[{"awards": "2053169 Kingslake, Jonathan", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 15 Sep 2023 00:00:00 GMT", "description": "When ice sheets and glaciers lose ice faster than it accumulates from snowfall, they shrink and contribute to sea-level rise. This has consequences for coastal communities around the globe by, for example, increasing the frequency of damaging storm surges. Sea-level rise is already underway and a major challenge for the geoscience community is improving predictions of how this will evolve. The Antarctic Ice Sheet is the largest potential contributor to sea-level rise and its future is highly uncertain. It loses ice through two main mechanisms: the formation of icebergs and melting at the base of floating ice shelves on its periphery. Ice flows under gravity towards the ocean and the rate of ice flow controls how fast ice sheets and glaciers shrink. In Greenland and Antarctica, ice flow is focused into outlet glaciers and ice streams, which flow much faster than surrounding areas. Moreover, parts of the Greenland Ice Sheet speed up and slow down substantially on hourly to seasonal time scales, particularly where meltwater from the surface reaches the base of the ice. Meltwater reaching the base changes ice flow by altering basal water pressure and consequently the friction exerted on the ice by the rock and sediment beneath. This phenomenon has been observed frequently in Greenland but not in Antarctica. Recent satellite observations suggest this phenomenon also occurs on outlet glaciers in the Antarctic Peninsula. Meltwater reaching the base of the Antarctic Ice Sheet is likely to become more common as air temperature and surface melting are predicted to increase around Antarctica this century. This project aims to confirm the recent satellite observations, establish a baseline against which to compare future changes, and improve understanding of the direct influence of meltwater on Antarctic Ice Sheet dynamics. This is a project jointly funded by the National Science Foundation?s Directorate for Geosciences (NSF/GEO) and the National Environment Research Council (NERC) of the United Kingdom (UK) via the NSF/GEO-NERC Lead Agency Agreement. This Agreement allows a single joint US/UK proposal to be submitted and peer-reviewed by the Agency whose investigator has the largest proportion of the budget. Upon successful joint determination of an award recommendation, each Agency funds the proportion of the budget that supports scientists at institutions in their respective countries.\r\n\r\nThis project will include a field campaign on Flask Glacier, an Antarctic Peninsula outlet glacier, and a continent-wide remote sensing survey. These activities will allow the team to test three hypotheses related to the Antarctic Ice Sheet?s dynamic response to surface meltwater: (1) short-term changes in ice velocity indicated by satellite data result from surface meltwater reaching the bed, (2) this is widespread in Antarctica today, and (3) this results in a measurable increase in mean annual ice discharge. The project is a collaboration between US- and UK-based researchers and will be supported logistically by the British Antarctic Survey. The project aims to provide insights into both the drivers and implications of short-term changes in ice flow velocity caused by surface melting. For example, showing conclusively that meltwater directly influences Antarctic ice dynamics would have significant implications for understanding the response of Antarctica to atmospheric warming, as it did in Greenland when the phenomenon was first detected there twenty years ago. This work will also potentially influence other fields, as surface meltwater reaching the bed of the Antarctic Ice Sheet may affect ice rheology, subglacial hydrology, submarine melting, calving, ocean circulation, and ocean biogeochemistry. The project aims to have broader impacts on science and society by supporting early-career scientists, UK-US collaboration, education and outreach, and adoption of open data science approaches within the glaciological community.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "ICE SHEETS; GLACIER MOTION/ICE SHEET MOTION; Antarctic Peninsula; BASAL SHEAR STRESS", "locations": "Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Kingslake, Jonathan; Sole, Andrew; Livingstone, Stephen; Winter, Kate; Ely, Jeremy", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "NSFGEO-NERC: Investigating the Direct Influence of Meltwater on Antarctic Ice Sheet Dynamics", "uid": "p0010436", "west": null}, {"awards": "2317927 Hills, Benjamin", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Radar Reflectivity at Whillans Ice Plain", "datasets": [{"dataset_uid": "200401", "doi": "10.5281/zenodo.11201199", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Radar Reflectivity at Whillans Ice Plain", "url": "https://doi.org/10.5281/zenodo.11201199"}], "date_created": "Mon, 07 Aug 2023 00:00:00 GMT", "description": "Ice flow is resisted by frictional forces that keep a glacier from immediately sliding into the ocean. Friction comes in two varieties: internal friction within the ice column which resists ice deformation and basal friction which resists ice sliding over its bedrock substrate. Partitioning between internal and basal friction is difficult since both have similar expressions at the most common target for data collection?the ice-sheet surface. However, understanding this partitioning is important because the physical processes that control internal and basal friction act and evolve at different timescales. This project combines spaceborne remote sensing observations from the ice-sheet surface with ice-penetrating radar data that images the internal structure of the ice sheet in order to partition the contribution of each source of friction. Results will advance the fundamental understanding of ice flow and will strengthen projections of future sea-level rise. Broader Impacts of the project include facilitating data reuse for the ice-sheet research community; the strategy for distributing the software toolkit includes student mentorship and hackathon teaching.\r\n\r\nThe researcher will expand the impact of existing ice-penetrating datasets by 1) developing new open-source algorithms for extraction of englacial stratigraphy; 2) creating stratigraphy data products that can be assimilated into future studies of ice motion; and 3) using statistical analyses to integrate radar datasets into larger-scale interpretations with remote sensing datasets of ice-surface velocity, altimetry, climate variables, and model-derived basal friction. The computational tools developed as part of this effort will be integrated and released as a reusable software toolkit for ice-penetrating radar data analysis. The toolkit will be validated and tested by deployment to cloud-hosted JupyterHub instances, which will serve as a singular interface to access radar and remote sensing data, load them into a unified framework, step through a predefined processing flow, and carry out statistical analyses. In some areas, the imaged englacial stratigraphy will deviate from the ice-dynamic setting expected based on surface measurements alone. There, the internal dynamics (or ice-dynamic history) are inconsistent with the surface dynamics, likely because internal friction is poorly constrained and misattributed to basal friction instead. This work will develop the data and statistical tools for constraining internal friction from ice-penetrating radar, making those data products and tools available for future work.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING", "is_usap_dc": true, "keywords": "GLACIER MOTION/ICE SHEET MOTION; BT-67; Antarctica; GLACIER TOPOGRAPHY/ICE SHEET TOPOGRAPHY; DHC-6; ICE SHEETS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Post Doc/Travel", "paleo_time": null, "persons": "Hills, Benjamin", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e BT-67; AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6", "repo": "Zenodo", "repositories": "Zenodo", "science_programs": null, "south": -90.0, "title": "Postdoctoral Fellowship: OPP-PRF: Disentangling Ice-sheet Internal and Basal Processes through Novel Ice-penetrating Radar Integration Built on Scalable, Cloud-based Infrastructure", "uid": "p0010428", "west": -180.0}, {"awards": "2114502 Constantino, Renata", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 19 Jul 2022 00:00:00 GMT", "description": "This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).\r\n\r\nAn important part of understanding future climate change is predicting changes in how fast the ice in Antarctica is moving. If ice flows more quickly towards the ocean, it will have a direct impact on sea level rise. One of the things that can influence the ice flow is the type of rock below the ice coverage in Antarctica. Sedimentary basins are large regions where sedimentary rocks accumulated in the past, often under ancient seas. It has been observed that where there are sediments below the ice, the ice can flow faster. This project seeks to understand what is below the ice and how the underlying rock influences the ice flow. Is it hard, crystalline rock? Is it a sedimentary basin? What is the relationship between sediments and ice flow? The answers to these questions will be addressed by using a combination of available data and geophysical methods. Information from well-known rock-types will be used to train the computer to recognize these features by using an application of artificial intelligence known as machine learning, which will help the characterization and identification of unknown sedimentary basins beneath the ice. The results of this project will be disseminated to a broad audience by holding workshops for teacher and students to explain our findings under the ice and to introduce the machine learning technique. Open-source codes used during this project will be made available for use in higher-level classrooms as well as in further studies.\r\n\r\nTo date, no comprehensive distribution of onshore and offshore sedimentary basins over Antarctica has been developed. A combination of large-scale datasets will be used to characterize known basins and identify new sedimentary basins to produce the first continent-wide mapping of sedimentary basins and provide improved basal parametrizations conditions that have the potential to support more realistic ice sheet models. Available geophysical compilations of data and the location of well-known sedimentary basins will be used to apply an ensemble machine learning algorithm. The machine learning algorithm will learn complex relationships by voting among a collection of randomized decision trees. The gravity signal related to sedimentary basins known from other (e.g. seismic) techniques will be evaluated and unknown basins from aerogravity data regression analyses will be proposed by calculating a gravity residual that reflects density inhomogeneities. The gravimetric sedimentary basins identified from the regression analyses will be compared with an independent method of identifying sedimentary distribution, the Werner deconvolution method of estimating depth to magnetic sources. The hypothesis, which is sedimentary basins are correlated to fast ice flow behavior, will be tested by comparing the location of the sedimentary basins with locations of high ice flow by using available ice velocity observations. A relationship between sedimentary basins and ice streams will be defined qualitatively and quantitatively, aiming to evaluate if there are ice streams where no sedimentary basins are reported, or sedimentary basins with no ice streams related. The findings of these project can confirm if the presence of abundant sediments is a pre-requisite for ice streaming. Analyzing previously known sedimentary basins and identifying new ones in Antarctica is central to evaluating the influence of subglacial sediments on the ice sheet flow.\r\n\r\nThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "GRAVITY ANOMALIES; ICE SHEETS; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Constantino, Renata", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Pan-Antarctic Assessment of Sedimentary Basins and the Onset of Streaming Ice Flow from Machine Learning and Aerogravity Regression Analyses", "uid": "p0010351", "west": -180.0}, {"awards": "2138277 Gallagher, Katherine", "bounds_geometry": "POLYGON((-78 -62,-76.2 -62,-74.4 -62,-72.6 -62,-70.8 -62,-69 -62,-67.2 -62,-65.4 -62,-63.6 -62,-61.8 -62,-60 -62,-60 -63,-60 -64,-60 -65,-60 -66,-60 -67,-60 -68,-60 -69,-60 -70,-60 -71,-60 -72,-61.8 -72,-63.6 -72,-65.4 -72,-67.2 -72,-69 -72,-70.8 -72,-72.6 -72,-74.4 -72,-76.2 -72,-78 -72,-78 -71,-78 -70,-78 -69,-78 -68,-78 -67,-78 -66,-78 -65,-78 -64,-78 -63,-78 -62))", "dataset_titles": "Current velocity and direction data from Regional Ocean Modeling System simulations (2006-2007 \u0026 2010-2011); Current velocity and direction data from Regional Ocean Modeling System simulations (2008-2009 \u0026 2018-2019); Passive particle trajectories from Regional Ocean Modeling System simulations 2008-2009 \u0026 2018-2019; Simulated krill trajectory data from Regional Ocean Modeling System simulations 2006-2007 \u0026 2010-2011; Simulated krill trajectory data from Regional Ocean Modeling System simulations 2008-2009 \u0026 2018-2019; Simulated marine debris trajectories along the West Antarctic Peninsula in 2008-2009 and 2018-2019", "datasets": [{"dataset_uid": "601780", "doi": "10.15784/601780", "keywords": "Antarctica; Antarctic Krill; Cryosphere; Model Data; Physical Oceanography; Regional Ocean Modeling System; ROMS; West Antarctic Shelf", "people": "Gallagher, Katherine", "repository": "USAP-DC", "science_program": null, "title": "Simulated krill trajectory data from Regional Ocean Modeling System simulations 2006-2007 \u0026 2010-2011", "url": "https://www.usap-dc.org/view/dataset/601780"}, {"dataset_uid": "601682", "doi": "10.15784/601682", "keywords": "Antarctica; Physical Oceanography; Regional Ocean Modeling System; ROMS", "people": "Gallagher, Katherine", "repository": "USAP-DC", "science_program": null, "title": "Passive particle trajectories from Regional Ocean Modeling System simulations 2008-2009 \u0026 2018-2019", "url": "https://www.usap-dc.org/view/dataset/601682"}, {"dataset_uid": "601656", "doi": "10.15784/601656", "keywords": "Antarctica; Model Data; Ocean Currents; Physical Oceanography; Regional Ocean Modeling System; ROMS; West Antarctic Shelf", "people": "Gallagher, Katherine", "repository": "USAP-DC", "science_program": null, "title": "Current velocity and direction data from Regional Ocean Modeling System simulations (2008-2009 \u0026 2018-2019)", "url": "https://www.usap-dc.org/view/dataset/601656"}, {"dataset_uid": "601655", "doi": "10.15784/601655", "keywords": "Antarctica; Antarctic Krill; Model Data; Physical Oceanography; Regional Ocean Modeling System; ROMS; West Antarctic Shelf", "people": "Gallagher, Katherine", "repository": "USAP-DC", "science_program": null, "title": "Simulated krill trajectory data from Regional Ocean Modeling System simulations 2008-2009 \u0026 2018-2019", "url": "https://www.usap-dc.org/view/dataset/601655"}, {"dataset_uid": "601734", "doi": "10.15784/601734", "keywords": "Antarctica; Modeling; Regional Ocean Modeling System; West Antarctic Shelf", "people": "Gallagher, Katherine", "repository": "USAP-DC", "science_program": null, "title": "Simulated marine debris trajectories along the West Antarctic Peninsula in 2008-2009 and 2018-2019", "url": "https://www.usap-dc.org/view/dataset/601734"}, {"dataset_uid": "601779", "doi": "10.15784/601779", "keywords": "Antarctica; Cryosphere; Model Data; Ocean Currents; Physical Oceanography; Regional Ocean Modeling System; ROMS; West Antarctic Shelf", "people": "Gallagher, Katherine", "repository": "USAP-DC", "science_program": null, "title": "Current velocity and direction data from Regional Ocean Modeling System simulations (2006-2007 \u0026 2010-2011)", "url": "https://www.usap-dc.org/view/dataset/601779"}], "date_created": "Tue, 19 Jul 2022 00:00:00 GMT", "description": "Pygoscelis penguins are central place foragers during the summer while they raise their chicks. They leave and return to the same colony location after hunting for food and rely on the availability of Antarctic krill, their primary food source. This research focuses on whether penguin diets and colony location reflect the retention of prey around and near colonies on the West Antarctic Peninsula. Eddies and other oceanographic processes may facilitate prey retention at certain locations, driving penguin colony establishment and success. \r\n\r\nThis project hypothesizes that Pygoscelis penguin diets will be composed of more Antarctic krill (Euphausia superba) when local prey retention is high, possibly due to subsurface eddies. This hypothesis will be tested using satellite-based estimates of Pygoscelis penguin diet composition using multispectral sensor data to estimate nitrogen values and infer trophic level. Prey retention will be calculated along the peninsula using the Regional Ocean Modeling System (ROMS). Simulated particles and diel vertical migration will be used to mimic krill behavior. These particles can be experimentally seeded across multiple depths in multiple years to assess residence times in the system. Using penguin colony data from the Mapping Application for Penguin Populations and Projected Dynamics (MAPPPD), the PI will correlate diet and retention metrics to local penguin colony growth and persistence and build a predictive model of where colonies may form in the future.\r\n\r\nThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -60.0, "geometry": "POINT(-69 -67)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Peninsula; PENGUINS; SPECIES/POPULATION INTERACTIONS; OCEAN CURRENTS", "locations": "Antarctic Peninsula", "north": -62.0, "nsf_funding_programs": "Post Doc/Travel", "paleo_time": null, "persons": "Gallagher, Katherine", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -72.0, "title": "OPP-PRF Pygoscelis Penguin Response to Potential Prey Retention along the West Antarctic Peninsula", "uid": "p0010349", "west": -78.0}, {"awards": "2201129 Fischer, Karen", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 14 Jun 2022 00:00:00 GMT", "description": "The western portion of the Antarctic continent is active in terms of plate tectonic processes that can produce significant variations in the Earth\u0027s mantle temperature as well as partial melting of the mantle. In addition to these internal processes, the ice sheet in western Antarctica is melting due to Earth\u0027s warming climate and adding water to the ocean. These changes in ice mass cause adjustments in rocks within the Earth\u0027s crust, allowing the surface to rebound in some locations and fall in others, altering the geographical pattern of sea-level change. However, the solid Earth response depends strongly on the strength of the rocks at a wide range of timescales which is not well-known and varies with temperature and other rock properties. This project has three primary goals. (1) It will assess how processes such as rifting, mantle upwelling and lithospheric instability have altered the lithosphere and underlying asthenosphere of western Antarctica, contributing to a planet-wide understanding of these processes. (2) It will use new measurements of mantle and crust properties to estimate the rate at which heat from the solid Earth flows into the base of the ice, which is important for modeling the rates at which the ice melts and flows. (3) It will places bounds on mantle viscosity, which is key for modeling the interaction of the solid Earth with changing ice and water masses and their implications for sea-level rise. To accomplish these goals, new resolution of crust and mantle structure will be obtained by analyzing seismic waves from distant earthquakes that have been recorded at numerous seismic stations in Antarctica. These analyses will include new combinations of seismic wave data that provide complementary information about mantle temperature, heat flow and viscosity. \u003cbr\u003e\u003cbr\u003eTechnical Description: This research addresses key questions about mantle processes and properties in western Antarctica. What are the relative impacts of rifting, mantle plumes, and lithospheric delamination in the evolution of the lithosphere and asthenosphere? Where is topography isostatically compensated, and where are dynamic processes such as plate flexure or tractions from 3-D mantle flow required? What are the bounds on heat flow and mantle viscosity, which represent important inputs to models of ice sheet evolution and its feedback from the solid Earth? To address these questions, this project will measure mantle and crust properties using seismic tools that have not yet been applied in Antarctica: regional-scale measurement of mantle attenuation from surface waves; Sp body wave phases to image mantle velocity gradients such as the lithosphere-asthenosphere boundary; and surface wave amplification and ellipticity. The resulting models of seismic attenuation and velocity will be jointly interpreted to shed new light on temperature, bulk composition, volatile content, and partial melt, using a range of laboratory-derived constitutive laws, while considering data from mantle xenoliths. To test the relative roles of rifting, mantle plumes, and delamination, and to assess isostatic support for Antarctic topography, the predictions of these processes will be compared to the new models of crust and mantle properties. To improve bounds on western Antarctic heat flow, seismic attenuation and velocity will be used in empirical comparisons and in direct modeling of vertical temperature gradients. To better measure mantle viscosity at the timescales of glacial isostatic adjustment, frequency-dependent viscosity will be estimated from the inferred mantle conditions. \u003cbr\u003e\u003cbr\u003eThis project will contribute to the education and career development of a Brown University Ph.D. student, Brown undergraduates, and undergraduates from outside the university who will be involved through the Department of Earth, Environmental and Planetary Sciences (DEEPS) Leadership Alliance NSF Research Experience for Undergraduates (REU) Site which focuses on geoscience summer research experiences for underrepresented students. The project will be the basis for a seminar at Brown that explores the connections between the solid Earth and cryosphere in Antarctica and will contribute to outreach in local public elementary and high schools.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "USAP-DC; West Antarctica; USA/NSF; SEISMIC SURFACE WAVES; AMD; PLATE TECTONICS; Amd/Us; GLACIERS/ICE SHEETS; FIELD INVESTIGATION", "locations": "West Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Fischer, Karen; Dalton, Colleen", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -90.0, "title": "Probing the Western Antarctic Lithosphere and Asthenosphere with New Approaches to Imaging Seismic Wave Attenuation and Velocity", "uid": "p0010339", "west": -180.0}, {"awards": "2146791 Lai, Chung Kei Chris", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 06 May 2022 00:00:00 GMT", "description": "Melt from the Greenland and Antarctic ice sheets is increasingly contributing to sea-level rise. This ice sheet mass loss is primarily driven by the thinning, retreat, and acceleration of glaciers in contact with the ocean. Observations from the field and satellites indicate that glaciers are sensitive to changes at the ice-ocean interface and that the increase in submarine melting is likely to be driven by the discharge of meltwater from underneath the glacier known as subglacial meltwater plumes. The melting of glacier ice also directly adds a large volume of freshwater into the ocean, potentially causing significant changes in the circulation of ocean waters that regulate global heat transport, making ice-ocean interactions an important potential factor in climate change and variability. The ability to predict, and hence adequately respond to, climate change and sea-level rise therefore depends on our knowledge of the small-scale processes occurring in the vicinity of subglacial meltwater plumes at the ice-ocean interface. Currently, understanding of the underlying physics is incomplete; for example, different models of glacier-ocean interaction could yield melting rates that vary over a factor of five for the same heat supply from the ocean. It is then very difficult to assess the reliability of predictive models. This project will use comprehensive laboratory experiments to study how the melt rates of glaciers in the vicinity of plumes are affected by the ice roughness, ice geometry, ocean turbulence, and ocean density stratification at the ice-ocean interface. These experiments will then be used to develop new and improved predictive models of ice-sheet melting by the ocean. This project builds bridges between modern experimental fluid mechanics and glaciology with the goal of leading to advances in both fields. \r\n\r\nThis project consists of a comprehensive experimental program designed for studying the melt rates of glacier ice under the combined influences of (1) turbulence occurring near and at the ice-ocean interface, (2) density stratification in the ambient water column, (3) irregularities in the bottom topology of an ice shelf, and (4) differing spatial distributions of multiple meltwater plumes. The objective of the experiments is to obtain high-resolution data of the velocity, density, and temperature near/at the ice-ocean interface, which will then be used to improve understanding of melt processes down to scales of millimeters, and to devise new, more robust numerical models of glacier evolution and sea-level rise. Specially, laser-based, optical techniques in experimental fluid mechanics (particle image velocity and laser-induced fluorescence) will be used to gather the data, and the experiments will be conducted using refractive-index matching techniques to eliminate changes in refractive indices that could otherwise bias the measurements. The experiments will be run inside a climate-controlled cold room to mimic field conditions (ocean temperature from 0-10 degrees C). The project will use 3D-printing to create different casting molds for making ice blocks with different types of roughness. The goal is to investigate how ice melt rate changes as a function of the properties of the plume, the ambient ocean water, and the geometric properties of the ice interface. Based on the experimental findings, this project will develop and test a new integral-plume-model coupled to a regional circulation model (MITgcm) that can be used to predict the effects of glacial melt on ocean circulation and sea-level rise.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Glacier-Ocean Boundary Layer; Alaska; USAP-DC; USA/NSF; ABLATION ZONES/ACCUMULATION ZONES; GLACIERS; AMD; Amd/Us; Antarctica; LABORATORY", "locations": "Antarctica; Alaska", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Lai, Chung; Robel, Alexander", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Revising Models of the Glacier-Ocean Boundary Layer with Novel Laboratory Experiments ", "uid": "p0010317", "west": null}, {"awards": "1643917 Fricker, Helen", "bounds_geometry": "POLYGON((-163.646 -84.186,-162.58715 -84.186,-161.5283 -84.186,-160.46945 -84.186,-159.4106 -84.186,-158.35175 -84.186,-157.2929 -84.186,-156.23405 -84.186,-155.1752 -84.186,-154.11635 -84.186,-153.0575 -84.186,-153.0575 -84.20871,-153.0575 -84.23142,-153.0575 -84.25413,-153.0575 -84.27684,-153.0575 -84.29955,-153.0575 -84.32226,-153.0575 -84.34497,-153.0575 -84.36768,-153.0575 -84.39039,-153.0575 -84.4131,-154.11635 -84.4131,-155.1752 -84.4131,-156.23405 -84.4131,-157.2929 -84.4131,-158.35175 -84.4131,-159.4106 -84.4131,-160.46945 -84.4131,-161.5283 -84.4131,-162.58715 -84.4131,-163.646 -84.4131,-163.646 -84.39039,-163.646 -84.36768,-163.646 -84.34497,-163.646 -84.32226,-163.646 -84.29955,-163.646 -84.27684,-163.646 -84.25413,-163.646 -84.23142,-163.646 -84.20871,-163.646 -84.186))", "dataset_titles": "Wideband magnetotelluric responses from Whillans Ice Stream, West Antarctica", "datasets": [{"dataset_uid": "601526", "doi": "10.15784/601526", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Stream; Magnetotelluric; Subglacial; Whillans Ice Stream", "people": "Gustafson, Chloe; Fricker, Helen; Siegfried, Matthew; Key, Kerry", "repository": "USAP-DC", "science_program": null, "title": "Wideband magnetotelluric responses from Whillans Ice Stream, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/601526"}], "date_created": "Sat, 26 Feb 2022 00:00:00 GMT", "description": "During November 2018 to January 2019 we carried out an extensive geophysical survey on the Whillans Ice Stream in West Antarctica. Our survey is the first to use magnetotelluric (MT) imaging to map subglacial groundwater water beneath an ice stream. We collected a total of 44 passive MT stations, as well as several active-source electromagnetic (EM) stations using a large loop transmitter system. These data will be used to study the distribution of groundwater at the base of the ice stream at both the grounding line where the ice stream turns into the Ross Ice Shelf and at Whillans Subglacial Lake. We also serviced a few long term GPS stations that have been recording data for several years and that have been used to track transient changes in ice velocity associated with basal water filling and draining in subglacial lakes. \r\n", "east": -153.0575, "geometry": "POINT(-158.35175 -84.29955)", "instruments": null, "is_usap_dc": true, "keywords": "Whillans Ice Stream; GROUND WATER; USA/NSF; USAP-DC; AMD; GEOMAGNETIC INDUCTION; Amd/Us; FIELD SURVEYS", "locations": "Whillans Ice Stream", "north": -84.186, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Key, Kerry; Fricker, Helen; Siegfried, Matt", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.4131, "title": "Mapping Antarctic Subglacial Water with Novel Electromagnetic Techniques", "uid": "p0010300", "west": -163.646}, {"awards": "2049332 Chu, Wing Yin", "bounds_geometry": "POLYGON((-180 -75,-175 -75,-170 -75,-165 -75,-160 -75,-155 -75,-150 -75,-145 -75,-140 -75,-135 -75,-130 -75,-130 -76.1,-130 -77.2,-130 -78.3,-130 -79.4,-130 -80.5,-130 -81.6,-130 -82.7,-130 -83.8,-130 -84.9,-130 -86,-135 -86,-140 -86,-145 -86,-150 -86,-155 -86,-160 -86,-165 -86,-170 -86,-175 -86,180 -86,177.5 -86,175 -86,172.5 -86,170 -86,167.5 -86,165 -86,162.5 -86,160 -86,157.5 -86,155 -86,155 -84.9,155 -83.8,155 -82.7,155 -81.6,155 -80.5,155 -79.4,155 -78.3,155 -77.2,155 -76.1,155 -75,157.5 -75,160 -75,162.5 -75,165 -75,167.5 -75,170 -75,172.5 -75,175 -75,177.5 -75,-180 -75))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 15 Sep 2021 00:00:00 GMT", "description": "Ice shelves play a critical role in restricting the seaward flow of grounded ice by providing buttressing at their bases and sides. Processes that affect the long-term stability of ice shelves can therefore impact the future contribution of the Antarctic Ice Sheet to global sea-level rise. Ross Ice Shelf is the largest ice shelf on Earth, and it buttresses massive areas of West and East Antarctica. Previous studies of modern ice velocity indicate that Ross Ice Shelf\u2019s mass loss is roughly balanced by its mass gain. However, more recent remote sensing observations extended further back in time reveal the ice shelf is likely not in steady-state, including possible long-term thinning since the late 90s. Therefore, to accurately interpret modern days ice shelf changes, long-term observations are critical to evaluate how these short-term variations fit into the historical context of ice shelf variability. This project examines over four decades (1971 \u2013 2017) of historical and modern airborne radar sounding observations of the Ross Ice Shelf to investigate ice-shelf changes on the decadal timescales. The researchers will process, calibrate, and analyze radar data collected during the 1971-79 SPRI/NSF/TUD campaign and compare them against modern observations from both the 2011-17 NASA Operation IceBridge/NSF CReSIS and the 2015-17 ROSETTA-Ice surveys. They will estimate basal melt rates by examining changes in ice-shelf thickness. They will determine other important basal melt metrics, including ice shelf roughness, englacial temperature, and marine ice formation. This project will support the education of a Ph.D. student from each of the institutions. This project will also support the training of undergraduate and high school researchers more generally in the field of radioglaciology and Antarctic sciences.", "east": -130.0, "geometry": "POINT(-167.5 -80.5)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; Antarctic Ice Sheet; GLACIER THICKNESS/ICE SHEET THICKNESS; USAP-DC; AMD; Transantarctic Mountains; Amd/Us; Siple Coast; GLACIER TOPOGRAPHY/ICE SHEET TOPOGRAPHY; FIELD SURVEYS; USA/NSF; Ross Ice Shelf", "locations": "Ross Ice Shelf; Antarctic Ice Sheet; Siple Coast; Transantarctic Mountains", "north": -75.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Chu, Winnie; Siegfried, Matt; Schroeder, Dustin", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -86.0, "title": "Collaborative Research: Investigating Four Decades of Ross Ice Shelf Subsurface Change with Historical and Modern Radar Sounding Data", "uid": "p0010265", "west": 155.0}, {"awards": "2027615 Paden, John", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 30 Jun 2021 00:00:00 GMT", "description": "This project will develop a new ice-penetrating radar system that can simultaneously map glacier geometry (three-dimensional ice-sheet internal architecture and subglacial topography) and glacier flow (vertical velocity of ice) along repeat profiles. Forecasting ice-sheet contribution to sea level requires an estimate for the initial ice-sheet geometry and the parameters that govern ice flow (ice rheology) and slip across bedrock (bed friction). Existing ice-sheet models cannot independently initialize ice rheology and bed friction from conventional observations of surface velocities and glacier geometry. These non-unique solutions for ice-sheet initial state introduce substantial uncertainty into ice-sheet model simulations of past and future ice-sheet behavior. \r\nSpatially-distributed vertical velocities of ice measured by this radar system can be directly compared to simulated vertical velocities produced by glacier models. Thus, this radar technology will allow ice rheology to be constrained independently from bed friction, leading to higher fidelity simulations of past and future ice-sheet behavior and more accurate projections of future sea level.\r\n\r\nThe new radar system will integrate two existing radars (the multi-channel coherent radio-echo depth sounder and the accumulation radar) developed by the Center for the Remote Sensing of Ice Sheets, but also includes new capabilities. An eight-element very high frequency (VHF; 140-215 MHz) array will have sufficient cross-track aperture to swath map internal layers and the ice-sheet base in three dimensions. A single ultra high frequency (UHF; 600-900 MHz) antenna will have the range and phase resolution to map internal layer displacement with 0.25 mm precision. The VHF array will create 3D mappings of layer geometry that enable measurements of vertical velocities by accounting for spatial offsets between repeat profiles and changing surface conditions. The vertical displacement measurement will then be made by determining the difference in radar phase response recorded by the UHF antenna for radar profiles collected at the same locations at different times. The UHF antenna will be dual-polarized and thus capable of isolating both components of complex internal reflections, which should enable inferences of ice crystal orientation fabric and widespread mapping of ice viscosity. Initial deployment of the radar will occur on the McMurdo Ice Shelf and Thwaites Glacier, Antarctica. The dual-band radar system technology and processing algorithms will be developed with versatile extensible hardware and user-friendly software, so that this system will serve as a prototype for a future community radar system.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IMAGING RADAR SYSTEMS", "is_usap_dc": true, "keywords": "Amd/Us; USA/NSF; Airborne Radar; AMD; ICE SHEETS; Thwaites Glacier; USAP-DC", "locations": "Thwaites Glacier", "north": null, "nsf_funding_programs": "Antarctic Instrumentation and Facilities", "paleo_time": null, "persons": "Paden, John; Rodriguez-Morales, Fernando ", "platforms": null, "repositories": null, "science_programs": "Thwaites (ITGC)", "south": null, "title": "Collaborative Research: EAGER: A Dual-Band Radar for Measuring Internal Ice Deformation: a Multipass Ice-Penetrating Radar Experiment on Thwaites Glacier and the McMurdo Ice Shelf", "uid": "p0010215", "west": null}, {"awards": "1245871 McCarthy, Christine", "bounds_geometry": null, "dataset_titles": "Dataset for Tidal modulation of ice streams: Effect of periodic sliding velocity on ice friction and healing; Rate-state friction parameters for ice-on-rock oscillation experiments; RSFitOSC", "datasets": [{"dataset_uid": "200237", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "RSFitOSC", "url": "https://github.com/rmskarbek/RSFitOSC"}, {"dataset_uid": "601467", "doi": "10.15784/601467", "keywords": "Antarctica", "people": "Savage, Heather; Skarbek, Rob; McCarthy, Christine M.", "repository": "USAP-DC", "science_program": null, "title": "Rate-state friction parameters for ice-on-rock oscillation experiments", "url": "https://www.usap-dc.org/view/dataset/601467"}, {"dataset_uid": "601497", "doi": "10.15784/601497", "keywords": "Antarctica", "people": "McCarthy, Christine M.; Skarbek, Rob; Savage, Heather", "repository": "USAP-DC", "science_program": null, "title": "Dataset for Tidal modulation of ice streams: Effect of periodic sliding velocity on ice friction and healing", "url": "https://www.usap-dc.org/view/dataset/601497"}], "date_created": "Fri, 04 Jun 2021 00:00:00 GMT", "description": "This award supports a project to conduct laboratory experiments with a new, custom-fabricated cryo-friction apparatus to explore ice deformation oscillatory stresses like those experienced by tidewater glaciers in nature. The experimental design will explore the dynamic frictional properties of periodically loaded ice sliding on rock. Although the frictional strength of ice has been studied in the past these studies have all focused on constant rates of loading and sliding. The results of this work will advance understanding of ice stream dynamics by improving constraints on key material and frictional properties and allowing physics-based predictions of the amplitude and phase of glacier strain due to tidally induced stress variations. The intellectual merit of this work is that it will result in a better understanding of dynamic rheological parameters and will provide better predictive tools for dynamic glacier flow. The proposed experiments will provide dynamic material properties of ice and rock deformation at realistic frequencies experienced by Antarctic glaciers. The PIs will measure the full spectrum of material response from elastic to anelastic to viscous. The study will provide better constraints to improve predictive capability for glacier and ice-stream response to external forcing. The broader impacts of the work include providing estimates of material properties that can be used to broaden our understanding of glacier flow and that will ultimately be used for models of sea level rise and ice sheet stability. The ability to predict sea level in the near future is contingent on understanding of the processes responsible for flow of Antarctic ice streams and glaciers. Modulation of glacier flow by ocean tides represents a natural experiment that can be used to improve knowledge of ice and bed properties, and of the way in which these properties depend on time-varying forcings. Presently, the influence of tidal forcing on glacier movement is poorly understood, and knowledge of ice properties under tidal loading conditions is limited. The study will generate results of interest beyond polar science by examining phenomena that are of interest to seismology, glaciology and general materials science. The project will provide valuable research and laboratory experience for two undergraduate interns and will provide experience for the PI (currently a postdoc) in leading a scientific project. The three PIs are early career scientists. This proposal does not require fieldwork in the Antarctic.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; USA/NSF; Amd/Us; AMD; Ice Deformation; LABORATORY; BASAL SHEAR STRESS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "McCarthy, Christine M.; Savage, Heather", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "GitHub", "repositories": "GitHub; USAP-DC", "science_programs": null, "south": null, "title": "Laboratory Study of Ice Deformation under Tidal Loading Conditions with Application to Antarctic Glaciers", "uid": "p0010186", "west": null}, {"awards": "1246151 Bromirski, Peter; 1246416 Stephen, Ralph", "bounds_geometry": "POLYGON((-180 -77,-179.5 -77,-179 -77,-178.5 -77,-178 -77,-177.5 -77,-177 -77,-176.5 -77,-176 -77,-175.5 -77,-175 -77,-175 -77.4,-175 -77.8,-175 -78.2,-175 -78.6,-175 -79,-175 -79.4,-175 -79.8,-175 -80.2,-175 -80.6,-175 -81,-175.5 -81,-176 -81,-176.5 -81,-177 -81,-177.5 -81,-178 -81,-178.5 -81,-179 -81,-179.5 -81,180 -81,179 -81,178 -81,177 -81,176 -81,175 -81,174 -81,173 -81,172 -81,171 -81,170 -81,170 -80.6,170 -80.2,170 -79.8,170 -79.4,170 -79,170 -78.6,170 -78.2,170 -77.8,170 -77.4,170 -77,171 -77,172 -77,173 -77,174 -77,175 -77,176 -77,177 -77,178 -77,179 -77,-180 -77))", "dataset_titles": "Collaborative Research: Dynamic Response of the Ross Ice Shelf to Wave-Induced Vibrations and Collaborative Research: Mantle Structure and Dynamics of the Ross Sea from a Passive Seismic Deployment on the Ross Ice Shelf. International Federation of Digital Seismograph Networks. ; Dynamic Response of the Ross Ice Shelf to Wave-induced Vibrations 2015/2016, UNAVCO, Inc., GPS/GNSS Observations Dataset", "datasets": [{"dataset_uid": "200209", "doi": "10.7283/58E3-GA46", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Dynamic Response of the Ross Ice Shelf to Wave-induced Vibrations 2015/2016, UNAVCO, Inc., GPS/GNSS Observations Dataset", "url": "https://doi.org/10.7283/58E3-GA46"}, {"dataset_uid": "200207", "doi": "10.7914/SN/XH_2014", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Collaborative Research: Dynamic Response of the Ross Ice Shelf to Wave-Induced Vibrations and Collaborative Research: Mantle Structure and Dynamics of the Ross Sea from a Passive Seismic Deployment on the Ross Ice Shelf. International Federation of Digital Seismograph Networks. ", "url": "http://www.fdsn.org/networks/detail/XH_2014/"}], "date_created": "Thu, 15 Apr 2021 00:00:00 GMT", "description": "This award supports a project intended to discover, through field observations and numerical simulations, how ocean wave-induced vibrations on ice shelves in general, and the Ross Ice Shelf (RIS), in particular, can be used (1) to infer spatial and temporal variability of ice shelf mechanical properties, (2) to infer bulk elastic properties from signal propagation characteristics, and (3) to determine whether the RIS response to infragravity (IG) wave forcing observed distant from the front propagates as stress waves from the front or is \"locally\" generated by IG wave energy penetrating the RIS cavity. The intellectual merit of the work is that ocean gravity waves are dynamic elements of the global ocean environment, affected by ocean warming and changes in ocean and atmospheric circulation patterns. Their evolution may thus drive changes in ice-shelf stability by both mechanical interactions, and potentially increased basal melting, which in turn feed back on sea level rise. Gravity wave-induced signal propagation across ice shelves depends on ice shelf and sub-shelf water cavity geometry (e.g. structure, thickness, crevasse density and orientation), as well as ice shelf physical properties. Emphasis will be placed on observation and modeling of the RIS response to IG wave forcing at periods from 75 to 300 s. Because IG waves are not appreciably damped by sea ice, seasonal monitoring will give insights into the year-round RIS response to this oceanographic forcing. The 3-year project will involve a 24-month period of continuous data collection spanning two annual cycles on the RIS. RIS ice-front array coverage overlaps with a synergistic Ross Sea Mantle Structure (RSMS) study, giving an expanded array beneficial for IG wave localization. The ice-shelf deployment will consist of sixteen stations equipped with broadband seismometers and barometers. Three seismic stations near the RIS front will provide reference response/forcing functions, and measure the variability of the response across the front. A linear seismic array orthogonal to the front will consist of three stations in-line with three RSMS stations. Passive seismic array monitoring will be used to determine the spatial and temporal distribution of ocean wave-induced signal sources along the front of the RIS and estimate ice shelf structure, with the high-density array used to monitor and localize fracture (icequake) activity. The broader impacts include providing baseline measurements to enable detection of ice-shelf changes over coming decades which will help scientists and policy-makers respond to the socio-environmental challenges of climate change and sea-level rise. A postdoctoral scholar in interdisciplinary Earth science will be involved throughout the course of the research. Students at Cuyamaca Community College, San Diego County, will develop and manage a web site for the project to be used as a teaching tool for earth science and oceanography classes, with development of an associated web site on waves for middle school students.\n\r\nUnderstanding and being able to anticipate changes in the glaciological regime of the Ross Ice Shelf (RIS) and West Antarctic Ice Sheet (WAIS) are key to improving sea level rise projections due to ongoing ice mass loss in West Antarctica. The fate of the WAIS is a first-order climate change and global societal issue for this century and beyond that affects coastal communities and coastal infrastructure globally. \r\n\r\nIce shelf--ocean interactions include impacts from tsunami, ocean swell (10-30s period), and very long period ocean waves that impact ice shelves and produce vibrations that induce a variety of seismic signals detected by seismometers buried in the ice shelf surface layer, called firn. To study the wave-induced vibrations in the RIS, an extensive seismic array was deployed from Nov. 2014 to Nov. 2016. This unique seismometer array deployment on an ice shelf made continuous observations of the response of the RIS to ocean wave impacts from ocean swell and very long period waves. An extensive description of the project motivation and background (including photos and videos of the deployment operations), and list of published studies of analyses of the seismic data collected by this project, are available at the project website https://iceshelfvibes.ucsd.edu. \r\n\r\nTwo types of seismic signals detected by the seismic array are most prevalent: flexural gravity waves (plate waves) and icequakes (signals analogous to those from earthquakes but from fracturing of the ice). \r\nLong period ocean waves flex the ice shelf at the same period as the ocean waves, with wave energy at periods greater than ocean swell more efficient at coupling energy into flexing the ice shelf. Termed flexural gravity waves or plate waves (Chen et al., 2018), their wave-induced vibrations can reach 100\u2019s of km from the ice edge where they are excited, with long period wave energy propagating in the water layer below the shelf coupled with the ice shelf flexure. Flexural gravity waves at very long periods (\u003e 300 s period), such as from tsunami impacts (Bromirski et al., 2017), can readily reach grounding zones and may play a role in long-term grounding zone evolution. \r\nSwell-induced icequake activity was found to be most prevalent at the shelf front during the austral summer (January \u2013 March) when seasonal sea ice is absent and the associated damping of swell by sea ice is minimal (Chen et al., 2019). \r\n\r\nIn addition to the seismic array, a 14 station GPS (global positioning system) array was installed during seismic data retrieval and station servicing operations in October-November 2015. The GPS stations, co-located with seismic stations, extended from the shelf front southward to about 415 km at interior station RS18. Due to logistical constraints associated with battery weight during installation, only one station (at DR10) operated year-round. The GPS data collected give a detailed record of changes in iceflow velocity that are in close agreement with the increasing velocity estimates approaching the shelf front from satellite observations. Importantly, the year-round data at DR10 show an unprecedented seasonal cycle of changes in iceflow velocity, with a speed-up in northward (seaward) ice flow during Jan.-May and then a velocity decrease from June-Sep. (returning to the long-term mean flow velocity). This annual ice flow velocity change cycle has been attributed in part to seasonal changes in ice shelf mass (thinning, reducing buttressing) due to melting at the RIS basal (bottom) surface from intrusion of warmer ocean water (Klein et al., 2020). ", "east": 170.0, "geometry": "POINT(177.5 -79)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; GLACIER MOTION/ICE SHEET MOTION; USAP-DC; Amd/Us; AMD; USA/NSF; Iris; Ross Ice Shelf", "locations": "Ross Ice Shelf", "north": -77.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Bromirski, Peter; Gerstoft, Peter; Stephen, Ralph", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "UNAVCO", "repositories": "IRIS; UNAVCO", "science_programs": null, "south": -81.0, "title": "Collaborative Research: Dynamic Response of the Ross Ice Shelf to Wave-induced Vibrations", "uid": "p0010169", "west": -175.0}, {"awards": "1929991 Pettit, Erin C; 1738992 Pettit, Erin C", "bounds_geometry": "POLYGON((-114 -74,-113 -74,-112 -74,-111 -74,-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-104 -74.2,-104 -74.4,-104 -74.6,-104 -74.8,-104 -75,-104 -75.2,-104 -75.4,-104 -75.6,-104 -75.8,-104 -76,-105 -76,-106 -76,-107 -76,-108 -76,-109 -76,-110 -76,-111 -76,-112 -76,-113 -76,-114 -76,-114 -75.8,-114 -75.6,-114 -75.4,-114 -75.2,-114 -75,-114 -74.8,-114 -74.6,-114 -74.4,-114 -74.2,-114 -74))", "dataset_titles": "AMIGOS-IIIa \"Cavity\" Aquadopp current data Jan 2020 - Mar 2021; AMIGOS-IIIa \"Cavity\" Seabird CTD data Jan 2020 - Dec 2021; AMIGOS-III Cavity and Channel Snow Height and Thermistor Snow Temperature Data; AMIGOS-IIIc \"Channel\" Aquadopp current data Jan 2020 - Mar 2021; AMIGOS-IIIc \"Channel\" Seabird CTD data Jan 2020 - Dec 2021; CTD data from the NBP 19/02 cruise as part of the TARSAN project in the Amundsen Sea during austral summer 2018/2019; Dotson-Crosson Ice Shelf data from a tale of two ice shelves paper; SIIOS Temporary Deployment; Sub-ice-shelf seafloor elevation derived from point-source active-seismic data on Thwaites Eastern Ice Shelf and Dotson Ice Shelf, December 2019 and January 2020; Thwaites Glacier grounding lines for 2014 and 2019/20 from height above flotation; Two-year velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2001-2020; Visala WXT520 weather station data at the Cavity and Channel AMIGOS-III sites", "datasets": [{"dataset_uid": "601549", "doi": "10.15784/601549", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Pine Island Bay; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Visala WXT520 weather station data at the Cavity and Channel AMIGOS-III sites", "url": "https://www.usap-dc.org/view/dataset/601549"}, {"dataset_uid": "601827", "doi": "10.15784/601827", "keywords": "Antarctica; Cryosphere; Dotson Ice Shelf; Thwaites Glacier", "people": "Pomraning, Dale; Muto, Atsuhiro; Alley, Karen; Roccaro, Alexander; Pettit, Erin; Truffer, Martin; Scambos, Ted; Wild, Christian; Wallin, Bruce", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Sub-ice-shelf seafloor elevation derived from point-source active-seismic data on Thwaites Eastern Ice Shelf and Dotson Ice Shelf, December 2019 and January 2020", "url": "https://www.usap-dc.org/view/dataset/601827"}, {"dataset_uid": "200321", "doi": "10.5285/e338af5d-8622-05de-e053-6c86abc06489", "keywords": null, "people": null, "repository": "British Oceanographic Data Centre", "science_program": null, "title": "CTD data from the NBP 19/02 cruise as part of the TARSAN project in the Amundsen Sea during austral summer 2018/2019", "url": "https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/e338af5d-8622-05de-e053-6c86abc06489/"}, {"dataset_uid": "601478", "doi": "10.15784/601478", "keywords": "Antarctica; Glaciology; Ice Shelf; Ice Velocity; Strain Rate; Thwaites Glacier", "people": "Alley, Karen; Truffer, Martin; Klinger, Marin; Wild, Christian; Scambos, Ted; Wallin, Bruce; Muto, Atsu; Pettit, Erin", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Two-year velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2001-2020", "url": "https://www.usap-dc.org/view/dataset/601478"}, {"dataset_uid": "601578", "doi": "10.15784/601578", "keywords": "Antarctica; Dotson Ice Shelf; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology", "people": "Wild, Christian; Segabinazzi-Dotto, Tiago", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Dotson-Crosson Ice Shelf data from a tale of two ice shelves paper", "url": "https://www.usap-dc.org/view/dataset/601578"}, {"dataset_uid": "601552", "doi": "10.15784/601552", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Pine Island Bay; Snow Accumulation; Snow Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-III Cavity and Channel Snow Height and Thermistor Snow Temperature Data", "url": "https://www.usap-dc.org/view/dataset/601552"}, {"dataset_uid": "601548", "doi": "10.15784/601548", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIc \"Channel\" Aquadopp current data Jan 2020 - Mar 2021", "url": "https://www.usap-dc.org/view/dataset/601548"}, {"dataset_uid": "601547", "doi": "10.15784/601547", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIa \"Cavity\" Aquadopp current data Jan 2020 - Mar 2021", "url": "https://www.usap-dc.org/view/dataset/601547"}, {"dataset_uid": "601545", "doi": "10.15784/601545", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Salinity; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIc \"Channel\" Seabird CTD data Jan 2020 - Dec 2021", "url": "https://www.usap-dc.org/view/dataset/601545"}, {"dataset_uid": "601544", "doi": "10.15784/601544", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Salinity; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIa \"Cavity\" Seabird CTD data Jan 2020 - Dec 2021", "url": "https://www.usap-dc.org/view/dataset/601544"}, {"dataset_uid": "601499", "doi": "10.15784/601499", "keywords": "Amundsen Sea; Antarctica; Glaciology; Grounding Line; Ice Shelf; Thwaites Glacier", "people": "Wild, Christian; Pettit, Erin; Scambos, Ted; Truffer, Martin; Muto, Atsu; Alley, Karen", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Thwaites Glacier grounding lines for 2014 and 2019/20 from height above flotation", "url": "https://www.usap-dc.org/view/dataset/601499"}, {"dataset_uid": "200204", "doi": "https://doi.org/10.7914/SN/1L_2019", "keywords": null, "people": null, "repository": "International Federation of Digital Seismograph Networks", "science_program": null, "title": "SIIOS Temporary Deployment", "url": "http://www.fdsn.org/networks/detail/1L_2019/"}], "date_created": "Mon, 22 Feb 2021 00:00:00 GMT", "description": "This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Thwaites and neighboring glaciers in the Amundsen Sea Embayment are rapidly losing mass in response to recent climate warming and related changes in ocean circulation. Mass loss from the Amundsen Sea Embayment could lead to the eventual collapse of the West Antarctic Ice Sheet, raising the global sea level by up to 2.5 meters (8 feet) in as short as 500 years. The processes driving the loss appear to be warmer ocean circulation and changes in the width and flow speed of the glacier, but a better understanding of these changes is needed to refine predictions of how the glacier will evolve. One highly sensitive process is the transitional flow of glacier ice from land onto the ocean to become a floating ice shelf. This flow of ice from grounded to floating is affected by changes in air temperature and snowfall at the surface; the speed and thickness of ice feeding it from upstream; and the ocean temperature, salinity, bathymetry, and currents that the ice flows into. The project team will gather new measurements of each of these local environmental conditions so that it can better predict how future changes in air, ocean, or the ice will affect the loss of ice to the ocean in this region. \u003cbr/\u003e \u003cbr/\u003eCurrent and anticipated near-future mass loss from Thwaites Glacier and nearby Amundsen Sea Embayment region is mainly attributed to reduction in ice-shelf buttressing due to sub-ice-shelf melting by intrusion of relatively warm Circumpolar Deep Water into sub-ice-shelf cavities. Such predictions for mass loss, however, still lack understanding of the dominant processes at and near grounding zones, especially their spatial and temporal variability, as well as atmospheric and oceanic drivers of these processes. This project aims to constrain and compare these processes for the Thwaites and the Dotson Ice Shelves, which are connected through upstream ice dynamics, but influenced by different submarine troughs. The team\u0027s specific objectives are to: 1) install atmosphere-ice-ocean multi-sensor remote autonomous stations on the ice shelves for two years to provide sub-daily continuous observations of concurrent oceanic, glaciologic, and atmospheric conditions; 2) measure ocean properties on the continental shelf adjacent to ice-shelf fronts (using seal tagging, glider-based and ship-based surveys, and existing moored and conductivity-temperature-depth-cast data), 3) measure ocean properties into sub-ice-shelf cavities (using autonomous underwater vehicles) to detail ocean transports and heat fluxes; and 4) constrain current ice-shelf and sub-ice-shelf cavity geometry, ice flow, and firn properties for the ice-shelves (using radar, active-source seismic, and gravimetric methods) to better understand the impact of ocean and atmosphere on the ice-sheet change. The team will also engage the public and bring awareness to this rapidly changing component of the cryosphere through a \"Live from the Ice\" social media campaign in which the public can follow the action and data collection from the perspective of tagged seals and autonomous stations.