDuring a January \u2013 March 2018 cruise in the western Ross Sea, we deployed a glider equipped with an echo sounder (Acoustic Zooplankton Fish Profiler) that simultaneously measured depth, temperature, conductivity, chlorophyll fluorescence, and dissolved oxygen. Additionally, net tows, mid-water trawls, and crystal krill grazing experiments were conducted. Our study provided the first glider-based acoustic assessment of simultaneous distributions of multiple trophic levels in the Ross Sea, from which predator-prey interactions and the relationships between organisms and physics drivers (sea ice, circulation features) were investigated. We illustrated high variability in ocean physics, phytoplankton biomass, and crystal krill biomass and aggregation over time and between locations within Terra Nova Bay. Biomass of krill was highest in locations characterized by deeper mixed layers and highest integrated chlorophyll concentrations. Krill aggregations were consistently located at depth well below the mixed layer and chlorophyll maximum. Experiments investigating krill grazing, in combination with krill depth distributions relative to chlorophyll biomass, illuminate high krill grazing rates could be attributed to the occupation of a unique niche whereby they are opportunistically feeding on sinking high concentrations of detritus derived from surface blooms. The information on the abundance, distribution, and interactions of key species in multiple trophic levels resulting from this project provide a conceptual background to understand how this ecosystem might respond to future conditions under climate change.\r\nOur project tested the capability of a multi-frequency echo sounder on a glider for the first time. The production of consistent, vertically-resolved, high resolution glider-based acoustic measurements will pave the way for cost-effective, automated examination of entire food webs and ecosystems in regions all over the global ocean. A wide range of users including academic and government scientists, ecosystem-based fisheries managers, and monitoring programs including those conducted by OOI, IOOS, and NOAA will benefit from this project. This project also provided the opportunity to focus on broadening participation in research and articulating the societal benefits through education and innovative outreach programs. A data set from this project is being included in the new NSF-funded Polar CAP initiative, that will be used by a diverse and young audience to increase understanding of the polar system and the ability to reason with data. Finally, this project provided a unique field opportunity and excellent hand-on training for a post-doctoral researcher, a graduate student, and two undergraduate students.", "east": 174.0, "geometry": "POINT(169 -74.9)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; FISH; Terra Nova Bay; AQUATIC SCIENCES; PELAGIC; PLANKTON; USAP-DC; ANIMALS/VERTEBRATES", "locations": "Terra Nova Bay", "north": -72.2, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Saba, Grace", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "BCO-DMO", "repositories": "BCO-DMO; ERDDAP; R2R", "science_programs": null, "south": -77.6, "title": "Using Bio-acoustics on an Autonomous Surveying Platform for the Examination of Phytoplankton-zooplankton and Fish Interactions in the Western Ross Sea", "uid": "p0010086", "west": 164.0}, {"awards": "1443585 Polito, Michael; 1443424 McMahon, Kelton; 1826712 McMahon, Kelton; 1443386 Emslie, Steven", "bounds_geometry": "POLYGON((-180 -60,-166 -60,-152 -60,-138 -60,-124 -60,-110 -60,-96 -60,-82 -60,-68 -60,-54 -60,-40 -60,-40 -61.8,-40 -63.6,-40 -65.4,-40 -67.2,-40 -69,-40 -70.8,-40 -72.6,-40 -74.4,-40 -76.2,-40 -78,-54 -78,-68 -78,-82 -78,-96 -78,-110 -78,-124 -78,-138 -78,-152 -78,-166 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -76.2,160 -74.4,160 -72.6,160 -70.8,160 -69,160 -67.2,160 -65.4,160 -63.6,160 -61.8,160 -60,162 -60,164 -60,166 -60,168 -60,170 -60,172 -60,174 -60,176 -60,178 -60,-180 -60))", "dataset_titles": "Amino acid nitrogen isotope values of modern and ancient Ad\u00e9lie penguin eggshells from the Ross Sea and Antarctic Peninsula regions; Amino acid nitrogen isotope values of penguins from the Antarctic Peninsula region 1930s to 2010s; Ancient Adelie penguin colony revealed by snowmelt at Cape Irizar, Ross Sea, Antarctica; Carbon and nitrogen stable isotope values of Antarctic Krill from the South Shetland Islands and the northern Antarctic Peninsula 2007 and 2009; Radiocarbon dates from pygoscelid penguin tissues excavated at Stranger Point, King George Island, Antarctic Peninsula; Radiocarbon dating and stable isotope values of penguin and seal tissues recovered from ornithogenic soils on Platter Island, Danger Islands Archipelago, Antarctic Peninsula in December 2015.; Radioisotope dates and carbon (\u03b413C) and nitrogen (\u03b415N) stable isotope values from modern and mummified Ad\u00e9lie Penguin chick carcasses and tissue from the Ross Sea, Antarctica; Radiometric dating, geochemical proxies, and predator biological remains obtained from aquatic sediment cores on South Georgia Island.; Receding ice drove parallel expansions in Southern Ocean penguin; SNP data from \"Receding ice drove parallel expansions in Southern Ocean penguins\".; Stable isotope analysis of multiple tissues from chick carcasses of three pygoscelid penguins in Antarctica; The rise and fall of an ancient Adelie penguin \u0027supercolony\u0027 at Cape Adare, Antarctica", "datasets": [{"dataset_uid": "601374", "doi": "10.15784/601374", "keywords": "Adelie Penguin; Antarctica; Cape Irizar; Drygalski Ice Tongue; Ross Sea; Stable Isotopes", "people": "Emslie, Steven", "repository": "USAP-DC", "science_program": null, "title": "Ancient Adelie penguin colony revealed by snowmelt at Cape Irizar, Ross Sea, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601374"}, {"dataset_uid": "601327", "doi": "10.15784/601327", "keywords": "Adelie Penguin; Antarctica; Biota; Cape Adare; East Antarctica; Population Movement; Pygoscelis Adeliae; Radiocarbon; Ross Sea; Sea Level Rise; Stable Isotopes", "people": "Emslie, Steven; Patterson, William; McKenzie, Ashley", "repository": "USAP-DC", "science_program": null, "title": "The rise and fall of an ancient Adelie penguin \u0027supercolony\u0027 at Cape Adare, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601327"}, {"dataset_uid": "601509", "doi": "10.15784/601509", "keywords": "Antarctica; Antarctic Fur Seal; Elemental Concentrations; King Penguin; Population Dynamics; South Atlantic Ocean; South Georgia Island; Stable Isotope Analysis; Sub-Antarctic", "people": "Kristan, Allyson; Maiti, Kanchan; Polito, Michael; McMahon, Kelton", "repository": "USAP-DC", "science_program": null, "title": "Radiometric dating, geochemical proxies, and predator biological remains obtained from aquatic sediment cores on South Georgia Island.", "url": "https://www.usap-dc.org/view/dataset/601509"}, {"dataset_uid": "601232", "doi": "10.15784/601232", "keywords": "Amino Acids; Antarctica; Antarctic Peninsula; Biota; Isotope Data; Nitrogen Isotopes; Oceans; Penguin; Southern Ocean; Stable Isotope Analysis", "people": "McMahon, Kelton; Polito, Michael", "repository": "USAP-DC", "science_program": null, "title": "Amino acid nitrogen isotope values of penguins from the Antarctic Peninsula region 1930s to 2010s", "url": "https://www.usap-dc.org/view/dataset/601232"}, {"dataset_uid": "200181", "doi": "10.6084/m9.figshare.c.4475300.v1", "keywords": null, "people": null, "repository": "Figshare", "science_program": null, "title": "SNP data from \"Receding ice drove parallel expansions in Southern Ocean penguins\".", "url": "https://doi.org/10.6084/m9.figshare.c.4475300.v1"}, {"dataset_uid": "601212", "doi": "10.15784/601212", "keywords": "Abandoned Colonies; Antarctica; Antarctic Peninsula; Beach Deposit; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Holocene; Penguin; Radiocarbon; Radiocarbon Dates; Snow/ice; Snow/Ice; Stranger Point", "people": "Emslie, Steven", "repository": "USAP-DC", "science_program": null, "title": "Radiocarbon dates from pygoscelid penguin tissues excavated at Stranger Point, King George Island, Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601212"}, {"dataset_uid": "200180", "doi": "", "keywords": null, "people": null, "repository": "NCBI BioProject", "science_program": null, "title": "Receding ice drove parallel expansions in Southern Ocean penguin", "url": "https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA589336"}, {"dataset_uid": "601760", "doi": "10.15784/601760", "keywords": "Adelie Penguin; Amino Acids; Antarctica; Antarctic Peninsula; Ross Sea; Stable Isotope Analysis; Trophic Position", "people": "Emslie, Steven; Michelson, Chantel; Polito, Michael; McMahon, Kelton; Wonder, Michael; Patterson, William; McCarthy, Matthew", "repository": "USAP-DC", "science_program": null, "title": "Amino acid nitrogen isotope values of modern and ancient Ad\u00e9lie penguin eggshells from the Ross Sea and Antarctic Peninsula regions", "url": "https://www.usap-dc.org/view/dataset/601760"}, {"dataset_uid": "601210", "doi": "10.15784/601210", "keywords": "Antarctica; Antarctic Krill; Antarctic Peninsula; Biota; Carbon Isotopes; Isotope Data; Krill; Nitrogen Isotopes; Oceans; Southern Ocean; Stable Isotope Analysis", "people": "Polito, Michael", "repository": "USAP-DC", "science_program": null, "title": "Carbon and nitrogen stable isotope values of Antarctic Krill from the South Shetland Islands and the northern Antarctic Peninsula 2007 and 2009", "url": "https://www.usap-dc.org/view/dataset/601210"}, {"dataset_uid": "601364", "doi": "10.15784/601364", "keywords": "Antarctica; Antarctic Peninsula; Arctocephalus Gazella; Carbon; Holocene; Nitrogen; Paleoecology; Penguin; Pygoscelis Spp.; Stable Isotope Analysis; Weddell Sea", "people": "Herman, Rachael; Clucas, Gemma; Kalvakaalva, Rohit; Polito, Michael", "repository": "USAP-DC", "science_program": null, "title": "Radiocarbon dating and stable isotope values of penguin and seal tissues recovered from ornithogenic soils on Platter Island, Danger Islands Archipelago, Antarctic Peninsula in December 2015.", "url": "https://www.usap-dc.org/view/dataset/601364"}, {"dataset_uid": "601382", "doi": "10.15784/601382", "keywords": "25 De Mayo/King George Island; Antarctica; Biota; Delta 13C; Delta 15N; Dietary Shifts; Opportunistic Sampling; Penguin; Pygoscelis Penguins; Stranger Point", "people": "Ciriani, Yanina; Emslie, Steven", "repository": "USAP-DC", "science_program": null, "title": "Stable isotope analysis of multiple tissues from chick carcasses of three pygoscelid penguins in Antarctica", "url": "https://www.usap-dc.org/view/dataset/601382"}, {"dataset_uid": "601263", "doi": "10.15784/601263", "keywords": "Abandoned Colonies; Antarctica; Holocene; Penguin; Ross Sea; Stable Isotope Analysis", "people": "Patterson, William; Emslie, Steven; Kristan, Allyson", "repository": "USAP-DC", "science_program": null, "title": "Radioisotope dates and carbon (\u03b413C) and nitrogen (\u03b415N) stable isotope values from modern and mummified Ad\u00e9lie Penguin chick carcasses and tissue from the Ross Sea, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601263"}], "date_created": "Thu, 08 Aug 2019 00:00:00 GMT", "description": "The Antarctic marine ecosystem is highly productive and supports a diverse range of ecologically and commercially important species. A key species in this ecosystem is Antarctic krill, which in addition to being commercially harvested, is the principle prey of a wide range of marine organisms including penguins, seals and whales. The aim of this study is to use penguins and other krill predators as sensitive indicators of past changes in the Antarctic marine food web resulting from climate variability and the historic harvesting of seals and whales by humans. Specifically this study will recover and analyze modern (\u003c20 year old), historic (20-200 year old) and ancient (200-10,000 year old) penguin and other krill predator tissues to track their past diets and population movements relative to shifts in climate and the availability of Antarctic krill. Understanding how krill predators were affected by these factors in the past will allow us to better understand how these predators, the krill they depend on, and the Antarctic marine ecosystem as a whole will respond to current challenges such as global climate change and an expanding commercial fishery for Antarctic krill. The project will further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This project will support the cross-institutional training of undergraduate and graduate students in advanced analytical techniques in the fields of ecology and biogeochemistry. In addition, this project includes educational outreach aimed encouraging participation in science careers by engaging K-12 students in scientific issues related to Antarctica, penguins, marine ecology, biogeochemistry, and global climate change.\u003cbr/\u003e\u003cbr/\u003eThis research will help place recent ecological changes in the Southern Ocean into a larger historical context by examining decadal and millennial-scale shifts in the diets and population movements of Antarctic krill predators (penguins, seals, and squid) in concert with climate variability and commercial harvesting. This will be achieved by coupling advanced stable and radio isotope techniques, particularly compound-specific stable isotope analysis, with unprecedented access to modern, historical, and well-preserved paleo-archives of Antarctic predator tissues dating throughout the Holocene. This approach will allow the project to empirically test if observed shifts in Antarctic predator bulk tissue stable isotope values over the past millennia were caused by climate-driven shifts at the base of the food web in addition to, or rather than, shifts in predator diets due to a competitive release following the historic harvesting of krill eating whale and seals. In addition, this project will track the large-scale abandonment and reoccupation of penguin colonies around Antarctica in response to changes in climate and sea ice conditions over the past several millennia. These integrated field studies and laboratory analyses will provide new insights into the underlying mechanisms that influenced past shifts in the diets and population movements of charismatic krill predators such as penguins. This will allow for improved projections of the ecosystem consequences of future climate change and anthropogenic harvesting scenarios in the Antarctica that are likely to affect the availability of Antarctic krill.", "east": -40.0, "geometry": "POINT(-120 -69)", "instruments": null, "is_usap_dc": true, "keywords": "ANIMAL ECOLOGY AND BEHAVIOR; South Shetland Islands; Penguin; Stable Isotopes; Polar; Ross Sea; USA/NSF; Weddell Sea; AMD; MARINE ECOSYSTEMS; USAP-DC; Antarctica; PENGUINS; Southern Hemisphere; FIELD INVESTIGATION; Amd/Us; Krill; MACROFOSSILS", "locations": "Southern Hemisphere; Ross Sea; South Shetland Islands; Weddell Sea; Polar; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Polito, Michael; Emslie, Steven; Kelton, McMahon; Patterson, William; McCarthy, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "Figshare; NCBI BioProject; USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators", "uid": "p0010047", "west": 160.0}, {"awards": "1643901 Zhang, Weifeng; 1643735 Li, Yun; 2021245 Li, Yun", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Dynamic fine-scale sea-icescape shapes adult emperor penguin foraging habitat in East Antarctica; Monthly Stratification Climatology (1978-2021) in Antarctic Coastal Polynyas", "datasets": [{"dataset_uid": "601209", "doi": "10.15784/601209", "keywords": "Animal Behavior Observation; Antarctica; Biota; East Antarctica; GPS; Oceans; Penguin; Southern Ocean", "people": "Bost, Charles-Andr\u00e9; Jenouvrier, Stephanie; Sumner, Michael; Ji, Rubao; Labrousse, Sara; Fraser, Alexander; Tamura, Takeshi; Pinaud, David; Wienecke, Barbara; Kirkwood, Roger; Ropert-Coudert, Yan; Resinger, Ryan; Jonsen, Ian; Porter-Smith, Rick; Barbraud, Christophe", "repository": "USAP-DC", "science_program": null, "title": "Dynamic fine-scale sea-icescape shapes adult emperor penguin foraging habitat in East Antarctica", "url": "https://www.usap-dc.org/view/dataset/601209"}, {"dataset_uid": "601628", "doi": "10.15784/601628", "keywords": "Antarctic; Antarctica; Antarctic Coastal Polynyas; Polynya", "people": "Zhang, Weifeng; Li, Yun; Shunk, Nathan", "repository": "USAP-DC", "science_program": null, "title": "Monthly Stratification Climatology (1978-2021) in Antarctic Coastal Polynyas", "url": "https://www.usap-dc.org/view/dataset/601628"}], "date_created": "Wed, 07 Aug 2019 00:00:00 GMT", "description": "During winter, sea-ice coverage along the Antarctic coast is punctuated by numerous polynyas--isolated openings of tens to hundreds of kilometer wide. These coastal polynyas are hotspots of sea ice production and the primary source regions of the bottom water in the global ocean. They also host high levels of biological activities and are the feeding grounds of Emperor penguins and marine mammals. The polynyas are a key component of the Antarctic coastal system and crucial for the survival of penguins and many other species. These features also differ dramatically from each other in timing of formation, duration, phytoplankton growth season, and overall biological productivity. Yet, the underlying reasons for differences among them are largely unknown. This project studies the fundamental biophysical processes at a variety of polynyas, examines the connection between the physical environment and the phytoplankton and penguin ecology, and investigates the mechanisms behind polynya variability. The results of this interdisciplinary study will provide a context for interpretation of field measurements in Antarctic coastal polynyas, set a baseline for future polynya studies, and examine how polynya ecosystems may respond to local and large-scale environmental changes. The project will include educational and outreach activities that convey scientific messages to a broad audience. It aims to increase public awareness of the interconnection between large-scale environmental change and Antarctic coastal systems.\u003cbr/\u003e\u003cbr/\u003eThe main objectives of this study are to form a comprehensive understanding of the temporal and spatial variability of Antarctic coastal polynyas and the physical controls of polynya ecosystems. The project takes an interdisciplinary approach and seeks to establish a modeling system centered on the Regional Ocean Modeling System. This system links the ice and ocean conditions to the plankton ecology and penguin population. Applications of the modeling system in representative polynyas, in conjunction with analysis of existing observations, will determine the biophysical influences of individual forcing factors. In particular, this study will test a set of hypothesized effects of winds, offshore water intrusion, ice-shelf melting, sea-ice formation, glacier tongues, and ocean stratification on the timing of polynya phytoplankton bloom and the overall polynya biological productivity. The project will also examine how changing polynya state affects penguin breeding success, adult survival, and population growth. The team will conduct idealized sensitivity analysis to explore implications of forcing variability, including local and large-scale environmental change, on Antarctic coastal ecosystems.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Southern Ocean; Animal Behavior; Penguin; FIELD INVESTIGATION; USAP-DC; COASTAL; PENGUINS; SEA ICE; Antarctica; OCEAN MIXED LAYER", "locations": "Southern Ocean; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science", "paleo_time": null, "persons": "Zhang, Weifeng; Ji, Rubao; Jenouvrier, Stephanie; Maksym, Edward; Li, Yun", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Polynyas in Coastal Antarctica (PICA): Linking Physical Dynamics to Biological Variability", "uid": "p0010044", "west": -180.0}, {"awards": "1543311 LaRue, Michelle; 1543230 Ainley, David; 1543003 Stammerjohn, Sharon; 1542791 Salas, Leonardo", "bounds_geometry": "POLYGON((-180 -64,-144 -64,-108 -64,-72 -64,-36 -64,0 -64,36 -64,72 -64,108 -64,144 -64,180 -64,180 -65.4,180 -66.8,180 -68.2,180 -69.6,180 -71,180 -72.4,180 -73.8,180 -75.2,180 -76.6,180 -78,144 -78,108 -78,72 -78,36 -78,0 -78,-36 -78,-72 -78,-108 -78,-144 -78,-180 -78,-180 -76.6,-180 -75.2,-180 -73.8,-180 -72.4,-180 -71,-180 -69.6,-180 -68.2,-180 -66.8,-180 -65.4,-180 -64))", "dataset_titles": "ContinentalWESEestimates; Counting seals from space tutorial; Fast Ice Tool; Weddell seals habitat suitability model for the Ross Sea", "datasets": [{"dataset_uid": "200045", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Fast Ice Tool", "url": "https://github.com/leosalas/FastIceCovars"}, {"dataset_uid": "200234", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "ContinentalWESEestimates", "url": "https://github.com/leosalas/ContinentalWESEestimates"}, {"dataset_uid": "200047", "doi": "", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Counting seals from space tutorial", "url": "https://www.int-res.com/articles/suppl/m612p193_supp.pdf"}, {"dataset_uid": "200046", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Weddell seals habitat suitability model for the Ross Sea", "url": "https://github.com/leosalas/WeddellSeal_SOS"}], "date_created": "Fri, 02 Aug 2019 00:00:00 GMT", "description": "The Weddell seal is the southern-most mammal in the world, having a circumpolar distribution around Antarctica; the McMurdo Sound population in Antarctica is one of the best-studied mammal populations on earth. However, despite this, an understanding of how populations around the continent will fare under climate change is poorly understood. A complicating matter is the potential effects of a commercial enterprise in the Antarctic: a fishery targeting toothfish, which are important prey for Weddell seals. Although the species is easily detected and counted during the breeding season, no reliable estimates of continent-wide Weddell seal numbers exist, due to the logistic difficulties of surveying vast regions of Antarctica. Large-scale estimates are needed to understand how seal populations are responding to the fishery and climate change, because these drivers of change operate at scales larger than any single population, and may affect seals differently in different regions of the continent. We will take advantage of the ease of detectability of darkly colored seals when they the on ice to develop estimates of abundance from satellite images. This project will generate baseline data on the global distribution and abundance of Weddell seals around the Antarctic and will link environmental variables to population changes to better understand how the species will fare as their sea ice habitat continues to change. These results will help disentangle the effects of climate change and fishery operations, results that are necessary for appropriate international policy regarding fishery catch limits, impacts on the environment, and the value of marine protected areas. The project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. It will engage \"arm-chair\" scientists of all ages through connections with several non-governmental organizations and the general public. Anyone with access to the internet, including people who are physically unable to participate in field research directly, can participate in this project while simultaneously learning about multiple aspects of polar ecology through the project\u0027s interactive website. \u003cbr/\u003e\u003cbr/\u003eSpecifically, this research project will: 1) Quantify the distribution of Weddell seals around Antarctica and 2) Determine the impact of environmental variables (such as fast ice extent, ocean productivity, bathymetry) on habitat suitability and occupancy. To do this, the project will crowd-source counting of seals on high-resolution satellite images via a commercial citizen science platform. Variation in seal around the continent will then be related to habitat variables through generalized linear models. Specific variables, such as fast ice extent will be tested to determine their influence on population variability through both space and time. The project includes a rigorous plan for ensuring quality control in the dataset including ground truth data from other, localized projects concurrently funded by the National Science Foundation\u0027s Antarctic Science Program.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "COASTAL; Southern Ocean; COMMUNITY DYNAMICS; MAMMALS; SEA ICE; NOT APPLICABLE; Antarctica; PENGUINS; USAP-DC", "locations": "Antarctica; Southern Ocean", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "LaRue, Michelle; Stamatiou, Kostas", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "GitHub", "repositories": "GitHub; Publication", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Determining Factors Affecting Distribution and Population Variability of the Ice-obligate Weddell Seal", "uid": "p0010041", "west": -180.0}, {"awards": "1443733 Winsor, Peter; 1443680 Smith, Craig; 1443705 Vernet, Maria", "bounds_geometry": "POLYGON((-66 -64,-65.6 -64,-65.2 -64,-64.8 -64,-64.4 -64,-64 -64,-63.6 -64,-63.2 -64,-62.8 -64,-62.4 -64,-62 -64,-62 -64.1,-62 -64.2,-62 -64.3,-62 -64.4,-62 -64.5,-62 -64.6,-62 -64.7,-62 -64.8,-62 -64.9,-62 -65,-62.4 -65,-62.8 -65,-63.2 -65,-63.6 -65,-64 -65,-64.4 -65,-64.8 -65,-65.2 -65,-65.6 -65,-66 -65,-66 -64.9,-66 -64.8,-66 -64.7,-66 -64.6,-66 -64.5,-66 -64.4,-66 -64.3,-66 -64.2,-66 -64.1,-66 -64))", "dataset_titles": "Andvord Bay Glacier Timelapse; Andvord Bay sediment core data collected during the FjordEco project (LMG1510 and NBP1603); Expedition Data; Expedition data of LMG1702; FjordEco Phytoplankton Ecology Dataset in Andvord Bay ; Fjord-Eco Sediment OrgC OrgN Data - Craig Smith; LMG1510 Expedition data; NBP1603 Expedition data; Sediment macrofaunal abundance and family richness from inner Andvord Bay to the open continental shelf", "datasets": [{"dataset_uid": "002733", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1702", "url": "https://www.rvdata.us/search/cruise/LMG1702"}, {"dataset_uid": "000402", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1702"}, {"dataset_uid": "001366", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1702"}, {"dataset_uid": "601193", "doi": "10.15784/601193", "keywords": "Antarctica; Geochronology; Grain Size; LMG1510; NBP1603; Sediment; Sediment Core Data", "people": "Homolka, Khadijah; Smith, Craig; Nittrouer, Charles; Eidam, Emily", "repository": "USAP-DC", "science_program": null, "title": "Andvord Bay sediment core data collected during the FjordEco project (LMG1510 and NBP1603)", "url": "https://www.usap-dc.org/view/dataset/601193"}, {"dataset_uid": "601157", "doi": "10.15784/601157", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Snow/ice; Snow/Ice", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "FjordEco", "title": "Fjord-Eco Sediment OrgC OrgN Data - Craig Smith", "url": "https://www.usap-dc.org/view/dataset/601157"}, {"dataset_uid": "601158", "doi": "10.15784/601158", "keywords": "Antarctica; Antarctic Peninsula; Biota; Ecology; Fjord; Phytoplankton", "people": "Manck, Lauren; Vernet, Maria; Forsch, Kiefer; Pan, B. Jack", "repository": "USAP-DC", "science_program": "FjordEco", "title": "FjordEco Phytoplankton Ecology Dataset in Andvord Bay ", "url": "https://www.usap-dc.org/view/dataset/601158"}, {"dataset_uid": "200040", "doi": "10.7284/907085", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "LMG1510 Expedition data", "url": "https://www.rvdata.us/search/cruise/LMG1510"}, {"dataset_uid": "200039", "doi": "10.7284/907205", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1603 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1603"}, {"dataset_uid": "601236", "doi": "10.15784/601236", "keywords": "Abundance; Andvord Bay; Antarctica; Antarctic Peninsula; Biota; Fjord; LMG1510; Marine Sediments; Oceans; Polychaete; Polychaete Family Richness; R/v Laurence M. Gould; Sediment Core Data; Sediment Macrofauna", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "FjordEco", "title": "Sediment macrofaunal abundance and family richness from inner Andvord Bay to the open continental shelf", "url": "https://www.usap-dc.org/view/dataset/601236"}, {"dataset_uid": "601111", "doi": "10.15784/601111", "keywords": "Antarctica; Antarctic Peninsula; Glaciers/ice Sheet; Glaciers/Ice Sheet; Iceberg; Photo; Photo/video; Photo/Video", "people": "Winsor, Peter; Truffer, Martin", "repository": "USAP-DC", "science_program": "FjordEco", "title": "Andvord Bay Glacier Timelapse", "url": "https://www.usap-dc.org/view/dataset/601111"}], "date_created": "Wed, 13 Feb 2019 00:00:00 GMT", "description": "Marine communities along the western Antarctic Peninsula are highly productive ecosystems which support a diverse assemblage of charismatic animals such as penguins, seals, and whales as well as commercial fisheries such as that on Antarctic krill. Fjords (long, narrow, deep inlets of the sea between high cliffs) along the central coast of the Peninsula appear to be intense, potentially climate sensitive, hotspots of biological production and biodiversity, yet the structure and dynamics of these fjord ecosystems are very poorly understood. Because of this intense biological activity and the charismatic fauna it supports, these fjords are also major destinations for a large Antarctic tourism industry. This project is an integrated field and modeling program to evaluate physical oceanographic processes, glacial inputs, water column community dynamics, and seafloor bottom community structure and function in these important yet little understood fjord systems. These Antarctic fjords have characteristics that are substantially different from well-studied Arctic fjords, likely yielding much different responses to climate warming. This project will provide major new insights into the dynamics and climate sensitivity of Antarctic fjord ecosystems, highlighting contrasts with Arctic sub-polar fjords, and potentially transforming our understanding of the ecological role of fjords in the rapidly warming west Antarctic coastal marine landscape. The project will also further the NSF goal of training new generations of scientists, providing scientific training for undergraduate, graduate, and postdoctoral students. This includes the unique educational opportunity for undergraduates to participate in research cruises in Antarctica and the development of a novel summer graduate course on fjord ecosystems. Internet based outreach activities will be enhanced and extended by the participation of a professional photographer who will produce magazine articles, websites, radio broadcasts, and other forms of public outreach on the fascinating Antarctic ecosystem. \u003cbr/\u003e\u003cbr/\u003eThis project will involve a 15-month field program to test mechanistic hypotheses concerning oceanographic and glaciological forcing, and phytoplankton and benthic community response in the Antarctic fjords. Those efforts will be followed by a coupled physical/biological modeling effort to evaluate the drivers of biogeochemical cycles in the fjords and to explore their potential sensitivity to enhanced meltwater and sediment inputs. Fieldwork over two oceanographic cruises will utilize moorings, weather stations, and glacial, sea-ice and seafloor time-lapse cameras to obtain an integrated view of fjord ecosystem processes. The field team will also make multiple shipboard measurements and will use towed and autonomous underwater vehicles to intensively evaluate fjord ecosystem structure and function during spring/summer and autumn seasons. These integrated field and modeling studies are expected to elucidate fundamental properties of water column and sea bottom ecosystem structure and function in the fjords, and to identify key physical-chemical-glaciological forcing in these rapidly warming ecosystems.", "east": -62.0, "geometry": "POINT(-64 -64.5)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "OCEAN CURRENTS; Bellingshausen Sea; LMG1702; COMMUNITY DYNAMICS; FJORDS; R/V LMG; MARINE ECOSYSTEMS; USAP-DC; ECOSYSTEM FUNCTIONS; ANIMALS/INVERTEBRATES; SEDIMENTATION; NOT APPLICABLE; BENTHIC", "locations": "Bellingshausen Sea", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Winsor, Peter; Truffer, Martin; Smith, Craig; Powell, Brian; Merrifield, Mark; Vernet, Maria; Kohut, Josh", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": "FjordEco", "south": -65.0, "title": "Collaborative Research: Fjord Ecosystem Structure and Function on the West Antarctic Peninsula - Hotspots of Productivity and Biodiversity? (FjordEco)", "uid": "p0010010", "west": -66.0}, {"awards": "1341547 Stroeve, Julienne; 1341440 Jin, Meibing; 1341558 Ji, Rubao", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic MIZ, Pack Ice and Polynya Maps from Passive Microwave Satellite Data; Ice-ocean-ecosystem model output; Sea ice chlorophyll concentrations in Antarctic coastal polynyas and seasonal ice zones", "datasets": [{"dataset_uid": "601219", "doi": "10.15784/601219", "keywords": "Antarctica; Biota; Chlorophyll; Chlorophyll Concentration; Oceans; Polynya; Sea Ice Concentration; Seasonal Ice Zone; Southern Ocean", "people": "Ji, Rubao", "repository": "USAP-DC", "science_program": null, "title": "Sea ice chlorophyll concentrations in Antarctic coastal polynyas and seasonal ice zones", "url": "https://www.usap-dc.org/view/dataset/601219"}, {"dataset_uid": "601115", "doi": "10.15784/601115", "keywords": "Antarctica; Pack Ice; Polynya; Sea Ice; Southern Ocean", "people": "Stroeve, Julienne", "repository": "USAP-DC", "science_program": null, "title": "Antarctic MIZ, Pack Ice and Polynya Maps from Passive Microwave Satellite Data", "url": "https://www.usap-dc.org/view/dataset/601115"}, {"dataset_uid": "601136", "doi": "10.15784/601136", "keywords": "Antarctica; Biota; Model Data; Oceans; Southern Ocean", "people": "Jin, Meibing", "repository": "USAP-DC", "science_program": null, "title": "Ice-ocean-ecosystem model output", "url": "https://www.usap-dc.org/view/dataset/601136"}], "date_created": "Tue, 20 Nov 2018 00:00:00 GMT", "description": "The aim of study is to understand how climate-related changes in snow and ice affect predator populations in the Antarctic, using the Ad\u00e9lie penguin as a focal species due to its long history as a Southern Ocean \u0027sentinel\u0027 species and the number of long-term research programs monitoring its abundance, distribution, and breeding biology. Understanding the environmental factors that control predator population dynamics is critically important for projecting the state of populations under future climate change scenarios, and for designing better conservation strategies for the Antarctic ecosystem. For the first time, datasets from a network of observational sites for the Ad\u00e9lie penguin across the entire Antarctic will be combined and analyzed, with a focus on linkages among the ice environment, primary production, and the population responses of Ad\u00e9lie penguins. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. The results of this project can be used to illustrate intuitively to the general public the complex interactions between ice, ocean, pelagic food web and top predators. This project also offers an excellent platform to demonstrate the process of climate-change science - how scientists simulate climate change scenarios and interpret model results. This project supports the training of undergraduate and graduate students in the fields of polar oceanography, plankton and seabird ecology, coupled physical-biological modeling and mathematical ecology. The results will be broadly disseminated to the general oceanographic research community through scientific workshops, conferences and peer-reviewed journal articles, and to undergraduate and graduate education communities, K-12 schools and organizations, and the interested public through web-based servers using existing infrastructure at the investigators\u0027 institutions. The key question to be addressed in this project is how climate impacts the timing of periodic biological events (phenology) and how interannual variation in this periodic forcing influences the abundance of penguins in the Antarctic. The focus will be on the timing of ice algae and phytoplankton blooms because the high seasonality of sea ice and associated pulsed primary productivity are major drivers of the Antarctic food web. This study will also examine the responses of Ad\u00e9lie penguins to changes in sea ice dynamics and ice algae-phytoplankton phenology. Ad\u00e9lie penguins, like many other Antarctic seabirds, are long-lived, upper trophic-level predators that integrate the effects of sea ice on the food web at regional scales, and thus serve as a reliable biological indicator of environmental changes. The proposed approach is designed to accommodate the limits of measuring and modeling the intermediate trophic levels between phytoplankton and penguins (e.g., zooplankton and fish) at the pan-Antarctic scale, which are important but latent variables in the Southern Ocean food web. Through the use of remotely sensed and in situ data, along with state of the art statistical approaches (e.g. wavelet analysis) and numerical modeling, this highly interdisciplinary study will advance our understanding of polar ecosystems and improve the projection of future climate change scenarios.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; MARINE ECOSYSTEMS; NOT APPLICABLE; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Jin, Meibing; Stroeve, Julienne; Ji, Rubao", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Phytoplankton Phenology in the Antarctic: Drivers, Patterns, and Implications for the Adelie Penguin", "uid": "p0000001", "west": -180.0}, {"awards": "1246293 Saba, Grace", "bounds_geometry": null, "dataset_titles": "2014 Antarctic krill growth experiment - submitted", "datasets": [{"dataset_uid": "002572", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "2014 Antarctic krill growth experiment - submitted", "url": "https://www.bco-dmo.org/project/721363"}], "date_created": "Fri, 14 Sep 2018 00:00:00 GMT", "description": "Climate change projections for this century suggest that the Southern Ocean will be the first region to be affected by seawater chemistry changes associated with enhanced carbon dioxide (CO2). Additionally, regions of the Southern Ocean are warming faster than any other locations on the planet. Ocean acidification and warming may act synergistically to impair the performance of different organisms by simultaneously increasing metabolic needs and reducing oxygen transport. However, no studies have measured krill acid-base regulation, metabolism, growth, or reproduction in the context of ocean acidification or synergistic \u0027greenhouse\u0027 conditions of elevated CO2 and temperature. In the present project, the investigators will conduct both short and prolonged exposure experiments at Palmer Station, Antarctica to determine the responses of Euphausia superba to elevated CO2 and temperature. The investigators will test hypotheses related to acid-base compensation and acclimation of various life stages of krill to elevated CO2 and temperature. Furthermore, they will determine these impacts on feeding, respiration, metabolism, growth, and reproduction.\u003cbr/\u003e\u003cbr/\u003eThe Antarctic krill, Euphausia superba, is a key component of Antarctic food webs as they are a primary food source for many of the top predators in the Southern Ocean including baleen whales, seals, penguins, and other sea birds. This project will determine the responses of Antarctic krill exposed to elevated CO2 and temperature and whether or not krill have the capacity to fully compensate under future ocean conditions. The proposed field effort will be complemented by an extensive broader impact effort focused on bringing marine science to both rural and urban high school students in the Midwest (Kansas). The core educational objectives of this proposal are to 1) instruct students about potential careers in marine science, 2) engage students and promote their interest in the scientific process, critical thinking, and applications of science, mathematics, and technology, and 3) and increase student and teacher awareness and understanding of the oceans and global climate change, with special focus on the Western Antarctic Peninsula region. Finally, this project will engage undergraduate and graduate students in the production, analysis, presentation and publication of datasets.