{"dp_type": "Dataset", "free_text": "Fur"}
[{"awards": "1744993 Higgins, John", "bounds_geometry": ["POINT(159.3562 -76.73243)"], "date_created": "Wed, 12 Feb 2025 00:00:00 GMT", "description": "Between about 2.8-0.9 Ma, Earth\u2019s climate was characterized by 40 kyr cycles, driven or paced by changes in the tilt of Earth\u2019s spin axis. Much is known about the 40k world from studies of deep-sea sediments, but our understanding of climate change during this period and the transition between the 40kyr glacial cycles from 2.8-0.9 Ma and the 100kyr glacial cycles of the last 0.9 Myr is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of \u003e1 Ma ice discovered in shallow ice cores in the Allan Hills Blue Ice Area (BIA), Antarctica. During the 2015-2016 field season we recovered ice from two nearby drill cores that dates to \u003e 2 million years in age using the 40Ar/38Ar ratio of the trapped gases. Our discovery of ice of this antiquity in two cores demonstrates that there is gas-record quality ice from the 40k world in the Allan Hills BIA. To further characterize the composition of Earth\u2019s atmosphere and Antarctic climate during the 40k world we request support for two field seasons to drill new large-volume (4\u201d or 9\u201d diameter) ice cores at sites where we have previously identified \u003e1 Ma ice and nearby sites where ground penetrating radar has identified bedrock features conducive to the preservation of old ice.\r\n\u003cbr/\u003e", "east": 159.3562, "geometry": ["POINT(159.3562 -76.73243)"], "keywords": "Allan Hills; Antarctica; Ch4; CO2; Cryosphere; Glaciology; Glaciology; Ice Core Data; Ice Core Records", "locations": "Allan Hills; Antarctica", "north": -76.73243, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Higgins, John", "project_titles": "Center for Oldest Ice Exploration; Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "projects": [{"proj_uid": "p0010321", "repository": "USAP-DC", "title": "Center for Oldest Ice Exploration"}, {"proj_uid": "p0010253", "repository": "USAP-DC", "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73243, "title": "CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903", "uid": "601896", "west": 159.3562}, {"awards": "1744993 Higgins, John", "bounds_geometry": ["POINT(159.356125 -76.732376)"], "date_created": "Wed, 12 Feb 2025 00:00:00 GMT", "description": "Between about 2.8-0.9 Ma, Earth\u2019s climate was characterized by 40 kyr cycles, driven or paced by changes in the tilt of Earth\u2019s spin axis. Much is known about the 40k world from studies of deep-sea sediments, but our understanding of climate change during this period and the transition between the 40kyr glacial cycles from 2.8-0.9 Ma and the 100kyr glacial cycles of the last 0.9 Myr is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of \u003e1 Ma ice discovered in shallow ice cores in the Allan Hills Blue Ice Area (BIA), Antarctica. During the 2015-2016 field season we recovered ice from two nearby drill cores that dates to \u003e 2 million years in age using the 40Ar/38Ar ratio of the trapped gases. Our discovery of ice of this antiquity in two cores demonstrates that there is gas-record quality ice from the 40k world in the Allan Hills BIA. To further characterize the composition of Earth\u2019s atmosphere and Antarctic climate during the 40k world we request support for two field seasons to drill new large-volume (4\u201d or 9\u201d diameter) ice cores at sites where we have previously identified \u003e1 Ma ice and nearby sites where ground penetrating radar has identified bedrock features conducive to the preservation of old ice.", "east": 159.356125, "geometry": ["POINT(159.356125 -76.732376)"], "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciology; Ice Core Data; MOT; Ocean Temperature; Paleoclimate; Xe/Kr", "locations": "Antarctica; Allan Hills", "north": -76.732376, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Higgins, John", "project_titles": "Center for Oldest Ice Exploration; Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "projects": [{"proj_uid": "p0010321", "repository": "USAP-DC", "title": "Center for Oldest Ice Exploration"}, {"proj_uid": "p0010253", "repository": "USAP-DC", "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.732376, "title": "MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903", "uid": "601897", "west": 159.356125}, {"awards": "1744993 Higgins, John", "bounds_geometry": null, "date_created": "Tue, 11 Feb 2025 00:00:00 GMT", "description": "Between about 2.8-0.9 Ma, Earth\u2019s climate was characterized by 40 kyr cycles, driven or paced by changes in the tilt of Earth\u2019s spin axis. Much is known about the 40k world from studies of deep-sea sediments, but our understanding of climate change during this period and the transition between the 40kyr glacial cycles from 2.8-0.9 Ma and the 100kyr glacial cycles of the last 0.9 Myr is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of \u003e1 Ma ice discovered in shallow ice cores in the Allan Hills Blue Ice Area (BIA), Antarctica. During the 2015-2016 field season we recovered ice from two nearby drill cores that dates to \u003e 2 million years in age using the 40Ar/38Ar ratio of the trapped gases. Our discovery of ice of this antiquity in two cores demonstrates that there is gas-record quality ice from the 40k world in the Allan Hills BIA. To further characterize the composition of Earth\u2019s atmosphere and Antarctic climate during the 40k world we request support for two field seasons to drill new large-volume (4\u201d or 9\u201d diameter) ice cores at sites where we have previously identified \u003e1 Ma ice and nearby sites where ground penetrating radar has identified bedrock features conducive to the preservation of old ice. ", "east": null, "geometry": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Noble Gas", "locations": "Antarctica; Allan Hills", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Higgins, John", "project_titles": "Center for Oldest Ice Exploration; Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "projects": [{"proj_uid": "p0010321", "repository": "USAP-DC", "title": "Center for Oldest Ice Exploration"}, {"proj_uid": "p0010253", "repository": "USAP-DC", "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": null, "title": "Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903", "uid": "601895", "west": null}, {"awards": "1246463 Burns, Jennifer", "bounds_geometry": ["POLYGON((162 -75,162.6 -75,163.2 -75,163.8 -75,164.4 -75,165 -75,165.6 -75,166.2 -75,166.8 -75,167.4 -75,168 -75,168 -75.4,168 -75.8,168 -76.2,168 -76.6,168 -77,168 -77.4,168 -77.8,168 -78.2,168 -78.6,168 -79,167.4 -79,166.8 -79,166.2 -79,165.6 -79,165 -79,164.4 -79,163.8 -79,163.2 -79,162.6 -79,162 -79,162 -78.6,162 -78.2,162 -77.8,162 -77.4,162 -77,162 -76.6,162 -76.2,162 -75.8,162 -75.4,162 -75))"], "date_created": "Fri, 04 Oct 2024 00:00:00 GMT", "description": "Weddell seal metabolic hormone data. Body composition data were generated following protocols described in Shero et al. 2014. Serum hormone concentrations were determined using immunoassays. IGF binding protein concentrations were determined using protocols described in Richmond et al. 2010", "east": 168.0, "geometry": ["POINT(165 -77)"], "keywords": "Antarctica; Cryosphere; Hormones; McMurdo Sound; Ross Sea; Weddell Seal", "locations": "McMurdo Sound; Ross Sea; Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Kirkham, Amy", "project_titles": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals", "projects": [{"proj_uid": "p0000229", "repository": "USAP-DC", "title": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "Weddell seal metabolic hormone data", "uid": "601840", "west": 162.0}, {"awards": null, "bounds_geometry": null, "date_created": "Thu, 05 Sep 2024 00:00:00 GMT", "description": "The effects of soluble impurities on the flow of glaciers and ice sheets as well as the effects of ice flow on impurities migration are not well understood. This study investigates the effects of sulfuric acid (H2SO4) concentrations ranging from 10 to 25 ppm on the flow and fabric of polycrystalline ice under compression at temperatures of -3\u00b0C and -12\u00b0C. The results show that H2SO4-doped polycrystalline ice deforms significantly faster than high-purity polycrystalline ice, with the deformation rate being 1.5 to 3 times higher. At -12\u00b0C, the presence of H2SO4 within the grains induces the most ice softening, whereas at -3\u00b0C, H2SO4\u0027s softening effects are observed both within the grains and at grain boundaries. The migration of H2SO4 to grain boundaries during deformation leads to the formation of a liquid-like layer, with increased solubility at higher temperatures potentially homogenizing the impurities within the ice matrix. This homogenization at -3\u00b0C suggests that post-depositional processes near the bed of ice sheets could significantly alter sulfate records. At -12\u00b0C, where homogenization is absent, impurity-induced dislocation processes may heavily influence deformation and impurity migration. Additionally, the comparison of natural ice with lab-grown samples indicates that fabric development significantly impacts compressive strength and creep rates, with implications for the understanding of impurity-induced deformation processes in polar ice.", "east": null, "geometry": null, "keywords": "Antarctica; Cryosphere", "locations": "Antarctica", "north": null, "nsf_funding_programs": null, "persons": "Ogunmolasuyi, Ayobami", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": null, "title": "The Impacts of the Microstructural Location of H2SO4 on the Flow of Polycrystalline Ice", "uid": "601831", "west": null}, {"awards": "2129252 Iverson, Neal", "bounds_geometry": null, "date_created": "Fri, 14 Jun 2024 00:00:00 GMT", "description": "This dataset contains parameters and results of laboratory experiments in which the permeability of temperate ice was measured as a function of water content and grain size. Further inquiries can be directed to the corresponding author, Jacob R. Fowler. Email: jrfowler@iastate.edu.", "east": null, "geometry": null, "keywords": "Antarctica; Cryosphere; Glaciology; Ice Stream; Lab Experiment; Rheology; Water Content", "locations": "Antarctica; Antarctica; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Iverson, Neal; Fowler, Jacob", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": null, "title": "Relationship Between the Permeability and Liquid Water Content of Polycrystalline Temperate Ice", "uid": "601802", "west": null}, {"awards": "2129252 Iverson, Neal", "bounds_geometry": null, "date_created": "Fri, 14 Jun 2024 00:00:00 GMT", "description": "This dataset contains parameters and results of laboratory experiments in which the permeability of temperate ice was measured for foliated ice disks collected from Athabasca Glacier. Data are in Data are in Microsoft Excel and .txt file formats. Further inquiries can be directed to the corresponding author, Jacob R. Fowler. Email: jrfowler@sas.upenn.edu.", "east": null, "geometry": null, "keywords": "Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Stream; Lab Experiment; Rheology; Snow/ice; Snow/Ice; Water Content", "locations": "Antarctica; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Iverson, Neal; Fowler, Jacob", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": null, "title": "Permeability anisotropy of foliated glacier ice", "uid": "601801", "west": null}, {"awards": "1939139 Scherer, Reed", "bounds_geometry": null, "date_created": "Tue, 20 Feb 2024 00:00:00 GMT", "description": "", "east": null, "geometry": null, "keywords": "Antarctica; Biogenic Silica; Diatom", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Scherer, Reed Paul; Furlong, Heather", "project_titles": "Collaborative Research: Testing the Linchpin of WAIS Collapse with Diatoms and IRD in Pleistocene and Late Pliocene Strata of the Resolution Drift, Amundsen Sea, Antarctica", "projects": [{"proj_uid": "p0010451", "repository": "USAP-DC", "title": "Collaborative Research: Testing the Linchpin of WAIS Collapse with Diatoms and IRD in Pleistocene and Late Pliocene Strata of the Resolution Drift, Amundsen Sea, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Pliocene diatom abundance, IODP 379-U1532", "uid": "601769", "west": null}, {"awards": "1851022 Fudge, Tyler", "bounds_geometry": ["POINT(123.33 -75.09)"], "date_created": "Fri, 22 Dec 2023 00:00:00 GMT", "description": "Volcanic deposition of sulfuric acid in ice cores is important both for understanding past volcanic activity and for synchronizing ice core timescales. Sulfuric acid has a low eutectic point, so it can potentially exist in liquid at grain boundaries and veins, accelerating chemical diffusion. A high effective diffusivity would allow post-depositional diffusion to obscure the climate history and the peak matching among older portions of ice cores. Here, we use records of sulfate from the EPICA Dome C (EDC) ice core to estimate the effective diffusivity of sulfuric acid in ice. We focus on EDC because multiple glacial-interglacial cycles are preserved, allowing analysis for long timescales and deposition in similar climates. We calculate the mean concentration gradient and the width of prominent volcanic events, and analyze the evolution of each with depth/age. We find the effective diffusivities for interglacials and glacial maximums to be 5 \u00b1 3 \u00d7 10-9 m2 a-1, an order of magnitude lower than a previous estimate derived from the Holocene portion of EDC (Barnes et al., 2003). The effective diffusivity may be even smaller if the bias from artificial smoothing from the sampling is accounted for. Effective diffusivity is not obviously affected by the ice temperature until about -10\u00b0C, 3000m depth, which is also where anomalous sulfate peaks begin to be observed (Traversi et al., 2009). Low effective diffusivity suggests that sulfuric acid is not readily diffusing in liquid-like veins in the upper portions of the Antarctic ice sheet and that records may be preserved in deep, old ice if the ice temperature remains well below the pressure melting point.", "east": 123.33, "geometry": ["POINT(123.33 -75.09)"], "keywords": "Antarctica", "locations": "Antarctica", "north": -75.09, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Fudge, T. J.; Severi, Mirko", "project_titles": "Collaborative Research: The Impact of Impurities and Stress State on Polycrystalline Ice Deformation", "projects": [{"proj_uid": "p0010211", "repository": "USAP-DC", "title": "Collaborative Research: The Impact of Impurities and Stress State on Polycrystalline Ice Deformation"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "COLDEX", "south": -75.09, "title": "EPICA Dome C Sulfate Data 7-3190m", "uid": "601759", "west": 123.33}, {"awards": "1744993 Higgins, John", "bounds_geometry": ["POLYGON((159.16667 -76.66667,159.19167000000002 -76.66667,159.21667000000002 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667000000002 -76.66667,159.34167000000002 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.67333599999999,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.69999999999999,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.71999799999999,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167000000002 -76.73333,159.31667000000002 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667000000002 -76.73333,159.19167000000002 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.71999799999999,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.69999999999999,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.67333599999999,159.16667 -76.66667))"], "date_created": "Fri, 03 Mar 2023 00:00:00 GMT", "description": "This document details the ground-penetrating radar (GPR) collection activities carried out by I. Nesbitt in the Allan Hills during the 2019-2020 field season. This document is intended as an informal catalogue of the fild work and post-processing activities performed at the Allan Hills and later at McMurdo and elsewhere. It contains preliminary post-processing and analysis only. Any interpretation made and presented in this report based on the data herein is subject to change pending further examination. GPR was used to examine sub-ice bedrock topography and the stratigraphic relationship between two shallow ice core drill sites (CMC1 and CMC2), as well as to explore potential future drill sites. In accordance with. the project\u0027s objective to drill and analyze ancient ice at relatively shallow depths, the two main features of interest in this study are 1) bedrock topographic features in which ancient ice could be trapped, and 2) englacial stratigraphic layers, especially those which may represent large age discontinuities.", "east": 159.41667, "geometry": ["POINT(159.29167 -76.69999999999999)"], "keywords": "Allan Hills; Antarctica; GPR; Ice Core; Report", "locations": "Antarctica; Allan Hills", "north": -76.66667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Nesbitt, Ian; Brook, Edward J.", "project_titles": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "projects": [{"proj_uid": "p0010253", "repository": "USAP-DC", "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73333, "title": "I-165-M GPR Field Report 2019-2020", "uid": "601669", "west": 159.16667}, {"awards": "1445205 Putkonen, Jaakko", "bounds_geometry": ["POLYGON((157.45 -83.14,157.45299999999997 -83.14,157.456 -83.14,157.459 -83.14,157.462 -83.14,157.46499999999997 -83.14,157.468 -83.14,157.471 -83.14,157.474 -83.14,157.47699999999998 -83.14,157.48 -83.14,157.48 -83.141,157.48 -83.142,157.48 -83.143,157.48 -83.144,157.48 -83.14500000000001,157.48 -83.146,157.48 -83.147,157.48 -83.14800000000001,157.48 -83.149,157.48 -83.15,157.47699999999998 -83.15,157.474 -83.15,157.471 -83.15,157.468 -83.15,157.46499999999997 -83.15,157.462 -83.15,157.459 -83.15,157.456 -83.15,157.45299999999997 -83.15,157.45 -83.15,157.45 -83.149,157.45 -83.14800000000001,157.45 -83.147,157.45 -83.146,157.45 -83.14500000000001,157.45 -83.144,157.45 -83.143,157.45 -83.142,157.45 -83.141,157.45 -83.14))"], "date_created": "Thu, 09 Feb 2023 00:00:00 GMT", "description": "These data include the measurements and analyses done on a ~10 meter long ice cores drilled in Ong Valley buried ice site. Further descriptions can be found in the related paper listed below.", "east": 157.48, "geometry": ["POINT(157.46499999999997 -83.14500000000001)"], "keywords": "Antarctica; Buried Ice; Cosmogenic Isotopes; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Old Ice; Ong Valley", "locations": "Ong Valley; Antarctica", "north": -83.14, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Putkonen, Jaakko; Bergelin, Marie", "project_titles": "Collaborative Research: Long Term Sublimation/Preservation of Two Separate, Buried Glacier Ice Masses, Ong Valley, Southern Transantarctic Mountains", "projects": [{"proj_uid": "p0010231", "repository": "USAP-DC", "title": "Collaborative Research: Long Term Sublimation/Preservation of Two Separate, Buried Glacier Ice Masses, Ong Valley, Southern Transantarctic Mountains"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -83.15, "title": "Old Ice, Ong Valley, Transantarctic Mountains", "uid": "601665", "west": 157.45}, {"awards": "1543537 Priscu, John", "bounds_geometry": ["POINT(-149.50134 -84.640287)"], "date_created": "Wed, 01 Feb 2023 00:00:00 GMT", "description": "This dataset contains bulk sediment properties measurements from cores collected from Mercer Subglacial Lake by the SALSA project. Included are: physical properties (bulk density, mass water content, porosity, shear strength, particle size distribution, and mineralogy); carbon (inorganic and organic); iron (ascorbate- and dithionite-extractable); and sulfur (acid-volatile and chromium-reducible).", "east": -149.50134, "geometry": ["POINT(-149.50134 -84.640287)"], "keywords": "Antarctica; Carbon; Glacier; Glaciers/ice Sheet; Glaciers/Ice Sheet; Iron; Mercer Subglacial Lake; Mineralogy; Particle Size; Physical Properties; SALSA; Sediment Core; Sulfur; West Antarctic Ice Sheet", "locations": "Antarctica; Mercer Subglacial Lake; Mercer Subglacial Lake; West Antarctic Ice Sheet", "north": -84.640287, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Dore, John; Campbell, Timothy; Michaud, Alexander; Hawkings, Jon; Skidmore, Mark; Tranter, Martyn; Venturelli, Ryan A; Science Team, SALSA", "project_titles": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments", "projects": [{"proj_uid": "p0010119", "repository": "USAP-DC", "title": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.640287, "title": "Discrete bulk sediment properties data from Mercer Subglacial Lake", "uid": "601661", "west": -149.50134}, {"awards": "1543450 Countway, Peter", "bounds_geometry": ["POLYGON((-66 -63,-65.7 -63,-65.4 -63,-65.1 -63,-64.8 -63,-64.5 -63,-64.2 -63,-63.9 -63,-63.6 -63,-63.3 -63,-63 -63,-63 -63.3,-63 -63.6,-63 -63.9,-63 -64.2,-63 -64.5,-63 -64.8,-63 -65.1,-63 -65.4,-63 -65.7,-63 -66,-63.3 -66,-63.6 -66,-63.9 -66,-64.2 -66,-64.5 -66,-64.8 -66,-65.1 -66,-65.4 -66,-65.7 -66,-66 -66,-66 -65.7,-66 -65.4,-66 -65.1,-66 -64.8,-66 -64.5,-66 -64.2,-66 -63.9,-66 -63.6,-66 -63.3,-66 -63))"], "date_created": "Tue, 03 Jan 2023 00:00:00 GMT", "description": "Biogenic sulfur samples were collected from Station E (Palmer Station, Antarctica) and from associated incubation experiments with Station E water. Samples were analyzed for Dimethyl Sulfide (DMS), particulate Dimethylsulfoniopropionate (DMSPp), dissolved Dimethylsulfoniopropionate (DMSPd), particulate Dimethylsulfoxide (DMSOp), dissolved Dimethylsulfoxide (DMSOd) and DMSP lyase activity. All analyses were performed at Palmer Station during scientific deployments. An overview of the methods used for these analyses is included in a secondary tab with the uploaded data.", "east": -63.0, "geometry": ["POINT(-64.5 -64.5)"], "keywords": "Antarctica; Biota; Dimethyl Sulfide; Dimethylsulfoniopropionate; Dimethylsulfoxide; DMSP; DMSP Lyase; Palmer Station", "locations": "Palmer Station; Antarctica", "north": -63.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Countway, Peter; Matrai, Patricia", "project_titles": "Microbial Community Structure and Expression of Functional Genes Involved in the Seasonal Cycling of DMSP in the Southern Ocean", "projects": [{"proj_uid": "p0010120", "repository": "USAP-DC", "title": "Microbial Community Structure and Expression of Functional Genes Involved in the Seasonal Cycling of DMSP in the Southern Ocean"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -66.0, "title": "Biogenic Sulfur Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments", "uid": "601648", "west": -66.0}, {"awards": "1246463 Burns, Jennifer", "bounds_geometry": ["POLYGON((162 -75,162.6 -75,163.2 -75,163.8 -75,164.4 -75,165 -75,165.6 -75,166.2 -75,166.8 -75,167.4 -75,168 -75,168 -75.4,168 -75.8,168 -76.2,168 -76.6,168 -77,168 -77.4,168 -77.8,168 -78.2,168 -78.6,168 -79,167.4 -79,166.8 -79,166.2 -79,165.6 -79,165 -79,164.4 -79,163.8 -79,163.2 -79,162.6 -79,162 -79,162 -78.6,162 -78.2,162 -77.8,162 -77.4,162 -77,162 -76.6,162 -76.2,162 -75.8,162 -75.4,162 -75))"], "date_created": "Tue, 05 Jul 2022 00:00:00 GMT", "description": "The profound impacts that maternal provisioning of finite energy resources has on offspring survival have been extensively studied across mammals. However, in addition to calories, we tested whether high hemoprotein concentrations in diving mammals necessitates exceptional female-to-pup iron transfer. To answer this question adult female Weddell seals (Leptonychotes weddellii) were handled across the austral summer. This included post-partum females during lactation and post-weaning. To demonstrate that any observed changes in iron dynamics were due to lactation, equivalent skip-breeding females (i.e., that did not produce a pup) were also handled. We measured numerous indices of iron mobilization (ferritin, serum iron, total-iron-binding-capacity, transferrin saturation, milk iron concentration), hemoprotein concentrations, and oxygen stores.", "east": 168.0, "geometry": ["POINT(165 -77)"], "keywords": "Aerobic; Antarctica; Dive Capacity; Iron; McMurdo Sound; Weddell Seal", "locations": "McMurdo Sound; Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Shero, Michelle", "project_titles": "Collaborative Research: Physiological and Genetic Correlates of Reproductive Success in High- versus Low-Quality Weddell seals; The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals", "projects": [{"proj_uid": "p0010369", "repository": "USAP-DC", "title": "Collaborative Research: Physiological and Genetic Correlates of Reproductive Success in High- versus Low-Quality Weddell seals"}, {"proj_uid": "p0000229", "repository": "USAP-DC", "title": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "Weddell seal iron dynamics and oxygen stores across lactation", "uid": "601587", "west": 162.0}, {"awards": "1929991 Pettit, Erin C", "bounds_geometry": ["POLYGON((-117.45625697487581 -73.79754996487824,-116.50673841062198 -73.79754996487824,-115.55721984636816 -73.79754996487824,-114.60770128211433 -73.79754996487824,-113.6581827178605 -73.79754996487824,-112.70866415360666 -73.79754996487824,-111.75914558935284 -73.79754996487824,-110.80962702509902 -73.79754996487824,-109.86010846084518 -73.79754996487824,-108.91058989659135 -73.79754996487824,-107.96107133233753 -73.79754996487824,-107.96107133233753 -74.04840280405163,-107.96107133233753 -74.29925564322501,-107.96107133233753 -74.5501084823984,-107.96107133233753 -74.80096132157178,-107.96107133233753 -75.05181416074517,-107.96107133233753 -75.30266699991856,-107.96107133233753 -75.55351983909193,-107.96107133233753 -75.80437267826532,-107.96107133233753 -76.0552255174387,-107.96107133233753 -76.30607835661209,-108.91058989659135 -76.30607835661209,-109.86010846084518 -76.30607835661209,-110.80962702509902 -76.30607835661209,-111.75914558935284 -76.30607835661209,-112.70866415360666 -76.30607835661209,-113.6581827178605 -76.30607835661209,-114.60770128211433 -76.30607835661209,-115.55721984636816 -76.30607835661209,-116.50673841062198 -76.30607835661209,-117.45625697487581 -76.30607835661209,-117.45625697487581 -76.0552255174387,-117.45625697487581 -75.80437267826532,-117.45625697487581 -75.55351983909193,-117.45625697487581 -75.30266699991856,-117.45625697487581 -75.05181416074517,-117.45625697487581 -74.80096132157178,-117.45625697487581 -74.5501084823984,-117.45625697487581 -74.29925564322501,-117.45625697487581 -74.04840280405163,-117.45625697487581 -73.79754996487824))"], "date_created": "Thu, 09 Jun 2022 00:00:00 GMT", "description": "This data set includes maps of height above flotation, surface lowering rates, dynamic thickness change, basal melt rates and grounding-line projections from the Dotson-Crosson Ice Shelf System. Furthermore, we included point clouds of migrated ICESat data and ship-based measurents of ocean current and mean potential temperature along the Dotson Ice Shelf\u0027s front.", "east": -107.96107133233753, "geometry": ["POINT(-112.70866415360666 -75.05181416074517)"], "keywords": "Antarctica; Dotson Ice Shelf; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology", "locations": "Antarctica; Dotson Ice Shelf", "north": -73.79754996487824, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Wild, Christian; Segabinazzi-Dotto, Tiago", "project_titles": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment", "projects": [{"proj_uid": "p0010162", "repository": "USAP-DC", "title": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -76.30607835661209, "title": "Dotson-Crosson Ice Shelf data from a tale of two ice shelves paper", "uid": "601578", "west": -117.45625697487581}, {"awards": "1246463 Burns, Jennifer", "bounds_geometry": ["POINT(165 -77)"], "date_created": "Mon, 09 May 2022 00:00:00 GMT", "description": "This dataset includes dive records from Weddell seals located in McMurdo Sound, Antarctica from the austral summers of 1978, 1979, and 1981 using Kooyman-Billups Time Depth Recorders. The data were recovered from photocopied paper scrolls using a code package (https://doi.org/10.5281/zenodo.14025657). This recovery process involved record scanning, image processing, and bias correction such that the historic data are directly comparable with dive data from modern instruments. This dataset contains the scanned images of the paper dive records (KBTDR_record_scans) and comma-separated value files of the dive data after recovery (KBTDR_data). Only records from McMurdo Sound were recovered, but record scans from Terra Nova Bay and White Island are also provided for future long-term studies on diving behavior. ", "east": 165.0, "geometry": ["POINT(165 -77)"], "keywords": "Antarctica; Biota; Diving Behavior; McMurdo Sound; Weddell Seal", "locations": "McMurdo Sound; Antarctica", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Tsai, EmmaLi", "project_titles": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals", "projects": [{"proj_uid": "p0000229", "repository": "USAP-DC", "title": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "1970s - 1980s Kooyman-Billups TDR Dive Records from Weddell Seals in McMurdo Sound", "uid": "601560", "west": 165.0}, {"awards": "1840058 Jenouvrier, Stephanie", "bounds_geometry": null, "date_created": "Fri, 04 Feb 2022 00:00:00 GMT", "description": "Many animals form long-term monogamous pair-bonds, and the disruption of a pair-bond (through either divorce or widowhood) can have significant consequences for individual vital rates (survival, breeding, and breeding success probabilities) and life-history outcomes (lifetime reproductive success, life expectancy). Here, we investigated the causes and consequences of pair-bond disruption in wandering albatross (Diomedea exulans). State-of-the-art statistical and mathematical approaches were developed to estimate divorce and widowhood rates and their impacts on vital rates and life-history outcomes. In this population, females incur a higher mortality rate due to incidental fishery bycatch, hence the population is male-skewed. Therefore, we first posited that males show higher widowhood rates negatively correlated with fishing effort, and females have higher divorce rates because they have more mating opportunities. Furthermore, we expected that divorce can be an adaptive strategy, whereby individuals improve breeding success by breeding with a new partner of better quality. Finally, we posited that pair-bond disruptions can reduce survival and breeding probabilities due to the cost of remating processes, with important consequences for life-history outcomes. As expected, we show that males have higher widowhood rates than females and females have higher divorce rates in this male-skewed population. However, no correlation was found between fishing effort and male widowhood. Secondly, contrary to our expectation, we found that divorce is likely non-adaptive in this population. We propose that divorce in this population is caused by an intruder who outcompetes the original partner in line with the \"forced divorce\" hypothesis. Furthermore, we found a 16.7% and 18.0% reduction in lifetime reproductive success (LRS) only for divorced and widowed males, respectively, due to missing breeding seasons after a pair-bond disruption. Finally, we found that divorced individuals are more likely to divorce again, but whether this is related to specific individual characteristics remains an important area of investigation. \r\n\r\nDescription of data processing:\r\nThis file includes: (1) observation events data; (2) E-surge GEPAT (Generator of pattern of elementary matrices) code for fitting MULTIEVENT-CAPTURE-MARK-RECAPTURE (MECMR) models; and (3) pair-bond status and breeding success data to perform all the analysis described in Sun et al. (2022, Ecological Monographs) ", "east": null, "geometry": null, "keywords": "Antarctica; Biota; Wandering Albatross", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Jenouvrier, Stephanie; Sun, Ruijiao; Barbraud, Christophe; Delord, Karine", "project_titles": "Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics", "projects": [{"proj_uid": "p0010090", "repository": "USAP-DC", "title": "Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Causes and consequences of pair-bond disruption in a sex-skewed population of a long-lived monogamous seabird: the wandering Albatross", "uid": "601518", "west": null}, {"awards": "1443386 Emslie, Steven; 1443585 Polito, Michael; 1443424 McMahon, Kelton; 1826712 McMahon, Kelton", "bounds_geometry": ["POLYGON((-37.33 -54.05,-37.192 -54.05,-37.054 -54.05,-36.916 -54.05,-36.778 -54.05,-36.64 -54.05,-36.502 -54.05,-36.364 -54.05,-36.226 -54.05,-36.088 -54.05,-35.95 -54.05,-35.95 -54.107,-35.95 -54.164,-35.95 -54.221,-35.95 -54.278,-35.95 -54.335,-35.95 -54.392,-35.95 -54.449,-35.95 -54.506,-35.95 -54.563,-35.95 -54.62,-36.088 -54.62,-36.226 -54.62,-36.364 -54.62,-36.502 -54.62,-36.64 -54.62,-36.778 -54.62,-36.916 -54.62,-37.054 -54.62,-37.192 -54.62,-37.33 -54.62,-37.33 -54.563,-37.33 -54.506,-37.33 -54.449,-37.33 -54.392,-37.33 -54.335,-37.33 -54.278,-37.33 -54.221,-37.33 -54.164,-37.33 -54.107,-37.33 -54.05))"], "date_created": "Thu, 13 Jan 2022 00:00:00 GMT", "description": "This data set contains radiometric dating measurements from two aquatic sediment cores excavated from two separate sites (Salisbury Plain and Gold Harbor) on South Georgia Island in February 2019. It also contains biological and geochemical sediment proxy values from both sediment cores, including total carbon (%), total nitrogen (%), number of penguin feathers and eggshell fragments, number of seal hairs, and \u03b413C and \u03b415N stable isotope values. Cores were sectioned at 1cm intervals, and radiometric dating analyses were conducted on sediment fractions \u003c850 \u00b5m by measuring for 210Pb and 226Ra (via 214Pb) by direct gamma counting using the high purity germanium planar detector in the Marine Geochemistry Laboratory at Louisiana State University (LSU). The 210Pbex profiles were used to