[{"awards": "2332108 Loewy, Staci", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 27 Feb 2025 00:00:00 GMT", "description": "Technical Abstract This research evaluates whether the small Coats Land crustal block of East Antarctica is a tectonic tracer linking Kalahari and southern Laurentia within the Neoproterozoic supercontinent of Rodinia across an orogenic suture. A Pan-African (~600 Ma) suture separates the small Coats Land block from the main Mawson Craton indicating that this crustal block had an independent pre-Pan-African history. Existing data from the miniscule outcrops of bedrock in Coats Land provide critical clues to that paleogeography, suggesting that Laurentia collided with Kalahari across the Grenville-Namaqua/Natal-Maud orogen. The Coats Land block has only three small groups of bedrock exposures, two form nunataks and the third occurs in a cliff face. The two nunataks comprise granophyre and rhyolite contemporaneous with the ca. 1.1 Ga Keweenawan, mid-continent rift, volcanics of Laurentia and its proposed southwestern extension in El Paso, TX. Moreover, the Pb isotopes of the Coats Land and Keweenawan rocks are identical, and paleomagnetic data are broadly supportive of the Coats Land block having been located adjacent to the present southern margin of the Laurentian craton. Metamorphic rocks from the cliff face exposure lithologically resemble basement rocks of the El Paso, TX. The proposed research will further existing geochemical and geochronologic studies of specimens previously collected from Coats Land and new and existing samples of rocks collected near El Paso, Texas for detailed comparison. Analyses include zircon U-Pb dating and Hf and O isotope analysis, and whole rock geochemistry and Pb, Sm-Nd and Rb-Sr isotope analysis. This research will make maximum use of existing material from this extremely remote part of Antarctica to test this hypothesis. Researchers will collaborate with 2 well-established education-outreach programs in the Jackson School of Geosciences at The University of Texas at Austin. Undergraduate research assistants will be recruited from the Jackson Scholars Program (JSP). Researchers will provide a field- and lab-based seminar on reconstructing Rodinia for the JSP and will conduct research with high school students during GeoFORCE 12th grade summer academy. Non-technical Abstract This research evaluates whether the small Coats Land crustal block of East Antarctica is a piece of ancestral North America (Laurentia) that was transferred to southern Africa (Kalahari) during ~ 1 Ga collision, and subsequent breakup, of the two continents during the formation of the ancient supercontinent of Rodinia. Coats Land is separated from the adjacent Mawson Craton of Antarctica by ~600 Ma continental sutures indicating that Coats Land had an independent history prior to 600 Ma. Existing data from the miniscule outcrops of bedrock in Coats Land provide critical clues to that paleogeography, suggesting that Laurentia collided with Kalahari. The Coats Land block has only three small groups of bedrock exposures, two form nunataks and the third occurs in a cliff face. The two nunataks comprise granophyre and rhyolite contemporaneous with the ca. 1.1 Ga Keweenawan, mid-continent rift, volcanics of Laurentia and its proposed southwestern extension in El Paso, TX. Moreover, the Pb isotopes of the Coats Land and Keweenawan rocks are identical, and paleomagnetic data are broadly supportive of the Coats Land block having been located adjacent to the present southern margin of the Laurentian craton. Metamorphic rocks from the cliff face exposure lithologically resemble basement rocks of the El Paso, TX. The proposed research will further existing geochemical and geochronologic studies of specimens previously collected from Coats Land and new and existing samples of rocks collected near El Paso, Texas for detailed comparison. Analyses include zircon U-Pb dating and Hf and O isotope analysis, and whole rock geochemistry and Pb, Sm-Nd and Rb-Sr isotope analysis. This research will make maximum use of existing material from this extremely remote part of Antarctica to test this hypothesis. Researchers will collaborate with 2 well-established education-outreach programs in the Jackson School of Geosciences at The University of Texas at Austin. Undergraduate research assistants will be recruited from the Jackson Scholars Program (JSP). Researchers will provide a field- and lab-based seminar on reconstructing Rodinia for the JSP and will conduct research with high school students during GeoFORCE 12th grade summer academy. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Coats Land; Geochronology; ISOTOPES; Rodina; zircons; Paleogeography; Isotopes; PLATE TECTONICS; Texas", "locations": "Coats Land; Texas; Rodina", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Loewy, Staci; Dalziel, Ian W.", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Antarctica within Rodinia: Testing the Laurentia Connection", "uid": "p0010500", "west": -180.0}, {"awards": "1744651 Wilcock, William", "bounds_geometry": "POLYGON((-62 -62,-61.5 -62,-61 -62,-60.5 -62,-60 -62,-59.5 -62,-59 -62,-58.5 -62,-58 -62,-57.5 -62,-57 -62,-57 -62.2,-57 -62.4,-57 -62.6,-57 -62.8,-57 -63,-57 -63.2,-57 -63.4,-57 -63.6,-57 -63.8,-57 -64,-57.5 -64,-58 -64,-58.5 -64,-59 -64,-59.5 -64,-60 -64,-60.5 -64,-61 -64,-61.5 -64,-62 -64,-62 -63.8,-62 -63.6,-62 -63.4,-62 -63.2,-62 -63,-62 -62.8,-62 -62.6,-62 -62.4,-62 -62.2,-62 -62))", "dataset_titles": "3D P-wave velocity models of Orca Volcano, Bransfield Basin, Antarctica from the\r\nBRAVOSEIS experiment; Bransfield OBSIC OBS network 2019-20 (network code ZX, 2019); BRAVOSEIS Onshore Seismic Array (Network code 5M)", "datasets": [{"dataset_uid": "200441", "doi": "10.14470/0Z7563857972", "keywords": null, "people": null, "repository": "GEOFON", "science_program": null, "title": "BRAVOSEIS Onshore Seismic Array (Network code 5M)", "url": "https://doi.org/10.14470/0Z7563857972"}, {"dataset_uid": "200440", "doi": "", "keywords": null, "people": null, "repository": "NSF SAGE Facility DMC", "science_program": null, "title": "Bransfield OBSIC OBS network 2019-20 (network code ZX, 2019)", "url": " https://ds.iris.edu/mda/18-017/"}, {"dataset_uid": "200442", "doi": "in progress", "keywords": null, "people": null, "repository": "Marine Geoscience Data System", "science_program": null, "title": "3D P-wave velocity models of Orca Volcano, Bransfield Basin, Antarctica from the\r\nBRAVOSEIS experiment", "url": ""}], "date_created": "Fri, 14 Feb 2025 00:00:00 GMT", "description": "One of the fundamental processes in plate tectonics is the rifting or separating of continental crust creating new seafloors which can widen and ultimately form new ocean basins, the latter is a process known as seafloor spreading. The Bransfield Strait, separating the West Antarctic Peninsula from the South Shetland Islands, formed and is presently widening as a result of the separation of continental crust. What is unique is that the system appears to be approaching the transition to seafloor spreading making this an ideal site to study the transitional process. Previous seafloor mapping and field surveys provide the regional structure of the basin; however, there exists a paucity of regional seismic studies documenting the tectonic and volcanic activity in the basin as a result of the rifting. This would be the first local-scale study of the seismicity and structure of the volcanoes in the center of the basin where crustal separation is most active. The new seismic data will enable scientists to compare current patterns of crustal separation and volcanism at the Bransfield Strait to other well-studied seafloor spreading centers. This collaborative international project, led by the Spanish and involving scientists from the U.S., Germany and other European countries, will monitor seismicity for one year on land and on the seafloor. An active seismic study conducted by the Spanish will image fault and volcanic structures that can be related to the distribution of earthquakes. This study supports eight undergraduates from Queens College, CUNY, an ethnically-diverse institution, to conduct field work as members of the scientific party on board the R/V Hesperides and will contribute to the analysis of the data. Back-arc basins are found in subduction settings and form in two stages, an initial interval of continental rifting that transitions to a later stage of seafloor spreading. Studying the transitional process is important for understanding the dynamics and evolution of subduction zones, and in locations where back-arc rifting breaks continental crust, it is relevant to understanding the formation of passive continental margins. The Central Bransfield Basin is unusual in that the South Shetland Islands have lacked recent arc volcanism and it appears subduction is ceasing, but this system has broad significant because it appears to be nearing the transition from rifting to seafloor spreading. This award will support the U.S. component of an international initiative led by the Spanish Polar Committee to conduct a study of the seismicity and volcanic structure of the Central Bransfield Basin. The objective is to characterize the distribution of active extension across the basin and determine whether the volcanic structure and deformation of the rift are consistent with a back-arc basin that is transitioning from rifting to seafloor spreading. The U.S. component of the experiment will contribute a network of six hydroacoustic moorings to monitor regional seismicity and 15 short-period seismometers to study the distribution of tectonic and volcanic seismicity on Orca volcano, one of the most active volcanoes in the basin. An active seismic study across closely spaced multichannel seismic lines across the rift will provide the data necessary to link earthquakes with fault structures enabling a tomography study of Orca volcano and provide insight into how the volcano\u0027s structure relates to rifting. This research will constrain the distribution of active rifting across the Central Bransfield Basin and determine whether the patterns of faulting and the structure of volcanic portion of the rift are consistent with a diffuse zone of rifting or a single spreading center that is transitioning to the production of oceanic crust. The Bransfield Basin is an ideal site for a comparative study of seismic and hydroacoustic earthquake locations that will improve the understanding of the generation and propagation of T-wave signals and contribute to efforts to compare the result of T-wave studies with data from traditional solid-earth seismic studies. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -57.0, "geometry": "POINT(-59.5 -63)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e AIRGUN ARRAYS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e PASSIVE ACOUSTIC RECORDER", "is_usap_dc": true, "keywords": "Back Arc Basin; SHIPS; TECTONICS; PLATE TECTONICS; South Shetland Islands; Bransfield Strait; MARINE GEOPHYSICS; Antarctic Peninsula", "locations": "Bransfield Strait; South Shetland Islands; Antarctic Peninsula", "north": -62.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "NOT APPLICABLE", "persons": "William, Wilcock; Dax, Soule; Robert, Dziak", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "GEOFON", "repositories": "GEOFON; Marine Geoscience Data System; NSF SAGE Facility DMC", "science_programs": null, "south": -64.0, "title": "Collaborative Research: The Tectonic and Magmatic Structure and Dynamics of Back-arc Rifting in Bransfield Strait: An International Seismic Experiment", "uid": "p0010498", "west": -62.0}, {"awards": "2437938 Goodge, John", "bounds_geometry": "POLYGON((155 -82,156 -82,157 -82,158 -82,159 -82,160 -82,161 -82,162 -82,163 -82,164 -82,165 -82,165 -82.3,165 -82.6,165 -82.9,165 -83.2,165 -83.5,165 -83.8,165 -84.1,165 -84.4,165 -84.7,165 -85,164 -85,163 -85,162 -85,161 -85,160 -85,159 -85,158 -85,157 -85,156 -85,155 -85,155 -84.7,155 -84.4,155 -84.1,155 -83.8,155 -83.5,155 -83.2,155 -82.9,155 -82.6,155 -82.3,155 -82))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 16 Jan 2025 00:00:00 GMT", "description": "Non-Technical Abstract This project will examine ancient Antarctic rocks to understand the continent\u2019s early history, including how Antarctica was once connected to other continents. By studying rock samples from the Nimrod Complex, the project will gather data on the age and makeup of these rocks, showing how Antarctica\u0027s crust formed and changed over time. This work will not only expand scientific knowledge about Earth\u0027s history but also provide valuable training for college students at multiple universities, helping to grow a diverse community of researchers who can tackle big questions in Earth science. Technical Abstract This project seeks to unravel the origin, evolution, and geological significance of the Nimrod Complex in Antarctica\u2019s East Antarctic craton through detailed age and isotopic analysis of its igneous and metamorphic rocks. Using U-Pb zircon geochronology along with O-isotope, Hf-isotope, and trace element analyses, we will construct a comprehensive petrochronological profile of these Mesoarchean to Paleoproterozoic rocks to reveal their magmatic sources, metamorphic history, and role in the broader tectonic framework. The project aims to trace sediment sources and tectonic influences across sedimentary units spanning the Paleoproterozoic to lower Paleozoic eras, adding crucial data to supercontinent reconstructions (Columbia, Rodinia, and Gondwana) and Antarctic tectonic models. Broader impacts include collaborations between universities to develop a diverse STEM workforce, inter-laboratory partnerships, and a robust isotopic dataset that will contribute to models of Antarctic crustal evolution and its implications for ice sheet stability. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 165.0, "geometry": "POINT(160 -83.5)", "instruments": null, "is_usap_dc": true, "keywords": "ISOTOPES; Miller Range; Geologists Range; Zircon; Transantarctic Mountains; FIELD INVESTIGATION", "locations": "Transantarctic Mountains; Miller Range; Geologists Range", "north": -82.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "ARCHAEAN \u003e MESOARCHEAN; ARCHAEAN \u003e NEOARCHEAN; PROTEROZOIC \u003e MESOPROTEROZOIC; PROTEROZOIC \u003e PALEOPROTEROZOIC; PROTEROZOIC \u003e NEOPROTEROZOIC", "persons": "Goodge, John; Kylander-Clark, Andrew; Bell, Elizabeth; Pecha, Mark", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -85.0, "title": "The Nimrod Complex, an Ancient Window into East Antarctic Crustal Evolution", "uid": "p0010495", "west": 155.0}, {"awards": "2023355 Schmandt, Brandon", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "A seismic catalog for the southernmost continent", "datasets": [{"dataset_uid": "601805", "doi": "10.15784/601805", "keywords": "Antarctica; Cryosphere; Earthquakes; Icequakes; Volcanic Events", "people": "Pena Castro, Andres", "repository": "USAP-DC", "science_program": null, "title": "A seismic catalog for the southernmost continent", "url": "https://www.usap-dc.org/view/dataset/601805"}], "date_created": "Tue, 20 Feb 2024 00:00:00 GMT", "description": "Part 1: Nontechnical Unlike other locations on the globe Antarctica is not known for having large earthquakes and the remote nature and harsh conditions make it difficult to install and maintain seismometers for earthquake detection. Some researchers believe the lack of large earthquakes is due to the continent being surrounded by inactive tectonic margins. However, in the last two decades, scientists have discovered that more earthquakes occur in the interior of the continent than previously observed. This suggests that there are many earthquakes missing from historic earthquake catalogs. This study aims to find the missing earthquakes using novel earthquake detection and location techniques from seismic data collected from temporary and permanent seismic stations in Antarctica over the last 25 years. Locating these earthquakes will help understand if and where earthquakes are located in Antarctica and will help in planning future seismic deployments. As part of the project broader impacts, a field expedition with the Girls on Rock program will be conducted to teach high school age girls, and especially those from underrepresented backgrounds, data visualization techniques using scientific data. Part 2: Technical The spatial distribution of seismicity and the number of moderate magnitude earthquakes in Antarctica is not well-defined. The current catalog of earthquakes may be biased by uneven and sparse seismograph distribution on the continent. We will mine existing broadband seismic data from both permanent and temporary deployments to lower the earthquake detection threshold across Interior Antarctica, with a focus on tectonic earthquakes. The hypothesis is that Interior Antarctica has abundant moderate magnitude earthquakes, previously undetected. These earthquakes are likely collocated with major tectonic features such as the Transantarctic Mountains, the suspected Vostok collision zone, the West Antarctic Rift System, the crustal compositional boundary between East and West Antarctica, and the Cretaceous East Antarctic Rift. Previous seismic deployments have recorded earthquakes in the Antarctic interior, suggesting there are many earthquakes missing from the current catalog. We propose to use novel earthquake location techniques designed for automated detection and location using 25 years of continuous data archived at IRIS from PASSCAL experiments and permanent stations. The approach will use STA/LTA detectors on the first arrival P-wave to 90 degrees distance, Reverse Time Imaging to locate events, and beamforming at dense arrays strategically located on cratons for enhanced detection and location. The combination of detection and location techniques used in this work has not been used on teleseismic body waves, although similar methods have worked well for surface wave studies. If successful the project would provide an excellent training dataset for future scrutiny of newly discovered Antarctic seismicity with machine learning approaches and/or new targeted data collection. We plan to collaborate with Girls on Rock, a local and international organization committed to building a culturally diverse community in science, art, and wilderness exploration, in a summer field expedition and integrating computer coding into post-field scientific projects. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Seismic Events; Icequakes; TECTONICS; Earthquakes", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Polar Special Initiatives", "paleo_time": null, "persons": "Schmandt, Brandon", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "EAGER: Lowering the detection threshold of Antarctic seismicity to reveal undiscovered intraplate deformation", "uid": "p0010450", "west": -180.0}, {"awards": "1917009 Thomson, Stuart; 1916982 Teyssier, Christian; 1917176 Siddoway, Christine", "bounds_geometry": "POLYGON((-160.16 -67.15,-154.572 -67.15,-148.984 -67.15,-143.39600000000002 -67.15,-137.808 -67.15,-132.22 -67.15,-126.632 -67.15,-121.04400000000001 -67.15,-115.456 -67.15,-109.868 -67.15,-104.28 -67.15,-104.28 -68.165,-104.28 -69.18,-104.28 -70.19500000000001,-104.28 -71.21000000000001,-104.28 -72.225,-104.28 -73.24,-104.28 -74.255,-104.28 -75.27,-104.28 -76.285,-104.28 -77.3,-109.868 -77.3,-115.456 -77.3,-121.044 -77.3,-126.632 -77.3,-132.22 -77.3,-137.808 -77.3,-143.396 -77.3,-148.98399999999998 -77.3,-154.572 -77.3,-160.16 -77.3,-160.16 -76.285,-160.16 -75.27,-160.16 -74.255,-160.16 -73.24,-160.16 -72.225,-160.16 -71.21000000000001,-160.16 -70.19500000000001,-160.16 -69.18,-160.16 -68.165,-160.16 -67.15))", "dataset_titles": "Apatite fission track thermochronology data for detrital minerals, offshore clasts, and bedrock; U-Pb detrital zircon geochronological data, obtained by LA-ICP-MS", "datasets": [{"dataset_uid": "200333", "doi": "", "keywords": null, "people": null, "repository": "in progress", "science_program": null, "title": "Apatite fission track thermochronology data for detrital minerals, offshore clasts, and bedrock", "url": ""}, {"dataset_uid": "200332", "doi": "", "keywords": null, "people": null, "repository": "in progress", "science_program": null, "title": "U-Pb detrital zircon geochronological data, obtained by LA-ICP-MS", "url": ""}], "date_created": "Wed, 19 Oct 2022 00:00:00 GMT", "description": "Sediment records off the coast of Marie Byrd Land (MBL), Antarctica suggest frequent and dramatic changes in the size of the West Antarctic Ice Sheet (WAIS) over short (tens of thousands of years) and long (millions of years) time frames in the past. WAIS currently overrides much of MBL and covers the rugged and scoured bedrock landscape. The ice sheet carved narrow linear troughs that reach depths of two to three thousand meters below sea level as outlet glaciers flowed from the interior of the continent to the oceans. As a result, large volumes of fragmented continental bedrock were carried out to the seabed. The glaciers cut downward into a region of crystalline rocks (i.e. granite) whose temperature change as a function of rock depth happens to be significant. This strong geothermal gradient in the bedrock is favorable for determining when the bedrock experienced rapid exhumation or \"uncovering\". Analyzing the chemistry of minerals (zircon and apatite) within the eroded rocks will provide information about the rate and timing of the glacier removal of bedrock from the Antarctic continent. The research addresses the following questions: When did the land become high enough for a large ice sheet to form? What was the regional pre-glacial topography? Under what climate conditions, and at what point in the growth of an ice sheet, did glaciers begin to cut sharply into bedrock to form the narrow troughs that flow seaward? The research will lead to greater understanding of past Antarctic ice sheet fluctuations and identify precise timing of glacial incision. These results will refine ice sheet history and aid the international societal response to contemporary ice sheet change and its global consequences. The project will contribute to the training of two graduate and two undergraduate students in STEM. The objective is to clarify the onset of WAIS glacier incision and assess the evolution of Cenozoic paleo-topography. Low-temperature (T) thermochronology and Pecube 3-D thermo-kinematic modeling will be applied to date and characterize episodes of glacial erosional incision. Single-grain double- and triple-dating of zircon and apatite will reveal the detailed crustal thermal evolution of the region enabling the research team to determine the comparative topographic influences on glaciation versus bedrock uplift induced by Eocene to present tectonism/magmatism. High-T mineral thermochronometers across Marie Byrd Land (MBL) record rapid extension-related cooling at ~100 Ma from temperatures of \u003e800 degrees C to \u0026#8804; 300 degrees C. This signature forms a reference horizon, or paleogeotherm, through which the Cenozoic landscape history using low-T thermochronometers can be explored. MBL\u0027s elevated geothermal gradient, sustained during the Cenozoic, created favorable conditions for sensitive apatite and zircon low-T thermochronometers to record bedrock cooling related to glacial incision. Students will be trained to use state-of-the-art analytical facilities in Arizona and Minnesota, expanding the geo- and thermochronologic history of MBL from bedrock samples and offshore sedimentary deposits. The temperature and time data they acquire will provide constraints on paleotopography, isostasy, and the thermal evolution of MBL that will be modeled in 3D using Pecube model simulations. Within hot crust, less incision is required to expose bedrock containing the distinct thermochronometric profile; a prediction that will be tested with inverse Pecube 3-D models of the thermal field through which bedrock and detrital samples cooled. Using results from Pecube, the ICI-Hot team will examine time-varying topography formed in response to changes in erosion rates, topographic relief, geothermal gradient and/or flexural isostatic rigidity. These effects are manifestations of dynamic processes in the WAIS, including ice sheet loading, ice volume fluctuations, relative motion upon crustal faults, and magmatism-related elevation increase across the MBL dome. The project makes use of pre-existing sample collections housed at the US Polar Rock Repository, IODP\u0027s Gulf Coast Core Repository, and the Antarctic Marine Geology Research Facility. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -104.28, "geometry": "POINT(-132.22 -72.225)", "instruments": null, "is_usap_dc": true, "keywords": "Marie Byrd Land; GLACIERS/ICE SHEETS; Zircon; Subglacial Topography; FIELD SURVEYS; TECTONICS; Ice Sheet; Thermochronology; Apatite; ROCKS/MINERALS/CRYSTALS; Erosion; United States Of America; LABORATORY", "locations": "United States Of America; Marie Byrd Land", "north": -67.15, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC", "persons": "Siddoway, Christine; Thomson, Stuart; Teyssier, Christian", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "in progress", "repositories": "in progress", "science_programs": null, "south": -77.3, "title": "Collaborative Research: Ice sheet erosional interaction with hot geotherm in West Antarctica", "uid": "p0010386", "west": -160.16}, {"awards": "1645087 Catchen, Julian", "bounds_geometry": null, "dataset_titles": "Chromosome-Level Genome Assembly and Circadian Gene Repertoire of the Patagonia Blennie Eleginops maclovinus\u2014The Closest Ancestral Proxy of Antarctic Cryonotothenioids; Evaluating Illumina-, Nanopore-, and PacBio-based genome assembly strategies with the bald notothen, Trematomus borchgrevinki; Genomics of Secondarily Temperate Adaptation in the Only Non-Antarctic Icefish", "datasets": [{"dataset_uid": "200330", "doi": "", "keywords": null, "people": null, "repository": "NCBI ", "science_program": null, "title": "Evaluating Illumina-, Nanopore-, and PacBio-based genome assembly strategies with the bald notothen, Trematomus borchgrevinki", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA861284"}, {"dataset_uid": "200331", "doi": "10.5061/dryad.ghx3ffbs3", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Evaluating Illumina-, Nanopore-, and PacBio-based genome assembly strategies with the bald notothen, Trematomus borchgrevinki", "url": "https://datadryad.org/stash/dataset/doi:10.5061/dryad.ghx3ffbs3"}, {"dataset_uid": "200380", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "Genomics of Secondarily Temperate Adaptation in the Only Non-Antarctic Icefish", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA857989"}, {"dataset_uid": "200381", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "Chromosome-Level Genome Assembly and Circadian Gene Repertoire of the Patagonia Blennie Eleginops maclovinus\u2014The Closest Ancestral Proxy of Antarctic Cryonotothenioids", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA917608"}], "date_created": "Mon, 10 Oct 2022 00:00:00 GMT", "description": "As plate tectonics pushed Antarctica into a polar position, by ~34 million years ago, the continent and its surrounding Southern Ocean (SO) became geographically and thermally isolated by the Antarctic Circumpolar Current. Terrestrial and marine glaciation followed, resulting in extinctions as well as the survival and radiation of unique flora and fauna. The notothenioid fish survived and arose from a common ancestral stock into tax with 120 species that dominates today?s SO fish fauna. The Notothenioids evolved adaptive traits including novel antifreeze proteins for survival in extreme cold, but also suffered seemingly adverse trait loss including red blood cells in the icefish family, and the ability to mount cellular responses to mitigate heat stress ? otherwise ubiquitous across all life. This project aims to understand how the notothenoid genomes have changed and contributed to their evolution in the cold. The project will sequence, analyze and compare the genomes of two strategic pairs of notothenioid fishes representing both red-blooded and white-blooded species. Each pair will consist of one Antarctic species and one that has readapted to the temperate waters of S. America or New Zealand. The project will also compare the Antarctic species genomes to a genome of the closet non-Antarctic relative representing the temperate notothenioid ancestor. The work aims to uncover the mechanisms that enabled the adaptive evolution of this ecologically vital group of fish in the freezing Southern Ocean, and shed light on their adaptability to a warming world. The finished genomes will be made available to promote and advance Antarctic research and the project will host a symposium of Polar researchers to discuss the cutting edge developments regarding of genomic adaptations in the polar region. Despite subzero, icy conditions that are perilous to teleost fish, the fish fauna of the isolated Southern Ocean (SO) surrounding Antarctica is remarkably bountiful. A single teleost group ? the notothenioid fishes ? dominate the fauna, comprising over 120 species that arose from a common ancestor. When Antarctica became isolated and SO temperatures began to plunge in early Oligocene, the prior temperate fishes became extinct. The ancestor of Antarctic notothenioids overcame forbidding polar conditions and, absent niche competition, it diversified and filled the SO. How did notothenioids adapt to freezing environmental selection pressures and achieve such extraordinary success? And having specialized to life in chronic cold for 30 myr, can they evolve in pace with today?s warming climate to stay viable? Past studies of Antarctic notothenioid evolutionary adaptation have discovered various remarkable traits including the key, life-saving antifreeze proteins. But life specialized to cold also led to paradoxical trait changes such as the loss of the otherwise universal heat shock response, and of the O2-transporting hemoglobin and red blood cells in the icefish family. A few species interestingly regained abilities to live in temperate waters following the escape of their ancestor out of the freezing SO. This proposed project is the first major effort to advance the field from single trait studies to understanding the full spectrum of genomic and genetic responses to climatic and environmental change during notothenioid evolution, and to evaluate their adaptability to continuing climate change. To this end, the project will sequence the genomes of four key species that embody genomic responses to different thermal selection regimes during notothenioids? evolutionary history, and by comparative analyses of genomic structure, architecture and content, deduce the responding changes. Specifically, the project will (i) obtain whole genome assemblies of the red-blooded T. borchgrevinki and the S. American icefish C. esox; (ii) using the finished genomes from (i) as template, obtain assemblies of the New Zealand notothenioid N. angustata, and the white-blooded icefish C. gunnari, representing a long (11 myr) and recent (1 myr) secondarily temperate evolutionary history respectively. Genes that are under selection in the temperate environment but not in the Antarctic environment can be inferred to be directly necessary for that environment ? and the reverse is also true for genes under selection in the Antarctic but not in the temperate environment. Further, genes important for survival in temperate waters will show parallel selection between N. angustata and C. esox despite the fact that the two fish left the Antarctic at far separated time points. Finally, gene families that expanded due to strong selection within the cold Antarctic should show a degradation of duplicates in the temperate environment. The project will test these hypotheses using a number of techniques to compare the content and form of genes, the structure of the chromosomes containing those genes, and through the identification of key characters, such as selfish genetic elements, introns, and structural variants.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Genome Assembly; FISH; McMurdo Sound; Icefish; SHIPS; Notothenioid; Puerto Natales, Chile", "locations": "McMurdo Sound; Puerto Natales, Chile", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Catchen, Julian; Cheng, Chi-Hing", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "NCBI ", "repositories": "Dryad; NCBI; NCBI ", "science_programs": null, "south": null, "title": "Evolutionary Genomic Responses in Antarctic Notothenioid Fishes", "uid": "p0010384", "west": null}, {"awards": "2201129 Fischer, Karen", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Crustal thicknesses in Antarctica from Sp receiver functions; Lithospheric thicknesses in Antarctica from Sp receiver functions", "datasets": [{"dataset_uid": "601898", "doi": "10.15784/601898", "keywords": "Antarctica; Crust; Cryosphere; Moho", "people": "Fischer, Karen; Brown, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Crustal thicknesses in Antarctica from Sp receiver functions", "url": "https://www.usap-dc.org/view/dataset/601898"}, {"dataset_uid": "601899", "doi": "10.15784/601899", "keywords": "Antarctica; Cryosphere; LAB; Lithosphere; Lithospheric Thickness", "people": "Brown, Sarah; Fischer, Karen", "repository": "USAP-DC", "science_program": null, "title": "Lithospheric thicknesses in Antarctica from Sp receiver functions", "url": "https://www.usap-dc.org/view/dataset/601899"}], "date_created": "Tue, 14 Jun 2022 00:00:00 GMT", "description": "The western portion of the Antarctic continent is very active in terms of plate tectonic processes that can produce significant variations in the Earths mantle temperature as well as partial melting of the mantle. In addition to these internal processes, the ice sheet in western Antarctica is melting due to Earths warming climate and adding water to the ocean. These changes in ice mass cause adjustments in rocks within the Earth\u0027s crust, allowing the surface to rebound in some locations and fall in others, altering the geographical pattern of sea-level change. However, the solid Earth response depends strongly on the strength of the rocks at a wide range of timescales which is not well-known and varies with temperature and other rock properties. This project has three primary goals. (1) It will assess how processes such as rifting, mantle upwelling and lithospheric instability have altered the lithosphere and underlying asthenosphere of western Antarctica, contributing to a planet-wide understanding of these processes. (2) It will use new measurements of mantle and crust properties to estimate the rate at which heat from the solid Earth flows into the base of the ice, which is important for modeling the rates at which the ice melts and flows. (3) It will places bounds on mantle viscosity, which is key for modeling the interaction of the solid Earth with changing ice and water masses and their implications for sea-level rise. To accomplish these goals, new resolution of crust and mantle structure will be obtained by analyzing seismic waves from distant earthquakes that have been recorded at numerous seismic stations in Antarctica. These analyses will include new combinations of seismic wave data that provide complementary information about mantle temperature, heat flow and viscosity. This project will provide educational and career opportunities to a Brown University graduate student, undergraduates from groups underrepresented in science who will come to Brown University for a summer research program, and other undergraduates. The project will bring together faculty and students for a seminar at Brown that explores the connections between the solid Earth and ice processes in Antarctica. Project research will be incorporated in outreach to local public elementary schools and high schools. This research addresses key questions about mantle processes and properties in western Antarctica. What are the relative impacts of rifting, mantle plumes, and lithospheric delamination in the evolution of the lithosphere and asthenosphere? Where is topography isostatically compensated, and where are dynamic processes such as plate flexure or tractions from 3-D mantle flow required? What are the bounds on heat flow and mantle viscosity, which represent important inputs to models of ice sheet evolution and its feedback from the solid Earth? To address these questions, this project will measure mantle and crust properties using seismic tools that have not yet been applied in Antarctica: regional-scale measurement of mantle attenuation from surface waves; Sp body wave phases to image mantle velocity gradients such as the lithosphere-asthenosphere boundary; and surface wave amplification and ellipticity. The resulting models of seismic attenuation and velocity will be jointly interpreted to shed new light on temperature, bulk composition, volatile content, and partial melt, using a range of laboratory-derived constitutive laws, while considering data from mantle xenoliths. To test the relative roles of rifting, mantle plumes, and delamination, and to assess isostatic support for Antarctic topography, the predictions of these processes will be compared to the new models of crust and mantle properties. To improve bounds on western Antarctic heat flow, seismic attenuation and velocity will be used in empirical comparisons and in direct modeling of vertical temperature gradients. To better measure mantle viscosity at the timescales of glacial isostatic adjustment, frequency-dependent viscosity will be estimated from the inferred mantle conditions. This project will contribute to the education and career development of the following: a Brown University Ph.D. student, Brown undergraduates, and undergraduates from outside the university will be involved through the Department of Earth, Environmental and Planetary Sciences (DEEPS) Leadership Alliance NSF Research Experience for Undergraduates (REU) Site which focuses on geoscience summer research experiences for underrepresented students. The project will be the basis for a seminar at Brown that explores the connections between the solid Earth and cryosphere in Antarctica and will contribute to outreach in local public elementary and high schools. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "USAP-DC; West Antarctica; USA/NSF; SEISMIC SURFACE WAVES; AMD; PLATE TECTONICS; Amd/Us; GLACIERS/ICE SHEETS; FIELD INVESTIGATION", "locations": "West Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Fischer, Karen; Dalton, Colleen", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Probing the Western Antarctic Lithosphere and Asthenosphere with New Approaches to Imaging Seismic Wave Attenuation and Velocity", "uid": "p0010339", "west": -180.0}, {"awards": "0342484 Harwood, David", "bounds_geometry": "POINT(167.083333 -77.888889)", "dataset_titles": "Particle-size measurements at 3-m intervals for AND-2A sediment core, McMurdo Sound", "datasets": [{"dataset_uid": "601451", "doi": "10.15784/601451", "keywords": "Andrill; Antarctica; Continental Shelf; Diamict; McMurdo Sound; Miocene; Paleoclimate; Particle Size", "people": "Candice, Falk; Passchier, Sandra", "repository": "USAP-DC", "science_program": "ANDRILL", "title": "Particle-size measurements at 3-m intervals for AND-2A sediment core, McMurdo Sound", "url": "https://www.usap-dc.org/view/dataset/601451"}], "date_created": "Fri, 04 Feb 2022 00:00:00 GMT", "description": "ANDRILL is a scientific drilling program to investigate Antarctica\u0027s role in global climate change over the last sixty million years. The approach integrates geophysical surveys, new drilling technology, multidisciplinary core analysis, and ice sheet modeling to address four scientific themes: (1) the history of Antarctica\u0027s climate and ice sheets; (2) the evolution of polar biota and ecosystems; (3) the timing and nature of major tectonic and volcanic episodes; and (4) the role of Antarctica in the Earth\u0027s ocean-climate system. \u003cbr/\u003e\u003cbr/\u003eThis award initiates what may become a long-term program with drilling of two previously inaccessible sediment records beneath the McMurdo Ice Shelf and in South McMurdo Sound. These stratigraphic records cover critical time periods in the development of Antarctica\u0027s major ice sheets. The McMurdo Ice Shelf site focuses on the Ross Ice Shelf, whose size is a sensitive indicator of global climate change. It has recently undergone major calving events, and there is evidence of a thousand-kilometer contraction since the last glacial maximum. As a generator of cold bottom water, the shelf may also play a key role in ocean circulation. The core obtained from this site will also offer insight into sub-ice shelf sedimentary, biologic, and oceanographic processes; the history of Ross Island volcanism; and the flexural response of the lithosphere to volcanic loading, which is important for geophysical and tectonic studies of the region.\u003cbr/\u003e\u003cbr/\u003eThe South McMurdo Sound site is located adjacent to the Dry Valleys, and focuses on the major ice sheet overlying East Antarctica. A debate persists regarding the stability of this ice sheet. Evidence from the Dry Valleys supports contradictory conclusions; a stable ice sheet for at least the last fifteen million years or an active ice sheet that cycled through expansions and contractions as recently as a few millions of years ago. Constraining this history is critical to deep-time models of global climate change. The sediment cores will be used to construct an overall glacial and interglacial history for the region; including documentation of sea-ice coverage, sea level, terrestrial vegetation, and melt-water discharge events. The core will also provide a general chronostratigraphic framework for regional seismic studies and help unravel the area\u0027s complex tectonic history.\u003cbr/\u003e\u003cbr/\u003eThe broader impacts of this project include formal and informal education, new research infrastructure, various forms of collaboration, and improving society\u0027s understanding of global climate change. Education is supported at the postdoctoral, graduate, undergraduate, and K-12 levels. Teachers and curriculum specialists are integrated into the research program, and a range of video resources will be produced, including a science documentary for television release. New research infrastructure includes equipment for core analysis and ice sheet modeling, as well as development of a unique drilling system to penetrate ice shelves. Drill development and the overall project are co-supported by international collaboration with scientists and the National Antarctic programs of New Zealand, Germany, and Italy. The program also forges new collaborations between research and primarily undergraduate institutions within the United States. \u003cbr/\u003e\u003cbr/\u003eAs key factors in sea-level rise and oceanic and atmospheric circulation, Antarctica\u0027s ice sheets are important to society\u0027s understanding of global climate change. ANDRILL offers new data on marine and terrestrial temperatures, and changes our understanding of extreme climate events like the formation of polar ice caps. Such data are critical to developing accurate models of the Earth\u0027s climatic future.", "east": 167.083333, "geometry": "POINT(167.083333 -77.888889)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; USAP-DC; FIELD SURVEYS; ICE SHEETS; USA/NSF; Amd/Us; PALEOCLIMATE RECONSTRUCTIONS; Ross Ice Shelf; SEDIMENTS", "locations": "Ross Ice Shelf", "north": -77.888889, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Harwood, David; Levy, Richard", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ANDRILL", "south": -77.888889, "title": "Collaborative Research: ANDRILL - - Investigating Antarcticas Role in Cenozoic Global Environmental Change", "uid": "p0010297", "west": 167.083333}, {"awards": "2039419 Swanger, Kate", "bounds_geometry": "POLYGON((161 -77.3,161.2 -77.3,161.4 -77.3,161.6 -77.3,161.8 -77.3,162 -77.3,162.2 -77.3,162.4 -77.3,162.6 -77.3,162.8 -77.3,163 -77.3,163 -77.35,163 -77.4,163 -77.45,163 -77.5,163 -77.55,163 -77.6,163 -77.65,163 -77.7,163 -77.75,163 -77.8,162.8 -77.8,162.6 -77.8,162.4 -77.8,162.2 -77.8,162 -77.8,161.8 -77.8,161.6 -77.8,161.4 -77.8,161.2 -77.8,161 -77.8,161 -77.75,161 -77.7,161 -77.65,161 -77.6,161 -77.55,161 -77.5,161 -77.45,161 -77.4,161 -77.35,161 -77.3))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 16 Dec 2021 00:00:00 GMT", "description": "The McMurdo Dry Valleys are the largest ice-free region in Antarctica and home to a seasonally active hydrologic system, with streams and saline lakes. Streams are fed by summer meltwater from local glaciers and snowbanks. Therefore, streamflow is tied to summer climate conditions such as air temperatures, ground temperatures, winds, and incoming solar radiation. Based on 50 years of monitoring, summer stream activity has been observed to change, and it likely varied during the geologic past in response to regional climate change and fluctuating glaciers. Thus, deposits from these streams can address questions about past climate, meltwater, and lake level changes in this region. How did meltwater streamflow respond to past climate change? How did streamflow vary during periods of glacial advance and retreat? At what times did large lakes fill many of the valleys and what was their extent? The researchers plan to acquire a record of stream activity for the Dry Valleys that will span the three largest valleys and a time period of about 100,000 years. This record will come from a series of active and ancient alluvial fans that were deposited by streams as they flowed from valley sidewalls onto valley floors. The study will provide a long-term context with which to assess recent observed changes to stream activity and lake levels. The research will be led by two female mid-career investigators and contribute significantly to student research opportunities and education. The research will contribute to graduate and undergraduate education by including students in both field and laboratory research, as well as incorporating data and results into the classroom. The research will be disseminated to K-12 and non-scientific communities through outreach that includes professional development training for K-12 teachers in eastern Massachusetts, development of hands-on activities, visits to K-12 classrooms, and STEM education and literacy activities in North Carolina. The PIs propose to constrain rates of fluvial deposition and periods of increased fluvial activity in the McMurdo Dry Valleys during the Holocene and late Pleistocene. During 50 years of hydrologic monitoring in the Dry Valleys, scientists have observed that streams exhibit significant response to summer conditions. Previous studies of glacial and lacustrine deposits indicate regional glacier advance in the Dry Valleys during recent interglacial periods and high lake levels during and after the Last Glacial Maximum (LGM), with potentially significant low and high stands during the Holocene. However, the geologic record of meltwater activity is poorly constrained. The PIs seek to develop the first spatially-extensive record of stream deposition in the Dry Valleys by analyzing and dating alluvial fans. Given that alluvial fans are deposited by summer meltwater streams in a relatively stable tectonic setting, this record will serve as a proxy of regional summer climate conditions. Meltwater streams are an important component of the regional hydrologic system, connecting glaciers to lakes and affecting ecosystems and soils. A record of fluvial deposition is key to understanding the relationship between past climate change and regional hydrology. The proposed research will include remote- and field-based mapping of alluvial fans, stream channels, and meltwater sources as well as modeling potential incoming solar radiation to the fans and moisture sources during the austral summer. In the field, the PIs will document stratigraphy, collect near-surface sediments from 25 fans across four valleys (Taylor, Pearse, Wright, and Victoria), and collect 2- to 3-m vertical cores of ice-cemented sediments from three alluvial fan complexes. The PIs will then conduct depositional dating of fluvial sands via optically stimulated luminescence, and analyze mineralogy and bulk major element chemistry with X-ray powder diffraction and X-ray fluorescence. From these analyses, the PIs propose to (1) determine the timing of local- to regional-scale periods of high fluvial deposition, (2) calculate depositional rates, and (3) constrain depositional environments and sediment provenance. Given that many of the alluvial fans occur below the hypothesized maximum extents of glacially-dammed lakes in Wright and Victoria valleys, detailed stratigraphy, sediment provenance, and OSL dating of these fans could shed light on ongoing debates regarding the timing and extent of LGM and post-LGM lakes. The work will support a postdoctoral researcher, a PhD student, and many undergraduate and master\u2019s students in cross-disciplinary research that spans stratigraphy, geochemistry, paleoclimatology and physics. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.0, "geometry": "POINT(162 -77.55)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Amd/Us; SEDIMENTS; USA/NSF; AMD; Dry Valleys; USAP-DC", "locations": "Dry Valleys", "north": -77.3, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Swanger, Kate", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -77.8, "title": "Collaborative Research: Holocene and Late Pleistocene Stream Deposition in the McMurdo Dry Valleys, Antarctica as a Proxy for Glacial Meltwater and Paleoclimate", "uid": "p0010285", "west": 161.0}, {"awards": "9910267 Grunow, Anne; 2137467 Grunow, Anne; 0440695 Grunow, Anne; 0739480 Grunow, Anne; 1141906 Grunow, Anne; 2436582 Grunow, Anne; 1643713 Grunow, Anne", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Marine Geoscience Data System - cruise links; Polar Rock Repository; SESAR sample registration", "datasets": [{"dataset_uid": "200242", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Marine Geoscience Data System - cruise links", "url": "https://www.marine-geo.org/"}, {"dataset_uid": "200241", "doi": "", "keywords": null, "people": null, "repository": "SESAR", "science_program": null, "title": "SESAR sample registration", "url": "https://www.geosamples.org/about/services#igsnregistration"}, {"dataset_uid": "200243", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Polar Rock Repository", "url": "https://prr.osu.edu/"}, {"dataset_uid": "200359", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Polar Rock Repository", "url": "http://research.bpcrc.osu.edu/rr/"}], "date_created": "Thu, 09 Sep 2021 00:00:00 GMT", "description": "Non-Technical Abstract: The Polar Rock Repository (PRR) at The Ohio State University provides a unique resource for researchers studying the polar regions by offering free access to geological samples and data. This project seeks support to continue expanding and managing the collection, which is vital for scientific studies and planning fieldwork in Antarctica. Over the next five years, the repository plans to add tens of thousands of new samples and images, making it easier for researchers to study polar geology without the high cost and environmental impact of traveling to remote Antarctic locations. The PRR also supports education and outreach by providing hands-on resources for schools, colleges, and the public, including a \"Polar Rock Box\" program that brings real Antarctic samples into classrooms. This work ensures the preservation of important scientific materials and makes them accessible to a broad community, advancing understanding of our planet\u2019s polar regions. Technical Abstract: The Polar Rock Repository (PRR) at The Ohio State University serves as a critical resource for polar earth science research, offering no-cost loans of geological samples and comprehensive metadata to the scientific community. This proposal seeks funding to support the continued curation, expansion, and management of the PRR, alongside its educational and outreach initiatives. Over the next five years, the PRR anticipates acquiring approximately 15,000 new samples, including those from major drilling operations (RAID, Winkie drill cores) and polar cruises. The repository also aims to significantly grow its archives of images, petrographic thin sections, and mineral separates. By preserving these physical and digital assets in a discoverable online database, the PRR fosters transparency, reproducibility, and accessibility in polar research, fulfilling Antarctic data management mandates. The intellectual merit lies in enabling cutting-edge scientific analyses through freely available samples and metadata. Broader impacts include reduced environmental costs of Antarctic research, enhanced educational opportunities, and outreach to a diverse audience through initiatives like the \"Polar Rock Box\" program. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; FIELD SURVEYS; Pacific Ocean; ROCKS/MINERALS/CRYSTALS; GLACIATION; AMD; Weddell Sea; Scotia Sea; TECTONICS; Antarctica; Southern Ocean; Amd/Us; USA/NSF; Amundsen Sea", "locations": "Pacific Ocean; Amundsen Sea; Scotia Sea; Weddell Sea; Antarctica; Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Grunow, Anne", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "MGDS", "repositories": "MGDS; PRR; SESAR", "science_programs": null, "south": -90.0, "title": "Continuing Operations Proposal: \r\nThe Polar Rock Repository as a Resource for Earth Systems Science\r\n", "uid": "p0010259", "west": -180.0}, {"awards": "2039432 Grapenthin, Ronni", "bounds_geometry": "POLYGON((165.5 -77.1,165.91 -77.1,166.32 -77.1,166.73 -77.1,167.14 -77.1,167.55 -77.1,167.96 -77.1,168.37 -77.1,168.78 -77.1,169.19 -77.1,169.6 -77.1,169.6 -77.18,169.6 -77.26,169.6 -77.34,169.6 -77.42,169.6 -77.5,169.6 -77.58,169.6 -77.66,169.6 -77.74,169.6 -77.82,169.6 -77.9,169.19 -77.9,168.78 -77.9,168.37 -77.9,167.96 -77.9,167.55 -77.9,167.14 -77.9,166.73 -77.9,166.32 -77.9,165.91 -77.9,165.5 -77.9,165.5 -77.82,165.5 -77.74,165.5 -77.66,165.5 -77.58,165.5 -77.5,165.5 -77.42,165.5 -77.34,165.5 -77.26,165.5 -77.18,165.5 -77.1))", "dataset_titles": "Erebus GPS timeseries ", "datasets": [{"dataset_uid": "601471", "doi": "10.15784/601471", "keywords": "Antarctica; GPS; Mount Erebus; Ross Island", "people": "Grapenthin, Ronni", "repository": "USAP-DC", "science_program": null, "title": "Erebus GPS timeseries ", "url": "https://www.usap-dc.org/view/dataset/601471"}], "date_created": "Fri, 03 Sep 2021 00:00:00 GMT", "description": "Nontechnical Abstract Mount Erebus volcano on Ross Island, Antarctica, is the southernmost active volcano on the planet. It provides a natural laboratory to study a volcanic system that has been in a continuous state of activity with a persistent lava lake over at least the last 40 years. Worldwide only four other volcanoes with such long-lived lava lakes exist: Erta Ale, Ethiopia; Kilauea, Hawaii; Nyiragongo, Congo; and Ambrym, Vanuatu. These volcanoes are a rare anomaly that provide a window into the underlying magmatic system and behavior. Erebus is of particular interest as it cycles through phases of very explosive activity every 20 thousand years. This project will investigate interactions between the magmatic system, the rift it is located in, and the impact of the gravitational load the volcano imposes on the underlying crust and its own magmatic system. Possible interactions between these factors may explain the changes in activity. The project will analyze geophysical data that have been collected at Erebus over at least the last two decades. The results of this work will be available to the public and scientific community and inform geodynamic models in this region. The project funds an early-career scientist and a graduate student at New Mexico Tech and contributes to the development of the next generation of scientists. Technical Abstract The proposed work targets scientific questions recently formulated by the community during the 2016 NSF-sponsored Scientific Drivers and Future of Mount Erebus Volcano Observatory workshop. The location and geometry of the magmatic plumbing from vent to lower crust system remain poorly constrained, particularly below 1 km depth. The style and causes for changes in volcanic and magmatic activity over the short term (minutes to hours) and on the decadal scale remains enigmatic. Two decades of campaign and continuous GPS data on Ross Island will inform about the longer term dynamics of both, Ross Island growing within the Terror Rift, and Erebus? deeper magmatic system. This project will organize and analyze all existing GPS data for Ross Island, and interpret any anomalies in the resulting time series. These activities require organization, consistent processing and interpretation/modeling of the existing ~20 years of GPS data, which include campaign, continuous, and high-rate GPS observations. We will generate these position time series in a consistent local reference frame and make the results, including models of transient deformation available to the community. Volcanic, tectonic and isostatic adjustment related deformation will be modeled to place Erebus in a broad volcano-tectonic framework of West Antarctica. During the data analysis phase, the utility of existing GPS data for reflection studies of snow and sea-level dynamics will also be evaluated.", "east": 169.6, "geometry": "POINT(167.55 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Ross Island; TECTONICS; USAP-DC; Amd/Us; AMD; CRUSTAL MOTION; USA/NSF; FIELD SURVEYS", "locations": "Ross Island", "north": -77.1, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Instrumentation and Facilities", "paleo_time": null, "persons": "Grapenthin, Ronni", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Collaborative Research: Multi-Parameter Geophysical Constraints on Volcano Dynamics of Mt. Erebus and Ross Island, Antarctica", "uid": "p0010255", "west": 165.5}, {"awards": "2022920 Zhan, Zhongwen", "bounds_geometry": "POINT(180 -90)", "dataset_titles": null, "datasets": null, "date_created": "Wed, 30 Jun 2021 00:00:00 GMT", "description": "This EAGER award will explore the Distributed Acoustic Sensing emerging technology that transforms a single optical fiber into a massively multichannel seismic array. This technology may provide a scalable and affordable way to deploy dense seismic networks. Experimental Distributed Acoustic Sensing equipment will be tested in the Antarctic exploiting unused (dark) strands in the existing fiber-optic cable that connects the U.S. Amundsen-Scott South Pole Station to the Remote Earth Science and Seismological Observatory (SPRESSO) located about 7.5-km from the main station. Upon processing the seismic signals, the Distributed Acoustic Sensing may provide a new tool to structurally image firn, glacial ice, and glacial bedrock. Learning how Distributed Acoustic Sensing would work on the ice sheet, scientists can then check seismological signals propagating through the Earth\u0027s crust and mantle variously using natural icequakes and earthquakes events in the surrounding area. The investigators propose to convert at least 8 km of pre-existing fiber optic cable at the Amundsen-Scott South Pole station into more than 8000 sensors to explore the potential of Distributed acoustic sensing (DAS) as a breakthrough data engine for polar seismology. The DAS array will operate for about one year, allowing them to (1) evaluate and calibrate the performance of the DAS technology in the extreme cold, very low noise (including during the exceptionally quiet austral winter) polar plateau environment; (2) record and analyze local ambient and transient signals from ice, anthropogenic signals, ocean microseism, atmospheric and other processes, as well as to study local, regional, and teleseismic tectonic events; (3) structurally image the firn, glacial ice, glacial bed, crust, and mantle, variously using active sources, ambient seismic noise, and natural icequake and earthquake events. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(180 -90)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; South Pole Station; GLACIERS/ICE SHEETS; NSF/USA; Amd/Us; SEISMIC SURFACE WAVES; SEISMOLOGICAL STATIONS; USAP-DC", "locations": "South Pole Station", "north": -90.0, "nsf_funding_programs": "Antarctic Instrumentation and Facilities", "paleo_time": null, "persons": "Zhan, Zhongwen", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS", "repositories": null, "science_programs": null, "south": -90.0, "title": "EAGER: Pilot Fiber Seismic Networks at the Amundsen-Scott South Pole Station", "uid": "p0010214", "west": 180.0}, {"awards": "1914698 Hansen, Samantha; 1914668 Aschwanden, Andy; 1914767 Winberry, Paul; 1914743 Becker, Thorsten", "bounds_geometry": "POLYGON((90 -65,99 -65,108 -65,117 -65,126 -65,135 -65,144 -65,153 -65,162 -65,171 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,171 -90,162 -90,153 -90,144 -90,135 -90,126 -90,117 -90,108 -90,99 -90,90 -90,90 -87.5,90 -85,90 -82.5,90 -80,90 -77.5,90 -75,90 -72.5,90 -70,90 -67.5,90 -65))", "dataset_titles": "East Antarctic Seismicity from different Automated Event Detection Algorithms; Full Waveform Ambient Noise Tomography for East Antarctica", "datasets": [{"dataset_uid": "601763", "doi": "10.15784/601763", "keywords": "Ambient Noise; Antarctica; East Antarctica; Geoscientificinformation; Seismic Tomography; Seismology", "people": "Hansen, Samantha; Emry, Erica", "repository": "USAP-DC", "science_program": null, "title": "Full Waveform Ambient Noise Tomography for East Antarctica", "url": "https://www.usap-dc.org/view/dataset/601763"}, {"dataset_uid": "601762", "doi": "10.15784/601762", "keywords": "Antarctica; Geoscientificinformation; Machine Learning; Seismic Event Detection; Seismology; Seismometer", "people": "Ho, Long; Hansen, Samantha; Walter, Jacob", "repository": "USAP-DC", "science_program": null, "title": "East Antarctic Seismicity from different Automated Event Detection Algorithms", "url": "https://www.usap-dc.org/view/dataset/601762"}], "date_created": "Fri, 25 Jun 2021 00:00:00 GMT", "description": "Part I: Nontechnical Earths warming climate has the potential to drive widespread collapse of glaciers and ice sheets across the planet, driving global sea-level rise. Understanding both the rate and magnitude of such changes is essential for predicting future sea-level and how it will impact infrastructure and property. Collapse of the ice sheets of Antarctica has the potential to raise global sea-level by up to 60 meters. However, not all regions of Antarctica are equally suspectable to collapse. One area with potential for collapse is the Wilkes Subglacial Basin in East Antarctica, a region twice the size of California\u0027s Central Valley. Geologic evidence indicates that the ice-sheet in this region has retreated significantly in response to past global warming events. While the geologic record clearly indicates ice-sheets in this area are vulnerable, the rate and magnitude of any future retreat will be influenced significantly by geology of the region. In particular, ice-sheets sitting above warm Earth will collapse more quickly during warming climate. Constraining the geologic controls on the stability of the ice-sheets of the Wilkes Subglacial Basin remains challenging since the ice-sheet hides the geology beneath kilometers of ice. As a step in understanding the potential for future ice loss in the Wilkes Subglacial Basin this project will conduct geophysical analysis of existing data to better constrain the geology of the region. These results will constrain new models designed to understand the tectonics that control the behavior of the ice-sheets in the region. These new models will highlight the geological properties that exert the most significant control on the future of the ice-sheets of the Wilkes Subglacial Basin. Such insights are critical to guide future efforts aimed at collecting in-situ observations needed to more fully constrain Antarctica\u0027s potential for future sea-level. Part II: Technical Description In polar environments, inward-sloping marine basins are susceptible to an effect known as the marine ice-sheet instability (MISI): run-away ice stream drainage caused by warm ocean water eroding the ice shelf from below. The magnitude and time-scale of the ice-sheet response strongly depend on the physical conditions along the ice-bed interface, which are, to a first order, controlled by the tectonic evolution of the basin. Topography, sedimentology, geothermal heat flux, and mantle viscosity all play critical roles in ice-sheet stability. However, in most cases, these solid-Earth parameters for regions susceptible to the MISI are largely unknown. One region with potential susceptibility to MISI is the Wilkes Subglacial Basin of East Antarctica. The project will provide an integrated investigation of the Wilkes Subglacial Basin, combining geophysical analyses with both mantle flow and ice-sheet modeling to understand the stability of the ice sheet in this region, and the associated potential sea level rise. The work will be focused on four primary objectives: (1) to develop an improved tectonic model for the region based on existing seismic observations as well as existing geophysical and geological data; (2) to use the new tectonic model and seismic data to estimate the thermal, density, and viscosity structure of the upper mantle and to develop a heat flow map for the WSB; (3) to simulate mantle flow and to assess paleotopography based on our density and viscosity constraints; and (4) to assess ice-sheet behavior by modeling (a) past ice-sheet stability using our paleotopography estimates and (b) future ice-sheet stability using our heat flow and mantle viscosity estimates. Ultimately, the project will generate improved images of the geophysical structure beneath the WSB that will allow us to assess the geodynamic origin for this region and to assess the influence of geologic parameters on past, current, and future ice-sheet behavior. These efforts will then highlight areas and geophysical properties that should be the focus of future geophysical deployments. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(135 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "TECTONICS; AMD; Wilkes Subglacial Basin; ICE SHEETS; USA/NSF; Amd/Us; SEISMOLOGICAL STATIONS; SEISMIC SURFACE WAVES; East Antarctica; USAP-DC", "locations": "East Antarctica; Wilkes Subglacial Basin", "north": -65.