[{"awards": "2209726 Lindzey, Laura", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "QIceRadar Antarctic Index of Radar Depth Sounding Data", "datasets": [{"dataset_uid": "200413", "doi": " 10.5281/zenodo.12123013", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "QIceRadar Antarctic Index of Radar Depth Sounding Data", "url": "https://zenodo.org/records/12123013"}], "date_created": "Wed, 19 Jun 2024 00:00:00 GMT", "description": "Ice penetrating radar is one of the primary tools that researchers use to study ice sheets and glaciers. With radar, it is possible to see a cross-section of the ice, revealing internal layers and the shape of the rocks under the ice. Among other things, this is important for calculating how much potential sea level change is locked up in the polar ice sheets, and how stable the ice sheets are likely to be in a warming world. This type of data is logistically challenging and expensive to collect. Historically, individual research groups have obtained funding to collect these data sets, and then the data largely stayed within that institution. There has been a recent push to make more and more data openly available, enabling the same datasets to be used by multiple research groups. However, it is still difficult to figure out what data is available because there is no centralized index. Additionally, each group releases data in a different format, which creates an additional hurdle to its use. This project addresses both of those challenges to data reuse by providing a unified tool for discovering where ice penetrating radar data already exists, then allowing the researcher to download and visualize the data. It is integrated into open-source mapping software that many in the research community already use, and makes it possible for non-experts to explore these datasets. This is particularly valuable for early-career researchers and for enabling interdisciplinary work. The US alone has spent many tens of millions of dollars on direct grants to enable the acquisition and analysis of polar ice penetrating radar data, and even more on the associated infrastructure and support costs. Unfortunately, much of these data is not publicly released, and even the data that has been released is not easily accessible. There is significant technical work involved in figuring out how to locate, download and view the data. This project is developing a tool that will both lower the barrier to entry for using this data and improve the workflows of existing users. Quantarctica and QGreenland have rapidly become indispensable tools for the polar research community, making diverse data sets readily available to researchers. However, ice penetrating radar is a major category of data that is not currently supported ? it is possible to see the locations of existing survey lines, and the ice thickness maps that have been interpreted from their data, but it is not readily possible to see the radargrams themselves in context with all of the other information. This capability is important because there is far more visual information contained in a radargram than simply its interpreted basal elevation or ice thickness. This project is developing software that will enable researchers to to view radargram images and interpreted surface and basal horizons in context with the existing map-view datasets in Quantarctica and QGreenland. A data layer shows the locations of all known ice penetrating radar surveys, color-coded based on availability. This layer enables data discovery and browsing. The plugin itself interacts with the data layer, first to download selected data, then to visualize the radargrams along with a cursor that moves simultaneously along the radargram and along the map view, making it straightforward to determine the precise geolocation of radar features.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "AIRCRAFT; GLACIERS/ICE SHEETS; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Polar Cyberinfrastructure", "paleo_time": null, "persons": "Lindzey, Laura", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e AIRCRAFT", "repo": "Zenodo", "repositories": "Zenodo", "science_programs": null, "south": -90.0, "title": "Elements: Making Ice Penetrating Radar More Accessible: A tool for finding, downloading and visualizing georeferenced radargrams within the QGIS ecosystem", "uid": "p0010464", "west": -180.0}, {"awards": "1543511 Stephens, Britton; 1543457 Munro, David", "bounds_geometry": "POLYGON((-73 -53,-71.2 -53,-69.4 -53,-67.6 -53,-65.8 -53,-64 -53,-62.2 -53,-60.4 -53,-58.6 -53,-56.8 -53,-55 -53,-55 -54.4,-55 -55.8,-55 -57.2,-55 -58.6,-55 -60,-55 -61.4,-55 -62.8,-55 -64.2,-55 -65.6,-55 -67,-56.8 -67,-58.6 -67,-60.4 -67,-62.2 -67,-64 -67,-65.8 -67,-67.6 -67,-69.4 -67,-71.2 -67,-73 -67,-73 -65.6,-73 -64.2,-73 -62.8,-73 -61.4,-73 -60,-73 -58.6,-73 -57.2,-73 -55.8,-73 -54.4,-73 -53))", "dataset_titles": "Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the Southern Ocean, Drake Passage and South Atlantic Ocean in 2018, processed by NOAA (NCEI Accession 0184338); Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, Drake Passage, South Atlantic Ocean in 2022 (NCEI Accession 0276577); Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, South Atlantic Ocean in 2021 (NCEI Accession 0246983); Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, South Pacific Ocean, Drake Passage and South Atlantic Ocean from 2019-02-16 to 2020-02-11 (NCEI Accession 0208838); Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, South Pacific Ocean, Drake Passage and South Atlantic Ocean in 2020 (NCEI Accession 0225445); Underway measurements of pCO2 in the Surface Waters and the Atmosphere During the ARSV Laurence M. Gould 2017 Expeditions processed by NOAA (NCEI Accession 0170337)", "datasets": [{"dataset_uid": "200352", "doi": "https://doi.org/10.25921/f94g-zp40", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, South Atlantic Ocean in 2021 (NCEI Accession 0246983)", "url": "https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/VOS_Program/LM_gould.html"}, {"dataset_uid": "200351", "doi": "https://doi.org/10.25921/z0pk-pv81", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, South Pacific Ocean, Drake Passage and South Atlantic Ocean in 2020 (NCEI Accession 0225445)", "url": "https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/VOS_Program/LM_gould.html"}, {"dataset_uid": "200353", "doi": "https://doi.org/10.25921/fq0a-7y11", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, Drake Passage, South Atlantic Ocean in 2022 (NCEI Accession 0276577)", "url": "https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/VOS_Program/LM_gould.html"}, {"dataset_uid": "200350", "doi": "https://doi.org/10.25921/3ysc-pm11", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, South Pacific Ocean, Drake Passage and South Atlantic Ocean from 2019-02-16 to 2020-02-11 (NCEI Accession 0208838)", "url": "https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/VOS_Program/LM_gould.html"}, {"dataset_uid": "200349", "doi": "https://doi.org/10.25921/b4jn-ef56", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the Southern Ocean, Drake Passage and South Atlantic Ocean in 2018, processed by NOAA (NCEI Accession 0184338)", "url": "https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/VOS_Program/LM_gould.html"}, {"dataset_uid": "200348", "doi": "https://doi.org/10.7289/v5tq5zt1", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Underway measurements of pCO2 in the Surface Waters and the Atmosphere During the ARSV Laurence M. Gould 2017 Expeditions processed by NOAA (NCEI Accession 0170337)", "url": "https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/VOS_Program/LM_gould.html"}], "date_created": "Wed, 22 Feb 2023 00:00:00 GMT", "description": "The Southern Ocean plays a key role in modulating the global carbon cycle, but the size and even the sign of the flux of carbon dioxide between the ocean and atmosphere in this region is still uncertain. This is in part due to the lack of measurements in this remote region of the world ocean. This project continues a multi-year time series of shipboard chemical measurements in the Drake Passage to detect changes in the ocean carbon cycle and to improve the understanding of mechanisms driving natural variability and long-term change in the Southern Ocean. More specifically, this project is a continuation of the collection of underway upper ocean measurements of the surface partial pressure of carbon dioxide during crossings of the Drake Passage by the Antarctic Research and Supply Vessel Laurence M. Gould. This project also includes collection and analysis of discrete samples relevant to ocean carbon cycle studies including macronutrient concentrations, total carbon dioxide concentrations, and the carbon isotopic composition of total carbon dioxide. The Drake Passage data are made readily available to the international science community and serve as both validation and constraints of remotely sensed observations and numerical coupled earth systems models.", "east": -55.0, "geometry": "POINT(-64 -60)", "instruments": null, "is_usap_dc": true, "keywords": "Drake Passage; NUTRIENTS; BIOGEOCHEMICAL CYCLES; DISSOLVED GASES; TRACE GASES/TRACE SPECIES", "locations": "Drake Passage", "north": -53.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Munro, David; Sweeney, Colm; Lovenduski, Nicole S; Stephens, Britton", "platforms": null, "repo": "NCEI", "repositories": "NCEI", "science_programs": null, "south": -67.0, "title": "Collaborative Research: Investigating Biogeochemical Fluxes and Linkages To Climate Change With Multi-Scale Observations In The Drake Passage", "uid": "p0010407", "west": -73.0}, {"awards": "1644234 Phillips, Fred", "bounds_geometry": "POLYGON((166.17 -77.3,166.32799999999997 -77.3,166.486 -77.3,166.644 -77.3,166.802 -77.3,166.95999999999998 -77.3,167.118 -77.3,167.276 -77.3,167.434 -77.3,167.59199999999998 -77.3,167.75 -77.3,167.75 -77.34,167.75 -77.38,167.75 -77.42,167.75 -77.46,167.75 -77.5,167.75 -77.54,167.75 -77.58,167.75 -77.62,167.75 -77.66,167.75 -77.7,167.59199999999998 -77.7,167.434 -77.7,167.276 -77.7,167.118 -77.7,166.95999999999998 -77.7,166.802 -77.7,166.644 -77.7,166.486 -77.7,166.32799999999997 -77.7,166.17 -77.7,166.17 -77.66,166.17 -77.62,166.17 -77.58,166.17 -77.54,166.17 -77.5,166.17 -77.46,166.17 -77.42,166.17 -77.38,166.17 -77.34,166.17 -77.3))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 12 Dec 2022 00:00:00 GMT", "description": "Nontechnical Description: The age of rocks and soils at the surface of the Earth can help answer multiple questions that are important for human welfare, including: when did volcanoes erupt and are they likely to erupt again? when did glaciers advance and what do they tell us about climate? what is the frequency of hazards such as landslides, floods, and debris flows? how long does it take soils to form and is erosion of soils going to make farming unsustainable? One method that is used thousands of times every year to address these questions is called \u0027cosmogenic surface-exposure dating\u0027. This method takes advantage of cosmic rays, which are powerful protons and neutrons produced by supernova that constantly bombard the Earth\u0027s atmosphere. Some cosmic rays reach Earth\u0027s surface and produce nuclear reactions that result in rare isotopes. Measuring the quantity of the rare isotopes enables the length of time that the rock or soil has been exposed to the atmosphere to be calculated. The distribution of cosmic rays around the globe depends on Earth\u0027s magnetic field, and this distribution must be accurately known if useful exposure ages are to be obtained. Currently there are two remaining theories, narrowed down from many, of how to calculate this distribution. Measurements from a site that is at both high altitude and high latitude (close to the poles) are needed to test the two theories. This study involves both field and lab research and includes a Ph.D. student and an undergraduate student. The research team will collect rocks from lava flows on an active volcano in Antarctica named Mount Erebus and measure the amounts of two rare isotopes: 36Cl and 3He. The age of eruption of the samples will be determined using a highly accurate method that does not depend on cosmic rays, called 40Ar/39Ar dating. The two cosmic-ray theories will be used to calculate the ages of the samples using the 36Cl and 3He concentrations and will then be compared to the ages calculated from the 40Ar/39Ar dating. The accurate cosmic-ray theory will be the one that gives the same ages as the 40Ar/39Ar dating. Identification of the accurate theory will enable use of the cosmogenic surface dating methods anywhere on earth. \u003cbr/\u003eTechnical Description: Nuclides produced by cosmic rays in rocks at the surface of the earth are widely used for Quaternary geochronology and geomorphic studies and their use is increasing every year. The recently completed CRONUS-Earth Project (Cosmic-Ray Produced Nuclides on Earth) has systematically evaluated the production rates and theoretical underpinnings of cosmogenic nuclides. However, the CRONUS-Earth Project was not able to discriminate between the two leading theoretical approaches: the original Lal model (St) and the new Lifton-Sato-Dunai model (LSD). Mathematical models used to scale the production of the nuclides as a function of location on the earth, elevation, and magnetic field configuration are an essential component of this dating method. The inability to distinguish between the two models was because the predicted production rates did not differ sufficiently at the location of the calibration sites. \u003cbr/\u003e\u003cbr/\u003eThe cosmogenic-nuclide production rates that are predicted by the two models differ significantly from each other at Erebus volcano, Antarctica. Mount Erebus is therefore an excellent site for testing which production model best describes actual cosmogenic-nuclide production variations over the globe. The research team recently measured 3He and 36Cl in mineral separates extracted from Erebus lava flows. The exposure ages for each nuclide were reproducible within each flow (~2% standard deviation) and in very good agreement between the 3He and the 36Cl ages. However, the ages calculated by the St and LSD scaling methods differ by ~15-25% due to the sensitivity of the production rate to the scaling at this latitude and elevation. These results lend confidence that Erebus qualifies as a suitable high- latitude/high-elevation calibration site. The remaining component that is still lacking is accurate and reliable independent (i.e., non-cosmogenic) ages, however, published 40Ar/39Ar ages are too imprecise and typically biased to older ages due to excess argon contained in melt inclusions.\u003cbr/\u003eThe research team\u0027s new 40Ar/39Ar data show that previous problems with Erebus anorthoclase geochronology are now overcome with modern mass spectrometry and better sample preparation. This indicates a high likelihood of success for this proposal in defining an accurate global scaling model. Although encouraging, much remains to be accomplished. This project will sample lava flows over 3 km in elevation and determine their 40Ar/39Ar and exposure ages. These combined data will discriminate between the two scaling methods, resulting in a preferred scaling model for global cosmogenic geochronology. The LSD method contains two sub-methods, the \u0027plain\u0027 LSD scales all nuclides the same, whereas LSDn scales each nuclide individually. The project can discriminate between these models using 3He and 36Cl data from lava flows at different elevations, because the first model predicts that the production ratio for these two nuclides will be invariant with elevation and the second that there should be ~10% difference over the range of elevations to be sampled. Finally, the project will provide a local, finite-age calibration site for cosmogenic-nuclide investigations in Antarctica.", "east": 167.75, "geometry": "POINT(166.95999999999998 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "AGE DETERMINATIONS; Mount Erebus; VOLCANO", "locations": "Mount Erebus", "north": -77.3, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Phillips, Fred; Kyle, Philip; Heizler, Matthew T", "platforms": null, "repositories": null, "science_programs": null, "south": -77.7, "title": "A Test of Global and Antarctic Models for Cosmogenic-nuclide Production Rates using High-precision Dating of 40Ar/39Ar Lava Flows from Mount Erebus", "uid": "p0010397", "west": 166.17}, {"awards": "2135695 Emslie, Steven; 2135696 Polito, Michael", "bounds_geometry": "POLYGON((-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70.8,-180 -71.6,-180 -72.4,-180 -73.2,-180 -74,-180 -74.8,-180 -75.6,-180 -76.4,-180 -77.2,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -77.2,160 -76.4,160 -75.6,160 -74.8,160 -74,160 -73.2,160 -72.4,160 -71.6,160 -70.8,160 -70,162 -70,164 -70,166 -70,168 -70,170 -70,172 -70,174 -70,176 -70,178 -70,-180 -70))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 28 Oct 2022 00:00:00 GMT", "description": "Stable isotope analyses of carbon and nitrogen (\u03b413C and \u03b415N) are commonly used to investigate animal migration, foraging locations and diet, especially in marine species that can travel over great distances. One other stable isotope, sulfur (\u03b434S), is not as commonly used but is increasingly being applied to refine and corroborate data obtained from carbon and nitrogen analyses. Collagen is one of the best tissues for these analyses as it is abundant in bone, preserves well, and can be easily extracted for analysis. In the Ross Sea region, the cold, dry environment has been conductive for the preservation of Ad\u00e9lie penguin (Pygoscelis adeliae) bones, feathers, eggshell and even mummified remains, at active and abandoned colonies that date from before the Last Glacial Maximum (\u003e45,000 yrs ago) through the Holocene. Most of these colonies are associated with one of three polynyas, or highly productive areas of open water surrounded by sea ice in the Ross Sea. Thus, this species is an excellent bioindicator for marine conditions, past and present, and its colonies have appeared and disappeared throughout this region with changing climate and sea ice regimes for millennia. Current warming trends are inducing relatively rapid ecological responses by this species and some of the largest colonies in the Ross Sea are likely to be abandoned in the next 50 years from rising sea level. The recently established Ross Sea Marine Protected Area aims to protect Ad\u00e9lie penguins and other species in this region from human impacts and knowledge on how this species responds to climate change, past and present, will support this goal. \r\n\r\nWe propose to investigate ecological responses in diet and foraging behavior of the Ad\u00e9lie penguin to known climatic events that occurred in the middle to late Holocene, specifically, before, during and after a warming period known as the penguin \u2018optimum\u2019 at 2000 - 4000 cal yr before present (BP). We will apply for the first time a suite of three stable isotope analyses (\u03b413C, \u03b415N, \u03b434S) on chick bones and feathers, as well as prey remains, from active and abandoned colonies in the Ross Sea. We will use existing tissue samples (~60-80 bones) collected by PI Emslie with NSF support since 2001 and supplement these with newly collected samples of bones and feathers in this project. We will conduct compound-specific isotope analyses of carbon on essential amino acids from collagen from a selected sample of 30-40 bones that span the past 5000 yrs to provide corroboratory information. We will apply three-dimensional Bayesian niche models and/or community metrics using R scripts in these analyses to identify isotopic \u2018signatures\u2019 of existing and past foraging grounds and polynyas used by Ad\u00e9lie penguins in the southern, central, and northern Ross Sea. This four-year study will the first of its kind to apply multiple stable isotope analyses to investigate a living species of seabird over millennia in a region where it still exists today. \r\n\r\nBroader Impacts:\r\nThe PIs are committed to public engagement and enhancement of K-12 education in the STEM sciences. Broader impacts of this research will include support and training for one Ph.D., two M.S., and eight undergraduate students in the Department of Biology and Marine Biology, and two M.A. students in the Watson School of Education at the University of North Carolina Wilmington (UNCW). The last two students will continue to expand on a detailed polar curriculum that was initiated in previous NSF grants for 2nd and 4th grade students, and most recently for 9-12th grade students now available on PI Emslie\u2019s website (www.uncw.edu/penguins). Additional curricula for K-12 students will be designed and tested in this project, which will include visitation to local K-12 schools. As in previous awards, we will focus on schools that serve historically under-represented groups in the sciences. We will work with the UNCW Center for Education in STEM Sciences to assess the efficacy of this new curricula. All curricula will be uploaded on the Educational Resource Commons website. Field work will include blogs and active question-answer sessions with students at these schools. We will continue to post project information and updates on PI Emslie\u2019s website and YouTube channel. Our partnership with tour ship companies will provide a platform for onboard lectures on the importance of scientific research as well as citizen science opportunities for another sector of the public. This proposal requires fieldwork in the Antarctic.\r\n", "east": -180.0, "geometry": "POINT(170 -74)", "instruments": null, "is_usap_dc": true, "keywords": "Climate Change; Adelie Penguin; Foraging Ecology; Ross Sea; PENGUINS; Holocene; Stable Isotopes", "locations": "Ross Sea", "north": -70.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Emslie, Steven; Lane, Chad S; Polito, Michael", "platforms": null, "repositories": null, "science_programs": null, "south": -78.0, "title": "Collaborative Research: Using Multiple Stable Isotopes to Investigate Middle to Late Holocene Ecological Responses by Adelie Penguins in the Ross Sea", "uid": "p0010388", "west": 160.0}, {"awards": "1842542 Morgan, Daniel", "bounds_geometry": "POLYGON((160 -77,160.4 -77,160.8 -77,161.2 -77,161.6 -77,162 -77,162.4 -77,162.8 -77,163.2 -77,163.6 -77,164 -77,164 -77.1,164 -77.2,164 -77.3,164 -77.4,164 -77.5,164 -77.6,164 -77.7,164 -77.8,164 -77.9,164 -78,163.6 -78,163.2 -78,162.8 -78,162.4 -78,162 -78,161.6 -78,161.2 -78,160.8 -78,160.4 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 09 Aug 2022 00:00:00 GMT", "description": "The goal of this study is to identify and distinguish different source areas of glacial sediment in the McMurdo Dry Valleys, Antarctica to determine past glacial flow direction. Understanding ice flow is critical for determining how the Antarctic Ice Sheets have behaved in the past. Such insight is fundamental for allowing scientists to predict how the Antarctic Ice Sheets will evolve and, in turn, forecast how much and how fast sea level may rise. The project study site, the McMurdo Dry Valleys, contain a tremendous record of glacial deposits on land that extends back at least 14 million years. Chemistry of the rocks within the glacial deposits hold clues to the sources of ice that deposited the material. The chemical analyses of the glacial deposits will allow mapping of the former extent of glaciations providing a better understand of ice flow history. The mapping of the largest ice sheet expansion of the past 14 million years in the McMurdo Dry Valleys is of broad interest to the global climate change community. Undergraduate students comprise the majority of the field teams and will be responsible for sample preparation and analysis in the laboratory. \u003cbr/\u003e\u003cbr/\u003eThis project utilizes new geochemical techniques to test hypotheses about the source, extent, and flow patterns of the glacier ice that deposited glacial tills in the McMurdo Dry Valleys, Antarctica (MDV). The MDV contain an unparalleled terrestrial archive of glacial deposits, which record multiple sources of ice that deposited them. These include the northeast flowing ice that overrode the Transantarctic Mountains, the eastward expansion of the East Antarctic Ice Sheet, the westward extension of the Ross Ice Shelf representing an expansion of the West Antarctic Ice Sheet, and the growth of local alpine glaciers. The glacial tills and drifts in the Antarctic are typically isolated in patches or disjointed outcrop patterns making it difficult to correlate tills and determine their source. This project will undertake a systematic study of the tills in the McMurdo Dry Valleys to determine their provenance with a variety of geochemical techniques including major and minor element analyses with X-ray fluorescence, heavy mineral composition, soil salt concentration, and determining the uranium-lead (U-Pb) ages of zircon sands contained in these tills. The primary tool will be the age distribution of the population of detrital zircon in a glacial drift because it reflects the source of the tills and provides a unique geochemical \"fingerprint\" used to distinguish source areas while correlating units across different sites. A deliverable from this project will be a community available library of zircon fingerprints for mapped glacial tills from archived samples at the Polar Rock Repository and the systematic collection of samples in the MDV.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 164.0, "geometry": "POINT(162 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIATION; Dry Valleys", "locations": "Dry Valleys", "north": -77.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Morgan, Daniel", "platforms": null, "repositories": null, "science_programs": null, "south": -78.0, "title": "Unlocking the Glacial History of the McMurdo Dry Valleys, Antarctica by Fingerprinting Glacial Tills with Detrital Zircon U-Pb Age Populations", "uid": "p0010368", "west": 160.0}, {"awards": "1937595 Briggs, Brandon; 1937546 Morgan-Kiss, Rachael", "bounds_geometry": "POLYGON((162 -77.616667,162.1 -77.616667,162.2 -77.616667,162.3 -77.616667,162.4 -77.616667,162.5 -77.616667,162.6 -77.616667,162.7 -77.616667,162.8 -77.616667,162.9 -77.616667,163 -77.616667,163 -77.6283336,163 -77.6400002,163 -77.6516668,163 -77.6633334,163 -77.67500000000001,163 -77.68666660000001,163 -77.69833320000001,163 -77.7099998,163 -77.7216664,163 -77.733333,162.9 -77.733333,162.8 -77.733333,162.7 -77.733333,162.6 -77.733333,162.5 -77.733333,162.4 -77.733333,162.3 -77.733333,162.2 -77.733333,162.1 -77.733333,162 -77.733333,162 -77.7216664,162 -77.7099998,162 -77.69833320000001,162 -77.68666660000001,162 -77.67500000000001,162 -77.6633334,162 -77.6516668,162 -77.6400002,162 -77.6283336,162 -77.616667))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 27 Jul 2022 00:00:00 GMT", "description": " Microbial communities are of more than just a scientific curiosity. Microbes represent the single largest source of evolutionary and biochemical diversity on the planet. They are the major agents for cycling carbon, nitrogen, phosphorus, and other elements through the ecosystem. Despite their importance in ecosystem function, microbes are still generally overlooked in food web models and nutrient cycles. Moreover, microbes do not live in isolation: their growth and metabolism are influenced by complex interactions with other microorganisms. This project will focus on the ecology, activity and roles of microbial communities in Antarctic Lake ecosystems. The team will characterize the genetic underpinnings of microbial interactions and the influence of environmental gradients (e.g. light, nutrients, oxygen, sulfur) and seasons (e.g. summer vs. winter) on microbial networks in Lake Fryxell and Lake Bonney in the Taylor Valley within the McMurdo Dry Valley region. Finally, the project furthers the NSF goals of training new generations of scientists by including undergraduate and graduate students, a postdoctoral researcher and a middle school teacher in both lab and field research activities. This partnership will involve a number of other outreach training activities, including visits to classrooms and community events, participation in social media platforms, and webinars. \u003cbr/\u003e\u003cbr/\u003ePart II: Technical description: Ecosystem function in the extreme Antarctic Dry Valleys ecosystem is dependent on complex biogeochemical interactions between physiochemical environmental factors (e.g. light, nutrients, oxygen, sulfur), time of year (e.g. summer vs. winter) and microbes. Microbial network complexity can vary in relation to specific abiotic factors, which has important implications on the fragility and resilience of ecosystems under threat of environmental change. This project will evaluate the influence of biogeochemical factors on microbial interactions and network complexity in two Antarctic ice-covered lakes. The study will be structured by three main objectives: 1) infer positive and negative interactions from rich spatial and temporal datasets and investigate the influence of biogeochemical gradients on microbial network complexity using a variety of molecular approaches; 2) directly observe interactions among microbial eukaryotes and their partners using flow cytometry, single-cell sorting and microscopy; and 3) develop metabolic models of specific interactions using metagenomics. Outcomes from amplicon sequencing, meta-omics, and single-cell genomic approaches will be integrated to map specific microbial network complexity and define the role of interactions and metabolic activity onto trends in limnological biogeochemistry in different seasons. These studies will be essential to determine the relationship between network complexity and future climate conditions. Undergraduate researchers will be recruited from both an REU program with a track record of attracting underrepresented minorities and two minority-serving institutions. To further increase polar literacy training and educational impacts, the field team will include a teacher as part of a collaboration with the successful NSF-funded PolarTREC program and participation in activities designed for public outreach.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.0, "geometry": "POINT(162.5 -77.67500000000001)", "instruments": null, "is_usap_dc": true, "keywords": "MICROALGAE; AQUATIC ECOSYSTEMS; Antarctica; LAKE/POND; BACTERIA/ARCHAEA; COMMUNITY DYNAMICS", "locations": "Antarctica", "north": -77.616667, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Morgan-Kiss, Rachael; Briggs, Brandon", "platforms": null, "repositories": null, "science_programs": null, "south": -77.733333, "title": "ANT LIA: Collaborative Research: Genetic Underpinnings of Microbial Interactions in Chemically Stratified Antarctic Lakes", "uid": "p0010355", "west": 162.0}, {"awards": "2012247 Groff, Dulcinea; 2012444 Cimino, Megan; 2012365 Johnston, David", "bounds_geometry": "POLYGON((-65 -64.5,-64.8 -64.5,-64.6 -64.5,-64.4 -64.5,-64.2 -64.5,-64 -64.5,-63.8 -64.5,-63.6 -64.5,-63.4 -64.5,-63.2 -64.5,-63 -64.5,-63 -64.55,-63 -64.6,-63 -64.65,-63 -64.7,-63 -64.75,-63 -64.8,-63 -64.85,-63 -64.9,-63 -64.95,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.95,-65 -64.9,-65 -64.85,-65 -64.8,-65 -64.75,-65 -64.7,-65 -64.65,-65 -64.6,-65 -64.55,-65 -64.5))", "dataset_titles": null, "datasets": null, "date_created": "Sun, 24 Jul 2022 00:00:00 GMT", "description": "This award is funded in whole or part under the American Rescue Plan Act of 2021 (Public Law 117-2). \r\nPart I: Non-technical description: \r\nAdlie penguin colonies are declining and disappearing from the western Antarctic Peninsula. However, not all colonies in a certain area decline or disappear at the same rate. This research project will evaluate the influence of terrestrial surface properties on Adlie penguin colonies, leveraging five decades of research on seabirds near Palmer Station where an Adlie colony on Litchfield Island became extinct in 2007 while other colonies nearby are still present. The researchers will combine information obtained from remote sensing, UAS (Unoccupied Aircraft System, or drones) high-resolution maps, reconstruction of past moss banks and modeling with machine learning tools to define suitable penguin and peatbank moss habitats and explore the influence of microclimate on their distributions. In particular, the researchers are asking if guano from penguin colonies could act as fertilizers of moss banks in the presence of localized wind patters that can carry airborne nitrogen to the mosses. Modeling will relate penguin and peatbank moss spatial patterns to environmental variables and provide a greater understanding of how continued environmental change could impact these communities. The project allows for documentation of terrestrial Antarctic ecosystems in support of seabirds and provisioning of such information to the broader science community that seeks to study penguins, educating graduate and undergraduate students and a post-doctoral researcher. The research team includes two young women as Principal Investigators, one of them from an under-represented ethnic minority, first time Antarctic Principal Investigator, from an EPSCoR state (Wyoming), broadening participation in Antarctic research. Researchers will serve as student mentors through the Duke Bass Connections program entitled Biogeographic Assessment of Antarctic Coastal Habitats. This program supports an interdisciplinary team of graduate and undergraduate students collaborating with project faculty and experts on cutting-edge research bridging the classroom and the real world.\r\n\r\nPart II: Technical description: \r\nThis research aims to understand the changes at the microclimate scale (meters) by analyzing present and past Adlie penguin colonies and moss peatbanks in islands around Palmer Station in the western Antarctic Peninsula interlinked systems that are typically considered in isolation. By integrating in situ and remote data, this project will synthesize the drivers of biogeomorphology on small islands of the Antarctic Peninsula, a region of rapid change where plants and animals often co-occur and animal presence often determines the habitation of plants. A multi-disciplinary approach combine field measurements, remote sensing, UAS (Unoccupied Aircraft Systems) maps, paleoecology and modeling with machine learning to define suitable habitats and the influence of microclimates on penguin and peatbank distributions. The link between the two aspects of this study, peatbanks and penguins, is the potential source of nutrients for peat mosses from penguin guano. Peatbank and penguin distribution will be modeled and all models will be validated using in situ information from moss samples that will identify mechanistic processes. This project leverages 5 decades of seabird research in the area and high-definition remote sensing provided by the Polar Geospatial center to study the microclimate of Litchfield Island where an Adlie colony became extinct in 2007 when other colonies nearby are still present. The research team includes two early career women as Principal Investigators, one of them from an under-represented ethnic minority, first time Antarctic Principal Investigator, from an EPSCoR state (Wyoming). Researchers will serve as mentors for students through the Duke Bass Connections program entitled Biogeogrpahic Assessment of Antarctic Coastal Habitats which bridges the classroom and the real world.\r\n\r\nThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -63.0, "geometry": "POINT(-64 -64.75)", "instruments": null, "is_usap_dc": true, "keywords": "Palmer Station; Antarctic Peninsula; COASTAL; STABLE ISOTOPES; TOPOGRAPHIC EFFECTS; PALEOCLIMATE RECONSTRUCTIONS; MACROFOSSILS; PLANTS; PENGUINS; ISOTOPES; VISIBLE IMAGERY; RADIOCARBON; Anvers Island", "locations": "Antarctic Peninsula; Anvers Island; Palmer Station", "north": -64.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Groff, Dulcinea; Cimino, Megan; Johnston, David", "platforms": null, "repositories": null, "science_programs": null, "south": -65.0, "title": "Collaborative Research: Common Environmental Drivers Determine the Occupation Chronology of Ad\u00e9lie Penguins and Moss Peatbanks on the Western Antarctic Peninsula", "uid": "p0010354", "west": -65.0}, {"awards": "1744800 Adcroft, Alistair; 1744835 Wagner, Till", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Model of iceberg drift and decay including breakup", "datasets": [{"dataset_uid": "601510", "doi": "10.15784/601510", "keywords": "Antarctica; Footloose Mechanism; Iceberg Breakup; Iceberg Decay; Model; Southern Ocean", "people": "England, Mark; Wagner, Till", "repository": "USAP-DC", "science_program": null, "title": "Model of iceberg drift and decay including breakup", "url": "https://www.usap-dc.org/view/dataset/601510"}], "date_created": "Tue, 18 Jan 2022 00:00:00 GMT", "description": "Nearly half of the freshwater flux from the Antarctic Ice Sheet into the Southern Ocean occurs in the form of large tabular icebergs that calve off the continent\u2019s ice shelves. However, because of difficulties in adequately simulating their breakup, large Antarctic icebergs to date have either not been represented in models or represented but with no breakup scheme such that they consistently survive too long and travel too far compared with observations. Here, we introduce a representation of iceberg fracturing using a breakup scheme based on the \u201cfootloose mechanism.\u201d We optimize the parameters of this breakup scheme by forcing the iceberg model with an ocean state estimate and comparing the modeled iceberg trajectories and areas with the Antarctic Iceberg Tracking Database. We show that including large icebergs and a representation of their breakup substantially affects the iceberg meltwater distribution, with implications for the circulation and stratification of the Southern Ocean.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; ICEBERGS; USA/NSF; Southern Ocean; AMD; USAP-DC; COMPUTERS", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Wagner, Till; Eisenman, Ian", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Modeling Giant Icebergs and Their Decay", "uid": "p0010290", "west": -180.0}, {"awards": "2032421 Kim, Hyomin; 2031554 Chartier, Alex", "bounds_geometry": "POLYGON((-180 -75,-144 -75,-108 -75,-72 -75,-36 -75,0 -75,36 -75,72 -75,108 -75,144 -75,180 -75,180 -76.5,180 -78,180 -79.5,180 -81,180 -82.5,180 -84,180 -85.5,180 -87,180 -88.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -88.5,-180 -87,-180 -85.5,-180 -84,-180 -82.5,-180 -81,-180 -79.5,-180 -78,-180 -76.5,-180 -75))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 31 Dec 2021 00:00:00 GMT", "description": "The deep polar cap is unique in that it contains \"open\" magnetic field lines connecting directly to the interplanetary magnetic field (IMF). These provide a direct pathway for solar wind energy into the ionosphere and upper atmosphere. Important on large scales is the spatial extent of the polar cap, controlled by ionospheric convection and demarcated by the OCB. Observations of that boundary serve the important role of validating magnetic field models. In addition, ULF waves in the polar cap may be related to direct penetration of solar wind. Ionospheric density enhancement, tongue of ionization (TOI), and irregularities causing RF signal scintillations in the polar cap are very important and yet underexplored areas of studies. Motivated by the compelling science in the underexplored polar region, we propose to investigate M-I coupling processes, ionospheric irregularities inside the polar cap and their space weather impacts by establishing a new ground-based network that will be deployed in the Antarctic polar cap region. The goal of this investigation is to establish a spatially extensive ground-based observational record of coupled Magnetosphere-Ionosphere (M-I) dynamics in the deep polar cap. This is to be achieved using three new Autonomous Geophysical Observatories (AGOs) along the Jang Bogo \u2013 Dome C supply route (deployment and maintenance paid for by Korea Polar Research Institute \u2013 KOPRI). ", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; USA/NSF; Jang Bogo Station; Jang Bogo Station And A Traverse Route On The Antarctic Plateau; USAP-DC; FIELD SURVEYS; MAGNETIC FIELDS/MAGNETIC CURRENTS; AURORAE; AMD", "locations": "Jang Bogo Station And A Traverse Route On The Antarctic Plateau; Jang Bogo Station", "north": -75.0, "nsf_funding_programs": "Antarctic Instrumentation and Facilities; Antarctic Astrophysics and Geospace Sciences; Antarctic Astrophysics and Geospace Sciences", "paleo_time": null, "persons": "Kim, Hyomin; Perry, Gareth; Chartier, Alex", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Investigation of Deep Polar Cap Dynamics Using an Autonomous Instrument Network", "uid": "p0010288", "west": -180.0}, {"awards": "2037561 Jenouvrier, Stephanie", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Code for \u015een et al. 2023; Detecting climate signals in populations: case of emperor penguin", "datasets": [{"dataset_uid": "601491", "doi": "10.15784/601491", "keywords": "Antarctica", "people": "Jenouvrier, Stephanie", "repository": "USAP-DC", "science_program": null, "title": "Detecting climate signals in populations: case of emperor penguin", "url": "https://www.usap-dc.org/view/dataset/601491"}, {"dataset_uid": "200373", "doi": "https://doi.org/10.5281/zenodo.7803266", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Code for \u015een et al. 2023", "url": "https://zenodo.org/record/7803266"}], "date_created": "Wed, 08 Dec 2021 00:00:00 GMT", "description": "Overview: We aim to provide the most detailed investigation to date of the factors that influence predictability of Antarctic climate, the coupling of climate to penguins populations, and the integration of the two to optimize ecological forecasts. This integrated understanding is critical for guiding future ecological and climate research, prioritizing bio-physical monitoring efforts, and informing conservation decision-making. Our study will reveal the influence of climate system dynamics on ecological predictability across a range of scales and will examine how this role differs among ecological processes, species and regions of Antarctica. \r\n\r\nIntellectual Merit: Many biophysical processes will change in the coming century. Yet, the mechanisms controlling the predictability of many climate processes are still poorly understood, limiting progress in climate forecasting. In parallel, ecological forecasting remains a nascent discipline. In particular, comparative assessments of predictability, both within and among species, are critically needed to understand the factors that allow (or prevent) useful ecological forecasts. While important for ecological science generally, this need is particularly pressing in Antarctica where the environment is highly dynamic, strongly coupled to biological processes, and likely to change in the future. Improved ecological forecasting therefore requires interdisciplinary efforts to understand the causes of predictability in climate, and in tandem, how climate influences the predictability of natural populations.\r\nThis proposed research will examine the predictability of Antarctic climate and its influence on penguin demographic response predictability at various temporal and spatial scales using the longest datasets available for two penguin species. Specifically, the PI will 1) identify the physical mechanisms giving rise to climate predictability in Antarctica, 2) identify the relationships between climate and ecological processes at a range of scales, and 3) reveal the factors controlling ecological predictability across a range of scales (e.g., those relevant for short-term adaptive management versus those relevant at end-of-century timescales). These objectives will be achieved using the analysis of existing climate data and Atmosphere-Ocean Global Circulation Models (AGOCMs), with coupled analysis of existing long-term demographic data for multiple seabird species that span a range of ecological niches, life histories, and study sites across the continent.\r\n", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "ECOLOGICAL DYNAMICS; PENGUINS; Amd/Us; Antarctica; USA/NSF; SEA ICE; NOT APPLICABLE; USAP-DC; AMD", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jenouvrier, Stephanie; Holland, Marika", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC; Zenodo", "science_programs": null, "south": -90.0, "title": "Integrating Antarctic Environmental and Biological Predictability to Obtain Optimal Forecasts", "uid": "p0010282", "west": -180.0}, {"awards": "2136940 Newman, Dava; 2136938 Tedesco, Marco; 2136939 Cervone, Guido", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 08 Nov 2021 00:00:00 GMT", "description": "Surface melting and the evolution of the surface hydrological system on Antarctica ice shelves modulate the ice sheet mass balance. Despite its importance, limitations still exist that preclude the scientific community from mapping the spatio-temporal evolution of the surface hydrological system at the required resolutions to make the necessary leap forward to address the current and future evolution of ice shelves in Antarctica (Kingslake et al., 2019). Differently from Greenland, surface melting in Antarctica does not exhibit a dependency from elevation, with most of it occurring over ice shelves, at the sea level and where little elevation gradients exist. Therefore, statistical downscaling techniques using digital elevation models - as in the case of Greenland or other mountain regions - cannot be used. Machine learning (ML) tools can help in this regard. In this project, we address this issue and propose a novel method to map the spatio-temporal evolution of surface meltwater in Antarctica on a daily basis at high spatial (30 - 100 m) resolution using a combination of remote sensing, numerical modeling and machine learning. The final product of this project will consist of daily maps of surface meltwater at resolutions of the order of 100 m for the period 2000 - 2021 that will satisfy the following constraints: a) to be physically consistent with the model prediction and with the underlying governing dynamics for the melt processes; b) to capture the temporal dynamics of the model predictions, which include the temporal sequence of a set of past time steps which lead to the target prediction time, but could also include model predictions valid for a set of future time steps; c) to reconcile the higher spatial resolution of the input satellite measurements with the lower spatial resolution of the numerical model; d) to be consistent with previously generated surface melt products, so that temporal time series can be analyzed; e) to provide a measure of uncertainty to help with testing and validation.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "MODELS; Amd/Us; AMD; USA/NSF; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; USAP-DC; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Polar Cyberinfrastructure; Polar Cyberinfrastructure; Polar Cyberinfrastructure", "paleo_time": null, "persons": "Tedesco, Marco", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning", "uid": "p0010277", "west": -180.0}, {"awards": "2046437 Zitterbart, Daniel", "bounds_geometry": "POLYGON((-60 -55,-53 -55,-46 -55,-39 -55,-32 -55,-25 -55,-18 -55,-11 -55,-4 -55,3 -55,10 -55,10 -57.5,10 -60,10 -62.5,10 -65,10 -67.5,10 -70,10 -72.5,10 -75,10 -77.5,10 -80,3 -80,-4 -80,-11 -80,-18 -80,-25 -80,-32 -80,-39 -80,-46 -80,-53 -80,-60 -80,-60 -77.5,-60 -75,-60 -72.5,-60 -70,-60 -67.5,-60 -65,-60 -62.5,-60 -60,-60 -57.5,-60 -55))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 16 Aug 2021 00:00:00 GMT", "description": "Polar ecosystems currently experience significant impacts due to global changes. Measurable negative effects on polar wildlife have already occurred, such as population decreases of numerous seabird species, including the complete loss of colonies of one of the most emblematic species of the Antarctic, the emperor penguin. These existing impacts on polar species are alarming, especially because many polar species still remain poorly studied due to technical and logistical challenges imposed by the harsh environment and extreme remoteness. Developing technologies and tools for monitoring such wildlife populations is, therefore, a matter of urgency.\r\nThis project aims to help close major knowledge gaps about the emperor penguin, in particular about their adaptive capability to a changing environment, by the development of next-generation tools to remotely study entire colonies. Specifically, the main goal of this project is to implement and test an autonomous unmanned ground vehicle equipped with Radio-frequency identification (RFID) antennas and wireless mesh communication data-loggers to: 1) identify RFID-tagged emperor penguins during breeding to studying population dynamics without human presence; and 2) receive GPS-TDR datasets from VHF-GPS-TDR data-loggers without human presence to study animal behavior and distribution at sea. The autonomous vehicles navigation through the colony will be aided by an existing remote penguin observatory (SPOT). Properly implemented, this technology can be used to study of the life history of individual penguins, and therefore gather data for behavioral and population dynamic studies.\r\nThe education objectives of this CAREER project are designed to increase the interest in a STEM education for the next generation of scientists by combining the charisma of the emperor penguin with robotics research. Within this project, a new class on ecosystem robotics will be developed and taught, Robotics boot-camps will allow undergraduate students to remotely participate in Antarctic field trips, and an annual curriculum will be developed that allows K-12 students to follow the life of the emperor penguin during the breeding cycle, powered by real-time data obtained using the unmanned ground vehicle as well as the existing emperor penguin observatory.\r\n", "east": 10.0, "geometry": "POINT(-25 -67.5)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; Antarctica; Dronning Maud Land; FIELD SURVEYS; Amd/Us; Atka Bay; MARINE ECOSYSTEMS; USAP-DC; USA/NSF", "locations": "Atka Bay; Antarctica; Dronning Maud Land", "north": -55.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Zitterbart, Daniel", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -80.0, "title": "\r\nCAREER: Development of Unmanned Ground Vehicles for Assessing the Health of Secluded Ecosystems (ECHO)", "uid": "p0010245", "west": -60.0}, {"awards": "1445205 Putkonen, Jaakko", "bounds_geometry": "POLYGON((157.6 -83.2,157.62 -83.2,157.64 -83.2,157.66 -83.2,157.68 -83.2,157.7 -83.2,157.72 -83.2,157.74 -83.2,157.76 -83.2,157.78 -83.2,157.8 -83.2,157.8 -83.21,157.8 -83.22,157.8 -83.23,157.8 -83.24,157.8 -83.25,157.8 -83.26,157.8 -83.27,157.8 -83.28,157.8 -83.29,157.8 -83.3,157.78 -83.3,157.76 -83.3,157.74 -83.3,157.72 -83.3,157.7 -83.3,157.68 -83.3,157.66 -83.3,157.64 -83.3,157.62 -83.3,157.6 -83.3,157.6 -83.29,157.6 -83.28,157.6 -83.27,157.6 -83.26,157.6 -83.25,157.6 -83.24,157.6 -83.23,157.6 -83.22,157.6 -83.21,157.6 -83.2))", "dataset_titles": "Cosmogenic-Nuclide data at ICE-D; Old Ice, Ong Valley, Transantarctic Mountains", "datasets": [{"dataset_uid": "601665", "doi": "10.15784/601665", "keywords": "Antarctica; Buried Ice; Cosmogenic Isotopes; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Old Ice; Ong Valley", "people": "Bergelin, Marie; Putkonen, Jaakko", "repository": "USAP-DC", "science_program": null, "title": "Old Ice, Ong Valley, Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/601665"}, {"dataset_uid": "200295", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic-Nuclide data at ICE-D", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Fri, 16 Jul 2021 00:00:00 GMT", "description": "Finding the oldest ice on Earth can tell us about the climate and life forms in the distant past\r\n\r\nRecently we discovered a mile wide and hundreds of feet thick ice body in Antarctica that is buried under just a few feet of dirt. Thus far our analyses of the dirt suggest that the ice is over million years old. Generally, glacial ice contains tiny bubbles and dirt that was deposited and locked in the ice by the ancient snowfall and today still holds small samples of the atmospheric gases and everything else that was carried by the winds in the past. Such samples may include the amount of greenhouse gases, plant pollen, microbes, and mineral dust. Therefore the glaciers are like archives where we can access and study the Earth\u2019s history with samples that are unavailable anywhere else. Ice survives poorly on Earth\u2019s surface and therefore currently only few ice samples are known that are approximately million years old. Our site has a high potential to harbor perhaps the oldest ice on Earth. However, first we need to sample and date the ice. Our research will also help us understand how these pockets of buried ice can survive such unusually long periods of time. Such understanding will help us study the landforms and history of not only Antarctica but also the Mars where similar dirt covered glaciers are found today.\r\n\r\nWe propose to collect regolith samples through the approximately 1 m thick cover and to core the buried ice in Ong Valley down to 10 m depth to determine the cosmogenic nuclide concentrations both in the regolith and in the embedded mineral matter suspended in the ice. The systematics of the target cosmogenic nuclides (10Be, 26Al, and 21Ne) such as half-lives, isotope production rates, production pathways, and related attenuation lengths allow us to uniquely determine the age of the ice and the rate the ice is sublimating. Our existing samples and analyses reveal accumulation of mineral matter at the base of surficial debris layer and the surface erosion of this debris by eolian processes. The intellectual merit of the proposed activity: Our main objective is to unequivocally determine the age and sublimation rate of two buried massive ice bodies in time scale of thousands to millions of years. The slow sublimation is a fundamentally Antarctic process, and may have altered most of the currently ice-free areas throughout the continent. Similar large, debris covered ice bodies have been recently discovered in Mars as well. Our results may transform the understanding of the longevity of the buried ice bodies and potentially reveal the oldest ice ever found in the interior of the Antarctica. If proven old and slowly sublimating, this buried ice can potentially yield direct information about the atmospheric chemistry, ancient life forms, and geology of greater antiquity than the currently available and sampled ice bodies. The broader impacts resulting from the proposed activity: The results will be relevant to researchers in glaciology, paleoclimatology, planetary geology, and biology. Several students will participate in the project and do field work in Antarctica, work in lab, attend meetings, attend outreach activities, and produce videos. A graduate student will prepare his/her thesis on a topic closely related to the objectives of the proposed research. The results of the research will be published in scientific meetings and publications.