calculate sedimentation rates using a steady state model that assumes constant rate of supply and constant sedimentation rate (Maiti et al., 2010). Geochemical analyses were performed on sediment fractions \u003c125 \u00b5m using an Elemental Analyzer-Isotope Ratio Mass Spectrometry (EA-IRMS) in the Stable Isotope Ecology Lab at LSU. Biological counts of feathers and hairs were determined by enumeration using a dissecting microscope of sediment fractions \u003e1000 \u00b5m. The data set also includes sediment core excavation site names and coordinates, date of excavation, sediment depth and age, and carbon to nitrogen isotopic ratios. Details of the data set and all relevant methods are provided in Kristan et al., 2021.", "east": -35.95, "geometry": ["POINT(-36.64 -54.335)"], "keywords": "Antarctica; Antarctic Fur Seal; Elemental Concentrations; King Penguin; Population Dynamics; South Atlantic Ocean; South Georgia Island; Stable Isotope Analysis; Sub-Antarctic", "locations": "Antarctica; Sub-Antarctic; South Georgia Island; South Atlantic Ocean", "north": -54.05, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Kristan, Allyson; Maiti, Kanchan; McMahon, Kelton; Polito, Michael", "project_titles": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators", "projects": [{"proj_uid": "p0010047", "repository": "USAP-DC", "title": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -54.62, "title": "Radiometric dating, geochemical proxies, and predator biological remains obtained from aquatic sediment cores on South Georgia Island.", "uid": "601509", "west": -37.33}, {"awards": "1826712 McMahon, Kelton; 1443585 Polito, Michael; 1443386 Emslie, Steven; 1443424 McMahon, Kelton", "bounds_geometry": ["POINT(-54.67855 -63.434067)"], "date_created": "Fri, 24 Jul 2020 00:00:00 GMT", "description": "This data set focuses on ornithogenic soils excavated from a test pit located in an active colony of Pygoscelis spp. penguins on Platter Island in the Danger Islands archipelago along the northeastern side of the Antarctic Peninsula in December 2015. It contains radiocarbon dates of recovered penguin tissues and the estimated age of ornithogenic soils by depth. It also contains measurements of carbon (\u03b413C) and nitrogen (\u03b415N) stable isotope values of Pygoscelis spp. penguins eggshell membrane and feather samples and Antarctic fur seal (Arctocephalus gazella) hair sample recovered from these ornithogenic soils. Accelerator Mass Spectrometry (AMS) was used to obtain radiocarbon dates at the Woods Hole National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) facility. Radiocarbon Dates were corrected for the marine carbon reservoir effect and calibrated to calendar years before present (cal years BP) using a \u0394R of 750\u2009\u00b1\u200950 years and the MARINE13 calibration curve in Calib 7.04. The rbacon package ver. 2.3.9.1 in R was used to estimate age at depth of each soil level expressed as years relative to the common era (CE). Stable isotope analyses were conducted using an elemental analyzer coupled to a continuous flow stable isotope ratio mass spectrometer at Louisiana State University. The data set also includes associated data such as excavation date, location, site names, latitude/longitude, species, date of excavation, tissue used for radiocarbon dating, and carbon to nitrogen ratios. Details of the data set and all relevant methods are provided in Kalvakaalva et. al., 2020.", "east": -54.67855, "geometry": ["POINT(-54.67855 -63.434067)"], "keywords": "Antarctica; Antarctic Peninsula; Arctocephalus Gazella; Carbon; Holocene; Nitrogen; Paleoecology; Penguin; Pygoscelis Spp.; Stable Isotope Analysis; Weddell Sea", "locations": "Antarctic Peninsula; Weddell Sea; Antarctica", "north": -63.434067, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Kalvakaalva, Rohit; Clucas, Gemma; Herman, Rachael; Polito, Michael", "project_titles": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators", "projects": [{"proj_uid": "p0010047", "repository": "USAP-DC", "title": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -63.434067, "title": "Radiocarbon dating and stable isotope values of penguin and seal tissues recovered from ornithogenic soils on Platter Island, Danger Islands Archipelago, Antarctic Peninsula in December 2015.", "uid": "601364", "west": -54.67855}, {"awards": "1246463 Burns, Jennifer", "bounds_geometry": ["POINT(165 -77)"], "date_created": "Tue, 23 Jun 2020 00:00:00 GMT", "description": "For Figures 2 and 4 In Beltran et al. PNAS", "east": 165.0, "geometry": ["POINT(165 -77)"], "keywords": "Animal Behavior Observation; Antarctica; Biota; McMurdo Sound; Ross Sea; Seal Dive Data; Weddell Seal", "locations": "Antarctica; McMurdo Sound; Ross Sea", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Burns, Jennifer", "project_titles": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals", "projects": [{"proj_uid": "p0000229", "repository": "USAP-DC", "title": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Seasonal Dive Data ", "uid": "601338", "west": 165.0}, {"awards": "9896041 Padman, Laurence; 1443677 Padman, Laurence", "bounds_geometry": ["POLYGON((-180 -40.231,-144 -40.231,-108 -40.231,-72 -40.231,-36 -40.231,0 -40.231,36 -40.231,72 -40.231,108 -40.231,144 -40.231,180 -40.231,180 -45.2079,180 -50.1848,180 -55.1617,180 -60.1386,180 -65.1155,180 -70.0924,180 -75.0693,180 -80.0462,180 -85.0231,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.0231,-180 -80.0462,-180 -75.0693,-180 -70.0924,-180 -65.1155,-180 -60.1386,-180 -55.1617,-180 -50.1848,-180 -45.2079,-180 -40.231))"], "date_created": "Thu, 19 Dec 2019 00:00:00 GMT", "description": "CATS2008 is a regional inverse barotropic tide model for the circum-Antarctic ocean on a 4 km grid. The model domain includes ocean cavities under the floating ice shelves. The coastline is based on the MODIS MOA [Scambos et al., 2007; Remote Sensing of Environment] feature identification files, adjusted to match ICESat-derived grounding lines for the Ross and Filchner-Ronne ice shelves and Interferometric Synthetic Aperture Radar (InSAR) grounding lines. The water depth map for open water is based on the 2007 release update to Smith and Sandwell [1997; Science]. Adjustments to this map have been made in various regions, including the open continental shelf in front of the Larsen-C Ice Shelf which has been blended with GEBCO bathymetry.\r\n\nModel type: Tides only; Inverse (data assimilation); barotropic (no vertical variation of currents). \nGrid: 4-km uniform polar stereographic (centered at 71 degrees S, 70 degrees W) \nConstituents: M2, S2, N2, K2, K1, O1, P1, Q1, Mf, Mm. \nUnits: z (sea surface height; meters); u,v (currents; cm/s); U,V (transports; m2/s). \nCoordinates: Currents (u, v) and depth-integrated transports (U, V) are given as East (u, U) and North (v, V) components. \nCitation: \"\u2026 an update to the inverse model described by Padman et al. [2002].\" \n\nSee CATS2008_README.pdf for further details.\r", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Inverse Modeling; Model Data; Ocean Currents; Sea Surface; Tidal Models; Tides", "locations": "Sea Surface; Antarctica", "north": -40.231, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Howard, Susan L.; Padman, Laurence; Erofeeva, Svetlana", "project_titles": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE); Ocean Tides around Antarctica and in the Southern Ocean", "projects": [{"proj_uid": "p0010116", "repository": "USAP-DC", "title": "Ocean Tides around Antarctica and in the Southern Ocean"}, {"proj_uid": "p0010035", "repository": "USAP-DC", "title": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "CATS2008: Circum-Antarctic Tidal Simulation version 2008", "uid": "601235", "west": -180.0}, {"awards": "1443346 Stone, John", "bounds_geometry": ["POLYGON((-174 -84.5,-172.4 -84.5,-170.8 -84.5,-169.2 -84.5,-167.6 -84.5,-166 -84.5,-164.4 -84.5,-162.8 -84.5,-161.2 -84.5,-159.6 -84.5,-158 -84.5,-158 -84.63,-158 -84.76,-158 -84.89,-158 -85.02,-158 -85.15,-158 -85.28,-158 -85.41,-158 -85.54,-158 -85.67,-158 -85.8,-159.6 -85.8,-161.2 -85.8,-162.8 -85.8,-164.4 -85.8,-166 -85.8,-167.6 -85.8,-169.2 -85.8,-170.8 -85.8,-172.4 -85.8,-174 -85.8,-174 -85.67,-174 -85.54,-174 -85.41,-174 -85.28,-174 -85.15,-174 -85.02,-174 -84.89,-174 -84.76,-174 -84.63,-174 -84.5))"], "date_created": "Thu, 21 Nov 2019 00:00:00 GMT", "description": "This data set contains measurements of cosmic-ray-produced Be-10 in quartz from glacial erratics and bedrock at sites along and adjacent to Liv Glacier and Amundsen Glacier in the southern Transantarctic Mountains. Samples were collected during the 2016-17 and 2017-18 field seasons working from remote camps along the coast. Locations were determined by hand-held GPS. Elevations are based on barometric altimetry corrected for daily drift and referenced to precise (geodetic) GPS benchmarks established over a range of altitudes at each site. Horizon geometry and the resulting topographic shielding of the cosmic ray flux was determined from vertically-oriented full-sky (fisheye) photographs at each sample location. Samples were processed at the University of Washington Cosmogenic Nuclide Laboratory using established procedures for mineral separation, dissolution, beryllium extraction and purification, described at http://depts.washington.edu/cosmolab/chem.shtml. Beryllium isotope ratios were measured at the Lawrence Livermore Center for Accelerator Mass Spectrometry (LLNL-CAMS) relative to the KNSTD-Be-01-5-4 standard, assuming a standard Be-10/Be-9 ratio of 2.851E-12 (07KNSTD normalization). Data are reported as input for the online CRONUS cosmogenic nuclide calculator (V3, current at the time of submission in November 2019). Exposure ages can be obtained by entering the data into the CRONUS calculator, at: http://hess.ess.washington.edu/math/v3/v3_age_in.html .\r\nData for each sample consists of two lines of input parameters, as follows:\t\t\t\t\t\t\t\t\t\r\n{Sample_name, Latitude (DD), Longitude (DD), Altitude (m asl), Scaling_function, Thickness (cm), Density (g/cm^3), Horizon_correction, Erosion_rate (cm/yr), Year_sampled}\r\n{Sample_name, Nuclide (in this case Be-10), Target_mineral (quartz), Be-10_concentration (atom/g), Error_Be-10_concentration (atom/g), Normalization}\r\nFurther information about the V3 input format is given at:\r\nhttp://hess.ess.washington.edu/math/docs/v3/v3_input_explained.html", "east": -158.0, "geometry": ["POINT(-166 -85.15)"], "keywords": "Antarctica; Be-10; Beryllium-10; Cosmogenic; Cosmogenic Dating; Cosmogenic Radionuclides; Deglaciation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Liv Glacier; Rocks; Ross Ice Sheet; Surface Exposure Dates; Transantarctic Mountains", "locations": "Transantarctic Mountains; Ross Ice Sheet; Antarctica; Liv Glacier", "north": -84.5, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Stone, John", "project_titles": "Collaborative Research: High-resolution Reconstruction of Holocene Deglaciation in the Southern Ross Embayment", "projects": [{"proj_uid": "p0010053", "repository": "USAP-DC", "title": "Collaborative Research: High-resolution Reconstruction of Holocene Deglaciation in the Southern Ross Embayment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.8, "title": "Cosmogenic nuclide data from glacial deposits along the Liv Glacier coast", "uid": "601226", "west": -174.0}, {"awards": "1745137 Schroeder, Dustin", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 02 Oct 2019 00:00:00 GMT", "description": "These data accompany the paper \"Antarctic Topographic Realizations and Geostatistical Modeling Used to Map Subglacial Lakes\" (MacKie et al., in review). This dataset contains 100 geostatistically generated subglacial topographic realizations for Antarctica. Data science techniques were used to calculate the probability of the occurrence of radar-detected lakes and altimetry-detected (active) lakes across the continent, using each topographic realization as a parameter. This generated 100 probability maps of the likelihood of radar-detected lake occurrence and 100 probability maps of active lake occurrence. Further statistics were used to generate 100 binary maps showing expected radar-detected lake locations. The ensemble of realizations can be used for uncertainty quantification.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Active Lakes; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; Model Data; Snow/ice; Snow/Ice; Subglacial Lakes; Topography", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "MacKie, Emma; Schroeder, Dustin; Caers, Jef; Siegfried, Matt; Scheidt, Celine", "project_titles": "CAREER: Cross-Instrument Synthesis of Antarctic Radar Sounding Observations", "projects": [{"proj_uid": "p0010058", "repository": "USAP-DC", "title": "CAREER: Cross-Instrument Synthesis of Antarctic Radar Sounding Observations"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Antarctic topographic and subglacial lake geostatistical simulations", "uid": "601213", "west": -180.0}, {"awards": "1822289 Vernet, Maria", "bounds_geometry": ["POLYGON((-59.402149 -62.131908,-58.9639887 -62.131908,-58.5258284 -62.131908,-58.0876681 -62.131908,-57.6495078 -62.131908,-57.2113475 -62.131908,-56.7731872 -62.131908,-56.3350269 -62.131908,-55.8968666 -62.131908,-55.4587063 -62.131908,-55.020546 -62.131908,-55.020546 -62.384829,-55.020546 -62.63775,-55.020546 -62.890671,-55.020546 -63.143592,-55.020546 -63.396513,-55.020546 -63.649434,-55.020546 -63.902355,-55.020546 -64.155276,-55.020546 -64.408197,-55.020546 -64.661118,-55.4587063 -64.661118,-55.8968666 -64.661118,-56.3350269 -64.661118,-56.7731872 -64.661118,-57.2113475 -64.661118,-57.6495078 -64.661118,-58.0876681 -64.661118,-58.5258284 -64.661118,-58.9639887 -64.661118,-59.402149 -64.661118,-59.402149 -64.408197,-59.402149 -64.155276,-59.402149 -63.902355,-59.402149 -63.649434,-59.402149 -63.396513,-59.402149 -63.143592,-59.402149 -62.890671,-59.402149 -62.63775,-59.402149 -62.384829,-59.402149 -62.131908))"], "date_created": "Mon, 29 Apr 2019 00:00:00 GMT", "description": "Marine ecosystems under large ice shelves are thought to contain sparse, low-diversity plankton and seafloor communities due the low supply of food from productive sunlight waters. Past studies have shown sub-ice shelf ecosystems to change in response to altered oceanographic processes resulting from ice-shelve retreat. However, information on community changes and ecosystem structure under ice shelves are limited because sub-ice-shelf ecosystems have either been sampled many years after ice-shelf breakout, or have been sampled through small boreholes, yielding extremely limited spatial information. The recent breakout of the A-68 iceberg from the Larsen C ice shelf in the western Weddell Sea provides an opportunity to use a ship-based study to evaluate benthic communities and water column characteristics in an area recently vacated by a large overlying ice shelf. The opportunity will allow spatial assessments at the time of transition from an under ice-shelf environment to one initially exposed to conditions more typical of a coastal Antarctic marine setting. \r\n\r\n\r\n\r\nThis RAPID project will help determine the state of a coastal Antarctic ecosystem newly exposed from ice-shelf cover and will aid in understanding of rates of community change during transition. The project will conduct a 10-day field program, allowing contrasts to be made of phytoplankton and seafloor megafaunal communities in areas recently exposed by ice-shelf loss to areas exposed for many decades. The project will be undertaken in a collaborative manner with the South Korean Antarctic Agency, KOPRI, by participating in a cruise in March/May 2018. Combining new information in the area of Larsen C with existing observations after the Larsen A and B ice shelf breakups further to the north, the project is expected to generate a dataset that can elucidate fundamental processes of planktonic and benthic community development in transition from food-poor to food-rich ecosystems. The project will provide field experience to two graduate students, a post-doctoral associate and an undergraduate student. Material from the project will be incorporated into graduate courses and the project will communicate daily work and unfolding events through social media and blogs while they explore this area of the world that is largely underexplored.", "east": -55.020546, "geometry": ["POINT(-57.2113475 -63.396513)"], "keywords": "Antarctica; Biota; Chlorophyll; CTD; Glacier; Iceberg; Ice Shelf; Larsen C Ice Shelf; Oceans; Physical Oceanography; Phytoplankton; Sample Location; Sea Ice; Southern Ocean; Station List", "locations": "Southern Ocean; Antarctica; Larsen C Ice Shelf", "north": -62.131908, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Pan, B. Jack; Vernet, Maria", "project_titles": "RAPID: Collaborative Research: Marine Ecosystem Response to the Larsen C Ice-Shelf Breakout: \"Time zero\"", "projects": [{"proj_uid": "p0010029", "repository": "USAP-DC", "title": "RAPID: Collaborative Research: Marine Ecosystem Response to the Larsen C Ice-Shelf Breakout: \"Time zero\""}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.661118, "title": "CTD stations and logs for Araon 2018 ANA08D expedition to Larson C", "uid": "601178", "west": -59.402149}, {"awards": "1246463 Burns, Jennifer", "bounds_geometry": null, "date_created": "Sat, 24 Nov 2018 00:00:00 GMT", "description": "We examined the influence of sea ice break-out on seasonal diving patterns and diet of a top predator, the Weddell seal, to understand how phytoplankton blooms impact the vertical distribution of the food web. We captured female seals during the November and December lactation period and attached a LOTEK LAT1800 time-depth recorder (TDR) flipper tag with a 6 second sampling interval. Data were processed using the Iknos toolbox in MATLAB. Benthic dives (1% of all dives) were excluded from analyses because we were interested in quantifying seasonal changes in mid-water dives. Thus, we analyzed dives from 59 Weddell seals to characterize the diving depth and foraging effort of each seal across the austral summer over four years. We characterized seasonal changes in diving depth by calculating the mean across all seals of the maximum dive depth on each day for each seal. For more information see: Beltran, R. S. Bridging the gap between pupping and molting phenology: behavioral and ecological drivers in Weddell seals PhD thesis, University of Alaska Fairbanks, (2018).", "east": null, "geometry": null, "keywords": "Antarctica; Biota; Ross Sea; Seals; Southern Ocean; Weddell Seal", "locations": "Antarctica; Ross Sea; Southern Ocean", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Beltran, Roxanne; Burns, Jennifer", "project_titles": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals", "projects": [{"proj_uid": "p0000229", "repository": "USAP-DC", "title": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Weddell seal summer diving behavior", "uid": "601137", "west": null}, {"awards": "1246463 Burns, Jennifer", "bounds_geometry": ["POLYGON((-180 -76,-177 -76,-174 -76,-171 -76,-168 -76,-165 -76,-162 -76,-159 -76,-156 -76,-153 -76,-150 -76,-150 -76.2,-150 -76.4,-150 -76.6,-150 -76.8,-150 -77,-150 -77.2,-150 -77.4,-150 -77.6,-150 -77.8,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -77.8,160 -77.6,160 -77.4,160 -77.2,160 -77,160 -76.8,160 -76.6,160 -76.4,160 -76.2,160 -76,162 -76,164 -76,166 -76,168 -76,170 -76,172 -76,174 -76,176 -76,178 -76,-180 -76))"], "date_created": "Thu, 08 Nov 2018 00:00:00 GMT", "description": "This dataset includes measurements of cortisol levels (pg/mg) extracted from Weddell Seal fur samples collected from adult females in colonies in the Erebus Bay region of Antarctica during 4 austral field seasons between November 2013 and February 2017. Observations recorded include body mass, body composition, reproductive status.", "east": 160.0, "geometry": ["POINT(-175 -77)"], "keywords": "Antarctica; Biota; Cortisol; Fur; Ross Sea; Seals; Southern Ocean; Visual Observations; Weddell Seal", "locations": "Ross Sea; Antarctica; Southern Ocean", "north": -76.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Burns, Jennifer", "project_titles": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals", "projects": [{"proj_uid": "p0000229", "repository": "USAP-DC", "title": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Cortisol levels in Weddell seal fur ", "uid": "601134", "west": -150.0}, {"awards": "1246463 Burns, Jennifer", "bounds_geometry": ["POLYGON((164 -76,164.2 -76,164.4 -76,164.6 -76,164.8 -76,165 -76,165.2 -76,165.4 -76,165.6 -76,165.8 -76,166 -76,166 -76.2,166 -76.4,166 -76.6,166 -76.8,166 -77,166 -77.2,166 -77.4,166 -77.6,166 -77.8,166 -78,165.8 -78,165.6 -78,165.4 -78,165.2 -78,165 -78,164.8 -78,164.6 -78,164.4 -78,164.2 -78,164 -78,164 -77.8,164 -77.6,164 -77.4,164 -77.2,164 -77,164 -76.8,164 -76.6,164 -76.4,164 -76.2,164 -76))"], "date_created": "Tue, 30 Oct 2018 00:00:00 GMT", "description": "All sightings of known, tagged, Weddell seals during molt seasons of Austral summers 2013, 14 15, and 2016. Seals that were sighted but for which molt status could not be determined are not included in this dataset. Seals without tags or IDs were not included. ", "east": 166.0, "geometry": ["POINT(165 -77)"], "keywords": "Antarctica; Biota; Ross Sea; Seals; Visual Observations; Weddell Seal", "locations": "Ross Sea; Antarctica", "north": -76.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Burns, Jennifer", "project_titles": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals", "projects": [{"proj_uid": "p0000229", "repository": "USAP-DC", "title": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Weddell Seal Molt Survey Data", "uid": "601133", "west": 164.0}, {"awards": "1246463 Burns, Jennifer", "bounds_geometry": null, "date_created": "Mon, 22 Oct 2018 00:00:00 GMT", "description": "Animals can respond to dynamic environments through phenological plasticity of life history events; however, changes in one part of the annual cycle can diminish the success of subsequent life history events. Our aims were to determine the associations between reproduction and moult phenology across years and to quantify phenological plasticity across varying environmental conditions. We conducted demographic surveys of 4,252 flipper-tagged Weddell seals (Leptonychotes weddellii) in the Ross Sea, Antarctica during four austral summers. At each sighting, seals were assigned a moult code based on the visible presence of new fur, and the start date of each animal\u2019s moult was back-calculated. This dataset contains data on pupping and moult timing for each animal used to address this question.", "east": null, "geometry": null, "keywords": "Antarctica; B-292-M; Biota; Ross Sea; Seals; Southern Ocean; Weddell Seal", "locations": "Southern Ocean; Ross Sea; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Burns, Jennifer", "project_titles": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals", "projects": [{"proj_uid": "p0000229", "repository": "USAP-DC", "title": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Weddell Seal Molt Phenology Dataset", "uid": "601131", "west": null}, {"awards": "1246190 Yu, Zicheng", "bounds_geometry": ["POLYGON((-68.5 -64,-67.73 -64,-66.96 -64,-66.19 -64,-65.42 -64,-64.65 -64,-63.88 -64,-63.11 -64,-62.34 -64,-61.57 -64,-60.8 -64,-60.8 -64.36,-60.8 -64.72,-60.8 -65.08,-60.8 -65.44,-60.8 -65.8,-60.8 -66.16,-60.8 -66.52,-60.8 -66.88,-60.8 -67.24,-60.8 -67.6,-61.57 -67.6,-62.34 -67.6,-63.11 -67.6,-63.88 -67.6,-64.65 -67.6,-65.42 -67.6,-66.19 -67.6,-66.96 -67.6,-67.73 -67.6,-68.5 -67.6,-68.5 -67.24,-68.5 -66.88,-68.5 -66.52,-68.5 -66.16,-68.5 -65.8,-68.5 -65.44,-68.5 -65.08,-68.5 -64.72,-68.5 -64.36,-68.5 -64))"], "date_created": "Mon, 24 Jul 2017 00:00:00 GMT", "description": "We used subfossil mosses and peats to document changes in regional climate, cryosphere, and terrestrial ecosystems in the western Antarctic Peninsula at ~65S latitude. We find that most peat-forming ecosystems have initiated since 2800 cal BP, in response to warmer summers and increasing summer insolation. The period at 900-600 cal BP was coldest as indicated by ice advance, abundance of kill ages from ice-entombed mosses exposed recently from retreating glacial ice, and apparent gap in peatbank initiation. Furthermore, the discovery of a novel Antarctic hairgrass (Deschampsia antarctica) peatland at 2300-1200 cal BP from the mainland Antarctic Peninsula suggests a much warmer climate than the present. A warming and wetting climate in the 1980s caused very high carbon accumulation in a Polytrichum strictum moss peatbank. Our results document dramatic transformations of landscape and ecosystems in response to past warmer climate, providing a telltale sign for what may come in the future.", "east": -60.8, "geometry": ["POINT(-64.65 -65.8)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Moss; Paleoclimate; Sample/collection Description; Sample/Collection Description", "locations": "Antarctic Peninsula; Antarctica", "north": -64.0, "nsf_funding_programs": null, "persons": "Yu, Zicheng", "project_titles": "Collaborative Research: Response of Carbon Accumulation in Moss Peatbanks to Past Warm Climates in the Antarctic Peninsula", "projects": [{"proj_uid": "p0000341", "repository": "USAP-DC", "title": "Collaborative Research: Response of Carbon Accumulation in Moss Peatbanks to Past Warm Climates in the Antarctic Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.6, "title": "Late Holocene paleoecological and paleoclimatic data from moss peatbanks in the western Antarctic Peninsula", "uid": "601037", "west": -68.5}, {"awards": "1246463 Burns, Jennifer", "bounds_geometry": ["POINT(166.55 -77.75)"], "date_created": "Wed, 24 May 2017 00:00:00 GMT", "description": "This dataset includes an inventory of Weddell Seals captured by net, tagged, and observed at colonies in the Erebus Bay region of Antarctica during 4 austral field seasons between November 2013 and February 2017. Observations recorded include body mass, length, and molt category.", "east": 166.55, "geometry": ["POINT(166.55 -77.75)"], "keywords": "Antarctica; Biota; McMurdo Sound; Oceans; Ross Sea; Sample/collection Description; Sample/Collection Description; Seals", "locations": "McMurdo Sound; Ross Sea; Antarctica", "north": -77.75, "nsf_funding_programs": null, "persons": "Burns, Jennifer", "project_titles": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals", "projects": [{"proj_uid": "p0000229", "repository": "USAP-DC", "title": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.75, "title": "Specimen logs and observations from Weddell Seal colonies in Erebus Bay, 2013-2017", "uid": "601027", "west": 166.55}, {"awards": "1142083 Kyle, Philip", "bounds_geometry": ["POINT(167.15334 -77.529724)"], "date_created": "Sat, 03 Dec 2016 00:00:00 GMT", "description": "Mt. Erebus is one of only a handful of volcanoes worldwide that have lava lakes with readily observable and nearly continuous Strombolian explosive activity. Erebus is also unique in having a permanent convecting lava lake of anorthoclase phonolite magma. Over the years significant infrastructure has been established at the summit of Mt. Erebus as part of the Mount Erebus Volcano Observatory (MEVO), which serves as a natural laboratory to study a wide range of volcanic processes, especially magma degassing associated with an open convecting magma conduit. The PI proposes to continue operating MEVO for a further five years. The fundamental fundamental research objectives are: to understand diffuse flank degassing by using distributed temperature sensing and gas measurements in ice caves, to understand conduit processes, and to examine the environmental impact of volcanic emissions from Erebus on atmospheric and cryospheric environments. To examine conduit processes the PI will make simultaneous observations with video records, thermal imaging, measurements of gas emission rates and gas compositions, seismic, and infrasound data.\n An important aspect of Erebus research is the education and training of students. Both graduate and undergraduate students will have the opportunity to work on MEVO data and deploy to the field site. In addition, this proposal will support a middle or high school science teacher for two field seasons. The PI will also continue working with various media organizations and filmmakers.\nThis dataset contains video taken from a series of cameras that were installed at Shackleton\u0027s Cairn (-77.525337, 167.157509) looking into the lava lake. This dataset contains all such video taken between 2005 and 2011. Camera downlink depended on power at a relay station at the Cones site. The camera was operational during G-081 field seasons and often for a period of weeks or months thereafter.", "east": 167.15334, "geometry": ["POINT(167.15334 -77.529724)"], "keywords": "Antarctica; Cable Observatory; Geology/Geophysics - Other; Infrared Imagery; Intracontinental Magmatism; IntraContinental Magmatism; MEVO; Mount Erebus; Photo/video; Photo/Video; Ross Island; Solid Earth; Thermal Camera; Volcano", "locations": "Antarctica; Ross Island; Mount Erebus", "north": -77.529724, "nsf_funding_programs": null, "persons": "Oppenheimer, Clive; Kyle, Philip", "project_titles": "Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)", "projects": [{"proj_uid": "p0000383", "repository": "USAP-DC", "title": "Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "MEVO", "south": -77.529724, "title": "Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)", "uid": "600381", "west": 167.15334}, {"awards": "0839059 Powell, Ross", "bounds_geometry": ["POLYGON((-168.7 -82.3,-168.69 -82.3,-168.68 -82.3,-168.67 -82.3,-168.66 -82.3,-168.65 -82.3,-168.64 -82.3,-168.63 -82.3,-168.62 -82.3,-168.61 -82.3,-168.6 -82.3,-168.6 -82.31,-168.6 -82.32,-168.6 -82.33,-168.6 -82.34,-168.6 -82.35,-168.6 -82.36,-168.6 -82.37,-168.6 -82.38,-168.6 -82.39,-168.6 -82.4,-168.61 -82.4,-168.62 -82.4,-168.63 -82.4,-168.64 -82.4,-168.65 -82.4,-168.66 -82.4,-168.67 -82.4,-168.68 -82.4,-168.69 -82.4,-168.7 -82.4,-168.7 -82.39,-168.7 -82.38,-168.7 -82.37,-168.7 -82.36,-168.7 -82.35,-168.7 -82.34,-168.7 -82.33,-168.7 -82.32,-168.7 -82.31,-168.7 -82.3))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "The LISSARD project (Lake and Ice Stream Subglacial Access Research Drilling) is one of three research components of the WISSARD integrative initiative (Whillans Ice Stream Subglacial Access Research Drilling) that is being funded by the Antarctic Integrated System Science Program of NSF\u0027s Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The LISSARD component of WISSARD focuses on the role of active subglacial lakes in determining how fast the West Antarctic ice sheet loses mass to the global ocean and influences global sea level changes. The importance of Antarctic subglacial lakes has only been recently recognized, and the lakes have been identified as high priority targets for scientific investigations because of their unknown contributions to ice sheet stability under future global warming scenarios. LISSARD has several primary science goals: A) To provide an observational basis for improving treatments of subglacial hydrological and mechanical processes in models of ice sheet mass balance and stability; B) To reconstruct the past history of ice stream stability by analyzing archives of past basal water and ice flow variability contained in subglacial sediments, porewater, lake water, and basal accreted ice; C) To provide background understanding of subglacial lake environments to benefit RAGES and GBASE (the other two components of the WISSARD project); and D) To synthesize data and concepts developed as part of this project to determine whether subglacial lakes play an important role in (de)stabilizing Antarctic ice sheets. We propose an unprecedented synthesis of approaches to studying ice sheet processes, including: (1) satellite remote sensing, (2) surface geophysics, (3) borehole observations and measurements and, (4) basal and subglacial sampling.\nThe latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations.