{"dp_type": "Project", "free_text": "NUTRIENTS"}
[{"awards": "2333917 Dong, Xiaoli", "bounds_geometry": "POLYGON((161 -77.5,161.1 -77.5,161.2 -77.5,161.3 -77.5,161.4 -77.5,161.5 -77.5,161.6 -77.5,161.7 -77.5,161.8 -77.5,161.9 -77.5,162 -77.5,162 -77.51,162 -77.52,162 -77.53,162 -77.53999999999999,162 -77.55,162 -77.56,162 -77.57,162 -77.58,162 -77.58999999999999,162 -77.6,161.9 -77.6,161.8 -77.6,161.7 -77.6,161.6 -77.6,161.5 -77.6,161.4 -77.6,161.3 -77.6,161.2 -77.6,161.1 -77.6,161 -77.6,161 -77.58999999999999,161 -77.58,161 -77.57,161 -77.56,161 -77.55,161 -77.53999999999999,161 -77.53,161 -77.52,161 -77.51,161 -77.5))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 27 Feb 2025 00:00:00 GMT", "description": "Ecosystems worldwide are threatened by anthropogenic changes in climate. Lakes are widely regarded as sentinels of climate change and, among these, polar lakes are the most sensitive. Beneath meters of permanent ice and liquid water, many Antarctic lakes contain complex microbial communities that are already being transformed by climate change. The structurally complex spatial patterns that these microbes create provide the opportunity to pursue research questions about spatial ecology that cannot be addressed elsewhere. This project focuses on research that will advance understanding of the spatial structure of benthic communities in Antarctic lakes, their relationships with environmental conditions, and predictions for likely changes in the future. This project will also advance methods in integrating the morphology and spatial patterning of modern microbial communities in relationship to their biophysical and biochemical environments. The quantitative framework being developed has potential to refine understanding of controls on microbial community patterning and thus interpretation of both the effects of climate change and ancient fossil microbial communities in the geologic record. Such understanding will address key questions about Earth\u2019s evolutionary and environmental history and future. Lake Vanda in the McMurdo Dry Valleys, Antarctic, has modern microbial pinnacles covering its lake floor. Using existing datasets on spatial structure of benthic communities from 37 sites on the floor of Lake Vanda, the project team will apply recent theories from Spatial Ecology to investigate the mechanisms that give rise to spatial patterns of pinnacles formed by benthic microbes. The work addresses two questions: (1) What are the morphological and spatial patterns of pinnacles and how do they vary over developmental stages, along environment gradients, and from 2013 to 2023? And (2) what mechanisms give rise to the geometry of individual pinnacles and their spatial distribution? Lake Vanda provides an exceptional opportunity to address these questions. It features well characterized gradients in sedimentation, nutrients, irradiance, transport mechanism, and colonization history. Benthic communities at different locations in the lake manifest distinct spatial patterns, as they experience distinct conditions. Lake level has increased \u003e10 m in the past few decades, creating additional opportunities for a \u201cnatural experiment\u201d on pattern development by comparing relatively newly flooded substrates (pinnacles of 1 to 15 years old) with deeper, well-developed mats (\u003e 70 years old). Since microbial communities respond to environmental change rapidly, analyses can characterize changes in patterns in pinnacle spatial data collected 9 years apart (Dec 2013 and Jan 2023), providing the opportunity to directly assess responses of spatially self-organized ecosystems to environmental change. As such, Lake Vanda is a natural laboratory that allows research (1) to effectively sort out mechanisms of pattern formation affecting benthic microbial communities residing there; and (2) to test the theory of spatial self-organization: mechanisms of pattern formation and responses to perturbations, applicable to ecosystems worldwide. Research questions will be addressed by integrating existing datasets, spatial pattern analyses, Bayesian statistical models, and process-based numerical models. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 162.0, "geometry": "POINT(161.5 -77.55)", "instruments": null, "is_usap_dc": true, "keywords": "Lake Vanda; ECOLOGICAL DYNAMICS", "locations": "Lake Vanda", "north": -77.