\r\n", "east": 157.8, "geometry": "POINT(157.7 -83.25)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; USA/NSF; FIELD SURVEYS; Transantarctic Mountains; GLACIERS/ICE SHEETS; AMD; Amd/Us", "locations": "Transantarctic Mountains", "north": -83.2, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "putkonen, jaakko; Balco, Gregory; Morgan, Daniel", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "ICE-D; USAP-DC", "science_programs": null, "south": -83.3, "title": "Collaborative Research: Long Term Sublimation/Preservation of Two Separate, Buried Glacier Ice Masses, Ong Valley, Southern Transantarctic Mountains", "uid": "p0010231", "west": 157.6}, {"awards": "1643445 Eisenman, Ian", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Model code, model output fields, etc", "datasets": [{"dataset_uid": "200226", "doi": null, "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Model code, model output fields, etc", "url": "https://eisenman-group.github.io/"}], "date_created": "Wed, 30 Jun 2021 00:00:00 GMT", "description": "Satellite observations show expanding Antarctic sea ice over the last three decades. Increasing Antarctic sea ice seems unexpected when compared to observations of rising global temperatures or shrinking Arctic sea ice. Computer models of global climate also predict Antarctic sea ice to shrink instead of grow. Several hypotheses have been suggested to explain the contradiction between what scientists expect to see based on computer models and physical intuition and the growth that is recorded in observations. This study will examine the hypothesis that sea ice expansion can be explained by sea ice motion, where sea ice moves in such a way as to promote an increase in overall coverage. Researchers will use several different types of computer models, ranging in complexity, to better understand the physical processes of sea ice motion and how the sea ice motion interacts with the larger atmosphere-ocean system. The team will transfer their research to the classroom by hosting a week-long teacher workshop. Teachers will learn how scientists use computer models to test hypotheses and then develop and test tools for use in the classroom. Five middle and high school teachers will participate and become part of the UC San Diego STEM Success Initiative master science teacher network. The project will support a graduate student and a postdoctoral researcher.\r\n\r\nSea ice motion has recently emerged as one of the candidates to explain the Antarctic sea ice expansion but a systematic investigation of how sea ice motion influences sea ice concentration has not been presented to date. Researchers will conduct a process-oriented study of the relationship between sea ice motion and Antarctic sea ice extent using a hierarchy of models. The hierarchy will consist of (i) an idealized single-column model of sea ice evolution, (ii) an idealized latitudinally-varying global model of sea ice and climate, (iii) an atmospheric global climate model (GCM) above a slab ocean that includes sea ice motion, (iv) a comprehensive GCM, and (v) model output from the suite of current comprehensive GCMs. The range of model complexities will help researchers better understand the relationship between sea ice motion and sea ice extent by allowing them to identify important processes that are robust across the model hierarchy.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; AMD; Southern Ocean; USAP-DC; USA/NSF; ICE EXTENT; COMPUTERS; Sea Ice; GCM", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Eisenman, Ian; Wagner, Till", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS", "repo": "GitHub", "repositories": "GitHub", "science_programs": null, "south": -90.0, "title": "The Influence of Sea Ice Motion on Antarctic Sea Ice Expansion", "uid": "p0010216", "west": -180.0}, {"awards": "1739027 Tulaczyk, Slawek", "bounds_geometry": "POLYGON((-125 -73,-122.1 -73,-119.2 -73,-116.3 -73,-113.4 -73,-110.5 -73,-107.6 -73,-104.7 -73,-101.8 -73,-98.9 -73,-96 -73,-96 -73.7,-96 -74.4,-96 -75.1,-96 -75.8,-96 -76.5,-96 -77.2,-96 -77.9,-96 -78.6,-96 -79.3,-96 -80,-98.9 -80,-101.8 -80,-104.7 -80,-107.6 -80,-110.5 -80,-113.4 -80,-116.3 -80,-119.2 -80,-122.1 -80,-125 -80,-125 -79.3,-125 -78.6,-125 -77.9,-125 -77.2,-125 -76.5,-125 -75.8,-125 -75.1,-125 -74.4,-125 -73.7,-125 -73))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 24 Jun 2021 00:00:00 GMT", "description": "This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Collapse of the West Antarctic Ice Sheet (WAIS) could raise the global sea level by about 5 meters (16 feet) and the scientific community considers it the most significant risk for coastal environments and cities. The risk arises from the deep, marine setting of WAIS. Although scientists have been aware of the precarious setting of this ice sheet since the early 1970s, it is only now that the flow of ice in several large drainage basins is undergoing dynamic change consistent with a potentially irreversible disintegration. Understanding WAIS stability and enabling more accurate prediction of sea-level rise through computer simulation are two of the key objectives facing the polar science community today. This project will directly address both objectives by: (1) using state-of-the-art technologies to observe rapidly deforming parts of Thwaites Glacier that may have significant control over the future evolution of WAIS, and (2) using these new observations to improve ice-sheet models used to predict future sea-level rise. This project brings together a multidisciplinary team of UK and US scientists. This international collaboration will result in new understanding of natural processes that may lead to the collapse of the WAIS and will boost infrastructure for research and education by creating a multidisciplinary network of scientists. This team will mentor three postdoctoral researchers, train four Ph.D. students and integrate undergraduate students in this research project.\r\n\r\nThe project will test the overarching hypothesis that shear-margin dynamics may exert powerful control on the future evolution of ice flow in Thwaites Drainage Basin. To test the hypothesis, the team will set up an ice observatory at two sites on the eastern shear margin of Thwaites Glacier. The team argues that weak topographic control makes this shear margin susceptible to outward migration and, possibly, sudden jumps in response to the drawdown of inland ice when the grounding line of Thwaites retreats. The ice observatory is designed to produce new and comprehensive constraints on englacial properties, including ice deformation rates, ice crystal fabric, ice viscosity, ice temperature, ice water content and basal melt rates. The ice observatory will also establish basal conditions, including thickness and porosity of the till layer and the deeper marine sediments, if any. Furthermore, the team will develop new knowledge with an emphasis on physical processes, including direct assessment of the spatial and temporal scales on which these processes operate. Seismic surveys will be carried out in 2D and 3D using wireless geophones. A network of broadband seismometers will identify icequakes produced by crevassing and basal sliding. Autonomous radar systems with phased arrays will produce sequential images of rapidly deforming internal layers in 3D while potentially also revealing the geometry of a basal water system. Datasets will be incorporated into numerical models developed on different spatial scales. One will focus specifically on shear-margin dynamics, the other on how shear-margin dynamics can influence ice flow in the whole drainage basin. Upon completion, the project aims to have confirmed whether the eastern shear margin of Thwaites Glacier can migrate rapidly, as hypothesized, and if so what the impacts will be in terms of sea-level rise in this century and beyond.\r\n", "east": -96.0, "geometry": "POINT(-110.5 -76.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; GLACIER MOTION/ICE SHEET MOTION; Thwaites Glacier; USAP-DC; USA/NSF; Magmatic Volatiles; AMD; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; ICE SHEETS; Amd/Us", "locations": "Thwaites Glacier", "north": -73.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Instrumentation and Support; Antarctic Glaciology", "paleo_time": null, "persons": "Tulaczyk, Slawek", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": "Thwaites (ITGC)", "south": -80.0, "title": "NSF-NERC: Thwaites Interdisciplinary Margin Evolution (TIME): The Role of Shear Margin Dynamics in the Future Evolution of the Thwaites Drainage Basin", "uid": "p0010199", "west": -125.0}, {"awards": "1638957 Kovac, John", "bounds_geometry": "POINT(0 -90)", "dataset_titles": "BICEP/Keck data products", "datasets": [{"dataset_uid": "200205", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "BICEP/Keck data products", "url": "http://bicepkeck.org"}], "date_created": "Wed, 31 Mar 2021 00:00:00 GMT", "description": "The theory of the \"Big Bang\" provides a well-established cosmological model for the Universe from its earliest known periods through its subsequent large-scale evolution. The model traces the expansion of the Universe, starting from initial conditions of a very high density and temperature state which is almost but not perfectly smooth, and it offers a comprehensive explanation for a broad range of now-known phenomena, including the abundance of light elements, the cosmic microwave background radiation, and the distribution of large scale structures. While the established \"Big Bang\" theory leaves open the question of explaining the initial conditions, current evidence is consistent with the entire observable Universe being spawned in a dramatic, exponential \"inflation\" of a sub-nuclear volume that lasted about one trillionth of a trillionth of a trillionth of a second. Following this short inflationary period, the Universe continues to expand, but at a less rapid rate. While the basic \"inflationary paradigm\" is accepted by most scientists, the detailed particle physics mechanism responsible for inflation is still not known. It is believed that this violent space-time expansion would have produced primordial gravitational waves now propagating through the expanding universe, thus forming a cosmic gravitational-wave background (CGB) the amplitude of which measures the energy scale of inflation. The CGB imprints a faint signature in the polarization of the Cosmic Microwave Background (CMB), and detecting this polarization signature is arguably the most important goal in cosmology today. This award will address one of the oldest questions ever posed by mankind, \"How did the Universe begin?\", and it does so via observations made at one of the most intriguing places on Earth, South Pole Station in Antarctica.\u003cbr/\u003e \u003cbr/\u003eThe community-driven Astro2010 Decadal Survey described the search for the CGB as \"the most exciting quest of all\", emphasizing that \"mid-term investment is needed for systems aimed at detecting the (B-mode) polarization of the CMB\". In 2005, the NASA/DOE/NSF Task Force on CMB Research identified this topic as the highest priority for the field and established a target sensitivity for the ratio of gravitational waves to density fluctuations of r ~ 0.01. Such measurements promise a definitive test of slow-roll models of inflation, which generally predict a gravitational-wave signal around r~0.01 or above, producing CMB B-modes fluctuations that peak on degree angular scales. The ongoing BICEP series of experiments is dedicated to this science goal. The experiment began operating at South Pole in 2006 and has been relentlessly mapping an 800 square degree region of the sky in a region of low in Galactic foregrounds known as the Southern Hole. This award will support science observations and analysis for the CMB \"Stage 3\" science with the BICEP Array program that will measure the polarized sky in five frequency bands. It is projected to reach an ultimate sensitivity to the amplitude of inflationary gravitational waves of \"sigma r\" \u003c 0.005, extrapolating from achieved performance and after conservatively accounting for the Galactic dust, Galactic synchrotron radiation, and CMB lensing foregrounds. This measurement will offer a definitive test of most slow-roll models of Inflation, and will realize or exceed the goals set by the Task Force in 2005 for sensitivity. The project will continue to provide excellent training for undergraduate and graduate students and postdoctoral fellows (including those from underrepresented groups) in laboratories that have exceptional track records in this regard. Cosmology and research in Antarctica both capture the public imagination, making this combination a remarkably effective vehicle for stimulating interest in science.", "east": 0.0, "geometry": "POINT(-180 -90)", "instruments": null, "is_usap_dc": true, "keywords": "THERMAL INFRARED; NOT APPLICABLE; South Pole Station", "locations": "South Pole Station", "north": -90.0, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Astrophysics and Geospace Sciences", "paleo_time": null, "persons": "Kovac, John; Pryke, Clem", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "Project website", "repositories": "Project website", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Imaging the Beginning of Time from the South Pole: The next Stage of the BICEP Program", "uid": "p0010167", "west": 0.0}, {"awards": "2048351 Lindow, Julia", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 26 Feb 2021 00:00:00 GMT", "description": "Measurements of in-situ produced cosmogenic nuclides in Antarctic surficial rock samples provide unique time scales for glacial and landscape evolution processes. However, due to analytical challenges, pyroxene-bearing and widely distributed lithologies like the Ferrar dolerite of the Transantarctic Mountains, are underutilized. This proposal aims to changes this and to improve the cosmogenic nuclide methodologies for stable isotopes (21Ne and 3He) and radioactive nuclides (10Be) in pyroxenes. Proposed methodological improvements will be directly applicable to erosion rates and deposition ages of important glacial deposits, such as the controversial Sirius Group tills, and also to younger glacial features. Bennett Platform is the focus of this study because it is one of the southern-most Sirius Group outcrops along the Transantarctic Mountains, where cosmogenic ages are sparse.\r\n\r\nPreliminary measurements demonstrate large discrepancies between 3He and 21Ne age determinations in Sirius Group pyroxenes. One possible explanation is composition dependence of the 21Ne production rates. Coupled measurements of 3He, 21Ne, and 10Be in well-characterized pyroxene mineral separates from Ferrar dolerite will be used to better constrain the production rates, major element and trace element dependencies, the assumptions of the method, and ultimately advance the application of cosmogenic nuclides to mafic Antarctic lithologies.\r\n\r\nThe main goals of this study are to improve measurement protocols for 10Be in pyroxene, and the determination of the composition dependence of 21Ne production rates by measuring mineral compositions (by electron microprobe), and nuclide concentrations in mineral pairs from young lava flows. Further aims are the validation of the nucleogenic contributions and the effects of helium diffusive loss through measurements of 3He/21Ne production ratios, combined with measurements of shielded samples of the Ferrar dolerite. Combined measurements of 3He, 21Ne and 10Be in pyroxenes have rarely been published for individual samples in Antarctica. The new and unique measurements of this study will advance the applicability of in-situ produced cosmogenic nuclides to both young and ancient Antarctic surfaces. The study will be performed using existing samples: no field work is requested.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; AMD; FIELD INVESTIGATION; LABORATORY; Transantarctic Mountains; USAP-DC; GLACIAL LANDFORMS; Amd/Us", "locations": "Transantarctic Mountains", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Lindow, Julia; Kurz, Mark D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "New Cosmogenic 21Ne and 10Be Measurements in the Transantarctic Mountains", "uid": "p0010163", "west": null}, {"awards": "1738992 Pettit, Erin C; 1929991 Pettit, Erin C", "bounds_geometry": "POLYGON((-114 -74,-113 -74,-112 -74,-111 -74,-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-104 -74.2,-104 -74.4,-104 -74.6,-104 -74.8,-104 -75,-104 -75.2,-104 -75.4,-104 -75.6,-104 -75.8,-104 -76,-105 -76,-106 -76,-107 -76,-108 -76,-109 -76,-110 -76,-111 -76,-112 -76,-113 -76,-114 -76,-114 -75.8,-114 -75.6,-114 -75.4,-114 -75.2,-114 -75,-114 -74.8,-114 -74.6,-114 -74.4,-114 -74.2,-114 -74))", "dataset_titles": "AMIGOS-IIIa \"Cavity\" Aquadopp current data Jan 2020 - Mar 2021; AMIGOS-IIIa \"Cavity\" Seabird CTD data Jan 2020 - Dec 2021; AMIGOS-III Cavity and Channel Snow Height and Thermistor Snow Temperature Data; AMIGOS-IIIc \"Channel\" Aquadopp current data Jan 2020 - Mar 2021; AMIGOS-IIIc \"Channel\" Seabird CTD data Jan 2020 - Dec 2021; CTD data from the NBP 19/02 cruise as part of the TARSAN project in the Amundsen Sea during austral summer 2018/2019; Dotson-Crosson Ice Shelf data from a tale of two ice shelves paper; SIIOS Temporary Deployment; Sub-ice-shelf seafloor elevation derived from point-source active-seismic data on Thwaites Eastern Ice Shelf and Dotson Ice Shelf, December 2019 and January 2020; Thwaites Glacier grounding lines for 2014 and 2019/20 from height above flotation; Two-year velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2001-2020; Visala WXT520 weather station data at the Cavity and Channel AMIGOS-III sites", "datasets": [{"dataset_uid": "601547", "doi": "10.15784/601547", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIa \"Cavity\" Aquadopp current data Jan 2020 - Mar 2021", "url": "https://www.usap-dc.org/view/dataset/601547"}, {"dataset_uid": "601478", "doi": "10.15784/601478", "keywords": "Antarctica; Glaciology; Ice Shelf; Ice Velocity; Strain Rate; Thwaites Glacier", "people": "Wallin, Bruce; Scambos, Ted; Klinger, Marin; Muto, Atsu; Pettit, Erin; Truffer, Martin; Alley, Karen; Wild, Christian", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Two-year velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2001-2020", "url": "https://www.usap-dc.org/view/dataset/601478"}, {"dataset_uid": "601544", "doi": "10.15784/601544", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Salinity; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIa \"Cavity\" Seabird CTD data Jan 2020 - Dec 2021", "url": "https://www.usap-dc.org/view/dataset/601544"}, {"dataset_uid": "601545", "doi": "10.15784/601545", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Salinity; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIc \"Channel\" Seabird CTD data Jan 2020 - Dec 2021", "url": "https://www.usap-dc.org/view/dataset/601545"}, {"dataset_uid": "601548", "doi": "10.15784/601548", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIc \"Channel\" Aquadopp current data Jan 2020 - Mar 2021", "url": "https://www.usap-dc.org/view/dataset/601548"}, {"dataset_uid": "601549", "doi": "10.15784/601549", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Pine Island Bay; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Visala WXT520 weather station data at the Cavity and Channel AMIGOS-III sites", "url": "https://www.usap-dc.org/view/dataset/601549"}, {"dataset_uid": "601552", "doi": "10.15784/601552", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Pine Island Bay; Snow Accumulation; Snow Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-III Cavity and Channel Snow Height and Thermistor Snow Temperature Data", "url": "https://www.usap-dc.org/view/dataset/601552"}, {"dataset_uid": "601578", "doi": "10.15784/601578", "keywords": "Antarctica; Dotson Ice Shelf; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology", "people": "Segabinazzi-Dotto, Tiago; Wild, Christian", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Dotson-Crosson Ice Shelf data from a tale of two ice shelves paper", "url": "https://www.usap-dc.org/view/dataset/601578"}, {"dataset_uid": "200204", "doi": "https://doi.org/10.7914/SN/1L_2019", "keywords": null, "people": null, "repository": "International Federation of Digital Seismograph Networks", "science_program": null, "title": "SIIOS Temporary Deployment", "url": "http://www.fdsn.org/networks/detail/1L_2019/"}, {"dataset_uid": "601827", "doi": "10.15784/601827", "keywords": "Antarctica; Cryosphere; Dotson Ice Shelf; Thwaites Glacier", "people": "Roccaro, Alexander; Muto, Atsuhiro; Wallin, Bruce; Pomraning, Dale; Wild, Christian; Scambos, Ted; Truffer, Martin; Pettit, Erin; Alley, Karen", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Sub-ice-shelf seafloor elevation derived from point-source active-seismic data on Thwaites Eastern Ice Shelf and Dotson Ice Shelf, December 2019 and January 2020", "url": "https://www.usap-dc.org/view/dataset/601827"}, {"dataset_uid": "601499", "doi": "10.15784/601499", "keywords": "Amundsen Sea; Antarctica; Glaciology; Grounding Line; Ice Shelf; Thwaites Glacier", "people": "Truffer, Martin; Pettit, Erin; Wild, Christian; Alley, Karen; Scambos, Ted; Muto, Atsu", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Thwaites Glacier grounding lines for 2014 and 2019/20 from height above flotation", "url": "https://www.usap-dc.org/view/dataset/601499"}, {"dataset_uid": "200321", "doi": "10.5285/e338af5d-8622-05de-e053-6c86abc06489", "keywords": null, "people": null, "repository": "British Oceanographic Data Centre", "science_program": null, "title": "CTD data from the NBP 19/02 cruise as part of the TARSAN project in the Amundsen Sea during austral summer 2018/2019", "url": "https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/e338af5d-8622-05de-e053-6c86abc06489/"}], "date_created": "Mon, 22 Feb 2021 00:00:00 GMT", "description": "This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Thwaites and neighboring glaciers in the Amundsen Sea Embayment are rapidly losing mass in response to recent climate warming and related changes in ocean circulation. Mass loss from the Amundsen Sea Embayment could lead to the eventual collapse of the West Antarctic Ice Sheet, raising the global sea level by up to 2.5 meters (8 feet) in as short as 500 years. The processes driving the loss appear to be warmer ocean circulation and changes in the width and flow speed of the glacier, but a better understanding of these changes is needed to refine predictions of how the glacier will evolve. One highly sensitive process is the transitional flow of glacier ice from land onto the ocean to become a floating ice shelf. This flow of ice from grounded to floating is affected by changes in air temperature and snowfall at the surface; the speed and thickness of ice feeding it from upstream; and the ocean temperature, salinity, bathymetry, and currents that the ice flows into. The project team will gather new measurements of each of these local environmental conditions so that it can better predict how future changes in air, ocean, or the ice will affect the loss of ice to the ocean in this region. \u003cbr/\u003e \u003cbr/\u003eCurrent and anticipated near-future mass loss from Thwaites Glacier and nearby Amundsen Sea Embayment region is mainly attributed to reduction in ice-shelf buttressing due to sub-ice-shelf melting by intrusion of relatively warm Circumpolar Deep Water into sub-ice-shelf cavities. Such predictions for mass loss, however, still lack understanding of the dominant processes at and near grounding zones, especially their spatial and temporal variability, as well as atmospheric and oceanic drivers of these processes. This project aims to constrain and compare these processes for the Thwaites and the Dotson Ice Shelves, which are connected through upstream ice dynamics, but influenced by different submarine troughs. The team\u0027s specific objectives are to: 1) install atmosphere-ice-ocean multi-sensor remote autonomous stations on the ice shelves for two years to provide sub-daily continuous observations of concurrent oceanic, glaciologic, and atmospheric conditions; 2) measure ocean properties on the continental shelf adjacent to ice-shelf fronts (using seal tagging, glider-based and ship-based surveys, and existing moored and conductivity-temperature-depth-cast data), 3) measure ocean properties into sub-ice-shelf cavities (using autonomous underwater vehicles) to detail ocean transports and heat fluxes; and 4) constrain current ice-shelf and sub-ice-shelf cavity geometry, ice flow, and firn properties for the ice-shelves (using radar, active-source seismic, and gravimetric methods) to better understand the impact of ocean and atmosphere on the ice-sheet change. The team will also engage the public and bring awareness to this rapidly changing component of the cryosphere through a \"Live from the Ice\" social media campaign in which the public can follow the action and data collection from the perspective of tagged seals and autonomous stations.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -104.0, "geometry": "POINT(-109 -75)", "instruments": null, "is_usap_dc": true, "keywords": "Thwaites Glacier; FIELD SURVEYS; GLACIERS/ICE SHEETS", "locations": "Thwaites Glacier", "north": -74.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences; Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Truffer, Martin; Scambos, Ted; Muto, Atsu; Heywood, Karen; Boehme, Lars; Hall, Robert; Wahlin, Anna; Lenaerts, Jan; Pettit, Erin", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "British Oceanographic Data Centre; International Federation of Digital Seismograph Networks; USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -76.0, "title": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment", "uid": "p0010162", "west": -114.0}, {"awards": "1644196 Cziko, Paul", "bounds_geometry": "POLYGON((163.47 -77.14,163.803 -77.14,164.136 -77.14,164.469 -77.14,164.802 -77.14,165.135 -77.14,165.468 -77.14,165.801 -77.14,166.134 -77.14,166.467 -77.14,166.8 -77.14,166.8 -77.216,166.8 -77.292,166.8 -77.368,166.8 -77.444,166.8 -77.52,166.8 -77.596,166.8 -77.672,166.8 -77.748,166.8 -77.824,166.8 -77.9,166.467 -77.9,166.134 -77.9,165.801 -77.9,165.468 -77.9,165.135 -77.9,164.802 -77.9,164.469 -77.9,164.136 -77.9,163.803 -77.9,163.47 -77.9,163.47 -77.824,163.47 -77.748,163.47 -77.672,163.47 -77.596,163.47 -77.52,163.47 -77.444,163.47 -77.368,163.47 -77.292,163.47 -77.216,163.47 -77.14))", "dataset_titles": "High-resolution nearshore benthic seawater temperature from around McMurdo Sound, Antarctica (2017-2019); Long-Term broadband underwater acoustic recordings from McMurdo Sound, Antarctica (2017-2019); Long-term underwater images from around a single mooring site in McMurdo Sound, Antarctica (2017-2019)", "datasets": [{"dataset_uid": "601416", "doi": "10.15784/601416", "keywords": "Antarctica; Bioacoustics; Biota; Hydroacoustics; Killer Whales; Leptonychotes Weddellii; McMurdo Sound; Oceans; Orcinus Orca; Sea Ice; Weddell Seal; Whales", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "Long-Term broadband underwater acoustic recordings from McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601416"}, {"dataset_uid": "601417", "doi": "10.15784/601417", "keywords": "Antarctica; Benthic Ecology; Benthic Invertebrates; Biota; McMurdo Sound; Notothenioid; Notothenioid Fishes; Photo/video; Photo/Video; Rocky Reef Community; Soft-Bottom Community; Timelaps Images", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "Long-term underwater images from around a single mooring site in McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601417"}, {"dataset_uid": "601420", "doi": "10.15784/601420", "keywords": "Antarctica; Benthic Ecology; CTD; Depth; McMurdo Sound; Oceanography; Oceans; Physical Oceanography; Pressure; Salinity; Seawater Measurements; Seawater Temperature; Supercooling; Tides", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "High-resolution nearshore benthic seawater temperature from around McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601420"}], "date_created": "Tue, 15 Dec 2020 00:00:00 GMT", "description": "Notothenioid fishes live in the world\u0027s coldest marine waters surrounding Antarctica and have evolved strategies to avoid freezing. Past studies have shown that most Antarctic notothenioids produce special antifreeze proteins that prevent the growth of ice crystals that enter the body. While these proteins help prevent individuals from being killed by growing ice crystals, it is unclear how these fish avoid the accumulation of these small ice crystals inside their tissues over time. This project will observe how ice crystal accumulation relates to the harshness of a fish\u0027s environment within different habitats of McMurdo Sound, Antarctica. The researchers collected fishes and ocean observations at different field sites that cover a range of habitat severity in terms of temperature and iciness. The researchers installed an underwater ocean observatory near McMurdo Station (The McMurdo Oceanographic Observatory, MOO; Nov. 2017 - Nov. 2019) which included a conductivity-temperature-depth sensor (CTD), a high-definition video/still image camera and a research quality hydrophone. The observatory produced oceanographic data, time-lapse images of the immediate environs, and a high-resolution hydroacoustic dataset from the entire deployment. Seawater temperature data loggers were also deployed at other shallow, nearshore sites around McMurdo Sound to provide context and assessment of environmental conditions experienced by the fishes. ", "east": 166.8, "geometry": "POINT(165.135 -77.52)", "instruments": null, "is_usap_dc": true, "keywords": "Benthic Ecology; ANIMALS/VERTEBRATES; USA/NSF; OCEAN TEMPERATURE; USAP-DC; MAMMALS; FIELD INVESTIGATION; Amd/Us; McMurdo Sound; FISH; AMD", "locations": "McMurdo Sound", "north": -77.14, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Cziko, Paul; DeVries, Arthur", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes", "uid": "p0010147", "west": 163.47}, {"awards": "1543539 Liwanag, Heather", "bounds_geometry": null, "dataset_titles": "metabolic measurements; Sedation dose and response; TDR and weather data", "datasets": [{"dataset_uid": "601631", "doi": "10.15784/601631", "keywords": "Antarctica; McMurdo Sound; Weddell Seal", "people": "Pearson, Linnea", "repository": "USAP-DC", "science_program": null, "title": "Sedation dose and response", "url": "https://www.usap-dc.org/view/dataset/601631"}, {"dataset_uid": "601524", "doi": "10.15784/601524", "keywords": "Antarctica; McMurdo Sound; Metabolic Rate; Thermoregulation; Weddell Seal", "people": "Pearson, Linnea", "repository": "USAP-DC", "science_program": null, "title": "metabolic measurements", "url": "https://www.usap-dc.org/view/dataset/601524"}, {"dataset_uid": "601435", "doi": "10.15784/601435", "keywords": "Antarctica; McMurdo Sound; Weddell Seal", "people": "Pearson, Linnea; Weitzner, Emma; Liwanag, Heather", "repository": "USAP-DC", "science_program": null, "title": "TDR and weather data", "url": "https://www.usap-dc.org/view/dataset/601435"}], "date_created": "Sat, 12 Dec 2020 00:00:00 GMT", "description": "The transition of young from parental care to independence is a critical stage in the life of many animals. Surviving this stage can be especially challenging for polar mammals where the extreme cold requires extra energy to keep warm, rather than using the majority of energy for growth, development and physical activities. Young Weddell seals (Leptonychotes weddellii) have only weeks to develop the capabilities to survive both on top of the sea ice and within the -1.9\u00b0C seawater where they can forage for food. The project seeks to better understand how Weddell seal pups rapidly develop (within weeks) the capacity to transition between these two extreme environments (that differ greatly in their abilities to conduct heat) and how they budget their energy during the transition. Though the biology and physiology of adult Weddell seals is well studied, the energetic and physiological strategies of pups during development is still unclear. Understanding factors that may affect survival at critical life history events is essential for better understanding factors that might affect marine mammal populations. Weddell seals are the southernmost breeding mammal and are easily recognizable as quintessential Antarctic seals. Determining potential vulnerabilities at critical life stages to change in the Antarctic environment will facilitate the researchers\u0027 ability to not only gain public interest but also communicate how research is revealing ways in which changes are occurring at the poles and how these changes may affect polar ecosystems. By collaborating with the Marine Mammal Center, the project will directly reach the public, through curricular educational materials and public outreach that will impact over 100,000 visitors annually.\u003cbr/\u003e\u003cbr/\u003eTo elucidate the physiological strategies that facilitate the survival of Weddell seal pups from birth to independence, the proposed study examines the development of their thermoregulation and diving capability. To achieve this, the project will determine the mechanisms that Weddell seal pups use to maintain a stable, warm body temperature in air and in water and then examine the development of diving capability as the animals prepare for independent foraging. The researchers will take a fully integrative approach- making assessments from proteins to tissues to the whole-animal level- when investigating both these objectives. To assess the development of thermoregulatory capability, researchers will quantify body insulation, resting metabolic rates in air and in water, muscle thermogenesis (shivering), and body surface temperatures in the field. The project will also assess the development of dive capability by quantifying oxygen storage capacities and measuring early dive behavior. To identify possible cellular mechanisms for how Weddell seals navigate this trade-off during development, the program will quantify several key developmental regulators of increased hypoxic capacity (HIF, VEGF and EPO) using qPCR, as well as follow the proteomic changes of adipose and muscle tissue, which will include abundance changes of metabolic, antioxidant, cytoskeletal, and Ca2+-regulating proteins. The study of the physiological development leading up to the transition to independence in pinnipeds will help researchers better predict the effects of climate change on the distribution and abundance of this species and how this will affect other trophic levels. Environmental changes that alter habitat suitability have been shown to decrease population health, specifically because of declines in juvenile survival.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "MAMMALS; FIELD INVESTIGATION; McMurdo Sound", "locations": "McMurdo Sound", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Liwanag, Heather; Pearson, Linnea; Tomanek, Lars", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "RUI: Growing Up on Ice: Physiological Adaptations and Developmental Plasticity in Weddell Seal Pups Across Two Extreme Physical Environments", "uid": "p0010144", "west": null}, {"awards": "1643798 Emry, Erica; 1643873 Hansen, Samantha", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "GEOSCOPE Network; IU: Global Seismograph Network; Shear Wave Velocity of the Antarctic Upper Mantle from Full Waveform Inversion and Long Period Ambient Seismic Noise; XP (2000-2004): A Broadband Seismic Investigation of Deep Continental Structure Across the East-West Antarctic Boundary ; YT (2007-2023): IPY POLENET-Antarctica: Investigating links between geodynamics and ice sheets; ZJ (2012-2015): Transantarctic Mountains Northern Network ; ZM (2007-2013): A Broadband Seismic Experiment to Image the Lithosphere beneath the Gamburtsev Mountains, East Antarctica", "datasets": [{"dataset_uid": "200171", "doi": "10.7914/SN/YT_2007", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "YT (2007-2023): IPY POLENET-Antarctica: Investigating links between geodynamics and ice sheets", "url": "http://www.fdsn.org/networks/detail/YT_2007/"}, {"dataset_uid": "601744", "doi": "10.15784/601744", "keywords": "Ambient Seismic Noise; Antarctica; Full-Waveform Inversion; Seismic Tomography; Shear Wave Velocity; Solid Earth", "people": "Emry, Erica", "repository": "USAP-DC", "science_program": null, "title": "Shear Wave Velocity of the Antarctic Upper Mantle from Full Waveform Inversion and Long Period Ambient Seismic Noise", "url": "https://www.usap-dc.org/view/dataset/601744"}, {"dataset_uid": "200168", "doi": "10.18715/GEOSCOPE.G", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "GEOSCOPE Network", "url": "http://geoscope.ipgp.fr/networks/detail/G/"}, {"dataset_uid": "200169", "doi": "10.7914/SN/IU", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IU: Global Seismograph Network", "url": "http://www.fdsn.org/networks/detail/IU/"}, {"dataset_uid": "200170", "doi": "10.7914/SN/XP_2000", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "XP (2000-2004): A Broadband Seismic Investigation of Deep Continental Structure Across the East-West Antarctic Boundary ", "url": "http://www.fdsn.org/networks/detail/XP_2000/"}, {"dataset_uid": "200172", "doi": "10.7914/SN/ZM_2007", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": " ZM (2007-2013): A Broadband Seismic Experiment to Image the Lithosphere beneath the Gamburtsev Mountains, East Antarctica", "url": "http://www.fdsn.org/networks/detail/ZM_2007/"}, {"dataset_uid": "200173", "doi": "10.7914/SN/ZJ_2012", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "ZJ (2012-2015): Transantarctic Mountains Northern Network ", "url": "http://www.fdsn.org/networks/detail/ZJ_2012/"}], "date_created": "Thu, 15 Oct 2020 00:00:00 GMT", "description": "Our project is focused on better resolving the three-dimensional Antarctic mantle structure to further understanding of continental tectonics. To accomplish this, we are utilizing a full-waveform tomographic inversion technique that incorporates long-period ambient noise data and which has been shown to more accurately resolve structure than traditional tomographic approaches. The new models have been developed using the Alabama supercomputer facilities in conjunction with software developed at The University of Rhode Island. Our new tomographic results highlight the lithospheric structure beneath the Wilkes and Aurora Subglacial Basins in East Antarctica, where previous rifting episodes and mid-lithospheric discontinuities are being explored. In West Antarctica, the work is elucidating the easternmost extent of the West Antarctic Rift System as well as rifted structure and possible compositional variations within the Weddell Sea. We are also highlighting regions of Antarctica where tomographic resolution is still lacking and where future deployments are needed to improve resolution.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "SEISMIC SURFACE WAVES; USA/NSF; USAP-DC; SEISMOLOGICAL STATIONS; Amd/Us; AMD; POLNET; TECTONICS; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Emry, Erica; Hansen, Samantha", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS", "repo": "IRIS", "repositories": "IRIS; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Imaging Seismic Heterogeneity within the Antarctic Mantle with Full Waveform Ambient Noise Tomography", "uid": "p0010139", "west": -180.0}, {"awards": "1542885 Dunham, Eric", "bounds_geometry": null, "dataset_titles": "Earthquake Sequence Dynamics at the Interface Between an Elastic Layer and Underlying Half-Space in Antiplane Shear", "datasets": [{"dataset_uid": "601320", "doi": "10.15784/601320", "keywords": "Antarctica; Computer Model; Glaciology; Model Data; Shear Stress; Solid Earth; Whillans Ice Stream", "people": "Abrahams, Lauren", "repository": "USAP-DC", "science_program": null, "title": "Earthquake Sequence Dynamics at the Interface Between an Elastic Layer and Underlying Half-Space in Antiplane Shear", "url": "https://www.usap-dc.org/view/dataset/601320"}], "date_created": "Fri, 09 Oct 2020 00:00:00 GMT", "description": "This project investigates a rapidly moving section of the West Antarctic Ice Sheet known as the Whillans Ice Stream. Ice streams and outlet glaciers are the major pathways for ice discharge from ice sheets into the ocean. Consequently, understanding ice stream dynamics, specifically the processes controlling the frictional resistance of ice sliding on sediments at its base, is essential for predictive modeling of how Earth\u0027s ice sheets will respond to a changing climate. Rather than flowing smoothly, Whillans Ice Stream advances in stick-slip cycles: brief periods of rapid sliding, equivalent to magnitude 7 earthquakes, alternating with much longer periods of repose. The PIs will perform simulations of these stick-slip cycles using computer codes originally developed for modeling tectonic earthquakes. By matching observed ice motions, the PIs will constrain the range of frictional processes acting at the base of the ice stream. An additional focus of the project is on brittle fracture processes in ice, expressed through seismic waves radiated by faulting and/or crevassing episodes that accompany the large-scale sliding events. An understanding of ice fracture provides a basis for assessing the susceptibility of ice shelves to rifting and catastrophic disintegration. Project results will be incorporated into outreach activities (from elementary school to community college events) as well as a polar science class for the California State Summer School for Mathematics and Science (COSMOS) program for high school students.\u003cbr/\u003e\u003cbr/\u003eSimulations of the stick-slip cycle will employ 3D dynamic rupture models that simultaneously solve for the seismic wavefield and rupture process, consistent with elastodynamic material response and friction laws on the ice stream bed. Stresses and frictional properties will be varied to achieve consistency with surface GPS and broadband seismic data as well as borehole seismograms from the WISSARD project. The results will be interpreted using laboratory till friction experiments, which link velocity-weakening/strengthening behavior to temperature and water content, and to related experiments quantifying basal drag from ice flow over rough beds. The source mechanism of seismicity accompanying the slip events (shear faulting versus crevassing) will be determined using 3D waveform modeling in conjunction with mechanical models of the seismic source processes. This proposal does not require fieldwork in the Antarctic.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "SEISMIC PROFILE; AMD; Antarctica; GROUND-BASED OBSERVATIONS; USA/NSF; USAP-DC; Amd/Us", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Dunham, Eric", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Characterizing Brittle Failure and Fracture Propagation in Fast Ice Sliding with Dynamic Rupture Models based on Whillans Ice Stream Seismic/Geodetic Data", "uid": "p0010138", "west": null}, {"awards": "1724670 Williams, Trevor", "bounds_geometry": "POLYGON((-70 -60,-65 -60,-60 -60,-55 -60,-50 -60,-45 -60,-40 -60,-35 -60,-30 -60,-25 -60,-20 -60,-20 -62.5,-20 -65,-20 -67.5,-20 -70,-20 -72.5,-20 -75,-20 -77.5,-20 -80,-20 -82.5,-20 -85,-25 -85,-30 -85,-35 -85,-40 -85,-45 -85,-50 -85,-55 -85,-60 -85,-65 -85,-70 -85,-70 -82.5,-70 -80,-70 -77.5,-70 -75,-70 -72.5,-70 -70,-70 -67.5,-70 -65,-70 -62.5,-70 -60))", "dataset_titles": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "datasets": [{"dataset_uid": "601378", "doi": "10.15784/601378", "keywords": "40Ar/39Ar Thermochronology; Antarctica; Argon; Chemistry:sediment; Chemistry:Sediment; Detrital Minerals; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marine Sediments; Mass Spectrometer; Provenance; R/v Polarstern; Sediment Core Data; Subglacial Till; Till; Weddell Sea", "people": "Williams, Trevor", "repository": "USAP-DC", "science_program": null, "title": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "url": "https://www.usap-dc.org/view/dataset/601378"}, {"dataset_uid": "601377", "doi": "10.15784/601377", "keywords": "40Ar/39Ar Thermochronology; Antarctica; Argon; Chemistry:sediment; Chemistry:Sediment; Detrital Minerals; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marine Sediments; Mass Spectrometer; Provenance; R/v Polarstern; Sediment Core Data; Subglacial Till; Till; Weddell Sea", "people": "Williams, Trevor", "repository": "USAP-DC", "science_program": null, "title": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "url": "https://www.usap-dc.org/view/dataset/601377"}, {"dataset_uid": "601379", "doi": "10.15784/601379", "keywords": "40Ar/39Ar Thermochronology; Antarctica; Argon; Chemistry:sediment; Chemistry:Sediment; Detrital Minerals; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marine Geoscience; Mass Spectrometer; Provenance; R/v Polarstern; Sediment Core Data; Subglacial Till; Till; Weddell Sea", "people": "Williams, Trevor", "repository": "USAP-DC", "science_program": null, "title": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "url": "https://www.usap-dc.org/view/dataset/601379"}], "date_created": "Thu, 10 Sep 2020 00:00:00 GMT", "description": "Abstract for the general public:\u003cbr/\u003e\u003cbr/\u003eThe margins of the Antarctic ice sheet have advanced and retreated repeatedly over the past few million years. Melting ice from the last retreat, from 19,000 to 9,000 years ago, raised sea levels by 8 meters or more, but the extents of previous retreats are less well known. The main goal of this project is to understand how Antarctic ice retreats: fast or slow, stepped or steady, and which parts of the ice sheet are most prone to retreat. Antarctica loses ice by two main processes: melting of the underside of floating ice shelves and calving of icebergs. Icebergs themselves are ephemeral, but they carry mineral grains and rock fragments that have been scoured from Antarctic bedrock. As the icebergs drift and melt, this \u0027iceberg-rafted debris\u0027 falls to the sea-bed and is steadily buried in marine sediments to form a record of iceberg activity and ice sheet retreat. The investigators will read this record of iceberg-rafted debris to find when and where Antarctic ice destabilized in the past. This information can help to predict how Antarctic ice will behave in a warming climate. \u003cbr/\u003e\u003cbr/\u003eThe study area is the Weddell Sea embayment, in the Atlantic sector of Antarctica. Principal sources of icebergs are the nearby Antarctic Peninsula and Weddell Sea embayment, where ice streams drain about a quarter of Antarctic ice. The provenance of the iceberg-rafted debris (IRD), and the icebergs that carried it, will be found by matching the geochemical fingerprint (such as characteristic argon isotope ages) of individual mineral grains in the IRD to that of the corresponding source area. In more detail, the project will: \u003cbr/\u003e\u003cbr/\u003e1. Define the geochemical fingerprints of the source areas of the glacially-eroded material using samples from each major ice stream entering the Weddell Sea. Existing data indicates that the hinterland of the Weddell embayment is made up of geochemically distinguishable source areas, making it possible to apply geochemical provenance techniques to determine the origin of Antarctica icebergs. Few samples of onshore tills are available from this area, so this project includes fieldwork to collect till samples to characterize detritus supplied by the Recovery and Foundation ice streams. \u003cbr/\u003e\u003cbr/\u003e2. Document the stratigraphic changes in provenance of iceberg-rafted debris (IRD) and glacially-eroded material in two deep water sediment cores in the NW Weddell Sea. Icebergs calved from ice streams in the embayment are carried by the Weddell Gyre and deposit IRD as they pass over the core sites. The provenance information identifies which groups of ice streams were actively eroding and exporting detritus to the ocean (via iceberg rafting and bottom currents), and the stratigraphy of the cores shows the relative sequence of ice stream activity through time. A further dimension is added by determining the time lag between fine sediment erosion and deposition, using a new method of uranium-series isotope measurements in fine grained material. \u003cbr/\u003e\u003cbr/\u003eTechnical abstract:\u003cbr/\u003e\u003cbr/\u003e The behavior of the Antarctic ice sheets and ice streams is a critical topic for climate change and future sea level rise. The goal of this proposal is to constrain ice sheet response to changing climate in the Weddell Sea during the three most recent glacial terminations, as analogues for potential future warming. The project will also examine possible contributions to Meltwater Pulse 1A, and test the relative stability of the ice streams draining East and West Antarctica. Much of the West Antarctic ice may have melted during the Eemian (130 to 114 Ka), so it may be an analogue for predicting future ice drawdown over the coming centuries. \u003cbr/\u003e\u003cbr/\u003eGeochemical provenance fingerprinting of glacially eroded detritus provides a novel way to reconstruct the location and relative timing of glacial retreat during these terminations in the Weddell Sea embayment. The two major objectives of the project are to: \u003cbr/\u003e\u003cbr/\u003e1. Define the provenance source areas by characterizing Ar, U-Pb, and Nd isotopic signatures, and heavy mineral and Fe-Ti oxide compositions of detrital minerals from each major ice stream entering the Weddell Sea, using onshore tills and existing sediment cores from the Ronne and Filchner Ice Shelves. Pilot data demonstrate that detritus originating from the east and west sides of the Weddell Sea embayment can be clearly distinguished, and published data indicates that the hinterland of the embayment is made up of geochemically distinguishable source areas. Few samples of onshore tills are available from this area, so this project includes fieldwork to collect till to characterize detritus supplied by the Recovery and Foundation ice streams. \u003cbr/\u003e\u003cbr/\u003e2. Document the stratigraphic changes in provenance of iceberg-rafted debris (IRD) and glacially-eroded material in two deep water sediment cores in the NW Weddell Sea. Icebergs calved from ice streams in the embayment are carried by the Weddell Gyre and deposit IRD as they pass over the core sites. The provenance information will identify which ice streams were actively eroding and exporting detritus to the ocean (via iceberg rafting and bottom currents). The stratigraphy of the cores will show the relative sequence of ice stream activity through time. A further time dimension is added by determining the time lag between fine sediment erosion and deposition, using U-series comminution ages.", "east": -20.0, "geometry": "POINT(-45 -72.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "TERRIGENOUS SEDIMENTS; Subglacial Till; USAP-DC; ICEBERGS; AMD; USA/NSF; ISOTOPES; AGE DETERMINATIONS; Argon; Provenance; Till; Amd/Us; R/V POLARSTERN; FIELD INVESTIGATION; SEDIMENT CHEMISTRY; Weddell Sea; Antarctica; LABORATORY", "locations": "Weddell Sea; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Williams, Trevor; Hemming, Sidney R.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V POLARSTERN", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Collaborative Research: Deglacial Ice Dynamics in the Weddell Sea Embayment using Sediment Provenance", "uid": "p0010128", "west": -70.0}, {"awards": "1620976 Johnson, Sarah", "bounds_geometry": "POLYGON((160 -77,160.3 -77,160.6 -77,160.9 -77,161.2 -77,161.5 -77,161.8 -77,162.1 -77,162.4 -77,162.7 -77,163 -77,163 -77.1,163 -77.2,163 -77.3,163 -77.4,163 -77.5,163 -77.6,163 -77.7,163 -77.8,163 -77.9,163 -78,162.7 -78,162.4 -78,162.1 -78,161.8 -78,161.5 -78,161.2 -78,160.9 -78,160.6 -78,160.3 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77))", "dataset_titles": "GenBank Sequence Read Archive with accession numbers SRR8217969 - SRR8217976 and project accession PRJNA506221", "datasets": [{"dataset_uid": "200164", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "GenBank Sequence Read Archive with accession numbers SRR8217969 - SRR8217976 and project accession PRJNA506221", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA506221/"}], "date_created": "Tue, 01 Sep 2020 00:00:00 GMT", "description": "Despite recent advances, we still know little about how life and its traces persist in extremely harsh conditions. What survival strategies do cells employ when pushed to their limit? Using a new technique, this project will investigate whether Antarctic paleolakes harbor \"microbial seed banks,\" or caches of viable microbes adapted to past paleoenvironments that could help transform our understanding of how cells survive over ancient timescales. Findings from this investigation could also illuminate novel DNA repair pathways with possible biomedical and biotechnology applications and help to refine life detection strategies for Mars. The project will bring Antarctic research to Georgetown University\u0027\u0027s campus for the first time, providing training opportunities in cutting edge analytical techniques for multiple students and a postdoctoral fellow. The field site will be the McMurdo Dry Valleys, which provide an unrivaled opportunity to investigate fundamental questions about the persistence of microbial life. Multiple lines of evidence, from interbedded and overlying ashfall deposits to parameterized models, suggest that the large-scale landforms there have remained essentially fixed as far back as the middle of the Miocene Epoch (i.e., ~8 million years ago). This geologic stability, coupled with geographic isolation and a steady polar climate, mean that biological activity has probably undergone few qualitative changes over the last one to two million years. The team will sample paleolake facies using sterile techniques from multiple Dry Valleys sites and extract DNA from entombed organic material. Genetic material will then be sequenced using Pacific Biosciences\u0027\u0027 Single Molecule, Real-Time DNA sequencing technology, which sequences native DNA as opposed to amplified DNA, thereby eliminating PCR primer bias, and enables read lengths that have never before been possible. The data will be analyzed with a range of bioinformatic techniques, with results that stand to impact our understanding of cell biology, Antarctic paleobiology, microbiology and biogeography, biotechnology, and planetary science.", "east": 163.0, "geometry": "POINT(161.5 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "ECOSYSTEM FUNCTIONS; COMMUNITY DYNAMICS; BACTERIA/ARCHAEA; CYANOBACTERIA (BLUE-GREEN ALGAE); LABORATORY; Dry Valleys", "locations": "Dry Valleys", "north": -77.