\nSocietal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars.", "east": -168.6, "geometry": ["POINT(-168.65 -82.35)"], "keywords": "Antarctica; Biota; Diatom; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Lake Whillans; Paleoclimate; Ross Sea; Southern Ocean; Subglacial Lake; WISSARD", "locations": "Lake Whillans; Southern Ocean; Antarctica; Ross Sea", "north": -82.3, "nsf_funding_programs": null, "persons": "Powell, Ross", "project_titles": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)", "projects": [{"proj_uid": "p0000105", "repository": "USAP-DC", "title": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.4, "title": "Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats in W Antarctica - Lake and Ice Stream Subglacial Access Research Drilling (LISSARD)", "uid": "600154", "west": -168.7}, {"awards": "1245821 Brook, Edward J.", "bounds_geometry": ["POINT(162.167 -77.733)"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, and delta 18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, delta 13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of delta 13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica.", "east": 162.167, "geometry": ["POINT(162.167 -77.733)"], "keywords": "Antarctica; Atmosphere; Geochemistry; Ice Core Records; Isotope; Paleoclimate; Taylor Glacier; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica; Taylor Glacier", "north": -77.733, "nsf_funding_programs": null, "persons": "Brook, Edward J.", "project_titles": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "projects": [{"proj_uid": "p0000283", "repository": "USAP-DC", "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.733, "title": "The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "uid": "600163", "west": 162.167}, {"awards": "0839107 Powell, Ross", "bounds_geometry": ["POLYGON((-163.7 -84,-163.68 -84,-163.66 -84,-163.64 -84,-163.62 -84,-163.6 -84,-163.58 -84,-163.56 -84,-163.54 -84,-163.52 -84,-163.5 -84,-163.5 -84.05,-163.5 -84.1,-163.5 -84.15,-163.5 -84.2,-163.5 -84.25,-163.5 -84.3,-163.5 -84.35,-163.5 -84.4,-163.5 -84.45,-163.5 -84.5,-163.52 -84.5,-163.54 -84.5,-163.56 -84.5,-163.58 -84.5,-163.6 -84.5,-163.62 -84.5,-163.64 -84.5,-163.66 -84.5,-163.68 -84.5,-163.7 -84.5,-163.7 -84.45,-163.7 -84.4,-163.7 -84.35,-163.7 -84.3,-163.7 -84.25,-163.7 -84.2,-163.7 -84.15,-163.7 -84.1,-163.7 -84.05,-163.7 -84))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "The RAGES project (Robotic Access to Grounding zones for Exploration and Science) is one of three research components of the WISSARD (Whillans Ice Stream Subglacial Access Research Drilling) integrative initiative that is being funded by the Antarctic Integrated System Science Program of NSF\u0027s Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The RAGES component of WISSARD concentrates on the stability of ice stream grounding zones (GZ), the area where the ice, ocean waters and glacial and sea floor sediment interact. Based on our present limited data and modeling efforts, GZs can be perturbed by (i) internal ice stream dynamics, (ii) filling/draining cycles of subglacial lakes, (iii) increased melting by warming ocean waters, and/or (iv) rates of subglacial sediment (till) supply to the GZ. GZs are seen as high priority targets to investigate due to their unknown contributions to ice sheet stability under future global warming scenarios. The three main science goals for RAGES are to assess: (a) West Antarctic Ice Sheet (WAIS) stability relative to the magnitudes of the four main variables listed above; (b) the degree to which grounding-zone sedimentary systems house important records of past WAIS dynamics; and (c) the importance of microbial activity and subglacial geochemical weathering in supplying nutrients to the WAIS grounding zone, the Ross Ice Shelf (RIS) cavity, and the highly productive Southern Ocean that may ultimately influence global biogeochemical cycles. The RAGES field sampling plan integrates surface geophysical surveys with borehole and subglacial sampling and measurements. The boreholes provide: (1) samples of subglacial water, sediments, and basal ice for biological, geochemical, glaciological, sedimentological, and micropaleontological analyses; (2) measures of subglacial and sub-ice-shelf cavity physical and chemical conditions and their spatial variability; and (3) data on sediment types, state and change of the subglacial water discharge, oceanography, and basal ice at the grounding line and within the nearby sub-ice-shelf cavity. Unique tools to be deployed include a multisensor Sub-Ice ROVer (Remotely Operated Vehicle) and long-term, sub-ice oceanographic moorings.\nThe latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations.\nSocietal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. The RAGES project represents a significant advance in polar technology by incorporating the use of complex new instrumentation like the Sub-Ice ROVer and subglacial ocean/lake mooring systems. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars.", "east": -163.5, "geometry": ["POINT(-163.6 -84.25)"], "keywords": "Antarctica; Glaciology; Oceans; Southern Ocean; WISSARD", "locations": "Southern Ocean; Antarctica", "north": -84.0, "nsf_funding_programs": null, "persons": "Powell, Ross", "project_titles": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)", "projects": [{"proj_uid": "p0000105", "repository": "USAP-DC", "title": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.5, "title": "Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats - Robotic Access to Grounding-zones for Exploration and Science (RAGES)", "uid": "600155", "west": -163.7}, {"awards": "0944659 Kiene, Ronald", "bounds_geometry": ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "Spectacular blooms of Phaeocystis antarctica in the Ross Sea, Antarctica are the source of some of the world\u0027s highest concentrations of dimethylsulfoniopropionate (DMSP) and its volatile degradation product, dimethylsulfide (DMS). The flux of DMS from the oceans to the atmosphere in this region and its subsequent gas phase oxidation generates aerosols that have a strong influence on cloud properties and possibly climate. In the oceans, DMS and DMSP are quantitatively significant components of the carbon, sulfur, and energy flows in marine food webs, especially in the Ross Sea. Despite its central role in carbon and sulfur biogeochemistry in the Ross Sea, surprisingly little is known about the physiological functions of DMSP in P. Antarctica. The research will isolate and characterize DMSP lyases from P. antarctica, with the goal of obtaining amino acid and gene sequence information on these important enzymes. The physiological studies will focus on the effects of varying intensities of photosynthetically active radiation, with and without ultraviolet radiation as these are factors that we have found to be important controls on DMSP and DMS dynamics. The research also will examine the effects of prolonged darkness on the dynamics of DMSP and related compounds in P. antarctica, as survival of this species during the dark Antarctic winter and at sub-euphotic depths appears to be an important part of the Phaeocystis? ecology. A unique aspect of this work is the focus on measurements of intracellular MSA, which if detected, would provide strong evidence for in vivo radical scavenging functions for methyl sulfur compounds. The study will advance understanding of what controls DMSP cycling and ultimately DMS emissions from the Ross Sea and also provide information on what makes P. antarctica so successful in this extreme environment. The research will directly benefit and build on several interrelated ocean-atmosphere programs including the International Surface Ocean Lower Atmosphere Study (SOLAS) program. The PIs will participate in several activities involving K-12 education, High School teacher training, public education and podcasting through the auspices of the Dauphin Island Sea Lab Discovery Hall program and SUNY ESF. Two graduate students will be employed full time, and six undergraduates (2 each summer) will be trained as part of this project.\n", "east": -150.0, "geometry": ["POINT(-155 -73)"], "keywords": "Antarctica; Biota; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Oceans; Ross Sea", "locations": "Ross Sea; Antarctica", "north": -68.0, "nsf_funding_programs": null, "persons": "Kiene, Ronald", "project_titles": "Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "projects": [{"proj_uid": "p0000085", "repository": "USAP-DC", "title": "Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "uid": "600150", "west": -160.0}, {"awards": "1142010 Talghader, Joseph", "bounds_geometry": ["POLYGON((-148.81 -79.42,-145.111 -79.42,-141.412 -79.42,-137.713 -79.42,-134.014 -79.42,-130.315 -79.42,-126.616 -79.42,-122.917 -79.42,-119.218 -79.42,-115.519 -79.42,-111.82 -79.42,-111.82 -79.643,-111.82 -79.866,-111.82 -80.089,-111.82 -80.312,-111.82 -80.535,-111.82 -80.758,-111.82 -80.981,-111.82 -81.204,-111.82 -81.427,-111.82 -81.65,-115.519 -81.65,-119.218 -81.65,-122.917 -81.65,-126.616 -81.65,-130.315 -81.65,-134.014 -81.65,-137.713 -81.65,-141.412 -81.65,-145.111 -81.65,-148.81 -81.65,-148.81 -81.427,-148.81 -81.204,-148.81 -80.981,-148.81 -80.758,-148.81 -80.535,-148.81 -80.312,-148.81 -80.089,-148.81 -79.866,-148.81 -79.643,-148.81 -79.42))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "This award supports a project to combine the expertise of both glaciologists and optical engineers to develop polarization- preserving optical scattering techniques for borehole tools to identify changes in high-resolution crystal structure (fabric) and dust content of glacial ice. The intellectual merit of this work is that the fabric and impurity content of the ice contain details on climate, volcanic activity and ice flow history. Such fabric measurements are currently taken by slicing an ice core into sections after it has started to depressurize which is an extremely time-intensive process that damages the core and does not always preserve the properties of ice in its in-situ state. In addition the ice core usually must be consumed in order to measure the components of the dust. The fabric measurements of this study utilize the concept that singly-scattered light in ice preserves most of its polarization when it is backscattered once from bubbles or dust; therefore, changes to the polarization of singly-backscattered light must originate with the birefringence. Measurements based on this concept will enable this program to obtain continuous records of fabric and correlate them to chronology and dust content. The project will also develop advanced borehole instruments to replace current logging tools, which require optical sources, detectors and power cables to be submerged in borehole fluid and lowered into the ice sheet at temperatures of -50oC. The use of telecommunications fiber will allow all sources and detectors to remain at the surface and enable low-noise signal processing techniques such as lock-in amplification that increase signal integrity and reduce needed power. Further, fiber logging systems would be much smaller and more flexible than current tools and capable of navigating most boreholes without a heavy winch. In order to assess fabric in situ and test fiber-optic borehole tools, field measurements will be made at WAIS Divide and a deep log will also be made at Siple Dome, both in West Antarctica. If successful, the broader impacts of the proposed research would include the development of new analytical methods and lightweight logging tools for ice drilling research that can operate in boreholes drilled in ice. Eventually the work could result in the development of better prehistoric records of glacier flow, atmospheric particulates, precipitation, and climate forcing. The project encompasses a broad base of theoretical, experimental, and design work, which makes it ideal for training graduate students and advanced undergraduates. Collaboration with schools and classroom teachers will help bring aspects of optics, climate, and polar science to an existing Middle School curriculum.", "east": -111.82, "geometry": ["POINT(-130.315 -80.535)"], "keywords": "Antarctica; Ash Layer; Borehole Camera; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.42, "nsf_funding_programs": null, "persons": "Talghader, Joseph", "project_titles": "Optical Fabric and Fiber Logging of Glacial Ice", "projects": [{"proj_uid": "p0000339", "repository": "USAP-DC", "title": "Optical Fabric and Fiber Logging of Glacial Ice"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -81.65, "title": "Optical Fabric and Fiber Logging of Glacial Ice (1142010)", "uid": "600172", "west": -148.81}, {"awards": "1139739 Hansen, Samantha", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: Numerous candidate models for the geologic processes that have shaped the Antarctic continent have been proposed. To discriminate between them, detailed images of the upper mantle structure are required; however, the only existing continental-scale images of seismic structure beneath Antarctica lack sufficient resolution to delineate important, diagnostic features. Using newly available data from various Antarctic seismic networks, the PI will employ the adaptively parameterized tomography method to develop a high-resolution, continental-scale seismic velocity model for all of Antarctica. The proposed tomography method combines regional seismic travel-time datasets in the context of a global model to create a composite continental-scale model of upper mantle structure. The proposed method allows for imaging of finer structure in areas with better seismic ray coverage while simultaneously limiting the resolution of features in regions with less coverage. This research will help advance understanding of important global processes, such as craton formation, mountain building, continental rifting and associated magmatism. Additionally, the proposed research will have important impacts on other fields of Antarctic science. Constraints provided by tomographic results can be used to develop thermal models of the lithosphere needed to characterize the history and dynamics of ice sheets. Also, further constraints on lithospheric structure are required by climate-ice models, which are focused on understanding the cooling history of the Antarctic continent.\n\nBroader impacts: The PI is a new faculty member at the University of Alabama after having been funded as a National Science Foundation Postdoctoral Fellow in Polar Regions Research. The graduate student supported by this project is new to polar research. Through the UA-Tuscaloosa Magnet School partnership program, the PI will educate K-12 students about the Antarctic environment and associated career opportunities through various online and hands-on activities. University of Alabama dedicates a significant percentage of its enrollment space to underrepresented groups.\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Geology/Geophysics - Other; Lithosphere; Seismic Tomography; Solid Earth", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Hansen, Samantha", "project_titles": "New Approach to Investigate the Seismic Velocity Structure beneath Antarctica", "projects": [{"proj_uid": "p0000354", "repository": "USAP-DC", "title": "New Approach to Investigate the Seismic Velocity Structure beneath Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "A New Approach to Investigate the Seismic Velocity Structure beneath Antarctica", "uid": "600132", "west": -180.0}, {"awards": "0944220 Ponganis, Paul", "bounds_geometry": ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Emperor penguins (Aptenodytes forsteri) and leopard seals (Hydrurga leptonyx) are iconic, top predators in Antarctica. Understanding their physiological ecology is essential to the assessment of their adaptability to the threats of climate change, pollution, and overfishing. The proposed research has multipronged objectives. Prior results suggest that Emperor penguins have flexible (vs. static) aerobic dive limits (ADL) that vary with the type of dive, and that the role of heart rate in utilization of oxygen stores also varies with dive type. A series of physiological measurements are proposed with backpack electrocardiogram recorders, that will allow further delineation of patterns and interrelationships among heart rate, dive behavior, and oxygen stores. Importantly, the research will be done on free diving emperors, and not individuals confined to a dive hole, thereby providing a more genuine measure of diving physiology and behavior. A separate objective is to examine foraging behavior of leopard seals, using a backpack digital camera and time depth recorder. Leopard seal behavior and prey intake is poorly quantified, but known to be significant. Accordingly the research is somewhat exploratory but will provide important baseline data. Finally, the P.I. proposes to continue long term overflight censuses of Emperor penguin colonies in the Ross Sea. Broader impacts include collaboration with National Geographic television, graduate student training, and development of sedation techniques for leopard seals.\n", "east": -150.0, "geometry": ["POINT(-155 -73)"], "keywords": "Antarctica; Biota; Electrocardiogram; Penguin; Southern Ocean", "locations": "Southern Ocean; Antarctica", "north": -68.0, "nsf_funding_programs": null, "persons": "Ponganis, Paul", "project_titles": "The Physiological Ecology of Two Antarctic Icons: Emperor Penguins and Leopard Seals", "projects": [{"proj_uid": "p0000349", "repository": "USAP-DC", "title": "The Physiological Ecology of Two Antarctic Icons: Emperor Penguins and Leopard Seals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "The Physiological Ecology of Two Antarctic Icons: Emperor Penguins and Leopard Seals", "uid": "600113", "west": -160.0}, {"awards": "0732804 McPhee, Miles", "bounds_geometry": ["POINT(166.25 -77.42)"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "The Office of Polar Programs, Antarctic Integrated and System Science Program has made this award to support an interdisciplinary study of the effects of the ocean on the stability of glacial ice in the most dynamic region the West Antarctic Ice Sheet, namely the Pine Island Glacier in the Amundsen Sea Embayment. The collaborative project builds on the knowledge gained by the highly successful West Antarctic Ice Sheet program and is being jointly sponsored with NASA. Recent observations indicate a significant ice loss, equivalent to 10% of the ongoing increase in sea-level rise, in this region. These changes are largest along the coast and propagate rapidly inland, indicating the critical impact of the ocean on ice sheet stability in the region. While a broad range of remote sensing and ground-based instrumentation is available to characterize changes of the ice surface and internal structure (deformation, ice motion, melt) and the shape of the underlying sediment and rock bed, instrumentation has yet to be successfully deployed for observing boundary layer processes of the ocean cavity which underlies the floating ice shelf and where rapid melting is apparently occurring. Innovative, mini ocean sensors that can be lowered through boreholes in the ice shelf (about 500 m thick) will be developed and deployed to automatically provide ocean profiling information over at least three years. Their data will be transmitted through a conducting cable frozen in the borehole to the surface where it will be further transmitted via satellite to a laboratory in the US. Geophysical and remote sensing methods (seismic, GPS, altimetry, stereo imaging, radar profiling) will be applied to map the geometry of the ice shelf, the shape of the sub ice-shelf cavity, the ice surface geometry and deformations within the glacial ice. To integrate the seismic, glaciological and oceanographic observations, a new 3-dimensional coupled ice-ocean model is being developed which will be the first of its kind. NASA is supporting satellite based research and the deployment of a robotic-camera system to explore the environment in the ocean cavity underlying the ice shelf and NSF is supporting all other aspects of this study. \n\nBroader impacts: This project is motivated by the potential societal impacts of rapid sea level rise and should result in critically needed improvements in characterizing and predicting the behavior of coupled ocean-ice systems. It is a contribution to the International Polar Year and was endorsed by the International Council for Science as a component of the \u0027Multidisciplinary Study of the Amundsen Sea Embayment\u0027 proposal #258 of the honeycomb of endorsed IPY activities. The research involves substantial international partnerships with the British Antarctic Survey and the University of Bristol in the UK. The investigators will partner with the previously funded \u0027Polar Palooza\u0027 education and outreach program in addition to undertaking a diverse set of outreach activities of their own. Eight graduate students and one undergraduate as well as one post doc will be integrated into this research project.\n", "east": 166.25, "geometry": ["POINT(166.25 -77.42)"], "keywords": "Antarctica; Atmosphere; McMurdo; Meteorology; Oceans; Ross Island; Southern Ocean", "locations": "McMurdo; Ross Island; Antarctica; Southern Ocean", "north": -77.42, "nsf_funding_programs": null, "persons": "McPhee, Miles G.", "project_titles": "Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica", "projects": [{"proj_uid": "p0000043", "repository": "USAP-DC", "title": "Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.42, "title": "Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica", "uid": "600072", "west": 166.25}, {"awards": "0944686 Kieber, David", "bounds_geometry": ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Spectacular blooms of Phaeocystis antarctica in the Ross Sea, Antarctica are the source of some of the world\u0027s highest concentrations of dimethylsulfoniopropionate (DMSP) and its volatile degradation product, dimethylsulfide (DMS). The flux of DMS from the oceans to the atmosphere in this region and its subsequent gas phase oxidation generates aerosols that have a strong influence on cloud properties and possibly climate. In the oceans, DMS and DMSP are quantitatively significant components of the carbon, sulfur, and energy flows in marine food webs, especially in the Ross Sea. Despite its central role in carbon and sulfur biogeochemistry in the Ross Sea, surprisingly little is known about the physiological functions of DMSP in P. antarctica. The research will isolate and characterize DMSP lyases from P. antarctica, with the goal of obtaining amino acid and gene sequence information on these important enzymes. The physiological studies will focus on the effects of varying intensities of photosynthetically active radiation, with and without ultraviolet radiation as these are factors that we have found to be important controls on DMSP and DMS dynamics. The research also will examine the effects of prolonged darkness on the dynamics of DMSP and related compounds in P. antarctica, as survival of this species during the dark Antarctic winter and at sub-euphotic depths appears to be an important part of the Phaeocystis\u0027 ecology. A unique aspect of this work is the focus on measurements of intracellular MSA, which if detected, would provide strong evidence for in vivo radical scavenging functions for methyl sulfur compounds. The study will advance understanding of what controls DMSP cycling and ultimately DMS emissions from the Ross Sea and also provide information on what makes P. antarctica so successful in this extreme environment. The research will directly benefit and build on several interrelated ocean-atmosphere programs including the International Surface Ocean Lower Atmosphere Study (SOLAS) program. The PIs will participate in several activities involving K-12 education, High School teacher training, public education and podcasting through the auspices of the Dauphin Island Sea Lab Discovery Hall program and SUNY ESF. Two graduate students will be employed full time, and six undergraduates (2 each summer) will be trained as part of this project.\n", "east": -150.0, "geometry": ["POINT(-155 -73)"], "keywords": "Biota; Ross Sea; Southern Ocean", "locations": "Ross Sea; Southern Ocean", "north": -68.0, "nsf_funding_programs": null, "persons": "Kieber, David John", "project_titles": "Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "projects": [{"proj_uid": "p0000085", "repository": "USAP-DC", "title": "Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "uid": "600117", "west": -160.0}, {"awards": "0337933 Cole-Dai, Jihong", "bounds_geometry": ["POINT(0 -90)"], "date_created": "Tue, 19 Nov 2013 00:00:00 GMT", "description": "A 180 m ice core drilled at South Pole in 2004/2005 was analyzed for concentrations of major ions at a depth resolution of approximately 2 cm. Measured ions are chloride, nitrate, sulfate, sodium, potassium, magnesium and calcium. The bottom of the core has been dated to 1830 years before 2004.", "east": 0.0, "geometry": ["POINT(0 -90)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ion Chromatograph; South Pole", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Cole-Dai, Jihong", "project_titles": "Collaborative Research: Investigating Atmospheric Chemistry and Dynamics through Oxygen and Sulfur Isotopes in Volcanic Sulfate from South Pole Ice Cores", "projects": [{"proj_uid": "p0000031", "repository": "USAP-DC", "title": "Collaborative Research: Investigating Atmospheric Chemistry and Dynamics through Oxygen and Sulfur Isotopes in Volcanic Sulfate from South Pole Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Major Ion Concentrations in 2004 South Pole Ice Core", "uid": "609542", "west": 0.0}, {"awards": "0838773 McClintock, James", "bounds_geometry": ["POLYGON((-79 -60,-76.4 -60,-73.8 -60,-71.2 -60,-68.6 -60,-66 -60,-63.4 -60,-60.8 -60,-58.2 -60,-55.6 -60,-53 -60,-53 -61,-53 -62,-53 -63,-53 -64,-53 -65,-53 -66,-53 -67,-53 -68,-53 -69,-53 -70,-55.6 -70,-58.2 -70,-60.8 -70,-63.4 -70,-66 -70,-68.6 -70,-71.2 -70,-73.8 -70,-76.4 -70,-79 -70,-79 -69,-79 -68,-79 -67,-79 -66,-79 -65,-79 -64,-79 -63,-79 -62,-79 -61,-79 -60))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "The near shore environments of the western Antarctic Peninsula (WAP) harbor extremely high densities of mesograzers (small invertebrate predators approximately 1-25 mm in length) such as benthic amphipods, as well as rich assemblages of macroalgae, endophytes, and macroinvertebrates. Unlike temperate and tropical shallow marine environments, where fish and sea urchins are key grazers structuring the community, mesograzers appear to be much more important in the WAP. Accordingly, the proposed research has two main objectives: (1) To further investigate the interactions between the ecologically dominant large macrophytes, filamentous epi/endophytes, and mesograzers and (2) To determine the nature of interactions between mesograzers and sessile invertebrates. Specifically, the research will examine the following hypotheses: 1: The effects of endophytes on macrophytes are often negative, and consequently macrophytes defend against endophytic infection. 2: Mesoherbivores prevent filamentous algal species, common in the intertidal, from dominating subtidal assemblages. 3: Mesograzer predation pressure on sessile benthic macroinvertebrates, primarily sponges and tunicates, is greatest in shallow habitats dominated by macrophytes, and this impacts depth distributions of macroinvertebrate species. 4: Benthic macroinvertebrates may defend against mesograzers with secondary metabolites which effect molting and/or deter feeding. Broader impacts include involvement of undergraduates, including minorities, in research; training of graduate students, and continuation of the highly successful UAB IN ANTARCTICA interactive web program (two time recipient of awards of excellence from the US Council for Advancement and Support of Education). The researchers also will share their scientific endeavors with teachers, K-12 students, and other members of the community at large while in residence in Antarctica. In addition, the investigators will request the participation of a PolarTREC teacher.", "east": -53.0, "geometry": ["POINT(-66 -65)"], "keywords": "Algae; Antarctica; Antarctic Peninsula; Biota; Oceans; Southern Ocean", "locations": "Antarctica; Southern Ocean; Antarctic Peninsula", "north": -60.0, "nsf_funding_programs": null, "persons": "McClintock, James; Amsler, Charles", "project_titles": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula; Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing", "projects": [{"proj_uid": "p0010016", "repository": "USAP-DC", "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing"}, {"proj_uid": "p0000475", "repository": "USAP-DC", "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula", "uid": "600095", "west": -79.0}, {"awards": "0838776 Baker, Bill", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "The near shore environments of the western Antarctic Peninsula (WAP) harbor extremely high densities of mesograzers (small invertebrate predators approximately 1-25 mm in length) such as benthic amphipods, as well as rich assemblages of macroalgae, endophytes, and macroinvertebrates. Unlike temperate and tropical shallow marine environments, where fish and sea urchins are key grazers structuring the community, mesograzers appear to be much more important in the WAP. Accordingly, the proposed research has two main objectives: (1) To further investigate the interactions between the ecologically dominant large macrophytes, filamentous epi/endophytes, and mesograzers and (2) To determine the nature of interactions between mesograzers and sessile invertebrates. Specifically, the research will examine the following hypotheses: 1: The effects of endophytes on macrophytes are often negative, and consequently macrophytes defend against endophytic infection. 2: Mesoherbivores prevent filamentous algal species, common in the intertidal, from dominating subtidal assemblages. 3: Mesograzer predation pressure on sessile benthic macroinvertebrates, primarily sponges and tunicates, is greatest in shallow habitats dominated by macrophytes, and this impacts depth distributions of macroinvertebrate species. 4: Benthic macroinvertebrates may defend against mesograzers with secondary metabolites which effect molting and/or deter feeding. Broader impacts include involvement of undergraduates, including minorities, in research; training of graduate students, and continuation of the highly successful UAB IN ANTARCTICA interactive web program (two time recipient of awards of excellence from the US Council for Advancement and Support of Education). The researchers also will share their scientific endeavors with teachers, K-12 students, and other members of the community at large while in residence in Antarctica. In addition, the investigators will request the participation of a PolarTREC teacher.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Algae; Antarctica; Antarctic Peninsula; Biota; Oceans; Southern Ocean", "locations": "Antarctic Peninsula; Southern Ocean; Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Baker, Bill", "project_titles": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula; Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing", "projects": [{"proj_uid": "p0000475", "repository": "USAP-DC", "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula"}, {"proj_uid": "p0010016", "repository": "USAP-DC", "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula", "uid": "600096", "west": -180.0}, {"awards": "0636319 Shaw, Timothy", "bounds_geometry": ["POLYGON((-51.9201 -57.5061,-50.99447 -57.5061,-50.06884 -57.5061,-49.14321 -57.5061,-48.21758 -57.5061,-47.29195 -57.5061,-46.36632 -57.5061,-45.44069 -57.5061,-44.51506 -57.5061,-43.58943 -57.5061,-42.6638 -57.5061,-42.6638 -58.03449,-42.6638 -58.56288,-42.6638 -59.09127,-42.6638 -59.61966,-42.6638 -60.14805,-42.6638 -60.67644,-42.6638 -61.20483,-42.6638 -61.73322,-42.6638 -62.26161,-42.6638 -62.79,-43.58943 -62.79,-44.51506 -62.79,-45.44069 -62.79,-46.36632 -62.79,-47.29195 -62.79,-48.21758 -62.79,-49.14321 -62.79,-50.06884 -62.79,-50.99447 -62.79,-51.9201 -62.79,-51.9201 -62.26161,-51.9201 -61.73322,-51.9201 -61.20483,-51.9201 -60.67644,-51.9201 -60.14805,-51.9201 -59.61966,-51.9201 -59.09127,-51.9201 -58.56288,-51.9201 -58.03449,-51.9201 -57.5061))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions:1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children\u0027s books will participate in cruises to produce an account of the expedition and a daily interactive website.", "east": -42.6638, "geometry": ["POINT(-47.29195 -60.14805)"], "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Oceans; Sea Ice; Sea Surface; Southern Ocean; Weddell Sea", "locations": "Weddell Sea; Sea Surface; Southern Ocean", "north": -57.5061, "nsf_funding_programs": null, "persons": "Shaw, Tim; Twining, Benjamin", "project_titles": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "projects": [{"proj_uid": "p0000511", "repository": "USAP-DC", "title": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -62.79, "title": "Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "uid": "600064", "west": -51.9201}, {"awards": "0538520 Thiemens, Mark", "bounds_geometry": ["POINT(-114.216667 -78.916667)"], "date_created": "Mon, 01 Nov 2010 00:00:00 GMT", "description": "This data set contains measurements of multiple sulfur and oxygen isotopes from sulfates, from an ice core drilled at the West Antarctic Ice Sheet (WAIS) Divide site in 2005. The initial sulfate measurements, analyzed in 2008 from the 70 meter WAIS 2005A core, are 12 meter averages and span the pre-industrial to industrial transition, from the late 1700s to 2005. This data set is part of the West Antarctic Ice Sheet Divide Ice Core (WAISCORES) project.