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Dong, Xiaoli; Sumner, Dawn", "platforms": null, "repositories": null, "science_programs": null, "south": -77.6, "title": "Effects of Environmental Change on Microbial Self-organized Patterns in Antarctic Lakes", "uid": "p0010499", "west": 161.0}, {"awards": "1841228 Lyons, W. Berry", "bounds_geometry": "POLYGON((163.37428 -77.558627,163.3922735 -77.558627,163.410267 -77.558627,163.4282605 -77.558627,163.446254 -77.558627,163.4642475 -77.558627,163.482241 -77.558627,163.5002345 -77.558627,163.518228 -77.558627,163.5362215 -77.558627,163.554215 -77.558627,163.554215 -77.56397510000001,163.554215 -77.5693232,163.554215 -77.5746713,163.554215 -77.5800194,163.554215 -77.5853675,163.554215 -77.59071560000001,163.554215 -77.5960637,163.554215 -77.60141180000001,163.554215 -77.6067599,163.554215 -77.612108,163.5362215 -77.612108,163.518228 -77.612108,163.5002345 -77.612108,163.482241 -77.612108,163.4642475 -77.612108,163.446254 -77.612108,163.4282605 -77.612108,163.410267 -77.612108,163.3922735 -77.612108,163.37428 -77.612108,163.37428 -77.6067599,163.37428 -77.60141180000001,163.37428 -77.5960637,163.37428 -77.59071560000001,163.37428 -77.5853675,163.37428 -77.5800194,163.37428 -77.5746713,163.37428 -77.5693232,163.37428 -77.56397510000001,163.37428 -77.558627))", "dataset_titles": "Commonwealth Stream Diel Water Chemistry; Hyporheic zone geochemistry of Wales Stream, Taylor Valley, Antarctica; isotopic signature of massive buried ice, eastern Taylor Valley, Antarctica", "datasets": [{"dataset_uid": "601844", "doi": "10.15784/601844", "keywords": "Antarctica; Commonwealth Stream; Cryosphere; Diel; Inlandwaters; McMurdo Dry Valleys; Stream Chemistry; Water Chemisty", "people": "Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "Commonwealth Stream Diel Water Chemistry", "url": "https://www.usap-dc.org/view/dataset/601844"}, {"dataset_uid": "601847", "doi": "10.15784/601847", "keywords": "Antarctica; Cryosphere; Nutrients; Stable Isotopes; Taylor Valley; Trace Elements", "people": "Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "Hyporheic zone geochemistry of Wales Stream, Taylor Valley, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601847"}, {"dataset_uid": "601848", "doi": "10.15784/601848", "keywords": "Antarctica; Buried Ice; Cryosphere; Stable Isotopes; Stable Water Isotopes; Taylor Valley", "people": "Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "isotopic signature of massive buried ice, eastern Taylor Valley, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601848"}], "date_created": "Wed, 16 Oct 2024 00:00:00 GMT", "description": "Phytoplankton, or microscopic marine algae, are an important part of the carbon cycle and can lower the rates of atmospheric carbon dioxide by transferring the atmospheric carbon into the oceans. The concentration of phytoplankton in the Southern Ocean is regularly limited by the availability of marine iron. This in turn influences the rate of carbon transfer from the atmosphere to the ocean. The primary source of iron in the Southern Ocean is eroded continental rock. Understanding the current and future sources of iron to the Southern Ocean as a result of increased melting of terrestrial glaciers is necessary for predicting future concentrations of Southern Ocean phytoplankton and the subsequent influence on the carbon cycle. A poorly understood source of iron to the Southern Ocean is stream input from ice-free regions such as the McMurdo Dry Valleys in Antarctica. This source of iron is likely to become larger if glaciers retreat. This study investigates the sources and amount of iron transported by McMurdo Dry Valley streams directly into the Southern Ocean. Because not all forms of iron can be used by phytoplankton, experiments will be performed to determine how available iron is to phytoplankton and how iron mixes with seawater. Immersive 360-degree video, infographics, and educational videos of findings from this project will be shared on social media, at schools and science events, and in an urban science center. In the Southern Ocean (SO) there is an excess of macronutrients but regional primary production is limited or co-limited due to iron. An addition of iron to the ocean will affect biochemical cycles, increase primary production, and affect the structure and composition of phytoplankton communities in the SO. Iron flux to the SO is globally significant, as increased Fe fertilization leads to increased carbon sequestration which acts as a negative feedback to increased atmospheric pCO2. One source of potentially bioavailable iron to the coastal regions of the SO is from direct sub-aerial stream discharge in ice-free areas of