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -104.0, "geometry": "POINT(-109 -75)", "instruments": null, "is_usap_dc": true, "keywords": "Thwaites Glacier; FIELD SURVEYS; GLACIERS/ICE SHEETS", "locations": "Thwaites Glacier", "north": -74.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science", "paleo_time": null, "persons": "Truffer, Martin; Scambos, Ted; Muto, Atsu; Heywood, Karen; Boehme, Lars; Hall, Robert; Wahlin, Anna; Lenaerts, Jan; Pettit, Erin", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "British Oceanographic Data Centre; International Federation of Digital Seismograph Networks; USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -76.0, "title": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment", "uid": "p0010162", "west": -114.0}, {"awards": "1643353 Christianson, Knut; 1643301 Gerbi, Christopher", "bounds_geometry": null, "dataset_titles": "ImpDAR: an impulse radar processor; SeidarT; South Pole Lake ApRES Radar; South Pole Lake GNSS; South Pole Lake: ground-based ice-penetrating radar", "datasets": [{"dataset_uid": "601502", "doi": "10.15784/601502", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GNSS; GPS; GPS Data; South Pole; Subglacial Lakes", "people": "Hills, Benjamin", "repository": "USAP-DC", "science_program": null, "title": "South Pole Lake GNSS", "url": "https://www.usap-dc.org/view/dataset/601502"}, {"dataset_uid": "200203", "doi": "", "keywords": null, "people": null, "repository": "Uni. Washington ResearchWorks Archive", "science_program": null, "title": "South Pole Lake: ground-based ice-penetrating radar", "url": "http://hdl.handle.net/1773/45293"}, {"dataset_uid": "200244", "doi": " https://zenodo.org/badge/latestdoi/382590632", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "SeidarT", "url": "https://github.com/UMainedynamics/SeidarT"}, {"dataset_uid": "200202", "doi": "http://doi.org/10.5281/zenodo.3833057", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "ImpDAR: an impulse radar processor", "url": "https://www.github.com/dlilien/ImpDAR"}, {"dataset_uid": "601503", "doi": "10.15784/601503", "keywords": "Antarctica; Apres; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; South Pole; Subglacial Lakes; Vertical Velocity", "people": "Hills, Benjamin", "repository": "USAP-DC", "science_program": null, "title": "South Pole Lake ApRES Radar", "url": "https://www.usap-dc.org/view/dataset/601503"}], "date_created": "Wed, 17 Feb 2021 00:00:00 GMT", "description": "This award supports a project to develop software that will allow researchers considering seismic or radar field surveys to test, ahead of time, whether the data they plan to collect will have sufficient resolution to measure the natural variations in the mechanical properties of ice, which determine the response of flowing ice to changing climatic conditions. The mechanical properties of ice depend largely on the temperature and the orientation of the crystals that make up the ice. The most accurate method for measuring ice crystal orientation and temperature is through drilling and direct analysis of an ice core. However, this method is very costly, time-consuming, and limited in spatial coverage. Geophysical techniques, such as seismic and radar, can cover much more area, but we have little knowledge about the practical limitations of these techniques as they relate to calculating mechanical properties. This project addresses that knowledge gap through construction of a computational toolbox that will allow accurate assessment of the ability of geophysical surveys to image crystal orientation and ice temperature. Researchers can then use these tools to adjust the field survey plans to maximize the return on investment. By working to improve the efficiency and effectiveness of future geophysical work related to glacial flow, this proposal will improve scientists? ability to quantify sea-level variations within the larger context of climate change. The project includes building new user-friendly, publicly accessible software and instructional modules. The work will provide training for graduate and undergraduate students, who will play a role in research and develop instructional materials. \r\n\r\nIce viscosity, the resistance of ice to flow, exerts significant control over ice velocity. Therefore, mapping ice viscosity is important for understanding the current and future behavior of glaciers and ice sheets. To do so, scientists must determine the temperature and crystal orientation fabric throughout the ice. Seismic and radar techniques can survey large areas quickly, and thus are promising, yet not fully tested, methods to efficiently measure the thermal and mechanical structure of flowing ice. As part of this project, scientists will develop and use a computational framework to quantify the degree to which seismic and radar techniques can resolve the crystal orientation fabric and temperature of streaming ice, and then test how sensitive ice flow is to the attendant uncertainty. To meet these goals, a numerical toolbox will be built which will allow the glacier/ice stream geometry and physical properties (temperature, crystal orientation fabric, density and acidity) to be varied. The toolbox will be capable of both creating synthetic radar and seismic profiles through forward modeling and inverting synthetic profiles to allow evaluation of how well geophysical techniques can image the original thermal and mechanical structure. These simulated radar and seismic data will allow scientists to better quantify the influence of the variability in mechanical properties of the ice on flow velocities and patterns. The results of this work will guide planning for future field campaigns, making them more effective and efficient. This project does not require fieldwork in the Antarctic.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "United States Of America; GLACIERS/ICE SHEETS; USAP-DC; GLACIER MOTION/ICE SHEET MOTION; GLACIER THICKNESS/ICE SHEET THICKNESS; ICE SHEETS; South Pole; USA/NSF; AMD; GLACIER TOPOGRAPHY/ICE SHEET TOPOGRAPHY; FIELD SURVEYS; Amd/Us", "locations": "South Pole; United States Of America", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Christianson, Knut; Gerbi, Christopher; Campbell, Seth; Vel, Senthil", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "GitHub; Uni. Washington ResearchWorks Archive; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Computational Methods Supporting Joint Seismic and Radar Inversion for Ice Fabric and Temperature in Streaming Flow", "uid": "p0010160", "west": null}, {"awards": "1643795 Mikesell, Thomas", "bounds_geometry": "POLYGON((-134.5 -75,-130.85 -75,-127.2 -75,-123.55 -75,-119.9 -75,-116.25 -75,-112.6 -75,-108.95 -75,-105.3 -75,-101.65 -75,-98 -75,-98 -75.85,-98 -76.7,-98 -77.55,-98 -78.4,-98 -79.25,-98 -80.1,-98 -80.95,-98 -81.8,-98 -82.65,-98 -83.5,-101.65 -83.5,-105.3 -83.5,-108.95 -83.5,-112.6 -83.5,-116.25 -83.5,-119.9 -83.5,-123.55 -83.5,-127.2 -83.5,-130.85 -83.5,-134.5 -83.5,-134.5 -82.65,-134.5 -81.8,-134.5 -80.95,-134.5 -80.1,-134.5 -79.25,-134.5 -78.4,-134.5 -77.55,-134.5 -76.7,-134.5 -75.85,-134.5 -75))", "dataset_titles": "2D shear-wave velocity model across the West Antarctic Rift System from POLENET-ANET seismic data", "datasets": [{"dataset_uid": "601423", "doi": "10.15784/601423", "keywords": "Antarctica; Crust; Moho; Seismic Tomography; Seismology; Seismometer; Shear Wave Velocity; Surface Wave Dispersion; West Antarctica", "people": "Mikesell, Dylan", "repository": "USAP-DC", "science_program": "POLENET", "title": "2D shear-wave velocity model across the West Antarctic Rift System from POLENET-ANET seismic data", "url": "https://www.usap-dc.org/view/dataset/601423"}], "date_created": "Fri, 15 Jan 2021 00:00:00 GMT", "description": "In this project, the researchers processed and analyzed previously acquired seismic data from the POLENET-ANET array (2010-2011) to estimate variations in seismic shear-wave speed beneath the array. This investigation used a passive seismology method call ambient noise tomography, whereby repetitive seismic noise correlation functions were computed from records of Earth\u0027s ambient seismic noise field. The main results indicate a shallower Moho beneath Marie Byrd Land compared to previous studies in the region.", "east": -98.0, "geometry": "POINT(-116.25 -79.25)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; SEISMIC SURFACE WAVES; West Antarctica", "locations": "West Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Mordret, Aurelien; Mikesell, Dylan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "POLENET", "south": -83.5, "title": "Collaborative Research: Monitoring Antarctic Ice Sheet Changes with Ambient Seismic Noise Methods", "uid": "p0010155", "west": -134.5}, {"awards": "1842021 Campbell, Seth", "bounds_geometry": "POLYGON((-168 -82,-162.3 -82,-156.6 -82,-150.9 -82,-145.2 -82,-139.5 -82,-133.8 -82,-128.1 -82,-122.4 -82,-116.7 -82,-111 -82,-111 -82.5,-111 -83,-111 -83.5,-111 -84,-111 -84.5,-111 -85,-111 -85.5,-111 -86,-111 -86.5,-111 -87,-116.7 -87,-122.4 -87,-128.1 -87,-133.8 -87,-139.5 -87,-145.2 -87,-150.9 -87,-156.6 -87,-162.3 -87,-168 -87,-168 -86.5,-168 -86,-168 -85.5,-168 -85,-168 -84.5,-168 -84,-168 -83.5,-168 -83,-168 -82.5,-168 -82))", "dataset_titles": "2017 GPR Observations of the Whillans and Mercer Ice Streams; Whillans and Mercer Shear Margin Ice Flow simulation in ISSM", "datasets": [{"dataset_uid": "601404", "doi": "10.15784/601404", "keywords": "Antarctica; Glaciology; Ice Sheet Flow Model; Ice Shelf Dynamics; Mercer Ice Stream; Model Data; Snow/ice; Snow/Ice; Whillans Ice Stream", "people": "Kaluzienski, Lynn", "repository": "USAP-DC", "science_program": null, "title": "Whillans and Mercer Shear Margin Ice Flow simulation in ISSM", "url": "https://www.usap-dc.org/view/dataset/601404"}, {"dataset_uid": "601403", "doi": "10.15784/601403", "keywords": "Antarctica; Crevasses; Glaciology; GPR; GPS; Ice Sheet Flow Model; Ice Shelf Dynamics; Snow/ice; Snow/Ice; Whillans Ice Stream", "people": "Kaluzienski, Lynn", "repository": "USAP-DC", "science_program": null, "title": "2017 GPR Observations of the Whillans and Mercer Ice Streams", "url": "https://www.usap-dc.org/view/dataset/601403"}], "date_created": "Mon, 14 Dec 2020 00:00:00 GMT", "description": "The Siple Coast in West Antarctica has undergone significant glacier changes over the last millenium. Several ice streams--rapidly moving streams of ice bordered by slow-moving ice--exist in this region that feeds into the Ross Ice Shelf. A long-term slowdown of Whillans Ice Stream appears to be occurring, and this is affecting the zone between the Whillans and Mercer Ice Streams. However, the consistency of this slowdown and resulting changes to the shear margin between the two ice streams are unknown. Shear zone stability represents a potentially critical control on mass balance of ice sheets, especially in regions of fast ice flow where basal shear stress is minimal. This project is therefore focused on understanding the spatial and temporal change of ice flow kinematics, shear margin structure, and shear margin location between Whillans and Mercer Ice Streams. A collateral benefit of and driver for this as a RAPID project is to test a method for assessing where crevassing will develop in this zone of steep velocity gradients. Such a method may benefit not only near-term field-project planning in the 2018-19 field season, but also planning for future fieldwork and traverses.\u003cbr/\u003e\u003cbr/\u003eThe team will use velocity estimates derived from available remote sensing datasets to determine transient velocity patterns and shifts in the shear-zone location over the last 20 years. This velocity time series will be incorporated into a large-scale ice-sheet model to estimate ice-sheet susceptibility to changing boundary conditions over the next century based on likely regional ice-flux scenarios. This approach is an extension of recent work conducted by the team that shows promise for predicting areas of changing high strain rates indicative of an active glacier shear margin. The ultimate objectives are to characterize the flow field of merging ice streams over time and investigate lateral boundary migration. This will provide a better understanding of shear-margin control on ice-shelf and up-glacier stability.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -111.0, "geometry": "POINT(-139.5 -84.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Whillans Ice Stream; USAP-DC; Amd/Us; USA/NSF; GLACIER MOTION/ICE SHEET MOTION; MODELS; AMD", "locations": "Whillans Ice Stream", "north": -82.0, "nsf_funding_programs": "Antarctic Glaciology; Polar Special Initiatives", "paleo_time": null, "persons": "Campbell, Seth; Koons, Peter", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e MODELS \u003e MODELS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.0, "title": "RAPID Proposal: Constraining kinematics of the Whillans/Mercer Ice Stream Confluence", "uid": "p0010145", "west": -168.0}, {"awards": "1643873 Hansen, Samantha; 1643798 Emry, Erica", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "GEOSCOPE Network; IU: Global Seismograph Network; Shear Wave Velocity of the Antarctic Upper Mantle from Full Waveform Inversion and Long Period Ambient Seismic Noise; XP (2000-2004): A Broadband Seismic Investigation of Deep Continental Structure Across the East-West Antarctic Boundary ; YT (2007-2023): IPY POLENET-Antarctica: Investigating links between geodynamics and ice sheets; ZJ (2012-2015): Transantarctic Mountains Northern Network ; ZM (2007-2013): A Broadband Seismic Experiment to Image the Lithosphere beneath the Gamburtsev Mountains, East Antarctica", "datasets": [{"dataset_uid": "200172", "doi": "10.7914/SN/ZM_2007", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": " ZM (2007-2013): A Broadband Seismic Experiment to Image the Lithosphere beneath the Gamburtsev Mountains, East Antarctica", "url": "http://www.fdsn.org/networks/detail/ZM_2007/"}, {"dataset_uid": "200171", "doi": "10.7914/SN/YT_2007", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "YT (2007-2023): IPY POLENET-Antarctica: Investigating links between geodynamics and ice sheets", "url": "http://www.fdsn.org/networks/detail/YT_2007/"}, {"dataset_uid": "601744", "doi": "10.15784/601744", "keywords": "Ambient Seismic Noise; Antarctica; Full-Waveform Inversion; Seismic Tomography; Shear Wave Velocity; Solid Earth", "people": "Emry, Erica", "repository": "USAP-DC", "science_program": null, "title": "Shear Wave Velocity of the Antarctic Upper Mantle from Full Waveform Inversion and Long Period Ambient Seismic Noise", "url": "https://www.usap-dc.org/view/dataset/601744"}, {"dataset_uid": "200168", "doi": "10.18715/GEOSCOPE.G", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "GEOSCOPE Network", "url": "http://geoscope.ipgp.fr/networks/detail/G/"}, {"dataset_uid": "200169", "doi": "10.7914/SN/IU", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IU: Global Seismograph Network", "url": "http://www.fdsn.org/networks/detail/IU/"}, {"dataset_uid": "200173", "doi": "10.7914/SN/ZJ_2012", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "ZJ (2012-2015): Transantarctic Mountains Northern Network ", "url": "http://www.fdsn.org/networks/detail/ZJ_2012/"}, {"dataset_uid": "200170", "doi": "10.7914/SN/XP_2000", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "XP (2000-2004): A Broadband Seismic Investigation of Deep Continental Structure Across the East-West Antarctic Boundary ", "url": "http://www.fdsn.org/networks/detail/XP_2000/"}], "date_created": "Thu, 15 Oct 2020 00:00:00 GMT", "description": "Our project is focused on better resolving the three-dimensional Antarctic mantle structure to further understanding of continental tectonics. To accomplish this, we are utilizing a full-waveform tomographic inversion technique that incorporates long-period ambient noise data and which has been shown to more accurately resolve structure than traditional tomographic approaches. The new models have been developed using the Alabama supercomputer facilities in conjunction with software developed at The University of Rhode Island. Our new tomographic results highlight the lithospheric structure beneath the Wilkes and Aurora Subglacial Basins in East Antarctica, where previous rifting episodes and mid-lithospheric discontinuities are being explored. In West Antarctica, the work is elucidating the easternmost extent of the West Antarctic Rift System as well as rifted structure and possible compositional variations within the Weddell Sea. We are also highlighting regions of Antarctica where tomographic resolution is still lacking and where future deployments are needed to improve resolution.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "SEISMIC SURFACE WAVES; USA/NSF; USAP-DC; SEISMOLOGICAL STATIONS; Amd/Us; AMD; POLNET; TECTONICS; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Emry, Erica; Hansen, Samantha", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS", "repo": "IRIS", "repositories": "IRIS; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Imaging Seismic Heterogeneity within the Antarctic Mantle with Full Waveform Ambient Noise Tomography", "uid": "p0010139", "west": -180.0}, {"awards": "1542885 Dunham, Eric", "bounds_geometry": null, "dataset_titles": "Earthquake Sequence Dynamics at the Interface Between an Elastic Layer and Underlying Half-Space in Antiplane Shear", "datasets": [{"dataset_uid": "601320", "doi": "10.15784/601320", "keywords": "Antarctica; Computer Model; Glaciology; Model Data; Shear Stress; Solid Earth; Whillans Ice Stream", "people": "Abrahams, Lauren", "repository": "USAP-DC", "science_program": null, "title": "Earthquake Sequence Dynamics at the Interface Between an Elastic Layer and Underlying Half-Space in Antiplane Shear", "url": "https://www.usap-dc.org/view/dataset/601320"}], "date_created": "Fri, 09 Oct 2020 00:00:00 GMT", "description": "This project investigates a rapidly moving section of the West Antarctic Ice Sheet known as the Whillans Ice Stream. Ice streams and outlet glaciers are the major pathways for ice discharge from ice sheets into the ocean. Consequently, understanding ice stream dynamics, specifically the processes controlling the frictional resistance of ice sliding on sediments at its base, is essential for predictive modeling of how Earth\u0027s ice sheets will respond to a changing climate. Rather than flowing smoothly, Whillans Ice Stream advances in stick-slip cycles: brief periods of rapid sliding, equivalent to magnitude 7 earthquakes, alternating with much longer periods of repose. The PIs will perform simulations of these stick-slip cycles using computer codes originally developed for modeling tectonic earthquakes. By matching observed ice motions, the PIs will constrain the range of frictional processes acting at the base of the ice stream. An additional focus of the project is on brittle fracture processes in ice, expressed through seismic waves radiated by faulting and/or crevassing episodes that accompany the large-scale sliding events. An understanding of ice fracture provides a basis for assessing the susceptibility of ice shelves to rifting and catastrophic disintegration. Project results will be incorporated into outreach activities (from elementary school to community college events) as well as a polar science class for the California State Summer School for Mathematics and Science (COSMOS) program for high school students.\u003cbr/\u003e\u003cbr/\u003eSimulations of the stick-slip cycle will employ 3D dynamic rupture models that simultaneously solve for the seismic wavefield and rupture process, consistent with elastodynamic material response and friction laws on the ice stream bed. Stresses and frictional properties will be varied to achieve consistency with surface GPS and broadband seismic data as well as borehole seismograms from the WISSARD project. The results will be interpreted using laboratory till friction experiments, which link velocity-weakening/strengthening behavior to temperature and water content, and to related experiments quantifying basal drag from ice flow over rough beds. The source mechanism of seismicity accompanying the slip events (shear faulting versus crevassing) will be determined using 3D waveform modeling in conjunction with mechanical models of the seismic source processes. This proposal does not require fieldwork in the Antarctic.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "SEISMIC PROFILE; AMD; Antarctica; GROUND-BASED OBSERVATIONS; USA/NSF; USAP-DC; Amd/Us", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Dunham, Eric", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Characterizing Brittle Failure and Fracture Propagation in Fast Ice Sliding with Dynamic Rupture Models based on Whillans Ice Stream Seismic/Geodetic Data", "uid": "p0010138", "west": null}, {"awards": "1043623 Miller, Scott", "bounds_geometry": "POLYGON((117.5 -47,120.35 -47,123.2 -47,126.05 -47,128.9 -47,131.75 -47,134.6 -47,137.45 -47,140.3 -47,143.15 -47,146 -47,146 -49.04,146 -51.08,146 -53.12,146 -55.16,146 -57.2,146 -59.24,146 -61.28,146 -63.32,146 -65.36,146 -67.4,143.15 -67.4,140.3 -67.4,137.45 -67.4,134.6 -67.4,131.75 -67.4,128.9 -67.4,126.05 -67.4,123.2 -67.4,120.35 -67.4,117.5 -67.4,117.5 -65.36,117.5 -63.32,117.5 -61.28,117.5 -59.24,117.5 -57.2,117.5 -55.16,117.5 -53.12,117.5 -51.08,117.5 -49.04,117.5 -47))", "dataset_titles": "Eddy covariance air-sea momentum, heat, and carbon dioxide fluxes in the Southern Ocean from the N.B. Palmer cruise NBP1210; Eddy covariance air-sea momentum, heat, and carbon dioxide fluxes in the Southern Ocean from the N.B. Palmer cruise NBP1402; Expedition Data", "datasets": [{"dataset_uid": "001427", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1210"}, {"dataset_uid": "001414", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1402"}, {"dataset_uid": "601309", "doi": "10.15784/601309", "keywords": "Air-Sea Flux; Air Temperature; Amundsen Sea; Antarctica; Antarctic Peninsula; Atmosphere; CO2; Flux; Meteorology; NBP1210; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Southern Ocean; Water Temperature; Wind Direction; Wind Speed", "people": "Miller, Scott; Butterworth, Brian", "repository": "USAP-DC", "science_program": null, "title": "Eddy covariance air-sea momentum, heat, and carbon dioxide fluxes in the Southern Ocean from the N.B. Palmer cruise NBP1210", "url": "https://www.usap-dc.org/view/dataset/601309"}, {"dataset_uid": "601308", "doi": null, "keywords": "Air-Sea Flux; Air Temperature; Antarctica; Atmosphere; CO2; CO2 Concentrations; East Antarctica; Flux; Meteorology; NBP1402; Oceans; Relative Humidity; Salinity; Totten Glacier; Water Measurements; Water Temperature; Weather Station Data; Wind Direction; Wind Speed", "people": "Miller, Scott; Butterworth, Brian", "repository": "USAP-DC", "science_program": null, "title": "Eddy covariance air-sea momentum, heat, and carbon dioxide fluxes in the Southern Ocean from the N.B. Palmer cruise NBP1402", "url": "https://www.usap-dc.org/view/dataset/601308"}], "date_created": "Fri, 09 Oct 2020 00:00:00 GMT", "description": "Accurate parameterizations of the air-sea fluxes of CO2 into the Southern Ocean, in particular at high wind velocity, are needed to better assess how projections of global climate warming in a windier world could affect the ocean carbon uptake, and alter the ocean heat budget at high latitudes. \u003cbr/\u003e\u003cbr/\u003eAir-sea fluxes of momentum, sensible and latent heat (water vapor) and carbon dioxide (CO2) are to be measured continuously underway on cruises using micrometeorological eddy covariance techniques adapted to ship-board use. The measured gas transfer velocity (K) is then to be related to other parameters known to affect air-sea-fluxes.\u003cbr/\u003e\u003cbr/\u003eA stated goal of this work is the collection of a set of direct air-sea flux measurements at high wind speeds, conditions where parameterization of the relationship of gas exchange to wind-speed remains contentious. The studies will be carried out at sites in the Southern Ocean using the USAP RV Nathaniel B Palmer as measurment platform. Co-located pCO2 data, to be used in the overall analysis and enabling internal consistency checks, are being collected from existing underway systems aboard the USAP research vessel under other NSF awards.", "east": 146.0, "geometry": "POINT(131.75 -57.2)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "HEAT FLUX; DISSOLVED GASES; Antarctica; USAP-DC; NOT APPLICABLE", "locations": "Antarctica", "north": -47.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Miller, Scott", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -67.4, "title": "Air-Sea Fluxes of Momentum, Heat, and Carbon Dioxide at High Wind Speeds in the Southern Ocean", "uid": "p0010137", "west": 117.5}, {"awards": "1643551 Hansen, Samantha", "bounds_geometry": null, "dataset_titles": "Investigating Ultra-low Velocity Zones (ULVZs) using an Antarctic Dataset", "datasets": [{"dataset_uid": "601265", "doi": "10.15784/601265", "keywords": "Antarctica; Core-Mantle Boundary; ScP; Southern Hemisphere; Ultra-Low Velocity Zones", "people": "Rost, Sebastian; Hansen, Samantha; Carson, Sarah; Garnero, Edward; Yu, Shule", "repository": "USAP-DC", "science_program": null, "title": "Investigating Ultra-low Velocity Zones (ULVZs) using an Antarctic Dataset", "url": "https://www.usap-dc.org/view/dataset/601265"}], "date_created": "Fri, 09 Oct 2020 00:00:00 GMT", "description": "Non-Technical Project Description\u003cbr/\u003e\u003cbr/\u003eThis research will study Ultralow Velocity Zones (ULVZs), located in Earth\u0027s interior on top of the boundary between the Earth\u0027s solid mantle and its fluid outer core. The ULVZs are so named because seismic waves passing through the Earth slow down dramatically when they encounter these zones. While ULVZs are thought to be related to melting processes, there is growing controversy regarding their origin and the role they play in the thermal and chemical evolution of our planet. The ULVZs may include the largest magma chambers in Earth\u0027s interior. Currently, researchers have only searched 40% of Earth\u0027s core-mantle boundary for the ULVZs and this project would use existing seismic data to map an unexplored area under Antarctica and interpret the nature of the ULVZs. This project will support two graduate students and create opportunities for undergraduate involvement. Project results will be published in scientific journals, presented at science fairs, and communicated through the researchers\u0027 websites. The research team will also take part in the NSF-sponsored PolarTREC (Teachers and Researchers Exploring and Collaborating) program to communicate the science to students and the broader community. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eTechnical Project Description\u003cbr/\u003e\u003cbr/\u003eThe National Research Council has highlighted high-resolution imaging of core-mantle boundary (CMB) structure as a high-priority, emerging research opportunity in the Earth Sciences since anomalies along the CMB likely play a critical role in the thermal and chemical evolution of our planet. Of particular interest are ultralow velocity zones (ULVZs), thin laterally-varying boundary layers associated with dramatic seismic velocity decreases and increases in density that are seen just above the CMB. Many questions exist regarding the origin of ULVZs, but incomplete seismic sampling of the lowermost mantle has limited our ability to map global ULVZ structure in detail. Using recently collected data from the Transantarctic Mountains Northern Network (TAMNNET) in Antarctica, this project will use core-reflected seismic phases (ScP, PcP, and ScS) to investigate ULVZ presence/absence along previously unexplored sections of the CMB. The data sampling includes the southern boundary of the Pacific Large Low Shear Velocity Province (LLSVP), a dominant feature in global shear wave tomography models, and will allow the researchers to examine a possible connection between ULVZs and LLSVPs. The main objectives of the project are to: 1) use TAMNNET data to document ULVZ presence/absence in previously unexplored regions of the lowermost mantle with array-based approaches; 2) model the data with 1- and 2.5-D wave propagation tools to obtain ULVZ properties and to assess trade-offs among the models; 3) use high quality events to augment the densely-spaced TAMNNET data with that from the more geographically-distributed, open-access Antarctic stations to increase CMB coverage with single-station analyses; and 4) explore the implications of ULVZ solution models for origin, present-day dynamics, and evolution, including their connection to other deep mantle structures, like LLSVPs.\u003cbr/\u003e\u003cbr/\u003eThe project aims to provide new constraints on ULVZs, including their potential connection to LLSVPs, and thus relates to other seismic and geodynamic investigations focused on processes within the Earth?s interior. This project will promote a new research collaboration between The University of Alabama (UA) and Arizona State University (ASU), each of which brings specific strengths to the initiative.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; Antarctica; SEISMIC PROFILE; NOT APPLICABLE", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Hansen, Samantha", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Antarctic Seismic Investigations of ULVZ Structure", "uid": "p0010136", "west": null}, {"awards": "1443213 Kaplan, Michael; 1443433 Licht, Kathy", "bounds_geometry": "POLYGON((159 -83.8,159.5 -83.8,160 -83.8,160.5 -83.8,161 -83.8,161.5 -83.8,162 -83.8,162.5 -83.8,163 -83.8,163.5 -83.8,164 -83.8,164 -83.87,164 -83.94,164 -84.01,164 -84.08,164 -84.15,164 -84.22,164 -84.29,164 -84.36,164 -84.43,164 -84.5,163.5 -84.5,163 -84.5,162.5 -84.5,162 -84.5,161.5 -84.5,161 -84.5,160.5 -84.5,160 -84.5,159.5 -84.5,159 -84.5,159 -84.43,159 -84.36,159 -84.29,159 -84.22,159 -84.15,159 -84.08,159 -84.01,159 -83.94,159 -83.87,159 -83.8))", "dataset_titles": "10Be and 26Al cosmogenic nuclide surface exposure data; 3He input data", "datasets": [{"dataset_uid": "601375", "doi": "10.15784/601375", "keywords": "Antarctica; Cosmogenic Dating; Transantarctic Mountains", "people": "Schaefer, Joerg; Winckler, Gisela; Kaplan, Michael", "repository": "USAP-DC", "science_program": null, "title": "10Be and 26Al cosmogenic nuclide surface exposure data", "url": "https://www.usap-dc.org/view/dataset/601375"}, {"dataset_uid": "601376", "doi": "10.15784/601376", "keywords": "Antarctica; Transantarctic Mountains", "people": "Winckler, Gisela; Kaplan, Michael; Schaefer, Joerg", "repository": "USAP-DC", "science_program": null, "title": "3He input data", "url": "https://www.usap-dc.org/view/dataset/601376"}], "date_created": "Tue, 29 Sep 2020 00:00:00 GMT", "description": "Sediments deposited by the Antarctic ice sheet are an archive of its history with time and help geologists to determine how the remote interior of the ice sheet has changed over the past several hundred thousand years. This project will focus on the formation and dynamics of moraines (accumulations of dirt and rocks that are incorporated in the glacier surface or have been pushed along by the glacier as it moves) near the blue ice area of Mt. Achernar in the central Transantarctic Mountains in Antarctica.. The study will improve basic understanding of the formation of these moraines. Fieldwork at the site will focus on imaging the internal structure of the moraine to determine the processes by which it, and others like it, form over time. Additional analyses will include measurements of ice flow and collection of rock samples to determine the timing of debris deposition and the changes in the sources of sediments from deep within the Antarctic continent. The project will provide both graduate and undergraduate students training in paleoclimate studies, geology, and numerical modeling approaches. The broader impacts of the proposed work include hands on training in the Earth Sciences for graduate and undergraduate students, collaboration with colleagues in New Zealand and Sweden to provide an international research experience for students from the US, and three educational modules to be delivered by student researchers regarding Antarctica\u0027s role in global environments. The research is societally relevant and multidisciplinary and the topics are ideal for sharing with the public. All research findings will be made publicly available to others via timely publication in high-impact, peer-reviewed journals and all data will be submitted to the National Snow and Ice Data Center, and excess samples will be provided to the U.S. Polar Rock Repository.\u003cbr/\u003e\u003cbr/\u003eDirect observations of ice sheet history from the margins of Antarctica\u0027s polar plateau are essential for testing numerical ice sheet models, and the laterally extensive, blue-ice moraines of the Mt. Achernar Moraine complex in the central Transantarctic Mountains contain a unique and nearly untapped direct, quasi-continuous record of ice sheet change over multiple glacial cycles. The project objectives include improved understanding of processes and rates of blue ice moraine formation, as well as identifying the topographic, glaciological, and climatic controls on their evolution. Data to be collected with fieldwork in Antarctica include: imaging of internal ice structure with ground-penetrating radar, measurement of ice flow velocity and direction with a global positioning system (GPS) array, analysis of debris concentration and composition in glacier ice, state-of-the-art cosmogenic multi-nuclide analyses to determine exposure ages of moraine debris, mapping of trimlines and provenance analysis. Numerical model simulations, constrained by field data, will be used to evaluate the factors influencing changes in glacier flow that potentially impact the accumulation of the moraine debris. All together, the new data and modeling efforts will improve conceptual models of blue ice moraine formation, and thereby make them a more valuable proxy for developing a better understanding of the history of the ice sheet.", "east": 164.0, "geometry": "POINT(161.5 -84.15)", "instruments": null, "is_usap_dc": true, "keywords": "SEDIMENTS; GLACIAL PROCESSES; Mt. Achernar; ABLATION ZONES/ACCUMULATION ZONES; GLACIER ELEVATION/ICE SHEET ELEVATION; Antarctica; Antarctic Ice Sheet; Transantarctic Mountains; GLACIATION; USAP-DC; ICE MOTION; AMD; LABORATORY; Amd/Us", "locations": "Transantarctic Mountains; Antarctic Ice Sheet; Mt. Achernar; Antarctica", "north": -83.8, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Kaplan, Michael; Schaefer, Joerg; Winckler, Gisela; Licht, Kathy", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.5, "title": "Collaborative Research: Multidisciplinary Analysis of Antarctic Blue Ice Moraine Formation and their Potential as Climate Archives over Multiple Glacial Cycles", "uid": "p0010131", "west": 159.0}, {"awards": "1744883 Wiens, Douglas", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "ANT-20: A 3D seismic model of the upper mantle and transition zone structure beneath Antarctica and the surrounding southern oceans; CWANT-PSP: A 3-D shear velocity model from a joint inversion of receiver functions and surface wave dispersion derived from ambient noise and teleseismic earthquakes.", "datasets": [{"dataset_uid": "200179", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "ANT-20: A 3D seismic model of the upper mantle and transition zone structure beneath Antarctica and the surrounding southern oceans", "url": "http://ds.iris.edu/ds/products/emc-ant-20/"}, {"dataset_uid": "200178", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "CWANT-PSP: A 3-D shear velocity model from a joint inversion of receiver functions and surface wave dispersion derived from ambient noise and teleseismic earthquakes.", "url": "http://ds.iris.edu/ds/products/emc-cwant-psp/"}], "date_created": "Tue, 02 Jun 2020 00:00:00 GMT", "description": "The geological structure and history of Antarctica remains poorly understood because much of the continental crust is covered by ice. Here, the PIs will analyze over 15 years of seismic data recorded by numerous projects in Antarctica to develop seismic structural models of the continent. The seismic velocity models will reveal features including crustal thinning due to rifting in West Antarctica, the structures associated with mountain building, and the boundaries between different tectonic blocks. The models will be compared to continents that are better understood geologically to constrain the tectonic evolution of Antarctica. In addition, the work will provide better insight into how the solid earth interacts with and influences the development of the ice sheet. Surface heat flow will be mapped and used to identify regions in Antarctica with potential melting at the base of the ice sheet. This melt can lead to reduced friction and lower resistance to ice sheet movement. The models will help to determine whether the earth response to ice mass changes occurs over decades, hundreds, or thousands of years. Estimates of mantle viscosity calculated from the seismic data will be used to better understand the pattern and timescales of the response of the solid earth to changes in ice mass in various parts of Antarctica.\u003cbr/\u003e\u003cbr/\u003eThe study will advance our knowledge of the structure of Antarctica by constructing two new seismic models and a thermal model using different but complementary methodologies. Because of the limitations of different seismic analysis methods, efforts will be divided between a model seeking the highest possible resolution within the upper 200 km depth in the well instrumented region (Bayesian Monte-Carlo joint inversion), and another model determining the structure of the entire continent and surrounding oceans extending through the mantle transition zone (adjoint full waveform inversion). The Monte-Carlo inversion will jointly invert Rayleigh wave group and phase velocities from earthquakes and ambient noise correlation along with P-wave receiver functions and Rayleigh H/V ratios. The inversion will be done in a Bayesian framework that provides uncertainty estimates for the structural model. Azimuthal anisotropy will be determined from Rayleigh wave velocities, providing constraints on mantle fabric and flow patterns. The seismic data will also be inverted for temperature structure, providing estimates of lithospheric thickness and surface heat flow. The larger-scale model will cover the entire continent as well as the surrounding oceans, and will be constructed using an adjoint inversion of phase differences between three component seismograms and synthetic seismograms calculated in a 3D earth model using the spectral element method. This model will fit the entire waveforms, including body waves and both fundamental and higher mode surface waves. Higher resolution results will be obtained by using double-difference methods and by incorporating Green\u0027s functions from ambient noise cross-correlation, and solving for both radial and azimuthal anisotropy.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USA/NSF; Carbon Cycle; SEISMIC PROFILE; Seismology; Southern Ocean; Amd/Us; Antarctica; West Antarctica; MODELS; SEISMIC SURFACE WAVES; AMD; TECTONICS; USAP-DC", "locations": "Antarctica; West Antarctica; Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Wiens, Douglas; Shen, Weisen", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": -90.0, "title": "Comprehensive Seismic and Thermal Models for Antarctica and the Southern Oceans: A Synthesis of 15-years of Seismic Exploration", "uid": "p0010103", "west": -180.0}, {"awards": "1142035 Obbard, Rachel; 1142167 Pettit, Erin", "bounds_geometry": "POLYGON((-112.3 -79.2,-112.2 -79.2,-112.1 -79.2,-112 -79.2,-111.9 -79.2,-111.8 -79.2,-111.7 -79.2,-111.6 -79.2,-111.5 -79.2,-111.4 -79.2,-111.3 -79.2,-111.3 -79.23,-111.3 -79.26,-111.3 -79.29,-111.3 -79.32,-111.3 -79.35,-111.3 -79.38,-111.3 -79.41,-111.3 -79.44,-111.3 -79.47,-111.3 -79.5,-111.4 -79.5,-111.5 -79.5,-111.6 -79.5,-111.7 -79.5,-111.8 -79.5,-111.9 -79.5,-112 -79.5,-112.1 -79.5,-112.2 -79.5,-112.3 -79.5,-112.3 -79.47,-112.3 -79.44,-112.3 -79.41,-112.3 -79.38,-112.3 -79.35,-112.3 -79.32,-112.3 -79.29,-112.3 -79.26,-112.3 -79.23,-112.3 -79.2))", "dataset_titles": "ApRES Firn Density Study; ApRES Vertical Strain Study; GPS Horizontal Strain Network; South Pole (SPICEcore) Borehole Deformation; WAIS Divide Borehole Deformation", "datasets": [{"dataset_uid": "601315", "doi": "10.15784/601315", "keywords": "Acoustic Televiewer; Anisotropy; Antarctica; Borehole Logging; Deformation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Flow; Snow/ice; Snow/Ice; South Pole; SPICEcore", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole (SPICEcore) Borehole Deformation", "url": "https://www.usap-dc.org/view/dataset/601315"}, {"dataset_uid": "200141", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "GPS Horizontal Strain Network", "url": ""}, {"dataset_uid": "601314", "doi": "10.15784/601314", "keywords": "Acoustic Televiewer; Anisotropy; Antarctica; Borehole Logging; Deformation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Flow; WAIS Divide; WAIS Divide Ice Core", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Borehole Deformation", "url": "https://www.usap-dc.org/view/dataset/601314"}, {"dataset_uid": "601323", "doi": "10.15784/601323", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Penetrating Radar; Ice Strain; Phase Sensitive Radar; Radar; Snow/ice; Snow/Ice; WAIS Divide", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "ApRES Vertical Strain Study", "url": "https://www.usap-dc.org/view/dataset/601323"}, {"dataset_uid": "601322", "doi": "10.15784/601322", "keywords": "Antarctica; Firn; Firn Density; Glaciology; Ice Penetrating Radar; Phase Sensitive Radar; Radar; Snow/ice; Snow/Ice; WAIS Divide", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "ApRES Firn Density Study", "url": "https://www.usap-dc.org/view/dataset/601322"}], "date_created": "Fri, 15 May 2020 00:00:00 GMT", "description": "This award supports a project to develop a better understanding of the relation between ice microstructure, impurities, and ice flow and their connection to climate history for the West Antarctic Ice Sheet (WAIS) ice core site. This work builds on several ongoing studies at Siple Dome in West Antarctica and Dome C in East Antarctica. It is well known that the microstructure of ice evolves with depth and time in an ice sheet. This evolution of microstructure depends on the ice flow field, temperature, and impurity content. The ice flow field, in turn, depends on microstructure, leading to feedbacks that create layered variation in microstructure that relates to climate and flow history. The research proposed here focuses on developing a better understanding of: 1) how ice microstructure evolves with time and stress in an ice sheet and how that relates to impurity content, temperature, and strain rate; 2) how variations in ice microstructure and impurity content affect ice flow patterns near ice divides (on both small (1cm to 1m) and large (1m to 100km) scales); and 3) in what ways is the spatial variability of ice microstructure and its effect on ice flow important for interpretation of climate history in the WAIS Divide ice core. The study will integrate existing ice core and borehole data with a detailed study of ice microstructure using Electron Backscatter Diffraction (EBSD) techniques and measurements of borehole deformation through time using Acoustic Televiewers. This will be the first study to combine these two novel techniques for studying the relation between microstructure and deformation and it will build on other data being collected as part of other WAIS Divide borehole logging projects (e.g. sonic velocity, optical dust logging, temperature and other measurements on the ice core including fabric measurements from thin section analyses as well as studies of ice chemistry and stable isotopes. The intellectual merit of the work is that it will improve interpretation of ice core data (especially information on past accumulation) and overall understanding of ice flow. The broader impacts are that the work will ultimately contribute to a better interpretation of ice core records for both paleoclimate studies and for ice flow history, both of which connect to the broader questions of the role of ice in the climate system. The work will also advance the careers of two early-career female scientists, including one with a hearing impairment disability. This project will support a PhD student at the UAF and provide research and field experience for two or three undergraduates at Dartmouth. The PIs plan to include a teacher on their field team and collaborate with UAF\u0027s \"From STEM to STEAM\" toward enhancing the connection between art and science.", "east": -111.3, "geometry": "POINT(-111.8 -79.35)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; GLACIERS/ICE SHEETS; WAIS Divide; ICE CORE RECORDS; USAP-DC; GLACIER MOTION/ICE SHEET MOTION; Radar", "locations": "WAIS Divide", "north": -79.2, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Pettit, Erin; Obbard, Rachel", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "UNAVCO; USAP-DC", "science_programs": "WAIS Divide Ice Core; SPICEcore", "south": -79.5, "title": "Collaborative Research: VeLveT Ice - eVoLution of Fabric and Texture in Ice at WAIS Divide, West Antarctica", "uid": "p0010098", "west": -112.3}, {"awards": "1745137 Schroeder, Dustin", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic topographic and subglacial lake geostatistical simulations; Radar Sounding Observations of the Amundsen Sea Embayment, 2004-2005", "datasets": [{"dataset_uid": "601213", "doi": "10.15784/601213", "keywords": "Active Lakes; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; Model Data; Snow/ice; Snow/Ice; Subglacial Lakes; Topography", "people": "Schroeder, Dustin; MacKie, Emma; Caers, Jef; Siegfried, Matt; Scheidt, Celine", "repository": "USAP-DC", "science_program": null, "title": "Antarctic topographic and subglacial lake geostatistical simulations", "url": "https://www.usap-dc.org/view/dataset/601213"}, {"dataset_uid": "601436", "doi": "10.15784/601436", "keywords": "Amundsen Sea; Antarctica; Bed Reflectivity; Ice Penetrating Radar; Radar Echo Sounder", "people": "Schroeder, Dustin; Jordan, Thomas M.; Seroussi, Helene; Young, Duncan A.; Vaughan, David G.; Chu, Winnie; Hilger, Andrew M.; Culberg, Riley", "repository": "USAP-DC", "science_program": null, "title": "Radar Sounding Observations of the Amundsen Sea Embayment, 2004-2005", "url": "https://www.usap-dc.org/view/dataset/601436"}], "date_created": "Sat, 12 Oct 2019 00:00:00 GMT", "description": "Earth\u0027s geologic record shows that the great ice sheets have contributed to rates of sea-level rise that have been much higher than those observed today. That said, some sectors of the current Antarctic ice sheet are losing mass at large and accelerating rates. One of the primary challenges for placing these recent and ongoing changes in the context of geologically historic rates, and for making projections decades to centuries into the future, is the difficulty of observing conditions and processes beneath the ice sheet. Whereas satellite observations allow tracking of the ice-surface velocity and elevation on the scale of glacier catchments to ice sheets, airborne ice-penetrating radar has been the only approach for assessing conditions on this scale beneath the ice. These radar observations have been made since the late 1960s, but, because many different instruments have been used, it is difficult to track change in subglacial conditions through time. This project will develop the technical tools and approaches required to cross-compare among these measurements and thus open up opportunities for tracking and understanding changes in the critical subglacial environment. Intertwined with the research and student training on this project will be an outreach education effort to provide middle school and high school students with improved resources and enhanced exposure to geophysical, glaciological, and remote-sensing topics through partnership with the National Science Olympiad.\u003cbr/\u003e\u003cbr/\u003eThe radar sounding of ice sheets is a powerful tool for glaciological science with broad applicability across a wide range of cryosphere problems and processes. Radar sounding data have been collected with extensive spatial and temporal coverage across the West Antarctic Ice Sheet, including areas where multiple surveys provide observations that span decades in time or entire cross-catchment ice-sheet sectors. However, one major obstacle to realizing the scientific potential of existing radar sounding observations in Antarctica is the lack of analysis approaches specifically developed for cross-instrument interpretation. Radar is also spatially limited and often has gaps of many tens of kilometers between data points. Further work is needed to investigate ways of extrapolating radar information beyond the flight lines. This project aims to directly address these barriers to full utilization of the collective Antarctic radar sounding record by developing a suite of processing and interpretation techniques to enable the synthesis of radar sounding data sets collected with systems that range from incoherent to coherent, single-channel to swath-imaging, and digital to optically-recorded radar sounders. This includes a geostatistical analysis of ice sheet and radar datasets to make probabilistic predictions of conditions at the bed. The approaches will be assessed for two target regions: the Amundsen Sea Embayment and the Siple Coast. All pre- and post-processed sounding data produced by this project will be publically hosted for use by the wider research community.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IMAGING RADAR SYSTEMS", "is_usap_dc": true, "keywords": "GLACIER TOPOGRAPHY/ICE SHEET TOPOGRAPHY; Amd/Us; Airborne Radar; USA/NSF; ICE DEPTH/THICKNESS; Antarctica; Radar; AMD; USAP-DC", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Schroeder, Dustin; MacKie, Emma", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "CAREER: Cross-Instrument Synthesis of Antarctic Radar Sounding Observations", "uid": "p0010058", "west": -180.0}, {"awards": "1141916 Aster, Richard", "bounds_geometry": null, "dataset_titles": "Dynamic Response of the Ross Ice Shelf to Ocean Waves and Structure and Dynamics of the Ross Sea", "datasets": [{"dataset_uid": "002573", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Dynamic Response of the Ross Ice Shelf to Ocean Waves and Structure and Dynamics of the Ross Sea", "url": "http://www.iris.washington.edu/mda/XH?timewindow=2014-2017"}], "date_created": "Mon, 22 Oct 2018 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003e\u003cbr/\u003eThe PIs propose to establish an ice shelf network of 18 broadband seismographs deployed for two years to obtain high-resolution, mantle-scale images of Earth structure underlying the Ross Sea Embayment. Prior marine geophysical work provides good crustal velocity models for the region seaward of the ice shelf but mantle structure is constrained by only low-resolution images due to the lack of prior seismic deployments. The proposed stations would be established between Ross Island and Marie Byrd Land. These stations would fill a major geological gap within this extensional continental province and would link data sets collected in the Transantarctic Mountain transition/Plateau region (TAMSEIS) and in West Antarctica (POLENET) to improve resolution of mantle features beneath Antarctica. The proposed deployment would allow the PIs to collect seismic data without the expense, logistical complexity, and iceberg hazards associated with ocean bottom seismograph deployments. Tomographic models developed from the proposed data will be used to choose between competing models for the dynamics of the Ross Sea. In particular, the PIs will investigate whether a broad region of hot mantle, including the Eastern Ross Sea, indicates distributed recent tectonic activity, which would call into question models proposing that Eastern Ross extension ceased during the Mesozoic. These data will also allow the PIs to investigate the deeper earth structure to evaluate the possible role of mantle plumes and/or small-scale convection in driving regional volcanism and tectonism across the region.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003e\u003cbr/\u003eData from this deployment will be of broad interdisciplinary use. This project will support three graduate and two undergraduate students. At least one student will be an underrepresented minority student. The PIs will interact with the media and include K-12 educators in their fieldwork.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Earth Sciences", "paleo_time": null, "persons": "Aster, Richard", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": null, "title": "Collaborative Research: Mantle Structure and Dynamics of the Ross Sea from a Passive Seismic Deployment on the Ross Ice Shelf", "uid": "p0000761", "west": null}, {"awards": "1245915 Ray, Laura", "bounds_geometry": null, "dataset_titles": "Ground Penetrating Radar Grid Survey of the McMurdo Shear Zone", "datasets": [{"dataset_uid": "601102", "doi": "10.15784/601102", "keywords": "Antarctica; Firn; Folds; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Snow/ice; Snow/Ice", "people": "Koons, Peter; Ray, Laura; Arcone, Steven; Walker, Ben; Kaluzienski, Lynn; Lever, Jim", "repository": "USAP-DC", "science_program": null, "title": "Ground Penetrating Radar Grid Survey of the McMurdo Shear Zone", "url": "https://www.usap-dc.org/view/dataset/601102"}], "date_created": "Thu, 27 Sep 2018 00:00:00 GMT", "description": "This award supports an integrated field observation, remote sensing and numerical modeling study of the McMurdo Shear Zone (SZ). The SZ is a 5-10 km wide strip of heavily crevassed ice that separates the McMurdo and Ross ice shelves, and is an important region of lateral support for the Ross Ice Shelf. Previous radar and remote sensing studies reveal an enigmatic picture of the SZ in which crevasses detected at depth have no apparent surface expression, and have orientations which are possibly inconsistent with the observed flow field. In the proposed work, we seek to test the hypothesis that the SZ is a zone of chaotic Lagrangian mixing with (intersecting) buried crevasses which leads to rheological instability, potentially allowing large scale velocity discontinuities. The work will involve detailed field-based observations of crevasse distributions and structure using ground-penetrating radar, and GPS and remote sensing observations of the flow and stress field in the SZ. Because of the hazardous nature of the SZ, the radar surveys will be conducted largely with the aid of a lightweight robotic vehicle. Observations will be used to develop a finite element model of ice shelf shear margin behavior. The intellectual merit of this project is an increased understanding of ice shelf shear margin dynamics. Shear margins play a key role in ice shelf stability, and ice shelves in turn modulate the flux of ice from the ice sheet across the grounding line to the ocean. Insights from this project will improve large-scale models being developed to predict ice sheet evolution and future rates of sea level rise, which are topics of enormous societal concern. The broader impacts of the project include an improved basis for US Antarctic Program logistics planning as well as numerous opportunities to engage K-12 students in scientific discovery. Intensified crevassing in the shear zone between the Ross and McMurdo ice shelves would preclude surface crossing by heavy traverse vehicles which would lead to increased costs of delivering fuel to South Pole and a concomitant loss of flight time provided by heavy-lift aircraft for science missions on the continent. Our multidisciplinary research combining glaciology, numerical modeling, and robotics engineering is an engaging way to show how robotics can assist scientists in collecting hazardous field measurements. Our outreach activities will leverage Dartmouth\u0027s current NSF GK-12 program, build on faculty-educator relationships established during University of Maine\u0027s recent GK-12 program, and incorporate project results into University of Maine\u0027s IDEAS initiative, which integrates computational modeling with the existing science curriculum at the middle school level. This award has field work in Antarctica.