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; NOT APPLICABLE", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Saba, Grace", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": null, "title": "Collaborative Research: Synergistic effects of Elevated Carbon Dioxide (CO2) and Temperature on the Metabolism, Growth, and Reproduction of Antarctic Krill (Euphausia Superba)", "uid": "p0000700", "west": null}, {"awards": "2023425 Schofield, Oscar; 1440435 Ducklow, Hugh", "bounds_geometry": "POLYGON((-80 -63,-78.3 -63,-76.6 -63,-74.9 -63,-73.2 -63,-71.5 -63,-69.8 -63,-68.1 -63,-66.4 -63,-64.7 -63,-63 -63,-63 -63.8,-63 -64.6,-63 -65.4,-63 -66.2,-63 -67,-63 -67.8,-63 -68.6,-63 -69.4,-63 -70.2,-63 -71,-64.7 -71,-66.4 -71,-68.1 -71,-69.8 -71,-71.5 -71,-73.2 -71,-74.9 -71,-76.6 -71,-78.3 -71,-80 -71,-80 -70.2,-80 -69.4,-80 -68.6,-80 -67.8,-80 -67,-80 -66.2,-80 -65.4,-80 -64.6,-80 -63.8,-80 -63))", "dataset_titles": "Environmental Data Initiative Repository, Supporting LTER; Expedition Data; Expedition data of LMG1501; Expedition data of LMG1601; Expedition data of LMG1701; Expedition data of LMG1801; Expedition data of LMG1901; Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae); UAV images and video of whales in the Antarctic Penisula during LMG1802", "datasets": [{"dataset_uid": "200123", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1601", "url": "https://www.rvdata.us/search/cruise/LMG1601"}, {"dataset_uid": "601811", "doi": null, "keywords": "Antarctica; Bellingshausen Sea; Cryosphere; Southern Ocean", "people": "Desvignes, Thomas; Corso, Andrew; Hilton, Eric; Steinberg, Deborah; McDowell, Jan; Cheng, Chi-Hing; Biesack, Ellen", "repository": "USAP-DC", "science_program": "LTER", "title": "Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)", "url": "https://www.usap-dc.org/view/dataset/601811"}, {"dataset_uid": "000246", "doi": "", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "Environmental Data Initiative Repository, Supporting LTER", "url": "https://portal.edirepository.org/nis/browseServlet?searchValue=PAL"}, {"dataset_uid": "601318", "doi": "10.15784/601318", "keywords": "Aerial Imagery; Antarctica; Antarctic Peninsula; Biota; Camera; Humpback Whales; LMG1802; LTER; Minke Whales; Oceans; Palmer Station; Photo; Photo/video; Photo/Video; R/v Laurence M. Gould; Species Size; UAV; Video Data; Whales", "people": "Friedlaender, Ari; Dale, Julian; Nowacek, Douglas; Bierlich, KC; Boyer, Keyvi", "repository": "USAP-DC", "science_program": "LTER", "title": "UAV images and video of whales in the Antarctic Penisula during LMG1802", "url": "https://www.usap-dc.org/view/dataset/601318"}, {"dataset_uid": "002729", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1701", "url": "https://www.rvdata.us/search/cruise/LMG1701"}, {"dataset_uid": "200122", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1501", "url": "https://www.rvdata.us/search/cruise/LMG1501"}, {"dataset_uid": "200125", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1901", "url": "https://www.rvdata.us/search/cruise/LMG1901"}, {"dataset_uid": "200124", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1801", "url": "https://www.rvdata.us/search/cruise/LMG1801"}, {"dataset_uid": "001367", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1701"}], "date_created": "Fri, 11 May 2018 00:00:00 GMT", "description": "The Palmer Antarctica LTER (Long Term Ecological Research) site has been in operation since 1990. The goal of all the LTER sites is to conduct policy-relevant research on ecological questions that require tens of years of data, and cover large geographical areas. For the Palmer Antarctica LTER, the questions are centered around how the marine ecosystem west of the Antarctica peninsula is responding to a climate that is changing as rapidly as any place on the Earth. For example, satellite observations over the past 35 years indicate the average duration of sea ice cover is now ~90 days (3 months!) shorter than it was. The extended period of open water has implications for many aspects of ecosystem research, with the concurrent decrease of Ad\u00c3\u00a8lie penguins within this region regularly cited as an exemplar of climate change impacts in Antarctica. Cutting edge technologies such as autonomous underwater (and possibly airborne) vehicles, seafloor moorings, and numerical modeling, coupled with annual oceanographic cruises, and weekly environmental sampling, enables the Palmer Antarctica LTER to expand and bridge the time and space scales needed to assess climatic impacts. This award includes for the first time study of the roles of whales as major predators in the seasonal sea ice zone ecosystem. The team will also focus on submarine canyons, special regions of enhanced biological activity, along the Western Antarctic Peninsula (WAP).\u003cbr/\u003e\u003cbr/\u003eThe current award\u0027s overarching research question is: How do seasonality, interannual variability, and long term trends in sea ice extent and duration influence the structure and dynamics of marine ecosystems and biogeochemical cycling? Specific foci within the broad question include: 1. Long-term change and ecosystem transitions. What is the sensitivity or resilience of the ecosystem to external perturbations as a function of the ecosystem state? 2. Lateral connectivity and vertical stratification. What are the effects of lateral transports of freshwater, heat and nutrients on local ocean stratification and productivity and how do they drive changes in the ecosystem? 3. Top-down controls and shifting baselines. How is the ecosystem responding to the cessation of whaling and subsequent long-term recovery of whale stocks? 4. Foodweb structure and biogeochemical processes. How do temporal and spatial variations in foodweb structure influence carbon and nutrient cycling, export, and storage? The broader impacts of the award leverage local educational partnerships including the Sandwich, MA STEM Academy, the New England Aquarium, and the NSF funded Polar Learning and Responding (PoLAR) Climate Change Education Partnership at Columbia\u0027s Earth Institute to build new synergies between Arctic and Antarctic, marine and terrestrial scientists and students, governments and NGOs. The Palmer Antarctic LTER will also conduct appropriate cross LTER site comparisons, and serve as a leader in information management to enable knowledge-building within and beyond the Antarctic, oceanographic, and LTER communities.", "east": -63.0, "geometry": "POINT(-71.5 -67)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "PELAGIC; USAP-DC; R/V LMG; NOT APPLICABLE; Palmer Station; LMG1701", "locations": "Palmer Station", "north": -63.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science", "paleo_time": null, "persons": "Ducklow, Hugh; Martinson, Doug; Schofield, Oscar", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "EDI; R2R; USAP-DC", "science_programs": "LTER", "south": -71.0, "title": "LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem", "uid": "p0000133", "west": -80.0}, {"awards": "1142074 Ballard, Grant; 1142174 Smith, Walker", "bounds_geometry": "POLYGON((165.9 -76.9,166.25 -76.9,166.6 -76.9,166.95 -76.9,167.3 -76.9,167.65 -76.9,168 -76.9,168.35 -76.9,168.7 -76.9,169.05 -76.9,169.4 -76.9,169.4 -76.97,169.4 -77.04,169.4 -77.11,169.4 -77.18,169.4 -77.25,169.4 -77.32,169.4 -77.39,169.4 -77.46,169.4 -77.53,169.4 -77.6,169.05 -77.6,168.7 -77.6,168.35 -77.6,168 -77.6,167.65 -77.6,167.3 -77.6,166.95 -77.6,166.6 -77.6,166.25 -77.6,165.9 -77.6,165.9 -77.53,165.9 -77.46,165.9 -77.39,165.9 -77.32,165.9 -77.25,165.9 -77.18,165.9 -77.11,165.9 -77.04,165.9 -76.97,165.9 -76.9))", "dataset_titles": "Access to data; Experimental analyses of phytoplankton temperature response; Glider data from the southern Ross Sea collected from the iRobot Seaglider during the RVIB Nathaniel B. Palmer (AUV-SG-503-2012, NBP1210) cruises in 2012 (Penguin Glider project); Penguin Science file sharing site", "datasets": [{"dataset_uid": "001426", "doi": "", "keywords": null, "people": null, "repository": "CADC", "science_program": null, "title": "Access to data", "url": "http://data.prbo.org/apps/penguinscience/AllData/NSF-ANT-1142074/"}, {"dataset_uid": "002575", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Glider data from the southern Ross Sea collected from the iRobot Seaglider during the RVIB Nathaniel B. Palmer (AUV-SG-503-2012, NBP1210) cruises in 2012 (Penguin Glider project)", "url": "https://www.bco-dmo.org/dataset/568868/data"}, {"dataset_uid": "002740", "doi": null, "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Penguin Science file sharing site", "url": "https://data.pointblue.org/apps/penguin_science/"}, {"dataset_uid": "601135", "doi": "10.15784/601135", "keywords": "Antarctica; Biota; Chlorophyll; Foraminifera; Growth; Phytoplankton; Plankton; Temperature", "people": "Smith, Walker", "repository": "USAP-DC", "science_program": null, "title": "Experimental analyses of phytoplankton temperature response", "url": "https://www.usap-dc.org/view/dataset/601135"}], "date_created": "Mon, 14 Dec 2015 00:00:00 GMT", "description": "Abstract\u003cbr/\u003e\u003cbr/\u003eThe Ross Sea is believed to contributes a huge portion (~1/3) of the primary productivity of the Southern Ocean and is home to a similar large portion of the top predators (e.g. 38% of Adelie, 28% of Emperor penguins) of the Antarctic sea ice ecosystem. The trophic pathways in this system are complex in both space and time. One scenario for the Ross Sea ecosystem is that diatoms are grazed by krill, which are in turn the preferred food of fish, penguins and other predators. Phaeocystis colonies, on the other hand lead to grazing by pteropods and other organisms that are a non-favoured food source for top predators. Remotely sensed chlorophyll, indicating all phytoplankton, is then suggested to be a relatively poor predictor of penguin foraging efforts. This is also consistent with notion that algal species composition is very important to penguin grazing pressure, mediated by krill, and perhaps resulting in selective depletion. \u003cbr/\u003e\u003cbr/\u003eThis collaborative research sets out to use an autonomous glider, equipped with a range of sensors, and informed by satellite chlorophyll imagery to be combined with 3-dimenisonal active penguin tracking to their preferred foraging sites. The effect of localized grazing pressure of krill on the appearance and disappearance of algal blooms will also be followed. Overall the objective of the research is to reconcile and explain several years of the study of the foraging habits and strategies of (top predator) penguins at the Cape Crozier site (Ross Island), with the dynamics of krill and their supporting algal food webs. The use of a glider to answer a primarily ecological questions is subject to moderate to high risk, and is potentially transformative.", "east": 169.4, "geometry": "POINT(167.65 -77.25)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided; USAP-DC", "locations": null, "north": -76.9, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Walker; Ballard, Grant", "platforms": "Not provided", "repo": "CADC", "repositories": "BCO-DMO; CADC; Project website; USAP-DC", "science_programs": null, "south": -77.6, "title": "Collaborative Research: Penguin Foraging Reveals Phytoplankton Spatial Structure in the Ross Sea", "uid": "p0000322", "west": 165.9}, {"awards": "0944141 Ballard, Grant; 0944358 Dugger, Katie; 0944411 Ainley, David", "bounds_geometry": "POLYGON((165.9 -76.9,166.25 -76.9,166.6 -76.9,166.95 -76.9,167.3 -76.9,167.65 -76.9,168 -76.9,168.35 -76.9,168.7 -76.9,169.05 -76.9,169.4 -76.9,169.4 -76.97,169.4 -77.04,169.4 -77.11,169.4 -77.18,169.4 -77.25,169.4 -77.32,169.4 -77.39,169.4 -77.46,169.4 -77.53,169.4 -77.6,169.05 -77.6,168.7 -77.6,168.35 -77.6,168 -77.6,167.65 -77.6,167.3 -77.6,166.95 -77.6,166.6 -77.6,166.25 -77.6,165.9 -77.6,165.9 -77.53,165.9 -77.46,165.9 -77.39,165.9 -77.32,165.9 -77.25,165.9 -77.18,165.9 -77.11,165.9 -77.04,165.9 -76.97,165.9 -76.9))", "dataset_titles": "Adelie penguin banding data 1994-2009; Adelie penguin chick counts 1997-2009; Adelie penguin chick measurements 1996 - 2009; Adelie penguin diet data 1996 - 2009; Adelie penguin dive data 1999-2009; Adelie penguin Geolocation Sensor data 2003-2007; Adelie penguin resighting data 1997-2009; Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science; Adelie penguin satellite position data 2000-2009; Adelie penguin weighbridge data 1994-2009; Daily weather observations 1996-2009; Leopard Seal counts 1997-2009; PRBO/California Avian Data Center (CADC)", "datasets": [{"dataset_uid": "600005", "doi": "", "keywords": null, "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin banding data 1994-2009", "url": "https://www.usap-dc.org/view/dataset/600005"}, {"dataset_uid": "600007", "doi": "", "keywords": "Biota", "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin chick counts 1997-2009", "url": "https://www.usap-dc.org/view/dataset/600007"}, {"dataset_uid": "600009", "doi": "", "keywords": null, "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin Geolocation Sensor data 2003-2007", "url": "https://www.usap-dc.org/view/dataset/600009"}, {"dataset_uid": "600010", "doi": "", "keywords": "Biota; Oceans", "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Leopard Seal counts 1997-2009", "url": "https://www.usap-dc.org/view/dataset/600010"}, {"dataset_uid": "600011", "doi": "", "keywords": null, "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin resighting data 1997-2009", "url": "https://www.usap-dc.org/view/dataset/600011"}, {"dataset_uid": "600012", "doi": "", "keywords": null, "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin satellite position data 2000-2009", "url": "https://www.usap-dc.org/view/dataset/600012"}, {"dataset_uid": "600013", "doi": "", "keywords": null, "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin dive data 1999-2009", "url": "https://www.usap-dc.org/view/dataset/600013"}, {"dataset_uid": "600014", "doi": "", "keywords": null, "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin weighbridge data 1994-2009", "url": "https://www.usap-dc.org/view/dataset/600014"}, {"dataset_uid": "600015", "doi": "", "keywords": null, "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Daily weather observations 1996-2009", "url": "https://www.usap-dc.org/view/dataset/600015"}, {"dataset_uid": "000154", "doi": "", "keywords": null, "people": null, "repository": "CADC", "science_program": null, "title": "PRBO/California Avian Data Center (CADC)", "url": "http://data.prbo.org/apps/penguinscience/"}, {"dataset_uid": "600008", "doi": "", "keywords": null, "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin diet data 1996 - 2009", "url": "https://www.usap-dc.org/view/dataset/600008"}, {"dataset_uid": "600006", "doi": "", "keywords": null, "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin chick measurements 1996 - 2009", "url": "https://www.usap-dc.org/view/dataset/600006"}, {"dataset_uid": "601444", "doi": "10.15784/601444", "keywords": "Adelie Penguin; Antarctica; Biota; Demography; Mark-Recapture; Monitoring; Penguin; Ross Island", "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "url": "https://www.usap-dc.org/view/dataset/601444"}], "date_created": "Sun, 13 Dec 2015 00:00:00 GMT", "description": "While changes in populations typically are tracked to gauge the impact of climate or habitat change, the process involves the response of individuals as each copes with an altered environment. In a study of Adelie penguins that spans 13 breeding seasons, results indicate that only 20% of individuals within a colony successfully raise offspring, and that they do so because of their exemplary foraging proficiency. Moreover, foraging appears to require more effort at the largest colony, where intraspecific competition is higher than at small colonies, and also requires more proficiency during periods of environmental stress. When conditions are particularly daunting, emigration dramatically increases, countering the long-standing assumption that Ad\u00e9lie penguins are highly philopatric. The research project will 1) determine the effect of age, experience and physiology on individual foraging efficiency; 2) determine the effect of age, experience, and individual quality on breeding success and survival in varying environmental and competitive conditions at the colony level; and 3) develop a comprehensive model for the Ross-Beaufort Island metapopulation dynamics. Broader impacts include training of interns, continuation of public outreach through the highly successful project website penguinscience.com, development of classroom materials and other standards-based instructional resources.", "east": 169.4, "geometry": "POINT(167.65 -77.25)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.9, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ainley, David; Dugger, Katie; Ballard, Grant", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "CADC; USAP-DC", "science_programs": null, "south": -77.6, "title": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels", "uid": "p0000318", "west": 165.9}, {"awards": "1043454 Kooyman, Gerald", "bounds_geometry": "POLYGON((-172.642 -72.55,-170.9074 -72.55,-169.1728 -72.55,-167.4382 -72.55,-165.7036 -72.55,-163.969 -72.55,-162.2344 -72.55,-160.4998 -72.55,-158.7652 -72.55,-157.0306 -72.55,-155.296 -72.55,-155.296 -73.0743,-155.296 -73.5986,-155.296 -74.1229,-155.296 -74.6472,-155.296 -75.1715,-155.296 -75.6958,-155.296 -76.2201,-155.296 -76.7444,-155.296 -77.2687,-155.296 -77.793,-157.0306 -77.793,-158.7652 -77.793,-160.4998 -77.793,-162.2344 -77.793,-163.969 -77.793,-165.7036 -77.793,-167.4382 -77.793,-169.1728 -77.793,-170.9074 -77.793,-172.642 -77.793,-172.642 -77.2687,-172.642 -76.7444,-172.642 -76.2201,-172.642 -75.6958,-172.642 -75.1715,-172.642 -74.6472,-172.642 -74.1229,-172.642 -73.5986,-172.642 -73.0743,-172.642 -72.55))", "dataset_titles": "NBP1302 data; Pre and Post Molt Biology of Emperor Penguins - Oden Trans - Ross / Amundsen Sea Cruise", "datasets": [{"dataset_uid": "600149", "doi": "10.15784/600149", "keywords": "Amundsen Sea; Biota; Oceans; Penguin; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Kooyman, Gerald", "repository": "USAP-DC", "science_program": null, "title": "Pre and Post Molt Biology of Emperor Penguins - Oden Trans - Ross / Amundsen Sea Cruise", "url": "https://www.usap-dc.org/view/dataset/600149"}, {"dataset_uid": "000179", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1302 data", "url": "https://www.rvdata.us/search/cruise/NBP1302"}], "date_created": "Sat, 12 Dec 2015 00:00:00 GMT", "description": "The emperor penguin dives deeper and longer, fasts longer, and endures the harshest weather conditions of all diving birds. It spends about four and half months per annum deep in Antarctic pack ice away from shore and stations, and thus is largely unavailable for study. This time includes preparation for the molt, and travel to the colony to breed, a time period in which great swings in body weight occur. This study will fill an important gap in what we know about the biology of the annual cycle of the emperor by examining the molt-post molt period. The P.I. proposes to traverse the Amundsen and Bellingshausen seas on the Oden, to locate and tag emperor penguins during the molt season. The objectives are to (1) Place satellite tags on 20 adult post molt birds to determine their route, rate of travel, and diving behavior as they return back to their breeding colonies, (2) Obtain an index of body condition, (3) Collect guano to determine the type of food consumed by emperor penguins in the region, (4) Conduct shipboard surveys to sight and plot the location and abundance of adult and juvenile birds on the ship\u0027s track. The PI hypothesizes that bird dives will be shallow during the initial post-molt phase, and that food will consist primarily of krill; that there will be differential dispersal of birds from the Ross Sea vs. Marie Byrd Land, with Ross Sea birds traveling farther; and that the greatest adult mortality occurs during the molt and early post molt period. Broader impacts include training of a post doc, a graduate student, and an aquarium volunteer. The P.I. also will present findings through a website, through public lectures, and in collaboration with the Birch aquarium.", "east": -155.296, "geometry": "POINT(-163.969 -75.1715)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "R/V NBP; Not provided", "locations": null, "north": -72.55, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Kooyman, Gerald", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -77.793, "title": "Pre and post molt biology of emperor penguins - Oden trans - Ross / Amundsen Sea cruise", "uid": "p0000325", "west": -172.642}, {"awards": "0739575 Emslie, Steven", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Egg membrane and chick feather THg concentration and stable isotope composition; Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica", "datasets": [{"dataset_uid": "600145", "doi": "10.15784/600145", "keywords": "Antarctica; Antarctic Peninsula; Biota; Geochronology; Global; Penguin; Ross Sea; Sample/collection Description; Sample/Collection Description; Scotia Sea; Southern Ocean", "people": "Emslie, Steven; Patterson, William; Polito, Michael", "repository": "USAP-DC", "science_program": null, "title": "Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica", "url": "https://www.usap-dc.org/view/dataset/600145"}, {"dataset_uid": "601459", "doi": "10.15784/601459", "keywords": "Adelie Penguin; Antarctica; Antarctic Peninsula; Mercury; Penguin", "people": "McKenzie, Ashley", "repository": "USAP-DC", "science_program": null, "title": "Egg membrane and chick feather THg concentration and stable isotope composition", "url": "https://www.usap-dc.org/view/dataset/601459"}], "date_created": "Fri, 25 Sep 2015 00:00:00 GMT", "description": "The research combines interdisciplinary study in geology, paleontology, and biology, using stable isotope and radiocarbon analyses, to examine how climate change and resource utilization have influenced population distribution, movement, and diet in penguins during the mid-to-late Holocene. Previous investigations have demonstrated that abandoned colonies contain well-preserved remains that can be used to examine differential responses of penguins to climate change in various sectors of Antarctica. As such, the research team will investigate abandoned and active pygoscelid penguin (Adelie, Chinstrap, and Gentoo) colonies in the Antarctic Peninsula and Ross Sea regions, and possibly Prydz Bay, in collaboration with Chinese scientists during four field seasons. Stable isotope analyses will be conducted on recovered penguin tissues and prey remains in guano to address hypotheses on penguin occupation history, population movement, and diet in relation to climate change since the late Pleistocene. The study will include one Ph.D., two Masters and 16 undergraduate students in advanced research over the project period. Students will be exposed to a variety of fields, the scientific method, and international scientific research. They will complete field and lab research for individual projects or Honor\u0027s theses for academic credit. The project also will include web-based outreach, lectures to middle school students, and the development of interactive exercises that highlight hypothesis-driven research and the ecology of Antarctica. Two undergraduate students in French and Spanish languages at UNCW will be hired to assist in translating the Web page postings for broader access to this information.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; AMD; USAP-DC; FIELD INVESTIGATION; Amd/Us", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Emslie, Steven; Polito, Michael; Patterson, William", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica", "uid": "p0000317", "west": -180.0}, {"awards": "0944220 Ponganis, Paul", "bounds_geometry": "POLYGON((-180 -68,-147 -68,-114 -68,-81 -68,-48 -68,-15 -68,18 -68,51 -68,84 -68,117 -68,150 -68,150 -69,150 -70,150 -71,150 -72,150 -73,150 -74,150 -75,150 -76,150 -77,150 -78,117 -78,84 -78,51 -78,18 -78,-15 -78,-48 -78,-81 -78,-114 -78,-147 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -77,160 -76,160 -75,160 -74,160 -73,160 -72,160 -71,160 -70,160 -69,160 -68,162 -68,164 -68,166 -68,168 -68,170 -68,172 -68,174 -68,176 -68,178 -68,-180 -68))", "dataset_titles": "The Physiological Ecology of Two Antarctic Icons: Emperor Penguins and Leopard Seals", "datasets": [{"dataset_uid": "600113", "doi": "10.15784/600113", "keywords": "Antarctica; Biota; Electrocardiogram; Penguin; Southern Ocean", "people": "Ponganis, Paul", "repository": "USAP-DC", "science_program": null, "title": "The Physiological Ecology of Two Antarctic Icons: Emperor Penguins and Leopard Seals", "url": "https://www.usap-dc.org/view/dataset/600113"}], "date_created": "Mon, 24 Nov 2014 00:00:00 GMT", "description": "Emperor penguins (Aptenodytes forsteri) and leopard seals (Hydrurga leptonyx) are iconic, top predators in Antarctica. Understanding their physiological ecology is essential to the assessment of their adaptability to the threats of climate change, pollution, and overfishing. The proposed research has multipronged objectives. Prior results suggest that Emperor penguins have flexible (vs. static) aerobic dive limits (ADL) that vary with the type of dive, and that the role of heart rate in utilization of oxygen stores also varies with dive type. A series of physiological measurements are proposed with backpack electrocardiogram recorders, that will allow further delineation of patterns and interrelationships among heart rate, dive behavior, and oxygen stores. Importantly, the research will be done on free diving emperors, and not individuals confined to a dive hole, thereby providing a more genuine measure of diving physiology and behavior. A separate objective is to examine foraging behavior of leopard seals, using a backpack digital camera and time depth recorder. Leopard seal behavior and prey intake is poorly quantified, but known to be significant. Accordingly the research is somewhat exploratory but will provide important baseline data. Finally, the P.I. proposes to continue long term overflight censuses of Emperor penguin colonies in the Ross Sea. Broader impacts include collaboration with National Geographic television, graduate student training, and development of sedation techniques for leopard seals.", "east": 150.0, "geometry": "POINT(-25 -73)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -68.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ponganis, Paul", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "The Physiological Ecology of Two Antarctic Icons: Emperor Penguins and Leopard Seals", "uid": "p0000349", "west": 160.0}, {"awards": "1142107 Durbin, Edward", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP1304", "datasets": [{"dataset_uid": "002660", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1304", "url": "https://www.rvdata.us/search/cruise/NBP1304"}], "date_created": "Fri, 07 Feb 2014 00:00:00 GMT", "description": "Krill, Euphausia superba, is a keystone species in the Antarctic ecosystem and provides the trophic link between microscopic plankton and charismatic megafauna such as penguins and whales. Recent evidence suggests krill may not be exclusively planktonivorous, which introduces the potential of new pathways of carbon flux through krill based ecosystems. A change in our view of krill from one of being herbivores to omnivores opens up several questions.\u003cbr/\u003e\u003cbr/\u003eClimate induced change in the extent, thickness and duration of overlying sea ice coverage is expected to change the prey fields available to krill, and to have subsequent effects on the suite of predators supported by krill. The nature of this benthic prey?krill link, which may be crucial in those parts of the seasonal cycle other than the well studied spring bloom, is yet to be determined. DNA techniques will be used to identify and quantify the prey organisms. \u003cbr/\u003e\u003cbr/\u003eThis project will measure the in situ feeding ecology and behavior of krill and, ultimately, the success of this key species. An overall goal is\u003cbr/\u003eto investigate seasonal changes in Euphausia superba in-situ feeding and swimming behavior in the Wilhelmina Bay region of the Western Antarctic Peninsula (WAP) area, known to be a region of changing climate. Understanding the biological impacts of climate change is important to societal and economic goals. The project scientists will additionally team with a marine and environmental reporting group to design presentations for an annual journalist meeting.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Durbin, Edward", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Seasonal Trophic Roles of Euphausia Superba (STRES)", "uid": "p0000848", "west": null}, {"awards": "1019838 Wendt, Dean", "bounds_geometry": null, "dataset_titles": "Real-Time Characterization of Adelie Penguin Foraging Environment Using an Autonomous Underwater Vehicle", "datasets": [{"dataset_uid": "600120", "doi": "10.15784/600120", "keywords": "Biota; Oceans; Southern Ocean", "people": "Wendt, Dean; Moline, Mark", "repository": "USAP-DC", "science_program": null, "title": "Real-Time Characterization of Adelie Penguin Foraging Environment Using an Autonomous Underwater Vehicle", "url": "https://www.usap-dc.org/view/dataset/600120"}], "date_created": "Mon, 30 Dec 2013 00:00:00 GMT", "description": "Abstract \u003cbr/\u003e\u003cbr/\u003eThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). \u003cbr/\u003e\u003cbr/\u003eThe Antarctic Peninsula is among the most rapidly warming regions on earth. Increased heat from the Antarctic Circumpolar Current has elevated the temperature of the 300 m of shelf water below the permanent pycnocline by 0.7 degrees C. This trend has displaced the once dominant cold, dry continental Antarctic climate, and is causing multi-level responses in the marine ecosystem. One striking example of the ecosystem response to warming has been the local declines in ice-dependent Ad\u00c3\u00a9lie penguins. The changes in these apex predators are thought to be driven by alterations in phytoplankton and zooplankton community composition, and the foraging limitations and diet differences between these species. One of the most elusive questions facing researchers interested in the foraging ecology of the Ad\u00c3\u00a9lie penguin, namely, what are the biophysical properties that characterize the three dimensional foraging space of this top predator? The research will combine the real-time site and diving information from the Ad\u00c3\u00a9lie penguin satellite tags with the full characterization of the oceanography and the penguins prey field using an autonomous underwater vehicle (AUV). While some of these changes have been documented over large spatial scales of the WAP, it is now thought that the causal mechanisms that favor of one life history strategy over another may actually operate over much smaller scales than previously thought, specifically on the scale of local breeding sites and over-wintering areas. Characterization of prey fields on these local scales has yet to be done and one that the AUV is ideally suited. The results will have a direct tie to the climate induced changes that are occurring in the West Antarctic Peninsula. This study will also highlight a new approach to linking an autonomous platform to bird behavior that could be expanded to include the other two species of penguins and examine the seasonal differences in their foraging behavior and prey selection. From a vehicle perspective, this effort will inform the AUV user community of new sensor suites and/or data processing approaches that are required to better evaluate foraging habitat. The project also will help transition AUV platforms into routine investigative tools for this region, which is chronically under sampled and will remain difficult to access", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; Amd/Us; USAP-DC; AMD; FIELD INVESTIGATION", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Wendt, Dean; Moline, Mark", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Real-Time Characterization of Adelie Penguin Foraging Environment Using an Autonomous Underwater Vehicle", "uid": "p0000662", "west": null}, {"awards": "0944042 Warren, Joseph", "bounds_geometry": "POLYGON((-70 -59,-68 -59,-66 -59,-64 -59,-62 -59,-60 -59,-58 -59,-56 -59,-54 -59,-52 -59,-50 -59,-50 -59.7,-50 -60.4,-50 -61.1,-50 -61.8,-50 -62.5,-50 -63.2,-50 -63.9,-50 -64.6,-50 -65.3,-50 -66,-52 -66,-54 -66,-56 -66,-58 -66,-60 -66,-62 -66,-64 -66,-66 -66,-68 -66,-70 -66,-70 -65.3,-70 -64.6,-70 -63.9,-70 -63.2,-70 -62.5,-70 -61.8,-70 -61.1,-70 -60.4,-70 -59.7,-70 -59))", "dataset_titles": "Data from expdition LMG1010; Expedition Data; Expedition data of LMG1010; Expedition data of LMG1110", "datasets": [{"dataset_uid": "002671", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1110", "url": "https://www.rvdata.us/search/cruise/LMG1110"}, {"dataset_uid": "000153", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Data from expdition LMG1010", "url": "https://www.rvdata.us/search/cruise/LMG1010"}, {"dataset_uid": "002723", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1010", "url": "https://www.rvdata.us/search/cruise/LMG1010"}, {"dataset_uid": "001445", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1110"}], "date_created": "Tue, 03 Dec 2013 00:00:00 GMT", "description": "The importance of gelatinous zooplankton in marine systems worldwide is increasing. In Southern Ocean, increasing salp densities could have a detrimental effect on higher predators, including penguins, fur seals, and baleen whales. The proposed research is a methods-develoment project that will improve the capability to indirectly assess abundances and distributions of salps in the Southern Ocean through acoustic surveys. Hydrographic, net tow, and acoustic backscatter data will be collected in the waters surrounding the South Shetland Islands and the Antarctic peninsula, where both krill and salps are found and compete for food. Shipboard experimental manipulations and measurements will lead to improved techniques for assessment of salp biomass acoustically. Experiments will focus on material properties (density and sound speed), size and shape of salps, as well as how these physical properties will vary with the salp\u0027s environment, feeding rate, and reproductive status. In the field, volume backscattering data from an acoustic echosounder will be collected at the same locations as the net tows to enable comparison of net and acoustic estimates of salp abundance. A physics-based scattering model for salps will be developed and validated, to determine if multiple acoustic frequencies can be used to discriminate between scattering associated with krill swarms and that from salp blooms. During the same period as the Antarctic field work, a parallel outreach and education study will be undertaken in Long Island, New York examining local gelatinous zooplankton. This study will enable project participants to learn and practice research procedures and methods before traveling to Antarctica; provide a comparison time-series that will be used for educational purposes; and include many more students and teachers in the research project than would be able to participate in the Antarctic field component.", "east": -50.0, "geometry": "POINT(-60 -62.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "R/V LMG; Not provided", "locations": null, "north": -59.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Warren, Joseph", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -66.0, "title": "Acoustic Assessment of Southern Ocean Salps and Their Ecosystem Impact", "uid": "p0000481", "west": -70.0}, {"awards": "0529087 Ross, Robin; 0528728 Vernet, Maria; 0529666 Fritsen, Christian", "bounds_geometry": "POLYGON((-69.08 -64.8,-68.632 -64.8,-68.184 -64.8,-67.736 -64.8,-67.288 -64.8,-66.84 -64.8,-66.392 -64.8,-65.944 -64.8,-65.496 -64.8,-65.048 -64.8,-64.6 -64.8,-64.6 -65.121,-64.6 -65.442,-64.6 -65.763,-64.6 -66.084,-64.6 -66.405,-64.6 -66.726,-64.6 -67.047,-64.6 -67.368,-64.6 -67.689,-64.6 -68.01,-65.048 -68.01,-65.496 -68.01,-65.944 -68.01,-66.392 -68.01,-66.84 -68.01,-67.288 -68.01,-67.736 -68.01,-68.184 -68.01,-68.632 -68.01,-69.08 -68.01,-69.08 -67.689,-69.08 -67.368,-69.08 -67.047,-69.08 -66.726,-69.08 -66.405,-69.08 -66.084,-69.08 -65.763,-69.08 -65.442,-69.08 -65.121,-69.08 -64.8))", "dataset_titles": "Expedition data of NBP0103; The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "datasets": [{"dataset_uid": "600050", "doi": "10.15784/600050", "keywords": "Bellingshausen Sea; Cryosphere; Oceans; Photosynthetically Active Radiation (par); Sea Ice; Sea Surface; Southern Ocean; Total Integrated Exposure To PAR", "people": "Fritsen, Christian", "repository": "USAP-DC", "science_program": null, "title": "The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "url": "https://www.usap-dc.org/view/dataset/600050"}, {"dataset_uid": "600049", "doi": "10.15784/600049", "keywords": "Bellingshausen Sea; Biota; Oceans; Southern Ocean", "people": "Ross, Robin Macurda; Quetin, Langdon B.", "repository": "USAP-DC", "science_program": null, "title": "The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "url": "https://www.usap-dc.org/view/dataset/600049"}, {"dataset_uid": "600048", "doi": "10.15784/600048", "keywords": "Bellingshausen Sea; Biota; Oceans; Phytoplankton; Southern Ocean", "people": "Vernet, Maria", "repository": "USAP-DC", "science_program": null, "title": "The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "url": "https://www.usap-dc.org/view/dataset/600048"}, {"dataset_uid": "002595", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0103", "url": "https://www.rvdata.us/search/cruise/NBP0103"}], "date_created": "Sat, 02 Apr 2011 00:00:00 GMT", "description": "This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat.\u003cbr/\u003e\u003cbr/\u003eSO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. It is currently in a synthesis and modeling phase. This collaborative project is concerned with the lower trophic levels, and will be integrated with other synthesis and modeling studies that deal with grazers, predators, and other higher trophic levels.", "east": -64.6, "geometry": "POINT(-66.84 -66.405)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": true, "keywords": "R/V NBP; Not provided", "locations": null, "north": -64.8, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Fritsen, Christian; Vernet, Maria; Ross, Robin Macurda; Quetin, Langdon B.", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -68.01, "title": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "uid": "p0000522", "west": -69.08}, {"awards": "0741348 Torres, Joseph", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP1002", "datasets": [{"dataset_uid": "002652", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1002", "url": "https://www.rvdata.us/search/cruise/NBP1002"}], "date_created": "Thu, 03 Mar 2011 00:00:00 GMT", "description": "Intellectual Merit: Pleuragramma antarcticum, the Antarctic silverfish, play a key role in the trophic pyramid of the Antarctic coastal ecosystem, acting as food for larger fishes, flying and non-flying seabirds, pinnipeds, and whales. In turn, they are predators on coastal euphausiids, including both Euphausia superba and crystallorophias. Historically, Pleuragramma have been an important food source for Ad\u00e9lie Penguins of the Western Antarctic Peninsula (WAP), but during the last decade Pleuragramma have disappeared from the Ad\u00e9lie diet. We suggest that Pleuragramma?s absence from the diets of top predators is linked to the declining sea ice canopy, which serves as a nursery for eggs and larvae during the austral spring. The research will investigate four hydrographic regimes over the WAP continental shelf with the following features: (1) persistent gyral flows that act to retain locally spawned larvae, (2) spring sea ice that has declined in recent years (3) the prevalence of adult silverfish, and (4) the presence of breeding Ad\u00e9lie penguins whose diets vary in the proportions of silverfish consumed. The research will evaluate the importance of local reproduction versus larval advection, and the extent to which populations in the subregions of study are genetically distinct, via analysis of population structure, otolith microchemistry and molecular genetics of fish. The Pleuragramma data will be compared with penguin diet samples taken synoptically. \u003cbr/\u003e\u003cbr/\u003eBroader Impacts: The proposed research brings together an international group of scientists with highly complimentary suites of skills to address the fate of Pleuragramma on the WAP shelf. Graduate students will use the data acquired as part of their Ph.D research, and will receive cross-training in ornithological field techniques, molecular genetic methods and otolith isotope chemistry. The PIs will work actively with the St. Petersburg Times to produce a blog in real time with pictures and text, which will be used to interact with local schools while we are at sea and after our return. The investigators also will collaborate with the COSEE center at USF and at local schools and museums to disseminate results to the K-12 community throughout the region.