Antarctica, a source that may become more important if terrestrial glaciers retreat. It is imperative to understand the source, nature, potential fate, and flux of iron to the SO if better predictive models for the carbon cycle and atmospheric chemistry are to be developed. This project will investigate in-stream processes and characteristics controlling dissolved iron draining into the Ross Sea including photoreduction, temperature, and complexation with organic matter. The novel study will quantify bioavailability of particulate iron and bioavailability of dissolved iron in Antarctic in streams draining into the SO. On-site speciation measurements will be performed on dissolved iron species, particulate iron speciation will be determined using high-resolution spectroscopy, mixing experiments will be performed with coastal marine water, and the bioavailability of Fe will be determined through marine bioassays. This project will provide two students with valuable Antarctic field experience and reach thousands of individuals through existing partnerships with K-12 schools, public STEM events, an urban science center, and a strong social media presence. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.554215, "geometry": "POINT(163.4642475 -77.5853675)", "instruments": null, "is_usap_dc": true, "keywords": "SURFACE WATER CHEMISTRY; Iron Fertilization; McMurdo Dry Valleys; Weathering", "locations": "McMurdo Dry Valleys", "north": -77.558627, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Lyons, W. Berry; Gardner, Christopher B.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.612108, "title": "Fe Behavior and Bioavailability in Sub-aerial Runoff into the Ross Sea", "uid": "p0010483", "west": 163.37428}, {"awards": "2336354 Juarez Rivera, Marisol", "bounds_geometry": "POLYGON((160 -76.5,160.45 -76.5,160.9 -76.5,161.35 -76.5,161.8 -76.5,162.25 -76.5,162.7 -76.5,163.15 -76.5,163.6 -76.5,164.05 -76.5,164.5 -76.5,164.5 -76.7,164.5 -76.9,164.5 -77.1,164.5 -77.3,164.5 -77.5,164.5 -77.7,164.5 -77.9,164.5 -78.1,164.5 -78.3,164.5 -78.5,164.05 -78.5,163.6 -78.5,163.15 -78.5,162.7 -78.5,162.25 -78.5,161.8 -78.5,161.35 -78.5,160.9 -78.5,160.45 -78.5,160 -78.5,160 -78.3,160 -78.1,160 -77.9,160 -77.7,160 -77.5,160 -77.3,160 -77.1,160 -76.9,160 -76.7,160 -76.5))", "dataset_titles": "Lake Fryxell 2022-2023 benthic microbial mat thickness and number of laminae", "datasets": [{"dataset_uid": "601839", "doi": "10.15784/601839", "keywords": "Antarctica; Cryosphere; Dry Valleys; Lake Fryxell; Laminae; Microbial Mat; Thickness", "people": "Juarez Rivera, Marisol; Mackey, Tyler; Paul, Ann; Hawes, Ian; Sumner, Dawn", "repository": "USAP-DC", "science_program": null, "title": "Lake Fryxell 2022-2023 benthic microbial mat thickness and number of laminae", "url": "https://www.usap-dc.org/view/dataset/601839"}], "date_created": "Fri, 05 Jul 2024 00:00:00 GMT", "description": "Perennially ice-covered lakes in the McMurdo Dry Valleys of Antarctica contain abundant microbial mats, and the export of this mat material can fertilize the surrounding polar desert ecosystems. These desert soils are one of the most organic-poor on earth yet host a community of microorganisms. Microbial mat material is exported from the shallow, gas-supersaturated regions of the lakes when gas bubbles form in the mats, lifting them to the ice cover; the perennial ice cover maintains gas supersaturation. These mats freeze in and are exported to the surrounding soils through ice ablation. The largest seasonal decrease and thinnest ice cover in the history of Lake Fryxell was recorded during the 2022-2023 Austral summer. In this thin ice year, the water column dissolved oxygen increased over prior observations, and the lake bottom surface area with bubble-disrupted mat was more than double that observed in 1980-1981 and 2006-2007. This work will constrain mat mobilization within and out of Lake Fryxell in the McMurdo Dry Valleys during a period of unprecedented ice thinning to understand how future changing regional climate and predicted seasonal loss of lake ice cover will affect nutrient transport in the McMurdo Dry Valleys. Exceptional years of mat export are hypothesized to have the most significant impact on nutrient export to soil communities; variability in mat liftoff may thus play a role in the McMurdo Dry Valleys ecosystem response to changing climate. The perennial ice cover of lakes in the McMurdo Dry Valleys of Antarctica modulates the transfer of gasses, organic and inorganic material, between the lakes and surrounding