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Ray, Laura", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Flow and Fracture Dynamics in an Ice Shelf Lateral Margin: Observations and Modeling of the McMurdo Shear Zone", "uid": "p0000701", "west": null}, {"awards": "1443126 MacAyeal, Douglas", "bounds_geometry": "POLYGON((166.1631 -77.9007,166.19736 -77.9007,166.23162 -77.9007,166.26588 -77.9007,166.30014 -77.9007,166.3344 -77.9007,166.36866 -77.9007,166.40292 -77.9007,166.43718 -77.9007,166.47144 -77.9007,166.5057 -77.9007,166.5057 -77.90423,166.5057 -77.90776,166.5057 -77.91129,166.5057 -77.91482,166.5057 -77.91835,166.5057 -77.92188,166.5057 -77.92541,166.5057 -77.92894,166.5057 -77.93247,166.5057 -77.936,166.47144 -77.936,166.43718 -77.936,166.40292 -77.936,166.36866 -77.936,166.3344 -77.936,166.30014 -77.936,166.26588 -77.936,166.23162 -77.936,166.19736 -77.936,166.1631 -77.936,166.1631 -77.93247,166.1631 -77.92894,166.1631 -77.92541,166.1631 -77.92188,166.1631 -77.91835,166.1631 -77.91482,166.1631 -77.91129,166.1631 -77.90776,166.1631 -77.90423,166.1631 -77.9007))", "dataset_titles": "McMurdo Ice Shelf AWS data; McMurdo Ice Shelf GPS survey of vertical motion; Supraglacial Lake Depths on McMurdo Ice Shelf, Antarctica; Time-lapse video of McMurdo Ice Shelf surface melting and hydrology", "datasets": [{"dataset_uid": "601113", "doi": "10.15784/601113", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Photo/video; Photo/Video; Supraglacial Meltwater", "people": "Banwell, Alison; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Time-lapse video of McMurdo Ice Shelf surface melting and hydrology", "url": "https://www.usap-dc.org/view/dataset/601113"}, {"dataset_uid": "601116", "doi": "10.15784/601116", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Snow/ice; Snow/Ice; Subglacial And Supraglacial Water Depth; Supraglacial Lake; Supraglacial Meltwater; Water Depth", "people": "Banwell, Alison; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Supraglacial Lake Depths on McMurdo Ice Shelf, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601116"}, {"dataset_uid": "601106", "doi": "10.15784/601106", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hydrology; Ice Shelf; Snow/ice; Snow/Ice; Surface Hydrology; Surface Mass Balance; Weather Station Data", "people": "Banwell, Alison; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "McMurdo Ice Shelf AWS data", "url": "https://www.usap-dc.org/view/dataset/601106"}, {"dataset_uid": "601107", "doi": "10.15784/601107", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ice Flow Velocity; Ice Shelf; Ice-Shelf Flexure; Snow/ice; Snow/Ice; Surface Melt", "people": "MacAyeal, Douglas; Banwell, Alison", "repository": "USAP-DC", "science_program": null, "title": "McMurdo Ice Shelf GPS survey of vertical motion", "url": "https://www.usap-dc.org/view/dataset/601107"}], "date_created": "Tue, 24 Jul 2018 00:00:00 GMT", "description": "Meltwater lakes that sit on top of Antarctica\u0027s floating ice shelves have likely contributed to the dramatic changes seen in Antarctica\u0027s glacial ice cover over the past two decades. In 2002, the 1,600-square-kilometer Larsen B Ice Shelf located on the Eastern side of the Antarctic Peninsula, for example, broke into thousands of small icebergs, which subsequently floated away as a result of the formation of more than 2,000 meltwater lakes on its surface over the prior decade. Our research project addresses the reasons why surface lakes form on Antarctic ice shelves and how these surface lakes subsequently contribute to the forces that may contribute to ice-shelf breakup like that of the Larsen B. Our project focuses primarily on making precise global positioning system (GPS) measurements of ice-shelf bending in response to the filling and draining of a surface lake on the McMurdo Ice Shelf. The observed vertical displacements (on the order of tens of centimeters) in response to lake filling will be used to calibrate and test computer simulation models that predict the response of ice shelves to surface lakes more generally and in a variety of future climate conditions. Our project will make hourly measurements of both vertical ice-shelf movements (using GPS surveying instruments) and of temperature and sunlight conditions (that drive melting) around a surface lake located close to the McMurdo Station airfield. Following this initial data-gathering effort, computer simulations and other more theoretical analysis will be undertaken to determine the suitability of the chosen McMurdo Ice Shelf surface lake as a field-laboratory for continued study. Ultimately, the research will contribute to understanding of the glaciological processes that link climate change to rising sea level. A successful outcome of the research will allow glaciologists to better assess the processes that promote or erode the influence Antarctic ice shelves have in controlling the transfer of ice from the interior of Antarctica into the ocean. The project will undertake two outreach activities: (1) web-posting of a field-activity journal and (2) establishing an open-access glaciological teaching and outreach web-sharing site for the International Glaciological Society.\u003cbr/\u003e\u003cbr/\u003eThe proposed project seeks to experimentally verify a theory of ice-shelf instability proposed to explain the explosive break-up of Larsen B Ice Shelf in 2002. This theory holds that the filling and draining of supraglacial lakes on floating ice shelves induces sufficient flexure stress within the ice to (a) induce upward/downward propagating fractures originating at the base/surface of the ice shelf that (b) dissect the ice shelf into fragments that tend to have widths less than about half the ice thickness. The significance of narrow widths is that they promote capsize of the ice-shelf fragments during the break-up process. This capsize releases large amounts of gravitational potential energy (comparable to thousands of kilotons of TNT for the Larsen B Ice Shelf) thereby promoting explosiveness of the Larsen B event. The observational motivation for experimentally verifying the surface-lake mechanism for ice-shelf breakup is based on the fact that \u003e2,000 surface lakes developed on the Larsen B Ice Shelf in the decade prior to its break up, and that these lakes were observed (via satellite imagery) to drain in a coordinated fashion during the day prior to the initiation of the break up.\u003cbr/\u003e\u003cbr/\u003eThe field-observation component of the project will focus on a supraglacial lake on the McMurdo Ice Shelf where there is persistent summer season surface melting. The lake will be studied during a single provisional field season to determine whether grooming of surrounding surface streams and shorelines with heavy construction equipment will allow surface water to be manually encouraged to fill the lake. If successfully encouraged to develop, the McMurdo Ice Shelf surface lake will allow measurements of key ice-shelf flexure and stress variables needed to develop the theory of ice-shelf surface lakes without having to access the much more logistically demanding surface lakes of ice-shelves located elsewhere in Antarctica. Data to be gathered during the 6-week provisional field season include: energy- and water-balance parameters determining how the surface lake grows and fills, and various global positioning system measurements of the vertical bending of the ice sheet in response to the changing meltwater load contained within the surface lake. These data will be used to (1) constrain a computer model of viscoelastic flexure and possible fracture of the ice shelf in response to the increasing load of meltwater in the lake, and (2) determine whether continued study of the incipient surface-meltwater lake features on the McMurdo Ice Shelf provides a promising avenue for constraining the more-general behavior of surface meltwater lakes on other ice shelves located in warmer parts of Antarctica. Computer models constrained by the observational data obtained from the field project will inform energy- and water-balance models of ice shelves in general, and allow more accurate forecasts of changing ice-shelf conditions surrounding the inland ice of Antarctica. The project will create the first-ever ground-based observations useful for spawning the development of models capable of predicting viscoelastic and fracture behavior of ice shelves in response to supraglacial lake evolution, including slow changes due to energy balance effects, as well as fast changes due to filling and draining.", "east": 166.5057, "geometry": "POINT(166.3344 -77.91835)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS", "is_usap_dc": true, "keywords": "USAP-DC; AWOS", "locations": null, "north": -77.9007, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "MacAyeal, Douglas", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e AWOS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.936, "title": "Impact of Supraglacial Lakes on Ice-Shelf Stability", "uid": "p0000138", "west": 166.1631}, {"awards": "1443471 Koutnik, Michelle; 1443341 Hawley, Robert", "bounds_geometry": "POLYGON((110 -89,117 -89,124 -89,131 -89,138 -89,145 -89,152 -89,159 -89,166 -89,173 -89,180 -89,180 -89.1,180 -89.2,180 -89.3,180 -89.4,180 -89.5,180 -89.6,180 -89.7,180 -89.8,180 -89.9,180 -90,173 -90,166 -90,159 -90,152 -90,145 -90,138 -90,131 -90,124 -90,117 -90,110 -90,110 -89.9,110 -89.8,110 -89.7,110 -89.6,110 -89.5,110 -89.4,110 -89.3,110 -89.2,110 -89.1,110 -89))", "dataset_titles": "7MHz radar in the vicinity of South Pole; Firn density and compaction rates 50km upstream of South Pole; Firn temperatures 50km upstream of South Pole; Shallow radar near South Pole; South Pole area GPS velocities; SPICEcore Advection", "datasets": [{"dataset_uid": "601099", "doi": "10.15784/601099", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar; Snow Accumulation; Snow/ice; Snow/Ice", "people": "Lilien, David; Fudge, T. J.; Koutnik, Michelle; Conway, Howard; Waddington, Edwin D.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Shallow radar near South Pole", "url": "https://www.usap-dc.org/view/dataset/601099"}, {"dataset_uid": "601266", "doi": "10.15784/601266", "keywords": "Antarctica; Ice Core Data; South Pole; SPICEcore", "people": "Fudge, T. J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SPICEcore Advection", "url": "https://www.usap-dc.org/view/dataset/601266"}, {"dataset_uid": "601525", "doi": "10.15784/601525", "keywords": "Antarctica; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Snow/ice; Snow/Ice; South Pole; SPICEcore; Temperature", "people": "Conway, Howard; Stevens, Christopher Max; Lilien, David; Koutnik, Michelle; Waddington, Edwin D.; Fudge, T. J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Firn temperatures 50km upstream of South Pole", "url": "https://www.usap-dc.org/view/dataset/601525"}, {"dataset_uid": "601369", "doi": "10.15784/601369", "keywords": "Antarctica; Ice Sheet", "people": "Koutnik, Michelle; Conway, Howard; Waddington, Edwin D.; Stevens, Max; Lilien, David; Fudge, T. J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "7MHz radar in the vicinity of South Pole", "url": "https://www.usap-dc.org/view/dataset/601369"}, {"dataset_uid": "601100", "doi": "10.15784/601100", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ice Velocity", "people": "Lilien, David; Koutnik, Michelle; Fudge, T. J.; Waddington, Edwin D.; Conway, Howard", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole area GPS velocities", "url": "https://www.usap-dc.org/view/dataset/601100"}, {"dataset_uid": "601680", "doi": "10.15784/601680", "keywords": "Antarctica; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Snow/ice; Snow/Ice; South Pole; Temperature", "people": "Conway, Howard; Fudge, T. J.; Lilien, David; Stevens, Christopher Max; Waddington, Edwin D.; Koutnik, Michelle", "repository": "USAP-DC", "science_program": null, "title": "Firn density and compaction rates 50km upstream of South Pole", "url": "https://www.usap-dc.org/view/dataset/601680"}], "date_created": "Thu, 14 Jun 2018 00:00:00 GMT", "description": "Ice-core records are critical to understanding past climate variations. An Antarctic ice core currently being drilled at the South Pole will allow detailed investigation of atmospheric gases and fill an important gap in understanding the pattern of climate variability across Antarctica. Critical to the interpretation of any ice core are: 1) accurate chronologies for both the ice and the trapped gas and 2) demonstration that records from the ice core reliably reflect climate. The proposed research will improve the ice and gas chronologies by making measurements of snow compaction in the upstream catchment in order to constrain age models of the ice. These measurements will be a key data set needed for better understanding and predicting time-varying conditions in the upper part of the ice sheet. The research team will measure the modern spatial gradients in accumulation rate, surface temperature, and water stable isotopes from shallow ice cores in the upstream catchment in order to determine the climate history from the ice-core record. The new ice-flow measurements will make it possible to define the path of ice from upstream to the South Pole ice-core drill site to assess spatial gradients in snowfall and to infer histories of snowfall from internal layers within the ice sheet. The project will be led by an early-career scientist, provide broad training to graduate students, and engage in public outreach on polar science.\u003cbr/\u003e\u003cbr/\u003eIce-core records of stable isotopes, aerosol-born particles, and atmospheric gases are critical to understanding past climate variations. The proposed research will improve the ice and gas chronologies in the South Pole ice core by making in situ measurements of firn compaction in the upstream catchment to constrain models of the gas-age ice-age difference. The firn measurements will be a key data set needed to form a constitutive relationship for firn, and will drive better understanding and prediction of transient firn evolution. The research team will measure the modern gradients in accumulation rate, surface temperature, and water stable isotopes in the upstream catchment to separate spatial (advection) variations from temporal (climate) variations in the ice-core records. The ice-flow measurements will define the flowline upstream of the drill site, assess spatial gradients in accumulation, and infer histories of accumulation from radar-observed internal layers. Results will directly enhance interpretation of South Pole ice-core records, and also advance understanding of firn densification and drive next-generation firn models.", "east": 180.0, "geometry": "POINT(145 -89.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIRN; Firn; USAP-DC; South Pole; Radar; FIELD SURVEYS; ICE CORE RECORDS", "locations": "South Pole", "north": -89.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Koutnik, Michelle; Conway, Howard; Waddington, Edwin D.; Fudge, T. J.; Hawley, Robert L.; Osterberg, Erich", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: Characterization of Upstream Ice and Firn Dynamics affecting the South Pole Ice Core", "uid": "p0000200", "west": 110.0}, {"awards": "1341585 Sorlien, Christopher", "bounds_geometry": "POLYGON((-180 -73.33,-179.1 -73.33,-178.2 -73.33,-177.3 -73.33,-176.4 -73.33,-175.5 -73.33,-174.6 -73.33,-173.7 -73.33,-172.8 -73.33,-171.9 -73.33,-171 -73.33,-171 -73.864,-171 -74.398,-171 -74.932,-171 -75.466,-171 -76,-171 -76.534,-171 -77.068,-171 -77.602,-171 -78.136,-171 -78.67,-171.9 -78.67,-172.8 -78.67,-173.7 -78.67,-174.6 -78.67,-175.5 -78.67,-176.4 -78.67,-177.3 -78.67,-178.2 -78.67,-179.1 -78.67,180 -78.67,178.5 -78.67,177 -78.67,175.5 -78.67,174 -78.67,172.5 -78.67,171 -78.67,169.5 -78.67,168 -78.67,166.5 -78.67,165 -78.67,165 -78.136,165 -77.602,165 -77.068,165 -76.534,165 -76,165 -75.466,165 -74.932,165 -74.398,165 -73.864,165 -73.33,166.5 -73.33,168 -73.33,169.5 -73.33,171 -73.33,172.5 -73.33,174 -73.33,175.5 -73.33,177 -73.33,178.5 -73.33,-180 -73.33))", "dataset_titles": "Ross Sea unconformities digital grids in depth and two-way time", "datasets": [{"dataset_uid": "601098", "doi": "10.15784/601098", "keywords": "Antarctica; Continental Margin; Geology/Geophysics - Other; Marine Geoscience; Miocene; Oligocene; Seismic Reflection", "people": "Sorlien, Christopher; Wilson, Douglas S.", "repository": "USAP-DC", "science_program": null, "title": "Ross Sea unconformities digital grids in depth and two-way time", "url": "https://www.usap-dc.org/view/dataset/601098"}], "date_created": "Fri, 25 May 2018 00:00:00 GMT", "description": "Intellectual Merit:\u003cbr/\u003eThis project will produce a new compilation of Ross Sea seismic stratigraphy, including new interpretations, that can be used to provide boundary conditions on the tectonic and glacial evolution of West Antarctica and the Ross Sea. The principal goals include compilation of, and interpretation of, all available existing seismic reflection data for the Western Ross Sea, coupled with geophysical modeling to produce paleo-bathymetric reconstructions for the entire 800 km-wide Ross Sea. Specific tasks will include: extending existing work on mapping travel time to reflectors, identifying relations in the seismic data that indicate subsidence through sea level, constructing velocity models for converting travel time to thickness, and using the velocity models to estimate density and porosity of sediments for backstripping analysis. Modeling/backstripping efforts will be used to constrain past bathymetry. Digital interpretations and stratigraphic grids will be provided as supplements to publications. In that way the results of this study can be used in thermal subsidence modeling and restoration of eroded rock to other parts of Ross Embayment and Marie Byrd Land by others. Digital products may be provided in advance of publication to modelers in a way that will not hurt publication chances.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThe results of this work will be important for paleo-geographic reconstructions of Antarctica and will therefore be of use to a broad range of researchers, particularly those working in the Ross Sea region. The digital products can be used to test models for the past fluctuations of West Antarctic ice sheets, and in planning for future sediment drilling projects. Two undergraduates to be chosen from applicants will be involved in summer internships held at the University of Rhode Island. Outreach will also include a new website and one or more Wikipedia entries related to Ross Sea sub-sea floor characteristics. The project includes an international collaboration with Dr. Chiara Sauli and others at Instituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS) in Italy.", "east": -171.0, "geometry": "POINT(177 -76)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": -73.33, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Sorlien, Christopher; Luyendyk, Bruce P.", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.67, "title": "Subsidence, Tilting, Sedimentation, and Oligocene-middle Miocene paleo-depth of Ross Sea", "uid": "p0000271", "west": 165.0}, {"awards": "1246045 Waddington, Edwin", "bounds_geometry": "POLYGON((-180 -70,-144 -70,-108 -70,-72 -70,-36 -70,0 -70,36 -70,72 -70,108 -70,144 -70,180 -70,180 -72,180 -74,180 -76,180 -78,180 -80,180 -82,180 -84,180 -86,180 -88,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -88,-180 -86,-180 -84,-180 -82,-180 -80,-180 -78,-180 -76,-180 -74,-180 -72,-180 -70))", "dataset_titles": "Code for inference of fabric from sonic velocity and thin-section measurements.; Code for models involving stochastic treatment of ice fabric", "datasets": [{"dataset_uid": "000244", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Code for models involving stochastic treatment of ice fabric", "url": "https://github.com/mjhay/stochastic_fabric"}, {"dataset_uid": "000243", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Code for inference of fabric from sonic velocity and thin-section measurements.", "url": "https://github.com/mjhay/neem_sonic_model"}], "date_created": "Mon, 02 Apr 2018 00:00:00 GMT", "description": "Waddington/1246045 \u003cbr/\u003e\u003cbr/\u003eThis award supports a project to investigate the onset and growth of folds and other disturbances seen in the stratigraphic layers of polar ice sheets. The intellectual merit of the work is that it will lead to a better understanding of the grain-scale processes that control the development of these stratigraphic features in the ice and will help answer questions such as what processes can initiate such disturbances. Snow is deposited on polar ice sheets in layers that are generally flat, with thicknesses that vary slowly along the layers. However, ice cores and ice-penetrating radar show that in some cases, after conversion to ice, and following lengthy burial, the layers can become folded, develop pinch-and-swell structures (boudinage), and be sheared by ice flow, at scales ranging from centimeters to hundreds of meters. The processes causing these disturbances are still poorly understood. Disturbances appear to develop first at the ice-crystal scale, then cascade up to larger scales with continuing ice flow and strain. Crystal-scale processes causing distortions of cm-scale layers will be modeled using Elle, a microstructure-modeling package, and constrained by fabric thin-sections and grain-elongation measurements from the West Antarctic Ice Sheet divide ice-core. A full-stress continuum anisotropic ice-flow model coupled to an ice-fabric evolution model will be used to study bulk flow of anisotropic ice, to understand evolution and growth of flow disturbances on the meter and larger scale. Results from this study will assist in future ice-core site selection, and interpretation of stratigraphy in ice cores and radar, and will provide improved descriptions of rheology and stratigraphy for ice-sheet flow models.The broader impacts are that it will bring greater understanding to ice dynamics responsible for stratigraphic disturbance. This information is valuable to constrain depth-age relationships in ice cores for paleoclimate study. This will allow researchers to put current climate change in a more accurate context. This project will provide three years of support for a graduate student as well as support and research experience for an undergraduate research assistant; this will contribute to development of talent needed to address important future questions in glaciology and climate change. The research will be communicated to the public through outreach events and results from the study will be disseminated through public and professional meetings as well as journal publications. The project does not require field work in Antarctica.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": -70.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Waddington, Edwin D.", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "GitHub", "repositories": "GitHub", "science_programs": null, "south": -90.0, "title": "Anisotropic Ice and Stratigraphic Disturbances", "uid": "p0000073", "west": -180.0}, {"awards": "0944307 Conway, Howard; 0943466 Hawley, Robert; 0944021 Brook, Edward J.", "bounds_geometry": "POLYGON((-163 -79,-162.8 -79,-162.6 -79,-162.4 -79,-162.2 -79,-162 -79,-161.8 -79,-161.6 -79,-161.4 -79,-161.2 -79,-161 -79,-161 -79.05,-161 -79.1,-161 -79.15,-161 -79.2,-161 -79.25,-161 -79.3,-161 -79.35,-161 -79.4,-161 -79.45,-161 -79.5,-161.2 -79.5,-161.4 -79.5,-161.6 -79.5,-161.8 -79.5,-162 -79.5,-162.2 -79.5,-162.4 -79.5,-162.6 -79.5,-162.8 -79.5,-163 -79.5,-163 -79.45,-163 -79.4,-163 -79.35,-163 -79.3,-163 -79.25,-163 -79.2,-163 -79.15,-163 -79.1,-163 -79.05,-163 -79))", "dataset_titles": "Roosevelt Island Borehole Firn temperatures; Roosevelt Island Borehole Optical Televiewer logs; Roosevelt Island Ice Core Time Scale and Associated Data; Roosevelt Island: Radar and GPS", "datasets": [{"dataset_uid": "601070", "doi": "10.15784/601070", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; GPS Data; Ice Velocity; Navigation; Radar; Roosevelt Island; Ross Sea", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island: Radar and GPS", "url": "https://www.usap-dc.org/view/dataset/601070"}, {"dataset_uid": "601085", "doi": "10.15784/601085", "keywords": "Antarctica; Borehole; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Records; Ice Fabric; Optical Images; Roosevelt Island; Snow/ice; Snow/Ice; Temperature", "people": "Giese, Alexandra; Hawley, Robert L.; Clemens-Sewall, David", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Borehole Firn temperatures", "url": "https://www.usap-dc.org/view/dataset/601085"}, {"dataset_uid": "601086", "doi": "10.15784/601086", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Roosevelt Island; Snow/ice; Snow/Ice", "people": "Hawley, Robert L.; Clemens-Sewall, David", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Borehole Optical Televiewer logs", "url": "https://www.usap-dc.org/view/dataset/601086"}, {"dataset_uid": "601359", "doi": "10.15784/601359", "keywords": "Antarctica; CO2; Ice Core; Roosevelt Island", "people": "Brook, Edward J.; Lee, James", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Ice Core Time Scale and Associated Data", "url": "https://www.usap-dc.org/view/dataset/601359"}], "date_created": "Fri, 16 Feb 2018 00:00:00 GMT", "description": "This award supports a project to use the Roosevelt Island ice core as a glaciological dipstick for the eastern Ross Sea. Recent attention has focused on the eastern Ross Embayment, where there are no geological constraints on ice thickness changes, due to the lack of protruding rock \"dipsticks\" where the ice sheet can leave datable records of high stands. Recent work has shown how dated ice cores can be used as dipsticks to derive ice-thickness histories. Partners from New Zealand and Denmark will extract an ice core from Roosevelt Island during the 2010-2011 and 2011-12 austral summers. Their science objective is to contribute to understanding of climate variability over the past 40kyr. The science goal of this project is not the climate record, but rather the history of deglaciation in the Ross Sea. The new history from the eastern Ross Sea will be combined with the glacial histories from the central Ross Sea (Siple Dome and Byrd) and existing and emerging histories from geologic and marine records along the western Ross Sea margin and will allow investigators to establish an updated, self-consistent model of the configuration and thickness of ice in the Ross Embayment during the LGM, and the timing of deglaciation. Results from this work will provide ground truth for new-generation ice-sheet models that incorporate ice streams and fast-flow dynamics. Realistic ice-sheet models are needed not only for predicting the response to future possible environments, but also for investigating past behaviors of ice sheets. This research contributes to the primary goals of the West Antarctic Ice Sheet Initiative as well as the IPY focus on ice-sheet history and dynamics. It also contributes to understanding spatial and temporal patterns of climate change and climate dynamics over the past 40kyr, one of the primary goals of the International Partnerships in Ice Core Sciences (IPICS). The project will help to develop the next generation of scientists and will contribute to the education and training of two Ph.D. students. All participants will benefit from the international collaboration, which will expose them to different field and laboratory techniques and benefit future collaborative work. All participants are involved in scientific outreach and undergraduate education, and are committed to fostering diversity. Outreach will be accomplished through regularly scheduled community and K-12 outreach events, talks and popular writing by the PIs, as well as through University press offices.", "east": -161.0, "geometry": "POINT(-162 -79.25)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "AMD; FIELD INVESTIGATION; Amd/Us; Deglaciation; USAP-DC; USA/NSF; NOT APPLICABLE; Ice Core; Not provided; Ross Sea Embayment", "locations": "Ross Sea Embayment", "north": -79.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Conway, Howard; Brook, Edward J.; Hawley, Robert L.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.5, "title": "Collaborative Research: Deglaciation of the Ross Sea Embayment - constraints from Roosevelt Island", "uid": "p0000272", "west": -163.0}, {"awards": "1043784 Schwartz, Susan", "bounds_geometry": "POLYGON((-160 -79,-158 -79,-156 -79,-154 -79,-152 -79,-150 -79,-148 -79,-146 -79,-144 -79,-142 -79,-140 -79,-140 -79.3,-140 -79.6,-140 -79.9,-140 -80.2,-140 -80.5,-140 -80.8,-140 -81.1,-140 -81.4,-140 -81.7,-140 -82,-142 -82,-144 -82,-146 -82,-148 -82,-150 -82,-152 -82,-154 -82,-156 -82,-158 -82,-160 -82,-160 -81.7,-160 -81.4,-160 -81.1,-160 -80.8,-160 -80.5,-160 -80.2,-160 -79.9,-160 -79.6,-160 -79.3,-160 -79))", "dataset_titles": "PASSCAL experiment 201205 (full data link not provided)", "datasets": [{"dataset_uid": "000194", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "PASSCAL experiment 201205 (full data link not provided)", "url": "http://ds.iris.edu/ds/nodes/dmc/"}], "date_created": "Tue, 07 Nov 2017 00:00:00 GMT", "description": "This award provides support for \"Investigating (Un)Stable Sliding of Whillans Ice Stream and Subglacial Water Dynamics Using Borehole Seismology: A proposed Component of the Whillans Ice Stream Subglacial Access and Research Drilling\" from the Antarctic Integrated Systems Science (AISS) program in the Office of Polar Programs at NSF. The project will use the sounds naturally produced by the ice and subglacial water to understand the glacial dynamics of the Whillans Ice Stream located adjacent to the Ross Ice Shelf in Antarctica.\u003cbr/\u003e\u003cbr/\u003eIntellectual Merit: The transformative component of the project is that in addition to passive surface seismometers, the team will deploy a series of borehole seismometers. Englacial placement of the seismometers has not been done before, but is predicted to provide much better resolution (detection of smaller scale events as well as detection of a much wider range of frequencies) of the subglacial dynamics. In conjunction with the concurrent WISSARD (Whillans Ice Stream Subglacial Access and Research Drilling) project the team will be able to tie subglacial processes to temporal variations in ice stream dynamics and mass balance of the ice stream. The Whillans Ice Stream experiences large changes in ice velocity in response to tidally triggered stick-slip cycles as well as periodic filling and draining of subglacial Lake Whillans. The overall science goals include: improved understanding of basal sliding processes and role of sticky spots, subglacial lake hydrology, and dynamics of small earthquakes and seismic properties of ice and firn.\u003cbr/\u003e\u003cbr/\u003eBroader Impact: Taken together, the research proposed here will provide information on basal controls of fast ice motion which has been recognized by the IPCC as necessary to make reliable predictions of future global sea-level rise. The information collected will therefore have broader implications for global society. The collected information will also be relevant to a better understanding of earthquakes. For outreach the project will work with the overall WISSARD outreach coordinator to deliver information to three audiences: the general public, middle school teachers, and middle school students. The project also provides funding for training of graduate students, and includes a female principal investigator.", "east": -140.0, "geometry": "POINT(-150 -80.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.0, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Schwartz, Susan; Tulaczyk, Slawek", "platforms": "Not provided", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": -82.0, "title": "Investigating (Un)Stable Sliding of Whillians Ice Stream and Subglacial Water Dynamics Using Borehole Seismology: A Proposed Component of WISSARD", "uid": "p0000393", "west": -160.0}, {"awards": "1341712 Hallet, Bernard", "bounds_geometry": "POLYGON((160.9 -76.7,161.08 -76.7,161.26 -76.7,161.44 -76.7,161.62 -76.7,161.8 -76.7,161.98 -76.7,162.16 -76.7,162.34 -76.7,162.52 -76.7,162.7 -76.7,162.7 -76.79,162.7 -76.88,162.7 -76.97,162.7 -77.06,162.7 -77.15,162.7 -77.24,162.7 -77.33,162.7 -77.42,162.7 -77.51,162.7 -77.6,162.52 -77.6,162.34 -77.6,162.16 -77.6,161.98 -77.6,161.8 -77.6,161.62 -77.6,161.44 -77.6,161.26 -77.6,161.08 -77.6,160.9 -77.6,160.9 -77.51,160.9 -77.42,160.9 -77.33,160.9 -77.24,160.9 -77.15,160.9 -77.06,160.9 -76.97,160.9 -76.88,160.9 -76.79,160.9 -76.7))", "dataset_titles": "Long-term rock abrasion study in the Dry Valleys", "datasets": [{"dataset_uid": "601060", "doi": "10.15784/601060", "keywords": "Antarctica; Dry Valleys; Geology/Geophysics - Other; Rocks", "people": "Sletten, Ronald S.; Hallet, Bernard; Malin, Michael", "repository": "USAP-DC", "science_program": null, "title": "Long-term rock abrasion study in the Dry Valleys", "url": "https://www.usap-dc.org/view/dataset/601060"}], "date_created": "Fri, 13 Oct 2017 00:00:00 GMT", "description": "Many of the natural processes that modify the landscape inhabited by humans occur over very long timescales, making them difficult to observe. Exceptions include rare catastrophic events such as earthquakes, volcanic eruptions, and floods that occur on short timescales. Many significant processes that affect the land and landscape that we inhabit operate on time scales imperceptible to humans. One of these processes is wind transport of sand, with related impacts to exposed rock surfaces and man-made objects, including buildings, windshields, solar panels and wind-farm turbine blades. The goal of this project is to gain an understanding of wind erosion processes over long timescales, in the Antarctic Dry Valleys, a cold desert environment where there were no competing processes (such as rain and vegetation) that might mask the effects. The main objective is recovery of rock samples that were deployed in 1983/1984 at 11 locations in the Antarctic Dry Valleys, along with measurements on the rock samples and characterization of the sites. In the late 1980s and early 1990s some of these samples were returned and indicated more time was needed to accumulate information about the timescales and impacts of the wind erosion processes. This project will allow collection of the remaining samples from this experiment after 30 to 31 years of exposure. The field work will be carried out during the 2014/15 Austral summer. The results will allow direct measurement of the abrasion rate and hence the volumes and timescales of sand transport; this will conclude the longest direct examination of such processes ever conducted. Appropriate scaling of the results may be applied to buildings, vegetation (crops), and other aspects of human presence in sandy and windy locations, in order to better determine the impact of these processes and possible mitigation of the impacts. The project is a collaborative effort between a small business, Malin Space Science Systems (MSSS), and the University of Washington (UW). MSSS will highlight this Antarctic research on its web site, by developing thematic presentations describing our research and providing a broad range of visual materials. The public will be engaged through daily updates on a website and through links to material prepared for viewing in Google Earth. UW students will be involved in the laboratory work and in the interpretation of the results.\u003cbr\u003eTechnical Description of Project:\u003cbr\u003eThe goal of this project is to study the role of wind abrasion by entrained particles in the evolution of the McMurdo Dry Valleys in the Transantarctic Mountains. During the 1983 to 1984 field seasons, over 5000 rock targets were installed at five heights facing the 4 cardinal directions at 10 locations (with an additional site containing fewer targets) to study rates of physical weathering due primarily to eolian abrasion. In addition, rock cubes and cylinders were deployed at each site to examine effects of chemical weathering. The initial examination of samples returned after 1, 5, and 10 years of exposure, showed average contemporary abrasion rates consistent with those determined by cosmogenic isotope studies, but further stress that \"average\" should not be interpreted as meaning \"uniform.\" The samples will be characterized using mass measurements wtih 0.01 mg precision balances, digital microphotography to compare the evolution of their surface features and textures, SEM imaging to examine the micro textures of abraded rock surfaces, and optical microscopy of thin sections of a few samples to examine the consequences of particle impacts extending below the abraded surfaces. As much as 60-80% of the abrasion measured in samples from 1984-1994 appears to have occurred during a few brief hours in 1984. This is consistent with theoretical models that suggest abrasion scales as the 5th power of wind velocity. The field work will allow return of multiple samples after three decades of exposure, which will provide a statistical sampling (beyond what is acquired by studying a single sample), and will yield the mass loss data in light of complementary environmental and sand kinetic energy flux data from other sources (e.g. LTER meteorology stations). This study promises to improve insights into one of the principal active geomorphic process in the Dry Valleys, an important cold desert environment, and the solid empirical database will provide general constraints on eolian abrasion under natural conditions.", "east": 162.7, "geometry": "POINT(161.8 -77.15)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.7, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Hallet, Bernard; Sletten, Ronald S.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.6, "title": "Collaborative Proposal: Decades-long Experiment on Wind-Driven Rock Abrasion in the Ice-Free Valleys, Antarctica", "uid": "p0000074", "west": 160.9}, {"awards": "1148982 Hansen, Samantha", "bounds_geometry": "POLYGON((153.327 -73.032547,154.5063012 -73.032547,155.6856024 -73.032547,156.8649036 -73.032547,158.0442048 -73.032547,159.223506 -73.032547,160.4028072 -73.032547,161.5821084 -73.032547,162.7614096 -73.032547,163.9407108 -73.032547,165.120012 -73.032547,165.120012 -73.3530275,165.120012 -73.673508,165.120012 -73.9939885,165.120012 -74.314469,165.120012 -74.6349495,165.120012 -74.95543,165.120012 -75.2759105,165.120012 -75.596391,165.120012 -75.9168715,165.120012 -76.237352,163.9407108 -76.237352,162.7614096 -76.237352,161.5821084 -76.237352,160.4028072 -76.237352,159.223506 -76.237352,158.0442048 -76.237352,156.8649036 -76.237352,155.6856024 -76.237352,154.5063012 -76.237352,153.327 -76.237352,153.327 -75.9168715,153.327 -75.596391,153.327 -75.2759105,153.327 -74.95543,153.327 -74.6349495,153.327 -74.314469,153.327 -73.9939885,153.327 -73.673508,153.327 -73.3530275,153.327 -73.032547))", "dataset_titles": "Crustal Structure beneath the Northern Transantarctic Mountains and Wilkes Subglacial Basin: Implications for Tectonic Origins; Shear Wave Splitting Analysis and Seismic Anisotropy beneath the Northern Transantarctic Mountains; Upper Mantle Seismic Structure beneath the Northern Transantarctic Mountains from Regional P- and S-wave Tomography; Upper Mantle Shear Wave Velocity Structure beneath the Northern Transantarctic Mountains", "datasets": [{"dataset_uid": "601019", "doi": "10.15784/601019", "keywords": "Antarctica; Geology/Geophysics - Other; GPS; Sample/collection Description; Sample/Collection Description; Seismology; Shearwave Spitting; Solid Earth; Transantarctic Mountains", "people": "Hansen, Samantha", "repository": "USAP-DC", "science_program": null, "title": "Shear Wave Splitting Analysis and Seismic Anisotropy beneath the Northern Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/601019"}, {"dataset_uid": "601018", "doi": "10.15784/601018", "keywords": "Antarctica; Geology/Geophysics - Other; Model; Seismology; Solid Earth; Tomography; Transantarctic Mountains", "people": "Hansen, Samantha", "repository": "USAP-DC", "science_program": null, "title": "Upper Mantle Shear Wave Velocity Structure beneath the Northern Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/601018"}, {"dataset_uid": "601017", "doi": "10.15784/601017", "keywords": "Antarctica; Geology/Geophysics - Other; Model; Seismology; Solid Earth; Tomography; Transantarctic Mountains", "people": "Hansen, Samantha", "repository": "USAP-DC", "science_program": null, "title": "Upper Mantle Seismic Structure beneath the Northern Transantarctic Mountains from Regional P- and S-wave Tomography", "url": "https://www.usap-dc.org/view/dataset/601017"}, {"dataset_uid": "601194", "doi": "10.15784/601194", "keywords": "Antarctica; Transantarctic Mountains", "people": "Hansen, Samantha", "repository": "USAP-DC", "science_program": null, "title": "Crustal Structure beneath the Northern Transantarctic Mountains and Wilkes Subglacial Basin: Implications for Tectonic Origins", "url": "https://www.usap-dc.org/view/dataset/601194"}], "date_created": "Sun, 04 Jun 2017 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eTo understand Antarctica\u0027s geodynamic development, origin of the Transantarctic Mountains (TAMs) and the Wilkes Subglacial Basin (WSB) must be determined. Current constraints on the crustal thickness and seismic velocity structure beneath the TAMs and the WSB are limited, leading to uncertainties over competing geologic models that have been suggested to explain their formation. The PI proposes to broaden the investigation of this region with a new seismic deployment, the Transantarctic Mountains Northern Network (TAMNNET), a 15-station array across the northern TAMs and the WSB that will fill a major gap in seismic coverage. Data from TAMNNET will be combined with that from other previous and ongoing seismic initiatives and will be analyzed using proven modeling techniques to generate a detailed image of the seismic structure beneath the TAMs and the WSB. These data will be used to test three fundamental hypotheses: the TAMs are underlain by thickened crust, the WSB is characterized by thin crust and thick sedimentary layers, and slow seismic velocities are prevalent along strike beneath the TAMs. Results from the proposed study will provide new information about the nature and formation of the Antarctic continent and will help to advance our understanding of important global processes, such as mountain building and basin formation. The proposed research also has important implications for other fields of Antarctic science. Constraints on the origin of the TAMs uplift are critical for climate and ice sheet models, and new information acquired about variations in the thermal and lithospheric structure beneath the TAMs and the WSB will be used to estimate critical ice sheet boundary conditions. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis project incorporates three educational strategies to promote the integration of teaching and research. Graduate students will be trained in Antarctic tectonics and seismic processing through hands-on fieldwork and data analysis techniques. Through NSF\u0027s PolarTREC program, the PI will work with K-12 educators. The PI will develop a three-week summer field program for recent high school graduates and early-career undergraduate students from Minority-Serving Institutions in Alabama. Teaching materials and participant experiences will be shared with individuals outside the program via a course website. Following the summer program, participants who were particularly engaged will be offered internship opportunities to analyze TAMNNET data. In successive years, the students could assist with fieldwork and could be recruited into the graduate program under the PI\u0027s supervision. Ultimately, this program would not only serve to educate undergraduates but would also generate a pipeline of underrepresented students into the geosciences.", "east": 165.120012, "geometry": "POINT(159.223506 -74.6349495)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": -73.032547, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Hansen, Samantha", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.237352, "title": "CAREER: Deciphering the Tectonic History of the Transantarctic Mountains and the Wilkes Subglacial Basin", "uid": "p0000300", "west": 153.327}, {"awards": "1043649 Hock, Regine", "bounds_geometry": null, "dataset_titles": "King George and Livingston Islands: Velocities and Digital Elevation Model", "datasets": [{"dataset_uid": "609667", "doi": "10.7265/N5R49NR1", "keywords": "Antarctica; Antarctic Peninsula; Digital Elevation Model; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness; Ice Velocity", "people": "Osmanoglu, Batuhan; Hock, Regine", "repository": "USAP-DC", "science_program": null, "title": "King George and Livingston Islands: Velocities and Digital Elevation Model", "url": "https://www.usap-dc.org/view/dataset/609667"}], "date_created": "Wed, 17 Feb 2016 00:00:00 GMT", "description": "1043649/Braun\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to determine the current mass balance of selected glaciers of the Western Antarctic Peninsula (WAP) and adjacent islands, including King George Island and Livingston Island. A major goal is to discriminate the climatic and dynamic components of the current mass budget. The dynamic component will be assessed using a flux gate approach. Glacier velocity fields will be derived by offset tracking on repeat SAR satellite imagery, and ice thicknesses across grounding lines or near terminus will be approximated from a new methods based on mass continuity. The surface mass balance will be computed from a spatially distributed temperature-index mass-balance model forced by temperature and precipitation data from regional climate models. Our results will provide improved mass budget estimates of Western Antarctic Peninsula glaciers and a more thorough understanding of the ratio between the climatic and dynamic components. The techniques to be developed will be applicable to other glaciers in the region allowing regional scale mass budgets to be derived. The broader impacts of this work are that glacier wastage is currently the most important contributor to global sea level rise and the Antarctic Peninsula has been identified as one of the largest single contributors. Future sea-level rise has major societal, economic and ecological implications. The activity will foster new partnerships through collaboration with European and South American colleagues. The project will form the base of of a postdoctoral research fellowship. It will also provide training of undergraduate and graduate students through inclusion of data and results in course curriculums.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e PALSAR", "is_usap_dc": true, "keywords": "ALOS; Digital Elevation Model", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Glaciology", "paleo_time": null, "persons": "Hock, Regine; Osmanoglu, Batuhan", "platforms": "SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e ADVANCED LAND OBSERVING SATELLITE (ALOS) \u003e ALOS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Contribution of Western Antarctic Peninsula glaciers to sea level rise: Separation of the dynamic and climatic components", "uid": "p0000054", "west": null}, {"awards": "0948247 Pettit, Erin", "bounds_geometry": "POINT(-123.35 -75.1)", "dataset_titles": null, "datasets": null, "date_created": "Wed, 06 Jan 2016 00:00:00 GMT", "description": "Pettit/0948247\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to study of the relationship between fabric and climate for the ice near the EPICA Dome C ice core site, East Antarctica. The work builds on an ongoing study at Siple Dome, West Antarctica and takes advantage of collaborations with European scientists and access to the Dome C borehole to make measurements of sonic velocity. The intellectual merit of the project is that a better understanding of how fabric preserves past climate information can improve models of the ice flow near ice core sites and the interpreta-tion of ice core data (particularly paleo-accumulation), and it may allow us to extract climate information directly from fabric data. In addition, because ice deformation is sensitive to the orientation of crystals, ice flow patterns are sensitive to the fabric. Thus, variations in the fabric between glacial and interglacial ice can affect how ice deforms and how fabric in the ice sheet develops. The Dome C site is particularly important for answering these questions, because the ice core shows evidence of eight glacial cycles, not just one as found at Siple Dome or the Greenland sites. The research will improve the understanding of the proxy relationship between sonic-velocity data and fabric; will help to model the pattern of ice flow caused by the fabric variation between glacial and interglacial time periods using these data, existing ice core chemistry and existing and new thin section data, improved surface strain data, and borehole deformation data; and will help to better understand the positive feedback mechanism that enhances fabric (and corresponding rheological) variability through a focused study of several climate transitions and the associated fabric changes. Borehole compressional-wave sonic-velocity will be measured which will complement the sonic-velocity data that already exist for boreholes in Greenland and West Antarctica. These will be the first sonic-velocity measurements in East Antarctica and the first measurements that extend for more than a single glacial/interglacial transition. The project will ultimately contribute to better interpretation of ice core records for both paleoclimate studies and for ice flow history, both of which connect to the broader questions of the role of ice in the climate system. This project will also strengthen the international collaborations within the paleoclimate and ice sheet modeling communities. This project will partially support a graduate student at the University of Alaska Fairbanks who is currently working on modeling ice including anisotropy and it will support the growth of a young scientist through a Post-Doc position. This Post Doc will gain important experience collaborating with the EPICA scientists in studying the climate-fabric relationship. Erin Pettit is active in field-science education for high school students, under-graduates, teachers, and adults. This project will help support the continued development and enhancement of Girls on Ice a program that encourages young women to explore science and the natural world.", "east": -123.35, "geometry": "POINT(-123.35 -75.1)", "instruments": null, "is_usap_dc": false, "keywords": "LABORATORY; Crystals; Deformation; FIELD INVESTIGATION; Model; Sonic Logger; Ice Flow; Rheology; FIELD SURVEYS; Borehole; Climate; Ice Fabric; Antarctica; Interglacial", "locations": "Antarctica", "north": -75.1, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Pettit, Erin; Hansen, Sharon", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -75.1, "title": "The Relationship between Climate and Ice Rheology at Dome C, East Antarctica", "uid": "p0000708", "west": -123.35}, {"awards": "0229314 Stone, John", "bounds_geometry": null, "dataset_titles": "Reedy Glacier Exposure Ages, Antarctica", "datasets": [{"dataset_uid": "609601", "doi": "10.7265/N5MG7MF1", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Cosmogenic; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Reedy Glacier; Sample/collection Description; Sample/Collection Description", "people": "Stone, John", "repository": "USAP-DC", "science_program": null, "title": "Reedy Glacier Exposure Ages, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609601"}], "date_created": "Mon, 30 Mar 2015 00:00:00 GMT", "description": "The stability of the marine West Antarctic Ice Sheet (WAIS) remains an important, unresolved problem for predicting future sea level change. Recent studies indicate that the mass balance of the ice sheet today may be negative or positive. The apparent differences may stem in part from short-term fluctuations in flow. By comparison, geologic observations provide evidence of behavior over much longer time scales. Recent work involving glacial-geologic mapping, dating and ice-penetrating radar surveys suggests that deglaciation of both the Ross Sea Embayment and coastal Marie Byrd Land continued into the late Holocene, and leaves open the possibility of ongoing deglaciation and grounding-line retreat. However, previous work in the Ross Sea Embayment was based on data from just three locations that are all far to the north of the present grounding line. Additional data from farther south in the Ross Sea Embayment are needed to investigate whether recession has ended, or if the rate and pattern of deglaciation inferred from our previous study still apply to the present grounding line. This award provides support to reconstruct the evolution of Reedy Glacier, in the southern Transantarctic Mountains, since the Last Glacial Maximum (LGM). Because Reedy Glacier emerges from the mountains above the grounding line, its surface slope and elevation should record changes in thickness of grounded ice in the Ross Sea up to the present day. The deglaciation chronology of Reedy Glacier therefore can indicate whether Holocene retreat of the WAIS ended thousands of years ago, or is still continuing at present. This integrated glaciologic, glacial-geologic, and cosmogenic-isotope exposure- dating project will reconstruct past levels of Reedy Glacier. Over two field seasons, moraines will be mapped, dated and correlated at sites along the length of the glacier. Radar and GPS measurements will be made to supplement existing ice thickness and velocity data, which are needed as input for a model of glacier dynamics. The model will be used to relate geologic measurements to the grounding-line position downstream. Ultimately, the mapping, dating and ice-modeling components of the study will be integrated into a reconstruction that defines changes in ice thickness in the southern Ross Sea since the LGM, and relates these changes to the history of grounding-line retreat. This work directly addresses key goals of the West Antarctic Ice Sheet Initiative, which are to understand the dynamics, recent history and possible future behavior of the West Antarctic Ice Sheet.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "Surface Exposure Dates; FIELD SURVEYS; Aluminum-26; Erosion; Rock Samples; Beryllium-10; Exposure Age", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Stone, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Late Quaternary History of Reedy Glacier", "uid": "p0000029", "west": null}, {"awards": "0944193 MacAyeal, Douglas", "bounds_geometry": null, "dataset_titles": "Iceberg Capsize Kinematics and Energetics", "datasets": [{"dataset_uid": "609590", "doi": "10.7265/N56H4FCJ", "keywords": "Antarctica; Glaciology; Iceberg; Kinetics", "people": "MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Iceberg Capsize Kinematics and Energetics", "url": "https://www.usap-dc.org/view/dataset/609590"}], "date_created": "Mon, 25 Aug 2014 00:00:00 GMT", "description": "This award supports a project to examine and test a 3-step process model for explosive ice-shelf disintegration that emerged in the wake of the recent 2008 and 2009 events of the Wilkins Ice Shelf. The model is conditioned on Summer melt-driven increase in free-surface water coupled with surface and basal crevasse density growth necessary to satisfy an \"enabling condition\". Once met, the collapse proceeds through three steps: (Step 1), calving of a \"leading phalanx\" of tabular icebergs from the seaward ice front of the ice shelf which creates in its wake a region, called a \"mosh pit\" (located between the phalanx and the edge of the intact ice shelf), where ocean surface-gravity waves are trapped by reflection (a fast mechanically enabled process), (Step 2), and a rapid, runaway conversion of gravitational potential energy into ocean-wave energy by iceberg capsize and fragmentation within the \"mosh pit\" which leads to further wave-induced calving, capsize and fragmentation (Step 3). The project will be conducted by a multidisciplinary team and will focus on theoretical model development, numerical method development and application and new observations. The project will participate in both the Research Experience for Undergraduates program in the Physics Department and the Summer Research Early Identification Program (SR-EIP) that fosters participation in research by underrepresented minorities. The PIs, postdoctoral scholar, graduate students and unfunded participants will develop a graduate-level seminar/tutorial to introduce advanced computational methods to glaciology. A postdoctoral scholar and graduate student will be trained in new research techniques during the project.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e VIDEO CAMERA", "is_usap_dc": true, "keywords": "LABORATORY; Iceberg Kinetic Energy; Iceberg Velocity", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "MacAyeal, Douglas", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Explosive Ice-Shelf Disintegration", "uid": "p0000005", "west": null}, {"awards": "0087345 Conway, Howard", "bounds_geometry": "POINT(112 79)", "dataset_titles": null, "datasets": null, "date_created": "Fri, 15 Aug 2014 00:00:00 GMT", "description": "This award supports a program of ground-based geophysical measurements to map in detail the spatial variations of ice flow, accumulation rate, internal layering and ice thickness at the sites which have been identified as promising locations to drill the next deep ice core in West Antarctica. The main investigative tools are a high- and low-frequency ice penetrating radar to image the topography of internal layers and the bed, repeat GPS surveys to calculate the present day surface velocity field, synthetic aperture radar (SAR) interferometry to calculate the regional velocity field, and short firn cores to calculate present day accumulation rates. The data which will be collected will be used to as input to time-dependent ice flow and temperature models that will predict depth variation of age, layer thickness, and temperature. As well as yielding an estimate of expected conditions before drilling, the mismatch between the model prediction and data eventually recovered from the core will help infer thinning and climate (accumulation and temperature) histories for the region. The Western Divide, between the Ross Sea Embayment and the Amundsen Sea, has been identified as the region which best satisfies the criteria which have been established for a deep drilling site. Preliminary site selection using airborne geophysical methods has identified several potential drill sites on the Western Divide where the climate record should be best preserved. This work will contribute in a major way to the final site selection for the next deep ice core in West Antarctica.", "east": -112.0, "geometry": "POINT(-112 -79)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR", "is_usap_dc": false, "keywords": "FIELD SURVEYS; Internal Layering; Radar; Accumulation Rate; FIELD INVESTIGATION; LABORATORY; Not provided; Internal Layers; Antarctica; Ice Flow; Interferometry; Ice Thickness", "locations": "Antarctica", "north": -79.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -79.0, "title": "Collaborative Research: Western Divide West Antarctic Ice Cores (WAISCORES) Site Selection", "uid": "p0000557", "west": -112.0}, {"awards": "1139739 Hansen, Samantha", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "A New Approach to Investigate the Seismic Velocity Structure beneath Antarctica", "datasets": [{"dataset_uid": "600132", "doi": "10.15784/600132", "keywords": "Antarctica; Geology/Geophysics - Other; Lithosphere; Seismic Tomography; Solid Earth", "people": "Hansen, Samantha", "repository": "USAP-DC", "science_program": null, "title": "A New Approach to Investigate the Seismic Velocity Structure beneath Antarctica", "url": "https://www.usap-dc.org/view/dataset/600132"}], "date_created": "Mon, 14 Jul 2014 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eNumerous candidate models for the geologic processes that have shaped the Antarctic continent have been proposed. To discriminate between them, detailed images of the upper mantle structure are required; however, the only existing continental-scale images of seismic structure beneath Antarctica lack sufficient resolution to delineate important, diagnostic features. Using newly available data from various Antarctic seismic networks, the PI will employ the adaptively parameterized tomography method to develop a high-resolution, continental-scale seismic velocity model for all of Antarctica. The proposed tomography method combines regional seismic travel-time datasets in the context of a global model to create a composite continental-scale model of upper mantle structure. The proposed method allows for imaging of finer structure in areas with better seismic ray coverage while simultaneously limiting the resolution of features in regions with less coverage. This research will help advance understanding of important global processes, such as craton formation, mountain building, continental rifting and associated magmatism. Additionally, the proposed research will have important impacts on other fields of Antarctic science. Constraints provided by tomographic results can be used to develop thermal models of the lithosphere needed to characterize the history and dynamics of ice sheets. Also, further constraints on lithospheric structure are required by climate-ice models, which are focused on understanding the cooling history of the Antarctic continent.