\n\nData are available via FTP in Microsoft Excel (.xlsx) format.", "east": -114.216667, "geometry": ["POINT(-114.216667 -78.916667)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -78.916667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Thiemens, Mark H.", "project_titles": "Collaborative Research: Multiple-isotope Analysis of Nitrate and Sulfate in the West Antarctic Ice Sheet Divide Ice Core", "projects": [{"proj_uid": "p0000020", "repository": "USAP-DC", "title": "Collaborative Research: Multiple-isotope Analysis of Nitrate and Sulfate in the West Antarctic Ice Sheet Divide Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.916667, "title": "Multiple Isotope Analysis of Sulfate in the West Antarctic Ice Sheet Divide Ice Core", "uid": "609479", "west": -114.216667}, {"awards": "0636543 Murray, Alison", "bounds_geometry": ["POLYGON((-51.98403 -57.58068,-51.042765 -57.58068,-50.1015 -57.58068,-49.160235 -57.58068,-48.21897 -57.58068,-47.277705 -57.58068,-46.33644 -57.58068,-45.395175 -57.58068,-44.45391 -57.58068,-43.512645 -57.58068,-42.57138 -57.58068,-42.57138 -58.10845,-42.57138 -58.63622,-42.57138 -59.16399,-42.57138 -59.69176,-42.57138 -60.21953,-42.57138 -60.7473,-42.57138 -61.27507,-42.57138 -61.80284,-42.57138 -62.33061,-42.57138 -62.85838,-43.512645 -62.85838,-44.45391 -62.85838,-45.395175 -62.85838,-46.33644 -62.85838,-47.277705 -62.85838,-48.21897 -62.85838,-49.160235 -62.85838,-50.1015 -62.85838,-51.042765 -62.85838,-51.98403 -62.85838,-51.98403 -62.33061,-51.98403 -61.80284,-51.98403 -61.27507,-51.98403 -60.7473,-51.98403 -60.21953,-51.98403 -59.69176,-51.98403 -59.16399,-51.98403 -58.63622,-51.98403 -58.10845,-51.98403 -57.58068))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions: 1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children\u0027s books will participate in cruises to produce an account of the expedition and a daily interactive website.", "east": -42.57138, "geometry": ["POINT(-47.277705 -60.21953)"], "keywords": "Biota; Geochemistry; NBP0902; Oceans; Physical Oceanography; Sea Ice; Southern Ocean; Weddell Sea", "locations": "Southern Ocean; Weddell Sea", "north": -57.58068, "nsf_funding_programs": null, "persons": "Murray, Alison", "project_titles": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "projects": [{"proj_uid": "p0000511", "repository": "USAP-DC", "title": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -62.85838, "title": "Free-Drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "uid": "600065", "west": -51.98403}, {"awards": "0538580 Hemming, Sidney", "bounds_geometry": ["POLYGON((60 -60,72 -60,84 -60,96 -60,108 -60,120 -60,132 -60,144 -60,156 -60,168 -60,180 -60,180 -61,180 -62,180 -63,180 -64,180 -65,180 -66,180 -67,180 -68,180 -69,180 -70,168 -70,156 -70,144 -70,132 -70,120 -70,108 -70,96 -70,84 -70,72 -70,60 -70,60 -69,60 -68,60 -67,60 -66,60 -65,60 -64,60 -63,60 -62,60 -61,60 -60))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "This project studies sediment from the ocean floor to understand Antarctica\u0027s geologic history. Glacially eroded from the Antarctic continent, these sediments may offer insight into the 99% Antarctica covered by ice. The work\u0027s central focus is determining crust formation ages and thermal histories for three key areas of East Antarctica--Prydz Bay, eastern Weddell Sea, and Wilkes Land--through a combination of petrography, bulk sediment geochemistry and radiogenic isotopes, as well as isotope chronology of individual mineral grains. One specific objective is characterizing the composition of the Gamburtsev Mountains through studies of Eocene fluvial sediments from Prydz Bay. In addition to furthering our understanding of the hidden terrains of Antarctica, these terrigenous sediments will also serve as a natural laboratory to evaluate the effects of continental weathering on the Hf/Nd isotope systematics of seawater. An important broader impact of the project is providing exciting research projects for graduate and postdoctoral students using state of the art techniques in geochemistry.", "east": 180.0, "geometry": ["POINT(120 -65)"], "keywords": "Antarctica; Chemistry:sediment; Chemistry:Sediment; Geochemistry; Geochronology; Isotope Data; Marine Sediments; Oceans; Prydz Bay; Solid Earth; Southern Ocean; Weddell Sea; Wilkes Land", "locations": "Antarctica; Weddell Sea; Prydz Bay; Wilkes Land; Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "van de Flierdt, Tina; Goldstein, Steven L.; Hemming, Sidney R.", "project_titles": "Antarctica\u0027s Geological History Reflected in Sedimentary Radiogenic Isotopes", "projects": [{"proj_uid": "p0000524", "repository": "USAP-DC", "title": "Antarctica\u0027s Geological History Reflected in Sedimentary Radiogenic Isotopes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Antarctica\u0027s Geological History Reflected in Sedimentary Radiogenic Isotopes", "uid": "600056", "west": 60.0}, {"awards": "0338087 Scheltema, Rudolf", "bounds_geometry": ["POLYGON((-70 -53,-68.4 -53,-66.8 -53,-65.2 -53,-63.6 -53,-62 -53,-60.4 -53,-58.8 -53,-57.2 -53,-55.6 -53,-54 -53,-54 -54.5,-54 -56,-54 -57.5,-54 -59,-54 -60.5,-54 -62,-54 -63.5,-54 -65,-54 -66.5,-54 -68,-55.6 -68,-57.2 -68,-58.8 -68,-60.4 -68,-62 -68,-63.6 -68,-65.2 -68,-66.8 -68,-68.4 -68,-70 -68,-70 -66.5,-70 -65,-70 -63.5,-70 -62,-70 -60.5,-70 -59,-70 -57.5,-70 -56,-70 -54.5,-70 -53))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Because of extreme isolation of the Antarctic continent since the Early Oligocene, one expects a unique invertebrate benthic fauna with a high degree of endemism. Yet some invertebrate taxa that constitute important ecological components of sedimentary benthic communities include more than 40 percent non-endemic species (e.g., benthic polychaetes). To account for non-endemic species, intermittent genetic exchange must occur between Antarctic and other (e.g. South American) populations. The most likely mechanism for such gene flow, at least for in-faunal and mobile macrobenthos, is dispersal of planktonic larvae across the sub- Antarctic and Antarctic polar fronts. To test for larval dispersal as a mechanism of maintaining genetic continuity across polar fronts, the scientists propose to (1) take plankton samples along transects across Drake passage during both the austral summer and winter seasons while concurrently collecting the appropriate hydrographic data. Such data will help elucidate the hydrographic mechanisms that allow dispersal across Drake Passage. Using a molecular phylogenetic approach, they will (2) compare seemingly identical adult forms from Antarctic and South America continents to identify genetic breaks, historical gene flow, and control for the presence of cryptic species. (3) Similar molecular tools will be used to relate planktonic larvae to their adult forms. Through this procedure, they propose to link the larval forms respectively to their Antarctic or South America origins. The proposed work builds on previous research that provides the basis for this effort to develop a synthetic understanding of historical gene flow and present day dispersal mechanism in South American/Drake Passage/Antarctic Peninsular region. Furthermore, this work represents one of the first attempts to examine recent gene flow in Antarctic benthic invertebrates. Graduate students and a postdoctoral fellow will be trained during this research.", "east": -54.0, "geometry": ["POINT(-62 -60.5)"], "keywords": "Antarctica; Biota; Oceans; R/v Laurence M. Gould; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Southern Ocean; Antarctica", "north": -53.0, "nsf_funding_programs": null, "persons": "Scheltema, Rudolf", "project_titles": "Collaborative Research: Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates", "projects": [{"proj_uid": "p0000189", "repository": "USAP-DC", "title": "Collaborative Research: Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -68.0, "title": "Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates", "uid": "600035", "west": -70.0}, {"awards": "0439906 Koch, Paul", "bounds_geometry": ["POLYGON((162 -72,162.6 -72,163.2 -72,163.8 -72,164.4 -72,165 -72,165.6 -72,166.2 -72,166.8 -72,167.4 -72,168 -72,168 -72.6,168 -73.2,168 -73.8,168 -74.4,168 -75,168 -75.6,168 -76.2,168 -76.8,168 -77.4,168 -78,167.4 -78,166.8 -78,166.2 -78,165.6 -78,165 -78,164.4 -78,163.8 -78,163.2 -78,162.6 -78,162 -78,162 -77.4,162 -76.8,162 -76.2,162 -75.6,162 -75,162 -74.4,162 -73.8,162 -73.2,162 -72.6,162 -72))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "During previous NSF-sponsored research, the PI\u0027s discovered that southern elephant seal colonies once existed along the Victoria Land coast (VLC) of Antarctica, a region where they are no longer observed. Molted seal skin and hair occur along 300 km of coastline, more than 1000 km from any extant colony. The last record of a seal at a former colony site is at ~A.D. 1600. Because abandonment occurred prior to subantarctic sealing, disappearance of the VLC colony probably was due to environmental factors, possibly cooling and encroachment of land-fast, perennial sea ice that made access to haul-out sites difficult. The record of seal inhabitation along the VLC, therefore, has potential as a proxy for climate change. Elephant seals are a predominantly subantarctic species with circumpolar distribution. Genetic studies have revealed significant differentiation among populations, particularly with regard to that at Macquarie I., which is the extant population nearest to the abandoned VLC colony. Not only is the Macquarie population unique genetically, but it is has undergone unexplained decline of 2%/yr over the last 50 years3. In a pilot study, genetic analyses showed a close relationship between the VLC seals and those at Macquarie I. An understanding of the relationship between the two populations, as well as of the environmental pressures that led to the demise of the VLC colonies, will provide a better understanding of present-day population genetic structure, the effect of environmental change on seal populations, and possibly the reasons underlying the modern decline at Macquarie Island. This project addresses several key research problems: (1) Why did elephant seals colonize and then abandon the VLC? (2) What does the elephant seal record reveal about Holocene climate change and sea-ice conditions? (3) What were the foraging strategies of the seals and did these strategies change over time as climate varied? (4) How does the genetic structure of the VLC seals relate to extant populations? (5) How did genetic diversity change over time and with colony decline? (6) Using ancient samples to estimate mtDNA mutation rates, what can be learned about VLC population dynamics over time? (7) What was the ecological relationship between elephant seals and Adelie penguins that occupied the same sites, but apparently at different times? The proposed work includes the professional training of young researchers and incorporation of data into graduate and undergraduate courses.\n\nBecause of extreme isolation of the Antarctic continent since the \nEarly Oligocene, one expects a unique invertebrate benthic fauna with \na high degree of endemism. Yet some invertebrate taxa that constitute \nimportant ecological components of sedimentary benthic communities \ninclude more than 40 percent non-endemic species (e.g., benthic \npolychaetes). To account for non-endemic species, intermittent genetic \nexchange must occur between Antarctic and other (e.g. South American) \npopulations. The most likely mechanism for such gene flow, at least \nfor in-faunal and mobile macrobenthos, is dispersal of planktonic \nlarvae across the sub- Antarctic and Antarctic polar fronts. To test \nfor larval dispersal as a mechanism of maintaining genetic continuity \nacross polar fronts, the scientists propose to (1) take plankton \nsamples along transects across Drake passage during both the austral \nsummer and winter seasons while concurrently collecting the \nappropriate hydrographic data. Such data will help elucidate the \nhydrographic mechanisms that allow dispersal across Drake Passage. \nUsing a molecular phylogenetic approach, they will (2) compare \nseemingly identical adult forms from Antarctic and South America \ncontinents to identify genetic breaks, historical gene flow, and \ncontrol for the presence of cryptic species. (3) Similar molecular \ntools will be used to relate planktonic larvae to their adult forms. \nThrough this procedure, they propose to link the larval forms \nrespectively to their Antarctic or South America origins. The proposed \nwork builds on previous research that provides the basis for this \neffort to develop a synthetic understanding of historical gene flow \nand present day dispersal mechanism in South American/Drake Passage/ \nAntarctic Peninsular region. Furthermore, this work represents one of \nthe first attempts to examine recent gene flow in Antarctic benthic \ninvertebrates. Graduate students and a postdoctoral fellow will be \ntrained during this research\n", "east": 168.0, "geometry": ["POINT(165 -75)"], "keywords": "Biota; Isotope; Penguin; Ross Sea; Seals; Southern Ocean", "locations": "Southern Ocean; Ross Sea", "north": -72.0, "nsf_funding_programs": null, "persons": "Koch, Paul", "project_titles": "Collaborative Research: Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change", "projects": [{"proj_uid": "p0000533", "repository": "USAP-DC", "title": "Collaborative Research: Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change", "uid": "600041", "west": 162.0}, {"awards": "0338097 DiTullio, Giacomo", "bounds_geometry": ["POLYGON((-169.94 -52.24,-169.449 -52.24,-168.958 -52.24,-168.467 -52.24,-167.976 -52.24,-167.485 -52.24,-166.994 -52.24,-166.503 -52.24,-166.012 -52.24,-165.521 -52.24,-165.03 -52.24,-165.03 -54.879,-165.03 -57.518,-165.03 -60.157,-165.03 -62.796,-165.03 -65.435,-165.03 -68.074,-165.03 -70.713,-165.03 -73.352,-165.03 -75.991,-165.03 -78.63,-165.521 -78.63,-166.012 -78.63,-166.503 -78.63,-166.994 -78.63,-167.485 -78.63,-167.976 -78.63,-168.467 -78.63,-168.958 -78.63,-169.449 -78.63,-169.94 -78.63,-169.94 -75.991,-169.94 -73.352,-169.94 -70.713,-169.94 -68.074,-169.94 -65.435,-169.94 -62.796,-169.94 -60.157,-169.94 -57.518,-169.94 -54.879,-169.94 -52.24))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. This project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images.", "east": -165.03, "geometry": ["POINT(-167.485 -65.435)"], "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; Diatom; Oceans; Phytoplankton; Ross Sea; Southern Ocean", "locations": "Ross Sea; Southern Ocean", "north": -52.24, "nsf_funding_programs": null, "persons": "DiTullio, Giacomo", "project_titles": "Collaborative Research: Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea", "projects": [{"proj_uid": "p0000540", "repository": "USAP-DC", "title": "Collaborative Research: Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.63, "title": "Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea", "uid": "600036", "west": -169.94}, {"awards": "0440687 Costa, Daniel", "bounds_geometry": ["POLYGON((-64 -60,-63 -60,-62 -60,-61 -60,-60 -60,-59 -60,-58 -60,-57 -60,-56 -60,-55 -60,-54 -60,-54 -60.4,-54 -60.8,-54 -61.2,-54 -61.6,-54 -62,-54 -62.4,-54 -62.8,-54 -63.2,-54 -63.6,-54 -64,-55 -64,-56 -64,-57 -64,-58 -64,-59 -64,-60 -64,-61 -64,-62 -64,-63 -64,-64 -64,-64 -63.6,-64 -63.2,-64 -62.8,-64 -62.4,-64 -62,-64 -61.6,-64 -61.2,-64 -60.8,-64 -60.4,-64 -60))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "As long-lived animals, marine mammals must be capable of accommodating broad variations in food resources over large spatial and temporal scales. While this is true of all marine mammals, variation in the physical and biological environmental is particularly profound in the Southern Ocean. A basic understanding of the foraging behavior and habitat utilization of pelagic predators requires knowledge of this spatial and temporal variation, coupled with information of how they respond to these changes. Current understanding of these associations is primarily limited to population level studies where animal abundance has been correlated with oceanography. Although these studies are informative, they cannot provide insights into the strategies employed by individual animals nor can they provide insights into the spatial or temporal course of these interactions. Recent technological advances in instrumentation make it possible to extend an understanding beyond the simple linkage of prey and predator distributions with environmental features. The key to understanding the processes that lead to high predator abundance is the identification of the specific foraging behaviors associated with different features of the water column. This study will accomplish these objectives by combining accurate positional data, measures of diving and foraging behavior, animal-derived water-column temperature and salinity data, and available oceanographic data. This project will examine the foraging behavior and habitat utilization of two species of contrasting foraging ecology, the southern elephant seal, Mirounga leonina, and the crabeater seal, Lobodon carcinophagus in the Western Antarctic Peninsula, a region of strong environmental gradients. Although these two species are phylogenetically related, they utilize substantially different but adjacent habitat types. Southern elephant seals are predominantly pelagic, moving throughout the southern ocean, venturing occasionally into the seasonal pack ice whereas crabeater seals range throughout the seasonal pack ice, venturing occasionally into open water. The relationship of specific foraging behaviors and animal movement patterns to oceanographic and bathymetric features develop and test models of the importance of these features in defining habitat use will be determined along with a comparison of how individuals of each species respond to annual variability in the marine environment. The physical oceanography of the Southern Ocean is inherently complex as are the biological processes that are intrinsically linked to oceanographic processes. Significant resources are currently being directed toward developing mathematical models of physical oceanographic processes with the goals of better understanding the role that the Southern Ocean plays in global climate processes, predicting the responses of ocean and global scale processes to climate change, and understanding the linkages between physical and biological oceanographic processes. These efforts have been limited by the scarcity of oceanographic data in the region, especially at high latitudes in the winter months. This study will provide new and significant oceanographic data on temperature and salinity profiles in to further the understanding of the dynamics of the upper water column of west Antarctic Peninsula continental shelf waters. Outreach activities include website development and an association with a marine education program at the Monterrey Bay Aquarium Research Institute.\n", "east": -54.0, "geometry": ["POINT(-59 -62)"], "keywords": "Bellingshausen Sea; Biota; Oceans; Seals; Southern Ocean", "locations": "Southern Ocean; Bellingshausen Sea", "north": -60.0, "nsf_funding_programs": null, "persons": "Klinck, John M.; Crocker, Daniel; Goebel, Michael; Hofmann, Eileen; Costa, Daniel", "project_titles": "Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection", "projects": [{"proj_uid": "p0000082", "repository": "USAP-DC", "title": "Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.0, "title": "Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection", "uid": "600044", "west": -64.0}, {"awards": "0636730 Vernet, Maria", "bounds_geometry": ["POLYGON((-55 -52,-53.5 -52,-52 -52,-50.5 -52,-49 -52,-47.5 -52,-46 -52,-44.5 -52,-43 -52,-41.5 -52,-40 -52,-40 -53.3,-40 -54.6,-40 -55.9,-40 -57.2,-40 -58.5,-40 -59.8,-40 -61.1,-40 -62.4,-40 -63.7,-40 -65,-41.5 -65,-43 -65,-44.5 -65,-46 -65,-47.5 -65,-49 -65,-50.5 -65,-52 -65,-53.5 -65,-55 -65,-55 -63.7,-55 -62.4,-55 -61.1,-55 -59.8,-55 -58.5,-55 -57.2,-55 -55.9,-55 -54.6,-55 -53.3,-55 -52))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions: 1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children\u0027s books will participate in cruises to produce an account of the expedition and a daily interactive website.\n", "east": -40.0, "geometry": ["POINT(-47.5 -58.5)"], "keywords": "Antarctica; Biota; Chemistry:fluid; Chemistry:Fluid; Geochemistry; NBP0902; Oceans; Physical Oceanography; Sea Surface; Southern Ocean; Weddell Sea", "locations": "Sea Surface; Antarctica; Southern Ocean; Weddell Sea", "north": -52.0, "nsf_funding_programs": null, "persons": "Vernet, Maria", "project_titles": "Collaborative Reseach: Free-drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean.", "projects": [{"proj_uid": "p0000532", "repository": "USAP-DC", "title": "Collaborative Reseach: Free-drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Free-drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "uid": "600068", "west": -55.0}, {"awards": "0636723 Helly, John", "bounds_geometry": ["POLYGON((-55 -52,-53.5 -52,-52 -52,-50.5 -52,-49 -52,-47.5 -52,-46 -52,-44.5 -52,-43 -52,-41.5 -52,-40 -52,-40 -53.3,-40 -54.6,-40 -55.9,-40 -57.2,-40 -58.5,-40 -59.8,-40 -61.1,-40 -62.4,-40 -63.7,-40 -65,-41.5 -65,-43 -65,-44.5 -65,-46 -65,-47.5 -65,-49 -65,-50.5 -65,-52 -65,-53.5 -65,-55 -65,-55 -63.7,-55 -62.4,-55 -61.1,-55 -59.8,-55 -58.5,-55 -57.2,-55 -55.9,-55 -54.6,-55 -53.3,-55 -52))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions: 1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children\u0027s books will participate in cruises to produce an account of the expedition and a daily interactive website.", "east": -40.0, "geometry": ["POINT(-47.5 -58.5)"], "keywords": "Antarctica; NBP0902; Oceans; Physical Oceanography; Southern Ocean; Weddell Sea", "locations": "Antarctica; Southern Ocean; Weddell Sea", "north": -52.0, "nsf_funding_programs": null, "persons": "Helly, John", "project_titles": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "projects": [{"proj_uid": "p0000511", "repository": "USAP-DC", "title": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Free-Drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "uid": "600067", "west": -55.0}, {"awards": "0440414 Steig, Eric; 0196105 Steig, Eric", "bounds_geometry": ["POLYGON((-130 -65,-125.8 -65,-121.6 -65,-117.4 -65,-113.2 -65,-109 -65,-104.8 -65,-100.6 -65,-96.4 -65,-92.2 -65,-88 -65,-88 -67.5,-88 -70,-88 -72.5,-88 -75,-88 -77.5,-88 -80,-88 -82.5,-88 -85,-88 -87.5,-88 -90,-92.2 -90,-96.4 -90,-100.6 -90,-104.8 -90,-109 -90,-113.2 -90,-117.4 -90,-121.6 -90,-125.8 -90,-130 -90,-130 -87.5,-130 -85,-130 -82.5,-130 -80,-130 -77.5,-130 -75,-130 -72.5,-130 -70,-130 -67.5,-130 -65))"], "date_created": "Thu, 01 Oct 2009 00:00:00 GMT", "description": "This data set includes stable isotope measurements from snow pits, firn, and ice cores collected by the the US component of the International Trans-Antarctic Scientific Expedition ( ITASE). The ITASE program aims to collect and interpret a continental-wide array of environmental parameters assembled through the coordinated efforts of scientists from several nations.\n\nThese data were collected between 1999 and 2007. The data have been compiled into single files for each sampling site, though in some cases a file contains data from more than one ice core or snow pit. Each file in the data set includes deuterium/hydrogen (\u0026#948;D) and/or 18-oxygen/16-oxygen (\u0026#948;18O) ratios, depths, and in some cases ice age or other information. Further details regarding the data are provided in each data file. Data are available via FTP in ASCII text format (.txt). Data were collected during five Antarctic field seasons from 1999 to 2007. Data from 1999 to 2002 are currently available. Data from 2003 to 2007 will be added in the future.", "east": -88.0, "geometry": ["POINT(-109 -77.5)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; ITASE; Paleoclimate; WAIS", "locations": "WAIS; Antarctica", "north": -65.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Steig, Eric J.", "project_titles": "Stable Isotope Studies at West Antarctic ITASE Sites", "projects": [{"proj_uid": "p0000013", "repository": "USAP-DC", "title": "Stable Isotope Studies at West Antarctic ITASE Sites"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "US ITASE Stable Isotope Data, Antarctica", "uid": "609425", "west": -130.0}, {"awards": "0436190 Eastman, Joseph", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "Patterns of biodiversity, as revealed by basic research in organismal biology, may be derived from ecological and evolutionary processes expressed in unique settings, such as Antarctica. The polar regions and their faunas are commanding increased attention as declining species diversity, environmental change, commercial fisheries, and resource management are now being viewed in a global context. Commercial fishing is known to have a direct and pervasive effect on marine biodiversity, and occurs in the Southern Ocean as far south as the Ross Sea. The nature of fish biodiversity in the Antarctic is different than in all other ocean shelf areas. Waters of the Antarctic continental shelf are ice covered for most of the year and water temperatures are nearly constant at -1.5 C. In these waters components of the phyletically derived Antarctic clade of Notothenioids dominate fish diversity. In some regions, including the southwestern Ross Sea, Notothenioids are overwhelmingly dominant in terms of number of species, abundance, and biomass. Such dominance by a single taxonomic group is unique among shelf faunas of the world. In the absence of competition from a taxonomically diverse fauna, Notothenioids underwent a habitat or depth related diversification keyed to the utilization of unfilled niches in the water column, especially pelagic or partially pelagic zooplanktivory and piscivory. This has been accomplished in the absence of a swim bladder for buoyancy control. They also may form a special type of adaptive radiation known as a species flock, which is an assemblage of a disproportionately high number of related species that have evolved rapidly within a defined area where most species are endemic. Diversification in buoyancy is the hallmark of the notothenioid radiation. Buoyancy is the feature of notothenioid biology that determines whether a species lives on the substrate, in the water column or both. Buoyancy also influences other key aspects of life history including swimming, feeding and reproduction and thus has implications for the role of the species in the ecosystem. With similarities to classic evolutionary hot spots, the Antarctic shelf and its Notothenioid radiation merit further exploration. The 2004 \u0027International Collaborative Expedition to collect and study Fish Indigenous to Sub-Antarctic Habitats,\u0027 or, \u0027ICEFISH,\u0027 provided a platform for collection of notothenioid fishes from sub-Antarctic waters between South America and Africa, which will be examined in this project. This study will determine buoyancy for samples of all notothenioid species captured during the ICEFISH cruise. This essential aspect of the biology is known for only 19% of the notothenioid fauna. Also, the gross and microscopic anatomy of brains and sense organs of the phyletically basal families Bovichtidae, Eleginopidae, and of the non-Antarctic species of the primarily Antarctic family Nototheniidae will be examined. The fish biodiversity and endemicity in poorly known localities along the ICEFISH cruise track, seamounts and deep trenches will be quantified. Broader impacts include improved information for comprehending and conserving biodiversity, a scientific and societal priority.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Biota; NBP0404; Oceans; R/v Nathaniel B. Palmer; Southern Ocean", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Eastman, Joseph", "project_titles": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0000106", "repository": "USAP-DC", "title": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes", "uid": "600038", "west": -180.0}, {"awards": "0438777 Fritts, David", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This proposal is to continue operation and scientific studies with the middle-frequency (MF, 1-30 MHz) mesospheric radar deployed at the British Antarctic station Rothera in 1996. This system is now a key site in the Antarctic MF radar chain near 68 deg. S, which includes also MF radars at Syowa (Japan) and Davis (Australia) stations. This radar comprises the winds component of a developing instrument suite for the mesosphere-thermosphere (MLT) studies at Rothera - a focus of the new BAS 5-year plan, which also includes the Fe temperature lidar (formerly at South Pole) and the mesopause airglow imager for gravity wave studies (formerly at Halley). The Rothera MF radar has just had its antennas and electronics upgraded to achieve better signal-to-noise ratio and more continuous measurements in height and time. The main focus of the proposed research is to extend the knowledge of the polar mesosphere dynamics. The instrument suite at Rothera is ideally positioned for correlative interhemispheric studies with northern hemisphere sites at Poker Flat, Alaska (65 deg. N) and ALOMAR, Norway (69 deg. N) having comparable instrumentation. Further research efforts performed with continued funding will focus on: (1) multi-instrument collaborative studies at Rothera to quantify as fully as possible the dynamics, structure, and variability of the MLT at that location, (2) multi-site (and multi-instrument) studies of large-scale dynamics and variability in the Antarctic (together with the radars and other instrumentation at Davis and Syowa), and (3) interhemispheric studies employing instruments (e.g., the Na resonance lidar and MF radar) at Poker Flat and ALOMAR. It is expected that these studies will lead to a more detailed understanding of (1) mean, tidal, and planetary wave structures at polar latitudes, (2) seasonal, inter-annual, and short-term variability of these structures, (3) hemispheric differences in the tidal and planetary wave structures arising from different source and wave interaction conditions, and (4) the relative influences of gravity waves in the two hemispheres. Such studies will also contribute more generally to an increased awareness of the role of high-latitude processes in global atmospheric dynamics and variability.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Atmosphere; Meteorology; Radar", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Fritts, David", "project_titles": "Correlative Antarctic and Inter-Hemispheric Dynamics Studies Using the MF Radar at Rothera", "projects": [{"proj_uid": "p0000021", "repository": "USAP-DC", "title": "Correlative Antarctic and Inter-Hemispheric Dynamics Studies Using the MF Radar at Rothera"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Correlative Antarctic and Inter-Hemispheric Dynamics Studies Using the MF Radar at Rothera", "uid": "600040", "west": -180.0}, {"awards": "0440414 Steig, Eric", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This award supports a project to obtain stable isotope profiles from shallow (\u003c100 m) ice cores from East Antarctica, to add to the growing database of environmental proxy data collected under the auspices of the \"ITASE\" (International TransAntarctic Scientific Expedition) program. In Antarctica, the instrumental record of climate is particularly short (~40 years except in a few isolated locations on the coast), and ice core proxy data are the only means available for extending this record into the past. The use of stable isotopes of water (18-O/16-O and D/H ratios) from ice cores as proxies for temperature is well established for both very short (i.e. seasonal) and long timescales (centuries, millennia). Using multivariate regression methods and shallow ice cores from West Antarctica, a reconstruction of Antarctic climate over the last ~150 years has been developed which suggests the continent has been warming, on average, at a rate of ~0.2 K/century. Further improving these reconstructions is the chief motivation for further extending the US ITASE project. Ten to fifteen shallow (~100 m) from Victoria Land, East Antarctica will be obtained and analyzed. The core will be collected along a traverse route beginning at Taylor Dome and ending at the South Pole. Age-depth relationships for the cores will be determined through a combination of stable isotopes, visual stratigraphy and seasonal chemical signatures and marker horizons. Reconstructions of Antarctic climate obtained from these cores will be incorporated into the global network of paleoclimate information, which has been important in science, policy and educational contexts. The project will include graduate student and postdoctoral training and field experience.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Atmosphere; Climate; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; ITASE; Meteorology; Paleoclimate; Satellite Remote Sensing; Weather Station Data", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Steig, Eric J.", "project_titles": "Stable Isotope Studies at East Antarctic US ITASE Sites", "projects": [{"proj_uid": "p0000202", "repository": "USAP-DC", "title": "Stable Isotope Studies at East Antarctic US ITASE Sites"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "Stable Isotope Studies at East Antarctic US ITASE Sites", "uid": "600042", "west": -180.0}, {"awards": "0440478 Tang, Kam", "bounds_geometry": ["POINT(166.66267 -77.85067)"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "Phaeocystis Antarctica is a widely distributed phytoplankton that forms dense blooms and aggregates in the Southern Ocean. This phytoplankton and plays important roles in polar ecology and biogeochemistry, in part because it is a dominant primary producer, a main component of organic matter vertical fluxes, and the principal producer of volatile organic sulfur in the region. Yet P. Antarctica is also one of the lesser known species in terms of its physiology, life history and trophic relationships with other organisms; furthermore, information collected on other Phaeocystis species and from different locations may not be applicable to P. Antarctica in the Ross Sea. P. Antarctica occurs mainly as two morphotypes: solitary cells and mucilaginous colonies, which differ significantly in size, architecture and chemical composition. Relative dominance between solitary cells and colonies determines not only the size spectrum of the population, but also its carbon dynamics, nutrient uptake and utilization. Conventional thinking of the planktonic trophic processes is also challenged by the fact that colony formation could effectively alter the predator-prey interactions and interspecific competition. However, the factors that regulate the differences between solitary and colonial forms of P. Antarctica are not well-understood. \n\nThe research objective of this proposal is therefore to address these over-arching questions: \n1. Do P. Antarctica solitary cells and colonies differ in growth, composition and photosynthetic rates? 