soils. The export of biomass in these lakes is driven by the supersaturation of atmospheric gasses in the shallow regions under perennial ice cover. Gas bubbles nucleate in the mats, producing buoyancy that lifts them to the bottom of the ice, where they freeze in and are exported to the surrounding soils through ice ablation. These mats represent a significant source of biomass and nutrients to the McMurdo Dry Valleys soils, which are among the most organic-poor on earth. Nevertheless, this biomass remains unaccounted for in organic carbon cycling models for the McMurdo Dry Valleys. Ice cover data from the McMurdo Dry Valleys Long Term Ecological Research Project shows that the ice thickness has undergone cyclical variation over the last 40 years, reaching the largest seasonal decrease and thinnest ice-cover in the recorded history of Lake Fryxell during the 2022-2023 austral summer. Preliminary work shows that the surface area with mat liftoff at Lake Fryxell is more than double that observed in 1980-1981 and 2006-2007, coinciding with this unprecedented thinning of the ice-cover and an increase in the water column dissolved O2. This research will constrain biomass mobilization within and out of Lake Fryxell in the McMurdo Dry Valleys during a period of unprecedented ice thinning. The researchers hypothesize that a thinner ice cover promotes more biomass mobilization by 1) stimulating additional production of gas bubbles from the existing gas-supersaturated waters during summertime photosynthesis to create microbial mat liftoff and 2) promoting mat liftoff in deeper, thicker microbial mats, and 3) that this biomass can be traced into the soils by characterizing its chemistry and modeling the most likely depositional settings. This work will use microbial mat samples, lake dissolved oxygen and photosynthetically active radiation data and underwater drone footage documenting the depth distribution of liftoff mats in January 2023, and long-term ice cover thickness, photosynthetically active radiation, and lake level change data collected by the McMurdo Dry Valleys Long Term Ecological Research Project to test hypotheses 1-3. The dispersal of the liftoff mat exposed at Lake Fryxell surface will be modeled using a Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Exceptional liftoff years like the present are hypothesized to have the most significant impact on the soil communities as the rates of soil respiration increase with the addition of carbon. However, continued warming in the next 10 - 40 years may result in seasonal loss of the ice cover and cessation of liftoff mat export. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 164.5, "geometry": "POINT(162.25 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Stable Isotopes; MINERALS; LAKE/POND; ISOTOPES; Organic Matter; McMurdo Dry Valleys; SEDIMENTARY ROCKS", "locations": "McMurdo Dry Valleys", "north": -76.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Earth Sciences", "paleo_time": null, "persons": "Juarez Rivera, Marisol", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.5, "title": "RAPID: Is Biomass Mobilization at Ice-covered Lake Fryxell, Antarctica reaching a Critical Threshold?", "uid": "p0010467", "west": 160.0}, {"awards": "2207011 Granger, Julie", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 04 Mar 2024 00:00:00 GMT", "description": "Phytoplankton are microscopic single-celled plants that grow at the sun-lit surface of the ocean. In the Southern Ocean around Antarctica, phytoplankton live in sub-optimal conditions because the amount of iron in seawater is insufficient for growth. Moreover, the chemical composition of Southern Ocean phytoplankton is distinct from that in other ocean regions, with a higher proportion of phosphorus relative to other elements, a characteristic that ultimately influences the distribution of nutrients ocean-wide. The researchers hypothesize that the high phosphorus composition of phytoplankton in the Southern Ocean is caused by their low iron content. Specifically, they postulate that a phosphorus-rich molecule, phytic acid, is synthesized by phytoplankton in order to assist in the storage of iron in designated cellular compartments, such as vacuoles. Recent observations show that some phytoplankton can absorb phytic acid, suggesting that it may be produced by certain species. Phytic acid is pervasive in soils, wherein it aids absorption of iron via plant roots and could similarly help phytoplankton in the Southern Ocean acquire iron via the cell membranes. This