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThe PI is a new faculty member at the University of Alabama after having been funded as a National Science Foundation Postdoctoral Fellow in Polar Regions Research. The graduate student supported by this project is new to polar research. Through the UA-Tuscaloosa Magnet School partnership program, the PI will educate K-12 students about the Antarctic environment and associated career opportunities through various online and hands-on activities. University of Alabama dedicates a significant percentage of its enrollment space to underrepresented groups.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Hansen, Samantha", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "New Approach to Investigate the Seismic Velocity Structure beneath Antarctica", "uid": "p0000354", "west": -180.0}, {"awards": "1232962 Ledwell, James", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP1310A", "datasets": [{"dataset_uid": "002658", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1310A", "url": "https://www.rvdata.us/search/cruise/NBP1310A"}], "date_created": "Fri, 07 Feb 2014 00:00:00 GMT", "description": "Intellectual Merit: The Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) is a study of ocean mixing in the Antarctic Circumpolar Current (ACC) which runs west to east all around the continent of Antarctica, south of the other continents. This current system is somewhat of a barrier to transport of heat, carbon dioxide and other important ocean constituents between the far south and the rest of the ocean, and mixing processes play an important role in those transports. DIMES is a multi-investigator cooperative project, led by physical oceanographers in the U.S. and in the U.K. A passive tracer and an array of sub-surface floats were deployed early in 2009 more than 2000 km west of Drake Passage on a surface of constant density about 1500 m deep between the Sub Antarctic Front and the Polar Front of the ACC. In early 2010 a U.S. led research cruise sampled the tracer, turbulence levels, and the velocity and density profiles that govern the generation of that turbulence, and additional U.K. led research cruises in 2011 and 2012 continue this sampling as the tracer has made its way through Drake Passage, into the Scotia Sea, and over the North Scotia Ridge, a track of more than 3000 km. The initial results show that diapycnal, i.e., vertical, mixing west of Drake Passage where the bottom is relatively smooth is no larger than in most other regions of the open ocean. In contrast, there are strong velocity shears and intense turbulence levels over the rough topography in Drake Passage and diapycnal diffusivity of the tracer more than 10 times larger in Drake Passage and to the east than west of Drake Passage.\u003cbr/\u003e\u003cbr/\u003eThe DIMES field program continues with the U.S. team collecting new velocity and turbulence data in the Scotia Sea. It is anticipated that the tracer will continue passing through the Scotia Sea until at least early 2014. The U.K. partners have scheduled sampling of the tracer on cruises at the North Scotia Ridge and in the eastern and central Scotia Sea in early 2013 and early 2014. The current project will continue the time series of the tracer at Drake Passage on two more U.S. led cruises, in late 2012 and late 2013. Trajectories through the Scotia Sea estimated from the tracer observations, from neutrally buoyant floats, and from numerical models will be used to accurately estimate mixing rates of the tracer and to locate where the mixing is concentrated. During the 2013 cruise the velocity and turbulence fields along high-resolution transects along the ACC and across the ridges of Drake Passage will be measured to see how far downstream of the ridges the mixing is enhanced, and to test the hypothesis that mixing is enhanced by breaking lee waves generated by flow over the rough topography.\u003cbr/\u003e\u003cbr/\u003eBroader Impacts: DIMES (see web site at http://dimes.ucsd.edu) involves many graduate students and post-doctoral researchers. Two graduate students, who would become expert in ocean turbulence and the processes generating it, will continue be trained on this project. The work in DIMES is ultimately motivated by the need to understand the overturning circulation of the global ocean. This circulation governs the transport and storage of heat and carbon dioxide within the huge oceanic reservoir, and thus plays a major role in regulating the earth?s climate. Understanding the circulation and how it changes in reaction to external forces is necessary to the understanding of past climate change and of how climate might change in the future, and is therefore of great importance to human well-being. The data collected and analyzed by the DIMES project will be assembled and made publicly available at the end of the project.\u003cbr/\u003e\u003cbr/\u003eThe DIMES project is a process experiment sponsored by the U.S. CLIVAR (Climate variability and predictability) program.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": null, "paleo_time": null, "persons": "Ledwell, James", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Studies of Turbulence and Mixing in the Antarctic Circumpolar Current, a Continuation of DIMES", "uid": "p0000846", "west": null}, {"awards": "0838811 Sergienko, Olga", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -87,180 -84,180 -81,180 -78,180 -75,180 -72,180 -69,180 -66,180 -63,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,-180 -60))", "dataset_titles": "Interaction of Ice Stream Flow with Heterogeneous Beds", "datasets": [{"dataset_uid": "609583", "doi": "10.7265/N53R0QS6", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; Ice Thickness; Ice Velocity", "people": "Sergienko, Olga", "repository": "USAP-DC", "science_program": null, "title": "Interaction of Ice Stream Flow with Heterogeneous Beds", "url": "https://www.usap-dc.org/view/dataset/609583"}], "date_created": "Tue, 27 Aug 2013 00:00:00 GMT", "description": "Sergienko/0838811 \u003cbr/\u003e\u003cbr/\u003eThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to conduct a modeling study of the ice stream ? sub-glacial water system. A suite of numerical models of various dimensionality and complexity will be constructed in a sequential, hierarchical fashion to formulate and test hypotheses regarding how sub-glacial lakes form under ice streams, determine the effect of sub-glacial lakes on ice-stream flow and mass balance, and to determine feedback effects whereby the ice stream ? sub-glacial water system can elicit both stable and unstable responses to environmental perturbations. This research will address one of the only observationally verified fast-time-scale processes apparent within the Antarctic Ice Stream system. The intellectual merit of the project is that understanding the origins and consequences of near-grounding-line sub-glacial lakes is a priority in glaciological research designed to predict short-term variations in Antarctica?s near-term future mass balance. The broader impacts of the proposed work are that it will contribute to better understanding of a system that has important societal relevance through contribution to sea level rise. Participation of a graduate student in the project will provide the student?s training and education in application of the numerical modeling in geosciences.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Subglacial And Supraglacial Water Depth; Not provided; Basal Stress; Ice Stream; Direct Numerical Simulation", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Sergienko, Olga; Hulbe, Christina", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Model Investigation of Ice Stream/Subglacial Lake Systems", "uid": "p0000045", "west": 180.0}, {"awards": "0636883 Bell, Robin", "bounds_geometry": "POLYGON((20 -75,23 -75,26 -75,29 -75,32 -75,35 -75,38 -75,41 -75,44 -75,47 -75,50 -75,50 -76.5,50 -78,50 -79.5,50 -81,50 -82.5,50 -84,50 -85.5,50 -87,50 -88.5,50 -90,47 -90,44 -90,41 -90,38 -90,35 -90,32 -90,29 -90,26 -90,23 -90,20 -90,20 -88.5,20 -87,20 -85.5,20 -84,20 -82.5,20 -81,20 -79.5,20 -78,20 -76.5,20 -75))", "dataset_titles": "Data portal at Lamont for airborne data", "datasets": [{"dataset_uid": "000111", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Data portal at Lamont for airborne data", "url": "http://wonder.ldeo.columbia.edu/wordpress/"}], "date_created": "Tue, 02 Apr 2013 00:00:00 GMT", "description": "Bell/0636883\u003cbr/\u003e\u003cbr/\u003eThis award support a project to study the role that subglacial water plays in the overall stability of major ice sheets. An estimated 22,000 km3 of water is currently stored within Antarctica\u0027s subglacial lakes. Movement of this water occurs through a complex and largely inferred drainage system in both East and West Antarctica. Geomorphic evidence for the catastrophic drainage of subglacial lakes documents repeated events. These major flood events appear to have drained the largest subglacial lakes situated in the relatively stable interior of the East Antarctic ice sheet. Emerging evidence suggests there is a close connection between significant subglacial lakes and the onset of the Recovery Ice Stream one of the largest in East Antarctica. Our preliminary analysis of the Recovery Lakes region, East Antarctica suggests a direct linkage between lakes and streaming ice flow, specifically the 800 km long Recovery Ice Stream and its tributaries. Located just upslope of the Recovery Ice Stream, the Recovery Lakes Region is composed of 3 well-defined lakes and a fourth, ambiguous, \u0027lake-like\u0027 feature. While other large lakes have a localized impact on ice surface slope, the Recovery Lakes Region lakes are coincident with an abrupt regional change in the ice sheet surface slope. Satellite imagery demonstrates that the downslope margin of this lake area contains distinct flow strips and crevasses: both indicative of increasing ice velocities. The discovery of a series of large lakes coincident with the onset of rapid ice flow in East Antarctica clearly links subglacial lakes and ice sheet dynamics for the first time. The evidence linking the onset of streaming in the Recovery Drainage Ice Stream to the series of large subglacial lakes raises the fundamental question: How can subglacial lakes trigger the onset of ice streaming? We advance two possible mechanisms: (i) Subglacial lakes can produce accelerated ice flow through the drainage of lake water beneath the ice sheet downslope of the lakes. (ii) Subglacial lakes can produce accelerated ice flow accelerated ice flow by modifying the basal thermal gradient via basal accretion over the lakes so when the ice sheet regrounds basal melting dominates. To evaluate the contribution of lake water and the changing basal thermal gradient, we propose an integrated program incorporating satellite imagery analysis, a series of reconnaissance aerogeophysical profiles over the Recovery Lake Region and the installation of continuous GPS sites over the Recovery Lakes. This analysis and new data will enable us (1) to produce a velocity field over the Recovery Lakes Region, (2) to map the ice thickness changes over the lakes due to acceleration triggered thinning, basal melting and freezing, (3) determine the depth and possible the tectonic origin of the Recovery Lakes and (4) determine the stability of these lakes over time. These basic data sets will enable us to advance our understanding of how subglacial lakes trigger the onset of streaming. The intellectual merit of this project is that it will be the first systematic analysis of ice streams triggering the onset of ice streams. This work has profound implications for the modeling of ice sheet behavior in the future, the geologic record of abrupt climate changes and the longevity of subglacial lakes. The broader impacts of the project are programs that will reach students of all ages through undergraduates involved in the research, formal presentations in teacher education programs and ongoing public outreach efforts at major science museums. Subglacial Antarctic lake environments are emerging as a premier, major frontier for exploration during the IPY 2007-2009.", "east": 50.0, "geometry": "POINT(35 -82.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e AEM; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IMAGING RADAR SYSTEMS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e LIDAR ALTIMETERS", "is_usap_dc": false, "keywords": "DHC-6; Basal Melting; Ice Stream; Ice Thickness; Velocity; Ice Stream Stability; Basal Freezing; Antarctica; Drainage; Aerogeophysical; Subglacial Lake; Flood Event", "locations": "Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bell, Robin; Studinger, Michael S.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": -90.0, "title": "Subglacial Lakes and the Onset of Ice Streaming: Recovery Lakes", "uid": "p0000702", "west": 20.0}, {"awards": "9615420 Kamb, Barclay", "bounds_geometry": "POINT(-136.404633 -82.39955)", "dataset_titles": "Temperature of the West Antarctic Ice Sheet; Videos of Basal Ice in Boreholes on the Kamb Ice Stream in West Antarctica", "datasets": [{"dataset_uid": "609528", "doi": "10.7265/N5028PFH", "keywords": "Antarctica; Borehole Video; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Kamb Ice Stream; Photo/video; Photo/Video", "people": "Engelhardt, Hermann", "repository": "USAP-DC", "science_program": null, "title": "Videos of Basal Ice in Boreholes on the Kamb Ice Stream in West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609528"}, {"dataset_uid": "609537", "doi": "10.7265/N5PN93J8", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Temperature", "people": "Engelhardt, Hermann", "repository": "USAP-DC", "science_program": null, "title": "Temperature of the West Antarctic Ice Sheet", "url": "https://www.usap-dc.org/view/dataset/609537"}], "date_created": "Thu, 14 Feb 2013 00:00:00 GMT", "description": "This award is for support for a four year program to study the basal conditions of ice stream D using techniques previously applied to ice stream B. The objective is to determine whether the physical conditions and processes to be observed by borehole geophysics at the base of this large ice stream are consistent with what has been observed at ice stream B and to point to a common basal mechanism of ice streaming. This project includes a comparison between two parts of ice stream D, an upstream reach where flow velocities are modest (about 80 meters/year) and a downstream reach of high velocity (about 400 meters/year). The comparison will help to reveal what physical variable or combination of variables is mainly responsible for the streaming flow. The variables to be monitmred by borehole observation include basal water pressure, basal sliding velocity, flow properties and sedimentological characteristics of subglacial till if present, ice temperature profile including basal water transport velocity, connection time to the basal water system, basal melting rate and others.", "east": -136.404633, "geometry": "POINT(-136.404633 -82.39955)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "Raymond Ridge; Kamb Ice Stream; Engelhardt Ridge; Basal Ice; Unicorn; Alley Ice Stream; Borehole Video; Basal Freeze-on; Ice Stream Flow; Basal Freezing; West Antarctic Ice Sheet Instability; GROUND-BASED OBSERVATIONS; Whillans Ice Stream; Basal Debris; Simple Dome; Basal Water; Bindschadler Ice Stream; West Antarctic Ice Sheet", "locations": "Kamb Ice Stream; Alley Ice Stream; Bindschadler Ice Stream; Engelhardt Ridge; Raymond Ridge; Simple Dome; Unicorn; West Antarctic Ice Sheet; Whillans Ice Stream", "north": -82.39955, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Kamb, Barclay; Engelhardt, Hermann", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.39955, "title": "Basal Conditions of Ice Stream D and Related Borehole Studies of Antarctic Ice Stream Mechanics", "uid": "p0000181", "west": -136.404633}, {"awards": "0631973 Joughin, Ian; 0632031 Das, Sarah", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 20 Jun 2012 00:00:00 GMT", "description": "Joughin 0631973\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to gather data to better understand the mass balance of the West Antarctic Ice Sheet, in the Pine Island and Thwaites region, through the combination of radar altimetry and surface-based ice-core measurements of accumulation. The intellectual merit of the project is that the results of the field work will provide information on decadal-scale average accumulation extending back through the last century and will help constrain a modeling effort to determine how coastal changes propagate inland, to allow better prediction of future change. Comparison of the basin averaged accumulation with ice discharge determined using Interferometric Synthetic Aperture Radar (InSAR) velocity data will provide improved mass-balance estimates. Study of changes in flow speed will produce a record of mass balance over the last three decades. Analysis of the satellite altimeter record in conjunction with annual accumulation estimates also will provide estimates of changes and variability in mass balance. The broader impacts of the work are that it will make a significant contribution to future IPCC estimates of sea level, which are important for projection of the impacts of increased sea level on coastal communities. The research will contribute to the graduate education of students at the Universities of Washington and Kansas and will enrich K-12 education through the direct participation of the PIs in classroom activities. Informal science education includes 4-day glacier flow demonstrations at the Polar Science Weekend held annually at the Pacific Science Center in Seattle. The project also will communicate results through Center for the Remote Sensing of Ice Sheets (CReSIS) outreach effort. All field and remotely-sensed data sets will be archived and distributed by the National Snow and Ice Data Center. This project is relevant to IPY in that the West Antarctic Ice Sheet is losing mass, in large part because of rapid thinning of the Amundsen Coast glaciers so, it will directly address the NSF IPY emphasis on \"ice sheet history and dynamics.\" The project is also international in scope.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": false, "keywords": "Not provided; FIELD INVESTIGATION; Flow Speed; Antarctic; LABORATORY; Ice Sheet Accumulation Rate; Mass Balance; Accumulation; Insar; SATELLITES; FIELD SURVEYS; Ice Core; Radar Altimetry; Ice Velocity", "locations": "Antarctic", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Joughin, Ian; Medley, Brooke; Das, Sarah", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES", "repositories": null, "science_programs": null, "south": null, "title": "IPY: Collaborative Proposal: Constraining the Mass-Balance Deficit of the Amundsen Coast\u0027s Glaciers", "uid": "p0000542", "west": null}, {"awards": "0636724 Blankenship, Donald; 0758274 Parizek, Byron", "bounds_geometry": "POLYGON((-110.058 -74.0548,-109.57993 -74.0548,-109.10186 -74.0548,-108.62379 -74.0548,-108.14572 -74.0548,-107.66765 -74.0548,-107.18958 -74.0548,-106.71151 -74.0548,-106.23344 -74.0548,-105.75537 -74.0548,-105.2773 -74.0548,-105.2773 -74.31383,-105.2773 -74.57286,-105.2773 -74.83189,-105.2773 -75.09092,-105.2773 -75.34995,-105.2773 -75.60898,-105.2773 -75.86801,-105.2773 -76.12704,-105.2773 -76.38607,-105.2773 -76.6451,-105.75537 -76.6451,-106.23344 -76.6451,-106.71151 -76.6451,-107.18958 -76.6451,-107.66765 -76.6451,-108.14572 -76.6451,-108.62379 -76.6451,-109.10186 -76.6451,-109.57993 -76.6451,-110.058 -76.6451,-110.058 -76.38607,-110.058 -76.12704,-110.058 -75.86801,-110.058 -75.60898,-110.058 -75.34995,-110.058 -75.09092,-110.058 -74.83189,-110.058 -74.57286,-110.058 -74.31383,-110.058 -74.0548))", "dataset_titles": "Access to data; AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment; AGASEA Ice Thickness Profile Data from the Amundsen Sea Embayment, Antarctica; Airborne Laser Altimetry of the Thwaites Glacier Catchment, West Antarctica; ICECAP Basal Interface Specularity Content Profiles: IPY and OIB; Subglacial water flow paths under Thwaites Glacier, West Antarctica; Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "datasets": [{"dataset_uid": "601673", "doi": "10.15784/601673", "keywords": "Antarchitecture; Antarctica; Ice Penetrating Radar; Isochron; Layers; Radar; Radioglaciology; Thwaites Glacier", "people": "Young, Duncan A.; Muldoon, Gail R.; Jackson, Charles; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment", "url": "https://www.usap-dc.org/view/dataset/601673"}, {"dataset_uid": "601371", "doi": "10.15784/601371", "keywords": "Antarctica; East Antarctica; ICECAP; Ice Penetrating Radar; Radar Echo Sounder; Radar Echo Sounding; Subglacial Hydrology", "people": "Blankenship, Donald D.; Greenbaum, Jamin; Young, Duncan A.; Siegert, Martin; van Ommen, Tas; Schroeder, Dustin; Roberts, Jason", "repository": "USAP-DC", "science_program": null, "title": "ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "url": "https://www.usap-dc.org/view/dataset/601371"}, {"dataset_uid": "609619", "doi": "10.7265/N58913TN", "keywords": "Amundsen Sea; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; Thwaites Glacier", "people": "Blankenship, Donald D.; Holt, John W.; Parizek, Byron R.; Dupont, Todd K.", "repository": "USAP-DC", "science_program": null, "title": "Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "url": "https://www.usap-dc.org/view/dataset/609619"}, {"dataset_uid": "609334", "doi": "10.7265/N5HD7SK8", "keywords": "AGASEA; Airborne Altimetry; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Thwaites Glacier", "people": "Holt, John W.; Morse, David L.; Kempf, Scott D.; Blankenship, Donald D.; Young, Duncan A.", "repository": "USAP-DC", "science_program": null, "title": "Airborne Laser Altimetry of the Thwaites Glacier Catchment, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609334"}, {"dataset_uid": "000248", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Access to data", "url": "http://nsidc.org/data/netcdf/tools.html"}, {"dataset_uid": "609517", "doi": "10.7265/N5W95730", "keywords": "AGASEA; Airborne Radar; Amundsen Sea; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness", "people": "Holt, John W.; Blankenship, Donald D.; Young, Duncan A.; Kempf, Scott D.", "repository": "USAP-DC", "science_program": null, "title": "AGASEA Ice Thickness Profile Data from the Amundsen Sea Embayment, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609517"}, {"dataset_uid": "002536", "doi": "", "keywords": null, "people": null, "repository": "NASA", "science_program": null, "title": "Access to data", "url": "http://www.giss.nasa.gov/tools/panoply/"}, {"dataset_uid": "609518", "doi": "10.7265/N5RJ4GC8", "keywords": "AGASEA; Airborne Radar; Antarctica; Elevation; Flow Paths; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Thwaites Glacier", "people": "Carter, Sasha P.; Young, Duncan A.; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "Subglacial water flow paths under Thwaites Glacier, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609518"}], "date_created": "Tue, 15 May 2012 00:00:00 GMT", "description": "This award supports a three-year study to isolate essential physical processes affecting Thwaites Glacier (TG) in the Amundsen Sea Embayment (ASE) of West Antarctica using a suite of existing numerical models in conjunction with existing and International Polar Year (IPY)-proposed data sets. Four different models will be utilized to explore the effects of embayment geometry, ice-shelf buttressing, basal-stress distribution, surface mass balance, surface climate, and inland dynamic perturbations on the present and future dynamics of TG. This particular collection of models is ideally suited for the broad nature of this investigation, as they incorporate efficient and complementary simplifications of the stress field (shallow-ice and shelf-stream), system geometry (1-d and 2-d plan-view and flowline; depth-integrated and depth-dependent), and mass-momentum energy coupling (mechanical and thermo-mechanical). The models will be constrained and validated by data sets (including regional maps of ice thickness, surface elevation, basal topography, ice surface velocity, and potential fields) and geophysical data analyses (including increasing the spatial resolution of surface elevations, improving regional estimates of geothermal flux, and characterizing the sub-glacial interface of grounded ice as well as the grounding-zone transition between grounded and floating ice). The intellectual merit of the research focuses on several of the NSF Glaciology program\u0027s emphases, including: ice dynamics, numerical modeling, and remote sensing of ice sheets. In addition, the research directly addresses the following specific NSF objectives: \"investigation of the physics of fast glacier flow with emphasis on processes at glacier beds\"; \"investigation of ice-shelf stability\"; and \"identification and quantification of the feedback between ice dynamics and climate change\". The broader impacts of this research effort will help answer societally relevant questions of future ice sheet stability and sea-level change. The research also will aid in the early career development of two young investigators and will contribute to the education of both graduate and undergraduate students directly involved in the research, and results will be incorporated into courses and informal presentations.", "east": -105.2773, "geometry": "POINT(-107.66765 -75.34995)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e RADIO \u003e INS", "is_usap_dc": true, "keywords": "Ice Sheet Thickness; Ice Sheet Elevation; Glacier Dynamics; Ice Stream; Numerical Model; West Antarctic; Surface Elevation; Basal Rheology; Ice Surface Velocity; Embayment Geometry; Amundsen Sea; Hydrology; FIELD SURVEYS; Antarctic Ice Sheet; Glacier; Subglacial; DHC-6; West Antarctic Ice Sheet; Model Output; Surface Climate; Glaciers; Basal Topography; Grounding Zone; Model Input Data; Airborne Laser Altimeters; FIELD INVESTIGATION; Thwaites Glacier; Airborne Laser Altimetry; Diagnostic; Ice-Shelf Buttressing; Ice Sheet; Prognostic; Glacier Surface; Airborne Radar Sounding; Digital Elevation Model; Ice Dynamic; Antarctica; Altimetry; Antarctica (agasea); Bed Elevation; Basal Stress; LABORATORY", "locations": "Antarctica; Thwaites Glacier; West Antarctic Ice Sheet; Antarctic Ice Sheet; West Antarctic; Amundsen Sea", "north": -74.0548, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Carter, Sasha P.; Dupont, Todd K.; Holt, John W.; Morse, David L.; Parizek, Byron R.; Young, Duncan A.; Kempf, Scott D.; Blankenship, Donald D.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "NASA; NSIDC; USAP-DC", "science_programs": null, "south": -76.6451, "title": "Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "uid": "p0000174", "west": -110.058}, {"awards": "0636996 Waddington, Edwin; 0940650 Pettit, Erin", "bounds_geometry": "POLYGON((-165 -75,-159 -75,-153 -75,-147 -75,-141 -75,-135 -75,-129 -75,-123 -75,-117 -75,-111 -75,-105 -75,-105 -76,-105 -77,-105 -78,-105 -79,-105 -80,-105 -81,-105 -82,-105 -83,-105 -84,-105 -85,-111 -85,-117 -85,-123 -85,-129 -85,-135 -85,-141 -85,-147 -85,-153 -85,-159 -85,-165 -85,-165 -84,-165 -83,-165 -82,-165 -81,-165 -80,-165 -79,-165 -78,-165 -77,-165 -76,-165 -75))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 16 Mar 2012 00:00:00 GMT", "description": "Pettit/0636795\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to constrain the accumulation rate, thickness, and temperature history for Siple Dome using a vertical velocity profile that includes the effects of an evolving fabric on deformation through time, to invert the depth-profile of fabric determined from sonic velocity measurements and grain size observed in thin sections in Siple Dome for the surface temperature and accumulation rate changes in the past, focusing on the apparent abrupt climate change events at 22ka and 15ka. The intellectual merit of the work is that it will extract past climate information from a number of physical properties of the deep ice using a coupled fabric evolution and ice-sheet flow model. The focus will be on the deep ice-age ice at Siple Dome, where the ice-core record shows puzzling signals and where modeling results imply intriguing deformation patterns. The method will also be applied to the records from Byrd Station and Taylor Dome to ultimately form a basis for future analysis of the West Antarctic Divide core. The broader impacts of the project are that it will ultimately contribute to our understanding of the effects of anisotropy on ice flow dynamics in West Antarctica. It will contribute to our understanding of the connection between ice flow and the paleoclimate record in ice cores, particularly with respect to the relationship between the chemical record and ice deformation. And it will contribute a new ice-flow model that includes the effects of anisotropy and fabric evolution. The project will also contribute to advancing the career of a new, young, female investigator and will support a couple of graduate students. Finally, the work will encouraging diversity in the physical sciences by directly helping to support the Girls on Ice a program that encourages young women to explore science and the natural world.", "east": -105.0, "geometry": "POINT(-135 -80)", "instruments": null, "is_usap_dc": false, "keywords": "LABORATORY; FIELD SURVEYS; FIELD INVESTIGATION; Vertical Velocity; COMPUTERS; Ice Core; Firn; Accumulation Rate; Siple Dome; Ice Thickness; Abrupt Climate Change; Ice Temperature; Metamorphism; Anisotropy; Antarctica", "locations": "Siple Dome; Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Pettit, Erin; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -85.0, "title": "Collaborative Research: Anisotropy, Abrupt Climate Change, and the Deep Ice in West Antarctica", "uid": "p0000741", "west": -165.0}, {"awards": "0125172 Gordon, Arnold", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0302; Expedition data of NBP0304C; Expedition data of NBP0304D; Expedition data of NBP0402; Expedition data of NBP0408; Expedition data of NBP0501", "datasets": [{"dataset_uid": "001692", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304D"}, {"dataset_uid": "002620", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0408", "url": "https://www.rvdata.us/search/cruise/NBP0408"}, {"dataset_uid": "001691", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304C"}, {"dataset_uid": "002624", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304C", "url": "https://www.rvdata.us/search/cruise/NBP0304C"}, {"dataset_uid": "002625", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304D", "url": "https://www.rvdata.us/search/cruise/NBP0304D"}, {"dataset_uid": "002627", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "002629", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "002638", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0402", "url": "https://www.rvdata.us/search/cruise/NBP0402"}, {"dataset_uid": "002588", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0302", "url": "https://www.rvdata.us/search/cruise/NBP0302"}], "date_created": "Tue, 17 Jan 2012 00:00:00 GMT", "description": "This study will investigate how the Antarctic Slope Front and continental slope morphology determine the exchanges of mass, heat, and fresh water between the shelf and the deep ocean, in particular those leading to outflows of dense water into intermediate and deep layers of the adjacent basins and into the world ocean circulation \u003cbr/\u003eWhile the importance to the global ocean circulation and climate of cold water masses originating in the Antarctic is unquestioned, the processes by which these water masses enter the deep ocean circulation are not. The primary goal of this work therefore is to identify the principal physical processes that govern the transfer of shelf-modified dense water into intermediate and deep layers of the adjacent deep ocean. At the same time, it seeks to understand the compensatory poleward flow of waters from the oceanic regime. The upper continental slope has been identified as the critical gateway for the exchange of shelf and deep ocean waters. Here the topography, velocity and density fields associated with the nearly ubiquitous front must strongly influence the advective and turbulent transfer of water properties between the shelf and oceanic regimes. The study has four specific objectives: [1] Determine the mean frontal structure and the principal scales of variability, and estimate the role of the front on cross-slope exchanges and mixing of adjacent water masses; [2] Determine the influence of slope topography and bathymetry on frontal location and outflow of dense Shelf Water; [3] Establish the role of frontal instabilities, benthic boundary layer transports, tides and other oscillatory processes on cross-slope advection and fluxes; and [4] Assess the effect of diapycnal mixing, lateral mixing identified through intrusions, and nonlinearities in the equation of state on the rate of descent and the fate of outflowing, near-freezing Shelf Water.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e WATER BOTTLES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Gordon, Arnold; Cande, Steven; Visbeck, Martin; Jacobs, Stanley", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Anslope, Cross-slope Exchanges at the Antarctic Slope Front", "uid": "p0000807", "west": null}, {"awards": "9527571 Whillans, Ian", "bounds_geometry": "POLYGON((158.25 -76.66667,158.325 -76.66667,158.4 -76.66667,158.475 -76.66667,158.55 -76.66667,158.625 -76.66667,158.7 -76.66667,158.775 -76.66667,158.85 -76.66667,158.925 -76.66667,159 -76.66667,159 -76.683336,159 -76.700002,159 -76.716668,159 -76.733334,159 -76.75,159 -76.766666,159 -76.783332,159 -76.799998,159 -76.816664,159 -76.83333,158.925 -76.83333,158.85 -76.83333,158.775 -76.83333,158.7 -76.83333,158.625 -76.83333,158.55 -76.83333,158.475 -76.83333,158.4 -76.83333,158.325 -76.83333,158.25 -76.83333,158.25 -76.816664,158.25 -76.799998,158.25 -76.783332,158.25 -76.766666,158.25 -76.75,158.25 -76.733334,158.25 -76.716668,158.25 -76.700002,158.25 -76.683336,158.25 -76.66667))", "dataset_titles": "GPS Ice Flow Measurements, Allan Hills, Antarctica", "datasets": [{"dataset_uid": "609507", "doi": "10.7265/N5NS0RSX", "keywords": "Allan Hills; Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ice Flow Velocity", "people": "Hamilton, Gordon S.; Kurbatov, Andrei V.; Spaulding, Nicole; Spikes, Vandy Blue", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "GPS Ice Flow Measurements, Allan Hills, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609507"}], "date_created": "Tue, 20 Dec 2011 00:00:00 GMT", "description": "Whillans, Wilson, Goad OPP 9527571 Abstract This award supports a project to initiate Global Positioning System (GPS) measurements for rock motions in South Victoria Land and vicinity. The results will be used to test some of the leading models for ice-sheet change and tectonism, in particular, whether the continent is rebounding due to reduced ice load from East or West Antarctica and whether there is tectonic motion due to Terror Rift or uplift of the Transantarctic Mountains. A modest program to measure ice motion will be conducted as well. The motive is to test models for ice flow in the Allan Hills meteorite concentration region and to determine whether small glaciers in the Dry Valleys are thickening or thinning. Monuments will be set into rock and ice and GPS receivers used to determine their locations. Repeats in later years will determine motion. Field activities will involve close cooperation with the USGS.", "east": 159.0, "geometry": "POINT(158.625 -76.75)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; LABORATORY; Not provided; Ice Movement; GPS Data; Vertical Motions; GPS; FIELD INVESTIGATION", "locations": null, "north": -76.66667, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Whillans, Ian; Spaulding, Nicole; Hamilton, Gordon S.; Spikes, Vandy Blue; Kurbatov, Andrei V.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.83333, "title": "GPS Measurements of Rock and Ice Motions in South Victoria Land", "uid": "p0000523", "west": 158.25}, {"awards": "0440847 Raymond, Charles", "bounds_geometry": null, "dataset_titles": "GPS-Measured Ice Velocities and Strain Data from the Ross and Amundsen Sea Ice Flow Divide, West Antarctica; Polarimetric Radar Data from the Ross and Amundsen Sea Ice Flow Divide, West Antarctica", "datasets": [{"dataset_uid": "609496", "doi": "10.7265/N5TH8JNG", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Radar; Ross-Amundsen Divide", "people": "Matsuoka, Kenichi; Raymond, Charles; Fujita, Shuji; Power, Donovan", "repository": "USAP-DC", "science_program": null, "title": "Polarimetric Radar Data from the Ross and Amundsen Sea Ice Flow Divide, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609496"}, {"dataset_uid": "609503", "doi": "10.7265/N5222RQ8", "keywords": "Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ice Flow Velocity; Ross-Amundsen Divide; Strain", "people": "Matsuoka, Kenichi; Power, Donovan; Rasmussen, Al", "repository": "USAP-DC", "science_program": null, "title": "GPS-Measured Ice Velocities and Strain Data from the Ross and Amundsen Sea Ice Flow Divide, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609503"}], "date_created": "Mon, 29 Aug 2011 00:00:00 GMT", "description": "This award supports a project to investigate fabrics with ground-based radar measurements near the Ross/Amundsen Sea ice-flow divide where a deep ice core will be drilled. The alignment of crystals in ice (crystal-orientation fabric) has an important effect on ice deformation. As ice deforms, anisotropic fabrics are produced, which, in turn, influence further deformation. Measurement of ice fabric variations can help reveal the deformation history of the ice and indicate how the ice will deform in the future. Ice cores provide opportunities to determine a vertical fabric profile, but horizontal variations of fabrics remain unknown. Remote sensing with ice-penetrating radar is the only way to do that over large areas. Preliminary results show that well-established polarimetric methods can detect the degree of horizontal anisotropy of fabrics and their orientation, even when they are nearly vertical-symmetric fabrics. In conjunction with ice deformation history, our first mapping of ice fabrics will contribute to modeling ice flow near the future ice core site. The project will train a graduate student and provide research experiences for two under graduate students both in field and laboratory. The project will contribute to ongoing West Antarctic ice sheet program efforts to better understand the impact of the ice sheet on global sea level rise. This project also supports an international collaboration between US and Japanese scientists.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "GPS; FIELD SURVEYS; Antarctic; Radar; Antarctica; FIELD INVESTIGATION; Ice Sheet; Not provided; Ross-Amundsen Divide; West Antarctica; West Antarctic Ice Sheet", "locations": "Antarctica; Ross-Amundsen Divide; West Antarctica; Antarctic; West Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Matsuoka, Kenichi; Power, Donovan; Fujita, Shuji; Raymond, Charles; Rasmussen, Al", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Detection of Crystal Orientation Fabrics near the Ross/Amundsen Sea Ice-flow Divide and at the Siple Dome Ice Core Site using Polarimetric Radar Methods", "uid": "p0000024", "west": null}, {"awards": "0636818 Stone, John", "bounds_geometry": "POLYGON((-157 -85,-156 -85,-155 -85,-154 -85,-153 -85,-152 -85,-151 -85,-150 -85,-149 -85,-148 -85,-147 -85,-147 -85.3,-147 -85.6,-147 -85.9,-147 -86.2,-147 -86.5,-147 -86.8,-147 -87.1,-147 -87.4,-147 -87.7,-147 -88,-148 -88,-149 -88,-150 -88,-151 -88,-152 -88,-153 -88,-154 -88,-155 -88,-156 -88,-157 -88,-157 -87.7,-157 -87.4,-157 -87.1,-157 -86.8,-157 -86.5,-157 -86.2,-157 -85.9,-157 -85.6,-157 -85.3,-157 -85))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 05 Aug 2011 00:00:00 GMT", "description": "Hall/0636687\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to investigate late Pleistocene and Holocene changes in Scott Glacier, a key outlet glacier that flows directly into the Ross Sea just west of the present-day West Antarctic Ice Sheet (WAIS) grounding line. The overarching goals are to understand changes in WAIS configuration in the Ross Sea sector at and since the last glacial maximum (LGM) and to determine whether Holocene retreat observed in the Ross Embayment has ended or if it is still ongoing. To address these goals, moraine and drift sequences associated with Scott Glacier will be mapped and dated and ice thickness, surface velocity and surface mass balance will be measured to constrain an ice-flow model of the glacier. This model will be used to help interpret the dated geologic sequences. The intellectual merit of the project relates to gaining a better understanding of the West Antarctic Ice Sheet and how changing activity of fast-flowing outlet glaciers and ice streams exerts strong control on the mass balance of the ice sheet. Previous work suggests that grounding-line retreat in the Ross Sea continued into the late Holocene and left open the possibility of ongoing deglaciation as part of a long-term trend. Results from Reedy Glacier, an outlet glacier just behind the grounding line, suggest that retreat may have slowed substantially over the past 2000 years and perhaps even stopped. By coupling the work on Scott Glacier with recent data from Reedy Glacier, the grounding-line position will be bracketed and it should be possible to establish whether the retreat has truly ended or if it is ongoing. The broader impacts of the work relate to the societal relevance of an improved understanding of the West Antarctic ice sheet to establish how it will respond to current and possible future environmental changes. The work addresses this key goal of the West Antarctic Ice Sheet Initiative, as well as the International Polar Year focus on ice sheet history and dynamics. The work will develop future scientists through the education and training of one undergraduate and two Ph.D. students, interaction with K-12 students through classroom visits, web-based \u0027expedition\u0027 journals, letters from the field, and discussions with teachers. Results from this project will be posted with previous exposure dating results from Antarctica, on the University of Washington Cosmogenic Nuclide Lab website, which also provides information about chemical procedures and calculation methods to other scientists working with cosmogenic nuclides.", "east": -147.0, "geometry": "POINT(-152 -86.5)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": -85.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Stone, John; Conway, Howard", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -88.0, "title": "Collaborative Research:Grounding-line Retreat in the Southern Ross Sea - Constraints from Scott Glacier", "uid": "p0000149", "west": -157.0}, {"awards": "0424589 Gogineni, S. Prasad", "bounds_geometry": "POLYGON((-137 -74,-132.1 -74,-127.2 -74,-122.3 -74,-117.4 -74,-112.5 -74,-107.6 -74,-102.7 -74,-97.8 -74,-92.9 -74,-88 -74,-88 -74.65,-88 -75.3,-88 -75.95,-88 -76.6,-88 -77.25,-88 -77.9,-88 -78.55,-88 -79.2,-88 -79.85,-88 -80.5,-92.9 -80.5,-97.8 -80.5,-102.7 -80.5,-107.6 -80.5,-112.5 -80.5,-117.4 -80.5,-122.3 -80.5,-127.2 -80.5,-132.1 -80.5,-137 -80.5,-137 -79.85,-137 -79.2,-137 -78.55,-137 -77.9,-137 -77.25,-137 -76.6,-137 -75.95,-137 -75.3,-137 -74.65,-137 -74))", "dataset_titles": "Airborne radar profiles of the Whillans, Bindschadler, and Kamb Ice Streams; Archive of data; Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau; Ku-band Radar Echograms; Radar Depth Sounder Echograms and Ice Thickness; Snow Radar Echograms", "datasets": [{"dataset_uid": "601047", "doi": "10.15784/601047", "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; MCoRDS; Navigation; Radar", "people": "Paden, John; Gogineni, Prasad; Allen, Chris; Li, Jilu; Rodriguez, Fernando; Leuschen, Carl", "repository": "USAP-DC", "science_program": null, "title": "Radar Depth Sounder Echograms and Ice Thickness", "url": "https://www.usap-dc.org/view/dataset/601047"}, {"dataset_uid": "600384", "doi": "10.15784/600384", "keywords": "Airborne Radar; Antarctica; Basler; Glaciers/ice Sheet; Glaciers/Ice Sheet; Kamb Ice Stream; Radar; Siple Coast; Whillans Ice Stream", "people": "Hale, Richard; Paden, John", "repository": "USAP-DC", "science_program": null, "title": "Airborne radar profiles of the Whillans, Bindschadler, and Kamb Ice Streams", "url": "https://www.usap-dc.org/view/dataset/600384"}, {"dataset_uid": "601411", "doi": "10.15784/601411", "keywords": "Antarctica; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; ICECAP; Ice Penetrating Radar; Internal Reflecting Horizons", "people": "Kempf, Scott D.; Quartini, Enrica; Schroeder, Dustin; Tozer, Carly; Roberts, Jason; Frezzotti, Massimo; Paden, John; Blankenship, Donald D.; Greenbaum, Jamin; Ng, Gregory; Muldoon, Gail R.; Ritz, Catherine; Mulvaney, Robert; Young, Duncan A.; Cavitte, Marie G. P", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau", "url": "https://www.usap-dc.org/view/dataset/601411"}, {"dataset_uid": "601048", "doi": "10.15784/601048", "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ku-Band; Navigation; Radar", "people": "Paden, John; Gogineni, Prasad; Allen, Chris; Li, Jilu; Rodriguez, Fernando; Leuschen, Carl", "repository": "USAP-DC", "science_program": null, "title": "Ku-band Radar Echograms", "url": "https://www.usap-dc.org/view/dataset/601048"}, {"dataset_uid": "601049", "doi": "10.15784/601049", "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Navigation; Radar; Snow", "people": "Leuschen, Carl; Gogineni, Prasad; Allen, Chris; Li, Jilu; Rodriguez, Fernando; Paden, John", "repository": "USAP-DC", "science_program": null, "title": "Snow Radar Echograms", "url": "https://www.usap-dc.org/view/dataset/601049"}, {"dataset_uid": "002497", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Archive of data", "url": "https://www.cresis.ku.edu/data/accumulation"}], "date_created": "Wed, 01 Jun 2011 00:00:00 GMT", "description": "This award is for the continuation of the Center for Remote Sensing of Ice Sheets (CReSIS), an NSF Science and Technology Center (STC) established in June 2005 to study present and probable future contributions of the Greenland and Antarctic ice sheets to sea-level rise. The Center?s vision is to understand and predict the role of polar ice sheets in sea level change. In particular, the Center?s mission is to develop technologies, to conduct field investigations, to compile data to understand why many outlet glaciers and ice streams are changing rapidly, and to develop models that explain and predict ice sheet response to climate change. The Center?s mission is also to educate and train a diverse population of graduate and undergraduate students in Center-related disciplines and to encourage K-12 students to pursue careers in science, technology, engineering and mathematics (STEM-fields). The long-term goals are to perform a four-dimensional characterization (space and time) of rapidly changing ice-sheet regions, develop diagnostic and predictive ice-sheet models, and contribute to future assessments of sea level change in a warming climate. In the first five years, significant progress was made in developing, testing and optimizing innovative sensors and platforms and completing a major aircraft campaign, which included sounding the channel under Jakobshavn Isbr\u00e6. In the second five years, research will focus on the interpretation of integrated data from a suite of sensors to understand the physical processes causing changes and the subsequent development and validation of models. Information about CReSIS can be found at http://www.cresis.ku.edu.\u003cbr/\u003e\u003cbr/\u003eThe intellectual merits of the STC are the multidisciplinary research it enables its faculty, staff and students to pursue, as well as the broad education and training opportunities it provides to students at all levels. During the first phase, the Center provided scientists and engineers with a collaborative research environment and the opportunity to interact, enabling the development of high-sensitivity radars integrated with several airborne platforms and innovative seismic instruments. Also, the Center successfully collected data on ice thickness and bed conditions, key variables in the study of ice dynamics and the development of models, for three major fast-flowing glaciers in Greenland. During the second phase, the Center will collect additional data over targeted sites in areas undergoing rapid changes; process, analyze and interpret collected data; and develop advanced process-oriented and ice sheet models to predict future behavior. The Center will continue to provide a rich environment for multidisciplinary education and mentoring for undergraduate students, graduate students, and postdoctoral fellows, as well as for conducting K-12 education and public outreach. The broader impacts of the Center stem from addressing a global environmental problem with critical societal implications, providing a forum for citizens and policymakers to become informed about climate change issues, training the next generation of scientists and engineers to serve the nation, encouraging underrepresented students to pursue careers in STEM-related fields, and transferring new technologies to industry. Students involved in the Center find an intellectually stimulating atmosphere where collaboration between disciplines is the norm and exposure to a wide variety of methodologies and scientific issues enriches their educational experience. The next generation of researchers should reflect the diversity of our society; the Center will therefore continue its work with ECSU to conduct outreach and educational programs that attract minority students to careers in science and technology. The Center has also established a new partnership with ADMI that supports faculty and student exchanges at the national level and provides expanded opportunities for students and faculty to be involved in Center-related research and education activities. These, and other collaborations, will provide broader opportunities to encourage underrepresented students to pursue STEM careers. \u003cbr/\u003e\u003cbr/\u003eAs lead institution, The University of Kansas (KU) provides overall direction and management, as well as expertise in radar and remote sensing, Uninhabited Aerial Vehicles (UAVs), and modeling and interpretation of data. Five partner institutions and a DOE laboratory play critical roles in the STC. The Pennsylvania State University (PSU) continues to participate in technology development for seismic measurements, field activities, and modeling. The Center of Excellence in Remote Sensing, Education and Research (CERSER) at Elizabeth City State University (ECSU) contributes its expertise to analyzing satellite data and generating high-level data products. ECSU also brings to the Center their extensive experience in mentoring and educating traditionally under-represented students. ADMI, the Association of Computer and Information Science/Engineering Departments at Minority Institutions, expands the program?s reach to underrepresented groups at the national level. Indiana University (IU) provides world-class expertise in CI and high-performance computing to address challenges in data management, processing, distribution and archival, as well as high-performance modeling requirements. The University of Washington (UW) provides expertise in satellite observations of ice sheets and process-oriented interpretation and model development. Los Alamos National Laboratory (LANL) contributes in the area of ice sheet modeling. All partner institutions are actively involved in the analysis and interpretation of observational and numerical data sets.", "east": -88.0, "geometry": "POINT(-112.5 -77.25)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": true, "keywords": "Remote Sensing; Not provided; Pine Island; Ice Sheet; DHC-6; Antarctic; Thwaites Region; Antarctica; Mass Balance; Accumulation; Velocity; Insar", "locations": "Antarctica; Antarctic; Pine Island; Thwaites Region", "north": -74.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Glaciology", "paleo_time": null, "persons": "Braaten, David; Joughin, Ian; Steig, Eric J.; Das, Sarah; Paden, John; Gogineni, Prasad", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6; Not provided", "repo": "USAP-DC", "repositories": "Project website; USAP-DC", "science_programs": null, "south": -80.5, "title": "Center for Remote Sensing of Ice Sheets (CReSIS)", "uid": "p0000102", "west": -137.0}, {"awards": "0337567 Jacobel, Robert", "bounds_geometry": "POLYGON((130 -78,133 -78,136 -78,139 -78,142 -78,145 -78,148 -78,151 -78,154 -78,157 -78,160 -78,160 -79.2,160 -80.4,160 -81.6,160 -82.8,160 -84,160 -85.2,160 -86.4,160 -87.6,160 -88.8,160 -90,157 -90,154 -90,151 -90,148 -90,145 -90,142 -90,139 -90,136 -90,133 -90,130 -90,130 -88.8,130 -87.6,130 -86.4,130 -85.2,130 -84,130 -82.8,130 -81.6,130 -80.4,130 -79.2,130 -78))", "dataset_titles": "Glaciological Investigations of the Bulge and Trunk of Kamb Ice Stream, West Antarctica; Radar Studies of Internal Stratigraphy and Bed Topography along the US ITASE-II Traverse", "datasets": [{"dataset_uid": "609475", "doi": "10.7265/N5G73BMS", "keywords": "Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness; ITASE; South Pole; Taylor Dome", "people": "Jacobel, Robert", "repository": "USAP-DC", "science_program": "ITASE", "title": "Radar Studies of Internal Stratigraphy and Bed Topography along the US ITASE-II Traverse", "url": "https://www.usap-dc.org/view/dataset/609475"}, {"dataset_uid": "609380", "doi": "10.7265/N5ZC80SH", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Kamb Ice Stream", "people": "Jacobel, Robert", "repository": "USAP-DC", "science_program": null, "title": "Glaciological Investigations of the Bulge and Trunk of Kamb Ice Stream, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609380"}], "date_created": "Wed, 20 Oct 2010 00:00:00 GMT", "description": "This award supports a project to test whether Kamb Ice Stream (formerly Ice Stream C (ISC)), an ice stream\u003cbr/\u003ethat is thought to have stopped ~150 years ago, may be already in the process of restarting. If yes, it will help establish what is the rate of ice stream reactivation and what mechanisms are controlling this rate. If there is no evidence for ongoing ice stream reactivation, the physical controls that are preventing it will be examined and alternative scenarios for near-future evolution of this ice stream will be explored. One such scenario is an increase in ice diversion toward the neighboring Whillans Ice Stream. Such diversion may help prevent a complete stoppage of Whillans Ice Stream,which has been slowing down for at least the last 24 years. This project will consist of two components: (1) field observations of bed properties,geometry of internal radar reflectors, as well as surface strain rates and velocity/topography changes using Ice-Penetrating Radar and differential Global Positioning System, (2) numerical modeling study of near future(~100-1000 years) evolution of Kamb Ice Stream. The field component will be focused on the bulge-to-trunk transition, which is located at the present time just downstream of the so-called camp UpC. Reactivation of Kamb Ice Stream should be reflected in a downstream migration of the bulge-trunk transition at possibly high rates (bulge migration rates of ~km/yr occur on surging mountain glaciers). The modeling\u003cbr/\u003ecomponent will be used to generate predictions regarding the near-future behavior of Kamb Ice Stream. This project will provide training opportunities for at least two undergraduate students (per year) at St. Olaf College and for one\u003cbr/\u003eundergraduate student (per year) at UCSC. This collaboration will bring together scientists from three different types of US institutions: (1) a liberal arts college (St.Olaf College), (2) a public research university (UCSC) and (3) a NASA research laboratory (JPL). The project will also help build a new glaciological research program at UCSC. Project results will be incorporated into undergraduate and graduate courses at UCSC and will be made available\u003cbr/\u003eto the general public and educators through downloadable graphics and animations posted on the research website of the UCSC PI. Field data resulting from the project will be posted in the Antarctic Glaciological Data Center for use by other investigators.", "east": 160.0, "geometry": "POINT(145 -84)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": true, "keywords": "Ice; Antarctic Glaciations; Radar; Antarctic Ice Sheet; Radar Echo Sounder; Ice Sheet Thickness; Ice Stream; Ice Sheet Elevation; Not provided; Radar Echo Sounding; Ice Stratigraphy; Antarctica; West Antarctic Ice Sheet; Continental Ice Sheet; Ice Cap; Antarctic; US ITASE; FIELD SURVEYS; Ice Thickness; FIELD INVESTIGATION", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; West Antarctic Ice Sheet", "north": -78.