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Torres, Joseph", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative research: Possible climate-induced change in the distribution of Pleuragramma antarcticum on the Western Antarctic Peninsula shelf", "uid": "p0000842", "west": null}, {"awards": "0439906 Koch, Paul", "bounds_geometry": "POLYGON((162 -72,162.6 -72,163.2 -72,163.8 -72,164.4 -72,165 -72,165.6 -72,166.2 -72,166.8 -72,167.4 -72,168 -72,168 -72.6,168 -73.2,168 -73.8,168 -74.4,168 -75,168 -75.6,168 -76.2,168 -76.8,168 -77.4,168 -78,167.4 -78,166.8 -78,166.2 -78,165.6 -78,165 -78,164.4 -78,163.8 -78,163.2 -78,162.6 -78,162 -78,162 -77.4,162 -76.8,162 -76.2,162 -75.6,162 -75,162 -74.4,162 -73.8,162 -73.2,162 -72.6,162 -72))", "dataset_titles": "Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change", "datasets": [{"dataset_uid": "600041", "doi": "10.15784/600041", "keywords": "Biota; Isotope; Penguin; Ross Sea; Seals; Southern Ocean", "people": "Koch, Paul", "repository": "USAP-DC", "science_program": null, "title": "Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change", "url": "https://www.usap-dc.org/view/dataset/600041"}], "date_created": "Sat, 30 Oct 2010 00:00:00 GMT", "description": "During previous NSF-sponsored research, the PI\u0027s discovered that southern elephant seal colonies once existed along the Victoria Land coast (VLC) of Antarctica, a region where they are no longer observed. Molted seal skin and hair occur along 300 km of coastline, more than 1000 km from any extant colony. The last record of a seal at a former colony site is at ~A.D. 1600. Because abandonment occurred prior to subantarctic sealing, disappearance of the VLC colony probably was due to environmental factors, possibly cooling and encroachment of land-fast, perennial sea ice that made access to haul-out sites difficult. The record of seal inhabitation along the VLC, therefore, has potential as a proxy for climate change. Elephant seals are a predominantly subantarctic species with circumpolar distribution. Genetic studies have revealed significant differentiation among populations, particularly with regard to that at Macquarie I., which is the extant population nearest to the abandoned VLC colony. Not only is the Macquarie population unique genetically, but it is has undergone unexplained decline of 2%/yr over the last 50 years3. In a pilot study, genetic analyses showed a close relationship between the VLC seals and those at Macquarie I. An understanding of the relationship between the two populations, as well as of the environmental pressures that led to the demise of the VLC colonies, will provide a better understanding of present-day population genetic structure, the effect of environmental change on seal populations, and possibly the reasons underlying the modern decline at Macquarie Island.\u003cbr/\u003eThis project addresses several key research problems: (1) Why did elephant seals colonize and then abandon the VLC? (2) What does the elephant seal record reveal about Holocene climate change and sea-ice conditions? (3) What were the foraging strategies of the seals and did these strategies change over time as climate varied? (4) How does the genetic structure of the VLC seals relate to extant populations? (5) How did genetic diversity change over time and with colony decline? (6) Using ancient samples to estimate mtDNA mutation rates, what can be learned about VLC population dynamics over time? (7) What was the ecological relationship between elephant seals and Adelie penguins that occupied the same sites, but apparently at different times? The proposed work includes the professional training of young researchers and incorporation of data into graduate and undergraduate courses.", "east": 168.0, "geometry": "POINT(165 -75)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS", "locations": null, "north": -72.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Koch, Paul", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change", "uid": "p0000533", "west": 162.0}, {"awards": "9910007 Hildebrand, John", "bounds_geometry": "POLYGON((-74.185 -52.3516,-72.6371 -52.3516,-71.0892 -52.3516,-69.5413 -52.3516,-67.9934 -52.3516,-66.4455 -52.3516,-64.8976 -52.3516,-63.3497 -52.3516,-61.8018 -52.3516,-60.2539 -52.3516,-58.706 -52.3516,-58.706 -53.94991,-58.706 -55.54822,-58.706 -57.14653,-58.706 -58.74484,-58.706 -60.34315,-58.706 -61.94146,-58.706 -63.53977,-58.706 -65.13808,-58.706 -66.73639,-58.706 -68.3347,-60.2539 -68.3347,-61.8018 -68.3347,-63.3497 -68.3347,-64.8976 -68.3347,-66.4455 -68.3347,-67.9934 -68.3347,-69.5413 -68.3347,-71.0892 -68.3347,-72.6371 -68.3347,-74.185 -68.3347,-74.185 -66.73639,-74.185 -65.13808,-74.185 -63.53977,-74.185 -61.94146,-74.185 -60.34315,-74.185 -58.74484,-74.185 -57.14653,-74.185 -55.54822,-74.185 -53.94991,-74.185 -52.3516))", "dataset_titles": "Expedition Data; Expedition data of LMG0302; Expedition data of NBP0103; Expedition data of NBP0104; Expedition data of NBP0202", "datasets": [{"dataset_uid": "002595", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0103", "url": "https://www.rvdata.us/search/cruise/NBP0103"}, {"dataset_uid": "001795", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0203"}, {"dataset_uid": "002657", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002705", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0302", "url": "https://www.rvdata.us/search/cruise/LMG0302"}, {"dataset_uid": "001661", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0403"}, {"dataset_uid": "002586", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0202", "url": "https://www.rvdata.us/search/cruise/NBP0202"}, {"dataset_uid": "001814", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0201A"}, {"dataset_uid": "001607", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0504"}, {"dataset_uid": "001878", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0103"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on determining minimum population estimates, distribution and seasonality for mysticete whales, especially blue whales. This will be accomplished using passive acoustic recorders deployed on the seafloor for a period of one to two years. The deployment of a large aperture autonomous hydrophone array in the Antarctic will incorporate the use of passive acoustics as a tool for mysticete whale detection and census. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.", "east": -58.706, "geometry": "POINT(-66.4455 -60.34315)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V NBP; R/V LMG", "locations": null, "north": -52.3516, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hildebrand, John; Costa, Daniel; Beardsley, Robert", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -68.3347, "title": "GLOBEC: Mysticete Whale Acoustic Census", "uid": "p0000581", "west": -74.185}, {"awards": "9910043 Harvey, H. Rodger", "bounds_geometry": null, "dataset_titles": "Expedition data of LMG0104", "datasets": [{"dataset_uid": "002694", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0104", "url": "https://www.rvdata.us/search/cruise/LMG0104"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will apply new biochemical approaches to determine the population age structure of krill in field populations over seasonal and interannual time scales. Lipids specific to different food resources will be used in parallel with the intent of establishing markers for dietary history. This research will be coordinated with components studying krill feeding and growth. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Fraser, William", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "GLOBEC: Biochemical Determination of Age and Dietary History in the Krill Euphasia superba", "uid": "p0000864", "west": null}, {"awards": "0523166 Hofmann, Eileen", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0103", "datasets": [{"dataset_uid": "002595", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0103", "url": "https://www.rvdata.us/search/cruise/NBP0103"}, {"dataset_uid": "002601", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0103", "url": "https://www.rvdata.us/search/cruise/NBP0103"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The objective of the proposed work is to provide for the operation of a Planning Office for the synthesis and modeling phase of the Southern Ocean Global Ocean Ecosystems Dynamics (SO-Globec) program. The office will ensure that synthesis and integration activities that are developed as part of SO-Globec are coordinated with those undertaken by the international and U.S. Globec programs through: 1) organization of special sessions at meetings, 2) preparation of dedicated publications focused on program results, 3) maintenance of a project web site, 4) development of program outreach efforts, and 5) ensuring coordination with International Globec and other national and international programs and organizations. The office will consist of one faculty member and one program specialist.\u003cbr/\u003e\u003cbr/\u003eSO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. Extensive studies describing the ecology and physiology of important species at all trophic levels contributed to the ecosystem approach which is the essence of SO-Globec. The Planning Office will provide a central focal point for ensuring that the results from SO-Globec are made available to the broader scientific community and to the general public, and that the results will be incorporated into the planning of future Southern Ocean programs.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hofmann, Eileen", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "U.S. SO GLOBEC Synthesis and Modeling: Southern Ocean GLOBEC (SO GLOBEC) Planning Office", "uid": "p0000817", "west": null}, {"awards": "9910096 Ribic, Christine", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0103; Expedition data of NBP0104; Expedition data of NBP0204", "datasets": [{"dataset_uid": "002657", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002595", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0103", "url": "https://www.rvdata.us/search/cruise/NBP0103"}, {"dataset_uid": "002603", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002643", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0204", "url": "https://www.rvdata.us/search/cruise/NBP0204"}, {"dataset_uid": "002604", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0204", "url": "https://www.rvdata.us/search/cruise/NBP0204"}, {"dataset_uid": "002602", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0103", "url": "https://www.rvdata.us/search/cruise/NBP0103"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on the large-scale distribution, abundance and habitat of seabirds. This will be accomplished using strip-transect surveys and spatial analysis software and models to examine the large-scale data. This research will be coordinated with seabird studies which focus on seabird diet composition and small scale foraging behavior. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ribic, Christine", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "GLOBEC: WinDSSOck: Winter Distribution and Success of Southern Ocean Krill", "uid": "p0000818", "west": null}, {"awards": "9910098 Fritsen, Christian", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG0106; Expedition data of LMG0205; Expedition data of NBP0104; Expedition data of NBP0204", "datasets": [{"dataset_uid": "001757", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0205"}, {"dataset_uid": "002702", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0205", "url": "https://www.rvdata.us/search/cruise/LMG0205"}, {"dataset_uid": "002643", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0204", "url": "https://www.rvdata.us/search/cruise/NBP0204"}, {"dataset_uid": "002657", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002695", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0106", "url": "https://www.rvdata.us/search/cruise/LMG0106"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on the distribution and activities of sea ice microbial communities. This will be accomplished using an integrated combination of sampling (vertical profiles, horizontal surveys, and under-ice surveys) and observational protocols. Experiments will be designed to estimate microbial activity within the sea ice and at the ice-seawater interface. The research will be coordinated with components studying the water column productivity and the sea ice habitat. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V LMG; R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Fritsen, Christian; Costa, Daniel", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "GLOBEC: Sea Ice Microbial Communities", "uid": "p0000834", "west": null}, {"awards": "0344275 Trivelpiece, Wayne", "bounds_geometry": null, "dataset_titles": "Expedition data of LMG0412", "datasets": [{"dataset_uid": "002683", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0412", "url": "https://www.rvdata.us/search/cruise/LMG0412"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Seabird research conducted at Admiralty Bay, King George Island in the Antarctic Peninsula region has documented annual variability in the life history parameters of the population biology of three related penguin species: the Adelie, the gentoo and the chinstrap (Pygoscelis adeliae, P. papua and P. antarctica, respectively). This long-term study has collected twenty-five years of data on the three related species, including survival and recruitment, population size and breeding success, and diets and foraging ecology. The current project will extend the research linking penguin demography and foraging ecology to variability in the Antarctic marine ecosystem. A major focus of this work will be on the Adelie and gentoo penguin population biology data and the distribution and trophic interactions among the three Pygoscelis species during the breeding season and the non-breeding, winter period. Recent results have provided the first detailed data on the wintering distributions of Adelie and chinstrap penguins in the Antarctic Peninsula region, through the use of satellite tags and time-depth recorders to examine the post-fledging foraging. Specific topics of research include an examination of the size and sex composition of krill captured by penguins feeding chicks and krill collected concurrently by net hauls in the adjacent marine environment and the length-frequency distribution of krill collected from penguin diet samples. The over winter survival of penguin breeding adults and the recruitment of young (two to four year old) pre-breeding penguins to their natal colony will be compared to the extent of sea ice in the winter prior to the breeding season. These variables are expected to be positively correlated for the Adelie but negatively correlated to the chinstrap penguin. Detailed studies of the adult gentoo penguins, which do not disperse widely from the natal colony, will be conducted using satellite tags. The data collected in this study will improve an understanding of the structure and function of the Antarctic through research on the impact of environmental variation on the structure of upper trophic level predators such as the Pygoscelis penguins.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": null, "paleo_time": null, "persons": "Trivelpiece, Wayne", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Foraging Behavior and Demography of Pygoscelis Penguins", "uid": "p0000860", "west": null}, {"awards": "9981683 Costa, Daniel", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG0106; Expedition data of LMG0203; Expedition data of LMG0205", "datasets": [{"dataset_uid": "002701", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0205", "url": "https://www.rvdata.us/search/cruise/LMG0205"}, {"dataset_uid": "001757", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0205"}, {"dataset_uid": "002700", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0203", "url": "https://www.rvdata.us/search/cruise/LMG0203"}, {"dataset_uid": "002695", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0106", "url": "https://www.rvdata.us/search/cruise/LMG0106"}, {"dataset_uid": "002698", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0106", "url": "https://www.rvdata.us/search/cruise/LMG0106"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on the distribution and foraging behavior of adult female crabeater seals, using a combination of satellite-linked tracking, specialized diver recorders, and stable isotopic tracers. This research will be coordinated with components focused on prey (krill) distribution and the physical environment. The results will be analyzed using an optimality model. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Costa, Daniel", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Foraging Ecology of Crabeater Seals (Lobodon Carcinophagus)", "uid": "p0000866", "west": null}, {"awards": "0125985 Trivelpiece, Wayne", "bounds_geometry": "POLYGON((-70.907646 -52.351532,-69.6445116 -52.351532,-68.3813772 -52.351532,-67.1182428 -52.351532,-65.8551084 -52.351532,-64.591974 -52.351532,-63.3288396 -52.351532,-62.0657052 -52.351532,-60.8025708 -52.351532,-59.5394364 -52.351532,-58.276302 -52.351532,-58.276302 -53.6039408,-58.276302 -54.8563496,-58.276302 -56.1087584,-58.276302 -57.3611672,-58.276302 -58.613576,-58.276302 -59.8659848,-58.276302 -61.1183936,-58.276302 -62.3708024,-58.276302 -63.6232112,-58.276302 -64.87562,-59.5394364 -64.87562,-60.8025708 -64.87562,-62.0657052 -64.87562,-63.3288396 -64.87562,-64.591974 -64.87562,-65.8551084 -64.87562,-67.1182428 -64.87562,-68.3813772 -64.87562,-69.6445116 -64.87562,-70.907646 -64.87562,-70.907646 -63.6232112,-70.907646 -62.3708024,-70.907646 -61.1183936,-70.907646 -59.8659848,-70.907646 -58.613576,-70.907646 -57.3611672,-70.907646 -56.1087584,-70.907646 -54.8563496,-70.907646 -53.6039408,-70.907646 -52.351532))", "dataset_titles": "Expedition Data; Expedition data of LMG0208", "datasets": [{"dataset_uid": "002724", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0208", "url": "https://www.rvdata.us/search/cruise/LMG0208"}, {"dataset_uid": "001752", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0207"}, {"dataset_uid": "001747", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0208"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Seabird research conducted at Admiralty Bay, King George Island in the Antarctic Peninsula region has documented annual variability in the life history parameters of the population biology of three related penguin species: the Adelie, the gentoo and the chinstrap (Pygoscelis adeliae, P. papua and P. antarctica, respectively). This long-term study has collected twenty-five years of data on the three related species, including survival and recruitment, population size and breeding success, and diets and foraging ecology. The current project will extend the research linking penguin demography and foraging ecology to variability in the Antarctic marine ecosystem. A major focus of this work will be on the Adelie and gentoo penguin population biology data and the distribution and trophic interactions among the three Pygoscelis species during the breeding season and the non-breeding, winter period. Recent results have provided the first detailed data on the wintering distributions of Adelie and chinstrap penguins in the Antarctic Peninsula region, through the use of satellite tags and time-depth recorders to examine the post-fledging foraging. Specific topics of research include an examination of the size and sex composition of krill captured by penguins feeding chicks and krill collected concurrently by net hauls in the adjacent marine environment and the length-frequency distribution of krill collected from penguin diet samples. The over winter survival of penguin breeding adults and the recruitment of young (two to four year old) pre-breeding penguins to their natal colony will be compared to the extent of sea ice in the winter prior to the breeding season. These variables are expected to be positively correlated for the Adelie but negatively correlated to the chinstrap penguin. Detailed studies of the adult gentoo penguins, which do not disperse widely from the natal colony, will be conducted using satellite tags. The data collected in this study will improve an understanding of the structure and function of the Antarctic through research on the impact of environmental variation on the structure of upper trophic level predators such as the Pygoscelis penguins.", "east": -58.276302, "geometry": "POINT(-64.591974 -58.613576)", "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.351532, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Trivelpiece, Wayne; Stearns, Charles R.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -64.87562, "title": "Foraging Behavior and Demography of Pygoscelis Penguins", "uid": "p0000597", "west": -70.907646}, {"awards": "9910100 Torres, Joseph", "bounds_geometry": null, "dataset_titles": "Expedition data of LMG0104; Expedition data of LMG0203; Expedition data of NBP0204", "datasets": [{"dataset_uid": "002593", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0204", "url": "https://www.rvdata.us/search/cruise/NBP0204"}, {"dataset_uid": "002717", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0203", "url": "https://www.rvdata.us/search/cruise/LMG0203"}, {"dataset_uid": "002696", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0104", "url": "https://www.rvdata.us/search/cruise/LMG0104"}, {"dataset_uid": "002643", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0204", "url": "https://www.rvdata.us/search/cruise/NBP0204"}, {"dataset_uid": "002694", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0104", "url": "https://www.rvdata.us/search/cruise/LMG0104"}, {"dataset_uid": "002700", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0203", "url": "https://www.rvdata.us/search/cruise/LMG0203"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on krill physiology, using measures of respiration, excretion, and proximate analysis. Additionally, the distribution and abundance of fishes and squid, which are krill predators, will be investigated using acoustic and net tow methods. This research will be coordinated with components studying krill in both the water column and under the ice. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP; R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Torres, Joseph; Fraser, William", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "GLOBEC: Winter Distribution and Success of Southern Ocean Krill", "uid": "p0000812", "west": null}, {"awards": "0003956 Burns, Jennifer", "bounds_geometry": "POLYGON((-76.5119 -52.3523,-74.93335 -52.3523,-73.3548 -52.3523,-71.77625 -52.3523,-70.1977 -52.3523,-68.61915 -52.3523,-67.0406 -52.3523,-65.46205 -52.3523,-63.8835 -52.3523,-62.30495 -52.3523,-60.7264 -52.3523,-60.7264 -53.99299,-60.7264 -55.63368,-60.7264 -57.27437,-60.7264 -58.91506,-60.7264 -60.55575,-60.7264 -62.19644,-60.7264 -63.83713,-60.7264 -65.47782,-60.7264 -67.11851,-60.7264 -68.7592,-62.30495 -68.7592,-63.8835 -68.7592,-65.46205 -68.7592,-67.0406 -68.7592,-68.61915 -68.7592,-70.1977 -68.7592,-71.77625 -68.7592,-73.3548 -68.7592,-74.93335 -68.7592,-76.5119 -68.7592,-76.5119 -67.11851,-76.5119 -65.47782,-76.5119 -63.83713,-76.5119 -62.19644,-76.5119 -60.55575,-76.5119 -58.91506,-76.5119 -57.27437,-76.5119 -55.63368,-76.5119 -53.99299,-76.5119 -52.3523))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001757", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0205"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on the distribution and foraging behavior of adult female crabeater seals, using a combination of satellite-linked tracking, specialized diver recorders, and stable isotopic tracers. This research will be coordinated with components focused on prey (krill) distribution and the physical environment. The results will be analyzed using an optimality model. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.", "east": -60.7264, "geometry": "POINT(-68.61915 -60.55575)", "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.3523, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Costa, Daniel", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -68.7592, "title": "Foraging Ecology of Crabeater Seals (Lobodon Carcinophagus)", "uid": "p0000599", "west": -76.5119}, {"awards": "9909933 Ross, Robin; 9910175 Vernet, Maria", "bounds_geometry": "POLYGON((-71.077 -57.9543,-70.015 -57.9543,-68.953 -57.9543,-67.891 -57.9543,-66.829 -57.9543,-65.767 -57.9543,-64.705 -57.9543,-63.643 -57.9543,-62.581 -57.9543,-61.519 -57.9543,-60.457 -57.9543,-60.457 -58.98629,-60.457 -60.01828,-60.457 -61.05027,-60.457 -62.08226,-60.457 -63.11425,-60.457 -64.14624,-60.457 -65.17823,-60.457 -66.21022,-60.457 -67.24221,-60.457 -68.2742,-61.519 -68.2742,-62.581 -68.2742,-63.643 -68.2742,-64.705 -68.2742,-65.767 -68.2742,-66.829 -68.2742,-67.891 -68.2742,-68.953 -68.2742,-70.015 -68.2742,-71.077 -68.2742,-71.077 -67.24221,-71.077 -66.21022,-71.077 -65.17823,-71.077 -64.14624,-71.077 -63.11425,-71.077 -62.08226,-71.077 -61.05027,-71.077 -60.01828,-71.077 -58.98629,-71.077 -57.9543))", "dataset_titles": "Expedition Data; Expedition data of LMG0205; Expedition data of NBP0104; Expedition data of NBP0202; Expedition data of NBP0204", "datasets": [{"dataset_uid": "002643", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0204", "url": "https://www.rvdata.us/search/cruise/NBP0204"}, {"dataset_uid": "002657", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "001856", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0105"}, {"dataset_uid": "002704", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0205", "url": "https://www.rvdata.us/search/cruise/LMG0205"}, {"dataset_uid": "001757", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0205"}, {"dataset_uid": "001861", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0106"}, {"dataset_uid": "002586", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0202", "url": "https://www.rvdata.us/search/cruise/NBP0202"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on water-column primary production using direct experimental estimates, modeling restuls from a fast repetition rate fluorometer and modeling of primary production from both optical as well as biophysical models. This research will be coordinated with components focused on sea ice production and sea ice habitat. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.", "east": -60.457, "geometry": "POINT(-65.767 -63.11425)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V LMG; R/V NBP", "locations": null, "north": -57.9543, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Vernet, Maria; Costa, Daniel; Ross, Robin Macurda; Smith, Raymond", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -68.2742, "title": "GLOBEC: Winter Ecology of Larval Krill: Quantifying their Interaction with the Pack Ice Habitat", "uid": "p0000605", "west": -71.077}, {"awards": "9910610 Daly, Kendra", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0104", "datasets": [{"dataset_uid": "002657", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002600", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Daly, Kendra", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "GLOBEC: Winter Distribution and Success of Southern Ocean Krill", "uid": "p0000816", "west": null}, {"awards": "0230069 Naveen, Ron", "bounds_geometry": "POLYGON((-68.0489 -52.7302,-66.96539 -52.7302,-65.88188 -52.7302,-64.79837 -52.7302,-63.71486 -52.7302,-62.63135 -52.7302,-61.54784 -52.7302,-60.46433 -52.7302,-59.38082 -52.7302,-58.29731 -52.7302,-57.2138 -52.7302,-57.2138 -53.97453,-57.2138 -55.21886,-57.2138 -56.46319,-57.2138 -57.70752,-57.2138 -58.95185,-57.2138 -60.19618,-57.2138 -61.44051,-57.2138 -62.68484,-57.2138 -63.92917,-57.2138 -65.1735,-58.29731 -65.1735,-59.38082 -65.1735,-60.46433 -65.1735,-61.54784 -65.1735,-62.63135 -65.1735,-63.71486 -65.1735,-64.79837 -65.1735,-65.88188 -65.1735,-66.96539 -65.1735,-68.0489 -65.1735,-68.0489 -63.92917,-68.0489 -62.68484,-68.0489 -61.44051,-68.0489 -60.19618,-68.0489 -58.95185,-68.0489 -57.70752,-68.0489 -56.46319,-68.0489 -55.21886,-68.0489 -53.97453,-68.0489 -52.7302))", "dataset_titles": "Expedition Data; Expedition data of LMG0413A; Expedition data of LMG0514; Expedition data of LMG0611; Long-term Data Collection at Select Antarctic Peninsula Visitor Sites", "datasets": [{"dataset_uid": "002679", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0413A", "url": "https://www.rvdata.us/search/cruise/LMG0413A"}, {"dataset_uid": "600032", "doi": "10.15784/600032", "keywords": "Antarctica; Biota; Penguin; Petermann Island", "people": "Naveen, Ronald", "repository": "USAP-DC", "science_program": null, "title": "Long-term Data Collection at Select Antarctic Peninsula Visitor Sites", "url": "https://www.usap-dc.org/view/dataset/600032"}, {"dataset_uid": "001547", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0611B"}, {"dataset_uid": "001585", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0514"}, {"dataset_uid": "001626", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0413A"}, {"dataset_uid": "001686", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0308"}, {"dataset_uid": "002681", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0611", "url": "https://www.rvdata.us/search/cruise/LMG0611"}, {"dataset_uid": "002680", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0514", "url": "https://www.rvdata.us/search/cruise/LMG0514"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The Antarctic Site Inventory Project has collected biological data and site-descriptive information in the Antarctic Peninsula region since 1994. This research effort has provided data on those sites which are visited by tourists on shipboard expeditions in the region. The aim is to obtain data on the population status of several key species of Antarctic seabirds, which might be affected by the cumulative impact resulting from visits to the sites. This project will continue the effort by focusing on two heavily-visited Antarctic Peninsula sites: Paulet Island, in the northwestern Weddell Sea and Petermann Island, in the Lemaire Channel near Anvers Island. These sites were selected because both rank among the ten most visited sites in Antarctica each year in terms of numbers of visitors and zodiac landings; both are diverse in species composition, and both are sensitive to potential environmental disruptions from visitors. These data collected focus on two important biological parameters for penguins and blue-eyed shags: (1) breeding population size (number of occupied nests) and (2) breeding success (number of chicks per occupied nests). A long-term data program will be supported, with studies at the two sites over a five-year period. The main focus will be at Petermann Island, selected for intensive study due to its visitor status and location in the region near Palmer Station. This will allow for comparative data with the Palmer Long Term Ecological Research program. Demographic data will be collected in accordance with Standard Methods established by the Convention for the Conservation of Antarctic Marine Living Resources Ecosystem Monitoring Program and thus will be comparable with similar data sets being collected by other international Antarctic Treaty nation research programs. While separating human-induced change from change resulting from a combination of environmental factors will be difficult, this work will provide a first step to identify potential impacts. These long-term data sets will contribute to a better understanding of biological processes in the entire region and will contribute valuable information to be used by the Antarctic Treaty Parties as they address issues in environmental stewardship in Antarctica.", "east": -57.2138, "geometry": "POINT(-62.63135 -58.95185)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "R/V LMG; FIELD SURVEYS", "locations": null, "north": -52.7302, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Yen, Jeannette; Naveen, Ronald; Leger, Dave", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -65.1735, "title": "Long-term Data Collection at Select Antarctic Peninsula Visitor Sites", "uid": "p0000122", "west": -68.0489}, {"awards": "0130525 Fraser, William", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0105", "datasets": [{"dataset_uid": "002605", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0105", "url": "https://www.rvdata.us/search/cruise/NBP0105"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The potential consequence of human impact on wildlife in Antarctica has been debated for many decades. Scientists, support staff and visitors in Antarctica may have an effect on the behavior and population dynamics of marine mammals and seabirds. Since the early 1970\u0027s, shipboard tourism has expanded to the point where it is timely to address the question, using a scientific research approach. The focus of this study is to examine the potential effect of tourist activities on the Adelie Penguins (Pygoscelis adeliae) in the Antarctic Peninsula. The topic has gathered the interest and opinions of those in private industry, the scientific community, government organizations and environmental groups. A key concern is that increases in these activities may eventually overcome the ability of research to address critical issues in a timely and biologically meaningful manner. The approach to understanding how tourism might affect Adelie Penguins must involve both a study of human activity and a study of natural variability in the physical environment. The ongoing Palmer Long Term Ecological Research program focuses on the ecosystem and its components and thus addresses the issues of natural variability. This project focuses on the human dimension and continues a tourist-monitoring program begun as a pilot project near Palmer Station. This site is in a geographic location that mirrors current patterns in tourism and tourist-wildlife interactions in the western Antarctic Peninsula. It also offers a setting that provides unique opportunities for human impacts research. This includes the presence of long-term databases that document environmental variability over multiple time and space scales in both marine and terrestrial habitats, and the ability to examine potential tourist impacts as part of controlled experiments. The results of the study will have important implications to understanding interactions between climate change and ecosystem response, and for detecting, mitigating and managing the consequences of human activities such as tourism.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Fraser, William; Smith, Raymond", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Monitoring the Human Impact and Environmental Variability on Adelie Penguins at Palmer Station, Antarctica", "uid": "p0000819", "west": null}, {"awards": "9910263 Zhou, Meng", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0104; Expedition data of NBP0204", "datasets": [{"dataset_uid": "002643", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0204", "url": "https://www.rvdata.us/search/cruise/NBP0204"}, {"dataset_uid": "002657", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002585", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002587", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0204", "url": "https://www.rvdata.us/search/cruise/NBP0204"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on juvenile and adult krill and mesozooplankton prey distribution, using acoustic techniques. Studies will be conducted and krill shrinkage and mortality rates as well as krill aggregation behavior. The results will be analyzed in coordination with components involved in physical and biological models. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Zhou, Meng", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "GLOBEC: Krill Distribution and Abundance in Winter", "uid": "p0000805", "west": null}, {"awards": "9011927 Ross, Robin; 9632763 Smith, Raymond", "bounds_geometry": "POLYGON((-79.68459 -52.36474,-77.851019 -52.36474,-76.017448 -52.36474,-74.183877 -52.36474,-72.350306 -52.36474,-70.516735 -52.36474,-68.683164 -52.36474,-66.849593 -52.36474,-65.016022 -52.36474,-63.182451 -52.36474,-61.34888 -52.36474,-61.34888 -54.071087,-61.34888 -55.777434,-61.34888 -57.483781,-61.34888 -59.190128,-61.34888 -60.896475,-61.34888 -62.602822,-61.34888 -64.309169,-61.34888 -66.015516,-61.34888 -67.721863,-61.34888 -69.42821,-63.182451 -69.42821,-65.016022 -69.42821,-66.849593 -69.42821,-68.683164 -69.42821,-70.516735 -69.42821,-72.350306 -69.42821,-74.183877 -69.42821,-76.017448 -69.42821,-77.851019 -69.42821,-79.68459 -69.42821,-79.68459 -67.721863,-79.68459 -66.015516,-79.68459 -64.309169,-79.68459 -62.602822,-79.68459 -60.896475,-79.68459 -59.190128,-79.68459 -57.483781,-79.68459 -55.777434,-79.68459 -54.071087,-79.68459 -52.36474))", "dataset_titles": "Expedition Data; Expedition data of NBP0105", "datasets": [{"dataset_uid": "001649", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0301"}, {"dataset_uid": "001665", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0401"}, {"dataset_uid": "001613", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0501"}, {"dataset_uid": "001578", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0601"}, {"dataset_uid": "001817", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0201"}, {"dataset_uid": "001488", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0901"}, {"dataset_uid": "001884", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0101"}, {"dataset_uid": "001998", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0001"}, {"dataset_uid": "002045", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9906"}, {"dataset_uid": "002292", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9302"}, {"dataset_uid": "002605", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0105", "url": "https://www.rvdata.us/search/cruise/NBP0105"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The annual advance and retreat of pack ice may be the major physical determinant of spatial and temporal changes in the structure and function of antarctic marine communities. Interannual cycles and/or trends in the annual extent of pack ice may also have significant effects on all levels of the food web, from total annual primary production to breeding success in seabirds. Historical records indicate a six to eight year cycle in the maximum extent of pack ice in the winter. During this decade, winters were colder in 1980 and 1981, and again in 1986 and 1987. Winter-over survival in Adelie penguins varied on the same cycle, higher in winters with heavy pack ice. This Long Term Ecological Research (LTER) project will define ecological processes linking the extent of annual pack ice with the biological dynamics of different trophic levels within antarctic marine communities. The general focus is on interannual variability in representative populations from the antarctic marine food web and on mechanistic linkages that control the observed variability in order to develop broader generalizations applicable to other large marine environments. To achieve these objectives, data from several spatial and temporal scales, including remote sensing, a field approach that includes an annual monitoring program, a series of process-oriented research cruises, and a modeling effort to provide linkages on multiple spatial and temporal scales between biological and environmental components of the ecosystem will be employed.", "east": -61.34888, "geometry": "POINT(-70.516735 -60.896475)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V LMG; R/V NBP", "locations": null, "north": -52.36474, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Raymond; Ross, Robin Macurda; Fraser, William; Martinson, Douglas; Ducklow, Hugh", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": "LTER", "south": -69.42821, "title": "Long-Term Ecological Research on the Antarctic Marine Ecosystem: An Ice-Dominated Environment", "uid": "p0000236", "west": -79.68459}, {"awards": "9816616 Trivelpiece, Wayne", "bounds_geometry": "POLYGON((-70.860664 -52.350334,-69.5007142 -52.350334,-68.1407644 -52.350334,-66.7808146 -52.350334,-65.4208648 -52.350334,-64.060915 -52.350334,-62.7009652 -52.350334,-61.3410154 -52.350334,-59.9810656 -52.350334,-58.6211158 -52.350334,-57.261166 -52.350334,-57.261166 -53.6353506,-57.261166 -54.9203672,-57.261166 -56.2053838,-57.261166 -57.4904004,-57.261166 -58.775417,-57.261166 -60.0604336,-57.261166 -61.3454502,-57.261166 -62.6304668,-57.261166 -63.9154834,-57.261166 -65.2005,-58.6211158 -65.2005,-59.9810656 -65.2005,-61.3410154 -65.2005,-62.7009652 -65.2005,-64.060915 -65.2005,-65.4208648 -65.2005,-66.7808146 -65.2005,-68.1407644 -65.2005,-69.5007142 -65.2005,-70.860664 -65.2005,-70.860664 -63.9154834,-70.860664 -62.6304668,-70.860664 -61.3454502,-70.860664 -60.0604336,-70.860664 -58.775417,-70.860664 -57.4904004,-70.860664 -56.2053838,-70.860664 -54.9203672,-70.860664 -53.6353506,-70.860664 -52.350334))", "dataset_titles": "Expedition data of LMG0009; Expedition data of LMG0108A", "datasets": [{"dataset_uid": "002692", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0108A", "url": "https://www.rvdata.us/search/cruise/LMG0108A"}, {"dataset_uid": "002689", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0009", "url": "https://www.rvdata.us/search/cruise/LMG0009"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9816616 Trivelpiece Long-term seabird research conducted at Admiralty Bay, which is located on King George Island in the Antarctic Peninsula region, has documented annual variability in the life history parameters of the breeding biology and ecology of the Adelie, gentoo and chinstrap penguins. Twenty-year records acquired on these species, including survival and recruitment, population size and breeding success, and diets and foraging ecology have enabled scientists to test key hypotheses regarding the linkage between these predator parameters and variability in the Antarctic marine ecosystem. This project will focus on understanding the linkages between the physical environment and the population biology of penguins, in particular, sea ice coverage and its impact on krill availability as a food source for penguins. Krill is a key food web species in the Antarctic oceans and accounts for nearly one hundred percent of the prey eaten by dominant predators such as baleen whales, seals and penguins. Analysis of long-term data sets has suggested that years of heavy winter sea ice favor krill recruitment, as larval krill find refuge and food in the sea ice habitat. It has also been observed that years of heavy sea ice favor Adelie penguin recruitment and not that of chinstrap penguins. Aspects of the work include analysis of diet samples, shipboard krill sampling, survival and recruitment studies of penguins, satellite tracking of penguins during the breeding season, and analysis of satellite sea ice images. Penguins are the key species used to monitor the impact of commercial fisheries activities in the region, so this study will provide useful information to the Convention for the Conservation of Antarctic Marine Living Resources, which is the part of the Antarctic Treaty System which focuses on fisheries management.", "east": -57.261166, "geometry": "POINT(-64.060915 -58.775417)", "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.350334, "nsf_funding_programs": null, "paleo_time": null, "persons": "Trivelpiece, Wayne; Smith, Craig", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.2005, "title": "Penguin-Krill-Ice Interactions: The Impact of Environmental Variability on Penguin Demography", "uid": "p0000616", "west": -70.860664}, {"awards": "0538594 Ponganis, Paul", "bounds_geometry": "POLYGON((165.983 -77.683,166.0164 -77.683,166.0498 -77.683,166.0832 -77.683,166.1166 -77.683,166.15 -77.683,166.1834 -77.683,166.2168 -77.683,166.2502 -77.683,166.2836 -77.683,166.317 -77.683,166.317 -77.6897,166.317 -77.6964,166.317 -77.7031,166.317 -77.7098,166.317 -77.7165,166.317 -77.7232,166.317 -77.7299,166.317 -77.7366,166.317 -77.7433,166.317 -77.75,166.2836 -77.75,166.2502 -77.75,166.2168 -77.75,166.1834 -77.75,166.15 -77.75,166.1166 -77.75,166.0832 -77.75,166.0498 -77.75,166.0164 -77.75,165.983 -77.75,165.983 -77.7433,165.983 -77.7366,165.983 -77.7299,165.983 -77.7232,165.983 -77.7165,165.983 -77.7098,165.983 -77.7031,165.983 -77.6964,165.983 -77.6897,165.983 -77.683))", "dataset_titles": "The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins", "datasets": [{"dataset_uid": "600057", "doi": "10.15784/600057", "keywords": "Antarctica; Biota; Oceans; Penguin; Southern Ocean", "people": "Ponganis, Paul", "repository": "USAP-DC", "science_program": null, "title": "The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins", "url": "https://www.usap-dc.org/view/dataset/600057"}], "date_created": "Sun, 20 Dec 2009 00:00:00 GMT", "description": "The research will examine blood and muscle oxygen store depletion in relation to the documented aerobic dive limit (ADL, onset of post-dive blood lactate accumulation) in diving of emperor penguins. The intellectual merits of this proposal involve its evaluation of the physiological basis of the ADL concept. The ADL is probably the most commonly-used, but rarely measured, factor to interpret and model the behavior and foraging ecology of diving animals. Based on prior studies, and on recent investigations of respiratory and blood oxygen depletion during dives of emperor penguins, it is hypothesized that the ADL is a result of the depletion of myoglobin (Mb)-bound oxygen and increased glycolysis in the primary locomotory muscles. This project will accurately define the physiological mechanisms underlying the ADL through 1) evaluation of the rate and magnitude of muscle oxygen depletion during dives in relation to the previously measured ADL, 2) characterization of the hemoglobin-oxygen dissociation curve in blood of emperor penguins and comparison of that curve to those of other diving and non-diving species, 3) application of the emperor hemoglogin-oxygen dissociation curve to previously collected oxygen and hemoglobin data in order to estimate the rate and magnitude of blood oxygen depletion during dives, and 4) measurement of muscle phosphoocreatine and glycogen concentrations in order to estimate their potential contributions to muscle energy metabolism during diving. The project also continues the census and monitoring of the emperor colonies in the Ross Sea, which is especially important in light of both fisheries activity and the movement of iceberg B15-A. Broader impacts of the project include: 1) technological development of microprocessor-based, \"backpack\" near-infrared spectrophotometer, which will be applicable not only to other species, but also to other fields (i.e., exercise physiology), 2) collaboration with the Department of Anesthesia at the U.S. Naval Hospital in San Diego in the training of anesthesia residents in research techniques, 3) the training and thesis research of two graduate students in these techniques and in Antarctic field research, and 4) a better understanding of the ADL concept and its use in the fields of diving behavior and physiology. In addition the annual census of emperor penguin colonies in the Ross Sea, in conjunction with the continued evaluation of previously developed remote cameras to monitor colony status, will form the basis of a new educational web site, and allow development of an educational outreach program to school children through SeaWorld of San Diego.", "east": 166.317, "geometry": "POINT(166.15 -77.7165)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.683, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ponganis, Paul", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.75, "title": "The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins", "uid": "p0000535", "west": 165.983}, {"awards": "0523183 Padman, Laurence", "bounds_geometry": "POLYGON((-75 -65,-74 -65,-73 -65,-72 -65,-71 -65,-70 -65,-69 -65,-68 -65,-67 -65,-66 -65,-65 -65,-65 -65.6,-65 -66.2,-65 -66.8,-65 -67.4,-65 -68,-65 -68.6,-65 -69.2,-65 -69.8,-65 -70.4,-65 -71,-66 -71,-67 -71,-68 -71,-69 -71,-70 -71,-71 -71,-72 -71,-73 -71,-74 -71,-75 -71,-75 -70.4,-75 -69.8,-75 -69.2,-75 -68.6,-75 -68,-75 -67.4,-75 -66.8,-75 -66.2,-75 -65.6,-75 -65))", "dataset_titles": "U.S. GLOBEC Southern Ocean data", "datasets": [{"dataset_uid": "002739", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "U.S. GLOBEC Southern Ocean data", "url": "https://www.bco-dmo.org/project/2039"}], "date_created": "Mon, 22 Jun 2009 00:00:00 GMT", "description": "This collaborative study between Old Dominion University, the College of William and Mary, Earth and Space Research, and the Woods Hole Oceanographic Institution will examine the interactions among the ocean circulation, vertical mixing, sea ice, and marine biological processes on the western Antarctic Peninsula continental shelf. The study will result in analytical and numerical modeling tools that are based on, and will have been tested against the extensive data set obtained in the course of the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec). These models will provide insight into circulation and biological dynamics that will be applicable to the development and refinement of physical and biological models for other high latitude systems. \u003cbr/\u003e\u003cbr/\u003eSO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. It is currently in a synthesis and modeling phase. This collaborative project is concerned with the environmental setting and dynamics that constrain ecological processes, and will be integrated with other synthesis and modeling studies that deal with grazers, predators, and other higher trophic levels", "east": -65.0, "geometry": "POINT(-70 -68)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "OCEAN CURRENTS; NOT APPLICABLE; Antarctica; Southern Ocean", "locations": "Antarctica; Southern Ocean", "north": -65.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Padman, Laurence", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": -71.0, "title": "Collaborative Proposal: U.S. SO GLOBEC Synthesis and Modeling: Circulation and Hydrographic Data Analyses and Modeling Studies", "uid": "p0000216", "west": -75.0}, {"awards": "0439759 Ballard, Grant", "bounds_geometry": "POLYGON((-180 -60,-177.5 -60,-175 -60,-172.5 -60,-170 -60,-167.5 -60,-165 -60,-162.5 -60,-160 -60,-157.5 -60,-155 -60,-155 -61.76,-155 -63.52,-155 -65.28,-155 -67.04,-155 -68.8,-155 -70.56,-155 -72.32,-155 -74.08,-155 -75.84,-155 -77.6,-157.5 -77.6,-160 -77.6,-162.5 -77.6,-165 -77.6,-167.5 -77.6,-170 -77.6,-172.5 -77.6,-175 -77.6,-177.5 -77.6,180 -77.6,178.5 -77.6,177 -77.6,175.5 -77.6,174 -77.6,172.5 -77.6,171 -77.6,169.5 -77.6,168 -77.6,166.5 -77.6,165 -77.6,165 -75.84,165 -74.08,165 -72.32,165 -70.56,165 -68.8,165 -67.04,165 -65.28,165 -63.52,165 -61.76,165 -60,166.5 -60,168 -60,169.5 -60,171 -60,172.5 -60,174 -60,175.5 -60,177 -60,178.5 -60,-180 -60))", "dataset_titles": "Access to data; Adelie penguin banding data 1994-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science; Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "datasets": [{"dataset_uid": "001368", "doi": "", "keywords": null, "people": null, "repository": "CADC", "science_program": null, "title": "Access to data", "url": "http://data.prbo.org/apps/penguinscience/AllData/mammals"}, {"dataset_uid": "601444", "doi": "10.15784/601444", "keywords": "Adelie Penguin; Antarctica; Biota; Demography; Mark-Recapture; Monitoring; Penguin; Ross Island", "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "url": "https://www.usap-dc.org/view/dataset/601444"}, {"dataset_uid": "601443", "doi": "10.15784/601443", "keywords": "Adelie Penguin; Antarctica; Biota; Demography; Penguin; Ross Sea; Seabirds", "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin banding data 1994-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "url": "https://www.usap-dc.org/view/dataset/601443"}], "date_created": "Tue, 19 May 2009 00:00:00 GMT", "description": "This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. The long-term changes occurring at these colonies are representative of changes throughout the Ross Sea, where 30% of all Adelie penguins reside, and are in some way related to changing climate. The recent grounding of two very large icebergs against Ross and Beaufort islands, with associated increased variability in sea-ice extent, has provided an unparalleled natural experiment affecting wild, interannual swings in colony productivity, foraging effort, philopatry and recruitment. Results of this natural experiment can provide insights into the demography and geographic population structuring of this species, having relevance Antarctic-wide in understanding its future responses to climate change as well as interpreting its amazingly well known Holocene history. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). An increased effort will focus on understanding factors that affect over-winter survival. The hypothesis is that the age structure of Cape Crozier has changed over the past thirty years and no longer reflects the smaller colonies nearby. Based on recent analyses, it appears that the Ross Island penguins winter in a narrow band of sea ice north of the Antarctic Circle (where daylight persists) and south of the southern boundary of the Antarctic Circumpolar Current (where food abounds). More extensive winter ice takes the penguins north of that boundary where they incur higher mortality. Thus, where a penguin winters may be due to the timing of its post-breeding departure (which differs among colonies), which affects where it first encounters sea ice on which to molt and where it will be transported by the growing ice field. Foraging effort and interference competition for food suggested as factors driving the geographic structuring of colonies. The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. Information will be related to sea-ice conditions as quantified by satellite images. Demographic and foraging-effort models will be used to synthesize results. The iceberg natural experiment is an unparalleled opportunity to investigate the demographics of a polar seabird and its response to climate change. The marked, interannual variability in apparent philopatry, with concrete data being collected on its causes, is a condition rarely encountered among studies of vertebrates. Broader impacts include collaborating with New Zealand and Italian researchers, involving high school teachers and students in the fieldwork and continuing a website to highlight results to both scientists and the general public.", "east": -155.0, "geometry": "POINT(-175 -68.8)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ballard, Grant", "platforms": "Not provided", "repo": "CADC", "repositories": "CADC; USAP-DC", "science_programs": null, "south": -77.6, "title": "COLLABORATIVE: Geographic Structure of Adelie Penguin Colonies - Demography of Population Change", "uid": "p0000068", "west": 165.0}, {"awards": "0125098 Emslie, Steven", "bounds_geometry": "POLYGON((-50 -60,-29 -60,-8 -60,13 -60,34 -60,55 -60,76 -60,97 -60,118 -60,139 -60,160 -60,160 -63,160 -66,160 -69,160 -72,160 -75,160 -78,160 -81,160 -84,160 -87,160 -90,139 -90,118 -90,97 -90,76 -90,55 -90,34 -90,13 -90,-8 -90,-29 -90,-50 -90,-50 -87,-50 -84,-50 -81,-50 -78,-50 -75,-50 -72,-50 -69,-50 -66,-50 -63,-50 -60))", "dataset_titles": "Occupation History and Diet of Adelie Penguins in the Ross Sea Region", "datasets": [{"dataset_uid": "600028", "doi": "10.15784/600028", "keywords": "Antarctica; Biota; Geochronology; Oceans; Paleoclimate; Penguin; Radiocarbon; Ross Sea; Southern Ocean", "people": "Emslie, Steven", "repository": "USAP-DC", "science_program": null, "title": "Occupation History and Diet of Adelie Penguins in the Ross Sea Region", "url": "https://www.usap-dc.org/view/dataset/600028"}], "date_created": "Sun, 01 Feb 2009 00:00:00 GMT", "description": "#0125098\u003cbr/\u003eSteve Emslie\u003cbr/\u003e\u003cbr/\u003eOccupation History and Diet of Adelie Penguins in the Ross Sea Region\u003cbr/\u003e\u003cbr/\u003eThis project will build on previous studies to investigate the occupation history and diet of Adelie penguins (Pygoscelis adeliae) in the Ross Sea region, Antarctica, with excavations of abandoned and active penguin colonies. Numerous active and abandoned colonies exist on the Victoria Land coast, from Cape Adare to Marble Point will be sampled. Some of these sites have been radiocarbon-dated and indicate a long occupation history for Adelie penguins extending to 13,000 years before present (B. P.). The material recovered from excavations, as demonstrated from previous investigations, will include penguin bones, tissue, and eggshell fragments as well as abundant remains of prey (fish bones, otoliths, squid beaks) preserved in ornithogenic (formed from bird guano) soils. These organic remains will be quantified and subjected to radiocarbon analyses to obtain a colonization history of penguins in this region. Identification of prey remains in the sediments will allow assessment of penguin diet. Other data (ancient DNA) from these sites will be analyzed through collaboration with New Zealand scientists. Past climatic conditions will be interpreted from published ice-core and marine-sediment records. These data will be used to test the hypothesis that Adelie penguins respond to climate change, past and present, in a predictable manner. In addition, the hypothesis that Adelie penguins alter their diet in accordance with climate, sea-ice conditions, and other marine environmental variables along a latitudinal gradient will be tested. Graduate and undergraduate students will be involved in this project and a project Web site will be developed to report results and maintain educational interaction between the PI and students at local middle and high schools in Wilmington, NC.", "east": 160.0, "geometry": "POINT(55 -75)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Emslie, Steven", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Occupation History and Diet of Adelie Penguins in the Ross Sea Region", "uid": "p0000220", "west": -50.0}, {"awards": "0229638 Ponganis, Paul", "bounds_geometry": "POLYGON((163 -77,163.4 -77,163.8 -77,164.2 -77,164.6 -77,165 -77,165.4 -77,165.8 -77,166.2 -77,166.6 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.6 -78,166.2 -78,165.8 -78,165.4 -78,165 -78,164.6 -78,164.2 -78,163.8 -78,163.4 -78,163 -78,163 -77.9,163 -77.8,163 -77.7,163 -77.6,163 -77.5,163 -77.4,163 -77.3,163 -77.2,163 -77.1,163 -77))", "dataset_titles": "Diving Physiology and Behavior of Emperor Penguins", "datasets": [{"dataset_uid": "600031", "doi": "10.15784/600031", "keywords": "Antarctica; Biota; Oceans; Penguin; Southern Ocean", "people": "Ponganis, Paul", "repository": "USAP-DC", "science_program": null, "title": "Diving Physiology and Behavior of Emperor Penguins", "url": "https://www.usap-dc.org/view/dataset/600031"}], "date_created": "Mon, 31 Mar 2008 00:00:00 GMT", "description": "The emperor penguin, Aptenodytes forsteri, is the premier avian diver and a top predator in the Antarctic ecosystem. The routine occurrence of 500-m diver during foraging trips to sea is both a physiological and behavior enigma. The objectives of this project address how and why emperors dive as deep and long as they do. The project examines four major topics in the diving biology of emperor penguins: pressure tolerance, oxygen store management, end-organ tolerance of diving hypoxemia/ischemia, and deep-dive foraging behavior. These subjects are relevant to the role of the emperor as a top predator in the Antarctic ecosystem, and to critical concepts in diving physiology, including decompression sickness, nitrogen narcosis, shallow water blackout, hypoxemic tolerance, and extension of aerobic dive time. The following hypotheses will be tested: 1) Prevention of nitrogen narcosis and decompression sickness in emperor penguins is achieved by inhibition of pulmonary gas exchange at depth. 2) Shallow water black out does not occur because of greater cerebral hypoxemic tolerance, and, in deep dives, because of resumption of pulmonary gas exchange during final ascent. 3) The rate of depletion of the blood oxygen store is a function of depth of dive and heart rate. 4) The aerobic dive limit (ADL) reflects the onset of lactate accumulation in locomotory muscle, not total depletion of all oxygen stores. 5) Elevation of tissue antioxidant capacity and free-radical scavenging enzyme activities protect against the routine ischemia/reperfusion which occur during diving. 6) During deep dives, the Antarctic silverfish, Pleuorogramma antarcticum, is the primary prey item for emperors. \u003cbr/\u003e\u003cbr/\u003eIn addition to evaluation of the hypotheses below, the project has broader impacts in several areas such as partnership with foreign and national institutes and organizations (e.g., the National Institute of Polar Research of Japan, Centro de Investigacioines del Noroeste of Mexico, National Geographic, the University of Texas Southwestern Medical Center, and Sea World). Participation in National Geographic television documentaries will provide unique educational opportunities for the general public; development of state-of-the-art technology (e.g., blood oxygen electrode recorders, blood samplers, and miniaturized digital cameras) will lay the groundwork for future research by this group and others; and the effects of the B15 iceberg on breeding success of emperor penguins will continue to be evaluated with population censuses during planned fieldwork at several Ross Sea emperor penguin colonies.", "east": 167.0, "geometry": "POINT(165 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ponganis, Paul", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Diving Physiology and Behavior of Emperor Penguins", "uid": "p0000239", "west": 163.0}, {"awards": "0537960 Beardsley, Robert", "bounds_geometry": "POLYGON((-110 -50,-104 -50,-98 -50,-92 -50,-86 -50,-80 -50,-74 -50,-68 -50,-62 -50,-56 -50,-50 -50,-50 -52.5,-50 -55,-50 -57.5,-50 -60,-50 -62.5,-50 -65,-50 -67.5,-50 -70,-50 -72.5,-50 -75,-56 -75,-62 -75,-68 -75,-74 -75,-80 -75,-86 -75,-92 -75,-98 -75,-104 -75,-110 -75,-110 -72.5,-110 -70,-110 -67.5,-110 -65,-110 -62.5,-110 -60,-110 -57.5,-110 -55,-110 -52.5,-110 -50))", "dataset_titles": "NODC Accession #0039274", "datasets": [{"dataset_uid": "001519", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "NODC Accession #0039274", "url": "http://www.nodc.noaa.gov/cgi-bin/search/prod/accessionsView.pl/details/0039274"}], "date_created": "Mon, 03 Mar 2008 00:00:00 GMT", "description": "Satellite-tracked drifters provide simple yet powerful tools to track the motion of near-surface water on time scales ranging from the tidal/inertial band to monthly and longer. The research described herein will deploy satellite-tracked surface drifters during the annual austral summer Palmer Long Term Ecological Research (LTER) cruises in January 2006 and 2007 in order to investigate the nearsurface Lagrangian currents over the western Antarctic Peninsula (wAP) shelf. This region is experiencing the highest surface air temperature increase (roughly +0.06 degrees C per year) in Antarctica, and LTER and other investigators have found that ecosystem responses to the rapid warming and sea ice decline are already apparent at all trophic levels from phytoplankton to penguins. Building a better understanding of the regional circulation and its variability seems an essential component to understand existing physical and biological processes and longer-term changes in this important and sensitive Antarctic ecosystem. These new Lagrangian measurements will complement those made during the 2001-2003 U.S. Southern Ocean (SO) GLOBEC program and provide the first detailed look at the near-surface flow in this important section of the wAP shelf. In particular, the combined 3-year LTER Lagrangian measurements should identify (a) the source region(s) of the buoyant coastal current discovered flowing southwest along the outer coast of Adelaide Island and into Marguerite Bay during SO GLOBEC and (b) if organized cross-shelf flows occur that help create a two gyre circulation over the shelf as suggested by Hofmann et al (1996) based on regional hydrography. The principal investigators will process and analyze the LTER 2005-2007 drifter data and collaborate with Palmer LTER investigators on the interpretation and integration of the Lagrangian data with their studies. The edited data, analysis results, and animations of the drifter data with surface weather data will be posted on the LTER website for use and viewing by scientists, students, and the public. Results will be presented at national meetings and published in referred journals.", "east": -50.0, "geometry": "POINT(-80 -62.5)", "instruments": null, "is_usap_dc": true, "keywords": null, "locations": null, "north": -50.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Beardsley, Robert; Limeburner, Richard", "platforms": null, "repo": "NCEI", "repositories": "NCEI", "science_programs": "LTER", "south": -75.0, "title": "Palmer LTER Lagrangian Current Measurements", "uid": "p0000232", "west": -110.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Collaborative Research: Physical Mechanisms Driving Food Web Focusing in Antarctic Biological Hotspots
|
None | 2024-02-12 | None | No dataset link provided | Undersea canyons play disproportionately important roles as oceanic biological hotspots and are critical for our understanding of many coastal ecosystems. Canyon-associated biological hotspots have persisted for thousands of years Along the Western Antarctic Peninsula, despite significant climate variability. Observations of currents over Palmer Deep canyon, a representative hotspot along the Western Antarctic Peninsula, indicate that surface phytoplankton blooms enter and exit the local hotspot on scales of ~1-2 days. This time of residence is in conflict with the prevailing idea that canyon associated hotspots are primarily maintained by phytoplankton that are locally grown in association with these features by the upwelling of deep waters rich with nutrients that fuel the phytoplankton growth. Instead, the implication is that horizontal ocean circulation is likely more important to maintaining these biological hotspots than local upwelling through its physical concentrating effects. This project seeks to better resolve the factors that create and maintain focused areas of biological activity at canyons along the Western Antarctic Peninsula and create local foraging areas for marine mammals and birds. The project focus is in the analysis of the ocean transport and concentration mechanisms that sustain these biological hotspots, connecting oceanography to phytoplankton and krill, up through the food web to one of the resident predators, penguins. In addition, the research will engage with teachers from school districts serving underrepresented and underserved students by integrating the instructors and their students completely with the science team. Students will conduct their own research with the same data over the same time as researchers on the project. Revealing the fundamental mechanisms that sustain these known hotspots will significantly advance our understanding of the observed connection between submarine canyons and persistent penguin population hotspots over ecological time, and provide a new model for how Antarctic hotspots function.<br/> <br/> <br/>To understand the physical mechanisms that support persistent hotspots along the Western Antarctic Peninsula (WAP), this project will integrate a modeling and field program that will target the processes responsible for transporting and concentrating phytoplankton and krill biomass to known penguin foraging locations. Within the Palmer Deep canyon, a representative hotspot, the team will deploy a High Frequency Radar (HFR) coastal surface current mapping network, uniquely equipped to identify the eddies and frontal regions that concentrate phytoplankton and krill. The field program, centered on surface features identified by the HFR, will include (i) a coordinated fleet of gliders to survey hydrography, chlorophyll fluorescence, optical backscatter, and active acoustics at the scale of the targeted convergent features; (ii) precise penguin tracking with GPS-linked satellite telemetry and time-depth recorders (TDRs); (iii) and weekly small boat surveys that adaptively target and track convergent features to measure phytoplankton, krill, and hydrography. A high resolution physical model will generalize our field measurements to other known hotspots along the WAP through simulation and determine which physical mechanisms lead to the maintenance of these hotspots. The project will also engage educators, students, and members of the general public in Antarctic research and data analysis with an education program that will advance teaching and learning as well as broadening participation of under-represented groups. This engagement includes professional development workshops, live connections to the public and classrooms, student research symposia, and program evaluation. Together the integrated research and engagement will advance our understanding of the role regional transport pathways and local depth dependent concentrating physical mechanisms play in sustaining these biological hotspots.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | |||||||||||||||||||||||
A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins
|
1744989 |
2024-02-08 | LaRue, Michelle; Ito, Emi; Jenouvrier, Stephanie | This project on emperor penguin populations will quantify penguin presence/absence, and colony size and trajectory, across the entire Antarctic continent using high-resolution satellite imagery. For a subset of the colonies, population estimates derived from high-resolution satellite images will be compared with those determined by aerial surveys - these results have been uploaded to MAPPPD (penguinmap.com) and are freely available for use. This validated information will be used to determine population estimates for all emperor penguin colonies through iterations of supervised classification and maximum likelihood calculations on the high-resolution imagery. The effect of spatial, geophysical, and environmental variables on population size and decadal-scale trends will be assessed using generalized linear models. This research will result in a first ever empirical result for emperor penguin population trends and habitat suitability, and will leverage currently-funded NSF infrastructure and hosting sites to publish results in near-real time to the public. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||||||||||||||||||||
LTER: Ecological Response and Resilience to “Press-Pulse” Disturbances and a Recent Decadal Reversal in Sea Ice Trends Along the West Antarctic Peninsula
|
2026045 2224611 |
2023-07-26 | Schofield, Oscar; Steinberg, Deborah |
|
The goal of all LTER sites is to conduct policy-relevant ecosystem research for questions that require tens of years of data and cover large geographical areas. The Palmer Antarctica Long Term Ecological Research (PAL-LTER) site has been in operation since 1990 and has been studying how the marine ecosystem west of the Antarctica Peninsula (WAP) is responding to a climate that is changing as rapidly as any place on the Earth. The study is evaluating how warming conditions and decreased ice cover leading to extended periods of open water are affecting many aspects of ecosystem function. The team is using combined cutting-edge approaches including yearly ship-based research cruises, small-boat weekly sampling, autonomous vehicles, animal biologging, oceanographic floats and seafloor moorings, manipulative lab-based process studies and modeling to evaluate both seasonal and annual ecosystem responses. These combined approaches are allowing for the study the ecosystem changes at scales needed to assess both short-term and long-term drivers. The study region also includes submarine canyons that are special regions of enhanced biological activity within the WAP. This research program is paired with a comprehensive education and outreach program promoting the global significance of Antarctic science and research. In addition to training for graduate and undergraduate students, they are using newly-developed Polar Literacy Principles as a foundation in a virtual schoolyard program that shares polar instructional materials and provides learning opportunities for K-12 educators. The PAL-LTER team is also leveraging the development of Out of School Time materials for afterschool and summer camp programs, sharing Palmer LTER-specific teaching materials with University, Museum, and 4-H Special Interest Club partners. Polar ecosystems are among the most rapidly changing on Earth. The Palmer LTER (PAL-LTER) program builds on three decades of coordinated research along the western side of the Antarctic Peninsula (WAP) to gain new mechanistic and predictive understanding of ecosystem changes in response to disturbances spanning long-term decadal (press) drivers and changes due to higher-frequency (pulse) drivers, such as large storms and extreme seasonal anomaly in sea ice cover. The influence of major natural climate modes that modulate variations in sea ice, weather, and oceanographic conditions to drive changes in ecosystem structure and function (e.g., El Nio Southern Oscillation and Southern Annular Mode) are being studied at multiple time scales from diel, seasonal, interannual, to decadal intervals, and space scalesfrom hemispheric to global scale investigated by remote sensing, the regional scales. Specifically, the team is evaluating how variability of physical properties (such as vertical and alongshore connectivity processes) interact to modulate biogeochemical cycling and community ecology in the WAP region. The study is providing an evaluation of ecosystem resilience and ecological responses to long-term press-pulse drivers and a decadal-level reversal in sea ice coverage. This program is providing fundamental understanding of population and biogeochemical responses for a marine ecosystem experiencing profound change. | POLYGON((-79.65 -63.738,-77.9728 -63.738,-76.29560000000001 -63.738,-74.61840000000001 -63.738,-72.94120000000001 -63.738,-71.26400000000001 -63.738,-69.58680000000001 -63.738,-67.9096 -63.738,-66.2324 -63.738,-64.5552 -63.738,-62.878 -63.738,-62.878 -64.3683,-62.878 -64.9986,-62.878 -65.6289,-62.878 -66.25919999999999,-62.878 -66.8895,-62.878 -67.5198,-62.878 -68.1501,-62.878 -68.7804,-62.878 -69.41069999999999,-62.878 -70.041,-64.5552 -70.041,-66.2324 -70.041,-67.9096 -70.041,-69.5868 -70.041,-71.26400000000001 -70.041,-72.94120000000001 -70.041,-74.61840000000001 -70.041,-76.29560000000001 -70.041,-77.9728 -70.041,-79.65 -70.041,-79.65 -69.41069999999999,-79.65 -68.7804,-79.65 -68.1501,-79.65 -67.5198,-79.65 -66.8895,-79.65 -66.25919999999999,-79.65 -65.6289,-79.65 -64.9986,-79.65 -64.3683,-79.65 -63.738)) | POINT(-71.26400000000001 -66.8895) | false | false | |||||||||||||||||||||||
Collaborative Research: Using Multiple Stable Isotopes to Investigate Middle to Late Holocene Ecological Responses by Adelie Penguins in the Ross Sea
|
2135696 2135695 |
2022-10-28 | Emslie, Steven; Lane, Chad S; Polito, Michael | No dataset link provided | Stable isotope analyses of carbon and nitrogen (δ13C and δ15N) are commonly used to investigate animal migration, foraging locations and diet, especially in marine species that can travel over great distances. One other stable isotope, sulfur (δ34S), is not as commonly used but is increasingly being applied to refine and corroborate data obtained from carbon and nitrogen analyses. Collagen is one of the best tissues for these analyses as it is abundant in bone, preserves well, and can be easily extracted for analysis. In the Ross Sea region, the cold, dry environment has been conductive for the preservation of Adélie penguin (Pygoscelis adeliae) bones, feathers, eggshell and even mummified remains, at active and abandoned colonies that date from before the Last Glacial Maximum (>45,000 yrs ago) through the Holocene. Most of these colonies are associated with one of three polynyas, or highly productive areas of open water surrounded by sea ice in the Ross Sea. Thus, this species is an excellent bioindicator for marine conditions, past and present, and its colonies have appeared and disappeared throughout this region with changing climate and sea ice regimes for millennia. Current warming trends are inducing relatively rapid ecological responses by this species and some of the largest colonies in the Ross Sea are likely to be abandoned in the next 50 years from rising sea level. The recently established Ross Sea Marine Protected Area aims to protect Adélie penguins and other species in this region from human impacts and knowledge on how this species responds to climate change, past and present, will support this goal. We propose to investigate ecological responses in diet and foraging behavior of the Adélie penguin to known climatic events that occurred in the middle to late Holocene, specifically, before, during and after a warming period known as the penguin ‘optimum’ at 2000 - 4000 cal yr before present (BP). We will apply for the first time a suite of three stable isotope analyses (δ13C, δ15N, δ34S) on chick bones and feathers, as well as prey remains, from active and abandoned colonies in the Ross Sea. We will use existing tissue samples (~60-80 bones) collected by PI Emslie with NSF support since 2001 and supplement these with newly collected samples of bones and feathers in this project. We will conduct compound-specific isotope analyses of carbon on essential amino acids from collagen from a selected sample of 30-40 bones that span the past 5000 yrs to provide corroboratory information. We will apply three-dimensional Bayesian niche models and/or community metrics using R scripts in these analyses to identify isotopic ‘signatures’ of existing and past foraging grounds and polynyas used by Adélie penguins in the southern, central, and northern Ross Sea. This four-year study will the first of its kind to apply multiple stable isotope analyses to investigate a living species of seabird over millennia in a region where it still exists today. Broader Impacts: The PIs are committed to public engagement and enhancement of K-12 education in the STEM sciences. Broader impacts of this research will include support and training for one Ph.D., two M.S., and eight undergraduate students in the Department of Biology and Marine Biology, and two M.A. students in the Watson School of Education at the University of North Carolina Wilmington (UNCW). The last two students will continue to expand on a detailed polar curriculum that was initiated in previous NSF grants for 2nd and 4th grade students, and most recently for 9-12th grade students now available on PI Emslie’s website (www.uncw.edu/penguins). Additional curricula for K-12 students will be designed and tested in this project, which will include visitation to local K-12 schools. As in previous awards, we will focus on schools that serve historically under-represented groups in the sciences. We will work with the UNCW Center for Education in STEM Sciences to assess the efficacy of this new curricula. All curricula will be uploaded on the Educational Resource Commons website. Field work will include blogs and active question-answer sessions with students at these schools. We will continue to post project information and updates on PI Emslie’s website and YouTube channel. Our partnership with tour ship companies will provide a platform for onboard lectures on the importance of scientific research as well as citizen science opportunities for another sector of the public. This proposal requires fieldwork in the Antarctic. | POLYGON((-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70.8,-180 -71.6,-180 -72.4,-180 -73.2,-180 -74,-180 -74.8,-180 -75.6,-180 -76.4,-180 -77.2,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -77.2,160 -76.4,160 -75.6,160 -74.8,160 -74,160 -73.2,160 -72.4,160 -71.6,160 -70.8,160 -70,162 -70,164 -70,166 -70,168 -70,170 -70,172 -70,174 -70,176 -70,178 -70,-180 -70)) | POINT(170 -74) | false | false | |||||||||||||||||||||||