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Becker, Thorsten; Binder, April; Hansen, Samantha; Aschwanden, Andy; Winberry, Paul", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Resolving earth structure influence on ice-sheet stability in the Wilkes\r\nSubglacial Basin (RESISSt)", "uid": "p0010204", "west": 90.0}, {"awards": "1643494 Saal, Alberto", "bounds_geometry": "POLYGON((-68.074 -57.345,-66.6033 -57.345,-65.1326 -57.345,-63.6619 -57.345,-62.1912 -57.345,-60.7205 -57.345,-59.2498 -57.345,-57.7791 -57.345,-56.3084 -57.345,-54.8377 -57.345,-53.367 -57.345,-53.367 -58.12517,-53.367 -58.90534,-53.367 -59.68551,-53.367 -60.46568,-53.367 -61.24585,-53.367 -62.02602,-53.367 -62.80619,-53.367 -63.58636,-53.367 -64.36653,-53.367 -65.1467,-54.8377 -65.1467,-56.3084 -65.1467,-57.7791 -65.1467,-59.2498 -65.1467,-60.7205 -65.1467,-62.1912 -65.1467,-63.6619 -65.1467,-65.1326 -65.1467,-66.6033 -65.1467,-68.074 -65.1467,-68.074 -64.36653,-68.074 -63.58636,-68.074 -62.80619,-68.074 -62.02602,-68.074 -61.24585,-68.074 -60.46568,-68.074 -59.68551,-68.074 -58.90534,-68.074 -58.12517,-68.074 -57.345))", "dataset_titles": "Major, trace elements contents and radiogenic isotopes of erupted lavas Antarctic Peninsula and Phoenix Ridge", "datasets": [{"dataset_uid": "601519", "doi": "10.15784/601519", "keywords": "Antarctica; Antarctic Peninsula; Chemical Composition; Chemistry:rock; Chemistry:Rock; Geochemistry; Isotope Data; Trace Elements", "people": "Saal, Alberto", "repository": "USAP-DC", "science_program": null, "title": "Major, trace elements contents and radiogenic isotopes of erupted lavas Antarctic Peninsula and Phoenix Ridge", "url": "https://www.usap-dc.org/view/dataset/601519"}], "date_created": "Tue, 22 Jun 2021 00:00:00 GMT", "description": "The Earth\u0027s mantle influences the movement of tectonic plates and volcanism on the surface. One way to understand the composition and nature of the Earth\u0027s mantle is by studying the chemistry of basalts, which originate by volcanic eruptions of partially melting mantle rocks. This study will establish the budget and distribution of volatile elements (hydrogen, carbon, fluorine, chlorine, sulfur) in volcanic basalts to better understand the composition of the Earth\u0027s interior. Volatiles influence mantle melting, magma crystallization, magma migration and volcanic eruptions. Their abundances and spatial distribution provide important constraints on models of mantle flow and temperature. Moreover, volatiles are key constituents of the Earth\u0027s atmosphere and oceans. Establishing the cycles of volatiles between the Earth\u0027s interior and surface is of fundamental importance to understand the long-term evolution of our planet. This project supports a graduate student and research scientist at Brown University. It promotes the collaboration with geochemists from eleven institutions representing six different countries: USA, Germany, United Kingdom, Argentina, South Korea and Japan, and utilizes several NSF-funded USA analytical facilities. Communication of results will occur through: 1) peer-reviewed journals, presentations at conferences and invited university lectures, 2) hands-on science learning activities for local elementary and high school classes, and 3) outreach to the general audience through public lectures. Over the last 60 years of funded research, the Antarctic Peninsula and nearby ocean ridges have been extensively investigated providing information on the origin of the magmatism, and the composition, structure, temperature and evolution of the lithospheric and asthenospheric mantle. Diverse hypotheses have been proposed for the origin of the magmatism in the Antarctic Peninsula, from flux melting of the mantle wedge during devolatilization of the subducted Phoenix plate, to adiabatic decompression melting of a carbonated and hydrous asthenosphere, to melting of a volatile-rich metasomatized subcontinental lithospheric mantle. All proposed hypotheses invoke the role of volatiles. Surprisingly, data on the volatile contents of basalts and mantle from this region are non-existent. This is a significant omission from the geochemical data set, given the important role volatile elements play in the generation and composition of magmas and their sources. The focus of our research is to examine the regional variations in volatile contents (C, H, F, S, Cl) in geochemically well-characterized Pliocene-recent basalts from the Antarctic Peninsula and Phoenix ridge. Our goal is to establish the budget and distribution of volatiles in the mantle to understand 1) the processes responsible for the generation of chemically diverse basalts in close spatial and temporal proximity and 2) the nature (lithology, composition and temperature) of the heterogeneous mantle source beneath the Antarctic Peninsula and Phoenix ridge.", "east": -53.367, "geometry": "POINT(-60.7205 -61.24585)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Peninsula; USA/NSF; USAP-DC; TRACE ELEMENTS; MAJOR ELEMENTS; Amd/Us; LABORATORY; ROCKS/MINERALS/CRYSTALS; Magmatic Volatiles; AMD", "locations": "Antarctic Peninsula", "north": -57.345, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Saal, Alberto", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.1467, "title": "Magmatic Volatiles, Unraveling the Reservoirs and Processes of the Volcanism in the Antarctic Peninsula", "uid": "p0010196", "west": -68.074}, {"awards": "1443342 Licht, Kathy; 1443556 Thomson, Stuart", "bounds_geometry": null, "dataset_titles": "Apatite (U-Th)/He and TREE Data Central Transantarctic Mountains", "datasets": [{"dataset_uid": "601462", "doi": "10.15784/601462", "keywords": "Antarctica; Beardmore Glacier; Erosion; Landscape Evolution; Shackleton Glacier; Transantarctic Mountains; (U-Th)/He", "people": "Thomson, Stuart; Reiners, Peter; Hemming, Sidney R.; Licht, Kathy; He, John", "repository": "USAP-DC", "science_program": null, "title": "Apatite (U-Th)/He and TREE Data Central Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/601462"}], "date_created": "Wed, 09 Jun 2021 00:00:00 GMT", "description": "Antarctica is almost entirely covered by ice, in places over two miles thick. This ice hides a landscape that is less well known than the surface of Mars and represents one of Earth\u0027s last unexplored frontiers. Ice-penetrating radar images provide a remote glimpse of this landscape including ice-buried mountains larger than the European Alps and huge fjords twice as deep as the Grand Canyon. The goal of this project is to collect sediment samples derived from these landscapes to determine when and under what conditions these features formed. Specifically, the project seeks to understand the landscape in the context of the history and dynamics of the overlying ice sheet and past mountain-building episodes. This project accomplishes this goal by analyzing sand collected during previous sea-floor drilling expeditions off the coast of Antarctica. This sand was supplied from the continent interior by ancient rivers when it was ice-free over 34 million year ago, and later by glaciers. The project will also study bedrock samples from rare ice-free parts of the Transantarctic Mountains. The primary activity is to apply multiple advanced dating techniques to single mineral grains contained within this sand and rock. Different methods and minerals yield different dates that provide insight into how Antarctica?s landscape has eroded over the many tens of millions of years during which sand was deposited offshore. The dating techniques that are being developed and enhanced for this study have broad application in many branches of geoscience research and industry. The project makes cost-effective use of pre-existing sample collections housed at NSF facilities including the US Polar Rock Repository, the Gulf Coast Core Repository, and the Antarctic Marine Geology Research Facility. The project will contribute to the STEM training of two graduate and two undergraduate students, and includes collaboration among four US universities as well as international collaboration between the US and France. The project also supports outreach in the form of a two-week open workshop giving ten students the opportunity to visit the University of Arizona to conduct STEM-based analytical work and training on Antarctic-based projects. Results from both the project and workshop will be disseminated through presentations at professional meetings, peer-reviewed publications, and through public outreach and media. The main objective of this project is to reconstruct a chronology of East Antarctic subglacial landscape evolution to understand the tectonic and climatic forcing behind landscape modification, and how it has influenced past ice sheet inception and dynamics. Our approach focuses on acquiring a record of the cooling and erosion history contained in East Antarctic-derived detrital mineral grains and clasts in offshore sediments deposited both before and after the onset of Antarctic glaciation. Samples will be taken from existing drill core and marine sediment core material from offshore Wilkes Land (100\u00b0E-160\u00b0E) and the Ross Sea. Multiple geo- and thermo-chronometers will be employed to reconstruct source region cooling history including U-Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar. This offshore record will be augmented and tested by applying the same methods to onshore bedrock samples in the Transantarctic Mountains obtained from the US Polar Rock Repository and through fieldwork. The onshore work will additionally address the debated incision history of the large glacial troughs that cut the range, now occupied by glaciers draining the East Antarctic Ice Sheet. This includes collection of samples from several age-elevation transects, apatite 4He/3He thermochronometry, and Pecube thermo-kinematic modeling. Acquiring an extensive geo- and thermo-chronologic database will also provide valuable new information on the poorly known ice-hidden geology and tectonics of subglacial East Antarctica that has implications for improving supercontinent reconstructions and understanding continental break-up.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "LABORATORY; LANDSCAPE; AGE DETERMINATIONS; FIELD INVESTIGATION; GLACIAL PROCESSES; Transantarctic Mountains; USA/NSF; Thermochronology; Amd/Us; USAP-DC; TRACE ELEMENTS; Provenance Analysis; AMD; LANDFORMS; GLACIAL LANDFORMS", "locations": "Transantarctic Mountains", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Thomson, Stuart; Reiners, Peter; Licht, Kathy", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: East Antarctic Glacial Landscape Evolution (EAGLE): A Study using Combined Thermochronology, Geochronology and Provenance Analysis", "uid": "p0010188", "west": null}, {"awards": "1543286 Walter, Jacob; 1745135 Walter, Jacob; 1543399 Peng, Zhigang", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 19 May 2021 00:00:00 GMT", "description": "The continent of Antarctica has approximately the same surface area as the continental United States, though we know significantly less about its underlying geology and seismic activity. Multinational investments in geophysical infrastructure over the last few decades, especially broadband seismometers operating for several years, are allowing us to observe many interesting natural phenomena, including iceberg calving, ice stream slip, and tectonic earthquakes. To specifically leverage those past investments, we will analyze past and current data to gain a better understanding of Antarctic seismicity. Our recent research revealed that certain large earthquakes occurring elsewhere in the world triggered ice movement near various stations throughout Antarctica. We plan to conduct an exhaustive search of the terabytes of available data, using cutting-edge computational techniques, to uncover additional evidence for ice crevassing, ice stream slip, and earth movement during earthquakes. One specific focus of our research will include investigating whether some of these phenomena may be triggered by external influences, including passing surface waves from distant earthquakes, ocean tides, or seasonal melt. We plan to produce a catalog of the identified activity and share it publicly, so the public and researchers can easily access it. To reach a broader audience, we will present talks to high school classes, including Advanced Placement classes, in the Austin, Texas and Atlanta, Georgia metropolitan areas with emphasis on general aspects of seismic hazard, climate variability, and the geographies of Antarctica. This project will provide research opportunities for undergraduates, training for graduate students, and support for an early-career scientist. In recent years, a new generation of geodetic and seismic instrumentation has been deployed as permanent stations throughout Antarctica (POLENET), in addition to stations deployed for shorter duration (less than 3 years) experiments (e.g. AGAP/TAMSEIS). These efforts are providing critical infrastructure needed to address fundamental questions about both crustal-scale tectonic structures and ice sheets, and their interactions. We plan to conduct a systematic detection of tectonic and icequake activities in Antarctica, focusing primarily on background seismicity, remotely-triggered seismicity, and glacier slip events. Our proposed tasks include: (1) Identification of seismicity throughout the Antarctic continent for both tectonic and ice sources. (2) An exhaustive search for additional triggered events in Antarctica during the last ~15 years of global significant earthquakes. (3) Determination of triggered source mechanisms and whether those triggered events also occur at other times, by analyzing years of data using a matched-filter analysis (where the triggered local event is used to detect similar events). (4) Further analysis of GPS measurements over a ~5.5 year period from Whillans Ice Plain, which suggests that triggering of stick-slip events occurred after the largest earthquakes. An improved knowledge of how the Antarctic ice sheet responds to external perturbations such as dynamic stresses from large distant earthquakes and recent ice unloading could lead to a better understanding of ice failure and related dynamic processes. By leveraging the vast logistical investment to install seismometers in Antarctica over the last decade, our project will build an exhaustive catalog of tectonic earthquakes, icequakes, calving events, and any other detectable near-surface seismic phenomena.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; GLACIERS/ICE SHEETS; USA/NSF; TECTONICS; Amd/Us; AMD; USAP-DC; SEISMOLOGICAL STATIONS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Walter, Jacob; Peng, Zhigang", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Triggering of Antarctic Icequakes, Slip Events, and other Tectonic Phenomena by Distant Earthquakes", "uid": "p0010182", "west": -180.0}, {"awards": "2002346 Tinto, Kirsteen; 2001714 Muto, Atsuhiro", "bounds_geometry": "POLYGON((-115 -70,-113 -70,-111 -70,-109 -70,-107 -70,-105 -70,-103 -70,-101 -70,-99 -70,-97 -70,-95 -70,-95 -70.8,-95 -71.6,-95 -72.4,-95 -73.2,-95 -74,-95 -74.8,-95 -75.6,-95 -76.4,-95 -77.2,-95 -78,-97 -78,-99 -78,-101 -78,-103 -78,-105 -78,-107 -78,-109 -78,-111 -78,-113 -78,-115 -78,-115 -77.2,-115 -76.4,-115 -75.6,-115 -74.8,-115 -74,-115 -73.2,-115 -72.4,-115 -71.6,-115 -70.8,-115 -70))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 02 Mar 2021 00:00:00 GMT", "description": "Predictions of future changes of the Antarctic ice sheet are essential for understanding changes in the global sea level expected for the coming centuries. These predictions rely on models of ice-sheet flow that in turn rely on knowledge of the physical conditions of the Antarctic continent beneath the ice. Exploration of Antarctica by land, sea, and air has advanced our understanding of the geological material under the Antarctic ice sheet, but this information has not yet been fully integrated into ice-sheet models. This project will take advantage of existing data from decades of US and international investment in geophysical surveys to create a new understanding of the geology underlying the Amundsen Sea and the adjacent areas of the West Antarctic Ice Sheet\u2014a portion of Antarctica that is considered particularly vulnerable to collapse. A series of new datasets called \u201cBed Classes\u201d will be developed that will translate the geological properties of the Antarctic continent in ways that can be incorporated into ice-sheet models. This project will develop a new regional geologic/tectonic framework for the Amundsen Sea Embayment and its ice catchments using extensive marine and airborne geophysical data together with ground-based onshore geophysical and geological constraints to delineate sedimentary basins, bedrock ridges, faults, and volcanic structures. Using this new geologic interpretation of the region, several key issues regarding the geologic influence on ice-sheet stability will be addressed: whether the regional heat flow is dominated by localization along the faults or lithology; the role of geology on the sources, sinks, and flow-paths of subglacial water; the distribution of sediments that determine bed-character variability; and the extent of geologic control on the current Thwaites Glacier grounding line. The impact of improved geological knowledge on ice-sheet models will be tested with the development of a set of \u201cBed Class\u201d grids to capture these new insights for use in the models. Bed Classes will be tested within the Parallel Ice Sheet Model framework with initial experiments to identify the sensitivity of model simulations to geological parameterizations. Through a series of workshops with ice-sheet modelers, the Bed Classes will be refined and made accessible to the broader modelling community. This work aims to ensure that the Bed-Class concept can be applied more broadly to ice-sheet models working in different geographic areas and on different timescales. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -95.0, "geometry": "POINT(-105 -74)", "instruments": null, "is_usap_dc": true, "keywords": "Amundsen Sea; COMPUTERS; GRAVITY ANOMALIES; Amd/Us; GLACIERS/ICE SHEETS; AMD; USA/NSF; USAP-DC", "locations": "Amundsen Sea", "north": -70.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Earth Sciences", "paleo_time": null, "persons": "Tinto, Kirsty; Bell, Robin; Porter, David; Muto, Atsu", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS", "repositories": null, "science_programs": null, "south": -78.0, "title": "Collaborative Research: Building Geologically Informed Bed Classes to Improve Projections of Ice Sheet Change", "uid": "p0010164", "west": -115.0}, {"awards": "1842176 Bizimis, Michael; 1842059 Huber, Matthew; 1842049 Kim, Sora; 1842115 Jahn, Alexandra", "bounds_geometry": "POLYGON((-56.693516 -64.209061,-56.6823452 -64.209061,-56.6711744 -64.209061,-56.6600036 -64.209061,-56.6488328 -64.209061,-56.637662 -64.209061,-56.6264912 -64.209061,-56.6153204 -64.209061,-56.6041496 -64.209061,-56.5929788 -64.209061,-56.581808 -64.209061,-56.581808 -64.2143344,-56.581808 -64.2196078,-56.581808 -64.2248812,-56.581808 -64.2301546,-56.581808 -64.235428,-56.581808 -64.2407014,-56.581808 -64.2459748,-56.581808 -64.2512482,-56.581808 -64.2565216,-56.581808 -64.261795,-56.5929788 -64.261795,-56.6041496 -64.261795,-56.6153204 -64.261795,-56.6264912 -64.261795,-56.637662 -64.261795,-56.6488328 -64.261795,-56.6600036 -64.261795,-56.6711744 -64.261795,-56.6823452 -64.261795,-56.693516 -64.261795,-56.693516 -64.2565216,-56.693516 -64.2512482,-56.693516 -64.2459748,-56.693516 -64.2407014,-56.693516 -64.235428,-56.693516 -64.2301546,-56.693516 -64.2248812,-56.693516 -64.2196078,-56.693516 -64.2143344,-56.693516 -64.209061))", "dataset_titles": "Data from: Probing the ecology and climate of the Eocene Southern Ocean with sand tiger sharks Striatolamia macrota", "datasets": [{"dataset_uid": "200183", "doi": "https://doi.org/10.6071/M34T1Z", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Data from: Probing the ecology and climate of the Eocene Southern Ocean with sand tiger sharks Striatolamia macrota", "url": "https://datadryad.org/stash/dataset/doi:10.6071/M34T1Z"}], "date_created": "Tue, 15 Dec 2020 00:00:00 GMT", "description": "The Earth\u0027s climate has changed through time and during the Eocene Epoch (56 to 34 million years ago) there was a transition from \u0027greenhouse\u0027 to \u0027icehouse\u0027 conditions. During the Eocene, a shift to cooler temperatures at high latitudes resulted in the inception of polar glaciation. This in turn affected the environment for living organisms. This project looks to uncover the interaction between biological, oceanographic, and climate systems for the Eocene in Antarctica using chemical analysis of fossil shark teeth collected during past expeditions. The combination of paleontological and geochemical analyses will provide insight to the past ecology and ocean conditions; climate models will be applied to test the role of tectonics, greenhouse gas concentration and ocean circulation on environmental change during this time period. The study contributes to understanding the interaction of increased atmospheric carbon dioxide and ocean circulation. This project also seeks to improve diversity, equity, and inclusion within the geosciences workforce with efforts targeted to undergraduate, graduate, postdoctoral, and early career faculty. The research goal is to elucidate the processes leading from the Eocene greenhouse to Oligocene icehouse conditions. Previous explanations for this climate shift centers on Antarctica, where tectonic configurations influenced oceanic gateways, ocean circulation reduced heat transport, and/or greenhouse gas declines prompted glaciation. The team will reconstruct watermass, current, and climate fluctuations proximal to the Antarctic Peninsula using geochemical indicators (oxygen and neodymium isotope composition) from fossil shark teeth collected from Seymour Island. The approach builds on previous shark paleontological studies, incorporates geochemical analyses for environmental reconstruction (i.e., temperature gradients and ocean circulation), and tests hypotheses on Earth System dynamics using novel global climate model simulations with geochemical tracers. This project will advance global climate modeling capabilities with experiments that consider Eocene tectonic configuration within isotope-enabled climate model simulations. A comparison of geochemical results from Eocene climate simulations and empirical records of shark teeth will reveal processes and mechanisms central to the Eocene Antarctic climatic shift. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -56.581808, "geometry": "POINT(-56.637662 -64.235428)", "instruments": null, "is_usap_dc": true, "keywords": "FISH; USA/NSF; OXYGEN ISOTOPE ANALYSIS; WATER MASSES; Amd/Us; AMD; USAP-DC; OXYGEN ISOTOPES; LABORATORY; Seymour Island; Sharks; Striatolamia Macrota", "locations": "Seymour Island", "north": -64.209061, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Integrated System Science; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e PALEOGENE \u003e EOCENE", "persons": "Kim, Sora; Scher, Howard; Huber, Matthew; Jahn, Alexandra", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "Dryad", "repositories": "Dryad", "science_programs": null, "south": -64.261795, "title": "Collaborative Research: Integrating Eocene Shark Paleoecology and Climate Modeling to reveal Southern Ocean Circulation and Antarctic Glaciation", "uid": "p0010146", "west": -56.693516}, {"awards": "1643798 Emry, Erica; 1643873 Hansen, Samantha", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "GEOSCOPE Network; IU: Global Seismograph Network; Shear Wave Velocity of the Antarctic Upper Mantle from Full Waveform Inversion and Long Period Ambient Seismic Noise; XP (2000-2004): A Broadband Seismic Investigation of Deep Continental Structure Across the East-West Antarctic Boundary ; YT (2007-2023): IPY POLENET-Antarctica: Investigating links between geodynamics and ice sheets; ZJ (2012-2015): Transantarctic Mountains Northern Network ; ZM (2007-2013): A Broadband Seismic Experiment to Image the Lithosphere beneath the Gamburtsev Mountains, East Antarctica", "datasets": [{"dataset_uid": "200170", "doi": "10.7914/SN/XP_2000", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "XP (2000-2004): A Broadband Seismic Investigation of Deep Continental Structure Across the East-West Antarctic Boundary ", "url": "http://www.fdsn.org/networks/detail/XP_2000/"}, {"dataset_uid": "200169", "doi": "10.7914/SN/IU", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IU: Global Seismograph Network", "url": "http://www.fdsn.org/networks/detail/IU/"}, {"dataset_uid": "601909", "doi": "10.15784/601909", "keywords": "Ambient Seismic Noise; Antarctica; Cryosphere; Full-Waveform Inversion; Seismic Tomography; Shear Wave Velocity", "people": "Hansen, Samantha; Emry, Erica", "repository": "USAP-DC", "science_program": null, "title": "Shear Wave Velocity of the Antarctic Upper Mantle from Full Waveform Inversion and Long Period Ambient Seismic Noise", "url": "https://www.usap-dc.org/view/dataset/601909"}, {"dataset_uid": "200173", "doi": "10.7914/SN/ZJ_2012", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "ZJ (2012-2015): Transantarctic Mountains Northern Network ", "url": "http://www.fdsn.org/networks/detail/ZJ_2012/"}, {"dataset_uid": "200172", "doi": "10.7914/SN/ZM_2007", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": " ZM (2007-2013): A Broadband Seismic Experiment to Image the Lithosphere beneath the Gamburtsev Mountains, East Antarctica", "url": "http://www.fdsn.org/networks/detail/ZM_2007/"}, {"dataset_uid": "200171", "doi": "10.7914/SN/YT_2007", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "YT (2007-2023): IPY POLENET-Antarctica: Investigating links between geodynamics and ice sheets", "url": "http://www.fdsn.org/networks/detail/YT_2007/"}, {"dataset_uid": "200168", "doi": "10.18715/GEOSCOPE.G", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "GEOSCOPE Network", "url": "http://geoscope.ipgp.fr/networks/detail/G/"}], "date_created": "Thu, 15 Oct 2020 00:00:00 GMT", "description": "Nontechnical description of proposed research: This project will apply cutting-edge seismic imaging methods to existing seismic data to study the three-dimensional structure of the Earth beneath the ice-covered Antarctic continent. The study will improve understanding of Earth structure and hotspots and geologically recent and ancient rift systems. The results will be useful for models of ice movement and bedrock elevation changes due to variation in ice sheet thickness. The results will also help guide future seismic data collection. The researchers will transfer existing software from the high-performance computers at The University of Rhode Island to the Alabama supercomputer facilities. The project will also broaden public understanding of scientific research in Antarctica by engaging with the students and teachers in Socorro County, New Mexico to discuss career opportunities in science, technology, engineering, and mathematics (STEM), the Earth Sciences, and the importance of computers in scientific research. Project personnel from Alabama will visit Socorro and share research with students at New Mexico Tech and at the Socorro High School. The project will also train undergraduate and graduate students in the expanding field of computational seismology, by applying these approaches to study Antarctic geology. Technical description of proposed research: The project seeks to better resolve the three-dimensional Antarctic mantle structure and viscosity and to identify locations of ancient rifts within the stable East Antarctic lithosphere. To accomplish this, the researchers will utilize full-waveform tomographic inversion techniques that combine long-period ambient noise data with earthquake constraints to more accurately resolve structure than traditional tomographic approaches. The proposed research will be completed using the Alabama supercomputer facilities and the programs and methodology developed at The University of Rhode Island. The new tomographic results will be useful in assessing lithospheric structure beneath Dronning Maud Land as well as the Wilkes and Aurora Subglacial Basins in East Antarctica, where previous rifting episodes and mid-lithospheric discontinuities will be explored. In West Antarctica, the work will elucidate the easternmost extent of the West Antarctic Rift System as well as rifted structure and possible compositional variations within the Weddell Sea. The accuracy of existing Antarctic seismic models will be quantified through model validation approaches. The researchers will highlight regions of Antarctica where tomographic resolution is still lacking and where future deployments would improve resolution.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "SEISMIC SURFACE WAVES; USA/NSF; USAP-DC; SEISMOLOGICAL STATIONS; Amd/Us; AMD; POLNET; TECTONICS; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Emry, Erica; Hansen, Samantha", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS", "repo": "IRIS", "repositories": "IRIS; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Imaging Seismic Heterogeneity within the Antarctic Mantle with Full Waveform Ambient Noise Tomography", "uid": "p0010139", "west": -180.0}, {"awards": "1542885 Dunham, Eric", "bounds_geometry": null, "dataset_titles": "Earthquake Sequence Dynamics at the Interface Between an Elastic Layer and Underlying Half-Space in Antiplane Shear", "datasets": [{"dataset_uid": "601320", "doi": "10.15784/601320", "keywords": "Antarctica; Computer Model; Glaciology; Model Data; Shear Stress; Solid Earth; Whillans Ice Stream", "people": "Abrahams, Lauren", "repository": "USAP-DC", "science_program": null, "title": "Earthquake Sequence Dynamics at the Interface Between an Elastic Layer and Underlying Half-Space in Antiplane Shear", "url": "https://www.usap-dc.org/view/dataset/601320"}], "date_created": "Fri, 09 Oct 2020 00:00:00 GMT", "description": "This project investigates a rapidly moving section of the West Antarctic Ice Sheet known as the Whillans Ice Stream. Ice streams and outlet glaciers are the major pathways for ice discharge from ice sheets into the ocean. Consequently, understanding ice stream dynamics, specifically the processes controlling the frictional resistance of ice sliding on sediments at its base, is essential for predictive modeling of how Earth\u0027s ice sheets will respond to a changing climate. Rather than flowing smoothly, Whillans Ice Stream advances in stick-slip cycles: brief periods of rapid sliding, equivalent to magnitude 7 earthquakes, alternating with much longer periods of repose. The PIs will perform simulations of these stick-slip cycles using computer codes originally developed for modeling tectonic earthquakes. By matching observed ice motions, the PIs will constrain the range of frictional processes acting at the base of the ice stream. An additional focus of the project is on brittle fracture processes in ice, expressed through seismic waves radiated by faulting and/or crevassing episodes that accompany the large-scale sliding events. An understanding of ice fracture provides a basis for assessing the susceptibility of ice shelves to rifting and catastrophic disintegration. Project results will be incorporated into outreach activities (from elementary school to community college events) as well as a polar science class for the California State Summer School for Mathematics and Science (COSMOS) program for high school students. Simulations of the stick-slip cycle will employ 3D dynamic rupture models that simultaneously solve for the seismic wavefield and rupture process, consistent with elastodynamic material response and friction laws on the ice stream bed. Stresses and frictional properties will be varied to achieve consistency with surface GPS and broadband seismic data as well as borehole seismograms from the WISSARD project. The results will be interpreted using laboratory till friction experiments, which link velocity-weakening/strengthening behavior to temperature and water content, and to related experiments quantifying basal drag from ice flow over rough beds. The source mechanism of seismicity accompanying the slip events (shear faulting versus crevassing) will be determined using 3D waveform modeling in conjunction with mechanical models of the seismic source processes. This proposal does not require fieldwork in the Antarctic.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "SEISMIC PROFILE; AMD; Antarctica; GROUND-BASED OBSERVATIONS; USA/NSF; USAP-DC; Amd/Us", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Dunham, Eric", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Characterizing Brittle Failure and Fracture Propagation in Fast Ice Sliding with Dynamic Rupture Models based on Whillans Ice Stream Seismic/Geodetic Data", "uid": "p0010138", "west": null}, {"awards": "1744883 Wiens, Douglas", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "ANT-20: A 3D seismic model of the upper mantle and transition zone structure beneath Antarctica and the surrounding southern oceans; CWANT-PSP: A 3-D shear velocity model from a joint inversion of receiver functions and surface wave dispersion derived from ambient noise and teleseismic earthquakes.", "datasets": [{"dataset_uid": "200179", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "ANT-20: A 3D seismic model of the upper mantle and transition zone structure beneath Antarctica and the surrounding southern oceans", "url": "http://ds.iris.edu/ds/products/emc-ant-20/"}, {"dataset_uid": "200178", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "CWANT-PSP: A 3-D shear velocity model from a joint inversion of receiver functions and surface wave dispersion derived from ambient noise and teleseismic earthquakes.", "url": "http://ds.iris.edu/ds/products/emc-cwant-psp/"}], "date_created": "Tue, 02 Jun 2020 00:00:00 GMT", "description": "The geological structure and history of Antarctica remains poorly understood because much of the continental crust is covered by ice. Here, the PIs will analyze over 15 years of seismic data recorded by numerous projects in Antarctica to develop seismic structural models of the continent. The seismic velocity models will reveal features including crustal thinning due to rifting in West Antarctica, the structures associated with mountain building, and the boundaries between different tectonic blocks. The models will be compared to continents that are better understood geologically to constrain the tectonic evolution of Antarctica. In addition, the work will provide better insight into how the solid earth interacts with and influences the development of the ice sheet. Surface heat flow will be mapped and used to identify regions in Antarctica with potential melting at the base of the ice sheet. This melt can lead to reduced friction and lower resistance to ice sheet movement. The models will help to determine whether the earth response to ice mass changes occurs over decades, hundreds, or thousands of years. Estimates of mantle viscosity calculated from the seismic data will be used to better understand the pattern and timescales of the response of the solid earth to changes in ice mass in various parts of Antarctica. The study will advance our knowledge of the structure of Antarctica by constructing two new seismic models and a thermal model using different but complementary methodologies. Because of the limitations of different seismic analysis methods, efforts will be divided between a model seeking the highest possible resolution within the upper 200 km depth in the well instrumented region (Bayesian Monte-Carlo joint inversion), and another model determining the structure of the entire continent and surrounding oceans extending through the mantle transition zone (adjoint full waveform inversion). The Monte-Carlo inversion will jointly invert Rayleigh wave group and phase velocities from earthquakes and ambient noise correlation along with P-wave receiver functions and Rayleigh H/V ratios. The inversion will be done in a Bayesian framework that provides uncertainty estimates for the structural model. Azimuthal anisotropy will be determined from Rayleigh wave velocities, providing constraints on mantle fabric and flow patterns. The seismic data will also be inverted for temperature structure, providing estimates of lithospheric thickness and surface heat flow. The larger-scale model will cover the entire continent as well as the surrounding oceans, and will be constructed using an adjoint inversion of phase differences between three component seismograms and synthetic seismograms calculated in a 3D earth model using the spectral element method. This model will fit the entire waveforms, including body waves and both fundamental and higher mode surface waves. Higher resolution results will be obtained by using double-difference methods and by incorporating Green\u0027s functions from ambient noise cross-correlation, and solving for both radial and azimuthal anisotropy. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USA/NSF; Carbon Cycle; SEISMIC PROFILE; Seismology; Southern Ocean; Amd/Us; Antarctica; West Antarctica; MODELS; SEISMIC SURFACE WAVES; AMD; TECTONICS; USAP-DC", "locations": "Antarctica; West Antarctica; Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Wiens, Douglas; Shen, Weisen", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": -90.0, "title": "Comprehensive Seismic and Thermal Models for Antarctica and the Southern Oceans: A Synthesis of 15-years of Seismic Exploration", "uid": "p0010103", "west": -180.0}, {"awards": "9615281 Luyendyk, Bruce; 9615282 Siddoway, Christine", "bounds_geometry": "POLYGON((-170 -76,-166.5 -76,-163 -76,-159.5 -76,-156 -76,-152.5 -76,-149 -76,-145.5 -76,-142 -76,-138.5 -76,-135 -76,-135 -76.8,-135 -77.6,-135 -78.4,-135 -79.2,-135 -80,-135 -80.8,-135 -81.6,-135 -82.4,-135 -83.2,-135 -84,-138.5 -84,-142 -84,-145.5 -84,-149 -84,-152.5 -84,-156 -84,-159.5 -84,-163 -84,-166.5 -84,-170 -84,-170 -83.2,-170 -82.4,-170 -81.6,-170 -80.8,-170 -80,-170 -79.2,-170 -78.4,-170 -77.6,-170 -76.8,-170 -76))", "dataset_titles": "Bedrock sample data, Ford Ranges region (Marie Byrd Land); SOAR-WMB Airborne gravity data", "datasets": [{"dataset_uid": "601294", "doi": "10.15784/601294", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Ross Sea; Solid Earth", "people": "Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-WMB Airborne gravity data", "url": "https://www.usap-dc.org/view/dataset/601294"}, {"dataset_uid": "601829", "doi": "10.15784/601829", "keywords": "Antarctica; Cryosphere; Gondwana; Marie Byrd Land; Migmatite", "people": "Siddoway, Christine", "repository": "USAP-DC", "science_program": null, "title": "Bedrock sample data, Ford Ranges region (Marie Byrd Land)", "url": "https://www.usap-dc.org/view/dataset/601829"}], "date_created": "Fri, 24 Apr 2020 00:00:00 GMT", "description": "OPP 9615281 Luyendyk OPP 9615282 Siddoway Abstract This award supports a collaborative project that combines air and ground geological-geophysical investigations to understand the tectonic and geological development of the boundary between the Ross Sea Rift and the Marie Byrd Land (MBL) volcanic province. The project will determine the Cenozoic tectonic history of the region and whether Neogene structures that localized outlet glacier flow developed within the context of Cenozoic rifting on the eastern Ross Embayment margin, or within the volcanic province in MBL. The geological structure at the boundary between the Ross Embayment and western MBL may be a result of: 1) Cenozoic extension on the eastern shoulder of the Ross Sea rift; 2) uplift and crustal extension related to Neogene mantle plume activity in western MBL; or a combination of the two. Faulting and volcanism, mountain uplift, and glacier downcutting appear to now be active in western MBL, where generally East-to-West-flowing outlet glaciers incise Paleozoic and Mesozoic bedrock, and deglaciated summits indicate a previous North-South glacial flow direction. This study requires data collection using SOAR (Support Office for Aerogeophysical Research, a facility supported by Office of Polar Programs which utilizes high precision differential GPS to support a laser altimeter, ice-penetrating radar, a towed proton magnetometer, and a Bell BGM-3 gravimeter). This survey requires data for 37,000 square kilometers using 5.3 kilometer line spacing with 15.6 kilometer tie lines, and 86,000 square kilometers using a grid of 10.6 by 10.6 kilometer spacing. Data will be acquired over several key features in the region including, among other, the eastern edge of the Ross Sea rift, over ice stream OEO, the transition from the Edward VII Peninsula plateau to the Ford Ranges, the continuation to the east of a gravity high known from previous reconnaissance mapping over the Fosdick Metamorphic Complex, an d the extent of the high-amplitude magnetic anomalies (volcanic centers?) detected southeast of the northern Ford Ranges by other investigators. SOAR products will include glaciology data useful for studying driving stresses, glacial flow and mass balance in the West Antarctic Ice Sheet (WAIS). The ground program is centered on the southern Ford Ranges. Geologic field mapping will focus on small scale brittle structures for regional kinematic interpretation, on glaciated surfaces and deposits, and on datable volcanic rocks for geochronologic control. The relative significance of fault and joint sets, the timing relationships between them, and the probable context of their formation will also be determined. Exposure ages will be determined for erosion surfaces and moraines. Interpretation of potential field data will be aided by on ground sampling for magnetic properties and density as well as ground based gravity measurements. Oriented samples will be taken for paleomagnetic studies. Combined airborne and ground investigations will obtain basic data for describing the geology and structure at the eastern boundary of the Ross Embayment both in outcrop and ice covered areas, and may be used to distinguish between Ross Sea rift- related structural activity from uplift and faulting on the perimeter of the MBL dome and volcanic province. Outcrop geology and structure will be extrapolated with the aerogeophysical data to infer the geology that resides beneath the WAIS. The new knowledge of Neogene tectonics in western MBL will contribute to a comprehensive model for the Cenozoic Ross rift and to understanding of the extent of plume activity in MBL. Both are important for determining the influence of Neogene tectonics on the ice streams and WAIS.", "east": -135.0, "geometry": "POINT(-152.5 -80)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e LGS", "is_usap_dc": true, "keywords": "GRAVITY; USAP-DC; Ross Sea; TECTONICS; Marie Byrd Land", "locations": "Ross Sea; Marie Byrd Land", "north": -76.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Luyendyk, Bruce P.; Siddoway, Christine", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.0, "title": "Air-Ground Study of Tectonics at the Boundary Between the Eastern Ross Embayment and Western Marie Byrd Land, Antarctica: Basement Geology and Structure", "uid": "p0010096", "west": -170.0}, {"awards": "9615704 Bell, Robin; 9615832 Blankenship, Donald", "bounds_geometry": "POLYGON((-180 -74,-176 -74,-172 -74,-168 -74,-164 -74,-160 -74,-156 -74,-152 -74,-148 -74,-144 -74,-140 -74,-140 -75.6,-140 -77.2,-140 -78.8,-140 -80.4,-140 -82,-140 -83.6,-140 -85.2,-140 -86.8,-140 -88.4,-140 -90,-144 -90,-148 -90,-152 -90,-156 -90,-160 -90,-164 -90,-168 -90,-172 -90,-176 -90,180 -90,174 -90,168 -90,162 -90,156 -90,150 -90,144 -90,138 -90,132 -90,126 -90,120 -90,120 -88.4,120 -86.8,120 -85.2,120 -83.6,120 -82,120 -80.4,120 -78.8,120 -77.2,120 -75.6,120 -74,126 -74,132 -74,138 -74,144 -74,150 -74,156 -74,162 -74,168 -74,174 -74,-180 -74))", "dataset_titles": "SOAR-PPT Airborne gravity data; SOAR-WLK Airborne gravity data", "datasets": [{"dataset_uid": "601292", "doi": "10.15784/601292", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Potential Field; Solid Earth; Transantarctic Mountains", "people": "Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-PPT Airborne gravity data", "url": "https://www.usap-dc.org/view/dataset/601292"}, {"dataset_uid": "601293", "doi": "10.15784/601293", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Potential Field; Solid Earth; Transantarctic Mountains", "people": "Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-WLK Airborne gravity data", "url": "https://www.usap-dc.org/view/dataset/601293"}], "date_created": "Fri, 24 Apr 2020 00:00:00 GMT", "description": "Bell and Buck: OPP 9615704 Blankenship: OPP 9615832 Abstract Continental extension produces a great variety of structures from the linear narrow rifts of the East African Rift to the diffuse extension of the Basin and Range Province of the Western U.S. Rift shoulder uplift varies dramatically between rift flanks. The cause of variable rift width and crustal thinning is fairly well explained by variable initial heat flow and crustal thickness. Mechanical stretching of the lithosphere has been linked to rift shoulder uplift but the cause of variable rift flank uplift remains poorly understood. The Transantarctic Mountains (TAM) are an extreme example of rift flank uplift, extending over 3500 km across Antarctica and reaching elevations up to 4500 m and thus constitute a unique feature of EarthOs crust. The range was formed in the extensional environment associated with the Mesozoic and Cenozoic breakup of Gondwanaland. Geological and geophysical work has shown that the TAM developed along the long-lived lithospheric boundary between East and West Antarctica reactivated by a complex history of extensional and translational microplate motions. The TAM are not uniform along strike. Along the OWilkes FrontO, the northern segment of the rift extends from North Victoria Land to Byrd Glacier. The Wilkes Front architecture consists of (1) thin, extended crust forming the Victoria Land Basin in the Ross Sea, (2) the TAM rift shoulder, and (3) a long-wavelength down- ward forming the Wilkes Basin. Contrasting structures are mapped along the OPensacola/PoleO Front, the southern segment of the rift extending from the Nimrod Glacier to the Pensacola Mountains. Along this southern section no rift basin has been mapped to date and the down-ward along the East Antarctic, or ObacksideO, edge of the mountains is less pronounced. A flexural model linking the extension in the Ross Sea to the formation of both the mountains and the Wilkes Basin has been considered as a me chanism for uplift of the entire mountain range. The variability in fundamental architecture along the TAM indicates that neither a single event nor a sequence of identical events produced the rift flank uplift. The observation of variable architecture suggests complex mechanisms and possibly a fundamental limitation in maximum sustainable rift flank elevation. The motivation for studying the TAM is to try to understand the geodynamics of this extreme elevation rift flank. Are the geodynamics of the area unique, or does the history of glaciation and related erosion contribute to the extreme uplift? With the existing data sets it is difficult to confidently constrain the geological architecture across representative sections of the TAM. Any effort to refine geodynamic mechanisms requires this basic understanding of the TAM architecture. The goal of this project is to (1) constrain the architecture of the rift system as well as the distribution and structure of sedimentary basins, glacial erosion and mafic igneous rocks surrounding the rift flank by acquiring three long wavelength geophysical transects with integrated gravity, magnetics, ice- penetrating radar, and ice surface measurements, (2) quantify the contribution of various geodynamic mechanisms to understand the geological conditions which can lead to extreme rift flank uplift, and (3) use the improved understanding of architecture and geophysical data to test geodynamic models in order to improve our understanding both of the TAM geodynamics and the general problem of the geodynamics of rift flank uplift worldwide. This project will allow development of a generalized framework for understanding the development of rift flank uplift as well as address the question of the specific geodynamic evolution of the TAM.", "east": -140.0, "geometry": "POINT(170 -82)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": true, "keywords": "USAP-DC; Transantarctic Mountains; GRAVITY FIELD; TECTONICS", "locations": "Transantarctic Mountains", "north": -74.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Bell, Robin; Buck, W. Roger; Blankenship, Donald D.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Contrasting Architecture and Dynamics of the Transantarctic Mountains", "uid": "p0010095", "west": 120.0}, {"awards": "9978236 Bell, Robin", "bounds_geometry": "POLYGON((101 -75.5,101.9 -75.5,102.8 -75.5,103.7 -75.5,104.6 -75.5,105.5 -75.5,106.4 -75.5,107.3 -75.5,108.2 -75.5,109.1 -75.5,110 -75.5,110 -75.85,110 -76.2,110 -76.55,110 -76.9,110 -77.25,110 -77.6,110 -77.95,110 -78.3,110 -78.65,110 -79,109.1 -79,108.2 -79,107.3 -79,106.4 -79,105.5 -79,104.6 -79,103.7 -79,102.8 -79,101.9 -79,101 -79,101 -78.65,101 -78.3,101 -77.95,101 -77.6,101 -77.25,101 -76.9,101 -76.55,101 -76.2,101 -75.85,101 -75.5))", "dataset_titles": "SOAR-Lake Vostok Survey airborne radar data; SOAR-Lake Vostok Survey bed elevation data; SOAR-Lake Vostok Survey Gravity data; SOAR-Lake Vostok Survey ice thickness data; SOAR-Lake Vostok survey magnetic anomaly data; SOAR-Lake Vostok Survey surface elevation data", "datasets": [{"dataset_uid": "601295", "doi": "10.1594/IEDA/306563", "keywords": "Airborne Gravity; Airplane; Antarctica; East Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Lake Vostok; Potential Field; Solid Earth", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey Gravity data", "url": "https://www.usap-dc.org/view/dataset/601295"}, {"dataset_uid": "601300", "doi": "10.1594/IEDA/306568", "keywords": "Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Lake Vostok; Navigation; Radar; SOAR; Subglacial Lakes", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey airborne radar data", "url": "https://www.usap-dc.org/view/dataset/601300"}, {"dataset_uid": "601299", "doi": "10.1594/IEDA/306565", "keywords": "Airborne Laser Altimeters; Airborne Laser Altimetry; Airborne Radar; Airplane; Antarctica; Bed Elevation; Bedrock Elevation; Digital Elevation Model; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Lake Vostok; Radar; Radar Echo Sounder; SOAR", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey bed elevation data", "url": "https://www.usap-dc.org/view/dataset/601299"}, {"dataset_uid": "601298", "doi": "10.1594/IEDA/306566", "keywords": "Airborne Altimetry; Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Ice Sheet Elevation; Ice Surface; Lake Vostok; Radar Echo Sounder; SOAR; Surface Elevation", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey surface elevation data", "url": "https://www.usap-dc.org/view/dataset/601298"}, {"dataset_uid": "601297", "doi": "10.1594/IEDA/306567", "keywords": "Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Sheet; Ice Stratigraphy; Ice Thickness; Ice Thickness Distribution; Lake Vostok; Radar; Radar Altimetry; Radar Echo Sounder; SOAR; Subglacial Lake", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey ice thickness data", "url": "https://www.usap-dc.org/view/dataset/601297"}, {"dataset_uid": "601296", "doi": " 10.1594/IEDA/306564", "keywords": "Airborne Magnetic; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Lake Vostok; Magnetic; Magnetic Anomaly; Magnetometer; Potential Field; SOAR; Solid Earth", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok survey magnetic anomaly data", "url": "https://www.usap-dc.org/view/dataset/601296"}], "date_created": "Fri, 24 Apr 2020 00:00:00 GMT", "description": "9978236 Bell Abstract This award, provided by the Office of Polar Programs under the Life in Extreme Environments (LExEn) Program, supports a geophysical study of Lake Vostok, a large lake beneath the East Antarctic Ice Sheet. Subglacial ecosystems, in particular subglacial lake ecosystems are extreme oligotrophic environments. These environments, and the ecosystems which may exist within them, should provide key insights into a range of fundamental questions about the development of Earth and other bodies in the Solar System including: 1) the processes associated with rapid evolutionary radiation after the extensive Neoproterozoic glaciations; 2) the overall carbon cycle through glacial and interglacial periods; and 3) the possible adaptations organisms may require to thrive in environments such as on Europa, the ice covered moon of Jupiter. Over 70 subglacial lakes have been identified beneath the 3-4 kilometer thick ice of Antarctica. One lake, Lake Vostok, is sufficiently large to be clearly identified from space with satellite altimetry. Lake Vostok is similar to Lake Ontario in area but with a much larger volume including measured water depths of 600 meters. The overlying ice sheet is acting as a conveyer belt continually delivering new water, nutrients, gas hydrates, sediments and microbes as the ice sheet flows across the lake. The goal of this program is to determine the fundamental boundary conditions for this subglacial lake as an essential first step toward understanding the physical processes within the lake. An aerogeophysical survey over the lake and into the surrounding regions will be acquired to meet this goal. This data set includes gravity, magnetic, laser altimetry and ice penetrating radar data and will be used to compile a basic set of ice surface elevation, subglacial topography, gravity and magnetic anomaly maps. Potential field methods widely used in the oil industry will be modified to estimate the subglacial topography from gravity data where the ice penetrating radar will be unable to recover the depth of the lake. A similar method can be modified to estimate the thickness of the sediments beneath the lake from magnetic data. These methods will be tested and applied to subglacial lakes near South Pole prior to the Lake Vostok field campaign and will provide valuable comparisons to the planned survey. Once the methods have been adjusted for the Lake Vostok application, maps of the water cavity and sediment thickness beneath the lake will be produced. These maps will become tools to explore the geologic origin of the lake. The two endmember models are, first, that the lake is an active tectonic rift such as Lake Baikal and, second, the lake is the result of glacial scouring. The distinct characteristics of an extensional rift can be easily identified with our aerogeophysical survey. The geological interpretation of the airborne geophysical survey will provide the first geological constraints of the interior of the East Antarctic continent based on modern data. In addition, the underlying geology will influence the ecosystem within the lake. One of the critical issues for the ecosystem within the lake will be the flux of nutrients. A preliminary estimation of the regions of freezing and melting based on the distance between distinctive internal layers observed on the radar data will be made. These basic boundary conditions will provide guidance for a potential international effort aimed at in situ exploration of the lake and improve the understanding of East Antarctic geologic structures.", "east": 110.0, "geometry": "POINT(105.5 -77.25)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e MAGNETOMETERS \u003e MGF; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e AIRGRAV", "is_usap_dc": true, "keywords": "Gravity; GLACIERS/ICE SHEETS; East Antarctica; USAP-DC; Lake Vostok; Airborne Radar; Subglacial Lake; MAGNETIC FIELD; GRAVITY", "locations": "East Antarctica; Lake Vostok", "north": -75.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bell, Robin; Studinger, Michael S.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work\r\n", "uid": "p0010097", "west": 101.0}, {"awards": "1443437 Carlson, Anders; 1443268 Beard, Brian", "bounds_geometry": "POLYGON((-80 -65,-79 -65,-78 -65,-77 -65,-76 -65,-75 -65,-74 -65,-73 -65,-72 -65,-71 -65,-70 -65,-70 -65.5,-70 -66,-70 -66.5,-70 -67,-70 -67.5,-70 -68,-70 -68.5,-70 -69,-70 -69.5,-70 -70,-71 -70,-72 -70,-73 -70,-74 -70,-75 -70,-76 -70,-77 -70,-78 -70,-79 -70,-80 -70,-80 -69.5,-80 -69,-80 -68.5,-80 -68,-80 -67.5,-80 -67,-80 -66.5,-80 -66,-80 -65.5,-80 -65))", "dataset_titles": "Radiogenic isotopes of ODP Site 178-1096; Sand content of ODP Site 178-1096", "datasets": [{"dataset_uid": "200109", "doi": " doi:10.1594/PANGAEA.909411", "keywords": null, "people": null, "repository": "PANGAEA", "science_program": null, "title": "Sand content of ODP Site 178-1096", "url": "https://doi.pangaea.de/10.1594/PANGAEA.909411 "}, {"dataset_uid": "200108", "doi": " doi:10.1594/PANGAEA.909407 ", "keywords": null, "people": null, "repository": "PANGAEA", "science_program": null, "title": "Radiogenic isotopes of ODP Site 178-1096", "url": "https://doi.pangaea.de/10.1594/PANGAEA.909407"}], "date_created": "Fri, 31 Jan 2020 00:00:00 GMT", "description": "Collapse of the West Antarctic ice sheet (WAIS) could raise global sea level by up to 3 meters, at a rate of up to ~1 meter per century, yielding major societal impacts. The goal of this project is to determine if such a collapse occurred in the recent past. This will include development of new geochemical tools to evaluate the sedimentary geologic record around the WAIS to evaluate WAIS behavior during past warm periods. The primary activities to be carried out by the research team are to: 1) characterize the chemistry and magnetic properties of sediments being discharged from different portions of the WAIS and use these properties to ?fingerprint? inputs from different sources on the continent; 2) measure these same properties in a marine sediment core to document major changes in the WAIS over the last 150,000 years. Determining if the WAIS has collapsed in the recent past can provide important information on WAIS potential to grow unstable in the future. The tools to be developed here can then be used on older records around the WAIS to examine the frequency of ice sheet instability in the past. The project will support a postdoctoral researcher as well as undergraduate students. This project will develop sediment provenance proxies to trace the sources of sediment discharged by the West Antarctic Ice Sheet (WAIS) to the continental rise. Specific questions to be addressed are: 1) the degree that sediment from different WAIS terranes can be geochemically and magnetically differentiated; 2) the ability of terrane provenance proxies to detect WAIS collapse in the late Quaternary. The WAIS erodes sediments from various West Antarctic geologic terranes that are deposited in adjacent drift sites. The geochemistry and magnetic properties of drift sediments reflect the tectonic and metamorphic history of their source terranes. Deglaciation of a terrane during WAIS collapse should be detectable by the loss of the terrane?s geochemical and magnetic signature in continental-rise detrital sediments. Continental shelf late-Holocene sediments from near the current WAIS groundling line will be analyzed for silt- and clay-size Sr-Nd-Pb isotopes, magnetic properties, and major-trace elements. The suite of cores includes the eastern Ross Sea to the northern tip of the Antarctic Peninsula and will establish provenance signatures of the Ross and Amundsen Provinces of Marie Byrd Land, Pine Island Bay, Thurston Island/Eight Coast Block, Ellsworth-Whitmore Crustal Block, and Antarctic Peninsula terranes. Many of these terranes have similar tectonic and metamorphic histories but Sr-Nd isotope data from detrital sediments suggest at least 3 distinct provenance signatures. An initial down core study of Ocean Drilling Program Site 1096 in the Bellingshausen Sea will be conducted to detect if the WAIS was unstable during the last interglacial period.", "east": -70.0, "geometry": "POINT(-75 -67.5)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "West Antarctic Ice Sheet; GLACIERS/ICE SHEETS; West Antarctica; PALEOCLIMATE RECONSTRUCTIONS; NOT APPLICABLE; USAP-DC; ISOTOPES; GEOCHEMISTRY; Bellingshausen Sea", "locations": "West Antarctic Ice Sheet; West Antarctica; Bellingshausen Sea", "north": -65.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Anders, Carlson; Beard, Brian; Stoner, Joseph", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "PANGAEA", "repositories": "PANGAEA", "science_programs": null, "south": -70.0, "title": "Collaborative Research: Development of a Suite of Proxies to Detect Past Collapse of the West Antarctic Ice Sheet", "uid": "p0010079", "west": -80.0}, {"awards": "1246111 Dalziel, Ian", "bounds_geometry": "POLYGON((-44 -53,-42.9 -53,-41.8 -53,-40.7 -53,-39.6 -53,-38.5 -53,-37.4 -53,-36.3 -53,-35.2 -53,-34.1 -53,-33 -53,-33 -53.4,-33 -53.8,-33 -54.2,-33 -54.6,-33 -55,-33 -55.4,-33 -55.8,-33 -56.2,-33 -56.6,-33 -57,-34.1 -57,-35.2 -57,-36.3 -57,-37.4 -57,-38.5 -57,-39.6 -57,-40.7 -57,-41.8 -57,-42.9 -57,-44 -57,-44 -56.6,-44 -56.2,-44 -55.8,-44 -55.4,-44 -55,-44 -54.6,-44 -54.2,-44 -53.8,-44 -53.4,-44 -53))", "dataset_titles": "BAS Geological Collection: Central Scotia Sea (full data link not provided); Nathaniel B Palmer NBP 1408; South Georgia: SOG1, SOG2, SOG3", "datasets": [{"dataset_uid": "200107", "doi": "", "keywords": null, "people": null, "repository": "British Antarctic Survey", "science_program": null, "title": "BAS Geological Collection: Central Scotia Sea (full data link not provided)", "url": "https://www.bas.ac.uk/data/our-data/collections/geological-collections/"}, {"dataset_uid": "200106", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Nathaniel B Palmer NBP 1408", "url": "http://www.marine-geo.org/tools/search/entry.php?id=NBP1408"}, {"dataset_uid": "200105", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "South Georgia: SOG1, SOG2, SOG3", "url": "https://www.unavco.org/data/gps-gnss/gps-gnss.html"}], "date_created": "Tue, 28 Jan 2020 00:00:00 GMT", "description": "Intellectual Merit: Opening of Drake Passage and the West Scotia Sea south of Tierra del Fuego broke the final continental barrier to onset of a complete Antarctic Circumpolar Current (ACC). Initiation of the ACC has been associated in time with a major, abrupt, drop in global temperatures and the rapid expansion of the Antarctic ice sheets at 33-34 Ma. Events leading to the formation of the Drake Passage gateway are poorly known. Understanding the tectonic evolution of the floor of the Central Scotia Sea (CSS) and the North Scotia Ridge is a key to this understanding. Previous work has demonstrated that superimposed constructs formed a volcanic arc that likely blocked direct eastward flow from the Pacific to the Atlantic through the opening Drake Passage gateway as the active South Sandwich arc does today. The PIs propose a cruise to test, develop and refine, with further targeted mapping and dredging, their theory of CSS tectonics and the influence it had on the onset and development of the ACC. In addition they propose an installation of GPS receiver to test their paleogeographic reconstructions and determine whether South Georgia is moving as part of the South American plate. Broader impacts: A graduate student will be involved in all stages of the research. Undergraduate students will also be involved as watch-standers. A community college teacher will participate in the cruise. The PIs will have a website on which there will be images of the actual ocean floor dredging in operation. The teacher will participate with web and outreach support through PolarTREC. Results of the cruise are of broad interest to paleoceanographers, paleoclimate modelers and paleobiogeographers.", "east": -33.0, "geometry": "POINT(-38.5 -55)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Scotia Sea; PLATE BOUNDARIES; TECTONIC PROCESSES; NOT APPLICABLE; COASTAL ELEVATION; Southern Ocean; USAP-DC", "locations": "Scotia Sea; Southern Ocean", "north": -53.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Dalziel, Ian W.; Lawver, Lawrence; Krissek, Lawrence", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "British Antarctic Survey", "repositories": "British Antarctic Survey; MGDS; UNAVCO", "science_programs": null, "south": -57.0, "title": "Collaborative Research: Role of the Central Scotia Sea Floor and North Scotia Ridge in the Onset and Development of the Antarctic Circumpolar Current", "uid": "p0010078", "west": -44.0}, {"awards": "1443296 Cottle, John", "bounds_geometry": "POLYGON((-180 -76.85314,-179.4383642 -76.85314,-178.8767284 -76.85314,-178.3150926 -76.85314,-177.7534568 -76.85314,-177.191821 -76.85314,-176.6301852 -76.85314,-176.0685494 -76.85314,-175.5069136 -76.85314,-174.9452778 -76.85314,-174.383642 -76.85314,-174.383642 -77.658865,-174.383642 -78.46459,-174.383642 -79.270315,-174.383642 -80.07604,-174.383642 -80.881765,-174.383642 -81.68749,-174.383642 -82.493215,-174.383642 -83.29894,-174.383642 -84.104665,-174.383642 -84.91039,-174.9452778 -84.91039,-175.5069136 -84.91039,-176.0685494 -84.91039,-176.6301852 -84.91039,-177.191821 -84.91039,-177.7534568 -84.91039,-178.3150926 -84.91039,-178.8767284 -84.91039,-179.4383642 -84.91039,180 -84.91039,177.4459565 -84.91039,174.891913 -84.91039,172.3378695 -84.91039,169.783826 -84.91039,167.2297825 -84.91039,164.675739 -84.91039,162.1216955 -84.91039,159.567652 -84.91039,157.0136085 -84.91039,154.459565 -84.91039,154.459565 -84.104665,154.459565 -83.29894,154.459565 -82.493215,154.459565 -81.68749,154.459565 -80.881765,154.459565 -80.07604,154.459565 -79.270315,154.459565 -78.46459,154.459565 -77.658865,154.459565 -76.85314,157.0136085 -76.85314,159.567652 -76.85314,162.1216955 -76.85314,164.675739 -76.85314,167.2297825 -76.85314,169.783826 -76.85314,172.3378695 -76.85314,174.891913 -76.85314,177.4459565 -76.85314,-180 -76.85314))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 02 Dec 2019 00:00:00 GMT", "description": "Subduction takes place at convergent plate boundaries and involves sinking of one tectonic plate underneath another. Although this process is a key aspect of plate tectonics that shapes the planet over geologic time, and is a primary cause of earthquakes, it is not known what causes subduction to cease, and what effect it has on the deepest portions of the crust and the upper part of the mantle. By studying the age and composition of igneous rocks emplaced at the very end of the subduction cycle, this project seeks to understand what causes subduction to cease, and how this changes the composition and structure of the crust and upper mantle. Because this process occurs deep within the earth, the project will focus on rocks in the root of an ancient subduction zone, now exposed in the Transantarctic Mountains of Antarctica. In addition, Antarctica remains relatively poorly understood, and this project will contribute directly to increasing our understanding of the geologic history of this region. The project will focus on training graduate and undergraduate students - incorporating hands-on experience with an array of state-of-the-art analytical instrumentation. Students will also gain a range of more general skills including Geographic Information Systems (GIS), written and oral communication, and data management - strengths that are highly relevant to careers both in the academic and Geosciences industry. Each summer, high school students will be incorporated into aspects of the laboratory-based research through the UCSB research mentorship program. The PI and graduate students will engage the general public through a purpose-built iPhone App and multimedia website. Activities will include live phone and video conversations from the field between elementary school students and members of the team in Antarctica. The mechanisms by which the deep crustal delaminates or \"founders\" and is returned to the mantle remains a fundamental problem in earth science. Specifically, little is known about the temporal and spatial scales over which this process occurs or the mechanisms that trigger such catastrophic events. Igneous rocks highly enriched in potassium, called lamprophyres, are often emplaced during, and immediately after, termination of subduction and therefore potentially provide direct insight into foundering. These enigmatic rocks are important because they represent near-primary mantle melt compositions and therefore their age, geochemistry and petrologic evolution reveal key information on both the composition of the upper mantle and its thermal state. Of equal importance, they reveal how these key parameters vary through both space and time. By evaluating lamprophyres along a subduction zone margin it is possible to extract: 1) local-scale information, such as the timing and duration of melting and the role of igneous crystallization processes in generation of isotopic heterogeneities; 2) along-strike variations in mantle source composition, temperature, and depth of melting 3) the plate-scale forces that control foundering and termination of subduction. This project will study a suite of lamprophyres along the axis of the Transantarctic Mountains, emplaced during the latest stages of the Neoproterozoic - Ordovician Ross orogeny, Antarctica (roughly 505 to 470 million years before present). High-precision geochronology (age determinations) will be combined with geochemical measurements on the rocks and minerals to understand the mechanisms and timing of deep crustal foundering/delamination.", "east": -174.383642, "geometry": "POINT(170.0379615 -80.881765)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "AGE DETERMINATIONS; ISOTOPES; PLATE TECTONICS; Antarctica; USAP-DC; NOT APPLICABLE", "locations": "Antarctica", "north": -76.85314, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Cottle, John", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repositories": null, "science_programs": null, "south": -84.91039, "title": "Petrologic Constraints on Subduction Termination From Lamprophyres, Ross Orogen, Antarctica", "uid": "p0010071", "west": 154.459565}, {"awards": "1443498 Fricker, Helen; 1443677 Padman, Laurence; 1443497 Siddoway, Christine; 1443534 Bell, Robin", "bounds_geometry": "POLYGON((-180 -77,-177 -77,-174 -77,-171 -77,-168 -77,-165 -77,-162 -77,-159 -77,-156 -77,-153 -77,-150 -77,-150 -77.9,-150 -78.8,-150 -79.7,-150 -80.6,-150 -81.5,-150 -82.4,-150 -83.3,-150 -84.2,-150 -85.1,-150 -86,-153 -86,-156 -86,-159 -86,-162 -86,-165 -86,-168 -86,-171 -86,-174 -86,-177 -86,180 -86,178.1 -86,176.2 -86,174.3 -86,172.4 -86,170.5 -86,168.6 -86,166.7 -86,164.8 -86,162.9 -86,161 -86,161 -85.1,161 -84.2,161 -83.3,161 -82.4,161 -81.5,161 -80.6,161 -79.7,161 -78.8,161 -77.9,161 -77,162.9 -77,164.8 -77,166.7 -77,168.6 -77,170.5 -77,172.4 -77,174.3 -77,176.2 -77,178.1 -77,-180 -77))", "dataset_titles": "Basal Melt, Ice thickness and structure of the Ross Ice Shelf using airborne radar data; CATS2008: Circum-Antarctic Tidal Simulation version 2008; CATS2008_v2023: Circum-Antarctic Tidal Simulation 2008, version 2023; Deep ICE (DICE) Radar Dataset from Ross Ice Shelf (ROSETTA-Ice); LiDAR Nadir and Swath Data from Ross Ice Shelf, Antarctica (ROSETTA-Ice); ROSETTA-Ice data page; Ross Sea ocean model simulation used to support ROSETTA-Ice ; Shallow Ice Radar (SIR) Dataset from Ross Ice Shelf (ROSETTA-Ice)", "datasets": [{"dataset_uid": "200100", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "ROSETTA-Ice data page", "url": "http://wonder.ldeo.columbia.edu/data/ROSETTA-Ice/"}, {"dataset_uid": "601794", "doi": null, "keywords": "Antarctica; Cryosphere; Remote Sensing; Ross Ice Shelf", "people": "Spergel, Julian; Packard, Sarah; Dong, LingLing; Das, Indrani; Bell, Robin; Chu, Winnie; Keeshin, Skye; Wearing, Martin; Bertinato, Christopher; Dhakal, Tejendra; Frearson, Nicholas; Cordero, Isabel", "repository": "USAP-DC", "science_program": null, "title": "Shallow Ice Radar (SIR) Dataset from Ross Ice Shelf (ROSETTA-Ice)", "url": "https://www.usap-dc.org/view/dataset/601794"}, {"dataset_uid": "601789", "doi": null, "keywords": "Airborne Radar; Antarctica; Cryosphere; Ice Thickness; Remote Sensing; Ross Ice Shelf", "people": "Das, Indrani; Spergel, Julian; Chu, Winnie; Bell, Robin; Cordero, Isabel; Frearson, Nicholas; Dhakal, Tejendra; Bertinato, Christopher; Millstein, Joanna; Wilner, Joel; Dong, LingLing", "repository": "USAP-DC", "science_program": null, "title": "Deep ICE (DICE) Radar Dataset from Ross Ice Shelf (ROSETTA-Ice)", "url": "https://www.usap-dc.org/view/dataset/601789"}, {"dataset_uid": "601242", "doi": "10.15784/601242", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Penetrating Radar; Ice-Shelf Basal Melting; Radar Echo Sounder; Radar Echo Sounding; Snow/ice; Snow/Ice", "people": "Siegfried, Matthew; Das, Indrani; Padman, Laurence; Bell, Robin; Fricker, Helen; Hulbe, Christina; Siddoway, Christine; Dhakal, Tejendra; Frearson, Nicholas; Mosbeux, Cyrille; Cordero, Isabel; Tinto, Kirsty", "repository": "USAP-DC", "science_program": null, "title": "Basal Melt, Ice thickness and structure of the Ross Ice Shelf using airborne radar data", "url": "https://www.usap-dc.org/view/dataset/601242"}, {"dataset_uid": "601788", "doi": null, "keywords": "Antarctica; Cryosphere; Ross Ice Shelf", "people": "Boghosian, Alexandra; Locke, Caitlin; Bertinato, Christopher; Dhakal, Tejendra; Starke, Sarah; Becker, Maya K", "repository": "USAP-DC", "science_program": null, "title": "LiDAR Nadir and Swath Data from Ross Ice Shelf, Antarctica (ROSETTA-Ice)", "url": "https://www.usap-dc.org/view/dataset/601788"}, {"dataset_uid": "601772", "doi": "10.15784/601772", "keywords": "Antarctica; Cryosphere; Inverse Modeling; Model Data; Ocean Currents; Oceans; Sea Surface; Southern Ocean; Tide Model; Tides", "people": "Sutterley, Tyler; Howard, Susan L.; Greene, Chad A.; Padman, Laurence; Erofeeva, Svetlana", "repository": "USAP-DC", "science_program": null, "title": "CATS2008_v2023: Circum-Antarctic Tidal Simulation 2008, version 2023", "url": "https://www.usap-dc.org/view/dataset/601772"}, {"dataset_uid": "601235", "doi": "10.15784/601235", "keywords": "Antarctica; Inverse Modeling; Model Data; Ocean Currents; Sea Surface; Tidal Models; Tides", "people": "Erofeeva, Svetlana; Padman, Laurence; Howard, Susan L.", "repository": "USAP-DC", "science_program": null, "title": "CATS2008: Circum-Antarctic Tidal Simulation version 2008", "url": "https://www.usap-dc.org/view/dataset/601235"}, {"dataset_uid": "601255", "doi": "10.15784/601255", "keywords": "Antarctica; Basal Melt; Ice Shelf; Model Output; Ocean Circulation Model; Ross Ice Shelf; Ross Sea", "people": "Padman, Laurence; Springer, Scott; Howard, Susan L.", "repository": "USAP-DC", "science_program": null, "title": "Ross Sea ocean model simulation used to support ROSETTA-Ice ", "url": "https://www.usap-dc.org/view/dataset/601255"}], "date_created": "Wed, 03 Jul 2019 00:00:00 GMT", "description": "The Ross Ice Shelf is the largest existing ice shelf in Antarctica, and is currently stabilizing significant portions of the land ice atop the Antarctic continent. An ice shelf begins where the land ice goes afloat on the ocean, and as such, the Ross Ice Shelf interacts with the ocean and seafloor below, and the land ice behind. Currently, the Ross Ice Shelf slows down, or buttresses, the fast flowing ice streams of the West Antarctic Ice Sheet (WAIS), a marine-based ice sheet, which if melted, would raise global sea level by 3-4 meters. The Ross Ice Shelf average ice thickness is approximately 350 meters, and it covers approximately 487,000 square kilometers, an area slightly larger than the state of California. The Ross Ice Shelf has disappeared during prior interglacial periods, suggesting in the future it may disappear again. Understanding the dynamics, stability and future of the West Antarctic Ice Sheet therefore requires in-depth knowledge of the Ross Ice Shelf. The ROSETTA-ICE project brings together scientists from 4 US institutions and from the Institute of Geological and Nuclear Sciences Limited, known as GNS Science, New Zealand. The ROSETTA-ICE data on the ice shelf, the water beneath the ice shelf, and the underlying rocks, will allow better predictions of how the Ross Ice Shelf will respond to changing climate, and therefore how the WAIS will behave in the future. The interdisciplinary ROSETTA-ICE team will train undergraduate and high school students in cutting edge research techniques, and will also work to educate the public via a series of vignettes integrating ROSETTA-ICE science with the scientific and human history of Antarctic research. The ROSETTA-ICE survey will acquire gravity and magnetics data to determine the water depth beneath the ice shelf. Radar, LIDAR and imagery systems will be used to map the Ross Ice Shelf thickness and fine structure, crevasses, channels, debris, surface accumulation and distribution of marine ice. The high resolution aerogeophysical data over the Ross Ice Shelf region in Antarctica will be acquired using the IcePod sensor suite mounted externally on an LC-130 aircraft operating from McMurdo Station, Antarctica. Field activities will include ~36 flights on LC-130 aircraft over two field seasons in Antarctica. The IcePod instrument suite leverages the unique experience of the New York Air National Guard operating in Antarctica for NSF scientific research as well as infrastructure and logistics. The project will answer questions about the stability of the Ross Ice Shelf in future climate, and the geotectonic evolution of the Ross Ice Shelf Region, a key component of the West Antarctic Rift system. The comprehensive benchmark data sets acquired will enable broad, interdisciplinary analyses and modeling, which will also be performed as part of the project. ROSETTA-ICE will illuminate Ross ice sheet-ice shelf-ocean dynamics as the system nears a critical juncture but still is intact. Through interacting with an online data visualization tool, and comparing the ROSETTA-ICE data and results from earlier studies, we will engage students and young investigators, equipping them with new capabilities for the study of critical earth systems that influence global climate.", "east": 161.0, "geometry": "POINT(-174.5 -81.