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Jacobel, Robert", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "Collaborative Research: Is Ice Stream C Restarting? Glaciological Investigations of the \u0027Bulge\u0027 and the Trunk of Ice Stream C, West Antartica", "uid": "p0000192", "west": 130.0}, {"awards": "0538097 Anandakrishnan, Sridhar", "bounds_geometry": "POLYGON((140 -89.8,144 -89.8,148 -89.8,152 -89.8,156 -89.8,160 -89.8,164 -89.8,168 -89.8,172 -89.8,176 -89.8,180 -89.8,180 -89.82,180 -89.84,180 -89.86,180 -89.88,180 -89.9,180 -89.92,180 -89.94,180 -89.96,180 -89.98,180 -90,176 -90,172 -90,168 -90,164 -90,160 -90,156 -90,152 -90,148 -90,144 -90,140 -90,140 -89.98,140 -89.96,140 -89.94,140 -89.92,140 -89.9,140 -89.88,140 -89.86,140 -89.84,140 -89.82,140 -89.8))", "dataset_titles": "IRIS Data Management Center (DMC) holds the full resolution seismic data. Keyword: POLELAKE. Dataset ID: 10-019; seismic data. Keyword: POLELAKE. Dataset ID: 10-019", "datasets": [{"dataset_uid": "000102", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "seismic data. Keyword: POLELAKE. Dataset ID: 10-019", "url": "http://ds.iris.edu/ds/nodes/dmc/"}, {"dataset_uid": "001466", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IRIS Data Management Center (DMC) holds the full resolution seismic data. Keyword: POLELAKE. Dataset ID: 10-019", "url": "http://www.iris.edu/dms/dmc"}], "date_created": "Wed, 08 Sep 2010 00:00:00 GMT", "description": "0538097\u003cbr/\u003eAnandakrishnan\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to intensively study a subglacial Antarctic lake near the geographic South Pole using seismic and radar methods. These ground-based experiments are better suited to determine the presence of water and its thickness than are airborne methods. We hypothesize that there are two end-member explanations for this feature: either the lake is thawed, but freezing on (and likely to have been freezing on through much of the current interglacial period), or it is a frozen, relict lake for which the high basal radar reflectivity is due to intergranular water in a permafrost-like layer beneath the ice. The seismic experiment we propose is ideally suited to examine these alternatives. Intermediate cases of, e.g., a thawed saturated sedimentary base or a smooth crystalline basement layer would also be resolved by this experiment. Seismic reflections are sensitive to changes in acoustic impedance which is strongly variable with fluid content, porosity, and lithology. Water has low density relative to most rocks and low seismic velocity (and nil shear wave velocity) relative to both ice and rock. Thus, discriminating between subglacial water and subglacial rock is a task ideally suited to the seismic reflection technique. This project has significant impacts outside the directly affected fields of Antarctic glaciology and geology. The lake (either thawed or sediments with thin liquid layers around the matrix particles) will have the potential for harboring novel life forms. The experiment has the potential for expanding our information about the newest frontier in life on Earth. The collaboration between PIs in the seismic community and the marine acoustics community will foster cross-disciplinary pollination of ideas, techniques, and tools. In addition to traditional seismic techniques, new methods of data analysis that have been developed by acousticians will be applied to this problem as an independent measure of lake properties. We will train students who will have a wider view of seismology than would be possible in a traditional ocean acoustics or traditional geoscience seismology program of study.", "east": 180.0, "geometry": "POINT(160 -89.9)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS", "is_usap_dc": false, "keywords": "Antarctica; South Pole; Porosity; Not provided; Seismic; Lithology; FIELD INVESTIGATION; Subglacial; Subglacial Lake; FIELD SURVEYS; LABORATORY; Fluid Content; Acoustic Impedance", "locations": "Antarctica; South Pole", "north": -89.8, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Anandakrishnan, Sridhar; Holland, Charles", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": -90.0, "title": "Characterization of Lake Amundsen-Scott, S. Pole: A Ground Geophysical Program", "uid": "p0000693", "west": 140.0}, {"awards": "0089451 Detrich, H. William", "bounds_geometry": "POLYGON((-70.907 -52.353,-69.8619 -52.353,-68.8168 -52.353,-67.7717 -52.353,-66.7266 -52.353,-65.6815 -52.353,-64.6364 -52.353,-63.5913 -52.353,-62.5462 -52.353,-61.5011 -52.353,-60.456 -52.353,-60.456 -53.64334,-60.456 -54.93368,-60.456 -56.22402,-60.456 -57.51436,-60.456 -58.8047,-60.456 -60.09504,-60.456 -61.38538,-60.456 -62.67572,-60.456 -63.96606,-60.456 -65.2564,-61.5011 -65.2564,-62.5462 -65.2564,-63.5913 -65.2564,-64.6364 -65.2564,-65.6815 -65.2564,-66.7266 -65.2564,-67.7717 -65.2564,-68.8168 -65.2564,-69.8619 -65.2564,-70.907 -65.2564,-70.907 -63.96606,-70.907 -62.67572,-70.907 -61.38538,-70.907 -60.09504,-70.907 -58.8047,-70.907 -57.51436,-70.907 -56.22402,-70.907 -54.93368,-70.907 -53.64334,-70.907 -52.353))", "dataset_titles": "Expedition Data; Expedition data of LMG0304A", "datasets": [{"dataset_uid": "001869", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0105"}, {"dataset_uid": "002707", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0304A", "url": "https://www.rvdata.us/search/cruise/LMG0304A"}, {"dataset_uid": "001704", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0304"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Abstract\u003cbr/\u003eOPP-0089451\u003cbr/\u003eP.I. William Detrich\u003cbr/\u003e\u003cbr/\u003e As the Southern Ocean cooled during the past 25 million years, the fishes of Antarctic coastal waters evolved biochemical and physiological adaptations that maintain essential cellular processes such as cytoskeletal function and gene transcription. Their microtubules, for example, assemble and function at body temperatures (-1.8 to +1 oC) well below those of homeotherms and temperate poikilotherms. The long range goals of the proposed research are to determine, at the molecular level, the adaptations that enhance the assembly of microtubules, the function of kinesin motors, and the expression of globin and tubulin genes. The specific objectives are three: 1) to determine the primary sequence changes and posttranslational modifications that contribute to the efficient polymerization of Antarctic fish tubulins at low temperatures; 2) to evaluate the biochemical adaptations required for efficient function of the brain kinesin motor of Antarctic fishes at low temperatures; and 3) to characterize the structure, organization, and promoter-driven expression of globin and tubulin genes from an Antarctic rockcod (Notothenia coriiceps) and a temperate congener (N. angustata). Brain tubulins from Antarctic fishes differ from those of temperate and warm-blooded vertebrates both in unusual primary sequence substitutions (located primarily in lateral loops and the cores of tubulin monomers) and in posttranslational C-terminal glutamylation. Potential primary sequence adaptations of the Antarctic fish tubulins will be tested directly by production of wild-type and site directed tubulin mutants for functional analysis in vitro. The capacity of mutated and wild-type fish tubulins to form \"cold-stable\" microtubules will be determined by measurement of their critical concentrations for assembly and by analysis of their dynamics by video-enhanced microscopy. Three unusual substitutions in the kinesin motor domain of Chionodraco rastrospinosus may enhance mechanochemical activity at low temperature by modifying the binding of ATP and/or the velocity of the motor. To test the functional significance of these changes, the fish residues will be converted individually, and in concert, to those found in mammalian brain kinesin. Reciprocal substitutions will be introduced into the framework of the mammalian kinesin motor domain. After production in Escherichia coli and purification, the functional performance of the mutant motor domains will be evaluated by measurement of the temperature dependence of their ATPase and motility activities. Molecular adaptation of gene expression in N. coriiceps will be analyzed using an a-globin/b-globin gene pair and an a-tubulin gene cluster. Structural features of N. coriiceps globin and tubulin gene regulatory sequences (promoters and enhancers) that support efficient expression will be assessed by transient transfection assay of promoter/luciferase reporter plasmid constructs in inducible erythrocytic and neuronal model cell systems followed by assay of luciferase reporter activity. Together, these studies should reveal the molecular adaptations of Antarctic fishes that maintain efficient cytoskeletal assembly, mechanochemical motor function, and gene expression at low temperatures. In the broadest sense, this research program should advance the molecular understanding of the poikilothermic mode of life.", "east": -60.456, "geometry": "POINT(-65.6815 -58.8047)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.353, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Sidell, Bruce; Detrich, H. William", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.2564, "title": "Structure, Function, and Expression of Tubulins, Globins, and Microtubule-Dependent Motors from Cold-Adapted Antarctic Fishes", "uid": "p0000591", "west": -70.907}, {"awards": "9814622 Wiens, Douglas", "bounds_geometry": "POLYGON((-70.90604 -52.35474,-69.307306 -52.35474,-67.708572 -52.35474,-66.109838 -52.35474,-64.511104 -52.35474,-62.91237 -52.35474,-61.313636 -52.35474,-59.714902 -52.35474,-58.116168 -52.35474,-56.517434 -52.35474,-54.9187 -52.35474,-54.9187 -53.658393,-54.9187 -54.962046,-54.9187 -56.265699,-54.9187 -57.569352,-54.9187 -58.873005,-54.9187 -60.176658,-54.9187 -61.480311,-54.9187 -62.783964,-54.9187 -64.087617,-54.9187 -65.39127,-56.517434 -65.39127,-58.116168 -65.39127,-59.714902 -65.39127,-61.313636 -65.39127,-62.91237 -65.39127,-64.511104 -65.39127,-66.109838 -65.39127,-67.708572 -65.39127,-69.307306 -65.39127,-70.90604 -65.39127,-70.90604 -64.087617,-70.90604 -62.783964,-70.90604 -61.480311,-70.90604 -60.176658,-70.90604 -58.873005,-70.90604 -57.569352,-70.90604 -56.265699,-70.90604 -54.962046,-70.90604 -53.658393,-70.90604 -52.35474))", "dataset_titles": "Expedition Data; Expedition data of LMG0003A", "datasets": [{"dataset_uid": "002688", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0003A", "url": "https://www.rvdata.us/search/cruise/LMG0003A"}, {"dataset_uid": "002059", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9905"}, {"dataset_uid": "001854", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0106"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided jointly by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to transform three temporary seismometers in the Antarctic Peninsula into semi-permanent stations and to continue basic research using these data. During 1997 and 1998, a network of 11 broadband seismographs in the Antarctic Peninsula region and southernmost Chilean Patagonia were installed and maintained. Data return from this project has been excellent and interesting initial results have been produced. The continued operation of these instruments over a longer time period would be highly beneficial because the number of larger magnitude regional earthquakes is small and so a longer time is needed to acquire data. However, instruments from this project are borrowed from the IRIS-PASSCAL instrument pool and must be returned to PASSCAL in April, 1999. This award provides funds to convert three stations at permanent Chilean bases in the Antarctic to permanent stations, and to continue the seismological investigation of the region for a period of four years. As part of this project, a fourth station, in Chilean Patagonia, will continue to be operated using Washington University equipment. The funding of this project will enable continued collaboration between Washington University and the Universidad de Chile in the operation of these stations, and the data will be forwarded to the IRIS data center as well as to other international seismological collaborators. Mutual data exchanges with other national groups with Antarctic seismology research programs will provide access to broadband data from a variety of other proprietary broadband stations in the region. The data will be used to study the seismicity and upper mantle velocity structure of several complicated tectonic regions in the area, including the South Shetland subduction zone, the Bransfield backarc rift, and diffuse plate boundaries in Patagonia, Drake Passage, and along the South Scotia Ridge. In particular, the operation of these stations over a longer time period will allow a better understanding of the seismicity of the South Shetland Trench, an unusual subduction zone showing very slow subduction of young lithosphere. These seismometers will also be used to record airgun shots during a geophysical cruise in the Bransfield Strait that is being planned by the University of Texas for April, 2000. These data will provide important constraints on the crustal structure beneath the stations, and the improved structural models will enable implementation of more precise earthquake location procedures in support of a seismological understanding of the region.", "east": -54.9187, "geometry": "POINT(-62.91237 -58.873005)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V LMG; R/V NBP", "locations": null, "north": -52.35474, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Wiens, Douglas; Visbeck, Martin", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.39127, "title": "Acquisition and Operation of Broadband Seismograph Equipment at Chilean Bases in the Antarctic Peninsula Region", "uid": "p0000604", "west": -70.90604}, {"awards": "9816226 Chereskin, Teresa", "bounds_geometry": null, "dataset_titles": "Expedition data of LMG9908", "datasets": [{"dataset_uid": "002691", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG9908", "url": "https://www.rvdata.us/search/cruise/LMG9908"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This proposed work concerns the development and maintenance of a shipboard acoustic Doppler current profiler (ADCP) program on board the RVIB Nathaniel B. Palmer and the research vessel Laurence M. Gould, operated by the United States Antarctic Program. The objective is to generate a quality-controlled data set on upper ocean current velocities in a sparsely sampled and remote region, yet one that plays an important role in the global ocean circulation. Further goals are to develop the underway data collection program so that it can be maintained with a minimum of personnel and resources, and that the observations become publicly available in a timely manner. Long-term science objectives are to measure the seasonal and interannual variability of upper ocean currents within the Drake Passage, to combine this information with similar temperature observations to study the variability in the heat exchange, and to characterize the velocity structure in the Southern Ocean on a variety of time and space scales.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Chereskin, Teresa", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Shipboard Acoustic Doppler Current Profiling on R/V Nathaniel B. Palmer and R/V Lawrence M. Gould", "uid": "p0000862", "west": null}, {"awards": "9726180 Dorman, LeRoy", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP9905", "datasets": [{"dataset_uid": "002581", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP9905", "url": "https://www.rvdata.us/search/cruise/NBP9905"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Office of Polar Programs of the National Science Foundation, supports research to investigate the seismicity and tectonics of the South Shetland Arc and the Bransfield Strait. This region presents an intriguing and unique tectonic setting, with slowing of subduction, cessation of island arc volcanism, as well as the apparent onset of backarc rifting occurring within the last four million years. This project will carry out a 5-month deployment of 14 ocean bottom seismographs (OBSs) to complement and extend a deployment of 6 broadband land seismic stations that were successfully installed during early 1997. The OBSs include 2 instruments with broadband sensors, and all have flowmeters for measuring and sampling hydrothermal fluids. The OBSs will be used to examine many of the characteristics of the Shetland- Bransfield tectonic system, including: --- The existence and depth of penetration of a Shetland Slab: The existence of a downgoing Shetland slab will be determined from earthquake locations and from seismic tomography. The maximum depth of earthquake activity and the depth of the slab velocity anomaly will constrain the current configuration of the slab, and may help clarify the relationship between the subducting slab and the cessation of arc volcanism. -- Shallow Shetland trench seismicity?: No teleseismic shallow thrust faulting seismicity has been observed along the South Shetland Trench from available seismic information. Using the OBS data, the level of small earthquake activity along the shallow thrust zone will be determined and compared to other regions undergoing slow subduction of young oceanic lithosphere, such as Cascadia, which also generally shows very low levels of thrust zone seismicity. -- Mode of deformation along the Bransfield Rift: The Bransfield backarc has an active rift in the center, but there is considerable evidence for off-rift faulting. There is a long-standing controversy about whet her back-arc extension occurs along discrete rift zones, or is more diffuse geographically. This project will accurately locate small earthquakes to better determine whether Bransfield extension is discrete or diffuse. -- Identification of volcanism and hydrothermal activity: Seismic records will be used to identify the locations of active seafloor volcanism along the Bransfield rift. Flowmeters attached to the OBSs will record and sample the fluid flux out of the sediments. -- Upper mantle structure of the Bransfield - evidence for partial melting?: Other backarc basins show very slow upper mantle seismic velocities and high seismic attenuation, characteristics due to the presence of partially molten material. This project will use seismic tomography to resolve the upper mantle structure of the Bransfield backarc, allowing comparison with other backarc regions and placing constraints on the existence of partially molten material and the importance of partial melting as a mantle process in this region. Collaborative awards: OPP 9725679 and OPP 9726180", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Wiens, Douglas", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Study of the Structure and Tectonics of the South Shetland Trench and Bransfield Backarc Using Ocean Bottom Seismographs", "uid": "p0000801", "west": null}, {"awards": "9814041 Austin, Jr., James", "bounds_geometry": "POLYGON((-70.90616 -52.35281,-69.390587 -52.35281,-67.875014 -52.35281,-66.359441 -52.35281,-64.843868 -52.35281,-63.328295 -52.35281,-61.812722 -52.35281,-60.297149 -52.35281,-58.781576 -52.35281,-57.266003 -52.35281,-55.75043 -52.35281,-55.75043 -53.463301,-55.75043 -54.573792,-55.75043 -55.684283,-55.75043 -56.794774,-55.75043 -57.905265,-55.75043 -59.015756,-55.75043 -60.126247,-55.75043 -61.236738,-55.75043 -62.347229,-55.75043 -63.45772,-57.266003 -63.45772,-58.781576 -63.45772,-60.297149 -63.45772,-61.812722 -63.45772,-63.328295 -63.45772,-64.843868 -63.45772,-66.359441 -63.45772,-67.875014 -63.45772,-69.390587 -63.45772,-70.90616 -63.45772,-70.90616 -62.347229,-70.90616 -61.236738,-70.90616 -60.126247,-70.90616 -59.015756,-70.90616 -57.905265,-70.90616 -56.794774,-70.90616 -55.684283,-70.90616 -54.573792,-70.90616 -53.463301,-70.90616 -52.35281))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001987", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0002"}, {"dataset_uid": "001810", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0007A"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to study the deep crustal structure of the Bransfield Strait region. Bransfield Strait, in the northern Antarctic Peninsula, is one of a small number of modern basins that may be critical for understanding ancient mountain-building processes. The Strait is an actively-extending marginal basin in the far southeast Pacific, between the Antarctic Peninsula and the South Shetland Islands, an inactive volcanic arc. Widespread crustal extension, accompanied by volcanism along the Strait\u0027s axis, may be associated with slow underthrusting of oceanic crust at the South Shetland Trench; similar \"back-arc\" extension occurred along the entire Pacific margin (now western South America/West Antarctica) of the supercontinent known as Gondwanaland during the Jurassic-Early Cretaceous. Mid-Cretaceous deformation of these basins some 100 million years ago initiated uplift of the Andes. By understanding the deep structure and evolution of Bransfield rift, it should be possible to evaluate the crustal precursor to the Andes, and thereby understand more fully the early evolution of this globally important mountain chain.\u003cbr/\u003e\u003cbr/\u003eYears of international earth sciences research in Bransfield Strait has produced consensus on important aspects of its geologic environment: (1) It is probably a young (probably ~4 million years old) rift in preexisting Antarctic Peninsula crust; continued stretching of this crust results in complex fault patterns and associated volcanism. The volcanism, high heat flow, and mapped crustal trends are all consistent with the basin\u0027s continuing evolution as a rift; (2) The volcanism, which is recent and continuing, occurs along a \"neovolcanic\" zone centralized along the basin\u0027s axis. Multichannel seismic data collected aboard R/V Maurice Ewing in 1991 illustrate the following basin-wide characteristics of Bransfield Strait - a) widespread extension and faulting, b) the rise of crustal diapirs or domes associated with flower-shaped normal-fault structures, and c) a complicated system of fault-bounded segments across strike. The geophysical evidence also suggests NE-to-SW propagation of the rift, with initial crustal inflation/doming followed by deflation/subsidence, volcanism, and extension along normal faults.\u003cbr/\u003e\u003cbr/\u003eAlthough Bransfield Strait exhibits geophysical and geologic evidence for extension and volcanism, continental crust fragmentation does not appear to have gone to completion in this \"back-arc\" basin and ocean crust is not yet being generated. Instead, Bransfield rift lies near the critical transition from intracontinental rifting to seafloor-spreading. The basin\u0027s asymmetry, and seismic evidence for shallow intracrustal detachment faulting, suggest that it may be near one end-member of the spectrum of models proposed for continental break-up. Therefore, this basin is a \"natural lab\" for studying diverse processes involved in forming continental margins.\u003cbr/\u003e\u003cbr/\u003eUnderstanding Bransfield rift\u0027s deep crustal structure is the key to resolving its stage of evolution, and should also provide a starting point for models of Andean mountain-building. This work will define the deep structure by collecting and analyzing high-quality, high-density ocean bottom seismometer (OBS) profiles both along and across the Strait\u0027s strike. Scientific objectives are as follows: (1) to develop a detailed seismic velocity model for this rift; (2) to calibrate velocity structure and crustal thickness changes associated with presumed NE-to-SW rift propagation, as deduced from the multichannel seismic interpretations; (3) to document the degree to which deep velocity structure corresponds to along- and across-strike crustal segmentation; and (4) to assess structural relationships between the South Shetland Islands \"arc\" and Bransfield rift.\u003cbr/\u003e\u003cbr/\u003eThe proposed OBS data, integrated with interpretations of both Ewing profiles and those from other high-quality geophysical coverage in Bransfield Strait, will complement ongoing deep seismic analysis of Antarctic Peninsula crust to the southwest and additional OBS monitoring for deep earthquakes, in order to understand the complex plate tectonic evolution of this region.", "east": -55.75043, "geometry": "POINT(-63.328295 -57.905265)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.35281, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Austin, James; Austin, James Jr.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -63.45772, "title": "The Young Marginal Basin as a Key to Understanding the Rift-Drift Transition and Andean Orogenesis: OBS Refraction Profiling for Crustal Structure in Bransfield Strait", "uid": "p0000615", "west": -70.90616}, {"awards": "0632399 Jefferies, Stuart", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Tomographic Imaging of the Velocity and Magnetic Fields in the Sun\u0027s Atmosphere", "datasets": [{"dataset_uid": "600152", "doi": "10.15784/600152", "keywords": "Antarctica; Cosmos; Satellite Remote Sensing; Sun", "people": "Jefferies, Stuart M.", "repository": "USAP-DC", "science_program": null, "title": "Tomographic Imaging of the Velocity and Magnetic Fields in the Sun\u0027s Atmosphere", "url": "https://www.usap-dc.org/view/dataset/600152"}], "date_created": "Wed, 10 Mar 2010 00:00:00 GMT", "description": "The proposal is to develop an instrument that can simultaneously measure the sound speed and magnetic fields at three heights in the solar atmosphere. The instrument will use magneto-optical filters tuned to the solar absorption lines at 422 nm (Ca I), 589 nm (Na D2), and 770 nm (K) to make measurements of Doppler velocities and longitudinal magnetic field. These lines form in the mid- and low-chromosphere and photosphere, respectively. In addition, the instrument will also use a Fabry-Perot etalon as a narrowband filter to measure the intensity variations of the 1083 nm (He I) line that is formed high in the chromosphere and which shows the location of the \"foot points\" of coronal holes. Together, the four lines will allow studying wave motions throughout the solar atmosphere. The instrument will record images of the Sun every 10 seconds with a spatial resolution of 1 arc-second. Thus, the project will be fostering the development of existing magneto-optical filter technology to a new level. Upon construction, the telescope will be tested at South Pole for a long period of uninterrupted observations. Both the local and global helioseismic analysis procedures will be utilized to identify and to characterize different types of waves present in the solar atmosphere. These observations will allow determining the structure and dynamics of the Sun\u0027s atmosphere through seismic measurements and, thus, improve the atmosphere models, assess the role of waves in heating the chromosphere/corona and driving the solar wind, and better understand how the Sun\u0027s atmosphere couples to the interior. The broader impact of the proposed project is two fold. First, there is a potential benefit to the science and to the society because it is believed that the solar atmosphere is a \"home\" to many phenomena that can have a direct effect on the solar activity, including flares, coronal mass ejections, and the solar wind. Understanding the structure and dynamics of the solar atmosphere will therefore lead to a better understanding of the Sun-Earth connection. The collected data will be made available to other researchers at DVDs. The broader audience of general public will be reached through presentations at high schools, libraries, and community events, and news articles in the general press. Most of the research materials will also be placed in the Web.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Astrophysics and Geospace Sciences", "paleo_time": null, "persons": "Jefferies, Stuart M.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Tomographic Imaging of the Velocity and Magnetic Fields in the Sun\u0027s Atmosphere", "uid": "p0000526", "west": -180.0}, {"awards": "0229546 MacAyeal, Douglas", "bounds_geometry": "POINT(-178 -78)", "dataset_titles": "collection of nascent rift images and description of station deployment; Continuous GPS (static) Data from the Ross Ice Shelf, Antarctica; Giant Icebergs of the Ross Sea, in situ Drift and Weather Measurements, Antarctica; Iceberg Firn Temperatures, Antarctica; Iceberg Harmonic Tremor, Seismometer Data, Antarctica; Iceberg Satellite imagery from stations and ice shelves (full data link not provided); Iceberg Tiltmeter Measurements, Antarctica; Ice Shelf Rift Time-Lapse Photography, Antarctica; Incorporated Research Institutions for Seismology; Nascent Iceberg Webcam Images available during the deployment period; Ross Ice Shelf Firn Temperature, Antarctica; The files contain a short header (number of data samples, sample rate, start time, stop time, channel title)The time series data then follow the header above.; This site mirrors the NSIDC website archive.", "datasets": [{"dataset_uid": "609347", "doi": "10.7265/N57W694M", "keywords": "Antarctica; Geodesy; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ross Ice Shelf; Southern Ocean", "people": "MacAyeal, Douglas; King, Matthew; Brunt, Kelly", "repository": "USAP-DC", "science_program": null, "title": "Continuous GPS (static) Data from the Ross Ice Shelf, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609347"}, {"dataset_uid": "609352", "doi": "10.7265/N5M61H55", "keywords": "Glaciology; Iceberg; Oceans; Ross Ice Shelf; Sea Ice; Snow/ice; Snow/Ice; Southern Ocean; Temperature", "people": "Sergienko, Olga; Thom, Jonathan; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Iceberg Firn Temperatures, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609352"}, {"dataset_uid": "001639", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "collection of nascent rift images and description of station deployment", "url": "http://thistle.org/nascent/index.shtml"}, {"dataset_uid": "609349", "doi": "10.7265/N5445JD6", "keywords": "Geology/Geophysics - Other; Glaciology; Iceberg; Oceans; Ross Sea; Sea Ice; Seismometer; Southern Ocean", "people": "Bassis, Jeremy; Aster, Richard; Okal, Emile; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Iceberg Harmonic Tremor, Seismometer Data, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609349"}, {"dataset_uid": "609350", "doi": "10.7265/N5VM496K", "keywords": "AWS; Glaciology; GPS; Iceberg; Meteorology; Oceans; Ross Sea; Sea Ice; Southern Ocean; Weatherstation", "people": "Aster, Richard; Okal, Emile; MacAyeal, Douglas; Bassis, Jeremy", "repository": "USAP-DC", "science_program": null, "title": "Giant Icebergs of the Ross Sea, in situ Drift and Weather Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609350"}, {"dataset_uid": "609351", "doi": "10.7265/N5QV3JGV", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Photo/video; Photo/Video; Ross Ice Shelf", "people": "Brunt, Kelly; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Ice Shelf Rift Time-Lapse Photography, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609351"}, {"dataset_uid": "002504", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Nascent Iceberg Webcam Images available during the deployment period", "url": "https://amrc.ssec.wisc.edu/data/iceberg.html"}, {"dataset_uid": "609354", "doi": "10.7265/N5BP00Q3", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ross Ice Shelf; Snow/ice; Snow/Ice; Temperature", "people": "Muto, Atsu; MacAyeal, Douglas; Scambos, Ted; Sergienko, Olga", "repository": "USAP-DC", "science_program": null, "title": "Ross Ice Shelf Firn Temperature, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609354"}, {"dataset_uid": "002568", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Iceberg Satellite imagery from stations and ice shelves (full data link not provided)", "url": "http://amrc.ssec.wisc.edu/"}, {"dataset_uid": "001685", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Incorporated Research Institutions for Seismology", "url": "http://www.iris.edu/data/sources.htm"}, {"dataset_uid": "001684", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "This site mirrors the NSIDC website archive.", "url": "http://uwamrc.ssec.wisc.edu/"}, {"dataset_uid": "001598", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "The files contain a short header (number of data samples, sample rate, start time, stop time, channel title)The time series data then follow the header above.", "url": "http://nsidc.org"}, {"dataset_uid": "609353", "doi": "10.7265/N5GF0RFF", "keywords": "Glaciology; Iceberg; Oceans; Ross Ice Shelf; Sea Ice; Southern Ocean; Tiltmeter", "people": "Kim, Young-Jin; Bliss, Andrew; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Iceberg Tiltmeter Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609353"}], "date_created": "Fri, 19 Sep 2008 00:00:00 GMT", "description": "This award supports the study of the drift and break-up of Earth\u0027s largest icebergs, which were recently released into the Ross Sea of Antarctica as a result of calving from the Ross Ice Shelf. The scientific goals of the study are to determine the physics of iceberg motion within the dynamic context of ocean currents, winds, and sea ice, which determine the forces that drive iceberg motion, and the relationship between the iceberg and geographically and topographically determined pinning points on which the iceberg can ground. In addition, the processes by which icebergs influence the local environments (e.g., sea ice conditions near Antarctica, access to penguin rookeries, air-sea heat exchange and upwelling at iceberg margins, nutrient fluxes) will be studied. The processes by which icebergs generate globally far-reaching ocean acoustic signals that are detected within the global seismic (earthquake) sensing networks will also be studied. A featured element of the scientific research activity will be a field effort to deploy automatic weather stations, seismometer arrays and GPS-tracking stations on several of the largest icebergs presently adrift, or about to be adrift, in the Ross Sea. Data generated and relayed via satellite to home institutions in the Midwest will motivate theoretical analysis and computer simulation; and will be archived on an \"iceberg\" website (http://amrc.ssec.wisc.edu/amrc/iceberg.html) for access by scientists and the general public. At the most broad level, the study is justified by the fact that icebergs released by the Antarctic ice sheet represent the largest movements of fresh water within the natural environment (e.g., several of the icebergs to be studied, B15, C19 and others calved since 2000 CE, represent over 6000 cubic kilometers of fresh water-an amount roughly equivalent to 100 years of the flow of the Nile River). A better understanding of the impact of iceberg drift through the environment, and particularly the impact on ocean stratification and mixing, is essential to the understanding of the abrupt global climate changes witnessed by proxy during the ice age and of concern under conditions of future greenhouse warming. On a more specific level, the study will generate a knowledge base useful for the better management of Antarctic logistical resources (e.g., the shipping lanes to McMurdo Station) that can occasionally be influenced by adverse effects icebergs have on sea ice conditions.", "east": -178.0, "geometry": "POINT(-178 -78)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e MMS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e TEMPERATURE LOGGERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e TEMPERATURE PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "SEISMOLOGICAL STATIONS; Pressure; AWS; Velocity Measurements; Firn Temperature Measurements; Ice Velocity; Seismology; Ice Sheet Elevation; Harmonic Tremor; Ice Shelf Temperature; Wind Speed; Iceberg; Ice Surface Elevation; Non-Volcanic Tremor; Not provided; Antarctic; Iceberg Tremor; Solar Radiation; Antarctic Ice Sheet; Ross Ice Shelf; Elevation; GPS; Temperature Profiles; Ice Shelf Rift Camera; GROUND STATIONS; Latitude; GROUND-BASED OBSERVATIONS; Ice Shelf Weather; FIELD INVESTIGATION; ARWS; Surface Elevation; Ice Shelf Flow; Antarctica; FIELD SURVEYS; Camera; Seismometer; Iceberg Weather (aws); Ice Movement; Photo; Wind Direction; Iceberg Snow Accumulation; Tremor And Slow Slip Events; AWS Climate Data; Location; Iceberg Drift; Iceberg Collisions; Iceberg Tilt; Atmospheric Pressure; Iceberg Seismicity; Firn Temperature", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; Ross Ice Shelf", "north": -78.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Okal, Emile; Aster, Richard; Bassis, Jeremy; Kim, Young-Jin; Bliss, Andrew; Sergienko, Olga; Thom, Jonathan; Scambos, Ted; Muto, Atsu; Brunt, Kelly; King, Matthew; Parker, Tim; Okal, Marianne; Cathles, Mac; MacAyeal, Douglas", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e ARWS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS; Not provided; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "AMRDC; IRIS; NSIDC; Project website; USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research of Earth\u0027s Largest Icebergs", "uid": "p0000117", "west": -178.0}, {"awards": "0338295 Tulaczyk, Slawek", "bounds_geometry": "POLYGON((-139 -82,-138.2 -82,-137.4 -82,-136.6 -82,-135.8 -82,-135 -82,-134.2 -82,-133.4 -82,-132.6 -82,-131.8 -82,-131 -82,-131 -82.08,-131 -82.16,-131 -82.24,-131 -82.32,-131 -82.4,-131 -82.48,-131 -82.56,-131 -82.64,-131 -82.72,-131 -82.8,-131.8 -82.8,-132.6 -82.8,-133.4 -82.8,-134.2 -82.8,-135 -82.8,-135.8 -82.8,-136.6 -82.8,-137.4 -82.8,-138.2 -82.8,-139 -82.8,-139 -82.72,-139 -82.64,-139 -82.56,-139 -82.48,-139 -82.4,-139 -82.32,-139 -82.24,-139 -82.16,-139 -82.08,-139 -82))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 04 Aug 2008 00:00:00 GMT", "description": "This award supports a project to test whether Kamb Ice Stream (formerly Ice Stream C (ISC)), an ice stream\u003cbr/\u003ethat is thought to have stopped ~150 years ago, may be already in the process of restarting. If yes, it will help establish what is the rate of ice stream reactivation and what mechanisms are controlling this rate. If there is no evidence for ongoing ice stream reactivation, the physical controls that are preventing it will be examined and alternative scenarios for near-future evolution of this ice stream will be explored. One such scenario is an increase in ice diversion toward the neighboring Whillans Ice Stream. Such diversion may help prevent a complete stoppage of Whillans Ice Stream,which has been slowing down for at least the last 24 years. This project will consist of two components: (1) field observations of bed properties,geometry of internal radar reflectors, as well as surface strain rates and velocity/topography changes using Ice-Penetrating Radar and differential Global Positioning System, (2) numerical modeling study of near future(~100-1000 years) evolution of Kamb Ice Stream. The field component will be focused on the bulge-to-trunk transition, which is located at the present time just downstream of the so-called camp UpC. Reactivation of Kamb Ice Stream should be reflected in a downstream migration of the bulge-trunk transition at possibly high rates (bulge migration rates of ~km/yr occur on surging mountain glaciers). The modeling\u003cbr/\u003ecomponent will be used to generate predictions regarding the near-future behavior of Kamb Ice Stream. This project will provide training opportunities for at least two undergraduate students (per year) at St. Olaf College and for one\u003cbr/\u003eundergraduate student (per year) at UCSC. This collaboration will bring together scientists from three different types of US institutions: (1) a liberal arts college (St.Olaf College), (2) a public research university (UCSC) and (3) a NASA research laboratory (JPL). The project will also help build a new glaciological research program at UCSC. Project results will be incorporated into undergraduate and graduate courses at UCSC and will be made available\u003cbr/\u003eto the general public and educators through downloadable graphics and animations posted on the research website of the UCSC PI. Field data resulting from the project will be posted in the Antarctic Glaciological Data Center for use by other investigators.", "east": -131.0, "geometry": "POINT(-135 -82.4)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": false, "keywords": "Topography; GPS; Kamb Ice Stream; Ice Stream; FIELD SURVEYS; FIELD INVESTIGATION; Not provided; Ice Penetrating Radar; Ice Stream C; Velocity; Surface Strain Rates; Antarctic", "locations": "Antarctic; Kamb Ice Stream; Ice Stream C", "north": -82.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Tulaczyk, Slawek; Joughin, Ian", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repositories": null, "science_programs": null, "south": -82.8, "title": "Collaborative Research: Is Kamb Ice Stream Restarting? Glaciological Investigations of the Bulge-Trunk Transition on Kamb Ice Stream, West Antarctica", "uid": "p0000238", "west": -139.0}, {"awards": "0233303 Jacobs, Stanley", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 09 Jul 2007 00:00:00 GMT", "description": "Major portions of the Antarctic Ice Sheet float in the surrounding ocean, at the physical and intellectual boundaries of oceanography and glaciology. These ice shelves lose mass continuously by melting into the sea, and periodically by the calving of icebergs. Those losses are compensated by the outflow of grounded ice, and by surface accumulation and basal freezing. Ice shelf sources and sinks vary on several time scales, but their wastage terms are not yet well known. Reports of substantial ice shelf retreat, regional ocean freshening and increased ice velocity and thinning are of particular concern at a time of warming ocean temperatures in waters that have access to deep glacier grounding lines.\u003cbr/\u003eThis award supports a study of the attrition of Antarctic ice shelves, using recent ocean geochemical measurements and drawing on numerical modeling and remote sensing resources. In cooperation with associates at Columbia University and the British Antarctic Survey, measurements of chlorofluorocarbon, helium, neon and oxygen isotopes will be used to infer basal melting beneath the Ross Ice Shelf, and a combination of oceanographic and altimeter data will be used to investigate the mass balance of George VI Ice Shelf. Ocean and remote sensing observations will also be used to help refine numerical models of ice cavity circulations. The objectives are to reduce uncertainties between different estimates of basal melting and freezing, evaluate regional variability, and provide an update of an earlier assessment of circumpolar net melting.\u003cbr/\u003eA better knowledge of ice shelf attrition is essential to an improved understanding of ice shelf response to climate change. Large ice shelf calving events can alter the ocean circulation and sea ice formation, and can lead to logistics problems such as those recently experienced in the Ross Sea. Broader impacts include the role of ice shelf meltwater in freshening and stabilizing the upper ocean, and in the formation of Antarctic Bottom Water, which can be traced far into the North Atlantic. To the extent that ice shelf attrition influences the flow of grounded ice, this work also has implications for ice sheet stability and sea level rise.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Ice Sheet; Basal Melting; Ice Shelf Meltwater; Not provided; Oceanography; Ice Velocity; Glaciology; Sea Level Rise; Ice Sheet Stability; Mass; Ross Ice Sheet; Numerical Model; Basal Freezing; Ice Cavity Circulations; George VI Ice Shelf; Outflow", "locations": "Ross Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Jacobs, Stanley", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Melting and Calving of Antarctic Ice Shelves", "uid": "p0000730", "west": null}, {"awards": "0408475 Harry, Dennis", "bounds_geometry": "POINT(-175 -85)", "dataset_titles": null, "datasets": null, "date_created": "Tue, 06 Mar 2007 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to apply numerical modeling to constrain the uplift and exhumation history of the Transantarctic Mountains. The Transantarctic Mountains (TAM) are an anomalously high (\u003e4500 m) and relatively broad (up to 200 km) rift-flank uplift demarcating the boundary between East and West Antarctica. Dynamics of the East Antarctic ice-sheet and the climate are affected by the mountain range, and an understanding of the uplift history of the mountain range is critical to understanding these processes. This project will constrain the uplift and denudation history of the Transantarctic Mountains based on thermo-mechanical modeling held faithful to thermochronological, geological, and geophysical data. The research will be the primary responsibility of post-doctoral researcher Audrey Huerta, working in collaboration with Dennis Harry, 1 undergraduate student, and 1 graduate student.\u003cbr/\u003e\u003cbr/\u003eThermochronologic evidence of episodic Cretaceous through Cenozoic rapid cooling within the TAM indicates distinct periods of uplift and exhumation. However, a more detailed interpretation of the uplift history is difficult without an understanding of the evolving thermal structure and topography of the TAM prior to and during uplift. These aspects of the mountain range can best be constrained by an understanding of the evolving regional tectonic setting. Proximity of the TAM to the West Antarctic Rift System (WARS) suggests a link between uplift of the TAM and extension within the WARS.\u003cbr/\u003e\u003cbr/\u003eThe project will integrate two techniques: lithospheric-scale geodynamic modeling and crustal-scale thermal modeling. The lithospheric-scale deformational and thermal evolution of TAM will be modeled by a finite element model designed to track the thermal and deformational response of the Antarctic lithosphere to a protracted extensional environment. Previous investigators have linked the high elevation and broad width of the TAM to a deep level of necking in which mantle thinning is offset from the location of crustal extension. In this study, a three-dimensional dynamic model will be used to track the uplift and thermal evolution of the TAM in a setting in which necking is at a deep level, and in which extension within the crust and extension within the mantle are offset. Velocity boundary conditions applied to the edges of the model will vary through time to simulate the extensional and transtensional evolution of the WARS. Because the model is dynamic, the thermal structure, strength, and strain field, evolve naturally in response to these initial and boundary conditions.\u003cbr/\u003e\u003cbr/\u003eDynamic models are uniquely suited to understanding lithospheric deformational and thermal evolution, however kinematic models are best suited for addressing the detailed thermal and exhumation history of crustal uplifts. Thus, a 2-dimensional kinematic-thermal model will be designed to simulate the uplift history of the TAM and the resulting erosional, topographic, and thermal evolution. Uplift will be modeled as normal-fault movement on a set of discrete fault planes with uplift rate varying through time. Erosion will be modeled as a diffusive process in which erosion rates can be varied through time (simulating climate changes), and vary spatially as a linear function of gradient and distance from the drainage divide. Synthetic time-temperature (t-T) histories will be calculated to compare model results to thermochronologic data.", "east": -175.0, "geometry": "POINT(-175 -85)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": -85.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC; PHANEROZOIC \u003e MESOZOIC \u003e CRETACEOUS; PHANEROZOIC \u003e CENOZOIC \u003e PALEOGENE", "persons": "Huerta, Audrey D.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -85.0, "title": "Uplift and Exhumation of the Transantarctic Mountains and Relation to Rifting in West Antarctica", "uid": "p0000728", "west": -175.0}, {"awards": "0229292 Cressie, Noel", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 28 Feb 2007 00:00:00 GMT", "description": "Ice streams are believed to play a major role in determining the response of their parent ice sheet to climate change, and in determining global sea level by serving as regulators on the fresh water stored in the ice sheets. Ice streams are characterized by rapid, laterally confined flow which makes them uniquely identifiable within the body of the more slowly and more homogeneously flowing ice sheet. But while these characteristics enable the identification of ice streams, the processes which control ice-stream motion and evolution, and differences among ice streams in the polar regions, are only partially understood. Understanding the relative importance of lateral and basal drags, as well as the role of gradients in longitudinal stress, is essential for developing models for future evolution of the polar ice\u003cbr/\u003esheets. In this project, physical statistical models will be used to explore the processes that control ice-stream flow, and to compare these processes between seemingly different ice-stream systems. In particular, Whillans Ice Stream draining into the Ross Ice Shelf, will be compared with Recovery and RAMP glaciers draining into the Ronne-Filchner Ice Shelf, and the Northeast Ice Stream in Greenland. Geophysical models lie at the core of the approach, but are embellished by modeling various components of variability statistically. One important component comes from the uncertainty in observations on basal elevation, surface elevation, and surface velocity. In this project new observational data collected using remote-sensing techniques will be used. The various components, some of which are spatial, are combined hierarchically using Bayesian statistical methodology. All these components will be combined mathematically into a physical statistical model that yields the posterior distribution for basal, longitudinal, and lateral stress fields, and velocity fields, conditional on the data. Inference based on this distribution will be carried out via Markov chain Monte Carlo techniques, to obtain estimates of these unknown fields along with uncertainty measures associated with them.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Surface Elevation; Stress Field; Basal Elevation; DHC-6", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Cressie, Noel; Jezek, Kenneth; Berliner, L.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6", "repositories": null, "science_programs": null, "south": null, "title": "Dynamics of Ice Streams: A Physical Statistical Approach", "uid": "p0000711", "west": null}, {"awards": "0125579 Cuffey, Kurt; 0126202 Blankenship, Donald", "bounds_geometry": "POLYGON((160 -77.6,160.25 -77.6,160.5 -77.6,160.75 -77.6,161 -77.6,161.25 -77.6,161.5 -77.6,161.75 -77.6,162 -77.6,162.25 -77.6,162.5 -77.6,162.5 -77.63,162.5 -77.66,162.5 -77.69,162.5 -77.72,162.5 -77.75,162.5 -77.78,162.5 -77.81,162.5 -77.84,162.5 -77.87,162.5 -77.9,162.25 -77.9,162 -77.9,161.75 -77.9,161.5 -77.9,161.25 -77.9,161 -77.9,160.75 -77.9,160.5 -77.9,160.25 -77.9,160 -77.9,160 -77.87,160 -77.84,160 -77.81,160 -77.78,160 -77.75,160 -77.72,160 -77.69,160 -77.66,160 -77.63,160 -77.6))", "dataset_titles": "Ablation Rates of Taylor Glacier, Antarctica; Stable Isotopes of Ice on the Surface of Taylor Glacier, Antarctica; Surface Velocities of Taylor Glacier, Antarctica", "datasets": [{"dataset_uid": "609326", "doi": "10.7265/N5N29TW8", "keywords": "Ablation Poles; Ablation Rates; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Taylor Glacier", "people": "Cuffey, Kurt M.; Kavanaugh, Jeffrey; Bliss, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Ablation Rates of Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609326"}, {"dataset_uid": "609324", "doi": "10.7265/N5RV0KM7", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Velocity; Taylor Glacier", "people": "Cuffey, Kurt M.; Bliss, Andrew; Kavanaugh, Jeffrey; Aciego, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Surface Velocities of Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609324"}, {"dataset_uid": "609323", "doi": "10.7265/N5WM1BBZ", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Isotope; Taylor Glacier", "people": "Kavanaugh, Jeffrey; Bliss, Andrew; Cuffey, Kurt M.; Aciego, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Stable Isotopes of Ice on the Surface of Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609323"}], "date_created": "Tue, 13 Feb 2007 00:00:00 GMT", "description": "This award supports a project to significantly improve our understanding of how Taylor Glacier flows and responds to climate changes. Taylor Glacier drains the Taylor Dome region of the East Antarctic Ice Sheet and terminates in Taylor Valley, one of the Dry Valleys of Victoria Land. It provides a crucial and unique link between two intensively studied Antarctic environments: the Taylor Dome, from which a 130 kyr ice core paleoclimate record has recently been extracted, and the Dry Valleys, a pivotal Long-Term Ecological Research (LTER) site and a focus of research on geomorphology and glacial geology. The proposed work will thus make an important contribution to ongoing efforts to exploit the Taylor Dome - Dry Valleys system to build a uniquely comprehensive view of regional long-term environmental changes. The proposed work has two complementary components: field research and numerical modelling. Two field seasons will be used to measure velocity, surface strain rate, mass balance, ice thickness, glacier bed reflectance, and subglacial topography, along a nearly complete longitudinal transect of the Taylor Glacier, and along select cross-valley transects. This information will be used to constrain numerical models of ice and heat flow for the Taylor Dome - Taylor Glacier system. These calibrated models will be used to analyze the time-dependent response of the Taylor Glacier to climate changes. The synthesis of results will be aimed to improve understanding of the glacial geomorphology of Taylor Valley, and to illuminate impacts on the Taylor Valley lakes ecosystem. The project will have a major role in furthering the careers of a doctoral-level graduate student and a post-doctoral researcher.", "east": 162.5, "geometry": "POINT(161.25 -77.75)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Glacier; Glacier Surface; Glacier Surface Ablation; Ice Velocity; Velocity Measurements; Taylor Glacier; Isotope; GPS; Ice Sheet Elevation; Not provided; FIELD INVESTIGATION; Ice Surface Elevation; Ablation; Oxygen Isotope; Elevation; Deuterium; GROUND-BASED OBSERVATIONS; Glacier Surface Ablation Rate; Surface Elevation", "locations": "Taylor Glacier", "north": -77.6, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Bliss, Andrew; Kavanaugh, Jeffrey; Aciego, Sarah; Cuffey, Kurt M.; Morse, David L.; Blankenship, Donald D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Collaborative Research: Dynamics and Climatic Response of the Taylor Glacier System", "uid": "p0000084", "west": 160.0}, {"awards": "0230197 Holt, John", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment; Amundsen Sea Sector Data Set; Subglacial Topography: Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica", "datasets": [{"dataset_uid": "609292", "doi": "10.7265/N59W0CDC", "keywords": "AGASEA; Airborne Radar; Amundsen Sea; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Solid Earth", "people": "Holt, John W.; Young, Duncan A.; Vaughan, David G.; Morse, David L.; Blankenship, Donald D.; Corr, Hugh F. J.", "repository": "USAP-DC", "science_program": null, "title": "Subglacial Topography: Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609292"}, {"dataset_uid": "609312", "doi": "10.7265/N5J9649Q", "keywords": "Amundsen Sea; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology", "people": "Fastook, James L.", "repository": "USAP-DC", "science_program": null, "title": "Amundsen Sea Sector Data Set", "url": "https://www.usap-dc.org/view/dataset/609312"}, {"dataset_uid": "601673", "doi": "10.15784/601673", "keywords": "Antarchitecture; Antarctica; Ice Penetrating Radar; Isochron; Layers; Radar; Radioglaciology; Thwaites Glacier", "people": "Young, Duncan A.; Muldoon, Gail R.; Jackson, Charles; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment", "url": "https://www.usap-dc.org/view/dataset/601673"}], "date_created": "Mon, 01 Jan 2007 00:00:00 GMT", "description": "This award supports a comprehensive aerogeophysical survey of the Amundsen Sea Embayment (ASE) in West Antarctica. The University of Texas will join forces with the British Antarctic Survey to use both US and UK aircraft and instrumentation to achieve this survey. Analyses of the new aerogeophysical\u003cbr/\u003edata will result in the generation of maps of ice sheet surface, volume and bottom-interface characteristics. These maps will support the efforts of a community of US and international researchers to assess the present and predict the future behavior of the ice sheet in the ASE.\u003cbr/\u003eThe West Antarctic ice sheet has been the subject of intensive interdisciplinary study by both the European and U.S. scientific communities since it was recognized to be a potential source for up to 5 meters of sea\u003cbr/\u003elevel rise, possibly on short timescales. In terms of ice discharge, the ASE is the largest drainage system in West Antarctica. Yet it has been comparatively unstudied, primarily due to its remoteness from logistical\u003cbr/\u003ecenters. The ASE is the only major drainage to exhibit significant elevation change over the period of available satellite observations. Present knowledge of the ice thickness and subglacial boundary conditions in the ASE are insufficient to understand its evolution or its sensitivity to climatic change.\u003cbr/\u003eThe results from our surveys are required to achieve the fundamental research objectives outlined by the US scientific community in an ASE Science Plan. The surveys and analyses will be achieved through international collaboration and will involve graduate students, undergraduates and high school apprentices.\u003cbr/\u003eThrough its potential for influencing sea level, the future behavior of the ASE is of primary societal importance. Given the substantial public and scientific interest that recent reports of change in West Antarctica have generated, we expect fundamental research in the Amundsen Sea Embayment, enabled by our surveys, will have widespread impact.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RADAR ALTIMETERS", "is_usap_dc": true, "keywords": "Thwaites Glacier; Ice Velocity; Ablation; Amundsen Sea; Pine Island Glacier; Elevation; Antarctica (agasea); Ice Sheet Elevation; West Antarctic Ice Sheet; Ice Temperature; Amundsen Basin; Subglacial Topography; Ice Melt; West Antarctica; Velocity Measurements; Snow Accumulation; Antarctica; Bedrock Elevation; Modeling", "locations": "Antarctica; West Antarctica; Amundsen Basin; Pine Island Glacier; Thwaites Glacier; West Antarctic Ice Sheet; Amundsen Sea", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Blankenship, Donald D.; Fastook, James L.; Corr, Hugh F. J.; Holt, John W.; Morse, David L.; Vaughan, David G.; Young, Duncan A.