Collaborative Research: Common Environmental Drivers Determine the Occupation Chronology of Adélie Penguins and Moss Peatbanks on the Western Antarctic Peninsula
|
2012365 2012444 2012247 |
2022-07-24 | Groff, Dulcinea; Cimino, Megan; Johnston, David | No dataset link provided | This award is funded in whole or part under the American Rescue Plan Act of 2021 (Public Law 117-2). Part I: Non-technical description: Adlie penguin colonies are declining and disappearing from the western Antarctic Peninsula. However, not all colonies in a certain area decline or disappear at the same rate. This research project will evaluate the influence of terrestrial surface properties on Adlie penguin colonies, leveraging five decades of research on seabirds near Palmer Station where an Adlie colony on Litchfield Island became extinct in 2007 while other colonies nearby are still present. The researchers will combine information obtained from remote sensing, UAS (Unoccupied Aircraft System, or drones) high-resolution maps, reconstruction of past moss banks and modeling with machine learning tools to define suitable penguin and peatbank moss habitats and explore the influence of microclimate on their distributions. In particular, the researchers are asking if guano from penguin colonies could act as fertilizers of moss banks in the presence of localized wind patters that can carry airborne nitrogen to the mosses. Modeling will relate penguin and peatbank moss spatial patterns to environmental variables and provide a greater understanding of how continued environmental change could impact these communities. The project allows for documentation of terrestrial Antarctic ecosystems in support of seabirds and provisioning of such information to the broader science community that seeks to study penguins, educating graduate and undergraduate students and a post-doctoral researcher. The research team includes two young women as Principal Investigators, one of them from an under-represented ethnic minority, first time Antarctic Principal Investigator, from an EPSCoR state (Wyoming), broadening participation in Antarctic research. Researchers will serve as student mentors through the Duke Bass Connections program entitled Biogeographic Assessment of Antarctic Coastal Habitats. This program supports an interdisciplinary team of graduate and undergraduate students collaborating with project faculty and experts on cutting-edge research bridging the classroom and the real world. Part II: Technical description: This research aims to understand the changes at the microclimate scale (meters) by analyzing present and past Adlie penguin colonies and moss peatbanks in islands around Palmer Station in the western Antarctic Peninsula interlinked systems that are typically considered in isolation. By integrating in situ and remote data, this project will synthesize the drivers of biogeomorphology on small islands of the Antarctic Peninsula, a region of rapid change where plants and animals often co-occur and animal presence often determines the habitation of plants. A multi-disciplinary approach combine field measurements, remote sensing, UAS (Unoccupied Aircraft Systems) maps, paleoecology and modeling with machine learning to define suitable habitats and the influence of microclimates on penguin and peatbank distributions. The link between the two aspects of this study, peatbanks and penguins, is the potential source of nutrients for peat mosses from penguin guano. Peatbank and penguin distribution will be modeled and all models will be validated using in situ information from moss samples that will identify mechanistic processes. This project leverages 5 decades of seabird research in the area and high-definition remote sensing provided by the Polar Geospatial center to study the microclimate of Litchfield Island where an Adlie colony became extinct in 2007 when other colonies nearby are still present. The research team includes two early career women as Principal Investigators, one of them from an under-represented ethnic minority, first time Antarctic Principal Investigator, from an EPSCoR state (Wyoming). Researchers will serve as mentors for students through the Duke Bass Connections program entitled Biogeogrpahic Assessment of Antarctic Coastal Habitats which bridges the classroom and the real world. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-65 -64.5,-64.8 -64.5,-64.6 -64.5,-64.4 -64.5,-64.2 -64.5,-64 -64.5,-63.8 -64.5,-63.6 -64.5,-63.4 -64.5,-63.2 -64.5,-63 -64.5,-63 -64.55,-63 -64.6,-63 -64.65,-63 -64.7,-63 -64.75,-63 -64.8,-63 -64.85,-63 -64.9,-63 -64.95,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.95,-65 -64.9,-65 -64.85,-65 -64.8,-65 -64.75,-65 -64.7,-65 -64.65,-65 -64.6,-65 -64.55,-65 -64.5)) | POINT(-64 -64.75) | false | false | |||||||||||||||||||||||
OPP-PRF Pygoscelis Penguin Response to Potential Prey Retention along the West Antarctic Peninsula
|
2138277 |
2022-07-19 | Gallagher, Katherine | Pygoscelis penguins are central place foragers during the summer while they raise their chicks. They leave and return to the same colony location after hunting for food and rely on the availability of Antarctic krill, their primary food source. This research focuses on whether penguin diets and colony location reflect the retention of prey around and near colonies on the West Antarctic Peninsula. Eddies and other oceanographic processes may facilitate prey retention at certain locations, driving penguin colony establishment and success. This project hypothesizes that Pygoscelis penguin diets will be composed of more Antarctic krill (Euphausia superba) when local prey retention is high, possibly due to subsurface eddies. This hypothesis will be tested using satellite-based estimates of Pygoscelis penguin diet composition using multispectral sensor data to estimate nitrogen values and infer trophic level. Prey retention will be calculated along the peninsula using the Regional Ocean Modeling System (ROMS). Simulated particles and diel vertical migration will be used to mimic krill behavior. These particles can be experimentally seeded across multiple depths in multiple years to assess residence times in the system. Using penguin colony data from the Mapping Application for Penguin Populations and Projected Dynamics (MAPPPD), the PI will correlate diet and retention metrics to local penguin colony growth and persistence and build a predictive model of where colonies may form in the future. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-78 -62,-76.2 -62,-74.4 -62,-72.6 -62,-70.8 -62,-69 -62,-67.2 -62,-65.4 -62,-63.6 -62,-61.8 -62,-60 -62,-60 -63,-60 -64,-60 -65,-60 -66,-60 -67,-60 -68,-60 -69,-60 -70,-60 -71,-60 -72,-61.8 -72,-63.6 -72,-65.4 -72,-67.2 -72,-69 -72,-70.8 -72,-72.6 -72,-74.4 -72,-76.2 -72,-78 -72,-78 -71,-78 -70,-78 -69,-78 -68,-78 -67,-78 -66,-78 -65,-78 -64,-78 -63,-78 -62)) | POINT(-69 -67) | false | false | ||||||||||||||||||||||||
Collaborative Research: Linking Predator Behavior and Resource Distributions: Penguin-directed Exploration of an Ecological Hotspot
|
1744885 |
2022-07-18 | Moline, Mark; Benoit-Bird, Kelly; Cimino, Megan | No dataset link provided | This research project will use specially designed autonomous underwater vehicles (AUVs) to investigate interactions between Adelie and Gentoo penguins (the predators) and their primary food source, Antarctic krill (prey). While it has long been known that penguins feed on krill, details about how they search for food and target individual prey items is less well understood. Krill aggregate in large swarms, and the size or the depth of these swarms may influence the feeding behavior of penguins. Similarly, penguin feeding behaviors may differ based on characteristics of the environment, krill swarms, and the presence of other prey and predator species. This project will use specialized smart AUVs to simultaneously collect high-resolution observations of penguins, their prey, and environmental conditions. Data will shed light on strategies used by penguins prove foraging success during the critical summer chick-rearing period. This will improve predictions of how penguin populations may respond to changing environmental conditions in the rapidly warming Western Antarctic Peninsula region. Greater understanding of how individual behaviors shape food web structure can also inform conservation and management efforts in other marine ecosystems. This project has a robust public education and outreach plan linked with the Birch and Monterey Bay Aquariums.<br/><br/>Previous studies have shown that sub-mesoscale variability (1-10 km) in Antarctic krill densities and structure impact the foraging behavior of air-breathing predators. However, there is little understanding of how krill aggregation characteristics are linked to abundance on fine spatial scales, how these patterns are influenced by the habitat, or how prey characteristics influences the foraging behavior of predators. These data gaps remain because it is extremely challenging to collect detailed data on predators and prey simultaneously at the scale of an individual krill patch and single foraging event. Building on previously successful efforts, this project will integrate echosounders into autonomous underwater vehicles (AUVs), so that oceanographic variables and multi-frequency acoustic scattering from both prey and penguins can be collected simultaneously. This will allow for quantification of the environment at the scale of individual foraging events made by penguins during the critical 50+ day chick-rearing period. Work will be centered near Palmer Station, where long-term studies have provided significant insight into predator and prey population trends. The new data to be collected by this project will test hypotheses about how penguin prey selection and foraging behaviors are influenced by physical and biological features of their ocean habitat at extremely fine scale. By addressing the dynamic relationship between individual penguins, their prey, and habitat at the scale of individual foraging events, this study will begin to reveal the important processes regulating resource availability and identify what makes this region a profitable foraging habitat and breeding location.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-64.643 -64.703149,-64.5388975 -64.703149,-64.43479500000001 -64.703149,-64.3306925 -64.703149,-64.22659 -64.703149,-64.1224875 -64.703149,-64.018385 -64.703149,-63.9142825 -64.703149,-63.81018 -64.703149,-63.706077500000006 -64.703149,-63.601975 -64.703149,-63.601975 -64.7258003,-63.601975 -64.7484516,-63.601975 -64.77110289999999,-63.601975 -64.7937542,-63.601975 -64.8164055,-63.601975 -64.8390568,-63.601975 -64.86170809999999,-63.601975 -64.8843594,-63.601975 -64.9070107,-63.601975 -64.929662,-63.706077500000006 -64.929662,-63.81018 -64.929662,-63.9142825 -64.929662,-64.018385 -64.929662,-64.1224875 -64.929662,-64.22659 -64.929662,-64.3306925 -64.929662,-64.43479500000001 -64.929662,-64.5388975 -64.929662,-64.643 -64.929662,-64.643 -64.9070107,-64.643 -64.8843594,-64.643 -64.86170809999999,-64.643 -64.8390568,-64.643 -64.8164055,-64.643 -64.7937542,-64.643 -64.77110289999999,-64.643 -64.7484516,-64.643 -64.7258003,-64.643 -64.703149)) | POINT(-64.1224875 -64.8164055) | false | false | |||||||||||||||||||||||
Collaborative Research: Physical Mechanisms Driving Food Web Focusing in Antarctic Biological Hotspots
|
1745018 1744884 1745011 1745023 1745081 1745009 |
2022-07-05 | Bernard, Kim; Oliver, Matthew; Kohut, Josh; Fraser, William; Klinck, John M.; Statcewich, Hank |
|
Undersea canyons play disproportionately important roles as oceanic biological hotspots and are critical for our understanding of many coastal ecosystems. Canyon-associated biological hotspots have persisted for thousands of years Along the Western Antarctic Peninsula, despite significant climate variability. Observations of currents over Palmer Deep canyon, a representative hotspot along the Western Antarctic Peninsula, indicate that surface phytoplankton blooms enter and exit the local hotspot on scales of ~1-2 days. This time of residence is in conflict with the prevailing idea that canyon associated hotspots are primarily maintained by phytoplankton that are locally grown in association with these features by the upwelling of deep waters rich with nutrients that fuel the phytoplankton growth. Instead, the implication is that horizontal ocean circulation is likely more important to maintaining these biological hotspots than local upwelling through its physical concentrating effects. This project seeks to better resolve the factors that create and maintain focused areas of biological activity at canyons along the Western Antarctic Peninsula and create local foraging areas for marine mammals and birds. The project focus is in the analysis of the ocean transport and concentration mechanisms that sustain these biological hotspots, connecting oceanography to phytoplankton and krill, up through the food web to one of the resident predators, penguins. In addition, the research will engage with teachers from school districts serving underrepresented and underserved students by integrating the instructors and their students completely with the science team. Students will conduct their own research with the same data over the same time as researchers on the project. Revealing the fundamental mechanisms that sustain these known hotspots will significantly advance our understanding of the observed connection between submarine canyons and persistent penguin population hotspots over ecological time, and provide a new model for how Antarctic hotspots function.<br/> <br/> <br/>To understand the physical mechanisms that support persistent hotspots along the Western Antarctic Peninsula (WAP), this project will integrate a modeling and field program that will target the processes responsible for transporting and concentrating phytoplankton and krill biomass to known penguin foraging locations. Within the Palmer Deep canyon, a representative hotspot, the team will deploy a High Frequency Radar (HFR) coastal surface current mapping network, uniquely equipped to identify the eddies and frontal regions that concentrate phytoplankton and krill. The field program, centered on surface features identified by the HFR, will include (i) a coordinated fleet of gliders to survey hydrography, chlorophyll fluorescence, optical backscatter, and active acoustics at the scale of the targeted convergent features; (ii) precise penguin tracking with GPS-linked satellite telemetry and time-depth recorders (TDRs); (iii) and weekly small boat surveys that adaptively target and track convergent features to measure phytoplankton, krill, and hydrography. A high resolution physical model will generalize our field measurements to other known hotspots along the WAP through simulation and determine which physical mechanisms lead to the maintenance of these hotspots. The project will also engage educators, students, and members of the general public in Antarctic research and data analysis with an education program that will advance teaching and learning as well as broadening participation of under-represented groups. This engagement includes professional development workshops, live connections to the public and classrooms, student research symposia, and program evaluation. Together the integrated research and engagement will advance our understanding of the role regional transport pathways and local depth dependent concentrating physical mechanisms play in sustaining these biological hotspots.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-75 -60,-73 -60,-71 -60,-69 -60,-67 -60,-65 -60,-63 -60,-61 -60,-59 -60,-57 -60,-55 -60,-55 -61,-55 -62,-55 -63,-55 -64,-55 -65,-55 -66,-55 -67,-55 -68,-55 -69,-55 -70,-57 -70,-59 -70,-61 -70,-63 -70,-65 -70,-67 -70,-69 -70,-71 -70,-73 -70,-75 -70,-75 -69,-75 -68,-75 -67,-75 -66,-75 -65,-75 -64,-75 -63,-75 -62,-75 -61,-75 -60)) | POINT(-65 -65) | false | false | |||||||||||||||||||||||
Foraging Ecology of Crabeater Seals (Lobodon Carcinophagus)
|
9981683 0003956 |
2022-06-29 | Burns, Jennifer; Costa, Daniel |
|
This collaborative study between the University of California, Santa Cruz, Duke University, the University of South Florida, the University of Alaska-Anchorage, and the University of California, San Diego will examine the identification of biological and physical features associated with the abundance and distribution of individual Antarctic predators; the identification and characterization of biological 'hot spots' within the Western Antarctic Peninsula; and the development of temporally and spatially explicit models of krill consumption within the WAP by vertebrate predators. It is one of several data synthesis and modeling components that use the data obtained in the course of the field work of the Southern Ocean Global Ocean Ecosystems Dynamics (SO GLOBEC) experiment.<br/>SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. It is currently in a synthesis and modeling phase. This collaborative project is concerned with understanding how predators utilize 'hot spots', i.e. locally intense areas of biological productivity, and how 'hot spots' might temporally and spatially structure krill predation rates, and will be integrated with other synthesis and modeling studies that deal with the hydrography primary production, and krill dynamics. | POLYGON((-70 -65,-69.5 -65,-69 -65,-68.5 -65,-68 -65,-67.5 -65,-67 -65,-66.5 -65,-66 -65,-65.5 -65,-65 -65,-65 -65.5,-65 -66,-65 -66.5,-65 -67,-65 -67.5,-65 -68,-65 -68.5,-65 -69,-65 -69.5,-65 -70,-65.5 -70,-66 -70,-66.5 -70,-67 -70,-67.5 -70,-68 -70,-68.5 -70,-69 -70,-69.5 -70,-70 -70,-70 -69.5,-70 -69,-70 -68.5,-70 -68,-70 -67.5,-70 -67,-70 -66.5,-70 -66,-70 -65.5,-70 -65)) | POINT(-67.5 -67.5) | false | false | |||||||||||||||||||||||
NSFGEO-NERC: Integrating Individual Personality Differences in the Evolutionary Ecology of a Seabird in the Rapidly Changing Polar Environment
|
1951500 |
2021-12-08 | Jenouvrier, Stephanie; Patrick, Samantha |
|
Overview: To date, studies that have addressed the impacts of global changes have mainly focused on linking climate variability and/or human disturbances to individual life history traits, population dynamics or distribution. However, individual behavior and plasticity mediate these responses. The goal of this project is to understand mechanisms linking environmental changes (climate & fisheries)- behavioral personality type – plasticity in foraging behaviors- life history traits – population dynamics for a seabird breeding in the southern ocean: the wandering albatross. This project will also forecast the population structure and growth rate using the most detailed mechanistic model to date for any wild species incorporating behaviors in an eco-evolutionary context. Specifically, the investigators will (1) characterize the life history strategies along the shy-bold continuum of personalities and across environmental conditions; (2) understand the link between phenotypic plasticity in foraging effort and personality; (3) characterize the heritability of personality and foraging behaviors; (4) develop a stochastic eco-evolutionary model to understand and forecast the distribution of bold and shy individuals within the population and the resulting effect on population growth rate in a changing environment by integrating processes from goals 1, 2 and 3. To date, this has been hampered by the lack of long-term data on personality and life histories in any long-lived species in the wild. For the first time ever, we have tested in a controlled environment the response to a novel situation for ~1800 individuals for more than a decade to define individual personality variation along the shy-bold continuum that we can relate to the life history traits over the entire species life cycle using unique long-term individual mark-recapture data sets for this iconic polar species. The novelty of this project thus lies in the combination of personality, foraging and demographic data to understand and forecast population responses to global change using state-of-the-art statistical analysis and eco-evolutionary modeling approaches. Intellectual Merit: While there is ubiquitous evidence of personality differences across taxa, the implications for life-history are less clear, and the consequences for population dynamics virtually unexplored empirically. How the phenotypic distributions of personality and foraging behaviors types within a population is created and maintained by ecological (demographic and phenotypic plasticity) and evolutionary (heritability) processes remain an open question. Personality traits are a crucial link between how individuals acquire resources, and how they allocate these to reproduction and survival, and this trade-off drives population dynamics. However, although some studies have found different foraging behaviors or breeding performances between personality types, none have established the link between personality- foraging behaviors – life histories (both reproduction and survival, and their covariations) in the context of climate change. Furthermore plasticity in foraging behaviors is not considered in the pace-of-life syndrome, which has potentially hampered our ability to find covariation between personality and life history trade-off. Research into the heritability of personality traits has revealed a strong heritable component, but studies looking at the heritability of foraging behaviors are lacking. For the first time ever, this project will fill these knowledge gaps and integrate in an eco-evolutionary model the complex interaction among individual personality and foraging plasticity, heritability of personality and foraging behaviors, life history strategies, population dynamics in a changing environment (fisheries and climate). Furthermore, this project will provide for the first time projections of population size and structure under future global change using state-of-the-art climate projections from IPCC-class atmospheric-oceanic global circulation models. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||||||||||||||
Integrating Antarctic Environmental and Biological Predictability to Obtain Optimal Forecasts
|
2037561 |
2021-12-08 | Jenouvrier, Stephanie; Holland, Marika |
|
Overview: We aim to provide the most detailed investigation to date of the factors that influence predictability of Antarctic climate, the coupling of climate to penguins populations, and the integration of the two to optimize ecological forecasts. This integrated understanding is critical for guiding future ecological and climate research, prioritizing bio-physical monitoring efforts, and informing conservation decision-making. Our study will reveal the influence of climate system dynamics on ecological predictability across a range of scales and will examine how this role differs among ecological processes, species and regions of Antarctica. Intellectual Merit: Many biophysical processes will change in the coming century. Yet, the mechanisms controlling the predictability of many climate processes are still poorly understood, limiting progress in climate forecasting. In parallel, ecological forecasting remains a nascent discipline. In particular, comparative assessments of predictability, both within and among species, are critically needed to understand the factors that allow (or prevent) useful ecological forecasts. While important for ecological science generally, this need is particularly pressing in Antarctica where the environment is highly dynamic, strongly coupled to biological processes, and likely to change in the future. Improved ecological forecasting therefore requires interdisciplinary efforts to understand the causes of predictability in climate, and in tandem, how climate influences the predictability of natural populations. This proposed research will examine the predictability of Antarctic climate and its influence on penguin demographic response predictability at various temporal and spatial scales using the longest datasets available for two penguin species. Specifically, the PI will 1) identify the physical mechanisms giving rise to climate predictability in Antarctica, 2) identify the relationships between climate and ecological processes at a range of scales, and 3) reveal the factors controlling ecological predictability across a range of scales (e.g., those relevant for short-term adaptive management versus those relevant at end-of-century timescales). These objectives will be achieved using the analysis of existing climate data and Atmosphere-Ocean Global Circulation Models (AGOCMs), with coupled analysis of existing long-term demographic data for multiple seabird species that span a range of ecological niches, life histories, and study sites across the continent. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||||||||||||||
NSFGEO-NERC: Collaborative Research "P2P: Predators to Plankton -Biophysical Controls in Antarctic Polynyas"
|
2040048 2040199 2040571 |
2021-10-25 | Ainley, David; Santora, Jarrod; Varsani, Arvind; Smith, Walker; Ballard, Grant; Schmidt, Annie | No dataset link provided | Part I: Non-technical description: The Ross Sea, a globally important ecological hotspot, hosts 25-45% of the world populations of Adélie and emperor penguins, South Polar skuas, Antarctic petrels, and Weddell seals. It is also one of the few marine protected areas designated within the Southern Ocean, designed to protect the workings of its ecosystem. To achieve that goal requires participation in an international research and monitoring program, and more importantly integration of what is known about these mesopredators, which is a lot, and the biological oceanography of their habitat, parts of which are also well known. The project will acquire data on these species’ food web dynamics through assessing of Adélie penguin foraging behavior, an indicator species, while multi-sensor ocean gliders autonomously quantify prey abundance and distribution as well as ocean properties, including phytoplankton, at the base of the food web. Additionally, satellite imagery will quantify sea ice and whales (competitors) within the penguins’ foraging area. Seasoned researchers and students will be involved, as will a public outreach program that reaches >200 school groups per field season, and >1M visits to the website of an ongoing, related project. Lessons about ecosystem change, and how it is measured, i.e. the STEM fields, will be emphasized. Results will be distributed to the world science and management communities. Part II: Technical description: This project, in collaboration with the National Environmental Research Council (UK), assesses food web structure in the southwestern Ross Sea, a major portion of the recently designated Ross Sea Region Marine Protected Area, designed to protect the region’s “food web structure, dynamics and function.” Success requires in-depth, integated ecological information. The western Ross Sea, especially the marginal ice zone of the Ross Sea Polynya (RSP), supports global populations of iconic and indicator species: 25% of emperor penguins, 30% of Adélie penguins, 50% of South Polar skuas, and 45% of Weddell seals. However, while individually well researched, for these members of the upper food web information has been poorly integrated into understanding of Ross Sea food web dynamics and biogeochemistry. Information from multi-sensor ocean gliders, high-resolution satellite imagery, diet analysis and biologging of penguins, when integrated will facilitate understanding of the preyscape within the intensively investigated biogeochemistry of the RSP. UK participation covers a number of glider functions (e.g., providing a state-of-the-art glider at minimal cost, glider programming, ballasting, and operation) and supplies expertise to evaluate the oceanographic conditions of the study area. Several student will be involved, as well as an existing outreach program in a related penguin research project reaching annually >200 school groups and >1M website visits. | POLYGON((164 -74,165.6 -74,167.2 -74,168.8 -74,170.4 -74,172 -74,173.6 -74,175.2 -74,176.8 -74,178.4 -74,180 -74,180 -74.4,180 -74.8,180 -75.2,180 -75.6,180 -76,180 -76.4,180 -76.8,180 -77.2,180 -77.6,180 -78,178.4 -78,176.8 -78,175.2 -78,173.6 -78,172 -78,170.4 -78,168.8 -78,167.2 -78,165.6 -78,164 -78,164 -77.6,164 -77.2,164 -76.8,164 -76.4,164 -76,164 -75.6,164 -75.2,164 -74.8,164 -74.4,164 -74)) | POINT(172 -76) | false | false | |||||||||||||||||||||||
CAREER: Development of Unmanned Ground Vehicles for Assessing the Health of Secluded Ecosystems (ECHO)
|
2046437 |
2021-08-16 | Zitterbart, Daniel | No dataset link provided | Polar ecosystems currently experience significant impacts due to global changes. Measurable negative effects on polar wildlife have already occurred, such as population decreases of numerous seabird species, including the complete loss of colonies of one of the most emblematic species of the Antarctic, the emperor penguin. These existing impacts on polar species are alarming, especially because many polar species still remain poorly studied due to technical and logistical challenges imposed by the harsh environment and extreme remoteness. Developing technologies and tools for monitoring such wildlife populations is, therefore, a matter of urgency. This project aims to help close major knowledge gaps about the emperor penguin, in particular about their adaptive capability to a changing environment, by the development of next-generation tools to remotely study entire colonies. Specifically, the main goal of this project is to implement and test an autonomous unmanned ground vehicle equipped with Radio-frequency identification (RFID) antennas and wireless mesh communication data-loggers to: 1) identify RFID-tagged emperor penguins during breeding to studying population dynamics without human presence; and 2) receive GPS-TDR datasets from VHF-GPS-TDR data-loggers without human presence to study animal behavior and distribution at sea. The autonomous vehicles navigation through the colony will be aided by an existing remote penguin observatory (SPOT). Properly implemented, this technology can be used to study of the life history of individual penguins, and therefore gather data for behavioral and population dynamic studies. The education objectives of this CAREER project are designed to increase the interest in a STEM education for the next generation of scientists by combining the charisma of the emperor penguin with robotics research. Within this project, a new class on ecosystem robotics will be developed and taught, Robotics boot-camps will allow undergraduate students to remotely participate in Antarctic field trips, and an annual curriculum will be developed that allows K-12 students to follow the life of the emperor penguin during the breeding cycle, powered by real-time data obtained using the unmanned ground vehicle as well as the existing emperor penguin observatory. | POLYGON((-60 -55,-53 -55,-46 -55,-39 -55,-32 -55,-25 -55,-18 -55,-11 -55,-4 -55,3 -55,10 -55,10 -57.5,10 -60,10 -62.5,10 -65,10 -67.5,10 -70,10 -72.5,10 -75,10 -77.5,10 -80,3 -80,-4 -80,-11 -80,-18 -80,-25 -80,-32 -80,-39 -80,-46 -80,-53 -80,-60 -80,-60 -77.5,-60 -75,-60 -72.5,-60 -70,-60 -67.5,-60 -65,-60 -62.5,-60 -60,-60 -57.5,-60 -55)) | POINT(-25 -67.5) | false | false | |||||||||||||||||||||||
From Air Sacs to Tissues: Oxygen Transfer and Utilization in Diving Emperor Penguins
|
1643532 |
2021-07-30 | Ponganis, Paul |
|
Part 1: Air sac-to-tissue oxygen delivery is essential to the dive capacity and foraging strategy of any penguin species as well as to flight and migration in other birds. Such transport of oxygen is dependent on the complex, highly efficient avian respiratory system (air sacs and lungs) and on the cardiovascular system. This delivery of oxygen allows emperor penguins to dive deeper than 500 meters and bar-headed geese to fly over the Himalayas. However, the physiological mechanisms underlying the transfer of oxygen from air sacs to blood and the subsequent distribution of oxygen to tissues are poorly understood. The emperor penguin is ideal for investigation of this oxygen cascade because of its body size, dive capacity, physiological data base, and the prior development of research techniques and protocols for this species. This study should provide insight into a) the mechanisms underlying the efficiency of the bird oxygen transport system, b) the physiological basis of penguin dive behavior, and the ability of penguins to adapt to environmental change, and c) perhaps, even the design of better therapeutic strategies and tools for treatment of respiratory disease. The project also includes educational exhibits and lecture programs on penguin biology at SeaWorld of San Diego. These educational programs at SeaWorld have outreach to diverse groups of grade school and high school students. Part 2: This project will examine the transport of oxygen from air sacs to tissues in a series of studies with temporarily captive emperor penguins that are free-diving at an isolated dive hole research camp in McMurdo Sound. Physiological data will be obtained with application of backpack recorders for the partial pressure of oxygen (PO2) in air sacs and/or blood, and backpack heart rate/stroke rate recorders. This experimental approach will be transformative in avian biology because it will also lay the groundwork for future investigations of air sac to lung to blood oxygen transfer during exercise of volant and cursorial birds. Four major topics are examined in this project: a) air sac oxygen distribution/depletion and the movement of air between anterior and posterior air sacs, b) anterior air sac to arterial PO2 differences and parabronchial gas exchange, c) blood oxygen transport and depletion throughout dives, and the nature of the aerobic dive limit, and d) the relationship of venous oxygen depletion patterns to both heart rate and stroke effort during dives. Specific educational outreach goals include a) short video features to be displayed in the Penguin Encounter exhibit at SeaWorld of San Diego, and b) lectures, video presentations, and pre- and post-course evaluations for student campers and participants in SeaWorld’s education programs. Underwater video for exhibits/presentations with be obtained with use of a penguin backpack camera in the Antarctic. | POLYGON((163 -77,163.4 -77,163.8 -77,164.2 -77,164.6 -77,165 -77,165.4 -77,165.8 -77,166.2 -77,166.6 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.6 -78,166.2 -78,165.8 -78,165.4 -78,165 -78,164.6 -78,164.2 -78,163.8 -78,163.4 -78,163 -78,163 -77.9,163 -77.8,163 -77.7,163 -77.6,163 -77.5,163 -77.4,163 -77.3,163 -77.2,163 -77.1,163 -77)) | POINT(165 -77.5) | false | false | |||||||||||||||||||||||
CAREER: Foraging Ecology and Physiology of Emperor Penguins in the Ross Sea
|
1943550 |
2021-07-20 | McDonald, Birgitte |
|
This project will identify behavioral and physiological variability in foraging Emperor Penguins that can be directly linked to individual success in the marine environment using an optimal foraging theory framework during two critical life history stages. First, this project will investigate the foraging energetics, ecology, and habitat use of Emperor Penguins at Cape Crozier using fine-scale movement and video data loggers during late chick-rearing, an energetically demanding life history phase. Specifically, this study will 1) Estimate the foraging efficiency and examine its relationship to foraging behavior and diet using an optimal foraging theory framework to identify what environmental or physiological constraints influence foraging behavior; 2) Investigate the inter- and intra-individual behavioral variability exhibited by emperor penguins, which is essential to predict how resilient they will be to climate change; and 3) Integrate penguin foraging efficiency data with environmental data to identify important habitat. Next the researchers will study the ecology and habitat preference after the molt and through early reproduction using satellite-linked data loggers. The researchers will: 1) Investigate the inter- and intra-individual behavioral variability exhibited by Emperor Penguins during the three-month post-molt and early winter foraging trips; and 2) Integrate penguin behavioral data with environmental data to identify which environmental features are indicative of habitat preference when penguins are not constrained to returning to the colony to feed a chick. These fine- and coarse-scale data will be combined with climate predictions to create predictive habitat models. The education objectives of this CAREER project are designed to inspire, engage, and train the next generation of scientists using the data and video generated while investigating Emperor Penguins in the Antarctic ecosystem. This includes development of two courses (general education and advanced techniques), training of undergraduate and graduate students, and a collaboration with the NSF funded “Polar Literacy: A model for youth engagement and learning” program to develop afterschool and camp curriculum that target underserved and underrepresented groups. | POLYGON((168 -77,168.3 -77,168.6 -77,168.9 -77,169.2 -77,169.5 -77,169.8 -77,170.1 -77,170.4 -77,170.7 -77,171 -77,171 -77.1,171 -77.2,171 -77.3,171 -77.4,171 -77.5,171 -77.6,171 -77.7,171 -77.8,171 -77.9,171 -78,170.7 -78,170.4 -78,170.1 -78,169.8 -78,169.5 -78,169.2 -78,168.9 -78,168.6 -78,168.3 -78,168 -78,168 -77.9,168 -77.8,168 -77.7,168 -77.6,168 -77.5,168 -77.4,168 -77.3,168 -77.2,168 -77.1,168 -77)) | POINT(169.5 -77.5) | false | false | |||||||||||||||||||||||
A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins
|
1744794 1744989 |
2021-07-14 | LaRue, Michelle; Ito, Emi; Jenouvrier, Stephanie | This project on emperor penguin populations will quantify penguin presence/absence, and colony size and trajectory, across the entire Antarctic continent using high-resolution satellite imagery. For a subset of the colonies, population estimates derived from high-resolution satellite images will be compared with those determined by aerial surveys - these results have been uploaded to MAPPPD (penguinmap.com) and are freely available for use. This validated information will be used to determine population estimates for all emperor penguin colonies through iterations of supervised classification and maximum likelihood calculations on the high-resolution imagery. The effect of spatial, geophysical, and environmental variables on population size and decadal-scale trends will be assessed using generalized linear models. This research will result in a first ever empirical result for emperor penguin population trends and habitat suitability, and will leverage currently-funded NSF infrastructure and hosting sites to publish results in near-real time to the public. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||||||||||||||||||||
Does Nest Density Matter? Using Novel Technology to Collect Whole-colony Data on Adelie Penguins.