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Johnson, Sarah", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "NCBI GenBank", "repositories": "NCBI GenBank", "science_programs": null, "south": -78.0, "title": "EAGER: Single-Molecule DNA Sequencing of Antarctic Paleolakes", "uid": "p0010125", "west": 160.0}, {"awards": "1745049 Tyler, Scott", "bounds_geometry": null, "dataset_titles": "Ice Diver Madison Run #1 March 1, 2020", "datasets": [{"dataset_uid": "601368", "doi": "10.15784/601368", "keywords": "Antarctica; North America; Temperature", "people": "Tyler, Scott W.", "repository": "USAP-DC", "science_program": null, "title": "Ice Diver Madison Run #1 March 1, 2020", "url": "https://www.usap-dc.org/view/dataset/601368"}], "date_created": "Mon, 03 Aug 2020 00:00:00 GMT", "description": "Nontechnical Abstract\u003cbr/\u003eStudies in Antarctica are, at present, severely limited by the costs of placing measurement instruments within and beneath thousands of meters of ice. Our aim is to enable dense, widespread measurement-networks by advancing development of low-cost ice melt probe technology to deploy instruments. Ice melt probes use electrical energy to descend through thick ice with little support structure on the ice surface. We are extending previous technology by using anti-freeze to maintain a partially open melt-hole above a descending probe, deploying as we go a new a new fiber-optic technology to measure ice temperature. Ice temperature measurements will reveal spatial patterns of heat welling up from the Earth beneath the ice, which in turn will contribute greatly to finding ancient ice that contains global climate records, and to understanding how ice flow may raise sea levels. Our immediate objective in this 1-year project is to test and refine our anti-freeze-based method in a 15 meter-tall ice column at the University of Wisconsin, so as to reduce technical risk in future field tests. \u003cbr/\u003e\u003cbr/\u003eTechnical Abstract\u003cbr/\u003eThe overarching aim of our development is to enable widespread, spatially dense deployments of instruments within and beneath the Antarctic Ice Sheet for a variety of investigations, beginning with observations of basal temperature and geothermal flux at the base of the ice sheet. Dense, widespread deployment requires logistical costs far below current costs for ice drilling and coring. Our approach is to extend ice melt probe technology (which is inherently light, logistically) to allow the progressive deployment of cable for Distributed Temperature Sensing (DTS) from the ice surface as the probe descends, without greatly increasing logistical costs. Our extension is based on arresting refreezing of the melt-hole above the probe (at a diameter a few times the cable diameter) by injecting anti-freeze - specifically, ethanol at temperature near 0C - a few meters above the probe during descent. After thermal equilibration of the liquid ethanol/water column with the ice, DTS measurements yield the depth-profile of ice sheet temperature, from which basal temperature and (over frozen beds) geothermal flux can be inferred. We have carried out initial trials of our approach in a cold-room laboratory, but field work based only on such small-scale tests may still involve unnecessary risk. We therefore propose further testing at a facility of the Ice Drilling Design and Operations (IDDO) facility in Madison, WI. The new trials will test our approaches to melt-hole control and probe recovery in the taller column, will test cable and cable-tension-management methods more nearly approximating those needed to work on ice sheets, and will demonstrate the Distributed Temperature Sensing in its field configuration.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; North America; ICE DEPTH/THICKNESS; NOT APPLICABLE", "locations": "North America", "north": null, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Instrumentation and Facilities", "paleo_time": null, "persons": "Tyler, Scott W.", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Toward Dense Observation of Geothermal Fluxes in Antarctica Via Logistically Light Instrument Deployment", "uid": "p0010121", "west": null}, {"awards": "1443576 Panter, Kurt", "bounds_geometry": "POLYGON((-154.1 -86.9,-154.03 -86.9,-153.96 -86.9,-153.89 -86.9,-153.82 -86.9,-153.75 -86.9,-153.68 -86.9,-153.61 -86.9,-153.54 -86.9,-153.47 -86.9,-153.4 -86.9,-153.4 -86.92,-153.4 -86.94,-153.4 -86.96,-153.4 -86.98,-153.4 -87,-153.4 -87.02,-153.4 -87.04,-153.4 -87.06,-153.4 -87.08,-153.4 -87.1,-153.47 -87.1,-153.54 -87.1,-153.61 -87.1,-153.68 -87.1,-153.75 -87.1,-153.82 -87.1,-153.89 -87.1,-153.96 -87.1,-154.03 -87.1,-154.1 -87.1,-154.1 -87.08,-154.1 -87.06,-154.1 -87.04,-154.1 -87.02,-154.1 -87,-154.1 -86.98,-154.1 -86.96,-154.1 -86.94,-154.1 -86.92,-154.1 -86.9))", "dataset_titles": "Volcanological and Petrological measurements on Mt. Early and Sheridan Bluff volcanoes, upper Scott Glacier, Antarctica ", "datasets": [{"dataset_uid": "601331", "doi": "10.15784/601331", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochronology; Glacial Volcanism; Magma Differentiation; Major Elements; Mantle Melting; Solid Earth; Trace Elements; Transantarctic Mountains", "people": "Panter, Kurt", "repository": "USAP-DC", "science_program": null, "title": "Volcanological and Petrological measurements on Mt. Early and Sheridan Bluff volcanoes, upper Scott Glacier, Antarctica ", "url": "https://www.usap-dc.org/view/dataset/601331"}], "date_created": "Fri, 05 Jun 2020 00:00:00 GMT", "description": "Predictions of future sea level rise require better understanding of the changing dynamics of the Greenland and Antarctic ice sheets. One way to better understand the past history of the ice sheets is to obtain records from inland ice for past geological periods, particularly in Antarctica, the world\u0027s largest remaining ice sheet. Such records are exceedingly rare, and can be acquired at volcanic outcrops in the La Gorce Mountains of the central Transantarctic Mountains. Volcanoes now exposed within the La Gorce Mountains erupted beneath the East Antarctic ice sheet and the data collected will record how thick the ice sheet was in the past. In addition, information will be used to determine the thermal conditions at the base of the ice sheet, which impacts ice sheet stability. The project will also investigate the origin of volcanic activity in Antarctica and links to the West Antarctic Rift System (WARS). The WARS is a broad area of extended (i.e. stretched) continental crust, similar to that found in East Africa, and volcanism is wide spread and long-lived (65 million years to currently active) and despite more than 50 years of research, the fundamental cause of volcanism and rifting in Antarctica is still vigorously debated. The results of this award therefore also potentially impact the study of oceanic volcanism in the entire southwestern Pacific region (e.g., New Zealand and Australia), where volcanic fields of similar composition and age have been linked by common magma sources and processes. The field program includes a graduate student who will work on the collection, analysis, and interpretation of petrological data as part of his/her Masters project. The experience and specialized analytical training being offered will improve the quality of the student\u0027s research and optimize their opportunities for their future. The proposed work fosters faculty and student national and international collaboration, including working with multi-user facilities that provide advanced technological mentoring of science students. Results will be broadly disseminated in peer-reviewed journals, public presentations at science meetings, and in outreach activities. Petrologic and geochemical data will be disseminated to be the community through the Polar Rock Repository. The study of subglacially erupted volcanic rocks has been developed to the extent that it is now the most powerful proxy methodology for establishing precise \u0027snapshots\u0027 of ice sheets, including multiple critical ice parameters. Such data should include measurements of ice thickness, surface elevation and stability, which will be used to verify, or reject, published semi-empirical models relating ice dynamics to sea level changes. In addition to establishing whether East Antarctic ice was present during the formation of the volcanoes, data will be used to derive the coeval ice thicknesses, surface elevations and basal thermal regime(s) in concert with a precise new geochronology using the 40Ar/39Ar dating method. Inferences from measurement of standard geochemical characteristics (major, trace elements and Sr, Nd, Pb, O isotopes) will be used to investigate a possible relationship between the volcanoes and the recently discovered subglacial ridge under the East Antarctic ice, which may be a rift flank uplift. The ridge has never been sampled, is undated and its significance is uncertain. The data will provide important new information about the deep Earth and geodynamic processes beneath this mostly ice covered and poorly understood sector of the Antarctic continent.", "east": -153.4, "geometry": "POINT(-153.75 -87)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; Mantle Melting; Magma Differentiation; Geochronology; Glacial Volcanism; GEOCHEMISTRY; Major Elements; ISOTOPES; Trace Elements; Transantarctic Mountains; LABORATORY; LAVA COMPOSITION/TEXTURE; USAP-DC; LAND RECORDS", "locations": "Transantarctic Mountains", "north": -86.9, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Panter, Kurt", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.1, "title": "Investigating Early Miocene Sub-ice Volcanoes in Antarctica for Improved Modeling and understanding of a Large Magmatic Province", "uid": "p0010105", "west": -154.1}, {"awards": "9319877 Finn, Carol; 9319854 Bell, Robin; 9319369 Blankenship, Donald", "bounds_geometry": "POLYGON((-155 -77.5,-150 -77.5,-145 -77.5,-140 -77.5,-135 -77.5,-130 -77.5,-125 -77.5,-120 -77.5,-115 -77.5,-110 -77.5,-105 -77.5,-105 -78.2,-105 -78.9,-105 -79.6,-105 -80.3,-105 -81,-105 -81.7,-105 -82.4,-105 -83.1,-105 -83.8,-105 -84.5,-110 -84.5,-115 -84.5,-120 -84.5,-125 -84.5,-130 -84.5,-135 -84.5,-140 -84.5,-145 -84.5,-150 -84.5,-155 -84.5,-155 -83.8,-155 -83.1,-155 -82.4,-155 -81.7,-155 -81,-155 -80.3,-155 -79.6,-155 -78.9,-155 -78.2,-155 -77.5))", "dataset_titles": "SOAR-BSB Airborne gravity data for the CASERTZ/WAIS project; SOAR-IRE airborne gravity data for the CASERTZ/WAIS project; SOAR-TKD airborne gravity data for the CASERTZ/WAIS project; SOAR-WAZ Airborne gravity data for the CASERTZ/WAIS project", "datasets": [{"dataset_uid": "601291", "doi": "10.15784/601291", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Solid Earth; WAIS", "people": "Bell, Robin; Arko, Robert A.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-WAZ Airborne gravity data for the CASERTZ/WAIS project", "url": "https://www.usap-dc.org/view/dataset/601291"}, {"dataset_uid": "601288", "doi": "10.15784/601288", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Solid Earth; WAIS", "people": "Arko, Robert A.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-BSB Airborne gravity data for the CASERTZ/WAIS project", "url": "https://www.usap-dc.org/view/dataset/601288"}, {"dataset_uid": "601289", "doi": "10.15784/601289", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Solid Earth; WAIS", "people": "Bell, Robin; Arko, Robert A.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-TKD airborne gravity data for the CASERTZ/WAIS project", "url": "https://www.usap-dc.org/view/dataset/601289"}, {"dataset_uid": "601290", "doi": "10.15784/601290", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Solid Earth; WAIS", "people": "Arko, Robert A.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-IRE airborne gravity data for the CASERTZ/WAIS project", "url": "https://www.usap-dc.org/view/dataset/601290"}], "date_created": "Fri, 24 Apr 2020 00:00:00 GMT", "description": "This award supports a project to conduct an integrated geophysical survey over a large portion of the West Antarctic Ice Sheet (WAIS) toward an understanding of the dynamic behavior of the ice sheet and the nature of the lithosphere beneath the ice sheet. West Antarctica is characterized by two kinds of the Earth s most dynamic systems, a continental rift (the West Antarctic Rift System) and a marine based ice sheet (the WAIS). Active continental rift systems, caused by divergent plate motions, result in thinned continental crust. Associated with the thin crust are fault-bounded sedimentary basins, active volcanism, and elevated heat flow. Marine ice sheets are characterized by rapidly moving streams of ice, penetrating and draining a slowly moving ice reservoir. Evidence left by past marine ice sheets indicates that they may have a strongly non- linear response to long-term climate change which results in massive and rapid discharges of ice. Understanding the evolution of the ice stream system and its interaction with the interior ice is the key to understanding this non-linear response. Subglacial geology and ice dynamics are generally studied in isolation, but evidence is mounting that the behavior of the West Antarctic ice streams may be closely linked to the nature of the underlying West Antarctic rift system. The fast moving ice streams appear to glide on a lubricating layer of water-saturated till. This till requires easily eroded sediment and a source of water, both of which may be controlled by the geology of the rift system; the sediments from the fault-bounded basins and the water from the elevated heat flux associated with active lithospheric extension. This project represents an interdisciplinary aerogeophysical study to characterize the lithosphere of the West Antarctic rift system beneath critical regions of the WAIS. The objective is to determine the effects of the rift architect ure, as manifested by the distribution of sedimentary basins and volcanic constructs, on the ice stream system. The research tool is a unique geophysical aircraft with laser altimetry, ice penetrating radar, aerogravity, and aeromagnetic systems integrated with a high precision kinematic GPS navigation system. It is capable of imaging both the surface and bed of the ice sheet while simultaneously measuring the gravity and magnetic signature of the subglacial lithosphere. Work to be done under this award will build on work already completed in the southern sector of central West Antarctica and it will focus on the region of the Byrd Subglacial Basin and Ice Stream D. The ice sheet in these regions is completely covered by satellite imagery and so this project will be integrated with remote sensing studies of the ice stream. The changing dynamics of Ice Stream D, as with other West Antarctic ice streams, seem to be correlated with changes in the morphological provinces of the underlying rift system. The experimental targets proceed from the divide of the interior ice, downstream through the onset of streaming to the trunk of Ice Stream D. This study will be coordinated with surface glaciological investigations of Ice Stream D and will be used to guide cooperative over-snow seismic investigations of the central West Antarctic rift system. The data will also be used to select a site for future deep ice coring along the crest of the WAIS. These data represent baseline data for long term global change monitoring work and represent crucial boundary conditions for ice sheet modeling efforts.", "east": -105.0, "geometry": "POINT(-130 -81)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": true, "keywords": "USAP-DC; MAGNETIC FIELD; GRAVITY FIELD; Antarctica; GLACIERS/ICE SHEETS; Marie Byrd Land; Airborne Gravity", "locations": "Marie Byrd Land; Antarctica", "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Bell, Robin; Blankenship, Donald D.; Finn, C. A.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.5, "title": "Collaborative Research: Lithospheric Controls on the Behavior of the West Antarctic Ice Sheet: Corridor Aerogeophysics of Eastern Ross Transect Zone", "uid": "p0010094", "west": -155.0}, {"awards": "1443268 Beard, Brian; 1443437 Carlson, Anders", "bounds_geometry": "POLYGON((-80 -65,-79 -65,-78 -65,-77 -65,-76 -65,-75 -65,-74 -65,-73 -65,-72 -65,-71 -65,-70 -65,-70 -65.5,-70 -66,-70 -66.5,-70 -67,-70 -67.5,-70 -68,-70 -68.5,-70 -69,-70 -69.5,-70 -70,-71 -70,-72 -70,-73 -70,-74 -70,-75 -70,-76 -70,-77 -70,-78 -70,-79 -70,-80 -70,-80 -69.5,-80 -69,-80 -68.5,-80 -68,-80 -67.5,-80 -67,-80 -66.5,-80 -66,-80 -65.5,-80 -65))", "dataset_titles": "Radiogenic isotopes of ODP Site 178-1096; Sand content of ODP Site 178-1096", "datasets": [{"dataset_uid": "200109", "doi": " doi:10.1594/PANGAEA.909411", "keywords": null, "people": null, "repository": "PANGAEA", "science_program": null, "title": "Sand content of ODP Site 178-1096", "url": "https://doi.pangaea.de/10.1594/PANGAEA.909411 "}, {"dataset_uid": "200108", "doi": " doi:10.1594/PANGAEA.909407 ", "keywords": null, "people": null, "repository": "PANGAEA", "science_program": null, "title": "Radiogenic isotopes of ODP Site 178-1096", "url": "https://doi.pangaea.de/10.1594/PANGAEA.909407"}], "date_created": "Fri, 31 Jan 2020 00:00:00 GMT", "description": "This project developed sediment provenance proxies to trace the sources of sediment discharged by the WAIS to the continental rise. The WAIS erodes sediments from various West Antarctic geologic terranes that are deposited in adjacent drift sites. The geochemistry and magnetic properties of drift sediments reflect the tectono-metamorphic history of their source terranes. Deglaciation of a terrane during WAIS collapse should be detectable by the loss of the terrane\u2019s geochemical and magnetic signature in continental-rise detrital sediments. Continental shelf late-Holocene sediments from near the current WAIS groundling line were analyzed for silt- and claysize Sr-Nd-Pb isotopes and major-trace elements. The suite of cores spans from the eastern Ross Sea to the northern tip of the Antarctic Peninsula and established the provenance signatures of the Ross and Amundsen Provinces of Marie Byrd Land, Pine Island Bay, Thurston Island/Eight Coast Block, Ellsworth-Whitmore Crustal Block, and Antarctic Peninsula terranes. Many of these terranes have similar tectono-metamorphic histories but Sr-Nd isotope data from detrital sediments suggest at least 3 distinct provenance signatures. This comprehensive grain-size-specific provenance data adds to on-going collection of glacial till mineral and bulk provenance data. An initial down core study of Ocean Drilling Program Site 1096 in the Bellingshausen Sea was used to assess the utility of these new grain-size-specific provenance proxies in documenting WAIS collapse. We found the presence of both the WAIS and APIS over the last 115,000 years, but absence of the WAIS before 115,000 years ago. This means that the WAIS was gone during the last interglacial period, an interval when sea level was at least 6 meters above present. ", "east": -70.0, "geometry": "POINT(-75 -67.5)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "West Antarctic Ice Sheet; GLACIERS/ICE SHEETS; West Antarctica; PALEOCLIMATE RECONSTRUCTIONS; NOT APPLICABLE; USAP-DC; ISOTOPES; GEOCHEMISTRY; Bellingshausen Sea", "locations": "West Antarctic Ice Sheet; West Antarctica; Bellingshausen Sea", "north": -65.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Anders, Carlson; Beard, Brian; Stoner, Joseph", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "PANGAEA", "repositories": "PANGAEA", "science_programs": null, "south": -70.0, "title": "Collaborative Research: Development of a Suite of Proxies to Detect Past Collapse of the West Antarctic Ice Sheet", "uid": "p0010079", "west": -80.0}, {"awards": "1443497 Siddoway, Christine; 1443677 Padman, Laurence; 1443534 Bell, Robin; 1443498 Fricker, Helen", "bounds_geometry": "POLYGON((-180 -77,-177 -77,-174 -77,-171 -77,-168 -77,-165 -77,-162 -77,-159 -77,-156 -77,-153 -77,-150 -77,-150 -77.9,-150 -78.8,-150 -79.7,-150 -80.6,-150 -81.5,-150 -82.4,-150 -83.3,-150 -84.2,-150 -85.1,-150 -86,-153 -86,-156 -86,-159 -86,-162 -86,-165 -86,-168 -86,-171 -86,-174 -86,-177 -86,180 -86,178.1 -86,176.2 -86,174.3 -86,172.4 -86,170.5 -86,168.6 -86,166.7 -86,164.8 -86,162.9 -86,161 -86,161 -85.1,161 -84.2,161 -83.3,161 -82.4,161 -81.5,161 -80.6,161 -79.7,161 -78.8,161 -77.9,161 -77,162.9 -77,164.8 -77,166.7 -77,168.6 -77,170.5 -77,172.4 -77,174.3 -77,176.2 -77,178.1 -77,-180 -77))", "dataset_titles": "Basal Melt, Ice thickness and structure of the Ross Ice Shelf using airborne radar data; CATS2008: Circum-Antarctic Tidal Simulation version 2008; CATS2008_v2023: Circum-Antarctic Tidal Simulation 2008, version 2023; Deep ICE (DICE) Radar Dataset from Ross Ice Shelf (ROSETTA-Ice); LiDAR Nadir and Swath Data from Ross Ice Shelf, Antarctica (ROSETTA-Ice); ROSETTA-Ice data page; Ross Sea ocean model simulation used to support ROSETTA-Ice ; Shallow Ice Radar (SIR) Dataset from Ross Ice Shelf (ROSETTA-Ice)", "datasets": [{"dataset_uid": "601772", "doi": "10.15784/601772", "keywords": "Antarctica; Cryosphere; Inverse Modeling; Model Data; Ocean Currents; Oceans; Sea Surface; Southern Ocean; Tide Model; Tides", "people": "Greene, Chad A.; Howard, Susan L.; Sutterley, Tyler; Erofeeva, Svetlana; Padman, Laurence", "repository": "USAP-DC", "science_program": null, "title": "CATS2008_v2023: Circum-Antarctic Tidal Simulation 2008, version 2023", "url": "https://www.usap-dc.org/view/dataset/601772"}, {"dataset_uid": "601255", "doi": "10.15784/601255", "keywords": "Antarctica; Basal Melt; Ice Shelf; Model Output; Ocean Circulation Model; Ross Ice Shelf; Ross Sea", "people": "Padman, Laurence; Howard, Susan L.; Springer, Scott", "repository": "USAP-DC", "science_program": null, "title": "Ross Sea ocean model simulation used to support ROSETTA-Ice ", "url": "https://www.usap-dc.org/view/dataset/601255"}, {"dataset_uid": "601242", "doi": "10.15784/601242", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Penetrating Radar; Ice-Shelf Basal Melting; Radar Echo Sounder; Radar Echo Sounding; Snow/ice; Snow/Ice", "people": "Hulbe, Christina; Das, Indrani; Bell, Robin; Fricker, Helen; Padman, Laurence; Tinto, Kirsty; Siegfried, Matt; Cordero, Isabel; Mosbeux, Cyrille; Frearson, Nicholas; Dhakal, Tejendra; Siddoway, Christine", "repository": "USAP-DC", "science_program": null, "title": "Basal Melt, Ice thickness and structure of the Ross Ice Shelf using airborne radar data", "url": "https://www.usap-dc.org/view/dataset/601242"}, {"dataset_uid": "601794", "doi": null, "keywords": "Antarctica; Cryosphere; Remote Sensing; Ross Ice Shelf", "people": "Spergel, Julian; Packard, Sarah; Cordero, Isabel; Frearson, Nicholas; Bertinato, Christopher; Keeshin, Skye; Wearing, Martin; Bell, Robin; Dong, LingLing; Das, Indrani; Dhakal, Tejendra; Chu, Winnie", "repository": "USAP-DC", "science_program": null, "title": "Shallow Ice Radar (SIR) Dataset from Ross Ice Shelf (ROSETTA-Ice)", "url": "https://www.usap-dc.org/view/dataset/601794"}, {"dataset_uid": "601235", "doi": "10.15784/601235", "keywords": "Antarctica; Inverse Modeling; Model Data; Ocean Currents; Sea Surface; Tidal Models; Tides", "people": "Padman, Laurence; Howard, Susan L.; Erofeeva, Svetlana", "repository": "USAP-DC", "science_program": null, "title": "CATS2008: Circum-Antarctic Tidal Simulation version 2008", "url": "https://www.usap-dc.org/view/dataset/601235"}, {"dataset_uid": "601789", "doi": null, "keywords": "Airborne Radar; Antarctica; Cryosphere; Ice Thickness; Remote Sensing; Ross Ice Shelf", "people": "Frearson, Nicholas; Dhakal, Tejendra; Bertinato, Christopher; Millstein, Joanna; Wilner, Joel; Dong, LingLing; Das, Indrani; Spergel, Julian; Chu, Winnie; Bell, Robin; Cordero, Isabel", "repository": "USAP-DC", "science_program": null, "title": "Deep ICE (DICE) Radar Dataset from Ross Ice Shelf (ROSETTA-Ice)", "url": "https://www.usap-dc.org/view/dataset/601789"}, {"dataset_uid": "200100", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "ROSETTA-Ice data page", "url": "http://wonder.ldeo.columbia.edu/data/ROSETTA-Ice/"}, {"dataset_uid": "601788", "doi": null, "keywords": "Antarctica; Cryosphere; Ross Ice Shelf", "people": "Starke, Sarah; Boghosian, Alexandra; Becker, Maya K; Dhakal, Tejendra; Bertinato, Christopher; Locke, Caitlin", "repository": "USAP-DC", "science_program": null, "title": "LiDAR Nadir and Swath Data from Ross Ice Shelf, Antarctica (ROSETTA-Ice)", "url": "https://www.usap-dc.org/view/dataset/601788"}], "date_created": "Wed, 03 Jul 2019 00:00:00 GMT", "description": "The Ross Ice Shelf is the largest existing ice shelf in Antarctica, and is currently stabilizing significant portions of the land ice atop the Antarctic continent. An ice shelf begins where the land ice goes afloat on the ocean, and as such, the Ross Ice Shelf interacts with the ocean and seafloor below, and the land ice behind. Currently, the Ross Ice Shelf slows down, or buttresses, the fast flowing ice streams of the West Antarctic Ice Sheet (WAIS), a marine-based ice sheet, which if melted, would raise global sea level by 3-4 meters. The Ross Ice Shelf average ice thickness is approximately 350 meters, and it covers approximately 487,000 square kilometers, an area slightly larger than the state of California. The Ross Ice Shelf has disappeared during prior interglacial periods, suggesting in the future it may disappear again. Understanding the dynamics, stability and future of the West Antarctic Ice Sheet therefore requires in-depth knowledge of the Ross Ice Shelf. The ROSETTA-ICE project brings together scientists from 4 US institutions and from the Institute of Geological and Nuclear Sciences Limited, known as GNS Science, New Zealand. The ROSETTA-ICE data on the ice shelf, the water beneath the ice shelf, and the underlying rocks, will allow better predictions of how the Ross Ice Shelf will respond to changing climate, and therefore how the WAIS will behave in the future. The interdisciplinary ROSETTA-ICE team will train undergraduate and high school students in cutting edge research techniques, and will also work to educate the public via a series of vignettes integrating ROSETTA-ICE science with the scientific and human history of Antarctic research.\u003cbr/\u003e\u003cbr/\u003eThe ROSETTA-ICE survey will acquire gravity and magnetics data to determine the water depth beneath the ice shelf. Radar, LIDAR and imagery systems will be used to map the Ross Ice Shelf thickness and fine structure, crevasses, channels, debris, surface accumulation and distribution of marine ice. The high resolution aerogeophysical data over the Ross Ice Shelf region in Antarctica will be acquired using the IcePod sensor suite mounted externally on an LC-130 aircraft operating from McMurdo Station, Antarctica. Field activities will include ~36 flights on LC-130 aircraft over two field seasons in Antarctica. The IcePod instrument suite leverages the unique experience of the New York Air National Guard operating in Antarctica for NSF scientific research as well as infrastructure and logistics. The project will answer questions about the stability of the Ross Ice Shelf in future climate, and the geotectonic evolution of the Ross Ice Shelf Region, a key component of the West Antarctic Rift system. The comprehensive benchmark data sets acquired will enable broad, interdisciplinary analyses and modeling, which will also be performed as part of the project. ROSETTA-ICE will illuminate Ross ice sheet-ice shelf-ocean dynamics as the system nears a critical juncture but still is intact. Through interacting with an online data visualization tool, and comparing the ROSETTA-ICE data and results from earlier studies, we will engage students and young investigators, equipping them with new capabilities for the study of critical earth systems that influence global climate.", "east": 161.0, "geometry": "POINT(-174.5 -81.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LIDAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e PROTON MAGNETOMETER", "is_usap_dc": true, "keywords": "Airborne Radar; LIDAR; Ross Ice Shelf; SALINITY; SALINITY/DENSITY; CONDUCTIVITY; ICE DEPTH/THICKNESS; Tidal Models; GRAVITY ANOMALIES; Ross Sea; Antarctica; BATHYMETRY; C-130; MAGNETIC ANOMALIES; USAP-DC; Airborne Gravity", "locations": "Ross Sea; Antarctica; Ross Ice Shelf", "north": -77.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Bell, Robin; Frearson, Nicholas; Das, Indrani; Fricker, Helen; Padman, Laurence; Springer, Scott; Siddoway, Christine; Tinto, Kirsty", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e C-130", "repo": "USAP-DC", "repositories": "PI website; USAP-DC", "science_programs": null, "south": -86.0, "title": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)", "uid": "p0010035", "west": -150.0}, {"awards": "1743326 Kingslake, Jonathan", "bounds_geometry": null, "dataset_titles": "Report on Antarctic surface hydrology workshop, LDEO, 2018 ", "datasets": [{"dataset_uid": "601170", "doi": "10.15784/601170", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hydrology; Ice Sheet Stability; Ice Shelf; Report; Workshop", "people": "Lenaerts, Jan; Kingslake, Jonathan; Trusel, Luke; Banwell, Alison; Bell, Robin; Das, Indrani; DeConto, Robert; Tedesco, Marco; Schoof, Christian", "repository": "USAP-DC", "science_program": null, "title": "Report on Antarctic surface hydrology workshop, LDEO, 2018 ", "url": "https://www.usap-dc.org/view/dataset/601170"}], "date_created": "Tue, 26 Mar 2019 00:00:00 GMT", "description": "Ice shelves are the floating portions of glaciers that terminate in the ocean. They are common around the periphery of Antarctica. The accumulation of surface meltwater on or near the surface of ice shelves can play a role in ice-shelf collapse, which leads to accelerated loss of grounded ice and sea-level rise. Recent studies have showed that present-day meltwater generation and movement across the surface of Antarctica is more widespread than previously thought and is expected to increase. Consequently, there is a growing need to address the role of surface water in forecasts of ice-shelf behavior. While much progress has been made, understanding of the role of water in ice-shelf collapse is still in its infancy. This award supports a workshop that will bring together experts from multiple disciplines that, together, can advance understanding of Antarctic surface hydrology and its role in the future stability of ice shelves. This workshop will bring together U.S. and international scientists with expertise in ice-sheet dynamics, glacial hydrology, climatology, and other disciplines to identify critical knowledge gaps and move the community towards answering fundamental questions such as: What climate dynamics are responsible for surface meltwater generation in Antarctica? What controls the spatiotemporal distribution of meltwater ponds on Antarctic ice shelves? Where is meltwater generated, where does it pond today, and how will this change this century? How will meltwater impact ice shelves? How will surface hydrology impact sea-level this century? The deliberations will be captured in a workshop report.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; ICE SHEETS; North America; USAP-DC", "locations": "North America", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Kingslake, Jonathan; Tedesco, Marco; Trusel, Luke", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Workshop on Antarctic Surface Hydrology and Future Ice-shelf Stability", "uid": "p0010021", "west": null}, {"awards": "1443394 Pollard, David; 1443347 Condron, Alan", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic Ice Sheet simulations for role of freshwater in future warming scenarios; Future climate response to Antarctic Ice Sheet melt caused by anthropogenic warming; Simulated changes in Southern Ocean salinity", "datasets": [{"dataset_uid": "601449", "doi": "10.15784/601449", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Meltwater", "people": "Condron, Alan", "repository": "USAP-DC", "science_program": null, "title": "Future climate response to Antarctic Ice Sheet melt caused by anthropogenic warming", "url": "https://www.usap-dc.org/view/dataset/601449"}, {"dataset_uid": "601154", "doi": "10.15784/601154 ", "keywords": "Antarctic; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Ice Sheet Model; Meltwater; Model Data; Modeling; Model Output", "people": "Pollard, David", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Ice Sheet simulations for role of freshwater in future warming scenarios", "url": "https://www.usap-dc.org/view/dataset/601154"}, {"dataset_uid": "601442", "doi": "10.15784/601442", "keywords": "Antarctica; Computer Model; Freshwater; Glaciers/ice Sheet; Glaciers/Ice Sheet; Model Data; Ocean Model; Oceans; Salinity", "people": "Condron, Alan", "repository": "USAP-DC", "science_program": null, "title": "Simulated changes in Southern Ocean salinity", "url": "https://www.usap-dc.org/view/dataset/601442"}], "date_created": "Mon, 04 Feb 2019 00:00:00 GMT", "description": "A great deal of uncertainty remains over how changes in high-latitude freshwater forcing will impact the stability of global ocean circulation, and in particular the strength of the Atlantic Meridional Overturning Circulation (AMOC) in the next 100-300 years, especially in realistic models. Indeed, it is still not understood whether increased Southern Ocean freshwater forcing will act to intensify the AMOC and warm the Northern Hemisphere or weaken it and trigger a cooling. The requirement to accurately assess climate sensitivity to freshwater forcing is heightened by increasing evidence that the marine-based West Antarctic Ice Sheet (WAIS) is vulnerable to rapid retreat and collapse on multidecadal-to-centennial timescales. Observations collected over the last 30 years indicate that WAIS is losing ice at an accelerated rate and may signal that the ice sheet has already begun a rapid and irreversible collapse. In addition, future simulations of the Antarctic ice sheet by members of our Project Team show the potential for far more rapid Antarctic ice sheet retreat in the future than previously simulated, suggesting that the discharge of enormous fluxes of icebergs and freshwater to the Southern Ocean should be considered a possibility in the near-future. Here, we performed a suite of coupled numerical climate model simulations to more accurately determine the sensitivity of global ocean circulation to freshwater and iceberg discharge from the Antarctic Ice Sheet (AIS) in the future under IPCC RCP scenarios 4.5 and 8.5. In our model, the input of freshwater and ice was provided by a dynamic ice sheet-shelf model that predicts a full collapse of the WAIS in the next ~100 years. Significantly, we find that accounting for Antarctic discharge raises subsurface ocean temperatures by \u003e1\u00b0C at the ice sheet grounding line, relative to model simulations that are unable to capture this discharge. In contrast, we find that the increased meltwater causes a dramatic expansion of sea ice and a 2\u00b0 - 10\u00b0C cooling of the surface air and surface ocean temperatures over the Southern Ocean that would have the potential to stabilize/reduce projected future ice sheet melt rates. Our work thus highlights that the future stability of the Antarctic ice sheet will likely be governed by whether any surface cooling can counteract any increased rates of subsurface melt.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e DATA ANALYSIS \u003e ENVIRONMENTAL MODELING \u003e COMPUTER", "is_usap_dc": true, "keywords": "USAP-DC; USA/NSF; AMD; MODELS; Amd/Us; Antarctica; GLACIERS/ICE SHEETS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Pollard, David; Condron, Alan; DeConto, Robert", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Assessing the Global Climate Response to Melting of the Antarctic Ice Sheet", "uid": "p0010007", "west": -180.0}, {"awards": "1341476 Moran, Amy", "bounds_geometry": "POINT(166.666 -77.84999)", "dataset_titles": "Cuticle morphology and oxygen gradients of Antarctic sea spiders; Physiological and biochemical measurements on Pycnogonida from McMurdo Sound; Physiological, biomechanical, and locomotory data on Antarctic sea spiders fouled and unfouled with epibionts; Size scaling of oxygen physiology and metabolic rate of Antarctic sea spiders", "datasets": [{"dataset_uid": "601149", "doi": "10.15784/601149", "keywords": "Antarctica; Barnacles; Biota; Cuticle; Epibionts; Fouling; Grooming; Locomotion; Oxygen; Respiration", "people": "Tobalske, Bret; Lane, Steven J.; Moran, Amy; Woods, H. Arthur; Shishido, Caitlin", "repository": "USAP-DC", "science_program": null, "title": "Physiological, biomechanical, and locomotory data on Antarctic sea spiders fouled and unfouled with epibionts", "url": "https://www.usap-dc.org/view/dataset/601149"}, {"dataset_uid": "601142", "doi": "10.15784/601142", "keywords": "Antarctica; Biomechanics; Biota; Cold Adaptation; McMurdo Sound; Metabolism; Oceans; Oxygen; Pycnogonida; Southern Ocean", "people": "Tobalske, Bret; Moran, Amy; Woods, H. Arthur", "repository": "USAP-DC", "science_program": null, "title": "Physiological and biochemical measurements on Pycnogonida from McMurdo Sound", "url": "https://www.usap-dc.org/view/dataset/601142"}, {"dataset_uid": "601150", "doi": "10.15784/601150", "keywords": "Antarctica; Biota; Body Size; Cuticle; Metabolic Rate; Oxygen; Polar Gigantism; Respiration; Size Limits; Southern Ocean; Temperature", "people": "Moran, Amy; Lane, Steven J.; Woods, H. Arthur; Shishido, Caitlin", "repository": "USAP-DC", "science_program": null, "title": "Size scaling of oxygen physiology and metabolic rate of Antarctic sea spiders", "url": "https://www.usap-dc.org/view/dataset/601150"}, {"dataset_uid": "601145", "doi": "10.15784/601145", "keywords": "Antarctica; Benthos; Biota; Body Size; Cuticle; McMurdo Sound; Microelectrodes; Microscope; Microscopy; Oxygen; Pore; Respiration; Sea Spider; Southern Ocean", "people": "Arthur Woods, H.; Woods, H. Arthur", "repository": "USAP-DC", "science_program": null, "title": "Cuticle morphology and oxygen gradients of Antarctic sea spiders", "url": "https://www.usap-dc.org/view/dataset/601145"}], "date_created": "Mon, 10 Dec 2018 00:00:00 GMT", "description": "Beginning with the earliest expeditions to the poles, scientists have noted that many polar taxa grow to unusually large body sizes, a phenomenon now known as \u0027polar gigantism.\u0027 Although scientists have been interested in polar giants for many years, many questions still remain about the biology of this significant form of polar diversity. This award from the Antarctic Organisms and Ecosystems program within the Polar Sciences Division at the National Science Foundation will investigate the respiratory and biomechanical mechanisms underlying polar gigantism in Antarctic pycnogonids (commonly known as sea spiders). The project will use a series of manipulative experiments to investigate the effects of temperature and oxygen availability on respiratory capacity and biomechanical strength, and will compare Antarctic sea spiders to related species from temperate and tropical regions. The research will provide insight into the ability of polar giants to withstand the warming polar ocean temperatures associated with climate change.\u003cbr/\u003e\u003cbr/\u003eThe prevailing hypothesis to explain the evolution of gigantism invokes shifts in respiratory relationships in extremely cold ocean waters: in the cold, oxygen is more plentiful while at the same time metabolic rates are very low. Together these effects alleviate constraints on oxygen supply that restrict organisms living in warmer waters. Respiratory capacity must evolve in the context of adaptive tradeoffs, so for organisms including pycnogonids there must be tradeoffs between respiratory capacity and resistance to biomechanical stresses. The investigators will test a novel hypothesis that respiratory challenges are not associated with particular body sizes, and will answer the following questions: What are the dynamics of oxygen transport and consumption in Antarctic pycnogonids; how do structural features related to oxygen diffusion trade off with requirements for body support and locomotion; how does body size influence vulnerability to environmental hypoxia and to temperature-oxygen interactions; and does the cold-driven high oxygen availability in the Antarctic raise the limit on body size by reducing trade-offs between diffusivity and structural integrity? The research will explore the effects of increased ocean temperatures upon organisms that have different body sizes. In addition, it will provide training for graduate and undergraduate students affiliated with universities in EPSCOR states.", "east": 166.666, "geometry": "POINT(166.666 -77.84999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; NOT APPLICABLE", "locations": null, "north": -77.84999, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Moran, Amy; Woods, H. Arthur", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.84999, "title": "Collaborative Research: Body Size, Oxygen, and Vulnerability to Climate Change in Antarctic Pycnogonida", "uid": "p0000007", "west": 166.666}, {"awards": "1144176 Lyons, W. Berry; 1144192 Tulaczyk, Slawek; 1144177 Pettit, Erin; 1727387 Mikucki, Jill", "bounds_geometry": "POLYGON((161.8 -77.7,161.88 -77.7,161.96 -77.7,162.04000000000002 -77.7,162.12 -77.7,162.2 -77.7,162.28 -77.7,162.36 -77.7,162.44 -77.7,162.51999999999998 -77.7,162.6 -77.7,162.6 -77.70700000000001,162.6 -77.714,162.6 -77.721,162.6 -77.728,162.6 -77.735,162.6 -77.742,162.6 -77.749,162.6 -77.756,162.6 -77.76299999999999,162.6 -77.77,162.51999999999998 -77.77,162.44 -77.77,162.36 -77.77,162.28 -77.77,162.2 -77.77,162.12 -77.77,162.04000000000002 -77.77,161.96 -77.77,161.88 -77.77,161.8 -77.77,161.8 -77.76299999999999,161.8 -77.756,161.8 -77.749,161.8 -77.742,161.8 -77.735,161.8 -77.728,161.8 -77.721,161.8 -77.714,161.8 -77.70700000000001,161.8 -77.7))", "dataset_titles": "Ablation Stake Data from of Taylor Glacier near Blood Falls; Antarctica Support 2014/2015 - C-528 Blood Falls GPS/GNSS Observations Dataset; Blood Falls, McMurdo Dry Va. International Federation of Digital Seismograph Networks. Dataset/Seismic Network; FLIR thermal imaging data near Blood Falls, Taylor Glacier; Ground Penetrating Radar Data near Blood Falls, Taylor Glacier; Ice Temperature in Shallow Boreholes Near Blood Falls at the Terminus of Taylor Glacier, McMurdo Dry Valleys, Antarctica; NCBI short read archive -Metagenomic survey of Antarctic Groundwater; Terrestrial Radar Interferometry near Blood Falls, Taylor Glacier; The Geochemistry of englacial brine from Taylor Glacier, Antarctica; Time Lapse imagery of the Blood Falls feature, Antarctica ; Vaisala Integrated Met Station near Blood Falls, Taylor Glacier", "datasets": [{"dataset_uid": "601166", "doi": "10.15784/601166", "keywords": "Antarctica; Basal Crevassing; Glacier Hydrology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Radar; Snow/ice; Snow/Ice; Taylor Glacier", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": null, "title": "Terrestrial Radar Interferometry near Blood Falls, Taylor Glacier", "url": "https://www.usap-dc.org/view/dataset/601166"}, {"dataset_uid": "601165", "doi": "10.15784/601165", "keywords": "Antarctica; Basal Crevassing; Glacier Hydrology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Radar; Snow/ice; Snow/Ice; Taylor Glacier", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": null, "title": "Ground Penetrating Radar Data near Blood Falls, Taylor Glacier", "url": "https://www.usap-dc.org/view/dataset/601165"}, {"dataset_uid": "601168", "doi": "10.15784/601168", "keywords": "Antarctica; Atmosphere; Basal Crevassing; Glacier Hydrology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Meteorology; Taylor Glacier; Temperature; Weather Station Data; Wind Speed", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": null, "title": "Vaisala Integrated Met Station near Blood Falls, Taylor Glacier", "url": "https://www.usap-dc.org/view/dataset/601168"}, {"dataset_uid": "601167", "doi": "10.15784/601167", "keywords": "Antarctica; Basal Crevassing; Glacier Hydrology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Photo; Photo/video; Photo/Video; Snow/ice; Snow/Ice; Taylor Glacier; Timelaps Images", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": null, "title": "Time Lapse imagery of the Blood Falls feature, Antarctica ", "url": "https://www.usap-dc.org/view/dataset/601167"}, {"dataset_uid": "200029", "doi": "10.7914/SN/YW_2013", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Blood Falls, McMurdo Dry Va. International Federation of Digital Seismograph Networks. Dataset/Seismic Network", "url": "http://www.fdsn.org/networks/detail/YW_2013/"}, {"dataset_uid": "200028", "doi": "10.7283/FCEN-8050", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica Support 2014/2015 - C-528 Blood Falls GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/fcen-8050"}, {"dataset_uid": "601179", "doi": "10.15784/601179", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Subglacial Brine", "people": "Gardner, Christopher B.; Lyons, W. Berry", "repository": "USAP-DC", "science_program": null, "title": "The Geochemistry of englacial brine from Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601179"}, {"dataset_uid": "601169", "doi": "10.15784/601169", "keywords": "Antarctica; Basal Crevassing; Glacier Hydrology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Infrared Imagery; Photo/video; Photo/Video; Taylor Glacier; Thermal Camera; Timelaps Images", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": null, "title": "FLIR thermal imaging data near Blood Falls, Taylor Glacier", "url": "https://www.usap-dc.org/view/dataset/601169"}, {"dataset_uid": "601164", "doi": "10.15784/601164", "keywords": "Antarctica; Basal Crevassing; Glacier Hydrology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Snow/ice; Snow/Ice", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": null, "title": "Ablation Stake Data from of Taylor Glacier near Blood Falls", "url": "https://www.usap-dc.org/view/dataset/601164"}, {"dataset_uid": "601139", "doi": "10.15784/601139", "keywords": "Antarctica; Borehole; Borehole Logging; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Temperature; Snow/ice; Snow/Ice; Temperature; Temperature Profiles", "people": "Tulaczyk, Slawek", "repository": "USAP-DC", "science_program": null, "title": "Ice Temperature in Shallow Boreholes Near Blood Falls at the Terminus of Taylor Glacier, McMurdo Dry Valleys, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601139"}, {"dataset_uid": "200074", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "NCBI short read archive -Metagenomic survey of Antarctic Groundwater", "url": "https://www.ncbi.nlm.nih.gov/sra/?term=SRR6667787"}], "date_created": "Wed, 28 Nov 2018 00:00:00 GMT", "description": "Recent discoveries of widespread liquid water and microbial ecosystems below the Antarctic ice sheets have generated considerable interest in studying Antarctic subglacial environments. Understanding subglacial hydrology, the persistence of life in extended isolation and the evolution and stability of subglacial habitats requires an integrated, interdisciplinary approach. The collaborative project, Minimally Invasive Direct Glacial Exploration (MIDGE) of the Biogeochemistry, Hydrology and Glaciology of Blood Falls, McMurdo Dry Valleys will integrate geophysical measurements, molecular microbial ecology and geochemical analyses to explore a unique Antarctic subglacial system known as Blood Falls. Blood Falls is a hypersaline, subglacial brine that supports an active microbial community. The subglacial brine is released from a crevasse at the surface of the Taylor Glacier providing an accessible portal into an Antarctic subglacial ecosystem. Recent geochemical and molecular analyses support a marine source for the salts and microorganisms in Blood Falls. The last time marine waters inundated this part of the McMurdo Dry Valleys was during the Late Tertiary, which suggests the brine is ancient. Still, no direct samples have been collected from the subglacial source to Blood Falls and little is known about the origin of this brine or the amount of time it has been sealed below Taylor Glacier. Radar profiles collected near Blood Falls delineate a possible fault in the subglacial substrate that may help explain the localized and episodic nature of brine release. However it remains unclear what triggers the episodic release of brine exclusively at the Blood Falls crevasse or the extent to which the brine is altered as it makes its way to the surface. \u003cbr/\u003e\u003cbr/\u003eThe MIDGE project aims to determine the mechanism of brine release at Blood Falls, evaluate changes in the geochemistry and the microbial community within the englacial conduit and assess if Blood Falls waters have a distinct impact on the thermal and stress state of Taylor Glacier, one of the most studied polar glaciers in Antarctica. The geophysical study of the glaciological structure and mechanism of brine release will use GPR, GPS, and a small passive seismic network. Together with international collaborators, the \u0027Ice Mole\u0027 team from FH Aachen University of Applied Sciences, Germany (funded by the German Aerospace Center, DLR), MIDGE will develop and deploy innovative, minimally invasive technologies for clean access and brine sample retrieval from deep within the Blood Falls drainage system. These technologies will allow for the collection of samples of the brine away from the surface (up to tens of meters) for geochemical analyses and microbial structure-function experiments. There is concern over the contamination of pristine subglacial environments from chemical and biological materials inherent in the drilling process; and MIDGE will provide data on the efficacy of thermoelectric probes for clean access and retrieval of representative subglacial samples. Antarctic subglacial environments provide an excellent opportunity for researching survivability and adaptability of microbial life and are potential terrestrial analogues for life habitats on icy planetary bodies. The MIDGE project offers a portable, versatile, clean alternative to hot water and mechanical drilling and will enable the exploration of subglacial hydrology and ecosystem function while making significant progress towards developing technologies for minimally invasive and clean sampling of icy systems.", "east": 162.6, "geometry": "POINT(162.2 -77.735)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; BACTERIA/ARCHAEA; USAP-DC", "locations": null, "north": -77.7, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Instrumentation and Support; Antarctic Integrated System Science", "paleo_time": null, "persons": "Tulaczyk, Slawek; Pettit, Erin; Lyons, W. Berry; Mikucki, Jill", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "IRIS; NCBI GenBank; UNAVCO; USAP-DC", "science_programs": null, "south": -77.77, "title": "Collaborative Research: MIDGE: Minimally Invasive Direct Glacial Exploration of Biogeochemistry, Hydrology and Glaciology of Blood Falls, McMurdo Dry Valleys", "uid": "p0000002", "west": 161.8}, {"awards": "1246045 Waddington, Edwin", "bounds_geometry": "POLYGON((-180 -70,-144 -70,-108 -70,-72 -70,-36 -70,0 -70,36 -70,72 -70,108 -70,144 -70,180 -70,180 -72,180 -74,180 -76,180 -78,180 -80,180 -82,180 -84,180 -86,180 -88,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -88,-180 -86,-180 -84,-180 -82,-180 -80,-180 -78,-180 -76,-180 -74,-180 -72,-180 -70))", "dataset_titles": "Code for inference of fabric from sonic velocity and thin-section measurements.; Code for models involving stochastic treatment of ice fabric", "datasets": [{"dataset_uid": "000244", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Code for models involving stochastic treatment of ice fabric", "url": "https://github.com/mjhay/stochastic_fabric"}, {"dataset_uid": "000243", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Code for inference of fabric from sonic velocity and thin-section measurements.", "url": "https://github.com/mjhay/neem_sonic_model"}], "date_created": "Mon, 02 Apr 2018 00:00:00 GMT", "description": "Waddington/1246045 \u003cbr/\u003e\u003cbr/\u003eThis award supports a project to investigate the onset and growth of folds and other disturbances seen in the stratigraphic layers of polar ice sheets. The intellectual merit of the work is that it will lead to a better understanding of the grain-scale processes that control the development of these stratigraphic features in the ice and will help answer questions such as what processes can initiate such disturbances. Snow is deposited on polar ice sheets in layers that are generally flat, with thicknesses that vary slowly along the layers. However, ice cores and ice-penetrating radar show that in some cases, after conversion to ice, and following lengthy burial, the layers can become folded, develop pinch-and-swell structures (boudinage), and be sheared by ice flow, at scales ranging from centimeters to hundreds of meters. The processes causing these disturbances are still poorly understood. Disturbances appear to develop first at the ice-crystal scale, then cascade up to larger scales with continuing ice flow and strain. Crystal-scale processes causing distortions of cm-scale layers will be modeled using Elle, a microstructure-modeling package, and constrained by fabric thin-sections and grain-elongation measurements from the West Antarctic Ice Sheet divide ice-core. A full-stress continuum anisotropic ice-flow model coupled to an ice-fabric evolution model will be used to study bulk flow of anisotropic ice, to understand evolution and growth of flow disturbances on the meter and larger scale. Results from this study will assist in future ice-core site selection, and interpretation of stratigraphy in ice cores and radar, and will provide improved descriptions of rheology and stratigraphy for ice-sheet flow models.The broader impacts are that it will bring greater understanding to ice dynamics responsible for stratigraphic disturbance. This information is valuable to constrain depth-age relationships in ice cores for paleoclimate study. This will allow researchers to put current climate change in a more accurate context. This project will provide three years of support for a graduate student as well as support and research experience for an undergraduate research assistant; this will contribute to development of talent needed to address important future questions in glaciology and climate change. The research will be communicated to the public through outreach events and results from the study will be disseminated through public and professional meetings as well as journal publications. The project does not require field work in Antarctica.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": -70.