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA)", "uid": "p0000243", "west": -180.0}, {"awards": "0126149 Liu, Hongxing", "bounds_geometry": null, "dataset_titles": "Access to Antarctic coastline coverage and reference documents; Access to Antarctic snow zone coverage and reference documents; Access to boundary file and reference documents; Access to ice velocity data and reference documents; Access to snow melt extent image files and reference documents", "datasets": [{"dataset_uid": "001640", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to snow melt extent image files and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}, {"dataset_uid": "001351", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to Antarctic coastline coverage and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}, {"dataset_uid": "001779", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to ice velocity data and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}, {"dataset_uid": "001350", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to boundary file and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}, {"dataset_uid": "001352", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to Antarctic snow zone coverage and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}], "date_created": "Tue, 15 Aug 2006 00:00:00 GMT", "description": "This award supports a project to characterize the morphology, ice motion velocity and mass balance of Lambert Glacier, Antarctica using state-of-the-art remote sensing and GIS techniques. Lambert Glacier is the largest ice stream in the world. Because of its size, it plays a fundamental role in the study of glacial dynamics and mass budget in response to present and future climate changes. Along with the bedrock topography and ice thickness data derived from airborne radio echo soundings and snow accumulation data compiled from ground-based measurements, the dynamic behavior and mass balance of the Lambert glacial basin in a Geographic Information Systems (GIS) environment will be examined. Specific objectives are to: (1) Extract two-dimensional ice velocity field over the entire Lambert glacial basin using speckle matching and differential interferometric SAR (InSAR) techniques, and produce a full coverage of radar coherence map over the drainage basin. With the ice velocity data, calculate the strain rate field from the initiation areas of the ice stream onto the Amery Ice Shelf; (2) Derive high-resolution digital elevation model (DEM) over the Lambert glacial drainage basin using SAR stereo, differential interferometric SAR, and GLAS laser altimetry techniques. Based on the DEM, extract ice divides and ice flow directions, delineate the snow catchment basin, and calculate the balance deformation velocity and the basal shear stress; (3) Interpolate traverse ice thickness data collected by Australian and Russian airborne radio echo sounding surveys into a regular grid, and derive a regular grid of bedrock topography in combination with the DEM; (4) Integrate newly derived ice velocity and ice thickness data as well as snow accumulation rate data compiled from previous ground-based measurements into a geographic information system (GIS), and calculate the mass flux through the ice stream at the grounding lines and net mass balance throughout the drainage basin. With these new measurements and calculations derived from advanced remote sensing techniques, we will be able to improve our understanding of dynamic behavior and current mass balance status of the Lambert glacial basin, gain an insight on the relationship between ice mass change and the variation in regional and global climate at decadal scale, and provide an evaluation on the issue of whether the Lambert glacier basin is subject to surging in the context of future climate change.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e SMMR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e SSM/I; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IFSAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR", "is_usap_dc": false, "keywords": "DEM; Not provided; RADARSAT-1", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Liu, Hongxing; Jezek, Kenneth", "platforms": "Not provided; OTHER \u003e MODELS \u003e DEM; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e RADARSAT \u003e RADARSAT-1", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": null, "title": "High-Resolution Modeling of Surface Topography, Ice Motion, and Mass Balance in the Lambert Glacial Basin using Radar Remote Sensing and GIS Techniques", "uid": "p0000204", "west": null}, {"awards": null, "bounds_geometry": null, "dataset_titles": "Upper Mantle Shear Velocity Model", "datasets": [{"dataset_uid": "600004", "doi": "", "repository": "USAP-DC", "science_program": null, "title": "Upper Mantle Shear Velocity Model", "url": "http://www.usap-dc.org/view/dataset/600004"}], "date_created": "Thu, 15 Jun 2006 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": null, "locations": null, "north": null, "nsf_funding_programs": null, "paleo_time": null, "persons": "Ritzwoller, Michael", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": "0086997 Truffer, Martin", "bounds_geometry": null, "dataset_titles": "Margin Migration Rates and Dynamics: Siple Coast Ice Streams", "datasets": [{"dataset_uid": "609263", "doi": "10.7265/N50K26HH", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Siple Coast", "people": "Echelmeyer, Keith A.; Truffer, Martin", "repository": "USAP-DC", "science_program": null, "title": "Margin Migration Rates and Dynamics: Siple Coast Ice Streams", "url": "https://www.usap-dc.org/view/dataset/609263"}], "date_created": "Thu, 17 Mar 2005 00:00:00 GMT", "description": "0086997\u003cbr/\u003eTruffer\u003cbr/\u003e\u003cbr/\u003eThis award supports a two year project to investigate the dynamics of the marginal zone of the Siple Coast ice streams using existing velocity and temperature profiles. The flow and stress fields will be modeled using finite element methods and a thermo-mechanical model will be used to investigate the coupling of the flow and temperature fields. Direct comparison of these models with the observed velocity profiles will lead to estimates of the structure of the margins and the softening of the marginal ice. The distribution of basal and marginal shear stress will be investigated, leading to an estimate of the relative roles of the bed and the margins in the overall force balance of the ice streams.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e SURVEYING TOOLS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e THEODOLITE", "is_usap_dc": true, "keywords": "GROUND-BASED OBSERVATIONS; Ice Movement; Siple Dome; Ice Stream; USAP-DC; Ice Velocity", "locations": "Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Truffer, Martin; Echelmeyer, Keith A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Margin Migration Rates and Margin Dynamics of the Siple Coast Ice Streams", "uid": "p0000144", "west": null}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": null, "dataset_titles": "Antarctic Ice Velocity Data", "datasets": [{"dataset_uid": "609070", "doi": "10.7265/N5KS6PH5", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Ice Velocity Data", "url": "http://www.usap-dc.org/view/dataset/609070"}], "date_created": "Tue, 23 Mar 2004 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Velocity; Sample/collection Description; Sample/Collection Description", "locations": "Antarctica; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bindschadler, Robert; Raymond, Charles", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": "9909469 Scambos, Ted", "bounds_geometry": null, "dataset_titles": "Ice Motion and Topography Near Margin Areas of Kamb Ice Stream, Antarctica", "datasets": [{"dataset_uid": "609141", "doi": "10.7265/N5WS8R52", "keywords": "Antarctica; Geodesy; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Kamb Ice Stream", "people": "Raymond, Charles; Catania, Ginny; Conway, Howard; Scambos, Ted; Gades, Anthony", "repository": "USAP-DC", "science_program": null, "title": "Ice Motion and Topography Near Margin Areas of Kamb Ice Stream, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609141"}], "date_created": "Fri, 01 Aug 2003 00:00:00 GMT", "description": "9909469\u003cbr/\u003eScambos\u003cbr/\u003e\u003cbr/\u003eThis award provides support for three years of funding to study the scar-like features that are well-known from the Siple Coast ice stream system in West Antarctica. The objective of the proposed field work is to identify the nature of several as yet unvisited scars, and to further characterize previously-identified margin scars that are poorly dated. Advanced Very High Resolution Radiometer (AVHRR) and Radarsat image data will be used to locate and map the features, and place them in a regional context. The study seeks to describe the recent history of the Siple Coast glaciers and investigate the causes of their changes in configuration. The main investigative tools will be low-frequency RES and high-frequency ground penetrating radar (GPR) profiles to image internal layers and measure depths to buried crevasses or disrupted layering. This, coupled with accumulation rates determined from shallow ice cores, will provide \"shutdown\" ages for the margin features. The field data will provide input parameters for simple models of ice flow for margins and inter-ice stream ridges during active shearing and after shutdown. This modeling will estimate the initial elevation of a scar at the time of shut down and the corresponding ice stream elevation at that time.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": true, "keywords": "Ice Velocity; Ice Acceleration; Ice Sheet Elevation; GROUND-BASED OBSERVATIONS; Ice Stream; Antarctic Ice Sheet; Ice Sheet; Ice Surface Elevation; Ice Position; Ice Surface; Ice Stream C Velocities; Ice Movement; Ice; Cryosphere", "locations": "Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Scambos, Ted; Catania, Ginny; Conway, Howard; Gades, Anthony; Raymond, Charles", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: History and Evolution of the Siple Coast Ice Stream System as Recorded by Former Shear-Margin Scars", "uid": "p0000165", "west": null}, {"awards": "0096302 Tulaczyk, Slawek", "bounds_geometry": "POLYGON((-180 -62.83,-144 -62.83,-108 -62.83,-72 -62.83,-36 -62.83,0 -62.83,36 -62.83,72 -62.83,108 -62.83,144 -62.83,180 -62.83,180 -65.547,180 -68.264,180 -70.981,180 -73.698,180 -76.415,180 -79.132,180 -81.849,180 -84.566,180 -87.283,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.283,-180 -84.566,-180 -81.849,-180 -79.132,-180 -76.415,-180 -73.698,-180 -70.981,-180 -68.264,-180 -65.547,-180 -62.83))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 06 May 2003 00:00:00 GMT", "description": "Not Available", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided; Centerline Ice Stream Velocity; Till Void Ratio; Basal Temperature Gradient; Surface Elevation; Till Strength", "locations": null, "north": -62.83, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "MacAyeal, Douglas; Tulaczyk, Slawek", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -90.0, "title": "Control of Ice-Till Interactions on Evolution and Stability of Ice Streams and Ice Sheets", "uid": "p0000743", "west": -180.0}, {"awards": "9318121 Anandakrishnan, Sridhar", "bounds_geometry": null, "dataset_titles": "Ice Velocity Data from Ice Stream C, West Antarctica", "datasets": [{"dataset_uid": "609106", "doi": "10.7265/N5CZ3539", "keywords": "Antarctica; Geodesy; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; WAIS", "people": "Anandakrishnan, Sridhar", "repository": "USAP-DC", "science_program": null, "title": "Ice Velocity Data from Ice Stream C, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609106"}], "date_created": "Sat, 01 Dec 2001 00:00:00 GMT", "description": "9318121 Anandakrishnan This award is for support for a three year project to test the hypothesis that a controlling parameter of fast ice-stream flow is the hydrologic state of discrete zones of high friction (\"sticky spots\") at the bed of the ice streams. Previous work has discovered an enormous difference in basal microearthquake activity between fast-flowing ice stream B and ice stream C, which stopped flowing within the last 200 years. It is hypothesized that the basal water system is lubricating the sticky spots under the fast ice stream and thus inhibiting microearthquake activity, and at the same time permitting fast ice flow. This experiment is intended to collect a continuous record of wide-bandwidth microearthquake data from a variety of sites, on the ice streams, in the transition zone, and on the inland ice. ***", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS", "is_usap_dc": true, "keywords": "Glaciology; USAP-DC; Ice Stream; Velocity Measurements; Ice Velocity; GROUND-BASED OBSERVATIONS; Ice Sheet; West Antarctic Ice Sheet; Ice Stream C Velocities; GPS; Antarctica", "locations": "Antarctica; West Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Anandakrishnan, Sridhar", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Microearthquake Monitoring of Ice Stream C, West Antarctica: A Sensor for Sticky Spots", "uid": "p0000161", "west": null}, {"awards": "9316338 Jacobel, Robert", "bounds_geometry": null, "dataset_titles": "Siple Dome Glaciology and Ice Stream History 1994, 1996", "datasets": [{"dataset_uid": "609085", "doi": "10.7265/N5Z31WJQ", "keywords": "Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Sample/collection Description; Sample/Collection Description; Siple Dome; Siple Dome Ice Core", "people": "Jacobel, Robert", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Glaciology and Ice Stream History 1994, 1996", "url": "https://www.usap-dc.org/view/dataset/609085"}], "date_created": "Fri, 01 Jan 1999 00:00:00 GMT", "description": "9316338 Jacobel This award is for support for a program of glaciological studies of Siple Dome and its surroundings between Ice Streams C and D. The purpose of the work is to characterize the dynamic environment and ice stratigraphy to aid in the assessment of Siple Dome as a potential deep ice core site, and to determine whether the configuration of ice stream flow in the region was different in the past than now. The work involves measurements of the configuration and continuity of internal layers in the ice, using radar echo sounding and determination of velocity field, based on standard GPS surveying. The goals of the work are relevant to understanding the dynamics of the West Antarctic Ice Sheet (WAIS), its past history and its potential future behavior, including possible effects on global sea level. This work is a collaborative project between the University of Washington, the University of Colorado and St. Olaf College. ***", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": true, "keywords": "Siple Dome; Antarctic; Glaciology; Radar; GROUND-BASED OBSERVATIONS; Ice Stream", "locations": "Antarctic; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Jacobel, Robert", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Siple Dome Glaciology and Ice Stream History", "uid": "p0000190", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
The Results Map and the Results Table
The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
As the map is panned or zoomed, the highlighted rows in the table will update.
If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page.
The bounds for the project(s)/dataset(s) selected will be displayed in red.
The selected result(s) will be highlighted in red and brought to the top of the table.
The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds
and highlight the centroid on the Results Map.
Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other
search criteria already selected.
After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
Clicking Clear in the map will clear any drawn polygon.
Clicking Search in the map, or Search on the form will have the same effect.
The returned results will be any projects/datasets with bounds that intersect the polygon.
Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Kingslake, Jonathan; Sole, Andrew; Livingstone, Stephen; Winter, Kate; Ely, Jeremy
No dataset link provided
When ice sheets and glaciers lose ice faster than it accumulates from snowfall, they shrink and contribute to sea-level rise. This has consequences for coastal communities around the globe by, for example, increasing the frequency of damaging storm surges. Sea-level rise is already underway and a major challenge for the geoscience community is improving predictions of how this will evolve. The Antarctic Ice Sheet is the largest potential contributor to sea-level rise and its future is highly uncertain. It loses ice through two main mechanisms: the formation of icebergs and melting at the base of floating ice shelves on its periphery. Ice flows under gravity towards the ocean and the rate of ice flow controls how fast ice sheets and glaciers shrink. In Greenland and Antarctica, ice flow is focused into outlet glaciers and ice streams, which flow much faster than surrounding areas. Moreover, parts of the Greenland Ice Sheet speed up and slow down substantially on hourly to seasonal time scales, particularly where meltwater from the surface reaches the base of the ice. Meltwater reaching the base changes ice flow by altering basal water pressure and consequently the friction exerted on the ice by the rock and sediment beneath. This phenomenon has been observed frequently in Greenland but not in Antarctica. Recent satellite observations suggest this phenomenon also occurs on outlet glaciers in the Antarctic Peninsula. Meltwater reaching the base of the Antarctic Ice Sheet is likely to become more common as air temperature and surface melting are predicted to increase around Antarctica this century. This project aims to confirm the recent satellite observations, establish a baseline against which to compare future changes, and improve understanding of the direct influence of meltwater on Antarctic Ice Sheet dynamics. This is a project jointly funded by the National Science Foundation?s Directorate for Geosciences (NSF/GEO) and the National Environment Research Council (NERC) of the United Kingdom (UK) via the NSF/GEO-NERC Lead Agency Agreement. This Agreement allows a single joint US/UK proposal to be submitted and peer-reviewed by the Agency whose investigator has the largest proportion of the budget. Upon successful joint determination of an award recommendation, each Agency funds the proportion of the budget that supports scientists at institutions in their respective countries.
This project will include a field campaign on Flask Glacier, an Antarctic Peninsula outlet glacier, and a continent-wide remote sensing survey. These activities will allow the team to test three hypotheses related to the Antarctic Ice Sheet?s dynamic response to surface meltwater: (1) short-term changes in ice velocity indicated by satellite data result from surface meltwater reaching the bed, (2) this is widespread in Antarctica today, and (3) this results in a measurable increase in mean annual ice discharge. The project is a collaboration between US- and UK-based researchers and will be supported logistically by the British Antarctic Survey. The project aims to provide insights into both the drivers and implications of short-term changes in ice flow velocity caused by surface melting. For example, showing conclusively that meltwater directly influences Antarctic ice dynamics would have significant implications for understanding the response of Antarctica to atmospheric warming, as it did in Greenland when the phenomenon was first detected there twenty years ago. This work will also potentially influence other fields, as surface meltwater reaching the bed of the Antarctic Ice Sheet may affect ice rheology, subglacial hydrology, submarine melting, calving, ocean circulation, and ocean biogeochemistry. The project aims to have broader impacts on science and society by supporting early-career scientists, UK-US collaboration, education and outreach, and adoption of open data science approaches within the glaciological community.
Ice flow is resisted by frictional forces that keep a glacier from immediately sliding into the ocean. Friction comes in two varieties: internal friction within the ice column which resists ice deformation and basal friction which resists ice sliding over its bedrock substrate. Partitioning between internal and basal friction is difficult since both have similar expressions at the most common target for data collection?the ice-sheet surface. However, understanding this partitioning is important because the physical processes that control internal and basal friction act and evolve at different timescales. This project combines spaceborne remote sensing observations from the ice-sheet surface with ice-penetrating radar data that images the internal structure of the ice sheet in order to partition the contribution of each source of friction. Results will advance the fundamental understanding of ice flow and will strengthen projections of future sea-level rise. Broader Impacts of the project include facilitating data reuse for the ice-sheet research community; the strategy for distributing the software toolkit includes student mentorship and hackathon teaching.
The researcher will expand the impact of existing ice-penetrating datasets by 1) developing new open-source algorithms for extraction of englacial stratigraphy; 2) creating stratigraphy data products that can be assimilated into future studies of ice motion; and 3) using statistical analyses to integrate radar datasets into larger-scale interpretations with remote sensing datasets of ice-surface velocity, altimetry, climate variables, and model-derived basal friction. The computational tools developed as part of this effort will be integrated and released as a reusable software toolkit for ice-penetrating radar data analysis. The toolkit will be validated and tested by deployment to cloud-hosted JupyterHub instances, which will serve as a singular interface to access radar and remote sensing data, load them into a unified framework, step through a predefined processing flow, and carry out statistical analyses. In some areas, the imaged englacial stratigraphy will deviate from the ice-dynamic setting expected based on surface measurements alone. There, the internal dynamics (or ice-dynamic history) are inconsistent with the surface dynamics, likely because internal friction is poorly constrained and misattributed to basal friction instead. This work will develop the data and statistical tools for constraining internal friction from ice-penetrating radar, making those data products and tools available for future work.
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).
An important part of understanding future climate change is predicting changes in how fast the ice in Antarctica is moving. If ice flows more quickly towards the ocean, it will have a direct impact on sea level rise. One of the things that can influence the ice flow is the type of rock below the ice coverage in Antarctica. Sedimentary basins are large regions where sedimentary rocks accumulated in the past, often under ancient seas. It has been observed that where there are sediments below the ice, the ice can flow faster. This project seeks to understand what is below the ice and how the underlying rock influences the ice flow. Is it hard, crystalline rock? Is it a sedimentary basin? What is the relationship between sediments and ice flow? The answers to these questions will be addressed by using a combination of available data and geophysical methods. Information from well-known rock-types will be used to train the computer to recognize these features by using an application of artificial intelligence known as machine learning, which will help the characterization and identification of unknown sedimentary basins beneath the ice. The results of this project will be disseminated to a broad audience by holding workshops for teacher and students to explain our findings under the ice and to introduce the machine learning technique. Open-source codes used during this project will be made available for use in higher-level classrooms as well as in further studies.
To date, no comprehensive distribution of onshore and offshore sedimentary basins over Antarctica has been developed. A combination of large-scale datasets will be used to characterize known basins and identify new sedimentary basins to produce the first continent-wide mapping of sedimentary basins and provide improved basal parametrizations conditions that have the potential to support more realistic ice sheet models. Available geophysical compilations of data and the location of well-known sedimentary basins will be used to apply an ensemble machine learning algorithm. The machine learning algorithm will learn complex relationships by voting among a collection of randomized decision trees. The gravity signal related to sedimentary basins known from other (e.g. seismic) techniques will be evaluated and unknown basins from aerogravity data regression analyses will be proposed by calculating a gravity residual that reflects density inhomogeneities. The gravimetric sedimentary basins identified from the regression analyses will be compared with an independent method of identifying sedimentary distribution, the Werner deconvolution method of estimating depth to magnetic sources. The hypothesis, which is sedimentary basins are correlated to fast ice flow behavior, will be tested by comparing the location of the sedimentary basins with locations of high ice flow by using available ice velocity observations. A relationship between sedimentary basins and ice streams will be defined qualitatively and quantitatively, aiming to evaluate if there are ice streams where no sedimentary basins are reported, or sedimentary basins with no ice streams related. The findings of these project can confirm if the presence of abundant sediments is a pre-requisite for ice streaming. Analyzing previously known sedimentary basins and identifying new ones in Antarctica is central to evaluating the influence of subglacial sediments on the ice sheet flow.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Pygoscelis penguins are central place foragers during the summer while they raise their chicks. They leave and return to the same colony location after hunting for food and rely on the availability of Antarctic krill, their primary food source. This research focuses on whether penguin diets and colony location reflect the retention of prey around and near colonies on the West Antarctic Peninsula. Eddies and other oceanographic processes may facilitate prey retention at certain locations, driving penguin colony establishment and success.
This project hypothesizes that Pygoscelis penguin diets will be composed of more Antarctic krill (Euphausia superba) when local prey retention is high, possibly due to subsurface eddies. This hypothesis will be tested using satellite-based estimates of Pygoscelis penguin diet composition using multispectral sensor data to estimate nitrogen values and infer trophic level. Prey retention will be calculated along the peninsula using the Regional Ocean Modeling System (ROMS). Simulated particles and diel vertical migration will be used to mimic krill behavior. These particles can be experimentally seeded across multiple depths in multiple years to assess residence times in the system. Using penguin colony data from the Mapping Application for Penguin Populations and Projected Dynamics (MAPPPD), the PI will correlate diet and retention metrics to local penguin colony growth and persistence and build a predictive model of where colonies may form in the future.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The western portion of the Antarctic continent is active in terms of plate tectonic processes that can produce significant variations in the Earth's mantle temperature as well as partial melting of the mantle. In addition to these internal processes, the ice sheet in western Antarctica is melting due to Earth's warming climate and adding water to the ocean. These changes in ice mass cause adjustments in rocks within the Earth's crust, allowing the surface to rebound in some locations and fall in others, altering the geographical pattern of sea-level change. However, the solid Earth response depends strongly on the strength of the rocks at a wide range of timescales which is not well-known and varies with temperature and other rock properties. This project has three primary goals. (1) It will assess how processes such as rifting, mantle upwelling and lithospheric instability have altered the lithosphere and underlying asthenosphere of western Antarctica, contributing to a planet-wide understanding of these processes. (2) It will use new measurements of mantle and crust properties to estimate the rate at which heat from the solid Earth flows into the base of the ice, which is important for modeling the rates at which the ice melts and flows. (3) It will places bounds on mantle viscosity, which is key for modeling the interaction of the solid Earth with changing ice and water masses and their implications for sea-level rise. To accomplish these goals, new resolution of crust and mantle structure will be obtained by analyzing seismic waves from distant earthquakes that have been recorded at numerous seismic stations in Antarctica. These analyses will include new combinations of seismic wave data that provide complementary information about mantle temperature, heat flow and viscosity. <br><br>Technical Description: This research addresses key questions about mantle processes and properties in western Antarctica. What are the relative impacts of rifting, mantle plumes, and lithospheric delamination in the evolution of the lithosphere and asthenosphere? Where is topography isostatically compensated, and where are dynamic processes such as plate flexure or tractions from 3-D mantle flow required? What are the bounds on heat flow and mantle viscosity, which represent important inputs to models of ice sheet evolution and its feedback from the solid Earth? To address these questions, this project will measure mantle and crust properties using seismic tools that have not yet been applied in Antarctica: regional-scale measurement of mantle attenuation from surface waves; Sp body wave phases to image mantle velocity gradients such as the lithosphere-asthenosphere boundary; and surface wave amplification and ellipticity. The resulting models of seismic attenuation and velocity will be jointly interpreted to shed new light on temperature, bulk composition, volatile content, and partial melt, using a range of laboratory-derived constitutive laws, while considering data from mantle xenoliths. To test the relative roles of rifting, mantle plumes, and delamination, and to assess isostatic support for Antarctic topography, the predictions of these processes will be compared to the new models of crust and mantle properties. To improve bounds on western Antarctic heat flow, seismic attenuation and velocity will be used in empirical comparisons and in direct modeling of vertical temperature gradients. To better measure mantle viscosity at the timescales of glacial isostatic adjustment, frequency-dependent viscosity will be estimated from the inferred mantle conditions. <br><br>This project will contribute to the education and career development of a Brown University Ph.D. student, Brown undergraduates, and undergraduates from outside the university who will be involved through the Department of Earth, Environmental and Planetary Sciences (DEEPS) Leadership Alliance NSF Research Experience for Undergraduates (REU) Site which focuses on geoscience summer research experiences for underrepresented students. The project will be the basis for a seminar at Brown that explores the connections between the solid Earth and cryosphere in Antarctica and will contribute to outreach in local public elementary and high schools.
Melt from the Greenland and Antarctic ice sheets is increasingly contributing to sea-level rise. This ice sheet mass loss is primarily driven by the thinning, retreat, and acceleration of glaciers in contact with the ocean. Observations from the field and satellites indicate that glaciers are sensitive to changes at the ice-ocean interface and that the increase in submarine melting is likely to be driven by the discharge of meltwater from underneath the glacier known as subglacial meltwater plumes. The melting of glacier ice also directly adds a large volume of freshwater into the ocean, potentially causing significant changes in the circulation of ocean waters that regulate global heat transport, making ice-ocean interactions an important potential factor in climate change and variability. The ability to predict, and hence adequately respond to, climate change and sea-level rise therefore depends on our knowledge of the small-scale processes occurring in the vicinity of subglacial meltwater plumes at the ice-ocean interface. Currently, understanding of the underlying physics is incomplete; for example, different models of glacier-ocean interaction could yield melting rates that vary over a factor of five for the same heat supply from the ocean. It is then very difficult to assess the reliability of predictive models. This project will use comprehensive laboratory experiments to study how the melt rates of glaciers in the vicinity of plumes are affected by the ice roughness, ice geometry, ocean turbulence, and ocean density stratification at the ice-ocean interface. These experiments will then be used to develop new and improved predictive models of ice-sheet melting by the ocean. This project builds bridges between modern experimental fluid mechanics and glaciology with the goal of leading to advances in both fields.
This project consists of a comprehensive experimental program designed for studying the melt rates of glacier ice under the combined influences of (1) turbulence occurring near and at the ice-ocean interface, (2) density stratification in the ambient water column, (3) irregularities in the bottom topology of an ice shelf, and (4) differing spatial distributions of multiple meltwater plumes. The objective of the experiments is to obtain high-resolution data of the velocity, density, and temperature near/at the ice-ocean interface, which will then be used to improve understanding of melt processes down to scales of millimeters, and to devise new, more robust numerical models of glacier evolution and sea-level rise. Specially, laser-based, optical techniques in experimental fluid mechanics (particle image velocity and laser-induced fluorescence) will be used to gather the data, and the experiments will be conducted using refractive-index matching techniques to eliminate changes in refractive indices that could otherwise bias the measurements. The experiments will be run inside a climate-controlled cold room to mimic field conditions (ocean temperature from 0-10 degrees C). The project will use 3D-printing to create different casting molds for making ice blocks with different types of roughness. The goal is to investigate how ice melt rate changes as a function of the properties of the plume, the ambient ocean water, and the geometric properties of the ice interface. Based on the experimental findings, this project will develop and test a new integral-plume-model coupled to a regional circulation model (MITgcm) that can be used to predict the effects of glacial melt on ocean circulation and sea-level rise.
During November 2018 to January 2019 we carried out an extensive geophysical survey on the Whillans Ice Stream in West Antarctica. Our survey is the first to use magnetotelluric (MT) imaging to map subglacial groundwater water beneath an ice stream. We collected a total of 44 passive MT stations, as well as several active-source electromagnetic (EM) stations using a large loop transmitter system. These data will be used to study the distribution of groundwater at the base of the ice stream at both the grounding line where the ice stream turns into the Ross Ice Shelf and at Whillans Subglacial Lake. We also serviced a few long term GPS stations that have been recording data for several years and that have been used to track transient changes in ice velocity associated with basal water filling and draining in subglacial lakes.
Ice shelves play a critical role in restricting the seaward flow of grounded ice by providing buttressing at their bases and sides. Processes that affect the long-term stability of ice shelves can therefore impact the future contribution of the Antarctic Ice Sheet to global sea-level rise. Ross Ice Shelf is the largest ice shelf on Earth, and it buttresses massive areas of West and East Antarctica. Previous studies of modern ice velocity indicate that Ross Ice Shelf’s mass loss is roughly balanced by its mass gain. However, more recent remote sensing observations extended further back in time reveal the ice shelf is likely not in steady-state, including possible long-term thinning since the late 90s. Therefore, to accurately interpret modern days ice shelf changes, long-term observations are critical to evaluate how these short-term variations fit into the historical context of ice shelf variability. This project examines over four decades (1971 – 2017) of historical and modern airborne radar sounding observations of the Ross Ice Shelf to investigate ice-shelf changes on the decadal timescales. The researchers will process, calibrate, and analyze radar data collected during the 1971-79 SPRI/NSF/TUD campaign and compare them against modern observations from both the 2011-17 NASA Operation IceBridge/NSF CReSIS and the 2015-17 ROSETTA-Ice surveys. They will estimate basal melt rates by examining changes in ice-shelf thickness. They will determine other important basal melt metrics, including ice shelf roughness, englacial temperature, and marine ice formation. This project will support the education of a Ph.D. student from each of the institutions. This project will also support the training of undergraduate and high school researchers more generally in the field of radioglaciology and Antarctic sciences.
This project will develop a new ice-penetrating radar system that can simultaneously map glacier geometry (three-dimensional ice-sheet internal architecture and subglacial topography) and glacier flow (vertical velocity of ice) along repeat profiles. Forecasting ice-sheet contribution to sea level requires an estimate for the initial ice-sheet geometry and the parameters that govern ice flow (ice rheology) and slip across bedrock (bed friction). Existing ice-sheet models cannot independently initialize ice rheology and bed friction from conventional observations of surface velocities and glacier geometry. These non-unique solutions for ice-sheet initial state introduce substantial uncertainty into ice-sheet model simulations of past and future ice-sheet behavior.
Spatially-distributed vertical velocities of ice measured by this radar system can be directly compared to simulated vertical velocities produced by glacier models. Thus, this radar technology will allow ice rheology to be constrained independently from bed friction, leading to higher fidelity simulations of past and future ice-sheet behavior and more accurate projections of future sea level.
The new radar system will integrate two existing radars (the multi-channel coherent radio-echo depth sounder and the accumulation radar) developed by the Center for the Remote Sensing of Ice Sheets, but also includes new capabilities. An eight-element very high frequency (VHF; 140-215 MHz) array will have sufficient cross-track aperture to swath map internal layers and the ice-sheet base in three dimensions. A single ultra high frequency (UHF; 600-900 MHz) antenna will have the range and phase resolution to map internal layer displacement with 0.25 mm precision. The VHF array will create 3D mappings of layer geometry that enable measurements of vertical velocities by accounting for spatial offsets between repeat profiles and changing surface conditions. The vertical displacement measurement will then be made by determining the difference in radar phase response recorded by the UHF antenna for radar profiles collected at the same locations at different times. The UHF antenna will be dual-polarized and thus capable of isolating both components of complex internal reflections, which should enable inferences of ice crystal orientation fabric and widespread mapping of ice viscosity. Initial deployment of the radar will occur on the McMurdo Ice Shelf and Thwaites Glacier, Antarctica. The dual-band radar system technology and processing algorithms will be developed with versatile extensible hardware and user-friendly software, so that this system will serve as a prototype for a future community radar system.
This award supports a project to conduct laboratory experiments with a new, custom-fabricated cryo-friction apparatus to explore ice deformation oscillatory stresses like those experienced by tidewater glaciers in nature. The experimental design will explore the dynamic frictional properties of periodically loaded ice sliding on rock. Although the frictional strength of ice has been studied in the past these studies have all focused on constant rates of loading and sliding. The results of this work will advance understanding of ice stream dynamics by improving constraints on key material and frictional properties and allowing physics-based predictions of the amplitude and phase of glacier strain due to tidally induced stress variations. The intellectual merit of this work is that it will result in a better understanding of dynamic rheological parameters and will provide better predictive tools for dynamic glacier flow. The proposed experiments will provide dynamic material properties of ice and rock deformation at realistic frequencies experienced by Antarctic glaciers. The PIs will measure the full spectrum of material response from elastic to anelastic to viscous. The study will provide better constraints to improve predictive capability for glacier and ice-stream response to external forcing. The broader impacts of the work include providing estimates of material properties that can be used to broaden our understanding of glacier flow and that will ultimately be used for models of sea level rise and ice sheet stability. The ability to predict sea level in the near future is contingent on understanding of the processes responsible for flow of Antarctic ice streams and glaciers. Modulation of glacier flow by ocean tides represents a natural experiment that can be used to improve knowledge of ice and bed properties, and of the way in which these properties depend on time-varying forcings. Presently, the influence of tidal forcing on glacier movement is poorly understood, and knowledge of ice properties under tidal loading conditions is limited. The study will generate results of interest beyond polar science by examining phenomena that are of interest to seismology, glaciology and general materials science. The project will provide valuable research and laboratory experience for two undergraduate interns and will provide experience for the PI (currently a postdoc) in leading a scientific project. The three PIs are early career scientists. This proposal does not require fieldwork in the Antarctic.
This award supports a project intended to discover, through field observations and numerical simulations, how ocean wave-induced vibrations on ice shelves in general, and the Ross Ice Shelf (RIS), in particular, can be used (1) to infer spatial and temporal variability of ice shelf mechanical properties, (2) to infer bulk elastic properties from signal propagation characteristics, and (3) to determine whether the RIS response to infragravity (IG) wave forcing observed distant from the front propagates as stress waves from the front or is "locally" generated by IG wave energy penetrating the RIS cavity. The intellectual merit of the work is that ocean gravity waves are dynamic elements of the global ocean environment, affected by ocean warming and changes in ocean and atmospheric circulation patterns. Their evolution may thus drive changes in ice-shelf stability by both mechanical interactions, and potentially increased basal melting, which in turn feed back on sea level rise. Gravity wave-induced signal propagation across ice shelves depends on ice shelf and sub-shelf water cavity geometry (e.g. structure, thickness, crevasse density and orientation), as well as ice shelf physical properties. Emphasis will be placed on observation and modeling of the RIS response to IG wave forcing at periods from 75 to 300 s. Because IG waves are not appreciably damped by sea ice, seasonal monitoring will give insights into the year-round RIS response to this oceanographic forcing. The 3-year project will involve a 24-month period of continuous data collection spanning two annual cycles on the RIS. RIS ice-front array coverage overlaps with a synergistic Ross Sea Mantle Structure (RSMS) study, giving an expanded array beneficial for IG wave localization. The ice-shelf deployment will consist of sixteen stations equipped with broadband seismometers and barometers. Three seismic stations near the RIS front will provide reference response/forcing functions, and measure the variability of the response across the front. A linear seismic array orthogonal to the front will consist of three stations in-line with three RSMS stations. Passive seismic array monitoring will be used to determine the spatial and temporal distribution of ocean wave-induced signal sources along the front of the RIS and estimate ice shelf structure, with the high-density array used to monitor and localize fracture (icequake) activity. The broader impacts include providing baseline measurements to enable detection of ice-shelf changes over coming decades which will help scientists and policy-makers respond to the socio-environmental challenges of climate change and sea-level rise. A postdoctoral scholar in interdisciplinary Earth science will be involved throughout the course of the research. Students at Cuyamaca Community College, San Diego County, will develop and manage a web site for the project to be used as a teaching tool for earth science and oceanography classes, with development of an associated web site on waves for middle school students.
Understanding and being able to anticipate changes in the glaciological regime of the Ross Ice Shelf (RIS) and West Antarctic Ice Sheet (WAIS) are key to improving sea level rise projections due to ongoing ice mass loss in West Antarctica. The fate of the WAIS is a first-order climate change and global societal issue for this century and beyond that affects coastal communities and coastal infrastructure globally.
Ice shelf--ocean interactions include impacts from tsunami, ocean swell (10-30s period), and very long period ocean waves that impact ice shelves and produce vibrations that induce a variety of seismic signals detected by seismometers buried in the ice shelf surface layer, called firn. To study the wave-induced vibrations in the RIS, an extensive seismic array was deployed from Nov. 2014 to Nov. 2016. This unique seismometer array deployment on an ice shelf made continuous observations of the response of the RIS to ocean wave impacts from ocean swell and very long period waves. An extensive description of the project motivation and background (including photos and videos of the deployment operations), and list of published studies of analyses of the seismic data collected by this project, are available at the project website https://iceshelfvibes.ucsd.edu.
Two types of seismic signals detected by the seismic array are most prevalent: flexural gravity waves (plate waves) and icequakes (signals analogous to those from earthquakes but from fracturing of the ice).
Long period ocean waves flex the ice shelf at the same period as the ocean waves, with wave energy at periods greater than ocean swell more efficient at coupling energy into flexing the ice shelf. Termed flexural gravity waves or plate waves (Chen et al., 2018), their wave-induced vibrations can reach 100’s of km from the ice edge where they are excited, with long period wave energy propagating in the water layer below the shelf coupled with the ice shelf flexure. Flexural gravity waves at very long periods (> 300 s period), such as from tsunami impacts (Bromirski et al., 2017), can readily reach grounding zones and may play a role in long-term grounding zone evolution.
Swell-induced icequake activity was found to be most prevalent at the shelf front during the austral summer (January – March) when seasonal sea ice is absent and the associated damping of swell by sea ice is minimal (Chen et al., 2019).
In addition to the seismic array, a 14 station GPS (global positioning system) array was installed during seismic data retrieval and station servicing operations in October-November 2015. The GPS stations, co-located with seismic stations, extended from the shelf front southward to about 415 km at interior station RS18. Due to logistical constraints associated with battery weight during installation, only one station (at DR10) operated year-round. The GPS data collected give a detailed record of changes in iceflow velocity that are in close agreement with the increasing velocity estimates approaching the shelf front from satellite observations. Importantly, the year-round data at DR10 show an unprecedented seasonal cycle of changes in iceflow velocity, with a speed-up in northward (seaward) ice flow during Jan.-May and then a velocity decrease from June-Sep. (returning to the long-term mean flow velocity). This annual ice flow velocity change cycle has been attributed in part to seasonal changes in ice shelf mass (thinning, reducing buttressing) due to melting at the RIS basal (bottom) surface from intrusion of warmer ocean water (Klein et al., 2020).
International Federation of Digital Seismograph Networks
This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Thwaites and neighboring glaciers in the Amundsen Sea Embayment are rapidly losing mass in response to recent climate warming and related changes in ocean circulation. Mass loss from the Amundsen Sea Embayment could lead to the eventual collapse of the West Antarctic Ice Sheet, raising the global sea level by up to 2.5 meters (8 feet) in as short as 500 years. The processes driving the loss appear to be warmer ocean circulation and changes in the width and flow speed of the glacier, but a better understanding of these changes is needed to refine predictions of how the glacier will evolve. One highly sensitive process is the transitional flow of glacier ice from land onto the ocean to become a floating ice shelf. This flow of ice from grounded to floating is affected by changes in air temperature and snowfall at the surface; the speed and thickness of ice feeding it from upstream; and the ocean temperature, salinity, bathymetry, and currents that the ice flows into. The project team will gather new measurements of each of these local environmental conditions so that it can better predict how future changes in air, ocean, or the ice will affect the loss of ice to the ocean in this region. <br/> <br/>Current and anticipated near-future mass loss from Thwaites Glacier and nearby Amundsen Sea Embayment region is mainly attributed to reduction in ice-shelf buttressing due to sub-ice-shelf melting by intrusion of relatively warm Circumpolar Deep Water into sub-ice-shelf cavities. Such predictions for mass loss, however, still lack understanding of the dominant processes at and near grounding zones, especially their spatial and temporal variability, as well as atmospheric and oceanic drivers of these processes. This project aims to constrain and compare these processes for the Thwaites and the Dotson Ice Shelves, which are connected through upstream ice dynamics, but influenced by different submarine troughs. The team's specific objectives are to: 1) install atmosphere-ice-ocean multi-sensor remote autonomous stations on the ice shelves for two years to provide sub-daily continuous observations of concurrent oceanic, glaciologic, and atmospheric conditions; 2) measure ocean properties on the continental shelf adjacent to ice-shelf fronts (using seal tagging, glider-based and ship-based surveys, and existing moored and conductivity-temperature-depth-cast data), 3) measure ocean properties into sub-ice-shelf cavities (using autonomous underwater vehicles) to detail ocean transports and heat fluxes; and 4) constrain current ice-shelf and sub-ice-shelf cavity geometry, ice flow, and firn properties for the ice-shelves (using radar, active-source seismic, and gravimetric methods) to better understand the impact of ocean and atmosphere on the ice-sheet change. The team will also engage the public and bring awareness to this rapidly changing component of the cryosphere through a "Live from the Ice" social media campaign in which the public can follow the action and data collection from the perspective of tagged seals and autonomous stations.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This award supports a project to develop software that will allow researchers considering seismic or radar field surveys to test, ahead of time, whether the data they plan to collect will have sufficient resolution to measure the natural variations in the mechanical properties of ice, which determine the response of flowing ice to changing climatic conditions. The mechanical properties of ice depend largely on the temperature and the orientation of the crystals that make up the ice. The most accurate method for measuring ice crystal orientation and temperature is through drilling and direct analysis of an ice core. However, this method is very costly, time-consuming, and limited in spatial coverage. Geophysical techniques, such as seismic and radar, can cover much more area, but we have little knowledge about the practical limitations of these techniques as they relate to calculating mechanical properties. This project addresses that knowledge gap through construction of a computational toolbox that will allow accurate assessment of the ability of geophysical surveys to image crystal orientation and ice temperature. Researchers can then use these tools to adjust the field survey plans to maximize the return on investment. By working to improve the efficiency and effectiveness of future geophysical work related to glacial flow, this proposal will improve scientists? ability to quantify sea-level variations within the larger context of climate change. The project includes building new user-friendly, publicly accessible software and instructional modules. The work will provide training for graduate and undergraduate students, who will play a role in research and develop instructional materials.
Ice viscosity, the resistance of ice to flow, exerts significant control over ice velocity. Therefore, mapping ice viscosity is important for understanding the current and future behavior of glaciers and ice sheets. To do so, scientists must determine the temperature and crystal orientation fabric throughout the ice. Seismic and radar techniques can survey large areas quickly, and thus are promising, yet not fully tested, methods to efficiently measure the thermal and mechanical structure of flowing ice. As part of this project, scientists will develop and use a computational framework to quantify the degree to which seismic and radar techniques can resolve the crystal orientation fabric and temperature of streaming ice, and then test how sensitive ice flow is to the attendant uncertainty. To meet these goals, a numerical toolbox will be built which will allow the glacier/ice stream geometry and physical properties (temperature, crystal orientation fabric, density and acidity) to be varied. The toolbox will be capable of both creating synthetic radar and seismic profiles through forward modeling and inverting synthetic profiles to allow evaluation of how well geophysical techniques can image the original thermal and mechanical structure. These simulated radar and seismic data will allow scientists to better quantify the influence of the variability in mechanical properties of the ice on flow velocities and patterns. The results of this work will guide planning for future field campaigns, making them more effective and efficient. This project does not require fieldwork in the Antarctic.
In this project, the researchers processed and analyzed previously acquired seismic data from the POLENET-ANET array (2010-2011) to estimate variations in seismic shear-wave speed beneath the array. This investigation used a passive seismology method call ambient noise tomography, whereby repetitive seismic noise correlation functions were computed from records of Earth's ambient seismic noise field. The main results indicate a shallower Moho beneath Marie Byrd Land compared to previous studies in the region.
The Siple Coast in West Antarctica has undergone significant glacier changes over the last millenium. Several ice streams--rapidly moving streams of ice bordered by slow-moving ice--exist in this region that feeds into the Ross Ice Shelf. A long-term slowdown of Whillans Ice Stream appears to be occurring, and this is affecting the zone between the Whillans and Mercer Ice Streams. However, the consistency of this slowdown and resulting changes to the shear margin between the two ice streams are unknown. Shear zone stability represents a potentially critical control on mass balance of ice sheets, especially in regions of fast ice flow where basal shear stress is minimal. This project is therefore focused on understanding the spatial and temporal change of ice flow kinematics, shear margin structure, and shear margin location between Whillans and Mercer Ice Streams. A collateral benefit of and driver for this as a RAPID project is to test a method for assessing where crevassing will develop in this zone of steep velocity gradients. Such a method may benefit not only near-term field-project planning in the 2018-19 field season, but also planning for future fieldwork and traverses.<br/><br/>The team will use velocity estimates derived from available remote sensing datasets to determine transient velocity patterns and shifts in the shear-zone location over the last 20 years. This velocity time series will be incorporated into a large-scale ice-sheet model to estimate ice-sheet susceptibility to changing boundary conditions over the next century based on likely regional ice-flux scenarios. This approach is an extension of recent work conducted by the team that shows promise for predicting areas of changing high strain rates indicative of an active glacier shear margin. The ultimate objectives are to characterize the flow field of merging ice streams over time and investigate lateral boundary migration. This will provide a better understanding of shear-margin control on ice-shelf and up-glacier stability.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Our project is focused on better resolving the three-dimensional Antarctic mantle structure to further understanding of continental tectonics. To accomplish this, we are utilizing a full-waveform tomographic inversion technique that incorporates long-period ambient noise data and which has been shown to more accurately resolve structure than traditional tomographic approaches. The new models have been developed using the Alabama supercomputer facilities in conjunction with software developed at The University of Rhode Island. Our new tomographic results highlight the lithospheric structure beneath the Wilkes and Aurora Subglacial Basins in East Antarctica, where previous rifting episodes and mid-lithospheric discontinuities are being explored. In West Antarctica, the work is elucidating the easternmost extent of the West Antarctic Rift System as well as rifted structure and possible compositional variations within the Weddell Sea. We are also highlighting regions of Antarctica where tomographic resolution is still lacking and where future deployments are needed to improve resolution.