|
1834986 |
2021-05-12 | Ballard, Grant; Schmidt, Annie; Schwager, Mac; McKown, Matthew |
|
New methodologies for the deployment of coordinated unmanned aerial vehicles will be developed with the aim of attaining whole-colony imagery that can be used to characterize nesting habitats of Adelie penguins at Cape Crozier, on Ross Island, Antarctica. This information will be used to test hypotheses regarding relationships between terrain characteristics, nesting density, and breeding success. This population, potentially the largest in the world and at the southern limit of the species' range, has doubled in size over the past 20 years while most other colonies in the region have remained stable or declined. New information gained from this project will be useful in understanding the potential of climate-driven changes in terrestrial nesting habitats for impacting Adelie penguins in the future. The project will produce, and document, open-source software tools to help automate image processing for automated counting of Adelie penguins. The project will train graduate and undergraduate students and contribute materials to ongoing educational outreach programs based on related penguin science projects. Information gained from this project will contribute towards building robust, cost-effective protocols for monitoring Adelie penguin populations, a key ecosystem indicator identified in the draft Ross Sea Marine Protected Area Research and Monitoring Plan. Adelie penguins are important indicators of ecosystem function and change in the Southern Ocean. In addition to facing rapid changes in sea ice and other factors in their pelagic environment, their terrestrial nesting habitat is also changing. Understanding the species' response to such changes is critical for assessing its ability to adapt to the changing climate. The objective of this project is to test several hypotheses about the influence of fine-scale nesting habitat, nest density, and breeding success of Adelie penguins in the Ross Sea region. To accomplish this, the project will develop algorithms to improve efficiency and safety of surveys by unmanned aerial systems and develop and disseminate an automated image processing workflow. Images collected during several UAV surveys will be used to estimate the number of nesting adults and chicks produced, as well as estimate nesting density in different parts of two colonies on Ross Island, Antarctica, that differ in size by two orders of magnitude. Imagery will be used to generate high resolution digital surface/elevation models that will allow terrain variables like flood risk and terrain complexity to be derived. Combining the surface model with the nest and chick counts at the two colonies will provide relationships between habitat covariates, nest density, and breeding success. The approaches developed will enable Adelie penguin population sizes and potentially several other indicators in the Ross Sea Marine Protected Area Research and Monitoring Plan to be determined and evaluated. The flight control algorithms developed have the potential to be used for many types of surveys, especially when large areas need to be covered in a short period with extreme weather potential and difficult landing options. Aerial images and video will be used to create useable materials to be included in outreach and educational programs. The automated image processing workflow and classification models will be developed as open source software and will be made freely available for others addressing similar wildlife monitoring challenges. | POLYGON((165 -77,165.5 -77,166 -77,166.5 -77,167 -77,167.5 -77,168 -77,168.5 -77,169 -77,169.5 -77,170 -77,170 -77.1,170 -77.2,170 -77.3,170 -77.4,170 -77.5,170 -77.6,170 -77.7,170 -77.8,170 -77.9,170 -78,169.5 -78,169 -78,168.5 -78,168 -78,167.5 -78,167 -78,166.5 -78,166 -78,165.5 -78,165 -78,165 -77.9,165 -77.8,165 -77.7,165 -77.6,165 -77.5,165 -77.4,165 -77.3,165 -77.2,165 -77.1,165 -77)) | POINT(167.5 -77.5) | false | false | |||||||||||||||||||||||
Population Growth at the Southern Extreme: Effects of Early Life Conditions on Adelie penguin Individuals and Colonies
|
1935870 1935901 |
2021-05-12 | Ballard, Grant; Schmidt, Annie; Varsani, Arvind; Dugger, Katie; Orben, Rachael |
|
Polar regions are experiencing some of the most dramatic effects of climate change resulting in large-scale changes in sea ice cover. Despite this, there are relatively few long-term studies on polar species that evaluate the full scope of these effects. Over the last two decades, this team has conducted globally unique demographic studies of Adélie penguins in the Ross Sea, Antarctica, to explore several potential mechanisms for population change. This five-year project will use penguin-borne sensors to evaluate foraging conditions and behavior and environmental conditions on early life stages of Adélie penguins. Results will help to better understand population dynamics and how populations might respond to future environmental change. To promote STEM literacy, education and public outreach efforts will include multiple activities. The PenguinCam and PenguinScience.com website (impacts of >1 million hits per month and use by >300 classrooms/~10,000 students) will be continued. Each field season will also have ‘Live From the Penguins’ Skype calls to classes (~120/season). Classroom-ready activities that are aligned with Next Generation Science Standards will be developed with media products and science journal papers translated to grade 5-8 literacy level. The project will also train early career scientists, postdoctoral scholars, graduate students and post-graduate interns. Finally, in partnership with an Environmental Leadership Program, the team will host 2-year Roger Arliner Young Conservation Fellow, which is a program designed to increase opportunities for recent college graduates of color to learn about, engage with, and enter the environmental conservation sector. | POLYGON((-180 -60,-177 -60,-174 -60,-171 -60,-168 -60,-165 -60,-162 -60,-159 -60,-156 -60,-153 -60,-150 -60,-150 -61.8,-150 -63.6,-150 -65.4,-150 -67.2,-150 -69,-150 -70.8,-150 -72.6,-150 -74.4,-150 -76.2,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178.5 -78,177 -78,175.5 -78,174 -78,172.5 -78,171 -78,169.5 -78,168 -78,166.5 -78,165 -78,165 -76.2,165 -74.4,165 -72.6,165 -70.8,165 -69,165 -67.2,165 -65.4,165 -63.6,165 -61.8,165 -60,166.5 -60,168 -60,169.5 -60,171 -60,172.5 -60,174 -60,175.5 -60,177 -60,178.5 -60,-180 -60)) | POINT(-172.5 -69) | false | false | |||||||||||||||||||||||
A Full Lifecycle Approach to Understanding Adélie Penguin Response to Changing Pack Ice Conditions in the Ross Sea.
|
1543541 1543459 1543498 |
2021-05-11 | Ballard, Grant; Ainley, David; Dugger, Katie | The Ross Sea region of the Southern Ocean is experiencing growing sea ice cover in both extent and duration. These trends contrast those of the well-studied, western Antarctic Peninsula area, where sea ice has been disappearing. Unlike the latter, little is known about how expanding sea ice coverage might affect the regional Antarctic marine ecosystem. This project aims to better understand some of the potential effects of the changing ice conditions on the marine ecosystem using the widely-recognized indicator species - the Adélie Penguin. A four-year effort will build on previous results spanning 19 seasons at Ross Island to explore how successes or failures in each part of the penguin's annual cycle are effected by ice conditions and how these carry over to the next annual recruitment cycle, especially with respect to the penguin's condition upon arrival in the spring. Education and public outreach activities will continually be promoted through the PenguinCam and PenguinScience websites (sites with greater than 1 million hits a month) and "NestCheck" (a site that is logged-on by >300 classrooms annually that allows students to follow penguin families in their breeding efforts). To encourage students in pursuing educational and career pathways in the Science Technology Engineering and Math fields, the project will also provide stories from the field in a Penguin Journal, develop classroom-ready activities aligned with New Generation Science Standards, increase the availability of instructional presentations as powerpoint files and short webisodes. The project will provide additional outreach activities through local, state and national speaking engagements about penguins, Antarctic science and climate change. The annual outreach efforts are aimed at reaching over 15,000 students through the website, 300 teachers through presentations and workshops, and 500 persons in the general public. The project also will train four interns (undergraduate and graduate level), two post-doctoral researchers, and a science writer/photographer. <br/><br/>The project will accomplish three major goals, all of which relate to how Adélie Penguins adapt to, or cope with environmental change. Specifically the project seeks to determine 1) how changing winter sea ice conditions in the Ross Sea region affect penguin migration, behavior and survival and alter the carry-over effects (COEs) to subsequent reproduction; 2) the interplay between extrinsic and intrinsic factors influencing COEs over multiple years of an individual's lifetime; and 3) how local environmental change may affect population change via impacts to nesting habitat, interacting with individual quality and COEs. Retrospective analyses will be conducted using 19 years of colony based data and collect additional information on individually marked, known-age and known-history penguins, from new recruits to possibly senescent individuals. Four years of new information will be gained from efforts based at two colonies (Cape Royds and Crozier), using radio frequency identification tags to automatically collect data on breeding and foraging effort of marked, known-history birds to explore penguin response to resource availability within the colony as well as between colonies (mates, nesting material, habitat availability). Additional geolocation/time-depth recorders will be used to investigate travels and foraging during winter of these birds. The combined efforts will allow an assessment of the effects of penguin behavior/success in one season on its behavior in the next (e.g. how does winter behavior affect arrival time and body condition on subsequent breeding). It is at the individual level that penguins are responding successfully, or not, to ongoing marine habitat change in the Ross Sea region. | POLYGON((-180 -60,-177 -60,-174 -60,-171 -60,-168 -60,-165 -60,-162 -60,-159 -60,-156 -60,-153 -60,-150 -60,-150 -61.8,-150 -63.6,-150 -65.4,-150 -67.2,-150 -69,-150 -70.8,-150 -72.6,-150 -74.4,-150 -76.2,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178.5 -78,177 -78,175.5 -78,174 -78,172.5 -78,171 -78,169.5 -78,168 -78,166.5 -78,165 -78,165 -76.2,165 -74.4,165 -72.6,165 -70.8,165 -69,165 -67.2,165 -65.4,165 -63.6,165 -61.8,165 -60,166.5 -60,168 -60,169.5 -60,171 -60,172.5 -60,174 -60,175.5 -60,177 -60,178.5 -60,-180 -60)) | POINT(-172.5 -69) | false | false | ||||||||||||||||||||||||
Using Bio-acoustics on an Autonomous Surveying Platform for the Examination of Phytoplankton-zooplankton and Fish Interactions in the Western Ross Sea
|
1743035 |
2020-02-27 | Saba, Grace | Terra Nova Bay (western Ross Sea, Antarctica) supports dense populations of several key species in the Ross Sea food web, including copepods, crystal krill (Euphausia crystallorophias), Antarctic silverfish (Pleuragramma antarcticum), and colonies of Adélie and Emperor penguins that feed primarily on crystal krill and silverfish. Absent from our understanding of the Ross Sea food web is zooplankton and silverfish mesoscale distribution, spatial structure of age/maturity classes, and their interactions with physical drivers and each other. The quantitative linkages between primary producers and the higher trophic levels, specifically, the processes responsible for the regulation of abundance and rates of middle trophic levels dominated by copepods and crystal krill (Euphausia crystallorophias), is virtually unknown. Given that the next century will see extensive changes in the Ross Sea’s ice distributions and oceanography as a result of climate change, understanding the basic controls of zooplankton and silverfish abundance and distribution is essential. During a January – March 2018 cruise in the western Ross Sea, we deployed a glider equipped with an echo sounder (Acoustic Zooplankton Fish Profiler) that simultaneously measured depth, temperature, conductivity, chlorophyll fluorescence, and dissolved oxygen. Additionally, net tows, mid-water trawls, and crystal krill grazing experiments were conducted. Our study provided the first glider-based acoustic assessment of simultaneous distributions of multiple trophic levels in the Ross Sea, from which predator-prey interactions and the relationships between organisms and physics drivers (sea ice, circulation features) were investigated. We illustrated high variability in ocean physics, phytoplankton biomass, and crystal krill biomass and aggregation over time and between locations within Terra Nova Bay. Biomass of krill was highest in locations characterized by deeper mixed layers and highest integrated chlorophyll concentrations. Krill aggregations were consistently located at depth well below the mixed layer and chlorophyll maximum. Experiments investigating krill grazing, in combination with krill depth distributions relative to chlorophyll biomass, illuminate high krill grazing rates could be attributed to the occupation of a unique niche whereby they are opportunistically feeding on sinking high concentrations of detritus derived from surface blooms. The information on the abundance, distribution, and interactions of key species in multiple trophic levels resulting from this project provide a conceptual background to understand how this ecosystem might respond to future conditions under climate change. Our project tested the capability of a multi-frequency echo sounder on a glider for the first time. The production of consistent, vertically-resolved, high resolution glider-based acoustic measurements will pave the way for cost-effective, automated examination of entire food webs and ecosystems in regions all over the global ocean. A wide range of users including academic and government scientists, ecosystem-based fisheries managers, and monitoring programs including those conducted by OOI, IOOS, and NOAA will benefit from this project. This project also provided the opportunity to focus on broadening participation in research and articulating the societal benefits through education and innovative outreach programs. A data set from this project is being included in the new NSF-funded Polar CAP initiative, that will be used by a diverse and young audience to increase understanding of the polar system and the ability to reason with data. Finally, this project provided a unique field opportunity and excellent hand-on training for a post-doctoral researcher, a graduate student, and two undergraduate students. | POLYGON((164 -72.2,165 -72.2,166 -72.2,167 -72.2,168 -72.2,169 -72.2,170 -72.2,171 -72.2,172 -72.2,173 -72.2,174 -72.2,174 -72.74,174 -73.28,174 -73.82,174 -74.36,174 -74.9,174 -75.44,174 -75.98,174 -76.52,174 -77.06,174 -77.6,173 -77.6,172 -77.6,171 -77.6,170 -77.6,169 -77.6,168 -77.6,167 -77.6,166 -77.6,165 -77.6,164 -77.6,164 -77.06,164 -76.52,164 -75.98,164 -75.44,164 -74.9,164 -74.36,164 -73.82,164 -73.28,164 -72.74,164 -72.2)) | POINT(169 -74.9) | false | false | ||||||||||||||||||||||||
Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators
|
1443585 1443424 1826712 1443386 |
2019-08-08 | Polito, Michael; Emslie, Steven; Kelton, McMahon; Patterson, William; McCarthy, Matthew | The Antarctic marine ecosystem is highly productive and supports a diverse range of ecologically and commercially important species. A key species in this ecosystem is Antarctic krill, which in addition to being commercially harvested, is the principle prey of a wide range of marine organisms including penguins, seals and whales. The aim of this study is to use penguins and other krill predators as sensitive indicators of past changes in the Antarctic marine food web resulting from climate variability and the historic harvesting of seals and whales by humans. Specifically this study will recover and analyze modern (<20 year old), historic (20-200 year old) and ancient (200-10,000 year old) penguin and other krill predator tissues to track their past diets and population movements relative to shifts in climate and the availability of Antarctic krill. Understanding how krill predators were affected by these factors in the past will allow us to better understand how these predators, the krill they depend on, and the Antarctic marine ecosystem as a whole will respond to current challenges such as global climate change and an expanding commercial fishery for Antarctic krill. The project will further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This project will support the cross-institutional training of undergraduate and graduate students in advanced analytical techniques in the fields of ecology and biogeochemistry. In addition, this project includes educational outreach aimed encouraging participation in science careers by engaging K-12 students in scientific issues related to Antarctica, penguins, marine ecology, biogeochemistry, and global climate change.<br/><br/>This research will help place recent ecological changes in the Southern Ocean into a larger historical context by examining decadal and millennial-scale shifts in the diets and population movements of Antarctic krill predators (penguins, seals, and squid) in concert with climate variability and commercial harvesting. This will be achieved by coupling advanced stable and radio isotope techniques, particularly compound-specific stable isotope analysis, with unprecedented access to modern, historical, and well-preserved paleo-archives of Antarctic predator tissues dating throughout the Holocene. This approach will allow the project to empirically test if observed shifts in Antarctic predator bulk tissue stable isotope values over the past millennia were caused by climate-driven shifts at the base of the food web in addition to, or rather than, shifts in predator diets due to a competitive release following the historic harvesting of krill eating whale and seals. In addition, this project will track the large-scale abandonment and reoccupation of penguin colonies around Antarctica in response to changes in climate and sea ice conditions over the past several millennia. These integrated field studies and laboratory analyses will provide new insights into the underlying mechanisms that influenced past shifts in the diets and population movements of charismatic krill predators such as penguins. This will allow for improved projections of the ecosystem consequences of future climate change and anthropogenic harvesting scenarios in the Antarctica that are likely to affect the availability of Antarctic krill. | POLYGON((-180 -60,-166 -60,-152 -60,-138 -60,-124 -60,-110 -60,-96 -60,-82 -60,-68 -60,-54 -60,-40 -60,-40 -61.8,-40 -63.6,-40 -65.4,-40 -67.2,-40 -69,-40 -70.8,-40 -72.6,-40 -74.4,-40 -76.2,-40 -78,-54 -78,-68 -78,-82 -78,-96 -78,-110 -78,-124 -78,-138 -78,-152 -78,-166 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -76.2,160 -74.4,160 -72.6,160 -70.8,160 -69,160 -67.2,160 -65.4,160 -63.6,160 -61.8,160 -60,162 -60,164 -60,166 -60,168 -60,170 -60,172 -60,174 -60,176 -60,178 -60,-180 -60)) | POINT(-120 -69) | false | false | ||||||||||||||||||||||||
Collaborative Research: Polynyas in Coastal Antarctica (PICA): Linking Physical Dynamics to Biological Variability
|
1643901 1643735 2021245 |
2019-08-07 | Zhang, Weifeng; Ji, Rubao; Jenouvrier, Stephanie; Maksym, Edward; Li, Yun |
|
During winter, sea-ice coverage along the Antarctic coast is punctuated by numerous polynyas--isolated openings of tens to hundreds of kilometer wide. These coastal polynyas are hotspots of sea ice production and the primary source regions of the bottom water in the global ocean. They also host high levels of biological activities and are the feeding grounds of Emperor penguins and marine mammals. The polynyas are a key component of the Antarctic coastal system and crucial for the survival of penguins and many other species. These features also differ dramatically from each other in timing of formation, duration, phytoplankton growth season, and overall biological productivity. Yet, the underlying reasons for differences among them are largely unknown. This project studies the fundamental biophysical processes at a variety of polynyas, examines the connection between the physical environment and the phytoplankton and penguin ecology, and investigates the mechanisms behind polynya variability. The results of this interdisciplinary study will provide a context for interpretation of field measurements in Antarctic coastal polynyas, set a baseline for future polynya studies, and examine how polynya ecosystems may respond to local and large-scale environmental changes. The project will include educational and outreach activities that convey scientific messages to a broad audience. It aims to increase public awareness of the interconnection between large-scale environmental change and Antarctic coastal systems.<br/><br/>The main objectives of this study are to form a comprehensive understanding of the temporal and spatial variability of Antarctic coastal polynyas and the physical controls of polynya ecosystems. The project takes an interdisciplinary approach and seeks to establish a modeling system centered on the Regional Ocean Modeling System. This system links the ice and ocean conditions to the plankton ecology and penguin population. Applications of the modeling system in representative polynyas, in conjunction with analysis of existing observations, will determine the biophysical influences of individual forcing factors. In particular, this study will test a set of hypothesized effects of winds, offshore water intrusion, ice-shelf melting, sea-ice formation, glacier tongues, and ocean stratification on the timing of polynya phytoplankton bloom and the overall polynya biological productivity. The project will also examine how changing polynya state affects penguin breeding success, adult survival, and population growth. The team will conduct idealized sensitivity analysis to explore implications of forcing variability, including local and large-scale environmental change, on Antarctic coastal ecosystems. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||||||||||||||
Collaborative Research: Determining Factors Affecting Distribution and Population Variability of the Ice-obligate Weddell Seal
|
1543311 1543230 1543003 1542791 |
2019-08-02 | LaRue, Michelle; Stamatiou, Kostas |
|
The Weddell seal is the southern-most mammal in the world, having a circumpolar distribution around Antarctica; the McMurdo Sound population in Antarctica is one of the best-studied mammal populations on earth. However, despite this, an understanding of how populations around the continent will fare under climate change is poorly understood. A complicating matter is the potential effects of a commercial enterprise in the Antarctic: a fishery targeting toothfish, which are important prey for Weddell seals. Although the species is easily detected and counted during the breeding season, no reliable estimates of continent-wide Weddell seal numbers exist, due to the logistic difficulties of surveying vast regions of Antarctica. Large-scale estimates are needed to understand how seal populations are responding to the fishery and climate change, because these drivers of change operate at scales larger than any single population, and may affect seals differently in different regions of the continent. We will take advantage of the ease of detectability of darkly colored seals when they the on ice to develop estimates of abundance from satellite images. This project will generate baseline data on the global distribution and abundance of Weddell seals around the Antarctic and will link environmental variables to population changes to better understand how the species will fare as their sea ice habitat continues to change. These results will help disentangle the effects of climate change and fishery operations, results that are necessary for appropriate international policy regarding fishery catch limits, impacts on the environment, and the value of marine protected areas. The project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. It will engage "arm-chair" scientists of all ages through connections with several non-governmental organizations and the general public. Anyone with access to the internet, including people who are physically unable to participate in field research directly, can participate in this project while simultaneously learning about multiple aspects of polar ecology through the project's interactive website. <br/><br/>Specifically, this research project will: 1) Quantify the distribution of Weddell seals around Antarctica and 2) Determine the impact of environmental variables (such as fast ice extent, ocean productivity, bathymetry) on habitat suitability and occupancy. To do this, the project will crowd-source counting of seals on high-resolution satellite images via a commercial citizen science platform. Variation in seal around the continent will then be related to habitat variables through generalized linear models. Specific variables, such as fast ice extent will be tested to determine their influence on population variability through both space and time. The project includes a rigorous plan for ensuring quality control in the dataset including ground truth data from other, localized projects concurrently funded by the National Science Foundation's Antarctic Science Program. | POLYGON((-180 -64,-144 -64,-108 -64,-72 -64,-36 -64,0 -64,36 -64,72 -64,108 -64,144 -64,180 -64,180 -65.4,180 -66.8,180 -68.2,180 -69.6,180 -71,180 -72.4,180 -73.8,180 -75.2,180 -76.6,180 -78,144 -78,108 -78,72 -78,36 -78,0 -78,-36 -78,-72 -78,-108 -78,-144 -78,-180 -78,-180 -76.6,-180 -75.2,-180 -73.8,-180 -72.4,-180 -71,-180 -69.6,-180 -68.2,-180 -66.8,-180 -65.4,-180 -64)) | POINT(0 -89.999) | false | false | |||||||||||||||||||||||
Collaborative Research: Fjord Ecosystem Structure and Function on the West Antarctic Peninsula - Hotspots of Productivity and Biodiversity? (FjordEco)
|
1443733 1443680 1443705 |
2019-02-13 | Winsor, Peter; Truffer, Martin; Smith, Craig; Powell, Brian; Merrifield, Mark; Vernet, Maria; Kohut, Josh | Marine communities along the western Antarctic Peninsula are highly productive ecosystems which support a diverse assemblage of charismatic animals such as penguins, seals, and whales as well as commercial fisheries such as that on Antarctic krill. Fjords (long, narrow, deep inlets of the sea between high cliffs) along the central coast of the Peninsula appear to be intense, potentially climate sensitive, hotspots of biological production and biodiversity, yet the structure and dynamics of these fjord ecosystems are very poorly understood. Because of this intense biological activity and the charismatic fauna it supports, these fjords are also major destinations for a large Antarctic tourism industry. This project is an integrated field and modeling program to evaluate physical oceanographic processes, glacial inputs, water column community dynamics, and seafloor bottom community structure and function in these important yet little understood fjord systems. These Antarctic fjords have characteristics that are substantially different from well-studied Arctic fjords, likely yielding much different responses to climate warming. This project will provide major new insights into the dynamics and climate sensitivity of Antarctic fjord ecosystems, highlighting contrasts with Arctic sub-polar fjords, and potentially transforming our understanding of the ecological role of fjords in the rapidly warming west Antarctic coastal marine landscape. The project will also further the NSF goal of training new generations of scientists, providing scientific training for undergraduate, graduate, and postdoctoral students. This includes the unique educational opportunity for undergraduates to participate in research cruises in Antarctica and the development of a novel summer graduate course on fjord ecosystems. Internet based outreach activities will be enhanced and extended by the participation of a professional photographer who will produce magazine articles, websites, radio broadcasts, and other forms of public outreach on the fascinating Antarctic ecosystem. <br/><br/>This project will involve a 15-month field program to test mechanistic hypotheses concerning oceanographic and glaciological forcing, and phytoplankton and benthic community response in the Antarctic fjords. Those efforts will be followed by a coupled physical/biological modeling effort to evaluate the drivers of biogeochemical cycles in the fjords and to explore their potential sensitivity to enhanced meltwater and sediment inputs. Fieldwork over two oceanographic cruises will utilize moorings, weather stations, and glacial, sea-ice and seafloor time-lapse cameras to obtain an integrated view of fjord ecosystem processes. The field team will also make multiple shipboard measurements and will use towed and autonomous underwater vehicles to intensively evaluate fjord ecosystem structure and function during spring/summer and autumn seasons. These integrated field and modeling studies are expected to elucidate fundamental properties of water column and sea bottom ecosystem structure and function in the fjords, and to identify key physical-chemical-glaciological forcing in these rapidly warming ecosystems. | POLYGON((-66 -64,-65.6 -64,-65.2 -64,-64.8 -64,-64.4 -64,-64 -64,-63.6 -64,-63.2 -64,-62.8 -64,-62.4 -64,-62 -64,-62 -64.1,-62 -64.2,-62 -64.3,-62 -64.4,-62 -64.5,-62 -64.6,-62 -64.7,-62 -64.8,-62 -64.9,-62 -65,-62.4 -65,-62.8 -65,-63.2 -65,-63.6 -65,-64 -65,-64.4 -65,-64.8 -65,-65.2 -65,-65.6 -65,-66 -65,-66 -64.9,-66 -64.8,-66 -64.7,-66 -64.6,-66 -64.5,-66 -64.4,-66 -64.3,-66 -64.2,-66 -64.1,-66 -64)) | POINT(-64 -64.5) | false | false | ||||||||||||||||||||||||
Collaborative Research: Phytoplankton Phenology in the Antarctic: Drivers, Patterns, and Implications for the Adelie Penguin
|
1341547 1341440 1341558 |
2018-11-20 | Jin, Meibing; Stroeve, Julienne; Ji, Rubao | The aim of study is to understand how climate-related changes in snow and ice affect predator populations in the Antarctic, using the Adélie penguin as a focal species due to its long history as a Southern Ocean 'sentinel' species and the number of long-term research programs monitoring its abundance, distribution, and breeding biology. Understanding the environmental factors that control predator population dynamics is critically important for projecting the state of populations under future climate change scenarios, and for designing better conservation strategies for the Antarctic ecosystem. For the first time, datasets from a network of observational sites for the Adélie penguin across the entire Antarctic will be combined and analyzed, with a focus on linkages among the ice environment, primary production, and the population responses of Adélie penguins. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. The results of this project can be used to illustrate intuitively to the general public the complex interactions between ice, ocean, pelagic food web and top predators. This project also offers an excellent platform to demonstrate the process of climate-change science - how scientists simulate climate change scenarios and interpret model results. This project supports the training of undergraduate and graduate students in the fields of polar oceanography, plankton and seabird ecology, coupled physical-biological modeling and mathematical ecology. The results will be broadly disseminated to the general oceanographic research community through scientific workshops, conferences and peer-reviewed journal articles, and to undergraduate and graduate education communities, K-12 schools and organizations, and the interested public through web-based servers using existing infrastructure at the investigators' institutions. The key question to be addressed in this project is how climate impacts the timing of periodic biological events (phenology) and how interannual variation in this periodic forcing influences the abundance of penguins in the Antarctic. The focus will be on the timing of ice algae and phytoplankton blooms because the high seasonality of sea ice and associated pulsed primary productivity are major drivers of the Antarctic food web. This study will also examine the responses of Adélie penguins to changes in sea ice dynamics and ice algae-phytoplankton phenology. Adélie penguins, like many other Antarctic seabirds, are long-lived, upper trophic-level predators that integrate the effects of sea ice on the food web at regional scales, and thus serve as a reliable biological indicator of environmental changes. The proposed approach is designed to accommodate the limits of measuring and modeling the intermediate trophic levels between phytoplankton and penguins (e.g., zooplankton and fish) at the pan-Antarctic scale, which are important but latent variables in the Southern Ocean food web. Through the use of remotely sensed and in situ data, along with state of the art statistical approaches (e.g. wavelet analysis) and numerical modeling, this highly interdisciplinary study will advance our understanding of polar ecosystems and improve the projection of future climate change scenarios. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||||||||||||||||||||
Collaborative Research: Synergistic effects of Elevated Carbon Dioxide (CO2) and Temperature on the Metabolism, Growth, and Reproduction of Antarctic Krill (Euphausia Superba)
|
1246293 |
2018-09-14 | Saba, Grace |
|
Climate change projections for this century suggest that the Southern Ocean will be the first region to be affected by seawater chemistry changes associated with enhanced carbon dioxide (CO2). Additionally, regions of the Southern Ocean are warming faster than any other locations on the planet. Ocean acidification and warming may act synergistically to impair the performance of different organisms by simultaneously increasing metabolic needs and reducing oxygen transport. However, no studies have measured krill acid-base regulation, metabolism, growth, or reproduction in the context of ocean acidification or synergistic 'greenhouse' conditions of elevated CO2 and temperature. In the present project, the investigators will conduct both short and prolonged exposure experiments at Palmer Station, Antarctica to determine the responses of Euphausia superba to elevated CO2 and temperature. The investigators will test hypotheses related to acid-base compensation and acclimation of various life stages of krill to elevated CO2 and temperature. Furthermore, they will determine these impacts on feeding, respiration, metabolism, growth, and reproduction.<br/><br/>The Antarctic krill, Euphausia superba, is a key component of Antarctic food webs as they are a primary food source for many of the top predators in the Southern Ocean including baleen whales, seals, penguins, and other sea birds. This project will determine the responses of Antarctic krill exposed to elevated CO2 and temperature and whether or not krill have the capacity to fully compensate under future ocean conditions. The proposed field effort will be complemented by an extensive broader impact effort focused on bringing marine science to both rural and urban high school students in the Midwest (Kansas). The core educational objectives of this proposal are to 1) instruct students about potential careers in marine science, 2) engage students and promote their interest in the scientific process, critical thinking, and applications of science, mathematics, and technology, and 3) and increase student and teacher awareness and understanding of the oceans and global climate change, with special focus on the Western Antarctic Peninsula region. Finally, this project will engage undergraduate and graduate students in the production, analysis, presentation and publication of datasets. | None | None | false | false | |||||||||||||||||||||||
LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem
|
2023425 1440435 |
