IEDA
Project Information
EAGER: Community-Driven Ice Penetrating Radar Systems for Observing Complex Ice-Sheet Thermal Structure and Flow
Short Title:
Community-Driven Ice Penetrating Radar Systems
Start Date:
2023-04-15
End Date:
2025-03-31
Description/Abstract
This project will develop a new ice-penetrating radar system that can simultaneously map glacier geometry and glacier flow along repeat profiles. Forecasting an ice-sheet’s contribution to sea level requires an estimate for the initial ice-sheet geometry and the parameters that govern ice flow and slip across bedrock. Existing ice-sheet models cannot independently determine this information from conventional observations of ice-surface velocities and glacier geometry. This introduces substantial uncertainty into simulations of past and future ice-sheet behavior. Thus, this new radar capability is conceived to provide the needed data to support higher-fidelity simulations of past and future ice-sheet behavior and more accurate projections of future sea level. The new radar system will integrate two existing radars (the multi-channel coherent radio-echo depth sounder and the accumulation radar) developed by the Center for the Remote Sensing of Ice Sheets, as well as adding new capabilities. An eight-element very high frequency (VHF; 140-215 MHz) array will have sufficient cross-track aperture to swath map internal layers and the ice-sheet base in three dimensions. A single ultra high frequency (UHF; 600-900 MHz) antenna will have the range and phase resolution to map internal layer displacement with 0.25-mm precision. The VHF array will create 3D mappings of layer geometry that enable measurements of vertical velocities by accounting for spatial offsets between repeat profiles and changing surface conditions. The vertical displacement measurement will then be made by determining the difference in radar phase response recorded by the UHF antenna for radar profiles collected at the same locations at different times. The UHF antenna will be dual-polarized and thus capable of isolating both components of complex internal reflections. This should enable inferences of ice crystal orientation fabric and widespread mapping of ice viscosity. Initial field testing of the radar will occur on the McMurdo Ice Shelf and then progress to Thwaites Glacier, Antarctica. The dual-band radar system technology and processing algorithms will be developed with versatile extensible hardware and user-friendly software so that this system will serve as a prototype for a future community radar system.
Personnel
Person Role
Schroeder, Dustin Investigator and contact
Tesiberg, Thomas Researcher
Boome, Anna Researcher
Funding
Antarctic Instrumentation and Facilities Award # 2306186
Polar Cyberinfrastructure Award # 2306186
AMD - DIF Record(s)
Data Management Plan
None in the Database
Product Level:
Not provided

This project has been viewed 7 times since May 2019 (based on unique date-IP combinations)