project benefits the National Science Foundation\u0027s goals of improving understanding of interactions between the Southern Ocean and the global ocean, of expanding fundamental knowledge of Antarctic biota and associated processes by focusing on phytoplankton species unique to the Antarctic. As part of this project, the Department of Marine Sciences from the College of Liberal Arts and Sciences at the University of Connecticut will sponsor the recruitment, relocation and mentorship of a graduate student under-represented in the sciences. This project aims to determine whether the unusual elemental composition of phytoplankton at the Southern Ocean is a result of anemia. The work will query whether inositol hexakisphosphate (phytic acid) aids Antarctic phytoplankton acquire and store iron, resulting in an elevated fraction of cellular phosphorus relative to other elements. The researchers, including a graduate student, will conduct laboratory culture experiments with phytoplankton strains isolated from the Southern Ocean. They will grow cells in iron- deficient versus iron-replete media to see if their phosphorus content is higher in iron-deficient conditions. They will test whether cells grown with sufficient phosphorus acquire more iron, allowing them to grow better in iron-deficient conditions than cells deriving from phosphorus-poor conditions. They will also query whether cells grown in iron-deficient conditions achieve faster growth rates in the presence of phytic acid. Results will inform the design of CRISPR mutants with which to investigate phosphorus and iron co-metabolism in Antarctic marine phytoplankton. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Dinoflagellates; Iron; United States Of America; Iron Acquisition; Siderophore; TRACE ELEMENTS; Iron Limitation", "locations": "United States Of America", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Granger, Julie; Lin, Senjie", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Siderophore utilization by dinoflagellates as a strategy for iron acquisition", "uid": "p0010455", "west": -180.0}, {"awards": null, "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 12 Feb 2024 00:00:00 GMT", "description": "Undersea canyons play disproportionately important roles as oceanic biological hotspots and are critical for our understanding of many coastal ecosystems. Canyon-associated biological hotspots have persisted for thousands of years Along the Western Antarctic Peninsula, despite significant climate variability. Observations of currents over Palmer Deep canyon, a representative hotspot along the Western Antarctic Peninsula, indicate that surface phytoplankton blooms enter and exit the local hotspot on scales of ~1-2 days. This time of residence is in conflict with the prevailing idea that canyon associated hotspots are primarily maintained by phytoplankton that are locally grown in association with these features by the upwelling of deep waters rich with nutrients that fuel the phytoplankton growth. Instead, the implication is that horizontal ocean circulation is likely more important to maintaining these biological hotspots than local upwelling through its physical concentrating effects. This project seeks to better resolve the factors that create and maintain focused areas of biological activity at canyons along the Western Antarctic Peninsula and create local foraging areas for marine mammals and birds. The project focus is in the analysis of the ocean transport and concentration mechanisms that sustain these biological hotspots, connecting oceanography to phytoplankton and krill, up through the food web to one of the resident predators, penguins. In addition, the research will engage with teachers from school districts serving underrepresented and underserved students by integrating the instructors and their students completely with the science team. Students will conduct their own research with the same data over the same time as researchers on the project. Revealing the fundamental mechanisms that sustain these known hotspots will significantly advance our understanding of the observed connection between submarine canyons and persistent penguin population hotspots over ecological time, and provide a new model for how Antarctic hotspots function.