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Waddington, Edwin D.", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "GitHub", "repositories": "GitHub", "science_programs": null, "south": -90.0, "title": "Anisotropic Ice and Stratigraphic Disturbances", "uid": "p0000073", "west": -180.0}, {"awards": "1043471 Kaplan, Michael", "bounds_geometry": "POLYGON((-112.5 -79.468,-112.4586 -79.468,-112.4172 -79.468,-112.3758 -79.468,-112.3344 -79.468,-112.293 -79.468,-112.2516 -79.468,-112.2102 -79.468,-112.1688 -79.468,-112.1274 -79.468,-112.086 -79.468,-112.086 -79.4712,-112.086 -79.4744,-112.086 -79.4776,-112.086 -79.4808,-112.086 -79.484,-112.086 -79.4872,-112.086 -79.4904,-112.086 -79.4936,-112.086 -79.4968,-112.086 -79.5,-112.1274 -79.5,-112.1688 -79.5,-112.2102 -79.5,-112.2516 -79.5,-112.293 -79.5,-112.3344 -79.5,-112.3758 -79.5,-112.4172 -79.5,-112.4586 -79.5,-112.5 -79.5,-112.5 -79.4968,-112.5 -79.4936,-112.5 -79.4904,-112.5 -79.4872,-112.5 -79.484,-112.5 -79.4808,-112.5 -79.4776,-112.5 -79.4744,-112.5 -79.4712,-112.5 -79.468))", "dataset_titles": "List of samples of WAIS Divide and Byrd (deep) ice that were analyzed for radiogenic isotopes at LDEO", "datasets": [{"dataset_uid": "601065", "doi": "10.15784/601065", "keywords": "Antarctica; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Sample/collection Description; Sample/Collection Description; WAIS Divide; WAIS Divide Ice Core", "people": "Kaplan, Michael", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "List of samples of WAIS Divide and Byrd (deep) ice that were analyzed for radiogenic isotopes at LDEO", "url": "https://www.usap-dc.org/view/dataset/601065"}], "date_created": "Sun, 29 Oct 2017 00:00:00 GMT", "description": "This award supports a project to obtain the first set of isotopic-based provenance data from the WAIS divide ice core. A lack of data from the WAIS prevents even a basic knowledge of whether different sources of dust blew around the Pacific and Atlantic sectors of the southern latitudes. Precise isotopic measurements on dust in the new WAIS ice divide core are specifically warranted because the data will be synergistically integrated with other high frequency proxies, such as dust concentration and flux, and carbon dioxide, for example. Higher resolution proxies will bridge gaps between our observations on the same well-dated, well-preserved core. The intellectual merit of the project is that the proposed analyses will contribute to the WAIS Divide Project science themes. Whether an active driver or passive recorder, dust is one of the most important but least understood components of regional and global climate. Collaborative and expert discussion with dust-climate modelers will lead to an important progression in understanding of dust and past atmospheric circulation patterns and climate around the southern latitudes, and help to exclude unlikely air trajectories to the ice sheets. The project will provide data to help evaluate models that simulate the dust patterns and cycle and the relative importance of changes in the sources, air trajectories and transport processes, and deposition to the ice sheet under different climate states. The results will be of broad interest to a range of disciplines beyond those directly associated with the WAIS ice core project, including the paleoceanography and dust- paleoclimatology communities. The broader impacts of the project include infrastructure and professional development, as the proposed research will initiate collaborations between LDEO and other WAIS scientists and modelers with expertise in climate and dust. Most of the researchers are still in the early phase of their careers and hence the project will facilitate long-term relationships. This includes a graduate student from UMaine, an undergraduate student from Columbia University who will be involved in lab work, in addition to a LDEO Postdoctoral scientist, and possibly an additional student involved in the international project PIRE-ICETRICS. The proposed research will broaden the scientific outlooks of three PIs, who come to Antarctic ice core science from a variety of other terrestrial and marine geology perspectives. Outreach activities include interaction with the science writers of the Columbia\u0027s Earth Institute for news releases and associated blog websites, public speaking, and involvement in an arts/science initiative between New York City\u0027s arts and science communities to bridge the gap between scientific knowledge and public perception.", "east": -112.086, "geometry": "POINT(-112.293 -79.484)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.468, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Kaplan, Michael; Winckler, Gisela; Goldstein, Steven L.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.5, "title": "A Study of Atmospheric Dust in the WAIS Divide Ice Core Based on Sr-Nd-Pb-He Isotopes", "uid": "p0000081", "west": -112.5}, {"awards": "1443260 Conway, Howard", "bounds_geometry": "POLYGON((159 -76.68,159.03 -76.68,159.06 -76.68,159.09 -76.68,159.12 -76.68,159.15 -76.68,159.18 -76.68,159.21 -76.68,159.24 -76.68,159.27 -76.68,159.3 -76.68,159.3 -76.697,159.3 -76.714,159.3 -76.731,159.3 -76.748,159.3 -76.765,159.3 -76.782,159.3 -76.799,159.3 -76.816,159.3 -76.833,159.3 -76.85,159.27 -76.85,159.24 -76.85,159.21 -76.85,159.18 -76.85,159.15 -76.85,159.12 -76.85,159.09 -76.85,159.06 -76.85,159.03 -76.85,159 -76.85,159 -76.833,159 -76.816,159 -76.799,159 -76.782,159 -76.765,159 -76.748,159 -76.731,159 -76.714,159 -76.697,159 -76.68))", "dataset_titles": "2015-2016 GPR Field Report for Allan Hills Shallow Ice Coring; Ground-based ice-penetrating radar profiles collected on the Allan Hills blue ice region", "datasets": [{"dataset_uid": "601668", "doi": "10.15784/601668", "keywords": "Allan Hills; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; GPR; Ice Core; Report", "people": "MacKay, Sean; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "2015-2016 GPR Field Report for Allan Hills Shallow Ice Coring", "url": "https://www.usap-dc.org/view/dataset/601668"}, {"dataset_uid": "601005", "doi": "10.15784/601005", "keywords": "Allan Hills; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Navigation; Radar", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Ground-based ice-penetrating radar profiles collected on the Allan Hills blue ice region", "url": "https://www.usap-dc.org/view/dataset/601005"}], "date_created": "Tue, 02 May 2017 00:00:00 GMT", "description": "Marine paleoclimate archives show that approximately one million years ago Earth\u0027s climate transitioned from 40,000-year glacial /interglacial cycles to 100,000-year cycles. This award will support a study designed to map the distribution of one million year-old ice in the Allan Hills Blue Ice Area, Antarctica using state-of-the-art ground penetrating radar. The Allen Hills was demonstrated to contain a continuous record of the past 400,000 years and is also the collection location of the oldest ice samples (990,000 years) yet recovered. The maps resulting from this study will be used to select an ice-core drilling site at which a million-plus year-old continuous record of climate could be recovered. Ice cores contain the only kind of record to directly capture atmospheric gases and aerosols, but no ice-core-based climate record yet extends continuously beyond the past 800,000 years. A million-plus year-old record will allow better understanding of the major mechanisms and driving forces of natural climate variability in a world with 100,000-year glacial/interglacial cycles. The project will support two early career scientists in collaboration with senior scientists, as well as a graduate student, and will conduct outreach to schools and the public.\r\nThe Allan Hills Blue Ice Area preserves a continuous climate record covering the last 400,000 years along an established glaciological flow line. Two kilometers to the east of this flow line, the oldest ice on Earth (~1 million years old) is found only 120 m below the surface. Meteorites collected in the area are reported to be as old as 1.8 million years, suggesting still older ice may be present. Combined, these data strongly suggest that the Allen Hills area could contain a continuous, well-resolved environmental record, spanning at least the last million years. As such, this area has been selected as an upcoming target for the new Intermediate Depth Ice Core Drill by the US Ice Core Working Group. This drill will recover a higher-quality core than previous dry drilling attempts. This project will conduct a comprehensive ground penetrating radar survey aimed at tracing the signature of the million-year-old ice layer throughout the region. The resulting map will be used to select a drill site from which an ice core containing the million-plus year-old continuous climate record will be collected. The proposed activities are a necessary precursor to the collection of the oldest known ice on Earth. Ice cores provide a robust reconstruction of past climate and extending this record beyond the 800,000 years currently available will open new opportunities to study the climate system. The data collected will also be used to investigate the bedrock and ice flow parameters favorable to the preservation of old ice, which may allow targeted investigation of other blue ice areas in Antarctica.", "east": 159.3, "geometry": "POINT(159.15 -76.765)", "instruments": null, "is_usap_dc": true, "keywords": "Allan Hills; FIELD SURVEYS; ICE SHEETS", "locations": "Allan Hills", "north": -76.68, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.85, "title": "Collaborative Research: Allan HILLs Englacial Site (AHILLES) Selection", "uid": "p0000385", "west": 159.0}, {"awards": "1043481 Creyts, Timothy", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 17 Jun 2016 00:00:00 GMT", "description": "1043481/Creyts\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to develop models of subglacial hydrology in order to understand dynamics of water movement, lake drainage, and how drainage affects ice slip over deformable till with the goal of understanding present and future behavior of fast flowing regions of Antarctica. Drainage of subglacial water falls into two broad categories: distributed and channelized. In distributed systems, water is forced out along the ice?bed interface. Conversely, in channelized systems water is drawn toward a few major arteries. Observations of lake filling and draining sup- port changes in subglacial water flow and suggest a switch from a low to high discharge state or vice versa. Filling or draining can move the subglacial system from one type of drainage morphology to the other. A switch of drainage type will affect slip along the ice-bed interface because distributed morphologies tend to cause enhanced sliding whereas channelized morphologies tend to cause enhanced coupling of the ice-bed interface. Conditions beneath fast flowing ice streams of West Antarctica are ideal for switching between subglacial drainage morphologies. Fast flowing ice in West Antarctica commonly rests on sub- glacial tills and is coincident, in some areas, with observed subglacial lake filling and draining. The goal of the work is to develop the next generation of spatially distributed hydraulic models that capture lake filling and draining phenomena and investigate the effects on subglacial till. Models will be theoretical, process-based descriptions of water drainage and till failure along fast flowing ice streams. Models will be based on balance of mass, momentum, and energy. Building on previous studies, we will incorporate two dimensional movement of water to investigate distributed basal hydrology, distributed basal hydrology coupled to channels, and couple these models with till deformation. These models will provide a framework for determining how lake draining and filling affects ice discharge by providing a constraints on ice?bed coupling. The intellectual merit of the work is that it will advance knowledge about drainage of water subglacially beneath Antarctica and how water affects ice motion. Our modeling provides a unique opportunity to understand the role subglacial hydrology plays in the dynamics of key outlet glaciers and ice streams. The broader impacts of the work include training for one postdoctoral scientist and training for a summer student in simple laboratory techniques for analog experiments. In addition, the proposal dovetails into an existing polar education and outreach plan by including a component of physical, numerical, and scale models in programs developed for high school and middle school classroom visits, teacher workshops and community events. Additionally, because knowledge of glacial hydrology is increasing rapidly, we will convene a workshop on observations and models of subglacial hydrology to facilitate transfer of knowledge and ideas.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Creyts, Timothy; Bell, Robin", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -90.0, "title": "Subglacial drainage and slip modeling in Antarctica: relating lakes to ice discharge", "uid": "p0000345", "west": -180.0}, {"awards": "0838936 Brook, Edward J.; 0839031 Severinghaus, Jeffrey", "bounds_geometry": "POINT(161.75 -77.75)", "dataset_titles": "Measurements of 14C-methane for the Younger Dryas - Preboreal Transition from Taylor Glacier, Antarctica; Measurements of in situ cosmogenic 14C from Taylor Glacier, Antarctica; Taylor Glacier chemistry data and Taylor Dome TD2015 time scale; Taylor Glacier CO2 record; Taylor Glacier Gas Isotope Data", "datasets": [{"dataset_uid": "600165", "doi": "10.15784/600165", "keywords": "Antarctica; Cosmogenic; Geochemistry; Ice Core Records; Paleoclimate; Radiocarbon; Taylor Glacier; Transantarctic Mountains", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Measurements of in situ cosmogenic 14C from Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600165"}, {"dataset_uid": "601033", "doi": "10.15784/601033", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciology; Ice Core Records; Isotope; Solid Earth; Taylor Glacier; Transantarctic Mountains", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Taylor Glacier Gas Isotope Data", "url": "https://www.usap-dc.org/view/dataset/601033"}, {"dataset_uid": "601103", "doi": "10.15784/601103", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Horizontal Ice Core; Ice Core Records; Taylor Dome; Taylor Dome Ice Core", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Taylor Glacier chemistry data and Taylor Dome TD2015 time scale", "url": "https://www.usap-dc.org/view/dataset/601103"}, {"dataset_uid": "601029", "doi": "10.15784/601029", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Critical Zone; Geochemistry; Methane; Paleoclimate; Sample/collection Description; Sample/Collection Description; Solid Earth; Taylor Glacier; Transantarctic Mountains; Younger Dryas", "people": "Severinghaus, Jeffrey P.; Petrenko, Vasilii", "repository": "USAP-DC", "science_program": null, "title": "Measurements of 14C-methane for the Younger Dryas - Preboreal Transition from Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601029"}, {"dataset_uid": "000158", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Taylor Glacier CO2 record", "url": "ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/taylor/taylor2016d13co2.txt"}], "date_created": "Tue, 29 Mar 2016 00:00:00 GMT", "description": "Severinghaus/0839031 \u003cbr/\u003e\u003cbr/\u003eThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to develop a precise gas-based chronology for an archive of large-volume samples of the ancient atmosphere, which would enable ultra-trace gas measurements that are currently precluded by sample size limitations of ice cores. The intellectual merit of the proposed work is that it will provide a critical test of the \"clathrate hypothesis\" that methane clathrates contributed to the two abrupt atmospheric methane concentration increases during the last deglaciation 15 and 11 kyr ago. This approach employs large volumes of ice (\u003e1 ton) to measure carbon-14 on past atmospheric methane across the abrupt events. Carbon-14 is an ideal discriminator of fossil sources of methane to the atmosphere, because most methane sources (e.g., wetlands, termites, biomass burning) are rich in carbon-14, whereas clathrates and other fossil sources are devoid of carbon-14. The proposed work is a logical extension to Taylor Glacier, Antarctica, of an approach pioneered at the margin of the Greenland ice sheet over the past 7 years. The Greenland work found higher-than-expected carbon-14 values, likely due in part to contaminants stemming from the high impurity content of Greenland ice and the interaction of the ice with sediments from the glacier bed. The data also pointed to the possibility of a previously unknown process, in-situ cosmogenic production of carbon-14 methane (radiomethane) in the ice matrix. Antarctic ice in Taylor Glacier is orders of magnitude cleaner than the ice at the Greenland site, and is much colder and less stratigraphically disturbed, offering the potential for a clear resolution of this puzzle and a definitive test of the cosmogenic radiomethane hypothesis. Even if cosmogenic radiomethane in ice is found, it still may be possible to reconstruct atmospheric radiomethane with a correction enabled by a detailed understanding of the process, which will be sought by co-measuring carbon-14 in carbon monoxide and carbon dioxide. The broader impacts of the proposed work are that the clathrate test may shed light on the stability of the clathrate reservoir and its potential for climate feedbacks under human-induced warming. Development of Taylor Glacier as a \"horizontal ice core\" would provide a community resource for other researchers. Education of one postdoc, one graduate student, and one undergraduate, would add to human resources. This award has field work in Antarctica.", "east": 161.75, "geometry": "POINT(161.75 -77.75)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; Not provided; USAP-DC", "locations": null, "north": -77.75, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Brook, Edward J.; Severinghaus, Jeffrey P.", "platforms": "Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "NCEI; USAP-DC", "science_programs": null, "south": -77.75, "title": "Collaborative Research: A \"Horizontal Ice Core\" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica", "uid": "p0000099", "west": 161.75}, {"awards": "1142156 Marschall, Horst", "bounds_geometry": "POLYGON((-6.44 -71.93,-5.378 -71.93,-4.316 -71.93,-3.254 -71.93,-2.192 -71.93,-1.13 -71.93,-0.068 -71.93,0.994 -71.93,2.056 -71.93,3.118 -71.93,4.18 -71.93,4.18 -71.998,4.18 -72.066,4.18 -72.134,4.18 -72.202,4.18 -72.27,4.18 -72.338,4.18 -72.406,4.18 -72.474,4.18 -72.542,4.18 -72.61,3.118 -72.61,2.056 -72.61,0.994 -72.61,-0.068 -72.61,-1.13 -72.61,-2.192 -72.61,-3.254 -72.61,-4.316 -72.61,-5.378 -72.61,-6.44 -72.61,-6.44 -72.542,-6.44 -72.474,-6.44 -72.406,-6.44 -72.338,-6.44 -72.27,-6.44 -72.202,-6.44 -72.134,-6.44 -72.066,-6.44 -71.998,-6.44 -71.93))", "dataset_titles": "Zircon Hf Isotopes and the Continental Evolution of Dronning Maud Land, East Antarctica", "datasets": [{"dataset_uid": "600135", "doi": "10.15784/600135", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Dronning Maud Land; Geochemistry; Geochronology; Solid Earth", "people": "Marschall, Horst", "repository": "USAP-DC", "science_program": null, "title": "Zircon Hf Isotopes and the Continental Evolution of Dronning Maud Land, East Antarctica", "url": "https://www.usap-dc.org/view/dataset/600135"}], "date_created": "Fri, 23 Oct 2015 00:00:00 GMT", "description": "Geochemical studies of single mineral grains in rocks can be probed to reconstruct the history of our planet. The mineral zircon (ZrSiO4) is of unique importance in that respect because of its reliability as a geologic clock due to its strong persistence against weathering, transport and changes in temperature and pressure. Uranium-Lead (U-Pb) dating of zircon grains is, perhaps, the most frequently employed method of extracting time information on geologic processes that shaped the continental crust, and has been used to constrain the evolution of continents and mountain belts through time. In addition, the isotopic composition of the element Hafnium (Hf) in zircon is used to date when the continental crust was generated by extraction of magma from the underlying mantle. Melting of rocks in the mantle and deep in the continental crust are key processes in the evolution of the continents, and they are recorded in the Hf isotopic signatures of zircon. Although the analytical procedures for U-Pb dating and Hf isotope analyses of zircon are robust now, our understanding of zircon growth and its exchange of elements and isotopes with its surrounding rock or magma are still underdeveloped. The focus of the proposed study, therefore, is to unravel the evolution of zircon Hf isotopes in rocks that were formed deep in the Earth?s crust, and more specifically, to apply these isotopic methods to rocks collected in Dronning Maud Land (DML), East Antarctica.\u003cbr/\u003e\u003cbr/\u003eDronning Maud Land (DML) occupied a central location during the formation of supercontinents ? large landmasses made up of all the continents that exist today - more than 500 million years ago. It is currently thought that supercontinents were formed and dismembered five or six times throughout Earth?s history. The area of DML is key for understanding the formation history of the last two supercontinents. The boundaries of continents that were merged to form those supercontinents are most likely hidden in DML. In this study, the isotopic composition of zircon grains recovered from DML rocks will be employed to identify these boundaries across an extensive section through the area. The rock samples were collected by the investigator during a two-month expedition to Antarctica in the austral summer of 2007?2008. The results of dating and isotope analyses of zircon of the different DML crustal domains will deliver significant insight into the regional geology of East Antarctica and its previous northern extension into Africa. This has significance for the reconstruction of the supercontinents and defining the continental boundaries in DML.", "east": 4.18, "geometry": "POINT(-1.13 -72.27)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -71.93, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Marschall, Horst", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -72.61, "title": "Zircon Hf Isotopes and the Continental Evolution of Dronning Maud Land, East Antacrtica", "uid": "p0000448", "west": -6.44}, {"awards": "1246148 Severinghaus, Jeffrey; 1245659 Petrenko, Vasilii; 1245821 Brook, Edward J.", "bounds_geometry": "POINT(162.167 -77.733)", "dataset_titles": "Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores; Last Interglacial Mean Ocean Temperature; Mean Ocean Temperature in Marine Isotope Stage 4; Measurements of 14CH4 and 14CO in ice from Taylor Glacier: Last Deglaciation; N2O Concentration and Isotope Data for 74-59 ka from Taylor Glacier, Antarctica; Taylor Glacier CO2 Isotope Data 74-59 kyr; Taylor Glacier Noble Gases - Younger Dryas; The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "datasets": [{"dataset_uid": "601398", "doi": "10.15784/601398", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Gas Records; Ice Core Records; Marine Isotope Stage 4; MIS 4; Nitrous Oxide; Pleistocene; Taylor Dome Ice Core; Taylor Glacier", "people": "Petrenko, Vasilii; Schilt, Adrian; Shackleton, Sarah; Severinghaus, Jeffrey P.; Menking, James; Brook, Edward J.; Dyonisius, Michael", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "N2O Concentration and Isotope Data for 74-59 ka from Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601398"}, {"dataset_uid": "600163", "doi": "10.15784/600163", "keywords": "Antarctica; Atmosphere; Geochemistry; Ice Core Records; Isotope; Paleoclimate; Taylor Glacier; Transantarctic Mountains", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "url": "https://www.usap-dc.org/view/dataset/600163"}, {"dataset_uid": "601260", "doi": "10.15784/601260", "keywords": "Antarctica; Carbon-14; Cosmogenic; Ice Core; Methane", "people": "Dyonisius, Michael; Petrenko, Vasilii", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Measurements of 14CH4 and 14CO in ice from Taylor Glacier: Last Deglaciation", "url": "https://www.usap-dc.org/view/dataset/601260"}, {"dataset_uid": "601218", "doi": "10.15784/601218", "keywords": "Antarctica; Carbon-14; Carbon Dioxide; Chemistry:ice; Chemistry:Ice; CO2; Dome C Ice Core; Epica; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Isotope Data; Last Interglacial; Mass Spectrometer; Mass Spectrometry; Methane; Oxygen; Oxygen Isotope; Paleotemperature; Pleistocene; Snow/ice; Snow/Ice; Taylor Dome Ice Core; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Last Interglacial Mean Ocean Temperature", "url": "https://www.usap-dc.org/view/dataset/601218"}, {"dataset_uid": "601218", "doi": "10.15784/601218", "keywords": "Antarctica; Carbon-14; Carbon Dioxide; Chemistry:ice; Chemistry:Ice; CO2; Dome C Ice Core; Epica; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Isotope Data; Last Interglacial; Mass Spectrometer; Mass Spectrometry; Methane; Oxygen; Oxygen Isotope; Paleotemperature; Pleistocene; Snow/ice; Snow/Ice; Taylor Dome Ice Core; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Last Interglacial Mean Ocean Temperature", "url": "https://www.usap-dc.org/view/dataset/601218"}, {"dataset_uid": "601198", "doi": "10.15784/601198", "keywords": "Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; CO2; Dust; Gas; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Mass Spectrometer; Methane; Nitrogen Isotopes; Oxygen Isotope; Paleoclimate; Snow/ice; Snow/Ice; Taylor Dome; Taylor Dome Ice Core", "people": "Menking, James; Severinghaus, Jeffrey P.; Bauska, Thomas; Rhodes, Rachel; Baggenstos, Daniel; McConnell, Joseph; Petrenko, Vasilii; Dyonisius, Michael; Shackleton, Sarah; Barker, Stephen; Marcott, Shaun; Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/601198"}, {"dataset_uid": "601415", "doi": "10.15784/601415", "keywords": "Antarctica; Glaciology; Ice Core Data; Ice Core Records; Paleoclimate; Paleotemperature; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Mean Ocean Temperature in Marine Isotope Stage 4", "url": "https://www.usap-dc.org/view/dataset/601415"}, {"dataset_uid": "601176", "doi": "10.15784/601176", "keywords": "Antarctica; CO2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Methane; Noble Gas; Noble Gas Isotopes; Snow/ice; Snow/Ice; Taylor Glacier; Younger Dryas", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Taylor Glacier Noble Gases - Younger Dryas", "url": "https://www.usap-dc.org/view/dataset/601176"}, {"dataset_uid": "601600", "doi": "10.15784/601600", "keywords": "Antarctica; Taylor Glacier", "people": "Buffen, Aron; Menking, Andy; Dyonisius, Michael; Severinghaus, Jeffrey P.; Barker, Stephen; Petrenko, Vasilii; Brook, Edward J.; Menking, James; Shackleton, Sarah; Bauska, Thomas", "repository": "USAP-DC", "science_program": null, "title": "Taylor Glacier CO2 Isotope Data 74-59 kyr", "url": "https://www.usap-dc.org/view/dataset/601600"}], "date_created": "Mon, 13 Jul 2015 00:00:00 GMT", "description": "This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, \u0026#948;18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, \u0026#948;13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of \u0026#948;13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica.", "east": 162.167, "geometry": "POINT(162.167 -77.733)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Not provided; USAP-DC; FIELD INVESTIGATION; Stratigraphy; FIELD SURVEYS; Antarctica; Paleoenvironment; Methane; Ice Core; Carbon Dioxide; FIXED OBSERVATION STATIONS; Stable Isotopes; Ablation Zone; Taylor Glacier; Nitrous Oxide; USA/NSF; LABORATORY; AMD; Cosmogenic; Amd/Us", "locations": "Taylor Glacier; Antarctica", "north": -77.733, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Petrenko, Vasilii; Brook, Edward J.; Severinghaus, Jeffrey P.; PETRENKO, VASILLI", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": -77.733, "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "uid": "p0000283", "west": 162.167}, {"awards": "0229314 Stone, John", "bounds_geometry": null, "dataset_titles": "Reedy Glacier Exposure Ages, Antarctica", "datasets": [{"dataset_uid": "609601", "doi": "10.7265/N5MG7MF1", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Cosmogenic; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Reedy Glacier; Sample/collection Description; Sample/Collection Description", "people": "Stone, John", "repository": "USAP-DC", "science_program": null, "title": "Reedy Glacier Exposure Ages, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609601"}], "date_created": "Mon, 30 Mar 2015 00:00:00 GMT", "description": "The stability of the marine West Antarctic Ice Sheet (WAIS) remains an important, unresolved problem for predicting future sea level change. Recent studies indicate that the mass balance of the ice sheet today may be negative or positive. The apparent differences may stem in part from short-term fluctuations in flow. By comparison, geologic observations provide evidence of behavior over much longer time scales. Recent work involving glacial-geologic mapping, dating and ice-penetrating radar surveys suggests that deglaciation of both the Ross Sea Embayment and coastal Marie Byrd Land continued into the late Holocene, and leaves open the possibility of ongoing deglaciation and grounding-line retreat. However, previous work in the Ross Sea Embayment was based on data from just three locations that are all far to the north of the present grounding line. Additional data from farther south in the Ross Sea Embayment are needed to investigate whether recession has ended, or if the rate and pattern of deglaciation inferred from our previous study still apply to the present grounding line. This award provides support to reconstruct the evolution of Reedy Glacier, in the southern Transantarctic Mountains, since the Last Glacial Maximum (LGM). Because Reedy Glacier emerges from the mountains above the grounding line, its surface slope and elevation should record changes in thickness of grounded ice in the Ross Sea up to the present day. The deglaciation chronology of Reedy Glacier therefore can indicate whether Holocene retreat of the WAIS ended thousands of years ago, or is still continuing at present. This integrated glaciologic, glacial-geologic, and cosmogenic-isotope exposure- dating project will reconstruct past levels of Reedy Glacier. Over two field seasons, moraines will be mapped, dated and correlated at sites along the length of the glacier. Radar and GPS measurements will be made to supplement existing ice thickness and velocity data, which are needed as input for a model of glacier dynamics. The model will be used to relate geologic measurements to the grounding-line position downstream. Ultimately, the mapping, dating and ice-modeling components of the study will be integrated into a reconstruction that defines changes in ice thickness in the southern Ross Sea since the LGM, and relates these changes to the history of grounding-line retreat. This work directly addresses key goals of the West Antarctic Ice Sheet Initiative, which are to understand the dynamics, recent history and possible future behavior of the West Antarctic Ice Sheet.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "Surface Exposure Dates; FIELD SURVEYS; Aluminum-26; Erosion; Rock Samples; Beryllium-10; Exposure Age", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Stone, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Late Quaternary History of Reedy Glacier", "uid": "p0000029", "west": null}, {"awards": "0944645 Goodge, John", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 11 Feb 2015 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eBecause of extensive ice cover and sparse remote-sensing data, the geology of the Precambrian East Antarctic Shield (EAS) remains largely unexplored with information limited to coastal outcrops from the African, Indian and Australian sectors. The East Antarctic lithosphere is globally important: as one of the largest coherent Precambrian shields, including rocks as old as ~3.8 Ga, it played an important role in global crustal growth; it is a key piece in assembly of the Rodinia and Gondwana supercontinents; it is the substrate to Earth?s major ice cap, including numerous sub-glacial lakes, and influences its thermal state and mechanical stability; and its geotectonic association with formerly adjacent continental blocks in South Africa, India and Australia suggest that it might harbor important mineral resources. This project will increase understanding of the age and composition of the western EAS lithosphere underlying and adjacent to the Transantarctic Mountains (TAM) using U-Pb ages, and Hf- and O-isotope analysis of zircon in early Paleozoic granitoids and Pleistocene glacial tills. TAM granites of the early Paleozoic Ross Orogen represent an areally extensive continental-margin arc suite that can provide direct information about the EAS crust from which it melted and/or through which it passed. Large rock clasts of igneous and metamorphic lithologies entrained in glacial tills at the head of major outlet glaciers traversing the TAM provide eroded samples of the proximal EAS basement. Zircons in these materials will provide data about age and inheritance (U-Pb), crustal vs. mantle origin (O isotopes), and crustal sources and evolution (Hf isotopes). Integrated along a significant part of the TAM, these data will help define broader crustal provinces that can be correlated with geophysical data and used to test models of crustal assembly. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis project will provide a research opportunity for undergraduate and graduate students. Undergraduates will be involved as Research Assistants in sample preparation, imaging, and analytical procedures, and conducting their own independent research. The two main elements of this project will form the basis of MS thesis projects for two graduate students at UMD. Through this project they will gain a good understanding of petrology, isotope geochemistry, and analytical methods. The broader scientific impacts of this work are that it will help develop a better understanding of the origin and evolution of East Antarctic lithosphere underlying and adjacent to the TAM, which will be of value to the broader earth science and glaciological community. Furthermore, knowledge of East Antarctic geology is of continuing interest to the general public because of strong curiosity about past supercontinents, what?s under the ice, and the impact of global warming on ice-sheet stability.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Transantarctic Mountains; Not provided", "locations": "Transantarctic Mountains", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Goodge, John", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Age and Composition of the East Antarctic Shield by Isotopic Analysis of Granite and Glacial Till", "uid": "p0000258", "west": null}, {"awards": "0944475 Kaplan, Michael", "bounds_geometry": "POLYGON((-149.7 -84.1,-118.61 -84.1,-87.52 -84.1,-56.43 -84.1,-25.34 -84.1,5.75 -84.1,36.84 -84.1,67.93 -84.1,99.02 -84.1,130.11 -84.1,161.2 -84.1,161.2 -84.43,161.2 -84.76,161.2 -85.09,161.2 -85.42,161.2 -85.75,161.2 -86.08,161.2 -86.41,161.2 -86.74,161.2 -87.07,161.2 -87.4,130.11 -87.4,99.02 -87.4,67.93 -87.4,36.84 -87.4,5.75 -87.4,-25.34 -87.4,-56.43 -87.4,-87.52 -87.4,-118.61 -87.4,-149.7 -87.4,-149.7 -87.07,-149.7 -86.74,-149.7 -86.41,-149.7 -86.08,-149.7 -85.75,-149.7 -85.42,-149.7 -85.09,-149.7 -84.76,-149.7 -84.43,-149.7 -84.1))", "dataset_titles": "Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "datasets": [{"dataset_uid": "600115", "doi": "10.15784/600115", "keywords": "Antarctica; Cosmogenic Dating; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains", "people": "Kaplan, Michael", "repository": "USAP-DC", "science_program": null, "title": "Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "url": "https://www.usap-dc.org/view/dataset/600115"}], "date_created": "Thu, 17 Jul 2014 00:00:00 GMT", "description": "The proposed work will investigate changes in the compositional variation of glacial tills over time across two concentric sequences of Pleistocene moraines located adjacent to the heads of East Antarctic outlet glaciers in the Transantarctic Mountains (TAM). The chronologic framework for this work will be generated from cosmogenic exposure ages of boulders on prominent morainal ridges. The PIs hypothesize that variations in till composition may indicate a change in ice flow direction or a change in the composition of the original source area, while ages of the moraines provide a long-term terrestrial perspective on ice sheet dynamics. Both results are vital for modeling experiments that aim to reconstruct the East Antarctic Ice Sheet and assess its role in the global climate system and its potential impact on global sea level rise. The variation of till compositions through time also allows for a more accurate interpretation of sediment cores from the Ross Sea and the Southern Ocean. Additionally, till exposures at the head of some East Antarctic outlet glaciers have been shown to contain subglacial material derived from East Antarctic bedrock, providing a window through the ice to view East Antarctica?s inaccessible bedrock. Till samples will be collected from two well-preserved sequences of moraine crests at Mt. Howe (head of Scott Glacier) and Mt. Achernar (between Beardmore and Nimrod Glaciers). Each size fraction in glacial till provides potentially valuable information, and the PIs will measure the petrography of the clast and sand fractions, quantitative X-ray diffraction on the crushed \u003c2mm fraction, elemental abundance of the silt/clay fraction, and U/Pb of detrital zircons in the sand fraction. Data collection will rely on established methods previously used in this region and the PIs will also explore new methods to assess their efficacy. On the same moraines crests sampled for provenance studies, the PIs will sample for cosmogenic surface exposure analyses to provide a chronologic framework at the sites for provenance changes through time. \u003cbr/\u003e\u003cbr/\u003eBroader Impact \u003cbr/\u003eThe proposed research involves graduate and undergraduate training in a diverse array of laboratory methods. Students and PIs will be make presentations to community and campus groups, as well as conduct interviews with local news outlets. The proposed work also establishes a new, potentially long-term, collaboration between scientists at IUPUI and LDEO and brings a new PI (Kaplan) into the field of Antarctic Earth Sciences.", "east": 161.2, "geometry": "POINT(5.75 -85.75)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION", "locations": null, "north": -84.1, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kaplan, Michael", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.4, "title": "Collaborative Research: Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "uid": "p0000459", "west": -149.7}, {"awards": "1043619 Hemming, Sidney; 1043572 Licht, Kathy", "bounds_geometry": "POLYGON((-177.982 -63.997,-149.64107 -63.997,-121.30014 -63.997,-92.95921 -63.997,-64.61828 -63.997,-36.27735 -63.997,-7.93642 -63.997,20.40451 -63.997,48.74544 -63.997,77.08637 -63.997,105.4273 -63.997,105.4273 -66.3324,105.4273 -68.6678,105.4273 -71.0032,105.4273 -73.3386,105.4273 -75.674,105.4273 -78.0094,105.4273 -80.3448,105.4273 -82.6802,105.4273 -85.0156,105.4273 -87.351,77.08637 -87.351,48.74544 -87.351,20.40451 -87.351,-7.93642 -87.351,-36.27735 -87.351,-64.61828 -87.351,-92.95921 -87.351,-121.30014 -87.351,-149.64107 -87.351,-177.982 -87.351,-177.982 -85.0156,-177.982 -82.6802,-177.982 -80.3448,-177.982 -78.0094,-177.982 -75.674,-177.982 -73.3386,-177.982 -71.0032,-177.982 -68.6678,-177.982 -66.3324,-177.982 -63.997))", "dataset_titles": "East Antarctic outlet glacier contributions to the Ross Sea from chronology of detrital grains", "datasets": [{"dataset_uid": "600124", "doi": "10.15784/600124", "keywords": "Antarctica; East Antarctica; Geochemistry; Ross Sea; Sample/collection Description; Sample/Collection Description; Solid Earth; Southern Ocean; West Antarctica", "people": "Hemming, Sidney R.", "repository": "USAP-DC", "science_program": null, "title": "East Antarctic outlet glacier contributions to the Ross Sea from chronology of detrital grains", "url": "https://www.usap-dc.org/view/dataset/600124"}], "date_created": "Tue, 18 Feb 2014 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe PIs proposed a provenance study of glacial deposits in the Ross Embayment that will provide a broad scale geochronologic survey of detrital minerals in till to help characterize bedrock beneath the East Antarctic ice sheet and constrain Antarctica?s glacial history. This project capitalizes on previous investments in field sampling. Analytical tools applied to single mineral grains extracted from existing collections of glacial till will generate ?fingerprints? of East Antarctic outlet glaciers and West Antarctic till to refine paleo-ice flow models for the Ross Embayment during the last glacial maximum, older records from ANDRILL cores, and to assess IRD sources in the Southern Ocean. New provenance tracers will include a suite of geochronological methods that together provide greater insights into the orogenic and erosional history the region. This project will include U/Pb of detrital zircons, (U-Th)/He on a subset of the U/Pb dated zircons, as well as Ar-Ar of detrital hornblende, mica and feldspars. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis research will train one M.S. student at IUPUI, a Ph.D. student at Columbia, and several undergraduates at both institutions. Graduate students involved in the project will be involved in mentoring undergraduate researchers. Incorporation of research discoveries will be brought into the classroom by providing concrete examples and exercises at the appropriate level. Licht and Columbia graduate student E. Pierce are developing outreach projects with local secondary school teachers to investigate the provenance of glacial materials in their local areas. The research will have broad applicability to many fields.", "east": 105.4273, "geometry": "POINT(-36.27735 -75.674)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e LA-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e PETROGRAPHIC MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS", "is_usap_dc": true, "keywords": "Not provided; FIELD SURVEYS", "locations": null, "north": -63.997, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "Licht, Kathy; Hemming, Sidney R.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.351, "title": "Collaborative Research: East Antarctic outlet glacier contributions to the Ross Sea from chronology of detrital grains", "uid": "p0000333", "west": -177.982}, {"awards": "0739390 Davis, Randall", "bounds_geometry": "POLYGON((166.08823 -77.545,166.177124 -77.545,166.266018 -77.545,166.354912 -77.545,166.443806 -77.545,166.5327 -77.545,166.621594 -77.545,166.710488 -77.545,166.799382 -77.545,166.888276 -77.545,166.97717 -77.545,166.97717 -77.57736,166.97717 -77.60972,166.97717 -77.64208,166.97717 -77.67444,166.97717 -77.7068,166.97717 -77.73916,166.97717 -77.77152,166.97717 -77.80388,166.97717 -77.83624,166.97717 -77.8686,166.888276 -77.8686,166.799382 -77.8686,166.710488 -77.8686,166.621594 -77.8686,166.5327 -77.8686,166.443806 -77.8686,166.354912 -77.8686,166.266018 -77.8686,166.177124 -77.8686,166.08823 -77.8686,166.08823 -77.83624,166.08823 -77.80388,166.08823 -77.77152,166.08823 -77.73916,166.08823 -77.7068,166.08823 -77.67444,166.08823 -77.64208,166.08823 -77.60972,166.08823 -77.57736,166.08823 -77.545))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 17 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: Weddell seals (Leptonychotes weddellii) locate and capture sparsely distributed and mobile prey under shore-fast ice throughout the year, including the austral winter when ambient light levels are very low and access to breathing holes is highly limited. This is one of the most challenging environments occupied by an aquatic mammalian predator, and it presents unique opportunities to test hypotheses concerning: 1) behavioral strategies and energetic costs for foraging and 2) sensory modalities used for prey capture under sea ice. To accomplish these objectives, we will attach digital video and data recorders to the backs of free-ranging Weddell seals during the autumn, winter and early spring. These instruments simultaneously record video of prey pursuit and capture and three-dimensional movements, swimming performance, ambient light level and other environmental variables. Energetic costs for entire dives and portions of dives will be estimated from stroking effort and our published relationship between swimming performance and energetics for Weddell seals. The energetic cost of different dive types will be evaluated for strategies that maximize foraging efficiency, range (distance traveled), and duration of submergence. The proposed study will provide a more thorough understanding of the role of vision and changing light conditions in foraging behavior, sensory ecology, energetics and habitat use of Weddell seals and the distribution of encountered prey. It also will provide new insights into survival strategies that allow Weddell seals to inhabit the Antarctic coastal marine ecosystem throughout the year. \u003cbr/\u003e\u003cbr/\u003eBroader Impacts: The proposed study will train two graduate students and a Post-doctoral Fellow. Outreach activities will include interviews, written material and photographs provided to print and electronic media, project web sites, high school email exchanges from McMurdo Station, hosting visiting artists at our field camp, and public lectures. We will provide a weekly summary of our research findings to teachers and students in elementary school programs through our websites, one of which received an educational award. Our previous projects have attracted an extraordinary amount of press coverage that effectively brings scientific research to the public. This coverage and the video images generated by our work excite the imagination and help instill an interest in science and wildlife conservation in children and adults.", "east": 166.97717, "geometry": "POINT(166.5327 -77.7068)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.545, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Davis, Randall", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -77.8686, "title": "Collaborative Research: Hunting in Darkness: Behavioral and Energetic Strategies of Weddell Seals in Winter", "uid": "p0000357", "west": 166.08823}, {"awards": "0739783 Junge, Karen", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Metabolic Activities and Gene Expression of Marine Psychrophiles in Cold Ice", "datasets": [{"dataset_uid": "600083", "doi": "10.15784/600083", "keywords": "Antarctica; Biota; Microbiology; Oceans; Sea Ice; Southern Ocean", "people": "Junge, Karen", "repository": "USAP-DC", "science_program": null, "title": "Metabolic Activities and Gene Expression of Marine Psychrophiles in Cold Ice", "url": "https://www.usap-dc.org/view/dataset/600083"}], "date_created": "Wed, 25 Sep 2013 00:00:00 GMT", "description": "The mechanisms enabling bacteria to be metabolically active at very low temperatures are of considerable importance to polar microbial ecology, astrobiology, climate and cryopreservation. This research program has two main objectives. The first is to investigate metabolic activities and gene expression of polar marine psychrophilic bacteria when confronted with freezing conditions at temperatures above the eutectic of seawater (\u003c54C) to unveil cold adaptation mechanisms with relevance to wintertime sea-ice ecology. The second objective is to discern if psychrophilic processes of leucine incorporation into proteins, shown to occur to -196C, amount to metabolic activity providing for the survival of cells or are merely biochemical reactions still possible in flash-frozen samples without any effect on survival. We will examine extracellular and intracellular processes of psychrophilic activity above and below the eutectic by (i) determining the temperature range of metabolic activities such as DNA synthesis, carbon utilization, respiration and ATP generation using radioactive tracer technology, including a control at liquid helium temperature (-268.9C), (ii) analyzing gene expression in ice using whole genome and microarray analyses and iii) examining the role of exopolymeric substances (EPS) and ice micro-physics for the observed activity using an in-situ microscopy technique. Results of the proposed research can be expected to aid in the determination of cellular and genetic strategies that allow cells to maintain activity at extremely low temperatures within an icy matrix and/or to resume activity again when more growth-permissive conditions are encountered. The research is an interdisciplinary collaboration involving three different institutions with participants in Oceanography, Genomics, and Geophysical Sciences. The proposed activity will support the beginning professional career of a female researcher and will serve as the basis for several undergraduate student laboratory projects.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Junge, Karen", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Metabolic Activities and Gene Expression of Marine Psychrophiles in Cold Ice", "uid": "p0000673", "west": -180.0}, {"awards": "9615420 Kamb, Barclay", "bounds_geometry": "POINT(-136.404633 -82.39955)", "dataset_titles": "Temperature of the West Antarctic Ice Sheet; Videos of Basal Ice in Boreholes on the Kamb Ice Stream in West Antarctica", "datasets": [{"dataset_uid": "609537", "doi": "10.7265/N5PN93J8", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Temperature", "people": "Engelhardt, Hermann", "repository": "USAP-DC", "science_program": null, "title": "Temperature of the West Antarctic Ice Sheet", "url": "https://www.usap-dc.org/view/dataset/609537"}, {"dataset_uid": "609528", "doi": "10.7265/N5028PFH", "keywords": "Antarctica; Borehole Video; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Kamb Ice Stream; Photo/video; Photo/Video", "people": "Engelhardt, Hermann", "repository": "USAP-DC", "science_program": null, "title": "Videos of Basal Ice in Boreholes on the Kamb Ice Stream in West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609528"}], "date_created": "Thu, 14 Feb 2013 00:00:00 GMT", "description": "This award is for support for a four year program to study the basal conditions of ice stream D using techniques previously applied to ice stream B. The objective is to determine whether the physical conditions and processes to be observed by borehole geophysics at the base of this large ice stream are consistent with what has been observed at ice stream B and to point to a common basal mechanism of ice streaming. This project includes a comparison between two parts of ice stream D, an upstream reach where flow velocities are modest (about 80 meters/year) and a downstream reach of high velocity (about 400 meters/year). The comparison will help to reveal what physical variable or combination of variables is mainly responsible for the streaming flow. The variables to be monitmred by borehole observation include basal water pressure, basal sliding velocity, flow properties and sedimentological characteristics of subglacial till if present, ice temperature profile including basal water transport velocity, connection time to the basal water system, basal melting rate and others.", "east": -136.404633, "geometry": "POINT(-136.404633 -82.39955)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "Raymond Ridge; Kamb Ice Stream; Engelhardt Ridge; Basal Ice; Unicorn; Alley Ice Stream; Borehole Video; Basal Freeze-on; Ice Stream Flow; Basal Freezing; West Antarctic Ice Sheet Instability; GROUND-BASED OBSERVATIONS; Whillans Ice Stream; Basal Debris; Simple Dome; Basal Water; Bindschadler Ice Stream; West Antarctic Ice Sheet", "locations": "Kamb Ice Stream; Alley Ice Stream; Bindschadler Ice Stream; Engelhardt Ridge; Raymond Ridge; Simple Dome; Unicorn; West Antarctic Ice Sheet; Whillans Ice Stream", "north": -82.39955, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Kamb, Barclay; Engelhardt, Hermann", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.39955, "title": "Basal Conditions of Ice Stream D and Related Borehole Studies of Antarctic Ice Stream Mechanics", "uid": "p0000181", "west": -136.404633}, {"awards": "0636818 Stone, John", "bounds_geometry": "POLYGON((-157 -85,-156 -85,-155 -85,-154 -85,-153 -85,-152 -85,-151 -85,-150 -85,-149 -85,-148 -85,-147 -85,-147 -85.3,-147 -85.6,-147 -85.9,-147 -86.2,-147 -86.5,-147 -86.8,-147 -87.1,-147 -87.4,-147 -87.7,-147 -88,-148 -88,-149 -88,-150 -88,-151 -88,-152 -88,-153 -88,-154 -88,-155 -88,-156 -88,-157 -88,-157 -87.7,-157 -87.4,-157 -87.1,-157 -86.8,-157 -86.5,-157 -86.2,-157 -85.9,-157 -85.6,-157 -85.3,-157 -85))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 05 Aug 2011 00:00:00 GMT", "description": "Hall/0636687\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to investigate late Pleistocene and Holocene changes in Scott Glacier, a key outlet glacier that flows directly into the Ross Sea just west of the present-day West Antarctic Ice Sheet (WAIS) grounding line. The overarching goals are to understand changes in WAIS configuration in the Ross Sea sector at and since the last glacial maximum (LGM) and to determine whether Holocene retreat observed in the Ross Embayment has ended or if it is still ongoing. To address these goals, moraine and drift sequences associated with Scott Glacier will be mapped and dated and ice thickness, surface velocity and surface mass balance will be measured to constrain an ice-flow model of the glacier. This model will be used to help interpret the dated geologic sequences. The intellectual merit of the project relates to gaining a better understanding of the West Antarctic Ice Sheet and how changing activity of fast-flowing outlet glaciers and ice streams exerts strong control on the mass balance of the ice sheet. Previous work suggests that grounding-line retreat in the Ross Sea continued into the late Holocene and left open the possibility of ongoing deglaciation as part of a long-term trend. Results from Reedy Glacier, an outlet glacier just behind the grounding line, suggest that retreat may have slowed substantially over the past 2000 years and perhaps even stopped. By coupling the work on Scott Glacier with recent data from Reedy Glacier, the grounding-line position will be bracketed and it should be possible to establish whether the retreat has truly ended or if it is ongoing. The broader impacts of the work relate to the societal relevance of an improved understanding of the West Antarctic ice sheet to establish how it will respond to current and possible future environmental changes. The work addresses this key goal of the West Antarctic Ice Sheet Initiative, as well as the International Polar Year focus on ice sheet history and dynamics. The work will develop future scientists through the education and training of one undergraduate and two Ph.D. students, interaction with K-12 students through classroom visits, web-based \u0027expedition\u0027 journals, letters from the field, and discussions with teachers. Results from this project will be posted with previous exposure dating results from Antarctica, on the University of Washington Cosmogenic Nuclide Lab website, which also provides information about chemical procedures and calculation methods to other scientists working with cosmogenic nuclides.", "east": -147.0, "geometry": "POINT(-152 -86.5)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": -85.