2018-05-11 | Ducklow, Hugh; Martinson, Doug; Schofield, Oscar | The Palmer Antarctica LTER (Long Term Ecological Research) site has been in operation since 1990. The goal of all the LTER sites is to conduct policy-relevant research on ecological questions that require tens of years of data, and cover large geographical areas. For the Palmer Antarctica LTER, the questions are centered around how the marine ecosystem west of the Antarctica peninsula is responding to a climate that is changing as rapidly as any place on the Earth. For example, satellite observations over the past 35 years indicate the average duration of sea ice cover is now ~90 days (3 months!) shorter than it was. The extended period of open water has implications for many aspects of ecosystem research, with the concurrent decrease of Adèlie penguins within this region regularly cited as an exemplar of climate change impacts in Antarctica. Cutting edge technologies such as autonomous underwater (and possibly airborne) vehicles, seafloor moorings, and numerical modeling, coupled with annual oceanographic cruises, and weekly environmental sampling, enables the Palmer Antarctica LTER to expand and bridge the time and space scales needed to assess climatic impacts. This award includes for the first time study of the roles of whales as major predators in the seasonal sea ice zone ecosystem. The team will also focus on submarine canyons, special regions of enhanced biological activity, along the Western Antarctic Peninsula (WAP).<br/><br/>The current award's overarching research question is: How do seasonality, interannual variability, and long term trends in sea ice extent and duration influence the structure and dynamics of marine ecosystems and biogeochemical cycling? Specific foci within the broad question include: 1. Long-term change and ecosystem transitions. What is the sensitivity or resilience of the ecosystem to external perturbations as a function of the ecosystem state? 2. Lateral connectivity and vertical stratification. What are the effects of lateral transports of freshwater, heat and nutrients on local ocean stratification and productivity and how do they drive changes in the ecosystem? 3. Top-down controls and shifting baselines. How is the ecosystem responding to the cessation of whaling and subsequent long-term recovery of whale stocks? 4. Foodweb structure and biogeochemical processes. How do temporal and spatial variations in foodweb structure influence carbon and nutrient cycling, export, and storage? The broader impacts of the award leverage local educational partnerships including the Sandwich, MA STEM Academy, the New England Aquarium, and the NSF funded Polar Learning and Responding (PoLAR) Climate Change Education Partnership at Columbia's Earth Institute to build new synergies between Arctic and Antarctic, marine and terrestrial scientists and students, governments and NGOs. The Palmer Antarctic LTER will also conduct appropriate cross LTER site comparisons, and serve as a leader in information management to enable knowledge-building within and beyond the Antarctic, oceanographic, and LTER communities. | POLYGON((-80 -63,-78.3 -63,-76.6 -63,-74.9 -63,-73.2 -63,-71.5 -63,-69.8 -63,-68.1 -63,-66.4 -63,-64.7 -63,-63 -63,-63 -63.8,-63 -64.6,-63 -65.4,-63 -66.2,-63 -67,-63 -67.8,-63 -68.6,-63 -69.4,-63 -70.2,-63 -71,-64.7 -71,-66.4 -71,-68.1 -71,-69.8 -71,-71.5 -71,-73.2 -71,-74.9 -71,-76.6 -71,-78.3 -71,-80 -71,-80 -70.2,-80 -69.4,-80 -68.6,-80 -67.8,-80 -67,-80 -66.2,-80 -65.4,-80 -64.6,-80 -63.8,-80 -63)) | POINT(-71.5 -67) | false | false | ||||||||||||||||||||||||
Collaborative Research: Penguin Foraging Reveals Phytoplankton Spatial Structure in the Ross Sea
|
1142074 1142174 |
2015-12-14 | Smith, Walker; Ballard, Grant | Abstract<br/><br/>The Ross Sea is believed to contributes a huge portion (~1/3) of the primary productivity of the Southern Ocean and is home to a similar large portion of the top predators (e.g. 38% of Adelie, 28% of Emperor penguins) of the Antarctic sea ice ecosystem. The trophic pathways in this system are complex in both space and time. One scenario for the Ross Sea ecosystem is that diatoms are grazed by krill, which are in turn the preferred food of fish, penguins and other predators. Phaeocystis colonies, on the other hand lead to grazing by pteropods and other organisms that are a non-favoured food source for top predators. Remotely sensed chlorophyll, indicating all phytoplankton, is then suggested to be a relatively poor predictor of penguin foraging efforts. This is also consistent with notion that algal species composition is very important to penguin grazing pressure, mediated by krill, and perhaps resulting in selective depletion. <br/><br/>This collaborative research sets out to use an autonomous glider, equipped with a range of sensors, and informed by satellite chlorophyll imagery to be combined with 3-dimenisonal active penguin tracking to their preferred foraging sites. The effect of localized grazing pressure of krill on the appearance and disappearance of algal blooms will also be followed. Overall the objective of the research is to reconcile and explain several years of the study of the foraging habits and strategies of (top predator) penguins at the Cape Crozier site (Ross Island), with the dynamics of krill and their supporting algal food webs. The use of a glider to answer a primarily ecological questions is subject to moderate to high risk, and is potentially transformative. | POLYGON((165.9 -76.9,166.25 -76.9,166.6 -76.9,166.95 -76.9,167.3 -76.9,167.65 -76.9,168 -76.9,168.35 -76.9,168.7 -76.9,169.05 -76.9,169.4 -76.9,169.4 -76.97,169.4 -77.04,169.4 -77.11,169.4 -77.18,169.4 -77.25,169.4 -77.32,169.4 -77.39,169.4 -77.46,169.4 -77.53,169.4 -77.6,169.05 -77.6,168.7 -77.6,168.35 -77.6,168 -77.6,167.65 -77.6,167.3 -77.6,166.95 -77.6,166.6 -77.6,166.25 -77.6,165.9 -77.6,165.9 -77.53,165.9 -77.46,165.9 -77.39,165.9 -77.32,165.9 -77.25,165.9 -77.18,165.9 -77.11,165.9 -77.04,165.9 -76.97,165.9 -76.9)) | POINT(167.65 -77.25) | false | false | ||||||||||||||||||||||||
COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels
|
0944141 0944358 0944411 |
2015-12-13 | Ainley, David; Dugger, Katie; Ballard, Grant | While changes in populations typically are tracked to gauge the impact of climate or habitat change, the process involves the response of individuals as each copes with an altered environment. In a study of Adelie penguins that spans 13 breeding seasons, results indicate that only 20% of individuals within a colony successfully raise offspring, and that they do so because of their exemplary foraging proficiency. Moreover, foraging appears to require more effort at the largest colony, where intraspecific competition is higher than at small colonies, and also requires more proficiency during periods of environmental stress. When conditions are particularly daunting, emigration dramatically increases, countering the long-standing assumption that Adélie penguins are highly philopatric. The research project will 1) determine the effect of age, experience and physiology on individual foraging efficiency; 2) determine the effect of age, experience, and individual quality on breeding success and survival in varying environmental and competitive conditions at the colony level; and 3) develop a comprehensive model for the Ross-Beaufort Island metapopulation dynamics. Broader impacts include training of interns, continuation of public outreach through the highly successful project website penguinscience.com, development of classroom materials and other standards-based instructional resources. | POLYGON((165.9 -76.9,166.25 -76.9,166.6 -76.9,166.95 -76.9,167.3 -76.9,167.65 -76.9,168 -76.9,168.35 -76.9,168.7 -76.9,169.05 -76.9,169.4 -76.9,169.4 -76.97,169.4 -77.04,169.4 -77.11,169.4 -77.18,169.4 -77.25,169.4 -77.32,169.4 -77.39,169.4 -77.46,169.4 -77.53,169.4 -77.6,169.05 -77.6,168.7 -77.6,168.35 -77.6,168 -77.6,167.65 -77.6,167.3 -77.6,166.95 -77.6,166.6 -77.6,166.25 -77.6,165.9 -77.6,165.9 -77.53,165.9 -77.46,165.9 -77.39,165.9 -77.32,165.9 -77.25,165.9 -77.18,165.9 -77.11,165.9 -77.04,165.9 -76.97,165.9 -76.9)) | POINT(167.65 -77.25) | false | false | ||||||||||||||||||||||||
Pre and post molt biology of emperor penguins - Oden trans - Ross / Amundsen Sea cruise
|
1043454 |
2015-12-12 | Kooyman, Gerald |
|
The emperor penguin dives deeper and longer, fasts longer, and endures the harshest weather conditions of all diving birds. It spends about four and half months per annum deep in Antarctic pack ice away from shore and stations, and thus is largely unavailable for study. This time includes preparation for the molt, and travel to the colony to breed, a time period in which great swings in body weight occur. This study will fill an important gap in what we know about the biology of the annual cycle of the emperor by examining the molt-post molt period. The P.I. proposes to traverse the Amundsen and Bellingshausen seas on the Oden, to locate and tag emperor penguins during the molt season. The objectives are to (1) Place satellite tags on 20 adult post molt birds to determine their route, rate of travel, and diving behavior as they return back to their breeding colonies, (2) Obtain an index of body condition, (3) Collect guano to determine the type of food consumed by emperor penguins in the region, (4) Conduct shipboard surveys to sight and plot the location and abundance of adult and juvenile birds on the ship's track. The PI hypothesizes that bird dives will be shallow during the initial post-molt phase, and that food will consist primarily of krill; that there will be differential dispersal of birds from the Ross Sea vs. Marie Byrd Land, with Ross Sea birds traveling farther; and that the greatest adult mortality occurs during the molt and early post molt period. Broader impacts include training of a post doc, a graduate student, and an aquarium volunteer. The P.I. also will present findings through a website, through public lectures, and in collaboration with the Birch aquarium. | POLYGON((-172.642 -72.55,-170.9074 -72.55,-169.1728 -72.55,-167.4382 -72.55,-165.7036 -72.55,-163.969 -72.55,-162.2344 -72.55,-160.4998 -72.55,-158.7652 -72.55,-157.0306 -72.55,-155.296 -72.55,-155.296 -73.0743,-155.296 -73.5986,-155.296 -74.1229,-155.296 -74.6472,-155.296 -75.1715,-155.296 -75.6958,-155.296 -76.2201,-155.296 -76.7444,-155.296 -77.2687,-155.296 -77.793,-157.0306 -77.793,-158.7652 -77.793,-160.4998 -77.793,-162.2344 -77.793,-163.969 -77.793,-165.7036 -77.793,-167.4382 -77.793,-169.1728 -77.793,-170.9074 -77.793,-172.642 -77.793,-172.642 -77.2687,-172.642 -76.7444,-172.642 -76.2201,-172.642 -75.6958,-172.642 -75.1715,-172.642 -74.6472,-172.642 -74.1229,-172.642 -73.5986,-172.642 -73.0743,-172.642 -72.55)) | POINT(-163.969 -75.1715) | false | false | |||||||||||||||||||||||
Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica
|
0739575 |
2015-09-25 | Emslie, Steven; Polito, Michael; Patterson, William |
|
The research combines interdisciplinary study in geology, paleontology, and biology, using stable isotope and radiocarbon analyses, to examine how climate change and resource utilization have influenced population distribution, movement, and diet in penguins during the mid-to-late Holocene. Previous investigations have demonstrated that abandoned colonies contain well-preserved remains that can be used to examine differential responses of penguins to climate change in various sectors of Antarctica. As such, the research team will investigate abandoned and active pygoscelid penguin (Adelie, Chinstrap, and Gentoo) colonies in the Antarctic Peninsula and Ross Sea regions, and possibly Prydz Bay, in collaboration with Chinese scientists during four field seasons. Stable isotope analyses will be conducted on recovered penguin tissues and prey remains in guano to address hypotheses on penguin occupation history, population movement, and diet in relation to climate change since the late Pleistocene. The study will include one Ph.D., two Masters and 16 undergraduate students in advanced research over the project period. Students will be exposed to a variety of fields, the scientific method, and international scientific research. They will complete field and lab research for individual projects or Honor's theses for academic credit. The project also will include web-based outreach, lectures to middle school students, and the development of interactive exercises that highlight hypothesis-driven research and the ecology of Antarctica. Two undergraduate students in French and Spanish languages at UNCW will be hired to assist in translating the Web page postings for broader access to this information. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||||||||||||||
The Physiological Ecology of Two Antarctic Icons: Emperor Penguins and Leopard Seals
|
0944220 |
2014-11-24 | Ponganis, Paul |
|
Emperor penguins (Aptenodytes forsteri) and leopard seals (Hydrurga leptonyx) are iconic, top predators in Antarctica. Understanding their physiological ecology is essential to the assessment of their adaptability to the threats of climate change, pollution, and overfishing. The proposed research has multipronged objectives. Prior results suggest that Emperor penguins have flexible (vs. static) aerobic dive limits (ADL) that vary with the type of dive, and that the role of heart rate in utilization of oxygen stores also varies with dive type. A series of physiological measurements are proposed with backpack electrocardiogram recorders, that will allow further delineation of patterns and interrelationships among heart rate, dive behavior, and oxygen stores. Importantly, the research will be done on free diving emperors, and not individuals confined to a dive hole, thereby providing a more genuine measure of diving physiology and behavior. A separate objective is to examine foraging behavior of leopard seals, using a backpack digital camera and time depth recorder. Leopard seal behavior and prey intake is poorly quantified, but known to be significant. Accordingly the research is somewhat exploratory but will provide important baseline data. Finally, the P.I. proposes to continue long term overflight censuses of Emperor penguin colonies in the Ross Sea. Broader impacts include collaboration with National Geographic television, graduate student training, and development of sedation techniques for leopard seals. | POLYGON((-180 -68,-147 -68,-114 -68,-81 -68,-48 -68,-15 -68,18 -68,51 -68,84 -68,117 -68,150 -68,150 -69,150 -70,150 -71,150 -72,150 -73,150 -74,150 -75,150 -76,150 -77,150 -78,117 -78,84 -78,51 -78,18 -78,-15 -78,-48 -78,-81 -78,-114 -78,-147 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -77,160 -76,160 -75,160 -74,160 -73,160 -72,160 -71,160 -70,160 -69,160 -68,162 -68,164 -68,166 -68,168 -68,170 -68,172 -68,174 -68,176 -68,178 -68,-180 -68)) | POINT(-25 -73) | false | false | |||||||||||||||||||||||
Collaborative Research: Seasonal Trophic Roles of Euphausia Superba (STRES)
|
1142107 |
2014-02-07 | Durbin, Edward |
|
Krill, Euphausia superba, is a keystone species in the Antarctic ecosystem and provides the trophic link between microscopic plankton and charismatic megafauna such as penguins and whales. Recent evidence suggests krill may not be exclusively planktonivorous, which introduces the potential of new pathways of carbon flux through krill based ecosystems. A change in our view of krill from one of being herbivores to omnivores opens up several questions.<br/><br/>Climate induced change in the extent, thickness and duration of overlying sea ice coverage is expected to change the prey fields available to krill, and to have subsequent effects on the suite of predators supported by krill. The nature of this benthic prey?krill link, which may be crucial in those parts of the seasonal cycle other than the well studied spring bloom, is yet to be determined. DNA techniques will be used to identify and quantify the prey organisms. <br/><br/>This project will measure the in situ feeding ecology and behavior of krill and, ultimately, the success of this key species. An overall goal is<br/>to investigate seasonal changes in Euphausia superba in-situ feeding and swimming behavior in the Wilhelmina Bay region of the Western Antarctic Peninsula (WAP) area, known to be a region of changing climate. Understanding the biological impacts of climate change is important to societal and economic goals. The project scientists will additionally team with a marine and environmental reporting group to design presentations for an annual journalist meeting. | None | None | false | false | |||||||||||||||||||||||
Real-Time Characterization of Adelie Penguin Foraging Environment Using an Autonomous Underwater Vehicle
|
1019838 |
2013-12-30 | Wendt, Dean; Moline, Mark |
|
Abstract <br/><br/>This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). <br/><br/>The Antarctic Peninsula is among the most rapidly warming regions on earth. Increased heat from the Antarctic Circumpolar Current has elevated the temperature of the 300 m of shelf water below the permanent pycnocline by 0.7 degrees C. This trend has displaced the once dominant cold, dry continental Antarctic climate, and is causing multi-level responses in the marine ecosystem. One striking example of the ecosystem response to warming has been the local declines in ice-dependent Adélie penguins. The changes in these apex predators are thought to be driven by alterations in phytoplankton and zooplankton community composition, and the foraging limitations and diet differences between these species. One of the most elusive questions facing researchers interested in the foraging ecology of the Adélie penguin, namely, what are the biophysical properties that characterize the three dimensional foraging space of this top predator? The research will combine the real-time site and diving information from the Adélie penguin satellite tags with the full characterization of the oceanography and the penguins prey field using an autonomous underwater vehicle (AUV). While some of these changes have been documented over large spatial scales of the WAP, it is now thought that the causal mechanisms that favor of one life history strategy over another may actually operate over much smaller scales than previously thought, specifically on the scale of local breeding sites and over-wintering areas. Characterization of prey fields on these local scales has yet to be done and one that the AUV is ideally suited. The results will have a direct tie to the climate induced changes that are occurring in the West Antarctic Peninsula. This study will also highlight a new approach to linking an autonomous platform to bird behavior that could be expanded to include the other two species of penguins and examine the seasonal differences in their foraging behavior and prey selection. From a vehicle perspective, this effort will inform the AUV user community of new sensor suites and/or data processing approaches that are required to better evaluate foraging habitat. The project also will help transition AUV platforms into routine investigative tools for this region, which is chronically under sampled and will remain difficult to access | None | None | false | false | |||||||||||||||||||||||
Acoustic Assessment of Southern Ocean Salps and Their Ecosystem Impact
|
0944042 |
2013-12-03 | Warren, Joseph |
|
The importance of gelatinous zooplankton in marine systems worldwide is increasing. In Southern Ocean, increasing salp densities could have a detrimental effect on higher predators, including penguins, fur seals, and baleen whales. The proposed research is a methods-develoment project that will improve the capability to indirectly assess abundances and distributions of salps in the Southern Ocean through acoustic surveys. Hydrographic, net tow, and acoustic backscatter data will be collected in the waters surrounding the South Shetland Islands and the Antarctic peninsula, where both krill and salps are found and compete for food. Shipboard experimental manipulations and measurements will lead to improved techniques for assessment of salp biomass acoustically. Experiments will focus on material properties (density and sound speed), size and shape of salps, as well as how these physical properties will vary with the salp's environment, feeding rate, and reproductive status. In the field, volume backscattering data from an acoustic echosounder will be collected at the same locations as the net tows to enable comparison of net and acoustic estimates of salp abundance. A physics-based scattering model for salps will be developed and validated, to determine if multiple acoustic frequencies can be used to discriminate between scattering associated with krill swarms and that from salp blooms. During the same period as the Antarctic field work, a parallel outreach and education study will be undertaken in Long Island, New York examining local gelatinous zooplankton. This study will enable project participants to learn and practice research procedures and methods before traveling to Antarctica; provide a comparison time-series that will be used for educational purposes; and include many more students and teachers in the research project than would be able to participate in the Antarctic field component. | POLYGON((-70 -59,-68 -59,-66 -59,-64 -59,-62 -59,-60 -59,-58 -59,-56 -59,-54 -59,-52 -59,-50 -59,-50 -59.7,-50 -60.4,-50 -61.1,-50 -61.8,-50 -62.5,-50 -63.2,-50 -63.9,-50 -64.6,-50 -65.3,-50 -66,-52 -66,-54 -66,-56 -66,-58 -66,-60 -66,-62 -66,-64 -66,-66 -66,-68 -66,-70 -66,-70 -65.3,-70 -64.6,-70 -63.9,-70 -63.2,-70 -62.5,-70 -61.8,-70 -61.1,-70 -60.4,-70 -59.7,-70 -59)) | POINT(-60 -62.5) | false | false | |||||||||||||||||||||||
Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)
|
0529087 0528728 0529666 |
2011-04-02 | Fritsen, Christian; Vernet, Maria; Ross, Robin Macurda; Quetin, Langdon B. | This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat.<br/><br/>SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. It is currently in a synthesis and modeling phase. This collaborative project is concerned with the lower trophic levels, and will be integrated with other synthesis and modeling studies that deal with grazers, predators, and other higher trophic levels. | POLYGON((-69.08 -64.8,-68.632 -64.8,-68.184 -64.8,-67.736 -64.8,-67.288 -64.8,-66.84 -64.8,-66.392 -64.8,-65.944 -64.8,-65.496 -64.8,-65.048 -64.8,-64.6 -64.8,-64.6 -65.121,-64.6 -65.442,-64.6 -65.763,-64.6 -66.084,-64.6 -66.405,-64.6 -66.726,-64.6 -67.047,-64.6 -67.368,-64.6 -67.689,-64.6 -68.01,-65.048 -68.01,-65.496 -68.01,-65.944 -68.01,-66.392 -68.01,-66.84 -68.01,-67.288 -68.01,-67.736 -68.01,-68.184 -68.01,-68.632 -68.01,-69.08 -68.01,-69.08 -67.689,-69.08 -67.368,-69.08 -67.047,-69.08 -66.726,-69.08 -66.405,-69.08 -66.084,-69.08 -65.763,-69.08 -65.442,-69.08 -65.121,-69.08 -64.8)) | POINT(-66.84 -66.405) | false | false | ||||||||||||||||||||||||
Collaborative research: Possible climate-induced change in the distribution of Pleuragramma antarcticum on the Western Antarctic Peninsula shelf
|
0741348 |
2011-03-03 | Torres, Joseph |
|
Intellectual Merit: Pleuragramma antarcticum, the Antarctic silverfish, play a key role in the trophic pyramid of the Antarctic coastal ecosystem, acting as food for larger fishes, flying and non-flying seabirds, pinnipeds, and whales. In turn, they are predators on coastal euphausiids, including both Euphausia superba and crystallorophias. Historically, Pleuragramma have been an important food source for Adélie Penguins of the Western Antarctic Peninsula (WAP), but during the last decade Pleuragramma have disappeared from the Adélie diet. We suggest that Pleuragramma?s absence from the diets of top predators is linked to the declining sea ice canopy, which serves as a nursery for eggs and larvae during the austral spring. The research will investigate four hydrographic regimes over the WAP continental shelf with the following features: (1) persistent gyral flows that act to retain locally spawned larvae, (2) spring sea ice that has declined in recent years (3) the prevalence of adult silverfish, and (4) the presence of breeding Adélie penguins whose diets vary in the proportions of silverfish consumed. The research will evaluate the importance of local reproduction versus larval advection, and the extent to which populations in the subregions of study are genetically distinct, via analysis of population structure, otolith microchemistry and molecular genetics of fish. The Pleuragramma data will be compared with penguin diet samples taken synoptically. <br/><br/>Broader Impacts: The proposed research brings together an international group of scientists with highly complimentary suites of skills to address the fate of Pleuragramma on the WAP shelf. Graduate students will use the data acquired as part of their Ph.D research, and will receive cross-training in ornithological field techniques, molecular genetic methods and otolith isotope chemistry. The PIs will work actively with the St. Petersburg Times to produce a blog in real time with pictures and text, which will be used to interact with local schools while we are at sea and after our return. The investigators also will collaborate with the COSEE center at USF and at local schools and museums to disseminate results to the K-12 community throughout the region. | None | None | false | false | |||||||||||||||||||||||
Collaborative Research: Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change
|
0439906 |
2010-10-30 | Koch, Paul |
|
During previous NSF-sponsored research, the PI's discovered that southern elephant seal colonies once existed along the Victoria Land coast (VLC) of Antarctica, a region where they are no longer observed. Molted seal skin and hair occur along 300 km of coastline, more than 1000 km from any extant colony. The last record of a seal at a former colony site is at ~A.D. 1600. Because abandonment occurred prior to subantarctic sealing, disappearance of the VLC colony probably was due to environmental factors, possibly cooling and encroachment of land-fast, perennial sea ice that made access to haul-out sites difficult. The record of seal inhabitation along the VLC, therefore, has potential as a proxy for climate change. Elephant seals are a predominantly subantarctic species with circumpolar distribution. Genetic studies have revealed significant differentiation among populations, particularly with regard to that at Macquarie I., which is the extant population nearest to the abandoned VLC colony. Not only is the Macquarie population unique genetically, but it is has undergone unexplained decline of 2%/yr over the last 50 years3. In a pilot study, genetic analyses showed a close relationship between the VLC seals and those at Macquarie I. An understanding of the relationship between the two populations, as well as of the environmental pressures that led to the demise of the VLC colonies, will provide a better understanding of present-day population genetic structure, the effect of environmental change on seal populations, and possibly the reasons underlying the modern decline at Macquarie Island.<br/>This project addresses several key research problems: (1) Why did elephant seals colonize and then abandon the VLC? (2) What does the elephant seal record reveal about Holocene climate change and sea-ice conditions? (3) What were the foraging strategies of the seals and did these strategies change over time as climate varied? (4) How does the genetic structure of the VLC seals relate to extant populations? (5) How did genetic diversity change over time and with colony decline? (6) Using ancient samples to estimate mtDNA mutation rates, what can be learned about VLC population dynamics over time? (7) What was the ecological relationship between elephant seals and Adelie penguins that occupied the same sites, but apparently at different times? The proposed work includes the professional training of young researchers and incorporation of data into graduate and undergraduate courses. | POLYGON((162 -72,162.6 -72,163.2 -72,163.8 -72,164.4 -72,165 -72,165.6 -72,166.2 -72,166.8 -72,167.4 -72,168 -72,168 -72.6,168 -73.2,168 -73.8,168 -74.4,168 -75,168 -75.6,168 -76.2,168 -76.8,168 -77.4,168 -78,167.4 -78,166.8 -78,166.2 -78,165.6 -78,165 -78,164.4 -78,163.8 -78,163.2 -78,162.6 -78,162 -78,162 -77.4,162 -76.8,162 -76.2,162 -75.6,162 -75,162 -74.4,162 -73.8,162 -73.2,162 -72.6,162 -72)) | POINT(165 -75) | false | false | |||||||||||||||||||||||
GLOBEC: Mysticete Whale Acoustic Census
|
9910007 |
2010-05-04 | Hildebrand, John; Costa, Daniel; Beardsley, Robert | The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on determining minimum population estimates, distribution and seasonality for mysticete whales, especially blue whales. This will be accomplished using passive acoustic recorders deployed on the seafloor for a period of one to two years. The deployment of a large aperture autonomous hydrophone array in the Antarctic will incorporate the use of passive acoustics as a tool for mysticete whale detection and census. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts. | POLYGON((-74.185 -52.3516,-72.6371 -52.3516,-71.0892 -52.3516,-69.5413 -52.3516,-67.9934 -52.3516,-66.4455 -52.3516,-64.8976 -52.3516,-63.3497 -52.3516,-61.8018 -52.3516,-60.2539 -52.3516,-58.706 -52.3516,-58.706 -53.94991,-58.706 -55.54822,-58.706 -57.14653,-58.706 -58.74484,-58.706 -60.34315,-58.706 -61.94146,-58.706 -63.53977,-58.706 -65.13808,-58.706 -66.73639,-58.706 -68.3347,-60.2539 -68.3347,-61.8018 -68.3347,-63.3497 -68.3347,-64.8976 -68.3347,-66.4455 -68.3347,-67.9934 -68.3347,-69.5413 -68.3347,-71.0892 -68.3347,-72.6371 -68.3347,-74.185 -68.3347,-74.185 -66.73639,-74.185 -65.13808,-74.185 -63.53977,-74.185 -61.94146,-74.185 -60.34315,-74.185 -58.74484,-74.185 -57.14653,-74.185 -55.54822,-74.185 -53.94991,-74.185 -52.3516)) | POINT(-66.4455 -60.34315) | false | false | ||||||||||||||||||||||||
GLOBEC: Biochemical Determination of Age and Dietary History in the Krill Euphasia superba
|
9910043 |
2010-05-04 | Fraser, William |
|
The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will apply new biochemical approaches to determine the population age structure of krill in field populations over seasonal and interannual time scales. Lipids specific to different food resources will be used in parallel with the intent of establishing markers for dietary history. This research will be coordinated with components studying krill feeding and growth. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts. | None | None | false | false | |||||||||||||||||||||||
U.S. SO GLOBEC Synthesis and Modeling: Southern Ocean GLOBEC (SO GLOBEC) Planning Office
|
0523166 |
2010-05-04 | Hofmann, Eileen |
|
The objective of the proposed work is to provide for the operation of a Planning Office for the synthesis and modeling phase of the Southern Ocean Global Ocean Ecosystems Dynamics (SO-Globec) program. The office will ensure that synthesis and integration activities that are developed as part of SO-Globec are coordinated with those undertaken by the international and U.S. Globec programs through: 1) organization of special sessions at meetings, 2) preparation of dedicated publications focused on program results, 3) maintenance of a project web site, 4) development of program outreach efforts, and 5) ensuring coordination with International Globec and other national and international programs and organizations. The office will consist of one faculty member and one program specialist.<br/><br/>SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. Extensive studies describing the ecology and physiology of important species at all trophic levels contributed to the ecosystem approach which is the essence of SO-Globec. The Planning Office will provide a central focal point for ensuring that the results from SO-Globec are made available to the broader scientific community and to the general public, and that the results will be incorporated into the planning of future Southern Ocean programs. | None | None | false | false | |||||||||||||||||||||||
GLOBEC: WinDSSOck: Winter Distribution and Success of Southern Ocean Krill
|
9910096 |
2010-05-04 | Ribic, Christine |
|
The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on the large-scale distribution, abundance and habitat of seabirds. This will be accomplished using strip-transect surveys and spatial analysis software and models to examine the large-scale data. This research will be coordinated with seabird studies which focus on seabird diet composition and small scale foraging behavior. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts. | None | None | false | false | |||||||||||||||||||||||
GLOBEC: Sea Ice Microbial Communities
|
9910098 |
2010-05-04 | Fritsen, Christian; Costa, Daniel |
|
The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on the distribution and activities of sea ice microbial communities. This will be accomplished using an integrated combination of sampling (vertical profiles, horizontal surveys, and under-ice surveys) and observational protocols. Experiments will be designed to estimate microbial activity within the sea ice and at the ice-seawater interface. The research will be coordinated with components studying the water column productivity and the sea ice habitat. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts. | None | None | false | false | |||||||||||||||||||||||
Foraging Behavior and Demography of Pygoscelis Penguins
|
0344275 |
2010-05-04 | Trivelpiece, Wayne |
|
Seabird research conducted at Admiralty Bay, King George Island in the Antarctic Peninsula region has documented annual variability in the life history parameters of the population biology of three related penguin species: the Adelie, the gentoo and the chinstrap (Pygoscelis adeliae, P. papua and P. antarctica, respectively). This long-term study has collected twenty-five years of data on the three related species, including survival and recruitment, population size and breeding success, and diets and foraging ecology. The current project will extend the research linking penguin demography and foraging ecology to variability in the Antarctic marine ecosystem. A major focus of this work will be on the Adelie and gentoo penguin population biology data and the distribution and trophic interactions among the three Pygoscelis species during the breeding season and the non-breeding, winter period. Recent results have provided the first detailed data on the wintering distributions of Adelie and chinstrap penguins in the Antarctic Peninsula region, through the use of satellite tags and time-depth recorders to examine the post-fledging foraging. Specific topics of research include an examination of the size and sex composition of krill captured by penguins feeding chicks and krill collected concurrently by net hauls in the adjacent marine environment and the length-frequency distribution of krill collected from penguin diet samples. The over winter survival of penguin breeding adults and the recruitment of young (two to four year old) pre-breeding penguins to their natal colony will be compared to the extent of sea ice in the winter prior to the breeding season. These variables are expected to be positively correlated for the Adelie but negatively correlated to the chinstrap penguin. Detailed studies of the adult gentoo penguins, which do not disperse widely from the natal colony, will be conducted using satellite tags. The data collected in this study will improve an understanding of the structure and function of the Antarctic through research on the impact of environmental variation on the structure of upper trophic level predators such as the Pygoscelis penguins. | None | None | false | false | |||||||||||||||||||||||
Foraging Ecology of Crabeater Seals (Lobodon Carcinophagus)
|
9981683 |
2010-05-04 | Costa, Daniel |
|
The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on the distribution and foraging behavior of adult female crabeater seals, using a combination of satellite-linked tracking, specialized diver recorders, and stable isotopic tracers. This research will be coordinated with components focused on prey (krill) distribution and the physical environment. The results will be analyzed using an optimality model. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts. | None | None | false | false | |||||||||||||||||||||||
Foraging Behavior and Demography of Pygoscelis Penguins
|
0125985 |
2010-05-04 | Trivelpiece, Wayne; Stearns, Charles R. |
|