\u003cbr/\u003e \u003cbr/\u003e \u003cbr/\u003eTo understand the physical mechanisms that support persistent hotspots along the Western Antarctic Peninsula (WAP), this project will integrate a modeling and field program that will target the processes responsible for transporting and concentrating phytoplankton and krill biomass to known penguin foraging locations. Within the Palmer Deep canyon, a representative hotspot, the team will deploy a High Frequency Radar (HFR) coastal surface current mapping network, uniquely equipped to identify the eddies and frontal regions that concentrate phytoplankton and krill. The field program, centered on surface features identified by the HFR, will include (i) a coordinated fleet of gliders to survey hydrography, chlorophyll fluorescence, optical backscatter, and active acoustics at the scale of the targeted convergent features; (ii) precise penguin tracking with GPS-linked satellite telemetry and time-depth recorders (TDRs); (iii) and weekly small boat surveys that adaptively target and track convergent features to measure phytoplankton, krill, and hydrography. A high resolution physical model will generalize our field measurements to other known hotspots along the WAP through simulation and determine which physical mechanisms lead to the maintenance of these hotspots. The project will also engage educators, students, and members of the general public in Antarctic research and data analysis with an education program that will advance teaching and learning as well as broadening participation of under-represented groups. This engagement includes professional development workshops, live connections to the public and classrooms, student research symposia, and program evaluation. Together the integrated research and engagement will advance our understanding of the role regional transport pathways and local depth dependent concentrating physical mechanisms play in sustaining these biological hotspots.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Palmer Station; BENTHIC; PENGUINS; FLUORESCENCE; PHYTOPLANKTON", "locations": "Palmer Station", "north": null, "nsf_funding_programs": null, "paleo_time": null, "persons": null, "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Physical Mechanisms Driving Food Web Focusing in Antarctic Biological Hotspots", "uid": "p0010448", "west": null}, {"awards": "2137378 Varsani, Arvind; 2137377 Bergstrom, Anna; 2137375 Schmidt, Steven; 2137376 Porazinska, Dorota", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 10 May 2023 00:00:00 GMT", "description": "Cryoconite holes are sediment-filled melt holes in the surface of glaciers that can be important sites of active microbial life in an otherwise mostly frozen and barren landscape. Previous studies in the McMurdo Dry Valleys, Antarctica suggest that viral infections of microbes, and a general lack of fertilizers (i.e., nutrients), may be important factors shaping the development and functioning of microbial communities in cryoconite holes. The researchers propose an experimental approach to understand how nutrient limitation affects diversity (number of species) and overall abundance of microbes, and how the diversity and abundance of microbes in turn affects the diversity, abundance, and infection type of viruses that parasitize the microbes in cryoconite sediments. The researchers will use sediments previously collected from Antarctic glaciers that have varying concentrations of viruses and nutrients, to set up a nutrient-addition experiment to determine how nutrients affect microbial and viral population dynamics. The results will deepen our understanding of how microbial communities in general are shaped by nutrients and viruses and give new insights into the functioning of viruses in extremely cold environments. The researchers will publish their findings in scientific journals and will share their discoveries with K-12 students from rural schools in collaboration with the Pinhead Institute and will connect undergraduate students from under-represented minorities to polar research through participation in the university\u2019s Science, Technology, Engineering \u0026 Mathematics Routes Uplift Research Program. Outreach will be achieved through videos produced and distributed by a professional science communicator. The research advances a National Science Foundation goal of expanding fundamental knowledge of Antarctic systems, biota, and processes by utilizing the unique characteristics of the Antarctic region as a science observing platform. The Principal Investigators propose an experimental approach to understand how nutrient limitation affects microbial diversity and abundances and their cascading effects on virus diversity, abundance, and mode of infection (lysis vs. lysogeny) in Antarctic cryoconite