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Stone, John; Conway, Howard", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -88.0, "title": "Collaborative Research:Grounding-line Retreat in the Southern Ross Sea - Constraints from Scott Glacier", "uid": "p0000149", "west": -157.0}, {"awards": "9220848 Bartek, Louis", "bounds_geometry": "POLYGON((-179.9996 -52.35472,-143.99968 -52.35472,-107.99976 -52.35472,-71.99984 -52.35472,-35.99992 -52.35472,0 -52.35472,35.99992 -52.35472,71.99984 -52.35472,107.99976 -52.35472,143.99968 -52.35472,179.9996 -52.35472,179.9996 -54.916322,179.9996 -57.477924,179.9996 -60.039526,179.9996 -62.601128,179.9996 -65.16273,179.9996 -67.724332,179.9996 -70.285934,179.9996 -72.847536,179.9996 -75.409138,179.9996 -77.97074,143.99968 -77.97074,107.99976 -77.97074,71.99984 -77.97074,35.99992 -77.97074,0 -77.97074,-35.99992 -77.97074,-71.99984 -77.97074,-107.99976 -77.97074,-143.99968 -77.97074,-179.9996 -77.97074,-179.9996 -75.409138,-179.9996 -72.847536,-179.9996 -70.285934,-179.9996 -67.724332,-179.9996 -65.16273,-179.9996 -62.601128,-179.9996 -60.039526,-179.9996 -57.477924,-179.9996 -54.916322,-179.9996 -52.35472))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002265", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9307"}, {"dataset_uid": "002245", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9407"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award supports an integrated seismic, sedimentologic, and paleontologic investigation of glacio-marine stratigraphy of the Ross Sea continental shelf. The purpose of this work is to acquire seismic images and sediment cores of the glacial sediments toward a better understanding of the Cenozoic history of glaciation in the Ross Sea region. This investigation will utilize high resolution seismic profiling data to locate regions where the Pleistocene glacial till is thin or perhaps absent. Piston coring at these locations, if the till is penetrated, will provide sedimentary records of Cenozoic depositional environments and could provide important clues to fluctuations of the Antarctic Ice Sheets. The seismic profiling will provide a direct record of the grounding history of the Ross Ice Shelf during the Pleistocene and it will also allow first order correlations of Cenozoic sedimentary units that are represented by sediments recovered in the piston cores. This work will provide important proxy records of the history of both the West Antarctic Ice Sheet and the East Antarctic Ice Sheet and this, in turn, will provide important constraints to climate models.", "east": 179.9996, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.35472, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bartek, Louis", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.97074, "title": "Integrated Biostratigraphy and High Resolution Seismic Stratigraphy of the Ross Sea: Implications for Cenozoic Eustatic and Climatic Change", "uid": "p0000643", "west": -179.9996}, {"awards": "9614201 Gowing, Marcia", "bounds_geometry": "POLYGON((-180 -43.56536,-144 -43.56536,-108 -43.56536,-72 -43.56536,-36 -43.56536,0 -43.56536,36 -43.56536,72 -43.56536,108 -43.56536,144 -43.56536,180 -43.56536,180 -46.976149,180 -50.386938,180 -53.797727,180 -57.208516,180 -60.619305,180 -64.030094,180 -67.440883,180 -70.851672,180 -74.262461,180 -77.67325,144 -77.67325,108 -77.67325,72 -77.67325,36 -77.67325,0 -77.67325,-36 -77.67325,-72 -77.67325,-108 -77.67325,-144 -77.67325,-180 -77.67325,-180 -74.262461,-180 -70.851672,-180 -67.440883,-180 -64.030094,-180 -60.619305,-180 -57.208516,-180 -53.797727,-180 -50.386938,-180 -46.976149,-180 -43.56536))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002003", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9901"}, {"dataset_uid": "002193", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9508"}, {"dataset_uid": "002110", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9803"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9614201 Costa Sea ice forms an extensive habitat in the Southern Ocean. Reports dating from the earliest explorations of Antarctica have described high concentrations of algae associated with sea-ice, suggesting that the ice must be an important site of production and biological activity. The magnitude and importance of ice-based production is difficult to estimate largely because the spatial and temporal distributions of ice communities have been examined in only a few regions, and the processes controlling production and community development in ice are still superficially understood. This study will examine sea ice communities in the Ross Sea region of Antarctica in conjunction with a studies of ice physics and remote sensing. The specific objectives of the study are: 1) to relate the overall distribution of ice communities in the Ross Sea to specific habitats that are formed as the result of ice formation and growth processes; 2) to study the initial formation of sea ice to document the incorporation and survival of organisms, in particular to examine winter populations within \"snow-ice\" layers to determine if there is a seed population established at the time of surface flooding; 3) to sample summer communities to determine the extent that highly productive \"snow-ice\" and \"freeboard\" communities develop in the deep water regions of the Ross Sea; 4) and to collect basic data on the biota, activity, and general physical and chemical characteristics of the ice assemblages, so that this study contributes to the general understanding of the ecology of the ice biota in pack ice regions.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -43.56536, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Gowing, Marcia; Garrison, David; Jeffries, Martin", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.67325, "title": "Ecological Studies of Sea Ice Communities in the Ross Sea, Antarctica", "uid": "p0000633", "west": -180.0}, {"awards": "9019247 Lawver, Lawrence", "bounds_geometry": "POLYGON((-70.9123 -52.3523,-68.4947 -52.3523,-66.0771 -52.3523,-63.6595 -52.3523,-61.2419 -52.3523,-58.8243 -52.3523,-56.4067 -52.3523,-53.9891 -52.3523,-51.5715 -52.3523,-49.1539 -52.3523,-46.7363 -52.3523,-46.7363 -53.791011,-46.7363 -55.229722,-46.7363 -56.668433,-46.7363 -58.107144,-46.7363 -59.545855,-46.7363 -60.984566,-46.7363 -62.423277,-46.7363 -63.861988,-46.7363 -65.300699,-46.7363 -66.73941,-49.1539 -66.73941,-51.5715 -66.73941,-53.9891 -66.73941,-56.4067 -66.73941,-58.8243 -66.73941,-61.2419 -66.73941,-63.6595 -66.73941,-66.0771 -66.73941,-68.4947 -66.73941,-70.9123 -66.73941,-70.9123 -65.300699,-70.9123 -63.861988,-70.9123 -62.423277,-70.9123 -60.984566,-70.9123 -59.545855,-70.9123 -58.107144,-70.9123 -56.668433,-70.9123 -55.229722,-70.9123 -53.791011,-70.9123 -52.3523))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002294", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9301"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Major progress has been made with respect to our understanding of the tectonic evolution of the Antarctic Plate. Paleomagnetic data, marine magnetic anomaly identifications, Geosat-derived tectonic lineations, heat flow derived seafloor ages and mathematical solutions for plate motions around triple junctions have all contributed to a better model for the tectonic evolution of the circum- Antarctic region. Even so, major problems still exist with respect to the Mesozoic to Recent tectonic evolution of the Antarctic continental margin which can be tackled using heat flow measurements. This award supports the study of a tectonic problem that heat flow can address, the determination of the age of the Powell Basin at the end of the West Antarctic Peninsula and its relationship to the opening of Drake\u0027s Passage. Specifically, heat flow measurement will be used to study the age and mode of crustal extension of the Powell Basin, where standard age determination fails and heat flow is the only method that can be used to date its opening.", "east": -46.7363, "geometry": "POINT(-58.8243 -59.545855)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.3523, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Lawver, Lawrence", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -66.73941, "title": "Antarctic Marine Heat Flow", "uid": "p0000652", "west": -70.9123}, {"awards": "0538516 Ackley, Stephen", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0709", "datasets": [{"dataset_uid": "002648", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0709", "url": "https://www.rvdata.us/search/cruise/NBP0709"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project is a study of the evolution of the sea ice cover, and the mass balance of ice in the Amundsen Sea and the Bellingshausen Sea in the internationally collaborative context of the International Polar Year (2007-2008). In its simplest terms, the mass balance is the net freezing and melting that occurs over an annual cycle at a given location. If the ice were stationary and were completely to melt every year, the mass balance would be zero. While non-zero balances have significance in questions of climate and environmental change, the process itself has global consequences since the seasonal freeze-melt cycle has the effect of distilling the surface water. Oceanic salt is concentrated into brine and rejected from the ice into deeper layers in the freezing process, while during melt, the newly released and relatively fresh water stabilizes the surface layers. The observation program will be carried out during a drift program of the Nathaniel B. Palmer, and through a buoy network established on the sea ice that will make year-long measurements of ice thickness, and temperature profile, large-scale deformation, and other characteristics. The project is a component of the Antarctic Sea Ice Program, endorsed internationally by the Joint Committee for IPY. Additionally, the buoys to be deployed have been endorsed as an IPY contribution to the World Climate Research Program/Scientific Committee on Antarctic Research (WCRP/SCAR) International Programme on Antarctic Buoys (IPAB). While prior survey information has been obtained in this region, seasonal and time-series measurements on sea ice mass balance are crucial data in interpreting the mechanisms of air-ice-ocean interaction. \u003cbr/\u003e The network will consist of an array of twelve buoys capable of GPS positioning. Three buoys will be equipped with thermister strings and ice and snow thickness measurement gauges, as well as a barometer. Two buoys will be equipped with meteorological sensors including wind speed and direction, atmospheric pressure, and incoming radiation. Seven additional buoys will have GPS positioning only, and will be deployed approximately 100 km from the central site. These outer buoys will be critical in capturing high frequency motion complementary to satellite-derived ice motion products. Additional buoys have been committed internationally through IPAB and will be deployed in the region as part of this program.\u003cbr/\u003e This project will complement similar projects to be carried out in the Weddell Sea by the German Antarctic Program, and around East Antarctica by the Australian Antarctic Program. The combined buoy and satellite deformation measurements, together with the mass balance measurements, will provide a comprehensive annual data set on sea ice thermodynamics and dynamics for comparison with both coupled and high-resolution sea ice models.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Ackley, Stephen", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Sea Ice Mass Balance in the Antarctic-SIMBA Drift Station", "uid": "p0000839", "west": null}, {"awards": "9814692 Kellogg, Thomas", "bounds_geometry": "POLYGON((-179.99342 -58.74225,-143.994734 -58.74225,-107.996048 -58.74225,-71.997362 -58.74225,-35.998676 -58.74225,0.000010000000003 -58.74225,35.998696 -58.74225,71.997382 -58.74225,107.996068 -58.74225,143.994754 -58.74225,179.99344 -58.74225,179.99344 -60.716231,179.99344 -62.690212,179.99344 -64.664193,179.99344 -66.638174,179.99344 -68.612155,179.99344 -70.586136,179.99344 -72.560117,179.99344 -74.534098,179.99344 -76.508079,179.99344 -78.48206,143.994754 -78.48206,107.996068 -78.48206,71.997382 -78.48206,35.998696 -78.48206,0.000010000000003 -78.48206,-35.998676 -78.48206,-71.997362 -78.48206,-107.996048 -78.48206,-143.994734 -78.48206,-179.99342 -78.48206,-179.99342 -76.508079,-179.99342 -74.534098,-179.99342 -72.560117,-179.99342 -70.586136,-179.99342 -68.612155,-179.99342 -66.638174,-179.99342 -64.664193,-179.99342 -62.690212,-179.99342 -60.716231,-179.99342 -58.74225))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001992", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0001"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a marine geological investigation of the Amundsen Sea region toward a better understanding of the deglaciation history of the West Antarctic Ice Sheet (WAIS). The WAIS may be inherently unstable because it is the last marine-based ice sheet in the world. Unlike other embayments in West Antarctica, major ice streams draining into the Amundsen Sea from the interior of the WAIS lack buttressing ice shelves. Mass balance data for the distal portions of these ice streams (Pine Island and Thwaites glaciers) appear to be in balance or may be becoming negative. Because both ice streams have beds that slope downward toward the center of the ice sheet, grounding-line recession resulting from either continued thinning or sea-level rise could trigger irreversible grounding-line retreat, leading to ice-sheet disintegration and consequent global sea-level rise. The limited marine geological and geophysical data available from the Amundsen Sea suggest that grounded ice or an ice shelf occupied the inner Amundsen Sea embayment until perhaps as recently as 1000 to 2000 years ago, and this ice may have retreated rapidly in historic time.\u003cbr/\u003e\u003cbr/\u003eThis project, a study of the marine geology and geophysics of the Amundsen Sea continental shelf from 100 degrees W to 130 degrees W, is designed to address the Amundsen Sea part of WAIS Science Plan Priority Goal H2: \"What is the deglaciation history in the eastern Ross, the Bellingshausen and Amundsen Seas?\" This project will examine bathymetric data of the Amundsen Sea continental shelf to determine the positions of former ice-steam channels, and to aid in choosing sites for sediment coring. Single-channel seismic reflection studies will be conducted in order to determine sediment-thickness patterns, to aid in choice of coring sites, and to locate and identify morphologic features indicative of former grounded ice (e.g., moraines, scours, flutes, striations, till wedges and deltas, etc.). Coring will be concentrated along former ice flow-lines. Core samples will be analyzed in the laboratory for sedimentology, to determine whether of not basal tills are present (indicating former grounded ice and its former extent), and for calcareous and siliceous microfossils. The chronology of grounding-line and ice-shelf retreat from a presumed Last Glacial Maximum position near the shelf break will be established using accelerator mass spectrometry (AMS) carbon-14 dates of acid-insoluble particulate organic carbon.\u003cbr/\u003e\u003cbr/\u003eThis project will share ship time in the Amundsen Sea with a physical oceanographic project. Marine geologic data and samples collected will be integrated with findings of other investigators toward developing a comprehensive interpretation of the history of the WAIS.", "east": 179.99344, "geometry": "POINT(0.000010000000003 -68.612155)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -58.74225, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kellogg, Thomas; Jacobs, Stanley", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -78.48206, "title": "Glacial History of the Amundsen Sea Shelf", "uid": "p0000620", "west": -179.99342}, {"awards": "9908828 Aronson, Richard", "bounds_geometry": "POLYGON((-70.906 -52.350166,-69.4494 -52.350166,-67.9928 -52.350166,-66.5362 -52.350166,-65.0796 -52.350166,-63.623 -52.350166,-62.1664 -52.350166,-60.7098 -52.350166,-59.2532 -52.350166,-57.7966 -52.350166,-56.34 -52.350166,-56.34 -53.6028324,-56.34 -54.8554988,-56.34 -56.1081652,-56.34 -57.3608316,-56.34 -58.613498,-56.34 -59.8661644,-56.34 -61.1188308,-56.34 -62.3714972,-56.34 -63.6241636,-56.34 -64.87683,-57.7966 -64.87683,-59.2532 -64.87683,-60.7098 -64.87683,-62.1664 -64.87683,-63.623 -64.87683,-65.0796 -64.87683,-66.5362 -64.87683,-67.9928 -64.87683,-69.4494 -64.87683,-70.906 -64.87683,-70.906 -63.6241636,-70.906 -62.3714972,-70.906 -61.1188308,-70.906 -59.8661644,-70.906 -58.613498,-70.906 -57.3608316,-70.906 -56.1081652,-70.906 -54.8554988,-70.906 -53.6028324,-70.906 -52.350166))", "dataset_titles": "Expedition Data; Expedition data of NBP0107", "datasets": [{"dataset_uid": "001962", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0011"}, {"dataset_uid": "002656", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0107", "url": "https://www.rvdata.us/search/cruise/NBP0107"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9908828\u003cbr/\u003eAronson\u003cbr/\u003e\u003cbr/\u003eThis award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a paleoecological and paleoenvironmental study of Seymour Island. Global climate change late in the Eocene epoch had an important influence in Antarctica. This was the beginning of the transition from a cool-temperate climate in Antarctica to the polar climate that exists there today. The cooling trend strongly influenced the structure of shallow-water, Antarctic marine communities, and these effects are still evident in the peculiar ecological relationships among species living in modern Antarctic communities. Cooling late in the Eocene reduced the abundance of fish and crabs, which in turn reduced skeleton-crushing predation on invertebrates. Reduced predation allowed dense populations of ophiuroids (brittlestars) and crinoids (sea lilies) to appear in shallow-water settings at the end of the Eocene. These low-predation communities appear as dense fossil echinoderm assemblages in the upper portion of the late Eocene La Meseta Formation on Seymour Island, off the Antarctic Peninsula. Today, dense ophiuroid and crinoid populations are common in shallow-water habitats in Antarctica but generally have been eliminated by predators from similar habitats at temperate and tropical latitudes; their persistence in Antarctica to this day is an important ecological legacy of climatic cooling in the Eocene. Although the influence of declining predation on Antarctic ophiuroids and crinoids is now well documented, the effects of cooling on the more abundant mollusks have not been investigated. This study will examine the evolutionary ecology of gastropods (snails) and bivalves (clams) in the late Eocene.\u003cbr/\u003e\u003cbr/\u003eA series of hypotheses will be tested in the La Meseta Formation, based on the predicted responses of mollusks to declining temperature and changing levels of predation. The shapes of gastropod shells, the activities of gastropods that prey on other mollusks by drilling holes in their shells, and the effects of predation on the thickness of mollusk shells should have changed significantly through late Eocene time. First, defensive features of gastropod shells, such as spines and ribbing, should decline as temperature and, therefore, the activity of skeleton-crushing predators declined. Second, drilling of bivalve prey by predatory gastropods should increase with time since the drillers should themselves have been subject to lower predation pressure as temperature declined. Drilled shells, therefore, should become more common through time. Third, patterns in the thickness of shells through time will make it possible to separate the direct, physiological effects of declining temperature (shells are more difficult to produce at cooler temperatures, and so should be thinner) from the indirect effects of temperature on evolving biological interactions (increased drilling predation should result in thicker shells). \u003cbr/\u003e\u003cbr/\u003eSeymour Island contains the only fossil outcrops readily accessible in Antarctica from this crucial period in Earth history. The La Meseta Formation on Seymour Island thus provides a unique opportunity to learn how climate change affected Antarctic marine communities. In practical terms, global climate change will probably increase upwelling over the next few decades to centuries in some temperate coastal regions. Recent ecological evidence suggests that the resultant lowering of sea temperatures could lower predation in those areas. Understanding the response of the La Meseta faunas to global cooling in the late Eocene will provide direct insight into the rapidly changing structure of modern benthic communities.", "east": -56.34, "geometry": "POINT(-63.623 -58.613498)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP; Hugo Island; R/V LMG; Palmer Deep", "locations": "Hugo Island", "north": -52.350166, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Aronson, Richard; Domack, Eugene Walter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -64.87683, "title": "Global Climate Change and the Evolutionary Ecology of Antarctic Mollusks in the Late Eocene", "uid": "p0000617", "west": -70.906}, {"awards": "0094078 Bart, Philip", "bounds_geometry": "POLYGON((-179.99992 -72.00044,-143.999984 -72.00044,-108.000048 -72.00044,-72.000112 -72.00044,-36.000176 -72.00044,-0.000239999999991 -72.00044,35.999696 -72.00044,71.999632 -72.00044,107.999568 -72.00044,143.999504 -72.00044,179.99944 -72.00044,179.99944 -72.574101,179.99944 -73.147762,179.99944 -73.721423,179.99944 -74.295084,179.99944 -74.868745,179.99944 -75.442406,179.99944 -76.016067,179.99944 -76.589728,179.99944 -77.163389,179.99944 -77.73705,143.999504 -77.73705,107.999568 -77.73705,71.999632 -77.73705,35.999696 -77.73705,-0.000240000000019 -77.73705,-36.000176 -77.73705,-72.000112 -77.73705,-108.000048 -77.73705,-143.999984 -77.73705,-179.99992 -77.73705,-179.99992 -77.163389,-179.99992 -76.589728,-179.99992 -76.016067,-179.99992 -75.442406,-179.99992 -74.868745,-179.99992 -74.295084,-179.99992 -73.721423,-179.99992 -73.147762,-179.99992 -72.574101,-179.99992 -72.00044))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001648", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0301A"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "PROPOSAL NO.: 0094078\u003cbr/\u003ePRINCIPAL INVESTIGATOR: Bart, Philip\u003cbr/\u003eINSTITUTION NAME: Louisiana State University \u0026 Agricultural and Mechanical College\u003cbr/\u003eTITLE: CAREER: Relative frequency and phase of extreme expansions of the Antarctic Ice Sheets during the late Neogene\u003cbr/\u003eNSF RECEIVED DATE: 07/27/2000\u003cbr/\u003e\u003cbr/\u003ePROJECT SUMMARY\u003cbr/\u003e\u003cbr/\u003eExpansions and contractions of the Antarctic Ice Sheets (AISs) have undoubtedly had a profound influence on Earth\u0027s climate and global sea-level. However, rather than being a single entity, the Antarctic cryosphere consists of three primary elements: 1) the East Antarctic Ice Sheet (EAIS); 2) the West Antarctic Ice Sheet (WAIS); and 3) the Antarctic Peninsula Ice Cap (APIC). The distinguishing characteristics include significant differences in: 1) ice volume; 2) substratum elevation; 3) ice-surface elevation; and 4) location with respect to latitude. Various lines of evidence indicate that the AISs have undergone significant fluctuations in the past and that fluctuations will continue to occur in the future. The exact nature of the fluctuations has been the subject of many lively debates. According to one line of reasoning, the land-based EAIS has been relatively stable, experiencing only minor fluctuations since forming in the middle Miocene, whereas the marine-based WAIS has been dynamic, waxing and waning frequently since the late Miocene. According to an alternate hypothesis, the ice sheets advanced and retreated synchronously. These two views are incompatible. \u003cbr/\u003e\u003cbr/\u003eThe first objective of this proposal is to compare the long-term past behavior of the WAIS to that of the EAIS and APIC. The fluctuations of the AISs involve many aspects (the frequency of changes, the overall magnitude of ice-volume change, etc.), and the activities proposed here specifically concern the frequency and phase of extreme advances of the ice sheet to the continental shelf. The project will build upon previous seismic-stratigraphic investigations of the continental shelves. These studies have clarified many issues concerning the minimum frequency of extreme expansions for the individual ice sheets, but some important questions remain. During the course of the project, the following questions will be evaluated.\u003cbr/\u003e\u003cbr/\u003eQuestion 1) Were extreme advances of the EAIS and WAIS across the shelf of a similar frequency and coeval? This evaluation is possible because the western Ross Sea continental shelf (Northern Basin) receives drainage from the EAIS, and the eastern Ross Sea (Eastern Basin) receives drainage from the WAIS. Quantitative analyses of the extreme advances from these two areas have been conducted by Alonso et al. (1992) and Bart et al. (2000), respectively. However, the existing single-channel seismic grids are incomplete and can not be used to determine the stratigraphic correlations from Northern Basin to Eastern Basin. It is proposed that high-resolution seismic data (~2000 kms) be acquired to address this issue.\u003cbr/\u003e\u003cbr/\u003eQuestion 2) Were extreme advances of the APIC across the shelf as frequent as inferred by Bart and Anderson (1995)? Bart and Anderson (1995) inferred that the APIC advanced across the continental shelf at least 30 times since the middle Miocene. This is significant because it suggests that the advances of the small APIC were an order of magnitude more frequent than the advances of the EAIS and WAIS. Others contest the Bart and Anderson (1995) glacial-unconformity interpretation of seismic reflections, and argue that the advances of the APIC were far fewer (i.e., Larter et al., 1997). The recent drilling on the Antarctic Peninsula outer continental shelf has sampled some but not all of the glacial units, but the sediment recovery was poor, and thus, the glacial history interpretation is still ambiguous. The existing high-resolution seismic grids from the Antarctic Peninsula contain only one regional strike line on the outer continental shelf. This is inadequate to address the controversy of the glacial-unconformity interpretation and the regional correlation of the recent ODP results. It is proposed that high-resolution seismic data (~1000 kms) be acquired in a forthcoming (January 2002) cruise to the Antarctic Peninsula to address these issues.\u003cbr/\u003e\u003cbr/\u003eThe second objective of this project is 1) to expand the PI\u0027s effort to integrate his ongoing and the proposed experiments into a graduate-level course at LSU, and 2) to develop a pilot outreach program with a Baton Rouge public high school. The Louisiana Department of Education has adopted scientific standards that apply to all sciences. These standards reflect what 9th through 12th grade-level students should be able to do and know. The PI will target one of these standards, the Science As Inquiry Standard 1 Benchmark. The PI will endeavor to share with the students the excitement of conducting scientific research as a way to encourage the students to pursue earth science as a field of study at the university level.", "east": 179.99944, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -72.00044, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bart, Philip", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.73705, "title": "PECASE: Relative frequency and phase of extreme expansions of the Antarctic Ice Sheets during the late Neogene", "uid": "p0000593", "west": -179.99992}, {"awards": "9908856 Blake, Daniel", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG0309", "datasets": [{"dataset_uid": "002675", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0309", "url": "https://www.rvdata.us/search/cruise/LMG0309"}, {"dataset_uid": "001683", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0309"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a paleoecological and paleoenvironmental study of Seymour Island. Global climate change late in the Eocene epoch had an important influence in Antarctica. This was the beginning of the transition from a cool-temperate climate in Antarctica to the polar climate that exists there today. The cooling trend strongly influenced the structure of shallow-water, Antarctic marine communities, and these effects are still evident in the peculiar ecological relationships among species living in modern Antarctic communities. Cooling late in the Eocene reduced the abundance of fish and crabs, which in turn reduced skeleton-crushing predation on invertebrates. Reduced predation allowed dense populations of ophiuroids (brittlestars) and crinoids (sea lilies) to appear in shallow-water settings at the end of the Eocene. These low-predation communities appear as dense fossil echinoderm assemblages in the upper portion of the late Eocene La Meseta Formation on Seymour Island, off the Antarctic Peninsula. Today, dense ophiuroid and crinoid populations are common in shallow-water habitats in Antarctica but generally have been eliminated by predators from similar habitats at temperate and tropical latitudes; their persistence in Antarctica to this day is an important ecological legacy of climatic cooling in the Eocene. Although the influence of declining predation on Antarctic ophiuroids and crinoids is now well documented, the effects of cooling on the more abundant mollusks have not been investigated. This study will examine the evolutionary ecology of gastropods (snails) and bivalves (clams) in the late Eocene.\u003cbr/\u003e\u003cbr/\u003eA series of hypotheses will be tested in the La Meseta Formation, based on the predicted responses of mollusks to declining temperature and changing levels of predation. The shapes of gastropod shells, the activities of gastropods that prey on other mollusks by drilling holes in their shells, and the effects of predation on the thickness of mollusk shells should have changed significantly through late Eocene time. First, defensive features of gastropod shells, such as spines and ribbing, should decline as temperature and, therefore, the activity of skeleton-crushing predators declined. Second, drilling of bivalve prey by predatory gastropods should increase with time since the drillers should themselves have been subject to lower predation pressure as temperature declined. Drilled shells, therefore, should become more common through time. Third, patterns in the thickness of shells through time will make it possible to separate the direct, physiological effects of declining temperature (shells are more difficult to produce at cooler temperatures, and so should be thinner) from the indirect effects of temperature on evolving biological interactions (increased drilling predation should result in thicker shells). \u003cbr/\u003e\u003cbr/\u003eSeymour Island contains the only fossil outcrops readily accessible in Antarctica from this crucial period in Earth history. The La Meseta Formation on Seymour Island thus provides a unique opportunity to learn how climate change affected Antarctic marine communities. In practical terms, global climate change will probably increase upwelling over the next few decades to centuries in some temperate coastal regions. Recent ecological evidence suggests that the resultant lowering of sea temperatures could lower predation in those areas. Understanding the response of the La Meseta faunas to global cooling in the late Eocene will provide direct insight into the rapidly changing structure of modern benthic communities.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Blake, Daniel", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Global Climate Change and the Evolutionary Ecology of Antarctic Mollusks in the Late Eocene.", "uid": "p0000857", "west": null}, {"awards": "9615342 Neale, Patrick", "bounds_geometry": null, "dataset_titles": "Expedition data of LMG9809", "datasets": [{"dataset_uid": "002720", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG9809", "url": "https://www.rvdata.us/search/cruise/LMG9809"}, {"dataset_uid": "002719", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG9809", "url": "https://www.rvdata.us/search/cruise/LMG9809"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Increases in ultraviolet-B radiation (UV-B, 280-320) associated with the Antarctic ozone hole have been shown to inhibit the photosynthesis of phytoplankton, but the overall effect on water column production is still a matter of debate and continued investigation. Investigations have also revealed that even at \"normal\" levels of Antarctic stratospheric ozone, UV-B and UV-A (320-400 nm) appear to have strong effects on water column production. The role of UV in the ecology of phytoplankton primary production has probably been underappreciated in the past and could be particularly important to the estimation of primary production in the presence of vertical mixing. This research focuses on quantifying UV effects on photosynthesis of Antarctic phytoplankton by defining biological weighting functions for UV-inhibition. In the past, techniques were developed to describe photosynthesis as a function of UV and visible irradiance using laboratory cultures. Further experimentation with natural assemblages from McMurdo Station in Antarctica showed that biological weighting functions are strongly related to light history. Most recently, measurements in the open waters of the Southern Ocean confirmed that there is substantial variability in the susceptibility of phytoplankton assemblages to UV. It was also discovered that inhibition of photosynthesis in Antarctic phytoplankton got progressively worse on the time scale of hours, with no evidence of recovery. Even under benign conditions, losses of photosynthetic capability persisted unchanged for several hours. This was in contrast with laboratory cultures and some natural assemblages which quickly attained a steady- state rate of photosynthesis during exposure to UV, reflecting a balance between damage and recovery processes. Slow reversal of UV-induced damage has profound consequences for water-column photosynthesis, especially during vertical mixing. Results to date have been used to model th e influence of UV, ozone depletion and vertical mixing on photosynthesis in Antarctic waters. Data indicate that normal levels of UV can have a significant impact on natural phytoplankton and that the effects can be exacerbated by ozone depletion as well as vertical mixing. Critical questions remain poorly resolved, however, and these are the focus of the present proposal. New theoretical and experimental approaches will be used to investigate UV responses in both the open waters of the Weddell-Scotia confluence and coastal waters near Palmer Station. In particular, measurements will be made of the kinetics of UV inhibition and recovery on time scales ranging from minutes to days. Variability in biological weighting functions between will be calculated for pelagic and coastal phytoplankton in the Southern Ocean. The results will provide absolute estimates of photosynthesis under in situ, as well as under altered, UV irradiance; broaden the range of assemblages for which biological weighting functions have been determined; and clarify how kinetics of inhibition and recovery should be represented in mixed layer models.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Mopper, Kenneth; Neale, Patrick", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "New Approaches to Measuring and Understanding the Effects of Ultraviolet Radiation on Photosynthesis by Antarctic Phytoplankton", "uid": "p0000871", "west": null}, {"awards": "0538639 Waddington, Edwin", "bounds_geometry": "POLYGON((-112.1 -79.4,-112.09 -79.4,-112.08 -79.4,-112.07 -79.4,-112.06 -79.4,-112.05 -79.4,-112.04 -79.4,-112.03 -79.4,-112.02 -79.4,-112.01 -79.4,-112 -79.4,-112 -79.41,-112 -79.42,-112 -79.43,-112 -79.44,-112 -79.45,-112 -79.46,-112 -79.47,-112 -79.48,-112 -79.49,-112 -79.5,-112.01 -79.5,-112.02 -79.5,-112.03 -79.5,-112.04 -79.5,-112.05 -79.5,-112.06 -79.5,-112.07 -79.5,-112.08 -79.5,-112.09 -79.5,-112.1 -79.5,-112.1 -79.49,-112.1 -79.48,-112.1 -79.47,-112.1 -79.46,-112.1 -79.45,-112.1 -79.44,-112.1 -79.43,-112.1 -79.42,-112.1 -79.41,-112.1 -79.4))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 01 Apr 2010 00:00:00 GMT", "description": "0538639\u003cbr/\u003eWaddington\u003cbr/\u003eThis award supports a project to study the patterns of accumulation variation and microstructural properties near the WAIS Divide ice core site in a 2.5 km array of 20 m boreholes. Borehole Optical Stratigraphy (BOS) is a novel optical measurement system that detects annual-scale layers in firn that result from changes in firn microstructure, giving annual-scale records of how accumulation varied spatially over the last 40-50 years. Data from borehole optical stratigraphy can eventually be calibrated against other data on the microstructural parameters of firn to calibrate BOS\u0027s sensitivity to density, pore-volume, and pore-shape variations, and to show by proxy how these parameters vary in space across the survey area. Statistical analysis of layer-thickness and layer-brightness data will enable prediction of: 1) interannual accumulation variability, 2) variability in layer-thickness at decadal scales due to changing spatial patterns in accumulation and 3) variability in microstructure-driven metamorphism due to changing spatial patterns of microstructure. With these statistics in hand, a scientist measuring climatic shifts found in the WAIS Divide ice core will be able to determine the fraction by which signals they measure exceed the signal due to background accumulation variations. As an added benefit, while still in the field, we will determine a preliminary depth-age scale for the firn by optical layer-counting, to the depth of the deepest air-filled firn hole available. This will be a valuable result for core-drilling operations and for preliminary data-analysis on the core. In terms of broader impacts, this project will advance education by training a post-doctoral student in field techniques. The P.I. and the post-doctoral researcher will participate in an undergraduate seminar called \"What is Scientific Research?\", incorporating progress and results from this project. They will also communicate about their progress and field experience with a middle-school science and math class.", "east": -112.0, "geometry": "POINT(-112.05 -79.45)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS", "is_usap_dc": false, "keywords": "Spatial Variability; FIELD INVESTIGATION; Not provided; LABORATORY; Stratigraphy; Borehole Optical Stratigraphy; Optical Layer-Counting; Microstructure; Firn; Depth-Age-Model; Optical; WAIS Divide; FIELD SURVEYS; Accumulation", "locations": "WAIS Divide", "north": -79.4, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fudge, T. J.; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -79.5, "title": "Spatial Variability in Firn Properties from Borehole Optical Stratigraphy at the Inland WAIS Core Site", "uid": "p0000237", "west": -112.1}, {"awards": "0538195 Marone, Chris", "bounds_geometry": "POLYGON((-147.75896 -61.77943,-147.758362 -61.77943,-147.757764 -61.77943,-147.757166 -61.77943,-147.756568 -61.77943,-147.75597 -61.77943,-147.755372 -61.77943,-147.754774 -61.77943,-147.754176 -61.77943,-147.753578 -61.77943,-147.75298 -61.77943,-147.75298 -61.779665,-147.75298 -61.7799,-147.75298 -61.780135,-147.75298 -61.78037,-147.75298 -61.780605,-147.75298 -61.78084,-147.75298 -61.781075,-147.75298 -61.78131,-147.75298 -61.781545,-147.75298 -61.78178,-147.753578 -61.78178,-147.754176 -61.78178,-147.754774 -61.78178,-147.755372 -61.78178,-147.75597 -61.78178,-147.756568 -61.78178,-147.757166 -61.78178,-147.757764 -61.78178,-147.758362 -61.78178,-147.75896 -61.78178,-147.75896 -61.781545,-147.75896 -61.78131,-147.75896 -61.781075,-147.75896 -61.78084,-147.75896 -61.780605,-147.75896 -61.78037,-147.75896 -61.780135,-147.75896 -61.7799,-147.75896 -61.779665,-147.75896 -61.77943))", "dataset_titles": "Laboratory Study of Stick-Slip Behavior and Deformation Mechanics of Subglacial Till", "datasets": [{"dataset_uid": "600054", "doi": "10.15784/600054", "keywords": "Antarctica; Glacial Till; Glaciers/ice Sheet; Glaciers/Ice Sheet; Lab Experiment; Marine Sediments; Physical Properties; Solid Earth", "people": "Anandakrishnan, Sridhar; Marone, Chris", "repository": "USAP-DC", "science_program": null, "title": "Laboratory Study of Stick-Slip Behavior and Deformation Mechanics of Subglacial Till", "url": "https://www.usap-dc.org/view/dataset/600054"}, {"dataset_uid": "609460", "doi": "10.7265/N5WH2MX7", "keywords": "Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Shear Stress; Solid Earth; Strain", "people": "Marone, Chris; Anandakrishnan, Sridhar", "repository": "USAP-DC", "science_program": null, "title": "Laboratory Study of Stick-Slip Behavior and Deformation Mechanics of Subglacial Till", "url": "https://www.usap-dc.org/view/dataset/609460"}], "date_created": "Thu, 18 Jun 2009 00:00:00 GMT", "description": "0538195\u003cbr/\u003eMarone\u003cbr/\u003eThis award supports a project to conduct laboratory experiments and numerical modeling to determine the constitutive properties of subglacial till under dynamic stressing and to test the hypothesis that granular properties of till are sufficient, when coupled elastically to a large ice stream, to reproduce the field observations of triggered slip and subglacial seismicity. Testing will be carried out in a servo-controlled biaxial shear device under controlled temperature and stress conditions, which will allow both sliding and microstructural processes to be studied in detail. The main focus of the work will be on laboratory measurements. In addition, we will construct continuum models to evaluate whether our results can predict complex ice sheet motions and observed characteristics of subglacial seismicity. In terms of broader impacts, the proposed work will encourage interactions between the rock-mechanics and glaciology communities and will bring together members of different scientific backgrounds and vocabularies, but similar problems and data. The project will train undergraduate and graduate students at Penn State University and the scientists involved plan to give presentations to grade school classes, scout groups, and at community open houses. Results will be presented at professional meetings and will be published in a timely manner. The work will result in a better understanding of glacial motion and the physics of earthquake slip, which is essential for understanding ice sheet dynamics and earthquake hazard.", "east": -147.75298, "geometry": "POINT(-147.75597 -61.780605)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE TRANSDUCERS", "is_usap_dc": true, "keywords": "Subglacial Observations; Laboratory Investigation; LABORATORY; Subglacial", "locations": null, "north": -61.77943, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Marone, Chris; Anandakrishnan, Sridhar", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -61.78178, "title": "Laboratory Study of Stick-Slip Behavior and Deformation Mechanics of Subglacial Till", "uid": "p0000554", "west": -147.75896}, {"awards": "0636629 Kurz, Mark", "bounds_geometry": "POLYGON((160.7 -77.8,161.06 -77.8,161.42 -77.8,161.78 -77.8,162.14 -77.8,162.5 -77.8,162.86 -77.8,163.22 -77.8,163.58 -77.8,163.94 -77.8,164.3 -77.8,164.3 -77.86,164.3 -77.92,164.3 -77.98,164.3 -78.04,164.3 -78.1,164.3 -78.16,164.3 -78.22,164.3 -78.28,164.3 -78.34,164.3 -78.4,163.94 -78.4,163.58 -78.4,163.22 -78.4,162.86 -78.4,162.5 -78.4,162.14 -78.4,161.78 -78.4,161.42 -78.4,161.06 -78.4,160.7 -78.4,160.7 -78.34,160.7 -78.28,160.7 -78.22,160.7 -78.16,160.7 -78.1,160.7 -78.04,160.7 -77.98,160.7 -77.92,160.7 -77.86,160.7 -77.8))", "dataset_titles": "Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills", "datasets": [{"dataset_uid": "600066", "doi": "10.15784/600066", "keywords": "Antarctica; Cosmogenic Radionuclides; Dry Valleys; Geology/Geophysics - Other; Glaciology; LIDAR; Navigation; Sample/collection Description; Sample/Collection Description", "people": "Soule, S. Adam; Kurz, Mark D.", "repository": "USAP-DC", "science_program": null, "title": "Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills", "url": "https://www.usap-dc.org/view/dataset/600066"}], "date_created": "Sun, 01 Feb 2009 00:00:00 GMT", "description": "This project uses cosmogenic nuclide dating and LIDAR studies of surface roughness to understand weathering and landscape evolution in the Dry Valleys of Antarctica. The work focuses on two processes: cryoturbation of frozen soils and the development of patterned, frozen ground on ancient lava flows. The approach includes innovative uses of He3 profiling. Results will also be applied to understanding the glacial history of the Dry Valleys. There are potential applications to understanding the history of the East Antarctic Ice Sheet and the formation of Martian landscapes. The broader impacts include graduate student education. As well, the work may contribute to our understanding of the history of the Antarctic ice sheets, which is important to modeling their behavior during global climate change.", "east": 164.3, "geometry": "POINT(162.5 -78.1)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION", "locations": null, "north": -77.8, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Soule, Samuel; Kurz, Mark D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.4, "title": "Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills", "uid": "p0000559", "west": 160.7}, {"awards": "0538266 Castillo, Paterno", "bounds_geometry": "POLYGON((171.82 -69.84,171.987 -69.84,172.154 -69.84,172.321 -69.84,172.488 -69.84,172.655 -69.84,172.822 -69.84,172.989 -69.84,173.156 -69.84,173.323 -69.84,173.49 -69.84,173.49 -70.007,173.49 -70.174,173.49 -70.341,173.49 -70.508,173.49 -70.675,173.49 -70.842,173.49 -71.009,173.49 -71.176,173.49 -71.343,173.49 -71.51,173.323 -71.51,173.156 -71.51,172.989 -71.51,172.822 -71.51,172.655 -71.51,172.488 -71.51,172.321 -71.51,172.154 -71.51,171.987 -71.51,171.82 -71.51,171.82 -71.343,171.82 -71.176,171.82 -71.009,171.82 -70.842,171.82 -70.675,171.82 -70.508,171.82 -70.341,171.82 -70.174,171.82 -70.007,171.82 -69.84))", "dataset_titles": "Samples collected during NBP0701 cruise in the Ross Sea", "datasets": [{"dataset_uid": "000135", "doi": "", "keywords": null, "people": null, "repository": "EarthChem", "science_program": null, "title": "Samples collected during NBP0701 cruise in the Ross Sea", "url": "http://dx.doi.org/10.1594/IEDA/100055"}], "date_created": "Tue, 30 Dec 2008 00:00:00 GMT", "description": "This award supports the study of lava samples from seamounts in the Cape Adare region of the western Ross Sea. Volcanism in this area is poorly understood, and the geochemistry of these lavas may offer new insight into regional geodynamics and global mantle geochemistry. Because the Cape Adare seamounts are located on oceanic lithosphere, they may be free of the contamination that affects lavas erupted through continental areas. This one-year investigation will gather data on samples collected on a cruise to this region in 2007. It will determine seamount ages, characterize their mantle sources, assess models for their origin, and judge the potential for more detailed study. In terms of broader impacts, this project will involve graduate and undergraduate students in an exciting field expedition, followed by laboratory work using cutting-edge techniques for geochemical analyses.", "east": 173.49, "geometry": "POINT(172.655 -70.675)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -69.84, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Castillo, Paterno; Cande, Steven", "platforms": "Not provided", "repo": "EarthChem", "repositories": "EarthChem", "science_programs": null, "south": -71.51, "title": "Collaborative Research: Constraining the Petrogenesis and Mantle Source of Adare Basin Seamount Lavas", "uid": "p0000222", "west": 171.82}, {"awards": "0338244 Schaefer, Joerg", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 10 Dec 2007 00:00:00 GMT", "description": "This project will determine the age, origin, and climatic significance of buried ice found in the western Dry Valleys of Antarctica. Previous studies indicate that this ice may be over a million years in age, making it by far the oldest ice yet discovered on Earth. An alternative view is that this ice is represents recently frozen groundwater. To distinguish between these hypotheses and characterize the ice, we are undertaking an interdisciplinary research program focused on: 1) understanding the surface processes that permit ice preservation; and 2) testing the efficacy of cosmogenic nuclides and 40Ar/39Ar analyses in dating both tills and volcanic ash associated with the ice. Our plan calls for the analysis of a minimum of six cosmogenic depth profiles to determine if and how cryoturbation reworks sublimation tills and assess the average rate of ice sublimation for three debris-covered glaciers. We will model through finite- element analyses at least three buried glaciers and compare flow rates with those based on radiometric dating of surface deposits. Ten ice cores will also be collected for measurement of d18O, dD, ice fabric, ice texture, total gas content/composition. Better understanding of surface processes above buried ice will permit researchers to gain access to a record of atmospheric and climate change that could well cover intervals that predate Quaternary time. The work may also add valuable insight into Martian history. In terms of broader impacts, we have recruited three female PhD students and developed interdisciplinary collaborations among geochemists at Columbia University, planetary geologists at Brown University, geomorphologists at Boston University, and numerical modelers at the University of Maine.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": false, "keywords": "FIELD INVESTIGATION", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "Schaefer, Joerg", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Age, Origin and Climatic Significance of Buried Ice in the Western Dry Valleys, Antarctica", "uid": "p0000255", "west": null}, {"awards": "0617194 Verosub, Kenneth", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 03 Dec 2007 00:00:00 GMT", "description": "This Small Grant for Exploratory Research supports a paleomagnetic survey of previously collected sediment cores from Antarcticas continental margin. Many of these cores were originally interpreted with methods that, though advanced for their time, were barely adequate. Nonetheless, these results are still used to construct an overall stratigraphic record for marine sediments and major events related to the Southern Ocean, global climate, and Antarcticas glacial history. With the advances in paleomagnetic techniques over the intervening decades and the great interest and current work on Antarctic marine sediments by major projects such as ANDRILL and ShalDrill, a reassessment of these cores is needed. In addition, these new studies will offer insight into the behavior of the geomagnetic field within the Earths tangent cylinder, the region delineated by an imaginary cylinder parallel to the Earths rotation axis and tangent to the equator of the inner core boundary.\u003cbr/\u003e\u003cbr/\u003eThe broader impacts of this work include support of postdoctoral student research and improving societys understanding of global climate change through an improved understanding of the Antarctic marine sediment record.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Verosub, Kenneth", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "SGER: Feasibility of Using Old Antarctic Cores for New Paleomagnetic Studies", "uid": "p0000365", "west": null}, {"awards": "0338224 Putkonen, Jaakko", "bounds_geometry": "POLYGON((161 -77,161.3 -77,161.6 -77,161.9 -77,162.2 -77,162.5 -77,162.8 -77,163.1 -77,163.4 -77,163.7 -77,164 -77,164 -77.1,164 -77.2,164 -77.3,164 -77.4,164 -77.5,164 -77.6,164 -77.7,164 -77.8,164 -77.9,164 -78,163.7 -78,163.4 -78,163.1 -78,162.8 -78,162.5 -78,162.2 -78,161.9 -78,161.6 -78,161.3 -78,161 -78,161 -77.9,161 -77.8,161 -77.7,161 -77.6,161 -77.5,161 -77.4,161 -77.3,161 -77.2,161 -77.1,161 -77))", "dataset_titles": "Cosmogenic nucilde data at ICE-D", "datasets": [{"dataset_uid": "200298", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nucilde data at ICE-D", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Tue, 20 Nov 2007 00:00:00 GMT", "description": "This work will study cosmogenic isotope profiles of rock and sediment in the Dry Valleys of Antarctica to understand their origin. The results will provide important constraints on the history of the East Antarctic Ice Sheet. The near-perfect preservation of volcanic ash and overlying sediments suggests that hyperarid cold conditions have prevailed in the Dry Valleys for over 10 Myr. The survival of these sediments also suggests that warm-based ice has not entered the valley system and ice sheet expansion has been minimal. Other evidence, however, suggests that the Dry Valleys have experienced considerably more sediment erosion than generally believed: 1) the cosmogenic exposure ages of boulders and bedrock in the Valleys all show generally younger ages than volcanic ash deposits used to determine minimum ages of moraines and drifts, 2) there appears to be a discrepancy between the suggested extreme preservation of unconsolidated slope deposits (\u003e10 Myr) and adjacent bedrock that has eroded 2.6-6 m during the same time interval. The fact that the till and moraine exposure ages generally post date the overlying volcanic ash deposits could reflect expansion of continental ice sheet into the Dry Valleys with cold-based ice, thus both preserving the landscape and shielding the surfaces from cosmic radiation. Another plausible explanation of the young cosmogenic exposure ages is erosion of the sediments and gradual exhumation of formerly buried boulders to the surface. Cosmogenic isotope systematics are especially well suited to address these questions. We will measure multiple cosmogenic isotopes in profiles of rock and sediment to determine the minimum exposure ages, the degree of soil stability or mixing, and the shielding history of surfaces by cold based ice. We expect to obtain unambiguous minimum ages for deposits. In addition, we should be able to identify areas disturbed by periglacial activity, constrain the timing of such activity, and account for the patchy preservation of important stratigraphic markers such as volcanic ash. The broader impacts of this project include graduate and undergraduate education, and improving our understanding of the dynamics of Southern Hemisphere climate on timescales of millions of years, which has major implications for understanding the controls and impacts of global climate change.", "east": 164.0, "geometry": "POINT(162.5 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "ICE SHEETS; Dry Valleys; Not provided", "locations": "Dry Valleys", "north": -77.