Seabird research conducted at Admiralty Bay, King George Island in the Antarctic Peninsula region has documented annual variability in the life history parameters of the population biology of three related penguin species: the Adelie, the gentoo and the chinstrap (Pygoscelis adeliae, P. papua and P. antarctica, respectively). This long-term study has collected twenty-five years of data on the three related species, including survival and recruitment, population size and breeding success, and diets and foraging ecology. The current project will extend the research linking penguin demography and foraging ecology to variability in the Antarctic marine ecosystem. A major focus of this work will be on the Adelie and gentoo penguin population biology data and the distribution and trophic interactions among the three Pygoscelis species during the breeding season and the non-breeding, winter period. Recent results have provided the first detailed data on the wintering distributions of Adelie and chinstrap penguins in the Antarctic Peninsula region, through the use of satellite tags and time-depth recorders to examine the post-fledging foraging. Specific topics of research include an examination of the size and sex composition of krill captured by penguins feeding chicks and krill collected concurrently by net hauls in the adjacent marine environment and the length-frequency distribution of krill collected from penguin diet samples. The over winter survival of penguin breeding adults and the recruitment of young (two to four year old) pre-breeding penguins to their natal colony will be compared to the extent of sea ice in the winter prior to the breeding season. These variables are expected to be positively correlated for the Adelie but negatively correlated to the chinstrap penguin. Detailed studies of the adult gentoo penguins, which do not disperse widely from the natal colony, will be conducted using satellite tags. The data collected in this study will improve an understanding of the structure and function of the Antarctic through research on the impact of environmental variation on the structure of upper trophic level predators such as the Pygoscelis penguins. | POLYGON((-70.907646 -52.351532,-69.6445116 -52.351532,-68.3813772 -52.351532,-67.1182428 -52.351532,-65.8551084 -52.351532,-64.591974 -52.351532,-63.3288396 -52.351532,-62.0657052 -52.351532,-60.8025708 -52.351532,-59.5394364 -52.351532,-58.276302 -52.351532,-58.276302 -53.6039408,-58.276302 -54.8563496,-58.276302 -56.1087584,-58.276302 -57.3611672,-58.276302 -58.613576,-58.276302 -59.8659848,-58.276302 -61.1183936,-58.276302 -62.3708024,-58.276302 -63.6232112,-58.276302 -64.87562,-59.5394364 -64.87562,-60.8025708 -64.87562,-62.0657052 -64.87562,-63.3288396 -64.87562,-64.591974 -64.87562,-65.8551084 -64.87562,-67.1182428 -64.87562,-68.3813772 -64.87562,-69.6445116 -64.87562,-70.907646 -64.87562,-70.907646 -63.6232112,-70.907646 -62.3708024,-70.907646 -61.1183936,-70.907646 -59.8659848,-70.907646 -58.613576,-70.907646 -57.3611672,-70.907646 -56.1087584,-70.907646 -54.8563496,-70.907646 -53.6039408,-70.907646 -52.351532)) | POINT(-64.591974 -58.613576) | false | false | |||||||||||||||||||||||
GLOBEC: Winter Distribution and Success of Southern Ocean Krill
|
9910100 |
2010-05-04 | Torres, Joseph; Fraser, William |
|
The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on krill physiology, using measures of respiration, excretion, and proximate analysis. Additionally, the distribution and abundance of fishes and squid, which are krill predators, will be investigated using acoustic and net tow methods. This research will be coordinated with components studying krill in both the water column and under the ice. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts. | None | None | false | false | |||||||||||||||||||||||
Foraging Ecology of Crabeater Seals (Lobodon Carcinophagus)
|
0003956 |
2010-05-04 | Costa, Daniel |
|
The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on the distribution and foraging behavior of adult female crabeater seals, using a combination of satellite-linked tracking, specialized diver recorders, and stable isotopic tracers. This research will be coordinated with components focused on prey (krill) distribution and the physical environment. The results will be analyzed using an optimality model. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts. | POLYGON((-76.5119 -52.3523,-74.93335 -52.3523,-73.3548 -52.3523,-71.77625 -52.3523,-70.1977 -52.3523,-68.61915 -52.3523,-67.0406 -52.3523,-65.46205 -52.3523,-63.8835 -52.3523,-62.30495 -52.3523,-60.7264 -52.3523,-60.7264 -53.99299,-60.7264 -55.63368,-60.7264 -57.27437,-60.7264 -58.91506,-60.7264 -60.55575,-60.7264 -62.19644,-60.7264 -63.83713,-60.7264 -65.47782,-60.7264 -67.11851,-60.7264 -68.7592,-62.30495 -68.7592,-63.8835 -68.7592,-65.46205 -68.7592,-67.0406 -68.7592,-68.61915 -68.7592,-70.1977 -68.7592,-71.77625 -68.7592,-73.3548 -68.7592,-74.93335 -68.7592,-76.5119 -68.7592,-76.5119 -67.11851,-76.5119 -65.47782,-76.5119 -63.83713,-76.5119 -62.19644,-76.5119 -60.55575,-76.5119 -58.91506,-76.5119 -57.27437,-76.5119 -55.63368,-76.5119 -53.99299,-76.5119 -52.3523)) | POINT(-68.61915 -60.55575) | false | false | |||||||||||||||||||||||
GLOBEC: Winter Ecology of Larval Krill: Quantifying their Interaction with the Pack Ice Habitat
|
9909933 9910175 |
2010-05-04 | Vernet, Maria; Costa, Daniel; Ross, Robin Macurda; Smith, Raymond |
|
The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on water-column primary production using direct experimental estimates, modeling restuls from a fast repetition rate fluorometer and modeling of primary production from both optical as well as biophysical models. This research will be coordinated with components focused on sea ice production and sea ice habitat. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts. | POLYGON((-71.077 -57.9543,-70.015 -57.9543,-68.953 -57.9543,-67.891 -57.9543,-66.829 -57.9543,-65.767 -57.9543,-64.705 -57.9543,-63.643 -57.9543,-62.581 -57.9543,-61.519 -57.9543,-60.457 -57.9543,-60.457 -58.98629,-60.457 -60.01828,-60.457 -61.05027,-60.457 -62.08226,-60.457 -63.11425,-60.457 -64.14624,-60.457 -65.17823,-60.457 -66.21022,-60.457 -67.24221,-60.457 -68.2742,-61.519 -68.2742,-62.581 -68.2742,-63.643 -68.2742,-64.705 -68.2742,-65.767 -68.2742,-66.829 -68.2742,-67.891 -68.2742,-68.953 -68.2742,-70.015 -68.2742,-71.077 -68.2742,-71.077 -67.24221,-71.077 -66.21022,-71.077 -65.17823,-71.077 -64.14624,-71.077 -63.11425,-71.077 -62.08226,-71.077 -61.05027,-71.077 -60.01828,-71.077 -58.98629,-71.077 -57.9543)) | POINT(-65.767 -63.11425) | false | false | |||||||||||||||||||||||
GLOBEC: Winter Distribution and Success of Southern Ocean Krill
|
9910610 |
2010-05-04 | Daly, Kendra |
|
The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts. | None | None | false | false | |||||||||||||||||||||||
Long-term Data Collection at Select Antarctic Peninsula Visitor Sites
|
0230069 |
2010-05-04 | Yen, Jeannette; Naveen, Ronald; Leger, Dave | The Antarctic Site Inventory Project has collected biological data and site-descriptive information in the Antarctic Peninsula region since 1994. This research effort has provided data on those sites which are visited by tourists on shipboard expeditions in the region. The aim is to obtain data on the population status of several key species of Antarctic seabirds, which might be affected by the cumulative impact resulting from visits to the sites. This project will continue the effort by focusing on two heavily-visited Antarctic Peninsula sites: Paulet Island, in the northwestern Weddell Sea and Petermann Island, in the Lemaire Channel near Anvers Island. These sites were selected because both rank among the ten most visited sites in Antarctica each year in terms of numbers of visitors and zodiac landings; both are diverse in species composition, and both are sensitive to potential environmental disruptions from visitors. These data collected focus on two important biological parameters for penguins and blue-eyed shags: (1) breeding population size (number of occupied nests) and (2) breeding success (number of chicks per occupied nests). A long-term data program will be supported, with studies at the two sites over a five-year period. The main focus will be at Petermann Island, selected for intensive study due to its visitor status and location in the region near Palmer Station. This will allow for comparative data with the Palmer Long Term Ecological Research program. Demographic data will be collected in accordance with Standard Methods established by the Convention for the Conservation of Antarctic Marine Living Resources Ecosystem Monitoring Program and thus will be comparable with similar data sets being collected by other international Antarctic Treaty nation research programs. While separating human-induced change from change resulting from a combination of environmental factors will be difficult, this work will provide a first step to identify potential impacts. These long-term data sets will contribute to a better understanding of biological processes in the entire region and will contribute valuable information to be used by the Antarctic Treaty Parties as they address issues in environmental stewardship in Antarctica. | POLYGON((-68.0489 -52.7302,-66.96539 -52.7302,-65.88188 -52.7302,-64.79837 -52.7302,-63.71486 -52.7302,-62.63135 -52.7302,-61.54784 -52.7302,-60.46433 -52.7302,-59.38082 -52.7302,-58.29731 -52.7302,-57.2138 -52.7302,-57.2138 -53.97453,-57.2138 -55.21886,-57.2138 -56.46319,-57.2138 -57.70752,-57.2138 -58.95185,-57.2138 -60.19618,-57.2138 -61.44051,-57.2138 -62.68484,-57.2138 -63.92917,-57.2138 -65.1735,-58.29731 -65.1735,-59.38082 -65.1735,-60.46433 -65.1735,-61.54784 -65.1735,-62.63135 -65.1735,-63.71486 -65.1735,-64.79837 -65.1735,-65.88188 -65.1735,-66.96539 -65.1735,-68.0489 -65.1735,-68.0489 -63.92917,-68.0489 -62.68484,-68.0489 -61.44051,-68.0489 -60.19618,-68.0489 -58.95185,-68.0489 -57.70752,-68.0489 -56.46319,-68.0489 -55.21886,-68.0489 -53.97453,-68.0489 -52.7302)) | POINT(-62.63135 -58.95185) | false | false | ||||||||||||||||||||||||
Monitoring the Human Impact and Environmental Variability on Adelie Penguins at Palmer Station, Antarctica
|
0130525 |
2010-05-04 | Fraser, William; Smith, Raymond |
|
The potential consequence of human impact on wildlife in Antarctica has been debated for many decades. Scientists, support staff and visitors in Antarctica may have an effect on the behavior and population dynamics of marine mammals and seabirds. Since the early 1970's, shipboard tourism has expanded to the point where it is timely to address the question, using a scientific research approach. The focus of this study is to examine the potential effect of tourist activities on the Adelie Penguins (Pygoscelis adeliae) in the Antarctic Peninsula. The topic has gathered the interest and opinions of those in private industry, the scientific community, government organizations and environmental groups. A key concern is that increases in these activities may eventually overcome the ability of research to address critical issues in a timely and biologically meaningful manner. The approach to understanding how tourism might affect Adelie Penguins must involve both a study of human activity and a study of natural variability in the physical environment. The ongoing Palmer Long Term Ecological Research program focuses on the ecosystem and its components and thus addresses the issues of natural variability. This project focuses on the human dimension and continues a tourist-monitoring program begun as a pilot project near Palmer Station. This site is in a geographic location that mirrors current patterns in tourism and tourist-wildlife interactions in the western Antarctic Peninsula. It also offers a setting that provides unique opportunities for human impacts research. This includes the presence of long-term databases that document environmental variability over multiple time and space scales in both marine and terrestrial habitats, and the ability to examine potential tourist impacts as part of controlled experiments. The results of the study will have important implications to understanding interactions between climate change and ecosystem response, and for detecting, mitigating and managing the consequences of human activities such as tourism. | None | None | false | false | |||||||||||||||||||||||
GLOBEC: Krill Distribution and Abundance in Winter
|
9910263 |
2010-05-04 | Zhou, Meng |
|
The U.S. Global Ocean Ecosystems Dynamics (U.S. GLOBEC) program has the goal of understanding and ultimately predicting how populations of marine animal species respond to natural and anthropogenic changes in climate. Research in the Southern Ocean (SO) indicates strong coupling between climatic processes and ecosystem dynamics via the annual formation and destruction of sea ice. The Southern Ocean GLOBEC Program (SO GLOBEC) will investigate the dynamic relationship between physical processes and ecosystem responses through identification of critical parameters that affect the distribution, abundance and population dynamics of target species. The overall goals of the SO GLOBEC program are to elucidate shelf circulation processes and their effect on sea ice formation and krill distribution, and to examine the factors which govern krill survivorship and availability to higher trophic levels, including penguins, seals and whales. The focus of the U.S. contribution to the international SO GLOBEC program will be on winter processes. This component will focus on juvenile and adult krill and mesozooplankton prey distribution, using acoustic techniques. Studies will be conducted and krill shrinkage and mortality rates as well as krill aggregation behavior. The results will be analyzed in coordination with components involved in physical and biological models. The result of the integrated SO GLOBEC program will be to improve the predictability of living marine resources, especially with respect to local and global climatic shifts. | None | None | false | false | |||||||||||||||||||||||
Long-Term Ecological Research on the Antarctic Marine Ecosystem: An Ice-Dominated Environment
|
9011927 9632763 |
2010-05-04 | Smith, Raymond; Ross, Robin Macurda; Fraser, William; Martinson, Douglas; Ducklow, Hugh |
|
The annual advance and retreat of pack ice may be the major physical determinant of spatial and temporal changes in the structure and function of antarctic marine communities. Interannual cycles and/or trends in the annual extent of pack ice may also have significant effects on all levels of the food web, from total annual primary production to breeding success in seabirds. Historical records indicate a six to eight year cycle in the maximum extent of pack ice in the winter. During this decade, winters were colder in 1980 and 1981, and again in 1986 and 1987. Winter-over survival in Adelie penguins varied on the same cycle, higher in winters with heavy pack ice. This Long Term Ecological Research (LTER) project will define ecological processes linking the extent of annual pack ice with the biological dynamics of different trophic levels within antarctic marine communities. The general focus is on interannual variability in representative populations from the antarctic marine food web and on mechanistic linkages that control the observed variability in order to develop broader generalizations applicable to other large marine environments. To achieve these objectives, data from several spatial and temporal scales, including remote sensing, a field approach that includes an annual monitoring program, a series of process-oriented research cruises, and a modeling effort to provide linkages on multiple spatial and temporal scales between biological and environmental components of the ecosystem will be employed. | POLYGON((-79.68459 -52.36474,-77.851019 -52.36474,-76.017448 -52.36474,-74.183877 -52.36474,-72.350306 -52.36474,-70.516735 -52.36474,-68.683164 -52.36474,-66.849593 -52.36474,-65.016022 -52.36474,-63.182451 -52.36474,-61.34888 -52.36474,-61.34888 -54.071087,-61.34888 -55.777434,-61.34888 -57.483781,-61.34888 -59.190128,-61.34888 -60.896475,-61.34888 -62.602822,-61.34888 -64.309169,-61.34888 -66.015516,-61.34888 -67.721863,-61.34888 -69.42821,-63.182451 -69.42821,-65.016022 -69.42821,-66.849593 -69.42821,-68.683164 -69.42821,-70.516735 -69.42821,-72.350306 -69.42821,-74.183877 -69.42821,-76.017448 -69.42821,-77.851019 -69.42821,-79.68459 -69.42821,-79.68459 -67.721863,-79.68459 -66.015516,-79.68459 -64.309169,-79.68459 -62.602822,-79.68459 -60.896475,-79.68459 -59.190128,-79.68459 -57.483781,-79.68459 -55.777434,-79.68459 -54.071087,-79.68459 -52.36474)) | POINT(-70.516735 -60.896475) | false | false | |||||||||||||||||||||||
Penguin-Krill-Ice Interactions: The Impact of Environmental Variability on Penguin Demography
|
9816616 |
2010-05-04 | Trivelpiece, Wayne; Smith, Craig |
|
9816616 Trivelpiece Long-term seabird research conducted at Admiralty Bay, which is located on King George Island in the Antarctic Peninsula region, has documented annual variability in the life history parameters of the breeding biology and ecology of the Adelie, gentoo and chinstrap penguins. Twenty-year records acquired on these species, including survival and recruitment, population size and breeding success, and diets and foraging ecology have enabled scientists to test key hypotheses regarding the linkage between these predator parameters and variability in the Antarctic marine ecosystem. This project will focus on understanding the linkages between the physical environment and the population biology of penguins, in particular, sea ice coverage and its impact on krill availability as a food source for penguins. Krill is a key food web species in the Antarctic oceans and accounts for nearly one hundred percent of the prey eaten by dominant predators such as baleen whales, seals and penguins. Analysis of long-term data sets has suggested that years of heavy winter sea ice favor krill recruitment, as larval krill find refuge and food in the sea ice habitat. It has also been observed that years of heavy sea ice favor Adelie penguin recruitment and not that of chinstrap penguins. Aspects of the work include analysis of diet samples, shipboard krill sampling, survival and recruitment studies of penguins, satellite tracking of penguins during the breeding season, and analysis of satellite sea ice images. Penguins are the key species used to monitor the impact of commercial fisheries activities in the region, so this study will provide useful information to the Convention for the Conservation of Antarctic Marine Living Resources, which is the part of the Antarctic Treaty System which focuses on fisheries management. | POLYGON((-70.860664 -52.350334,-69.5007142 -52.350334,-68.1407644 -52.350334,-66.7808146 -52.350334,-65.4208648 -52.350334,-64.060915 -52.350334,-62.7009652 -52.350334,-61.3410154 -52.350334,-59.9810656 -52.350334,-58.6211158 -52.350334,-57.261166 -52.350334,-57.261166 -53.6353506,-57.261166 -54.9203672,-57.261166 -56.2053838,-57.261166 -57.4904004,-57.261166 -58.775417,-57.261166 -60.0604336,-57.261166 -61.3454502,-57.261166 -62.6304668,-57.261166 -63.9154834,-57.261166 -65.2005,-58.6211158 -65.2005,-59.9810656 -65.2005,-61.3410154 -65.2005,-62.7009652 -65.2005,-64.060915 -65.2005,-65.4208648 -65.2005,-66.7808146 -65.2005,-68.1407644 -65.2005,-69.5007142 -65.2005,-70.860664 -65.2005,-70.860664 -63.9154834,-70.860664 -62.6304668,-70.860664 -61.3454502,-70.860664 -60.0604336,-70.860664 -58.775417,-70.860664 -57.4904004,-70.860664 -56.2053838,-70.860664 -54.9203672,-70.860664 -53.6353506,-70.860664 -52.350334)) | POINT(-64.060915 -58.775417) | false | false | |||||||||||||||||||||||
The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins
|
0538594 |
2009-12-20 | Ponganis, Paul |
|
The research will examine blood and muscle oxygen store depletion in relation to the documented aerobic dive limit (ADL, onset of post-dive blood lactate accumulation) in diving of emperor penguins. The intellectual merits of this proposal involve its evaluation of the physiological basis of the ADL concept. The ADL is probably the most commonly-used, but rarely measured, factor to interpret and model the behavior and foraging ecology of diving animals. Based on prior studies, and on recent investigations of respiratory and blood oxygen depletion during dives of emperor penguins, it is hypothesized that the ADL is a result of the depletion of myoglobin (Mb)-bound oxygen and increased glycolysis in the primary locomotory muscles. This project will accurately define the physiological mechanisms underlying the ADL through 1) evaluation of the rate and magnitude of muscle oxygen depletion during dives in relation to the previously measured ADL, 2) characterization of the hemoglobin-oxygen dissociation curve in blood of emperor penguins and comparison of that curve to those of other diving and non-diving species, 3) application of the emperor hemoglogin-oxygen dissociation curve to previously collected oxygen and hemoglobin data in order to estimate the rate and magnitude of blood oxygen depletion during dives, and 4) measurement of muscle phosphoocreatine and glycogen concentrations in order to estimate their potential contributions to muscle energy metabolism during diving. The project also continues the census and monitoring of the emperor colonies in the Ross Sea, which is especially important in light of both fisheries activity and the movement of iceberg B15-A. Broader impacts of the project include: 1) technological development of microprocessor-based, "backpack" near-infrared spectrophotometer, which will be applicable not only to other species, but also to other fields (i.e., exercise physiology), 2) collaboration with the Department of Anesthesia at the U.S. Naval Hospital in San Diego in the training of anesthesia residents in research techniques, 3) the training and thesis research of two graduate students in these techniques and in Antarctic field research, and 4) a better understanding of the ADL concept and its use in the fields of diving behavior and physiology. In addition the annual census of emperor penguin colonies in the Ross Sea, in conjunction with the continued evaluation of previously developed remote cameras to monitor colony status, will form the basis of a new educational web site, and allow development of an educational outreach program to school children through SeaWorld of San Diego. | POLYGON((165.983 -77.683,166.0164 -77.683,166.0498 -77.683,166.0832 -77.683,166.1166 -77.683,166.15 -77.683,166.1834 -77.683,166.2168 -77.683,166.2502 -77.683,166.2836 -77.683,166.317 -77.683,166.317 -77.6897,166.317 -77.6964,166.317 -77.7031,166.317 -77.7098,166.317 -77.7165,166.317 -77.7232,166.317 -77.7299,166.317 -77.7366,166.317 -77.7433,166.317 -77.75,166.2836 -77.75,166.2502 -77.75,166.2168 -77.75,166.1834 -77.75,166.15 -77.75,166.1166 -77.75,166.0832 -77.75,166.0498 -77.75,166.0164 -77.75,165.983 -77.75,165.983 -77.7433,165.983 -77.7366,165.983 -77.7299,165.983 -77.7232,165.983 -77.7165,165.983 -77.7098,165.983 -77.7031,165.983 -77.6964,165.983 -77.6897,165.983 -77.683)) | POINT(166.15 -77.7165) | false | false | |||||||||||||||||||||||
Collaborative Proposal: U.S. SO GLOBEC Synthesis and Modeling: Circulation and Hydrographic Data Analyses and Modeling Studies
|
0523183 |
2009-06-22 | Padman, Laurence |
|
This collaborative study between Old Dominion University, the College of William and Mary, Earth and Space Research, and the Woods Hole Oceanographic Institution will examine the interactions among the ocean circulation, vertical mixing, sea ice, and marine biological processes on the western Antarctic Peninsula continental shelf. The study will result in analytical and numerical modeling tools that are based on, and will have been tested against the extensive data set obtained in the course of the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec). These models will provide insight into circulation and biological dynamics that will be applicable to the development and refinement of physical and biological models for other high latitude systems. <br/><br/>SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. It is currently in a synthesis and modeling phase. This collaborative project is concerned with the environmental setting and dynamics that constrain ecological processes, and will be integrated with other synthesis and modeling studies that deal with grazers, predators, and other higher trophic levels | POLYGON((-75 -65,-74 -65,-73 -65,-72 -65,-71 -65,-70 -65,-69 -65,-68 -65,-67 -65,-66 -65,-65 -65,-65 -65.6,-65 -66.2,-65 -66.8,-65 -67.4,-65 -68,-65 -68.6,-65 -69.2,-65 -69.8,-65 -70.4,-65 -71,-66 -71,-67 -71,-68 -71,-69 -71,-70 -71,-71 -71,-72 -71,-73 -71,-74 -71,-75 -71,-75 -70.4,-75 -69.8,-75 -69.2,-75 -68.6,-75 -68,-75 -67.4,-75 -66.8,-75 -66.2,-75 -65.6,-75 -65)) | POINT(-70 -68) | false | false | |||||||||||||||||||||||
COLLABORATIVE: Geographic Structure of Adelie Penguin Colonies - Demography of Population Change
|
0439759 |
2009-05-19 | Ballard, Grant | This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. The long-term changes occurring at these colonies are representative of changes throughout the Ross Sea, where 30% of all Adelie penguins reside, and are in some way related to changing climate. The recent grounding of two very large icebergs against Ross and Beaufort islands, with associated increased variability in sea-ice extent, has provided an unparalleled natural experiment affecting wild, interannual swings in colony productivity, foraging effort, philopatry and recruitment. Results of this natural experiment can provide insights into the demography and geographic population structuring of this species, having relevance Antarctic-wide in understanding its future responses to climate change as well as interpreting its amazingly well known Holocene history. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). An increased effort will focus on understanding factors that affect over-winter survival. The hypothesis is that the age structure of Cape Crozier has changed over the past thirty years and no longer reflects the smaller colonies nearby. Based on recent analyses, it appears that the Ross Island penguins winter in a narrow band of sea ice north of the Antarctic Circle (where daylight persists) and south of the southern boundary of the Antarctic Circumpolar Current (where food abounds). More extensive winter ice takes the penguins north of that boundary where they incur higher mortality. Thus, where a penguin winters may be due to the timing of its post-breeding departure (which differs among colonies), which affects where it first encounters sea ice on which to molt and where it will be transported by the growing ice field. Foraging effort and interference competition for food suggested as factors driving the geographic structuring of colonies. The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. Information will be related to sea-ice conditions as quantified by satellite images. Demographic and foraging-effort models will be used to synthesize results. The iceberg natural experiment is an unparalleled opportunity to investigate the demographics of a polar seabird and its response to climate change. The marked, interannual variability in apparent philopatry, with concrete data being collected on its causes, is a condition rarely encountered among studies of vertebrates. Broader impacts include collaborating with New Zealand and Italian researchers, involving high school teachers and students in the fieldwork and continuing a website to highlight results to both scientists and the general public. | POLYGON((-180 -60,-177.5 -60,-175 -60,-172.5 -60,-170 -60,-167.5 -60,-165 -60,-162.5 -60,-160 -60,-157.5 -60,-155 -60,-155 -61.76,-155 -63.52,-155 -65.28,-155 -67.04,-155 -68.8,-155 -70.56,-155 -72.32,-155 -74.08,-155 -75.84,-155 -77.6,-157.5 -77.6,-160 -77.6,-162.5 -77.6,-165 -77.6,-167.5 -77.6,-170 -77.6,-172.5 -77.6,-175 -77.6,-177.5 -77.6,180 -77.6,178.5 -77.6,177 -77.6,175.5 -77.6,174 -77.6,172.5 -77.6,171 -77.6,169.5 -77.6,168 -77.6,166.5 -77.6,165 -77.6,165 -75.84,165 -74.08,165 -72.32,165 -70.56,165 -68.8,165 -67.04,165 -65.28,165 -63.52,165 -61.76,165 -60,166.5 -60,168 -60,169.5 -60,171 -60,172.5 -60,174 -60,175.5 -60,177 -60,178.5 -60,-180 -60)) | POINT(-175 -68.8) | false | false | ||||||||||||||||||||||||
Occupation History and Diet of Adelie Penguins in the Ross Sea Region
|
0125098 |
2009-02-01 | Emslie, Steven |
|
#0125098<br/>Steve Emslie<br/><br/>Occupation History and Diet of Adelie Penguins in the Ross Sea Region<br/><br/>This project will build on previous studies to investigate the occupation history and diet of Adelie penguins (Pygoscelis adeliae) in the Ross Sea region, Antarctica, with excavations of abandoned and active penguin colonies. Numerous active and abandoned colonies exist on the Victoria Land coast, from Cape Adare to Marble Point will be sampled. Some of these sites have been radiocarbon-dated and indicate a long occupation history for Adelie penguins extending to 13,000 years before present (B. P.). The material recovered from excavations, as demonstrated from previous investigations, will include penguin bones, tissue, and eggshell fragments as well as abundant remains of prey (fish bones, otoliths, squid beaks) preserved in ornithogenic (formed from bird guano) soils. These organic remains will be quantified and subjected to radiocarbon analyses to obtain a colonization history of penguins in this region. Identification of prey remains in the sediments will allow assessment of penguin diet. Other data (ancient DNA) from these sites will be analyzed through collaboration with New Zealand scientists. Past climatic conditions will be interpreted from published ice-core and marine-sediment records. These data will be used to test the hypothesis that Adelie penguins respond to climate change, past and present, in a predictable manner. In addition, the hypothesis that Adelie penguins alter their diet in accordance with climate, sea-ice conditions, and other marine environmental variables along a latitudinal gradient will be tested. Graduate and undergraduate students will be involved in this project and a project Web site will be developed to report results and maintain educational interaction between the PI and students at local middle and high schools in Wilmington, NC. | POLYGON((-50 -60,-29 -60,-8 -60,13 -60,34 -60,55 -60,76 -60,97 -60,118 -60,139 -60,160 -60,160 -63,160 -66,160 -69,160 -72,160 -75,160 -78,160 -81,160 -84,160 -87,160 -90,139 -90,118 -90,97 -90,76 -90,55 -90,34 -90,13 -90,-8 -90,-29 -90,-50 -90,-50 -87,-50 -84,-50 -81,-50 -78,-50 -75,-50 -72,-50 -69,-50 -66,-50 -63,-50 -60)) | POINT(55 -75) | false | false | |||||||||||||||||||||||
Diving Physiology and Behavior of Emperor Penguins
|
0229638 |
2008-03-31 | Ponganis, Paul |
|
The emperor penguin, Aptenodytes forsteri, is the premier avian diver and a top predator in the Antarctic ecosystem. The routine occurrence of 500-m diver during foraging trips to sea is both a physiological and behavior enigma. The objectives of this project address how and why emperors dive as deep and long as they do. The project examines four major topics in the diving biology of emperor penguins: pressure tolerance, oxygen store management, end-organ tolerance of diving hypoxemia/ischemia, and deep-dive foraging behavior. These subjects are relevant to the role of the emperor as a top predator in the Antarctic ecosystem, and to critical concepts in diving physiology, including decompression sickness, nitrogen narcosis, shallow water blackout, hypoxemic tolerance, and extension of aerobic dive time. The following hypotheses will be tested: 1) Prevention of nitrogen narcosis and decompression sickness in emperor penguins is achieved by inhibition of pulmonary gas exchange at depth. 2) Shallow water black out does not occur because of greater cerebral hypoxemic tolerance, and, in deep dives, because of resumption of pulmonary gas exchange during final ascent. 3) The rate of depletion of the blood oxygen store is a function of depth of dive and heart rate. 4) The aerobic dive limit (ADL) reflects the onset of lactate accumulation in locomotory muscle, not total depletion of all oxygen stores. 5) Elevation of tissue antioxidant capacity and free-radical scavenging enzyme activities protect against the routine ischemia/reperfusion which occur during diving. 6) During deep dives, the Antarctic silverfish, Pleuorogramma antarcticum, is the primary prey item for emperors. <br/><br/>In addition to evaluation of the hypotheses below, the project has broader impacts in several areas such as partnership with foreign and national institutes and organizations (e.g., the National Institute of Polar Research of Japan, Centro de Investigacioines del Noroeste of Mexico, National Geographic, the University of Texas Southwestern Medical Center, and Sea World). Participation in National Geographic television documentaries will provide unique educational opportunities for the general public; development of state-of-the-art technology (e.g., blood oxygen electrode recorders, blood samplers, and miniaturized digital cameras) will lay the groundwork for future research by this group and others; and the effects of the B15 iceberg on breeding success of emperor penguins will continue to be evaluated with population censuses during planned fieldwork at several Ross Sea emperor penguin colonies. | POLYGON((163 -77,163.4 -77,163.8 -77,164.2 -77,164.6 -77,165 -77,165.4 -77,165.8 -77,166.2 -77,166.6 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.6 -78,166.2 -78,165.8 -78,165.4 -78,165 -78,164.6 -78,164.2 -78,163.8 -78,163.4 -78,163 -78,163 -77.9,163 -77.8,163 -77.7,163 -77.6,163 -77.5,163 -77.4,163 -77.3,163 -77.2,163 -77.1,163 -77)) | POINT(165 -77.5) | false | false | |||||||||||||||||||||||
Palmer LTER Lagrangian Current Measurements
|
0537960 |
2008-03-03 | Beardsley, Robert; Limeburner, Richard |
|
Satellite-tracked drifters provide simple yet powerful tools to track the motion of near-surface water on time scales ranging from the tidal/inertial band to monthly and longer. The research described herein will deploy satellite-tracked surface drifters during the annual austral summer Palmer Long Term Ecological Research (LTER) cruises in January 2006 and 2007 in order to investigate the nearsurface Lagrangian currents over the western Antarctic Peninsula (wAP) shelf. This region is experiencing the highest surface air temperature increase (roughly +0.06 degrees C per year) in Antarctica, and LTER and other investigators have found that ecosystem responses to the rapid warming and sea ice decline are already apparent at all trophic levels from phytoplankton to penguins. Building a better understanding of the regional circulation and its variability seems an essential component to understand existing physical and biological processes and longer-term changes in this important and sensitive Antarctic ecosystem. These new Lagrangian measurements will complement those made during the 2001-2003 U.S. Southern Ocean (SO) GLOBEC program and provide the first detailed look at the near-surface flow in this important section of the wAP shelf. In particular, the combined 3-year LTER Lagrangian measurements should identify (a) the source region(s) of the buoyant coastal current discovered flowing southwest along the outer coast of Adelaide Island and into Marguerite Bay during SO GLOBEC and (b) if organized cross-shelf flows occur that help create a two gyre circulation over the shelf as suggested by Hofmann et al (1996) based on regional hydrography. The principal investigators will process and analyze the LTER 2005-2007 drifter data and collaborate with Palmer LTER investigators on the interpretation and integration of the Lagrangian data with their studies. The edited data, analysis results, and animations of the drifter data with surface weather data will be posted on the LTER website for use and viewing by scientists, students, and the public. Results will be presented at national meetings and published in referred journals. | POLYGON((-110 -50,-104 -50,-98 -50,-92 -50,-86 -50,-80 -50,-74 -50,-68 -50,-62 -50,-56 -50,-50 -50,-50 -52.5,-50 -55,-50 -57.5,-50 -60,-50 -62.5,-50 -65,-50 -67.5,-50 -70,-50 -72.5,-50 -75,-56 -75,-62 -75,-68 -75,-74 -75,-80 -75,-86 -75,-92 -75,-98 -75,-104 -75,-110 -75,-110 -72.5,-110 -70,-110 -67.5,-110 -65,-110 -62.5,-110 -60,-110 -57.5,-110 -55,-110 -52.5,-110 -50)) | POINT(-80 -62.5) | false | false |