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LIDAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e PROTON MAGNETOMETER", "is_usap_dc": true, "keywords": "Airborne Radar; LIDAR; Ross Ice Shelf; SALINITY; SALINITY/DENSITY; CONDUCTIVITY; ICE DEPTH/THICKNESS; Tidal Models; GRAVITY ANOMALIES; Ross Sea; Antarctica; BATHYMETRY; C-130; MAGNETIC ANOMALIES; USAP-DC; Airborne Gravity", "locations": "Ross Sea; Antarctica; Ross Ice Shelf", "north": -77.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Bell, Robin; Frearson, Nicholas; Das, Indrani; Fricker, Helen; Padman, Laurence; Springer, Scott; Siddoway, Christine; Tinto, Kirsty", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e C-130", "repo": "PI website", "repositories": "PI website; USAP-DC", "science_programs": null, "south": -86.0, "title": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)", "uid": "p0010035", "west": -150.0}, {"awards": "1246776 Nyblade, Andrew; 1246712 Wiens, Douglas; 1247518 Smalley, Robert; 1249513 Dalziel, Ian; 1249631 Wilson, Terry; 1246666 Huerta, Audrey; 1419268 Aster, Richard", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Network/Campaign: Antarctica POLENET - ANET; POLENET - Network YT", "datasets": [{"dataset_uid": "200011", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Network/Campaign: Antarctica POLENET - ANET", "url": "https://www.unavco.org/data/gps-gnss/data-access-methods/dai2/app/dai2.html#grouping=Antarctica%20POLENET%20-%20ANET;scope=Station;sampleRate=normal;groupingMod=contains"}, {"dataset_uid": "200012", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "POLENET - Network YT", "url": "http://ds.iris.edu/mda/YT/?timewindow=2007-2018"}], "date_created": "Sun, 17 Feb 2019 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to continue and expand GPS and seismic for ANET-POLENET Phase 2 to advance understanding of geodynamic processes and their influence on the West Antarctic Ice Sheet. ANET-POLENET science themes include: 1) determining ice mass change since the last glacial maximum, including modern ice mass balance; 2) solid earth influence on ice sheet dynamics; and 3) tectonic evolution of West Antarctica and feedbacks with ice sheet evolution. Nine new remote continuous GPS stations, to be deployed in collaboration with U.K. and Italian partners, will augment ANET-POLENET instrumentation deployed during Phase 1. Siting is designed to better constrain uplift centers predicted by GIA models and indicated by Phase 1 results. ANET-POLENET Phase 2 builds on Phase 1 scientific, technological, and logistical achievements including 1) seismic images of crust and mantle structure that resolve the highly heterogeneous thermal and viscosity structure of the Antarctic lithosphere and underlying mantle; 2) newly identified intraplate glacial, volcanic, and tectonic seismogenic processes; 3) improved estimates of intraplate vertical and horizontal crustal motions and refinement of the Antarctic GPS reference frame; and 4) elucidation of controls on glacial isostatic adjustment-induced crustal motions due to laterally varying earth structure. The PIs present a nominal plan to reduce ANET by approximately half to a longer-term community \"backbone network\" in the final 2 years of this project. Broader impacts: Monitoring and understanding mass change and dynamic behavior of the Antarctic ice sheet using in situ GPS and seismological studies will help improve understanding of how Antarctic ice sheets respond to a warming world and how will this response impacts sea-level and other global changes. Seismic and geodetic data collected by the backbone ANET-POLENET network are openly available to the scientific community. ANET-POLENET is integral in the development and realization of technological and logistical innovations for year-round operation of instrumentation at remote polar sites, helping to advance scientifically and geographically broad studies of the polar regions. The ANET-POLENET team will establish a training initiative to mentor young polar scientists in complex, multidisciplinary and internationally collaborative research. ANET-POLENET will continue the broad public outreach to the public about polar science through the polenet.org website, university lectures, and K-12 school visits. This research involves multiple international partners.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Geodesy; USAP-DC; SEISMIC SURFACE WAVES; CRUSTAL MOTION; TECTONICS; Broadband Seismic; NOT APPLICABLE; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Wilson, Terry; Dalziel, Ian W.; Bevis, Michael; Aster, Richard; Huerta, Audrey D.; Winberry, Paul; Anandakrishnan, Sridhar; Nyblade, Andrew; Wiens, Douglas; Smalley, Robert", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "UNAVCO", "repositories": "IRIS; UNAVCO", "science_programs": "POLENET", "south": -90.0, "title": "Collaborative Research: POLENET-Antarctica: Investigating Links Between Geodynamics and Ice Sheets - Phase 2", "uid": "p0010013", "west": -180.0}, {"awards": "1141916 Aster, Richard", "bounds_geometry": null, "dataset_titles": "Dynamic Response of the Ross Ice Shelf to Ocean Waves and Structure and Dynamics of the Ross Sea", "datasets": [{"dataset_uid": "002573", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Dynamic Response of the Ross Ice Shelf to Ocean Waves and Structure and Dynamics of the Ross Sea", "url": "http://www.iris.washington.edu/mda/XH?timewindow=2014-2017"}], "date_created": "Mon, 22 Oct 2018 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to establish an ice shelf network of 18 broadband seismographs deployed for two years to obtain high-resolution, mantle-scale images of Earth structure underlying the Ross Sea Embayment. Prior marine geophysical work provides good crustal velocity models for the region seaward of the ice shelf but mantle structure is constrained by only low-resolution images due to the lack of prior seismic deployments. The proposed stations would be established between Ross Island and Marie Byrd Land. These stations would fill a major geological gap within this extensional continental province and would link data sets collected in the Transantarctic Mountain transition/Plateau region (TAMSEIS) and in West Antarctica (POLENET) to improve resolution of mantle features beneath Antarctica. The proposed deployment would allow the PIs to collect seismic data without the expense, logistical complexity, and iceberg hazards associated with ocean bottom seismograph deployments. Tomographic models developed from the proposed data will be used to choose between competing models for the dynamics of the Ross Sea. In particular, the PIs will investigate whether a broad region of hot mantle, including the Eastern Ross Sea, indicates distributed recent tectonic activity, which would call into question models proposing that Eastern Ross extension ceased during the Mesozoic. These data will also allow the PIs to investigate the deeper earth structure to evaluate the possible role of mantle plumes and/or small-scale convection in driving regional volcanism and tectonism across the region. Broader impacts: Data from this deployment will be of broad interdisciplinary use. This project will support three graduate and two undergraduate students. At least one student will be an underrepresented minority student. The PIs will interact with the media and include K-12 educators in their fieldwork.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Earth Sciences", "paleo_time": null, "persons": "Aster, Richard", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": null, "title": "Collaborative Research: Mantle Structure and Dynamics of the Ross Sea from a Passive Seismic Deployment on the Ross Ice Shelf", "uid": "p0000761", "west": null}, {"awards": "1341585 Sorlien, Christopher", "bounds_geometry": "POLYGON((-180 -73.33,-179.1 -73.33,-178.2 -73.33,-177.3 -73.33,-176.4 -73.33,-175.5 -73.33,-174.6 -73.33,-173.7 -73.33,-172.8 -73.33,-171.9 -73.33,-171 -73.33,-171 -73.864,-171 -74.398,-171 -74.932,-171 -75.466,-171 -76,-171 -76.534,-171 -77.068,-171 -77.602,-171 -78.136,-171 -78.67,-171.9 -78.67,-172.8 -78.67,-173.7 -78.67,-174.6 -78.67,-175.5 -78.67,-176.4 -78.67,-177.3 -78.67,-178.2 -78.67,-179.1 -78.67,180 -78.67,178.5 -78.67,177 -78.67,175.5 -78.67,174 -78.67,172.5 -78.67,171 -78.67,169.5 -78.67,168 -78.67,166.5 -78.67,165 -78.67,165 -78.136,165 -77.602,165 -77.068,165 -76.534,165 -76,165 -75.466,165 -74.932,165 -74.398,165 -73.864,165 -73.33,166.5 -73.33,168 -73.33,169.5 -73.33,171 -73.33,172.5 -73.33,174 -73.33,175.5 -73.33,177 -73.33,178.5 -73.33,-180 -73.33))", "dataset_titles": "Ross Sea unconformities digital grids in depth and two-way time", "datasets": [{"dataset_uid": "601098", "doi": "10.15784/601098", "keywords": "Antarctica; Continental Margin; Geology/Geophysics - Other; Marine Geoscience; Miocene; Oligocene; Seismic Reflection", "people": "Wilson, Douglas S.; Sorlien, Christopher", "repository": "USAP-DC", "science_program": null, "title": "Ross Sea unconformities digital grids in depth and two-way time", "url": "https://www.usap-dc.org/view/dataset/601098"}], "date_created": "Fri, 25 May 2018 00:00:00 GMT", "description": "Intellectual Merit: This project will produce a new compilation of Ross Sea seismic stratigraphy, including new interpretations, that can be used to provide boundary conditions on the tectonic and glacial evolution of West Antarctica and the Ross Sea. The principal goals include compilation of, and interpretation of, all available existing seismic reflection data for the Western Ross Sea, coupled with geophysical modeling to produce paleo-bathymetric reconstructions for the entire 800 km-wide Ross Sea. Specific tasks will include: extending existing work on mapping travel time to reflectors, identifying relations in the seismic data that indicate subsidence through sea level, constructing velocity models for converting travel time to thickness, and using the velocity models to estimate density and porosity of sediments for backstripping analysis. Modeling/backstripping efforts will be used to constrain past bathymetry. Digital interpretations and stratigraphic grids will be provided as supplements to publications. In that way the results of this study can be used in thermal subsidence modeling and restoration of eroded rock to other parts of Ross Embayment and Marie Byrd Land by others. Digital products may be provided in advance of publication to modelers in a way that will not hurt publication chances. Broader impacts: The results of this work will be important for paleo-geographic reconstructions of Antarctica and will therefore be of use to a broad range of researchers, particularly those working in the Ross Sea region. The digital products can be used to test models for the past fluctuations of West Antarctic ice sheets, and in planning for future sediment drilling projects. Two undergraduates to be chosen from applicants will be involved in summer internships held at the University of Rhode Island. Outreach will also include a new website and one or more Wikipedia entries related to Ross Sea sub-sea floor characteristics. The project includes an international collaboration with Dr. Chiara Sauli and others at Instituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS) in Italy.", "east": -171.0, "geometry": "POINT(177 -76)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": -73.33, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Sorlien, Christopher; Luyendyk, Bruce P.", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.67, "title": "Subsidence, Tilting, Sedimentation, and Oligocene-middle Miocene paleo-depth of Ross Sea", "uid": "p0000271", "west": 165.0}, {"awards": "1341729 Kirschvink, Joseph", "bounds_geometry": "POLYGON((-58.9 -63.5,-58.63 -63.5,-58.36 -63.5,-58.09 -63.5,-57.82 -63.5,-57.55 -63.5,-57.28 -63.5,-57.01 -63.5,-56.74 -63.5,-56.47 -63.5,-56.2 -63.5,-56.2 -63.62,-56.2 -63.74,-56.2 -63.86,-56.2 -63.98,-56.2 -64.1,-56.2 -64.22,-56.2 -64.34,-56.2 -64.46,-56.2 -64.58,-56.2 -64.7,-56.47 -64.7,-56.74 -64.7,-57.01 -64.7,-57.28 -64.7,-57.55 -64.7,-57.82 -64.7,-58.09 -64.7,-58.36 -64.7,-58.63 -64.7,-58.9 -64.7,-58.9 -64.58,-58.9 -64.46,-58.9 -64.34,-58.9 -64.22,-58.9 -64.1,-58.9 -63.98,-58.9 -63.86,-58.9 -63.74,-58.9 -63.62,-58.9 -63.5))", "dataset_titles": "2016 Paleomagnetic samples from the James Ross Basin, Antarctica; Expedition data of NBP1601", "datasets": [{"dataset_uid": "601094", "doi": "10.15784/601094", "keywords": "Antarctica; Geochronology; Geology/Geophysics - Other; Glaciology; James Ross Basin; Marine Geoscience; Marine Sediments", "people": "Kirschvink, Joseph; Skinner, Steven", "repository": "USAP-DC", "science_program": null, "title": "2016 Paleomagnetic samples from the James Ross Basin, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601094"}, {"dataset_uid": "002665", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1601", "url": "https://www.rvdata.us/search/cruise/NBP1601"}], "date_created": "Fri, 27 Apr 2018 00:00:00 GMT", "description": "Non-Technical Summary: About 80 million years ago, the tip of the Antarctic Peninsula in the vicinity of what is now James Ross Island experienced an episode of rapid subsidence, creating a broad depositional basin that collected sediments eroding from the high mountains to the West. This depression accumulated a thick sequence of fossil-rich, organic-rich sediments of the sort that are known to preserve hydrocarbons, and for which Argentina, Chile, and the United Kingdom have overlapping territorial claims. The rocks preserve one of the highest resolution records of the biological and climatic events that led to the eventual death of the dinosaurs at the Cretaceous-Tertiary boundary (about 66 million years ago). A previous collaboration between scientists from the Instituto Ant\u00e1rtico Argentino (IAA) and NSF-supported teams from Caltech and the University of Washington were able to show that this mass extinction event started nearly 50,000 years before the sudden impact of an asteroid. The asteroid obviously hit the biosphere hard, but something else knocked it off balance well before the asteroid hit. A critical component of the previous work was the use of reversals in the polarity of the Earth?s magnetic field as a dating tool ? magnetostratigraphy. This allowed the teams to correlate the pattern of magnetic reversals from Antarctica with elsewhere on the planet. This includes data from a major volcanic eruption (a flood basalt province) that covered much of India 65 million years ago. The magnetic patterns indicate that the Antarctic extinction started with the first pulse of this massive eruption, which was also coincident with a rapid spike in polar temperature. The Argentinian and US collaborative teams will extend this magnetic polarity record back another ~ 20 million years in time, and expand it laterally to provide magnetic reversal time lines across the depositional basin. They hope to recover the end of the Cretaceous Long Normal interval, which is one of the most distinctive events in the history of Earth?s magnetic field. The new data should refine depositional models of the basin, allow better estimates of potential hydrocarbon reserves, and allow biotic events in the Southern hemisphere to be compared more precisely with those elsewhere on Earth. Other potential benefits of this work include exposing several US students and postdoctoral fellows to field based research in Antarctica, expanding the international aspects of this collaborative work via joint IAA/US field deployments, and follow-up laboratory investigations and personnel exchange of the Junior scientists. Technical Description of Project The proposed research will extend the stratigraphic record in the late Cretaceous and early Tertiary sediments (~ 83 to 65 Ma before present) of the James Ross Basin, Antarctica, using paleo-magnetic methods. Recent efforts provided new methods to analyze these rocks, yielding their primary magnetization, and producing both magnetic polarity patterns and paleomagnetic pole positions. This provided the first reliable age constraints for the younger sediments on Seymour Island, and quantified the sedimentation rate in this part of the basin. The new data will allow resolution of the stable, remnant magnetization of the sediments from the high deposition rate James Ross basin (Tobin et al., 2012), yielding precise chronology/stratigraphy. This approach will be extended to the re-maining portions of this sedimentary basin, and will allow quantitative estimates for tectonic and sedimentary processes between Cretaceous and Early Tertiary time. The proposed field work will refine the position of several geomagnetic reversals that occurred be-tween the end of the Cretaceous long normal period (Chron 34N, ~ 83 Ma), and the lower portion of Chron 31R (~ 71 Ma). Brandy Bay provides the best locality for calibrating the stratigraphic position of the top of the Cretaceous Long Normal Chron, C34N. Although the top of the Cretaceous long normal Chron is one of the most important correlation horizons in the entire geological timescale, it is not properly correlated to the southern hemisphere biostratigraphy. Locating this event, as well as the other reversals, will be a major addition to understanding of the geological history of the Antarctic Peninsula. These data will also help refine tectonic models for the evolution of the Southern continents, which will be of use across the board for workers in Cretaceous stratigraphy (including those involved in oil exploration). This research is a collaborative effort with Dr. Edward Olivero of the Centro Austral de Investigaciones Cientificas (CADIC/CONICET) and Prof. Augusto Rapalini of the University of Buenos Aires. The collaboration will include collection of samples on their future field excursions to important targets on and around James Ross Island, supported by the Argentinian Antarctic Program (IAA). Argentinian scientists and students will also be involved in the US Antarctic program deployments, proposed here for the R/V Laurence Gould, and will continue the pattern of joint international publication of the results.", "east": -56.2, "geometry": "POINT(-57.55 -64.1)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; R/V NBP; USAP-DC", "locations": null, "north": -63.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kirschvink, Joseph; Christensen, John", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -64.7, "title": "Paleomagnetism and Magnetostratigraphy of the James Ross Basin, Antarctica", "uid": "p0000276", "west": -58.9}, {"awards": "1341390 Frank, Tracy", "bounds_geometry": null, "dataset_titles": "Stable carbon and oxygen isotope data from drill cores from McMurdo Sound, Antarctica", "datasets": [{"dataset_uid": "000195", "doi": "", "keywords": null, "people": null, "repository": "EarthChem", "science_program": null, "title": "Stable carbon and oxygen isotope data from drill cores from McMurdo Sound, Antarctica", "url": "http://dx.doi.org/10.1594/IEDA/100718"}], "date_created": "Fri, 06 Oct 2017 00:00:00 GMT", "description": "Intellectual Merit: This project will use sediment cores from the Victoria Land Basin (VLB), Antarctica, to study secondary (diagenetic) carbonate minerals, as indicators of the basin?s fluid-flow history, within the well-constrained tectonic, depositional, and climatic context provided by sediment cores. This study will provide insights into subsurface processes in Victoria Land Basin, Antarctica and their relationships with the region?s climatic, cryospheric, and tectonic history. The work will utilize cores previously recovered by US-sponsored stratigraphic drilling projects (CIROS, CRP, and ANDRILL projects). This work is motivated by the unexpected discovery of dense brine in the subsurface of Southern McMurdo Sound during drilling by the ANDRILL Southern McMurdo Sound project. The presence of the brine is intriguing because it contradicts previous models for the origin of subsurface fluids that called upon large contributions from glacial melt water. Project objectives involve documenting the distribution of the brine (and potentially other fluids) via characterization of diagenetic precipitates. The approach will involve integration of petrographic and geochemical data (including conventional carbon, oxygen, and ?clumped? isotopes) to fully characterize diagenetic phases and allow development of a robust paragenetic history. This work will provide novel insights into the Cenozoic evolution of the VLB and, more broadly, the role of glacial processes in generating subsurface fluids. Broader impacts: Results from this project will help understand the origins of brines, groundwater and hydrocarbon reservoirs in analogous modern and ancient deposits elsewhere, which is of broad interest. This project will support the training of one graduate and one undergraduate student at the University of Nebraska-Lincoln (UNL) providing learning opportunities in sedimentary geology and diagenesis, fields with wide applicability. This proposal emphasizes rapid dissemination of results to the scientific community via conference presentations and contributions to peer-reviewed publications. The results will be integrated into education activities designed to develop skills in petrography and diagenesis, which are highly sought after in the energy sector. The project will generate a well-constrained dataset that allows direct linkage of diagenetic phases to environmental and tectonic change across a large sedimentary basin which will provide the basis for a comprehensive case study in an upper-level course (Sedimentary Petrography and Diagenesis) at UNL. In addition, online exercises will be developed and submitted to an open-access site (SEPM Stratigraphy Web) dedicated to sedimentary geology.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Frank, Tracy; Fielding, Christopher", "platforms": "Not provided", "repo": "EarthChem", "repositories": "EarthChem", "science_programs": null, "south": null, "title": "Insights into the Burial, Tectonic, and Hydrologic History of the Cenozoic Succession in McMurdo Sound, Antarctica through Analysis of Diagenetic Phases", "uid": "p0000256", "west": null}, {"awards": "1148982 Hansen, Samantha", "bounds_geometry": "POLYGON((153.327 -73.032547,154.5063012 -73.032547,155.6856024 -73.032547,156.8649036 -73.032547,158.0442048 -73.032547,159.223506 -73.032547,160.4028072 -73.032547,161.5821084 -73.032547,162.7614096 -73.032547,163.9407108 -73.032547,165.120012 -73.032547,165.120012 -73.3530275,165.120012 -73.673508,165.120012 -73.9939885,165.120012 -74.314469,165.120012 -74.6349495,165.120012 -74.95543,165.120012 -75.2759105,165.120012 -75.596391,165.120012 -75.9168715,165.120012 -76.237352,163.9407108 -76.237352,162.7614096 -76.237352,161.5821084 -76.237352,160.4028072 -76.237352,159.223506 -76.237352,158.0442048 -76.237352,156.8649036 -76.237352,155.6856024 -76.237352,154.5063012 -76.237352,153.327 -76.237352,153.327 -75.9168715,153.327 -75.596391,153.327 -75.2759105,153.327 -74.95543,153.327 -74.6349495,153.327 -74.314469,153.327 -73.9939885,153.327 -73.673508,153.327 -73.3530275,153.327 -73.032547))", "dataset_titles": "Crustal Structure beneath the Northern Transantarctic Mountains and Wilkes Subglacial Basin: Implications for Tectonic Origins; Shear Wave Splitting Analysis and Seismic Anisotropy beneath the Northern Transantarctic Mountains; Upper Mantle Seismic Structure beneath the Northern Transantarctic Mountains from Regional P- and S-wave Tomography; Upper Mantle Shear Wave Velocity Structure beneath the Northern Transantarctic Mountains", "datasets": [{"dataset_uid": "601017", "doi": "10.15784/601017", "keywords": "Antarctica; Geology/Geophysics - Other; Model; Seismology; Solid Earth; Tomography; Transantarctic Mountains", "people": "Hansen, Samantha", "repository": "USAP-DC", "science_program": null, "title": "Upper Mantle Seismic Structure beneath the Northern Transantarctic Mountains from Regional P- and S-wave Tomography", "url": "https://www.usap-dc.org/view/dataset/601017"}, {"dataset_uid": "601194", "doi": "10.15784/601194", "keywords": "Antarctica; Transantarctic Mountains", "people": "Hansen, Samantha", "repository": "USAP-DC", "science_program": null, "title": "Crustal Structure beneath the Northern Transantarctic Mountains and Wilkes Subglacial Basin: Implications for Tectonic Origins", "url": "https://www.usap-dc.org/view/dataset/601194"}, {"dataset_uid": "601018", "doi": "10.15784/601018", "keywords": "Antarctica; Geology/Geophysics - Other; Model; Seismology; Solid Earth; Tomography; Transantarctic Mountains", "people": "Hansen, Samantha", "repository": "USAP-DC", "science_program": null, "title": "Upper Mantle Shear Wave Velocity Structure beneath the Northern Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/601018"}, {"dataset_uid": "601019", "doi": "10.15784/601019", "keywords": "Antarctica; Geology/Geophysics - Other; GPS; Sample/collection Description; Sample/Collection Description; Seismology; Shearwave Spitting; Solid Earth; Transantarctic Mountains", "people": "Hansen, Samantha", "repository": "USAP-DC", "science_program": null, "title": "Shear Wave Splitting Analysis and Seismic Anisotropy beneath the Northern Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/601019"}], "date_created": "Sun, 04 Jun 2017 00:00:00 GMT", "description": "Intellectual Merit: To understand Antarctica\u0027s geodynamic development, origin of the Transantarctic Mountains (TAMs) and the Wilkes Subglacial Basin (WSB) must be determined. Current constraints on the crustal thickness and seismic velocity structure beneath the TAMs and the WSB are limited, leading to uncertainties over competing geologic models that have been suggested to explain their formation. The PI proposes to broaden the investigation of this region with a new seismic deployment, the Transantarctic Mountains Northern Network (TAMNNET), a 15-station array across the northern TAMs and the WSB that will fill a major gap in seismic coverage. Data from TAMNNET will be combined with that from other previous and ongoing seismic initiatives and will be analyzed using proven modeling techniques to generate a detailed image of the seismic structure beneath the TAMs and the WSB. These data will be used to test three fundamental hypotheses: the TAMs are underlain by thickened crust, the WSB is characterized by thin crust and thick sedimentary layers, and slow seismic velocities are prevalent along strike beneath the TAMs. Results from the proposed study will provide new information about the nature and formation of the Antarctic continent and will help to advance our understanding of important global processes, such as mountain building and basin formation. The proposed research also has important implications for other fields of Antarctic science. Constraints on the origin of the TAMs uplift are critical for climate and ice sheet models, and new information acquired about variations in the thermal and lithospheric structure beneath the TAMs and the WSB will be used to estimate critical ice sheet boundary conditions. Broader impacts: This project incorporates three educational strategies to promote the integration of teaching and research. Graduate students will be trained in Antarctic tectonics and seismic processing through hands-on fieldwork and data analysis techniques. Through NSF\u0027s PolarTREC program, the PI will work with K-12 educators. The PI will develop a three-week summer field program for recent high school graduates and early-career undergraduate students from Minority-Serving Institutions in Alabama. Teaching materials and participant experiences will be shared with individuals outside the program via a course website. Following the summer program, participants who were particularly engaged will be offered internship opportunities to analyze TAMNNET data. In successive years, the students could assist with fieldwork and could be recruited into the graduate program under the PI\u0027s supervision. Ultimately, this program would not only serve to educate undergraduates but would also generate a pipeline of underrepresented students into the geosciences.", "east": 165.120012, "geometry": "POINT(159.223506 -74.6349495)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": -73.032547, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Hansen, Samantha", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.237352, "title": "CAREER: Deciphering the Tectonic History of the Transantarctic Mountains and the Wilkes Subglacial Basin", "uid": "p0000300", "west": 153.327}, {"awards": "0944645 Goodge, John", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 11 Feb 2015 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eBecause of extensive ice cover and sparse remote-sensing data, the geology of the Precambrian East Antarctic Shield (EAS) remains largely unexplored with information limited to coastal outcrops from the African, Indian and Australian sectors. The East Antarctic lithosphere is globally important: as one of the largest coherent Precambrian shields, including rocks as old as ~3.8 Ga, it played an important role in global crustal growth; it is a key piece in assembly of the Rodinia and Gondwana supercontinents; it is the substrate to Earth?s major ice cap, including numerous sub-glacial lakes, and influences its thermal state and mechanical stability; and its geotectonic association with formerly adjacent continental blocks in South Africa, India and Australia suggest that it might harbor important mineral resources. This project will increase understanding of the age and composition of the western EAS lithosphere underlying and adjacent to the Transantarctic Mountains (TAM) using U-Pb ages, and Hf- and O-isotope analysis of zircon in early Paleozoic granitoids and Pleistocene glacial tills. TAM granites of the early Paleozoic Ross Orogen represent an areally extensive continental-margin arc suite that can provide direct information about the EAS crust from which it melted and/or through which it passed. Large rock clasts of igneous and metamorphic lithologies entrained in glacial tills at the head of major outlet glaciers traversing the TAM provide eroded samples of the proximal EAS basement. Zircons in these materials will provide data about age and inheritance (U-Pb), crustal vs. mantle origin (O isotopes), and crustal sources and evolution (Hf isotopes). Integrated along a significant part of the TAM, these data will help define broader crustal provinces that can be correlated with geophysical data and used to test models of crustal assembly. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis project will provide a research opportunity for undergraduate and graduate students. Undergraduates will be involved as Research Assistants in sample preparation, imaging, and analytical procedures, and conducting their own independent research. The two main elements of this project will form the basis of MS thesis projects for two graduate students at UMD. Through this project they will gain a good understanding of petrology, isotope geochemistry, and analytical methods. The broader scientific impacts of this work are that it will help develop a better understanding of the origin and evolution of East Antarctic lithosphere underlying and adjacent to the TAM, which will be of value to the broader earth science and glaciological community. Furthermore, knowledge of East Antarctic geology is of continuing interest to the general public because of strong curiosity about past supercontinents, what?s under the ice, and the impact of global warming on ice-sheet stability.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Transantarctic Mountains; Not provided", "locations": "Transantarctic Mountains", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Goodge, John", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Age and Composition of the East Antarctic Shield by Isotopic Analysis of Granite and Glacial Till", "uid": "p0000258", "west": null}, {"awards": "0944615 Brown, Michael; 0944600 Siddoway, Christine", "bounds_geometry": "POLYGON((-146.5 -76,-145.95 -76,-145.4 -76,-144.85 -76,-144.3 -76,-143.75 -76,-143.2 -76,-142.65 -76,-142.1 -76,-141.55 -76,-141 -76,-141 -76.15,-141 -76.3,-141 -76.45,-141 -76.6,-141 -76.75,-141 -76.9,-141 -77.05,-141 -77.2,-141 -77.35,-141 -77.5,-141.55 -77.5,-142.1 -77.5,-142.65 -77.5,-143.2 -77.5,-143.75 -77.5,-144.3 -77.5,-144.85 -77.5,-145.4 -77.5,-145.95 -77.5,-146.5 -77.5,-146.5 -77.35,-146.5 -77.2,-146.5 -77.05,-146.5 -76.9,-146.5 -76.75,-146.5 -76.6,-146.5 -76.45,-146.5 -76.3,-146.5 -76.15,-146.5 -76))", "dataset_titles": "Rock Samples collected from bedrock exposures, Ford Ranges, MBL", "datasets": [{"dataset_uid": "200415", "doi": "", "keywords": null, "people": null, "repository": "Polar Rock Repository", "science_program": null, "title": "Rock Samples collected from bedrock exposures, Ford Ranges, MBL", "url": "http://bprc.osu.edu/rr/"}], "date_created": "Thu, 09 Oct 2014 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe northern Ford ranges in Marie Byrd Land, Antarctica, record events and processes that transformed a voluminous succession of Lower Paleozoic turbidites intruded by calc-alkaline plutonic rocks into differentiated continental crust along the margin of Gondwana. In this study the Fosdick migmatite?granite complex will be used to investigate crustal evolution through an integrated program of fieldwork, structural geology, petrology, mineral equilibria modeling, geochronology and geochemistry. The PIs propose detailed traverses at four sites within the complex to investigate Paleozoic and Mesozoic orogenic cycles. They will use petrological associations, structural geometry, and microstructures of host gneisses and leucogranites to distinguish the migration and coalescence patterns for remnant melt flow networks, and carry out detailed sampling for geochronology, geochemistry and isotope research. Mafic plutonic phases will be sampled to acquire information about mantle contributions at the source. Mineral equilibria modeling of source rocks and granite products, combined with in situ mineral dating, will be employed to resolve the P?T?t trajectories arising from thickening/thinning of crust during orogenic cycles and to investigate melting and melt loss history. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis work involves research and educational initiatives for an early career female scientist, as well as Ph.D. and undergraduate students. Educational programs for high school audiences and undergraduate courses on interdisciplinary Antarctic science will be developed.", "east": -141.0, "geometry": "POINT(-143.75 -76.75)", "instruments": null, "is_usap_dc": true, "keywords": "Tectonic; TECTONICS; Transcurrent Faults; MAJOR ELEMENTS; Migmatite; Structural Geology; Gneiss Dome; Geochronology; AGE DETERMINATIONS; Detachment Faults; Marie Byrd Land", "locations": "Marie Byrd Land", "north": -76.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Siddoway, Christine; Brown, Mike", "platforms": null, "repo": "Polar Rock Repository", "repositories": "Polar Rock Repository", "science_programs": null, "south": -77.5, "title": "Collaborative research: Polyphase Orogenesis and Crustal Differentiation in West Antarctica", "uid": "p0000259", "west": -146.5}, {"awards": "1043700 Harry, Dennis", "bounds_geometry": "POLYGON((-180 -70,-176.5 -70,-173 -70,-169.5 -70,-166 -70,-162.5 -70,-159 -70,-155.5 -70,-152 -70,-148.5 -70,-145 -70,-145 -71,-145 -72,-145 -73,-145 -74,-145 -75,-145 -76,-145 -77,-145 -78,-145 -79,-145 -80,-148.5 -80,-152 -80,-155.5 -80,-159 -80,-162.5 -80,-166 -80,-169.5 -80,-173 -80,-176.5 -80,180 -80,177.5 -80,175 -80,172.5 -80,170 -80,167.5 -80,165 -80,162.5 -80,160 -80,157.5 -80,155 -80,155 -79,155 -78,155 -77,155 -76,155 -75,155 -74,155 -73,155 -72,155 -71,155 -70,157.5 -70,160 -70,162.5 -70,165 -70,167.5 -70,170 -70,172.5 -70,175 -70,177.5 -70,-180 -70))", "dataset_titles": "Geodynamic Models of Subsidence and Lithospheric Flexure at the ANDRILL Drill Sites: Implications for Cenozoic Tectonics and Ice Sheet History; Ross Sea post-middle Miocene seismic interpretation", "datasets": [{"dataset_uid": "600128", "doi": "10.15784/600128", "keywords": "Andrill; Antarctica; Continental Rift; Geology/Geophysics - Other; Lithosphere; Model; Ross Sea; Solid Earth; Tectonic; Transantarctic Mountains", "people": "Harry, Dennis L.", "repository": "USAP-DC", "science_program": "ANDRILL", "title": "Geodynamic Models of Subsidence and Lithospheric Flexure at the ANDRILL Drill Sites: Implications for Cenozoic Tectonics and Ice Sheet History", "url": "https://www.usap-dc.org/view/dataset/600128"}, {"dataset_uid": "601227", "doi": "10.15784/601227", "keywords": "Andrill; Antarctica; Marine Geoscience; Ross Sea; Seismic Interpretation; Seismic Reflection; Stratigraphy; Subsidence; Victoria Land Basin", "people": "Harry, Dennis L.", "repository": "USAP-DC", "science_program": "ANDRILL", "title": "Ross Sea post-middle Miocene seismic interpretation", "url": "https://www.usap-dc.org/view/dataset/601227"}], "date_created": "Sun, 31 Aug 2014 00:00:00 GMT", "description": "Intellectual Merit: This research will place the subsidence history of the southern Victoria Land Basin into a quantitative geodynamic context and will assess the influence of flexure associated with late Neogene volcanic loading of the crust by the Erebus Volcanic Group. This will be done by extending geodynamic models of extension in the West Antarctic Rift System to include extensional hiatuses hypothesized to have occurred during the Late Paleogene and Miocene, and by developing a new geodynamic model of volcanic loading and associated lithosphere flexure. Finite element and finite difference modeling methods will be used. In the first phase of the project, a series of extensional geodynamic models will be developed to examine the effect that proposed extensional hiatuses have on the style of extension, with emphasis placed on developing a process based understanding of the change in rift style from diffuse during the Late Cretaceous to more focused during the Cenozoic. The models will test the hypotheses that extensional hiatuses led to the change in rifting style, and will place constraints on the timing and duration of the hiatuses. The second phase of the project will use the thermal and rheological properties of the previous models to constrain the flexural rigidity of the lithosphere in order to model the flexural response to volcanic loading to test the hypotheses that flexural subsidence contributed to cyclic changes between grounded and floating ice at the ANDRILL AND-1A site, complicating interpretations of the climatic record from this core, and that flexure contributes to the stress orientation at the AND-2B site, which is inconsistent with the expected regional extensional stress orientation. Broader impacts: The project will train an undergraduate student and an M.S. student. Outreach activities include a planned series of talks at regional high schools, junior colleges, and 4-year colleges that have geology programs.", "east": -145.0, "geometry": "POINT(-175 -75)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; MARINE GEOPHYSICS; Antarctica; NOT APPLICABLE", "locations": "Antarctica", "north": -70.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Harry, Dennis L.", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ANDRILL", "south": -80.0, "title": "Geodynamic Models of Subsidence and Lithospheric Flexure at the ANDRILL Drill Sites: Implications for Cenozoic Tectonics and Ice Sheet History", "uid": "p0000467", "west": 155.0}, {"awards": "0944532 Isbell, John; 0944662 Elliot, David", "bounds_geometry": "POLYGON((158.9 -83,159.583 -83,160.266 -83,160.949 -83,161.632 -83,162.315 -83,162.998 -83,163.681 -83,164.364 -83,165.047 -83,165.73 -83,165.73 -83.21,165.73 -83.42,165.73 -83.63,165.73 -83.84,165.73 -84.05,165.73 -84.26,165.73 -84.47,165.73 -84.68,165.73 -84.89,165.73 -85.1,165.047 -85.1,164.364 -85.1,163.681 -85.1,162.998 -85.1,162.315 -85.1,161.632 -85.1,160.949 -85.1,160.266 -85.1,159.583 -85.1,158.9 -85.1,158.9 -84.89,158.9 -84.68,158.9 -84.47,158.9 -84.26,158.9 -84.05,158.9 -83.84,158.9 -83.63,158.9 -83.42,158.9 -83.21,158.9 -83))", "dataset_titles": "Rock Samples (full data link not provided)", "datasets": [{"dataset_uid": "000171", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Rock Samples (full data link not provided)", "url": "http://bprc.osu.edu/rr/"}], "date_created": "Thu, 05 Dec 2013 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe goal of this project is to address relationships between foreland basins and their tectonic settings by combining detrital zircon isotope characteristics and sedimentological data. To accomplish this goal the PIs will develop a detailed geochronology and analyze Hf- and O-isotopes of detrital zircons in sandstones of the Devonian Taylor Group and the Permian-Triassic Victoria Group. These data will allow them to better determine provenance and basin fill, and to understand the nature of the now ice covered source regions in East and West Antarctica. The PIs will document possible unexposed/unknown crustal terrains in West Antarctica, investigate sub-glacial terrains of East Antarctica that were exposed to erosion during Devonian to Triassic time, and determine the evolving provenance and tectonic history of the Devonian to Triassic Gondwana basins in the central Transantarctic Mountains. Detrital zircon data will be interpreted in the context of fluvial dispersal/drainage patterns, sandstone petrology, and sequence stratigraphy. This interpretation will identify source terrains and evolving sediment provenances. Paleocurrent analysis and sequence stratigraphy will determine the timing and nature of changing tectonic conditions associated with development of the depositional basins and document the tectonic history of the Antarctic sector of Gondwana. Results from this study will answer questions about the Panthalassan margin of Gondwana, the Antarctic craton, and the Beacon depositional basin and their respective roles in global tectonics and the geologic and biotic history of Antarctica. The Beacon basin and adjacent uplands played an important role in the development and demise of Gondwanan glaciation through modification of polar climates, development of peat-forming mires, colonization of the landscape by plants, and were a migration route for Mesozoic vertebrates into Antarctica. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis proposal includes support for two graduate students who will participate in the fieldwork, and also support for other students to participate in laboratory studies. Results of the research will be incorporated in classroom teaching at the undergraduate and graduate levels and will help train the next generation of field geologists. Interactions with K-12 science classes will be achieved by video/computer conferencing and satellite phone connections from Antarctica. Another outreach effort is the developing cooperation between the Byrd Polar Research Center and the Center of Science and Industry in Columbus.", "east": 165.73, "geometry": "POINT(162.315 -84.05)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e XRF", "is_usap_dc": true, "keywords": "Not provided; LABORATORY", "locations": null, "north": -83.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Elliot, David; Isbell, John", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "PRR", "repositories": "PRR", "science_programs": null, "south": -85.1, "title": "Collaborative Research:Application of Detrital Zircon Isotope Characteristics and Sandstone Analysis of Beacon Strata to the Tectonic Evolution of the Antarctic Sector of Gondwana", "uid": "p0000312", "west": 158.9}, {"awards": "1043749 Rouse, Gregory", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP1105", "datasets": [{"dataset_uid": "002659", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1105", "url": "https://www.rvdata.us/search/cruise/NBP1105"}], "date_created": "Mon, 24 Jun 2013 00:00:00 GMT", "description": "The west Antarctic Peninsula is warming rapidly, and continuing changes in the thermal regime will likely result in severe consequences for marine fauna, including potential extinction of strongly adapted stenotherms, and invasions from neighboring faunas. Initial impacts of climate change may result in changes in connectivity among populations of the same species. These changes may will be undetectable by direct observation, but may be assessed via genetic connectivity, i.e. differences in allele or haplotype frequencies among populations can be used to infer levels of gene flow. The proposed research will explore the role that the Scotia Arc plays in connecting populations from South America to Antarctica, a corridor identified as a likely entry route for invaders into Antarctica. It also will examine the way in which cryptic species may confound our knowledge of broad-scale distributions, and in doing so, make contributions towards understanding biodiversity and testing the paradigm of circumpolarity in Antarctica. The principal investigator will to collect multi-locus genetic data across \u0027species\u0027 from a broad suite of benthic marine invertebrate phyla, from multiple locations, in order to address hypotheses regarding speciation and connectivity, to estimate demographic population changes, and to identify the underlying processes that drive observed phylogeographic patterns. Comparative phylogeography is a particularly valuable approach because it enables the identification of long-term barriers and refugia common to groups of species and is consequently highly relevant to conservation planning. Moreover, this work will form a valuable baseline for detecting future changes in connectivity. The results of the research will be disseminated through peer-reviewed publications and presentations at conferences. In addition, the project will support the interdisciplinary training of a female graduate student, two undergraduate students, and host additional summer students through the STARS program at SIO, which helps minority students prepare for graduate school. This project will integrate research and education through conducting an interdisciplinary workshop that brings together Earth Science and Biology high school teachers. This workshop aims to assist teachers derive their own curricula uniting plate tectonics, ocean history and evolution, supporting a new high school earth sciences program. Information generated by this project will also directly feed into international efforts to design a series of Marine Protected Areas (MPAs) in Antarctica.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Rouse, Gregory", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Using molecular data to test connectivity and the circumpolar paradigm for Antarctic marine invertebrates", "uid": "p0000847", "west": null}, {"awards": "0636883 Bell, Robin", "bounds_geometry": "POLYGON((20 -75,23 -75,26 -75,29 -75,32 -75,35 -75,38 -75,41 -75,44 -75,47 -75,50 -75,50 -76.5,50 -78,50 -79.5,50 -81,50 -82.5,50 -84,50 -85.5,50 -87,50 -88.5,50 -90,47 -90,44 -90,41 -90,38 -90,35 -90,32 -90,29 -90,26 -90,23 -90,20 -90,20 -88.5,20 -87,20 -85.5,20 -84,20 -82.5,20 -81,20 -79.5,20 -78,20 -76.5,20 -75))", "dataset_titles": "Data portal at Lamont for airborne data", "datasets": [{"dataset_uid": "000111", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Data portal at Lamont for airborne data", "url": "http://wonder.ldeo.columbia.edu/wordpress/"}], "date_created": "Tue, 02 Apr 2013 00:00:00 GMT", "description": "Bell/0636883\u003cbr/\u003e\u003cbr/\u003eThis award support a project to study the role that subglacial water plays in the overall stability of major ice sheets. An estimated 22,000 km3 of water is currently stored within Antarctica\u0027s subglacial lakes. Movement of this water occurs through a complex and largely inferred drainage system in both East and West Antarctica. Geomorphic evidence for the catastrophic drainage of subglacial lakes documents repeated events. These major flood events appear to have drained the largest subglacial lakes situated in the relatively stable interior of the East Antarctic ice sheet. Emerging evidence suggests there is a close connection between significant subglacial lakes and the onset of the Recovery Ice Stream one of the largest in East Antarctica. Our preliminary analysis of the Recovery Lakes region, East Antarctica suggests a direct linkage between lakes and streaming ice flow, specifically the 800 km long Recovery Ice Stream and its tributaries. Located just upslope of the Recovery Ice Stream, the Recovery Lakes Region is composed of 3 well-defined lakes and a fourth, ambiguous, \u0027lake-like\u0027 feature. While other large lakes have a localized impact on ice surface slope, the Recovery Lakes Region lakes are coincident with an abrupt regional change in the ice sheet surface slope. Satellite imagery demonstrates that the downslope margin of this lake area contains distinct flow strips and crevasses: both indicative of increasing ice velocities. The discovery of a series of large lakes coincident with the onset of rapid ice flow in East Antarctica clearly links subglacial lakes and ice sheet dynamics for the first time. The evidence linking the onset of streaming in the Recovery Drainage Ice Stream to the series of large subglacial lakes raises the fundamental question: How can subglacial lakes trigger the onset of ice streaming? We advance two possible mechanisms: (i) Subglacial lakes can produce accelerated ice flow through the drainage of lake water beneath the ice sheet downslope of the lakes. (ii) Subglacial lakes can produce accelerated ice flow accelerated ice flow by modifying the basal thermal gradient via basal accretion over the lakes so when the ice sheet regrounds basal melting dominates. To evaluate the contribution of lake water and the changing basal thermal gradient, we propose an integrated program incorporating satellite imagery analysis, a series of reconnaissance aerogeophysical profiles over the Recovery Lake Region and the installation of continuous GPS sites over the Recovery Lakes. This analysis and new data will enable us (1) to produce a velocity field over the Recovery Lakes Region, (2) to map the ice thickness changes over the lakes due to acceleration triggered thinning, basal melting and freezing, (3) determine the depth and possible the tectonic origin of the Recovery Lakes and (4) determine the stability of these lakes over time. These basic data sets will enable us to advance our understanding of how subglacial lakes trigger the onset of streaming. The intellectual merit of this project is that it will be the first systematic analysis of ice streams triggering the onset of ice streams. This work has profound implications for the modeling of ice sheet behavior in the future, the geologic record of abrupt climate changes and the longevity of subglacial lakes. The broader impacts of the project are programs that will reach students of all ages through undergraduates involved in the research, formal presentations in teacher education programs and ongoing public outreach efforts at major science museums. Subglacial Antarctic lake environments are emerging as a premier, major frontier for exploration during the IPY 2007-2009.", "east": 50.0, "geometry": "POINT(35 -82.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e AEM; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IMAGING RADAR SYSTEMS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e LIDAR ALTIMETERS", "is_usap_dc": false, "keywords": "DHC-6; Basal Melting; Ice Stream; Ice Thickness; Velocity; Ice Stream Stability; Basal Freezing; Antarctica; Drainage; Aerogeophysical; Subglacial Lake; Flood Event", "locations": "Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bell, Robin; Studinger, Michael S.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": -90.0, "title": "Subglacial Lakes and the Onset of Ice Streaming: Recovery Lakes", "uid": "p0000702", "west": 20.0}, {"awards": "0838914 Wannamaker, Philip", "bounds_geometry": "POLYGON((141.01732 -82.13,144.910279 -82.13,148.803238 -82.13,152.696197 -82.13,156.589156 -82.13,160.482115 -82.13,164.375074 -82.13,168.268033 -82.13,172.160992 -82.13,176.053951 -82.13,179.94691 -82.13,179.94691 -82.351835,179.94691 -82.57367,179.94691 -82.795505,179.94691 -83.01734,179.94691 -83.239175,179.94691 -83.46101,179.94691 -83.682845,179.94691 -83.90468,179.94691 -84.126515,179.94691 -84.34835,176.053951 -84.34835,172.160992 -84.34835,168.268033 -84.34835,164.375074 -84.34835,160.482115 -84.34835,156.589156 -84.34835,152.696197 -84.34835,148.803238 -84.34835,144.910279 -84.34835,141.01732 -84.34835,141.01732 -84.126515,141.01732 -83.90468,141.01732 -83.682845,141.01732 -83.46101,141.01732 -83.239175,141.01732 -83.01734,141.01732 -82.795505,141.01732 -82.57367,141.01732 -82.351835,141.01732 -82.13))", "dataset_titles": "Agglutinated Foraminifera, genome sequencing data; Rift Mechanisms and Thermal Regime of the Lithosphere across Beardmore Glacier Region, Central Transantarctic Mountains, from Magnetotelluric Measurements", "datasets": [{"dataset_uid": "600102", "doi": "10.15784/600102", "keywords": "Antarctica; Magnetotelluric; Potential Field; Solid Earth; Transantarctic Mountains", "people": "Wannamaker, Philip", "repository": "USAP-DC", "science_program": null, "title": "Rift Mechanisms and Thermal Regime of the Lithosphere across Beardmore Glacier Region, Central Transantarctic Mountains, from Magnetotelluric Measurements", "url": "https://www.usap-dc.org/view/dataset/600102"}, {"dataset_uid": "000211", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Agglutinated Foraminifera, genome sequencing data", "url": "http://www.ncbi.nlm.nih.gov/sites/myncbi/collections/public/1vwfrm7rJme2hrzl6smGVhpk-/"}], "date_created": "Mon, 12 Nov 2012 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The investigators will examine competing hypotheses for the mechanism of extension and creation of the Transantarctic Mountains, and evolution of the thermal regimes of rifted West Antarctica and stable East Antarctica using magnetotelluric (MT) profiles. Surrounded almost entirely by ocean ridges, Antarctica is a special tectonic situation because of the need to make accommodation space for rifting in the Transantarctic region. In the MT method, temporal variations in the Earth\u0027s natural electromagnetic field are used as source fields to probe the electrical resistivity structure in the depth range of 1 to 200 km, or more. Geophysical methods, such as MT, are appropriate in Antarctica because of the predominance of thick ice cover over most of the Continent and the difficult operating environment. The proposed effort will consist of approximately 50 sites over a distance approaching 500 km with a 10 km average spacing, oriented normal to the Transantarctic Mountains (TAM), in the Beardmore glacier area. High quality MT soundings will be collected over thick ice sheets using a custom electrode preamp design, updated from previous Antarctic projects. Data acquisition will take place over two field seasons. The primary goals are three-fold: to establish the location of the deeper tectonic transition between East and West Antarctica that may be offset from the physiographic transition at the surface, using deep resistivity structure distinguish between modes of extensional upwelling and magmatism that may be vertically non-uniform, depth and magnitude of quasi-layered deep crustal low resistivity, particularly below West Antarctica, will be used to estimate crustal heat flux into the ice sheet base.", "east": 179.94691, "geometry": "POINT(160.482115 -83.239175)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -82.13, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Bowser, Samuel; Wannamaker, Philip", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "NCBI GenBank; USAP-DC", "science_programs": null, "south": -84.34835, "title": "Rift Mechanisms and Thermal Regime of the Lithosphere across Beardmore Glacier Region, Central Transantarctic Mountains, from Magnetotelluric Measurements", "uid": "p0000247", "west": 141.01732}, {"awards": "0733025 Blankenship, Donald", "bounds_geometry": "POLYGON((95 -65,103.5 -65,112 -65,120.5 -65,129 -65,137.5 -65,146 -65,154.5 -65,163 -65,171.5 -65,180 -65,180 -66.7,180 -68.4,180 -70.1,180 -71.8,180 -73.5,180 -75.2,180 -76.9,180 -78.6,180 -80.3,180 -82,171.5 -82,163 -82,154.5 -82,146 -82,137.5 -82,129 -82,120.5 -82,112 -82,103.5 -82,95 -82,95 -80.3,95 -78.6,95 -76.9,95 -75.2,95 -73.5,95 -71.8,95 -70.1,95 -68.4,95 -66.7,95 -65))", "dataset_titles": "Gravity anomaly data; Gravity raw data; ICECAP Basal Interface Specularity Content Profiles: IPY and OIB; ICECAP flight reports; ICECAP ice thickness data over the Darwin and Hatherton Glaciers, Transantarctic Mountains, Antarctica; ICECAP radargrams (HiCARS 1); ICECAP radargrams (HiCARS 2); Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau; Ice thickness and bed reflectivity data (HiCARS 1); Ice thickness and bed reflectivity data (HiCARS 2); Laser altimetry raw data; Laser surface elevation data; Magnetic anomaly data; Magnetic raw data", "datasets": [{"dataset_uid": "601605", "doi": "10.15784/601605", "keywords": "Airborne Radar; Antarctica; Basler; Darwin Glacier; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hatherton Glacier; Hicars; ICECAP; Ice Penetrating Radar; Ice Thickness; Transantarctic Mountains", "people": "Blankenship, Donald D.; Gillespie, Mette; Young, Duncan A.; Siegert, Martin; Holt, John W.; Greenbaum, Jamin; Schroeder, Dustin", "repository": "USAP-DC", "science_program": null, "title": "ICECAP ice thickness data over the Darwin and Hatherton Glaciers, Transantarctic Mountains, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601605"}, {"dataset_uid": "601371", "doi": "10.15784/601371", "keywords": "Antarctica; East Antarctica; ICECAP; Ice Penetrating Radar; Radar Echo Sounder; Radar Echo Sounding; Subglacial Hydrology", "people": "Schroeder, Dustin; Siegert, Martin; Roberts, Jason; Young, Duncan A.; van Ommen, Tas; Greenbaum, Jamin; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "url": "https://www.usap-dc.org/view/dataset/601371"}, {"dataset_uid": "200113", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Ice thickness and bed reflectivity data (HiCARS 1)", "url": "https://nsidc.org/data/IR1HI2/versions/1"}, {"dataset_uid": "200112", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "ICECAP radargrams (HiCARS 2)", "url": "https://nsidc.org/data/IR2HI1B/versions/1"}, {"dataset_uid": "200119", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Laser altimetry raw data", "url": "https://nsidc.org/data/ilutp1b"}, {"dataset_uid": "200120", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Laser surface elevation data", "url": "https://nsidc.org/data/ilutp2"}, {"dataset_uid": "200121", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "ICECAP flight reports", "url": "https://nsidc.org/data/ifltrpt"}, {"dataset_uid": "200116", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Magnetic anomaly data", "url": "https://nsidc.org/data/imgeo2"}, {"dataset_uid": "601411", "doi": "10.15784/601411", "keywords": "Antarctica; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; ICECAP; Ice Penetrating Radar; Internal Reflecting Horizons", "people": "Cavitte, Marie G. P; Blankenship, Donald D.; Muldoon, Gail R.; Quartini, Enrica; Kempf, Scott D.; Ng, Gregory; Greenbaum, Jamin; Ritz, Catherine; Mulvaney, Robert; Young, Duncan A.; Schroeder, Dustin; Tozer, Carly; Roberts, Jason; Frezzotti, Massimo; Paden, John", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau", "url": "https://www.usap-dc.org/view/dataset/601411"}, {"dataset_uid": "200115", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Magnetic raw data", "url": "https://nsidc.org/data/imgeo1b"}, {"dataset_uid": "200114", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Ice thickness and bed reflectivity data (HiCARS 2)", "url": "https://nsidc.org/data/IR2HI2/versions/1"}, {"dataset_uid": "200117", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Gravity raw data", "url": "https://nsidc.org/data/igbgm1b/"}, {"dataset_uid": "200118", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Gravity anomaly data", "url": "https://nsidc.org/data/igbgm2/"}, {"dataset_uid": "200111", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "ICECAP radargrams (HiCARS 1)", "url": "https://nsidc.org/data/IR1HI1B/versions/1"}], "date_created": "Tue, 04 Sep 2012 00:00:00 GMT", "description": "This project is an aerogeophysical survey to explore unknown terrain in East Antarctica to answer questions of climate change and earth science. The methods include ice-penetrating radar, gravity, and magnetic measurements. The project?s main goal is to investigate the stability and migration of ice divides that guide flow of the East Antarctic ice sheet, the world?s largest. The project also maps ice accumulation over the last interglacial, identifies subglacial lakes, and characterizes the catchment basins of the very largest glacial basins, including Wilkes and Aurora. The outcomes contribute to ice sheet models relevant to understanding sea level rise in a warming world. The work will also help understand the regional geology. Buried beneath miles-thick ice, East Antarctica is virtually uncharacterized, but is considered a keystone for tectonic reconstructions and other geologic questions. The region also hosts subglacial lakes, whose geologic histories are unknown. \u003cbr/\u003e\u003cbr/\u003eThe broader impacts are extensive, and include societal relevance for understanding sea level rise, outreach in various forms, and education at the K12 through postdoctoral levels. The project contributes to the International Polar Year (2007-2009) by addressing key IPY themes on frontiers in polar exploration and climate change. It also includes extensive international collaboration with the United Kingdom, Australia, France and other nations; and offers explicit opportunities for early career scientists.", "east": 180.0, "geometry": "POINT(137.5 -73.5)", "instruments": null, "is_usap_dc": false, "keywords": "DOME C; Aurora Subglacial Basin; BT-67; East Antarctica; Wilkes Land; Totten Glacier; ICE SHEETS; Byrd Glacier; Wilkes Subglacial Basin", "locations": "East Antarctica; DOME C; Byrd Glacier; Totten Glacier; Aurora Subglacial Basin; Wilkes Subglacial Basin; Wilkes Land", "north": -65.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Integrated System Science", "paleo_time": null, "persons": "Siegert, Martin; Roberts, Jason; Van Ommen, Tas; Warner, Roland; Richter, Thomas; Greenbaum, Jamin; Holt, John W.; Young, Duncan A.; Blankenship, Donald D.