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Putkonen, Jaakko", "platforms": "Not provided", "repo": "ICE-D", "repositories": "ICE-D", "science_programs": null, "south": -78.0, "title": "Stability of Landscapes and Ice Sheets in Dry Valleys, Antarctica: A Systematic Study of Exposure Ages of Soils and Surface Deposits", "uid": "p0000575", "west": 161.0}, {"awards": "0337858 Goodge, John", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 05 Jun 2007 00:00:00 GMT", "description": "This work will determine the age and provenance of glacially derived marine sediments from the coastal regions of Wilkes Land, Antarctica. These deposits may offer insight into the history of the East Antarctic Shield (EAS), which is amongst the oldest sections of continental crust on Earth, but cannot be studied directly because of nearly complete ice sheet coverage. The study will use Australian National University\u0027s SHRIMP ion microprobe to date zircon and monazite found in the sediments. Samples of interest include polymictic pebble and cobble clasts obtained from dredge hauls of tills, as well as sand-matrix fractions from cores of glacial diamicts on the continental margin. Individual clasts of igneous and metamorphic rocks from tills will be selected for zircon and/or monazite age dating, whereas detrital zircons from stratified and non-stratified diamictons will be analyzed for composite zircon provenance analysis. In addition, detrital zircon ages will be determined for Beacon Supergroup sandstones to evaluate recycling of zircon in Phanerozoic basins. Integration of ages obtained from both sources will provide a good representation of the EAS terrains underlying the Wilkes Land ice sheet. This project will allow us to learn more about the remote continental interior and improve our ability to interpret past ice-flow patterns without further environmental impact on Antarctica. The results will improve our understanding of Precambrian tectonics and crustal evolution, and help target future over-ice geophysical surveys and basement drilling projects currently under consideration. In terms of broader impacts, the project will provide educational and training opportunities for undergraduate students in Earth science.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Goodge, John", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Glacial proxies of East Antarctic shield basement in Wilkes Land, Antarctica", "uid": "p0000725", "west": null}, {"awards": "9814816 Blankenship, Donald", "bounds_geometry": "POLYGON((-129 -80.5,-128.4 -80.5,-127.8 -80.5,-127.2 -80.5,-126.6 -80.5,-126 -80.5,-125.4 -80.5,-124.8 -80.5,-124.2 -80.5,-123.6 -80.5,-123 -80.5,-123 -80.55,-123 -80.6,-123 -80.65,-123 -80.7,-123 -80.75,-123 -80.8,-123 -80.85,-123 -80.9,-123 -80.95,-123 -81,-123.6 -81,-124.2 -81,-124.8 -81,-125.4 -81,-126 -81,-126.6 -81,-127.2 -81,-127.8 -81,-128.4 -81,-129 -81,-129 -80.95,-129 -80.9,-129 -80.85,-129 -80.8,-129 -80.75,-129 -80.7,-129 -80.65,-129 -80.6,-129 -80.55,-129 -80.5))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 13 Feb 2007 00:00:00 GMT", "description": "9814816\u003cbr/\u003eBlankenship\u003cbr/\u003e\u003cbr/\u003eThis award supports a four year project to develop of better understanding the ice streams of the Ross Sea Embayment (A--F) which drain the interior West Antarctic Ice Sheet (WAIS) by rapidly moving vast quantities of ice to the calving front of the Ross Ice Shelf. The project will examine the role of these ice streams as buffers between the interior ice and the floating ice shelves. The reasons for their fast flow, the factors controlling their current grounding-line-, margin-, and head-positions are crucial to any attempt at modeling the WAIS system and predicting the future of the ice sheet. For the Antarctic ice streams of the Siple Coast, the transition from no-sliding (or all internal deformation) to motion dominated by sliding is defined as the \"onset-region\". To fully understand (and adequately model) the WAIS, this onset region must be better understood. The lateral margins of the ice streams are also a transition that need better explanation. Hypotheses on controls of the location of the onset region range from the \"purely-glaciologic\" to the \"purely-geologic. Thus, to model the ice sheet accurately, the basal boundary conditions (roughness, wetness, till properties) and a good subglacial geologic map, showing the distribution, thickness, and properties of the sedimentary basins, are required. These parameters can be estimated from seismic, radar, and other geophysical methods. The transition region of ice stream D will be studied in detail with this coupled geophysical experiment. In addition, selected other locations on ice streams C \u0026 D will be made, to compare and contrast conditions with the main site on ice stream D. Site-selection for the main camp will be based on existing radar, GPS, and satellite data as well as input from the modeling community.", "east": -123.0, "geometry": "POINT(-126 -80.75)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": -80.5, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Blankenship, Donald D.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -81.0, "title": "Collaborative Research: Characterizing the Onset of Ice Stream Flow: A Ground Geophysical Field Program", "uid": "p0000603", "west": -129.0}, {"awards": "0087390 Grunow, Anne", "bounds_geometry": "POLYGON((-170 -79,-164 -79,-158 -79,-152 -79,-146 -79,-140 -79,-134 -79,-128 -79,-122 -79,-116 -79,-110 -79,-110 -79.5,-110 -80,-110 -80.5,-110 -81,-110 -81.5,-110 -82,-110 -82.5,-110 -83,-110 -83.5,-110 -84,-116 -84,-122 -84,-128 -84,-134 -84,-140 -84,-146 -84,-152 -84,-158 -84,-164 -84,-170 -84,-170 -83.5,-170 -83,-170 -82.5,-170 -82,-170 -81.5,-170 -81,-170 -80.5,-170 -80,-170 -79.5,-170 -79))", "dataset_titles": "Polar Rock Repository; Rock Magnetic Clast data are at this website", "datasets": [{"dataset_uid": "200243", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Polar Rock Repository", "url": "https://prr.osu.edu/"}, {"dataset_uid": "001970", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Rock Magnetic Clast data are at this website", "url": "http://bprc.osu.edu/"}], "date_created": "Mon, 23 Aug 2004 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research project between the University of California-Santa Cruz, the University of Texas-Austin, and the Ohio State University to investigate sediment samples recovered from the base of the West Antarctic Ice Sheet (WAIS). West Antarctica is a remote polar region but its dynamic ice sheet, complicated tectonic history, and the sedimentary record of Cenozoic glaciation make it of particular interest to glaciologists and geologists. Glaciologists are concerned with the possibility of significant near-future changes in mass balance of the WAIS that may contribute to the ongoing global sea level rise. Geologists are investigating in West Antarctica the fundamental process of continental extension and are constructing models of a polar marine depositional system using this region as the prime modern example. The subglacial part of West Antarctica has escaped direct geological investigations and all that is known about subglacial geology comes from geophysical remote sensing. Recent acquisitions of new, high-quality geophysical data have led to generation of several enticing models. For instance, subglacial presence of high-magnitude, short-wavelength magnetic anomalies has prompted the proposition that there may be voluminous (\u003e1 million cubic km), Late Cenozoic flood basalts beneath the ice sheet. Another important model suggests that the patterns of fast ice streaming (~100 meters/year) and slow ice motion (~1-10 meters/year) observed within the WAIS are controlled by subglacial distribution of sedimentary basins and resistant bedrock. These new geophysics-based models should be tested with direct observations because they are of such great importance to our understanding of the West Antarctic tectonic history and to our ability to predict the future behavior of the WAIS.\u003cbr/\u003e\u003cbr/\u003eThis research is designed as a pilot study to provide new geologic data, which may help to test the recent models inferred from geophysical observations. The new constraints on subglacial geology and on its interactions with the WAIS will be obtained through petrological and geochemical analyses of basal and subglacial sediments collected previously from seven localities. This investigation will take place in the context of testing the following three hypotheses: (A) the provenance of bedrock clasts in the glacial sediment samples is primarily from West Antarctica, (B) some clasts and muds from the West Antarctic subglacial sediments have been derived by erosion of the (inferred) subglacial Late Cenozoic flood basalts, and (C) the sediments underlying the West Antarctic ice streams were generated by glacial erosion of preglacial sedimentary basins but the sediments recovered from beneath the slow-moving parts of the WAIS were produced through erosion of resistant bedrock.\u003cbr/\u003e\u003cbr/\u003eThe individual hypotheses will be tested by collecting data on: (A) petrology, geochemistry and age of granitoid clasts, (B) petrology, geochemistry and age of basaltic clasts combined with mud geochemistry, and (C) clay mineralogy/paragenesis combined with textural maturity of sand and silt grains. The results of these tests will help evaluate the interesting possibility that subglacial geology may have first-order control on the patterns of fast ice flow within the WAIS. The new data will also help to determine whether the subglacial portion of West Antarctica is a Late Cenozoic flood basalt province. By combining glaciological and geological aspects of West Antarctic research the proposed collaborative project will add to the ongoing U.S. effort to create a multidisciplinary understanding of this polar region.", "east": -110.0, "geometry": "POINT(-140 -81.5)", "instruments": null, "is_usap_dc": false, "keywords": "Till; Subglacial; Clasts; Magnetic Properties; Rock Magnetics; FIELD INVESTIGATION; West Antarctic Ice Sheet", "locations": "West Antarctic Ice Sheet", "north": -79.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Grunow, Anne; Vogel, Stefan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "PRR", "repositories": "PI website; PRR", "science_programs": null, "south": -84.0, "title": "Collaborative Research: Relationship Between Subglacial Geology and Glacial Processes in West Antarctica: Petrological and Geochemical Analyses of Subglacial and Basal Sediments", "uid": "p0000740", "west": -170.0}, {"awards": "0096302 Tulaczyk, Slawek", "bounds_geometry": "POLYGON((-180 -62.83,-144 -62.83,-108 -62.83,-72 -62.83,-36 -62.83,0 -62.83,36 -62.83,72 -62.83,108 -62.83,144 -62.83,180 -62.83,180 -65.547,180 -68.264,180 -70.981,180 -73.698,180 -76.415,180 -79.132,180 -81.849,180 -84.566,180 -87.283,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.283,-180 -84.566,-180 -81.849,-180 -79.132,-180 -76.415,-180 -73.698,-180 -70.981,-180 -68.264,-180 -65.547,-180 -62.83))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 06 May 2003 00:00:00 GMT", "description": "Not Available", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided; Centerline Ice Stream Velocity; Till Void Ratio; Basal Temperature Gradient; Surface Elevation; Till Strength", "locations": null, "north": -62.83, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "MacAyeal, Douglas; Tulaczyk, Slawek", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -90.0, "title": "Control of Ice-Till Interactions on Evolution and Stability of Ice Streams and Ice Sheets", "uid": "p0000743", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
The Results Map and the Results Table
The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
As the map is panned or zoomed, the highlighted rows in the table will update.
If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page.
The bounds for the project(s)/dataset(s) selected will be displayed in red.
The selected result(s) will be highlighted in red and brought to the top of the table.
The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds
and highlight the centroid on the Results Map.
Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other
search criteria already selected.
After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
Clicking Clear in the map will clear any drawn polygon.
Clicking Search in the map, or Search on the form will have the same effect.
The returned results will be any projects/datasets with bounds that intersect the polygon.
Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Ice penetrating radar is one of the primary tools that researchers use to study ice sheets and glaciers. With radar, it is possible to see a cross-section of the ice, revealing internal layers and the shape of the rocks under the ice. Among other things, this is important for calculating how much potential sea level change is locked up in the polar ice sheets, and how stable the ice sheets are likely to be in a warming world. This type of data is logistically challenging and expensive to collect. Historically, individual research groups have obtained funding to collect these data sets, and then the data largely stayed within that institution. There has been a recent push to make more and more data openly available, enabling the same datasets to be used by multiple research groups. However, it is still difficult to figure out what data is available because there is no centralized index. Additionally, each group releases data in a different format, which creates an additional hurdle to its use. This project addresses both of those challenges to data reuse by providing a unified tool for discovering where ice penetrating radar data already exists, then allowing the researcher to download and visualize the data. It is integrated into open-source mapping software that many in the research community already use, and makes it possible for non-experts to explore these datasets. This is particularly valuable for early-career researchers and for enabling interdisciplinary work. The US alone has spent many tens of millions of dollars on direct grants to enable the acquisition and analysis of polar ice penetrating radar data, and even more on the associated infrastructure and support costs. Unfortunately, much of these data is not publicly released, and even the data that has been released is not easily accessible. There is significant technical work involved in figuring out how to locate, download and view the data. This project is developing a tool that will both lower the barrier to entry for using this data and improve the workflows of existing users. Quantarctica and QGreenland have rapidly become indispensable tools for the polar research community, making diverse data sets readily available to researchers. However, ice penetrating radar is a major category of data that is not currently supported ? it is possible to see the locations of existing survey lines, and the ice thickness maps that have been interpreted from their data, but it is not readily possible to see the radargrams themselves in context with all of the other information. This capability is important because there is far more visual information contained in a radargram than simply its interpreted basal elevation or ice thickness. This project is developing software that will enable researchers to to view radargram images and interpreted surface and basal horizons in context with the existing map-view datasets in Quantarctica and QGreenland. A data layer shows the locations of all known ice penetrating radar surveys, color-coded based on availability. This layer enables data discovery and browsing. The plugin itself interacts with the data layer, first to download selected data, then to visualize the radargrams along with a cursor that moves simultaneously along the radargram and along the map view, making it straightforward to determine the precise geolocation of radar features.
The Southern Ocean plays a key role in modulating the global carbon cycle, but the size and even the sign of the flux of carbon dioxide between the ocean and atmosphere in this region is still uncertain. This is in part due to the lack of measurements in this remote region of the world ocean. This project continues a multi-year time series of shipboard chemical measurements in the Drake Passage to detect changes in the ocean carbon cycle and to improve the understanding of mechanisms driving natural variability and long-term change in the Southern Ocean. More specifically, this project is a continuation of the collection of underway upper ocean measurements of the surface partial pressure of carbon dioxide during crossings of the Drake Passage by the Antarctic Research and Supply Vessel Laurence M. Gould. This project also includes collection and analysis of discrete samples relevant to ocean carbon cycle studies including macronutrient concentrations, total carbon dioxide concentrations, and the carbon isotopic composition of total carbon dioxide. The Drake Passage data are made readily available to the international science community and serve as both validation and constraints of remotely sensed observations and numerical coupled earth systems models.
Nontechnical Description: The age of rocks and soils at the surface of the Earth can help answer multiple questions that are important for human welfare, including: when did volcanoes erupt and are they likely to erupt again? when did glaciers advance and what do they tell us about climate? what is the frequency of hazards such as landslides, floods, and debris flows? how long does it take soils to form and is erosion of soils going to make farming unsustainable? One method that is used thousands of times every year to address these questions is called 'cosmogenic surface-exposure dating'. This method takes advantage of cosmic rays, which are powerful protons and neutrons produced by supernova that constantly bombard the Earth's atmosphere. Some cosmic rays reach Earth's surface and produce nuclear reactions that result in rare isotopes. Measuring the quantity of the rare isotopes enables the length of time that the rock or soil has been exposed to the atmosphere to be calculated. The distribution of cosmic rays around the globe depends on Earth's magnetic field, and this distribution must be accurately known if useful exposure ages are to be obtained. Currently there are two remaining theories, narrowed down from many, of how to calculate this distribution. Measurements from a site that is at both high altitude and high latitude (close to the poles) are needed to test the two theories. This study involves both field and lab research and includes a Ph.D. student and an undergraduate student. The research team will collect rocks from lava flows on an active volcano in Antarctica named Mount Erebus and measure the amounts of two rare isotopes: 36Cl and 3He. The age of eruption of the samples will be determined using a highly accurate method that does not depend on cosmic rays, called 40Ar/39Ar dating. The two cosmic-ray theories will be used to calculate the ages of the samples using the 36Cl and 3He concentrations and will then be compared to the ages calculated from the 40Ar/39Ar dating. The accurate cosmic-ray theory will be the one that gives the same ages as the 40Ar/39Ar dating. Identification of the accurate theory will enable use of the cosmogenic surface dating methods anywhere on earth. <br/>Technical Description: Nuclides produced by cosmic rays in rocks at the surface of the earth are widely used for Quaternary geochronology and geomorphic studies and their use is increasing every year. The recently completed CRONUS-Earth Project (Cosmic-Ray Produced Nuclides on Earth) has systematically evaluated the production rates and theoretical underpinnings of cosmogenic nuclides. However, the CRONUS-Earth Project was not able to discriminate between the two leading theoretical approaches: the original Lal model (St) and the new Lifton-Sato-Dunai model (LSD). Mathematical models used to scale the production of the nuclides as a function of location on the earth, elevation, and magnetic field configuration are an essential component of this dating method. The inability to distinguish between the two models was because the predicted production rates did not differ sufficiently at the location of the calibration sites. <br/><br/>The cosmogenic-nuclide production rates that are predicted by the two models differ significantly from each other at Erebus volcano, Antarctica. Mount Erebus is therefore an excellent site for testing which production model best describes actual cosmogenic-nuclide production variations over the globe. The research team recently measured 3He and 36Cl in mineral separates extracted from Erebus lava flows. The exposure ages for each nuclide were reproducible within each flow (~2% standard deviation) and in very good agreement between the 3He and the 36Cl ages. However, the ages calculated by the St and LSD scaling methods differ by ~15-25% due to the sensitivity of the production rate to the scaling at this latitude and elevation. These results lend confidence that Erebus qualifies as a suitable high- latitude/high-elevation calibration site. The remaining component that is still lacking is accurate and reliable independent (i.e., non-cosmogenic) ages, however, published 40Ar/39Ar ages are too imprecise and typically biased to older ages due to excess argon contained in melt inclusions.<br/>The research team's new 40Ar/39Ar data show that previous problems with Erebus anorthoclase geochronology are now overcome with modern mass spectrometry and better sample preparation. This indicates a high likelihood of success for this proposal in defining an accurate global scaling model. Although encouraging, much remains to be accomplished. This project will sample lava flows over 3 km in elevation and determine their 40Ar/39Ar and exposure ages. These combined data will discriminate between the two scaling methods, resulting in a preferred scaling model for global cosmogenic geochronology. The LSD method contains two sub-methods, the 'plain' LSD scales all nuclides the same, whereas LSDn scales each nuclide individually. The project can discriminate between these models using 3He and 36Cl data from lava flows at different elevations, because the first model predicts that the production ratio for these two nuclides will be invariant with elevation and the second that there should be ~10% difference over the range of elevations to be sampled. Finally, the project will provide a local, finite-age calibration site for cosmogenic-nuclide investigations in Antarctica.
Stable isotope analyses of carbon and nitrogen (δ13C and δ15N) are commonly used to investigate animal migration, foraging locations and diet, especially in marine species that can travel over great distances. One other stable isotope, sulfur (δ34S), is not as commonly used but is increasingly being applied to refine and corroborate data obtained from carbon and nitrogen analyses. Collagen is one of the best tissues for these analyses as it is abundant in bone, preserves well, and can be easily extracted for analysis. In the Ross Sea region, the cold, dry environment has been conductive for the preservation of Adélie penguin (Pygoscelis adeliae) bones, feathers, eggshell and even mummified remains, at active and abandoned colonies that date from before the Last Glacial Maximum (>45,000 yrs ago) through the Holocene. Most of these colonies are associated with one of three polynyas, or highly productive areas of open water surrounded by sea ice in the Ross Sea. Thus, this species is an excellent bioindicator for marine conditions, past and present, and its colonies have appeared and disappeared throughout this region with changing climate and sea ice regimes for millennia. Current warming trends are inducing relatively rapid ecological responses by this species and some of the largest colonies in the Ross Sea are likely to be abandoned in the next 50 years from rising sea level. The recently established Ross Sea Marine Protected Area aims to protect Adélie penguins and other species in this region from human impacts and knowledge on how this species responds to climate change, past and present, will support this goal.
We propose to investigate ecological responses in diet and foraging behavior of the Adélie penguin to known climatic events that occurred in the middle to late Holocene, specifically, before, during and after a warming period known as the penguin ‘optimum’ at 2000 - 4000 cal yr before present (BP). We will apply for the first time a suite of three stable isotope analyses (δ13C, δ15N, δ34S) on chick bones and feathers, as well as prey remains, from active and abandoned colonies in the Ross Sea. We will use existing tissue samples (~60-80 bones) collected by PI Emslie with NSF support since 2001 and supplement these with newly collected samples of bones and feathers in this project. We will conduct compound-specific isotope analyses of carbon on essential amino acids from collagen from a selected sample of 30-40 bones that span the past 5000 yrs to provide corroboratory information. We will apply three-dimensional Bayesian niche models and/or community metrics using R scripts in these analyses to identify isotopic ‘signatures’ of existing and past foraging grounds and polynyas used by Adélie penguins in the southern, central, and northern Ross Sea. This four-year study will the first of its kind to apply multiple stable isotope analyses to investigate a living species of seabird over millennia in a region where it still exists today.
Broader Impacts:
The PIs are committed to public engagement and enhancement of K-12 education in the STEM sciences. Broader impacts of this research will include support and training for one Ph.D., two M.S., and eight undergraduate students in the Department of Biology and Marine Biology, and two M.A. students in the Watson School of Education at the University of North Carolina Wilmington (UNCW). The last two students will continue to expand on a detailed polar curriculum that was initiated in previous NSF grants for 2nd and 4th grade students, and most recently for 9-12th grade students now available on PI Emslie’s website (www.uncw.edu/penguins). Additional curricula for K-12 students will be designed and tested in this project, which will include visitation to local K-12 schools. As in previous awards, we will focus on schools that serve historically under-represented groups in the sciences. We will work with the UNCW Center for Education in STEM Sciences to assess the efficacy of this new curricula. All curricula will be uploaded on the Educational Resource Commons website. Field work will include blogs and active question-answer sessions with students at these schools. We will continue to post project information and updates on PI Emslie’s website and YouTube channel. Our partnership with tour ship companies will provide a platform for onboard lectures on the importance of scientific research as well as citizen science opportunities for another sector of the public. This proposal requires fieldwork in the Antarctic.
The goal of this study is to identify and distinguish different source areas of glacial sediment in the McMurdo Dry Valleys, Antarctica to determine past glacial flow direction. Understanding ice flow is critical for determining how the Antarctic Ice Sheets have behaved in the past. Such insight is fundamental for allowing scientists to predict how the Antarctic Ice Sheets will evolve and, in turn, forecast how much and how fast sea level may rise. The project study site, the McMurdo Dry Valleys, contain a tremendous record of glacial deposits on land that extends back at least 14 million years. Chemistry of the rocks within the glacial deposits hold clues to the sources of ice that deposited the material. The chemical analyses of the glacial deposits will allow mapping of the former extent of glaciations providing a better understand of ice flow history. The mapping of the largest ice sheet expansion of the past 14 million years in the McMurdo Dry Valleys is of broad interest to the global climate change community. Undergraduate students comprise the majority of the field teams and will be responsible for sample preparation and analysis in the laboratory. <br/><br/>This project utilizes new geochemical techniques to test hypotheses about the source, extent, and flow patterns of the glacier ice that deposited glacial tills in the McMurdo Dry Valleys, Antarctica (MDV). The MDV contain an unparalleled terrestrial archive of glacial deposits, which record multiple sources of ice that deposited them. These include the northeast flowing ice that overrode the Transantarctic Mountains, the eastward expansion of the East Antarctic Ice Sheet, the westward extension of the Ross Ice Shelf representing an expansion of the West Antarctic Ice Sheet, and the growth of local alpine glaciers. The glacial tills and drifts in the Antarctic are typically isolated in patches or disjointed outcrop patterns making it difficult to correlate tills and determine their source. This project will undertake a systematic study of the tills in the McMurdo Dry Valleys to determine their provenance with a variety of geochemical techniques including major and minor element analyses with X-ray fluorescence, heavy mineral composition, soil salt concentration, and determining the uranium-lead (U-Pb) ages of zircon sands contained in these tills. The primary tool will be the age distribution of the population of detrital zircon in a glacial drift because it reflects the source of the tills and provides a unique geochemical "fingerprint" used to distinguish source areas while correlating units across different sites. A deliverable from this project will be a community available library of zircon fingerprints for mapped glacial tills from archived samples at the Polar Rock Repository and the systematic collection of samples in the MDV.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Microbial communities are of more than just a scientific curiosity. Microbes represent the single largest source of evolutionary and biochemical diversity on the planet. They are the major agents for cycling carbon, nitrogen, phosphorus, and other elements through the ecosystem. Despite their importance in ecosystem function, microbes are still generally overlooked in food web models and nutrient cycles. Moreover, microbes do not live in isolation: their growth and metabolism are influenced by complex interactions with other microorganisms. This project will focus on the ecology, activity and roles of microbial communities in Antarctic Lake ecosystems. The team will characterize the genetic underpinnings of microbial interactions and the influence of environmental gradients (e.g. light, nutrients, oxygen, sulfur) and seasons (e.g. summer vs. winter) on microbial networks in Lake Fryxell and Lake Bonney in the Taylor Valley within the McMurdo Dry Valley region. Finally, the project furthers the NSF goals of training new generations of scientists by including undergraduate and graduate students, a postdoctoral researcher and a middle school teacher in both lab and field research activities. This partnership will involve a number of other outreach training activities, including visits to classrooms and community events, participation in social media platforms, and webinars. <br/><br/>Part II: Technical description: Ecosystem function in the extreme Antarctic Dry Valleys ecosystem is dependent on complex biogeochemical interactions between physiochemical environmental factors (e.g. light, nutrients, oxygen, sulfur), time of year (e.g. summer vs. winter) and microbes. Microbial network complexity can vary in relation to specific abiotic factors, which has important implications on the fragility and resilience of ecosystems under threat of environmental change. This project will evaluate the influence of biogeochemical factors on microbial interactions and network complexity in two Antarctic ice-covered lakes. The study will be structured by three main objectives: 1) infer positive and negative interactions from rich spatial and temporal datasets and investigate the influence of biogeochemical gradients on microbial network complexity using a variety of molecular approaches; 2) directly observe interactions among microbial eukaryotes and their partners using flow cytometry, single-cell sorting and microscopy; and 3) develop metabolic models of specific interactions using metagenomics. Outcomes from amplicon sequencing, meta-omics, and single-cell genomic approaches will be integrated to map specific microbial network complexity and define the role of interactions and metabolic activity onto trends in limnological biogeochemistry in different seasons. These studies will be essential to determine the relationship between network complexity and future climate conditions. Undergraduate researchers will be recruited from both an REU program with a track record of attracting underrepresented minorities and two minority-serving institutions. To further increase polar literacy training and educational impacts, the field team will include a teacher as part of a collaboration with the successful NSF-funded PolarTREC program and participation in activities designed for public outreach.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This award is funded in whole or part under the American Rescue Plan Act of 2021 (Public Law 117-2).
Part I: Non-technical description:
Adlie penguin colonies are declining and disappearing from the western Antarctic Peninsula. However, not all colonies in a certain area decline or disappear at the same rate. This research project will evaluate the influence of terrestrial surface properties on Adlie penguin colonies, leveraging five decades of research on seabirds near Palmer Station where an Adlie colony on Litchfield Island became extinct in 2007 while other colonies nearby are still present. The researchers will combine information obtained from remote sensing, UAS (Unoccupied Aircraft System, or drones) high-resolution maps, reconstruction of past moss banks and modeling with machine learning tools to define suitable penguin and peatbank moss habitats and explore the influence of microclimate on their distributions. In particular, the researchers are asking if guano from penguin colonies could act as fertilizers of moss banks in the presence of localized wind patters that can carry airborne nitrogen to the mosses. Modeling will relate penguin and peatbank moss spatial patterns to environmental variables and provide a greater understanding of how continued environmental change could impact these communities. The project allows for documentation of terrestrial Antarctic ecosystems in support of seabirds and provisioning of such information to the broader science community that seeks to study penguins, educating graduate and undergraduate students and a post-doctoral researcher. The research team includes two young women as Principal Investigators, one of them from an under-represented ethnic minority, first time Antarctic Principal Investigator, from an EPSCoR state (Wyoming), broadening participation in Antarctic research. Researchers will serve as student mentors through the Duke Bass Connections program entitled Biogeographic Assessment of Antarctic Coastal Habitats. This program supports an interdisciplinary team of graduate and undergraduate students collaborating with project faculty and experts on cutting-edge research bridging the classroom and the real world.
Part II: Technical description:
This research aims to understand the changes at the microclimate scale (meters) by analyzing present and past Adlie penguin colonies and moss peatbanks in islands around Palmer Station in the western Antarctic Peninsula interlinked systems that are typically considered in isolation. By integrating in situ and remote data, this project will synthesize the drivers of biogeomorphology on small islands of the Antarctic Peninsula, a region of rapid change where plants and animals often co-occur and animal presence often determines the habitation of plants. A multi-disciplinary approach combine field measurements, remote sensing, UAS (Unoccupied Aircraft Systems) maps, paleoecology and modeling with machine learning to define suitable habitats and the influence of microclimates on penguin and peatbank distributions. The link between the two aspects of this study, peatbanks and penguins, is the potential source of nutrients for peat mosses from penguin guano. Peatbank and penguin distribution will be modeled and all models will be validated using in situ information from moss samples that will identify mechanistic processes. This project leverages 5 decades of seabird research in the area and high-definition remote sensing provided by the Polar Geospatial center to study the microclimate of Litchfield Island where an Adlie colony became extinct in 2007 when other colonies nearby are still present. The research team includes two early career women as Principal Investigators, one of them from an under-represented ethnic minority, first time Antarctic Principal Investigator, from an EPSCoR state (Wyoming). Researchers will serve as mentors for students through the Duke Bass Connections program entitled Biogeogrpahic Assessment of Antarctic Coastal Habitats which bridges the classroom and the real world.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Nearly half of the freshwater flux from the Antarctic Ice Sheet into the Southern Ocean occurs in the form of large tabular icebergs that calve off the continent’s ice shelves. However, because of difficulties in adequately simulating their breakup, large Antarctic icebergs to date have either not been represented in models or represented but with no breakup scheme such that they consistently survive too long and travel too far compared with observations. Here, we introduce a representation of iceberg fracturing using a breakup scheme based on the “footloose mechanism.” We optimize the parameters of this breakup scheme by forcing the iceberg model with an ocean state estimate and comparing the modeled iceberg trajectories and areas with the Antarctic Iceberg Tracking Database. We show that including large icebergs and a representation of their breakup substantially affects the iceberg meltwater distribution, with implications for the circulation and stratification of the Southern Ocean.
The deep polar cap is unique in that it contains "open" magnetic field lines connecting directly to the interplanetary magnetic field (IMF). These provide a direct pathway for solar wind energy into the ionosphere and upper atmosphere. Important on large scales is the spatial extent of the polar cap, controlled by ionospheric convection and demarcated by the OCB. Observations of that boundary serve the important role of validating magnetic field models. In addition, ULF waves in the polar cap may be related to direct penetration of solar wind. Ionospheric density enhancement, tongue of ionization (TOI), and irregularities causing RF signal scintillations in the polar cap are very important and yet underexplored areas of studies. Motivated by the compelling science in the underexplored polar region, we propose to investigate M-I coupling processes, ionospheric irregularities inside the polar cap and their space weather impacts by establishing a new ground-based network that will be deployed in the Antarctic polar cap region. The goal of this investigation is to establish a spatially extensive ground-based observational record of coupled Magnetosphere-Ionosphere (M-I) dynamics in the deep polar cap. This is to be achieved using three new Autonomous Geophysical Observatories (AGOs) along the Jang Bogo – Dome C supply route (deployment and maintenance paid for by Korea Polar Research Institute – KOPRI).
Overview: We aim to provide the most detailed investigation to date of the factors that influence predictability of Antarctic climate, the coupling of climate to penguins populations, and the integration of the two to optimize ecological forecasts. This integrated understanding is critical for guiding future ecological and climate research, prioritizing bio-physical monitoring efforts, and informing conservation decision-making. Our study will reveal the influence of climate system dynamics on ecological predictability across a range of scales and will examine how this role differs among ecological processes, species and regions of Antarctica.
Intellectual Merit: Many biophysical processes will change in the coming century. Yet, the mechanisms controlling the predictability of many climate processes are still poorly understood, limiting progress in climate forecasting. In parallel, ecological forecasting remains a nascent discipline. In particular, comparative assessments of predictability, both within and among species, are critically needed to understand the factors that allow (or prevent) useful ecological forecasts. While important for ecological science generally, this need is particularly pressing in Antarctica where the environment is highly dynamic, strongly coupled to biological processes, and likely to change in the future. Improved ecological forecasting therefore requires interdisciplinary efforts to understand the causes of predictability in climate, and in tandem, how climate influences the predictability of natural populations.
This proposed research will examine the predictability of Antarctic climate and its influence on penguin demographic response predictability at various temporal and spatial scales using the longest datasets available for two penguin species. Specifically, the PI will 1) identify the physical mechanisms giving rise to climate predictability in Antarctica, 2) identify the relationships between climate and ecological processes at a range of scales, and 3) reveal the factors controlling ecological predictability across a range of scales (e.g., those relevant for short-term adaptive management versus those relevant at end-of-century timescales). These objectives will be achieved using the analysis of existing climate data and Atmosphere-Ocean Global Circulation Models (AGOCMs), with coupled analysis of existing long-term demographic data for multiple seabird species that span a range of ecological niches, life histories, and study sites across the continent.
Surface melting and the evolution of the surface hydrological system on Antarctica ice shelves modulate the ice sheet mass balance. Despite its importance, limitations still exist that preclude the scientific community from mapping the spatio-temporal evolution of the surface hydrological system at the required resolutions to make the necessary leap forward to address the current and future evolution of ice shelves in Antarctica (Kingslake et al., 2019). Differently from Greenland, surface melting in Antarctica does not exhibit a dependency from elevation, with most of it occurring over ice shelves, at the sea level and where little elevation gradients exist. Therefore, statistical downscaling techniques using digital elevation models - as in the case of Greenland or other mountain regions - cannot be used. Machine learning (ML) tools can help in this regard. In this project, we address this issue and propose a novel method to map the spatio-temporal evolution of surface meltwater in Antarctica on a daily basis at high spatial (30 - 100 m) resolution using a combination of remote sensing, numerical modeling and machine learning. The final product of this project will consist of daily maps of surface meltwater at resolutions of the order of 100 m for the period 2000 - 2021 that will satisfy the following constraints: a) to be physically consistent with the model prediction and with the underlying governing dynamics for the melt processes; b) to capture the temporal dynamics of the model predictions, which include the temporal sequence of a set of past time steps which lead to the target prediction time, but could also include model predictions valid for a set of future time steps; c) to reconcile the higher spatial resolution of the input satellite measurements with the lower spatial resolution of the numerical model; d) to be consistent with previously generated surface melt products, so that temporal time series can be analyzed; e) to provide a measure of uncertainty to help with testing and validation.
Polar ecosystems currently experience significant impacts due to global changes. Measurable negative effects on polar wildlife have already occurred, such as population decreases of numerous seabird species, including the complete loss of colonies of one of the most emblematic species of the Antarctic, the emperor penguin. These existing impacts on polar species are alarming, especially because many polar species still remain poorly studied due to technical and logistical challenges imposed by the harsh environment and extreme remoteness. Developing technologies and tools for monitoring such wildlife populations is, therefore, a matter of urgency.
This project aims to help close major knowledge gaps about the emperor penguin, in particular about their adaptive capability to a changing environment, by the development of next-generation tools to remotely study entire colonies. Specifically, the main goal of this project is to implement and test an autonomous unmanned ground vehicle equipped with Radio-frequency identification (RFID) antennas and wireless mesh communication data-loggers to: 1) identify RFID-tagged emperor penguins during breeding to studying population dynamics without human presence; and 2) receive GPS-TDR datasets from VHF-GPS-TDR data-loggers without human presence to study animal behavior and distribution at sea. The autonomous vehicles navigation through the colony will be aided by an existing remote penguin observatory (SPOT). Properly implemented, this technology can be used to study of the life history of individual penguins, and therefore gather data for behavioral and population dynamic studies.
The education objectives of this CAREER project are designed to increase the interest in a STEM education for the next generation of scientists by combining the charisma of the emperor penguin with robotics research. Within this project, a new class on ecosystem robotics will be developed and taught, Robotics boot-camps will allow undergraduate students to remotely participate in Antarctic field trips, and an annual curriculum will be developed that allows K-12 students to follow the life of the emperor penguin during the breeding cycle, powered by real-time data obtained using the unmanned ground vehicle as well as the existing emperor penguin observatory.
Finding the oldest ice on Earth can tell us about the climate and life forms in the distant past
Recently we discovered a mile wide and hundreds of feet thick ice body in Antarctica that is buried under just a few feet of dirt. Thus far our analyses of the dirt suggest that the ice is over million years old. Generally, glacial ice contains tiny bubbles and dirt that was deposited and locked in the ice by the ancient snowfall and today still holds small samples of the atmospheric gases and everything else that was carried by the winds in the past. Such samples may include the amount of greenhouse gases, plant pollen, microbes, and mineral dust. Therefore the glaciers are like archives where we can access and study the Earth’s history with samples that are unavailable anywhere else. Ice survives poorly on Earth’s surface and therefore currently only few ice samples are known that are approximately million years old. Our site has a high potential to harbor perhaps the oldest ice on Earth. However, first we need to sample and date the ice. Our research will also help us understand how these pockets of buried ice can survive such unusually long periods of time. Such understanding will help us study the landforms and history of not only Antarctica but also the Mars where similar dirt covered glaciers are found today.
We propose to collect regolith samples through the approximately 1 m thick cover and to core the buried ice in Ong Valley down to 10 m depth to determine the cosmogenic nuclide concentrations both in the regolith and in the embedded mineral matter suspended in the ice. The systematics of the target cosmogenic nuclides (10Be, 26Al, and 21Ne) such as half-lives, isotope production rates, production pathways, and related attenuation lengths allow us to uniquely determine the age of the ice and the rate the ice is sublimating. Our existing samples and analyses reveal accumulation of mineral matter at the base of surficial debris layer and the surface erosion of this debris by eolian processes. The intellectual merit of the proposed activity: Our main objective is to unequivocally determine the age and sublimation rate of two buried massive ice bodies in time scale of thousands to millions of years. The slow sublimation is a fundamentally Antarctic process, and may have altered most of the currently ice-free areas throughout the continent. Similar large, debris covered ice bodies have been recently discovered in Mars as well. Our results may transform the understanding of the longevity of the buried ice bodies and potentially reveal the oldest ice ever found in the interior of the Antarctica. If proven old and slowly sublimating, this buried ice can potentially yield direct information about the atmospheric chemistry, ancient life forms, and geology of greater antiquity than the currently available and sampled ice bodies. The broader impacts resulting from the proposed activity: The results will be relevant to researchers in glaciology, paleoclimatology, planetary geology, and biology. Several students will participate in the project and do field work in Antarctica, work in lab, attend meetings, attend outreach activities, and produce videos. A graduate student will prepare his/her thesis on a topic closely related to the objectives of the proposed research. The results of the research will be published in scientific meetings and publications.
Satellite observations show expanding Antarctic sea ice over the last three decades. Increasing Antarctic sea ice seems unexpected when compared to observations of rising global temperatures or shrinking Arctic sea ice. Computer models of global climate also predict Antarctic sea ice to shrink instead of grow. Several hypotheses have been suggested to explain the contradiction between what scientists expect to see based on computer models and physical intuition and the growth that is recorded in observations. This study will examine the hypothesis that sea ice expansion can be explained by sea ice motion, where sea ice moves in such a way as to promote an increase in overall coverage. Researchers will use several different types of computer models, ranging in complexity, to better understand the physical processes of sea ice motion and how the sea ice motion interacts with the larger atmosphere-ocean system. The team will transfer their research to the classroom by hosting a week-long teacher workshop. Teachers will learn how scientists use computer models to test hypotheses and then develop and test tools for use in the classroom. Five middle and high school teachers will participate and become part of the UC San Diego STEM Success Initiative master science teacher network. The project will support a graduate student and a postdoctoral researcher.
Sea ice motion has recently emerged as one of the candidates to explain the Antarctic sea ice expansion but a systematic investigation of how sea ice motion influences sea ice concentration has not been presented to date. Researchers will conduct a process-oriented study of the relationship between sea ice motion and Antarctic sea ice extent using a hierarchy of models. The hierarchy will consist of (i) an idealized single-column model of sea ice evolution, (ii) an idealized latitudinally-varying global model of sea ice and climate, (iii) an atmospheric global climate model (GCM) above a slab ocean that includes sea ice motion, (iv) a comprehensive GCM, and (v) model output from the suite of current comprehensive GCMs. The range of model complexities will help researchers better understand the relationship between sea ice motion and sea ice extent by allowing them to identify important processes that are robust across the model hierarchy.
This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Collapse of the West Antarctic Ice Sheet (WAIS) could raise the global sea level by about 5 meters (16 feet) and the scientific community considers it the most significant risk for coastal environments and cities. The risk arises from the deep, marine setting of WAIS. Although scientists have been aware of the precarious setting of this ice sheet since the early 1970s, it is only now that the flow of ice in several large drainage basins is undergoing dynamic change consistent with a potentially irreversible disintegration. Understanding WAIS stability and enabling more accurate prediction of sea-level rise through computer simulation are two of the key objectives facing the polar science community today. This project will directly address both objectives by: (1) using state-of-the-art technologies to observe rapidly deforming parts of Thwaites Glacier that may have significant control over the future evolution of WAIS, and (2) using these new observations to improve ice-sheet models used to predict future sea-level rise. This project brings together a multidisciplinary team of UK and US scientists. This international collaboration will result in new understanding of natural processes that may lead to the collapse of the WAIS and will boost infrastructure for research and education by creating a multidisciplinary network of scientists. This team will mentor three postdoctoral researchers, train four Ph.D. students and integrate undergraduate students in this research project.
The project will test the overarching hypothesis that shear-margin dynamics may exert powerful control on the future evolution of ice flow in Thwaites Drainage Basin. To test the hypothesis, the team will set up an ice observatory at two sites on the eastern shear margin of Thwaites Glacier. The team argues that weak topographic control makes this shear margin susceptible to outward migration and, possibly, sudden jumps in response to the drawdown of inland ice when the grounding line of Thwaites retreats. The ice observatory is designed to produce new and comprehensive constraints on englacial properties, including ice deformation rates, ice crystal fabric, ice viscosity, ice temperature, ice water content and basal melt rates. The ice observatory will also establish basal conditions, including thickness and porosity of the till layer and the deeper marine sediments, if any. Furthermore, the team will develop new knowledge with an emphasis on physical processes, including direct assessment of the spatial and temporal scales on which these processes operate. Seismic surveys will be carried out in 2D and 3D using wireless geophones. A network of broadband seismometers will identify icequakes produced by crevassing and basal sliding. Autonomous radar systems with phased arrays will produce sequential images of rapidly deforming internal layers in 3D while potentially also revealing the geometry of a basal water system. Datasets will be incorporated into numerical models developed on different spatial scales. One will focus specifically on shear-margin dynamics, the other on how shear-margin dynamics can influence ice flow in the whole drainage basin. Upon completion, the project aims to have confirmed whether the eastern shear margin of Thwaites Glacier can migrate rapidly, as hypothesized, and if so what the impacts will be in terms of sea-level rise in this century and beyond.