This project investigates a rapidly moving section of the West Antarctic Ice Sheet known as the Whillans Ice Stream. Ice streams and outlet glaciers are the major pathways for ice discharge from ice sheets into the ocean. Consequently, understanding ice stream dynamics, specifically the processes controlling the frictional resistance of ice sliding on sediments at its base, is essential for predictive modeling of how Earth's ice sheets will respond to a changing climate. Rather than flowing smoothly, Whillans Ice Stream advances in stick-slip cycles: brief periods of rapid sliding, equivalent to magnitude 7 earthquakes, alternating with much longer periods of repose. The PIs will perform simulations of these stick-slip cycles using computer codes originally developed for modeling tectonic earthquakes. By matching observed ice motions, the PIs will constrain the range of frictional processes acting at the base of the ice stream. An additional focus of the project is on brittle fracture processes in ice, expressed through seismic waves radiated by faulting and/or crevassing episodes that accompany the large-scale sliding events. An understanding of ice fracture provides a basis for assessing the susceptibility of ice shelves to rifting and catastrophic disintegration. Project results will be incorporated into outreach activities (from elementary school to community college events) as well as a polar science class for the California State Summer School for Mathematics and Science (COSMOS) program for high school students.<br/><br/>Simulations of the stick-slip cycle will employ 3D dynamic rupture models that simultaneously solve for the seismic wavefield and rupture process, consistent with elastodynamic material response and friction laws on the ice stream bed. Stresses and frictional properties will be varied to achieve consistency with surface GPS and broadband seismic data as well as borehole seismograms from the WISSARD project. The results will be interpreted using laboratory till friction experiments, which link velocity-weakening/strengthening behavior to temperature and water content, and to related experiments quantifying basal drag from ice flow over rough beds. The source mechanism of seismicity accompanying the slip events (shear faulting versus crevassing) will be determined using 3D waveform modeling in conjunction with mechanical models of the seismic source processes. This proposal does not require fieldwork in the Antarctic.
Accurate parameterizations of the air-sea fluxes of CO2 into the Southern Ocean, in particular at high wind velocity, are needed to better assess how projections of global climate warming in a windier world could affect the ocean carbon uptake, and alter the ocean heat budget at high latitudes. <br/><br/>Air-sea fluxes of momentum, sensible and latent heat (water vapor) and carbon dioxide (CO2) are to be measured continuously underway on cruises using micrometeorological eddy covariance techniques adapted to ship-board use. The measured gas transfer velocity (K) is then to be related to other parameters known to affect air-sea-fluxes.<br/><br/>A stated goal of this work is the collection of a set of direct air-sea flux measurements at high wind speeds, conditions where parameterization of the relationship of gas exchange to wind-speed remains contentious. The studies will be carried out at sites in the Southern Ocean using the USAP RV Nathaniel B Palmer as measurment platform. Co-located pCO2 data, to be used in the overall analysis and enabling internal consistency checks, are being collected from existing underway systems aboard the USAP research vessel under other NSF awards.
Non-Technical Project Description<br/><br/>This research will study Ultralow Velocity Zones (ULVZs), located in Earth's interior on top of the boundary between the Earth's solid mantle and its fluid outer core. The ULVZs are so named because seismic waves passing through the Earth slow down dramatically when they encounter these zones. While ULVZs are thought to be related to melting processes, there is growing controversy regarding their origin and the role they play in the thermal and chemical evolution of our planet. The ULVZs may include the largest magma chambers in Earth's interior. Currently, researchers have only searched 40% of Earth's core-mantle boundary for the ULVZs and this project would use existing seismic data to map an unexplored area under Antarctica and interpret the nature of the ULVZs. This project will support two graduate students and create opportunities for undergraduate involvement. Project results will be published in scientific journals, presented at science fairs, and communicated through the researchers' websites. The research team will also take part in the NSF-sponsored PolarTREC (Teachers and Researchers Exploring and Collaborating) program to communicate the science to students and the broader community. <br/><br/><br/>Technical Project Description<br/><br/>The National Research Council has highlighted high-resolution imaging of core-mantle boundary (CMB) structure as a high-priority, emerging research opportunity in the Earth Sciences since anomalies along the CMB likely play a critical role in the thermal and chemical evolution of our planet. Of particular interest are ultralow velocity zones (ULVZs), thin laterally-varying boundary layers associated with dramatic seismic velocity decreases and increases in density that are seen just above the CMB. Many questions exist regarding the origin of ULVZs, but incomplete seismic sampling of the lowermost mantle has limited our ability to map global ULVZ structure in detail. Using recently collected data from the Transantarctic Mountains Northern Network (TAMNNET) in Antarctica, this project will use core-reflected seismic phases (ScP, PcP, and ScS) to investigate ULVZ presence/absence along previously unexplored sections of the CMB. The data sampling includes the southern boundary of the Pacific Large Low Shear Velocity Province (LLSVP), a dominant feature in global shear wave tomography models, and will allow the researchers to examine a possible connection between ULVZs and LLSVPs. The main objectives of the project are to: 1) use TAMNNET data to document ULVZ presence/absence in previously unexplored regions of the lowermost mantle with array-based approaches; 2) model the data with 1- and 2.5-D wave propagation tools to obtain ULVZ properties and to assess trade-offs among the models; 3) use high quality events to augment the densely-spaced TAMNNET data with that from the more geographically-distributed, open-access Antarctic stations to increase CMB coverage with single-station analyses; and 4) explore the implications of ULVZ solution models for origin, present-day dynamics, and evolution, including their connection to other deep mantle structures, like LLSVPs.<br/><br/>The project aims to provide new constraints on ULVZs, including their potential connection to LLSVPs, and thus relates to other seismic and geodynamic investigations focused on processes within the Earth?s interior. This project will promote a new research collaboration between The University of Alabama (UA) and Arizona State University (ASU), each of which brings specific strengths to the initiative.
Sediments deposited by the Antarctic ice sheet are an archive of its history with time and help geologists to determine how the remote interior of the ice sheet has changed over the past several hundred thousand years. This project will focus on the formation and dynamics of moraines (accumulations of dirt and rocks that are incorporated in the glacier surface or have been pushed along by the glacier as it moves) near the blue ice area of Mt. Achernar in the central Transantarctic Mountains in Antarctica.. The study will improve basic understanding of the formation of these moraines. Fieldwork at the site will focus on imaging the internal structure of the moraine to determine the processes by which it, and others like it, form over time. Additional analyses will include measurements of ice flow and collection of rock samples to determine the timing of debris deposition and the changes in the sources of sediments from deep within the Antarctic continent. The project will provide both graduate and undergraduate students training in paleoclimate studies, geology, and numerical modeling approaches. The broader impacts of the proposed work include hands on training in the Earth Sciences for graduate and undergraduate students, collaboration with colleagues in New Zealand and Sweden to provide an international research experience for students from the US, and three educational modules to be delivered by student researchers regarding Antarctica's role in global environments. The research is societally relevant and multidisciplinary and the topics are ideal for sharing with the public. All research findings will be made publicly available to others via timely publication in high-impact, peer-reviewed journals and all data will be submitted to the National Snow and Ice Data Center, and excess samples will be provided to the U.S. Polar Rock Repository.<br/><br/>Direct observations of ice sheet history from the margins of Antarctica's polar plateau are essential for testing numerical ice sheet models, and the laterally extensive, blue-ice moraines of the Mt. Achernar Moraine complex in the central Transantarctic Mountains contain a unique and nearly untapped direct, quasi-continuous record of ice sheet change over multiple glacial cycles. The project objectives include improved understanding of processes and rates of blue ice moraine formation, as well as identifying the topographic, glaciological, and climatic controls on their evolution. Data to be collected with fieldwork in Antarctica include: imaging of internal ice structure with ground-penetrating radar, measurement of ice flow velocity and direction with a global positioning system (GPS) array, analysis of debris concentration and composition in glacier ice, state-of-the-art cosmogenic multi-nuclide analyses to determine exposure ages of moraine debris, mapping of trimlines and provenance analysis. Numerical model simulations, constrained by field data, will be used to evaluate the factors influencing changes in glacier flow that potentially impact the accumulation of the moraine debris. All together, the new data and modeling efforts will improve conceptual models of blue ice moraine formation, and thereby make them a more valuable proxy for developing a better understanding of the history of the ice sheet.
The geological structure and history of Antarctica remains poorly understood because much of the continental crust is covered by ice. Here, the PIs will analyze over 15 years of seismic data recorded by numerous projects in Antarctica to develop seismic structural models of the continent. The seismic velocity models will reveal features including crustal thinning due to rifting in West Antarctica, the structures associated with mountain building, and the boundaries between different tectonic blocks. The models will be compared to continents that are better understood geologically to constrain the tectonic evolution of Antarctica. In addition, the work will provide better insight into how the solid earth interacts with and influences the development of the ice sheet. Surface heat flow will be mapped and used to identify regions in Antarctica with potential melting at the base of the ice sheet. This melt can lead to reduced friction and lower resistance to ice sheet movement. The models will help to determine whether the earth response to ice mass changes occurs over decades, hundreds, or thousands of years. Estimates of mantle viscosity calculated from the seismic data will be used to better understand the pattern and timescales of the response of the solid earth to changes in ice mass in various parts of Antarctica.<br/><br/>The study will advance our knowledge of the structure of Antarctica by constructing two new seismic models and a thermal model using different but complementary methodologies. Because of the limitations of different seismic analysis methods, efforts will be divided between a model seeking the highest possible resolution within the upper 200 km depth in the well instrumented region (Bayesian Monte-Carlo joint inversion), and another model determining the structure of the entire continent and surrounding oceans extending through the mantle transition zone (adjoint full waveform inversion). The Monte-Carlo inversion will jointly invert Rayleigh wave group and phase velocities from earthquakes and ambient noise correlation along with P-wave receiver functions and Rayleigh H/V ratios. The inversion will be done in a Bayesian framework that provides uncertainty estimates for the structural model. Azimuthal anisotropy will be determined from Rayleigh wave velocities, providing constraints on mantle fabric and flow patterns. The seismic data will also be inverted for temperature structure, providing estimates of lithospheric thickness and surface heat flow. The larger-scale model will cover the entire continent as well as the surrounding oceans, and will be constructed using an adjoint inversion of phase differences between three component seismograms and synthetic seismograms calculated in a 3D earth model using the spectral element method. This model will fit the entire waveforms, including body waves and both fundamental and higher mode surface waves. Higher resolution results will be obtained by using double-difference methods and by incorporating Green's functions from ambient noise cross-correlation, and solving for both radial and azimuthal anisotropy.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This award supports a project to develop a better understanding of the relation between ice microstructure, impurities, and ice flow and their connection to climate history for the West Antarctic Ice Sheet (WAIS) ice core site. This work builds on several ongoing studies at Siple Dome in West Antarctica and Dome C in East Antarctica. It is well known that the microstructure of ice evolves with depth and time in an ice sheet. This evolution of microstructure depends on the ice flow field, temperature, and impurity content. The ice flow field, in turn, depends on microstructure, leading to feedbacks that create layered variation in microstructure that relates to climate and flow history. The research proposed here focuses on developing a better understanding of: 1) how ice microstructure evolves with time and stress in an ice sheet and how that relates to impurity content, temperature, and strain rate; 2) how variations in ice microstructure and impurity content affect ice flow patterns near ice divides (on both small (1cm to 1m) and large (1m to 100km) scales); and 3) in what ways is the spatial variability of ice microstructure and its effect on ice flow important for interpretation of climate history in the WAIS Divide ice core. The study will integrate existing ice core and borehole data with a detailed study of ice microstructure using Electron Backscatter Diffraction (EBSD) techniques and measurements of borehole deformation through time using Acoustic Televiewers. This will be the first study to combine these two novel techniques for studying the relation between microstructure and deformation and it will build on other data being collected as part of other WAIS Divide borehole logging projects (e.g. sonic velocity, optical dust logging, temperature and other measurements on the ice core including fabric measurements from thin section analyses as well as studies of ice chemistry and stable isotopes. The intellectual merit of the work is that it will improve interpretation of ice core data (especially information on past accumulation) and overall understanding of ice flow. The broader impacts are that the work will ultimately contribute to a better interpretation of ice core records for both paleoclimate studies and for ice flow history, both of which connect to the broader questions of the role of ice in the climate system. The work will also advance the careers of two early-career female scientists, including one with a hearing impairment disability. This project will support a PhD student at the UAF and provide research and field experience for two or three undergraduates at Dartmouth. The PIs plan to include a teacher on their field team and collaborate with UAF's "From STEM to STEAM" toward enhancing the connection between art and science.
Earth's geologic record shows that the great ice sheets have contributed to rates of sea-level rise that have been much higher than those observed today. That said, some sectors of the current Antarctic ice sheet are losing mass at large and accelerating rates. One of the primary challenges for placing these recent and ongoing changes in the context of geologically historic rates, and for making projections decades to centuries into the future, is the difficulty of observing conditions and processes beneath the ice sheet. Whereas satellite observations allow tracking of the ice-surface velocity and elevation on the scale of glacier catchments to ice sheets, airborne ice-penetrating radar has been the only approach for assessing conditions on this scale beneath the ice. These radar observations have been made since the late 1960s, but, because many different instruments have been used, it is difficult to track change in subglacial conditions through time. This project will develop the technical tools and approaches required to cross-compare among these measurements and thus open up opportunities for tracking and understanding changes in the critical subglacial environment. Intertwined with the research and student training on this project will be an outreach education effort to provide middle school and high school students with improved resources and enhanced exposure to geophysical, glaciological, and remote-sensing topics through partnership with the National Science Olympiad.<br/><br/>The radar sounding of ice sheets is a powerful tool for glaciological science with broad applicability across a wide range of cryosphere problems and processes. Radar sounding data have been collected with extensive spatial and temporal coverage across the West Antarctic Ice Sheet, including areas where multiple surveys provide observations that span decades in time or entire cross-catchment ice-sheet sectors. However, one major obstacle to realizing the scientific potential of existing radar sounding observations in Antarctica is the lack of analysis approaches specifically developed for cross-instrument interpretation. Radar is also spatially limited and often has gaps of many tens of kilometers between data points. Further work is needed to investigate ways of extrapolating radar information beyond the flight lines. This project aims to directly address these barriers to full utilization of the collective Antarctic radar sounding record by developing a suite of processing and interpretation techniques to enable the synthesis of radar sounding data sets collected with systems that range from incoherent to coherent, single-channel to swath-imaging, and digital to optically-recorded radar sounders. This includes a geostatistical analysis of ice sheet and radar datasets to make probabilistic predictions of conditions at the bed. The approaches will be assessed for two target regions: the Amundsen Sea Embayment and the Siple Coast. All pre- and post-processed sounding data produced by this project will be publically hosted for use by the wider research community.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Intellectual Merit: <br/><br/>The PIs propose to establish an ice shelf network of 18 broadband seismographs deployed for two years to obtain high-resolution, mantle-scale images of Earth structure underlying the Ross Sea Embayment. Prior marine geophysical work provides good crustal velocity models for the region seaward of the ice shelf but mantle structure is constrained by only low-resolution images due to the lack of prior seismic deployments. The proposed stations would be established between Ross Island and Marie Byrd Land. These stations would fill a major geological gap within this extensional continental province and would link data sets collected in the Transantarctic Mountain transition/Plateau region (TAMSEIS) and in West Antarctica (POLENET) to improve resolution of mantle features beneath Antarctica. The proposed deployment would allow the PIs to collect seismic data without the expense, logistical complexity, and iceberg hazards associated with ocean bottom seismograph deployments. Tomographic models developed from the proposed data will be used to choose between competing models for the dynamics of the Ross Sea. In particular, the PIs will investigate whether a broad region of hot mantle, including the Eastern Ross Sea, indicates distributed recent tectonic activity, which would call into question models proposing that Eastern Ross extension ceased during the Mesozoic. These data will also allow the PIs to investigate the deeper earth structure to evaluate the possible role of mantle plumes and/or small-scale convection in driving regional volcanism and tectonism across the region.<br/><br/>Broader impacts: <br/><br/>Data from this deployment will be of broad interdisciplinary use. This project will support three graduate and two undergraduate students. At least one student will be an underrepresented minority student. The PIs will interact with the media and include K-12 educators in their fieldwork.
This award supports an integrated field observation, remote sensing and numerical modeling study of the McMurdo Shear Zone (SZ). The SZ is a 5-10 km wide strip of heavily crevassed ice that separates the McMurdo and Ross ice shelves, and is an important region of lateral support for the Ross Ice Shelf. Previous radar and remote sensing studies reveal an enigmatic picture of the SZ in which crevasses detected at depth have no apparent surface expression, and have orientations which are possibly inconsistent with the observed flow field. In the proposed work, we seek to test the hypothesis that the SZ is a zone of chaotic Lagrangian mixing with (intersecting) buried crevasses which leads to rheological instability, potentially allowing large scale velocity discontinuities. The work will involve detailed field-based observations of crevasse distributions and structure using ground-penetrating radar, and GPS and remote sensing observations of the flow and stress field in the SZ. Because of the hazardous nature of the SZ, the radar surveys will be conducted largely with the aid of a lightweight robotic vehicle. Observations will be used to develop a finite element model of ice shelf shear margin behavior. The intellectual merit of this project is an increased understanding of ice shelf shear margin dynamics. Shear margins play a key role in ice shelf stability, and ice shelves in turn modulate the flux of ice from the ice sheet across the grounding line to the ocean. Insights from this project will improve large-scale models being developed to predict ice sheet evolution and future rates of sea level rise, which are topics of enormous societal concern. The broader impacts of the project include an improved basis for US Antarctic Program logistics planning as well as numerous opportunities to engage K-12 students in scientific discovery. Intensified crevassing in the shear zone between the Ross and McMurdo ice shelves would preclude surface crossing by heavy traverse vehicles which would lead to increased costs of delivering fuel to South Pole and a concomitant loss of flight time provided by heavy-lift aircraft for science missions on the continent. Our multidisciplinary research combining glaciology, numerical modeling, and robotics engineering is an engaging way to show how robotics can assist scientists in collecting hazardous field measurements. Our outreach activities will leverage Dartmouth's current NSF GK-12 program, build on faculty-educator relationships established during University of Maine's recent GK-12 program, and incorporate project results into University of Maine's IDEAS initiative, which integrates computational modeling with the existing science curriculum at the middle school level. This award has field work in Antarctica.
Meltwater lakes that sit on top of Antarctica's floating ice shelves have likely contributed to the dramatic changes seen in Antarctica's glacial ice cover over the past two decades. In 2002, the 1,600-square-kilometer Larsen B Ice Shelf located on the Eastern side of the Antarctic Peninsula, for example, broke into thousands of small icebergs, which subsequently floated away as a result of the formation of more than 2,000 meltwater lakes on its surface over the prior decade. Our research project addresses the reasons why surface lakes form on Antarctic ice shelves and how these surface lakes subsequently contribute to the forces that may contribute to ice-shelf breakup like that of the Larsen B. Our project focuses primarily on making precise global positioning system (GPS) measurements of ice-shelf bending in response to the filling and draining of a surface lake on the McMurdo Ice Shelf. The observed vertical displacements (on the order of tens of centimeters) in response to lake filling will be used to calibrate and test computer simulation models that predict the response of ice shelves to surface lakes more generally and in a variety of future climate conditions. Our project will make hourly measurements of both vertical ice-shelf movements (using GPS surveying instruments) and of temperature and sunlight conditions (that drive melting) around a surface lake located close to the McMurdo Station airfield. Following this initial data-gathering effort, computer simulations and other more theoretical analysis will be undertaken to determine the suitability of the chosen McMurdo Ice Shelf surface lake as a field-laboratory for continued study. Ultimately, the research will contribute to understanding of the glaciological processes that link climate change to rising sea level. A successful outcome of the research will allow glaciologists to better assess the processes that promote or erode the influence Antarctic ice shelves have in controlling the transfer of ice from the interior of Antarctica into the ocean. The project will undertake two outreach activities: (1) web-posting of a field-activity journal and (2) establishing an open-access glaciological teaching and outreach web-sharing site for the International Glaciological Society.<br/><br/>The proposed project seeks to experimentally verify a theory of ice-shelf instability proposed to explain the explosive break-up of Larsen B Ice Shelf in 2002. This theory holds that the filling and draining of supraglacial lakes on floating ice shelves induces sufficient flexure stress within the ice to (a) induce upward/downward propagating fractures originating at the base/surface of the ice shelf that (b) dissect the ice shelf into fragments that tend to have widths less than about half the ice thickness. The significance of narrow widths is that they promote capsize of the ice-shelf fragments during the break-up process. This capsize releases large amounts of gravitational potential energy (comparable to thousands of kilotons of TNT for the Larsen B Ice Shelf) thereby promoting explosiveness of the Larsen B event. The observational motivation for experimentally verifying the surface-lake mechanism for ice-shelf breakup is based on the fact that >2,000 surface lakes developed on the Larsen B Ice Shelf in the decade prior to its break up, and that these lakes were observed (via satellite imagery) to drain in a coordinated fashion during the day prior to the initiation of the break up.<br/><br/>The field-observation component of the project will focus on a supraglacial lake on the McMurdo Ice Shelf where there is persistent summer season surface melting. The lake will be studied during a single provisional field season to determine whether grooming of surrounding surface streams and shorelines with heavy construction equipment will allow surface water to be manually encouraged to fill the lake. If successfully encouraged to develop, the McMurdo Ice Shelf surface lake will allow measurements of key ice-shelf flexure and stress variables needed to develop the theory of ice-shelf surface lakes without having to access the much more logistically demanding surface lakes of ice-shelves located elsewhere in Antarctica. Data to be gathered during the 6-week provisional field season include: energy- and water-balance parameters determining how the surface lake grows and fills, and various global positioning system measurements of the vertical bending of the ice sheet in response to the changing meltwater load contained within the surface lake. These data will be used to (1) constrain a computer model of viscoelastic flexure and possible fracture of the ice shelf in response to the increasing load of meltwater in the lake, and (2) determine whether continued study of the incipient surface-meltwater lake features on the McMurdo Ice Shelf provides a promising avenue for constraining the more-general behavior of surface meltwater lakes on other ice shelves located in warmer parts of Antarctica. Computer models constrained by the observational data obtained from the field project will inform energy- and water-balance models of ice shelves in general, and allow more accurate forecasts of changing ice-shelf conditions surrounding the inland ice of Antarctica. The project will create the first-ever ground-based observations useful for spawning the development of models capable of predicting viscoelastic and fracture behavior of ice shelves in response to supraglacial lake evolution, including slow changes due to energy balance effects, as well as fast changes due to filling and draining.
Ice-core records are critical to understanding past climate variations. An Antarctic ice core currently being drilled at the South Pole will allow detailed investigation of atmospheric gases and fill an important gap in understanding the pattern of climate variability across Antarctica. Critical to the interpretation of any ice core are: 1) accurate chronologies for both the ice and the trapped gas and 2) demonstration that records from the ice core reliably reflect climate. The proposed research will improve the ice and gas chronologies by making measurements of snow compaction in the upstream catchment in order to constrain age models of the ice. These measurements will be a key data set needed for better understanding and predicting time-varying conditions in the upper part of the ice sheet. The research team will measure the modern spatial gradients in accumulation rate, surface temperature, and water stable isotopes from shallow ice cores in the upstream catchment in order to determine the climate history from the ice-core record. The new ice-flow measurements will make it possible to define the path of ice from upstream to the South Pole ice-core drill site to assess spatial gradients in snowfall and to infer histories of snowfall from internal layers within the ice sheet. The project will be led by an early-career scientist, provide broad training to graduate students, and engage in public outreach on polar science.<br/><br/>Ice-core records of stable isotopes, aerosol-born particles, and atmospheric gases are critical to understanding past climate variations. The proposed research will improve the ice and gas chronologies in the South Pole ice core by making in situ measurements of firn compaction in the upstream catchment to constrain models of the gas-age ice-age difference. The firn measurements will be a key data set needed to form a constitutive relationship for firn, and will drive better understanding and prediction of transient firn evolution. The research team will measure the modern gradients in accumulation rate, surface temperature, and water stable isotopes in the upstream catchment to separate spatial (advection) variations from temporal (climate) variations in the ice-core records. The ice-flow measurements will define the flowline upstream of the drill site, assess spatial gradients in accumulation, and infer histories of accumulation from radar-observed internal layers. Results will directly enhance interpretation of South Pole ice-core records, and also advance understanding of firn densification and drive next-generation firn models.
Intellectual Merit:<br/>This project will produce a new compilation of Ross Sea seismic stratigraphy, including new interpretations, that can be used to provide boundary conditions on the tectonic and glacial evolution of West Antarctica and the Ross Sea. The principal goals include compilation of, and interpretation of, all available existing seismic reflection data for the Western Ross Sea, coupled with geophysical modeling to produce paleo-bathymetric reconstructions for the entire 800 km-wide Ross Sea. Specific tasks will include: extending existing work on mapping travel time to reflectors, identifying relations in the seismic data that indicate subsidence through sea level, constructing velocity models for converting travel time to thickness, and using the velocity models to estimate density and porosity of sediments for backstripping analysis. Modeling/backstripping efforts will be used to constrain past bathymetry. Digital interpretations and stratigraphic grids will be provided as supplements to publications. In that way the results of this study can be used in thermal subsidence modeling and restoration of eroded rock to other parts of Ross Embayment and Marie Byrd Land by others. Digital products may be provided in advance of publication to modelers in a way that will not hurt publication chances.<br/><br/>Broader impacts: <br/>The results of this work will be important for paleo-geographic reconstructions of Antarctica and will therefore be of use to a broad range of researchers, particularly those working in the Ross Sea region. The digital products can be used to test models for the past fluctuations of West Antarctic ice sheets, and in planning for future sediment drilling projects. Two undergraduates to be chosen from applicants will be involved in summer internships held at the University of Rhode Island. Outreach will also include a new website and one or more Wikipedia entries related to Ross Sea sub-sea floor characteristics. The project includes an international collaboration with Dr. Chiara Sauli and others at Instituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS) in Italy.
Waddington/1246045 <br/><br/>This award supports a project to investigate the onset and growth of folds and other disturbances seen in the stratigraphic layers of polar ice sheets. The intellectual merit of the work is that it will lead to a better understanding of the grain-scale processes that control the development of these stratigraphic features in the ice and will help answer questions such as what processes can initiate such disturbances. Snow is deposited on polar ice sheets in layers that are generally flat, with thicknesses that vary slowly along the layers. However, ice cores and ice-penetrating radar show that in some cases, after conversion to ice, and following lengthy burial, the layers can become folded, develop pinch-and-swell structures (boudinage), and be sheared by ice flow, at scales ranging from centimeters to hundreds of meters. The processes causing these disturbances are still poorly understood. Disturbances appear to develop first at the ice-crystal scale, then cascade up to larger scales with continuing ice flow and strain. Crystal-scale processes causing distortions of cm-scale layers will be modeled using Elle, a microstructure-modeling package, and constrained by fabric thin-sections and grain-elongation measurements from the West Antarctic Ice Sheet divide ice-core. A full-stress continuum anisotropic ice-flow model coupled to an ice-fabric evolution model will be used to study bulk flow of anisotropic ice, to understand evolution and growth of flow disturbances on the meter and larger scale. Results from this study will assist in future ice-core site selection, and interpretation of stratigraphy in ice cores and radar, and will provide improved descriptions of rheology and stratigraphy for ice-sheet flow models.The broader impacts are that it will bring greater understanding to ice dynamics responsible for stratigraphic disturbance. This information is valuable to constrain depth-age relationships in ice cores for paleoclimate study. This will allow researchers to put current climate change in a more accurate context. This project will provide three years of support for a graduate student as well as support and research experience for an undergraduate research assistant; this will contribute to development of talent needed to address important future questions in glaciology and climate change. The research will be communicated to the public through outreach events and results from the study will be disseminated through public and professional meetings as well as journal publications. The project does not require field work in Antarctica.
This award supports a project to use the Roosevelt Island ice core as a glaciological dipstick for the eastern Ross Sea. Recent attention has focused on the eastern Ross Embayment, where there are no geological constraints on ice thickness changes, due to the lack of protruding rock "dipsticks" where the ice sheet can leave datable records of high stands. Recent work has shown how dated ice cores can be used as dipsticks to derive ice-thickness histories. Partners from New Zealand and Denmark will extract an ice core from Roosevelt Island during the 2010-2011 and 2011-12 austral summers. Their science objective is to contribute to understanding of climate variability over the past 40kyr. The science goal of this project is not the climate record, but rather the history of deglaciation in the Ross Sea. The new history from the eastern Ross Sea will be combined with the glacial histories from the central Ross Sea (Siple Dome and Byrd) and existing and emerging histories from geologic and marine records along the western Ross Sea margin and will allow investigators to establish an updated, self-consistent model of the configuration and thickness of ice in the Ross Embayment during the LGM, and the timing of deglaciation. Results from this work will provide ground truth for new-generation ice-sheet models that incorporate ice streams and fast-flow dynamics. Realistic ice-sheet models are needed not only for predicting the response to future possible environments, but also for investigating past behaviors of ice sheets. This research contributes to the primary goals of the West Antarctic Ice Sheet Initiative as well as the IPY focus on ice-sheet history and dynamics. It also contributes to understanding spatial and temporal patterns of climate change and climate dynamics over the past 40kyr, one of the primary goals of the International Partnerships in Ice Core Sciences (IPICS). The project will help to develop the next generation of scientists and will contribute to the education and training of two Ph.D. students. All participants will benefit from the international collaboration, which will expose them to different field and laboratory techniques and benefit future collaborative work. All participants are involved in scientific outreach and undergraduate education, and are committed to fostering diversity. Outreach will be accomplished through regularly scheduled community and K-12 outreach events, talks and popular writing by the PIs, as well as through University press offices.
This award provides support for "Investigating (Un)Stable Sliding of Whillans Ice Stream and Subglacial Water Dynamics Using Borehole Seismology: A proposed Component of the Whillans Ice Stream Subglacial Access and Research Drilling" from the Antarctic Integrated Systems Science (AISS) program in the Office of Polar Programs at NSF. The project will use the sounds naturally produced by the ice and subglacial water to understand the glacial dynamics of the Whillans Ice Stream located adjacent to the Ross Ice Shelf in Antarctica.<br/><br/>Intellectual Merit: The transformative component of the project is that in addition to passive surface seismometers, the team will deploy a series of borehole seismometers. Englacial placement of the seismometers has not been done before, but is predicted to provide much better resolution (detection of smaller scale events as well as detection of a much wider range of frequencies) of the subglacial dynamics. In conjunction with the concurrent WISSARD (Whillans Ice Stream Subglacial Access and Research Drilling) project the team will be able to tie subglacial processes to temporal variations in ice stream dynamics and mass balance of the ice stream. The Whillans Ice Stream experiences large changes in ice velocity in response to tidally triggered stick-slip cycles as well as periodic filling and draining of subglacial Lake Whillans. The overall science goals include: improved understanding of basal sliding processes and role of sticky spots, subglacial lake hydrology, and dynamics of small earthquakes and seismic properties of ice and firn.<br/><br/>Broader Impact: Taken together, the research proposed here will provide information on basal controls of fast ice motion which has been recognized by the IPCC as necessary to make reliable predictions of future global sea-level rise. The information collected will therefore have broader implications for global society. The collected information will also be relevant to a better understanding of earthquakes. For outreach the project will work with the overall WISSARD outreach coordinator to deliver information to three audiences: the general public, middle school teachers, and middle school students. The project also provides funding for training of graduate students, and includes a female principal investigator.
Many of the natural processes that modify the landscape inhabited by humans occur over very long timescales, making them difficult to observe. Exceptions include rare catastrophic events such as earthquakes, volcanic eruptions, and floods that occur on short timescales. Many significant processes that affect the land and landscape that we inhabit operate on time scales imperceptible to humans. One of these processes is wind transport of sand, with related impacts to exposed rock surfaces and man-made objects, including buildings, windshields, solar panels and wind-farm turbine blades. The goal of this project is to gain an understanding of wind erosion processes over long timescales, in the Antarctic Dry Valleys, a cold desert environment where there were no competing processes (such as rain and vegetation) that might mask the effects. The main objective is recovery of rock samples that were deployed in 1983/1984 at 11 locations in the Antarctic Dry Valleys, along with measurements on the rock samples and characterization of the sites. In the late 1980s and early 1990s some of these samples were returned and indicated more time was needed to accumulate information about the timescales and impacts of the wind erosion processes. This project will allow collection of the remaining samples from this experiment after 30 to 31 years of exposure. The field work will be carried out during the 2014/15 Austral summer. The results will allow direct measurement of the abrasion rate and hence the volumes and timescales of sand transport; this will conclude the longest direct examination of such processes ever conducted. Appropriate scaling of the results may be applied to buildings, vegetation (crops), and other aspects of human presence in sandy and windy locations, in order to better determine the impact of these processes and possible mitigation of the impacts. The project is a collaborative effort between a small business, Malin Space Science Systems (MSSS), and the University of Washington (UW). MSSS will highlight this Antarctic research on its web site, by developing thematic presentations describing our research and providing a broad range of visual materials. The public will be engaged through daily updates on a website and through links to material prepared for viewing in Google Earth. UW students will be involved in the laboratory work and in the interpretation of the results.<br>Technical Description of Project:<br>The goal of this project is to study the role of wind abrasion by entrained particles in the evolution of the McMurdo Dry Valleys in the Transantarctic Mountains. During the 1983 to 1984 field seasons, over 5000 rock targets were installed at five heights facing the 4 cardinal directions at 10 locations (with an additional site containing fewer targets) to study rates of physical weathering due primarily to eolian abrasion. In addition, rock cubes and cylinders were deployed at each site to examine effects of chemical weathering. The initial examination of samples returned after 1, 5, and 10 years of exposure, showed average contemporary abrasion rates consistent with those determined by cosmogenic isotope studies, but further stress that "average" should not be interpreted as meaning "uniform." The samples will be characterized using mass measurements wtih 0.01 mg precision balances, digital microphotography to compare the evolution of their surface features and textures, SEM imaging to examine the micro textures of abraded rock surfaces, and optical microscopy of thin sections of a few samples to examine the consequences of particle impacts extending below the abraded surfaces. As much as 60-80% of the abrasion measured in samples from 1984-1994 appears to have occurred during a few brief hours in 1984. This is consistent with theoretical models that suggest abrasion scales as the 5th power of wind velocity. The field work will allow return of multiple samples after three decades of exposure, which will provide a statistical sampling (beyond what is acquired by studying a single sample), and will yield the mass loss data in light of complementary environmental and sand kinetic energy flux data from other sources (e.g. LTER meteorology stations). This study promises to improve insights into one of the principal active geomorphic process in the Dry Valleys, an important cold desert environment, and the solid empirical database will provide general constraints on eolian abrasion under natural conditions.
Intellectual Merit: <br/>To understand Antarctica's geodynamic development, origin of the Transantarctic Mountains (TAMs) and the Wilkes Subglacial Basin (WSB) must be determined. Current constraints on the crustal thickness and seismic velocity structure beneath the TAMs and the WSB are limited, leading to uncertainties over competing geologic models that have been suggested to explain their formation. The PI proposes to broaden the investigation of this region with a new seismic deployment, the Transantarctic Mountains Northern Network (TAMNNET), a 15-station array across the northern TAMs and the WSB that will fill a major gap in seismic coverage. Data from TAMNNET will be combined with that from other previous and ongoing seismic initiatives and will be analyzed using proven modeling techniques to generate a detailed image of the seismic structure beneath the TAMs and the WSB. These data will be used to test three fundamental hypotheses: the TAMs are underlain by thickened crust, the WSB is characterized by thin crust and thick sedimentary layers, and slow seismic velocities are prevalent along strike beneath the TAMs. Results from the proposed study will provide new information about the nature and formation of the Antarctic continent and will help to advance our understanding of important global processes, such as mountain building and basin formation. The proposed research also has important implications for other fields of Antarctic science. Constraints on the origin of the TAMs uplift are critical for climate and ice sheet models, and new information acquired about variations in the thermal and lithospheric structure beneath the TAMs and the WSB will be used to estimate critical ice sheet boundary conditions. <br/><br/>Broader impacts: <br/>This project incorporates three educational strategies to promote the integration of teaching and research. Graduate students will be trained in Antarctic tectonics and seismic processing through hands-on fieldwork and data analysis techniques. Through NSF's PolarTREC program, the PI will work with K-12 educators. The PI will develop a three-week summer field program for recent high school graduates and early-career undergraduate students from Minority-Serving Institutions in Alabama. Teaching materials and participant experiences will be shared with individuals outside the program via a course website. Following the summer program, participants who were particularly engaged will be offered internship opportunities to analyze TAMNNET data. In successive years, the students could assist with fieldwork and could be recruited into the graduate program under the PI's supervision. Ultimately, this program would not only serve to educate undergraduates but would also generate a pipeline of underrepresented students into the geosciences.
1043649/Braun<br/><br/><br/>This award supports a project to determine the current mass balance of selected glaciers of the Western Antarctic Peninsula (WAP) and adjacent islands, including King George Island and Livingston Island. A major goal is to discriminate the climatic and dynamic components of the current mass budget. The dynamic component will be assessed using a flux gate approach. Glacier velocity fields will be derived by offset tracking on repeat SAR satellite imagery, and ice thicknesses across grounding lines or near terminus will be approximated from a new methods based on mass continuity. The surface mass balance will be computed from a spatially distributed temperature-index mass-balance model forced by temperature and precipitation data from regional climate models. Our results will provide improved mass budget estimates of Western Antarctic Peninsula glaciers and a more thorough understanding of the ratio between the climatic and dynamic components. The techniques to be developed will be applicable to other glaciers in the region allowing regional scale mass budgets to be derived. The broader impacts of this work are that glacier wastage is currently the most important contributor to global sea level rise and the Antarctic Peninsula has been identified as one of the largest single contributors. Future sea-level rise has major societal, economic and ecological implications. The activity will foster new partnerships through collaboration with European and South American colleagues. The project will form the base of of a postdoctoral research fellowship. It will also provide training of undergraduate and graduate students through inclusion of data and results in course curriculums.
Pettit/0948247<br/><br/>This award supports a project to study of the relationship between fabric and climate for the ice near the EPICA Dome C ice core site, East Antarctica. The work builds on an ongoing study at Siple Dome, West Antarctica and takes advantage of collaborations with European scientists and access to the Dome C borehole to make measurements of sonic velocity. The intellectual merit of the project is that a better understanding of how fabric preserves past climate information can improve models of the ice flow near ice core sites and the interpreta-tion of ice core data (particularly paleo-accumulation), and it may allow us to extract climate information directly from fabric data. In addition, because ice deformation is sensitive to the orientation of crystals, ice flow patterns are sensitive to the fabric. Thus, variations in the fabric between glacial and interglacial ice can affect how ice deforms and how fabric in the ice sheet develops. The Dome C site is particularly important for answering these questions, because the ice core shows evidence of eight glacial cycles, not just one as found at Siple Dome or the Greenland sites. The research will improve the understanding of the proxy relationship between sonic-velocity data and fabric; will help to model the pattern of ice flow caused by the fabric variation between glacial and interglacial time periods using these data, existing ice core chemistry and existing and new thin section data, improved surface strain data, and borehole deformation data; and will help to better understand the positive feedback mechanism that enhances fabric (and corresponding rheological) variability through a focused study of several climate transitions and the associated fabric changes. Borehole compressional-wave sonic-velocity will be measured which will complement the sonic-velocity data that already exist for boreholes in Greenland and West Antarctica. These will be the first sonic-velocity measurements in East Antarctica and the first measurements that extend for more than a single glacial/interglacial transition. The project will ultimately contribute to better interpretation of ice core records for both paleoclimate studies and for ice flow history, both of which connect to the broader questions of the role of ice in the climate system. This project will also strengthen the international collaborations within the paleoclimate and ice sheet modeling communities. This project will partially support a graduate student at the University of Alaska Fairbanks who is currently working on modeling ice including anisotropy and it will support the growth of a young scientist through a Post-Doc position. This Post Doc will gain important experience collaborating with the EPICA scientists in studying the climate-fabric relationship. Erin Pettit is active in field-science education for high school students, under-graduates, teachers, and adults. This project will help support the continued development and enhancement of Girls on Ice a program that encourages young women to explore science and the natural world.
The stability of the marine West Antarctic Ice Sheet (WAIS) remains an important, unresolved problem for predicting future sea level change. Recent studies indicate that the mass balance of the ice sheet today may be negative or positive. The apparent differences may stem in part from short-term fluctuations in flow. By comparison, geologic observations provide evidence of behavior over much longer time scales. Recent work involving glacial-geologic mapping, dating and ice-penetrating radar surveys suggests that deglaciation of both the Ross Sea Embayment and coastal Marie Byrd Land continued into the late Holocene, and leaves open the possibility of ongoing deglaciation and grounding-line retreat. However, previous work in the Ross Sea Embayment was based on data from just three locations that are all far to the north of the present grounding line. Additional data from farther south in the Ross Sea Embayment are needed to investigate whether recession has ended, or if the rate and pattern of deglaciation inferred from our previous study still apply to the present grounding line. This award provides support to reconstruct the evolution of Reedy Glacier, in the southern Transantarctic Mountains, since the Last Glacial Maximum (LGM). Because Reedy Glacier emerges from the mountains above the grounding line, its surface slope and elevation should record changes in thickness of grounded ice in the Ross Sea up to the present day. The deglaciation chronology of Reedy Glacier therefore can indicate whether Holocene retreat of the WAIS ended thousands of years ago, or is still continuing at present. This integrated glaciologic, glacial-geologic, and cosmogenic-isotope exposure- dating project will reconstruct past levels of Reedy Glacier. Over two field seasons, moraines will be mapped, dated and correlated at sites along the length of the glacier. Radar and GPS measurements will be made to supplement existing ice thickness and velocity data, which are needed as input for a model of glacier dynamics. The model will be used to relate geologic measurements to the grounding-line position downstream. Ultimately, the mapping, dating and ice-modeling components of the study will be integrated into a reconstruction that defines changes in ice thickness in the southern Ross Sea since the LGM, and relates these changes to the history of grounding-line retreat. This work directly addresses key goals of the West Antarctic Ice Sheet Initiative, which are to understand the dynamics, recent history and possible future behavior of the West Antarctic Ice Sheet.
This award supports a project to examine and test a 3-step process model for explosive ice-shelf disintegration that emerged in the wake of the recent 2008 and 2009 events of the Wilkins Ice Shelf. The model is conditioned on Summer melt-driven increase in free-surface water coupled with surface and basal crevasse density growth necessary to satisfy an "enabling condition". Once met, the collapse proceeds through three steps: (Step 1), calving of a "leading phalanx" of tabular icebergs from the seaward ice front of the ice shelf which creates in its wake a region, called a "mosh pit" (located between the phalanx and the edge of the intact ice shelf), where ocean surface-gravity waves are trapped by reflection (a fast mechanically enabled process), (Step 2), and a rapid, runaway conversion of gravitational potential energy into ocean-wave energy by iceberg capsize and fragmentation within the "mosh pit" which leads to further wave-induced calving, capsize and fragmentation (Step 3). The project will be conducted by a multidisciplinary team and will focus on theoretical model development, numerical method development and application and new observations. The project will participate in both the Research Experience for Undergraduates program in the Physics Department and the Summer Research Early Identification Program (SR-EIP) that fosters participation in research by underrepresented minorities. The PIs, postdoctoral scholar, graduate students and unfunded participants will develop a graduate-level seminar/tutorial to introduce advanced computational methods to glaciology. A postdoctoral scholar and graduate student will be trained in new research techniques during the project.
This award supports a program of ground-based geophysical measurements to map in detail the spatial variations of ice flow, accumulation rate, internal layering and ice thickness at the sites which have been identified as promising locations to drill the next deep ice core in West Antarctica. The main investigative tools are a high- and low-frequency ice penetrating radar to image the topography of internal layers and the bed, repeat GPS surveys to calculate the present day surface velocity field, synthetic aperture radar (SAR) interferometry to calculate the regional velocity field, and short firn cores to calculate present day accumulation rates. The data which will be collected will be used to as input to time-dependent ice flow and temperature models that will predict depth variation of age, layer thickness, and temperature. As well as yielding an estimate of expected conditions before drilling, the mismatch between the model prediction and data eventually recovered from the core will help infer thinning and climate (accumulation and temperature) histories for the region. The Western Divide, between the Ross Sea Embayment and the Amundsen Sea, has been identified as the region which best satisfies the criteria which have been established for a deep drilling site. Preliminary site selection using airborne geophysical methods has identified several potential drill sites on the Western Divide where the climate record should be best preserved. This work will contribute in a major way to the final site selection for the next deep ice core in West Antarctica.
Intellectual Merit: <br/>Numerous candidate models for the geologic processes that have shaped the Antarctic continent have been proposed. To discriminate between them, detailed images of the upper mantle structure are required; however, the only existing continental-scale images of seismic structure beneath Antarctica lack sufficient resolution to delineate important, diagnostic features. Using newly available data from various Antarctic seismic networks, the PI will employ the adaptively parameterized tomography method to develop a high-resolution, continental-scale seismic velocity model for all of Antarctica. The proposed tomography method combines regional seismic travel-time datasets in the context of a global model to create a composite continental-scale model of upper mantle structure. The proposed method allows for imaging of finer structure in areas with better seismic ray coverage while simultaneously limiting the resolution of features in regions with less coverage. This research will help advance understanding of important global processes, such as craton formation, mountain building, continental rifting and associated magmatism. Additionally, the proposed research will have important impacts on other fields of Antarctic science. Constraints provided by tomographic results can be used to develop thermal models of the lithosphere needed to characterize the history and dynamics of ice sheets. Also, further constraints on lithospheric structure are required by climate-ice models, which are focused on understanding the cooling history of the Antarctic continent.<br/><br/>Broader impacts: <br/>The PI is a new faculty member at the University of Alabama after having been funded as a National Science Foundation Postdoctoral Fellow in Polar Regions Research. The graduate student supported by this project is new to polar research. Through the UA-Tuscaloosa Magnet School partnership program, the PI will educate K-12 students about the Antarctic environment and associated career opportunities through various online and hands-on activities. University of Alabama dedicates a significant percentage of its enrollment space to underrepresented groups.
Intellectual Merit: The Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) is a study of ocean mixing in the Antarctic Circumpolar Current (ACC) which runs west to east all around the continent of Antarctica, south of the other continents. This current system is somewhat of a barrier to transport of heat, carbon dioxide and other important ocean constituents between the far south and the rest of the ocean, and mixing processes play an important role in those transports. DIMES is a multi-investigator cooperative project, led by physical oceanographers in the U.S. and in the U.K. A passive tracer and an array of sub-surface floats were deployed early in 2009 more than 2000 km west of Drake Passage on a surface of constant density about 1500 m deep between the Sub Antarctic Front and the Polar Front of the ACC. In early 2010 a U.S. led research cruise sampled the tracer, turbulence levels, and the velocity and density profiles that govern the generation of that turbulence, and additional U.K. led research cruises in 2011 and 2012 continue this sampling as the tracer has made its way through Drake Passage, into the Scotia Sea, and over the North Scotia Ridge, a track of more than 3000 km. The initial results show that diapycnal, i.e., vertical, mixing west of Drake Passage where the bottom is relatively smooth is no larger than in most other regions of the open ocean. In contrast, there are strong velocity shears and intense turbulence levels over the rough topography in Drake Passage and diapycnal diffusivity of the tracer more than 10 times larger in Drake Passage and to the east than west of Drake Passage.<br/><br/>The DIMES field program continues with the U.S. team collecting new velocity and turbulence data in the Scotia Sea. It is anticipated that the tracer will continue passing through the Scotia Sea until at least early 2014. The U.K. partners have scheduled sampling of the tracer on cruises at the North Scotia Ridge and in the eastern and central Scotia Sea in early 2013 and early 2014. The current project will continue the time series of the tracer at Drake Passage on two more U.S. led cruises, in late 2012 and late 2013. Trajectories through the Scotia Sea estimated from the tracer observations, from neutrally buoyant floats, and from numerical models will be used to accurately estimate mixing rates of the tracer and to locate where the mixing is concentrated. During the 2013 cruise the velocity and turbulence fields along high-resolution transects along the ACC and across the ridges of Drake Passage will be measured to see how far downstream of the ridges the mixing is enhanced, and to test the hypothesis that mixing is enhanced by breaking lee waves generated by flow over the rough topography.<br/><br/>Broader Impacts: DIMES (see web site at http://dimes.ucsd.edu) involves many graduate students and post-doctoral researchers. Two graduate students, who would become expert in ocean turbulence and the processes generating it, will continue be trained on this project. The work in DIMES is ultimately motivated by the need to understand the overturning circulation of the global ocean. This circulation governs the transport and storage of heat and carbon dioxide within the huge oceanic reservoir, and thus plays a major role in regulating the earth?s climate. Understanding the circulation and how it changes in reaction to external forces is necessary to the understanding of past climate change and of how climate might change in the future, and is therefore of great importance to human well-being. The data collected and analyzed by the DIMES project will be assembled and made publicly available at the end of the project.<br/><br/>The DIMES project is a process experiment sponsored by the U.S. CLIVAR (Climate variability and predictability) program.
Sergienko/0838811 <br/><br/>This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>This award supports a project to conduct a modeling study of the ice stream ? sub-glacial water system. A suite of numerical models of various dimensionality and complexity will be constructed in a sequential, hierarchical fashion to formulate and test hypotheses regarding how sub-glacial lakes form under ice streams, determine the effect of sub-glacial lakes on ice-stream flow and mass balance, and to determine feedback effects whereby the ice stream ? sub-glacial water system can elicit both stable and unstable responses to environmental perturbations. This research will address one of the only observationally verified fast-time-scale processes apparent within the Antarctic Ice Stream system. The intellectual merit of the project is that understanding the origins and consequences of near-grounding-line sub-glacial lakes is a priority in glaciological research designed to predict short-term variations in Antarctica?s near-term future mass balance. The broader impacts of the proposed work are that it will contribute to better understanding of a system that has important societal relevance through contribution to sea level rise. Participation of a graduate student in the project will provide the student?s training and education in application of the numerical modeling in geosciences.