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e BT-67", "repo": "USAP-DC", "repositories": "NSIDC; USAP-DC", "science_programs": null, "south": -82.0, "title": "IPY Research: Investigating the Cryospheric Evolution of the Central Antarctic Plate (ICECAP)", "uid": "p0000719", "west": 95.0}, {"awards": "9527571 Whillans, Ian", "bounds_geometry": "POLYGON((158.25 -76.66667,158.325 -76.66667,158.4 -76.66667,158.475 -76.66667,158.55 -76.66667,158.625 -76.66667,158.7 -76.66667,158.775 -76.66667,158.85 -76.66667,158.925 -76.66667,159 -76.66667,159 -76.683336,159 -76.700002,159 -76.716668,159 -76.733334,159 -76.75,159 -76.766666,159 -76.783332,159 -76.799998,159 -76.816664,159 -76.83333,158.925 -76.83333,158.85 -76.83333,158.775 -76.83333,158.7 -76.83333,158.625 -76.83333,158.55 -76.83333,158.475 -76.83333,158.4 -76.83333,158.325 -76.83333,158.25 -76.83333,158.25 -76.816664,158.25 -76.799998,158.25 -76.783332,158.25 -76.766666,158.25 -76.75,158.25 -76.733334,158.25 -76.716668,158.25 -76.700002,158.25 -76.683336,158.25 -76.66667))", "dataset_titles": "GPS Ice Flow Measurements, Allan Hills, Antarctica", "datasets": [{"dataset_uid": "609507", "doi": "10.7265/N5NS0RSX", "keywords": "Allan Hills; Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ice Flow Velocity", "people": "Spikes, Vandy Blue; Kurbatov, Andrei V.; Spaulding, Nicole; Hamilton, Gordon S.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "GPS Ice Flow Measurements, Allan Hills, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609507"}], "date_created": "Tue, 20 Dec 2011 00:00:00 GMT", "description": "Whillans, Wilson, Goad OPP 9527571 Abstract This award supports a project to initiate Global Positioning System (GPS) measurements for rock motions in South Victoria Land and vicinity. The results will be used to test some of the leading models for ice-sheet change and tectonism, in particular, whether the continent is rebounding due to reduced ice load from East or West Antarctica and whether there is tectonic motion due to Terror Rift or uplift of the Transantarctic Mountains. A modest program to measure ice motion will be conducted as well. The motive is to test models for ice flow in the Allan Hills meteorite concentration region and to determine whether small glaciers in the Dry Valleys are thickening or thinning. Monuments will be set into rock and ice and GPS receivers used to determine their locations. Repeats in later years will determine motion. Field activities will involve close cooperation with the USGS.", "east": 159.0, "geometry": "POINT(158.625 -76.75)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; LABORATORY; Not provided; Ice Movement; GPS Data; Vertical Motions; GPS; FIELD INVESTIGATION", "locations": null, "north": -76.66667, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Whillans, Ian; Spaulding, Nicole; Hamilton, Gordon S.; Spikes, Vandy Blue; Kurbatov, Andrei V.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.83333, "title": "GPS Measurements of Rock and Ice Motions in South Victoria Land", "uid": "p0000523", "west": 158.25}, {"awards": "0838729 Hemming, Sidney; 0838722 Reiners, Peter", "bounds_geometry": "POLYGON((-67.2 -58,-43.98 -58,-20.76 -58,2.46 -58,25.68 -58,48.9 -58,72.12 -58,95.34 -58,118.56 -58,141.78 -58,165 -58,165 -59.2,165 -60.4,165 -61.6,165 -62.8,165 -64,165 -65.2,165 -66.4,165 -67.6,165 -68.8,165 -70,141.78 -70,118.56 -70,95.34 -70,72.12 -70,48.9 -70,25.68 -70,2.46 -70,-20.76 -70,-43.98 -70,-67.2 -70,-67.2 -68.8,-67.2 -67.6,-67.2 -66.4,-67.2 -65.2,-67.2 -64,-67.2 -62.8,-67.2 -61.6,-67.2 -60.4,-67.2 -59.2,-67.2 -58))", "dataset_titles": "Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology", "datasets": [{"dataset_uid": "600094", "doi": "10.15784/600094", "keywords": "Antarctica; Fission Track Thermochronology; Gamburtsev Mountains; Geochronology; Marine Sediments; Solid Earth; Southern Ocean", "people": "Hemming, Sidney R.", "repository": "USAP-DC", "science_program": null, "title": "Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology", "url": "https://www.usap-dc.org/view/dataset/600094"}, {"dataset_uid": "600093", "doi": "10.15784/600093", "keywords": "Antarctica; Fission Track Thermochronology; Gamburtsev Mountains; Geochronology; Marine Sediments; NBP0101; ODP1166; ODP739; Prydz Bay; Solid Earth; Southern Ocean", "people": "Reiners, Peter; Thomson, Stuart; Gehrels, George", "repository": "USAP-DC", "science_program": null, "title": "Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology", "url": "https://www.usap-dc.org/view/dataset/600093"}], "date_created": "Sun, 05 Jun 2011 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Much of the inventory of East Antarctic bedrock geochronology, as well as a record of its erosional history, is preserved in Cenozoic sediments around its margin. This project is to use these sediments to understand their sub-ice provenance and the erosional history of the shield by measuring ages of multiple geo- and thermochronometers on single detrital crystals and on multiple crystals in detrital clasts (U/Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar). The combination of multi-chronometer ages in single grains and clasts provides a powerful fingerprint of bedrock sources, allowing us to trace provenance in Eocene fluvial sandstones through Quaternary diamicts around the margin. Multiple thermochronometric (cooling) ages in the same grains and clasts also allows us to interpret the timing and rates of erosion from these bedrock sources. Delineating a distribution of bedrock age units, their sediment transport connections, and their erosional histories over the Cenozoic, will in turn allow us to test tectonic models bearing on: (1) the origin of the Gamburtsev Subglacial Mountains, (2) fluvial and topographic evolution, and (3) the history of glacial growth and erosion.", "east": 165.0, "geometry": "POINT(48.9 -64)", "instruments": null, "is_usap_dc": true, "keywords": "LABORATORY", "locations": null, "north": -58.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Reiners, Peter; Gehrels, George; Thompson, Stuart; Hemming, Sidney R.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology", "uid": "p0000506", "west": -67.2}, {"awards": "0619708 Simpson, David", "bounds_geometry": "POINT(180 90)", "dataset_titles": "IRIS data management center: seismic data and metadata for the engineering testing of these designs can be found under the XD network code (Polar Equipment Development) at stations PMC01, PMC02, PSP01, PSP02, and PSP03.", "datasets": [{"dataset_uid": "001460", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IRIS data management center: seismic data and metadata for the engineering testing of these designs can be found under the XD network code (Polar Equipment Development) at stations PMC01, PMC02, PSP01, PSP02, and PSP03.", "url": "http://ds.iris.edu/ds/nodes/dmc/"}], "date_created": "Mon, 20 Dec 2010 00:00:00 GMT", "description": "This project develops power and communications systems to support the operation of seismometers and GPS receivers in Antarctica throughout the polar night. In terms of intellectual merit, this system would allow a new class of geophysical questions to be approached, in areas as varied as ice sheet movement, plate tectonics, and deep earth structure. In terms of broader impacts, this project represents research infrastructure of potential use to many scientific disciplines. In addition, the results will improve society\u0027s understanding of the Antarctic ice sheet and its behavior in response to global warming.", "east": -180.0, "geometry": "POINT(-180 -90)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": false, "keywords": "IRIS-GSN; PASSCAL; SEISMOLOGICAL STATIONS; Not provided; GSN", "locations": null, "north": -90.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, Kent; Parker, Tim", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GSN; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e IRIS-GSN; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e PASSCAL; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS; Not provided", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Development of a Power and Communication System for Remote Autonomous GPS and Seismic Stations in Antarctica", "uid": "p0000691", "west": -180.0}, {"awards": "0125624 Wilson, Terry; 0126279 Lawver, Lawrence", "bounds_geometry": "POLYGON((163.69456 -75.04911,164.525266 -75.04911,165.355972 -75.04911,166.186678 -75.04911,167.017384 -75.04911,167.84809 -75.04911,168.678796 -75.04911,169.509502 -75.04911,170.340208 -75.04911,171.170914 -75.04911,172.00162 -75.04911,172.00162 -75.3293,172.00162 -75.60949,172.00162 -75.88968,172.00162 -76.16987,172.00162 -76.45006,172.00162 -76.73025,172.00162 -77.01044,172.00162 -77.29063,172.00162 -77.57082,172.00162 -77.85101,171.170914 -77.85101,170.340208 -77.85101,169.509502 -77.85101,168.678796 -77.85101,167.84809 -77.85101,167.017384 -77.85101,166.186678 -77.85101,165.355972 -77.85101,164.525266 -77.85101,163.69456 -77.85101,163.69456 -77.57082,163.69456 -77.29063,163.69456 -77.01044,163.69456 -76.73025,163.69456 -76.45006,163.69456 -76.16987,163.69456 -75.88968,163.69456 -75.60949,163.69456 -75.3293,163.69456 -75.04911))", "dataset_titles": "Expedition Data; NBP0401 data", "datasets": [{"dataset_uid": "000106", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0401 data", "url": "https://www.rvdata.us/search/cruise/NBP0401"}, {"dataset_uid": "001664", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0401"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a study to investigate the tectonic development of the southwestern Ross Sea region. Displacements between East and West Antarctica have long been proposed based on global plate circuits, apparent hot spot motions, interpretations of seafloor magnetic anomalies, paleomagnetism, and on geologic grounds. Such motions require plate boundaries crossing Antarctica, yet these boundaries have never been explicitly defined. This project will attempt to delineate the late Cenozoic - active boundary between East and West Antarctica along the Terror Rift in the western Ross Sea, where young structures have been identified, continuity between active extension and intracontinental structures can be established, and where accessibility via ship will allow new key data sets to be acquired. We will use multi-source marine and airborne geophysical data to map the fault patterns and volcanic structure along the eastern margin of the Terror Rift. The orientations of volcanic fissures and seamount alignments on the seafloor will be mapped using multibeam bathymetry. The volcanic alignments will show the regional extension or shear directions across the Terror Rift and the orientations of associated crustal stresses. Swath bathymetry and single channel seismic data will be used to document neotectonic fault patterns and the eastern limit of recent faulting. Delineation of neotectonic fault patterns will demonstrate whether the eastern margin of the Terror Rift forms a continuous boundary and whether the rift itself can be linked with postulated strike-slip faults in the northwestern Ross Sea. Seafloor findings from this project will be combined with fault kinematic and stress field determinations from the surrounding volcanic islands and the Transantarctic Mountains. The integrated results will test the propositions that the eastern boundary of the Terror Rift forms the limit of the major, late Cenozoic -active structures through the Ross Sea and that Terror Rift kinematics involve dextral transtension linked to the right-lateral strike-slip faulting to the north. These results will help constrain the kinematic and dynamic links between the West Antarctic rift system and Southern Ocean structures and any related motions between East and West Antarctica. In the first year, a collaborative structural analysis of existing multichannel and single channel seismic profiles and aeromagnetic data over the Terror Rift will be conducted. The location of volcanic vents or fissures and any fault scarps on the sea floor will be identified and a preliminary interpretation of the age and kinematics of deformation in the Terror Rift will be produced. Late in the second year, a one-month cruise on RVIB N.B. Palmer will carry out multibeam bathymetric and sidescan sonar mapping of selected portions of the seafloor of Terror Rift. Gravity, magnetics, seismic reflection and Bathy2000 3.5 kHz sub-bottom profile data will also be collected across the rift. In the third year, we will use these multisource data to map the orientations and forms of volcanic bodies and the extent and geometry of neotectonic faulting associated with the Terror Rift. The project will: 1) complete a map of neotectonic faults and volcanic structures in the Terror Rift; 2) interpret the structural pattern to derive the motions and stresses associated with development of the rift; 3) compare Terror Rift structures with faults and lineaments mapped in the Transantarctic Mountains to improve age constraints on the structures; and 4) integrate the late Cenozoic structural interpretations from the western Ross Sea with Southern Ocean plate boundary kinematics.", "east": 172.00162, "geometry": "POINT(167.84809 -76.45006)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": true, "keywords": "R/V NBP", "locations": null, "north": -75.04911, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Wilson, Terry", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.85101, "title": "Collaborative Research: Neotectonic Structure of Terror Rift, Western Ross Sea", "uid": "p0000111", "west": 163.69456}, {"awards": "0126472 Taylor, Frederick", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG0209", "datasets": [{"dataset_uid": "001743", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0209"}, {"dataset_uid": "002672", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0209", "url": "https://www.rvdata.us/search/cruise/LMG0209"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds and field support to continue a study of plate motions in the Antarctic Peninsula and Scotia Sea region. The principal aim of the original \"Scotia Arc GPS Project (SCARP)\" was to determine motions of the Scotia Plate relative to adjacent plates and to measure crustal deformation along its margins with special attention to the South Sandwich microplate and Bransfield Strait extension. The focus of the present proposal is confined to the part of the SCARP project that includes GPS sites at Elephant Island, the South Shetland Islands and on the Antarctic Peninsula. The British Antarctic Survey provides data from two sites on the Scotia arc for this project. The northern margin of the Scotia Plate is not included herein because that region is not covered under Polar Programs. A separate proposal will request support for re-measuring SCARP GPS stations in South America. With regard to the Antarctic Peninsula area, continuously operating GPS stations were established at Frei Base, King George Island (in 1996) and at the Argentine Base, South Orkney Islands (in 1998). A number of monumented sites were established in the Antarctic Peninsula region in 1997 to support campaign-style GPS work in December 1997 and December 1998. Because of the expected slow crustal motion in the Bransfield Strait and expiration of the initial grant, no further data collection will be done until enough time has passed so that new measurements can be expected to yield precise results.\u003cbr/\u003e\u003cbr/\u003eThe primary aim of this work is to complete the measurements required to quantify crustal deformation related to opening of the Bransfield Strait, the South Shetland microplate, and to identify any other independent tectonic blocks that the GPS data may reveal. The measurements to be completed under this award will be done using ship support during the 2002-2003 season. This would be five years after the first measurements and would provide quite precise horizontal velocities. This project will complete the acquisition, processing, and interpretation of a single data set to continue this initial phase of the NSF-funded project to measure crustal motions along the southern margin of the Scotia plate. A principal investigator and one graduate student from the University of Texas will perform fieldwork. A graduate student from the University of Hawaii will process the new data consistent with previous data, and all of the SCARP investigators (Bevis, Dalziel, Smalley, Taylor: from U. Texas, U. Hawaii, and U. Memphis) will participate in interpreting the data. The British Antarctic Survey (BAS) and Alfred Wegener Institute (AWI) also recognized the importance of the Scotia plate and the Bransfield system in both global and local plate tectonic frameworks. They, too, have used GPS to measure crustal motions in this region and duplicate a number of our sites. They began earlier than we, have taken data more recently, presumably will continue taking data, and they have published some results. The collaboration between SCARP, BAS, and AWI begun earlier, will continue into this new work. Joint and separate publications are anticipated. The existing SCARP network has several advantages that justify collection and analysis of another set of data. One is that SCARP has established and measured GPS sites on Smith, Low, and Livingston Islands, where other groups have not. These sites significantly extend the dimensions of the South Shetland microplate so that we can determine a more precise pole of rotation and recognize any sub-blocks within the South Shetland arc. Smith and Low Islands are near the end of the Bransfield Basin where relative motion between the South Shetland Microplate must somehow terminate, perhaps by faulting along an extension of the Hero fracture zone. Another advantage is that measurements under SCARP were made using fixed-height masts that eliminate all but a fraction of a millimeter of vertical error in exactly re-occupying each site. Vertical motion associated with postglacial rebound should be on the order of several mm/yr, which will eventually be measurable. Mid-Holocene shorelines that emerged to more than 20m on some South Shetland arc islands suggest that vertical motion is significant. Thus, this work will contribute to understanding both plate motions and post-glacial rebound from ice mass loss in the region.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Taylor, Frederick", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "The Scotia Arc GPS Project: Focus on the Antarctic Peninsula and South Shetland Islands", "uid": "p0000855", "west": null}, {"awards": "9317588 Lawver, Lawrence", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP9507", "datasets": [{"dataset_uid": "002227", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9507"}, {"dataset_uid": "002590", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP9507", "url": "https://www.rvdata.us/search/cruise/NBP9507"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award supports a marine geophysical investigation of the Bransfield Strait and the Shackleton Fracture Zone and environs in the Scotia Sea in an effort to understand the neotectonic evolution of the region. Multibeam swath mapping and sidescan sonar mapping will be used along with multichannel seismic imaging. The main goal of this proposal is to collect multibeam and sidescan sonar data to map the structural character and tectonic fabric of the evolving plate boundary in Southwest Scotia Sea, Shackleton Fracture Zone, and Bransfield Strait. Follow up multichannel seismic surveys will be done in the Southwest Scotia Sea. The secondary goal is to use sidescan sonar reflectivity images to generate detailed structural maps of the seafloor of these regions and to integrate the new data with existing seismic reflection, Geosat gravity, Hydrosweep and Seabeam bathymetric data. Once the base maps are produced they can be used by other researchers to help interpret multichannel and single channel seismic reflection records. The neotectonic evolution of the Antarctic Peninsula and Scotia Sea is extremely complex. Understanding the recent evolution of the Drake-Scotia-Antarctic-South America plate intersections will provide important information as to how major plate boundaries reorganize after demise of a long-lived spreading center and the consequential reduction in the number of plates. The plate reorganization probably resulted in the uplift of the Shackleton Ridge which may have effected the sedimentary patterns in both the Scotia Sea and possibly the Weddell Sea. If the break of the Shackleton transform fault can be traced with multibeam and sidescan sonar as it intersects the southern end of South America then the orientation and geometry of the faults, fractures and deformation as the transform fault intersects the South American continent will help to interpret the structures in that complex region. Bransfield Strait is presently undergoing extensi on based on high heat flow, active volcanoes and inferences from seismic reflection work. Seismic refraction indicates thick crust similar to the East African Rift or passive volcanic margins of continents. In contrast, analysis of isotopes and rare earth elements of the recent volcanics shows seemingly no continental contamination. The active extension in Bransfield Strait must be related to the plate reorganization but it is unclear exactly what tectonic processes are occurring. Besides elucidating the tectonic fabric of Bransfield Strait, the multibeam and sidescan sonar survey will identify potential dredge targets and DSRV Alvin dive sites.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Klinkhammer, Gary", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Neotectonic Evolution of Antarctic Peninsula/Scotia Sea Region: Multi-Beam, Sidescan Sonar, Seismic, Magnetics and Gravity Studies", "uid": "p0000809", "west": null}, {"awards": "9317872 Cande, Steven", "bounds_geometry": "POLYGON((-179.9994 -55.16418,-143.99949 -55.16418,-107.99958 -55.16418,-71.99967 -55.16418,-35.99976 -55.16418,0.000149999999991 -55.16418,36.00006 -55.16418,71.99997 -55.16418,107.99988 -55.16418,143.99979 -55.16418,179.9997 -55.16418,179.9997 -57.429208,179.9997 -59.694236,179.9997 -61.959264,179.9997 -64.224292,179.9997 -66.48932,179.9997 -68.754348,179.9997 -71.019376,179.9997 -73.284404,179.9997 -75.549432,179.9997 -77.81446,143.99979 -77.81446,107.99988 -77.81446,71.99997 -77.81446,36.00006 -77.81446,0.000149999999991 -77.81446,-35.99976 -77.81446,-71.99967 -77.81446,-107.99958 -77.81446,-143.99949 -77.81446,-179.9994 -77.81446,-179.9994 -75.549432,-179.9994 -73.284404,-179.9994 -71.019376,-179.9994 -68.754348,-179.9994 -66.48932,-179.9994 -64.224292,-179.9994 -61.959264,-179.9994 -59.694236,-179.9994 -57.429208,-179.9994 -55.16418))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002167", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9602"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9317872 Cande This award supports a marine geophysical study of the southwest Pacific between 170 degrees E and 80 degrees W longitude. Recent marine geophysical cruises in the southwest Pacific and a high-resolution altimetric gravity field declassified Geosat data have allowed significant progress to be made towards deciphering the complex history of the rifting between the Campbell Plateau/Chatham Rise landmass and the Marie Byrd Land margin. A revised history of plate interactions explains many enigmatic features seen in the magnetic and gravity fields yet several questions remain that require new data for resolution. The marine geophysical survey proposed will: (1) elucidate plate interactions at the evolving triple junction between the Antarctic and Australian plates and the mosaic of SW Pacific plates; (2) define the boundaries and interactions of the mosaic of plates that accommodated the rapidly changing plate geometry associated with subduction of the Pacific-Phoenix ridge outboard of New Zealand, the rifting of continental and oceanic lithosphere, and hotspot activity; and (3) map the development of Pacific-Antarctic Ridge and the assembly of the several small plates into the modern day Pacific plate. This survey will help to elucidate the dynamics of plate interactions and the plate tectonic evolution of Antarctica and New Zealand. ***", "east": 179.9997, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -55.16418, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Cande, Steven", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.81446, "title": "Collaborative Research: Late Cretaceous - Early Tertiary Plate Interactions in the Southwest Pacific", "uid": "p0000638", "west": -179.9994}, {"awards": "0126340 Cande, Steven", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0304B; Expedition data of NBP0304C; Expedition data of NBP0304D; Expedition data of NBP0403; Expedition data of NBP0406; Expedition data of NBP0501; Expedition data of NBP0501B", "datasets": [{"dataset_uid": "001691", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304C"}, {"dataset_uid": "002634", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304C", "url": "https://www.rvdata.us/search/cruise/NBP0304C"}, {"dataset_uid": "002635", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304D", "url": "https://www.rvdata.us/search/cruise/NBP0304D"}, {"dataset_uid": "002630", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501B", "url": "https://www.rvdata.us/search/cruise/NBP0501B"}, {"dataset_uid": "002632", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304B", "url": "https://www.rvdata.us/search/cruise/NBP0304B"}, {"dataset_uid": "001692", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304D"}, {"dataset_uid": "001690", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304B"}, {"dataset_uid": "002627", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "001660", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0403"}, {"dataset_uid": "001609", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0501B"}, {"dataset_uid": "002626", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0403", "url": "https://www.rvdata.us/search/cruise/NBP0403"}, {"dataset_uid": "002612", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0406", "url": "https://www.rvdata.us/search/cruise/NBP0406"}, {"dataset_uid": "002613", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0406", "url": "https://www.rvdata.us/search/cruise/NBP0406"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a project to make use of ship-repositioning transit cruises to gather geophysical information relating to plate tectonics of the Southern Ocean and to support student training activities. Well-constrained Cenozoic plate reconstructions of the circum-Antarctic region are critical for examining a number of problems of global geophysical importance. These problems include, e.g., relating the plate kinematics to its geological consequences in various plate circuits (Pacific-North America, Australia-Pacific); a dynamical understanding of what drives plate tectonics (which requires well-constrained kinematic information in order to distinguish between different geodynamic hypotheses); and an understanding of the rheology of the plates themselves, including the amount of internal deformation they can support, and the conditions leading to the formation of new plate boundaries through breakup of existing plates. By obtaining better constraints on the motion of the Antarctica plate with respect to these other plates, and by better quantifying the internal deformation within Antarctica (between East and West Antarctica), contributions will be made to solving these other fundamental problems.\u003cbr/\u003e\u003cbr/\u003eIn this project, existing data will be analyzed to address several specific issues related to plate motions involving the Antarctic plate. First, work will be done on four-plate solutions of Australia-Pacific-West Antarctica-East Antarctica motion, in order to most tightly constrain the rotation parameters for separation between East and West Antarctica for the time period from about 45 to 28 Ma (Adare Basin spreading system). This will be done by imposing closure on the four-plate circuit and using relevant marine geophysical data from all four of the boundaries. The uncertainties in the resulting rotation parameters will be determined based on the uncertainties in the data points. These uncertainties can then be propagated in the plate circuit for use in addressing the various global geodynamic problems mentioned above. Second, rotation parameters for Pacific-West Antarctica during Tertiary time will be determined using recently acquired well-navigated Palmer transit data and any additional data that can be acquired during the course of this project. These parameters and their uncertainties will be used in assessments of plate rigidity and included in the plate circuit studies.\u003cbr/\u003e\u003cbr/\u003eIn the framework of this project, new collection of marine geophysical data will be accomplished on a very flexible schedule. This will be done by collecting underway gravity, magnetics, and swath bathymetric data on Palmer transit cruises of geological importance. This has been successfully done on eight previous Palmer cruises since 1997, the most recent four of which were funded under a collaborative OPP grant to CalTech and Scripps which is now expiring. On one of the suitable transits, a formal class in marine geophysics will be conducted that will afford an opportunity to 12 or more graduate and undergraduate students, from CalTech and Scripps as well as other institutions. In this way, educational activities will be integrated with the usual scientific data collection objectives of the research project.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e WATER BOTTLES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Cande, Steven; Gordon, Arnold; Miller, Alisa", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Improved Cenozoic Plate Reconstructions of the Circum-Antarctic Region", "uid": "p0000825", "west": null}, {"awards": "9018742 Bell, Robin", "bounds_geometry": "POLYGON((-138.35619 -52.35083,-130.546489 -52.35083,-122.736788 -52.35083,-114.927087 -52.35083,-107.117386 -52.35083,-99.307685 -52.35083,-91.497984 -52.35083,-83.688283 -52.35083,-75.878582 -52.35083,-68.068881 -52.35083,-60.25918 -52.35083,-60.25918 -54.178043,-60.25918 -56.005256,-60.25918 -57.832469,-60.25918 -59.659682,-60.25918 -61.486895,-60.25918 -63.314108,-60.25918 -65.141321,-60.25918 -66.968534,-60.25918 -68.795747,-60.25918 -70.62296,-68.068881 -70.62296,-75.878582 -70.62296,-83.688283 -70.62296,-91.497984 -70.62296,-99.307685 -70.62296,-107.117386 -70.62296,-114.927087 -70.62296,-122.736788 -70.62296,-130.546489 -70.62296,-138.35619 -70.62296,-138.35619 -68.795747,-138.35619 -66.968534,-138.35619 -65.141321,-138.35619 -63.314108,-138.35619 -61.486895,-138.35619 -59.659682,-138.35619 -57.832469,-138.35619 -56.005256,-138.35619 -54.178043,-138.35619 -52.35083))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002296", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9208"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award supports an investigation of the early seafloor spreading history of the Marie Byrd Land Margin, Antarctica. This effort will carefully map the magnetic lineations, the gravity anomalies, the topography and, where possible, the seismically determined depth to basement. The study will integrate the tectonic lineations determined from the gravity, bathymetry and seismic information with the magnetic anomalies to construct a new seafloor spreading history of the Marie Byrd Land Margin. The analysis of these new data sets and the resultant seafloor spreading history will be used to address the following questions: (1) Did the early opening of the Pacific-Antarctic Ridge involve an additional plate, the Bellingshausen Plate, or did the ridge undergo very asymmetric, non-orthogonal spreading? (2) With a better refined opening history for the Pacific Antarctic Ridge, what are the implications for relative motions between the tectonic blocks which compromise West Antarctica and for the structure and evolution of the Marie Byrd Land Margin? (3) Can the global plate circuit solution be enhanced by refining the early Tertiary history of Pacific-Antarctic seafloor spreading?", "east": -60.25918, "geometry": "POINT(-99.307685 -61.486895)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.35083, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bell, Robin; Raymond, Carol", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -70.62296, "title": "The Marie Byrd Land Margin: Early Seafloor Spreading History", "uid": "p0000653", "west": -138.35619}, {"awards": "9416989 Cande, Steven", "bounds_geometry": "POLYGON((-179.9998 -46.00095,-143.99984 -46.00095,-107.99988 -46.00095,-71.99992 -46.00095,-35.99996 -46.00095,0 -46.00095,35.99996 -46.00095,71.99992 -46.00095,107.99988 -46.00095,143.99984 -46.00095,179.9998 -46.00095,179.9998 -49.185793,179.9998 -52.370636,179.9998 -55.555479,179.9998 -58.740322,179.9998 -61.925165,179.9998 -65.110008,179.9998 -68.294851,179.9998 -71.479694,179.9998 -74.664537,179.9998 -77.84938,143.99984 -77.84938,107.99988 -77.84938,71.99992 -77.84938,35.99996 -77.84938,0 -77.84938,-35.99996 -77.84938,-71.99992 -77.84938,-107.99988 -77.84938,-143.99984 -77.84938,-179.9998 -77.84938,-179.9998 -74.664537,-179.9998 -71.479694,-179.9998 -68.294851,-179.9998 -65.110008,-179.9998 -61.925165,-179.9998 -58.740322,-179.9998 -55.555479,-179.9998 -52.370636,-179.9998 -49.185793,-179.9998 -46.00095))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002148", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9702"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9416989 Cande There is a significant misfit, ranging from 50 to 250 kms, of magnetic anomalies 13, 18, and 20 along the section of the Southeast Indian Ridge east of the Balleny fracture zone. This project will survey the critical plate boundaries and relevant magnetic anomalies in the South Tasman Sea, Emerald Basin and north of the Ross Sea embayment that will better constrain the history of the this plate motion. Data collected will be used to test the hypothesis that the Antarctic side of the ridge acted as a separate plate, attached to Marie Byrd Land, and that these anomalies indirectly indicate motion between East and West Antarctica between anomalies 24 and 13 time. Surveys will be conducted on the R/V W M Ewing in the Tasman Sea, and on the R/V N B Palmer north of the Ross Sea embayment. ***", "east": 179.9998, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -46.00095, "nsf_funding_programs": null, "paleo_time": null, "persons": "Cande, Steven", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.84938, "title": "Collaborative Research: Early Tertiary Tectonic Evolution of the Pacific-Australia-Antarctic Plate Circuit", "uid": "p0000632", "west": -179.9998}, {"awards": "0003619 Dalziel, Ian", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG9810", "datasets": [{"dataset_uid": "002092", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG9810"}, {"dataset_uid": "002678", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG9810", "url": "https://www.rvdata.us/search/cruise/LMG9810"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research program to initiate a Global Positioning System (GPS) network to measure crustal motions in the bedrock surrounding and underlying the West Antarctic Ice Sheet (WAIS). Evaluation of the role of both tectonic and ice-induced crustal motions of the WAIS bedrock is a critical goal for understanding past, present, and future dynamics of WAIS and its potential role in future global change scenarios, as well as improving our understanding of the role of Antarctica in global plate motions. The extent of active tectonism in West Antarctica is largely speculative, as few data exist that constrain its geographic distribution, directions, or rates of deformation. Active tectonism and the influence of bedrock on the WAIS have been highlighted recently by geophysical data indicating active subglacial volcanism and control of ice streaming by the presence of sedimentary basins. The influence of bedrock crustal motion on the WAIS and its future dynamics is a fundamental issue. Existing GPS projects are located only on the fringe of the ice sheet and do not address the regional picture. It is important that baseline GPS measurements on the bedrock around and within the WAIS be started so that a basis is established for detecting change.\u003cbr/\u003e\u003cbr/\u003eTo measure crustal motions, this project will build a West Antarctica GPS Network (WAGN) of at least 15 GPS sites across the interior of West Antarctica (approximately the size of the contiguous United States from the Rocky Mountains to the Pacific coast) over a two-year period beginning in the Antarctic field season 2001-2002. The planned network is designed using the Multi-modal Occupation Strategy (MOST), in which a small number of independent GPS \"roving\" receivers make differential measurements against a network of continuous GPS stations for comparatively short periods at each site. This experimental strategy, successfully implemented by a number of projects in California, S America, the SW Pacific and Central Asia, minimizes logistical requirements, an essential element of application of GPS geodesy in the scattered and remote outcrops of the WAIS bedrock.\u003cbr/\u003e\u003cbr/\u003eThe WAGN program will be integrated with the GPS network that has been established linking the Antarctic Peninsula with South America through the Scotia arc (Scotia Arc GPS Project (SCARP)). It will also interface with stations currently measuring motion across the Ross Embayment, and with the continent-wide GIANT program of the Working Group on Geodesy and Geographic Information Systems of the Scientific Committee on Antarctic Research (SCAR). The GPS network will be based on permanent monuments set in solid rock outcrops that will have near-zero set-up error for roving GPS occupations, and that can be directly converted to a continuous GPS site when future technology makes autonomous operation and satellite data linkage throughout West Antarctica both reliable and economical. The planned network both depends on and complements the existing and planned continuous networks. It is presently not practical, for reasons of cost and logistics, to accomplish the measurements proposed herein with either a network of continuous stations or traditional campaigns.\u003cbr/\u003e\u003cbr/\u003eThe proposed WAGN will complement existing GPS projects by filling a major gap in coverage among several discrete crustal blocks that make up West Antarctica, a critical area of potential bedrock movements. If crustal motions are relatively slow, meaningful results will only begin to emerge within the five-year maximum period of time for an individual funded project. Hence this proposal is only to initiate the network and test precision and velocities at the most critical sites. Once built, however, the network will yield increasingly meaningful results with the passage of time. Indeed, the slower the rates turn out to be, the more important an early start to measuring. It is anticipated that the results of this project will initiate an iterative process that will gradually resolve into an understanding of the contributions from plate rotations and viscoelastic and elastic motions resulting from deglaciation and ice mass changes. Velocities obtained from initial reoccupation of the most critical sites will dictate the timing of a follow-up proposal for reoccupation of the entire network when detectable motions have occurred.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Dalziel, Ian W.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: A GPS Network to Determine Crustal Motions in the Bedrock of the West Antarctic Ice Sheet: Phase I - Installation", "uid": "p0000859", "west": null}, {"awards": "0440959 Cande, Steven", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0701", "datasets": [{"dataset_uid": "002644", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0701", "url": "https://www.rvdata.us/search/cruise/NBP0701"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This work will perform a marine geophysical survey of sea floor spreading off Cape Adare, Antarctica. Magnetic, gravity, swath bathymetry and multi-channel seismic data will be acquired from the southern end of the Adare Basin to the northern parts of the Northern Basin and Central Trough in the Ross Embayment. Previous surveys documented 170 km of regional extension between forty-three and twenty-six million years ago, which resulted in some seafloor spreading in the Adare Basin. However, the relationship of Adare Basin spreading to the overall extension and the southward continental basins of the Ross Embayment has not been established. This relationship is critical to understanding the tectonic evolution of East and West Antarctica and linking Pacific plate motions to the rest of the world. The study will also offer unique insight into rifting processes by studying the transition of rifting between oceanic and continental lithosphere. In terms of broader impacts, this project will support two graduate students and field research experience for undergraduates. The project also involves cooperation between scientists from the US, Australia, New Zealand and Japan.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ROCK CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Cande, Steven", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: The Connection Between Mid-Cenozoic Seafloor Spreading and the Western Ross Sea Embayment", "uid": "p0000835", "west": null}, {"awards": "9316710 Bartek, Louis", "bounds_geometry": "POLYGON((-179.9993 -75.77948,-143.99945 -75.77948,-107.9996 -75.77948,-71.99975 -75.77948,-35.9999 -75.77948,-0.000049999999987 -75.77948,35.9998 -75.77948,71.99965 -75.77948,107.9995 -75.77948,143.99935 -75.77948,179.9992 -75.77948,179.9992 -76.012273,179.9992 -76.245066,179.9992 -76.477859,179.9992 -76.710652,179.9992 -76.943445,179.9992 -77.176238,179.9992 -77.409031,179.9992 -77.641824,179.9992 -77.874617,179.9992 -78.10741,143.99935 -78.10741,107.9995 -78.10741,71.99965 -78.10741,35.9998 -78.10741,-0.000050000000016 -78.10741,-35.9999 -78.10741,-71.99975 -78.10741,-107.9996 -78.10741,-143.99945 -78.10741,-179.9993 -78.10741,-179.9993 -77.874617,-179.9993 -77.641824,-179.9993 -77.409031,-179.9993 -77.176238,-179.9993 -76.943445,-179.9993 -76.710652,-179.9993 -76.477859,-179.9993 -76.245066,-179.9993 -76.012273,-179.9993 -75.77948))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002168", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9601"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award supports a collaborative marine geological and geophysical project between the University of California, Santa Barbara, and the University of Alabama to study the glacial and tectonic history of the eastern Ross Sea and the Marie Byrd Land margin of West Antarctica. The goals of the project are (1) to conduct seismic imaging and piston coring to begin unraveling the history of the West Antarctic ice Sheet as recorded in the recent sediments of the continental shelf of the region, and (2) to acquire seismic images of the acoustic basement beneath the Cenozoic glacial deposits toward an understanding of the relationship between rift structure of the continental crust and Cenozoic glacial deposits of the region. This research will result in bathymetric, structural, sediment isopach, gravity and magnetic maps of the eastern Ross Sea and the Marie Byrd Land margin. This information will be integrated into an interpretation of the major glacial and structural features of the region. This project will result in a better understanding of the glacio-marine stratigraphy and glacial history of the eastern Ross Sea and Marie Byrd Land margin and, consequently, it will represent a significant contribution to the goals of the West Antarctic Ice Sheet initiative.", "east": 179.9992, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -75.77948, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bartek, Louis; Luyendyk, Bruce P.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -78.10741, "title": "Collaborative Research: Glacial Marine Stratigraphy in the Eastern Ross Sea and Western Marie Byrd Land, and Shallow Structure of the West Antarctic Rift", "uid": "p0000639", "west": -179.9993}, {"awards": "0126334 Stock, Joann", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0304B; Expedition data of NBP0304C; Expedition data of NBP0304D; Expedition data of NBP0403; Expedition data of NBP0406; Expedition data of NBP0501; Expedition data of NBP0501B", "datasets": [{"dataset_uid": "001660", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0403"}, {"dataset_uid": "002636", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304C", "url": "https://www.rvdata.us/search/cruise/NBP0304C"}, {"dataset_uid": "002631", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501B", "url": "https://www.rvdata.us/search/cruise/NBP0501B"}, {"dataset_uid": "002628", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "002633", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304B", "url": "https://www.rvdata.us/search/cruise/NBP0304B"}, {"dataset_uid": "002612", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0406", "url": "https://www.rvdata.us/search/cruise/NBP0406"}, {"dataset_uid": "001609", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0501B"}, {"dataset_uid": "001690", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304B"}, {"dataset_uid": "001692", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304D"}, {"dataset_uid": "002627", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "002639", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0403", "url": "https://www.rvdata.us/search/cruise/NBP0403"}, {"dataset_uid": "001691", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304C"}, {"dataset_uid": "002637", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304D", "url": "https://www.rvdata.us/search/cruise/NBP0304D"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a project to make use of ship-repositioning transit cruises to gather geophysical information relating to plate tectonics of the Southern Ocean and to support student training activities. Well-constrained Cenozoic plate reconstructions of the circum-Antarctic region are critical for examining a number of problems of global geophysical importance. These problems include, e.g., relating the plate kinematics to its geological consequences in various plate circuits (Pacific-North America, Australia-Pacific); a dynamical understanding of what drives plate tectonics (which requires well-constrained kinematic information in order to distinguish between different geodynamic hypotheses); and an understanding of the rheology of the plates themselves, including the amount of internal deformation they can support, and the conditions leading to the formation of new plate boundaries through breakup of existing plates. By obtaining better constraints on the motion of the Antarctica plate with respect to these other plates, and by better quantifying the internal deformation within Antarctica (between East and West Antarctica), contributions will be made to solving these other fundamental problems.\u003cbr/\u003e\u003cbr/\u003eIn this project, existing data will be analyzed to address several specific issues related to plate motions involving the Antarctic plate. First, work will be done on four-plate solutions of Australia-Pacific-West Antarctica-East Antarctica motion, in order to most tightly constrain the rotation parameters for separation between East and West Antarctica for the time period from about 45 to 28 Ma (Adare Basin spreading system). This will be done by imposing closure on the four-plate circuit and using relevant marine geophysical data from all four of the boundaries. The uncertainties in the resulting rotation parameters will be determined based on the uncertainties in the data points. These uncertainties can then be propagated in the plate circuit for use in addressing the various global geodynamic problems mentioned above. Second, rotation parameters for Pacific-West Antarctica during Tertiary time will be determined using recently acquired well-navigated Palmer transit data and any additional data that can be acquired during the course of this project. These parameters and their uncertainties will be used in assessments of plate rigidity and included in the plate circuit studies.\u003cbr/\u003e\u003cbr/\u003eIn the framework of this project, new collection of marine geophysical data will be accomplished on a very flexible schedule. This will be done by collecting underway gravity, magnetics, and swath bathymetric data on Palmer transit cruises of geological importance. This has been successfully done on eight previous Palmer cruises since 1997, the most recent four of which were funded under a collaborative OPP grant to CalTech and Scripps which is now expiring. On one of the suitable transits, a formal class in marine geophysics will be conducted that will afford an opportunity to 12 or more graduate and undergraduate students, from CalTech and Scripps as well as other institutions. In this way, educational activities will be integrated with the usual scientific data collection objectives of the research project.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Cande, Steven", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Improved Cenozoic Plate Reconstructions of the Circum-Antarctic Region", "uid": "p0000824", "west": null}, {"awards": "0732995 Barbeau, David", "bounds_geometry": "POLYGON((-67.9988 -52.7596,-66.83756 -52.7596,-65.67632 -52.7596,-64.51508 -52.7596,-63.35384 -52.7596,-62.1926 -52.7596,-61.03136 -52.7596,-59.87012 -52.7596,-58.70888 -52.7596,-57.54764 -52.7596,-56.3864 -52.7596,-56.3864 -54.15258,-56.3864 -55.54556,-56.3864 -56.93854,-56.3864 -58.33152,-56.3864 -59.7245,-56.3864 -61.11748,-56.3864 -62.51046,-56.3864 -63.90344,-56.3864 -65.29642,-56.3864 -66.6894,-57.54764 -66.6894,-58.70888 -66.6894,-59.87012 -66.6894,-61.03136 -66.6894,-62.1926 -66.6894,-63.35384 -66.6894,-64.51508 -66.6894,-65.67632 -66.6894,-66.83756 -66.6894,-67.9988 -66.6894,-67.9988 -65.29642,-67.9988 -63.90344,-67.9988 -62.51046,-67.9988 -61.11748,-67.9988 -59.7245,-67.9988 -58.33152,-67.9988 -56.93854,-67.9988 -55.54556,-67.9988 -54.15258,-67.9988 -52.7596))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001520", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0717"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project studies the relationship between opening of the Drake Passage and formation of the Antarctic ice sheet. Its goal is to answer the question: What drove the transition from a greenhouse to icehouse world thirty-four million years ago? Was it changes in circulation of the Southern Ocean caused by the separation of Antarctica from South America or was it a global effect such as decreasing atmospheric CO2 content? This study constrains the events and timing through fieldwork in South America and Antarctica and new work on marine sediment cores previously collected by the Ocean Drilling Program. It also involves an extensive, multidisciplinary analytical program. Compositional analyses of sediments and their sources will be combined with (U-Th)/He, fission-track, and Ar-Ar thermochronometry to constrain uplift and motion of the continental crust bounding the Drake Passage. Radiogenic isotope studies of fossil fish teeth found in marine sediment cores will be used to trace penetration of Pacific seawater into the Atlantic. Oxygen isotope and trace metal measurements on foraminifera will provide additional information on the timing and magnitude of ice volume changes. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eThe broader impacts include graduate and undergraduate education; outreach to the general public through museum exhibits and presentations, and international collaboration with scientists from Argentina, Ukraine, UK and Germany.\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eThe project is supported under NSF\u0027s International Polar Year (IPY) research emphasis area on \"Understanding Environmental Change in Polar Regions\". This project is also a key component of the IPY Plates \u0026 Gates initiative (IPY Project #77), focused on determining the role of tectonic gateways in instigating polar environmental change.", "east": -56.3864, "geometry": "POINT(-62.1926 -59.7245)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.7596, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "MacPhee, Ross", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -66.6894, "title": "Collaborative Research: IPY: Testing the Polar Gateway Hypothesis: An Integrated Record of Drake Passage Opening \u0026 Antarctic Glaciation", "uid": "p0000120", "west": -67.9988}, {"awards": "9019247 Lawver, Lawrence", "bounds_geometry": "POLYGON((-70.9123 -52.3523,-68.4947 -52.3523,-66.0771 -52.3523,-63.6595 -52.3523,-61.2419 -52.3523,-58.8243 -52.3523,-56.4067 -52.3523,-53.9891 -52.3523,-51.5715 -52.3523,-49.1539 -52.3523,-46.7363 -52.3523,-46.7363 -53.791011,-46.7363 -55.229722,-46.7363 -56.668433,-46.7363 -58.107144,-46.7363 -59.545855,-46.7363 -60.984566,-46.7363 -62.423277,-46.7363 -63.861988,-46.7363 -65.300699,-46.7363 -66.73941,-49.1539 -66.73941,-51.5715 -66.73941,-53.9891 -66.73941,-56.4067 -66.73941,-58.8243 -66.73941,-61.2419 -66.73941,-63.6595 -66.73941,-66.0771 -66.73941,-68.4947 -66.73941,-70.9123 -66.73941,-70.9123 -65.300699,-70.9123 -63.861988,-70.9123 -62.423277,-70.9123 -60.984566,-70.9123 -59.545855,-70.9123 -58.107144,-70.9123 -56.668433,-70.9123 -55.229722,-70.9123 -53.791011,-70.9123 -52.3523))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002294", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9301"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Major progress has been made with respect to our understanding of the tectonic evolution of the Antarctic Plate. Paleomagnetic data, marine magnetic anomaly identifications, Geosat-derived tectonic lineations, heat flow derived seafloor ages and mathematical solutions for plate motions around triple junctions have all contributed to a better model for the tectonic evolution of the circum- Antarctic region. Even so, major problems still exist with respect to the Mesozoic to Recent tectonic evolution of the Antarctic continental margin which can be tackled using heat flow measurements. This award supports the study of a tectonic problem that heat flow can address, the determination of the age of the Powell Basin at the end of the West Antarctic Peninsula and its relationship to the opening of Drake\u0027s Passage. Specifically, heat flow measurement will be used to study the age and mode of crustal extension of the Powell Basin, where standard age determination fails and heat flow is the only method that can be used to date its opening.", "east": -46.7363, "geometry": "POINT(-58.8243 -59.545855)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.3523, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Lawver, Lawrence", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -66.73941, "title": "Antarctic Marine Heat Flow", "uid": "p0000652", "west": -70.9123}, {"awards": "9731695 Klinkhammer, Gary", "bounds_geometry": "POLYGON((-179.9993 -43.56612,-143.99965 -43.56612,-108 -43.56612,-72.00035 -43.56612,-36.0007 -43.56612,-0.00105000000002 -43.56612,35.9986 -43.56612,71.99825 -43.56612,107.9979 -43.56612,143.99755 -43.56612,179.9972 -43.56612,179.9972 -45.894301,179.9972 -48.222482,179.9972 -50.550663,179.9972 -52.878844,179.9972 -55.207025,179.9972 -57.535206,179.9972 -59.863387,179.9972 -62.191568,179.9972 -64.519749,179.9972 -66.84793,143.99755 -66.84793,107.9979 -66.84793,71.99825 -66.84793,35.9986 -66.84793,-0.00104999999999 -66.84793,-36.0007 -66.84793,-72.00035 -66.84793,-108 -66.84793,-143.99965 -66.84793,-179.9993 -66.84793,-179.9993 -64.519749,-179.9993 -62.191568,-179.9993 -59.863387,-179.9993 -57.535206,-179.9993 -55.207025,-179.9993 -52.878844,-179.9993 -50.550663,-179.9993 -48.222482,-179.9993 -45.894301,-179.9993 -43.56612))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002227", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9507"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9731695 Klinkhammer This award supports participation of Oregon State University (OSU) researchers in an expedition of the German oceanographic research vessel POLARSTERN to the Antarctic Ocean (POLARSTERN cruise ANT-XV/2). Previous OSU researchers supported by the US Antarctic Program identified several areas of hydrothermal venting in the Bransfield Strait. This discovery has important implications to the biogeography of vent animals, the geological evolution of ore deposits, and the chemical and heat budgets of the Earth. The previous work sampled water and particles from above the vent sites at a reconnaissance level. Subsequent chemical analyses of these samples provided insight into the chemistry of fluids emanating from vents on the sea floor. The POLARSTERN cruise affords a unique opportunity to build on these discoveries in the Bransfield Strait, foster future international work in the Bransfield area, extend research on hydrothermal activity to other parts of the Antarctic Peninsula region, and develop a working relationship with a strong international group. In particular, the POLARSTERN expedition provides the opportunity for: 1) additional sampling of water and suspended particulate matter in the water column over the Bransfield hydrothermal sites this sampling would be aided by German photographic reconnaissance; 2) reconnaissance, to determine the broader geographical extent of hydrothermal activity, would be extended to the Scotia Arc and trench areas following the general theme of the German program which is fluid expulsion from the Scotia- Bransfield system; and 3) the use of unique tools available on the POLARSTERN such as a camera sled and grab bottom sampler. This work will make it possible to better define the location of hydrothermal vents and to begin to quantify the amount of water being expelled by this hydrothermal activity. If vents can be precisely located, the bottom photography holds the promise of revealing possible biologic al communities associated with these submarine hot springs.", "east": 179.9972, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -43.56612, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Klinkhammer, Gary", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -66.84793, "title": "SGER Proposal: Rare Research Opportunity to Study Geotectonic Fluids in Bransfield Strait and Scotia Arc, Antarctica", "uid": "p0000640", "west": -179.9993}, {"awards": "9814579 Stock, Joann; 9815283 Cande, Steven", "bounds_geometry": "POLYGON((-57.56218 -33.87102,-49.979095 -33.87102,-42.39601 -33.87102,-34.812925 -33.87102,-27.22984 -33.87102,-19.646755 -33.87102,-12.06367 -33.87102,-4.480585 -33.87102,3.1025 -33.87102,10.685585 -33.87102,18.26867 -33.87102,18.26867 -35.4505,18.26867 -37.02998,18.26867 -38.60946,18.26867 -40.18894,18.26867 -41.76842,18.26867 -43.3479,18.26867 -44.92738,18.26867 -46.50686,18.26867 -48.08634,18.26867 -49.66582,10.685585 -49.66582,3.1025 -49.66582,-4.480585 -49.66582,-12.06367 -49.66582,-19.646755 -49.66582,-27.22984 -49.66582,-34.812925 -49.66582,-42.39601 -49.66582,-49.979095 -49.66582,-57.56218 -49.66582,-57.56218 -48.08634,-57.56218 -46.50686,-57.56218 -44.92738,-57.56218 -43.3479,-57.56218 -41.76842,-57.56218 -40.18894,-57.56218 -38.60946,-57.56218 -37.02998,-57.56218 -35.4505,-57.56218 -33.87102))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001742", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0209"}, {"dataset_uid": "001963", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0007B"}, {"dataset_uid": "001746", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0207"}, {"dataset_uid": "001699", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304"}, {"dataset_uid": "002042", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9908"}, {"dataset_uid": "001873", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0102"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided jointly by the Antarctic Geology and Geophysics Program of the Office of Polar Programs and the Marine Geology and Geophysics Program of the Division of Ocean Sciences, supports research to develop improved plate rotation models for the Southwest Pacific region (between the Pacific, Antarctic, and Australian plates, and the continental fragments of New Zealand, West Antarctica, Iselin Bank, East Antarctica, and Australia). The improved rotation parameters will be used to address tectonic problems related to motion between East and West Antarctica, and in particular, the questions of relative drift between major hotspot groups and the controversy regarding a possible missing plate boundary in this region. Previous work has documented NNW-striking mid-Tertiary seafloor spreading magnetic anomalies between East and West Antarctica, representing about 150 km of opening of the Adare Trough, north of the Ross Sea. This is not enough motion to resolve the apparent discrepancy between the plate motions and motions inferred from assuming hotspot fixity. Because this motion between East and West Antarctica corresponds to a very small rotation, it points to the need for determination of finite rotations describing motions of the various plates here with a high degree of accuracy, particularly for older times. This is now possible with the datasets that will be used in this project. The work will be accomplished by integrating existing data with analysis and interpretation of other data sets recently made available by Japanese and Italian scientists from their cruises in the region. It will be further augmented by acquisition of new marine geophysical data on selected transits of the R/VIB Nathaniel B. Palmer. Specific objectives of the project include the following: 1) improve the rotation model for mid-Tertiary extension between East and West Antarctica by including the plate boundary between the Pacific and Australia plates directly when calculating Australia-West Antarctica motion, 2) improve the reconstructions for the Late Cretaceous and Early Tertiary times by including new constraints on several boundaries not previously used in the reconstructions, 3) address the implications of new rotation models for the question of the fixity of global hotspots, 4) re-examine the geophysical data from the Western Ross Sea embayment in light of a model for substantial mid-Cenozoic extension.", "east": 18.26867, "geometry": "POINT(-19.646755 -41.76842)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -33.87102, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Cande, Steven; Stock, Joann", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -49.66582, "title": "Collaborative Research: Late Cretaceous and Cenozoic Reconstructions of the Southwest Pacific", "uid": "p0000590", "west": -57.56218}, {"awards": "0338137 Anderson, John; 0338371 Hallet, Bernard", "bounds_geometry": "POLYGON((-74.59492 -45.98986,-74.072309 -45.98986,-73.549698 -45.98986,-73.027087 -45.98986,-72.504476 -45.98986,-71.981865 -45.98986,-71.459254 -45.98986,-70.936643 -45.98986,-70.414032 -45.98986,-69.891421 -45.98986,-69.36881 -45.98986,-69.36881 -46.835236,-69.36881 -47.680612,-69.36881 -48.525988,-69.36881 -49.371364,-69.36881 -50.21674,-69.36881 -51.062116,-69.36881 -51.907492,-69.36881 -52.752868,-69.36881 -53.598244,-69.36881 -54.44362,-69.891421 -54.44362,-70.414032 -54.44362,-70.936643 -54.44362,-71.459254 -54.44362,-71.981865 -54.44362,-72.504476 -54.44362,-73.027087 -54.44362,-73.549698 -54.44362,-74.072309 -54.44362,-74.59492 -54.44362,-74.59492 -53.598244,-74.59492 -52.752868,-74.59492 -51.907492,-74.59492 -51.062116,-74.59492 -50.21674,-74.59492 -49.371364,-74.59492 -48.525988,-74.59492 -47.680612,-74.59492 -46.835236,-74.59492 -45.98986))", "dataset_titles": "Expedition data of NBP0505; Expedition data of NBP0703; NBP0505 CTD data; NBP0505 sediment core locations", "datasets": [{"dataset_uid": "002609", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0505", "url": "https://www.rvdata.us/search/cruise/NBP0505"}, {"dataset_uid": "002642", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0703", "url": "https://www.rvdata.us/search/cruise/NBP0703"}, {"dataset_uid": "601363", "doi": "10.15784/601363", "keywords": "Chile; CTD; CTD Data; Depth; Fjord; NBP0505; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Anderson, John; Wellner, Julia", "repository": "USAP-DC", "science_program": null, "title": "NBP0505 CTD data", "url": "https://www.usap-dc.org/view/dataset/601363"}, {"dataset_uid": "601362", "doi": "10.15784/601362", "keywords": "Chile; Fjord; Marine Geoscience; NBP0505; R/v Nathaniel B. Palmer; Sample/collection Description; Sample/Collection Description; Sediment Core; Sediment Corer; Station List", "people": "Anderson, John; Wellner, Julia", "repository": "USAP-DC", "science_program": null, "title": "NBP0505 sediment core locations", "url": "https://www.usap-dc.org/view/dataset/601362"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project examines the role of glacier dynamics in glacial sediment yields. The results will shed light on how glacial erosion influences both orogenic processes and produces sediments that accumulate in basins, rich archives of climate variability. Our hypothesis is that erosion rates are a function of sliding speed, and should diminish sharply as the glacier\u0027s basal temperatures drop below the melting point. To test this hypothesis, we will determine sediment accumulation rates from seismic studies of fjord sediments for six tidewater glaciers that range from fast-moving temperate glaciers in Patagonia to slow-moving polar glaciers on the Antarctic Peninsula. Two key themes are addressed for each glacier system: 1) sediment yields and erosion rates by determining accumulation rates within the fjords using seismic profiles and core data, and 2) dynamic properties and basin characteristics of each glacier in order to seek an empirical relationship between glacial erosion rates and ice dynamics. The work is based in Patagonia and the Antarctic Peninsula, ideal natural laboratories for these purposes because the large latitudinal range provides a large range of precipitation and thermal regimes over relatively homogeneous lithologies and tectonic settings. Prior studies of these regions noted significant decreases in glaciomarine sediment accumulations in the fjords to the south. As well, the fjords constitute accessible and nearly perfect natural sediment traps.