The theory of the "Big Bang" provides a well-established cosmological model for the Universe from its earliest known periods through its subsequent large-scale evolution. The model traces the expansion of the Universe, starting from initial conditions of a very high density and temperature state which is almost but not perfectly smooth, and it offers a comprehensive explanation for a broad range of now-known phenomena, including the abundance of light elements, the cosmic microwave background radiation, and the distribution of large scale structures. While the established "Big Bang" theory leaves open the question of explaining the initial conditions, current evidence is consistent with the entire observable Universe being spawned in a dramatic, exponential "inflation" of a sub-nuclear volume that lasted about one trillionth of a trillionth of a trillionth of a second. Following this short inflationary period, the Universe continues to expand, but at a less rapid rate. While the basic "inflationary paradigm" is accepted by most scientists, the detailed particle physics mechanism responsible for inflation is still not known. It is believed that this violent space-time expansion would have produced primordial gravitational waves now propagating through the expanding universe, thus forming a cosmic gravitational-wave background (CGB) the amplitude of which measures the energy scale of inflation. The CGB imprints a faint signature in the polarization of the Cosmic Microwave Background (CMB), and detecting this polarization signature is arguably the most important goal in cosmology today. This award will address one of the oldest questions ever posed by mankind, "How did the Universe begin?", and it does so via observations made at one of the most intriguing places on Earth, South Pole Station in Antarctica.<br/> <br/>The community-driven Astro2010 Decadal Survey described the search for the CGB as "the most exciting quest of all", emphasizing that "mid-term investment is needed for systems aimed at detecting the (B-mode) polarization of the CMB". In 2005, the NASA/DOE/NSF Task Force on CMB Research identified this topic as the highest priority for the field and established a target sensitivity for the ratio of gravitational waves to density fluctuations of r ~ 0.01. Such measurements promise a definitive test of slow-roll models of inflation, which generally predict a gravitational-wave signal around r~0.01 or above, producing CMB B-modes fluctuations that peak on degree angular scales. The ongoing BICEP series of experiments is dedicated to this science goal. The experiment began operating at South Pole in 2006 and has been relentlessly mapping an 800 square degree region of the sky in a region of low in Galactic foregrounds known as the Southern Hole. This award will support science observations and analysis for the CMB "Stage 3" science with the BICEP Array program that will measure the polarized sky in five frequency bands. It is projected to reach an ultimate sensitivity to the amplitude of inflationary gravitational waves of "sigma r" < 0.005, extrapolating from achieved performance and after conservatively accounting for the Galactic dust, Galactic synchrotron radiation, and CMB lensing foregrounds. This measurement will offer a definitive test of most slow-roll models of Inflation, and will realize or exceed the goals set by the Task Force in 2005 for sensitivity. The project will continue to provide excellent training for undergraduate and graduate students and postdoctoral fellows (including those from underrepresented groups) in laboratories that have exceptional track records in this regard. Cosmology and research in Antarctica both capture the public imagination, making this combination a remarkably effective vehicle for stimulating interest in science.
Measurements of in-situ produced cosmogenic nuclides in Antarctic surficial rock samples provide unique time scales for glacial and landscape evolution processes. However, due to analytical challenges, pyroxene-bearing and widely distributed lithologies like the Ferrar dolerite of the Transantarctic Mountains, are underutilized. This proposal aims to changes this and to improve the cosmogenic nuclide methodologies for stable isotopes (21Ne and 3He) and radioactive nuclides (10Be) in pyroxenes. Proposed methodological improvements will be directly applicable to erosion rates and deposition ages of important glacial deposits, such as the controversial Sirius Group tills, and also to younger glacial features. Bennett Platform is the focus of this study because it is one of the southern-most Sirius Group outcrops along the Transantarctic Mountains, where cosmogenic ages are sparse.
Preliminary measurements demonstrate large discrepancies between 3He and 21Ne age determinations in Sirius Group pyroxenes. One possible explanation is composition dependence of the 21Ne production rates. Coupled measurements of 3He, 21Ne, and 10Be in well-characterized pyroxene mineral separates from Ferrar dolerite will be used to better constrain the production rates, major element and trace element dependencies, the assumptions of the method, and ultimately advance the application of cosmogenic nuclides to mafic Antarctic lithologies.
The main goals of this study are to improve measurement protocols for 10Be in pyroxene, and the determination of the composition dependence of 21Ne production rates by measuring mineral compositions (by electron microprobe), and nuclide concentrations in mineral pairs from young lava flows. Further aims are the validation of the nucleogenic contributions and the effects of helium diffusive loss through measurements of 3He/21Ne production ratios, combined with measurements of shielded samples of the Ferrar dolerite. Combined measurements of 3He, 21Ne and 10Be in pyroxenes have rarely been published for individual samples in Antarctica. The new and unique measurements of this study will advance the applicability of in-situ produced cosmogenic nuclides to both young and ancient Antarctic surfaces. The study will be performed using existing samples: no field work is requested.
This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Thwaites and neighboring glaciers in the Amundsen Sea Embayment are rapidly losing mass in response to recent climate warming and related changes in ocean circulation. Mass loss from the Amundsen Sea Embayment could lead to the eventual collapse of the West Antarctic Ice Sheet, raising the global sea level by up to 2.5 meters (8 feet) in as short as 500 years. The processes driving the loss appear to be warmer ocean circulation and changes in the width and flow speed of the glacier, but a better understanding of these changes is needed to refine predictions of how the glacier will evolve. One highly sensitive process is the transitional flow of glacier ice from land onto the ocean to become a floating ice shelf. This flow of ice from grounded to floating is affected by changes in air temperature and snowfall at the surface; the speed and thickness of ice feeding it from upstream; and the ocean temperature, salinity, bathymetry, and currents that the ice flows into. The project team will gather new measurements of each of these local environmental conditions so that it can better predict how future changes in air, ocean, or the ice will affect the loss of ice to the ocean in this region. <br/> <br/>Current and anticipated near-future mass loss from Thwaites Glacier and nearby Amundsen Sea Embayment region is mainly attributed to reduction in ice-shelf buttressing due to sub-ice-shelf melting by intrusion of relatively warm Circumpolar Deep Water into sub-ice-shelf cavities. Such predictions for mass loss, however, still lack understanding of the dominant processes at and near grounding zones, especially their spatial and temporal variability, as well as atmospheric and oceanic drivers of these processes. This project aims to constrain and compare these processes for the Thwaites and the Dotson Ice Shelves, which are connected through upstream ice dynamics, but influenced by different submarine troughs. The team's specific objectives are to: 1) install atmosphere-ice-ocean multi-sensor remote autonomous stations on the ice shelves for two years to provide sub-daily continuous observations of concurrent oceanic, glaciologic, and atmospheric conditions; 2) measure ocean properties on the continental shelf adjacent to ice-shelf fronts (using seal tagging, glider-based and ship-based surveys, and existing moored and conductivity-temperature-depth-cast data), 3) measure ocean properties into sub-ice-shelf cavities (using autonomous underwater vehicles) to detail ocean transports and heat fluxes; and 4) constrain current ice-shelf and sub-ice-shelf cavity geometry, ice flow, and firn properties for the ice-shelves (using radar, active-source seismic, and gravimetric methods) to better understand the impact of ocean and atmosphere on the ice-sheet change. The team will also engage the public and bring awareness to this rapidly changing component of the cryosphere through a "Live from the Ice" social media campaign in which the public can follow the action and data collection from the perspective of tagged seals and autonomous stations.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Notothenioid fishes live in the world's coldest marine waters surrounding Antarctica and have evolved strategies to avoid freezing. Past studies have shown that most Antarctic notothenioids produce special antifreeze proteins that prevent the growth of ice crystals that enter the body. While these proteins help prevent individuals from being killed by growing ice crystals, it is unclear how these fish avoid the accumulation of these small ice crystals inside their tissues over time. This project will observe how ice crystal accumulation relates to the harshness of a fish's environment within different habitats of McMurdo Sound, Antarctica. The researchers collected fishes and ocean observations at different field sites that cover a range of habitat severity in terms of temperature and iciness. The researchers installed an underwater ocean observatory near McMurdo Station (The McMurdo Oceanographic Observatory, MOO; Nov. 2017 - Nov. 2019) which included a conductivity-temperature-depth sensor (CTD), a high-definition video/still image camera and a research quality hydrophone. The observatory produced oceanographic data, time-lapse images of the immediate environs, and a high-resolution hydroacoustic dataset from the entire deployment. Seawater temperature data loggers were also deployed at other shallow, nearshore sites around McMurdo Sound to provide context and assessment of environmental conditions experienced by the fishes.
The transition of young from parental care to independence is a critical stage in the life of many animals. Surviving this stage can be especially challenging for polar mammals where the extreme cold requires extra energy to keep warm, rather than using the majority of energy for growth, development and physical activities. Young Weddell seals (Leptonychotes weddellii) have only weeks to develop the capabilities to survive both on top of the sea ice and within the -1.9°C seawater where they can forage for food. The project seeks to better understand how Weddell seal pups rapidly develop (within weeks) the capacity to transition between these two extreme environments (that differ greatly in their abilities to conduct heat) and how they budget their energy during the transition. Though the biology and physiology of adult Weddell seals is well studied, the energetic and physiological strategies of pups during development is still unclear. Understanding factors that may affect survival at critical life history events is essential for better understanding factors that might affect marine mammal populations. Weddell seals are the southernmost breeding mammal and are easily recognizable as quintessential Antarctic seals. Determining potential vulnerabilities at critical life stages to change in the Antarctic environment will facilitate the researchers' ability to not only gain public interest but also communicate how research is revealing ways in which changes are occurring at the poles and how these changes may affect polar ecosystems. By collaborating with the Marine Mammal Center, the project will directly reach the public, through curricular educational materials and public outreach that will impact over 100,000 visitors annually.<br/><br/>To elucidate the physiological strategies that facilitate the survival of Weddell seal pups from birth to independence, the proposed study examines the development of their thermoregulation and diving capability. To achieve this, the project will determine the mechanisms that Weddell seal pups use to maintain a stable, warm body temperature in air and in water and then examine the development of diving capability as the animals prepare for independent foraging. The researchers will take a fully integrative approach- making assessments from proteins to tissues to the whole-animal level- when investigating both these objectives. To assess the development of thermoregulatory capability, researchers will quantify body insulation, resting metabolic rates in air and in water, muscle thermogenesis (shivering), and body surface temperatures in the field. The project will also assess the development of dive capability by quantifying oxygen storage capacities and measuring early dive behavior. To identify possible cellular mechanisms for how Weddell seals navigate this trade-off during development, the program will quantify several key developmental regulators of increased hypoxic capacity (HIF, VEGF and EPO) using qPCR, as well as follow the proteomic changes of adipose and muscle tissue, which will include abundance changes of metabolic, antioxidant, cytoskeletal, and Ca2+-regulating proteins. The study of the physiological development leading up to the transition to independence in pinnipeds will help researchers better predict the effects of climate change on the distribution and abundance of this species and how this will affect other trophic levels. Environmental changes that alter habitat suitability have been shown to decrease population health, specifically because of declines in juvenile survival.
Our project is focused on better resolving the three-dimensional Antarctic mantle structure to further understanding of continental tectonics. To accomplish this, we are utilizing a full-waveform tomographic inversion technique that incorporates long-period ambient noise data and which has been shown to more accurately resolve structure than traditional tomographic approaches. The new models have been developed using the Alabama supercomputer facilities in conjunction with software developed at The University of Rhode Island. Our new tomographic results highlight the lithospheric structure beneath the Wilkes and Aurora Subglacial Basins in East Antarctica, where previous rifting episodes and mid-lithospheric discontinuities are being explored. In West Antarctica, the work is elucidating the easternmost extent of the West Antarctic Rift System as well as rifted structure and possible compositional variations within the Weddell Sea. We are also highlighting regions of Antarctica where tomographic resolution is still lacking and where future deployments are needed to improve resolution.
This project investigates a rapidly moving section of the West Antarctic Ice Sheet known as the Whillans Ice Stream. Ice streams and outlet glaciers are the major pathways for ice discharge from ice sheets into the ocean. Consequently, understanding ice stream dynamics, specifically the processes controlling the frictional resistance of ice sliding on sediments at its base, is essential for predictive modeling of how Earth's ice sheets will respond to a changing climate. Rather than flowing smoothly, Whillans Ice Stream advances in stick-slip cycles: brief periods of rapid sliding, equivalent to magnitude 7 earthquakes, alternating with much longer periods of repose. The PIs will perform simulations of these stick-slip cycles using computer codes originally developed for modeling tectonic earthquakes. By matching observed ice motions, the PIs will constrain the range of frictional processes acting at the base of the ice stream. An additional focus of the project is on brittle fracture processes in ice, expressed through seismic waves radiated by faulting and/or crevassing episodes that accompany the large-scale sliding events. An understanding of ice fracture provides a basis for assessing the susceptibility of ice shelves to rifting and catastrophic disintegration. Project results will be incorporated into outreach activities (from elementary school to community college events) as well as a polar science class for the California State Summer School for Mathematics and Science (COSMOS) program for high school students.<br/><br/>Simulations of the stick-slip cycle will employ 3D dynamic rupture models that simultaneously solve for the seismic wavefield and rupture process, consistent with elastodynamic material response and friction laws on the ice stream bed. Stresses and frictional properties will be varied to achieve consistency with surface GPS and broadband seismic data as well as borehole seismograms from the WISSARD project. The results will be interpreted using laboratory till friction experiments, which link velocity-weakening/strengthening behavior to temperature and water content, and to related experiments quantifying basal drag from ice flow over rough beds. The source mechanism of seismicity accompanying the slip events (shear faulting versus crevassing) will be determined using 3D waveform modeling in conjunction with mechanical models of the seismic source processes. This proposal does not require fieldwork in the Antarctic.
Abstract for the general public:<br/><br/>The margins of the Antarctic ice sheet have advanced and retreated repeatedly over the past few million years. Melting ice from the last retreat, from 19,000 to 9,000 years ago, raised sea levels by 8 meters or more, but the extents of previous retreats are less well known. The main goal of this project is to understand how Antarctic ice retreats: fast or slow, stepped or steady, and which parts of the ice sheet are most prone to retreat. Antarctica loses ice by two main processes: melting of the underside of floating ice shelves and calving of icebergs. Icebergs themselves are ephemeral, but they carry mineral grains and rock fragments that have been scoured from Antarctic bedrock. As the icebergs drift and melt, this 'iceberg-rafted debris' falls to the sea-bed and is steadily buried in marine sediments to form a record of iceberg activity and ice sheet retreat. The investigators will read this record of iceberg-rafted debris to find when and where Antarctic ice destabilized in the past. This information can help to predict how Antarctic ice will behave in a warming climate. <br/><br/>The study area is the Weddell Sea embayment, in the Atlantic sector of Antarctica. Principal sources of icebergs are the nearby Antarctic Peninsula and Weddell Sea embayment, where ice streams drain about a quarter of Antarctic ice. The provenance of the iceberg-rafted debris (IRD), and the icebergs that carried it, will be found by matching the geochemical fingerprint (such as characteristic argon isotope ages) of individual mineral grains in the IRD to that of the corresponding source area. In more detail, the project will: <br/><br/>1. Define the geochemical fingerprints of the source areas of the glacially-eroded material using samples from each major ice stream entering the Weddell Sea. Existing data indicates that the hinterland of the Weddell embayment is made up of geochemically distinguishable source areas, making it possible to apply geochemical provenance techniques to determine the origin of Antarctica icebergs. Few samples of onshore tills are available from this area, so this project includes fieldwork to collect till samples to characterize detritus supplied by the Recovery and Foundation ice streams. <br/><br/>2. Document the stratigraphic changes in provenance of iceberg-rafted debris (IRD) and glacially-eroded material in two deep water sediment cores in the NW Weddell Sea. Icebergs calved from ice streams in the embayment are carried by the Weddell Gyre and deposit IRD as they pass over the core sites. The provenance information identifies which groups of ice streams were actively eroding and exporting detritus to the ocean (via iceberg rafting and bottom currents), and the stratigraphy of the cores shows the relative sequence of ice stream activity through time. A further dimension is added by determining the time lag between fine sediment erosion and deposition, using a new method of uranium-series isotope measurements in fine grained material. <br/><br/>Technical abstract:<br/><br/> The behavior of the Antarctic ice sheets and ice streams is a critical topic for climate change and future sea level rise. The goal of this proposal is to constrain ice sheet response to changing climate in the Weddell Sea during the three most recent glacial terminations, as analogues for potential future warming. The project will also examine possible contributions to Meltwater Pulse 1A, and test the relative stability of the ice streams draining East and West Antarctica. Much of the West Antarctic ice may have melted during the Eemian (130 to 114 Ka), so it may be an analogue for predicting future ice drawdown over the coming centuries. <br/><br/>Geochemical provenance fingerprinting of glacially eroded detritus provides a novel way to reconstruct the location and relative timing of glacial retreat during these terminations in the Weddell Sea embayment. The two major objectives of the project are to: <br/><br/>1. Define the provenance source areas by characterizing Ar, U-Pb, and Nd isotopic signatures, and heavy mineral and Fe-Ti oxide compositions of detrital minerals from each major ice stream entering the Weddell Sea, using onshore tills and existing sediment cores from the Ronne and Filchner Ice Shelves. Pilot data demonstrate that detritus originating from the east and west sides of the Weddell Sea embayment can be clearly distinguished, and published data indicates that the hinterland of the embayment is made up of geochemically distinguishable source areas. Few samples of onshore tills are available from this area, so this project includes fieldwork to collect till to characterize detritus supplied by the Recovery and Foundation ice streams. <br/><br/>2. Document the stratigraphic changes in provenance of iceberg-rafted debris (IRD) and glacially-eroded material in two deep water sediment cores in the NW Weddell Sea. Icebergs calved from ice streams in the embayment are carried by the Weddell Gyre and deposit IRD as they pass over the core sites. The provenance information will identify which ice streams were actively eroding and exporting detritus to the ocean (via iceberg rafting and bottom currents). The stratigraphy of the cores will show the relative sequence of ice stream activity through time. A further time dimension is added by determining the time lag between fine sediment erosion and deposition, using U-series comminution ages.
Despite recent advances, we still know little about how life and its traces persist in extremely harsh conditions. What survival strategies do cells employ when pushed to their limit? Using a new technique, this project will investigate whether Antarctic paleolakes harbor "microbial seed banks," or caches of viable microbes adapted to past paleoenvironments that could help transform our understanding of how cells survive over ancient timescales. Findings from this investigation could also illuminate novel DNA repair pathways with possible biomedical and biotechnology applications and help to refine life detection strategies for Mars. The project will bring Antarctic research to Georgetown University''s campus for the first time, providing training opportunities in cutting edge analytical techniques for multiple students and a postdoctoral fellow. The field site will be the McMurdo Dry Valleys, which provide an unrivaled opportunity to investigate fundamental questions about the persistence of microbial life. Multiple lines of evidence, from interbedded and overlying ashfall deposits to parameterized models, suggest that the large-scale landforms there have remained essentially fixed as far back as the middle of the Miocene Epoch (i.e., ~8 million years ago). This geologic stability, coupled with geographic isolation and a steady polar climate, mean that biological activity has probably undergone few qualitative changes over the last one to two million years. The team will sample paleolake facies using sterile techniques from multiple Dry Valleys sites and extract DNA from entombed organic material. Genetic material will then be sequenced using Pacific Biosciences'' Single Molecule, Real-Time DNA sequencing technology, which sequences native DNA as opposed to amplified DNA, thereby eliminating PCR primer bias, and enables read lengths that have never before been possible. The data will be analyzed with a range of bioinformatic techniques, with results that stand to impact our understanding of cell biology, Antarctic paleobiology, microbiology and biogeography, biotechnology, and planetary science.
Nontechnical Abstract<br/>Studies in Antarctica are, at present, severely limited by the costs of placing measurement instruments within and beneath thousands of meters of ice. Our aim is to enable dense, widespread measurement-networks by advancing development of low-cost ice melt probe technology to deploy instruments. Ice melt probes use electrical energy to descend through thick ice with little support structure on the ice surface. We are extending previous technology by using anti-freeze to maintain a partially open melt-hole above a descending probe, deploying as we go a new a new fiber-optic technology to measure ice temperature. Ice temperature measurements will reveal spatial patterns of heat welling up from the Earth beneath the ice, which in turn will contribute greatly to finding ancient ice that contains global climate records, and to understanding how ice flow may raise sea levels. Our immediate objective in this 1-year project is to test and refine our anti-freeze-based method in a 15 meter-tall ice column at the University of Wisconsin, so as to reduce technical risk in future field tests. <br/><br/>Technical Abstract<br/>The overarching aim of our development is to enable widespread, spatially dense deployments of instruments within and beneath the Antarctic Ice Sheet for a variety of investigations, beginning with observations of basal temperature and geothermal flux at the base of the ice sheet. Dense, widespread deployment requires logistical costs far below current costs for ice drilling and coring. Our approach is to extend ice melt probe technology (which is inherently light, logistically) to allow the progressive deployment of cable for Distributed Temperature Sensing (DTS) from the ice surface as the probe descends, without greatly increasing logistical costs. Our extension is based on arresting refreezing of the melt-hole above the probe (at a diameter a few times the cable diameter) by injecting anti-freeze - specifically, ethanol at temperature near 0C - a few meters above the probe during descent. After thermal equilibration of the liquid ethanol/water column with the ice, DTS measurements yield the depth-profile of ice sheet temperature, from which basal temperature and (over frozen beds) geothermal flux can be inferred. We have carried out initial trials of our approach in a cold-room laboratory, but field work based only on such small-scale tests may still involve unnecessary risk. We therefore propose further testing at a facility of the Ice Drilling Design and Operations (IDDO) facility in Madison, WI. The new trials will test our approaches to melt-hole control and probe recovery in the taller column, will test cable and cable-tension-management methods more nearly approximating those needed to work on ice sheets, and will demonstrate the Distributed Temperature Sensing in its field configuration.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Predictions of future sea level rise require better understanding of the changing dynamics of the Greenland and Antarctic ice sheets. One way to better understand the past history of the ice sheets is to obtain records from inland ice for past geological periods, particularly in Antarctica, the world's largest remaining ice sheet. Such records are exceedingly rare, and can be acquired at volcanic outcrops in the La Gorce Mountains of the central Transantarctic Mountains. Volcanoes now exposed within the La Gorce Mountains erupted beneath the East Antarctic ice sheet and the data collected will record how thick the ice sheet was in the past. In addition, information will be used to determine the thermal conditions at the base of the ice sheet, which impacts ice sheet stability. The project will also investigate the origin of volcanic activity in Antarctica and links to the West Antarctic Rift System (WARS). The WARS is a broad area of extended (i.e. stretched) continental crust, similar to that found in East Africa, and volcanism is wide spread and long-lived (65 million years to currently active) and despite more than 50 years of research, the fundamental cause of volcanism and rifting in Antarctica is still vigorously debated. The results of this award therefore also potentially impact the study of oceanic volcanism in the entire southwestern Pacific region (e.g., New Zealand and Australia), where volcanic fields of similar composition and age have been linked by common magma sources and processes. The field program includes a graduate student who will work on the collection, analysis, and interpretation of petrological data as part of his/her Masters project. The experience and specialized analytical training being offered will improve the quality of the student's research and optimize their opportunities for their future. The proposed work fosters faculty and student national and international collaboration, including working with multi-user facilities that provide advanced technological mentoring of science students. Results will be broadly disseminated in peer-reviewed journals, public presentations at science meetings, and in outreach activities. Petrologic and geochemical data will be disseminated to be the community through the Polar Rock Repository. The study of subglacially erupted volcanic rocks has been developed to the extent that it is now the most powerful proxy methodology for establishing precise 'snapshots' of ice sheets, including multiple critical ice parameters. Such data should include measurements of ice thickness, surface elevation and stability, which will be used to verify, or reject, published semi-empirical models relating ice dynamics to sea level changes. In addition to establishing whether East Antarctic ice was present during the formation of the volcanoes, data will be used to derive the coeval ice thicknesses, surface elevations and basal thermal regime(s) in concert with a precise new geochronology using the 40Ar/39Ar dating method. Inferences from measurement of standard geochemical characteristics (major, trace elements and Sr, Nd, Pb, O isotopes) will be used to investigate a possible relationship between the volcanoes and the recently discovered subglacial ridge under the East Antarctic ice, which may be a rift flank uplift. The ridge has never been sampled, is undated and its significance is uncertain. The data will provide important new information about the deep Earth and geodynamic processes beneath this mostly ice covered and poorly understood sector of the Antarctic continent.
This award supports a project to conduct an integrated geophysical survey over a large portion of the West Antarctic Ice Sheet (WAIS) toward an understanding of the dynamic behavior of the ice sheet and the nature of the lithosphere beneath the ice sheet. West Antarctica is characterized by two kinds of the Earth s most dynamic systems, a continental rift (the West Antarctic Rift System) and a marine based ice sheet (the WAIS). Active continental rift systems, caused by divergent plate motions, result in thinned continental crust. Associated with the thin crust are fault-bounded sedimentary basins, active volcanism, and elevated heat flow. Marine ice sheets are characterized by rapidly moving streams of ice, penetrating and draining a slowly moving ice reservoir. Evidence left by past marine ice sheets indicates that they may have a strongly non- linear response to long-term climate change which results in massive and rapid discharges of ice. Understanding the evolution of the ice stream system and its interaction with the interior ice is the key to understanding this non-linear response. Subglacial geology and ice dynamics are generally studied in isolation, but evidence is mounting that the behavior of the West Antarctic ice streams may be closely linked to the nature of the underlying West Antarctic rift system. The fast moving ice streams appear to glide on a lubricating layer of water-saturated till. This till requires easily eroded sediment and a source of water, both of which may be controlled by the geology of the rift system; the sediments from the fault-bounded basins and the water from the elevated heat flux associated with active lithospheric extension. This project represents an interdisciplinary aerogeophysical study to characterize the lithosphere of the West Antarctic rift system beneath critical regions of the WAIS. The objective is to determine the effects of the rift architect ure, as manifested by the distribution of sedimentary basins and volcanic constructs, on the ice stream system. The research tool is a unique geophysical aircraft with laser altimetry, ice penetrating radar, aerogravity, and aeromagnetic systems integrated with a high precision kinematic GPS navigation system. It is capable of imaging both the surface and bed of the ice sheet while simultaneously measuring the gravity and magnetic signature of the subglacial lithosphere. Work to be done under this award will build on work already completed in the southern sector of central West Antarctica and it will focus on the region of the Byrd Subglacial Basin and Ice Stream D. The ice sheet in these regions is completely covered by satellite imagery and so this project will be integrated with remote sensing studies of the ice stream. The changing dynamics of Ice Stream D, as with other West Antarctic ice streams, seem to be correlated with changes in the morphological provinces of the underlying rift system. The experimental targets proceed from the divide of the interior ice, downstream through the onset of streaming to the trunk of Ice Stream D. This study will be coordinated with surface glaciological investigations of Ice Stream D and will be used to guide cooperative over-snow seismic investigations of the central West Antarctic rift system. The data will also be used to select a site for future deep ice coring along the crest of the WAIS. These data represent baseline data for long term global change monitoring work and represent crucial boundary conditions for ice sheet modeling efforts.
This project developed sediment provenance proxies to trace the sources of sediment discharged by the WAIS to the continental rise. The WAIS erodes sediments from various West Antarctic geologic terranes that are deposited in adjacent drift sites. The geochemistry and magnetic properties of drift sediments reflect the tectono-metamorphic history of their source terranes. Deglaciation of a terrane during WAIS collapse should be detectable by the loss of the terrane’s geochemical and magnetic signature in continental-rise detrital sediments. Continental shelf late-Holocene sediments from near the current WAIS groundling line were analyzed for silt- and claysize Sr-Nd-Pb isotopes and major-trace elements. The suite of cores spans from the eastern Ross Sea to the northern tip of the Antarctic Peninsula and established the provenance signatures of the Ross and Amundsen Provinces of Marie Byrd Land, Pine Island Bay, Thurston Island/Eight Coast Block, Ellsworth-Whitmore Crustal Block, and Antarctic Peninsula terranes. Many of these terranes have similar tectono-metamorphic histories but Sr-Nd isotope data from detrital sediments suggest at least 3 distinct provenance signatures. This comprehensive grain-size-specific provenance data adds to on-going collection of glacial till mineral and bulk provenance data. An initial down core study of Ocean Drilling Program Site 1096 in the Bellingshausen Sea was used to assess the utility of these new grain-size-specific provenance proxies in documenting WAIS collapse. We found the presence of both the WAIS and APIS over the last 115,000 years, but absence of the WAIS before 115,000 years ago. This means that the WAIS was gone during the last interglacial period, an interval when sea level was at least 6 meters above present.
The Ross Ice Shelf is the largest existing ice shelf in Antarctica, and is currently stabilizing significant portions of the land ice atop the Antarctic continent. An ice shelf begins where the land ice goes afloat on the ocean, and as such, the Ross Ice Shelf interacts with the ocean and seafloor below, and the land ice behind. Currently, the Ross Ice Shelf slows down, or buttresses, the fast flowing ice streams of the West Antarctic Ice Sheet (WAIS), a marine-based ice sheet, which if melted, would raise global sea level by 3-4 meters. The Ross Ice Shelf average ice thickness is approximately 350 meters, and it covers approximately 487,000 square kilometers, an area slightly larger than the state of California. The Ross Ice Shelf has disappeared during prior interglacial periods, suggesting in the future it may disappear again. Understanding the dynamics, stability and future of the West Antarctic Ice Sheet therefore requires in-depth knowledge of the Ross Ice Shelf. The ROSETTA-ICE project brings together scientists from 4 US institutions and from the Institute of Geological and Nuclear Sciences Limited, known as GNS Science, New Zealand. The ROSETTA-ICE data on the ice shelf, the water beneath the ice shelf, and the underlying rocks, will allow better predictions of how the Ross Ice Shelf will respond to changing climate, and therefore how the WAIS will behave in the future. The interdisciplinary ROSETTA-ICE team will train undergraduate and high school students in cutting edge research techniques, and will also work to educate the public via a series of vignettes integrating ROSETTA-ICE science with the scientific and human history of Antarctic research.<br/><br/>The ROSETTA-ICE survey will acquire gravity and magnetics data to determine the water depth beneath the ice shelf. Radar, LIDAR and imagery systems will be used to map the Ross Ice Shelf thickness and fine structure, crevasses, channels, debris, surface accumulation and distribution of marine ice. The high resolution aerogeophysical data over the Ross Ice Shelf region in Antarctica will be acquired using the IcePod sensor suite mounted externally on an LC-130 aircraft operating from McMurdo Station, Antarctica. Field activities will include ~36 flights on LC-130 aircraft over two field seasons in Antarctica. The IcePod instrument suite leverages the unique experience of the New York Air National Guard operating in Antarctica for NSF scientific research as well as infrastructure and logistics. The project will answer questions about the stability of the Ross Ice Shelf in future climate, and the geotectonic evolution of the Ross Ice Shelf Region, a key component of the West Antarctic Rift system. The comprehensive benchmark data sets acquired will enable broad, interdisciplinary analyses and modeling, which will also be performed as part of the project. ROSETTA-ICE will illuminate Ross ice sheet-ice shelf-ocean dynamics as the system nears a critical juncture but still is intact. Through interacting with an online data visualization tool, and comparing the ROSETTA-ICE data and results from earlier studies, we will engage students and young investigators, equipping them with new capabilities for the study of critical earth systems that influence global climate.
Ice shelves are the floating portions of glaciers that terminate in the ocean. They are common around the periphery of Antarctica. The accumulation of surface meltwater on or near the surface of ice shelves can play a role in ice-shelf collapse, which leads to accelerated loss of grounded ice and sea-level rise. Recent studies have showed that present-day meltwater generation and movement across the surface of Antarctica is more widespread than previously thought and is expected to increase. Consequently, there is a growing need to address the role of surface water in forecasts of ice-shelf behavior. While much progress has been made, understanding of the role of water in ice-shelf collapse is still in its infancy. This award supports a workshop that will bring together experts from multiple disciplines that, together, can advance understanding of Antarctic surface hydrology and its role in the future stability of ice shelves. This workshop will bring together U.S. and international scientists with expertise in ice-sheet dynamics, glacial hydrology, climatology, and other disciplines to identify critical knowledge gaps and move the community towards answering fundamental questions such as: What climate dynamics are responsible for surface meltwater generation in Antarctica? What controls the spatiotemporal distribution of meltwater ponds on Antarctic ice shelves? Where is meltwater generated, where does it pond today, and how will this change this century? How will meltwater impact ice shelves? How will surface hydrology impact sea-level this century? The deliberations will be captured in a workshop report.
A great deal of uncertainty remains over how changes in high-latitude freshwater forcing will impact the stability of global ocean circulation, and in particular the strength of the Atlantic Meridional Overturning Circulation (AMOC) in the next 100-300 years, especially in realistic models. Indeed, it is still not understood whether increased Southern Ocean freshwater forcing will act to intensify the AMOC and warm the Northern Hemisphere or weaken it and trigger a cooling. The requirement to accurately assess climate sensitivity to freshwater forcing is heightened by increasing evidence that the marine-based West Antarctic Ice Sheet (WAIS) is vulnerable to rapid retreat and collapse on multidecadal-to-centennial timescales. Observations collected over the last 30 years indicate that WAIS is losing ice at an accelerated rate and may signal that the ice sheet has already begun a rapid and irreversible collapse. In addition, future simulations of the Antarctic ice sheet by members of our Project Team show the potential for far more rapid Antarctic ice sheet retreat in the future than previously simulated, suggesting that the discharge of enormous fluxes of icebergs and freshwater to the Southern Ocean should be considered a possibility in the near-future. Here, we performed a suite of coupled numerical climate model simulations to more accurately determine the sensitivity of global ocean circulation to freshwater and iceberg discharge from the Antarctic Ice Sheet (AIS) in the future under IPCC RCP scenarios 4.5 and 8.5. In our model, the input of freshwater and ice was provided by a dynamic ice sheet-shelf model that predicts a full collapse of the WAIS in the next ~100 years. Significantly, we find that accounting for Antarctic discharge raises subsurface ocean temperatures by >1°C at the ice sheet grounding line, relative to model simulations that are unable to capture this discharge. In contrast, we find that the increased meltwater causes a dramatic expansion of sea ice and a 2° - 10°C cooling of the surface air and surface ocean temperatures over the Southern Ocean that would have the potential to stabilize/reduce projected future ice sheet melt rates. Our work thus highlights that the future stability of the Antarctic ice sheet will likely be governed by whether any surface cooling can counteract any increased rates of subsurface melt.
Beginning with the earliest expeditions to the poles, scientists have noted that many polar taxa grow to unusually large body sizes, a phenomenon now known as 'polar gigantism.' Although scientists have been interested in polar giants for many years, many questions still remain about the biology of this significant form of polar diversity. This award from the Antarctic Organisms and Ecosystems program within the Polar Sciences Division at the National Science Foundation will investigate the respiratory and biomechanical mechanisms underlying polar gigantism in Antarctic pycnogonids (commonly known as sea spiders). The project will use a series of manipulative experiments to investigate the effects of temperature and oxygen availability on respiratory capacity and biomechanical strength, and will compare Antarctic sea spiders to related species from temperate and tropical regions. The research will provide insight into the ability of polar giants to withstand the warming polar ocean temperatures associated with climate change.<br/><br/>The prevailing hypothesis to explain the evolution of gigantism invokes shifts in respiratory relationships in extremely cold ocean waters: in the cold, oxygen is more plentiful while at the same time metabolic rates are very low. Together these effects alleviate constraints on oxygen supply that restrict organisms living in warmer waters. Respiratory capacity must evolve in the context of adaptive tradeoffs, so for organisms including pycnogonids there must be tradeoffs between respiratory capacity and resistance to biomechanical stresses. The investigators will test a novel hypothesis that respiratory challenges are not associated with particular body sizes, and will answer the following questions: What are the dynamics of oxygen transport and consumption in Antarctic pycnogonids; how do structural features related to oxygen diffusion trade off with requirements for body support and locomotion; how does body size influence vulnerability to environmental hypoxia and to temperature-oxygen interactions; and does the cold-driven high oxygen availability in the Antarctic raise the limit on body size by reducing trade-offs between diffusivity and structural integrity? The research will explore the effects of increased ocean temperatures upon organisms that have different body sizes. In addition, it will provide training for graduate and undergraduate students affiliated with universities in EPSCOR states.
Recent discoveries of widespread liquid water and microbial ecosystems below the Antarctic ice sheets have generated considerable interest in studying Antarctic subglacial environments. Understanding subglacial hydrology, the persistence of life in extended isolation and the evolution and stability of subglacial habitats requires an integrated, interdisciplinary approach. The collaborative project, Minimally Invasive Direct Glacial Exploration (MIDGE) of the Biogeochemistry, Hydrology and Glaciology of Blood Falls, McMurdo Dry Valleys will integrate geophysical measurements, molecular microbial ecology and geochemical analyses to explore a unique Antarctic subglacial system known as Blood Falls. Blood Falls is a hypersaline, subglacial brine that supports an active microbial community. The subglacial brine is released from a crevasse at the surface of the Taylor Glacier providing an accessible portal into an Antarctic subglacial ecosystem. Recent geochemical and molecular analyses support a marine source for the salts and microorganisms in Blood Falls. The last time marine waters inundated this part of the McMurdo Dry Valleys was during the Late Tertiary, which suggests the brine is ancient. Still, no direct samples have been collected from the subglacial source to Blood Falls and little is known about the origin of this brine or the amount of time it has been sealed below Taylor Glacier. Radar profiles collected near Blood Falls delineate a possible fault in the subglacial substrate that may help explain the localized and episodic nature of brine release. However it remains unclear what triggers the episodic release of brine exclusively at the Blood Falls crevasse or the extent to which the brine is altered as it makes its way to the surface. <br/><br/>The MIDGE project aims to determine the mechanism of brine release at Blood Falls, evaluate changes in the geochemistry and the microbial community within the englacial conduit and assess if Blood Falls waters have a distinct impact on the thermal and stress state of Taylor Glacier, one of the most studied polar glaciers in Antarctica. The geophysical study of the glaciological structure and mechanism of brine release will use GPR, GPS, and a small passive seismic network. Together with international collaborators, the 'Ice Mole' team from FH Aachen University of Applied Sciences, Germany (funded by the German Aerospace Center, DLR), MIDGE will develop and deploy innovative, minimally invasive technologies for clean access and brine sample retrieval from deep within the Blood Falls drainage system. These technologies will allow for the collection of samples of the brine away from the surface (up to tens of meters) for geochemical analyses and microbial structure-function experiments. There is concern over the contamination of pristine subglacial environments from chemical and biological materials inherent in the drilling process; and MIDGE will provide data on the efficacy of thermoelectric probes for clean access and retrieval of representative subglacial samples. Antarctic subglacial environments provide an excellent opportunity for researching survivability and adaptability of microbial life and are potential terrestrial analogues for life habitats on icy planetary bodies. The MIDGE project offers a portable, versatile, clean alternative to hot water and mechanical drilling and will enable the exploration of subglacial hydrology and ecosystem function while making significant progress towards developing technologies for minimally invasive and clean sampling of icy systems.
Waddington/1246045 <br/><br/>This award supports a project to investigate the onset and growth of folds and other disturbances seen in the stratigraphic layers of polar ice sheets. The intellectual merit of the work is that it will lead to a better understanding of the grain-scale processes that control the development of these stratigraphic features in the ice and will help answer questions such as what processes can initiate such disturbances. Snow is deposited on polar ice sheets in layers that are generally flat, with thicknesses that vary slowly along the layers. However, ice cores and ice-penetrating radar show that in some cases, after conversion to ice, and following lengthy burial, the layers can become folded, develop pinch-and-swell structures (boudinage), and be sheared by ice flow, at scales ranging from centimeters to hundreds of meters. The processes causing these disturbances are still poorly understood. Disturbances appear to develop first at the ice-crystal scale, then cascade up to larger scales with continuing ice flow and strain. Crystal-scale processes causing distortions of cm-scale layers will be modeled using Elle, a microstructure-modeling package, and constrained by fabric thin-sections and grain-elongation measurements from the West Antarctic Ice Sheet divide ice-core. A full-stress continuum anisotropic ice-flow model coupled to an ice-fabric evolution model will be used to study bulk flow of anisotropic ice, to understand evolution and growth of flow disturbances on the meter and larger scale. Results from this study will assist in future ice-core site selection, and interpretation of stratigraphy in ice cores and radar, and will provide improved descriptions of rheology and stratigraphy for ice-sheet flow models.The broader impacts are that it will bring greater understanding to ice dynamics responsible for stratigraphic disturbance. This information is valuable to constrain depth-age relationships in ice cores for paleoclimate study. This will allow researchers to put current climate change in a more accurate context. This project will provide three years of support for a graduate student as well as support and research experience for an undergraduate research assistant; this will contribute to development of talent needed to address important future questions in glaciology and climate change. The research will be communicated to the public through outreach events and results from the study will be disseminated through public and professional meetings as well as journal publications. The project does not require field work in Antarctica.
This award supports a project to obtain the first set of isotopic-based provenance data from the WAIS divide ice core. A lack of data from the WAIS prevents even a basic knowledge of whether different sources of dust blew around the Pacific and Atlantic sectors of the southern latitudes. Precise isotopic measurements on dust in the new WAIS ice divide core are specifically warranted because the data will be synergistically integrated with other high frequency proxies, such as dust concentration and flux, and carbon dioxide, for example. Higher resolution proxies will bridge gaps between our observations on the same well-dated, well-preserved core. The intellectual merit of the project is that the proposed analyses will contribute to the WAIS Divide Project science themes. Whether an active driver or passive recorder, dust is one of the most important but least understood components of regional and global climate. Collaborative and expert discussion with dust-climate modelers will lead to an important progression in understanding of dust and past atmospheric circulation patterns and climate around the southern latitudes, and help to exclude unlikely air trajectories to the ice sheets. The project will provide data to help evaluate models that simulate the dust patterns and cycle and the relative importance of changes in the sources, air trajectories and transport processes, and deposition to the ice sheet under different climate states. The results will be of broad interest to a range of disciplines beyond those directly associated with the WAIS ice core project, including the paleoceanography and dust- paleoclimatology communities. The broader impacts of the project include infrastructure and professional development, as the proposed research will initiate collaborations between LDEO and other WAIS scientists and modelers with expertise in climate and dust. Most of the researchers are still in the early phase of their careers and hence the project will facilitate long-term relationships. This includes a graduate student from UMaine, an undergraduate student from Columbia University who will be involved in lab work, in addition to a LDEO Postdoctoral scientist, and possibly an additional student involved in the international project PIRE-ICETRICS. The proposed research will broaden the scientific outlooks of three PIs, who come to Antarctic ice core science from a variety of other terrestrial and marine geology perspectives. Outreach activities include interaction with the science writers of the Columbia's Earth Institute for news releases and associated blog websites, public speaking, and involvement in an arts/science initiative between New York City's arts and science communities to bridge the gap between scientific knowledge and public perception.
Marine paleoclimate archives show that approximately one million years ago Earth's climate transitioned from 40,000-year glacial /interglacial cycles to 100,000-year cycles. This award will support a study designed to map the distribution of one million year-old ice in the Allan Hills Blue Ice Area, Antarctica using state-of-the-art ground penetrating radar. The Allen Hills was demonstrated to contain a continuous record of the past 400,000 years and is also the collection location of the oldest ice samples (990,000 years) yet recovered. The maps resulting from this study will be used to select an ice-core drilling site at which a million-plus year-old continuous record of climate could be recovered. Ice cores contain the only kind of record to directly capture atmospheric gases and aerosols, but no ice-core-based climate record yet extends continuously beyond the past 800,000 years. A million-plus year-old record will allow better understanding of the major mechanisms and driving forces of natural climate variability in a world with 100,000-year glacial/interglacial cycles. The project will support two early career scientists in collaboration with senior scientists, as well as a graduate student, and will conduct outreach to schools and the public.
The Allan Hills Blue Ice Area preserves a continuous climate record covering the last 400,000 years along an established glaciological flow line. Two kilometers to the east of this flow line, the oldest ice on Earth (~1 million years old) is found only 120 m below the surface. Meteorites collected in the area are reported to be as old as 1.8 million years, suggesting still older ice may be present. Combined, these data strongly suggest that the Allen Hills area could contain a continuous, well-resolved environmental record, spanning at least the last million years. As such, this area has been selected as an upcoming target for the new Intermediate Depth Ice Core Drill by the US Ice Core Working Group. This drill will recover a higher-quality core than previous dry drilling attempts. This project will conduct a comprehensive ground penetrating radar survey aimed at tracing the signature of the million-year-old ice layer throughout the region. The resulting map will be used to select a drill site from which an ice core containing the million-plus year-old continuous climate record will be collected. The proposed activities are a necessary precursor to the collection of the oldest known ice on Earth. Ice cores provide a robust reconstruction of past climate and extending this record beyond the 800,000 years currently available will open new opportunities to study the climate system. The data collected will also be used to investigate the bedrock and ice flow parameters favorable to the preservation of old ice, which may allow targeted investigation of other blue ice areas in Antarctica.
1043481/Creyts<br/><br/>This award supports a project to develop models of subglacial hydrology in order to understand dynamics of water movement, lake drainage, and how drainage affects ice slip over deformable till with the goal of understanding present and future behavior of fast flowing regions of Antarctica. Drainage of subglacial water falls into two broad categories: distributed and channelized. In distributed systems, water is forced out along the ice?bed interface. Conversely, in channelized systems water is drawn toward a few major arteries. Observations of lake filling and draining sup- port changes in subglacial water flow and suggest a switch from a low to high discharge state or vice versa. Filling or draining can move the subglacial system from one type of drainage morphology to the other. A switch of drainage type will affect slip along the ice-bed interface because distributed morphologies tend to cause enhanced sliding whereas channelized morphologies tend to cause enhanced coupling of the ice-bed interface. Conditions beneath fast flowing ice streams of West Antarctica are ideal for switching between subglacial drainage morphologies. Fast flowing ice in West Antarctica commonly rests on sub- glacial tills and is coincident, in some areas, with observed subglacial lake filling and draining. The goal of the work is to develop the next generation of spatially distributed hydraulic models that capture lake filling and draining phenomena and investigate the effects on subglacial till. Models will be theoretical, process-based descriptions of water drainage and till failure along fast flowing ice streams. Models will be based on balance of mass, momentum, and energy. Building on previous studies, we will incorporate two dimensional movement of water to investigate distributed basal hydrology, distributed basal hydrology coupled to channels, and couple these models with till deformation. These models will provide a framework for determining how lake draining and filling affects ice discharge by providing a constraints on ice?bed coupling. The intellectual merit of the work is that it will advance knowledge about drainage of water subglacially beneath Antarctica and how water affects ice motion. Our modeling provides a unique opportunity to understand the role subglacial hydrology plays in the dynamics of key outlet glaciers and ice streams. The broader impacts of the work include training for one postdoctoral scientist and training for a summer student in simple laboratory techniques for analog experiments. In addition, the proposal dovetails into an existing polar education and outreach plan by including a component of physical, numerical, and scale models in programs developed for high school and middle school classroom visits, teacher workshops and community events. Additionally, because knowledge of glacial hydrology is increasing rapidly, we will convene a workshop on observations and models of subglacial hydrology to facilitate transfer of knowledge and ideas.
Severinghaus/0839031 <br/><br/>This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>This award supports a project to develop a precise gas-based chronology for an archive of large-volume samples of the ancient atmosphere, which would enable ultra-trace gas measurements that are currently precluded by sample size limitations of ice cores. The intellectual merit of the proposed work is that it will provide a critical test of the "clathrate hypothesis" that methane clathrates contributed to the two abrupt atmospheric methane concentration increases during the last deglaciation 15 and 11 kyr ago. This approach employs large volumes of ice (>1 ton) to measure carbon-14 on past atmospheric methane across the abrupt events. Carbon-14 is an ideal discriminator of fossil sources of methane to the atmosphere, because most methane sources (e.g., wetlands, termites, biomass burning) are rich in carbon-14, whereas clathrates and other fossil sources are devoid of carbon-14. The proposed work is a logical extension to Taylor Glacier, Antarctica, of an approach pioneered at the margin of the Greenland ice sheet over the past 7 years. The Greenland work found higher-than-expected carbon-14 values, likely due in part to contaminants stemming from the high impurity content of Greenland ice and the interaction of the ice with sediments from the glacier bed. The data also pointed to the possibility of a previously unknown process, in-situ cosmogenic production of carbon-14 methane (radiomethane) in the ice matrix. Antarctic ice in Taylor Glacier is orders of magnitude cleaner than the ice at the Greenland site, and is much colder and less stratigraphically disturbed, offering the potential for a clear resolution of this puzzle and a definitive test of the cosmogenic radiomethane hypothesis. Even if cosmogenic radiomethane in ice is found, it still may be possible to reconstruct atmospheric radiomethane with a correction enabled by a detailed understanding of the process, which will be sought by co-measuring carbon-14 in carbon monoxide and carbon dioxide. The broader impacts of the proposed work are that the clathrate test may shed light on the stability of the clathrate reservoir and its potential for climate feedbacks under human-induced warming. Development of Taylor Glacier as a "horizontal ice core" would provide a community resource for other researchers. Education of one postdoc, one graduate student, and one undergraduate, would add to human resources. This award has field work in Antarctica.