2. How do nutrients and grazers affect colony development and size distribution of P. Antarctica? \n3. How do nutrients and grazers act synergistically to affect the long-term population dynamics of P. Antarctica? \n\nExperiments will be conducted in the McMurdo station with natural P. Antarctica assemblages and co-occurring grazers. Laboratory experiments will be conducted to study size-specific growth and photosynthetic rates of P. Antarctica, size-specific grazing mortality due to microzooplankton and mesozooplankton, the effects of macronutrients on the (nitrogen compounds) relative dominance of solitary cells and colonies, and the effects of micronutrient (Fe) and grazing related chemical signals on P. Antarctica colony development. Because this species is of critical importance in the Southern Ocean, and because this research will provide critical information on factors that regulate the role of P.Antarctica in food webs and biogeochemical cycles, a major gap in knowledge will be addressed. This project will train two marine science Ph.D. students. The investigators will also collaborate with the School of Education and a marine science museum to communicate polar science to a broader audience.", "east": 166.66267, "geometry": ["POINT(166.66267 -77.85067)"], "keywords": "Biota; McMurdo Sound; Oceans; Phytoplankton; Ross Sea; Southern Ocean; Zooplankton", "locations": "Southern Ocean; McMurdo Sound; Ross Sea", "north": -77.85067, "nsf_funding_programs": null, "persons": "Smith, Walker; Tang, Kam", "project_titles": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial forms of Phaeocystis antarctica", "projects": [{"proj_uid": "p0000214", "repository": "USAP-DC", "title": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial forms of Phaeocystis antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.85067, "title": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial Forms of Phaeocystis Antarctica", "uid": "600043", "west": 166.66267}, {"awards": "0634682 Kanatous, Shane", "bounds_geometry": ["POLYGON((160 -77,160.7 -77,161.4 -77,162.1 -77,162.8 -77,163.5 -77,164.2 -77,164.9 -77,165.6 -77,166.3 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.3 -78,165.6 -78,164.9 -78,164.2 -78,163.5 -78,162.8 -78,162.1 -78,161.4 -78,160.7 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "During the past three decades, intensive field studies have revealed much about the behavior, physiology, life history, and population dynamics of the Weddell seal (Leptonychotes weddelli) population of McMurdo Sound, Antarctica. These animals are marine predators that are highly adapted for an aquatic life in shore-fast and pack ice habitats. They must locate and capture sparsely distributed under the ice. Most of what is known about their diving behavior is based on studies of adult animals with little known about the development or the genetic controls of diving behavior of young animals. The goal of this project is to examine the temporal development of aerobic capacity, lipid metabolism and oxygen stores in the skeletal muscles of young Weddell seals and to determine which aspects of the cellular environment are important in the regulation of these adaptations during maturation. This project builds on past results to investigate the molecular controls that underlie the development of these adaptations. The first objective is to further characterize the ontogenetic changes in muscle aerobic capacity, lipid metabolism and myoglobin concentration and distribution using enzymatic, immuno-histochemical and myoglobin assays in newly weaned, subadult, and adult seals. The second objective is to determine the molecular controls that regulate these changes in aerobic capacity, fiber type distribution and myoglobin in skeletal muscles during maturation. Through subtractive hybridization and subsequent analysis, differences in mRNA populations in the swimming muscles of the different age classes of Weddell seals will be determined. These techniques will allow for the identification of the proteins and transcription factors that influence the ontogenetic changes in myoglobin concentration, fiber type distribution and aerobic capacity. These results will increase our understanding of both the ontogeny and molecular mechanisms by which young seals acquire the physiological capabilities to make deep (up to 700 m) and long aerobic dives (ca 20 min). This study will advance knowledge of the molecular regulation for the adaptations that enable active skeletal muscle to function under hypoxic conditions; this has a broader application for human medicine especially in regards to cardiac and pulmonary disease. Additional broader impacts include the participation of underrepresented scientists and a continuation of a website in collaboration with the Science Teachers Access to Resources at Southwestern University (STARS Program) which involves weekly updates about research efforts during the field season, weekly questions/answer session involving students and teachers, and updates on research results throughout the year.", "east": 167.0, "geometry": ["POINT(163.5 -77.5)"], "keywords": "Antarctica; Biota; Oceans; Seals; Sea Surface; Southern Ocean", "locations": "Antarctica; Sea Surface; Southern Ocean", "north": -77.0, "nsf_funding_programs": null, "persons": "Lyons, W. Berry; Kanatous, Shane", "project_titles": "The Molecular Signals that Regulate the Ontogeny of Aerobic Capacity, Lipid Metabolism and Elevated Myoglobin Concentrations in the Skeletal Muscles of Weddell Seals", "projects": [{"proj_uid": "p0000536", "repository": "USAP-DC", "title": "The Molecular Signals that Regulate the Ontogeny of Aerobic Capacity, Lipid Metabolism and Elevated Myoglobin Concentrations in the Skeletal Muscles of Weddell Seals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "The Molecular Signals that Regulate the Ontogeny of Aerobic Capacity, Lipid Metabolism and Elevated Myoglobin Concentrations in the Skeletal Muscles of Weddell Seals", "uid": "600063", "west": 160.0}, {"awards": "0739496 Miller, Molly", "bounds_geometry": ["POLYGON((163.41667 -77.33333,163.46667 -77.33333,163.51667 -77.33333,163.56667 -77.33333,163.61667 -77.33333,163.66667 -77.33333,163.71667 -77.33333,163.76667 -77.33333,163.81667 -77.33333,163.86667 -77.33333,163.91667 -77.33333,163.91667 -77.369997,163.91667 -77.406664,163.91667 -77.443331,163.91667 -77.479998,163.91667 -77.516665,163.91667 -77.553332,163.91667 -77.589999,163.91667 -77.626666,163.91667 -77.663333,163.91667 -77.7,163.86667 -77.7,163.81667 -77.7,163.76667 -77.7,163.71667 -77.7,163.66667 -77.7,163.61667 -77.7,163.56667 -77.7,163.51667 -77.7,163.46667 -77.7,163.41667 -77.7,163.41667 -77.663333,163.41667 -77.626666,163.41667 -77.589999,163.41667 -77.553332,163.41667 -77.516665,163.41667 -77.479998,163.41667 -77.443331,163.41667 -77.406664,163.41667 -77.369997,163.41667 -77.33333))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project answers a simple question: why are there so few fossils in sediment cores from Antarctica\u0027s continental shelf? Antarctica\u0027s benthos are as biologically rich as those of the tropics. Shell-secreting organisms should have left a trail throughout geologic time, but have not. This trail is particularly important because these organisms record regional climate in ways that are critical to interpreting the global climate record. This study uses field experiments and targeted observations of modern benthic systems to examine the biases inflicted by fossil preservation. By examining a spectrum of ice-affected habitats, this project provides paleoenvironmental insights into carbonate preservation, sedimentation rates, and burial processes; and will provide new approaches to reconstructing the Cenozoic history of Antarctica. Broader impacts include graduate and undergraduate research and education, development of undergraduate curricula to link art and science, K12 outreach, public outreach via the web, and societal relevance through improved understanding of records of global climate change.", "east": 163.91667, "geometry": ["POINT(163.66667 -77.516665)"], "keywords": "Biota; Geochronology; Marine Sediments; Oceans; Southern Ocean", "locations": "Southern Ocean", "north": -77.33333, "nsf_funding_programs": null, "persons": "Furbish, David; Miller, Molly", "project_titles": "Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores", "projects": [{"proj_uid": "p0000203", "repository": "USAP-DC", "title": "Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.7, "title": "Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores", "uid": "600076", "west": 163.41667}, {"awards": "0126057 Brook, Edward J.", "bounds_geometry": null, "date_created": "Tue, 16 Dec 2008 00:00:00 GMT", "description": "This ice core data is archived at the World Data Center for Paleoclimatology and is available through the Ice Core Data Gateway. The data includes methane data from the Greenland Ice Sheet Project 2 (GISP2). GISP2 is an ice core project that drilled through the Greenland ice sheet and 1.55 meters into bedrock. The ice core is 3053.44 meters in depth, the deepest ice core recovered in the world at the time. The ice core was completed in 1993 after five years of drilling.\n\nMethane concentrations were determined by GC-FID using standards calibrated by NOAA CMDL. \t\t\t\t\t\nThe gas age time scales and analytical techniques are described in further detail in the publication.", "east": null, "geometry": null, "keywords": "Antarctica; Arctic; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Methane; Paleoclimate; Taylor Dome", "locations": "Arctic; Taylor Dome; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Brook, Edward J.", "project_titles": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change", "projects": [{"proj_uid": "p0000034", "repository": "USAP-DC", "title": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "GISP2 (D Core) Methane Concentration Data", "uid": "609360", "west": null}, {"awards": "9615333 Saltzman, Eric", "bounds_geometry": ["POINT(-148.8 -81.7)"], "date_created": "Tue, 09 Mar 2004 00:00:00 GMT", "description": "This data set is a continuous, high-resolution record of biogenic sulfur (methanesulfonate, known as MSA and CH3SO3-) in the 1000 m deep Siple Dome A (SDMA) core, covering 100,000 to 20 years BP. The analysis was done on between August 2002 and November 2003 at the University of California, Irvine. Investigators used a mass spectrometer to measure methanesulfonate. Measurements are given as MSA concentration at various depths. Estimated age of the ice at each depth is also given.\n\nThis project was a part of the West Antarctic Ice Sheet Cores (WAISCORES) project for deep ice coring in West Antarctica. WAISCORES is supported by the Office of Polar Programs, National Science Foundation (NSF).", "east": -148.8, "geometry": ["POINT(-148.8 -81.7)"], "keywords": "Antarctica; Biota; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "locations": "Siple Dome; Antarctica", "north": -81.7, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Saltzman, Eric; Dioumaeva, Irina; Finley, Brandon", "project_titles": "Biogenic Sulfur in the Siple Dome Ice Core", "projects": [{"proj_uid": "p0000251", "repository": "USAP-DC", "title": "Biogenic Sulfur in the Siple Dome Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.7, "title": "Biogenic Sulfur in the Siple Dome Ice Core", "uid": "609201", "west": -148.8}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903
|
1744993 |
2025-02-12 | Higgins, John |
Center for Oldest Ice Exploration Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area |
Between about 2.8-0.9 Ma, Earth’s climate was characterized by 40 kyr cycles, driven or paced by changes in the tilt of Earth’s spin axis. Much is known about the 40k world from studies of deep-sea sediments, but our understanding of climate change during this period and the transition between the 40kyr glacial cycles from 2.8-0.9 Ma and the 100kyr glacial cycles of the last 0.9 Myr is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of >1 Ma ice discovered in shallow ice cores in the Allan Hills Blue Ice Area (BIA), Antarctica. During the 2015-2016 field season we recovered ice from two nearby drill cores that dates to > 2 million years in age using the 40Ar/38Ar ratio of the trapped gases. Our discovery of ice of this antiquity in two cores demonstrates that there is gas-record quality ice from the 40k world in the Allan Hills BIA. To further characterize the composition of Earth’s atmosphere and Antarctic climate during the 40k world we request support for two field seasons to drill new large-volume (4” or 9” diameter) ice cores at sites where we have previously identified >1 Ma ice and nearby sites where ground penetrating radar has identified bedrock features conducive to the preservation of old ice. <br/> | ["POINT(159.3562 -76.73243)"] | ["POINT(159.3562 -76.73243)"] | false | false |
MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903
|
1744993 |
2025-02-12 | Higgins, John |
Center for Oldest Ice Exploration Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area |
Between about 2.8-0.9 Ma, Earth’s climate was characterized by 40 kyr cycles, driven or paced by changes in the tilt of Earth’s spin axis. Much is known about the 40k world from studies of deep-sea sediments, but our understanding of climate change during this period and the transition between the 40kyr glacial cycles from 2.8-0.9 Ma and the 100kyr glacial cycles of the last 0.9 Myr is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of >1 Ma ice discovered in shallow ice cores in the Allan Hills Blue Ice Area (BIA), Antarctica. During the 2015-2016 field season we recovered ice from two nearby drill cores that dates to > 2 million years in age using the 40Ar/38Ar ratio of the trapped gases. Our discovery of ice of this antiquity in two cores demonstrates that there is gas-record quality ice from the 40k world in the Allan Hills BIA. To further characterize the composition of Earth’s atmosphere and Antarctic climate during the 40k world we request support for two field seasons to drill new large-volume (4” or 9” diameter) ice cores at sites where we have previously identified >1 Ma ice and nearby sites where ground penetrating radar has identified bedrock features conducive to the preservation of old ice. | ["POINT(159.356125 -76.732376)"] | ["POINT(159.356125 -76.732376)"] | false | false |
Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903
|
1744993 |
2025-02-11 | Higgins, John |
Center for Oldest Ice Exploration Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area |
Between about 2.8-0.9 Ma, Earth’s climate was characterized by 40 kyr cycles, driven or paced by changes in the tilt of Earth’s spin axis. Much is known about the 40k world from studies of deep-sea sediments, but our understanding of climate change during this period and the transition between the 40kyr glacial cycles from 2.8-0.9 Ma and the 100kyr glacial cycles of the last 0.9 Myr is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of >1 Ma ice discovered in shallow ice cores in the Allan Hills Blue Ice Area (BIA), Antarctica. During the 2015-2016 field season we recovered ice from two nearby drill cores that dates to > 2 million years in age using the 40Ar/38Ar ratio of the trapped gases. Our discovery of ice of this antiquity in two cores demonstrates that there is gas-record quality ice from the 40k world in the Allan Hills BIA. To further characterize the composition of Earth’s atmosphere and Antarctic climate during the 40k world we request support for two field seasons to drill new large-volume (4” or 9” diameter) ice cores at sites where we have previously identified >1 Ma ice and nearby sites where ground penetrating radar has identified bedrock features conducive to the preservation of old ice. | [] | [] | false | false |
Weddell seal metabolic hormone data
|
1246463 |
2024-10-04 | Kirkham, Amy |
The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals |
Weddell seal metabolic hormone data. Body composition data were generated following protocols described in Shero et al. 2014. Serum hormone concentrations were determined using immunoassays. IGF binding protein concentrations were determined using protocols described in Richmond et al. 2010 | ["POLYGON((162 -75,162.6 -75,163.2 -75,163.8 -75,164.4 -75,165 -75,165.6 -75,166.2 -75,166.8 -75,167.4 -75,168 -75,168 -75.4,168 -75.8,168 -76.2,168 -76.6,168 -77,168 -77.4,168 -77.8,168 -78.2,168 -78.6,168 -79,167.4 -79,166.8 -79,166.2 -79,165.6 -79,165 -79,164.4 -79,163.8 -79,163.2 -79,162.6 -79,162 -79,162 -78.6,162 -78.2,162 -77.8,162 -77.4,162 -77,162 -76.6,162 -76.2,162 -75.8,162 -75.4,162 -75))"] | ["POINT(165 -77)"] | false | false |
The Impacts of the Microstructural Location of H2SO4 on the Flow of Polycrystalline Ice
|
None | 2024-09-05 | Ogunmolasuyi, Ayobami | No project link provided | The effects of soluble impurities on the flow of glaciers and ice sheets as well as the effects of ice flow on impurities migration are not well understood. This study investigates the effects of sulfuric acid (H2SO4) concentrations ranging from 10 to 25 ppm on the flow and fabric of polycrystalline ice under compression at temperatures of -3°C and -12°C. The results show that H2SO4-doped polycrystalline ice deforms significantly faster than high-purity polycrystalline ice, with the deformation rate being 1.5 to 3 times higher. At -12°C, the presence of H2SO4 within the grains induces the most ice softening, whereas at -3°C, H2SO4's softening effects are observed both within the grains and at grain boundaries. The migration of H2SO4 to grain boundaries during deformation leads to the formation of a liquid-like layer, with increased solubility at higher temperatures potentially homogenizing the impurities within the ice matrix. This homogenization at -3°C suggests that post-depositional processes near the bed of ice sheets could significantly alter sulfate records. At -12°C, where homogenization is absent, impurity-induced dislocation processes may heavily influence deformation and impurity migration. Additionally, the comparison of natural ice with lab-grown samples indicates that fabric development significantly impacts compressive strength and creep rates, with implications for the understanding of impurity-induced deformation processes in polar ice. | [] | [] | false | false |
Relationship Between the Permeability and Liquid Water Content of Polycrystalline Temperate Ice
|
2129252 |
2024-06-14 | Iverson, Neal; Fowler, Jacob | No project link provided | This dataset contains parameters and results of laboratory experiments in which the permeability of temperate ice was measured as a function of water content and grain size. Further inquiries can be directed to the corresponding author, Jacob R. Fowler. Email: jrfowler@iastate.edu. | [] | [] | false | false |
Permeability anisotropy of foliated glacier ice
|
2129252 |
2024-06-14 | Iverson, Neal; Fowler, Jacob | No project link provided | This dataset contains parameters and results of laboratory experiments in which the permeability of temperate ice was measured for foliated ice disks collected from Athabasca Glacier. Data are in Data are in Microsoft Excel and .txt file formats. Further inquiries can be directed to the corresponding author, Jacob R. Fowler. Email: jrfowler@sas.upenn.edu. | [] | [] | false | false |
Pliocene diatom abundance, IODP 379-U1532
|
1939139 |
2024-02-20 | Scherer, Reed Paul; Furlong, Heather |
Collaborative Research: Testing the Linchpin of WAIS Collapse with Diatoms and IRD in Pleistocene and Late Pliocene Strata of the Resolution Drift, Amundsen Sea, Antarctica |
[] | [] | false | false | |
EPICA Dome C Sulfate Data 7-3190m
|
1851022 |
2023-12-22 | Fudge, T. J.; Severi, Mirko |
Collaborative Research: The Impact of Impurities and Stress State on Polycrystalline Ice Deformation |
Volcanic deposition of sulfuric acid in ice cores is important both for understanding past volcanic activity and for synchronizing ice core timescales. Sulfuric acid has a low eutectic point, so it can potentially exist in liquid at grain boundaries and veins, accelerating chemical diffusion. A high effective diffusivity would allow post-depositional diffusion to obscure the climate history and the peak matching among older portions of ice cores. Here, we use records of sulfate from the EPICA Dome C (EDC) ice core to estimate the effective diffusivity of sulfuric acid in ice. We focus on EDC because multiple glacial-interglacial cycles are preserved, allowing analysis for long timescales and deposition in similar climates. We calculate the mean concentration gradient and the width of prominent volcanic events, and analyze the evolution of each with depth/age. We find the effective diffusivities for interglacials and glacial maximums to be 5 ± 3 × 10-9 m2 a-1, an order of magnitude lower than a previous estimate derived from the Holocene portion of EDC (Barnes et al., 2003). The effective diffusivity may be even smaller if the bias from artificial smoothing from the sampling is accounted for. Effective diffusivity is not obviously affected by the ice temperature until about -10°C, 3000m depth, which is also where anomalous sulfate peaks begin to be observed (Traversi et al., 2009). Low effective diffusivity suggests that sulfuric acid is not readily diffusing in liquid-like veins in the upper portions of the Antarctic ice sheet and that records may be preserved in deep, old ice if the ice temperature remains well below the pressure melting point. | ["POINT(123.33 -75.09)"] | ["POINT(123.33 -75.09)"] | false | false |
I-165-M GPR Field Report 2019-2020
|
1744993 |
2023-03-03 | Nesbitt, Ian; Brook, Edward J. |
Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area |
This document details the ground-penetrating radar (GPR) collection activities carried out by I. Nesbitt in the Allan Hills during the 2019-2020 field season. This document is intended as an informal catalogue of the fild work and post-processing activities performed at the Allan Hills and later at McMurdo and elsewhere. It contains preliminary post-processing and analysis only. Any interpretation made and presented in this report based on the data herein is subject to change pending further examination. GPR was used to examine sub-ice bedrock topography and the stratigraphic relationship between two shallow ice core drill sites (CMC1 and CMC2), as well as to explore potential future drill sites. In accordance with. the project's objective to drill and analyze ancient ice at relatively shallow depths, the two main features of interest in this study are 1) bedrock topographic features in which ancient ice could be trapped, and 2) englacial stratigraphic layers, especially those which may represent large age discontinuities. | ["POLYGON((159.16667 -76.66667,159.19167000000002 -76.66667,159.21667000000002 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667000000002 -76.66667,159.34167000000002 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.67333599999999,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.69999999999999,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.71999799999999,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167000000002 -76.73333,159.31667000000002 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667000000002 -76.73333,159.19167000000002 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.71999799999999,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.69999999999999,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.67333599999999,159.16667 -76.66667))"] | ["POINT(159.29167 -76.69999999999999)"] | false | false |
Old Ice, Ong Valley, Transantarctic Mountains
|
1445205 |
2023-02-09 | Putkonen, Jaakko; Bergelin, Marie |
Collaborative Research: Long Term Sublimation/Preservation of Two Separate, Buried Glacier Ice Masses, Ong Valley, Southern Transantarctic Mountains |
These data include the measurements and analyses done on a ~10 meter long ice cores drilled in Ong Valley buried ice site. Further descriptions can be found in the related paper listed below. | ["POLYGON((157.45 -83.14,157.45299999999997 -83.14,157.456 -83.14,157.459 -83.14,157.462 -83.14,157.46499999999997 -83.14,157.468 -83.14,157.471 -83.14,157.474 -83.14,157.47699999999998 -83.14,157.48 -83.14,157.48 -83.141,157.48 -83.142,157.48 -83.143,157.48 -83.144,157.48 -83.14500000000001,157.48 -83.146,157.48 -83.147,157.48 -83.14800000000001,157.48 -83.149,157.48 -83.15,157.47699999999998 -83.15,157.474 -83.15,157.471 -83.15,157.468 -83.15,157.46499999999997 -83.15,157.462 -83.15,157.459 -83.15,157.456 -83.15,157.45299999999997 -83.15,157.45 -83.15,157.45 -83.149,157.45 -83.14800000000001,157.45 -83.147,157.45 -83.146,157.45 -83.14500000000001,157.45 -83.144,157.45 -83.143,157.45 -83.142,157.45 -83.141,157.45 -83.14))"] | ["POINT(157.46499999999997 -83.14500000000001)"] | false | false |
Discrete bulk sediment properties data from Mercer Subglacial Lake
|
1543537 |
2023-02-01 | Dore, John; Campbell, Timothy; Michaud, Alexander; Hawkings, Jon; Skidmore, Mark; Tranter, Martyn; Venturelli, Ryan A; Science Team, SALSA |
Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments |
This dataset contains bulk sediment properties measurements from cores collected from Mercer Subglacial Lake by the SALSA project. Included are: physical properties (bulk density, mass water content, porosity, shear strength, particle size distribution, and mineralogy); carbon (inorganic and organic); iron (ascorbate- and dithionite-extractable); and sulfur (acid-volatile and chromium-reducible). | ["POINT(-149.50134 -84.640287)"] | ["POINT(-149.50134 -84.640287)"] | false | false |
Biogenic Sulfur Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments
|
1543450 |
2023-01-03 | Countway, Peter; Matrai, Patricia |
Microbial Community Structure and Expression of Functional Genes Involved in the Seasonal Cycling of DMSP in the Southern Ocean |
Biogenic sulfur samples were collected from Station E (Palmer Station, Antarctica) and from associated incubation experiments with Station E water. Samples were analyzed for Dimethyl Sulfide (DMS), particulate Dimethylsulfoniopropionate (DMSPp), dissolved Dimethylsulfoniopropionate (DMSPd), particulate Dimethylsulfoxide (DMSOp), dissolved Dimethylsulfoxide (DMSOd) and DMSP lyase activity. All analyses were performed at Palmer Station during scientific deployments. An overview of the methods used for these analyses is included in a secondary tab with the uploaded data. | ["POLYGON((-66 -63,-65.7 -63,-65.4 -63,-65.1 -63,-64.8 -63,-64.5 -63,-64.2 -63,-63.9 -63,-63.6 -63,-63.3 -63,-63 -63,-63 -63.3,-63 -63.6,-63 -63.9,-63 -64.2,-63 -64.5,-63 -64.8,-63 -65.1,-63 -65.4,-63 -65.7,-63 -66,-63.3 -66,-63.6 -66,-63.9 -66,-64.2 -66,-64.5 -66,-64.8 -66,-65.1 -66,-65.4 -66,-65.7 -66,-66 -66,-66 -65.7,-66 -65.4,-66 -65.1,-66 -64.8,-66 -64.5,-66 -64.2,-66 -63.9,-66 -63.6,-66 -63.3,-66 -63))"] | ["POINT(-64.5 -64.5)"] | false | false |
Weddell seal iron dynamics and oxygen stores across lactation
|
1246463 |
2022-07-05 | Shero, Michelle |
Collaborative Research: Physiological and Genetic Correlates of Reproductive Success in High- versus Low-Quality Weddell seals The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals |
The profound impacts that maternal provisioning of finite energy resources has on offspring survival have been extensively studied across mammals. However, in addition to calories, we tested whether high hemoprotein concentrations in diving mammals necessitates exceptional female-to-pup iron transfer. To answer this question adult female Weddell seals (Leptonychotes weddellii) were handled across the austral summer. This included post-partum females during lactation and post-weaning. To demonstrate that any observed changes in iron dynamics were due to lactation, equivalent skip-breeding females (i.e., that did not produce a pup) were also handled. We measured numerous indices of iron mobilization (ferritin, serum iron, total-iron-binding-capacity, transferrin saturation, milk iron concentration), hemoprotein concentrations, and oxygen stores. | ["POLYGON((162 -75,162.6 -75,163.2 -75,163.8 -75,164.4 -75,165 -75,165.6 -75,166.2 -75,166.8 -75,167.4 -75,168 -75,168 -75.4,168 -75.8,168 -76.2,168 -76.6,168 -77,168 -77.4,168 -77.8,168 -78.2,168 -78.6,168 -79,167.4 -79,166.8 -79,166.2 -79,165.6 -79,165 -79,164.4 -79,163.8 -79,163.2 -79,162.6 -79,162 -79,162 -78.6,162 -78.2,162 -77.8,162 -77.4,162 -77,162 -76.6,162 -76.2,162 -75.8,162 -75.4,162 -75))"] | ["POINT(165 -77)"] | false | false |
Dotson-Crosson Ice Shelf data from a tale of two ice shelves paper
|
1929991 |
2022-06-09 | Wild, Christian; Segabinazzi-Dotto, Tiago |
NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment |
This data set includes maps of height above flotation, surface lowering rates, dynamic thickness change, basal melt rates and grounding-line projections from the Dotson-Crosson Ice Shelf System. Furthermore, we included point clouds of migrated ICESat data and ship-based measurents of ocean current and mean potential temperature along the Dotson Ice Shelf's front. | ["POLYGON((-117.45625697487581 -73.79754996487824,-116.50673841062198 -73.79754996487824,-115.55721984636816 -73.79754996487824,-114.60770128211433 -73.79754996487824,-113.6581827178605 -73.79754996487824,-112.70866415360666 -73.79754996487824,-111.75914558935284 -73.79754996487824,-110.80962702509902 -73.79754996487824,-109.86010846084518 -73.79754996487824,-108.91058989659135 -73.79754996487824,-107.96107133233753 -73.79754996487824,-107.96107133233753 -74.04840280405163,-107.96107133233753 -74.29925564322501,-107.96107133233753 -74.5501084823984,-107.96107133233753 -74.80096132157178,-107.96107133233753 -75.05181416074517,-107.96107133233753 -75.30266699991856,-107.96107133233753 -75.55351983909193,-107.96107133233753 -75.80437267826532,-107.96107133233753 -76.0552255174387,-107.96107133233753 -76.30607835661209,-108.91058989659135 -76.30607835661209,-109.86010846084518 -76.30607835661209,-110.80962702509902 -76.30607835661209,-111.75914558935284 -76.30607835661209,-112.70866415360666 -76.30607835661209,-113.6581827178605 -76.30607835661209,-114.60770128211433 -76.30607835661209,-115.55721984636816 -76.30607835661209,-116.50673841062198 -76.30607835661209,-117.45625697487581 -76.30607835661209,-117.45625697487581 -76.0552255174387,-117.45625697487581 -75.80437267826532,-117.45625697487581 -75.55351983909193,-117.45625697487581 -75.30266699991856,-117.45625697487581 -75.05181416074517,-117.45625697487581 -74.80096132157178,-117.45625697487581 -74.5501084823984,-117.45625697487581 -74.29925564322501,-117.45625697487581 -74.04840280405163,-117.45625697487581 -73.79754996487824))"] | ["POINT(-112.70866415360666 -75.05181416074517)"] | false | false |
1970s - 1980s Kooyman-Billups TDR Dive Records from Weddell Seals in McMurdo Sound
|
1246463 |
2022-05-09 | Tsai, EmmaLi |
The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals |
This dataset includes dive records from Weddell seals located in McMurdo Sound, Antarctica from the austral summers of 1978, 1979, and 1981 using Kooyman-Billups Time Depth Recorders. The data were recovered from photocopied paper scrolls using a code package (https://doi.org/10.5281/zenodo.14025657). This recovery process involved record scanning, image processing, and bias correction such that the historic data are directly comparable with dive data from modern instruments. This dataset contains the scanned images of the paper dive records (KBTDR_record_scans) and comma-separated value files of the dive data after recovery (KBTDR_data). Only records from McMurdo Sound were recovered, but record scans from Terra Nova Bay and White Island are also provided for future long-term studies on diving behavior. | ["POINT(165 -77)"] | ["POINT(165 -77)"] | false | false |
Causes and consequences of pair-bond disruption in a sex-skewed population of a long-lived monogamous seabird: the wandering Albatross
|
1840058 |
2022-02-04 | Jenouvrier, Stephanie; Sun, Ruijiao; Barbraud, Christophe; Delord, Karine |
Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics |
Many animals form long-term monogamous pair-bonds, and the disruption of a pair-bond (through either divorce or widowhood) can have significant consequences for individual vital rates (survival, breeding, and breeding success probabilities) and life-history outcomes (lifetime reproductive success, life expectancy). Here, we investigated the causes and consequences of pair-bond disruption in wandering albatross (Diomedea exulans). State-of-the-art statistical and mathematical approaches were developed to estimate divorce and widowhood rates and their impacts on vital rates and life-history outcomes. In this population, females incur a higher mortality rate due to incidental fishery bycatch, hence the population is male-skewed. Therefore, we first posited that males show higher widowhood rates negatively correlated with fishing effort, and females have higher divorce rates because they have more mating opportunities. Furthermore, we expected that divorce can be an adaptive strategy, whereby individuals improve breeding success by breeding with a new partner of better quality. Finally, we posited that pair-bond disruptions can reduce survival and breeding probabilities due to the cost of remating processes, with important consequences for life-history outcomes. As expected, we show that males have higher widowhood rates than females and females have higher divorce rates in this male-skewed population. However, no correlation was found between fishing effort and male widowhood. Secondly, contrary to our expectation, we found that divorce is likely non-adaptive in this population. We propose that divorce in this population is caused by an intruder who outcompetes the original partner in line with the "forced divorce" hypothesis. Furthermore, we found a 16.7% and 18.0% reduction in lifetime reproductive success (LRS) only for divorced and widowed males, respectively, due to missing breeding seasons after a pair-bond disruption. Finally, we found that divorced individuals are more likely to divorce again, but whether this is related to specific individual characteristics remains an important area of investigation. Description of data processing: This file includes: (1) observation events data; (2) E-surge GEPAT (Generator of pattern of elementary matrices) code for fitting MULTIEVENT-CAPTURE-MARK-RECAPTURE (MECMR) models; and (3) pair-bond status and breeding success data to perform all the analysis described in Sun et al. (2022, Ecological Monographs) | [] | [] | false | false |
Radiometric dating, geochemical proxies, and predator biological remains obtained from aquatic sediment cores on South Georgia Island.