\u003cbr/\u003e\u003cbr/\u003eThe broader impacts of this study include inter-disciplinary collaboration with Chilean glaciologists and marine geologists, support for one postdoctoral and three doctoral students, inclusion of undergraduates in research, and outreach to under-represented groups in Earth sciences and K-12 educators. The results of the project will also contribute to a better understanding of the linkages between climate and evolution of all high mountain ranges.", "east": -69.36881, "geometry": "POINT(-71.981865 -50.21674)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e WATER BOTTLES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP; Penguin Glacier", "locations": null, "north": -45.98986, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John; Hallet, Bernard; Wellner, Julia", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -54.44362, "title": "Collaborative Research: Controls on Sediment Yields from Tidewater Glaciers from Patagonia to Antarctica", "uid": "p0000821", "west": -74.59492}, {"awards": "9814041 Austin, Jr., James", "bounds_geometry": "POLYGON((-70.90616 -52.35281,-69.390587 -52.35281,-67.875014 -52.35281,-66.359441 -52.35281,-64.843868 -52.35281,-63.328295 -52.35281,-61.812722 -52.35281,-60.297149 -52.35281,-58.781576 -52.35281,-57.266003 -52.35281,-55.75043 -52.35281,-55.75043 -53.463301,-55.75043 -54.573792,-55.75043 -55.684283,-55.75043 -56.794774,-55.75043 -57.905265,-55.75043 -59.015756,-55.75043 -60.126247,-55.75043 -61.236738,-55.75043 -62.347229,-55.75043 -63.45772,-57.266003 -63.45772,-58.781576 -63.45772,-60.297149 -63.45772,-61.812722 -63.45772,-63.328295 -63.45772,-64.843868 -63.45772,-66.359441 -63.45772,-67.875014 -63.45772,-69.390587 -63.45772,-70.90616 -63.45772,-70.90616 -62.347229,-70.90616 -61.236738,-70.90616 -60.126247,-70.90616 -59.015756,-70.90616 -57.905265,-70.90616 -56.794774,-70.90616 -55.684283,-70.90616 -54.573792,-70.90616 -53.463301,-70.90616 -52.35281))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001987", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0002"}, {"dataset_uid": "001810", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0007A"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to study the deep crustal structure of the Bransfield Strait region. Bransfield Strait, in the northern Antarctic Peninsula, is one of a small number of modern basins that may be critical for understanding ancient mountain-building processes. The Strait is an actively-extending marginal basin in the far southeast Pacific, between the Antarctic Peninsula and the South Shetland Islands, an inactive volcanic arc. Widespread crustal extension, accompanied by volcanism along the Strait\u0027s axis, may be associated with slow underthrusting of oceanic crust at the South Shetland Trench; similar \"back-arc\" extension occurred along the entire Pacific margin (now western South America/West Antarctica) of the supercontinent known as Gondwanaland during the Jurassic-Early Cretaceous. Mid-Cretaceous deformation of these basins some 100 million years ago initiated uplift of the Andes. By understanding the deep structure and evolution of Bransfield rift, it should be possible to evaluate the crustal precursor to the Andes, and thereby understand more fully the early evolution of this globally important mountain chain. Years of international earth sciences research in Bransfield Strait has produced consensus on important aspects of its geologic environment: (1) It is probably a young (probably ~4 million years old) rift in preexisting Antarctic Peninsula crust; continued stretching of this crust results in complex fault patterns and associated volcanism. The volcanism, high heat flow, and mapped crustal trends are all consistent with the basin\u0027s continuing evolution as a rift; (2) The volcanism, which is recent and continuing, occurs along a \"neovolcanic\" zone centralized along the basin\u0027s axis. Multichannel seismic data collected aboard R/V Maurice Ewing in 1991 illustrate the following basin-wide characteristics of Bransfield Strait - a) widespread extension and faulting, b) the rise of crustal diapirs or domes associated with flower-shaped normal-fault structures, and c) a complicated system of fault-bounded segments across strike. The geophysical evidence also suggests NE-to-SW propagation of the rift, with initial crustal inflation/doming followed by deflation/subsidence, volcanism, and extension along normal faults. Although Bransfield Strait exhibits geophysical and geologic evidence for extension and volcanism, continental crust fragmentation does not appear to have gone to completion in this \"back-arc\" basin and ocean crust is not yet being generated. Instead, Bransfield rift lies near the critical transition from intracontinental rifting to seafloor-spreading. The basin\u0027s asymmetry, and seismic evidence for shallow intracrustal detachment faulting, suggest that it may be near one end-member of the spectrum of models proposed for continental break-up. Therefore, this basin is a \"natural lab\" for studying diverse processes involved in forming continental margins. Understanding Bransfield rift\u0027s deep crustal structure is the key to resolving its stage of evolution, and should also provide a starting point for models of Andean mountain-building. This work will define the deep structure by collecting and analyzing high-quality, high-density ocean bottom seismometer (OBS) profiles both along and across the Strait\u0027s strike. Scientific objectives are as follows: (1) to develop a detailed seismic velocity model for this rift; (2) to calibrate velocity structure and crustal thickness changes associated with presumed NE-to-SW rift propagation, as deduced from the multichannel seismic interpretations; (3) to document the degree to which deep velocity structure corresponds to along- and across-strike crustal segmentation; and (4) to assess structural relationships between the South Shetland Islands \"arc\" and Bransfield rift. The proposed OBS data, integrated with interpretations of both Ewing profiles and those from other high-quality geophysical coverage in Bransfield Strait, will complement ongoing deep seismic analysis of Antarctic Peninsula crust to the southwest and additional OBS monitoring for deep earthquakes, in order to understand the complex plate tectonic evolution of this region.", "east": -55.75043, "geometry": "POINT(-63.328295 -57.905265)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.35281, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Austin, James; Austin, James Jr.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -63.45772, "title": "The Young Marginal Basin as a Key to Understanding the Rift-Drift Transition and Andean Orogenesis: OBS Refraction Profiling for Crustal Structure in Bransfield Strait", "uid": "p0000615", "west": -70.90616}, {"awards": "0088143 Luyendyk, Bruce; 0087392 Bartek, Louis", "bounds_geometry": "POLYGON((-179.99786 -75.91667,-143.99852 -75.91667,-107.99918 -75.91667,-71.99984 -75.91667,-36.0005 -75.91667,-0.00115999999997 -75.91667,35.99818 -75.91667,71.99752 -75.91667,107.99686 -75.91667,143.9962 -75.91667,179.99554 -75.91667,179.99554 -76.183531,179.99554 -76.450392,179.99554 -76.717253,179.99554 -76.984114,179.99554 -77.250975,179.99554 -77.517836,179.99554 -77.784697,179.99554 -78.051558,179.99554 -78.318419,179.99554 -78.58528,143.9962 -78.58528,107.99686 -78.58528,71.99752 -78.58528,35.99818 -78.58528,-0.00116000000003 -78.58528,-36.0005 -78.58528,-71.99984 -78.58528,-107.99918 -78.58528,-143.99852 -78.58528,-179.99786 -78.58528,-179.99786 -78.318419,-179.99786 -78.051558,-179.99786 -77.784697,-179.99786 -77.517836,-179.99786 -77.250975,-179.99786 -76.984114,-179.99786 -76.717253,-179.99786 -76.450392,-179.99786 -76.183531,-179.99786 -75.91667))", "dataset_titles": "Expedition Data; NBP0301 data; NBP0306 data", "datasets": [{"dataset_uid": "000105", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0306 data", "url": "https://www.rvdata.us/search/cruise/NBP0306"}, {"dataset_uid": "001724", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0301"}, {"dataset_uid": "001668", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0306"}, {"dataset_uid": "000104", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0301 data", "url": "https://www.rvdata.us/search/cruise/NBP0301"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Luyendyk et.al.: OPP 0088143\u003cbr/\u003eBartek: OPP 0087392\u003cbr/\u003eDiebold: OPP 0087983\u003cbr/\u003e\u003cbr/\u003eThis award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research program in marine geology and geophysics in the southern central and eastern Ross Sea. The project will conduct sites surveys for drilling from the Ross Ice Shelf into the seafloor beneath it. Many of the outstanding problems concerning the evolution of the East and West Antarctic Ice Sheets, Antarctic climate, global sea level, and the tectonic history of the West Antarctic Rift System can be addressed by drilling into the seafloor of the Ross Sea. Climate data for Cretaceous and Early Cenozoic time are lacking for this sector of Antarctica. Climate questions include: Was there any ice in Late Cretaceous time? What was the Antarctic climate during the Paleocene-Eocene global warming? When was the Cenozoic onset of Antarctic glaciation, when did glaciers reach the coast and when did they advance out onto the margin? Was the Ross Sea shelf non-marine in Late Cretaceous time; when did it become marine? Tectonic questions include: What was the timing of the Cretaceous extension in the Ross Sea rift; where was it located? What is the basement composition and structure? Where are the time and space limits of the effects of Adare Trough spreading? Another drilling objective is to sample and date the sedimentary section bounding the mapped RSU6 unconformity in the Eastern Basin and Central Trough to resolve questions about its age and regional extent. Deep Sea Drilling Project (DSDP) Leg 28 completed sampling at four drill sites in the early 1970\u0027s but had low recovery and did not sample the Early Cenozoic. Other drilling has been restricted to the McMurdo Sound area of the western Ross Sea and results can be correlated into the Victoria Land Basin but not eastward across basement highs. Further, Early Cenozoic and Cretaceous rocks have not been sampled. A new opportunity is developing to drill from the Ross Ice Shelf. This is a successor program to the Cape Roberts Drilling Project. One overriding difficulty is the need for site surveys at drilling locations under the ice shelf. This project will overcome this impediment by conducting marine geophysical drill site surveys at the front of the Ross Ice Shelf in the Central Trough and Eastern Basin. The surveys will be conducted a kilometer or two north of the ice shelf front where recent calving events have resulted in a southerly position of the ice shelf edge. In several years the northward advance of the ice shelf will override the surveyed locations and drilling could be accomplished. Systems to be used include swath bathymetry, gravity, magnetics, chirp sonar, high resolution seismic profiling, and 48 fold seismics. Cores will be collected to obtain samples for geotechnical properties, to study sub-ice shelf modern sedimentary processes, and at locations where deeper section is exposed.\u003cbr/\u003e\u003cbr/\u003eThis survey will include long profiles and detailed grids over potential drill sites. Survey lines will be tied to existing geophysical profiles and DSDP 270. A recent event that makes this plan timely is the calving of giant iceberg B-15 (in March, 2000) and others from the ice front in the eastern Ross Sea. This new calving event and one in 1987 have exposed 16,000 square kilometers of seafloor that had been covered by ice shelf for decades and is not explored. Newly exposed territory can now be mapped by modern geophysical methods. This project will map geological structure and stratigraphy below unconformity RSU6 farther south and east, study the place of Roosevelt Island in the Ross Sea rifting history, and determine subsidence history during Late Cenozoic time (post RSU6) in the far south and east. Finally the project will observe present day sedimentary processes beneath the ice shelf in the newly exposed areas.", "east": 179.99554, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": true, "keywords": "R/V NBP", "locations": null, "north": -75.91667, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Bartek, Louis; Luyendyk, Bruce P.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -78.58528, "title": "Collaborative Research: Antarctic Cretaceous-Cenozoic Climate, Glaciation, and Tectonics: Site surveys for drilling from the edge of the Ross Ice Shelf", "uid": "p0000425", "west": -179.99786}, {"awards": "9726180 Dorman, LeRoy", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP9905", "datasets": [{"dataset_uid": "002581", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP9905", "url": "https://www.rvdata.us/search/cruise/NBP9905"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Office of Polar Programs of the National Science Foundation, supports research to investigate the seismicity and tectonics of the South Shetland Arc and the Bransfield Strait. This region presents an intriguing and unique tectonic setting, with slowing of subduction, cessation of island arc volcanism, as well as the apparent onset of backarc rifting occurring within the last four million years. This project will carry out a 5-month deployment of 14 ocean bottom seismographs (OBSs) to complement and extend a deployment of 6 broadband land seismic stations that were successfully installed during early 1997. The OBSs include 2 instruments with broadband sensors, and all have flowmeters for measuring and sampling hydrothermal fluids. The OBSs will be used to examine many of the characteristics of the Shetland- Bransfield tectonic system, including: --- The existence and depth of penetration of a Shetland Slab: The existence of a downgoing Shetland slab will be determined from earthquake locations and from seismic tomography. The maximum depth of earthquake activity and the depth of the slab velocity anomaly will constrain the current configuration of the slab, and may help clarify the relationship between the subducting slab and the cessation of arc volcanism. -- Shallow Shetland trench seismicity?: No teleseismic shallow thrust faulting seismicity has been observed along the South Shetland Trench from available seismic information. Using the OBS data, the level of small earthquake activity along the shallow thrust zone will be determined and compared to other regions undergoing slow subduction of young oceanic lithosphere, such as Cascadia, which also generally shows very low levels of thrust zone seismicity. -- Mode of deformation along the Bransfield Rift: The Bransfield backarc has an active rift in the center, but there is considerable evidence for off-rift faulting. There is a long-standing controversy about whet her back-arc extension occurs along discrete rift zones, or is more diffuse geographically. This project will accurately locate small earthquakes to better determine whether Bransfield extension is discrete or diffuse. -- Identification of volcanism and hydrothermal activity: Seismic records will be used to identify the locations of active seafloor volcanism along the Bransfield rift. Flowmeters attached to the OBSs will record and sample the fluid flux out of the sediments. -- Upper mantle structure of the Bransfield - evidence for partial melting?: Other backarc basins show very slow upper mantle seismic velocities and high seismic attenuation, characteristics due to the presence of partially molten material. This project will use seismic tomography to resolve the upper mantle structure of the Bransfield backarc, allowing comparison with other backarc regions and placing constraints on the existence of partially molten material and the importance of partial melting as a mantle process in this region. Collaborative awards: OPP 9725679 and OPP 9726180", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Wiens, Douglas", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Study of the Structure and Tectonics of the South Shetland Trench and Bransfield Backarc Using Ocean Bottom Seismographs", "uid": "p0000801", "west": null}, {"awards": "9814622 Wiens, Douglas", "bounds_geometry": "POLYGON((-70.90604 -52.35474,-69.307306 -52.35474,-67.708572 -52.35474,-66.109838 -52.35474,-64.511104 -52.35474,-62.91237 -52.35474,-61.313636 -52.35474,-59.714902 -52.35474,-58.116168 -52.35474,-56.517434 -52.35474,-54.9187 -52.35474,-54.9187 -53.658393,-54.9187 -54.962046,-54.9187 -56.265699,-54.9187 -57.569352,-54.9187 -58.873005,-54.9187 -60.176658,-54.9187 -61.480311,-54.9187 -62.783964,-54.9187 -64.087617,-54.9187 -65.39127,-56.517434 -65.39127,-58.116168 -65.39127,-59.714902 -65.39127,-61.313636 -65.39127,-62.91237 -65.39127,-64.511104 -65.39127,-66.109838 -65.39127,-67.708572 -65.39127,-69.307306 -65.39127,-70.90604 -65.39127,-70.90604 -64.087617,-70.90604 -62.783964,-70.90604 -61.480311,-70.90604 -60.176658,-70.90604 -58.873005,-70.90604 -57.569352,-70.90604 -56.265699,-70.90604 -54.962046,-70.90604 -53.658393,-70.90604 -52.35474))", "dataset_titles": "Expedition Data; Expedition data of LMG0003A", "datasets": [{"dataset_uid": "002059", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9905"}, {"dataset_uid": "002688", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0003A", "url": "https://www.rvdata.us/search/cruise/LMG0003A"}, {"dataset_uid": "001854", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0106"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided jointly by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to transform three temporary seismometers in the Antarctic Peninsula into semi-permanent stations and to continue basic research using these data. During 1997 and 1998, a network of 11 broadband seismographs in the Antarctic Peninsula region and southernmost Chilean Patagonia were installed and maintained. Data return from this project has been excellent and interesting initial results have been produced. The continued operation of these instruments over a longer time period would be highly beneficial because the number of larger magnitude regional earthquakes is small and so a longer time is needed to acquire data. However, instruments from this project are borrowed from the IRIS-PASSCAL instrument pool and must be returned to PASSCAL in April, 1999. This award provides funds to convert three stations at permanent Chilean bases in the Antarctic to permanent stations, and to continue the seismological investigation of the region for a period of four years. As part of this project, a fourth station, in Chilean Patagonia, will continue to be operated using Washington University equipment. The funding of this project will enable continued collaboration between Washington University and the Universidad de Chile in the operation of these stations, and the data will be forwarded to the IRIS data center as well as to other international seismological collaborators. Mutual data exchanges with other national groups with Antarctic seismology research programs will provide access to broadband data from a variety of other proprietary broadband stations in the region. The data will be used to study the seismicity and upper mantle velocity structure of several complicated tectonic regions in the area, including the South Shetland subduction zone, the Bransfield backarc rift, and diffuse plate boundaries in Patagonia, Drake Passage, and along the South Scotia Ridge. In particular, the operation of these stations over a longer time period will allow a better understanding of the seismicity of the South Shetland Trench, an unusual subduction zone showing very slow subduction of young lithosphere. These seismometers will also be used to record airgun shots during a geophysical cruise in the Bransfield Strait that is being planned by the University of Texas for April, 2000. These data will provide important constraints on the crustal structure beneath the stations, and the improved structural models will enable implementation of more precise earthquake location procedures in support of a seismological understanding of the region.", "east": -54.9187, "geometry": "POINT(-62.91237 -58.873005)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V LMG; R/V NBP", "locations": null, "north": -52.35474, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Wiens, Douglas; Visbeck, Martin", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.39127, "title": "Acquisition and Operation of Broadband Seismograph Equipment at Chilean Bases in the Antarctic Peninsula Region", "uid": "p0000604", "west": -70.90604}, {"awards": "0230285 Wilson, Terry", "bounds_geometry": "POLYGON((152.833 -75.317,154.4897 -75.317,156.1464 -75.317,157.8031 -75.317,159.4598 -75.317,161.1165 -75.317,162.7732 -75.317,164.4299 -75.317,166.0866 -75.317,167.7433 -75.317,169.4 -75.317,169.4 -75.9186,169.4 -76.5202,169.4 -77.1218,169.4 -77.7234,169.4 -78.325,169.4 -78.9266,169.4 -79.5282,169.4 -80.1298,169.4 -80.7314,169.4 -81.333,167.7433 -81.333,166.0866 -81.333,164.4299 -81.333,162.7732 -81.333,161.1165 -81.333,159.4598 -81.333,157.8031 -81.333,156.1464 -81.333,154.4897 -81.333,152.833 -81.333,152.833 -80.7314,152.833 -80.1298,152.833 -79.5282,152.833 -78.9266,152.833 -78.325,152.833 -77.7234,152.833 -77.1218,152.833 -76.5202,152.833 -75.9186,152.833 -75.317))", "dataset_titles": null, "datasets": null, "date_created": "Sat, 12 Dec 2009 00:00:00 GMT", "description": "OPP-0230285/OPP-0230356\u003cbr/\u003ePIs: Wilson, Terry J./Hothem, Larry D.\u003cbr/\u003e\u003cbr/\u003eThis award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to conduct GPS measurements of bedrock crustal motions in an extended Transantarctic Mountains Deformation network (TAMDEF) to document neotectonic displacements due to tectonic deformation within the West Antarctic rift and/or to mass change of the Antarctic ice sheets. Horizontal displacements related to active neotectonic rifting, strike-slip translations, and volcanism will be tightly constrained by monitoring the combined TAMDEF and Italian VLNDEF networks of bedrock GPS stations along the Transantarctic Mountains and on offshore islands in the Ross Sea. Glacio-isostatic adjustments due to deglaciation since the Last Glacial Maximum and to modern mass change of the ice sheets will be modeled from GPS-derived crustal motions together with new information from other programs on the configurations, thicknesses, deglaciation history and modern mass balance of the ice sheets. Tectonic and rheological information from ongoing structural and seismic investigations in the Victoria Land region will also be integrated in the modeling. The integrative and iterative modeling will yield a holistic interpretation of neotectonics and ice sheet history that will help us to discriminate tectonic crustal displacements from viscoelastic/elastic glacio-isostatic motions. These results will provide key information to interpret broad, continental-scale crustal motion patterns detected by sparse, regionally distributed GPS continuous trackers and by spaceborne instruments. This study will contribute to international programs focused on Antarctic neotectonic and global change issues.\u003cbr/\u003e\u003cbr/\u003eStrategies to meet these science objectives include repeat surveys of key sites in the existing TAMDEF network, extension of the array of TAMDEF sites southward about 250 km along the Transantarctic Mountains, linked measurements with the VLNDEF network, and integration of quasi-continuous trackers within the campaign network. By extending the array of bedrock sites southward, these measurements will cross gradients in predicted vertical motion due to viscoelastic rebound. The southward extension will also allow determination of the southern limit of the active Terror Rift and will provide a better baseline for constraints on any ongoing tectonic displacements across the West Antarctic rift system as a whole that might be possible using GPS data collected by the West Antarctic GPS Network. This project will also investigate unique aspects of GPS geodesy in Antarctica to determine how the error spectrum compares to mid-latitude regions and to identify the optimum measurement and data processing schemes for Antarctic conditions. The geodetic research will improve position accuracies within our network and will also yield general recommendations for deformation monitoring networks in polar regions.\u003cbr/\u003e\u003cbr/\u003eAn education and outreach program is planned and will be targeted at non-science-major undergraduate students taking Earth System Science at Ohio State University. The objective will be to illuminate the research process for nonscientists. This effort will educate students on the process of science and inform them about Antarctica and how it relates to global science issues.", "east": 169.4, "geometry": "POINT(161.1165 -78.325)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "GPS", "locations": null, "north": -75.317, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Wilson, Terry", "platforms": "SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repositories": null, "science_programs": null, "south": -81.333, "title": "Collaborative Research: Transantarctic Mountains Deformation Network: GPS Measurements of Neotectonic Motion in the Antarctic Interior", "uid": "p0000574", "west": 152.833}, {"awards": "0229403 Tauxe, Lisa", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Paleomagnetism and40Ar/39Ar ages from volcanics extruded during the Matuyama and Brunhes Chrons near McMurdo Sound, Antarctica", "datasets": [{"dataset_uid": "000116", "doi": "", "keywords": null, "people": null, "repository": "EarthRef", "science_program": null, "title": "Paleomagnetism and40Ar/39Ar ages from volcanics extruded during the Matuyama and Brunhes Chrons near McMurdo Sound, Antarctica", "url": "http://dx.doi.org/10.7288/V4/MAGIC/12395"}], "date_created": "Tue, 01 Sep 2009 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate Earth\u0027s magnetic field over the past 5 million years in order to test models of Earth\u0027s geomagnetic dynamo. Paleomagnetic data (directions of ancient geomagnetic fields obtained from rocks) play an important role in a variety of geophysical studies of the Earth, including plate tectonic reconstructions, magnetostratigraphy, and studies of the behavior of the ancient geomagnetic field (which is called paleo-geomagnetism). Over the past four decades the key assumption in many paleomagnetic studies has been that the average direction of the paleomagnetic field corresponds to one that would have been produced by a geocentric axial dipole (GAD) (analogous to a bar magnet at the center of the Earth), and that paleoinclinations (the dip of magnetic directions from rocks) provide data of sufficient accuracy to enable their use in plate reconstructions. A recent re-examination of the fundamental data underlying models of the time averaged field has shown that the most glaring deficiency in the existing data base is a dearth of high quality data, including paleointensity information, from high latitudes. This project will undertake a sampling and laboratory program on suitable sites from the Mt. Erebus Volcanic Province (Antarctica) that will produce the quality data from high southern latitudes that are essential to an enhanced understanding of the time averaged field and its long term variations.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Tauxe, Lisa; Staudigel, Hubertus; Constable, Catherine; Koppers, Anthony", "platforms": "Not provided", "repo": "EarthRef", "repositories": "EarthRef", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Geomagnetic Field as Recorded in the Mt Erebus Volcanic Province: Key to Field Structure at High Southern Latitudes", "uid": "p0000228", "west": -180.0}, {"awards": "0619457 Bell, Robin", "bounds_geometry": "POLYGON((-51 72.5,-49.5 72.5,-48 72.5,-46.5 72.5,-45 72.5,-43.5 72.5,-42 72.5,-40.5 72.5,-39 72.5,-37.5 72.5,-36 72.5,-36 71.85,-36 71.2,-36 70.55,-36 69.9,-36 69.25,-36 68.6,-36 67.95,-36 67.3,-36 66.65,-36 66,-37.5 66,-39 66,-40.5 66,-42 66,-43.5 66,-45 66,-46.5 66,-48 66,-49.5 66,-51 66,-51 66.65,-51 67.3,-51 67.95,-51 68.6,-51 69.25,-51 69.9,-51 70.55,-51 71.2,-51 71.85,-51 72.5))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 20 Jul 2009 00:00:00 GMT", "description": "This project develops a system of airborne instruments to explore the polar ice sheets and their underlying environments. The instrument suite includes an ice-penetrating radar, laser altimeter, gravimeter and magnetometer. Airborne geophysical measurements are key to understanding the 99% of Antarctica and 85% of Greenland covered by ice, which have thus far been studied at the postage stamp level. Projects linking ice sheet behavior to underlying geology will immediately benefit from this system, but even more exciting are the system\u0027s potential uses for work at the frontiers of polar science, such as: 1) exploring subglacial lakes, recently discovered and potentially the most unique sites on Earth for understanding life in extreme environments; 2) locating the deepest, oldest ice, which would offer million year and older samples of the atmosphere and 3) interpreting Antarctica\u0027s subglacial geology, which contains unique and unstudied volcanoes, mountains, and tectonic provinces. In terms of broader impacts, this project constructs research infrastructure critical to society\u0027s understanding of sea level rise, and supports a project involving domestic, international, and private sector collaborations.", "east": -36.0, "geometry": "POINT(-43.5 69.25)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": 72.5, "nsf_funding_programs": null, "paleo_time": null, "persons": "Bell, Robin; Studinger, Michael S.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": 66.0, "title": "Development of a Polar Multidisciplinary Airborne Imaging System for the International Polar Year 2007-2009", "uid": "p0000205", "west": -51.0}, {"awards": "0636269 Harpp, Karen", "bounds_geometry": "POLYGON((161.55 -77.50314,161.5883 -77.50314,161.6266 -77.50314,161.66490000000002 -77.50314,161.7032 -77.50314,161.7415 -77.50314,161.7798 -77.50314,161.8181 -77.50314,161.8564 -77.50314,161.8947 -77.50314,161.933 -77.50314,161.933 -77.507124,161.933 -77.51110800000001,161.933 -77.515092,161.933 -77.519076,161.933 -77.52306,161.933 -77.527044,161.933 -77.531028,161.933 -77.535012,161.933 -77.538996,161.933 -77.54298,161.8947 -77.54298,161.8564 -77.54298,161.8181 -77.54298,161.7798 -77.54298,161.7415 -77.54298,161.7032 -77.54298,161.66490000000002 -77.54298,161.6266 -77.54298,161.5883 -77.54298,161.55 -77.54298,161.55 -77.538996,161.55 -77.535012,161.55 -77.531028,161.55 -77.527044,161.55 -77.52306,161.55 -77.519076,161.55 -77.515092,161.55 -77.51110800000001,161.55 -77.507124,161.55 -77.50314))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 03 Jun 2009 00:00:00 GMT", "description": "This project is a field and laboratory based investigation of the Vanda dike swarm in the Dry Valleys of Antarctica. These dikes crosscut Cambro-Ordovician granitoid plutons produced during the Ross Orogeny, and mark the transition between the cessation of subduction and the onset of extensional magmatism. Many dying convergent plate margins convert to extensional magmatism, and the Dry Valleys provide a magnificent opportunity to examine the shallow roots of a plate that experienced this transition. Because of their exceptional exposure, bimodal felsic and mafic compositions, and complex field relations, the Vanda dikes have the potential to reveal insights into this important phase of Antarctic tectonic history. \u003cbr/\u003eThe broader impacts include collaboration between a primarily undergraduate and two research institutions, and support for undergraduate participation in an exciting, field-based research project.", "east": 161.933, "geometry": "POINT(161.7415 -77.52306)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.50314, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Harpp, Karen", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -77.54298, "title": "Collaborative Research, RUI: The Transition from Subduction to Extensional Magmatism in the Dry Valleys of Antarctica", "uid": "p0000546", "west": 161.55}, {"awards": "0816934 Thomson, Stuart; 0817163 Reiners, Peter", "bounds_geometry": "POLYGON((72 -66,72.3 -66,72.6 -66,72.9 -66,73.2 -66,73.5 -66,73.8 -66,74.1 -66,74.4 -66,74.7 -66,75 -66,75 -66.3,75 -66.6,75 -66.9,75 -67.2,75 -67.5,75 -67.8,75 -68.1,75 -68.4,75 -68.7,75 -69,74.7 -69,74.4 -69,74.1 -69,73.8 -69,73.5 -69,73.2 -69,72.9 -69,72.6 -69,72.3 -69,72 -69,72 -68.7,72 -68.4,72 -68.1,72 -67.8,72 -67.5,72 -67.2,72 -66.9,72 -66.6,72 -66.3,72 -66))", "dataset_titles": "Triple-dating (Pb-FT-He) of Antarctic Detritus and the Origin of the Gamburtsev Mountains", "datasets": [{"dataset_uid": "600090", "doi": "10.15784/600090", "keywords": "Antarctica; Gamburtsev Mountains; Geochronology; Marine Sediments; NBP0101; ODP1166; Prydz Bay; Solid Earth; Southern Ocean", "people": "Gehrels, George; Reiners, Peter", "repository": "USAP-DC", "science_program": null, "title": "Triple-dating (Pb-FT-He) of Antarctic Detritus and the Origin of the Gamburtsev Mountains", "url": "https://www.usap-dc.org/view/dataset/600090"}, {"dataset_uid": "600089", "doi": "10.15784/600089", "keywords": "Antarctica; Fission Track Thermochronology; Gamburtsev Mountains; Geochronology; Solid Earth", "people": "Thomson, Stuart", "repository": "USAP-DC", "science_program": null, "title": "Triple-dating (Pb-FT-He) of Antarctic Detritus and the Origin of the Gamburtsev Mountains", "url": "https://www.usap-dc.org/view/dataset/600089"}], "date_created": "Thu, 30 Apr 2009 00:00:00 GMT", "description": "This Small Grant for Exploratory Research investigates the origin and evolution of the Gamburtsev subglacial mountains (GSM). These mountains are considered the nucleation point for Antarctica\u0027s largest ice sheets; however, being of indeterminate age, they may postdate ice sheet formation. As well, their formation could reflect tectonic events during the breakup of Gondwana. The project studies GSM-derived detrital zircon and apatite crystals from Prydz Bay obtained by the Ocean Drilling Program. Analytical work includes triple-dating thermochronometry by U/Pb, fission track, and (U/Th)/He methods. The combined technique offers insight into both high and low temperature processes, and is potentially sensitive to both the orogenic events and the subsequent cooling and exhumation due to erosion. In terms of broader impacts, this project supports research for a postdoctoral fellow and an", "east": 75.0, "geometry": "POINT(73.5 -67.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -66.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Thompson, Stuart; Reiners, Peter; Gehrels, George", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -69.0, "title": "Collaborative Research: SGER: Triple-dating (Pb-FT-He) of Antarctic Detritus and the Origin of the Gamburtsev Mountains", "uid": "p0000210", "west": 72.0}, {"awards": "0338279 Siddoway, Christine", "bounds_geometry": "POLYGON((-157 -75,-155.3 -75,-153.6 -75,-151.9 -75,-150.2 -75,-148.5 -75,-146.8 -75,-145.1 -75,-143.4 -75,-141.7 -75,-140 -75,-140 -75.3,-140 -75.6,-140 -75.9,-140 -76.2,-140 -76.5,-140 -76.8,-140 -77.1,-140 -77.4,-140 -77.7,-140 -78,-141.7 -78,-143.4 -78,-145.1 -78,-146.8 -78,-148.5 -78,-150.2 -78,-151.9 -78,-153.6 -78,-155.3 -78,-157 -78,-157 -77.7,-157 -77.4,-157 -77.1,-157 -76.8,-157 -76.5,-157 -76.2,-157 -75.9,-157 -75.6,-157 -75.3,-157 -75))", "dataset_titles": "Bedrock sample data, Ford Ranges region (Marie Byrd Land)", "datasets": [{"dataset_uid": "601829", "doi": "10.15784/601829", "keywords": "Antarctica; Cryosphere; Gondwana; Marie Byrd Land; Migmatite", "people": "Siddoway, Christine", "repository": "USAP-DC", "science_program": null, "title": "Bedrock sample data, Ford Ranges region (Marie Byrd Land)", "url": "https://www.usap-dc.org/view/dataset/601829"}], "date_created": "Wed, 09 Jul 2008 00:00:00 GMT", "description": "This project will study migmatite domes found in the Fosdick Mountains of the Ford Ranges, western Marie Byrd Land, Antarctica. This area offers unique, three-dimensional exposures that may offer new insight into dome formation, which is a fundamental process of mountain building. These domes are derived from sedimentary and plutonic protoliths that are complexly interfolded at decimeter to kilometer scales. Preliminary findings from geobarometry and U-Pb monazite dating of anatexite suggest that peak metamorphism was underway at 105 Ma at crustal depths of ~25 km, followed by decompression as the Fosdick dome was emplaced to 16-17 km, or possibly as low as 8.5 km, in the crust by 99 Ma. Near-isothermal conditions were maintained during ascent, favorable for producing substantial volumes of melt through biotite-dehydration melting. This dome has been interpreted as a product of extensional exhumation. This is a viable interpretation from the regional standpoint, because the dome was emplaced in mid-Cretaceous time during the rapid onset of divergent tectonics along the proto- Pacific margin of Gondwana. However, the complex internal structures of the Fosdick Mountains have yet to be considered and may be more consistent with alternative intepretations such as upward extrusion within a contractional setting or lateral flow within a transcurrent attachment zone. This proposal is for detailed structural analysis, paired with geothermobarometry and geochronology, to determine the flow behavior and structural style that produced the internal architecture of the Fosdick dome. The results will improve our general understanding of the role of gneiss domes in transferring material and heat during mountain-building, and will characterize the behavior of the middle crust during a time of rapid transition from divergent to convergent tectonics along the active margin of Gondwana. In terms of broader impacts, this work will train undergraduate and graduate students, and involve them as collaborators in the development of curricular materials. It will also foster mentoring relationships between graduate and undergraduate students.", "east": -140.0, "geometry": "POINT(-148.5 -76.5)", "instruments": null, "is_usap_dc": false, "keywords": "Transcurrent Faults; Geochronology; Tectonic; Detachment Faults; Structural Geology; Not provided; Gneiss Dome; Migmatite", "locations": null, "north": -75.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Siddoway, Christine; Teyssier, Christian", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Gneiss Dome architecture: Investigation of Form and Process in the Fosdick Mountains, W. Antarctica", "uid": "p0000744", "west": -157.0}, {"awards": "9615398 Encarnacion, John", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 11 Jul 2007 00:00:00 GMT", "description": "Encarnaci_n OPP 9615398 Abstract Basement rocks of the Transantarctic Mountains are believed to record a change in the paleo-Pacific margin of Gondwana from a rifted passive margin to a tectonically active margin (Ross orogen). Recent hypothesis suggest that the passive margin phase resulted from Neoproterozoic rifting of Laurentia from Antarctica (\"SWEAT\" hypothesis). The succeeding active margin phase (Ross orogeny) was one of several tectonic events (\"Pan African\" events) that resulted from plate convergence/transpression that was probably a consequence of the assembly of components of the Gondwana supercontinent. Although these basement units provide one of the keys for understanding the break up and assembly of these major continental masses, few precise ages are available to address the following important issues: (1) Is there any pre-rift high-grade cratonal basement exposed along the Transantarctic Mountains, and what is/are its precise age? Is this age compatible with a Laurentia connection? (2) What is the age of potential rift/passive margin sediments (Beardmore Group) along the Queen Maud Mountains sector of the orogen? (3) What is the relative and absolute timing of magmatism and contractional deformation of supracrustal units in the orogen? Was deformation diachronous and thus possibly related to transpressional tectonics, or did it occur in a discrete pulse that is more compatible with a collision? How does contraction of the orogen fit in with emplacement of voluminous plutonic and volcanic rocks? The answers to these questions are central to understanding the kinematic evolution of this major orogenic belt and its role in Neoproterozoic-Early Paleozoic continental reconstructions and plate kinematics. Hence, this award supports funding for precise U-Pb dating, using zircon, monazite, baddeleyite, and/or titanite from a variety of magmatic rocks in the Queen Ma ud Mountains, which can address the foregoing problems. In addition to the issues above, precise dating of volcanics that are interbedded with carbonates containing probable Middle Cambrian fauna could potentially provide a calibration point for the Middle Cambrian, which will fill a gap in the absolute time scale for the early Paleozoic.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Encarnacion, John", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Constraints on the Tectonomagmatic Evolution of the Pacific Margin of Gondwana from U-Pb Geochronology of Magmatic Rocks in the Transantarctic Basement", "uid": "p0000277", "west": null}, {"awards": "9909436 Farley, Kenneth", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 11 Jul 2007 00:00:00 GMT", "description": "9909436 Farley This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports an investigation of the uplift history of the Dry Valleys segment of the Transantarctic Mountains. The overall goal is to further constrain the exhumation history of the Transantarctic Mountains by using the newly developed apatite (U-Th)/He dating method on samples collected in vertical profiles. This approach, combined with existing apatite fission track information will constrain the rate and patterns of exhumation across the Transantarctic Mountains since their inception as a rift-flank uplift in the early Cenozoic. This project will complement other projects and build on previous interpretations of the exhumation and tectonic history determined using apatite fission track thermochronology. It will bridge the gap between information on erosion rates determined from fission track thermochronology and from cosmogenic surface exposure dating and integrate the exhumation history of the mountains with their landscape evolution. As such, the results from this project will address an outstanding problem in Antarctic science; namely the stability of the East Antarctic Ice Sheet, and the timing of the transition from a \"warm\" dynamic ice sheet to a cold polar ice sheet. Highly relevant to this issue is the landscape evolution of the Transantarctic Mountains because many diverse lines of evidence for the rate of landscape evolution have been used to argue for a dynamic ice sheet up until either the Pliocene (the \"dynamic\" ice sheet model) or the middle Miocene (the \"stable\" ice sheet model). Understanding the past stability or dynamic fluctuations of the East Antarctic ice sheet with respect to the climate record is, of course, important for understanding how the present ice sheet may respond to global warming. The specific objective of this project is to determine apatite (U-Th)/He age versus elevation trends for a number of vertical profiles from locations within the Transantarctic Mountain front and across the structural grain of the range. Fission track data already exist for all of these profiles, with apatite fission track ages ranging from 150-30 Ma. The greater precision of the (U-Th)/He technique and the fact it records information at lower temperatures (closure temperature of ~70 degrees Celsius; limits of 40-85 degrees Celsius for the He partial retention zone) will allow examination of the exhumation history of the TAM in more detail from ca 130 Ma to ~20 Ma. Another facet is to examine areas where Cretaceous exhumation is recorded and areas where the fission track profiles indicate periods of thermal and tectonic stability and minimal erosion throughout the Cretaceous. The variation of timing of the onset of more rapid exhumation accompanying uplift and formation of the Transantarctic Mountains in the early Cenozoic will also be examined.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Farley, Kenneth", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Exhumation of the Transantarctic Mountains: Constraints from (U-Th)/He Dating of Apatites", "uid": "p0000281", "west": null}, {"awards": "0126146 Miller, Molly", "bounds_geometry": "POINT(171 -83.75)", "dataset_titles": null, "datasets": null, "date_created": "Wed, 20 Jun 2007 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a study to investigate paleoenvironmental conditions during the late Paleozoic and Mesozoic in central interior Antarctica. The 4 km thick sequence of sedimentary rocks, known as the Beacon Supergroup, in the Beardmore Glacier area records 90 million years of Permian through Jurassic history of this high-paleolatitude sector of Gondwana. It accumulated in a foreland basin with a rate of subsidence approximately equal to the rate of deposition. The deposits have yielded diverse vertebrate fossils, in situ fossil forests, and exceptionally well preserved plant fossils. They give a unique glimpse of glacial, lake, and stream/river environments and ecosystems and preserve an unparalleled record of the depositional, paleoclimatic, and tectonic history of the area. The excellent work done to date provides a solid base of information on which to build understanding of conditions and processes.\u003cbr/\u003e\u003cbr/\u003eThis project is a collaborative study of this stratigraphic section that will integrate sedimentologic, paleontologic, and ichnologic observations to answer focused questions, including: (1) What are the stratigraphic architecture and alluvial facies of Upper Permian to Jurassic rocks in the Beardmore area?; (2) In what tectonostratigraphic setting were these rocks deposited?; (3) Did vertebrates inhabit the cold, near-polar, Permian floodplains, as indicated by vertebrate burrows, and can these burrows be used to identify, for the first time, the presence of small early mammals in Mesozoic deposits?; and (4) How did bottom-dwelling animals in lakes and streams use substrate ecospace, how did ecospace use at these high paleolatitudes differ from ecospace use in equivalent environments at low paleolatitudes, and what does burrow distribution reveal about seasonality of river flow and thus about paleoclimate? Answers to these questions will (1) clarify the paleoclimatic, basinal, and tectonic history of this part of Gondwana, (2) elucidate the colonization of near-polar ecosystems by vertebrates, (3) provide new information on the environmental and paleolatitudinal distributions of early mammals, and (4) allow semi-quantitative assessment of the activity and abundance of bottom-dwelling animals in different freshwater environments at high and low latitudes. In summary, this project will contribute significantly to an understanding of paleobiology and paleoecology at a high latitude floodplain setting during a time in Earth history when the climate was much different than today.", "east": 171.0, "geometry": "POINT(171 -83.75)", "instruments": null, "is_usap_dc": false, "keywords": "Beardmore Glacier; FIELD SURVEYS; Paleoclimate; Permian; Paleontology; FIELD INVESTIGATION; Sedimentologic; Ichnologic; Stratigraphic; Gondwana", "locations": "Beardmore Glacier", "north": -83.75, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e MESOZOIC \u003e JURASSIC; PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN; PHANEROZOIC \u003e MESOZOIC \u003e TRIASSIC", "persons": "Miller, Molly", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -83.75, "title": "Collaborative Research: Late Paleozoic-Mesozoic Fauna, Environment, Climate and Basinal History: Beardmore Glacier Area, Transantarctic Mountains", "uid": "p0000736", "west": 171.0}, {"awards": "0337858 Goodge, John", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 05 Jun 2007 00:00:00 GMT", "description": "This work will determine the age and provenance of glacially derived marine sediments from the coastal regions of Wilkes Land, Antarctica. These deposits may offer insight into the history of the East Antarctic Shield (EAS), which is amongst the oldest sections of continental crust on Earth, but cannot be studied directly because of nearly complete ice sheet coverage. The study will use Australian National University\u0027s SHRIMP ion microprobe to date zircon and monazite found in the sediments. Samples of interest include polymictic pebble and cobble clasts obtained from dredge hauls of tills, as well as sand-matrix fractions from cores of glacial diamicts on the continental margin. Individual clasts of igneous and metamorphic rocks from tills will be selected for zircon and/or monazite age dating, whereas detrital zircons from stratified and non-stratified diamictons will be analyzed for composite zircon provenance analysis. In addition, detrital zircon ages will be determined for Beacon Supergroup sandstones to evaluate recycling of zircon in Phanerozoic basins. Integration of ages obtained from both sources will provide a good representation of the EAS terrains underlying the Wilkes Land ice sheet. This project will allow us to learn more about the remote continental interior and improve our ability to interpret past ice-flow patterns without further environmental impact on Antarctica. The results will improve our understanding of Precambrian tectonics and crustal evolution, and help target future over-ice geophysical surveys and basement drilling projects currently under consideration. In terms of broader impacts, the project will provide educational and training opportunities for undergraduate students in Earth science.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Goodge, John", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Glacial proxies of East Antarctic shield basement in Wilkes Land, Antarctica", "uid": "p0000725", "west": null}, {"awards": "0408475 Harry, Dennis", "bounds_geometry": "POINT(-175 -85)", "dataset_titles": null, "datasets": null, "date_created": "Tue, 06 Mar 2007 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to apply numerical modeling to constrain the uplift and exhumation history of the Transantarctic Mountains. The Transantarctic Mountains (TAM) are an anomalously high (\u003e4500 m) and relatively broad (up to 200 km) rift-flank uplift demarcating the boundary between East and West Antarctica. Dynamics of the East Antarctic ice-sheet and the climate are affected by the mountain range, and an understanding of the uplift history of the mountain range is critical to understanding these processes. This project will constrain the uplift and denudation history of the Transantarctic Mountains based on thermo-mechanical modeling held faithful to thermochronological, geological, and geophysical data. The research will be the primary responsibility of post-doctoral researcher Audrey Huerta, working in collaboration with Dennis Harry, 1 undergraduate student, and 1 graduate student.\u003cbr/\u003e\u003cbr/\u003eThermochronologic evidence of episodic Cretaceous through Cenozoic rapid cooling within the TAM indicates distinct periods of uplift and exhumation. However, a more detailed interpretation of the uplift history is difficult without an understanding of the evolving thermal structure and topography of the TAM prior to and during uplift. These aspects of the mountain range can best be constrained by an understanding of the evolving regional tectonic setting. Proximity of the TAM to the West Antarctic Rift System (WARS) suggests a link between uplift of the TAM and extension within the WARS.\u003cbr/\u003e\u003cbr/\u003eThe project will integrate two techniques: lithospheric-scale geodynamic modeling and crustal-scale thermal modeling. The lithospheric-scale deformational and thermal evolution of TAM will be modeled by a finite element model designed to track the thermal and deformational response of the Antarctic lithosphere to a protracted extensional environment. Previous investigators have linked the high elevation and broad width of the TAM to a deep level of necking in which mantle thinning is offset from the location of crustal extension. In this study, a three-dimensional dynamic model will be used to track the uplift and thermal evolution of the TAM in a setting in which necking is at a deep level, and in which extension within the crust and extension within the mantle are offset. Velocity boundary conditions applied to the edges of the model will vary through time to simulate the extensional and transtensional evolution of the WARS. Because the model is dynamic, the thermal structure, strength, and strain field, evolve naturally in response to these initial and boundary conditions.\u003cbr/\u003e\u003cbr/\u003eDynamic models are uniquely suited to understanding lithospheric deformational and thermal evolution, however kinematic models are best suited for addressing the detailed thermal and exhumation history of crustal uplifts. Thus, a 2-dimensional kinematic-thermal model will be designed to simulate the uplift history of the TAM and the resulting erosional, topographic, and thermal evolution. Uplift will be modeled as normal-fault movement on a set of discrete fault planes with uplift rate varying through time. Erosion will be modeled as a diffusive process in which erosion rates can be varied through time (simulating climate changes), and vary spatially as a linear function of gradient and distance from the drainage divide. Synthetic time-temperature (t-T) histories will be calculated to compare model results to thermochronologic data.", "east": -175.0, "geometry": "POINT(-175 -85)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": -85.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC; PHANEROZOIC \u003e MESOZOIC \u003e CRETACEOUS; PHANEROZOIC \u003e CENOZOIC \u003e PALEOGENE", "persons": "Huerta, Audrey D.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -85.0, "title": "Uplift and Exhumation of the Transantarctic Mountains and Relation to Rifting in West Antarctica", "uid": "p0000728", "west": -175.0}, {"awards": "0232042 Finn, Carol", "bounds_geometry": "POLYGON((139.27539 -82.35733,142.369695 -82.35733,145.464 -82.35733,148.558305 -82.35733,151.65261 -82.35733,154.746915 -82.35733,157.84122 -82.35733,160.935525 -82.35733,164.02983 -82.35733,167.124135 -82.35733,170.21844 -82.35733,170.21844 -82.516831,170.21844 -82.676332,170.21844 -82.835833,170.21844 -82.995334,170.21844 -83.154835,170.21844 -83.314336,170.21844 -83.473837,170.21844 -83.633338,170.21844 -83.792839,170.21844 -83.95234,167.124135 -83.95234,164.02983 -83.95234,160.935525 -83.95234,157.84122 -83.95234,154.746915 -83.95234,151.65261 -83.95234,148.558305 -83.95234,145.464 -83.95234,142.369695 -83.95234,139.27539 -83.95234,139.27539 -83.792839,139.27539 -83.633338,139.27539 -83.473837,139.27539 -83.314336,139.27539 -83.154835,139.27539 -82.995334,139.27539 -82.835833,139.27539 -82.676332,139.27539 -82.516831,139.27539 -82.35733))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 16 Aug 2005 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the Transantarctic Mountains and an adjacent region of East Antarctica. The East Antarctic shield is one of Earth\u0027s oldest and largest cratonic assemblies, with a long-lived Archean to early Paleozoic history. Long-standing interest in the geologic evolution of this shield has been rekindled over the past decade by tectonic models linking East Antarctica with other Precambrian crustal elements in the Rodinia and Gondwanaland supercontinents. It is postulated that the Pacific margin of East Antarctica was rifted from Laurentia during late Neoproterozoic breakup of Rodinia, and it then developed as an active plate boundary during subsequent amalgamation of Gondwanaland in the earliest Paleozoic. If true, the East Antarctic shield played a key role in supercontinent transformation at a time of global changes in plate configuration, terrestrial surficial process, sea level, and marine geochemistry and biota. A better understanding of the geological evolution of the East Antarctic shield is therefore critical for studying Precambrian crustal evolution in general, as well as resource distribution, biosphere evolution, and glacial and climate history during later periods of Earth history. Because of nearly complete coverage by the polar ice cap, however, Antarctica remains the single most geologically unexplored continent. Exposures of cratonic basement are largely limited to coastal outcrops in George V Land and Terre Adelie (Australian sector), the Prince Charles Mountains and Enderby Land (Indian sector), and Queen Maud Land (African sector), where the geology is reasonably well-known. By contrast, little is known about the composition and structure of the shield interior. Given the extensive ice cover, collection of airborne geophysical data is the most cost-effective method to characterize broad areas of sub-ice basement and expand our knowledge of the East Antarctic shield interior. \u003cbr/\u003e\u003cbr/\u003eThis project will conduct an airborne magnetic survey (coupled with ground-based gravity measurements) across an important window into the shield where it is exposed in the Nimrod Glacier area of the central Transantarctic Mountains. Specific goals are to:\u003cbr/\u003e1. Characterize the magnetic and gravity signature of East Antarctic crustal basement exposed at the Ross margin (Nimrod Group),\u003cbr/\u003e2. Extend the magnetic data westward along a corridor across the polar ice cap in order to image the crust in ice-covered areas,\u003cbr/\u003e3. Obtain magnetic data over the Ross Orogen in order to image the ice-covered boundary between basement and supracrustal rocks, allowing us to better constrain the geometry of fundamental Ross structures, and\u003cbr/\u003e4. Use the shape, trends, wavelengths, and amplitudes of magnetic anomalies to define magnetic domains in the shield, common building blocks for continent-scale studies of Precambrian geologic structure and evolution.\u003cbr/\u003e\u003cbr/\u003eHigh-resolution airborne magnetic data will be collected along a transect extending from exposed rocks of the Nimrod Group across the adjacent polar ice cap. The Nimrod Group represents the only bona fide Archean-Proterozoic shield basement exposed for over 2500 km of the Pacific margin of Antarctica. This survey will characterize the geologically well-known shield terrain in this sector using geophysical methods for the first time. This baseline over the exposed shield will allow for better interpretation of geophysical patterns in other ice-covered regions and can be used to target future investigations. In collaboration with colleagues from the BGR (Germany), a tightly-spaced, \"draped\" helicopter magnetic survey will be flown during the 2003-04 austral summer, to be complemented by ground measurements of gravity over the exposed basement. Data reduction, interpretation and geological correlation will be completed in the second year. This project will enhance the education of students, the advancement of under-represented groups, the research instrumentation of the U.S. Antarctic Program, partnerships between the federal government and institutions of higher education, and cooperation between national research programs. It will benefit society through the creation of new basic knowledge about the Antarctic continent, which in turn may help with applied research in other fields such as the glacial history of Antarctica.", "east": 170.21844, "geometry": "POINT(154.746915 -83.154835)", "instruments": "SOLAR/SPACE OBSERVING INSTRUMENTS \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e MAM", "is_usap_dc": false, "keywords": "Central Transantarctic Mountains; Aeromagnetic Data; HELICOPTER; DHC-6; Not provided", "locations": "Central Transantarctic Mountains", "north": -82.35733, "nsf_funding_programs": null, "paleo_time": null, "persons": "Finn, C. A.; FINN, CAROL", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6; AIR-BASED PLATFORMS \u003e ROTORCRAFT/HELICOPTER \u003e HELICOPTER; Not provided", "repositories": null, "science_programs": null, "south": -83.95234, "title": "Collaborative Research: Geophysical Mapping of the East Antarctic Shield Adjacent to the Transantarctic Mountains", "uid": "p0000249", "west": 139.27539}, {"awards": "0087390 Grunow, Anne", "bounds_geometry": "POLYGON((-170 -79,-164 -79,-158 -79,-152 -79,-146 -79,-140 -79,-134 -79,-128 -79,-122 -79,-116 -79,-110 -79,-110 -79.5,-110 -80,-110 -80.5,-110 -81,-110 -81.5,-110 -82,-110 -82.5,-110 -83,-110 -83.5,-110 -84,-116 -84,-122 -84,-128 -84,-134 -84,-140 -84,-146 -84,-152 -84,-158 -84,-164 -84,-170 -84,-170 -83.5,-170 -83,-170 -82.5,-170 -82,-170 -81.5,-170 -81,-170 -80.5,-170 -80,-170 -79.5,-170 -79))", "dataset_titles": "Polar Rock Repository; Rock Magnetic Clast data are at this website", "datasets": [{"dataset_uid": "200243", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Polar Rock Repository", "url": "https://prr.osu.edu/"}, {"dataset_uid": "001970", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Rock Magnetic Clast data are at this website", "url": "http://bprc.osu.edu/"}], "date_created": "Mon, 23 Aug 2004 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research project between the University of California-Santa Cruz, the University of Texas-Austin, and the Ohio State University to investigate sediment samples recovered from the base of the West Antarctic Ice Sheet (WAIS). West Antarctica is a remote polar region but its dynamic ice sheet, complicated tectonic history, and the sedimentary record of Cenozoic glaciation make it of particular interest to glaciologists and geologists. Glaciologists are concerned with the possibility of significant near-future changes in mass balance of the WAIS that may contribute to the ongoing global sea level rise. Geologists are investigating in West Antarctica the fundamental process of continental extension and are constructing models of a polar marine depositional system using this region as the prime modern example. The subglacial part of West Antarctica has escaped direct geological investigations and all that is known about subglacial geology comes from geophysical remote sensing. Recent acquisitions of new, high-quality geophysical data have led to generation of several enticing models. For instance, subglacial presence of high-magnitude, short-wavelength magnetic anomalies has prompted the proposition that there may be voluminous (\u003e1 million cubic km), Late Cenozoic flood basalts beneath the ice sheet. Another important model suggests that the patterns of fast ice streaming (~100 meters/year) and slow ice motion (~1-10 meters/year) observed within the WAIS are controlled by subglacial distribution of sedimentary basins and resistant bedrock. These new geophysics-based models should be tested with direct observations because they are of such great importance to our understanding of the West Antarctic tectonic history and to our ability to predict the future behavior of the WAIS.\u003cbr/\u003e\u003cbr/\u003eThis research is designed as a pilot study to provide new geologic data, which may help to test the recent models inferred from geophysical observations. The new constraints on subglacial geology and on its interactions with the WAIS will be obtained through petrological and geochemical analyses of basal and subglacial sediments collected previously from seven localities. This investigation will take place in the context of testing the following three hypotheses: (A) the provenance of bedrock clasts in the glacial sediment samples is primarily from West Antarctica, (B) some clasts and muds from the West Antarctic subglacial sediments have been derived by erosion of the (inferred) subglacial Late Cenozoic flood basalts, and (C) the sediments underlying the West Antarctic ice streams were generated by glacial erosion of preglacial sedimentary basins but the sediments recovered from beneath the slow-moving parts of the WAIS were produced through erosion of resistant bedrock.\u003cbr/\u003e\u003cbr/\u003eThe individual hypotheses will be tested by collecting data on: (A) petrology, geochemistry and age of granitoid clasts, (B) petrology, geochemistry and age of basaltic clasts combined with mud geochemistry, and (C) clay mineralogy/paragenesis combined with textural maturity of sand and silt grains. The results of these tests will help evaluate the interesting possibility that subglacial geology may have first-order control on the patterns of fast ice flow within the WAIS. The new data will also help to determine whether the subglacial portion of West Antarctica is a Late Cenozoic flood basalt province. By combining glaciological and geological aspects of West Antarctic research the proposed collaborative project will add to the ongoing U.S. effort to create a multidisciplinary understanding of this polar region.", "east": -110.0, "geometry": "POINT(-140 -81.5)", "instruments": null, "is_usap_dc": false, "keywords": "Till; Subglacial; Clasts; Magnetic Properties; Rock Magnetics; FIELD INVESTIGATION; West Antarctic Ice Sheet", "locations": "West Antarctic Ice Sheet", "north": -79.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Grunow, Anne; Vogel, Stefan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "PRR", "repositories": "PI website; PRR", "science_programs": null, "south": -84.0, "title": "Collaborative Research: Relationship Between Subglacial Geology and Glacial Processes in West Antarctica: Petrological and Geochemical Analyses of Subglacial and Basal Sediments", "uid": "p0000740", "west": -170.0}, {"awards": "8919147 Elliot, David", "bounds_geometry": null, "dataset_titles": "Ice Thickness and Surface Elevation, Southeastern Ross Embayment, West Antarctica", "datasets": [{"dataset_uid": "609099", "doi": "10.7265/N5WW7FKC", "keywords": "Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ross Embayment; West Antarctica", "people": "Bell, Robin; Blankenship, Donald D.; Studinger, Michael S.; Brozena, J. M.; Behrendt, J. C.; Hodge, S. M.; Kempf, Scott D.; Peters, M. E.; Morse, David L.; Finn, C. A.", "repository": "USAP-DC", "science_program": null, "title": "Ice Thickness and Surface Elevation, Southeastern Ross Embayment, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609099"}], "date_created": "Wed, 17 Mar 2004 00:00:00 GMT", "description": "This award will support a combined airborne radar and aeromagnetic survey of two 220 x 330 km regions between the Transantarctica Mountains and Marie Byrd Land during the 1990-91 and 1991-92 field seasons. These efforts will address significant problems identified in the Ross Transect Zone (RTZ) by the National Academy of Sciences (1986) report \"Antarctic Solid Earth Sciences Research,\" and by the report to NSF \"A Plan for a United States Program to Study the Structure and Evolution of the Antarctic Lithosphere (SEAL).\" The surveys will be flown using the NSF/TUD radar and an areomagnetics system mounted in a light aircraft. The grid spacing will be 5 km and navigation will be by radiopositioning. In addition to maps of subglacial topography and magnetic intensity, attempts will be made to reconstruct the position of subglacial diffractors in three dimensions. This reconstruction should give new information about the distribution of escarpments and therefore the tectonic relationships within the region, especially when combined with the magnetic results. These experiments will be conducted by the Byrd Polar Research Center of the Ohio State University and the Water Resources and Geological Divisions of the U.S. Geological Survey.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": true, "keywords": "Subglacial Topography; SOAR; Airborne Laser Altimeters; Ross Embayment; West Antarctica; Ice Stream; Surface Morphology; Airborne Laser Altimetry; Aerogeophysics; Ice Sheet Thickness; Airborne Radar Sounding; Ice Thickness; West Antarctic Ice Sheet; Ice Surface Elevation; Casertz", "locations": "Ross Embayment; West Antarctica; West Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Elliot, David; Bell, Robin; Blankenship, Donald D.; Brozena, J. M.; Finn, C. A.; Hodge, S. M.; Kempf, Scott D.; Behrendt, J. C.; Morse, David L.; Peters, M. E.; Studinger, Michael S.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Corridor Aerogeophysics of the Southeastern Ross Transect Zone (CASERTZ), Antarctica", "uid": "p0000056", "west": null}, {"awards": "9222121 Dalziel, Ian", "bounds_geometry": null, "dataset_titles": "Concentration and Isotopic Composition of O2 and N2 in Trapped Gases of the Vostok Ice Core", "datasets": [{"dataset_uid": "609107", "doi": "10.7265/N5862DCW", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciology; Ice Core Records; Lake Vostok; Paleoclimate; UPLC-Q-TOF; Vostok Ice Core", "people": "Bender, Michael", "repository": "USAP-DC", "science_program": null, "title": "Concentration and Isotopic Composition of O2 and N2 in Trapped Gases of the Vostok Ice Core", "url": "https://www.usap-dc.org/view/dataset/609107"}], "date_created": "Tue, 01 Jan 2002 00:00:00 GMT", "description": "This award supports an in situ and short traverse seismic reflection/refraction and magnetotelluric experiment in West Antarctica. This collaborative experiment involves four awards at four institutions. The four-fold purpose is 1) to investigate part of the Byrd Subglacial Basin, 2) to test techniques for this work that could be done in a long traverse, 3) to determine the viability of the magnetotelluric method on a thick (electrically resistive) ice sheet, and 4) to evaluate the relative merits of refraction with wide reflection versus reflection with narrow refraction seismic studies in imaging the lithosphere. The geophysical techniques that will be employed are capable of imaging the ice sheet, the continental lithosphere, and the upper mantle, as well as determining physical properties of parts of the lithosphere and mantle. Investigations of outcrop geology over the last thirty years in West Antarctica and the Transantarctic Mountains have lead to recent interpretations that the crust is made up of many different lithospheric blocks. Seismic reflection work is the only way to image the crust in detail and the refraction work is the only way to determine physical properties of the layers and blocks defined by the reflection work. The magnetotelluric work is scientifically risky because it may not yield useful information when used over the electrically resistive ice sheet; however, if it works it has the potential to image molten rock in the crust and upper mantle. In a continental rift region such as West Antarctica, the presence of melt in the lithosphere is likely and, if documented, has very important ramifications to ice sheet dynamics. Research work supported by this award is expected to provide constraints to models of a range of crustal processes from models of ice sheet dynamics to tectonic and kinematic models of lithospheric thinning and rifting.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Isotope; Vostok; USAP-DC; Antarctica; Trapped Gases; Ice Core; Glaciology; Nitrogen; GROUND STATIONS", "locations": "Antarctica; Vostok", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bender, Michael; Dalziel, Ian W.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Seismic Traverse of the Byrd Subglacial Basin-Field Test", "uid": "p0000150", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
The Results Map and the Results Table
The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
As the map is panned or zoomed, the highlighted rows in the table will update.