Geochemical studies of single mineral grains in rocks can be probed to reconstruct the history of our planet. The mineral zircon (ZrSiO4) is of unique importance in that respect because of its reliability as a geologic clock due to its strong persistence against weathering, transport and changes in temperature and pressure. Uranium-Lead (U-Pb) dating of zircon grains is, perhaps, the most frequently employed method of extracting time information on geologic processes that shaped the continental crust, and has been used to constrain the evolution of continents and mountain belts through time. In addition, the isotopic composition of the element Hafnium (Hf) in zircon is used to date when the continental crust was generated by extraction of magma from the underlying mantle. Melting of rocks in the mantle and deep in the continental crust are key processes in the evolution of the continents, and they are recorded in the Hf isotopic signatures of zircon. Although the analytical procedures for U-Pb dating and Hf isotope analyses of zircon are robust now, our understanding of zircon growth and its exchange of elements and isotopes with its surrounding rock or magma are still underdeveloped. The focus of the proposed study, therefore, is to unravel the evolution of zircon Hf isotopes in rocks that were formed deep in the Earth?s crust, and more specifically, to apply these isotopic methods to rocks collected in Dronning Maud Land (DML), East Antarctica.<br/><br/>Dronning Maud Land (DML) occupied a central location during the formation of supercontinents ? large landmasses made up of all the continents that exist today - more than 500 million years ago. It is currently thought that supercontinents were formed and dismembered five or six times throughout Earth?s history. The area of DML is key for understanding the formation history of the last two supercontinents. The boundaries of continents that were merged to form those supercontinents are most likely hidden in DML. In this study, the isotopic composition of zircon grains recovered from DML rocks will be employed to identify these boundaries across an extensive section through the area. The rock samples were collected by the investigator during a two-month expedition to Antarctica in the austral summer of 2007?2008. The results of dating and isotope analyses of zircon of the different DML crustal domains will deliver significant insight into the regional geology of East Antarctica and its previous northern extension into Africa. This has significance for the reconstruction of the supercontinents and defining the continental boundaries in DML.
This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, δ18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, δ13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of δ13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica.
The stability of the marine West Antarctic Ice Sheet (WAIS) remains an important, unresolved problem for predicting future sea level change. Recent studies indicate that the mass balance of the ice sheet today may be negative or positive. The apparent differences may stem in part from short-term fluctuations in flow. By comparison, geologic observations provide evidence of behavior over much longer time scales. Recent work involving glacial-geologic mapping, dating and ice-penetrating radar surveys suggests that deglaciation of both the Ross Sea Embayment and coastal Marie Byrd Land continued into the late Holocene, and leaves open the possibility of ongoing deglaciation and grounding-line retreat. However, previous work in the Ross Sea Embayment was based on data from just three locations that are all far to the north of the present grounding line. Additional data from farther south in the Ross Sea Embayment are needed to investigate whether recession has ended, or if the rate and pattern of deglaciation inferred from our previous study still apply to the present grounding line. This award provides support to reconstruct the evolution of Reedy Glacier, in the southern Transantarctic Mountains, since the Last Glacial Maximum (LGM). Because Reedy Glacier emerges from the mountains above the grounding line, its surface slope and elevation should record changes in thickness of grounded ice in the Ross Sea up to the present day. The deglaciation chronology of Reedy Glacier therefore can indicate whether Holocene retreat of the WAIS ended thousands of years ago, or is still continuing at present. This integrated glaciologic, glacial-geologic, and cosmogenic-isotope exposure- dating project will reconstruct past levels of Reedy Glacier. Over two field seasons, moraines will be mapped, dated and correlated at sites along the length of the glacier. Radar and GPS measurements will be made to supplement existing ice thickness and velocity data, which are needed as input for a model of glacier dynamics. The model will be used to relate geologic measurements to the grounding-line position downstream. Ultimately, the mapping, dating and ice-modeling components of the study will be integrated into a reconstruction that defines changes in ice thickness in the southern Ross Sea since the LGM, and relates these changes to the history of grounding-line retreat. This work directly addresses key goals of the West Antarctic Ice Sheet Initiative, which are to understand the dynamics, recent history and possible future behavior of the West Antarctic Ice Sheet.
Intellectual Merit: <br/>Because of extensive ice cover and sparse remote-sensing data, the geology of the Precambrian East Antarctic Shield (EAS) remains largely unexplored with information limited to coastal outcrops from the African, Indian and Australian sectors. The East Antarctic lithosphere is globally important: as one of the largest coherent Precambrian shields, including rocks as old as ~3.8 Ga, it played an important role in global crustal growth; it is a key piece in assembly of the Rodinia and Gondwana supercontinents; it is the substrate to Earth?s major ice cap, including numerous sub-glacial lakes, and influences its thermal state and mechanical stability; and its geotectonic association with formerly adjacent continental blocks in South Africa, India and Australia suggest that it might harbor important mineral resources. This project will increase understanding of the age and composition of the western EAS lithosphere underlying and adjacent to the Transantarctic Mountains (TAM) using U-Pb ages, and Hf- and O-isotope analysis of zircon in early Paleozoic granitoids and Pleistocene glacial tills. TAM granites of the early Paleozoic Ross Orogen represent an areally extensive continental-margin arc suite that can provide direct information about the EAS crust from which it melted and/or through which it passed. Large rock clasts of igneous and metamorphic lithologies entrained in glacial tills at the head of major outlet glaciers traversing the TAM provide eroded samples of the proximal EAS basement. Zircons in these materials will provide data about age and inheritance (U-Pb), crustal vs. mantle origin (O isotopes), and crustal sources and evolution (Hf isotopes). Integrated along a significant part of the TAM, these data will help define broader crustal provinces that can be correlated with geophysical data and used to test models of crustal assembly. <br/><br/>Broader impacts: <br/>This project will provide a research opportunity for undergraduate and graduate students. Undergraduates will be involved as Research Assistants in sample preparation, imaging, and analytical procedures, and conducting their own independent research. The two main elements of this project will form the basis of MS thesis projects for two graduate students at UMD. Through this project they will gain a good understanding of petrology, isotope geochemistry, and analytical methods. The broader scientific impacts of this work are that it will help develop a better understanding of the origin and evolution of East Antarctic lithosphere underlying and adjacent to the TAM, which will be of value to the broader earth science and glaciological community. Furthermore, knowledge of East Antarctic geology is of continuing interest to the general public because of strong curiosity about past supercontinents, what?s under the ice, and the impact of global warming on ice-sheet stability.
The proposed work will investigate changes in the compositional variation of glacial tills over time across two concentric sequences of Pleistocene moraines located adjacent to the heads of East Antarctic outlet glaciers in the Transantarctic Mountains (TAM). The chronologic framework for this work will be generated from cosmogenic exposure ages of boulders on prominent morainal ridges. The PIs hypothesize that variations in till composition may indicate a change in ice flow direction or a change in the composition of the original source area, while ages of the moraines provide a long-term terrestrial perspective on ice sheet dynamics. Both results are vital for modeling experiments that aim to reconstruct the East Antarctic Ice Sheet and assess its role in the global climate system and its potential impact on global sea level rise. The variation of till compositions through time also allows for a more accurate interpretation of sediment cores from the Ross Sea and the Southern Ocean. Additionally, till exposures at the head of some East Antarctic outlet glaciers have been shown to contain subglacial material derived from East Antarctic bedrock, providing a window through the ice to view East Antarctica?s inaccessible bedrock. Till samples will be collected from two well-preserved sequences of moraine crests at Mt. Howe (head of Scott Glacier) and Mt. Achernar (between Beardmore and Nimrod Glaciers). Each size fraction in glacial till provides potentially valuable information, and the PIs will measure the petrography of the clast and sand fractions, quantitative X-ray diffraction on the crushed <2mm fraction, elemental abundance of the silt/clay fraction, and U/Pb of detrital zircons in the sand fraction. Data collection will rely on established methods previously used in this region and the PIs will also explore new methods to assess their efficacy. On the same moraines crests sampled for provenance studies, the PIs will sample for cosmogenic surface exposure analyses to provide a chronologic framework at the sites for provenance changes through time. <br/><br/>Broader Impact <br/>The proposed research involves graduate and undergraduate training in a diverse array of laboratory methods. Students and PIs will be make presentations to community and campus groups, as well as conduct interviews with local news outlets. The proposed work also establishes a new, potentially long-term, collaboration between scientists at IUPUI and LDEO and brings a new PI (Kaplan) into the field of Antarctic Earth Sciences.
Intellectual Merit: <br/>The PIs proposed a provenance study of glacial deposits in the Ross Embayment that will provide a broad scale geochronologic survey of detrital minerals in till to help characterize bedrock beneath the East Antarctic ice sheet and constrain Antarctica?s glacial history. This project capitalizes on previous investments in field sampling. Analytical tools applied to single mineral grains extracted from existing collections of glacial till will generate ?fingerprints? of East Antarctic outlet glaciers and West Antarctic till to refine paleo-ice flow models for the Ross Embayment during the last glacial maximum, older records from ANDRILL cores, and to assess IRD sources in the Southern Ocean. New provenance tracers will include a suite of geochronological methods that together provide greater insights into the orogenic and erosional history the region. This project will include U/Pb of detrital zircons, (U-Th)/He on a subset of the U/Pb dated zircons, as well as Ar-Ar of detrital hornblende, mica and feldspars. <br/><br/>Broader impacts: <br/>This research will train one M.S. student at IUPUI, a Ph.D. student at Columbia, and several undergraduates at both institutions. Graduate students involved in the project will be involved in mentoring undergraduate researchers. Incorporation of research discoveries will be brought into the classroom by providing concrete examples and exercises at the appropriate level. Licht and Columbia graduate student E. Pierce are developing outreach projects with local secondary school teachers to investigate the provenance of glacial materials in their local areas. The research will have broad applicability to many fields.
Intellectual Merit: Weddell seals (Leptonychotes weddellii) locate and capture sparsely distributed and mobile prey under shore-fast ice throughout the year, including the austral winter when ambient light levels are very low and access to breathing holes is highly limited. This is one of the most challenging environments occupied by an aquatic mammalian predator, and it presents unique opportunities to test hypotheses concerning: 1) behavioral strategies and energetic costs for foraging and 2) sensory modalities used for prey capture under sea ice. To accomplish these objectives, we will attach digital video and data recorders to the backs of free-ranging Weddell seals during the autumn, winter and early spring. These instruments simultaneously record video of prey pursuit and capture and three-dimensional movements, swimming performance, ambient light level and other environmental variables. Energetic costs for entire dives and portions of dives will be estimated from stroking effort and our published relationship between swimming performance and energetics for Weddell seals. The energetic cost of different dive types will be evaluated for strategies that maximize foraging efficiency, range (distance traveled), and duration of submergence. The proposed study will provide a more thorough understanding of the role of vision and changing light conditions in foraging behavior, sensory ecology, energetics and habitat use of Weddell seals and the distribution of encountered prey. It also will provide new insights into survival strategies that allow Weddell seals to inhabit the Antarctic coastal marine ecosystem throughout the year. <br/><br/>Broader Impacts: The proposed study will train two graduate students and a Post-doctoral Fellow. Outreach activities will include interviews, written material and photographs provided to print and electronic media, project web sites, high school email exchanges from McMurdo Station, hosting visiting artists at our field camp, and public lectures. We will provide a weekly summary of our research findings to teachers and students in elementary school programs through our websites, one of which received an educational award. Our previous projects have attracted an extraordinary amount of press coverage that effectively brings scientific research to the public. This coverage and the video images generated by our work excite the imagination and help instill an interest in science and wildlife conservation in children and adults.
The mechanisms enabling bacteria to be metabolically active at very low temperatures are of considerable importance to polar microbial ecology, astrobiology, climate and cryopreservation. This research program has two main objectives. The first is to investigate metabolic activities and gene expression of polar marine psychrophilic bacteria when confronted with freezing conditions at temperatures above the eutectic of seawater (<54C) to unveil cold adaptation mechanisms with relevance to wintertime sea-ice ecology. The second objective is to discern if psychrophilic processes of leucine incorporation into proteins, shown to occur to -196C, amount to metabolic activity providing for the survival of cells or are merely biochemical reactions still possible in flash-frozen samples without any effect on survival. We will examine extracellular and intracellular processes of psychrophilic activity above and below the eutectic by (i) determining the temperature range of metabolic activities such as DNA synthesis, carbon utilization, respiration and ATP generation using radioactive tracer technology, including a control at liquid helium temperature (-268.9C), (ii) analyzing gene expression in ice using whole genome and microarray analyses and iii) examining the role of exopolymeric substances (EPS) and ice micro-physics for the observed activity using an in-situ microscopy technique. Results of the proposed research can be expected to aid in the determination of cellular and genetic strategies that allow cells to maintain activity at extremely low temperatures within an icy matrix and/or to resume activity again when more growth-permissive conditions are encountered. The research is an interdisciplinary collaboration involving three different institutions with participants in Oceanography, Genomics, and Geophysical Sciences. The proposed activity will support the beginning professional career of a female researcher and will serve as the basis for several undergraduate student laboratory projects.
This award is for support for a four year program to study the basal conditions of ice stream D using techniques previously applied to ice stream B. The objective is to determine whether the physical conditions and processes to be observed by borehole geophysics at the base of this large ice stream are consistent with what has been observed at ice stream B and to point to a common basal mechanism of ice streaming. This project includes a comparison between two parts of ice stream D, an upstream reach where flow velocities are modest (about 80 meters/year) and a downstream reach of high velocity (about 400 meters/year). The comparison will help to reveal what physical variable or combination of variables is mainly responsible for the streaming flow. The variables to be monitmred by borehole observation include basal water pressure, basal sliding velocity, flow properties and sedimentological characteristics of subglacial till if present, ice temperature profile including basal water transport velocity, connection time to the basal water system, basal melting rate and others.
Hall/0636687<br/><br/>This award supports a project to investigate late Pleistocene and Holocene changes in Scott Glacier, a key outlet glacier that flows directly into the Ross Sea just west of the present-day West Antarctic Ice Sheet (WAIS) grounding line. The overarching goals are to understand changes in WAIS configuration in the Ross Sea sector at and since the last glacial maximum (LGM) and to determine whether Holocene retreat observed in the Ross Embayment has ended or if it is still ongoing. To address these goals, moraine and drift sequences associated with Scott Glacier will be mapped and dated and ice thickness, surface velocity and surface mass balance will be measured to constrain an ice-flow model of the glacier. This model will be used to help interpret the dated geologic sequences. The intellectual merit of the project relates to gaining a better understanding of the West Antarctic Ice Sheet and how changing activity of fast-flowing outlet glaciers and ice streams exerts strong control on the mass balance of the ice sheet. Previous work suggests that grounding-line retreat in the Ross Sea continued into the late Holocene and left open the possibility of ongoing deglaciation as part of a long-term trend. Results from Reedy Glacier, an outlet glacier just behind the grounding line, suggest that retreat may have slowed substantially over the past 2000 years and perhaps even stopped. By coupling the work on Scott Glacier with recent data from Reedy Glacier, the grounding-line position will be bracketed and it should be possible to establish whether the retreat has truly ended or if it is ongoing. The broader impacts of the work relate to the societal relevance of an improved understanding of the West Antarctic ice sheet to establish how it will respond to current and possible future environmental changes. The work addresses this key goal of the West Antarctic Ice Sheet Initiative, as well as the International Polar Year focus on ice sheet history and dynamics. The work will develop future scientists through the education and training of one undergraduate and two Ph.D. students, interaction with K-12 students through classroom visits, web-based 'expedition' journals, letters from the field, and discussions with teachers. Results from this project will be posted with previous exposure dating results from Antarctica, on the University of Washington Cosmogenic Nuclide Lab website, which also provides information about chemical procedures and calculation methods to other scientists working with cosmogenic nuclides.
This award supports an integrated seismic, sedimentologic, and paleontologic investigation of glacio-marine stratigraphy of the Ross Sea continental shelf. The purpose of this work is to acquire seismic images and sediment cores of the glacial sediments toward a better understanding of the Cenozoic history of glaciation in the Ross Sea region. This investigation will utilize high resolution seismic profiling data to locate regions where the Pleistocene glacial till is thin or perhaps absent. Piston coring at these locations, if the till is penetrated, will provide sedimentary records of Cenozoic depositional environments and could provide important clues to fluctuations of the Antarctic Ice Sheets. The seismic profiling will provide a direct record of the grounding history of the Ross Ice Shelf during the Pleistocene and it will also allow first order correlations of Cenozoic sedimentary units that are represented by sediments recovered in the piston cores. This work will provide important proxy records of the history of both the West Antarctic Ice Sheet and the East Antarctic Ice Sheet and this, in turn, will provide important constraints to climate models.
9614201 Costa Sea ice forms an extensive habitat in the Southern Ocean. Reports dating from the earliest explorations of Antarctica have described high concentrations of algae associated with sea-ice, suggesting that the ice must be an important site of production and biological activity. The magnitude and importance of ice-based production is difficult to estimate largely because the spatial and temporal distributions of ice communities have been examined in only a few regions, and the processes controlling production and community development in ice are still superficially understood. This study will examine sea ice communities in the Ross Sea region of Antarctica in conjunction with a studies of ice physics and remote sensing. The specific objectives of the study are: 1) to relate the overall distribution of ice communities in the Ross Sea to specific habitats that are formed as the result of ice formation and growth processes; 2) to study the initial formation of sea ice to document the incorporation and survival of organisms, in particular to examine winter populations within "snow-ice" layers to determine if there is a seed population established at the time of surface flooding; 3) to sample summer communities to determine the extent that highly productive "snow-ice" and "freeboard" communities develop in the deep water regions of the Ross Sea; 4) and to collect basic data on the biota, activity, and general physical and chemical characteristics of the ice assemblages, so that this study contributes to the general understanding of the ecology of the ice biota in pack ice regions.
Major progress has been made with respect to our understanding of the tectonic evolution of the Antarctic Plate. Paleomagnetic data, marine magnetic anomaly identifications, Geosat-derived tectonic lineations, heat flow derived seafloor ages and mathematical solutions for plate motions around triple junctions have all contributed to a better model for the tectonic evolution of the circum- Antarctic region. Even so, major problems still exist with respect to the Mesozoic to Recent tectonic evolution of the Antarctic continental margin which can be tackled using heat flow measurements. This award supports the study of a tectonic problem that heat flow can address, the determination of the age of the Powell Basin at the end of the West Antarctic Peninsula and its relationship to the opening of Drake's Passage. Specifically, heat flow measurement will be used to study the age and mode of crustal extension of the Powell Basin, where standard age determination fails and heat flow is the only method that can be used to date its opening.
This project is a study of the evolution of the sea ice cover, and the mass balance of ice in the Amundsen Sea and the Bellingshausen Sea in the internationally collaborative context of the International Polar Year (2007-2008). In its simplest terms, the mass balance is the net freezing and melting that occurs over an annual cycle at a given location. If the ice were stationary and were completely to melt every year, the mass balance would be zero. While non-zero balances have significance in questions of climate and environmental change, the process itself has global consequences since the seasonal freeze-melt cycle has the effect of distilling the surface water. Oceanic salt is concentrated into brine and rejected from the ice into deeper layers in the freezing process, while during melt, the newly released and relatively fresh water stabilizes the surface layers. The observation program will be carried out during a drift program of the Nathaniel B. Palmer, and through a buoy network established on the sea ice that will make year-long measurements of ice thickness, and temperature profile, large-scale deformation, and other characteristics. The project is a component of the Antarctic Sea Ice Program, endorsed internationally by the Joint Committee for IPY. Additionally, the buoys to be deployed have been endorsed as an IPY contribution to the World Climate Research Program/Scientific Committee on Antarctic Research (WCRP/SCAR) International Programme on Antarctic Buoys (IPAB). While prior survey information has been obtained in this region, seasonal and time-series measurements on sea ice mass balance are crucial data in interpreting the mechanisms of air-ice-ocean interaction. <br/> The network will consist of an array of twelve buoys capable of GPS positioning. Three buoys will be equipped with thermister strings and ice and snow thickness measurement gauges, as well as a barometer. Two buoys will be equipped with meteorological sensors including wind speed and direction, atmospheric pressure, and incoming radiation. Seven additional buoys will have GPS positioning only, and will be deployed approximately 100 km from the central site. These outer buoys will be critical in capturing high frequency motion complementary to satellite-derived ice motion products. Additional buoys have been committed internationally through IPAB and will be deployed in the region as part of this program.<br/> This project will complement similar projects to be carried out in the Weddell Sea by the German Antarctic Program, and around East Antarctica by the Australian Antarctic Program. The combined buoy and satellite deformation measurements, together with the mass balance measurements, will provide a comprehensive annual data set on sea ice thermodynamics and dynamics for comparison with both coupled and high-resolution sea ice models.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a marine geological investigation of the Amundsen Sea region toward a better understanding of the deglaciation history of the West Antarctic Ice Sheet (WAIS). The WAIS may be inherently unstable because it is the last marine-based ice sheet in the world. Unlike other embayments in West Antarctica, major ice streams draining into the Amundsen Sea from the interior of the WAIS lack buttressing ice shelves. Mass balance data for the distal portions of these ice streams (Pine Island and Thwaites glaciers) appear to be in balance or may be becoming negative. Because both ice streams have beds that slope downward toward the center of the ice sheet, grounding-line recession resulting from either continued thinning or sea-level rise could trigger irreversible grounding-line retreat, leading to ice-sheet disintegration and consequent global sea-level rise. The limited marine geological and geophysical data available from the Amundsen Sea suggest that grounded ice or an ice shelf occupied the inner Amundsen Sea embayment until perhaps as recently as 1000 to 2000 years ago, and this ice may have retreated rapidly in historic time.<br/><br/>This project, a study of the marine geology and geophysics of the Amundsen Sea continental shelf from 100 degrees W to 130 degrees W, is designed to address the Amundsen Sea part of WAIS Science Plan Priority Goal H2: "What is the deglaciation history in the eastern Ross, the Bellingshausen and Amundsen Seas?" This project will examine bathymetric data of the Amundsen Sea continental shelf to determine the positions of former ice-steam channels, and to aid in choosing sites for sediment coring. Single-channel seismic reflection studies will be conducted in order to determine sediment-thickness patterns, to aid in choice of coring sites, and to locate and identify morphologic features indicative of former grounded ice (e.g., moraines, scours, flutes, striations, till wedges and deltas, etc.). Coring will be concentrated along former ice flow-lines. Core samples will be analyzed in the laboratory for sedimentology, to determine whether of not basal tills are present (indicating former grounded ice and its former extent), and for calcareous and siliceous microfossils. The chronology of grounding-line and ice-shelf retreat from a presumed Last Glacial Maximum position near the shelf break will be established using accelerator mass spectrometry (AMS) carbon-14 dates of acid-insoluble particulate organic carbon.<br/><br/>This project will share ship time in the Amundsen Sea with a physical oceanographic project. Marine geologic data and samples collected will be integrated with findings of other investigators toward developing a comprehensive interpretation of the history of the WAIS.
9908828<br/>Aronson<br/><br/>This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a paleoecological and paleoenvironmental study of Seymour Island. Global climate change late in the Eocene epoch had an important influence in Antarctica. This was the beginning of the transition from a cool-temperate climate in Antarctica to the polar climate that exists there today. The cooling trend strongly influenced the structure of shallow-water, Antarctic marine communities, and these effects are still evident in the peculiar ecological relationships among species living in modern Antarctic communities. Cooling late in the Eocene reduced the abundance of fish and crabs, which in turn reduced skeleton-crushing predation on invertebrates. Reduced predation allowed dense populations of ophiuroids (brittlestars) and crinoids (sea lilies) to appear in shallow-water settings at the end of the Eocene. These low-predation communities appear as dense fossil echinoderm assemblages in the upper portion of the late Eocene La Meseta Formation on Seymour Island, off the Antarctic Peninsula. Today, dense ophiuroid and crinoid populations are common in shallow-water habitats in Antarctica but generally have been eliminated by predators from similar habitats at temperate and tropical latitudes; their persistence in Antarctica to this day is an important ecological legacy of climatic cooling in the Eocene. Although the influence of declining predation on Antarctic ophiuroids and crinoids is now well documented, the effects of cooling on the more abundant mollusks have not been investigated. This study will examine the evolutionary ecology of gastropods (snails) and bivalves (clams) in the late Eocene.<br/><br/>A series of hypotheses will be tested in the La Meseta Formation, based on the predicted responses of mollusks to declining temperature and changing levels of predation. The shapes of gastropod shells, the activities of gastropods that prey on other mollusks by drilling holes in their shells, and the effects of predation on the thickness of mollusk shells should have changed significantly through late Eocene time. First, defensive features of gastropod shells, such as spines and ribbing, should decline as temperature and, therefore, the activity of skeleton-crushing predators declined. Second, drilling of bivalve prey by predatory gastropods should increase with time since the drillers should themselves have been subject to lower predation pressure as temperature declined. Drilled shells, therefore, should become more common through time. Third, patterns in the thickness of shells through time will make it possible to separate the direct, physiological effects of declining temperature (shells are more difficult to produce at cooler temperatures, and so should be thinner) from the indirect effects of temperature on evolving biological interactions (increased drilling predation should result in thicker shells). <br/><br/>Seymour Island contains the only fossil outcrops readily accessible in Antarctica from this crucial period in Earth history. The La Meseta Formation on Seymour Island thus provides a unique opportunity to learn how climate change affected Antarctic marine communities. In practical terms, global climate change will probably increase upwelling over the next few decades to centuries in some temperate coastal regions. Recent ecological evidence suggests that the resultant lowering of sea temperatures could lower predation in those areas. Understanding the response of the La Meseta faunas to global cooling in the late Eocene will provide direct insight into the rapidly changing structure of modern benthic communities.
PROPOSAL NO.: 0094078<br/>PRINCIPAL INVESTIGATOR: Bart, Philip<br/>INSTITUTION NAME: Louisiana State University & Agricultural and Mechanical College<br/>TITLE: CAREER: Relative frequency and phase of extreme expansions of the Antarctic Ice Sheets during the late Neogene<br/>NSF RECEIVED DATE: 07/27/2000<br/><br/>PROJECT SUMMARY<br/><br/>Expansions and contractions of the Antarctic Ice Sheets (AISs) have undoubtedly had a profound influence on Earth's climate and global sea-level. However, rather than being a single entity, the Antarctic cryosphere consists of three primary elements: 1) the East Antarctic Ice Sheet (EAIS); 2) the West Antarctic Ice Sheet (WAIS); and 3) the Antarctic Peninsula Ice Cap (APIC). The distinguishing characteristics include significant differences in: 1) ice volume; 2) substratum elevation; 3) ice-surface elevation; and 4) location with respect to latitude. Various lines of evidence indicate that the AISs have undergone significant fluctuations in the past and that fluctuations will continue to occur in the future. The exact nature of the fluctuations has been the subject of many lively debates. According to one line of reasoning, the land-based EAIS has been relatively stable, experiencing only minor fluctuations since forming in the middle Miocene, whereas the marine-based WAIS has been dynamic, waxing and waning frequently since the late Miocene. According to an alternate hypothesis, the ice sheets advanced and retreated synchronously. These two views are incompatible. <br/><br/>The first objective of this proposal is to compare the long-term past behavior of the WAIS to that of the EAIS and APIC. The fluctuations of the AISs involve many aspects (the frequency of changes, the overall magnitude of ice-volume change, etc.), and the activities proposed here specifically concern the frequency and phase of extreme advances of the ice sheet to the continental shelf. The project will build upon previous seismic-stratigraphic investigations of the continental shelves. These studies have clarified many issues concerning the minimum frequency of extreme expansions for the individual ice sheets, but some important questions remain. During the course of the project, the following questions will be evaluated.<br/><br/>Question 1) Were extreme advances of the EAIS and WAIS across the shelf of a similar frequency and coeval? This evaluation is possible because the western Ross Sea continental shelf (Northern Basin) receives drainage from the EAIS, and the eastern Ross Sea (Eastern Basin) receives drainage from the WAIS. Quantitative analyses of the extreme advances from these two areas have been conducted by Alonso et al. (1992) and Bart et al. (2000), respectively. However, the existing single-channel seismic grids are incomplete and can not be used to determine the stratigraphic correlations from Northern Basin to Eastern Basin. It is proposed that high-resolution seismic data (~2000 kms) be acquired to address this issue.<br/><br/>Question 2) Were extreme advances of the APIC across the shelf as frequent as inferred by Bart and Anderson (1995)? Bart and Anderson (1995) inferred that the APIC advanced across the continental shelf at least 30 times since the middle Miocene. This is significant because it suggests that the advances of the small APIC were an order of magnitude more frequent than the advances of the EAIS and WAIS. Others contest the Bart and Anderson (1995) glacial-unconformity interpretation of seismic reflections, and argue that the advances of the APIC were far fewer (i.e., Larter et al., 1997). The recent drilling on the Antarctic Peninsula outer continental shelf has sampled some but not all of the glacial units, but the sediment recovery was poor, and thus, the glacial history interpretation is still ambiguous. The existing high-resolution seismic grids from the Antarctic Peninsula contain only one regional strike line on the outer continental shelf. This is inadequate to address the controversy of the glacial-unconformity interpretation and the regional correlation of the recent ODP results. It is proposed that high-resolution seismic data (~1000 kms) be acquired in a forthcoming (January 2002) cruise to the Antarctic Peninsula to address these issues.<br/><br/>The second objective of this project is 1) to expand the PI's effort to integrate his ongoing and the proposed experiments into a graduate-level course at LSU, and 2) to develop a pilot outreach program with a Baton Rouge public high school. The Louisiana Department of Education has adopted scientific standards that apply to all sciences. These standards reflect what 9th through 12th grade-level students should be able to do and know. The PI will target one of these standards, the Science As Inquiry Standard 1 Benchmark. The PI will endeavor to share with the students the excitement of conducting scientific research as a way to encourage the students to pursue earth science as a field of study at the university level.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a paleoecological and paleoenvironmental study of Seymour Island. Global climate change late in the Eocene epoch had an important influence in Antarctica. This was the beginning of the transition from a cool-temperate climate in Antarctica to the polar climate that exists there today. The cooling trend strongly influenced the structure of shallow-water, Antarctic marine communities, and these effects are still evident in the peculiar ecological relationships among species living in modern Antarctic communities. Cooling late in the Eocene reduced the abundance of fish and crabs, which in turn reduced skeleton-crushing predation on invertebrates. Reduced predation allowed dense populations of ophiuroids (brittlestars) and crinoids (sea lilies) to appear in shallow-water settings at the end of the Eocene. These low-predation communities appear as dense fossil echinoderm assemblages in the upper portion of the late Eocene La Meseta Formation on Seymour Island, off the Antarctic Peninsula. Today, dense ophiuroid and crinoid populations are common in shallow-water habitats in Antarctica but generally have been eliminated by predators from similar habitats at temperate and tropical latitudes; their persistence in Antarctica to this day is an important ecological legacy of climatic cooling in the Eocene. Although the influence of declining predation on Antarctic ophiuroids and crinoids is now well documented, the effects of cooling on the more abundant mollusks have not been investigated. This study will examine the evolutionary ecology of gastropods (snails) and bivalves (clams) in the late Eocene.<br/><br/>A series of hypotheses will be tested in the La Meseta Formation, based on the predicted responses of mollusks to declining temperature and changing levels of predation. The shapes of gastropod shells, the activities of gastropods that prey on other mollusks by drilling holes in their shells, and the effects of predation on the thickness of mollusk shells should have changed significantly through late Eocene time. First, defensive features of gastropod shells, such as spines and ribbing, should decline as temperature and, therefore, the activity of skeleton-crushing predators declined. Second, drilling of bivalve prey by predatory gastropods should increase with time since the drillers should themselves have been subject to lower predation pressure as temperature declined. Drilled shells, therefore, should become more common through time. Third, patterns in the thickness of shells through time will make it possible to separate the direct, physiological effects of declining temperature (shells are more difficult to produce at cooler temperatures, and so should be thinner) from the indirect effects of temperature on evolving biological interactions (increased drilling predation should result in thicker shells). <br/><br/>Seymour Island contains the only fossil outcrops readily accessible in Antarctica from this crucial period in Earth history. The La Meseta Formation on Seymour Island thus provides a unique opportunity to learn how climate change affected Antarctic marine communities. In practical terms, global climate change will probably increase upwelling over the next few decades to centuries in some temperate coastal regions. Recent ecological evidence suggests that the resultant lowering of sea temperatures could lower predation in those areas. Understanding the response of the La Meseta faunas to global cooling in the late Eocene will provide direct insight into the rapidly changing structure of modern benthic communities.
Increases in ultraviolet-B radiation (UV-B, 280-320) associated with the Antarctic ozone hole have been shown to inhibit the photosynthesis of phytoplankton, but the overall effect on water column production is still a matter of debate and continued investigation. Investigations have also revealed that even at "normal" levels of Antarctic stratospheric ozone, UV-B and UV-A (320-400 nm) appear to have strong effects on water column production. The role of UV in the ecology of phytoplankton primary production has probably been underappreciated in the past and could be particularly important to the estimation of primary production in the presence of vertical mixing. This research focuses on quantifying UV effects on photosynthesis of Antarctic phytoplankton by defining biological weighting functions for UV-inhibition. In the past, techniques were developed to describe photosynthesis as a function of UV and visible irradiance using laboratory cultures. Further experimentation with natural assemblages from McMurdo Station in Antarctica showed that biological weighting functions are strongly related to light history. Most recently, measurements in the open waters of the Southern Ocean confirmed that there is substantial variability in the susceptibility of phytoplankton assemblages to UV. It was also discovered that inhibition of photosynthesis in Antarctic phytoplankton got progressively worse on the time scale of hours, with no evidence of recovery. Even under benign conditions, losses of photosynthetic capability persisted unchanged for several hours. This was in contrast with laboratory cultures and some natural assemblages which quickly attained a steady- state rate of photosynthesis during exposure to UV, reflecting a balance between damage and recovery processes. Slow reversal of UV-induced damage has profound consequences for water-column photosynthesis, especially during vertical mixing. Results to date have been used to model th e influence of UV, ozone depletion and vertical mixing on photosynthesis in Antarctic waters. Data indicate that normal levels of UV can have a significant impact on natural phytoplankton and that the effects can be exacerbated by ozone depletion as well as vertical mixing. Critical questions remain poorly resolved, however, and these are the focus of the present proposal. New theoretical and experimental approaches will be used to investigate UV responses in both the open waters of the Weddell-Scotia confluence and coastal waters near Palmer Station. In particular, measurements will be made of the kinetics of UV inhibition and recovery on time scales ranging from minutes to days. Variability in biological weighting functions between will be calculated for pelagic and coastal phytoplankton in the Southern Ocean. The results will provide absolute estimates of photosynthesis under in situ, as well as under altered, UV irradiance; broaden the range of assemblages for which biological weighting functions have been determined; and clarify how kinetics of inhibition and recovery should be represented in mixed layer models.
0538639<br/>Waddington<br/>This award supports a project to study the patterns of accumulation variation and microstructural properties near the WAIS Divide ice core site in a 2.5 km array of 20 m boreholes. Borehole Optical Stratigraphy (BOS) is a novel optical measurement system that detects annual-scale layers in firn that result from changes in firn microstructure, giving annual-scale records of how accumulation varied spatially over the last 40-50 years. Data from borehole optical stratigraphy can eventually be calibrated against other data on the microstructural parameters of firn to calibrate BOS's sensitivity to density, pore-volume, and pore-shape variations, and to show by proxy how these parameters vary in space across the survey area. Statistical analysis of layer-thickness and layer-brightness data will enable prediction of: 1) interannual accumulation variability, 2) variability in layer-thickness at decadal scales due to changing spatial patterns in accumulation and 3) variability in microstructure-driven metamorphism due to changing spatial patterns of microstructure. With these statistics in hand, a scientist measuring climatic shifts found in the WAIS Divide ice core will be able to determine the fraction by which signals they measure exceed the signal due to background accumulation variations. As an added benefit, while still in the field, we will determine a preliminary depth-age scale for the firn by optical layer-counting, to the depth of the deepest air-filled firn hole available. This will be a valuable result for core-drilling operations and for preliminary data-analysis on the core. In terms of broader impacts, this project will advance education by training a post-doctoral student in field techniques. The P.I. and the post-doctoral researcher will participate in an undergraduate seminar called "What is Scientific Research?", incorporating progress and results from this project. They will also communicate about their progress and field experience with a middle-school science and math class.
0538195<br/>Marone<br/>This award supports a project to conduct laboratory experiments and numerical modeling to determine the constitutive properties of subglacial till under dynamic stressing and to test the hypothesis that granular properties of till are sufficient, when coupled elastically to a large ice stream, to reproduce the field observations of triggered slip and subglacial seismicity. Testing will be carried out in a servo-controlled biaxial shear device under controlled temperature and stress conditions, which will allow both sliding and microstructural processes to be studied in detail. The main focus of the work will be on laboratory measurements. In addition, we will construct continuum models to evaluate whether our results can predict complex ice sheet motions and observed characteristics of subglacial seismicity. In terms of broader impacts, the proposed work will encourage interactions between the rock-mechanics and glaciology communities and will bring together members of different scientific backgrounds and vocabularies, but similar problems and data. The project will train undergraduate and graduate students at Penn State University and the scientists involved plan to give presentations to grade school classes, scout groups, and at community open houses. Results will be presented at professional meetings and will be published in a timely manner. The work will result in a better understanding of glacial motion and the physics of earthquake slip, which is essential for understanding ice sheet dynamics and earthquake hazard.
This project uses cosmogenic nuclide dating and LIDAR studies of surface roughness to understand weathering and landscape evolution in the Dry Valleys of Antarctica. The work focuses on two processes: cryoturbation of frozen soils and the development of patterned, frozen ground on ancient lava flows. The approach includes innovative uses of He3 profiling. Results will also be applied to understanding the glacial history of the Dry Valleys. There are potential applications to understanding the history of the East Antarctic Ice Sheet and the formation of Martian landscapes. The broader impacts include graduate student education. As well, the work may contribute to our understanding of the history of the Antarctic ice sheets, which is important to modeling their behavior during global climate change.
This award supports the study of lava samples from seamounts in the Cape Adare region of the western Ross Sea. Volcanism in this area is poorly understood, and the geochemistry of these lavas may offer new insight into regional geodynamics and global mantle geochemistry. Because the Cape Adare seamounts are located on oceanic lithosphere, they may be free of the contamination that affects lavas erupted through continental areas. This one-year investigation will gather data on samples collected on a cruise to this region in 2007. It will determine seamount ages, characterize their mantle sources, assess models for their origin, and judge the potential for more detailed study. In terms of broader impacts, this project will involve graduate and undergraduate students in an exciting field expedition, followed by laboratory work using cutting-edge techniques for geochemical analyses.
This project will determine the age, origin, and climatic significance of buried ice found in the western Dry Valleys of Antarctica. Previous studies indicate that this ice may be over a million years in age, making it by far the oldest ice yet discovered on Earth. An alternative view is that this ice is represents recently frozen groundwater. To distinguish between these hypotheses and characterize the ice, we are undertaking an interdisciplinary research program focused on: 1) understanding the surface processes that permit ice preservation; and 2) testing the efficacy of cosmogenic nuclides and 40Ar/39Ar analyses in dating both tills and volcanic ash associated with the ice. Our plan calls for the analysis of a minimum of six cosmogenic depth profiles to determine if and how cryoturbation reworks sublimation tills and assess the average rate of ice sublimation for three debris-covered glaciers. We will model through finite- element analyses at least three buried glaciers and compare flow rates with those based on radiometric dating of surface deposits. Ten ice cores will also be collected for measurement of d18O, dD, ice fabric, ice texture, total gas content/composition. Better understanding of surface processes above buried ice will permit researchers to gain access to a record of atmospheric and climate change that could well cover intervals that predate Quaternary time. The work may also add valuable insight into Martian history. In terms of broader impacts, we have recruited three female PhD students and developed interdisciplinary collaborations among geochemists at Columbia University, planetary geologists at Brown University, geomorphologists at Boston University, and numerical modelers at the University of Maine.
This Small Grant for Exploratory Research supports a paleomagnetic survey of previously collected sediment cores from Antarcticas continental margin. Many of these cores were originally interpreted with methods that, though advanced for their time, were barely adequate. Nonetheless, these results are still used to construct an overall stratigraphic record for marine sediments and major events related to the Southern Ocean, global climate, and Antarcticas glacial history. With the advances in paleomagnetic techniques over the intervening decades and the great interest and current work on Antarctic marine sediments by major projects such as ANDRILL and ShalDrill, a reassessment of these cores is needed. In addition, these new studies will offer insight into the behavior of the geomagnetic field within the Earths tangent cylinder, the region delineated by an imaginary cylinder parallel to the Earths rotation axis and tangent to the equator of the inner core boundary.<br/><br/>The broader impacts of this work include support of postdoctoral student research and improving societys understanding of global climate change through an improved understanding of the Antarctic marine sediment record.
This work will study cosmogenic isotope profiles of rock and sediment in the Dry Valleys of Antarctica to understand their origin. The results will provide important constraints on the history of the East Antarctic Ice Sheet. The near-perfect preservation of volcanic ash and overlying sediments suggests that hyperarid cold conditions have prevailed in the Dry Valleys for over 10 Myr. The survival of these sediments also suggests that warm-based ice has not entered the valley system and ice sheet expansion has been minimal. Other evidence, however, suggests that the Dry Valleys have experienced considerably more sediment erosion than generally believed: 1) the cosmogenic exposure ages of boulders and bedrock in the Valleys all show generally younger ages than volcanic ash deposits used to determine minimum ages of moraines and drifts, 2) there appears to be a discrepancy between the suggested extreme preservation of unconsolidated slope deposits (>10 Myr) and adjacent bedrock that has eroded 2.6-6 m during the same time interval. The fact that the till and moraine exposure ages generally post date the overlying volcanic ash deposits could reflect expansion of continental ice sheet into the Dry Valleys with cold-based ice, thus both preserving the landscape and shielding the surfaces from cosmic radiation. Another plausible explanation of the young cosmogenic exposure ages is erosion of the sediments and gradual exhumation of formerly buried boulders to the surface. Cosmogenic isotope systematics are especially well suited to address these questions. We will measure multiple cosmogenic isotopes in profiles of rock and sediment to determine the minimum exposure ages, the degree of soil stability or mixing, and the shielding history of surfaces by cold based ice. We expect to obtain unambiguous minimum ages for deposits. In addition, we should be able to identify areas disturbed by periglacial activity, constrain the timing of such activity, and account for the patchy preservation of important stratigraphic markers such as volcanic ash. The broader impacts of this project include graduate and undergraduate education, and improving our understanding of the dynamics of Southern Hemisphere climate on timescales of millions of years, which has major implications for understanding the controls and impacts of global climate change.
This work will determine the age and provenance of glacially derived marine sediments from the coastal regions of Wilkes Land, Antarctica. These deposits may offer insight into the history of the East Antarctic Shield (EAS), which is amongst the oldest sections of continental crust on Earth, but cannot be studied directly because of nearly complete ice sheet coverage. The study will use Australian National University's SHRIMP ion microprobe to date zircon and monazite found in the sediments. Samples of interest include polymictic pebble and cobble clasts obtained from dredge hauls of tills, as well as sand-matrix fractions from cores of glacial diamicts on the continental margin. Individual clasts of igneous and metamorphic rocks from tills will be selected for zircon and/or monazite age dating, whereas detrital zircons from stratified and non-stratified diamictons will be analyzed for composite zircon provenance analysis. In addition, detrital zircon ages will be determined for Beacon Supergroup sandstones to evaluate recycling of zircon in Phanerozoic basins. Integration of ages obtained from both sources will provide a good representation of the EAS terrains underlying the Wilkes Land ice sheet. This project will allow us to learn more about the remote continental interior and improve our ability to interpret past ice-flow patterns without further environmental impact on Antarctica. The results will improve our understanding of Precambrian tectonics and crustal evolution, and help target future over-ice geophysical surveys and basement drilling projects currently under consideration. In terms of broader impacts, the project will provide educational and training opportunities for undergraduate students in Earth science.
9814816<br/>Blankenship<br/><br/>This award supports a four year project to develop of better understanding the ice streams of the Ross Sea Embayment (A--F) which drain the interior West Antarctic Ice Sheet (WAIS) by rapidly moving vast quantities of ice to the calving front of the Ross Ice Shelf. The project will examine the role of these ice streams as buffers between the interior ice and the floating ice shelves. The reasons for their fast flow, the factors controlling their current grounding-line-, margin-, and head-positions are crucial to any attempt at modeling the WAIS system and predicting the future of the ice sheet. For the Antarctic ice streams of the Siple Coast, the transition from no-sliding (or all internal deformation) to motion dominated by sliding is defined as the "onset-region". To fully understand (and adequately model) the WAIS, this onset region must be better understood. The lateral margins of the ice streams are also a transition that need better explanation. Hypotheses on controls of the location of the onset region range from the "purely-glaciologic" to the "purely-geologic. Thus, to model the ice sheet accurately, the basal boundary conditions (roughness, wetness, till properties) and a good subglacial geologic map, showing the distribution, thickness, and properties of the sedimentary basins, are required. These parameters can be estimated from seismic, radar, and other geophysical methods. The transition region of ice stream D will be studied in detail with this coupled geophysical experiment. In addition, selected other locations on ice streams C & D will be made, to compare and contrast conditions with the main site on ice stream D. Site-selection for the main camp will be based on existing radar, GPS, and satellite data as well as input from the modeling community.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research project between the University of California-Santa Cruz, the University of Texas-Austin, and the Ohio State University to investigate sediment samples recovered from the base of the West Antarctic Ice Sheet (WAIS). West Antarctica is a remote polar region but its dynamic ice sheet, complicated tectonic history, and the sedimentary record of Cenozoic glaciation make it of particular interest to glaciologists and geologists. Glaciologists are concerned with the possibility of significant near-future changes in mass balance of the WAIS that may contribute to the ongoing global sea level rise. Geologists are investigating in West Antarctica the fundamental process of continental extension and are constructing models of a polar marine depositional system using this region as the prime modern example. The subglacial part of West Antarctica has escaped direct geological investigations and all that is known about subglacial geology comes from geophysical remote sensing. Recent acquisitions of new, high-quality geophysical data have led to generation of several enticing models. For instance, subglacial presence of high-magnitude, short-wavelength magnetic anomalies has prompted the proposition that there may be voluminous (>1 million cubic km), Late Cenozoic flood basalts beneath the ice sheet. Another important model suggests that the patterns of fast ice streaming (~100 meters/year) and slow ice motion (~1-10 meters/year) observed within the WAIS are controlled by subglacial distribution of sedimentary basins and resistant bedrock. These new geophysics-based models should be tested with direct observations because they are of such great importance to our understanding of the West Antarctic tectonic history and to our ability to predict the future behavior of the WAIS.<br/><br/>This research is designed as a pilot study to provide new geologic data, which may help to test the recent models inferred from geophysical observations. The new constraints on subglacial geology and on its interactions with the WAIS will be obtained through petrological and geochemical analyses of basal and subglacial sediments collected previously from seven localities. This investigation will take place in the context of testing the following three hypotheses: (A) the provenance of bedrock clasts in the glacial sediment samples is primarily from West Antarctica, (B) some clasts and muds from the West Antarctic subglacial sediments have been derived by erosion of the (inferred) subglacial Late Cenozoic flood basalts, and (C) the sediments underlying the West Antarctic ice streams were generated by glacial erosion of preglacial sedimentary basins but the sediments recovered from beneath the slow-moving parts of the WAIS were produced through erosion of resistant bedrock.<br/><br/>The individual hypotheses will be tested by collecting data on: (A) petrology, geochemistry and age of granitoid clasts, (B) petrology, geochemistry and age of basaltic clasts combined with mud geochemistry, and (C) clay mineralogy/paragenesis combined with textural maturity of sand and silt grains. The results of these tests will help evaluate the interesting possibility that subglacial geology may have first-order control on the patterns of fast ice flow within the WAIS. The new data will also help to determine whether the subglacial portion of West Antarctica is a Late Cenozoic flood basalt province. By combining glaciological and geological aspects of West Antarctic research the proposed collaborative project will add to the ongoing U.S. effort to create a multidisciplinary understanding of this polar region.