Bell/0636883<br/><br/>This award support a project to study the role that subglacial water plays in the overall stability of major ice sheets. An estimated 22,000 km3 of water is currently stored within Antarctica's subglacial lakes. Movement of this water occurs through a complex and largely inferred drainage system in both East and West Antarctica. Geomorphic evidence for the catastrophic drainage of subglacial lakes documents repeated events. These major flood events appear to have drained the largest subglacial lakes situated in the relatively stable interior of the East Antarctic ice sheet. Emerging evidence suggests there is a close connection between significant subglacial lakes and the onset of the Recovery Ice Stream one of the largest in East Antarctica. Our preliminary analysis of the Recovery Lakes region, East Antarctica suggests a direct linkage between lakes and streaming ice flow, specifically the 800 km long Recovery Ice Stream and its tributaries. Located just upslope of the Recovery Ice Stream, the Recovery Lakes Region is composed of 3 well-defined lakes and a fourth, ambiguous, 'lake-like' feature. While other large lakes have a localized impact on ice surface slope, the Recovery Lakes Region lakes are coincident with an abrupt regional change in the ice sheet surface slope. Satellite imagery demonstrates that the downslope margin of this lake area contains distinct flow strips and crevasses: both indicative of increasing ice velocities. The discovery of a series of large lakes coincident with the onset of rapid ice flow in East Antarctica clearly links subglacial lakes and ice sheet dynamics for the first time. The evidence linking the onset of streaming in the Recovery Drainage Ice Stream to the series of large subglacial lakes raises the fundamental question: How can subglacial lakes trigger the onset of ice streaming? We advance two possible mechanisms: (i) Subglacial lakes can produce accelerated ice flow through the drainage of lake water beneath the ice sheet downslope of the lakes. (ii) Subglacial lakes can produce accelerated ice flow accelerated ice flow by modifying the basal thermal gradient via basal accretion over the lakes so when the ice sheet regrounds basal melting dominates. To evaluate the contribution of lake water and the changing basal thermal gradient, we propose an integrated program incorporating satellite imagery analysis, a series of reconnaissance aerogeophysical profiles over the Recovery Lake Region and the installation of continuous GPS sites over the Recovery Lakes. This analysis and new data will enable us (1) to produce a velocity field over the Recovery Lakes Region, (2) to map the ice thickness changes over the lakes due to acceleration triggered thinning, basal melting and freezing, (3) determine the depth and possible the tectonic origin of the Recovery Lakes and (4) determine the stability of these lakes over time. These basic data sets will enable us to advance our understanding of how subglacial lakes trigger the onset of streaming. The intellectual merit of this project is that it will be the first systematic analysis of ice streams triggering the onset of ice streams. This work has profound implications for the modeling of ice sheet behavior in the future, the geologic record of abrupt climate changes and the longevity of subglacial lakes. The broader impacts of the project are programs that will reach students of all ages through undergraduates involved in the research, formal presentations in teacher education programs and ongoing public outreach efforts at major science museums. Subglacial Antarctic lake environments are emerging as a premier, major frontier for exploration during the IPY 2007-2009.
This award is for support for a four year program to study the basal conditions of ice stream D using techniques previously applied to ice stream B. The objective is to determine whether the physical conditions and processes to be observed by borehole geophysics at the base of this large ice stream are consistent with what has been observed at ice stream B and to point to a common basal mechanism of ice streaming. This project includes a comparison between two parts of ice stream D, an upstream reach where flow velocities are modest (about 80 meters/year) and a downstream reach of high velocity (about 400 meters/year). The comparison will help to reveal what physical variable or combination of variables is mainly responsible for the streaming flow. The variables to be monitmred by borehole observation include basal water pressure, basal sliding velocity, flow properties and sedimentological characteristics of subglacial till if present, ice temperature profile including basal water transport velocity, connection time to the basal water system, basal melting rate and others.
Joughin 0631973<br/><br/>This award supports a project to gather data to better understand the mass balance of the West Antarctic Ice Sheet, in the Pine Island and Thwaites region, through the combination of radar altimetry and surface-based ice-core measurements of accumulation. The intellectual merit of the project is that the results of the field work will provide information on decadal-scale average accumulation extending back through the last century and will help constrain a modeling effort to determine how coastal changes propagate inland, to allow better prediction of future change. Comparison of the basin averaged accumulation with ice discharge determined using Interferometric Synthetic Aperture Radar (InSAR) velocity data will provide improved mass-balance estimates. Study of changes in flow speed will produce a record of mass balance over the last three decades. Analysis of the satellite altimeter record in conjunction with annual accumulation estimates also will provide estimates of changes and variability in mass balance. The broader impacts of the work are that it will make a significant contribution to future IPCC estimates of sea level, which are important for projection of the impacts of increased sea level on coastal communities. The research will contribute to the graduate education of students at the Universities of Washington and Kansas and will enrich K-12 education through the direct participation of the PIs in classroom activities. Informal science education includes 4-day glacier flow demonstrations at the Polar Science Weekend held annually at the Pacific Science Center in Seattle. The project also will communicate results through Center for the Remote Sensing of Ice Sheets (CReSIS) outreach effort. All field and remotely-sensed data sets will be archived and distributed by the National Snow and Ice Data Center. This project is relevant to IPY in that the West Antarctic Ice Sheet is losing mass, in large part because of rapid thinning of the Amundsen Coast glaciers so, it will directly address the NSF IPY emphasis on "ice sheet history and dynamics." The project is also international in scope.
This award supports a three-year study to isolate essential physical processes affecting Thwaites Glacier (TG) in the Amundsen Sea Embayment (ASE) of West Antarctica using a suite of existing numerical models in conjunction with existing and International Polar Year (IPY)-proposed data sets. Four different models will be utilized to explore the effects of embayment geometry, ice-shelf buttressing, basal-stress distribution, surface mass balance, surface climate, and inland dynamic perturbations on the present and future dynamics of TG. This particular collection of models is ideally suited for the broad nature of this investigation, as they incorporate efficient and complementary simplifications of the stress field (shallow-ice and shelf-stream), system geometry (1-d and 2-d plan-view and flowline; depth-integrated and depth-dependent), and mass-momentum energy coupling (mechanical and thermo-mechanical). The models will be constrained and validated by data sets (including regional maps of ice thickness, surface elevation, basal topography, ice surface velocity, and potential fields) and geophysical data analyses (including increasing the spatial resolution of surface elevations, improving regional estimates of geothermal flux, and characterizing the sub-glacial interface of grounded ice as well as the grounding-zone transition between grounded and floating ice). The intellectual merit of the research focuses on several of the NSF Glaciology program's emphases, including: ice dynamics, numerical modeling, and remote sensing of ice sheets. In addition, the research directly addresses the following specific NSF objectives: "investigation of the physics of fast glacier flow with emphasis on processes at glacier beds"; "investigation of ice-shelf stability"; and "identification and quantification of the feedback between ice dynamics and climate change". The broader impacts of this research effort will help answer societally relevant questions of future ice sheet stability and sea-level change. The research also will aid in the early career development of two young investigators and will contribute to the education of both graduate and undergraduate students directly involved in the research, and results will be incorporated into courses and informal presentations.
Pettit/0636795<br/><br/>This award supports a project to constrain the accumulation rate, thickness, and temperature history for Siple Dome using a vertical velocity profile that includes the effects of an evolving fabric on deformation through time, to invert the depth-profile of fabric determined from sonic velocity measurements and grain size observed in thin sections in Siple Dome for the surface temperature and accumulation rate changes in the past, focusing on the apparent abrupt climate change events at 22ka and 15ka. The intellectual merit of the work is that it will extract past climate information from a number of physical properties of the deep ice using a coupled fabric evolution and ice-sheet flow model. The focus will be on the deep ice-age ice at Siple Dome, where the ice-core record shows puzzling signals and where modeling results imply intriguing deformation patterns. The method will also be applied to the records from Byrd Station and Taylor Dome to ultimately form a basis for future analysis of the West Antarctic Divide core. The broader impacts of the project are that it will ultimately contribute to our understanding of the effects of anisotropy on ice flow dynamics in West Antarctica. It will contribute to our understanding of the connection between ice flow and the paleoclimate record in ice cores, particularly with respect to the relationship between the chemical record and ice deformation. And it will contribute a new ice-flow model that includes the effects of anisotropy and fabric evolution. The project will also contribute to advancing the career of a new, young, female investigator and will support a couple of graduate students. Finally, the work will encouraging diversity in the physical sciences by directly helping to support the Girls on Ice a program that encourages young women to explore science and the natural world.
This study will investigate how the Antarctic Slope Front and continental slope morphology determine the exchanges of mass, heat, and fresh water between the shelf and the deep ocean, in particular those leading to outflows of dense water into intermediate and deep layers of the adjacent basins and into the world ocean circulation <br/>While the importance to the global ocean circulation and climate of cold water masses originating in the Antarctic is unquestioned, the processes by which these water masses enter the deep ocean circulation are not. The primary goal of this work therefore is to identify the principal physical processes that govern the transfer of shelf-modified dense water into intermediate and deep layers of the adjacent deep ocean. At the same time, it seeks to understand the compensatory poleward flow of waters from the oceanic regime. The upper continental slope has been identified as the critical gateway for the exchange of shelf and deep ocean waters. Here the topography, velocity and density fields associated with the nearly ubiquitous front must strongly influence the advective and turbulent transfer of water properties between the shelf and oceanic regimes. The study has four specific objectives: [1] Determine the mean frontal structure and the principal scales of variability, and estimate the role of the front on cross-slope exchanges and mixing of adjacent water masses; [2] Determine the influence of slope topography and bathymetry on frontal location and outflow of dense Shelf Water; [3] Establish the role of frontal instabilities, benthic boundary layer transports, tides and other oscillatory processes on cross-slope advection and fluxes; and [4] Assess the effect of diapycnal mixing, lateral mixing identified through intrusions, and nonlinearities in the equation of state on the rate of descent and the fate of outflowing, near-freezing Shelf Water.
Whillans, Wilson, Goad OPP 9527571 Abstract This award supports a project to initiate Global Positioning System (GPS) measurements for rock motions in South Victoria Land and vicinity. The results will be used to test some of the leading models for ice-sheet change and tectonism, in particular, whether the continent is rebounding due to reduced ice load from East or West Antarctica and whether there is tectonic motion due to Terror Rift or uplift of the Transantarctic Mountains. A modest program to measure ice motion will be conducted as well. The motive is to test models for ice flow in the Allan Hills meteorite concentration region and to determine whether small glaciers in the Dry Valleys are thickening or thinning. Monuments will be set into rock and ice and GPS receivers used to determine their locations. Repeats in later years will determine motion. Field activities will involve close cooperation with the USGS.
This award supports a project to investigate fabrics with ground-based radar measurements near the Ross/Amundsen Sea ice-flow divide where a deep ice core will be drilled. The alignment of crystals in ice (crystal-orientation fabric) has an important effect on ice deformation. As ice deforms, anisotropic fabrics are produced, which, in turn, influence further deformation. Measurement of ice fabric variations can help reveal the deformation history of the ice and indicate how the ice will deform in the future. Ice cores provide opportunities to determine a vertical fabric profile, but horizontal variations of fabrics remain unknown. Remote sensing with ice-penetrating radar is the only way to do that over large areas. Preliminary results show that well-established polarimetric methods can detect the degree of horizontal anisotropy of fabrics and their orientation, even when they are nearly vertical-symmetric fabrics. In conjunction with ice deformation history, our first mapping of ice fabrics will contribute to modeling ice flow near the future ice core site. The project will train a graduate student and provide research experiences for two under graduate students both in field and laboratory. The project will contribute to ongoing West Antarctic ice sheet program efforts to better understand the impact of the ice sheet on global sea level rise. This project also supports an international collaboration between US and Japanese scientists.
Hall/0636687<br/><br/>This award supports a project to investigate late Pleistocene and Holocene changes in Scott Glacier, a key outlet glacier that flows directly into the Ross Sea just west of the present-day West Antarctic Ice Sheet (WAIS) grounding line. The overarching goals are to understand changes in WAIS configuration in the Ross Sea sector at and since the last glacial maximum (LGM) and to determine whether Holocene retreat observed in the Ross Embayment has ended or if it is still ongoing. To address these goals, moraine and drift sequences associated with Scott Glacier will be mapped and dated and ice thickness, surface velocity and surface mass balance will be measured to constrain an ice-flow model of the glacier. This model will be used to help interpret the dated geologic sequences. The intellectual merit of the project relates to gaining a better understanding of the West Antarctic Ice Sheet and how changing activity of fast-flowing outlet glaciers and ice streams exerts strong control on the mass balance of the ice sheet. Previous work suggests that grounding-line retreat in the Ross Sea continued into the late Holocene and left open the possibility of ongoing deglaciation as part of a long-term trend. Results from Reedy Glacier, an outlet glacier just behind the grounding line, suggest that retreat may have slowed substantially over the past 2000 years and perhaps even stopped. By coupling the work on Scott Glacier with recent data from Reedy Glacier, the grounding-line position will be bracketed and it should be possible to establish whether the retreat has truly ended or if it is ongoing. The broader impacts of the work relate to the societal relevance of an improved understanding of the West Antarctic ice sheet to establish how it will respond to current and possible future environmental changes. The work addresses this key goal of the West Antarctic Ice Sheet Initiative, as well as the International Polar Year focus on ice sheet history and dynamics. The work will develop future scientists through the education and training of one undergraduate and two Ph.D. students, interaction with K-12 students through classroom visits, web-based 'expedition' journals, letters from the field, and discussions with teachers. Results from this project will be posted with previous exposure dating results from Antarctica, on the University of Washington Cosmogenic Nuclide Lab website, which also provides information about chemical procedures and calculation methods to other scientists working with cosmogenic nuclides.
This award is for the continuation of the Center for Remote Sensing of Ice Sheets (CReSIS), an NSF Science and Technology Center (STC) established in June 2005 to study present and probable future contributions of the Greenland and Antarctic ice sheets to sea-level rise. The Center?s vision is to understand and predict the role of polar ice sheets in sea level change. In particular, the Center?s mission is to develop technologies, to conduct field investigations, to compile data to understand why many outlet glaciers and ice streams are changing rapidly, and to develop models that explain and predict ice sheet response to climate change. The Center?s mission is also to educate and train a diverse population of graduate and undergraduate students in Center-related disciplines and to encourage K-12 students to pursue careers in science, technology, engineering and mathematics (STEM-fields). The long-term goals are to perform a four-dimensional characterization (space and time) of rapidly changing ice-sheet regions, develop diagnostic and predictive ice-sheet models, and contribute to future assessments of sea level change in a warming climate. In the first five years, significant progress was made in developing, testing and optimizing innovative sensors and platforms and completing a major aircraft campaign, which included sounding the channel under Jakobshavn Isbræ. In the second five years, research will focus on the interpretation of integrated data from a suite of sensors to understand the physical processes causing changes and the subsequent development and validation of models. Information about CReSIS can be found at http://www.cresis.ku.edu.<br/><br/>The intellectual merits of the STC are the multidisciplinary research it enables its faculty, staff and students to pursue, as well as the broad education and training opportunities it provides to students at all levels. During the first phase, the Center provided scientists and engineers with a collaborative research environment and the opportunity to interact, enabling the development of high-sensitivity radars integrated with several airborne platforms and innovative seismic instruments. Also, the Center successfully collected data on ice thickness and bed conditions, key variables in the study of ice dynamics and the development of models, for three major fast-flowing glaciers in Greenland. During the second phase, the Center will collect additional data over targeted sites in areas undergoing rapid changes; process, analyze and interpret collected data; and develop advanced process-oriented and ice sheet models to predict future behavior. The Center will continue to provide a rich environment for multidisciplinary education and mentoring for undergraduate students, graduate students, and postdoctoral fellows, as well as for conducting K-12 education and public outreach. The broader impacts of the Center stem from addressing a global environmental problem with critical societal implications, providing a forum for citizens and policymakers to become informed about climate change issues, training the next generation of scientists and engineers to serve the nation, encouraging underrepresented students to pursue careers in STEM-related fields, and transferring new technologies to industry. Students involved in the Center find an intellectually stimulating atmosphere where collaboration between disciplines is the norm and exposure to a wide variety of methodologies and scientific issues enriches their educational experience. The next generation of researchers should reflect the diversity of our society; the Center will therefore continue its work with ECSU to conduct outreach and educational programs that attract minority students to careers in science and technology. The Center has also established a new partnership with ADMI that supports faculty and student exchanges at the national level and provides expanded opportunities for students and faculty to be involved in Center-related research and education activities. These, and other collaborations, will provide broader opportunities to encourage underrepresented students to pursue STEM careers. <br/><br/>As lead institution, The University of Kansas (KU) provides overall direction and management, as well as expertise in radar and remote sensing, Uninhabited Aerial Vehicles (UAVs), and modeling and interpretation of data. Five partner institutions and a DOE laboratory play critical roles in the STC. The Pennsylvania State University (PSU) continues to participate in technology development for seismic measurements, field activities, and modeling. The Center of Excellence in Remote Sensing, Education and Research (CERSER) at Elizabeth City State University (ECSU) contributes its expertise to analyzing satellite data and generating high-level data products. ECSU also brings to the Center their extensive experience in mentoring and educating traditionally under-represented students. ADMI, the Association of Computer and Information Science/Engineering Departments at Minority Institutions, expands the program?s reach to underrepresented groups at the national level. Indiana University (IU) provides world-class expertise in CI and high-performance computing to address challenges in data management, processing, distribution and archival, as well as high-performance modeling requirements. The University of Washington (UW) provides expertise in satellite observations of ice sheets and process-oriented interpretation and model development. Los Alamos National Laboratory (LANL) contributes in the area of ice sheet modeling. All partner institutions are actively involved in the analysis and interpretation of observational and numerical data sets.
This award supports a project to test whether Kamb Ice Stream (formerly Ice Stream C (ISC)), an ice stream<br/>that is thought to have stopped ~150 years ago, may be already in the process of restarting. If yes, it will help establish what is the rate of ice stream reactivation and what mechanisms are controlling this rate. If there is no evidence for ongoing ice stream reactivation, the physical controls that are preventing it will be examined and alternative scenarios for near-future evolution of this ice stream will be explored. One such scenario is an increase in ice diversion toward the neighboring Whillans Ice Stream. Such diversion may help prevent a complete stoppage of Whillans Ice Stream,which has been slowing down for at least the last 24 years. This project will consist of two components: (1) field observations of bed properties,geometry of internal radar reflectors, as well as surface strain rates and velocity/topography changes using Ice-Penetrating Radar and differential Global Positioning System, (2) numerical modeling study of near future(~100-1000 years) evolution of Kamb Ice Stream. The field component will be focused on the bulge-to-trunk transition, which is located at the present time just downstream of the so-called camp UpC. Reactivation of Kamb Ice Stream should be reflected in a downstream migration of the bulge-trunk transition at possibly high rates (bulge migration rates of ~km/yr occur on surging mountain glaciers). The modeling<br/>component will be used to generate predictions regarding the near-future behavior of Kamb Ice Stream. This project will provide training opportunities for at least two undergraduate students (per year) at St. Olaf College and for one<br/>undergraduate student (per year) at UCSC. This collaboration will bring together scientists from three different types of US institutions: (1) a liberal arts college (St.Olaf College), (2) a public research university (UCSC) and (3) a NASA research laboratory (JPL). The project will also help build a new glaciological research program at UCSC. Project results will be incorporated into undergraduate and graduate courses at UCSC and will be made available<br/>to the general public and educators through downloadable graphics and animations posted on the research website of the UCSC PI. Field data resulting from the project will be posted in the Antarctic Glaciological Data Center for use by other investigators.
0538097<br/>Anandakrishnan<br/><br/>This award supports a project to intensively study a subglacial Antarctic lake near the geographic South Pole using seismic and radar methods. These ground-based experiments are better suited to determine the presence of water and its thickness than are airborne methods. We hypothesize that there are two end-member explanations for this feature: either the lake is thawed, but freezing on (and likely to have been freezing on through much of the current interglacial period), or it is a frozen, relict lake for which the high basal radar reflectivity is due to intergranular water in a permafrost-like layer beneath the ice. The seismic experiment we propose is ideally suited to examine these alternatives. Intermediate cases of, e.g., a thawed saturated sedimentary base or a smooth crystalline basement layer would also be resolved by this experiment. Seismic reflections are sensitive to changes in acoustic impedance which is strongly variable with fluid content, porosity, and lithology. Water has low density relative to most rocks and low seismic velocity (and nil shear wave velocity) relative to both ice and rock. Thus, discriminating between subglacial water and subglacial rock is a task ideally suited to the seismic reflection technique. This project has significant impacts outside the directly affected fields of Antarctic glaciology and geology. The lake (either thawed or sediments with thin liquid layers around the matrix particles) will have the potential for harboring novel life forms. The experiment has the potential for expanding our information about the newest frontier in life on Earth. The collaboration between PIs in the seismic community and the marine acoustics community will foster cross-disciplinary pollination of ideas, techniques, and tools. In addition to traditional seismic techniques, new methods of data analysis that have been developed by acousticians will be applied to this problem as an independent measure of lake properties. We will train students who will have a wider view of seismology than would be possible in a traditional ocean acoustics or traditional geoscience seismology program of study.
Abstract<br/>OPP-0089451<br/>P.I. William Detrich<br/><br/> As the Southern Ocean cooled during the past 25 million years, the fishes of Antarctic coastal waters evolved biochemical and physiological adaptations that maintain essential cellular processes such as cytoskeletal function and gene transcription. Their microtubules, for example, assemble and function at body temperatures (-1.8 to +1 oC) well below those of homeotherms and temperate poikilotherms. The long range goals of the proposed research are to determine, at the molecular level, the adaptations that enhance the assembly of microtubules, the function of kinesin motors, and the expression of globin and tubulin genes. The specific objectives are three: 1) to determine the primary sequence changes and posttranslational modifications that contribute to the efficient polymerization of Antarctic fish tubulins at low temperatures; 2) to evaluate the biochemical adaptations required for efficient function of the brain kinesin motor of Antarctic fishes at low temperatures; and 3) to characterize the structure, organization, and promoter-driven expression of globin and tubulin genes from an Antarctic rockcod (Notothenia coriiceps) and a temperate congener (N. angustata). Brain tubulins from Antarctic fishes differ from those of temperate and warm-blooded vertebrates both in unusual primary sequence substitutions (located primarily in lateral loops and the cores of tubulin monomers) and in posttranslational C-terminal glutamylation. Potential primary sequence adaptations of the Antarctic fish tubulins will be tested directly by production of wild-type and site directed tubulin mutants for functional analysis in vitro. The capacity of mutated and wild-type fish tubulins to form "cold-stable" microtubules will be determined by measurement of their critical concentrations for assembly and by analysis of their dynamics by video-enhanced microscopy. Three unusual substitutions in the kinesin motor domain of Chionodraco rastrospinosus may enhance mechanochemical activity at low temperature by modifying the binding of ATP and/or the velocity of the motor. To test the functional significance of these changes, the fish residues will be converted individually, and in concert, to those found in mammalian brain kinesin. Reciprocal substitutions will be introduced into the framework of the mammalian kinesin motor domain. After production in Escherichia coli and purification, the functional performance of the mutant motor domains will be evaluated by measurement of the temperature dependence of their ATPase and motility activities. Molecular adaptation of gene expression in N. coriiceps will be analyzed using an a-globin/b-globin gene pair and an a-tubulin gene cluster. Structural features of N. coriiceps globin and tubulin gene regulatory sequences (promoters and enhancers) that support efficient expression will be assessed by transient transfection assay of promoter/luciferase reporter plasmid constructs in inducible erythrocytic and neuronal model cell systems followed by assay of luciferase reporter activity. Together, these studies should reveal the molecular adaptations of Antarctic fishes that maintain efficient cytoskeletal assembly, mechanochemical motor function, and gene expression at low temperatures. In the broadest sense, this research program should advance the molecular understanding of the poikilothermic mode of life.
This award, provided jointly by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to transform three temporary seismometers in the Antarctic Peninsula into semi-permanent stations and to continue basic research using these data. During 1997 and 1998, a network of 11 broadband seismographs in the Antarctic Peninsula region and southernmost Chilean Patagonia were installed and maintained. Data return from this project has been excellent and interesting initial results have been produced. The continued operation of these instruments over a longer time period would be highly beneficial because the number of larger magnitude regional earthquakes is small and so a longer time is needed to acquire data. However, instruments from this project are borrowed from the IRIS-PASSCAL instrument pool and must be returned to PASSCAL in April, 1999. This award provides funds to convert three stations at permanent Chilean bases in the Antarctic to permanent stations, and to continue the seismological investigation of the region for a period of four years. As part of this project, a fourth station, in Chilean Patagonia, will continue to be operated using Washington University equipment. The funding of this project will enable continued collaboration between Washington University and the Universidad de Chile in the operation of these stations, and the data will be forwarded to the IRIS data center as well as to other international seismological collaborators. Mutual data exchanges with other national groups with Antarctic seismology research programs will provide access to broadband data from a variety of other proprietary broadband stations in the region. The data will be used to study the seismicity and upper mantle velocity structure of several complicated tectonic regions in the area, including the South Shetland subduction zone, the Bransfield backarc rift, and diffuse plate boundaries in Patagonia, Drake Passage, and along the South Scotia Ridge. In particular, the operation of these stations over a longer time period will allow a better understanding of the seismicity of the South Shetland Trench, an unusual subduction zone showing very slow subduction of young lithosphere. These seismometers will also be used to record airgun shots during a geophysical cruise in the Bransfield Strait that is being planned by the University of Texas for April, 2000. These data will provide important constraints on the crustal structure beneath the stations, and the improved structural models will enable implementation of more precise earthquake location procedures in support of a seismological understanding of the region.
This proposed work concerns the development and maintenance of a shipboard acoustic Doppler current profiler (ADCP) program on board the RVIB Nathaniel B. Palmer and the research vessel Laurence M. Gould, operated by the United States Antarctic Program. The objective is to generate a quality-controlled data set on upper ocean current velocities in a sparsely sampled and remote region, yet one that plays an important role in the global ocean circulation. Further goals are to develop the underway data collection program so that it can be maintained with a minimum of personnel and resources, and that the observations become publicly available in a timely manner. Long-term science objectives are to measure the seasonal and interannual variability of upper ocean currents within the Drake Passage, to combine this information with similar temperature observations to study the variability in the heat exchange, and to characterize the velocity structure in the Southern Ocean on a variety of time and space scales.
This award, provided by the Office of Polar Programs of the National Science Foundation, supports research to investigate the seismicity and tectonics of the South Shetland Arc and the Bransfield Strait. This region presents an intriguing and unique tectonic setting, with slowing of subduction, cessation of island arc volcanism, as well as the apparent onset of backarc rifting occurring within the last four million years. This project will carry out a 5-month deployment of 14 ocean bottom seismographs (OBSs) to complement and extend a deployment of 6 broadband land seismic stations that were successfully installed during early 1997. The OBSs include 2 instruments with broadband sensors, and all have flowmeters for measuring and sampling hydrothermal fluids. The OBSs will be used to examine many of the characteristics of the Shetland- Bransfield tectonic system, including: --- The existence and depth of penetration of a Shetland Slab: The existence of a downgoing Shetland slab will be determined from earthquake locations and from seismic tomography. The maximum depth of earthquake activity and the depth of the slab velocity anomaly will constrain the current configuration of the slab, and may help clarify the relationship between the subducting slab and the cessation of arc volcanism. -- Shallow Shetland trench seismicity?: No teleseismic shallow thrust faulting seismicity has been observed along the South Shetland Trench from available seismic information. Using the OBS data, the level of small earthquake activity along the shallow thrust zone will be determined and compared to other regions undergoing slow subduction of young oceanic lithosphere, such as Cascadia, which also generally shows very low levels of thrust zone seismicity. -- Mode of deformation along the Bransfield Rift: The Bransfield backarc has an active rift in the center, but there is considerable evidence for off-rift faulting. There is a long-standing controversy about whet her back-arc extension occurs along discrete rift zones, or is more diffuse geographically. This project will accurately locate small earthquakes to better determine whether Bransfield extension is discrete or diffuse. -- Identification of volcanism and hydrothermal activity: Seismic records will be used to identify the locations of active seafloor volcanism along the Bransfield rift. Flowmeters attached to the OBSs will record and sample the fluid flux out of the sediments. -- Upper mantle structure of the Bransfield - evidence for partial melting?: Other backarc basins show very slow upper mantle seismic velocities and high seismic attenuation, characteristics due to the presence of partially molten material. This project will use seismic tomography to resolve the upper mantle structure of the Bransfield backarc, allowing comparison with other backarc regions and placing constraints on the existence of partially molten material and the importance of partial melting as a mantle process in this region. Collaborative awards: OPP 9725679 and OPP 9726180
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to study the deep crustal structure of the Bransfield Strait region. Bransfield Strait, in the northern Antarctic Peninsula, is one of a small number of modern basins that may be critical for understanding ancient mountain-building processes. The Strait is an actively-extending marginal basin in the far southeast Pacific, between the Antarctic Peninsula and the South Shetland Islands, an inactive volcanic arc. Widespread crustal extension, accompanied by volcanism along the Strait's axis, may be associated with slow underthrusting of oceanic crust at the South Shetland Trench; similar "back-arc" extension occurred along the entire Pacific margin (now western South America/West Antarctica) of the supercontinent known as Gondwanaland during the Jurassic-Early Cretaceous. Mid-Cretaceous deformation of these basins some 100 million years ago initiated uplift of the Andes. By understanding the deep structure and evolution of Bransfield rift, it should be possible to evaluate the crustal precursor to the Andes, and thereby understand more fully the early evolution of this globally important mountain chain.<br/><br/>Years of international earth sciences research in Bransfield Strait has produced consensus on important aspects of its geologic environment: (1) It is probably a young (probably ~4 million years old) rift in preexisting Antarctic Peninsula crust; continued stretching of this crust results in complex fault patterns and associated volcanism. The volcanism, high heat flow, and mapped crustal trends are all consistent with the basin's continuing evolution as a rift; (2) The volcanism, which is recent and continuing, occurs along a "neovolcanic" zone centralized along the basin's axis. Multichannel seismic data collected aboard R/V Maurice Ewing in 1991 illustrate the following basin-wide characteristics of Bransfield Strait - a) widespread extension and faulting, b) the rise of crustal diapirs or domes associated with flower-shaped normal-fault structures, and c) a complicated system of fault-bounded segments across strike. The geophysical evidence also suggests NE-to-SW propagation of the rift, with initial crustal inflation/doming followed by deflation/subsidence, volcanism, and extension along normal faults.<br/><br/>Although Bransfield Strait exhibits geophysical and geologic evidence for extension and volcanism, continental crust fragmentation does not appear to have gone to completion in this "back-arc" basin and ocean crust is not yet being generated. Instead, Bransfield rift lies near the critical transition from intracontinental rifting to seafloor-spreading. The basin's asymmetry, and seismic evidence for shallow intracrustal detachment faulting, suggest that it may be near one end-member of the spectrum of models proposed for continental break-up. Therefore, this basin is a "natural lab" for studying diverse processes involved in forming continental margins.<br/><br/>Understanding Bransfield rift's deep crustal structure is the key to resolving its stage of evolution, and should also provide a starting point for models of Andean mountain-building. This work will define the deep structure by collecting and analyzing high-quality, high-density ocean bottom seismometer (OBS) profiles both along and across the Strait's strike. Scientific objectives are as follows: (1) to develop a detailed seismic velocity model for this rift; (2) to calibrate velocity structure and crustal thickness changes associated with presumed NE-to-SW rift propagation, as deduced from the multichannel seismic interpretations; (3) to document the degree to which deep velocity structure corresponds to along- and across-strike crustal segmentation; and (4) to assess structural relationships between the South Shetland Islands "arc" and Bransfield rift.<br/><br/>The proposed OBS data, integrated with interpretations of both Ewing profiles and those from other high-quality geophysical coverage in Bransfield Strait, will complement ongoing deep seismic analysis of Antarctic Peninsula crust to the southwest and additional OBS monitoring for deep earthquakes, in order to understand the complex plate tectonic evolution of this region.
The proposal is to develop an instrument that can simultaneously measure the sound speed and magnetic fields at three heights in the solar atmosphere. The instrument will use magneto-optical filters tuned to the solar absorption lines at 422 nm (Ca I), 589 nm (Na D2), and 770 nm (K) to make measurements of Doppler velocities and longitudinal magnetic field. These lines form in the mid- and low-chromosphere and photosphere, respectively. In addition, the instrument will also use a Fabry-Perot etalon as a narrowband filter to measure the intensity variations of the 1083 nm (He I) line that is formed high in the chromosphere and which shows the location of the "foot points" of coronal holes. Together, the four lines will allow studying wave motions throughout the solar atmosphere. The instrument will record images of the Sun every 10 seconds with a spatial resolution of 1 arc-second. Thus, the project will be fostering the development of existing magneto-optical filter technology to a new level. Upon construction, the telescope will be tested at South Pole for a long period of uninterrupted observations. Both the local and global helioseismic analysis procedures will be utilized to identify and to characterize different types of waves present in the solar atmosphere. These observations will allow determining the structure and dynamics of the Sun's atmosphere through seismic measurements and, thus, improve the atmosphere models, assess the role of waves in heating the chromosphere/corona and driving the solar wind, and better understand how the Sun's atmosphere couples to the interior. The broader impact of the proposed project is two fold. First, there is a potential benefit to the science and to the society because it is believed that the solar atmosphere is a "home" to many phenomena that can have a direct effect on the solar activity, including flares, coronal mass ejections, and the solar wind. Understanding the structure and dynamics of the solar atmosphere will therefore lead to a better understanding of the Sun-Earth connection. The collected data will be made available to other researchers at DVDs. The broader audience of general public will be reached through presentations at high schools, libraries, and community events, and news articles in the general press. Most of the research materials will also be placed in the Web.
This award supports the study of the drift and break-up of Earth's largest icebergs, which were recently released into the Ross Sea of Antarctica as a result of calving from the Ross Ice Shelf. The scientific goals of the study are to determine the physics of iceberg motion within the dynamic context of ocean currents, winds, and sea ice, which determine the forces that drive iceberg motion, and the relationship between the iceberg and geographically and topographically determined pinning points on which the iceberg can ground. In addition, the processes by which icebergs influence the local environments (e.g., sea ice conditions near Antarctica, access to penguin rookeries, air-sea heat exchange and upwelling at iceberg margins, nutrient fluxes) will be studied. The processes by which icebergs generate globally far-reaching ocean acoustic signals that are detected within the global seismic (earthquake) sensing networks will also be studied. A featured element of the scientific research activity will be a field effort to deploy automatic weather stations, seismometer arrays and GPS-tracking stations on several of the largest icebergs presently adrift, or about to be adrift, in the Ross Sea. Data generated and relayed via satellite to home institutions in the Midwest will motivate theoretical analysis and computer simulation; and will be archived on an "iceberg" website (http://amrc.ssec.wisc.edu/amrc/iceberg.html) for access by scientists and the general public. At the most broad level, the study is justified by the fact that icebergs released by the Antarctic ice sheet represent the largest movements of fresh water within the natural environment (e.g., several of the icebergs to be studied, B15, C19 and others calved since 2000 CE, represent over 6000 cubic kilometers of fresh water-an amount roughly equivalent to 100 years of the flow of the Nile River). A better understanding of the impact of iceberg drift through the environment, and particularly the impact on ocean stratification and mixing, is essential to the understanding of the abrupt global climate changes witnessed by proxy during the ice age and of concern under conditions of future greenhouse warming. On a more specific level, the study will generate a knowledge base useful for the better management of Antarctic logistical resources (e.g., the shipping lanes to McMurdo Station) that can occasionally be influenced by adverse effects icebergs have on sea ice conditions.
This award supports a project to test whether Kamb Ice Stream (formerly Ice Stream C (ISC)), an ice stream<br/>that is thought to have stopped ~150 years ago, may be already in the process of restarting. If yes, it will help establish what is the rate of ice stream reactivation and what mechanisms are controlling this rate. If there is no evidence for ongoing ice stream reactivation, the physical controls that are preventing it will be examined and alternative scenarios for near-future evolution of this ice stream will be explored. One such scenario is an increase in ice diversion toward the neighboring Whillans Ice Stream. Such diversion may help prevent a complete stoppage of Whillans Ice Stream,which has been slowing down for at least the last 24 years. This project will consist of two components: (1) field observations of bed properties,geometry of internal radar reflectors, as well as surface strain rates and velocity/topography changes using Ice-Penetrating Radar and differential Global Positioning System, (2) numerical modeling study of near future(~100-1000 years) evolution of Kamb Ice Stream. The field component will be focused on the bulge-to-trunk transition, which is located at the present time just downstream of the so-called camp UpC. Reactivation of Kamb Ice Stream should be reflected in a downstream migration of the bulge-trunk transition at possibly high rates (bulge migration rates of ~km/yr occur on surging mountain glaciers). The modeling<br/>component will be used to generate predictions regarding the near-future behavior of Kamb Ice Stream. This project will provide training opportunities for at least two undergraduate students (per year) at St. Olaf College and for one<br/>undergraduate student (per year) at UCSC. This collaboration will bring together scientists from three different types of US institutions: (1) a liberal arts college (St.Olaf College), (2) a public research university (UCSC) and (3) a NASA research laboratory (JPL). The project will also help build a new glaciological research program at UCSC. Project results will be incorporated into undergraduate and graduate courses at UCSC and will be made available<br/>to the general public and educators through downloadable graphics and animations posted on the research website of the UCSC PI. Field data resulting from the project will be posted in the Antarctic Glaciological Data Center for use by other investigators.
Major portions of the Antarctic Ice Sheet float in the surrounding ocean, at the physical and intellectual boundaries of oceanography and glaciology. These ice shelves lose mass continuously by melting into the sea, and periodically by the calving of icebergs. Those losses are compensated by the outflow of grounded ice, and by surface accumulation and basal freezing. Ice shelf sources and sinks vary on several time scales, but their wastage terms are not yet well known. Reports of substantial ice shelf retreat, regional ocean freshening and increased ice velocity and thinning are of particular concern at a time of warming ocean temperatures in waters that have access to deep glacier grounding lines.<br/>This award supports a study of the attrition of Antarctic ice shelves, using recent ocean geochemical measurements and drawing on numerical modeling and remote sensing resources. In cooperation with associates at Columbia University and the British Antarctic Survey, measurements of chlorofluorocarbon, helium, neon and oxygen isotopes will be used to infer basal melting beneath the Ross Ice Shelf, and a combination of oceanographic and altimeter data will be used to investigate the mass balance of George VI Ice Shelf. Ocean and remote sensing observations will also be used to help refine numerical models of ice cavity circulations. The objectives are to reduce uncertainties between different estimates of basal melting and freezing, evaluate regional variability, and provide an update of an earlier assessment of circumpolar net melting.<br/>A better knowledge of ice shelf attrition is essential to an improved understanding of ice shelf response to climate change. Large ice shelf calving events can alter the ocean circulation and sea ice formation, and can lead to logistics problems such as those recently experienced in the Ross Sea. Broader impacts include the role of ice shelf meltwater in freshening and stabilizing the upper ocean, and in the formation of Antarctic Bottom Water, which can be traced far into the North Atlantic. To the extent that ice shelf attrition influences the flow of grounded ice, this work also has implications for ice sheet stability and sea level rise.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to apply numerical modeling to constrain the uplift and exhumation history of the Transantarctic Mountains. The Transantarctic Mountains (TAM) are an anomalously high (>4500 m) and relatively broad (up to 200 km) rift-flank uplift demarcating the boundary between East and West Antarctica. Dynamics of the East Antarctic ice-sheet and the climate are affected by the mountain range, and an understanding of the uplift history of the mountain range is critical to understanding these processes. This project will constrain the uplift and denudation history of the Transantarctic Mountains based on thermo-mechanical modeling held faithful to thermochronological, geological, and geophysical data. The research will be the primary responsibility of post-doctoral researcher Audrey Huerta, working in collaboration with Dennis Harry, 1 undergraduate student, and 1 graduate student.<br/><br/>Thermochronologic evidence of episodic Cretaceous through Cenozoic rapid cooling within the TAM indicates distinct periods of uplift and exhumation. However, a more detailed interpretation of the uplift history is difficult without an understanding of the evolving thermal structure and topography of the TAM prior to and during uplift. These aspects of the mountain range can best be constrained by an understanding of the evolving regional tectonic setting. Proximity of the TAM to the West Antarctic Rift System (WARS) suggests a link between uplift of the TAM and extension within the WARS.<br/><br/>The project will integrate two techniques: lithospheric-scale geodynamic modeling and crustal-scale thermal modeling. The lithospheric-scale deformational and thermal evolution of TAM will be modeled by a finite element model designed to track the thermal and deformational response of the Antarctic lithosphere to a protracted extensional environment. Previous investigators have linked the high elevation and broad width of the TAM to a deep level of necking in which mantle thinning is offset from the location of crustal extension. In this study, a three-dimensional dynamic model will be used to track the uplift and thermal evolution of the TAM in a setting in which necking is at a deep level, and in which extension within the crust and extension within the mantle are offset. Velocity boundary conditions applied to the edges of the model will vary through time to simulate the extensional and transtensional evolution of the WARS. Because the model is dynamic, the thermal structure, strength, and strain field, evolve naturally in response to these initial and boundary conditions.<br/><br/>Dynamic models are uniquely suited to understanding lithospheric deformational and thermal evolution, however kinematic models are best suited for addressing the detailed thermal and exhumation history of crustal uplifts. Thus, a 2-dimensional kinematic-thermal model will be designed to simulate the uplift history of the TAM and the resulting erosional, topographic, and thermal evolution. Uplift will be modeled as normal-fault movement on a set of discrete fault planes with uplift rate varying through time. Erosion will be modeled as a diffusive process in which erosion rates can be varied through time (simulating climate changes), and vary spatially as a linear function of gradient and distance from the drainage divide. Synthetic time-temperature (t-T) histories will be calculated to compare model results to thermochronologic data.
Ice streams are believed to play a major role in determining the response of their parent ice sheet to climate change, and in determining global sea level by serving as regulators on the fresh water stored in the ice sheets. Ice streams are characterized by rapid, laterally confined flow which makes them uniquely identifiable within the body of the more slowly and more homogeneously flowing ice sheet. But while these characteristics enable the identification of ice streams, the processes which control ice-stream motion and evolution, and differences among ice streams in the polar regions, are only partially understood. Understanding the relative importance of lateral and basal drags, as well as the role of gradients in longitudinal stress, is essential for developing models for future evolution of the polar ice<br/>sheets. In this project, physical statistical models will be used to explore the processes that control ice-stream flow, and to compare these processes between seemingly different ice-stream systems. In particular, Whillans Ice Stream draining into the Ross Ice Shelf, will be compared with Recovery and RAMP glaciers draining into the Ronne-Filchner Ice Shelf, and the Northeast Ice Stream in Greenland. Geophysical models lie at the core of the approach, but are embellished by modeling various components of variability statistically. One important component comes from the uncertainty in observations on basal elevation, surface elevation, and surface velocity. In this project new observational data collected using remote-sensing techniques will be used. The various components, some of which are spatial, are combined hierarchically using Bayesian statistical methodology. All these components will be combined mathematically into a physical statistical model that yields the posterior distribution for basal, longitudinal, and lateral stress fields, and velocity fields, conditional on the data. Inference based on this distribution will be carried out via Markov chain Monte Carlo techniques, to obtain estimates of these unknown fields along with uncertainty measures associated with them.
This award supports a project to significantly improve our understanding of how Taylor Glacier flows and responds to climate changes. Taylor Glacier drains the Taylor Dome region of the East Antarctic Ice Sheet and terminates in Taylor Valley, one of the Dry Valleys of Victoria Land. It provides a crucial and unique link between two intensively studied Antarctic environments: the Taylor Dome, from which a 130 kyr ice core paleoclimate record has recently been extracted, and the Dry Valleys, a pivotal Long-Term Ecological Research (LTER) site and a focus of research on geomorphology and glacial geology. The proposed work will thus make an important contribution to ongoing efforts to exploit the Taylor Dome - Dry Valleys system to build a uniquely comprehensive view of regional long-term environmental changes. The proposed work has two complementary components: field research and numerical modelling. Two field seasons will be used to measure velocity, surface strain rate, mass balance, ice thickness, glacier bed reflectance, and subglacial topography, along a nearly complete longitudinal transect of the Taylor Glacier, and along select cross-valley transects. This information will be used to constrain numerical models of ice and heat flow for the Taylor Dome - Taylor Glacier system. These calibrated models will be used to analyze the time-dependent response of the Taylor Glacier to climate changes. The synthesis of results will be aimed to improve understanding of the glacial geomorphology of Taylor Valley, and to illuminate impacts on the Taylor Valley lakes ecosystem. The project will have a major role in furthering the careers of a doctoral-level graduate student and a post-doctoral researcher.
This award supports a comprehensive aerogeophysical survey of the Amundsen Sea Embayment (ASE) in West Antarctica. The University of Texas will join forces with the British Antarctic Survey to use both US and UK aircraft and instrumentation to achieve this survey. Analyses of the new aerogeophysical<br/>data will result in the generation of maps of ice sheet surface, volume and bottom-interface characteristics. These maps will support the efforts of a community of US and international researchers to assess the present and predict the future behavior of the ice sheet in the ASE.<br/>The West Antarctic ice sheet has been the subject of intensive interdisciplinary study by both the European and U.S. scientific communities since it was recognized to be a potential source for up to 5 meters of sea<br/>level rise, possibly on short timescales. In terms of ice discharge, the ASE is the largest drainage system in West Antarctica. Yet it has been comparatively unstudied, primarily due to its remoteness from logistical<br/>centers. The ASE is the only major drainage to exhibit significant elevation change over the period of available satellite observations. Present knowledge of the ice thickness and subglacial boundary conditions in the ASE are insufficient to understand its evolution or its sensitivity to climatic change.<br/>The results from our surveys are required to achieve the fundamental research objectives outlined by the US scientific community in an ASE Science Plan. The surveys and analyses will be achieved through international collaboration and will involve graduate students, undergraduates and high school apprentices.<br/>Through its potential for influencing sea level, the future behavior of the ASE is of primary societal importance. Given the substantial public and scientific interest that recent reports of change in West Antarctica have generated, we expect fundamental research in the Amundsen Sea Embayment, enabled by our surveys, will have widespread impact.
This award supports a project to characterize the morphology, ice motion velocity and mass balance of Lambert Glacier, Antarctica using state-of-the-art remote sensing and GIS techniques. Lambert Glacier is the largest ice stream in the world. Because of its size, it plays a fundamental role in the study of glacial dynamics and mass budget in response to present and future climate changes. Along with the bedrock topography and ice thickness data derived from airborne radio echo soundings and snow accumulation data compiled from ground-based measurements, the dynamic behavior and mass balance of the Lambert glacial basin in a Geographic Information Systems (GIS) environment will be examined. Specific objectives are to: (1) Extract two-dimensional ice velocity field over the entire Lambert glacial basin using speckle matching and differential interferometric SAR (InSAR) techniques, and produce a full coverage of radar coherence map over the drainage basin. With the ice velocity data, calculate the strain rate field from the initiation areas of the ice stream onto the Amery Ice Shelf; (2) Derive high-resolution digital elevation model (DEM) over the Lambert glacial drainage basin using SAR stereo, differential interferometric SAR, and GLAS laser altimetry techniques. Based on the DEM, extract ice divides and ice flow directions, delineate the snow catchment basin, and calculate the balance deformation velocity and the basal shear stress; (3) Interpolate traverse ice thickness data collected by Australian and Russian airborne radio echo sounding surveys into a regular grid, and derive a regular grid of bedrock topography in combination with the DEM; (4) Integrate newly derived ice velocity and ice thickness data as well as snow accumulation rate data compiled from previous ground-based measurements into a geographic information system (GIS), and calculate the mass flux through the ice stream at the grounding lines and net mass balance throughout the drainage basin. With these new measurements and calculations derived from advanced remote sensing techniques, we will be able to improve our understanding of dynamic behavior and current mass balance status of the Lambert glacial basin, gain an insight on the relationship between ice mass change and the variation in regional and global climate at decadal scale, and provide an evaluation on the issue of whether the Lambert glacier basin is subject to surging in the context of future climate change.
0086997<br/>Truffer<br/><br/>This award supports a two year project to investigate the dynamics of the marginal zone of the Siple Coast ice streams using existing velocity and temperature profiles. The flow and stress fields will be modeled using finite element methods and a thermo-mechanical model will be used to investigate the coupling of the flow and temperature fields. Direct comparison of these models with the observed velocity profiles will lead to estimates of the structure of the margins and the softening of the marginal ice. The distribution of basal and marginal shear stress will be investigated, leading to an estimate of the relative roles of the bed and the margins in the overall force balance of the ice streams.
9909469<br/>Scambos<br/><br/>This award provides support for three years of funding to study the scar-like features that are well-known from the Siple Coast ice stream system in West Antarctica. The objective of the proposed field work is to identify the nature of several as yet unvisited scars, and to further characterize previously-identified margin scars that are poorly dated. Advanced Very High Resolution Radiometer (AVHRR) and Radarsat image data will be used to locate and map the features, and place them in a regional context. The study seeks to describe the recent history of the Siple Coast glaciers and investigate the causes of their changes in configuration. The main investigative tools will be low-frequency RES and high-frequency ground penetrating radar (GPR) profiles to image internal layers and measure depths to buried crevasses or disrupted layering. This, coupled with accumulation rates determined from shallow ice cores, will provide "shutdown" ages for the margin features. The field data will provide input parameters for simple models of ice flow for margins and inter-ice stream ridges during active shearing and after shutdown. This modeling will estimate the initial elevation of a scar at the time of shut down and the corresponding ice stream elevation at that time.
9318121 Anandakrishnan This award is for support for a three year project to test the hypothesis that a controlling parameter of fast ice-stream flow is the hydrologic state of discrete zones of high friction ("sticky spots") at the bed of the ice streams. Previous work has discovered an enormous difference in basal microearthquake activity between fast-flowing ice stream B and ice stream C, which stopped flowing within the last 200 years. It is hypothesized that the basal water system is lubricating the sticky spots under the fast ice stream and thus inhibiting microearthquake activity, and at the same time permitting fast ice flow. This experiment is intended to collect a continuous record of wide-bandwidth microearthquake data from a variety of sites, on the ice streams, in the transition zone, and on the inland ice. ***
9316338 Jacobel This award is for support for a program of glaciological studies of Siple Dome and its surroundings between Ice Streams C and D. The purpose of the work is to characterize the dynamic environment and ice stratigraphy to aid in the assessment of Siple Dome as a potential deep ice core site, and to determine whether the configuration of ice stream flow in the region was different in the past than now. The work involves measurements of the configuration and continuity of internal layers in the ice, using radar echo sounding and determination of velocity field, based on standard GPS surveying. The goals of the work are relevant to understanding the dynamics of the West Antarctic Ice Sheet (WAIS), its past history and its potential future behavior, including possible effects on global sea level. This work is a collaborative project between the University of Washington, the University of Colorado and St. Olaf College. ***