If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page.
The bounds for the project(s)/dataset(s) selected will be displayed in red.
The selected result(s) will be highlighted in red and brought to the top of the table.
The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds
and highlight the centroid on the Results Map.
Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other
search criteria already selected.
After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
Clicking Clear in the map will clear any drawn polygon.
Clicking Search in the map, or Search on the form will have the same effect.
The returned results will be any projects/datasets with bounds that intersect the polygon.
Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Technical Abstract This research evaluates whether the small Coats Land crustal block of East Antarctica is a tectonic tracer linking Kalahari and southern Laurentia within the Neoproterozoic supercontinent of Rodinia across an orogenic suture. A Pan-African (~600 Ma) suture separates the small Coats Land block from the main Mawson Craton indicating that this crustal block had an independent pre-Pan-African history. Existing data from the miniscule outcrops of bedrock in Coats Land provide critical clues to that paleogeography, suggesting that Laurentia collided with Kalahari across the Grenville-Namaqua/Natal-Maud orogen. The Coats Land block has only three small groups of bedrock exposures, two form nunataks and the third occurs in a cliff face. The two nunataks comprise granophyre and rhyolite contemporaneous with the ca. 1.1 Ga Keweenawan, mid-continent rift, volcanics of Laurentia and its proposed southwestern extension in El Paso, TX. Moreover, the Pb isotopes of the Coats Land and Keweenawan rocks are identical, and paleomagnetic data are broadly supportive of the Coats Land block having been located adjacent to the present southern margin of the Laurentian craton. Metamorphic rocks from the cliff face exposure lithologically resemble basement rocks of the El Paso, TX. The proposed research will further existing geochemical and geochronologic studies of specimens previously collected from Coats Land and new and existing samples of rocks collected near El Paso, Texas for detailed comparison. Analyses include zircon U-Pb dating and Hf and O isotope analysis, and whole rock geochemistry and Pb, Sm-Nd and Rb-Sr isotope analysis. This research will make maximum use of existing material from this extremely remote part of Antarctica to test this hypothesis. Researchers will collaborate with 2 well-established education-outreach programs in the Jackson School of Geosciences at The University of Texas at Austin. Undergraduate research assistants will be recruited from the Jackson Scholars Program (JSP). Researchers will provide a field- and lab-based seminar on reconstructing Rodinia for the JSP and will conduct research with high school students during GeoFORCE 12th grade summer academy. Non-technical Abstract This research evaluates whether the small Coats Land crustal block of East Antarctica is a piece of ancestral North America (Laurentia) that was transferred to southern Africa (Kalahari) during ~ 1 Ga collision, and subsequent breakup, of the two continents during the formation of the ancient supercontinent of Rodinia. Coats Land is separated from the adjacent Mawson Craton of Antarctica by ~600 Ma continental sutures indicating that Coats Land had an independent history prior to 600 Ma. Existing data from the miniscule outcrops of bedrock in Coats Land provide critical clues to that paleogeography, suggesting that Laurentia collided with Kalahari. The Coats Land block has only three small groups of bedrock exposures, two form nunataks and the third occurs in a cliff face. The two nunataks comprise granophyre and rhyolite contemporaneous with the ca. 1.1 Ga Keweenawan, mid-continent rift, volcanics of Laurentia and its proposed southwestern extension in El Paso, TX. Moreover, the Pb isotopes of the Coats Land and Keweenawan rocks are identical, and paleomagnetic data are broadly supportive of the Coats Land block having been located adjacent to the present southern margin of the Laurentian craton. Metamorphic rocks from the cliff face exposure lithologically resemble basement rocks of the El Paso, TX. The proposed research will further existing geochemical and geochronologic studies of specimens previously collected from Coats Land and new and existing samples of rocks collected near El Paso, Texas for detailed comparison. Analyses include zircon U-Pb dating and Hf and O isotope analysis, and whole rock geochemistry and Pb, Sm-Nd and Rb-Sr isotope analysis. This research will make maximum use of existing material from this extremely remote part of Antarctica to test this hypothesis. Researchers will collaborate with 2 well-established education-outreach programs in the Jackson School of Geosciences at The University of Texas at Austin. Undergraduate research assistants will be recruited from the Jackson Scholars Program (JSP). Researchers will provide a field- and lab-based seminar on reconstructing Rodinia for the JSP and will conduct research with high school students during GeoFORCE 12th grade summer academy. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
One of the fundamental processes in plate tectonics is the rifting or separating of continental crust creating new seafloors which can widen and ultimately form new ocean basins, the latter is a process known as seafloor spreading. The Bransfield Strait, separating the West Antarctic Peninsula from the South Shetland Islands, formed and is presently widening as a result of the separation of continental crust. What is unique is that the system appears to be approaching the transition to seafloor spreading making this an ideal site to study the transitional process. Previous seafloor mapping and field surveys provide the regional structure of the basin; however, there exists a paucity of regional seismic studies documenting the tectonic and volcanic activity in the basin as a result of the rifting. This would be the first local-scale study of the seismicity and structure of the volcanoes in the center of the basin where crustal separation is most active. The new seismic data will enable scientists to compare current patterns of crustal separation and volcanism at the Bransfield Strait to other well-studied seafloor spreading centers. This collaborative international project, led by the Spanish and involving scientists from the U.S., Germany and other European countries, will monitor seismicity for one year on land and on the seafloor. An active seismic study conducted by the Spanish will image fault and volcanic structures that can be related to the distribution of earthquakes. This study supports eight undergraduates from Queens College, CUNY, an ethnically-diverse institution, to conduct field work as members of the scientific party on board the R/V Hesperides and will contribute to the analysis of the data. Back-arc basins are found in subduction settings and form in two stages, an initial interval of continental rifting that transitions to a later stage of seafloor spreading. Studying the transitional process is important for understanding the dynamics and evolution of subduction zones, and in locations where back-arc rifting breaks continental crust, it is relevant to understanding the formation of passive continental margins. The Central Bransfield Basin is unusual in that the South Shetland Islands have lacked recent arc volcanism and it appears subduction is ceasing, but this system has broad significant because it appears to be nearing the transition from rifting to seafloor spreading. This award will support the U.S. component of an international initiative led by the Spanish Polar Committee to conduct a study of the seismicity and volcanic structure of the Central Bransfield Basin. The objective is to characterize the distribution of active extension across the basin and determine whether the volcanic structure and deformation of the rift are consistent with a back-arc basin that is transitioning from rifting to seafloor spreading. The U.S. component of the experiment will contribute a network of six hydroacoustic moorings to monitor regional seismicity and 15 short-period seismometers to study the distribution of tectonic and volcanic seismicity on Orca volcano, one of the most active volcanoes in the basin. An active seismic study across closely spaced multichannel seismic lines across the rift will provide the data necessary to link earthquakes with fault structures enabling a tomography study of Orca volcano and provide insight into how the volcano's structure relates to rifting. This research will constrain the distribution of active rifting across the Central Bransfield Basin and determine whether the patterns of faulting and the structure of volcanic portion of the rift are consistent with a diffuse zone of rifting or a single spreading center that is transitioning to the production of oceanic crust. The Bransfield Basin is an ideal site for a comparative study of seismic and hydroacoustic earthquake locations that will improve the understanding of the generation and propagation of T-wave signals and contribute to efforts to compare the result of T-wave studies with data from traditional solid-earth seismic studies. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Goodge, John; Kylander-Clark, Andrew; Bell, Elizabeth; Pecha, Mark
No dataset link provided
Non-Technical Abstract This project will examine ancient Antarctic rocks to understand the continent’s early history, including how Antarctica was once connected to other continents. By studying rock samples from the Nimrod Complex, the project will gather data on the age and makeup of these rocks, showing how Antarctica's crust formed and changed over time. This work will not only expand scientific knowledge about Earth's history but also provide valuable training for college students at multiple universities, helping to grow a diverse community of researchers who can tackle big questions in Earth science. Technical Abstract This project seeks to unravel the origin, evolution, and geological significance of the Nimrod Complex in Antarctica’s East Antarctic craton through detailed age and isotopic analysis of its igneous and metamorphic rocks. Using U-Pb zircon geochronology along with O-isotope, Hf-isotope, and trace element analyses, we will construct a comprehensive petrochronological profile of these Mesoarchean to Paleoproterozoic rocks to reveal their magmatic sources, metamorphic history, and role in the broader tectonic framework. The project aims to trace sediment sources and tectonic influences across sedimentary units spanning the Paleoproterozoic to lower Paleozoic eras, adding crucial data to supercontinent reconstructions (Columbia, Rodinia, and Gondwana) and Antarctic tectonic models. Broader impacts include collaborations between universities to develop a diverse STEM workforce, inter-laboratory partnerships, and a robust isotopic dataset that will contribute to models of Antarctic crustal evolution and its implications for ice sheet stability. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part 1: Nontechnical Unlike other locations on the globe Antarctica is not known for having large earthquakes and the remote nature and harsh conditions make it difficult to install and maintain seismometers for earthquake detection. Some researchers believe the lack of large earthquakes is due to the continent being surrounded by inactive tectonic margins. However, in the last two decades, scientists have discovered that more earthquakes occur in the interior of the continent than previously observed. This suggests that there are many earthquakes missing from historic earthquake catalogs. This study aims to find the missing earthquakes using novel earthquake detection and location techniques from seismic data collected from temporary and permanent seismic stations in Antarctica over the last 25 years. Locating these earthquakes will help understand if and where earthquakes are located in Antarctica and will help in planning future seismic deployments. As part of the project broader impacts, a field expedition with the Girls on Rock program will be conducted to teach high school age girls, and especially those from underrepresented backgrounds, data visualization techniques using scientific data. Part 2: Technical The spatial distribution of seismicity and the number of moderate magnitude earthquakes in Antarctica is not well-defined. The current catalog of earthquakes may be biased by uneven and sparse seismograph distribution on the continent. We will mine existing broadband seismic data from both permanent and temporary deployments to lower the earthquake detection threshold across Interior Antarctica, with a focus on tectonic earthquakes. The hypothesis is that Interior Antarctica has abundant moderate magnitude earthquakes, previously undetected. These earthquakes are likely collocated with major tectonic features such as the Transantarctic Mountains, the suspected Vostok collision zone, the West Antarctic Rift System, the crustal compositional boundary between East and West Antarctica, and the Cretaceous East Antarctic Rift. Previous seismic deployments have recorded earthquakes in the Antarctic interior, suggesting there are many earthquakes missing from the current catalog. We propose to use novel earthquake location techniques designed for automated detection and location using 25 years of continuous data archived at IRIS from PASSCAL experiments and permanent stations. The approach will use STA/LTA detectors on the first arrival P-wave to 90 degrees distance, Reverse Time Imaging to locate events, and beamforming at dense arrays strategically located on cratons for enhanced detection and location. The combination of detection and location techniques used in this work has not been used on teleseismic body waves, although similar methods have worked well for surface wave studies. If successful the project would provide an excellent training dataset for future scrutiny of newly discovered Antarctic seismicity with machine learning approaches and/or new targeted data collection. We plan to collaborate with Girls on Rock, a local and international organization committed to building a culturally diverse community in science, art, and wilderness exploration, in a summer field expedition and integrating computer coding into post-field scientific projects. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Siddoway, Christine; Thomson, Stuart; Teyssier, Christian
No project link provided
in progress
No project link provided
in progress
Sediment records off the coast of Marie Byrd Land (MBL), Antarctica suggest frequent and dramatic changes in the size of the West Antarctic Ice Sheet (WAIS) over short (tens of thousands of years) and long (millions of years) time frames in the past. WAIS currently overrides much of MBL and covers the rugged and scoured bedrock landscape. The ice sheet carved narrow linear troughs that reach depths of two to three thousand meters below sea level as outlet glaciers flowed from the interior of the continent to the oceans. As a result, large volumes of fragmented continental bedrock were carried out to the seabed. The glaciers cut downward into a region of crystalline rocks (i.e. granite) whose temperature change as a function of rock depth happens to be significant. This strong geothermal gradient in the bedrock is favorable for determining when the bedrock experienced rapid exhumation or "uncovering". Analyzing the chemistry of minerals (zircon and apatite) within the eroded rocks will provide information about the rate and timing of the glacier removal of bedrock from the Antarctic continent. The research addresses the following questions: When did the land become high enough for a large ice sheet to form? What was the regional pre-glacial topography? Under what climate conditions, and at what point in the growth of an ice sheet, did glaciers begin to cut sharply into bedrock to form the narrow troughs that flow seaward? The research will lead to greater understanding of past Antarctic ice sheet fluctuations and identify precise timing of glacial incision. These results will refine ice sheet history and aid the international societal response to contemporary ice sheet change and its global consequences. The project will contribute to the training of two graduate and two undergraduate students in STEM. The objective is to clarify the onset of WAIS glacier incision and assess the evolution of Cenozoic paleo-topography. Low-temperature (T) thermochronology and Pecube 3-D thermo-kinematic modeling will be applied to date and characterize episodes of glacial erosional incision. Single-grain double- and triple-dating of zircon and apatite will reveal the detailed crustal thermal evolution of the region enabling the research team to determine the comparative topographic influences on glaciation versus bedrock uplift induced by Eocene to present tectonism/magmatism. High-T mineral thermochronometers across Marie Byrd Land (MBL) record rapid extension-related cooling at ~100 Ma from temperatures of >800 degrees C to ≤ 300 degrees C. This signature forms a reference horizon, or paleogeotherm, through which the Cenozoic landscape history using low-T thermochronometers can be explored. MBL's elevated geothermal gradient, sustained during the Cenozoic, created favorable conditions for sensitive apatite and zircon low-T thermochronometers to record bedrock cooling related to glacial incision. Students will be trained to use state-of-the-art analytical facilities in Arizona and Minnesota, expanding the geo- and thermochronologic history of MBL from bedrock samples and offshore sedimentary deposits. The temperature and time data they acquire will provide constraints on paleotopography, isostasy, and the thermal evolution of MBL that will be modeled in 3D using Pecube model simulations. Within hot crust, less incision is required to expose bedrock containing the distinct thermochronometric profile; a prediction that will be tested with inverse Pecube 3-D models of the thermal field through which bedrock and detrital samples cooled. Using results from Pecube, the ICI-Hot team will examine time-varying topography formed in response to changes in erosion rates, topographic relief, geothermal gradient and/or flexural isostatic rigidity. These effects are manifestations of dynamic processes in the WAIS, including ice sheet loading, ice volume fluctuations, relative motion upon crustal faults, and magmatism-related elevation increase across the MBL dome. The project makes use of pre-existing sample collections housed at the US Polar Rock Repository, IODP's Gulf Coast Core Repository, and the Antarctic Marine Geology Research Facility. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
As plate tectonics pushed Antarctica into a polar position, by ~34 million years ago, the continent and its surrounding Southern Ocean (SO) became geographically and thermally isolated by the Antarctic Circumpolar Current. Terrestrial and marine glaciation followed, resulting in extinctions as well as the survival and radiation of unique flora and fauna. The notothenioid fish survived and arose from a common ancestral stock into tax with 120 species that dominates today?s SO fish fauna. The Notothenioids evolved adaptive traits including novel antifreeze proteins for survival in extreme cold, but also suffered seemingly adverse trait loss including red blood cells in the icefish family, and the ability to mount cellular responses to mitigate heat stress ? otherwise ubiquitous across all life. This project aims to understand how the notothenoid genomes have changed and contributed to their evolution in the cold. The project will sequence, analyze and compare the genomes of two strategic pairs of notothenioid fishes representing both red-blooded and white-blooded species. Each pair will consist of one Antarctic species and one that has readapted to the temperate waters of S. America or New Zealand. The project will also compare the Antarctic species genomes to a genome of the closet non-Antarctic relative representing the temperate notothenioid ancestor. The work aims to uncover the mechanisms that enabled the adaptive evolution of this ecologically vital group of fish in the freezing Southern Ocean, and shed light on their adaptability to a warming world. The finished genomes will be made available to promote and advance Antarctic research and the project will host a symposium of Polar researchers to discuss the cutting edge developments regarding of genomic adaptations in the polar region. Despite subzero, icy conditions that are perilous to teleost fish, the fish fauna of the isolated Southern Ocean (SO) surrounding Antarctica is remarkably bountiful. A single teleost group ? the notothenioid fishes ? dominate the fauna, comprising over 120 species that arose from a common ancestor. When Antarctica became isolated and SO temperatures began to plunge in early Oligocene, the prior temperate fishes became extinct. The ancestor of Antarctic notothenioids overcame forbidding polar conditions and, absent niche competition, it diversified and filled the SO. How did notothenioids adapt to freezing environmental selection pressures and achieve such extraordinary success? And having specialized to life in chronic cold for 30 myr, can they evolve in pace with today?s warming climate to stay viable? Past studies of Antarctic notothenioid evolutionary adaptation have discovered various remarkable traits including the key, life-saving antifreeze proteins. But life specialized to cold also led to paradoxical trait changes such as the loss of the otherwise universal heat shock response, and of the O2-transporting hemoglobin and red blood cells in the icefish family. A few species interestingly regained abilities to live in temperate waters following the escape of their ancestor out of the freezing SO. This proposed project is the first major effort to advance the field from single trait studies to understanding the full spectrum of genomic and genetic responses to climatic and environmental change during notothenioid evolution, and to evaluate their adaptability to continuing climate change. To this end, the project will sequence the genomes of four key species that embody genomic responses to different thermal selection regimes during notothenioids? evolutionary history, and by comparative analyses of genomic structure, architecture and content, deduce the responding changes. Specifically, the project will (i) obtain whole genome assemblies of the red-blooded T. borchgrevinki and the S. American icefish C. esox; (ii) using the finished genomes from (i) as template, obtain assemblies of the New Zealand notothenioid N. angustata, and the white-blooded icefish C. gunnari, representing a long (11 myr) and recent (1 myr) secondarily temperate evolutionary history respectively. Genes that are under selection in the temperate environment but not in the Antarctic environment can be inferred to be directly necessary for that environment ? and the reverse is also true for genes under selection in the Antarctic but not in the temperate environment. Further, genes important for survival in temperate waters will show parallel selection between N. angustata and C. esox despite the fact that the two fish left the Antarctic at far separated time points. Finally, gene families that expanded due to strong selection within the cold Antarctic should show a degradation of duplicates in the temperate environment. The project will test these hypotheses using a number of techniques to compare the content and form of genes, the structure of the chromosomes containing those genes, and through the identification of key characters, such as selfish genetic elements, introns, and structural variants.
The western portion of the Antarctic continent is very active in terms of plate tectonic processes that can produce significant variations in the Earths mantle temperature as well as partial melting of the mantle. In addition to these internal processes, the ice sheet in western Antarctica is melting due to Earths warming climate and adding water to the ocean. These changes in ice mass cause adjustments in rocks within the Earth's crust, allowing the surface to rebound in some locations and fall in others, altering the geographical pattern of sea-level change. However, the solid Earth response depends strongly on the strength of the rocks at a wide range of timescales which is not well-known and varies with temperature and other rock properties. This project has three primary goals. (1) It will assess how processes such as rifting, mantle upwelling and lithospheric instability have altered the lithosphere and underlying asthenosphere of western Antarctica, contributing to a planet-wide understanding of these processes. (2) It will use new measurements of mantle and crust properties to estimate the rate at which heat from the solid Earth flows into the base of the ice, which is important for modeling the rates at which the ice melts and flows. (3) It will places bounds on mantle viscosity, which is key for modeling the interaction of the solid Earth with changing ice and water masses and their implications for sea-level rise. To accomplish these goals, new resolution of crust and mantle structure will be obtained by analyzing seismic waves from distant earthquakes that have been recorded at numerous seismic stations in Antarctica. These analyses will include new combinations of seismic wave data that provide complementary information about mantle temperature, heat flow and viscosity. This project will provide educational and career opportunities to a Brown University graduate student, undergraduates from groups underrepresented in science who will come to Brown University for a summer research program, and other undergraduates. The project will bring together faculty and students for a seminar at Brown that explores the connections between the solid Earth and ice processes in Antarctica. Project research will be incorporated in outreach to local public elementary schools and high schools. This research addresses key questions about mantle processes and properties in western Antarctica. What are the relative impacts of rifting, mantle plumes, and lithospheric delamination in the evolution of the lithosphere and asthenosphere? Where is topography isostatically compensated, and where are dynamic processes such as plate flexure or tractions from 3-D mantle flow required? What are the bounds on heat flow and mantle viscosity, which represent important inputs to models of ice sheet evolution and its feedback from the solid Earth? To address these questions, this project will measure mantle and crust properties using seismic tools that have not yet been applied in Antarctica: regional-scale measurement of mantle attenuation from surface waves; Sp body wave phases to image mantle velocity gradients such as the lithosphere-asthenosphere boundary; and surface wave amplification and ellipticity. The resulting models of seismic attenuation and velocity will be jointly interpreted to shed new light on temperature, bulk composition, volatile content, and partial melt, using a range of laboratory-derived constitutive laws, while considering data from mantle xenoliths. To test the relative roles of rifting, mantle plumes, and delamination, and to assess isostatic support for Antarctic topography, the predictions of these processes will be compared to the new models of crust and mantle properties. To improve bounds on western Antarctic heat flow, seismic attenuation and velocity will be used in empirical comparisons and in direct modeling of vertical temperature gradients. To better measure mantle viscosity at the timescales of glacial isostatic adjustment, frequency-dependent viscosity will be estimated from the inferred mantle conditions. This project will contribute to the education and career development of the following: a Brown University Ph.D. student, Brown undergraduates, and undergraduates from outside the university will be involved through the Department of Earth, Environmental and Planetary Sciences (DEEPS) Leadership Alliance NSF Research Experience for Undergraduates (REU) Site which focuses on geoscience summer research experiences for underrepresented students. The project will be the basis for a seminar at Brown that explores the connections between the solid Earth and cryosphere in Antarctica and will contribute to outreach in local public elementary and high schools. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
ANDRILL is a scientific drilling program to investigate Antarctica's role in global climate change over the last sixty million years. The approach integrates geophysical surveys, new drilling technology, multidisciplinary core analysis, and ice sheet modeling to address four scientific themes: (1) the history of Antarctica's climate and ice sheets; (2) the evolution of polar biota and ecosystems; (3) the timing and nature of major tectonic and volcanic episodes; and (4) the role of Antarctica in the Earth's ocean-climate system. <br/><br/>This award initiates what may become a long-term program with drilling of two previously inaccessible sediment records beneath the McMurdo Ice Shelf and in South McMurdo Sound. These stratigraphic records cover critical time periods in the development of Antarctica's major ice sheets. The McMurdo Ice Shelf site focuses on the Ross Ice Shelf, whose size is a sensitive indicator of global climate change. It has recently undergone major calving events, and there is evidence of a thousand-kilometer contraction since the last glacial maximum. As a generator of cold bottom water, the shelf may also play a key role in ocean circulation. The core obtained from this site will also offer insight into sub-ice shelf sedimentary, biologic, and oceanographic processes; the history of Ross Island volcanism; and the flexural response of the lithosphere to volcanic loading, which is important for geophysical and tectonic studies of the region.<br/><br/>The South McMurdo Sound site is located adjacent to the Dry Valleys, and focuses on the major ice sheet overlying East Antarctica. A debate persists regarding the stability of this ice sheet. Evidence from the Dry Valleys supports contradictory conclusions; a stable ice sheet for at least the last fifteen million years or an active ice sheet that cycled through expansions and contractions as recently as a few millions of years ago. Constraining this history is critical to deep-time models of global climate change. The sediment cores will be used to construct an overall glacial and interglacial history for the region; including documentation of sea-ice coverage, sea level, terrestrial vegetation, and melt-water discharge events. The core will also provide a general chronostratigraphic framework for regional seismic studies and help unravel the area's complex tectonic history.<br/><br/>The broader impacts of this project include formal and informal education, new research infrastructure, various forms of collaboration, and improving society's understanding of global climate change. Education is supported at the postdoctoral, graduate, undergraduate, and K-12 levels. Teachers and curriculum specialists are integrated into the research program, and a range of video resources will be produced, including a science documentary for television release. New research infrastructure includes equipment for core analysis and ice sheet modeling, as well as development of a unique drilling system to penetrate ice shelves. Drill development and the overall project are co-supported by international collaboration with scientists and the National Antarctic programs of New Zealand, Germany, and Italy. The program also forges new collaborations between research and primarily undergraduate institutions within the United States. <br/><br/>As key factors in sea-level rise and oceanic and atmospheric circulation, Antarctica's ice sheets are important to society's understanding of global climate change. ANDRILL offers new data on marine and terrestrial temperatures, and changes our understanding of extreme climate events like the formation of polar ice caps. Such data are critical to developing accurate models of the Earth's climatic future.
The McMurdo Dry Valleys are the largest ice-free region in Antarctica and home to a seasonally active hydrologic system, with streams and saline lakes. Streams are fed by summer meltwater from local glaciers and snowbanks. Therefore, streamflow is tied to summer climate conditions such as air temperatures, ground temperatures, winds, and incoming solar radiation. Based on 50 years of monitoring, summer stream activity has been observed to change, and it likely varied during the geologic past in response to regional climate change and fluctuating glaciers. Thus, deposits from these streams can address questions about past climate, meltwater, and lake level changes in this region. How did meltwater streamflow respond to past climate change? How did streamflow vary during periods of glacial advance and retreat? At what times did large lakes fill many of the valleys and what was their extent? The researchers plan to acquire a record of stream activity for the Dry Valleys that will span the three largest valleys and a time period of about 100,000 years. This record will come from a series of active and ancient alluvial fans that were deposited by streams as they flowed from valley sidewalls onto valley floors. The study will provide a long-term context with which to assess recent observed changes to stream activity and lake levels. The research will be led by two female mid-career investigators and contribute significantly to student research opportunities and education. The research will contribute to graduate and undergraduate education by including students in both field and laboratory research, as well as incorporating data and results into the classroom. The research will be disseminated to K-12 and non-scientific communities through outreach that includes professional development training for K-12 teachers in eastern Massachusetts, development of hands-on activities, visits to K-12 classrooms, and STEM education and literacy activities in North Carolina. The PIs propose to constrain rates of fluvial deposition and periods of increased fluvial activity in the McMurdo Dry Valleys during the Holocene and late Pleistocene. During 50 years of hydrologic monitoring in the Dry Valleys, scientists have observed that streams exhibit significant response to summer conditions. Previous studies of glacial and lacustrine deposits indicate regional glacier advance in the Dry Valleys during recent interglacial periods and high lake levels during and after the Last Glacial Maximum (LGM), with potentially significant low and high stands during the Holocene. However, the geologic record of meltwater activity is poorly constrained. The PIs seek to develop the first spatially-extensive record of stream deposition in the Dry Valleys by analyzing and dating alluvial fans. Given that alluvial fans are deposited by summer meltwater streams in a relatively stable tectonic setting, this record will serve as a proxy of regional summer climate conditions. Meltwater streams are an important component of the regional hydrologic system, connecting glaciers to lakes and affecting ecosystems and soils. A record of fluvial deposition is key to understanding the relationship between past climate change and regional hydrology. The proposed research will include remote- and field-based mapping of alluvial fans, stream channels, and meltwater sources as well as modeling potential incoming solar radiation to the fans and moisture sources during the austral summer. In the field, the PIs will document stratigraphy, collect near-surface sediments from 25 fans across four valleys (Taylor, Pearse, Wright, and Victoria), and collect 2- to 3-m vertical cores of ice-cemented sediments from three alluvial fan complexes. The PIs will then conduct depositional dating of fluvial sands via optically stimulated luminescence, and analyze mineralogy and bulk major element chemistry with X-ray powder diffraction and X-ray fluorescence. From these analyses, the PIs propose to (1) determine the timing of local- to regional-scale periods of high fluvial deposition, (2) calculate depositional rates, and (3) constrain depositional environments and sediment provenance. Given that many of the alluvial fans occur below the hypothesized maximum extents of glacially-dammed lakes in Wright and Victoria valleys, detailed stratigraphy, sediment provenance, and OSL dating of these fans could shed light on ongoing debates regarding the timing and extent of LGM and post-LGM lakes. The work will support a postdoctoral researcher, a PhD student, and many undergraduate and master’s students in cross-disciplinary research that spans stratigraphy, geochemistry, paleoclimatology and physics. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Non-Technical Abstract: The Polar Rock Repository (PRR) at The Ohio State University provides a unique resource for researchers studying the polar regions by offering free access to geological samples and data. This project seeks support to continue expanding and managing the collection, which is vital for scientific studies and planning fieldwork in Antarctica. Over the next five years, the repository plans to add tens of thousands of new samples and images, making it easier for researchers to study polar geology without the high cost and environmental impact of traveling to remote Antarctic locations. The PRR also supports education and outreach by providing hands-on resources for schools, colleges, and the public, including a "Polar Rock Box" program that brings real Antarctic samples into classrooms. This work ensures the preservation of important scientific materials and makes them accessible to a broad community, advancing understanding of our planet’s polar regions. Technical Abstract: The Polar Rock Repository (PRR) at The Ohio State University serves as a critical resource for polar earth science research, offering no-cost loans of geological samples and comprehensive metadata to the scientific community. This proposal seeks funding to support the continued curation, expansion, and management of the PRR, alongside its educational and outreach initiatives. Over the next five years, the PRR anticipates acquiring approximately 15,000 new samples, including those from major drilling operations (RAID, Winkie drill cores) and polar cruises. The repository also aims to significantly grow its archives of images, petrographic thin sections, and mineral separates. By preserving these physical and digital assets in a discoverable online database, the PRR fosters transparency, reproducibility, and accessibility in polar research, fulfilling Antarctic data management mandates. The intellectual merit lies in enabling cutting-edge scientific analyses through freely available samples and metadata. Broader impacts include reduced environmental costs of Antarctic research, enhanced educational opportunities, and outreach to a diverse audience through initiatives like the "Polar Rock Box" program. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Nontechnical Abstract Mount Erebus volcano on Ross Island, Antarctica, is the southernmost active volcano on the planet. It provides a natural laboratory to study a volcanic system that has been in a continuous state of activity with a persistent lava lake over at least the last 40 years. Worldwide only four other volcanoes with such long-lived lava lakes exist: Erta Ale, Ethiopia; Kilauea, Hawaii; Nyiragongo, Congo; and Ambrym, Vanuatu. These volcanoes are a rare anomaly that provide a window into the underlying magmatic system and behavior. Erebus is of particular interest as it cycles through phases of very explosive activity every 20 thousand years. This project will investigate interactions between the magmatic system, the rift it is located in, and the impact of the gravitational load the volcano imposes on the underlying crust and its own magmatic system. Possible interactions between these factors may explain the changes in activity. The project will analyze geophysical data that have been collected at Erebus over at least the last two decades. The results of this work will be available to the public and scientific community and inform geodynamic models in this region. The project funds an early-career scientist and a graduate student at New Mexico Tech and contributes to the development of the next generation of scientists. Technical Abstract The proposed work targets scientific questions recently formulated by the community during the 2016 NSF-sponsored Scientific Drivers and Future of Mount Erebus Volcano Observatory workshop. The location and geometry of the magmatic plumbing from vent to lower crust system remain poorly constrained, particularly below 1 km depth. The style and causes for changes in volcanic and magmatic activity over the short term (minutes to hours) and on the decadal scale remains enigmatic. Two decades of campaign and continuous GPS data on Ross Island will inform about the longer term dynamics of both, Ross Island growing within the Terror Rift, and Erebus? deeper magmatic system. This project will organize and analyze all existing GPS data for Ross Island, and interpret any anomalies in the resulting time series. These activities require organization, consistent processing and interpretation/modeling of the existing ~20 years of GPS data, which include campaign, continuous, and high-rate GPS observations. We will generate these position time series in a consistent local reference frame and make the results, including models of transient deformation available to the community. Volcanic, tectonic and isostatic adjustment related deformation will be modeled to place Erebus in a broad volcano-tectonic framework of West Antarctica. During the data analysis phase, the utility of existing GPS data for reflection studies of snow and sea-level dynamics will also be evaluated.
This EAGER award will explore the Distributed Acoustic Sensing emerging technology that transforms a single optical fiber into a massively multichannel seismic array. This technology may provide a scalable and affordable way to deploy dense seismic networks. Experimental Distributed Acoustic Sensing equipment will be tested in the Antarctic exploiting unused (dark) strands in the existing fiber-optic cable that connects the U.S. Amundsen-Scott South Pole Station to the Remote Earth Science and Seismological Observatory (SPRESSO) located about 7.5-km from the main station. Upon processing the seismic signals, the Distributed Acoustic Sensing may provide a new tool to structurally image firn, glacial ice, and glacial bedrock. Learning how Distributed Acoustic Sensing would work on the ice sheet, scientists can then check seismological signals propagating through the Earth's crust and mantle variously using natural icequakes and earthquakes events in the surrounding area. The investigators propose to convert at least 8 km of pre-existing fiber optic cable at the Amundsen-Scott South Pole station into more than 8000 sensors to explore the potential of Distributed acoustic sensing (DAS) as a breakthrough data engine for polar seismology. The DAS array will operate for about one year, allowing them to (1) evaluate and calibrate the performance of the DAS technology in the extreme cold, very low noise (including during the exceptionally quiet austral winter) polar plateau environment; (2) record and analyze local ambient and transient signals from ice, anthropogenic signals, ocean microseism, atmospheric and other processes, as well as to study local, regional, and teleseismic tectonic events; (3) structurally image the firn, glacial ice, glacial bed, crust, and mantle, variously using active sources, ambient seismic noise, and natural icequake and earthquake events. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part I: Nontechnical Earths warming climate has the potential to drive widespread collapse of glaciers and ice sheets across the planet, driving global sea-level rise. Understanding both the rate and magnitude of such changes is essential for predicting future sea-level and how it will impact infrastructure and property. Collapse of the ice sheets of Antarctica has the potential to raise global sea-level by up to 60 meters. However, not all regions of Antarctica are equally suspectable to collapse. One area with potential for collapse is the Wilkes Subglacial Basin in East Antarctica, a region twice the size of California's Central Valley. Geologic evidence indicates that the ice-sheet in this region has retreated significantly in response to past global warming events. While the geologic record clearly indicates ice-sheets in this area are vulnerable, the rate and magnitude of any future retreat will be influenced significantly by geology of the region. In particular, ice-sheets sitting above warm Earth will collapse more quickly during warming climate. Constraining the geologic controls on the stability of the ice-sheets of the Wilkes Subglacial Basin remains challenging since the ice-sheet hides the geology beneath kilometers of ice. As a step in understanding the potential for future ice loss in the Wilkes Subglacial Basin this project will conduct geophysical analysis of existing data to better constrain the geology of the region. These results will constrain new models designed to understand the tectonics that control the behavior of the ice-sheets in the region. These new models will highlight the geological properties that exert the most significant control on the future of the ice-sheets of the Wilkes Subglacial Basin. Such insights are critical to guide future efforts aimed at collecting in-situ observations needed to more fully constrain Antarctica's potential for future sea-level. Part II: Technical Description In polar environments, inward-sloping marine basins are susceptible to an effect known as the marine ice-sheet instability (MISI): run-away ice stream drainage caused by warm ocean water eroding the ice shelf from below. The magnitude and time-scale of the ice-sheet response strongly depend on the physical conditions along the ice-bed interface, which are, to a first order, controlled by the tectonic evolution of the basin. Topography, sedimentology, geothermal heat flux, and mantle viscosity all play critical roles in ice-sheet stability. However, in most cases, these solid-Earth parameters for regions susceptible to the MISI are largely unknown. One region with potential susceptibility to MISI is the Wilkes Subglacial Basin of East Antarctica. The project will provide an integrated investigation of the Wilkes Subglacial Basin, combining geophysical analyses with both mantle flow and ice-sheet modeling to understand the stability of the ice sheet in this region, and the associated potential sea level rise. The work will be focused on four primary objectives: (1) to develop an improved tectonic model for the region based on existing seismic observations as well as existing geophysical and geological data; (2) to use the new tectonic model and seismic data to estimate the thermal, density, and viscosity structure of the upper mantle and to develop a heat flow map for the WSB; (3) to simulate mantle flow and to assess paleotopography based on our density and viscosity constraints; and (4) to assess ice-sheet behavior by modeling (a) past ice-sheet stability using our paleotopography estimates and (b) future ice-sheet stability using our heat flow and mantle viscosity estimates. Ultimately, the project will generate improved images of the geophysical structure beneath the WSB that will allow us to assess the geodynamic origin for this region and to assess the influence of geologic parameters on past, current, and future ice-sheet behavior. These efforts will then highlight areas and geophysical properties that should be the focus of future geophysical deployments. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Earth's mantle influences the movement of tectonic plates and volcanism on the surface. One way to understand the composition and nature of the Earth's mantle is by studying the chemistry of basalts, which originate by volcanic eruptions of partially melting mantle rocks. This study will establish the budget and distribution of volatile elements (hydrogen, carbon, fluorine, chlorine, sulfur) in volcanic basalts to better understand the composition of the Earth's interior. Volatiles influence mantle melting, magma crystallization, magma migration and volcanic eruptions. Their abundances and spatial distribution provide important constraints on models of mantle flow and temperature. Moreover, volatiles are key constituents of the Earth's atmosphere and oceans. Establishing the cycles of volatiles between the Earth's interior and surface is of fundamental importance to understand the long-term evolution of our planet. This project supports a graduate student and research scientist at Brown University. It promotes the collaboration with geochemists from eleven institutions representing six different countries: USA, Germany, United Kingdom, Argentina, South Korea and Japan, and utilizes several NSF-funded USA analytical facilities. Communication of results will occur through: 1) peer-reviewed journals, presentations at conferences and invited university lectures, 2) hands-on science learning activities for local elementary and high school classes, and 3) outreach to the general audience through public lectures. Over the last 60 years of funded research, the Antarctic Peninsula and nearby ocean ridges have been extensively investigated providing information on the origin of the magmatism, and the composition, structure, temperature and evolution of the lithospheric and asthenospheric mantle. Diverse hypotheses have been proposed for the origin of the magmatism in the Antarctic Peninsula, from flux melting of the mantle wedge during devolatilization of the subducted Phoenix plate, to adiabatic decompression melting of a carbonated and hydrous asthenosphere, to melting of a volatile-rich metasomatized subcontinental lithospheric mantle. All proposed hypotheses invoke the role of volatiles. Surprisingly, data on the volatile contents of basalts and mantle from this region are non-existent. This is a significant omission from the geochemical data set, given the important role volatile elements play in the generation and composition of magmas and their sources. The focus of our research is to examine the regional variations in volatile contents (C, H, F, S, Cl) in geochemically well-characterized Pliocene-recent basalts from the Antarctic Peninsula and Phoenix ridge. Our goal is to establish the budget and distribution of volatiles in the mantle to understand 1) the processes responsible for the generation of chemically diverse basalts in close spatial and temporal proximity and 2) the nature (lithology, composition and temperature) of the heterogeneous mantle source beneath the Antarctic Peninsula and Phoenix ridge.
Antarctica is almost entirely covered by ice, in places over two miles thick. This ice hides a landscape that is less well known than the surface of Mars and represents one of Earth's last unexplored frontiers. Ice-penetrating radar images provide a remote glimpse of this landscape including ice-buried mountains larger than the European Alps and huge fjords twice as deep as the Grand Canyon. The goal of this project is to collect sediment samples derived from these landscapes to determine when and under what conditions these features formed. Specifically, the project seeks to understand the landscape in the context of the history and dynamics of the overlying ice sheet and past mountain-building episodes. This project accomplishes this goal by analyzing sand collected during previous sea-floor drilling expeditions off the coast of Antarctica. This sand was supplied from the continent interior by ancient rivers when it was ice-free over 34 million year ago, and later by glaciers. The project will also study bedrock samples from rare ice-free parts of the Transantarctic Mountains. The primary activity is to apply multiple advanced dating techniques to single mineral grains contained within this sand and rock. Different methods and minerals yield different dates that provide insight into how Antarctica?s landscape has eroded over the many tens of millions of years during which sand was deposited offshore. The dating techniques that are being developed and enhanced for this study have broad application in many branches of geoscience research and industry. The project makes cost-effective use of pre-existing sample collections housed at NSF facilities including the US Polar Rock Repository, the Gulf Coast Core Repository, and the Antarctic Marine Geology Research Facility. The project will contribute to the STEM training of two graduate and two undergraduate students, and includes collaboration among four US universities as well as international collaboration between the US and France. The project also supports outreach in the form of a two-week open workshop giving ten students the opportunity to visit the University of Arizona to conduct STEM-based analytical work and training on Antarctic-based projects. Results from both the project and workshop will be disseminated through presentations at professional meetings, peer-reviewed publications, and through public outreach and media. The main objective of this project is to reconstruct a chronology of East Antarctic subglacial landscape evolution to understand the tectonic and climatic forcing behind landscape modification, and how it has influenced past ice sheet inception and dynamics. Our approach focuses on acquiring a record of the cooling and erosion history contained in East Antarctic-derived detrital mineral grains and clasts in offshore sediments deposited both before and after the onset of Antarctic glaciation. Samples will be taken from existing drill core and marine sediment core material from offshore Wilkes Land (100°E-160°E) and the Ross Sea. Multiple geo- and thermo-chronometers will be employed to reconstruct source region cooling history including U-Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar. This offshore record will be augmented and tested by applying the same methods to onshore bedrock samples in the Transantarctic Mountains obtained from the US Polar Rock Repository and through fieldwork. The onshore work will additionally address the debated incision history of the large glacial troughs that cut the range, now occupied by glaciers draining the East Antarctic Ice Sheet. This includes collection of samples from several age-elevation transects, apatite 4He/3He thermochronometry, and Pecube thermo-kinematic modeling. Acquiring an extensive geo- and thermo-chronologic database will also provide valuable new information on the poorly known ice-hidden geology and tectonics of subglacial East Antarctica that has implications for improving supercontinent reconstructions and understanding continental break-up.
The continent of Antarctica has approximately the same surface area as the continental United States, though we know significantly less about its underlying geology and seismic activity. Multinational investments in geophysical infrastructure over the last few decades, especially broadband seismometers operating for several years, are allowing us to observe many interesting natural phenomena, including iceberg calving, ice stream slip, and tectonic earthquakes. To specifically leverage those past investments, we will analyze past and current data to gain a better understanding of Antarctic seismicity. Our recent research revealed that certain large earthquakes occurring elsewhere in the world triggered ice movement near various stations throughout Antarctica. We plan to conduct an exhaustive search of the terabytes of available data, using cutting-edge computational techniques, to uncover additional evidence for ice crevassing, ice stream slip, and earth movement during earthquakes. One specific focus of our research will include investigating whether some of these phenomena may be triggered by external influences, including passing surface waves from distant earthquakes, ocean tides, or seasonal melt. We plan to produce a catalog of the identified activity and share it publicly, so the public and researchers can easily access it. To reach a broader audience, we will present talks to high school classes, including Advanced Placement classes, in the Austin, Texas and Atlanta, Georgia metropolitan areas with emphasis on general aspects of seismic hazard, climate variability, and the geographies of Antarctica. This project will provide research opportunities for undergraduates, training for graduate students, and support for an early-career scientist. In recent years, a new generation of geodetic and seismic instrumentation has been deployed as permanent stations throughout Antarctica (POLENET), in addition to stations deployed for shorter duration (less than 3 years) experiments (e.g. AGAP/TAMSEIS). These efforts are providing critical infrastructure needed to address fundamental questions about both crustal-scale tectonic structures and ice sheets, and their interactions. We plan to conduct a systematic detection of tectonic and icequake activities in Antarctica, focusing primarily on background seismicity, remotely-triggered seismicity, and glacier slip events. Our proposed tasks include: (1) Identification of seismicity throughout the Antarctic continent for both tectonic and ice sources. (2) An exhaustive search for additional triggered events in Antarctica during the last ~15 years of global significant earthquakes. (3) Determination of triggered source mechanisms and whether those triggered events also occur at other times, by analyzing years of data using a matched-filter analysis (where the triggered local event is used to detect similar events). (4) Further analysis of GPS measurements over a ~5.5 year period from Whillans Ice Plain, which suggests that triggering of stick-slip events occurred after the largest earthquakes. An improved knowledge of how the Antarctic ice sheet responds to external perturbations such as dynamic stresses from large distant earthquakes and recent ice unloading could lead to a better understanding of ice failure and related dynamic processes. By leveraging the vast logistical investment to install seismometers in Antarctica over the last decade, our project will build an exhaustive catalog of tectonic earthquakes, icequakes, calving events, and any other detectable near-surface seismic phenomena.
Predictions of future changes of the Antarctic ice sheet are essential for understanding changes in the global sea level expected for the coming centuries. These predictions rely on models of ice-sheet flow that in turn rely on knowledge of the physical conditions of the Antarctic continent beneath the ice. Exploration of Antarctica by land, sea, and air has advanced our understanding of the geological material under the Antarctic ice sheet, but this information has not yet been fully integrated into ice-sheet models. This project will take advantage of existing data from decades of US and international investment in geophysical surveys to create a new understanding of the geology underlying the Amundsen Sea and the adjacent areas of the West Antarctic Ice Sheet—a portion of Antarctica that is considered particularly vulnerable to collapse. A series of new datasets called “Bed Classes” will be developed that will translate the geological properties of the Antarctic continent in ways that can be incorporated into ice-sheet models. This project will develop a new regional geologic/tectonic framework for the Amundsen Sea Embayment and its ice catchments using extensive marine and airborne geophysical data together with ground-based onshore geophysical and geological constraints to delineate sedimentary basins, bedrock ridges, faults, and volcanic structures. Using this new geologic interpretation of the region, several key issues regarding the geologic influence on ice-sheet stability will be addressed: whether the regional heat flow is dominated by localization along the faults or lithology; the role of geology on the sources, sinks, and flow-paths of subglacial water; the distribution of sediments that determine bed-character variability; and the extent of geologic control on the current Thwaites Glacier grounding line. The impact of improved geological knowledge on ice-sheet models will be tested with the development of a set of “Bed Class” grids to capture these new insights for use in the models. Bed Classes will be tested within the Parallel Ice Sheet Model framework with initial experiments to identify the sensitivity of model simulations to geological parameterizations. Through a series of workshops with ice-sheet modelers, the Bed Classes will be refined and made accessible to the broader modelling community. This work aims to ensure that the Bed-Class concept can be applied more broadly to ice-sheet models working in different geographic areas and on different timescales. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Earth's climate has changed through time and during the Eocene Epoch (56 to 34 million years ago) there was a transition from 'greenhouse' to 'icehouse' conditions. During the Eocene, a shift to cooler temperatures at high latitudes resulted in the inception of polar glaciation. This in turn affected the environment for living organisms. This project looks to uncover the interaction between biological, oceanographic, and climate systems for the Eocene in Antarctica using chemical analysis of fossil shark teeth collected during past expeditions. The combination of paleontological and geochemical analyses will provide insight to the past ecology and ocean conditions; climate models will be applied to test the role of tectonics, greenhouse gas concentration and ocean circulation on environmental change during this time period. The study contributes to understanding the interaction of increased atmospheric carbon dioxide and ocean circulation. This project also seeks to improve diversity, equity, and inclusion within the geosciences workforce with efforts targeted to undergraduate, graduate, postdoctoral, and early career faculty. The research goal is to elucidate the processes leading from the Eocene greenhouse to Oligocene icehouse conditions. Previous explanations for this climate shift centers on Antarctica, where tectonic configurations influenced oceanic gateways, ocean circulation reduced heat transport, and/or greenhouse gas declines prompted glaciation. The team will reconstruct watermass, current, and climate fluctuations proximal to the Antarctic Peninsula using geochemical indicators (oxygen and neodymium isotope composition) from fossil shark teeth collected from Seymour Island. The approach builds on previous shark paleontological studies, incorporates geochemical analyses for environmental reconstruction (i.e., temperature gradients and ocean circulation), and tests hypotheses on Earth System dynamics using novel global climate model simulations with geochemical tracers. This project will advance global climate modeling capabilities with experiments that consider Eocene tectonic configuration within isotope-enabled climate model simulations. A comparison of geochemical results from Eocene climate simulations and empirical records of shark teeth will reveal processes and mechanisms central to the Eocene Antarctic climatic shift. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Nontechnical description of proposed research: This project will apply cutting-edge seismic imaging methods to existing seismic data to study the three-dimensional structure of the Earth beneath the ice-covered Antarctic continent. The study will improve understanding of Earth structure and hotspots and geologically recent and ancient rift systems. The results will be useful for models of ice movement and bedrock elevation changes due to variation in ice sheet thickness. The results will also help guide future seismic data collection. The researchers will transfer existing software from the high-performance computers at The University of Rhode Island to the Alabama supercomputer facilities. The project will also broaden public understanding of scientific research in Antarctica by engaging with the students and teachers in Socorro County, New Mexico to discuss career opportunities in science, technology, engineering, and mathematics (STEM), the Earth Sciences, and the importance of computers in scientific research. Project personnel from Alabama will visit Socorro and share research with students at New Mexico Tech and at the Socorro High School. The project will also train undergraduate and graduate students in the expanding field of computational seismology, by applying these approaches to study Antarctic geology. Technical description of proposed research: The project seeks to better resolve the three-dimensional Antarctic mantle structure and viscosity and to identify locations of ancient rifts within the stable East Antarctic lithosphere. To accomplish this, the researchers will utilize full-waveform tomographic inversion techniques that combine long-period ambient noise data with earthquake constraints to more accurately resolve structure than traditional tomographic approaches. The proposed research will be completed using the Alabama supercomputer facilities and the programs and methodology developed at The University of Rhode Island. The new tomographic results will be useful in assessing lithospheric structure beneath Dronning Maud Land as well as the Wilkes and Aurora Subglacial Basins in East Antarctica, where previous rifting episodes and mid-lithospheric discontinuities will be explored. In West Antarctica, the work will elucidate the easternmost extent of the West Antarctic Rift System as well as rifted structure and possible compositional variations within the Weddell Sea. The accuracy of existing Antarctic seismic models will be quantified through model validation approaches. The researchers will highlight regions of Antarctica where tomographic resolution is still lacking and where future deployments would improve resolution.
