EAGER: Community-Driven Ice Penetrating Radar Systems for Observing Complex Ice-Sheet Thermal Structure and Flow
Short Title:
Community-Driven Ice Penetrating Radar Systems
Start Date:
2023-04-15
End Date:
2025-03-31
Description/Abstract
Understanding ice structure, depth, internal velocity, and basal conditions is key to understanding current and future glacier and ice sheet behavior in Greenland and Antarctica. Most radio glaciology research projects are limited to whatever airborne ice-penetrating radar (IPR) data happens to already exist in the area of interest. Collecting new IPR data is a long and slow process, usually well outside the scope of individual research teams, especially in resource-intensive Antarctic glaciology research. This proposal seeks to field-test and validate two community-driven instruments that help address this gap in Antarctic research: a snowmobile-towed radar as well as a UAV (uncrewed aerial vehicle) system. Both systems are based off a common software control system and share the same code and post-processing tools. As part of this proposal, this code will be made available under an open-source license for other researchers to use and adapt, along with instructions for creating compatible hardware setups from commercially available parts, in order for them to be able to study glaciers and ice sheets at higher capacity and lower cost. The snowmobile-towed radar will be a multi-frequency, polarimetric chirped radar system designed to illuminate thermal, material, and roughness properties at the ice-bed interface. The PEREGRINE UAV system is a chirped radar with 56 MHz of bandwidth built into a small fixed-wing uncrewed aircraft that packs away into a single Pelican case for rapid small-scale surveys. The variables to be measured by these systems are critical observational data for projecting future behavior of the Antarctic ice sheet. The project spans two years and incorporates two seasons of field testing planned for Summit Station, Greenland, due to the need to test on a thick, cold ice sheet as well as the lower cost and risk of supporting instrument testing in the Arctic compared to Antarctica. The period between the field seasons will be used to initiate or continue conversations with researchers interested in incorporating our instruments into future fieldwork or adapting our core radar system into new instruments. This will give us an opportunity to develop new capabilities in response to this feedback and conduct relevant system tests during the second field season. A period after the second field season is reserved for the development of detailed documentation and preparation for the open release of code and systems. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Personnel
Funding
AMD - DIF Record(s)
Data Management Plan
None in the Database
Product Level:
Not provided
Keywords
|
This project has been viewed 56 times since May 2019 (based on unique date-IP combinations)