|
1443386 1443585 1443424 1826712 |
2022-01-13 | Kristan, Allyson; Maiti, Kanchan; McMahon, Kelton; Polito, Michael |
Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators |
This data set contains radiometric dating measurements from two aquatic sediment cores excavated from two separate sites (Salisbury Plain and Gold Harbor) on South Georgia Island in February 2019. It also contains biological and geochemical sediment proxy values from both sediment cores, including total carbon (%), total nitrogen (%), number of penguin feathers and eggshell fragments, number of seal hairs, and δ13C and δ15N stable isotope values. Cores were sectioned at 1cm intervals, and radiometric dating analyses were conducted on sediment fractions <850 µm by measuring for 210Pb and 226Ra (via 214Pb) by direct gamma counting using the high purity germanium planar detector in the Marine Geochemistry Laboratory at Louisiana State University (LSU). The 210Pbex profiles were used to calculate sedimentation rates using a steady state model that assumes constant rate of supply and constant sedimentation rate (Maiti et al., 2010). Geochemical analyses were performed on sediment fractions <125 µm using an Elemental Analyzer-Isotope Ratio Mass Spectrometry (EA-IRMS) in the Stable Isotope Ecology Lab at LSU. Biological counts of feathers and hairs were determined by enumeration using a dissecting microscope of sediment fractions >1000 µm. The data set also includes sediment core excavation site names and coordinates, date of excavation, sediment depth and age, and carbon to nitrogen isotopic ratios. Details of the data set and all relevant methods are provided in Kristan et al., 2021. | ["POLYGON((-37.33 -54.05,-37.192 -54.05,-37.054 -54.05,-36.916 -54.05,-36.778 -54.05,-36.64 -54.05,-36.502 -54.05,-36.364 -54.05,-36.226 -54.05,-36.088 -54.05,-35.95 -54.05,-35.95 -54.107,-35.95 -54.164,-35.95 -54.221,-35.95 -54.278,-35.95 -54.335,-35.95 -54.392,-35.95 -54.449,-35.95 -54.506,-35.95 -54.563,-35.95 -54.62,-36.088 -54.62,-36.226 -54.62,-36.364 -54.62,-36.502 -54.62,-36.64 -54.62,-36.778 -54.62,-36.916 -54.62,-37.054 -54.62,-37.192 -54.62,-37.33 -54.62,-37.33 -54.563,-37.33 -54.506,-37.33 -54.449,-37.33 -54.392,-37.33 -54.335,-37.33 -54.278,-37.33 -54.221,-37.33 -54.164,-37.33 -54.107,-37.33 -54.05))"] | ["POINT(-36.64 -54.335)"] | false | false |
Radiocarbon dating and stable isotope values of penguin and seal tissues recovered from ornithogenic soils on Platter Island, Danger Islands Archipelago, Antarctic Peninsula in December 2015.
|
1826712 1443585 1443386 1443424 |
2020-07-24 | Kalvakaalva, Rohit; Clucas, Gemma; Herman, Rachael; Polito, Michael |
Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators |
This data set focuses on ornithogenic soils excavated from a test pit located in an active colony of Pygoscelis spp. penguins on Platter Island in the Danger Islands archipelago along the northeastern side of the Antarctic Peninsula in December 2015. It contains radiocarbon dates of recovered penguin tissues and the estimated age of ornithogenic soils by depth. It also contains measurements of carbon (δ13C) and nitrogen (δ15N) stable isotope values of Pygoscelis spp. penguins eggshell membrane and feather samples and Antarctic fur seal (Arctocephalus gazella) hair sample recovered from these ornithogenic soils. Accelerator Mass Spectrometry (AMS) was used to obtain radiocarbon dates at the Woods Hole National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) facility. Radiocarbon Dates were corrected for the marine carbon reservoir effect and calibrated to calendar years before present (cal years BP) using a ΔR of 750 ± 50 years and the MARINE13 calibration curve in Calib 7.04. The rbacon package ver. 2.3.9.1 in R was used to estimate age at depth of each soil level expressed as years relative to the common era (CE). Stable isotope analyses were conducted using an elemental analyzer coupled to a continuous flow stable isotope ratio mass spectrometer at Louisiana State University. The data set also includes associated data such as excavation date, location, site names, latitude/longitude, species, date of excavation, tissue used for radiocarbon dating, and carbon to nitrogen ratios. Details of the data set and all relevant methods are provided in Kalvakaalva et. al., 2020. | ["POINT(-54.67855 -63.434067)"] | ["POINT(-54.67855 -63.434067)"] | false | false |
Seasonal Dive Data
|
1246463 |
2020-06-23 | Burns, Jennifer |
The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals |
For Figures 2 and 4 In Beltran et al. PNAS | ["POINT(165 -77)"] | ["POINT(165 -77)"] | false | false |
CATS2008: Circum-Antarctic Tidal Simulation version 2008
|
9896041 1443677 |
2019-12-19 | Howard, Susan L.; Padman, Laurence; Erofeeva, Svetlana |
Ocean Tides around Antarctica and in the Southern Ocean Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE) |
CATS2008 is a regional inverse barotropic tide model for the circum-Antarctic ocean on a 4 km grid. The model domain includes ocean cavities under the floating ice shelves. The coastline is based on the MODIS MOA [Scambos et al., 2007; Remote Sensing of Environment] feature identification files, adjusted to match ICESat-derived grounding lines for the Ross and Filchner-Ronne ice shelves and Interferometric Synthetic Aperture Radar (InSAR) grounding lines. The water depth map for open water is based on the 2007 release update to Smith and Sandwell [1997; Science]. Adjustments to this map have been made in various regions, including the open continental shelf in front of the Larsen-C Ice Shelf which has been blended with GEBCO bathymetry. Model type: Tides only; Inverse (data assimilation); barotropic (no vertical variation of currents). Grid: 4-km uniform polar stereographic (centered at 71 degrees S, 70 degrees W) Constituents: M2, S2, N2, K2, K1, O1, P1, Q1, Mf, Mm. Units: z (sea surface height; meters); u,v (currents; cm/s); U,V (transports; m2/s). Coordinates: Currents (u, v) and depth-integrated transports (U, V) are given as East (u, U) and North (v, V) components. Citation: "… an update to the inverse model described by Padman et al. [2002]." See CATS2008_README.pdf for further details. | ["POLYGON((-180 -40.231,-144 -40.231,-108 -40.231,-72 -40.231,-36 -40.231,0 -40.231,36 -40.231,72 -40.231,108 -40.231,144 -40.231,180 -40.231,180 -45.2079,180 -50.1848,180 -55.1617,180 -60.1386,180 -65.1155,180 -70.0924,180 -75.0693,180 -80.0462,180 -85.0231,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.0231,-180 -80.0462,-180 -75.0693,-180 -70.0924,-180 -65.1155,-180 -60.1386,-180 -55.1617,-180 -50.1848,-180 -45.2079,-180 -40.231))"] | ["POINT(0 -89.999)"] | false | false |
Cosmogenic nuclide data from glacial deposits along the Liv Glacier coast
|
1443346 |
2019-11-21 | Stone, John |
Collaborative Research: High-resolution Reconstruction of Holocene Deglaciation in the Southern Ross Embayment |
This data set contains measurements of cosmic-ray-produced Be-10 in quartz from glacial erratics and bedrock at sites along and adjacent to Liv Glacier and Amundsen Glacier in the southern Transantarctic Mountains. Samples were collected during the 2016-17 and 2017-18 field seasons working from remote camps along the coast. Locations were determined by hand-held GPS. Elevations are based on barometric altimetry corrected for daily drift and referenced to precise (geodetic) GPS benchmarks established over a range of altitudes at each site. Horizon geometry and the resulting topographic shielding of the cosmic ray flux was determined from vertically-oriented full-sky (fisheye) photographs at each sample location. Samples were processed at the University of Washington Cosmogenic Nuclide Laboratory using established procedures for mineral separation, dissolution, beryllium extraction and purification, described at http://depts.washington.edu/cosmolab/chem.shtml. Beryllium isotope ratios were measured at the Lawrence Livermore Center for Accelerator Mass Spectrometry (LLNL-CAMS) relative to the KNSTD-Be-01-5-4 standard, assuming a standard Be-10/Be-9 ratio of 2.851E-12 (07KNSTD normalization). Data are reported as input for the online CRONUS cosmogenic nuclide calculator (V3, current at the time of submission in November 2019). Exposure ages can be obtained by entering the data into the CRONUS calculator, at: http://hess.ess.washington.edu/math/v3/v3_age_in.html . Data for each sample consists of two lines of input parameters, as follows: {Sample_name, Latitude (DD), Longitude (DD), Altitude (m asl), Scaling_function, Thickness (cm), Density (g/cm^3), Horizon_correction, Erosion_rate (cm/yr), Year_sampled} {Sample_name, Nuclide (in this case Be-10), Target_mineral (quartz), Be-10_concentration (atom/g), Error_Be-10_concentration (atom/g), Normalization} Further information about the V3 input format is given at: http://hess.ess.washington.edu/math/docs/v3/v3_input_explained.html | ["POLYGON((-174 -84.5,-172.4 -84.5,-170.8 -84.5,-169.2 -84.5,-167.6 -84.5,-166 -84.5,-164.4 -84.5,-162.8 -84.5,-161.2 -84.5,-159.6 -84.5,-158 -84.5,-158 -84.63,-158 -84.76,-158 -84.89,-158 -85.02,-158 -85.15,-158 -85.28,-158 -85.41,-158 -85.54,-158 -85.67,-158 -85.8,-159.6 -85.8,-161.2 -85.8,-162.8 -85.8,-164.4 -85.8,-166 -85.8,-167.6 -85.8,-169.2 -85.8,-170.8 -85.8,-172.4 -85.8,-174 -85.8,-174 -85.67,-174 -85.54,-174 -85.41,-174 -85.28,-174 -85.15,-174 -85.02,-174 -84.89,-174 -84.76,-174 -84.63,-174 -84.5))"] | ["POINT(-166 -85.15)"] | false | false |
Antarctic topographic and subglacial lake geostatistical simulations
|
1745137 |
2019-10-02 | MacKie, Emma; Schroeder, Dustin; Caers, Jef; Siegfried, Matt; Scheidt, Celine |
CAREER: Cross-Instrument Synthesis of Antarctic Radar Sounding Observations |
These data accompany the paper "Antarctic Topographic Realizations and Geostatistical Modeling Used to Map Subglacial Lakes" (MacKie et al., in review). This dataset contains 100 geostatistically generated subglacial topographic realizations for Antarctica. Data science techniques were used to calculate the probability of the occurrence of radar-detected lakes and altimetry-detected (active) lakes across the continent, using each topographic realization as a parameter. This generated 100 probability maps of the likelihood of radar-detected lake occurrence and 100 probability maps of active lake occurrence. Further statistics were used to generate 100 binary maps showing expected radar-detected lake locations. The ensemble of realizations can be used for uncertainty quantification. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
CTD stations and logs for Araon 2018 ANA08D expedition to Larson C
|
1822289 |
2019-04-29 | Pan, B. Jack; Vernet, Maria |
RAPID: Collaborative Research: Marine Ecosystem Response to the Larsen C Ice-Shelf Breakout: "Time zero" |
Marine ecosystems under large ice shelves are thought to contain sparse, low-diversity plankton and seafloor communities due the low supply of food from productive sunlight waters. Past studies have shown sub-ice shelf ecosystems to change in response to altered oceanographic processes resulting from ice-shelve retreat. However, information on community changes and ecosystem structure under ice shelves are limited because sub-ice-shelf ecosystems have either been sampled many years after ice-shelf breakout, or have been sampled through small boreholes, yielding extremely limited spatial information. The recent breakout of the A-68 iceberg from the Larsen C ice shelf in the western Weddell Sea provides an opportunity to use a ship-based study to evaluate benthic communities and water column characteristics in an area recently vacated by a large overlying ice shelf. The opportunity will allow spatial assessments at the time of transition from an under ice-shelf environment to one initially exposed to conditions more typical of a coastal Antarctic marine setting. This RAPID project will help determine the state of a coastal Antarctic ecosystem newly exposed from ice-shelf cover and will aid in understanding of rates of community change during transition. The project will conduct a 10-day field program, allowing contrasts to be made of phytoplankton and seafloor megafaunal communities in areas recently exposed by ice-shelf loss to areas exposed for many decades. The project will be undertaken in a collaborative manner with the South Korean Antarctic Agency, KOPRI, by participating in a cruise in March/May 2018. Combining new information in the area of Larsen C with existing observations after the Larsen A and B ice shelf breakups further to the north, the project is expected to generate a dataset that can elucidate fundamental processes of planktonic and benthic community development in transition from food-poor to food-rich ecosystems. The project will provide field experience to two graduate students, a post-doctoral associate and an undergraduate student. Material from the project will be incorporated into graduate courses and the project will communicate daily work and unfolding events through social media and blogs while they explore this area of the world that is largely underexplored. | ["POLYGON((-59.402149 -62.131908,-58.9639887 -62.131908,-58.5258284 -62.131908,-58.0876681 -62.131908,-57.6495078 -62.131908,-57.2113475 -62.131908,-56.7731872 -62.131908,-56.3350269 -62.131908,-55.8968666 -62.131908,-55.4587063 -62.131908,-55.020546 -62.131908,-55.020546 -62.384829,-55.020546 -62.63775,-55.020546 -62.890671,-55.020546 -63.143592,-55.020546 -63.396513,-55.020546 -63.649434,-55.020546 -63.902355,-55.020546 -64.155276,-55.020546 -64.408197,-55.020546 -64.661118,-55.4587063 -64.661118,-55.8968666 -64.661118,-56.3350269 -64.661118,-56.7731872 -64.661118,-57.2113475 -64.661118,-57.6495078 -64.661118,-58.0876681 -64.661118,-58.5258284 -64.661118,-58.9639887 -64.661118,-59.402149 -64.661118,-59.402149 -64.408197,-59.402149 -64.155276,-59.402149 -63.902355,-59.402149 -63.649434,-59.402149 -63.396513,-59.402149 -63.143592,-59.402149 -62.890671,-59.402149 -62.63775,-59.402149 -62.384829,-59.402149 -62.131908))"] | ["POINT(-57.2113475 -63.396513)"] | false | false |
Weddell seal summer diving behavior
|
1246463 |
2018-11-24 | Beltran, Roxanne; Burns, Jennifer |
The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals |
We examined the influence of sea ice break-out on seasonal diving patterns and diet of a top predator, the Weddell seal, to understand how phytoplankton blooms impact the vertical distribution of the food web. We captured female seals during the November and December lactation period and attached a LOTEK LAT1800 time-depth recorder (TDR) flipper tag with a 6 second sampling interval. Data were processed using the Iknos toolbox in MATLAB. Benthic dives (1% of all dives) were excluded from analyses because we were interested in quantifying seasonal changes in mid-water dives. Thus, we analyzed dives from 59 Weddell seals to characterize the diving depth and foraging effort of each seal across the austral summer over four years. We characterized seasonal changes in diving depth by calculating the mean across all seals of the maximum dive depth on each day for each seal. For more information see: Beltran, R. S. Bridging the gap between pupping and molting phenology: behavioral and ecological drivers in Weddell seals PhD thesis, University of Alaska Fairbanks, (2018). | [] | [] | false | false |
Cortisol levels in Weddell seal fur
|
1246463 |
2018-11-08 | Burns, Jennifer |
The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals |
This dataset includes measurements of cortisol levels (pg/mg) extracted from Weddell Seal fur samples collected from adult females in colonies in the Erebus Bay region of Antarctica during 4 austral field seasons between November 2013 and February 2017. Observations recorded include body mass, body composition, reproductive status. | ["POLYGON((-180 -76,-177 -76,-174 -76,-171 -76,-168 -76,-165 -76,-162 -76,-159 -76,-156 -76,-153 -76,-150 -76,-150 -76.2,-150 -76.4,-150 -76.6,-150 -76.8,-150 -77,-150 -77.2,-150 -77.4,-150 -77.6,-150 -77.8,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -77.8,160 -77.6,160 -77.4,160 -77.2,160 -77,160 -76.8,160 -76.6,160 -76.4,160 -76.2,160 -76,162 -76,164 -76,166 -76,168 -76,170 -76,172 -76,174 -76,176 -76,178 -76,-180 -76))"] | ["POINT(-175 -77)"] | false | false |
Weddell Seal Molt Survey Data
|
1246463 |
2018-10-30 | Burns, Jennifer |
The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals |
All sightings of known, tagged, Weddell seals during molt seasons of Austral summers 2013, 14 15, and 2016. Seals that were sighted but for which molt status could not be determined are not included in this dataset. Seals without tags or IDs were not included. | ["POLYGON((164 -76,164.2 -76,164.4 -76,164.6 -76,164.8 -76,165 -76,165.2 -76,165.4 -76,165.6 -76,165.8 -76,166 -76,166 -76.2,166 -76.4,166 -76.6,166 -76.8,166 -77,166 -77.2,166 -77.4,166 -77.6,166 -77.8,166 -78,165.8 -78,165.6 -78,165.4 -78,165.2 -78,165 -78,164.8 -78,164.6 -78,164.4 -78,164.2 -78,164 -78,164 -77.8,164 -77.6,164 -77.4,164 -77.2,164 -77,164 -76.8,164 -76.6,164 -76.4,164 -76.2,164 -76))"] | ["POINT(165 -77)"] | false | false |
Weddell Seal Molt Phenology Dataset
|
1246463 |
2018-10-22 | Burns, Jennifer |
The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals |
Animals can respond to dynamic environments through phenological plasticity of life history events; however, changes in one part of the annual cycle can diminish the success of subsequent life history events. Our aims were to determine the associations between reproduction and moult phenology across years and to quantify phenological plasticity across varying environmental conditions. We conducted demographic surveys of 4,252 flipper-tagged Weddell seals (Leptonychotes weddellii) in the Ross Sea, Antarctica during four austral summers. At each sighting, seals were assigned a moult code based on the visible presence of new fur, and the start date of each animal’s moult was back-calculated. This dataset contains data on pupping and moult timing for each animal used to address this question. | [] | [] | false | false |
Late Holocene paleoecological and paleoclimatic data from moss peatbanks in the western Antarctic Peninsula
|
1246190 |
2017-07-24 | Yu, Zicheng |
Collaborative Research: Response of Carbon Accumulation in Moss Peatbanks to Past Warm Climates in the Antarctic Peninsula |
We used subfossil mosses and peats to document changes in regional climate, cryosphere, and terrestrial ecosystems in the western Antarctic Peninsula at ~65S latitude. We find that most peat-forming ecosystems have initiated since 2800 cal BP, in response to warmer summers and increasing summer insolation. The period at 900-600 cal BP was coldest as indicated by ice advance, abundance of kill ages from ice-entombed mosses exposed recently from retreating glacial ice, and apparent gap in peatbank initiation. Furthermore, the discovery of a novel Antarctic hairgrass (Deschampsia antarctica) peatland at 2300-1200 cal BP from the mainland Antarctic Peninsula suggests a much warmer climate than the present. A warming and wetting climate in the 1980s caused very high carbon accumulation in a Polytrichum strictum moss peatbank. Our results document dramatic transformations of landscape and ecosystems in response to past warmer climate, providing a telltale sign for what may come in the future. | ["POLYGON((-68.5 -64,-67.73 -64,-66.96 -64,-66.19 -64,-65.42 -64,-64.65 -64,-63.88 -64,-63.11 -64,-62.34 -64,-61.57 -64,-60.8 -64,-60.8 -64.36,-60.8 -64.72,-60.8 -65.08,-60.8 -65.44,-60.8 -65.8,-60.8 -66.16,-60.8 -66.52,-60.8 -66.88,-60.8 -67.24,-60.8 -67.6,-61.57 -67.6,-62.34 -67.6,-63.11 -67.6,-63.88 -67.6,-64.65 -67.6,-65.42 -67.6,-66.19 -67.6,-66.96 -67.6,-67.73 -67.6,-68.5 -67.6,-68.5 -67.24,-68.5 -66.88,-68.5 -66.52,-68.5 -66.16,-68.5 -65.8,-68.5 -65.44,-68.5 -65.08,-68.5 -64.72,-68.5 -64.36,-68.5 -64))"] | ["POINT(-64.65 -65.8)"] | false | false |
Specimen logs and observations from Weddell Seal colonies in Erebus Bay, 2013-2017
|
1246463 |
2017-05-24 | Burns, Jennifer |
The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals |
This dataset includes an inventory of Weddell Seals captured by net, tagged, and observed at colonies in the Erebus Bay region of Antarctica during 4 austral field seasons between November 2013 and February 2017. Observations recorded include body mass, length, and molt category. | ["POINT(166.55 -77.75)"] | ["POINT(166.55 -77.75)"] | false | false |
Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)
|
1142083 |
2016-12-03 | Oppenheimer, Clive; Kyle, Philip |
Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO) |
Mt. Erebus is one of only a handful of volcanoes worldwide that have lava lakes with readily observable and nearly continuous Strombolian explosive activity. Erebus is also unique in having a permanent convecting lava lake of anorthoclase phonolite magma. Over the years significant infrastructure has been established at the summit of Mt. Erebus as part of the Mount Erebus Volcano Observatory (MEVO), which serves as a natural laboratory to study a wide range of volcanic processes, especially magma degassing associated with an open convecting magma conduit. The PI proposes to continue operating MEVO for a further five years. The fundamental fundamental research objectives are: to understand diffuse flank degassing by using distributed temperature sensing and gas measurements in ice caves, to understand conduit processes, and to examine the environmental impact of volcanic emissions from Erebus on atmospheric and cryospheric environments. To examine conduit processes the PI will make simultaneous observations with video records, thermal imaging, measurements of gas emission rates and gas compositions, seismic, and infrasound data. An important aspect of Erebus research is the education and training of students. Both graduate and undergraduate students will have the opportunity to work on MEVO data and deploy to the field site. In addition, this proposal will support a middle or high school science teacher for two field seasons. The PI will also continue working with various media organizations and filmmakers. This dataset contains video taken from a series of cameras that were installed at Shackleton's Cairn (-77.525337, 167.157509) looking into the lava lake. This dataset contains all such video taken between 2005 and 2011. Camera downlink depended on power at a relay station at the Cones site. The camera was operational during G-081 field seasons and often for a period of weeks or months thereafter. | ["POINT(167.15334 -77.529724)"] | ["POINT(167.15334 -77.529724)"] | false | false |
Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats in W Antarctica - Lake and Ice Stream Subglacial Access Research Drilling (LISSARD)
|
0839059 |
2016-01-01 | Powell, Ross |
Collaborative Research: Integrative Study of Marine Ice Sheet Stability & Subglacial Life Habitats in W Antarctica - Lake & Ice Stream Subglacial Access Research Drilling (LISSARD) |
The LISSARD project (Lake and Ice Stream Subglacial Access Research Drilling) is one of three research components of the WISSARD integrative initiative (Whillans Ice Stream Subglacial Access Research Drilling) that is being funded by the Antarctic Integrated System Science Program of NSF's Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The LISSARD component of WISSARD focuses on the role of active subglacial lakes in determining how fast the West Antarctic ice sheet loses mass to the global ocean and influences global sea level changes. The importance of Antarctic subglacial lakes has only been recently recognized, and the lakes have been identified as high priority targets for scientific investigations because of their unknown contributions to ice sheet stability under future global warming scenarios. LISSARD has several primary science goals: A) To provide an observational basis for improving treatments of subglacial hydrological and mechanical processes in models of ice sheet mass balance and stability; B) To reconstruct the past history of ice stream stability by analyzing archives of past basal water and ice flow variability contained in subglacial sediments, porewater, lake water, and basal accreted ice; C) To provide background understanding of subglacial lake environments to benefit RAGES and GBASE (the other two components of the WISSARD project); and D) To synthesize data and concepts developed as part of this project to determine whether subglacial lakes play an important role in (de)stabilizing Antarctic ice sheets. We propose an unprecedented synthesis of approaches to studying ice sheet processes, including: (1) satellite remote sensing, (2) surface geophysics, (3) borehole observations and measurements and, (4) basal and subglacial sampling. The latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations. Societal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars. | ["POLYGON((-168.7 -82.3,-168.69 -82.3,-168.68 -82.3,-168.67 -82.3,-168.66 -82.3,-168.65 -82.3,-168.64 -82.3,-168.63 -82.3,-168.62 -82.3,-168.61 -82.3,-168.6 -82.3,-168.6 -82.31,-168.6 -82.32,-168.6 -82.33,-168.6 -82.34,-168.6 -82.35,-168.6 -82.36,-168.6 -82.37,-168.6 -82.38,-168.6 -82.39,-168.6 -82.4,-168.61 -82.4,-168.62 -82.4,-168.63 -82.4,-168.64 -82.4,-168.65 -82.4,-168.66 -82.4,-168.67 -82.4,-168.68 -82.4,-168.69 -82.4,-168.7 -82.4,-168.7 -82.39,-168.7 -82.38,-168.7 -82.37,-168.7 -82.36,-168.7 -82.35,-168.7 -82.34,-168.7 -82.33,-168.7 -82.32,-168.7 -82.31,-168.7 -82.3))"] | ["POINT(-168.65 -82.35)"] | false | false |
The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive
|
1245821 |
2016-01-01 | Brook, Edward J. |
Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive |
This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, and delta 18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, delta 13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of delta 13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica. | ["POINT(162.167 -77.733)"] | ["POINT(162.167 -77.733)"] | false | false |
Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats - Robotic Access to Grounding-zones for Exploration and Science (RAGES)
|
0839107 |
2016-01-01 | Powell, Ross |
Collaborative Research: Integrative Study of Marine Ice Sheet Stability & Subglacial Life Habitats in W Antarctica - Lake & Ice Stream Subglacial Access Research Drilling (LISSARD) |
The RAGES project (Robotic Access to Grounding zones for Exploration and Science) is one of three research components of the WISSARD (Whillans Ice Stream Subglacial Access Research Drilling) integrative initiative that is being funded by the Antarctic Integrated System Science Program of NSF's Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The RAGES component of WISSARD concentrates on the stability of ice stream grounding zones (GZ), the area where the ice, ocean waters and glacial and sea floor sediment interact. Based on our present limited data and modeling efforts, GZs can be perturbed by (i) internal ice stream dynamics, (ii) filling/draining cycles of subglacial lakes, (iii) increased melting by warming ocean waters, and/or (iv) rates of subglacial sediment (till) supply to the GZ. GZs are seen as high priority targets to investigate due to their unknown contributions to ice sheet stability under future global warming scenarios. The three main science goals for RAGES are to assess: (a) West Antarctic Ice Sheet (WAIS) stability relative to the magnitudes of the four main variables listed above; (b) the degree to which grounding-zone sedimentary systems house important records of past WAIS dynamics; and (c) the importance of microbial activity and subglacial geochemical weathering in supplying nutrients to the WAIS grounding zone, the Ross Ice Shelf (RIS) cavity, and the highly productive Southern Ocean that may ultimately influence global biogeochemical cycles. The RAGES field sampling plan integrates surface geophysical surveys with borehole and subglacial sampling and measurements. The boreholes provide: (1) samples of subglacial water, sediments, and basal ice for biological, geochemical, glaciological, sedimentological, and micropaleontological analyses; (2) measures of subglacial and sub-ice-shelf cavity physical and chemical conditions and their spatial variability; and (3) data on sediment types, state and change of the subglacial water discharge, oceanography, and basal ice at the grounding line and within the nearby sub-ice-shelf cavity. Unique tools to be deployed include a multisensor Sub-Ice ROVer (Remotely Operated Vehicle) and long-term, sub-ice oceanographic moorings. The latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations. Societal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. The RAGES project represents a significant advance in polar technology by incorporating the use of complex new instrumentation like the Sub-Ice ROVer and subglacial ocean/lake mooring systems. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars. | ["POLYGON((-163.7 -84,-163.68 -84,-163.66 -84,-163.64 -84,-163.62 -84,-163.6 -84,-163.58 -84,-163.56 -84,-163.54 -84,-163.52 -84,-163.5 -84,-163.5 -84.05,-163.5 -84.1,-163.5 -84.15,-163.5 -84.2,-163.5 -84.25,-163.5 -84.3,-163.5 -84.35,-163.5 -84.4,-163.5 -84.45,-163.5 -84.5,-163.52 -84.5,-163.54 -84.5,-163.56 -84.5,-163.58 -84.5,-163.6 -84.5,-163.62 -84.5,-163.64 -84.5,-163.66 -84.5,-163.68 -84.5,-163.7 -84.5,-163.7 -84.45,-163.7 -84.4,-163.7 -84.35,-163.7 -84.3,-163.7 -84.25,-163.7 -84.2,-163.7 -84.15,-163.7 -84.1,-163.7 -84.05,-163.7 -84))"] | ["POINT(-163.6 -84.25)"] | false | false |
Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica
|
0944659 |
2015-01-01 | Kiene, Ronald |
Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica |
Spectacular blooms of Phaeocystis antarctica in the Ross Sea, Antarctica are the source of some of the world's highest concentrations of dimethylsulfoniopropionate (DMSP) and its volatile degradation product, dimethylsulfide (DMS). The flux of DMS from the oceans to the atmosphere in this region and its subsequent gas phase oxidation generates aerosols that have a strong influence on cloud properties and possibly climate. In the oceans, DMS and DMSP are quantitatively significant components of the carbon, sulfur, and energy flows in marine food webs, especially in the Ross Sea. Despite its central role in carbon and sulfur biogeochemistry in the Ross Sea, surprisingly little is known about the physiological functions of DMSP in P. Antarctica. The research will isolate and characterize DMSP lyases from P. antarctica, with the goal of obtaining amino acid and gene sequence information on these important enzymes. The physiological studies will focus on the effects of varying intensities of photosynthetically active radiation, with and without ultraviolet radiation as these are factors that we have found to be important controls on DMSP and DMS dynamics. The research also will examine the effects of prolonged darkness on the dynamics of DMSP and related compounds in P. antarctica, as survival of this species during the dark Antarctic winter and at sub-euphotic depths appears to be an important part of the Phaeocystis? ecology. A unique aspect of this work is the focus on measurements of intracellular MSA, which if detected, would provide strong evidence for in vivo radical scavenging functions for methyl sulfur compounds. The study will advance understanding of what controls DMSP cycling and ultimately DMS emissions from the Ross Sea and also provide information on what makes P. antarctica so successful in this extreme environment. The research will directly benefit and build on several interrelated ocean-atmosphere programs including the International Surface Ocean Lower Atmosphere Study (SOLAS) program. The PIs will participate in several activities involving K-12 education, High School teacher training, public education and podcasting through the auspices of the Dauphin Island Sea Lab Discovery Hall program and SUNY ESF. Two graduate students will be employed full time, and six undergraduates (2 each summer) will be trained as part of this project. | ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"] | ["POINT(-155 -73)"] | false | false |
Optical Fabric and Fiber Logging of Glacial Ice (1142010)
|
1142010 |
2015-01-01 | Talghader, Joseph |
Optical Fabric and Fiber Logging of Glacial Ice |
This award supports a project to combine the expertise of both glaciologists and optical engineers to develop polarization- preserving optical scattering techniques for borehole tools to identify changes in high-resolution crystal structure (fabric) and dust content of glacial ice. The intellectual merit of this work is that the fabric and impurity content of the ice contain details on climate, volcanic activity and ice flow history. Such fabric measurements are currently taken by slicing an ice core into sections after it has started to depressurize which is an extremely time-intensive process that damages the core and does not always preserve the properties of ice in its in-situ state. In addition the ice core usually must be consumed in order to measure the components of the dust. The fabric measurements of this study utilize the concept that singly-scattered light in ice preserves most of its polarization when it is backscattered once from bubbles or dust; therefore, changes to the polarization of singly-backscattered light must originate with the birefringence. Measurements based on this concept will enable this program to obtain continuous records of fabric and correlate them to chronology and dust content. The project will also develop advanced borehole instruments to replace current logging tools, which require optical sources, detectors and power cables to be submerged in borehole fluid and lowered into the ice sheet at temperatures of -50oC. The use of telecommunications fiber will allow all sources and detectors to remain at the surface and enable low-noise signal processing techniques such as lock-in amplification that increase signal integrity and reduce needed power. Further, fiber logging systems would be much smaller and more flexible than current tools and capable of navigating most boreholes without a heavy winch. In order to assess fabric in situ and test fiber-optic borehole tools, field measurements will be made at WAIS Divide and a deep log will also be made at Siple Dome, both in West Antarctica. If successful, the broader impacts of the proposed research would include the development of new analytical methods and lightweight logging tools for ice drilling research that can operate in boreholes drilled in ice. Eventually the work could result in the development of better prehistoric records of glacier flow, atmospheric particulates, precipitation, and climate forcing. The project encompasses a broad base of theoretical, experimental, and design work, which makes it ideal for training graduate students and advanced undergraduates. Collaboration with schools and classroom teachers will help bring aspects of optics, climate, and polar science to an existing Middle School curriculum. | ["POLYGON((-148.81 -79.42,-145.111 -79.42,-141.412 -79.42,-137.713 -79.42,-134.014 -79.42,-130.315 -79.42,-126.616 -79.42,-122.917 -79.42,-119.218 -79.42,-115.519 -79.42,-111.82 -79.42,-111.82 -79.643,-111.82 -79.866,-111.82 -80.089,-111.82 -80.312,-111.82 -80.535,-111.82 -80.758,-111.82 -80.981,-111.82 -81.204,-111.82 -81.427,-111.82 -81.65,-115.519 -81.65,-119.218 -81.65,-122.917 -81.65,-126.616 -81.65,-130.315 -81.65,-134.014 -81.65,-137.713 -81.65,-141.412 -81.65,-145.111 -81.65,-148.81 -81.65,-148.81 -81.427,-148.81 -81.204,-148.81 -80.981,-148.81 -80.758,-148.81 -80.535,-148.81 -80.312,-148.81 -80.089,-148.81 -79.866,-148.81 -79.643,-148.81 -79.42))"] | ["POINT(-130.315 -80.535)"] | false | false |
A New Approach to Investigate the Seismic Velocity Structure beneath Antarctica
|
1139739 |
2014-01-01 | Hansen, Samantha |
New Approach to Investigate the Seismic Velocity Structure beneath Antarctica |
Intellectual Merit: Numerous candidate models for the geologic processes that have shaped the Antarctic continent have been proposed. To discriminate between them, detailed images of the upper mantle structure are required; however, the only existing continental-scale images of seismic structure beneath Antarctica lack sufficient resolution to delineate important, diagnostic features. Using newly available data from various Antarctic seismic networks, the PI will employ the adaptively parameterized tomography method to develop a high-resolution, continental-scale seismic velocity model for all of Antarctica. The proposed tomography method combines regional seismic travel-time datasets in the context of a global model to create a composite continental-scale model of upper mantle structure. The proposed method allows for imaging of finer structure in areas with better seismic ray coverage while simultaneously limiting the resolution of features in regions with less coverage. This research will help advance understanding of important global processes, such as craton formation, mountain building, continental rifting and associated magmatism. Additionally, the proposed research will have important impacts on other fields of Antarctic science. Constraints provided by tomographic results can be used to develop thermal models of the lithosphere needed to characterize the history and dynamics of ice sheets. Also, further constraints on lithospheric structure are required by climate-ice models, which are focused on understanding the cooling history of the Antarctic continent. Broader impacts: The PI is a new faculty member at the University of Alabama after having been funded as a National Science Foundation Postdoctoral Fellow in Polar Regions Research. The graduate student supported by this project is new to polar research. Through the UA-Tuscaloosa Magnet School partnership program, the PI will educate K-12 students about the Antarctic environment and associated career opportunities through various online and hands-on activities. University of Alabama dedicates a significant percentage of its enrollment space to underrepresented groups. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
The Physiological Ecology of Two Antarctic Icons: Emperor Penguins and Leopard Seals
|
0944220 |
2014-01-01 | Ponganis, Paul |
The Physiological Ecology of Two Antarctic Icons: Emperor Penguins and Leopard Seals |
Emperor penguins (Aptenodytes forsteri) and leopard seals (Hydrurga leptonyx) are iconic, top predators in Antarctica. Understanding their physiological ecology is essential to the assessment of their adaptability to the threats of climate change, pollution, and overfishing. The proposed research has multipronged objectives. Prior results suggest that Emperor penguins have flexible (vs. static) aerobic dive limits (ADL) that vary with the type of dive, and that the role of heart rate in utilization of oxygen stores also varies with dive type. A series of physiological measurements are proposed with backpack electrocardiogram recorders, that will allow further delineation of patterns and interrelationships among heart rate, dive behavior, and oxygen stores. Importantly, the research will be done on free diving emperors, and not individuals confined to a dive hole, thereby providing a more genuine measure of diving physiology and behavior. A separate objective is to examine foraging behavior of leopard seals, using a backpack digital camera and time depth recorder. Leopard seal behavior and prey intake is poorly quantified, but known to be significant. Accordingly the research is somewhat exploratory but will provide important baseline data. Finally, the P.I. proposes to continue long term overflight censuses of Emperor penguin colonies in the Ross Sea. Broader impacts include collaboration with National Geographic television, graduate student training, and development of sedation techniques for leopard seals. | ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"] | ["POINT(-155 -73)"] | false | false |
Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica
|
0732804 |
2014-01-01 | McPhee, Miles G. |
Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica |
The Office of Polar Programs, Antarctic Integrated and System Science Program has made this award to support an interdisciplinary study of the effects of the ocean on the stability of glacial ice in the most dynamic region the West Antarctic Ice Sheet, namely the Pine Island Glacier in the Amundsen Sea Embayment. The collaborative project builds on the knowledge gained by the highly successful West Antarctic Ice Sheet program and is being jointly sponsored with NASA. Recent observations indicate a significant ice loss, equivalent to 10% of the ongoing increase in sea-level rise, in this region. These changes are largest along the coast and propagate rapidly inland, indicating the critical impact of the ocean on ice sheet stability in the region. While a broad range of remote sensing and ground-based instrumentation is available to characterize changes of the ice surface and internal structure (deformation, ice motion, melt) and the shape of the underlying sediment and rock bed, instrumentation has yet to be successfully deployed for observing boundary layer processes of the ocean cavity which underlies the floating ice shelf and where rapid melting is apparently occurring. Innovative, mini ocean sensors that can be lowered through boreholes in the ice shelf (about 500 m thick) will be developed and deployed to automatically provide ocean profiling information over at least three years. Their data will be transmitted through a conducting cable frozen in the borehole to the surface where it will be further transmitted via satellite to a laboratory in the US. Geophysical and remote sensing methods (seismic, GPS, altimetry, stereo imaging, radar profiling) will be applied to map the geometry of the ice shelf, the shape of the sub ice-shelf cavity, the ice surface geometry and deformations within the glacial ice. To integrate the seismic, glaciological and oceanographic observations, a new 3-dimensional coupled ice-ocean model is being developed which will be the first of its kind. NASA is supporting satellite based research and the deployment of a robotic-camera system to explore the environment in the ocean cavity underlying the ice shelf and NSF is supporting all other aspects of this study. Broader impacts: This project is motivated by the potential societal impacts of rapid sea level rise and should result in critically needed improvements in characterizing and predicting the behavior of coupled ocean-ice systems. It is a contribution to the International Polar Year and was endorsed by the International Council for Science as a component of the 'Multidisciplinary Study of the Amundsen Sea Embayment' proposal #258 of the honeycomb of endorsed IPY activities. The research involves substantial international partnerships with the British Antarctic Survey and the University of Bristol in the UK. The investigators will partner with the previously funded 'Polar Palooza' education and outreach program in addition to undertaking a diverse set of outreach activities of their own. Eight graduate students and one undergraduate as well as one post doc will be integrated into this research project. | ["POINT(166.25 -77.42)"] | ["POINT(166.25 -77.42)"] | false | false |
Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica
|
0944686 |
2014-01-01 | Kieber, David John |
Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica |
Spectacular blooms of Phaeocystis antarctica in the Ross Sea, Antarctica are the source of some of the world's highest concentrations of dimethylsulfoniopropionate (DMSP) and its volatile degradation product, dimethylsulfide (DMS). The flux of DMS from the oceans to the atmosphere in this region and its subsequent gas phase oxidation generates aerosols that have a strong influence on cloud properties and possibly climate. In the oceans, DMS and DMSP are quantitatively significant components of the carbon, sulfur, and energy flows in marine food webs, especially in the Ross Sea. Despite its central role in carbon and sulfur biogeochemistry in the Ross Sea, surprisingly little is known about the physiological functions of DMSP in P. antarctica. The research will isolate and characterize DMSP lyases from P. antarctica, with the goal of obtaining amino acid and gene sequence information on these important enzymes. The physiological studies will focus on the effects of varying intensities of photosynthetically active radiation, with and without ultraviolet radiation as these are factors that we have found to be important controls on DMSP and DMS dynamics. The research also will examine the effects of prolonged darkness on the dynamics of DMSP and related compounds in P. antarctica, as survival of this species during the dark Antarctic winter and at sub-euphotic depths appears to be an important part of the Phaeocystis' ecology. A unique aspect of this work is the focus on measurements of intracellular MSA, which if detected, would provide strong evidence for in vivo radical scavenging functions for methyl sulfur compounds. The study will advance understanding of what controls DMSP cycling and ultimately DMS emissions from the Ross Sea and also provide information on what makes P. antarctica so successful in this extreme environment. The research will directly benefit and build on several interrelated ocean-atmosphere programs including the International Surface Ocean Lower Atmosphere Study (SOLAS) program. The PIs will participate in several activities involving K-12 education, High School teacher training, public education and podcasting through the auspices of the Dauphin Island Sea Lab Discovery Hall program and SUNY ESF. Two graduate students will be employed full time, and six undergraduates (2 each summer) will be trained as part of this project. | ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"] | ["POINT(-155 -73)"] | false | false |
Major Ion Concentrations in 2004 South Pole Ice Core
|
0337933 |
2013-11-19 | Cole-Dai, Jihong |
Collaborative Research: Investigating Atmospheric Chemistry and Dynamics through Oxygen and Sulfur Isotopes in Volcanic Sulfate from South Pole Ice Cores |
A 180 m ice core drilled at South Pole in 2004/2005 was analyzed for concentrations of major ions at a depth resolution of approximately 2 cm. Measured ions are chloride, nitrate, sulfate, sodium, potassium, magnesium and calcium. The bottom of the core has been dated to 1830 years before 2004. | ["POINT(0 -90)"] | ["POINT(0 -90)"] | false | false |
The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula
|
0838773 |
2011-01-01 | McClintock, James; Amsler, Charles |
Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula |
The near shore environments of the western Antarctic Peninsula (WAP) harbor extremely high densities of mesograzers (small invertebrate predators approximately 1-25 mm in length) such as benthic amphipods, as well as rich assemblages of macroalgae, endophytes, and macroinvertebrates. Unlike temperate and tropical shallow marine environments, where fish and sea urchins are key grazers structuring the community, mesograzers appear to be much more important in the WAP. Accordingly, the proposed research has two main objectives: (1) To further investigate the interactions between the ecologically dominant large macrophytes, filamentous epi/endophytes, and mesograzers and (2) To determine the nature of interactions between mesograzers and sessile invertebrates. Specifically, the research will examine the following hypotheses: 1: The effects of endophytes on macrophytes are often negative, and consequently macrophytes defend against endophytic infection. 2: Mesoherbivores prevent filamentous algal species, common in the intertidal, from dominating subtidal assemblages. 3: Mesograzer predation pressure on sessile benthic macroinvertebrates, primarily sponges and tunicates, is greatest in shallow habitats dominated by macrophytes, and this impacts depth distributions of macroinvertebrate species. 4: Benthic macroinvertebrates may defend against mesograzers with secondary metabolites which effect molting and/or deter feeding. Broader impacts include involvement of undergraduates, including minorities, in research; training of graduate students, and continuation of the highly successful UAB IN ANTARCTICA interactive web program (two time recipient of awards of excellence from the US Council for Advancement and Support of Education). The researchers also will share their scientific endeavors with teachers, K-12 students, and other members of the community at large while in residence in Antarctica. In addition, the investigators will request the participation of a PolarTREC teacher. | ["POLYGON((-79 -60,-76.4 -60,-73.8 -60,-71.2 -60,-68.6 -60,-66 -60,-63.4 -60,-60.8 -60,-58.2 -60,-55.6 -60,-53 -60,-53 -61,-53 -62,-53 -63,-53 -64,-53 -65,-53 -66,-53 -67,-53 -68,-53 -69,-53 -70,-55.6 -70,-58.2 -70,-60.8 -70,-63.4 -70,-66 -70,-68.6 -70,-71.2 -70,-73.8 -70,-76.4 -70,-79 -70,-79 -69,-79 -68,-79 -67,-79 -66,-79 -65,-79 -64,-79 -63,-79 -62,-79 -61,-79 -60))"] | ["POINT(-66 -65)"] | false | false |
The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula
|
0838776 |
2011-01-01 | Baker, Bill |
Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing |
The near shore environments of the western Antarctic Peninsula (WAP) harbor extremely high densities of mesograzers (small invertebrate predators approximately 1-25 mm in length) such as benthic amphipods, as well as rich assemblages of macroalgae, endophytes, and macroinvertebrates. Unlike temperate and tropical shallow marine environments, where fish and sea urchins are key grazers structuring the community, mesograzers appear to be much more important in the WAP. Accordingly, the proposed research has two main objectives: (1) To further investigate the interactions between the ecologically dominant large macrophytes, filamentous epi/endophytes, and mesograzers and (2) To determine the nature of interactions between mesograzers and sessile invertebrates. Specifically, the research will examine the following hypotheses: 1: The effects of endophytes on macrophytes are often negative, and consequently macrophytes defend against endophytic infection. 2: Mesoherbivores prevent filamentous algal species, common in the intertidal, from dominating subtidal assemblages. 3: Mesograzer predation pressure on sessile benthic macroinvertebrates, primarily sponges and tunicates, is greatest in shallow habitats dominated by macrophytes, and this impacts depth distributions of macroinvertebrate species. 4: Benthic macroinvertebrates may defend against mesograzers with secondary metabolites which effect molting and/or deter feeding. Broader impacts include involvement of undergraduates, including minorities, in research; training of graduate students, and continuation of the highly successful UAB IN ANTARCTICA interactive web program (two time recipient of awards of excellence from the US Council for Advancement and Support of Education). The researchers also will share their scientific endeavors with teachers, K-12 students, and other members of the community at large while in residence in Antarctica. In addition, the investigators will request the participation of a PolarTREC teacher. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean
|
0636319 |
2011-01-01 | Shaw, Tim; Twining, Benjamin |
Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean |
Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions:1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children's books will participate in cruises to produce an account of the expedition and a daily interactive website. | ["POLYGON((-51.9201 -57.5061,-50.99447 -57.5061,-50.06884 -57.5061,-49.14321 -57.5061,-48.21758 -57.5061,-47.29195 -57.5061,-46.36632 -57.5061,-45.44069 -57.5061,-44.51506 -57.5061,-43.58943 -57.5061,-42.6638 -57.5061,-42.6638 -58.03449,-42.6638 -58.56288,-42.6638 -59.09127,-42.6638 -59.61966,-42.6638 -60.14805,-42.6638 -60.67644,-42.6638 -61.20483,-42.6638 -61.73322,-42.6638 -62.26161,-42.6638 -62.79,-43.58943 -62.79,-44.51506 -62.79,-45.44069 -62.79,-46.36632 -62.79,-47.29195 -62.79,-48.21758 -62.79,-49.14321 -62.79,-50.06884 -62.79,-50.99447 -62.79,-51.9201 -62.79,-51.9201 -62.26161,-51.9201 -61.73322,-51.9201 -61.20483,-51.9201 -60.67644,-51.9201 -60.14805,-51.9201 -59.61966,-51.9201 -59.09127,-51.9201 -58.56288,-51.9201 -58.03449,-51.9201 -57.5061))"] | ["POINT(-47.29195 -60.14805)"] | false | false |
Multiple Isotope Analysis of Sulfate in the West Antarctic Ice Sheet Divide Ice Core
|
0538520 |
2010-11-01 | Thiemens, Mark H. |
Collaborative Research: Multiple-isotope Analysis of Nitrate and Sulfate in the West Antarctic Ice Sheet Divide Ice Core |
This data set contains measurements of multiple sulfur and oxygen isotopes from sulfates, from an ice core drilled at the West Antarctic Ice Sheet (WAIS) Divide site in 2005. The initial sulfate measurements, analyzed in 2008 from the 70 meter WAIS 2005A core, are 12 meter averages and span the pre-industrial to industrial transition, from the late 1700s to 2005. This data set is part of the West Antarctic Ice Sheet Divide Ice Core (WAISCORES) project. Data are available via FTP in Microsoft Excel (.xlsx) format. | ["POINT(-114.216667 -78.916667)"] | ["POINT(-114.216667 -78.916667)"] | false | false |
Free-Drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean
|
0636543 |
2010-01-01 | Murray, Alison |
Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean |
Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions: 1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children's books will participate in cruises to produce an account of the expedition and a daily interactive website. | ["POLYGON((-51.98403 -57.58068,-51.042765 -57.58068,-50.1015 -57.58068,-49.160235 -57.58068,-48.21897 -57.58068,-47.277705 -57.58068,-46.33644 -57.58068,-45.395175 -57.58068,-44.45391 -57.58068,-43.512645 -57.58068,-42.57138 -57.58068,-42.57138 -58.10845,-42.57138 -58.63622,-42.57138 -59.16399,-42.57138 -59.69176,-42.57138 -60.21953,-42.57138 -60.7473,-42.57138 -61.27507,-42.57138 -61.80284,-42.57138 -62.33061,-42.57138 -62.85838,-43.512645 -62.85838,-44.45391 -62.85838,-45.395175 -62.85838,-46.33644 -62.85838,-47.277705 -62.85838,-48.21897 -62.85838,-49.160235 -62.85838,-50.1015 -62.85838,-51.042765 -62.85838,-51.98403 -62.85838,-51.98403 -62.33061,-51.98403 -61.80284,-51.98403 -61.27507,-51.98403 -60.7473,-51.98403 -60.21953,-51.98403 -59.69176,-51.98403 -59.16399,-51.98403 -58.63622,-51.98403 -58.10845,-51.98403 -57.58068))"] | ["POINT(-47.277705 -60.21953)"] | false | false |
Antarctica's Geological History Reflected in Sedimentary Radiogenic Isotopes
|
0538580 |
2010-01-01 | van de Flierdt, Tina; Goldstein, Steven L.; Hemming, Sidney R. |
Antarctica's Geological History Reflected in Sedimentary Radiogenic Isotopes |
This project studies sediment from the ocean floor to understand Antarctica's geologic history. Glacially eroded from the Antarctic continent, these sediments may offer insight into the 99% Antarctica covered by ice. The work's central focus is determining crust formation ages and thermal histories for three key areas of East Antarctica--Prydz Bay, eastern Weddell Sea, and Wilkes Land--through a combination of petrography, bulk sediment geochemistry and radiogenic isotopes, as well as isotope chronology of individual mineral grains. One specific objective is characterizing the composition of the Gamburtsev Mountains through studies of Eocene fluvial sediments from Prydz Bay. In addition to furthering our understanding of the hidden terrains of Antarctica, these terrigenous sediments will also serve as a natural laboratory to evaluate the effects of continental weathering on the Hf/Nd isotope systematics of seawater. An important broader impact of the project is providing exciting research projects for graduate and postdoctoral students using state of the art techniques in geochemistry. | ["POLYGON((60 -60,72 -60,84 -60,96 -60,108 -60,120 -60,132 -60,144 -60,156 -60,168 -60,180 -60,180 -61,180 -62,180 -63,180 -64,180 -65,180 -66,180 -67,180 -68,180 -69,180 -70,168 -70,156 -70,144 -70,132 -70,120 -70,108 -70,96 -70,84 -70,72 -70,60 -70,60 -69,60 -68,60 -67,60 -66,60 -65,60 -64,60 -63,60 -62,60 -61,60 -60))"] | ["POINT(120 -65)"] | false | false |
Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates
|
0338087 |
2010-01-01 | Scheltema, Rudolf |
Collaborative Research: Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates |
Because of extreme isolation of the Antarctic continent since the Early Oligocene, one expects a unique invertebrate benthic fauna with a high degree of endemism. Yet some invertebrate taxa that constitute important ecological components of sedimentary benthic communities include more than 40 percent non-endemic species (e.g., benthic polychaetes). To account for non-endemic species, intermittent genetic exchange must occur between Antarctic and other (e.g. South American) populations. The most likely mechanism for such gene flow, at least for in-faunal and mobile macrobenthos, is dispersal of planktonic larvae across the sub- Antarctic and Antarctic polar fronts. To test for larval dispersal as a mechanism of maintaining genetic continuity across polar fronts, the scientists propose to (1) take plankton samples along transects across Drake passage during both the austral summer and winter seasons while concurrently collecting the appropriate hydrographic data. Such data will help elucidate the hydrographic mechanisms that allow dispersal across Drake Passage. Using a molecular phylogenetic approach, they will (2) compare seemingly identical adult forms from Antarctic and South America continents to identify genetic breaks, historical gene flow, and control for the presence of cryptic species. (3) Similar molecular tools will be used to relate planktonic larvae to their adult forms. Through this procedure, they propose to link the larval forms respectively to their Antarctic or South America origins. The proposed work builds on previous research that provides the basis for this effort to develop a synthetic understanding of historical gene flow and present day dispersal mechanism in South American/Drake Passage/Antarctic Peninsular region. Furthermore, this work represents one of the first attempts to examine recent gene flow in Antarctic benthic invertebrates. Graduate students and a postdoctoral fellow will be trained during this research. | ["POLYGON((-70 -53,-68.4 -53,-66.8 -53,-65.2 -53,-63.6 -53,-62 -53,-60.4 -53,-58.8 -53,-57.2 -53,-55.6 -53,-54 -53,-54 -54.5,-54 -56,-54 -57.5,-54 -59,-54 -60.5,-54 -62,-54 -63.5,-54 -65,-54 -66.5,-54 -68,-55.6 -68,-57.2 -68,-58.8 -68,-60.4 -68,-62 -68,-63.6 -68,-65.2 -68,-66.8 -68,-68.4 -68,-70 -68,-70 -66.5,-70 -65,-70 -63.5,-70 -62,-70 -60.5,-70 -59,-70 -57.5,-70 -56,-70 -54.5,-70 -53))"] | ["POINT(-62 -60.5)"] | false | false |
Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change
|
0439906 |
2010-01-01 | Koch, Paul |
Collaborative Research: Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change |