This project investigates a rapidly moving section of the West Antarctic Ice Sheet known as the Whillans Ice Stream. Ice streams and outlet glaciers are the major pathways for ice discharge from ice sheets into the ocean. Consequently, understanding ice stream dynamics, specifically the processes controlling the frictional resistance of ice sliding on sediments at its base, is essential for predictive modeling of how Earth's ice sheets will respond to a changing climate. Rather than flowing smoothly, Whillans Ice Stream advances in stick-slip cycles: brief periods of rapid sliding, equivalent to magnitude 7 earthquakes, alternating with much longer periods of repose. The PIs will perform simulations of these stick-slip cycles using computer codes originally developed for modeling tectonic earthquakes. By matching observed ice motions, the PIs will constrain the range of frictional processes acting at the base of the ice stream. An additional focus of the project is on brittle fracture processes in ice, expressed through seismic waves radiated by faulting and/or crevassing episodes that accompany the large-scale sliding events. An understanding of ice fracture provides a basis for assessing the susceptibility of ice shelves to rifting and catastrophic disintegration. Project results will be incorporated into outreach activities (from elementary school to community college events) as well as a polar science class for the California State Summer School for Mathematics and Science (COSMOS) program for high school students. Simulations of the stick-slip cycle will employ 3D dynamic rupture models that simultaneously solve for the seismic wavefield and rupture process, consistent with elastodynamic material response and friction laws on the ice stream bed. Stresses and frictional properties will be varied to achieve consistency with surface GPS and broadband seismic data as well as borehole seismograms from the WISSARD project. The results will be interpreted using laboratory till friction experiments, which link velocity-weakening/strengthening behavior to temperature and water content, and to related experiments quantifying basal drag from ice flow over rough beds. The source mechanism of seismicity accompanying the slip events (shear faulting versus crevassing) will be determined using 3D waveform modeling in conjunction with mechanical models of the seismic source processes. This proposal does not require fieldwork in the Antarctic.
The geological structure and history of Antarctica remains poorly understood because much of the continental crust is covered by ice. Here, the PIs will analyze over 15 years of seismic data recorded by numerous projects in Antarctica to develop seismic structural models of the continent. The seismic velocity models will reveal features including crustal thinning due to rifting in West Antarctica, the structures associated with mountain building, and the boundaries between different tectonic blocks. The models will be compared to continents that are better understood geologically to constrain the tectonic evolution of Antarctica. In addition, the work will provide better insight into how the solid earth interacts with and influences the development of the ice sheet. Surface heat flow will be mapped and used to identify regions in Antarctica with potential melting at the base of the ice sheet. This melt can lead to reduced friction and lower resistance to ice sheet movement. The models will help to determine whether the earth response to ice mass changes occurs over decades, hundreds, or thousands of years. Estimates of mantle viscosity calculated from the seismic data will be used to better understand the pattern and timescales of the response of the solid earth to changes in ice mass in various parts of Antarctica. The study will advance our knowledge of the structure of Antarctica by constructing two new seismic models and a thermal model using different but complementary methodologies. Because of the limitations of different seismic analysis methods, efforts will be divided between a model seeking the highest possible resolution within the upper 200 km depth in the well instrumented region (Bayesian Monte-Carlo joint inversion), and another model determining the structure of the entire continent and surrounding oceans extending through the mantle transition zone (adjoint full waveform inversion). The Monte-Carlo inversion will jointly invert Rayleigh wave group and phase velocities from earthquakes and ambient noise correlation along with P-wave receiver functions and Rayleigh H/V ratios. The inversion will be done in a Bayesian framework that provides uncertainty estimates for the structural model. Azimuthal anisotropy will be determined from Rayleigh wave velocities, providing constraints on mantle fabric and flow patterns. The seismic data will also be inverted for temperature structure, providing estimates of lithospheric thickness and surface heat flow. The larger-scale model will cover the entire continent as well as the surrounding oceans, and will be constructed using an adjoint inversion of phase differences between three component seismograms and synthetic seismograms calculated in a 3D earth model using the spectral element method. This model will fit the entire waveforms, including body waves and both fundamental and higher mode surface waves. Higher resolution results will be obtained by using double-difference methods and by incorporating Green's functions from ambient noise cross-correlation, and solving for both radial and azimuthal anisotropy. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
OPP 9615281 Luyendyk OPP 9615282 Siddoway Abstract This award supports a collaborative project that combines air and ground geological-geophysical investigations to understand the tectonic and geological development of the boundary between the Ross Sea Rift and the Marie Byrd Land (MBL) volcanic province. The project will determine the Cenozoic tectonic history of the region and whether Neogene structures that localized outlet glacier flow developed within the context of Cenozoic rifting on the eastern Ross Embayment margin, or within the volcanic province in MBL. The geological structure at the boundary between the Ross Embayment and western MBL may be a result of: 1) Cenozoic extension on the eastern shoulder of the Ross Sea rift; 2) uplift and crustal extension related to Neogene mantle plume activity in western MBL; or a combination of the two. Faulting and volcanism, mountain uplift, and glacier downcutting appear to now be active in western MBL, where generally East-to-West-flowing outlet glaciers incise Paleozoic and Mesozoic bedrock, and deglaciated summits indicate a previous North-South glacial flow direction. This study requires data collection using SOAR (Support Office for Aerogeophysical Research, a facility supported by Office of Polar Programs which utilizes high precision differential GPS to support a laser altimeter, ice-penetrating radar, a towed proton magnetometer, and a Bell BGM-3 gravimeter). This survey requires data for 37,000 square kilometers using 5.3 kilometer line spacing with 15.6 kilometer tie lines, and 86,000 square kilometers using a grid of 10.6 by 10.6 kilometer spacing. Data will be acquired over several key features in the region including, among other, the eastern edge of the Ross Sea rift, over ice stream OEO, the transition from the Edward VII Peninsula plateau to the Ford Ranges, the continuation to the east of a gravity high known from previous reconnaissance mapping over the Fosdick Metamorphic Complex, an d the extent of the high-amplitude magnetic anomalies (volcanic centers?) detected southeast of the northern Ford Ranges by other investigators. SOAR products will include glaciology data useful for studying driving stresses, glacial flow and mass balance in the West Antarctic Ice Sheet (WAIS). The ground program is centered on the southern Ford Ranges. Geologic field mapping will focus on small scale brittle structures for regional kinematic interpretation, on glaciated surfaces and deposits, and on datable volcanic rocks for geochronologic control. The relative significance of fault and joint sets, the timing relationships between them, and the probable context of their formation will also be determined. Exposure ages will be determined for erosion surfaces and moraines. Interpretation of potential field data will be aided by on ground sampling for magnetic properties and density as well as ground based gravity measurements. Oriented samples will be taken for paleomagnetic studies. Combined airborne and ground investigations will obtain basic data for describing the geology and structure at the eastern boundary of the Ross Embayment both in outcrop and ice covered areas, and may be used to distinguish between Ross Sea rift- related structural activity from uplift and faulting on the perimeter of the MBL dome and volcanic province. Outcrop geology and structure will be extrapolated with the aerogeophysical data to infer the geology that resides beneath the WAIS. The new knowledge of Neogene tectonics in western MBL will contribute to a comprehensive model for the Cenozoic Ross rift and to understanding of the extent of plume activity in MBL. Both are important for determining the influence of Neogene tectonics on the ice streams and WAIS.
Bell and Buck: OPP 9615704 Blankenship: OPP 9615832 Abstract Continental extension produces a great variety of structures from the linear narrow rifts of the East African Rift to the diffuse extension of the Basin and Range Province of the Western U.S. Rift shoulder uplift varies dramatically between rift flanks. The cause of variable rift width and crustal thinning is fairly well explained by variable initial heat flow and crustal thickness. Mechanical stretching of the lithosphere has been linked to rift shoulder uplift but the cause of variable rift flank uplift remains poorly understood. The Transantarctic Mountains (TAM) are an extreme example of rift flank uplift, extending over 3500 km across Antarctica and reaching elevations up to 4500 m and thus constitute a unique feature of EarthOs crust. The range was formed in the extensional environment associated with the Mesozoic and Cenozoic breakup of Gondwanaland. Geological and geophysical work has shown that the TAM developed along the long-lived lithospheric boundary between East and West Antarctica reactivated by a complex history of extensional and translational microplate motions. The TAM are not uniform along strike. Along the OWilkes FrontO, the northern segment of the rift extends from North Victoria Land to Byrd Glacier. The Wilkes Front architecture consists of (1) thin, extended crust forming the Victoria Land Basin in the Ross Sea, (2) the TAM rift shoulder, and (3) a long-wavelength down- ward forming the Wilkes Basin. Contrasting structures are mapped along the OPensacola/PoleO Front, the southern segment of the rift extending from the Nimrod Glacier to the Pensacola Mountains. Along this southern section no rift basin has been mapped to date and the down-ward along the East Antarctic, or ObacksideO, edge of the mountains is less pronounced. A flexural model linking the extension in the Ross Sea to the formation of both the mountains and the Wilkes Basin has been considered as a me chanism for uplift of the entire mountain range. The variability in fundamental architecture along the TAM indicates that neither a single event nor a sequence of identical events produced the rift flank uplift. The observation of variable architecture suggests complex mechanisms and possibly a fundamental limitation in maximum sustainable rift flank elevation. The motivation for studying the TAM is to try to understand the geodynamics of this extreme elevation rift flank. Are the geodynamics of the area unique, or does the history of glaciation and related erosion contribute to the extreme uplift? With the existing data sets it is difficult to confidently constrain the geological architecture across representative sections of the TAM. Any effort to refine geodynamic mechanisms requires this basic understanding of the TAM architecture. The goal of this project is to (1) constrain the architecture of the rift system as well as the distribution and structure of sedimentary basins, glacial erosion and mafic igneous rocks surrounding the rift flank by acquiring three long wavelength geophysical transects with integrated gravity, magnetics, ice- penetrating radar, and ice surface measurements, (2) quantify the contribution of various geodynamic mechanisms to understand the geological conditions which can lead to extreme rift flank uplift, and (3) use the improved understanding of architecture and geophysical data to test geodynamic models in order to improve our understanding both of the TAM geodynamics and the general problem of the geodynamics of rift flank uplift worldwide. This project will allow development of a generalized framework for understanding the development of rift flank uplift as well as address the question of the specific geodynamic evolution of the TAM.
9978236 Bell Abstract This award, provided by the Office of Polar Programs under the Life in Extreme Environments (LExEn) Program, supports a geophysical study of Lake Vostok, a large lake beneath the East Antarctic Ice Sheet. Subglacial ecosystems, in particular subglacial lake ecosystems are extreme oligotrophic environments. These environments, and the ecosystems which may exist within them, should provide key insights into a range of fundamental questions about the development of Earth and other bodies in the Solar System including: 1) the processes associated with rapid evolutionary radiation after the extensive Neoproterozoic glaciations; 2) the overall carbon cycle through glacial and interglacial periods; and 3) the possible adaptations organisms may require to thrive in environments such as on Europa, the ice covered moon of Jupiter. Over 70 subglacial lakes have been identified beneath the 3-4 kilometer thick ice of Antarctica. One lake, Lake Vostok, is sufficiently large to be clearly identified from space with satellite altimetry. Lake Vostok is similar to Lake Ontario in area but with a much larger volume including measured water depths of 600 meters. The overlying ice sheet is acting as a conveyer belt continually delivering new water, nutrients, gas hydrates, sediments and microbes as the ice sheet flows across the lake. The goal of this program is to determine the fundamental boundary conditions for this subglacial lake as an essential first step toward understanding the physical processes within the lake. An aerogeophysical survey over the lake and into the surrounding regions will be acquired to meet this goal. This data set includes gravity, magnetic, laser altimetry and ice penetrating radar data and will be used to compile a basic set of ice surface elevation, subglacial topography, gravity and magnetic anomaly maps. Potential field methods widely used in the oil industry will be modified to estimate the subglacial topography from gravity data where the ice penetrating radar will be unable to recover the depth of the lake. A similar method can be modified to estimate the thickness of the sediments beneath the lake from magnetic data. These methods will be tested and applied to subglacial lakes near South Pole prior to the Lake Vostok field campaign and will provide valuable comparisons to the planned survey. Once the methods have been adjusted for the Lake Vostok application, maps of the water cavity and sediment thickness beneath the lake will be produced. These maps will become tools to explore the geologic origin of the lake. The two endmember models are, first, that the lake is an active tectonic rift such as Lake Baikal and, second, the lake is the result of glacial scouring. The distinct characteristics of an extensional rift can be easily identified with our aerogeophysical survey. The geological interpretation of the airborne geophysical survey will provide the first geological constraints of the interior of the East Antarctic continent based on modern data. In addition, the underlying geology will influence the ecosystem within the lake. One of the critical issues for the ecosystem within the lake will be the flux of nutrients. A preliminary estimation of the regions of freezing and melting based on the distance between distinctive internal layers observed on the radar data will be made. These basic boundary conditions will provide guidance for a potential international effort aimed at in situ exploration of the lake and improve the understanding of East Antarctic geologic structures.
Collapse of the West Antarctic ice sheet (WAIS) could raise global sea level by up to 3 meters, at a rate of up to ~1 meter per century, yielding major societal impacts. The goal of this project is to determine if such a collapse occurred in the recent past. This will include development of new geochemical tools to evaluate the sedimentary geologic record around the WAIS to evaluate WAIS behavior during past warm periods. The primary activities to be carried out by the research team are to: 1) characterize the chemistry and magnetic properties of sediments being discharged from different portions of the WAIS and use these properties to ?fingerprint? inputs from different sources on the continent; 2) measure these same properties in a marine sediment core to document major changes in the WAIS over the last 150,000 years. Determining if the WAIS has collapsed in the recent past can provide important information on WAIS potential to grow unstable in the future. The tools to be developed here can then be used on older records around the WAIS to examine the frequency of ice sheet instability in the past. The project will support a postdoctoral researcher as well as undergraduate students. This project will develop sediment provenance proxies to trace the sources of sediment discharged by the West Antarctic Ice Sheet (WAIS) to the continental rise. Specific questions to be addressed are: 1) the degree that sediment from different WAIS terranes can be geochemically and magnetically differentiated; 2) the ability of terrane provenance proxies to detect WAIS collapse in the late Quaternary. The WAIS erodes sediments from various West Antarctic geologic terranes that are deposited in adjacent drift sites. The geochemistry and magnetic properties of drift sediments reflect the tectonic and metamorphic history of their source terranes. Deglaciation of a terrane during WAIS collapse should be detectable by the loss of the terrane?s geochemical and magnetic signature in continental-rise detrital sediments. Continental shelf late-Holocene sediments from near the current WAIS groundling line will be analyzed for silt- and clay-size Sr-Nd-Pb isotopes, magnetic properties, and major-trace elements. The suite of cores includes the eastern Ross Sea to the northern tip of the Antarctic Peninsula and will establish provenance signatures of the Ross and Amundsen Provinces of Marie Byrd Land, Pine Island Bay, Thurston Island/Eight Coast Block, Ellsworth-Whitmore Crustal Block, and Antarctic Peninsula terranes. Many of these terranes have similar tectonic and metamorphic histories but Sr-Nd isotope data from detrital sediments suggest at least 3 distinct provenance signatures. An initial down core study of Ocean Drilling Program Site 1096 in the Bellingshausen Sea will be conducted to detect if the WAIS was unstable during the last interglacial period.
Intellectual Merit: Opening of Drake Passage and the West Scotia Sea south of Tierra del Fuego broke the final continental barrier to onset of a complete Antarctic Circumpolar Current (ACC). Initiation of the ACC has been associated in time with a major, abrupt, drop in global temperatures and the rapid expansion of the Antarctic ice sheets at 33-34 Ma. Events leading to the formation of the Drake Passage gateway are poorly known. Understanding the tectonic evolution of the floor of the Central Scotia Sea (CSS) and the North Scotia Ridge is a key to this understanding. Previous work has demonstrated that superimposed constructs formed a volcanic arc that likely blocked direct eastward flow from the Pacific to the Atlantic through the opening Drake Passage gateway as the active South Sandwich arc does today. The PIs propose a cruise to test, develop and refine, with further targeted mapping and dredging, their theory of CSS tectonics and the influence it had on the onset and development of the ACC. In addition they propose an installation of GPS receiver to test their paleogeographic reconstructions and determine whether South Georgia is moving as part of the South American plate. Broader impacts: A graduate student will be involved in all stages of the research. Undergraduate students will also be involved as watch-standers. A community college teacher will participate in the cruise. The PIs will have a website on which there will be images of the actual ocean floor dredging in operation. The teacher will participate with web and outreach support through PolarTREC. Results of the cruise are of broad interest to paleoceanographers, paleoclimate modelers and paleobiogeographers.
Subduction takes place at convergent plate boundaries and involves sinking of one tectonic plate underneath another. Although this process is a key aspect of plate tectonics that shapes the planet over geologic time, and is a primary cause of earthquakes, it is not known what causes subduction to cease, and what effect it has on the deepest portions of the crust and the upper part of the mantle. By studying the age and composition of igneous rocks emplaced at the very end of the subduction cycle, this project seeks to understand what causes subduction to cease, and how this changes the composition and structure of the crust and upper mantle. Because this process occurs deep within the earth, the project will focus on rocks in the root of an ancient subduction zone, now exposed in the Transantarctic Mountains of Antarctica. In addition, Antarctica remains relatively poorly understood, and this project will contribute directly to increasing our understanding of the geologic history of this region. The project will focus on training graduate and undergraduate students - incorporating hands-on experience with an array of state-of-the-art analytical instrumentation. Students will also gain a range of more general skills including Geographic Information Systems (GIS), written and oral communication, and data management - strengths that are highly relevant to careers both in the academic and Geosciences industry. Each summer, high school students will be incorporated into aspects of the laboratory-based research through the UCSB research mentorship program. The PI and graduate students will engage the general public through a purpose-built iPhone App and multimedia website. Activities will include live phone and video conversations from the field between elementary school students and members of the team in Antarctica. The mechanisms by which the deep crustal delaminates or "founders" and is returned to the mantle remains a fundamental problem in earth science. Specifically, little is known about the temporal and spatial scales over which this process occurs or the mechanisms that trigger such catastrophic events. Igneous rocks highly enriched in potassium, called lamprophyres, are often emplaced during, and immediately after, termination of subduction and therefore potentially provide direct insight into foundering. These enigmatic rocks are important because they represent near-primary mantle melt compositions and therefore their age, geochemistry and petrologic evolution reveal key information on both the composition of the upper mantle and its thermal state. Of equal importance, they reveal how these key parameters vary through both space and time. By evaluating lamprophyres along a subduction zone margin it is possible to extract: 1) local-scale information, such as the timing and duration of melting and the role of igneous crystallization processes in generation of isotopic heterogeneities; 2) along-strike variations in mantle source composition, temperature, and depth of melting 3) the plate-scale forces that control foundering and termination of subduction. This project will study a suite of lamprophyres along the axis of the Transantarctic Mountains, emplaced during the latest stages of the Neoproterozoic - Ordovician Ross orogeny, Antarctica (roughly 505 to 470 million years before present). High-precision geochronology (age determinations) will be combined with geochemical measurements on the rocks and minerals to understand the mechanisms and timing of deep crustal foundering/delamination.
The Ross Ice Shelf is the largest existing ice shelf in Antarctica, and is currently stabilizing significant portions of the land ice atop the Antarctic continent. An ice shelf begins where the land ice goes afloat on the ocean, and as such, the Ross Ice Shelf interacts with the ocean and seafloor below, and the land ice behind. Currently, the Ross Ice Shelf slows down, or buttresses, the fast flowing ice streams of the West Antarctic Ice Sheet (WAIS), a marine-based ice sheet, which if melted, would raise global sea level by 3-4 meters. The Ross Ice Shelf average ice thickness is approximately 350 meters, and it covers approximately 487,000 square kilometers, an area slightly larger than the state of California. The Ross Ice Shelf has disappeared during prior interglacial periods, suggesting in the future it may disappear again. Understanding the dynamics, stability and future of the West Antarctic Ice Sheet therefore requires in-depth knowledge of the Ross Ice Shelf. The ROSETTA-ICE project brings together scientists from 4 US institutions and from the Institute of Geological and Nuclear Sciences Limited, known as GNS Science, New Zealand. The ROSETTA-ICE data on the ice shelf, the water beneath the ice shelf, and the underlying rocks, will allow better predictions of how the Ross Ice Shelf will respond to changing climate, and therefore how the WAIS will behave in the future. The interdisciplinary ROSETTA-ICE team will train undergraduate and high school students in cutting edge research techniques, and will also work to educate the public via a series of vignettes integrating ROSETTA-ICE science with the scientific and human history of Antarctic research. The ROSETTA-ICE survey will acquire gravity and magnetics data to determine the water depth beneath the ice shelf. Radar, LIDAR and imagery systems will be used to map the Ross Ice Shelf thickness and fine structure, crevasses, channels, debris, surface accumulation and distribution of marine ice. The high resolution aerogeophysical data over the Ross Ice Shelf region in Antarctica will be acquired using the IcePod sensor suite mounted externally on an LC-130 aircraft operating from McMurdo Station, Antarctica. Field activities will include ~36 flights on LC-130 aircraft over two field seasons in Antarctica. The IcePod instrument suite leverages the unique experience of the New York Air National Guard operating in Antarctica for NSF scientific research as well as infrastructure and logistics. The project will answer questions about the stability of the Ross Ice Shelf in future climate, and the geotectonic evolution of the Ross Ice Shelf Region, a key component of the West Antarctic Rift system. The comprehensive benchmark data sets acquired will enable broad, interdisciplinary analyses and modeling, which will also be performed as part of the project. ROSETTA-ICE will illuminate Ross ice sheet-ice shelf-ocean dynamics as the system nears a critical juncture but still is intact. Through interacting with an online data visualization tool, and comparing the ROSETTA-ICE data and results from earlier studies, we will engage students and young investigators, equipping them with new capabilities for the study of critical earth systems that influence global climate.
Intellectual Merit: The PIs propose to continue and expand GPS and seismic for ANET-POLENET Phase 2 to advance understanding of geodynamic processes and their influence on the West Antarctic Ice Sheet. ANET-POLENET science themes include: 1) determining ice mass change since the last glacial maximum, including modern ice mass balance; 2) solid earth influence on ice sheet dynamics; and 3) tectonic evolution of West Antarctica and feedbacks with ice sheet evolution. Nine new remote continuous GPS stations, to be deployed in collaboration with U.K. and Italian partners, will augment ANET-POLENET instrumentation deployed during Phase 1. Siting is designed to better constrain uplift centers predicted by GIA models and indicated by Phase 1 results. ANET-POLENET Phase 2 builds on Phase 1 scientific, technological, and logistical achievements including 1) seismic images of crust and mantle structure that resolve the highly heterogeneous thermal and viscosity structure of the Antarctic lithosphere and underlying mantle; 2) newly identified intraplate glacial, volcanic, and tectonic seismogenic processes; 3) improved estimates of intraplate vertical and horizontal crustal motions and refinement of the Antarctic GPS reference frame; and 4) elucidation of controls on glacial isostatic adjustment-induced crustal motions due to laterally varying earth structure. The PIs present a nominal plan to reduce ANET by approximately half to a longer-term community "backbone network" in the final 2 years of this project. Broader impacts: Monitoring and understanding mass change and dynamic behavior of the Antarctic ice sheet using in situ GPS and seismological studies will help improve understanding of how Antarctic ice sheets respond to a warming world and how will this response impacts sea-level and other global changes. Seismic and geodetic data collected by the backbone ANET-POLENET network are openly available to the scientific community. ANET-POLENET is integral in the development and realization of technological and logistical innovations for year-round operation of instrumentation at remote polar sites, helping to advance scientifically and geographically broad studies of the polar regions. The ANET-POLENET team will establish a training initiative to mentor young polar scientists in complex, multidisciplinary and internationally collaborative research. ANET-POLENET will continue the broad public outreach to the public about polar science through the polenet.org website, university lectures, and K-12 school visits. This research involves multiple international partners.
Intellectual Merit: The PIs propose to establish an ice shelf network of 18 broadband seismographs deployed for two years to obtain high-resolution, mantle-scale images of Earth structure underlying the Ross Sea Embayment. Prior marine geophysical work provides good crustal velocity models for the region seaward of the ice shelf but mantle structure is constrained by only low-resolution images due to the lack of prior seismic deployments. The proposed stations would be established between Ross Island and Marie Byrd Land. These stations would fill a major geological gap within this extensional continental province and would link data sets collected in the Transantarctic Mountain transition/Plateau region (TAMSEIS) and in West Antarctica (POLENET) to improve resolution of mantle features beneath Antarctica. The proposed deployment would allow the PIs to collect seismic data without the expense, logistical complexity, and iceberg hazards associated with ocean bottom seismograph deployments. Tomographic models developed from the proposed data will be used to choose between competing models for the dynamics of the Ross Sea. In particular, the PIs will investigate whether a broad region of hot mantle, including the Eastern Ross Sea, indicates distributed recent tectonic activity, which would call into question models proposing that Eastern Ross extension ceased during the Mesozoic. These data will also allow the PIs to investigate the deeper earth structure to evaluate the possible role of mantle plumes and/or small-scale convection in driving regional volcanism and tectonism across the region. Broader impacts: Data from this deployment will be of broad interdisciplinary use. This project will support three graduate and two undergraduate students. At least one student will be an underrepresented minority student. The PIs will interact with the media and include K-12 educators in their fieldwork.
Intellectual Merit: This project will produce a new compilation of Ross Sea seismic stratigraphy, including new interpretations, that can be used to provide boundary conditions on the tectonic and glacial evolution of West Antarctica and the Ross Sea. The principal goals include compilation of, and interpretation of, all available existing seismic reflection data for the Western Ross Sea, coupled with geophysical modeling to produce paleo-bathymetric reconstructions for the entire 800 km-wide Ross Sea. Specific tasks will include: extending existing work on mapping travel time to reflectors, identifying relations in the seismic data that indicate subsidence through sea level, constructing velocity models for converting travel time to thickness, and using the velocity models to estimate density and porosity of sediments for backstripping analysis. Modeling/backstripping efforts will be used to constrain past bathymetry. Digital interpretations and stratigraphic grids will be provided as supplements to publications. In that way the results of this study can be used in thermal subsidence modeling and restoration of eroded rock to other parts of Ross Embayment and Marie Byrd Land by others. Digital products may be provided in advance of publication to modelers in a way that will not hurt publication chances. Broader impacts: The results of this work will be important for paleo-geographic reconstructions of Antarctica and will therefore be of use to a broad range of researchers, particularly those working in the Ross Sea region. The digital products can be used to test models for the past fluctuations of West Antarctic ice sheets, and in planning for future sediment drilling projects. Two undergraduates to be chosen from applicants will be involved in summer internships held at the University of Rhode Island. Outreach will also include a new website and one or more Wikipedia entries related to Ross Sea sub-sea floor characteristics. The project includes an international collaboration with Dr. Chiara Sauli and others at Instituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS) in Italy.
Non-Technical Summary: About 80 million years ago, the tip of the Antarctic Peninsula in the vicinity of what is now James Ross Island experienced an episode of rapid subsidence, creating a broad depositional basin that collected sediments eroding from the high mountains to the West. This depression accumulated a thick sequence of fossil-rich, organic-rich sediments of the sort that are known to preserve hydrocarbons, and for which Argentina, Chile, and the United Kingdom have overlapping territorial claims. The rocks preserve one of the highest resolution records of the biological and climatic events that led to the eventual death of the dinosaurs at the Cretaceous-Tertiary boundary (about 66 million years ago). A previous collaboration between scientists from the Instituto Antártico Argentino (IAA) and NSF-supported teams from Caltech and the University of Washington were able to show that this mass extinction event started nearly 50,000 years before the sudden impact of an asteroid. The asteroid obviously hit the biosphere hard, but something else knocked it off balance well before the asteroid hit. A critical component of the previous work was the use of reversals in the polarity of the Earth?s magnetic field as a dating tool ? magnetostratigraphy. This allowed the teams to correlate the pattern of magnetic reversals from Antarctica with elsewhere on the planet. This includes data from a major volcanic eruption (a flood basalt province) that covered much of India 65 million years ago. The magnetic patterns indicate that the Antarctic extinction started with the first pulse of this massive eruption, which was also coincident with a rapid spike in polar temperature. The Argentinian and US collaborative teams will extend this magnetic polarity record back another ~ 20 million years in time, and expand it laterally to provide magnetic reversal time lines across the depositional basin. They hope to recover the end of the Cretaceous Long Normal interval, which is one of the most distinctive events in the history of Earth?s magnetic field. The new data should refine depositional models of the basin, allow better estimates of potential hydrocarbon reserves, and allow biotic events in the Southern hemisphere to be compared more precisely with those elsewhere on Earth. Other potential benefits of this work include exposing several US students and postdoctoral fellows to field based research in Antarctica, expanding the international aspects of this collaborative work via joint IAA/US field deployments, and follow-up laboratory investigations and personnel exchange of the Junior scientists. Technical Description of Project The proposed research will extend the stratigraphic record in the late Cretaceous and early Tertiary sediments (~ 83 to 65 Ma before present) of the James Ross Basin, Antarctica, using paleo-magnetic methods. Recent efforts provided new methods to analyze these rocks, yielding their primary magnetization, and producing both magnetic polarity patterns and paleomagnetic pole positions. This provided the first reliable age constraints for the younger sediments on Seymour Island, and quantified the sedimentation rate in this part of the basin. The new data will allow resolution of the stable, remnant magnetization of the sediments from the high deposition rate James Ross basin (Tobin et al., 2012), yielding precise chronology/stratigraphy. This approach will be extended to the re-maining portions of this sedimentary basin, and will allow quantitative estimates for tectonic and sedimentary processes between Cretaceous and Early Tertiary time. The proposed field work will refine the position of several geomagnetic reversals that occurred be-tween the end of the Cretaceous long normal period (Chron 34N, ~ 83 Ma), and the lower portion of Chron 31R (~ 71 Ma). Brandy Bay provides the best locality for calibrating the stratigraphic position of the top of the Cretaceous Long Normal Chron, C34N. Although the top of the Cretaceous long normal Chron is one of the most important correlation horizons in the entire geological timescale, it is not properly correlated to the southern hemisphere biostratigraphy. Locating this event, as well as the other reversals, will be a major addition to understanding of the geological history of the Antarctic Peninsula. These data will also help refine tectonic models for the evolution of the Southern continents, which will be of use across the board for workers in Cretaceous stratigraphy (including those involved in oil exploration). This research is a collaborative effort with Dr. Edward Olivero of the Centro Austral de Investigaciones Cientificas (CADIC/CONICET) and Prof. Augusto Rapalini of the University of Buenos Aires. The collaboration will include collection of samples on their future field excursions to important targets on and around James Ross Island, supported by the Argentinian Antarctic Program (IAA). Argentinian scientists and students will also be involved in the US Antarctic program deployments, proposed here for the R/V Laurence Gould, and will continue the pattern of joint international publication of the results.
Intellectual Merit: This project will use sediment cores from the Victoria Land Basin (VLB), Antarctica, to study secondary (diagenetic) carbonate minerals, as indicators of the basin?s fluid-flow history, within the well-constrained tectonic, depositional, and climatic context provided by sediment cores. This study will provide insights into subsurface processes in Victoria Land Basin, Antarctica and their relationships with the region?s climatic, cryospheric, and tectonic history. The work will utilize cores previously recovered by US-sponsored stratigraphic drilling projects (CIROS, CRP, and ANDRILL projects). This work is motivated by the unexpected discovery of dense brine in the subsurface of Southern McMurdo Sound during drilling by the ANDRILL Southern McMurdo Sound project. The presence of the brine is intriguing because it contradicts previous models for the origin of subsurface fluids that called upon large contributions from glacial melt water. Project objectives involve documenting the distribution of the brine (and potentially other fluids) via characterization of diagenetic precipitates. The approach will involve integration of petrographic and geochemical data (including conventional carbon, oxygen, and ?clumped? isotopes) to fully characterize diagenetic phases and allow development of a robust paragenetic history. This work will provide novel insights into the Cenozoic evolution of the VLB and, more broadly, the role of glacial processes in generating subsurface fluids. Broader impacts: Results from this project will help understand the origins of brines, groundwater and hydrocarbon reservoirs in analogous modern and ancient deposits elsewhere, which is of broad interest. This project will support the training of one graduate and one undergraduate student at the University of Nebraska-Lincoln (UNL) providing learning opportunities in sedimentary geology and diagenesis, fields with wide applicability. This proposal emphasizes rapid dissemination of results to the scientific community via conference presentations and contributions to peer-reviewed publications. The results will be integrated into education activities designed to develop skills in petrography and diagenesis, which are highly sought after in the energy sector. The project will generate a well-constrained dataset that allows direct linkage of diagenetic phases to environmental and tectonic change across a large sedimentary basin which will provide the basis for a comprehensive case study in an upper-level course (Sedimentary Petrography and Diagenesis) at UNL. In addition, online exercises will be developed and submitted to an open-access site (SEPM Stratigraphy Web) dedicated to sedimentary geology.
Intellectual Merit: To understand Antarctica's geodynamic development, origin of the Transantarctic Mountains (TAMs) and the Wilkes Subglacial Basin (WSB) must be determined. Current constraints on the crustal thickness and seismic velocity structure beneath the TAMs and the WSB are limited, leading to uncertainties over competing geologic models that have been suggested to explain their formation. The PI proposes to broaden the investigation of this region with a new seismic deployment, the Transantarctic Mountains Northern Network (TAMNNET), a 15-station array across the northern TAMs and the WSB that will fill a major gap in seismic coverage. Data from TAMNNET will be combined with that from other previous and ongoing seismic initiatives and will be analyzed using proven modeling techniques to generate a detailed image of the seismic structure beneath the TAMs and the WSB. These data will be used to test three fundamental hypotheses: the TAMs are underlain by thickened crust, the WSB is characterized by thin crust and thick sedimentary layers, and slow seismic velocities are prevalent along strike beneath the TAMs. Results from the proposed study will provide new information about the nature and formation of the Antarctic continent and will help to advance our understanding of important global processes, such as mountain building and basin formation. The proposed research also has important implications for other fields of Antarctic science. Constraints on the origin of the TAMs uplift are critical for climate and ice sheet models, and new information acquired about variations in the thermal and lithospheric structure beneath the TAMs and the WSB will be used to estimate critical ice sheet boundary conditions. Broader impacts: This project incorporates three educational strategies to promote the integration of teaching and research. Graduate students will be trained in Antarctic tectonics and seismic processing through hands-on fieldwork and data analysis techniques. Through NSF's PolarTREC program, the PI will work with K-12 educators. The PI will develop a three-week summer field program for recent high school graduates and early-career undergraduate students from Minority-Serving Institutions in Alabama. Teaching materials and participant experiences will be shared with individuals outside the program via a course website. Following the summer program, participants who were particularly engaged will be offered internship opportunities to analyze TAMNNET data. In successive years, the students could assist with fieldwork and could be recruited into the graduate program under the PI's supervision. Ultimately, this program would not only serve to educate undergraduates but would also generate a pipeline of underrepresented students into the geosciences.
Intellectual Merit: <br/>Because of extensive ice cover and sparse remote-sensing data, the geology of the Precambrian East Antarctic Shield (EAS) remains largely unexplored with information limited to coastal outcrops from the African, Indian and Australian sectors. The East Antarctic lithosphere is globally important: as one of the largest coherent Precambrian shields, including rocks as old as ~3.8 Ga, it played an important role in global crustal growth; it is a key piece in assembly of the Rodinia and Gondwana supercontinents; it is the substrate to Earth?s major ice cap, including numerous sub-glacial lakes, and influences its thermal state and mechanical stability; and its geotectonic association with formerly adjacent continental blocks in South Africa, India and Australia suggest that it might harbor important mineral resources. This project will increase understanding of the age and composition of the western EAS lithosphere underlying and adjacent to the Transantarctic Mountains (TAM) using U-Pb ages, and Hf- and O-isotope analysis of zircon in early Paleozoic granitoids and Pleistocene glacial tills. TAM granites of the early Paleozoic Ross Orogen represent an areally extensive continental-margin arc suite that can provide direct information about the EAS crust from which it melted and/or through which it passed. Large rock clasts of igneous and metamorphic lithologies entrained in glacial tills at the head of major outlet glaciers traversing the TAM provide eroded samples of the proximal EAS basement. Zircons in these materials will provide data about age and inheritance (U-Pb), crustal vs. mantle origin (O isotopes), and crustal sources and evolution (Hf isotopes). Integrated along a significant part of the TAM, these data will help define broader crustal provinces that can be correlated with geophysical data and used to test models of crustal assembly. <br/><br/>Broader impacts: <br/>This project will provide a research opportunity for undergraduate and graduate students. Undergraduates will be involved as Research Assistants in sample preparation, imaging, and analytical procedures, and conducting their own independent research. The two main elements of this project will form the basis of MS thesis projects for two graduate students at UMD. Through this project they will gain a good understanding of petrology, isotope geochemistry, and analytical methods. The broader scientific impacts of this work are that it will help develop a better understanding of the origin and evolution of East Antarctic lithosphere underlying and adjacent to the TAM, which will be of value to the broader earth science and glaciological community. Furthermore, knowledge of East Antarctic geology is of continuing interest to the general public because of strong curiosity about past supercontinents, what?s under the ice, and the impact of global warming on ice-sheet stability.
Intellectual Merit: <br/>The northern Ford ranges in Marie Byrd Land, Antarctica, record events and processes that transformed a voluminous succession of Lower Paleozoic turbidites intruded by calc-alkaline plutonic rocks into differentiated continental crust along the margin of Gondwana. In this study the Fosdick migmatite?granite complex will be used to investigate crustal evolution through an integrated program of fieldwork, structural geology, petrology, mineral equilibria modeling, geochronology and geochemistry. The PIs propose detailed traverses at four sites within the complex to investigate Paleozoic and Mesozoic orogenic cycles. They will use petrological associations, structural geometry, and microstructures of host gneisses and leucogranites to distinguish the migration and coalescence patterns for remnant melt flow networks, and carry out detailed sampling for geochronology, geochemistry and isotope research. Mafic plutonic phases will be sampled to acquire information about mantle contributions at the source. Mineral equilibria modeling of source rocks and granite products, combined with in situ mineral dating, will be employed to resolve the P?T?t trajectories arising from thickening/thinning of crust during orogenic cycles and to investigate melting and melt loss history. <br/><br/>Broader impacts: <br/>This work involves research and educational initiatives for an early career female scientist, as well as Ph.D. and undergraduate students. Educational programs for high school audiences and undergraduate courses on interdisciplinary Antarctic science will be developed.
Intellectual Merit: This research will place the subsidence history of the southern Victoria Land Basin into a quantitative geodynamic context and will assess the influence of flexure associated with late Neogene volcanic loading of the crust by the Erebus Volcanic Group. This will be done by extending geodynamic models of extension in the West Antarctic Rift System to include extensional hiatuses hypothesized to have occurred during the Late Paleogene and Miocene, and by developing a new geodynamic model of volcanic loading and associated lithosphere flexure. Finite element and finite difference modeling methods will be used. In the first phase of the project, a series of extensional geodynamic models will be developed to examine the effect that proposed extensional hiatuses have on the style of extension, with emphasis placed on developing a process based understanding of the change in rift style from diffuse during the Late Cretaceous to more focused during the Cenozoic. The models will test the hypotheses that extensional hiatuses led to the change in rifting style, and will place constraints on the timing and duration of the hiatuses. The second phase of the project will use the thermal and rheological properties of the previous models to constrain the flexural rigidity of the lithosphere in order to model the flexural response to volcanic loading to test the hypotheses that flexural subsidence contributed to cyclic changes between grounded and floating ice at the ANDRILL AND-1A site, complicating interpretations of the climatic record from this core, and that flexure contributes to the stress orientation at the AND-2B site, which is inconsistent with the expected regional extensional stress orientation. Broader impacts: The project will train an undergraduate student and an M.S. student. Outreach activities include a planned series of talks at regional high schools, junior colleges, and 4-year colleges that have geology programs.
Intellectual Merit: <br/>The goal of this project is to address relationships between foreland basins and their tectonic settings by combining detrital zircon isotope characteristics and sedimentological data. To accomplish this goal the PIs will develop a detailed geochronology and analyze Hf- and O-isotopes of detrital zircons in sandstones of the Devonian Taylor Group and the Permian-Triassic Victoria Group. These data will allow them to better determine provenance and basin fill, and to understand the nature of the now ice covered source regions in East and West Antarctica. The PIs will document possible unexposed/unknown crustal terrains in West Antarctica, investigate sub-glacial terrains of East Antarctica that were exposed to erosion during Devonian to Triassic time, and determine the evolving provenance and tectonic history of the Devonian to Triassic Gondwana basins in the central Transantarctic Mountains. Detrital zircon data will be interpreted in the context of fluvial dispersal/drainage patterns, sandstone petrology, and sequence stratigraphy. This interpretation will identify source terrains and evolving sediment provenances. Paleocurrent analysis and sequence stratigraphy will determine the timing and nature of changing tectonic conditions associated with development of the depositional basins and document the tectonic history of the Antarctic sector of Gondwana. Results from this study will answer questions about the Panthalassan margin of Gondwana, the Antarctic craton, and the Beacon depositional basin and their respective roles in global tectonics and the geologic and biotic history of Antarctica. The Beacon basin and adjacent uplands played an important role in the development and demise of Gondwanan glaciation through modification of polar climates, development of peat-forming mires, colonization of the landscape by plants, and were a migration route for Mesozoic vertebrates into Antarctica. <br/><br/>Broader impacts: <br/>This proposal includes support for two graduate students who will participate in the fieldwork, and also support for other students to participate in laboratory studies. Results of the research will be incorporated in classroom teaching at the undergraduate and graduate levels and will help train the next generation of field geologists. Interactions with K-12 science classes will be achieved by video/computer conferencing and satellite phone connections from Antarctica. Another outreach effort is the developing cooperation between the Byrd Polar Research Center and the Center of Science and Industry in Columbus.
The west Antarctic Peninsula is warming rapidly, and continuing changes in the thermal regime will likely result in severe consequences for marine fauna, including potential extinction of strongly adapted stenotherms, and invasions from neighboring faunas. Initial impacts of climate change may result in changes in connectivity among populations of the same species. These changes may will be undetectable by direct observation, but may be assessed via genetic connectivity, i.e. differences in allele or haplotype frequencies among populations can be used to infer levels of gene flow. The proposed research will explore the role that the Scotia Arc plays in connecting populations from South America to Antarctica, a corridor identified as a likely entry route for invaders into Antarctica. It also will examine the way in which cryptic species may confound our knowledge of broad-scale distributions, and in doing so, make contributions towards understanding biodiversity and testing the paradigm of circumpolarity in Antarctica. The principal investigator will to collect multi-locus genetic data across 'species' from a broad suite of benthic marine invertebrate phyla, from multiple locations, in order to address hypotheses regarding speciation and connectivity, to estimate demographic population changes, and to identify the underlying processes that drive observed phylogeographic patterns. Comparative phylogeography is a particularly valuable approach because it enables the identification of long-term barriers and refugia common to groups of species and is consequently highly relevant to conservation planning. Moreover, this work will form a valuable baseline for detecting future changes in connectivity. The results of the research will be disseminated through peer-reviewed publications and presentations at conferences. In addition, the project will support the interdisciplinary training of a female graduate student, two undergraduate students, and host additional summer students through the STARS program at SIO, which helps minority students prepare for graduate school. This project will integrate research and education through conducting an interdisciplinary workshop that brings together Earth Science and Biology high school teachers. This workshop aims to assist teachers derive their own curricula uniting plate tectonics, ocean history and evolution, supporting a new high school earth sciences program. Information generated by this project will also directly feed into international efforts to design a series of Marine Protected Areas (MPAs) in Antarctica.
Bell/0636883<br/><br/>This award support a project to study the role that subglacial water plays in the overall stability of major ice sheets. An estimated 22,000 km3 of water is currently stored within Antarctica's subglacial lakes. Movement of this water occurs through a complex and largely inferred drainage system in both East and West Antarctica. Geomorphic evidence for the catastrophic drainage of subglacial lakes documents repeated events. These major flood events appear to have drained the largest subglacial lakes situated in the relatively stable interior of the East Antarctic ice sheet. Emerging evidence suggests there is a close connection between significant subglacial lakes and the onset of the Recovery Ice Stream one of the largest in East Antarctica. Our preliminary analysis of the Recovery Lakes region, East Antarctica suggests a direct linkage between lakes and streaming ice flow, specifically the 800 km long Recovery Ice Stream and its tributaries. Located just upslope of the Recovery Ice Stream, the Recovery Lakes Region is composed of 3 well-defined lakes and a fourth, ambiguous, 'lake-like' feature. While other large lakes have a localized impact on ice surface slope, the Recovery Lakes Region lakes are coincident with an abrupt regional change in the ice sheet surface slope. Satellite imagery demonstrates that the downslope margin of this lake area contains distinct flow strips and crevasses: both indicative of increasing ice velocities. The discovery of a series of large lakes coincident with the onset of rapid ice flow in East Antarctica clearly links subglacial lakes and ice sheet dynamics for the first time. The evidence linking the onset of streaming in the Recovery Drainage Ice Stream to the series of large subglacial lakes raises the fundamental question: How can subglacial lakes trigger the onset of ice streaming? We advance two possible mechanisms: (i) Subglacial lakes can produce accelerated ice flow through the drainage of lake water beneath the ice sheet downslope of the lakes. (ii) Subglacial lakes can produce accelerated ice flow accelerated ice flow by modifying the basal thermal gradient via basal accretion over the lakes so when the ice sheet regrounds basal melting dominates. To evaluate the contribution of lake water and the changing basal thermal gradient, we propose an integrated program incorporating satellite imagery analysis, a series of reconnaissance aerogeophysical profiles over the Recovery Lake Region and the installation of continuous GPS sites over the Recovery Lakes. This analysis and new data will enable us (1) to produce a velocity field over the Recovery Lakes Region, (2) to map the ice thickness changes over the lakes due to acceleration triggered thinning, basal melting and freezing, (3) determine the depth and possible the tectonic origin of the Recovery Lakes and (4) determine the stability of these lakes over time. These basic data sets will enable us to advance our understanding of how subglacial lakes trigger the onset of streaming. The intellectual merit of this project is that it will be the first systematic analysis of ice streams triggering the onset of ice streams. This work has profound implications for the modeling of ice sheet behavior in the future, the geologic record of abrupt climate changes and the longevity of subglacial lakes. The broader impacts of the project are programs that will reach students of all ages through undergraduates involved in the research, formal presentations in teacher education programs and ongoing public outreach efforts at major science museums. Subglacial Antarctic lake environments are emerging as a premier, major frontier for exploration during the IPY 2007-2009.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The investigators will examine competing hypotheses for the mechanism of extension and creation of the Transantarctic Mountains, and evolution of the thermal regimes of rifted West Antarctica and stable East Antarctica using magnetotelluric (MT) profiles. Surrounded almost entirely by ocean ridges, Antarctica is a special tectonic situation because of the need to make accommodation space for rifting in the Transantarctic region. In the MT method, temporal variations in the Earth's natural electromagnetic field are used as source fields to probe the electrical resistivity structure in the depth range of 1 to 200 km, or more. Geophysical methods, such as MT, are appropriate in Antarctica because of the predominance of thick ice cover over most of the Continent and the difficult operating environment. The proposed effort will consist of approximately 50 sites over a distance approaching 500 km with a 10 km average spacing, oriented normal to the Transantarctic Mountains (TAM), in the Beardmore glacier area. High quality MT soundings will be collected over thick ice sheets using a custom electrode preamp design, updated from previous Antarctic projects. Data acquisition will take place over two field seasons. The primary goals are three-fold: to establish the location of the deeper tectonic transition between East and West Antarctica that may be offset from the physiographic transition at the surface, using deep resistivity structure distinguish between modes of extensional upwelling and magmatism that may be vertically non-uniform, depth and magnitude of quasi-layered deep crustal low resistivity, particularly below West Antarctica, will be used to estimate crustal heat flux into the ice sheet base.
This project is an aerogeophysical survey to explore unknown terrain in East Antarctica to answer questions of climate change and earth science. The methods include ice-penetrating radar, gravity, and magnetic measurements. The project?s main goal is to investigate the stability and migration of ice divides that guide flow of the East Antarctic ice sheet, the world?s largest. The project also maps ice accumulation over the last interglacial, identifies subglacial lakes, and characterizes the catchment basins of the very largest glacial basins, including Wilkes and Aurora. The outcomes contribute to ice sheet models relevant to understanding sea level rise in a warming world. The work will also help understand the regional geology. Buried beneath miles-thick ice, East Antarctica is virtually uncharacterized, but is considered a keystone for tectonic reconstructions and other geologic questions. The region also hosts subglacial lakes, whose geologic histories are unknown. <br/><br/>The broader impacts are extensive, and include societal relevance for understanding sea level rise, outreach in various forms, and education at the K12 through postdoctoral levels. The project contributes to the International Polar Year (2007-2009) by addressing key IPY themes on frontiers in polar exploration and climate change. It also includes extensive international collaboration with the United Kingdom, Australia, France and other nations; and offers explicit opportunities for early career scientists.
Whillans, Wilson, Goad OPP 9527571 Abstract This award supports a project to initiate Global Positioning System (GPS) measurements for rock motions in South Victoria Land and vicinity. The results will be used to test some of the leading models for ice-sheet change and tectonism, in particular, whether the continent is rebounding due to reduced ice load from East or West Antarctica and whether there is tectonic motion due to Terror Rift or uplift of the Transantarctic Mountains. A modest program to measure ice motion will be conducted as well. The motive is to test models for ice flow in the Allan Hills meteorite concentration region and to determine whether small glaciers in the Dry Valleys are thickening or thinning. Monuments will be set into rock and ice and GPS receivers used to determine their locations. Repeats in later years will determine motion. Field activities will involve close cooperation with the USGS.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Much of the inventory of East Antarctic bedrock geochronology, as well as a record of its erosional history, is preserved in Cenozoic sediments around its margin. This project is to use these sediments to understand their sub-ice provenance and the erosional history of the shield by measuring ages of multiple geo- and thermochronometers on single detrital crystals and on multiple crystals in detrital clasts (U/Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar). The combination of multi-chronometer ages in single grains and clasts provides a powerful fingerprint of bedrock sources, allowing us to trace provenance in Eocene fluvial sandstones through Quaternary diamicts around the margin. Multiple thermochronometric (cooling) ages in the same grains and clasts also allows us to interpret the timing and rates of erosion from these bedrock sources. Delineating a distribution of bedrock age units, their sediment transport connections, and their erosional histories over the Cenozoic, will in turn allow us to test tectonic models bearing on: (1) the origin of the Gamburtsev Subglacial Mountains, (2) fluvial and topographic evolution, and (3) the history of glacial growth and erosion.
This project develops power and communications systems to support the operation of seismometers and GPS receivers in Antarctica throughout the polar night. In terms of intellectual merit, this system would allow a new class of geophysical questions to be approached, in areas as varied as ice sheet movement, plate tectonics, and deep earth structure. In terms of broader impacts, this project represents research infrastructure of potential use to many scientific disciplines. In addition, the results will improve society's understanding of the Antarctic ice sheet and its behavior in response to global warming.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a study to investigate the tectonic development of the southwestern Ross Sea region. Displacements between East and West Antarctica have long been proposed based on global plate circuits, apparent hot spot motions, interpretations of seafloor magnetic anomalies, paleomagnetism, and on geologic grounds. Such motions require plate boundaries crossing Antarctica, yet these boundaries have never been explicitly defined. This project will attempt to delineate the late Cenozoic - active boundary between East and West Antarctica along the Terror Rift in the western Ross Sea, where young structures have been identified, continuity between active extension and intracontinental structures can be established, and where accessibility via ship will allow new key data sets to be acquired. We will use multi-source marine and airborne geophysical data to map the fault patterns and volcanic structure along the eastern margin of the Terror Rift. The orientations of volcanic fissures and seamount alignments on the seafloor will be mapped using multibeam bathymetry. The volcanic alignments will show the regional extension or shear directions across the Terror Rift and the orientations of associated crustal stresses. Swath bathymetry and single channel seismic data will be used to document neotectonic fault patterns and the eastern limit of recent faulting. Delineation of neotectonic fault patterns will demonstrate whether the eastern margin of the Terror Rift forms a continuous boundary and whether the rift itself can be linked with postulated strike-slip faults in the northwestern Ross Sea. Seafloor findings from this project will be combined with fault kinematic and stress field determinations from the surrounding volcanic islands and the Transantarctic Mountains. The integrated results will test the propositions that the eastern boundary of the Terror Rift forms the limit of the major, late Cenozoic -active structures through the Ross Sea and that Terror Rift kinematics involve dextral transtension linked to the right-lateral strike-slip faulting to the north. These results will help constrain the kinematic and dynamic links between the West Antarctic rift system and Southern Ocean structures and any related motions between East and West Antarctica. In the first year, a collaborative structural analysis of existing multichannel and single channel seismic profiles and aeromagnetic data over the Terror Rift will be conducted. The location of volcanic vents or fissures and any fault scarps on the sea floor will be identified and a preliminary interpretation of the age and kinematics of deformation in the Terror Rift will be produced. Late in the second year, a one-month cruise on RVIB N.B. Palmer will carry out multibeam bathymetric and sidescan sonar mapping of selected portions of the seafloor of Terror Rift. Gravity, magnetics, seismic reflection and Bathy2000 3.5 kHz sub-bottom profile data will also be collected across the rift. In the third year, we will use these multisource data to map the orientations and forms of volcanic bodies and the extent and geometry of neotectonic faulting associated with the Terror Rift. The project will: 1) complete a map of neotectonic faults and volcanic structures in the Terror Rift; 2) interpret the structural pattern to derive the motions and stresses associated with development of the rift; 3) compare Terror Rift structures with faults and lineaments mapped in the Transantarctic Mountains to improve age constraints on the structures; and 4) integrate the late Cenozoic structural interpretations from the western Ross Sea with Southern Ocean plate boundary kinematics.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds and field support to continue a study of plate motions in the Antarctic Peninsula and Scotia Sea region. The principal aim of the original "Scotia Arc GPS Project (SCARP)" was to determine motions of the Scotia Plate relative to adjacent plates and to measure crustal deformation along its margins with special attention to the South Sandwich microplate and Bransfield Strait extension. The focus of the present proposal is confined to the part of the SCARP project that includes GPS sites at Elephant Island, the South Shetland Islands and on the Antarctic Peninsula. The British Antarctic Survey provides data from two sites on the Scotia arc for this project. The northern margin of the Scotia Plate is not included herein because that region is not covered under Polar Programs. A separate proposal will request support for re-measuring SCARP GPS stations in South America. With regard to the Antarctic Peninsula area, continuously operating GPS stations were established at Frei Base, King George Island (in 1996) and at the Argentine Base, South Orkney Islands (in 1998). A number of monumented sites were established in the Antarctic Peninsula region in 1997 to support campaign-style GPS work in December 1997 and December 1998. Because of the expected slow crustal motion in the Bransfield Strait and expiration of the initial grant, no further data collection will be done until enough time has passed so that new measurements can be expected to yield precise results.<br/><br/>The primary aim of this work is to complete the measurements required to quantify crustal deformation related to opening of the Bransfield Strait, the South Shetland microplate, and to identify any other independent tectonic blocks that the GPS data may reveal. The measurements to be completed under this award will be done using ship support during the 2002-2003 season. This would be five years after the first measurements and would provide quite precise horizontal velocities. This project will complete the acquisition, processing, and interpretation of a single data set to continue this initial phase of the NSF-funded project to measure crustal motions along the southern margin of the Scotia plate. A principal investigator and one graduate student from the University of Texas will perform fieldwork. A graduate student from the University of Hawaii will process the new data consistent with previous data, and all of the SCARP investigators (Bevis, Dalziel, Smalley, Taylor: from U. Texas, U. Hawaii, and U. Memphis) will participate in interpreting the data. The British Antarctic Survey (BAS) and Alfred Wegener Institute (AWI) also recognized the importance of the Scotia plate and the Bransfield system in both global and local plate tectonic frameworks. They, too, have used GPS to measure crustal motions in this region and duplicate a number of our sites. They began earlier than we, have taken data more recently, presumably will continue taking data, and they have published some results. The collaboration between SCARP, BAS, and AWI begun earlier, will continue into this new work. Joint and separate publications are anticipated. The existing SCARP network has several advantages that justify collection and analysis of another set of data. One is that SCARP has established and measured GPS sites on Smith, Low, and Livingston Islands, where other groups have not. These sites significantly extend the dimensions of the South Shetland microplate so that we can determine a more precise pole of rotation and recognize any sub-blocks within the South Shetland arc. Smith and Low Islands are near the end of the Bransfield Basin where relative motion between the South Shetland Microplate must somehow terminate, perhaps by faulting along an extension of the Hero fracture zone. Another advantage is that measurements under SCARP were made using fixed-height masts that eliminate all but a fraction of a millimeter of vertical error in exactly re-occupying each site. Vertical motion associated with postglacial rebound should be on the order of several mm/yr, which will eventually be measurable. Mid-Holocene shorelines that emerged to more than 20m on some South Shetland arc islands suggest that vertical motion is significant. Thus, this work will contribute to understanding both plate motions and post-glacial rebound from ice mass loss in the region.
This award supports a marine geophysical investigation of the Bransfield Strait and the Shackleton Fracture Zone and environs in the Scotia Sea in an effort to understand the neotectonic evolution of the region. Multibeam swath mapping and sidescan sonar mapping will be used along with multichannel seismic imaging. The main goal of this proposal is to collect multibeam and sidescan sonar data to map the structural character and tectonic fabric of the evolving plate boundary in Southwest Scotia Sea, Shackleton Fracture Zone, and Bransfield Strait. Follow up multichannel seismic surveys will be done in the Southwest Scotia Sea. The secondary goal is to use sidescan sonar reflectivity images to generate detailed structural maps of the seafloor of these regions and to integrate the new data with existing seismic reflection, Geosat gravity, Hydrosweep and Seabeam bathymetric data. Once the base maps are produced they can be used by other researchers to help interpret multichannel and single channel seismic reflection records. The neotectonic evolution of the Antarctic Peninsula and Scotia Sea is extremely complex. Understanding the recent evolution of the Drake-Scotia-Antarctic-South America plate intersections will provide important information as to how major plate boundaries reorganize after demise of a long-lived spreading center and the consequential reduction in the number of plates. The plate reorganization probably resulted in the uplift of the Shackleton Ridge which may have effected the sedimentary patterns in both the Scotia Sea and possibly the Weddell Sea. If the break of the Shackleton transform fault can be traced with multibeam and sidescan sonar as it intersects the southern end of South America then the orientation and geometry of the faults, fractures and deformation as the transform fault intersects the South American continent will help to interpret the structures in that complex region. Bransfield Strait is presently undergoing extensi on based on high heat flow, active volcanoes and inferences from seismic reflection work. Seismic refraction indicates thick crust similar to the East African Rift or passive volcanic margins of continents. In contrast, analysis of isotopes and rare earth elements of the recent volcanics shows seemingly no continental contamination. The active extension in Bransfield Strait must be related to the plate reorganization but it is unclear exactly what tectonic processes are occurring. Besides elucidating the tectonic fabric of Bransfield Strait, the multibeam and sidescan sonar survey will identify potential dredge targets and DSRV Alvin dive sites.
9317872 Cande This award supports a marine geophysical study of the southwest Pacific between 170 degrees E and 80 degrees W longitude. Recent marine geophysical cruises in the southwest Pacific and a high-resolution altimetric gravity field declassified Geosat data have allowed significant progress to be made towards deciphering the complex history of the rifting between the Campbell Plateau/Chatham Rise landmass and the Marie Byrd Land margin. A revised history of plate interactions explains many enigmatic features seen in the magnetic and gravity fields yet several questions remain that require new data for resolution. The marine geophysical survey proposed will: (1) elucidate plate interactions at the evolving triple junction between the Antarctic and Australian plates and the mosaic of SW Pacific plates; (2) define the boundaries and interactions of the mosaic of plates that accommodated the rapidly changing plate geometry associated with subduction of the Pacific-Phoenix ridge outboard of New Zealand, the rifting of continental and oceanic lithosphere, and hotspot activity; and (3) map the development of Pacific-Antarctic Ridge and the assembly of the several small plates into the modern day Pacific plate. This survey will help to elucidate the dynamics of plate interactions and the plate tectonic evolution of Antarctica and New Zealand. ***
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a project to make use of ship-repositioning transit cruises to gather geophysical information relating to plate tectonics of the Southern Ocean and to support student training activities. Well-constrained Cenozoic plate reconstructions of the circum-Antarctic region are critical for examining a number of problems of global geophysical importance. These problems include, e.g., relating the plate kinematics to its geological consequences in various plate circuits (Pacific-North America, Australia-Pacific); a dynamical understanding of what drives plate tectonics (which requires well-constrained kinematic information in order to distinguish between different geodynamic hypotheses); and an understanding of the rheology of the plates themselves, including the amount of internal deformation they can support, and the conditions leading to the formation of new plate boundaries through breakup of existing plates. By obtaining better constraints on the motion of the Antarctica plate with respect to these other plates, and by better quantifying the internal deformation within Antarctica (between East and West Antarctica), contributions will be made to solving these other fundamental problems.<br/><br/>In this project, existing data will be analyzed to address several specific issues related to plate motions involving the Antarctic plate. First, work will be done on four-plate solutions of Australia-Pacific-West Antarctica-East Antarctica motion, in order to most tightly constrain the rotation parameters for separation between East and West Antarctica for the time period from about 45 to 28 Ma (Adare Basin spreading system). This will be done by imposing closure on the four-plate circuit and using relevant marine geophysical data from all four of the boundaries. The uncertainties in the resulting rotation parameters will be determined based on the uncertainties in the data points. These uncertainties can then be propagated in the plate circuit for use in addressing the various global geodynamic problems mentioned above. Second, rotation parameters for Pacific-West Antarctica during Tertiary time will be determined using recently acquired well-navigated Palmer transit data and any additional data that can be acquired during the course of this project. These parameters and their uncertainties will be used in assessments of plate rigidity and included in the plate circuit studies.<br/><br/>In the framework of this project, new collection of marine geophysical data will be accomplished on a very flexible schedule. This will be done by collecting underway gravity, magnetics, and swath bathymetric data on Palmer transit cruises of geological importance. This has been successfully done on eight previous Palmer cruises since 1997, the most recent four of which were funded under a collaborative OPP grant to CalTech and Scripps which is now expiring. On one of the suitable transits, a formal class in marine geophysics will be conducted that will afford an opportunity to 12 or more graduate and undergraduate students, from CalTech and Scripps as well as other institutions. In this way, educational activities will be integrated with the usual scientific data collection objectives of the research project.
This award supports an investigation of the early seafloor spreading history of the Marie Byrd Land Margin, Antarctica. This effort will carefully map the magnetic lineations, the gravity anomalies, the topography and, where possible, the seismically determined depth to basement. The study will integrate the tectonic lineations determined from the gravity, bathymetry and seismic information with the magnetic anomalies to construct a new seafloor spreading history of the Marie Byrd Land Margin. The analysis of these new data sets and the resultant seafloor spreading history will be used to address the following questions: (1) Did the early opening of the Pacific-Antarctic Ridge involve an additional plate, the Bellingshausen Plate, or did the ridge undergo very asymmetric, non-orthogonal spreading? (2) With a better refined opening history for the Pacific Antarctic Ridge, what are the implications for relative motions between the tectonic blocks which compromise West Antarctica and for the structure and evolution of the Marie Byrd Land Margin? (3) Can the global plate circuit solution be enhanced by refining the early Tertiary history of Pacific-Antarctic seafloor spreading?
9416989 Cande There is a significant misfit, ranging from 50 to 250 kms, of magnetic anomalies 13, 18, and 20 along the section of the Southeast Indian Ridge east of the Balleny fracture zone. This project will survey the critical plate boundaries and relevant magnetic anomalies in the South Tasman Sea, Emerald Basin and north of the Ross Sea embayment that will better constrain the history of the this plate motion. Data collected will be used to test the hypothesis that the Antarctic side of the ridge acted as a separate plate, attached to Marie Byrd Land, and that these anomalies indirectly indicate motion between East and West Antarctica between anomalies 24 and 13 time. Surveys will be conducted on the R/V W M Ewing in the Tasman Sea, and on the R/V N B Palmer north of the Ross Sea embayment. ***
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research program to initiate a Global Positioning System (GPS) network to measure crustal motions in the bedrock surrounding and underlying the West Antarctic Ice Sheet (WAIS). Evaluation of the role of both tectonic and ice-induced crustal motions of the WAIS bedrock is a critical goal for understanding past, present, and future dynamics of WAIS and its potential role in future global change scenarios, as well as improving our understanding of the role of Antarctica in global plate motions. The extent of active tectonism in West Antarctica is largely speculative, as few data exist that constrain its geographic distribution, directions, or rates of deformation. Active tectonism and the influence of bedrock on the WAIS have been highlighted recently by geophysical data indicating active subglacial volcanism and control of ice streaming by the presence of sedimentary basins. The influence of bedrock crustal motion on the WAIS and its future dynamics is a fundamental issue. Existing GPS projects are located only on the fringe of the ice sheet and do not address the regional picture. It is important that baseline GPS measurements on the bedrock around and within the WAIS be started so that a basis is established for detecting change.<br/><br/>To measure crustal motions, this project will build a West Antarctica GPS Network (WAGN) of at least 15 GPS sites across the interior of West Antarctica (approximately the size of the contiguous United States from the Rocky Mountains to the Pacific coast) over a two-year period beginning in the Antarctic field season 2001-2002. The planned network is designed using the Multi-modal Occupation Strategy (MOST), in which a small number of independent GPS "roving" receivers make differential measurements against a network of continuous GPS stations for comparatively short periods at each site. This experimental strategy, successfully implemented by a number of projects in California, S America, the SW Pacific and Central Asia, minimizes logistical requirements, an essential element of application of GPS geodesy in the scattered and remote outcrops of the WAIS bedrock.<br/><br/>The WAGN program will be integrated with the GPS network that has been established linking the Antarctic Peninsula with South America through the Scotia arc (Scotia Arc GPS Project (SCARP)). It will also interface with stations currently measuring motion across the Ross Embayment, and with the continent-wide GIANT program of the Working Group on Geodesy and Geographic Information Systems of the Scientific Committee on Antarctic Research (SCAR). The GPS network will be based on permanent monuments set in solid rock outcrops that will have near-zero set-up error for roving GPS occupations, and that can be directly converted to a continuous GPS site when future technology makes autonomous operation and satellite data linkage throughout West Antarctica both reliable and economical. The planned network both depends on and complements the existing and planned continuous networks. It is presently not practical, for reasons of cost and logistics, to accomplish the measurements proposed herein with either a network of continuous stations or traditional campaigns.<br/><br/>The proposed WAGN will complement existing GPS projects by filling a major gap in coverage among several discrete crustal blocks that make up West Antarctica, a critical area of potential bedrock movements. If crustal motions are relatively slow, meaningful results will only begin to emerge within the five-year maximum period of time for an individual funded project. Hence this proposal is only to initiate the network and test precision and velocities at the most critical sites. Once built, however, the network will yield increasingly meaningful results with the passage of time. Indeed, the slower the rates turn out to be, the more important an early start to measuring. It is anticipated that the results of this project will initiate an iterative process that will gradually resolve into an understanding of the contributions from plate rotations and viscoelastic and elastic motions resulting from deglaciation and ice mass changes. Velocities obtained from initial reoccupation of the most critical sites will dictate the timing of a follow-up proposal for reoccupation of the entire network when detectable motions have occurred.
This work will perform a marine geophysical survey of sea floor spreading off Cape Adare, Antarctica. Magnetic, gravity, swath bathymetry and multi-channel seismic data will be acquired from the southern end of the Adare Basin to the northern parts of the Northern Basin and Central Trough in the Ross Embayment. Previous surveys documented 170 km of regional extension between forty-three and twenty-six million years ago, which resulted in some seafloor spreading in the Adare Basin. However, the relationship of Adare Basin spreading to the overall extension and the southward continental basins of the Ross Embayment has not been established. This relationship is critical to understanding the tectonic evolution of East and West Antarctica and linking Pacific plate motions to the rest of the world. The study will also offer unique insight into rifting processes by studying the transition of rifting between oceanic and continental lithosphere. In terms of broader impacts, this project will support two graduate students and field research experience for undergraduates. The project also involves cooperation between scientists from the US, Australia, New Zealand and Japan.
This award supports a collaborative marine geological and geophysical project between the University of California, Santa Barbara, and the University of Alabama to study the glacial and tectonic history of the eastern Ross Sea and the Marie Byrd Land margin of West Antarctica. The goals of the project are (1) to conduct seismic imaging and piston coring to begin unraveling the history of the West Antarctic ice Sheet as recorded in the recent sediments of the continental shelf of the region, and (2) to acquire seismic images of the acoustic basement beneath the Cenozoic glacial deposits toward an understanding of the relationship between rift structure of the continental crust and Cenozoic glacial deposits of the region. This research will result in bathymetric, structural, sediment isopach, gravity and magnetic maps of the eastern Ross Sea and the Marie Byrd Land margin. This information will be integrated into an interpretation of the major glacial and structural features of the region. This project will result in a better understanding of the glacio-marine stratigraphy and glacial history of the eastern Ross Sea and Marie Byrd Land margin and, consequently, it will represent a significant contribution to the goals of the West Antarctic Ice Sheet initiative.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a project to make use of ship-repositioning transit cruises to gather geophysical information relating to plate tectonics of the Southern Ocean and to support student training activities. Well-constrained Cenozoic plate reconstructions of the circum-Antarctic region are critical for examining a number of problems of global geophysical importance. These problems include, e.g., relating the plate kinematics to its geological consequences in various plate circuits (Pacific-North America, Australia-Pacific); a dynamical understanding of what drives plate tectonics (which requires well-constrained kinematic information in order to distinguish between different geodynamic hypotheses); and an understanding of the rheology of the plates themselves, including the amount of internal deformation they can support, and the conditions leading to the formation of new plate boundaries through breakup of existing plates. By obtaining better constraints on the motion of the Antarctica plate with respect to these other plates, and by better quantifying the internal deformation within Antarctica (between East and West Antarctica), contributions will be made to solving these other fundamental problems.<br/><br/>In this project, existing data will be analyzed to address several specific issues related to plate motions involving the Antarctic plate. First, work will be done on four-plate solutions of Australia-Pacific-West Antarctica-East Antarctica motion, in order to most tightly constrain the rotation parameters for separation between East and West Antarctica for the time period from about 45 to 28 Ma (Adare Basin spreading system). This will be done by imposing closure on the four-plate circuit and using relevant marine geophysical data from all four of the boundaries. The uncertainties in the resulting rotation parameters will be determined based on the uncertainties in the data points. These uncertainties can then be propagated in the plate circuit for use in addressing the various global geodynamic problems mentioned above. Second, rotation parameters for Pacific-West Antarctica during Tertiary time will be determined using recently acquired well-navigated Palmer transit data and any additional data that can be acquired during the course of this project. These parameters and their uncertainties will be used in assessments of plate rigidity and included in the plate circuit studies.<br/><br/>In the framework of this project, new collection of marine geophysical data will be accomplished on a very flexible schedule. This will be done by collecting underway gravity, magnetics, and swath bathymetric data on Palmer transit cruises of geological importance. This has been successfully done on eight previous Palmer cruises since 1997, the most recent four of which were funded under a collaborative OPP grant to CalTech and Scripps which is now expiring. On one of the suitable transits, a formal class in marine geophysics will be conducted that will afford an opportunity to 12 or more graduate and undergraduate students, from CalTech and Scripps as well as other institutions. In this way, educational activities will be integrated with the usual scientific data collection objectives of the research project.
This project studies the relationship between opening of the Drake Passage and formation of the Antarctic ice sheet. Its goal is to answer the question: What drove the transition from a greenhouse to icehouse world thirty-four million years ago? Was it changes in circulation of the Southern Ocean caused by the separation of Antarctica from South America or was it a global effect such as decreasing atmospheric CO2 content? This study constrains the events and timing through fieldwork in South America and Antarctica and new work on marine sediment cores previously collected by the Ocean Drilling Program. It also involves an extensive, multidisciplinary analytical program. Compositional analyses of sediments and their sources will be combined with (U-Th)/He, fission-track, and Ar-Ar thermochronometry to constrain uplift and motion of the continental crust bounding the Drake Passage. Radiogenic isotope studies of fossil fish teeth found in marine sediment cores will be used to trace penetration of Pacific seawater into the Atlantic. Oxygen isotope and trace metal measurements on foraminifera will provide additional information on the timing and magnitude of ice volume changes. <br/><br/><br/><br/>The broader impacts include graduate and undergraduate education; outreach to the general public through museum exhibits and presentations, and international collaboration with scientists from Argentina, Ukraine, UK and Germany.<br/><br/><br/><br/>The project is supported under NSF's International Polar Year (IPY) research emphasis area on "Understanding Environmental Change in Polar Regions". This project is also a key component of the IPY Plates & Gates initiative (IPY Project #77), focused on determining the role of tectonic gateways in instigating polar environmental change.
Major progress has been made with respect to our understanding of the tectonic evolution of the Antarctic Plate. Paleomagnetic data, marine magnetic anomaly identifications, Geosat-derived tectonic lineations, heat flow derived seafloor ages and mathematical solutions for plate motions around triple junctions have all contributed to a better model for the tectonic evolution of the circum- Antarctic region. Even so, major problems still exist with respect to the Mesozoic to Recent tectonic evolution of the Antarctic continental margin which can be tackled using heat flow measurements. This award supports the study of a tectonic problem that heat flow can address, the determination of the age of the Powell Basin at the end of the West Antarctic Peninsula and its relationship to the opening of Drake's Passage. Specifically, heat flow measurement will be used to study the age and mode of crustal extension of the Powell Basin, where standard age determination fails and heat flow is the only method that can be used to date its opening.
9731695 Klinkhammer This award supports participation of Oregon State University (OSU) researchers in an expedition of the German oceanographic research vessel POLARSTERN to the Antarctic Ocean (POLARSTERN cruise ANT-XV/2). Previous OSU researchers supported by the US Antarctic Program identified several areas of hydrothermal venting in the Bransfield Strait. This discovery has important implications to the biogeography of vent animals, the geological evolution of ore deposits, and the chemical and heat budgets of the Earth. The previous work sampled water and particles from above the vent sites at a reconnaissance level. Subsequent chemical analyses of these samples provided insight into the chemistry of fluids emanating from vents on the sea floor. The POLARSTERN cruise affords a unique opportunity to build on these discoveries in the Bransfield Strait, foster future international work in the Bransfield area, extend research on hydrothermal activity to other parts of the Antarctic Peninsula region, and develop a working relationship with a strong international group. In particular, the POLARSTERN expedition provides the opportunity for: 1) additional sampling of water and suspended particulate matter in the water column over the Bransfield hydrothermal sites this sampling would be aided by German photographic reconnaissance; 2) reconnaissance, to determine the broader geographical extent of hydrothermal activity, would be extended to the Scotia Arc and trench areas following the general theme of the German program which is fluid expulsion from the Scotia- Bransfield system; and 3) the use of unique tools available on the POLARSTERN such as a camera sled and grab bottom sampler. This work will make it possible to better define the location of hydrothermal vents and to begin to quantify the amount of water being expelled by this hydrothermal activity. If vents can be precisely located, the bottom photography holds the promise of revealing possible biologic al communities associated with these submarine hot springs.
This award, provided jointly by the Antarctic Geology and Geophysics Program of the Office of Polar Programs and the Marine Geology and Geophysics Program of the Division of Ocean Sciences, supports research to develop improved plate rotation models for the Southwest Pacific region (between the Pacific, Antarctic, and Australian plates, and the continental fragments of New Zealand, West Antarctica, Iselin Bank, East Antarctica, and Australia). The improved rotation parameters will be used to address tectonic problems related to motion between East and West Antarctica, and in particular, the questions of relative drift between major hotspot groups and the controversy regarding a possible missing plate boundary in this region. Previous work has documented NNW-striking mid-Tertiary seafloor spreading magnetic anomalies between East and West Antarctica, representing about 150 km of opening of the Adare Trough, north of the Ross Sea. This is not enough motion to resolve the apparent discrepancy between the plate motions and motions inferred from assuming hotspot fixity. Because this motion between East and West Antarctica corresponds to a very small rotation, it points to the need for determination of finite rotations describing motions of the various plates here with a high degree of accuracy, particularly for older times. This is now possible with the datasets that will be used in this project. The work will be accomplished by integrating existing data with analysis and interpretation of other data sets recently made available by Japanese and Italian scientists from their cruises in the region. It will be further augmented by acquisition of new marine geophysical data on selected transits of the R/VIB Nathaniel B. Palmer. Specific objectives of the project include the following: 1) improve the rotation model for mid-Tertiary extension between East and West Antarctica by including the plate boundary between the Pacific and Australia plates directly when calculating Australia-West Antarctica motion, 2) improve the reconstructions for the Late Cretaceous and Early Tertiary times by including new constraints on several boundaries not previously used in the reconstructions, 3) address the implications of new rotation models for the question of the fixity of global hotspots, 4) re-examine the geophysical data from the Western Ross Sea embayment in light of a model for substantial mid-Cenozoic extension.
This project examines the role of glacier dynamics in glacial sediment yields. The results will shed light on how glacial erosion influences both orogenic processes and produces sediments that accumulate in basins, rich archives of climate variability. Our hypothesis is that erosion rates are a function of sliding speed, and should diminish sharply as the glacier's basal temperatures drop below the melting point. To test this hypothesis, we will determine sediment accumulation rates from seismic studies of fjord sediments for six tidewater glaciers that range from fast-moving temperate glaciers in Patagonia to slow-moving polar glaciers on the Antarctic Peninsula. Two key themes are addressed for each glacier system: 1) sediment yields and erosion rates by determining accumulation rates within the fjords using seismic profiles and core data, and 2) dynamic properties and basin characteristics of each glacier in order to seek an empirical relationship between glacial erosion rates and ice dynamics. The work is based in Patagonia and the Antarctic Peninsula, ideal natural laboratories for these purposes because the large latitudinal range provides a large range of precipitation and thermal regimes over relatively homogeneous lithologies and tectonic settings. Prior studies of these regions noted significant decreases in glaciomarine sediment accumulations in the fjords to the south. As well, the fjords constitute accessible and nearly perfect natural sediment traps.<br/><br/>The broader impacts of this study include inter-disciplinary collaboration with Chilean glaciologists and marine geologists, support for one postdoctoral and three doctoral students, inclusion of undergraduates in research, and outreach to under-represented groups in Earth sciences and K-12 educators. The results of the project will also contribute to a better understanding of the linkages between climate and evolution of all high mountain ranges.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to study the deep crustal structure of the Bransfield Strait region. Bransfield Strait, in the northern Antarctic Peninsula, is one of a small number of modern basins that may be critical for understanding ancient mountain-building processes. The Strait is an actively-extending marginal basin in the far southeast Pacific, between the Antarctic Peninsula and the South Shetland Islands, an inactive volcanic arc. Widespread crustal extension, accompanied by volcanism along the Strait's axis, may be associated with slow underthrusting of oceanic crust at the South Shetland Trench; similar "back-arc" extension occurred along the entire Pacific margin (now western South America/West Antarctica) of the supercontinent known as Gondwanaland during the Jurassic-Early Cretaceous. Mid-Cretaceous deformation of these basins some 100 million years ago initiated uplift of the Andes. By understanding the deep structure and evolution of Bransfield rift, it should be possible to evaluate the crustal precursor to the Andes, and thereby understand more fully the early evolution of this globally important mountain chain. Years of international earth sciences research in Bransfield Strait has produced consensus on important aspects of its geologic environment: (1) It is probably a young (probably ~4 million years old) rift in preexisting Antarctic Peninsula crust; continued stretching of this crust results in complex fault patterns and associated volcanism. The volcanism, high heat flow, and mapped crustal trends are all consistent with the basin's continuing evolution as a rift; (2) The volcanism, which is recent and continuing, occurs along a "neovolcanic" zone centralized along the basin's axis. Multichannel seismic data collected aboard R/V Maurice Ewing in 1991 illustrate the following basin-wide characteristics of Bransfield Strait - a) widespread extension and faulting, b) the rise of crustal diapirs or domes associated with flower-shaped normal-fault structures, and c) a complicated system of fault-bounded segments across strike. The geophysical evidence also suggests NE-to-SW propagation of the rift, with initial crustal inflation/doming followed by deflation/subsidence, volcanism, and extension along normal faults. Although Bransfield Strait exhibits geophysical and geologic evidence for extension and volcanism, continental crust fragmentation does not appear to have gone to completion in this "back-arc" basin and ocean crust is not yet being generated. Instead, Bransfield rift lies near the critical transition from intracontinental rifting to seafloor-spreading. The basin's asymmetry, and seismic evidence for shallow intracrustal detachment faulting, suggest that it may be near one end-member of the spectrum of models proposed for continental break-up. Therefore, this basin is a "natural lab" for studying diverse processes involved in forming continental margins. Understanding Bransfield rift's deep crustal structure is the key to resolving its stage of evolution, and should also provide a starting point for models of Andean mountain-building. This work will define the deep structure by collecting and analyzing high-quality, high-density ocean bottom seismometer (OBS) profiles both along and across the Strait's strike. Scientific objectives are as follows: (1) to develop a detailed seismic velocity model for this rift; (2) to calibrate velocity structure and crustal thickness changes associated with presumed NE-to-SW rift propagation, as deduced from the multichannel seismic interpretations; (3) to document the degree to which deep velocity structure corresponds to along- and across-strike crustal segmentation; and (4) to assess structural relationships between the South Shetland Islands "arc" and Bransfield rift. The proposed OBS data, integrated with interpretations of both Ewing profiles and those from other high-quality geophysical coverage in Bransfield Strait, will complement ongoing deep seismic analysis of Antarctic Peninsula crust to the southwest and additional OBS monitoring for deep earthquakes, in order to understand the complex plate tectonic evolution of this region.
Luyendyk et.al.: OPP 0088143<br/>Bartek: OPP 0087392<br/>Diebold: OPP 0087983<br/><br/>This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research program in marine geology and geophysics in the southern central and eastern Ross Sea. The project will conduct sites surveys for drilling from the Ross Ice Shelf into the seafloor beneath it. Many of the outstanding problems concerning the evolution of the East and West Antarctic Ice Sheets, Antarctic climate, global sea level, and the tectonic history of the West Antarctic Rift System can be addressed by drilling into the seafloor of the Ross Sea. Climate data for Cretaceous and Early Cenozoic time are lacking for this sector of Antarctica. Climate questions include: Was there any ice in Late Cretaceous time? What was the Antarctic climate during the Paleocene-Eocene global warming? When was the Cenozoic onset of Antarctic glaciation, when did glaciers reach the coast and when did they advance out onto the margin? Was the Ross Sea shelf non-marine in Late Cretaceous time; when did it become marine? Tectonic questions include: What was the timing of the Cretaceous extension in the Ross Sea rift; where was it located? What is the basement composition and structure? Where are the time and space limits of the effects of Adare Trough spreading? Another drilling objective is to sample and date the sedimentary section bounding the mapped RSU6 unconformity in the Eastern Basin and Central Trough to resolve questions about its age and regional extent. Deep Sea Drilling Project (DSDP) Leg 28 completed sampling at four drill sites in the early 1970's but had low recovery and did not sample the Early Cenozoic. Other drilling has been restricted to the McMurdo Sound area of the western Ross Sea and results can be correlated into the Victoria Land Basin but not eastward across basement highs. Further, Early Cenozoic and Cretaceous rocks have not been sampled. A new opportunity is developing to drill from the Ross Ice Shelf. This is a successor program to the Cape Roberts Drilling Project. One overriding difficulty is the need for site surveys at drilling locations under the ice shelf. This project will overcome this impediment by conducting marine geophysical drill site surveys at the front of the Ross Ice Shelf in the Central Trough and Eastern Basin. The surveys will be conducted a kilometer or two north of the ice shelf front where recent calving events have resulted in a southerly position of the ice shelf edge. In several years the northward advance of the ice shelf will override the surveyed locations and drilling could be accomplished. Systems to be used include swath bathymetry, gravity, magnetics, chirp sonar, high resolution seismic profiling, and 48 fold seismics. Cores will be collected to obtain samples for geotechnical properties, to study sub-ice shelf modern sedimentary processes, and at locations where deeper section is exposed.<br/><br/>This survey will include long profiles and detailed grids over potential drill sites. Survey lines will be tied to existing geophysical profiles and DSDP 270. A recent event that makes this plan timely is the calving of giant iceberg B-15 (in March, 2000) and others from the ice front in the eastern Ross Sea. This new calving event and one in 1987 have exposed 16,000 square kilometers of seafloor that had been covered by ice shelf for decades and is not explored. Newly exposed territory can now be mapped by modern geophysical methods. This project will map geological structure and stratigraphy below unconformity RSU6 farther south and east, study the place of Roosevelt Island in the Ross Sea rifting history, and determine subsidence history during Late Cenozoic time (post RSU6) in the far south and east. Finally the project will observe present day sedimentary processes beneath the ice shelf in the newly exposed areas.
This award, provided by the Office of Polar Programs of the National Science Foundation, supports research to investigate the seismicity and tectonics of the South Shetland Arc and the Bransfield Strait. This region presents an intriguing and unique tectonic setting, with slowing of subduction, cessation of island arc volcanism, as well as the apparent onset of backarc rifting occurring within the last four million years. This project will carry out a 5-month deployment of 14 ocean bottom seismographs (OBSs) to complement and extend a deployment of 6 broadband land seismic stations that were successfully installed during early 1997. The OBSs include 2 instruments with broadband sensors, and all have flowmeters for measuring and sampling hydrothermal fluids. The OBSs will be used to examine many of the characteristics of the Shetland- Bransfield tectonic system, including: --- The existence and depth of penetration of a Shetland Slab: The existence of a downgoing Shetland slab will be determined from earthquake locations and from seismic tomography. The maximum depth of earthquake activity and the depth of the slab velocity anomaly will constrain the current configuration of the slab, and may help clarify the relationship between the subducting slab and the cessation of arc volcanism. -- Shallow Shetland trench seismicity?: No teleseismic shallow thrust faulting seismicity has been observed along the South Shetland Trench from available seismic information. Using the OBS data, the level of small earthquake activity along the shallow thrust zone will be determined and compared to other regions undergoing slow subduction of young oceanic lithosphere, such as Cascadia, which also generally shows very low levels of thrust zone seismicity. -- Mode of deformation along the Bransfield Rift: The Bransfield backarc has an active rift in the center, but there is considerable evidence for off-rift faulting. There is a long-standing controversy about whet her back-arc extension occurs along discrete rift zones, or is more diffuse geographically. This project will accurately locate small earthquakes to better determine whether Bransfield extension is discrete or diffuse. -- Identification of volcanism and hydrothermal activity: Seismic records will be used to identify the locations of active seafloor volcanism along the Bransfield rift. Flowmeters attached to the OBSs will record and sample the fluid flux out of the sediments. -- Upper mantle structure of the Bransfield - evidence for partial melting?: Other backarc basins show very slow upper mantle seismic velocities and high seismic attenuation, characteristics due to the presence of partially molten material. This project will use seismic tomography to resolve the upper mantle structure of the Bransfield backarc, allowing comparison with other backarc regions and placing constraints on the existence of partially molten material and the importance of partial melting as a mantle process in this region. Collaborative awards: OPP 9725679 and OPP 9726180
This award, provided jointly by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to transform three temporary seismometers in the Antarctic Peninsula into semi-permanent stations and to continue basic research using these data. During 1997 and 1998, a network of 11 broadband seismographs in the Antarctic Peninsula region and southernmost Chilean Patagonia were installed and maintained. Data return from this project has been excellent and interesting initial results have been produced. The continued operation of these instruments over a longer time period would be highly beneficial because the number of larger magnitude regional earthquakes is small and so a longer time is needed to acquire data. However, instruments from this project are borrowed from the IRIS-PASSCAL instrument pool and must be returned to PASSCAL in April, 1999. This award provides funds to convert three stations at permanent Chilean bases in the Antarctic to permanent stations, and to continue the seismological investigation of the region for a period of four years. As part of this project, a fourth station, in Chilean Patagonia, will continue to be operated using Washington University equipment. The funding of this project will enable continued collaboration between Washington University and the Universidad de Chile in the operation of these stations, and the data will be forwarded to the IRIS data center as well as to other international seismological collaborators. Mutual data exchanges with other national groups with Antarctic seismology research programs will provide access to broadband data from a variety of other proprietary broadband stations in the region. The data will be used to study the seismicity and upper mantle velocity structure of several complicated tectonic regions in the area, including the South Shetland subduction zone, the Bransfield backarc rift, and diffuse plate boundaries in Patagonia, Drake Passage, and along the South Scotia Ridge. In particular, the operation of these stations over a longer time period will allow a better understanding of the seismicity of the South Shetland Trench, an unusual subduction zone showing very slow subduction of young lithosphere. These seismometers will also be used to record airgun shots during a geophysical cruise in the Bransfield Strait that is being planned by the University of Texas for April, 2000. These data will provide important constraints on the crustal structure beneath the stations, and the improved structural models will enable implementation of more precise earthquake location procedures in support of a seismological understanding of the region.
OPP-0230285/OPP-0230356<br/>PIs: Wilson, Terry J./Hothem, Larry D.<br/><br/>This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to conduct GPS measurements of bedrock crustal motions in an extended Transantarctic Mountains Deformation network (TAMDEF) to document neotectonic displacements due to tectonic deformation within the West Antarctic rift and/or to mass change of the Antarctic ice sheets. Horizontal displacements related to active neotectonic rifting, strike-slip translations, and volcanism will be tightly constrained by monitoring the combined TAMDEF and Italian VLNDEF networks of bedrock GPS stations along the Transantarctic Mountains and on offshore islands in the Ross Sea. Glacio-isostatic adjustments due to deglaciation since the Last Glacial Maximum and to modern mass change of the ice sheets will be modeled from GPS-derived crustal motions together with new information from other programs on the configurations, thicknesses, deglaciation history and modern mass balance of the ice sheets. Tectonic and rheological information from ongoing structural and seismic investigations in the Victoria Land region will also be integrated in the modeling. The integrative and iterative modeling will yield a holistic interpretation of neotectonics and ice sheet history that will help us to discriminate tectonic crustal displacements from viscoelastic/elastic glacio-isostatic motions. These results will provide key information to interpret broad, continental-scale crustal motion patterns detected by sparse, regionally distributed GPS continuous trackers and by spaceborne instruments. This study will contribute to international programs focused on Antarctic neotectonic and global change issues.<br/><br/>Strategies to meet these science objectives include repeat surveys of key sites in the existing TAMDEF network, extension of the array of TAMDEF sites southward about 250 km along the Transantarctic Mountains, linked measurements with the VLNDEF network, and integration of quasi-continuous trackers within the campaign network. By extending the array of bedrock sites southward, these measurements will cross gradients in predicted vertical motion due to viscoelastic rebound. The southward extension will also allow determination of the southern limit of the active Terror Rift and will provide a better baseline for constraints on any ongoing tectonic displacements across the West Antarctic rift system as a whole that might be possible using GPS data collected by the West Antarctic GPS Network. This project will also investigate unique aspects of GPS geodesy in Antarctica to determine how the error spectrum compares to mid-latitude regions and to identify the optimum measurement and data processing schemes for Antarctic conditions. The geodetic research will improve position accuracies within our network and will also yield general recommendations for deformation monitoring networks in polar regions.<br/><br/>An education and outreach program is planned and will be targeted at non-science-major undergraduate students taking Earth System Science at Ohio State University. The objective will be to illuminate the research process for nonscientists. This effort will educate students on the process of science and inform them about Antarctica and how it relates to global science issues.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate Earth's magnetic field over the past 5 million years in order to test models of Earth's geomagnetic dynamo. Paleomagnetic data (directions of ancient geomagnetic fields obtained from rocks) play an important role in a variety of geophysical studies of the Earth, including plate tectonic reconstructions, magnetostratigraphy, and studies of the behavior of the ancient geomagnetic field (which is called paleo-geomagnetism). Over the past four decades the key assumption in many paleomagnetic studies has been that the average direction of the paleomagnetic field corresponds to one that would have been produced by a geocentric axial dipole (GAD) (analogous to a bar magnet at the center of the Earth), and that paleoinclinations (the dip of magnetic directions from rocks) provide data of sufficient accuracy to enable their use in plate reconstructions. A recent re-examination of the fundamental data underlying models of the time averaged field has shown that the most glaring deficiency in the existing data base is a dearth of high quality data, including paleointensity information, from high latitudes. This project will undertake a sampling and laboratory program on suitable sites from the Mt. Erebus Volcanic Province (Antarctica) that will produce the quality data from high southern latitudes that are essential to an enhanced understanding of the time averaged field and its long term variations.
This project develops a system of airborne instruments to explore the polar ice sheets and their underlying environments. The instrument suite includes an ice-penetrating radar, laser altimeter, gravimeter and magnetometer. Airborne geophysical measurements are key to understanding the 99% of Antarctica and 85% of Greenland covered by ice, which have thus far been studied at the postage stamp level. Projects linking ice sheet behavior to underlying geology will immediately benefit from this system, but even more exciting are the system's potential uses for work at the frontiers of polar science, such as: 1) exploring subglacial lakes, recently discovered and potentially the most unique sites on Earth for understanding life in extreme environments; 2) locating the deepest, oldest ice, which would offer million year and older samples of the atmosphere and 3) interpreting Antarctica's subglacial geology, which contains unique and unstudied volcanoes, mountains, and tectonic provinces. In terms of broader impacts, this project constructs research infrastructure critical to society's understanding of sea level rise, and supports a project involving domestic, international, and private sector collaborations.
This project is a field and laboratory based investigation of the Vanda dike swarm in the Dry Valleys of Antarctica. These dikes crosscut Cambro-Ordovician granitoid plutons produced during the Ross Orogeny, and mark the transition between the cessation of subduction and the onset of extensional magmatism. Many dying convergent plate margins convert to extensional magmatism, and the Dry Valleys provide a magnificent opportunity to examine the shallow roots of a plate that experienced this transition. Because of their exceptional exposure, bimodal felsic and mafic compositions, and complex field relations, the Vanda dikes have the potential to reveal insights into this important phase of Antarctic tectonic history. <br/>The broader impacts include collaboration between a primarily undergraduate and two research institutions, and support for undergraduate participation in an exciting, field-based research project.
This Small Grant for Exploratory Research investigates the origin and evolution of the Gamburtsev subglacial mountains (GSM). These mountains are considered the nucleation point for Antarctica's largest ice sheets; however, being of indeterminate age, they may postdate ice sheet formation. As well, their formation could reflect tectonic events during the breakup of Gondwana. The project studies GSM-derived detrital zircon and apatite crystals from Prydz Bay obtained by the Ocean Drilling Program. Analytical work includes triple-dating thermochronometry by U/Pb, fission track, and (U/Th)/He methods. The combined technique offers insight into both high and low temperature processes, and is potentially sensitive to both the orogenic events and the subsequent cooling and exhumation due to erosion. In terms of broader impacts, this project supports research for a postdoctoral fellow and an
This project will study migmatite domes found in the Fosdick Mountains of the Ford Ranges, western Marie Byrd Land, Antarctica. This area offers unique, three-dimensional exposures that may offer new insight into dome formation, which is a fundamental process of mountain building. These domes are derived from sedimentary and plutonic protoliths that are complexly interfolded at decimeter to kilometer scales. Preliminary findings from geobarometry and U-Pb monazite dating of anatexite suggest that peak metamorphism was underway at 105 Ma at crustal depths of ~25 km, followed by decompression as the Fosdick dome was emplaced to 16-17 km, or possibly as low as 8.5 km, in the crust by 99 Ma. Near-isothermal conditions were maintained during ascent, favorable for producing substantial volumes of melt through biotite-dehydration melting. This dome has been interpreted as a product of extensional exhumation. This is a viable interpretation from the regional standpoint, because the dome was emplaced in mid-Cretaceous time during the rapid onset of divergent tectonics along the proto- Pacific margin of Gondwana. However, the complex internal structures of the Fosdick Mountains have yet to be considered and may be more consistent with alternative intepretations such as upward extrusion within a contractional setting or lateral flow within a transcurrent attachment zone. This proposal is for detailed structural analysis, paired with geothermobarometry and geochronology, to determine the flow behavior and structural style that produced the internal architecture of the Fosdick dome. The results will improve our general understanding of the role of gneiss domes in transferring material and heat during mountain-building, and will characterize the behavior of the middle crust during a time of rapid transition from divergent to convergent tectonics along the active margin of Gondwana. In terms of broader impacts, this work will train undergraduate and graduate students, and involve them as collaborators in the development of curricular materials. It will also foster mentoring relationships between graduate and undergraduate students.
Encarnaci_n OPP 9615398 Abstract Basement rocks of the Transantarctic Mountains are believed to record a change in the paleo-Pacific margin of Gondwana from a rifted passive margin to a tectonically active margin (Ross orogen). Recent hypothesis suggest that the passive margin phase resulted from Neoproterozoic rifting of Laurentia from Antarctica ("SWEAT" hypothesis). The succeeding active margin phase (Ross orogeny) was one of several tectonic events ("Pan African" events) that resulted from plate convergence/transpression that was probably a consequence of the assembly of components of the Gondwana supercontinent. Although these basement units provide one of the keys for understanding the break up and assembly of these major continental masses, few precise ages are available to address the following important issues: (1) Is there any pre-rift high-grade cratonal basement exposed along the Transantarctic Mountains, and what is/are its precise age? Is this age compatible with a Laurentia connection? (2) What is the age of potential rift/passive margin sediments (Beardmore Group) along the Queen Maud Mountains sector of the orogen? (3) What is the relative and absolute timing of magmatism and contractional deformation of supracrustal units in the orogen? Was deformation diachronous and thus possibly related to transpressional tectonics, or did it occur in a discrete pulse that is more compatible with a collision? How does contraction of the orogen fit in with emplacement of voluminous plutonic and volcanic rocks? The answers to these questions are central to understanding the kinematic evolution of this major orogenic belt and its role in Neoproterozoic-Early Paleozoic continental reconstructions and plate kinematics. Hence, this award supports funding for precise U-Pb dating, using zircon, monazite, baddeleyite, and/or titanite from a variety of magmatic rocks in the Queen Ma ud Mountains, which can address the foregoing problems. In addition to the issues above, precise dating of volcanics that are interbedded with carbonates containing probable Middle Cambrian fauna could potentially provide a calibration point for the Middle Cambrian, which will fill a gap in the absolute time scale for the early Paleozoic.
9909436 Farley This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports an investigation of the uplift history of the Dry Valleys segment of the Transantarctic Mountains. The overall goal is to further constrain the exhumation history of the Transantarctic Mountains by using the newly developed apatite (U-Th)/He dating method on samples collected in vertical profiles. This approach, combined with existing apatite fission track information will constrain the rate and patterns of exhumation across the Transantarctic Mountains since their inception as a rift-flank uplift in the early Cenozoic. This project will complement other projects and build on previous interpretations of the exhumation and tectonic history determined using apatite fission track thermochronology. It will bridge the gap between information on erosion rates determined from fission track thermochronology and from cosmogenic surface exposure dating and integrate the exhumation history of the mountains with their landscape evolution. As such, the results from this project will address an outstanding problem in Antarctic science; namely the stability of the East Antarctic Ice Sheet, and the timing of the transition from a "warm" dynamic ice sheet to a cold polar ice sheet. Highly relevant to this issue is the landscape evolution of the Transantarctic Mountains because many diverse lines of evidence for the rate of landscape evolution have been used to argue for a dynamic ice sheet up until either the Pliocene (the "dynamic" ice sheet model) or the middle Miocene (the "stable" ice sheet model). Understanding the past stability or dynamic fluctuations of the East Antarctic ice sheet with respect to the climate record is, of course, important for understanding how the present ice sheet may respond to global warming. The specific objective of this project is to determine apatite (U-Th)/He age versus elevation trends for a number of vertical profiles from locations within the Transantarctic Mountain front and across the structural grain of the range. Fission track data already exist for all of these profiles, with apatite fission track ages ranging from 150-30 Ma. The greater precision of the (U-Th)/He technique and the fact it records information at lower temperatures (closure temperature of ~70 degrees Celsius; limits of 40-85 degrees Celsius for the He partial retention zone) will allow examination of the exhumation history of the TAM in more detail from ca 130 Ma to ~20 Ma. Another facet is to examine areas where Cretaceous exhumation is recorded and areas where the fission track profiles indicate periods of thermal and tectonic stability and minimal erosion throughout the Cretaceous. The variation of timing of the onset of more rapid exhumation accompanying uplift and formation of the Transantarctic Mountains in the early Cenozoic will also be examined.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a study to investigate paleoenvironmental conditions during the late Paleozoic and Mesozoic in central interior Antarctica. The 4 km thick sequence of sedimentary rocks, known as the Beacon Supergroup, in the Beardmore Glacier area records 90 million years of Permian through Jurassic history of this high-paleolatitude sector of Gondwana. It accumulated in a foreland basin with a rate of subsidence approximately equal to the rate of deposition. The deposits have yielded diverse vertebrate fossils, in situ fossil forests, and exceptionally well preserved plant fossils. They give a unique glimpse of glacial, lake, and stream/river environments and ecosystems and preserve an unparalleled record of the depositional, paleoclimatic, and tectonic history of the area. The excellent work done to date provides a solid base of information on which to build understanding of conditions and processes.<br/><br/>This project is a collaborative study of this stratigraphic section that will integrate sedimentologic, paleontologic, and ichnologic observations to answer focused questions, including: (1) What are the stratigraphic architecture and alluvial facies of Upper Permian to Jurassic rocks in the Beardmore area?; (2) In what tectonostratigraphic setting were these rocks deposited?; (3) Did vertebrates inhabit the cold, near-polar, Permian floodplains, as indicated by vertebrate burrows, and can these burrows be used to identify, for the first time, the presence of small early mammals in Mesozoic deposits?; and (4) How did bottom-dwelling animals in lakes and streams use substrate ecospace, how did ecospace use at these high paleolatitudes differ from ecospace use in equivalent environments at low paleolatitudes, and what does burrow distribution reveal about seasonality of river flow and thus about paleoclimate? Answers to these questions will (1) clarify the paleoclimatic, basinal, and tectonic history of this part of Gondwana, (2) elucidate the colonization of near-polar ecosystems by vertebrates, (3) provide new information on the environmental and paleolatitudinal distributions of early mammals, and (4) allow semi-quantitative assessment of the activity and abundance of bottom-dwelling animals in different freshwater environments at high and low latitudes. In summary, this project will contribute significantly to an understanding of paleobiology and paleoecology at a high latitude floodplain setting during a time in Earth history when the climate was much different than today.
This work will determine the age and provenance of glacially derived marine sediments from the coastal regions of Wilkes Land, Antarctica. These deposits may offer insight into the history of the East Antarctic Shield (EAS), which is amongst the oldest sections of continental crust on Earth, but cannot be studied directly because of nearly complete ice sheet coverage. The study will use Australian National University's SHRIMP ion microprobe to date zircon and monazite found in the sediments. Samples of interest include polymictic pebble and cobble clasts obtained from dredge hauls of tills, as well as sand-matrix fractions from cores of glacial diamicts on the continental margin. Individual clasts of igneous and metamorphic rocks from tills will be selected for zircon and/or monazite age dating, whereas detrital zircons from stratified and non-stratified diamictons will be analyzed for composite zircon provenance analysis. In addition, detrital zircon ages will be determined for Beacon Supergroup sandstones to evaluate recycling of zircon in Phanerozoic basins. Integration of ages obtained from both sources will provide a good representation of the EAS terrains underlying the Wilkes Land ice sheet. This project will allow us to learn more about the remote continental interior and improve our ability to interpret past ice-flow patterns without further environmental impact on Antarctica. The results will improve our understanding of Precambrian tectonics and crustal evolution, and help target future over-ice geophysical surveys and basement drilling projects currently under consideration. In terms of broader impacts, the project will provide educational and training opportunities for undergraduate students in Earth science.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to apply numerical modeling to constrain the uplift and exhumation history of the Transantarctic Mountains. The Transantarctic Mountains (TAM) are an anomalously high (>4500 m) and relatively broad (up to 200 km) rift-flank uplift demarcating the boundary between East and West Antarctica. Dynamics of the East Antarctic ice-sheet and the climate are affected by the mountain range, and an understanding of the uplift history of the mountain range is critical to understanding these processes. This project will constrain the uplift and denudation history of the Transantarctic Mountains based on thermo-mechanical modeling held faithful to thermochronological, geological, and geophysical data. The research will be the primary responsibility of post-doctoral researcher Audrey Huerta, working in collaboration with Dennis Harry, 1 undergraduate student, and 1 graduate student.<br/><br/>Thermochronologic evidence of episodic Cretaceous through Cenozoic rapid cooling within the TAM indicates distinct periods of uplift and exhumation. However, a more detailed interpretation of the uplift history is difficult without an understanding of the evolving thermal structure and topography of the TAM prior to and during uplift. These aspects of the mountain range can best be constrained by an understanding of the evolving regional tectonic setting. Proximity of the TAM to the West Antarctic Rift System (WARS) suggests a link between uplift of the TAM and extension within the WARS.<br/><br/>The project will integrate two techniques: lithospheric-scale geodynamic modeling and crustal-scale thermal modeling. The lithospheric-scale deformational and thermal evolution of TAM will be modeled by a finite element model designed to track the thermal and deformational response of the Antarctic lithosphere to a protracted extensional environment. Previous investigators have linked the high elevation and broad width of the TAM to a deep level of necking in which mantle thinning is offset from the location of crustal extension. In this study, a three-dimensional dynamic model will be used to track the uplift and thermal evolution of the TAM in a setting in which necking is at a deep level, and in which extension within the crust and extension within the mantle are offset. Velocity boundary conditions applied to the edges of the model will vary through time to simulate the extensional and transtensional evolution of the WARS. Because the model is dynamic, the thermal structure, strength, and strain field, evolve naturally in response to these initial and boundary conditions.<br/><br/>Dynamic models are uniquely suited to understanding lithospheric deformational and thermal evolution, however kinematic models are best suited for addressing the detailed thermal and exhumation history of crustal uplifts. Thus, a 2-dimensional kinematic-thermal model will be designed to simulate the uplift history of the TAM and the resulting erosional, topographic, and thermal evolution. Uplift will be modeled as normal-fault movement on a set of discrete fault planes with uplift rate varying through time. Erosion will be modeled as a diffusive process in which erosion rates can be varied through time (simulating climate changes), and vary spatially as a linear function of gradient and distance from the drainage divide. Synthetic time-temperature (t-T) histories will be calculated to compare model results to thermochronologic data.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the Transantarctic Mountains and an adjacent region of East Antarctica. The East Antarctic shield is one of Earth's oldest and largest cratonic assemblies, with a long-lived Archean to early Paleozoic history. Long-standing interest in the geologic evolution of this shield has been rekindled over the past decade by tectonic models linking East Antarctica with other Precambrian crustal elements in the Rodinia and Gondwanaland supercontinents. It is postulated that the Pacific margin of East Antarctica was rifted from Laurentia during late Neoproterozoic breakup of Rodinia, and it then developed as an active plate boundary during subsequent amalgamation of Gondwanaland in the earliest Paleozoic. If true, the East Antarctic shield played a key role in supercontinent transformation at a time of global changes in plate configuration, terrestrial surficial process, sea level, and marine geochemistry and biota. A better understanding of the geological evolution of the East Antarctic shield is therefore critical for studying Precambrian crustal evolution in general, as well as resource distribution, biosphere evolution, and glacial and climate history during later periods of Earth history. Because of nearly complete coverage by the polar ice cap, however, Antarctica remains the single most geologically unexplored continent. Exposures of cratonic basement are largely limited to coastal outcrops in George V Land and Terre Adelie (Australian sector), the Prince Charles Mountains and Enderby Land (Indian sector), and Queen Maud Land (African sector), where the geology is reasonably well-known. By contrast, little is known about the composition and structure of the shield interior. Given the extensive ice cover, collection of airborne geophysical data is the most cost-effective method to characterize broad areas of sub-ice basement and expand our knowledge of the East Antarctic shield interior. <br/><br/>This project will conduct an airborne magnetic survey (coupled with ground-based gravity measurements) across an important window into the shield where it is exposed in the Nimrod Glacier area of the central Transantarctic Mountains. Specific goals are to:<br/>1. Characterize the magnetic and gravity signature of East Antarctic crustal basement exposed at the Ross margin (Nimrod Group),<br/>2. Extend the magnetic data westward along a corridor across the polar ice cap in order to image the crust in ice-covered areas,<br/>3. Obtain magnetic data over the Ross Orogen in order to image the ice-covered boundary between basement and supracrustal rocks, allowing us to better constrain the geometry of fundamental Ross structures, and<br/>4. Use the shape, trends, wavelengths, and amplitudes of magnetic anomalies to define magnetic domains in the shield, common building blocks for continent-scale studies of Precambrian geologic structure and evolution.<br/><br/>High-resolution airborne magnetic data will be collected along a transect extending from exposed rocks of the Nimrod Group across the adjacent polar ice cap. The Nimrod Group represents the only bona fide Archean-Proterozoic shield basement exposed for over 2500 km of the Pacific margin of Antarctica. This survey will characterize the geologically well-known shield terrain in this sector using geophysical methods for the first time. This baseline over the exposed shield will allow for better interpretation of geophysical patterns in other ice-covered regions and can be used to target future investigations. In collaboration with colleagues from the BGR (Germany), a tightly-spaced, "draped" helicopter magnetic survey will be flown during the 2003-04 austral summer, to be complemented by ground measurements of gravity over the exposed basement. Data reduction, interpretation and geological correlation will be completed in the second year. This project will enhance the education of students, the advancement of under-represented groups, the research instrumentation of the U.S. Antarctic Program, partnerships between the federal government and institutions of higher education, and cooperation between national research programs. It will benefit society through the creation of new basic knowledge about the Antarctic continent, which in turn may help with applied research in other fields such as the glacial history of Antarctica.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research project between the University of California-Santa Cruz, the University of Texas-Austin, and the Ohio State University to investigate sediment samples recovered from the base of the West Antarctic Ice Sheet (WAIS). West Antarctica is a remote polar region but its dynamic ice sheet, complicated tectonic history, and the sedimentary record of Cenozoic glaciation make it of particular interest to glaciologists and geologists. Glaciologists are concerned with the possibility of significant near-future changes in mass balance of the WAIS that may contribute to the ongoing global sea level rise. Geologists are investigating in West Antarctica the fundamental process of continental extension and are constructing models of a polar marine depositional system using this region as the prime modern example. The subglacial part of West Antarctica has escaped direct geological investigations and all that is known about subglacial geology comes from geophysical remote sensing. Recent acquisitions of new, high-quality geophysical data have led to generation of several enticing models. For instance, subglacial presence of high-magnitude, short-wavelength magnetic anomalies has prompted the proposition that there may be voluminous (>1 million cubic km), Late Cenozoic flood basalts beneath the ice sheet. Another important model suggests that the patterns of fast ice streaming (~100 meters/year) and slow ice motion (~1-10 meters/year) observed within the WAIS are controlled by subglacial distribution of sedimentary basins and resistant bedrock. These new geophysics-based models should be tested with direct observations because they are of such great importance to our understanding of the West Antarctic tectonic history and to our ability to predict the future behavior of the WAIS.<br/><br/>This research is designed as a pilot study to provide new geologic data, which may help to test the recent models inferred from geophysical observations. The new constraints on subglacial geology and on its interactions with the WAIS will be obtained through petrological and geochemical analyses of basal and subglacial sediments collected previously from seven localities. This investigation will take place in the context of testing the following three hypotheses: (A) the provenance of bedrock clasts in the glacial sediment samples is primarily from West Antarctica, (B) some clasts and muds from the West Antarctic subglacial sediments have been derived by erosion of the (inferred) subglacial Late Cenozoic flood basalts, and (C) the sediments underlying the West Antarctic ice streams were generated by glacial erosion of preglacial sedimentary basins but the sediments recovered from beneath the slow-moving parts of the WAIS were produced through erosion of resistant bedrock.<br/><br/>The individual hypotheses will be tested by collecting data on: (A) petrology, geochemistry and age of granitoid clasts, (B) petrology, geochemistry and age of basaltic clasts combined with mud geochemistry, and (C) clay mineralogy/paragenesis combined with textural maturity of sand and silt grains. The results of these tests will help evaluate the interesting possibility that subglacial geology may have first-order control on the patterns of fast ice flow within the WAIS. The new data will also help to determine whether the subglacial portion of West Antarctica is a Late Cenozoic flood basalt province. By combining glaciological and geological aspects of West Antarctic research the proposed collaborative project will add to the ongoing U.S. effort to create a multidisciplinary understanding of this polar region.
Elliot, David; Bell, Robin; Blankenship, Donald D.; Brozena, J. M.; Finn, C. A.; Hodge, S. M.; Kempf, Scott D.; Behrendt, J. C.; Morse, David L.; Peters, M. E.; Studinger, Michael S.
This award will support a combined airborne radar and aeromagnetic survey of two 220 x 330 km regions between the Transantarctica Mountains and Marie Byrd Land during the 1990-91 and 1991-92 field seasons. These efforts will address significant problems identified in the Ross Transect Zone (RTZ) by the National Academy of Sciences (1986) report "Antarctic Solid Earth Sciences Research," and by the report to NSF "A Plan for a United States Program to Study the Structure and Evolution of the Antarctic Lithosphere (SEAL)." The surveys will be flown using the NSF/TUD radar and an areomagnetics system mounted in a light aircraft. The grid spacing will be 5 km and navigation will be by radiopositioning. In addition to maps of subglacial topography and magnetic intensity, attempts will be made to reconstruct the position of subglacial diffractors in three dimensions. This reconstruction should give new information about the distribution of escarpments and therefore the tectonic relationships within the region, especially when combined with the magnetic results. These experiments will be conducted by the Byrd Polar Research Center of the Ohio State University and the Water Resources and Geological Divisions of the U.S. Geological Survey.
This award supports an in situ and short traverse seismic reflection/refraction and magnetotelluric experiment in West Antarctica. This collaborative experiment involves four awards at four institutions. The four-fold purpose is 1) to investigate part of the Byrd Subglacial Basin, 2) to test techniques for this work that could be done in a long traverse, 3) to determine the viability of the magnetotelluric method on a thick (electrically resistive) ice sheet, and 4) to evaluate the relative merits of refraction with wide reflection versus reflection with narrow refraction seismic studies in imaging the lithosphere. The geophysical techniques that will be employed are capable of imaging the ice sheet, the continental lithosphere, and the upper mantle, as well as determining physical properties of parts of the lithosphere and mantle. Investigations of outcrop geology over the last thirty years in West Antarctica and the Transantarctic Mountains have lead to recent interpretations that the crust is made up of many different lithospheric blocks. Seismic reflection work is the only way to image the crust in detail and the refraction work is the only way to determine physical properties of the layers and blocks defined by the reflection work. The magnetotelluric work is scientifically risky because it may not yield useful information when used over the electrically resistive ice sheet; however, if it works it has the potential to image molten rock in the crust and upper mantle. In a continental rift region such as West Antarctica, the presence of melt in the lithosphere is likely and, if documented, has very important ramifications to ice sheet dynamics. Research work supported by this award is expected to provide constraints to models of a range of crustal processes from models of ice sheet dynamics to tectonic and kinematic models of lithospheric thinning and rifting.