During previous NSF-sponsored research, the PI's discovered that southern elephant seal colonies once existed along the Victoria Land coast (VLC) of Antarctica, a region where they are no longer observed. Molted seal skin and hair occur along 300 km of coastline, more than 1000 km from any extant colony. The last record of a seal at a former colony site is at ~A.D. 1600. Because abandonment occurred prior to subantarctic sealing, disappearance of the VLC colony probably was due to environmental factors, possibly cooling and encroachment of land-fast, perennial sea ice that made access to haul-out sites difficult. The record of seal inhabitation along the VLC, therefore, has potential as a proxy for climate change. Elephant seals are a predominantly subantarctic species with circumpolar distribution. Genetic studies have revealed significant differentiation among populations, particularly with regard to that at Macquarie I., which is the extant population nearest to the abandoned VLC colony. Not only is the Macquarie population unique genetically, but it is has undergone unexplained decline of 2%/yr over the last 50 years3. In a pilot study, genetic analyses showed a close relationship between the VLC seals and those at Macquarie I. An understanding of the relationship between the two populations, as well as of the environmental pressures that led to the demise of the VLC colonies, will provide a better understanding of present-day population genetic structure, the effect of environmental change on seal populations, and possibly the reasons underlying the modern decline at Macquarie Island. This project addresses several key research problems: (1) Why did elephant seals colonize and then abandon the VLC? (2) What does the elephant seal record reveal about Holocene climate change and sea-ice conditions? (3) What were the foraging strategies of the seals and did these strategies change over time as climate varied? (4) How does the genetic structure of the VLC seals relate to extant populations? (5) How did genetic diversity change over time and with colony decline? (6) Using ancient samples to estimate mtDNA mutation rates, what can be learned about VLC population dynamics over time? (7) What was the ecological relationship between elephant seals and Adelie penguins that occupied the same sites, but apparently at different times? The proposed work includes the professional training of young researchers and incorporation of data into graduate and undergraduate courses. Because of extreme isolation of the Antarctic continent since the Early Oligocene, one expects a unique invertebrate benthic fauna with a high degree of endemism. Yet some invertebrate taxa that constitute important ecological components of sedimentary benthic communities include more than 40 percent non-endemic species (e.g., benthic polychaetes). To account for non-endemic species, intermittent genetic exchange must occur between Antarctic and other (e.g. South American) populations. The most likely mechanism for such gene flow, at least for in-faunal and mobile macrobenthos, is dispersal of planktonic larvae across the sub- Antarctic and Antarctic polar fronts. To test for larval dispersal as a mechanism of maintaining genetic continuity across polar fronts, the scientists propose to (1) take plankton samples along transects across Drake passage during both the austral summer and winter seasons while concurrently collecting the appropriate hydrographic data. Such data will help elucidate the hydrographic mechanisms that allow dispersal across Drake Passage. Using a molecular phylogenetic approach, they will (2) compare seemingly identical adult forms from Antarctic and South America continents to identify genetic breaks, historical gene flow, and control for the presence of cryptic species. (3) Similar molecular tools will be used to relate planktonic larvae to their adult forms. Through this procedure, they propose to link the larval forms respectively to their Antarctic or South America origins. The proposed work builds on previous research that provides the basis for this effort to develop a synthetic understanding of historical gene flow and present day dispersal mechanism in South American/Drake Passage/ Antarctic Peninsular region. Furthermore, this work represents one of the first attempts to examine recent gene flow in Antarctic benthic invertebrates. Graduate students and a postdoctoral fellow will be trained during this research | ["POLYGON((162 -72,162.6 -72,163.2 -72,163.8 -72,164.4 -72,165 -72,165.6 -72,166.2 -72,166.8 -72,167.4 -72,168 -72,168 -72.6,168 -73.2,168 -73.8,168 -74.4,168 -75,168 -75.6,168 -76.2,168 -76.8,168 -77.4,168 -78,167.4 -78,166.8 -78,166.2 -78,165.6 -78,165 -78,164.4 -78,163.8 -78,163.2 -78,162.6 -78,162 -78,162 -77.4,162 -76.8,162 -76.2,162 -75.6,162 -75,162 -74.4,162 -73.8,162 -73.2,162 -72.6,162 -72))"] | ["POINT(165 -75)"] | false | false |
Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea
|
0338097 |
2010-01-01 | DiTullio, Giacomo |
Collaborative Research: Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea |
The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. This project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images. | ["POLYGON((-169.94 -52.24,-169.449 -52.24,-168.958 -52.24,-168.467 -52.24,-167.976 -52.24,-167.485 -52.24,-166.994 -52.24,-166.503 -52.24,-166.012 -52.24,-165.521 -52.24,-165.03 -52.24,-165.03 -54.879,-165.03 -57.518,-165.03 -60.157,-165.03 -62.796,-165.03 -65.435,-165.03 -68.074,-165.03 -70.713,-165.03 -73.352,-165.03 -75.991,-165.03 -78.63,-165.521 -78.63,-166.012 -78.63,-166.503 -78.63,-166.994 -78.63,-167.485 -78.63,-167.976 -78.63,-168.467 -78.63,-168.958 -78.63,-169.449 -78.63,-169.94 -78.63,-169.94 -75.991,-169.94 -73.352,-169.94 -70.713,-169.94 -68.074,-169.94 -65.435,-169.94 -62.796,-169.94 -60.157,-169.94 -57.518,-169.94 -54.879,-169.94 -52.24))"] | ["POINT(-167.485 -65.435)"] | false | false |
Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection
|
0440687 |
2010-01-01 | Klinck, John M.; Crocker, Daniel; Goebel, Michael; Hofmann, Eileen; Costa, Daniel |
Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection |
As long-lived animals, marine mammals must be capable of accommodating broad variations in food resources over large spatial and temporal scales. While this is true of all marine mammals, variation in the physical and biological environmental is particularly profound in the Southern Ocean. A basic understanding of the foraging behavior and habitat utilization of pelagic predators requires knowledge of this spatial and temporal variation, coupled with information of how they respond to these changes. Current understanding of these associations is primarily limited to population level studies where animal abundance has been correlated with oceanography. Although these studies are informative, they cannot provide insights into the strategies employed by individual animals nor can they provide insights into the spatial or temporal course of these interactions. Recent technological advances in instrumentation make it possible to extend an understanding beyond the simple linkage of prey and predator distributions with environmental features. The key to understanding the processes that lead to high predator abundance is the identification of the specific foraging behaviors associated with different features of the water column. This study will accomplish these objectives by combining accurate positional data, measures of diving and foraging behavior, animal-derived water-column temperature and salinity data, and available oceanographic data. This project will examine the foraging behavior and habitat utilization of two species of contrasting foraging ecology, the southern elephant seal, Mirounga leonina, and the crabeater seal, Lobodon carcinophagus in the Western Antarctic Peninsula, a region of strong environmental gradients. Although these two species are phylogenetically related, they utilize substantially different but adjacent habitat types. Southern elephant seals are predominantly pelagic, moving throughout the southern ocean, venturing occasionally into the seasonal pack ice whereas crabeater seals range throughout the seasonal pack ice, venturing occasionally into open water. The relationship of specific foraging behaviors and animal movement patterns to oceanographic and bathymetric features develop and test models of the importance of these features in defining habitat use will be determined along with a comparison of how individuals of each species respond to annual variability in the marine environment. The physical oceanography of the Southern Ocean is inherently complex as are the biological processes that are intrinsically linked to oceanographic processes. Significant resources are currently being directed toward developing mathematical models of physical oceanographic processes with the goals of better understanding the role that the Southern Ocean plays in global climate processes, predicting the responses of ocean and global scale processes to climate change, and understanding the linkages between physical and biological oceanographic processes. These efforts have been limited by the scarcity of oceanographic data in the region, especially at high latitudes in the winter months. This study will provide new and significant oceanographic data on temperature and salinity profiles in to further the understanding of the dynamics of the upper water column of west Antarctic Peninsula continental shelf waters. Outreach activities include website development and an association with a marine education program at the Monterrey Bay Aquarium Research Institute. | ["POLYGON((-64 -60,-63 -60,-62 -60,-61 -60,-60 -60,-59 -60,-58 -60,-57 -60,-56 -60,-55 -60,-54 -60,-54 -60.4,-54 -60.8,-54 -61.2,-54 -61.6,-54 -62,-54 -62.4,-54 -62.8,-54 -63.2,-54 -63.6,-54 -64,-55 -64,-56 -64,-57 -64,-58 -64,-59 -64,-60 -64,-61 -64,-62 -64,-63 -64,-64 -64,-64 -63.6,-64 -63.2,-64 -62.8,-64 -62.4,-64 -62,-64 -61.6,-64 -61.2,-64 -60.8,-64 -60.4,-64 -60))"] | ["POINT(-59 -62)"] | false | false |
Free-drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean
|
0636730 |
2010-01-01 | Vernet, Maria |
Collaborative Reseach: Free-drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean. |
Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions: 1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children's books will participate in cruises to produce an account of the expedition and a daily interactive website. | ["POLYGON((-55 -52,-53.5 -52,-52 -52,-50.5 -52,-49 -52,-47.5 -52,-46 -52,-44.5 -52,-43 -52,-41.5 -52,-40 -52,-40 -53.3,-40 -54.6,-40 -55.9,-40 -57.2,-40 -58.5,-40 -59.8,-40 -61.1,-40 -62.4,-40 -63.7,-40 -65,-41.5 -65,-43 -65,-44.5 -65,-46 -65,-47.5 -65,-49 -65,-50.5 -65,-52 -65,-53.5 -65,-55 -65,-55 -63.7,-55 -62.4,-55 -61.1,-55 -59.8,-55 -58.5,-55 -57.2,-55 -55.9,-55 -54.6,-55 -53.3,-55 -52))"] | ["POINT(-47.5 -58.5)"] | false | false |
Free-Drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean
|
0636723 |
2010-01-01 | Helly, John |
Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean |
Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions: 1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children's books will participate in cruises to produce an account of the expedition and a daily interactive website. | ["POLYGON((-55 -52,-53.5 -52,-52 -52,-50.5 -52,-49 -52,-47.5 -52,-46 -52,-44.5 -52,-43 -52,-41.5 -52,-40 -52,-40 -53.3,-40 -54.6,-40 -55.9,-40 -57.2,-40 -58.5,-40 -59.8,-40 -61.1,-40 -62.4,-40 -63.7,-40 -65,-41.5 -65,-43 -65,-44.5 -65,-46 -65,-47.5 -65,-49 -65,-50.5 -65,-52 -65,-53.5 -65,-55 -65,-55 -63.7,-55 -62.4,-55 -61.1,-55 -59.8,-55 -58.5,-55 -57.2,-55 -55.9,-55 -54.6,-55 -53.3,-55 -52))"] | ["POINT(-47.5 -58.5)"] | false | false |
US ITASE Stable Isotope Data, Antarctica
|
0440414 0196105 |
2009-10-01 | Steig, Eric J. |
Stable Isotope Studies at West Antarctic ITASE Sites |
This data set includes stable isotope measurements from snow pits, firn, and ice cores collected by the the US component of the International Trans-Antarctic Scientific Expedition ( ITASE). The ITASE program aims to collect and interpret a continental-wide array of environmental parameters assembled through the coordinated efforts of scientists from several nations. These data were collected between 1999 and 2007. The data have been compiled into single files for each sampling site, though in some cases a file contains data from more than one ice core or snow pit. Each file in the data set includes deuterium/hydrogen (δD) and/or 18-oxygen/16-oxygen (δ18O) ratios, depths, and in some cases ice age or other information. Further details regarding the data are provided in each data file. Data are available via FTP in ASCII text format (.txt). Data were collected during five Antarctic field seasons from 1999 to 2007. Data from 1999 to 2002 are currently available. Data from 2003 to 2007 will be added in the future. | ["POLYGON((-130 -65,-125.8 -65,-121.6 -65,-117.4 -65,-113.2 -65,-109 -65,-104.8 -65,-100.6 -65,-96.4 -65,-92.2 -65,-88 -65,-88 -67.5,-88 -70,-88 -72.5,-88 -75,-88 -77.5,-88 -80,-88 -82.5,-88 -85,-88 -87.5,-88 -90,-92.2 -90,-96.4 -90,-100.6 -90,-104.8 -90,-109 -90,-113.2 -90,-117.4 -90,-121.6 -90,-125.8 -90,-130 -90,-130 -87.5,-130 -85,-130 -82.5,-130 -80,-130 -77.5,-130 -75,-130 -72.5,-130 -70,-130 -67.5,-130 -65))"] | ["POINT(-109 -77.5)"] | false | false |
Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes
|
0436190 |
2009-01-01 | Eastman, Joseph |
Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes |
Patterns of biodiversity, as revealed by basic research in organismal biology, may be derived from ecological and evolutionary processes expressed in unique settings, such as Antarctica. The polar regions and their faunas are commanding increased attention as declining species diversity, environmental change, commercial fisheries, and resource management are now being viewed in a global context. Commercial fishing is known to have a direct and pervasive effect on marine biodiversity, and occurs in the Southern Ocean as far south as the Ross Sea. The nature of fish biodiversity in the Antarctic is different than in all other ocean shelf areas. Waters of the Antarctic continental shelf are ice covered for most of the year and water temperatures are nearly constant at -1.5 C. In these waters components of the phyletically derived Antarctic clade of Notothenioids dominate fish diversity. In some regions, including the southwestern Ross Sea, Notothenioids are overwhelmingly dominant in terms of number of species, abundance, and biomass. Such dominance by a single taxonomic group is unique among shelf faunas of the world. In the absence of competition from a taxonomically diverse fauna, Notothenioids underwent a habitat or depth related diversification keyed to the utilization of unfilled niches in the water column, especially pelagic or partially pelagic zooplanktivory and piscivory. This has been accomplished in the absence of a swim bladder for buoyancy control. They also may form a special type of adaptive radiation known as a species flock, which is an assemblage of a disproportionately high number of related species that have evolved rapidly within a defined area where most species are endemic. Diversification in buoyancy is the hallmark of the notothenioid radiation. Buoyancy is the feature of notothenioid biology that determines whether a species lives on the substrate, in the water column or both. Buoyancy also influences other key aspects of life history including swimming, feeding and reproduction and thus has implications for the role of the species in the ecosystem. With similarities to classic evolutionary hot spots, the Antarctic shelf and its Notothenioid radiation merit further exploration. The 2004 'International Collaborative Expedition to collect and study Fish Indigenous to Sub-Antarctic Habitats,' or, 'ICEFISH,' provided a platform for collection of notothenioid fishes from sub-Antarctic waters between South America and Africa, which will be examined in this project. This study will determine buoyancy for samples of all notothenioid species captured during the ICEFISH cruise. This essential aspect of the biology is known for only 19% of the notothenioid fauna. Also, the gross and microscopic anatomy of brains and sense organs of the phyletically basal families Bovichtidae, Eleginopidae, and of the non-Antarctic species of the primarily Antarctic family Nototheniidae will be examined. The fish biodiversity and endemicity in poorly known localities along the ICEFISH cruise track, seamounts and deep trenches will be quantified. Broader impacts include improved information for comprehending and conserving biodiversity, a scientific and societal priority. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Correlative Antarctic and Inter-Hemispheric Dynamics Studies Using the MF Radar at Rothera
|
0438777 |
2009-01-01 | Fritts, David |
Correlative Antarctic and Inter-Hemispheric Dynamics Studies Using the MF Radar at Rothera |
This proposal is to continue operation and scientific studies with the middle-frequency (MF, 1-30 MHz) mesospheric radar deployed at the British Antarctic station Rothera in 1996. This system is now a key site in the Antarctic MF radar chain near 68 deg. S, which includes also MF radars at Syowa (Japan) and Davis (Australia) stations. This radar comprises the winds component of a developing instrument suite for the mesosphere-thermosphere (MLT) studies at Rothera - a focus of the new BAS 5-year plan, which also includes the Fe temperature lidar (formerly at South Pole) and the mesopause airglow imager for gravity wave studies (formerly at Halley). The Rothera MF radar has just had its antennas and electronics upgraded to achieve better signal-to-noise ratio and more continuous measurements in height and time. The main focus of the proposed research is to extend the knowledge of the polar mesosphere dynamics. The instrument suite at Rothera is ideally positioned for correlative interhemispheric studies with northern hemisphere sites at Poker Flat, Alaska (65 deg. N) and ALOMAR, Norway (69 deg. N) having comparable instrumentation. Further research efforts performed with continued funding will focus on: (1) multi-instrument collaborative studies at Rothera to quantify as fully as possible the dynamics, structure, and variability of the MLT at that location, (2) multi-site (and multi-instrument) studies of large-scale dynamics and variability in the Antarctic (together with the radars and other instrumentation at Davis and Syowa), and (3) interhemispheric studies employing instruments (e.g., the Na resonance lidar and MF radar) at Poker Flat and ALOMAR. It is expected that these studies will lead to a more detailed understanding of (1) mean, tidal, and planetary wave structures at polar latitudes, (2) seasonal, inter-annual, and short-term variability of these structures, (3) hemispheric differences in the tidal and planetary wave structures arising from different source and wave interaction conditions, and (4) the relative influences of gravity waves in the two hemispheres. Such studies will also contribute more generally to an increased awareness of the role of high-latitude processes in global atmospheric dynamics and variability. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Stable Isotope Studies at East Antarctic US ITASE Sites
|
0440414 |
2009-01-01 | Steig, Eric J. |
Stable Isotope Studies at East Antarctic US ITASE Sites |
This award supports a project to obtain stable isotope profiles from shallow (<100 m) ice cores from East Antarctica, to add to the growing database of environmental proxy data collected under the auspices of the "ITASE" (International TransAntarctic Scientific Expedition) program. In Antarctica, the instrumental record of climate is particularly short (~40 years except in a few isolated locations on the coast), and ice core proxy data are the only means available for extending this record into the past. The use of stable isotopes of water (18-O/16-O and D/H ratios) from ice cores as proxies for temperature is well established for both very short (i.e. seasonal) and long timescales (centuries, millennia). Using multivariate regression methods and shallow ice cores from West Antarctica, a reconstruction of Antarctic climate over the last ~150 years has been developed which suggests the continent has been warming, on average, at a rate of ~0.2 K/century. Further improving these reconstructions is the chief motivation for further extending the US ITASE project. Ten to fifteen shallow (~100 m) from Victoria Land, East Antarctica will be obtained and analyzed. The core will be collected along a traverse route beginning at Taylor Dome and ending at the South Pole. Age-depth relationships for the cores will be determined through a combination of stable isotopes, visual stratigraphy and seasonal chemical signatures and marker horizons. Reconstructions of Antarctic climate obtained from these cores will be incorporated into the global network of paleoclimate information, which has been important in science, policy and educational contexts. The project will include graduate student and postdoctoral training and field experience. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial Forms of Phaeocystis Antarctica
|
0440478 |
2009-01-01 | Smith, Walker; Tang, Kam |
Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial forms of Phaeocystis antarctica |
Phaeocystis Antarctica is a widely distributed phytoplankton that forms dense blooms and aggregates in the Southern Ocean. This phytoplankton and plays important roles in polar ecology and biogeochemistry, in part because it is a dominant primary producer, a main component of organic matter vertical fluxes, and the principal producer of volatile organic sulfur in the region. Yet P. Antarctica is also one of the lesser known species in terms of its physiology, life history and trophic relationships with other organisms; furthermore, information collected on other Phaeocystis species and from different locations may not be applicable to P. Antarctica in the Ross Sea. P. Antarctica occurs mainly as two morphotypes: solitary cells and mucilaginous colonies, which differ significantly in size, architecture and chemical composition. Relative dominance between solitary cells and colonies determines not only the size spectrum of the population, but also its carbon dynamics, nutrient uptake and utilization. Conventional thinking of the planktonic trophic processes is also challenged by the fact that colony formation could effectively alter the predator-prey interactions and interspecific competition. However, the factors that regulate the differences between solitary and colonial forms of P. Antarctica are not well-understood. The research objective of this proposal is therefore to address these over-arching questions: 1. Do P. Antarctica solitary cells and colonies differ in growth, composition and photosynthetic rates? 2. How do nutrients and grazers affect colony development and size distribution of P. Antarctica? 3. How do nutrients and grazers act synergistically to affect the long-term population dynamics of P. Antarctica? Experiments will be conducted in the McMurdo station with natural P. Antarctica assemblages and co-occurring grazers. Laboratory experiments will be conducted to study size-specific growth and photosynthetic rates of P. Antarctica, size-specific grazing mortality due to microzooplankton and mesozooplankton, the effects of macronutrients on the (nitrogen compounds) relative dominance of solitary cells and colonies, and the effects of micronutrient (Fe) and grazing related chemical signals on P. Antarctica colony development. Because this species is of critical importance in the Southern Ocean, and because this research will provide critical information on factors that regulate the role of P.Antarctica in food webs and biogeochemical cycles, a major gap in knowledge will be addressed. This project will train two marine science Ph.D. students. The investigators will also collaborate with the School of Education and a marine science museum to communicate polar science to a broader audience. | ["POINT(166.66267 -77.85067)"] | ["POINT(166.66267 -77.85067)"] | false | false |
The Molecular Signals that Regulate the Ontogeny of Aerobic Capacity, Lipid Metabolism and Elevated Myoglobin Concentrations in the Skeletal Muscles of Weddell Seals
|
0634682 |
2009-01-01 | Lyons, W. Berry; Kanatous, Shane |
The Molecular Signals that Regulate the Ontogeny of Aerobic Capacity, Lipid Metabolism and Elevated Myoglobin Concentrations in the Skeletal Muscles of Weddell Seals |
During the past three decades, intensive field studies have revealed much about the behavior, physiology, life history, and population dynamics of the Weddell seal (Leptonychotes weddelli) population of McMurdo Sound, Antarctica. These animals are marine predators that are highly adapted for an aquatic life in shore-fast and pack ice habitats. They must locate and capture sparsely distributed under the ice. Most of what is known about their diving behavior is based on studies of adult animals with little known about the development or the genetic controls of diving behavior of young animals. The goal of this project is to examine the temporal development of aerobic capacity, lipid metabolism and oxygen stores in the skeletal muscles of young Weddell seals and to determine which aspects of the cellular environment are important in the regulation of these adaptations during maturation. This project builds on past results to investigate the molecular controls that underlie the development of these adaptations. The first objective is to further characterize the ontogenetic changes in muscle aerobic capacity, lipid metabolism and myoglobin concentration and distribution using enzymatic, immuno-histochemical and myoglobin assays in newly weaned, subadult, and adult seals. The second objective is to determine the molecular controls that regulate these changes in aerobic capacity, fiber type distribution and myoglobin in skeletal muscles during maturation. Through subtractive hybridization and subsequent analysis, differences in mRNA populations in the swimming muscles of the different age classes of Weddell seals will be determined. These techniques will allow for the identification of the proteins and transcription factors that influence the ontogenetic changes in myoglobin concentration, fiber type distribution and aerobic capacity. These results will increase our understanding of both the ontogeny and molecular mechanisms by which young seals acquire the physiological capabilities to make deep (up to 700 m) and long aerobic dives (ca 20 min). This study will advance knowledge of the molecular regulation for the adaptations that enable active skeletal muscle to function under hypoxic conditions; this has a broader application for human medicine especially in regards to cardiac and pulmonary disease. Additional broader impacts include the participation of underrepresented scientists and a continuation of a website in collaboration with the Science Teachers Access to Resources at Southwestern University (STARS Program) which involves weekly updates about research efforts during the field season, weekly questions/answer session involving students and teachers, and updates on research results throughout the year. | ["POLYGON((160 -77,160.7 -77,161.4 -77,162.1 -77,162.8 -77,163.5 -77,164.2 -77,164.9 -77,165.6 -77,166.3 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.3 -78,165.6 -78,164.9 -78,164.2 -78,163.5 -78,162.8 -78,162.1 -78,161.4 -78,160.7 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77))"] | ["POINT(163.5 -77.5)"] | false | false |
Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores
|
0739496 |
2009-01-01 | Furbish, David; Miller, Molly |
Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores |
This project answers a simple question: why are there so few fossils in sediment cores from Antarctica's continental shelf? Antarctica's benthos are as biologically rich as those of the tropics. Shell-secreting organisms should have left a trail throughout geologic time, but have not. This trail is particularly important because these organisms record regional climate in ways that are critical to interpreting the global climate record. This study uses field experiments and targeted observations of modern benthic systems to examine the biases inflicted by fossil preservation. By examining a spectrum of ice-affected habitats, this project provides paleoenvironmental insights into carbonate preservation, sedimentation rates, and burial processes; and will provide new approaches to reconstructing the Cenozoic history of Antarctica. Broader impacts include graduate and undergraduate research and education, development of undergraduate curricula to link art and science, K12 outreach, public outreach via the web, and societal relevance through improved understanding of records of global climate change. | ["POLYGON((163.41667 -77.33333,163.46667 -77.33333,163.51667 -77.33333,163.56667 -77.33333,163.61667 -77.33333,163.66667 -77.33333,163.71667 -77.33333,163.76667 -77.33333,163.81667 -77.33333,163.86667 -77.33333,163.91667 -77.33333,163.91667 -77.369997,163.91667 -77.406664,163.91667 -77.443331,163.91667 -77.479998,163.91667 -77.516665,163.91667 -77.553332,163.91667 -77.589999,163.91667 -77.626666,163.91667 -77.663333,163.91667 -77.7,163.86667 -77.7,163.81667 -77.7,163.76667 -77.7,163.71667 -77.7,163.66667 -77.7,163.61667 -77.7,163.56667 -77.7,163.51667 -77.7,163.46667 -77.7,163.41667 -77.7,163.41667 -77.663333,163.41667 -77.626666,163.41667 -77.589999,163.41667 -77.553332,163.41667 -77.516665,163.41667 -77.479998,163.41667 -77.443331,163.41667 -77.406664,163.41667 -77.369997,163.41667 -77.33333))"] | ["POINT(163.66667 -77.516665)"] | false | false |
GISP2 (D Core) Methane Concentration Data
|
0126057 |
2008-12-16 | Brook, Edward J. |
High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change |
This ice core data is archived at the World Data Center for Paleoclimatology and is available through the Ice Core Data Gateway. The data includes methane data from the Greenland Ice Sheet Project 2 (GISP2). GISP2 is an ice core project that drilled through the Greenland ice sheet and 1.55 meters into bedrock. The ice core is 3053.44 meters in depth, the deepest ice core recovered in the world at the time. The ice core was completed in 1993 after five years of drilling. Methane concentrations were determined by GC-FID using standards calibrated by NOAA CMDL. The gas age time scales and analytical techniques are described in further detail in the publication. | [] | [] | false | false |
Biogenic Sulfur in the Siple Dome Ice Core
|
9615333 |
2004-03-09 | Saltzman, Eric; Dioumaeva, Irina; Finley, Brandon |
Biogenic Sulfur in the Siple Dome Ice Core |
This data set is a continuous, high-resolution record of biogenic sulfur (methanesulfonate, known as MSA and CH3SO3-) in the 1000 m deep Siple Dome A (SDMA) core, covering 100,000 to 20 years BP. The analysis was done on between August 2002 and November 2003 at the University of California, Irvine. Investigators used a mass spectrometer to measure methanesulfonate. Measurements are given as MSA concentration at various depths. Estimated age of the ice at each depth is also given. This project was a part of the West Antarctic Ice Sheet Cores (WAISCORES) project for deep ice coring in West Antarctica. WAISCORES is supported by the Office of Polar Programs, National Science Foundation (NSF). | ["POINT(-148.8 -81.7)"] | ["POINT(-148.8 -81.7)"] | false | false |