holes. Cryoconite holes are ideal natural microcosms for manipulative studies, not available in other cryospheric ecosystems. The PIs will use previously collected cryoconite from across a gradient of both viral diversity and nutrient levels to address questions about key limiting nutrients and microbial-viral community dynamics in cryoconite sediments. Nutrient manipulation experiments will be conducted in a growth chamber that closely approximates the light and temperature regime of in situ cryoconite holes to test three core hypotheses: (1) phosphorus availability limits microbial productivity and abundance in cryoconite holes; (2) relaxing nutrient limitation in cryoconite from low-diversity glaciers will increase species diversity, leading microbial communities to resemble those found on more nutrient-rich glaciers; (3) relaxing nutrient limitation will increase the diversity and abundance of viruses by increasing the availability of suitable hosts, and decrease the prevalence of lysogenic infections. By manipulating nutrient limitation within a realistic range, this project will help verify hypothesized phosphorus limitation of Antarctic cryoconite holes and will extend understanding of the connections between nutrients, diversity, and viral infection dynamics in the cryosphere more generally. A better understanding of these dynamics in cryoconite sediments improves the ability of scientists to forecast future impacts of environmental changes in the cryosphere. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "AQUATIC ECOSYSTEMS; Taylor Valley", "locations": "Taylor Valley", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Varsani, Arvind; Porazinska, Dorota; Schmidt, Steven; Bergstrom, Anna", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Role of Nutrient Limitation and Viral Interactions on Antarctic Microbial Community Assembly: A Cryoconite Microcosm Study", "uid": "p0010418", "west": null}, {"awards": "2240780 Cohen, Natalie", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 13 Mar 2023 00:00:00 GMT", "description": "Mixotrophs are essential components of the Antarctic planktonic community able to photosynthesize and also ingest small particles like bacteria to meet their nutritional needs. This project aims to understand the physiological response of mixotrophs exposed to micronutrient limitation in the Southern Ocean, specifically iron, manganese and simultaneous limitation of more than one trace metal, or colimitation. Such environmental conditions are characteristic of the Southern Ocean and can only be tested with local algae. The Principal Investigators hypothesize that under trace metal colimitation, some mixotrophs will have a competitive advantage by increasing their ability to consume particles to obtain energy and trace metals from their prey. Given the lack of understanding of how mixotrophs have adapted to the micronutrient limitation, the researchers propose studies with microalgal cultures isolated from the Southern Ocean; they will measure growth responses, consumption behavior, changes in cellular chemistry and transcription of genetic material in response to iron and manganese limitation. This project benefits the National Science Foundation goals of understanding Life in Antarctica and adaptation of organisms to this extreme environment. Society will benefit from the training proposed, whereby students from rural colleges will be instructed in computer coding and scientific data analyses. Furthermore, this work will support one graduate student, two undergraduate summer interns, and two early career scientists. The Principal Investigators hypothesize that under Fe-Mn colimitation, some mixotrophs will have a competitive advantage by increasing their grazing rates to obtain energy, Fe, and Mn from their prey. Given the lack of understanding of how mixotrophs have adapted to seasonal changes in the availability of these micronutrients and how they influence mixotrophic growth dynamics, the PIs propose culture studies to measure growth responses, grazing behavior, and changes in elemental stoichiometry in response to Fe and Mn limitation. Transcriptomic analyses will reveal the metabolic underpinnings of trophic behavior and micronutrient stress responses, with implications for key biogeochemical processes such as carbon fixation, remineralization, and nutrient cycling. Results are expected to clarify the ecological roles of Antarctic mixotrophs and elucidate the adaptations of Southern Ocean organisms to their unique polar ecosystem following the 2015 Strategic Vision for Polar Programs. This work will support one graduate student, two undergraduate summer interns, and two early career scientists. A series of virtual coding and bioinformatic workshops will be organized, in which basic principles of coding, and data processing used in the proposed analysis will be taught to undergraduate students. Small colleges in rural areas will be targeted for 8 modules on bioinformatics training. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "PLANKTON; Georgia; PHYTOPLANKTON", "locations": "Georgia", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Cohen, Natalie; Millette, Nicole", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "ANT LIA: Collaborative Research: Mixotrophic Grazing as a Strategy to meet Nutritional Requirements in the Iron and Manganese Deficient Southern Ocean", "uid": "p0010411", "west": -180.0}, {"awards": "1543457 Munro, David; 1543511 Stephens, Britton", "bounds_geometry": "POLYGON((-73 -53,-71.2 -53,-69.4 -53,-67.6 -53,-65.8 -53,-64 -53,-62.2 -53,-60.4 -53,-58.6 -53,-56.8 -53,-55 -53,-55 -54.4,-55 -55.8,-55 -57.2,-55 -58.6,-55 -60,-55 -61.4,-55 -62.8,-55 -64.2,-55 -65.6,-55 -67,-56.8 -67,-58.6 -67,-60.4 -67,-62.2 -67,-64 -67,-65.8 -67,-67.6 -67,-69.4 -67,-71.2 -67,-73 -67,-73 -65.6,-73 -64.2,-73 -62.8,-73 -61.4,-73 -60,-73 -58.6,-73 -57.2,-73 -55.8,-73 -54.4,-73 -53))", "dataset_titles": "Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the Southern Ocean, Drake Passage and South Atlantic Ocean in 2018, processed by NOAA (NCEI Accession 0184338); Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, Drake Passage, South Atlantic Ocean in 2022 (NCEI Accession 0276577); Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, South Atlantic Ocean in 2021 (NCEI Accession 0246983); Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, South Pacific Ocean, Drake Passage and South Atlantic Ocean from 2019-02-16 to 2020-02-11 (NCEI Accession 0208838); Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, South Pacific Ocean, Drake Passage and South Atlantic Ocean in 2020 (NCEI Accession 0225445); Underway measurements of pCO2 in the Surface Waters and the Atmosphere During the ARSV Laurence M. Gould 2017 Expeditions processed by NOAA (NCEI Accession 0170337)", "datasets": [{"dataset_uid": "200349", "doi": "https://doi.org/10.25921/b4jn-ef56", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the Southern Ocean, Drake Passage and South Atlantic Ocean in 2018, processed by NOAA (NCEI Accession 0184338)", "url": "https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/VOS_Program/LM_gould.html"}, {"dataset_uid": "200348", "doi": "https://doi.org/10.7289/v5tq5zt1", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Underway measurements of pCO2 in the Surface Waters and the Atmosphere During the ARSV Laurence M. Gould 2017 Expeditions processed by NOAA (NCEI Accession 0170337)", "url": "https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/VOS_Program/LM_gould.html"}, {"dataset_uid": "200350", "doi": "https://doi.org/10.25921/3ysc-pm11", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, South Pacific Ocean, Drake Passage and South Atlantic Ocean from 2019-02-16 to 2020-02-11 (NCEI Accession 0208838)", "url": "https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/VOS_Program/LM_gould.html"}, {"dataset_uid": "200353", "doi": "https://doi.org/10.25921/fq0a-7y11", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, Drake Passage, South Atlantic Ocean in 2022 (NCEI Accession 0276577)", "url": "https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/VOS_Program/LM_gould.html"}, {"dataset_uid": "200352", "doi": "https://doi.org/10.25921/f94g-zp40", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, South Atlantic Ocean in 2021 (NCEI Accession 0246983)", "url": "https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/VOS_Program/LM_gould.html"}, {"dataset_uid": "200351", "doi": "https://doi.org/10.25921/z0pk-pv81", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, South Pacific Ocean, Drake Passage and South Atlantic Ocean in 2020 (NCEI Accession 0225445)", "url": "https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/VOS_Program/LM_gould.html"}], "date_created": "Wed, 22 Feb 2023 00:00:00 GMT", "description": "The Southern Ocean plays a key role in modulating the global carbon cycle, but the size and even the sign of the global ocean flux terms of the atmospheric burden of man-made CO2 are still uncertain. This is in part due to the lack of measurements in this remote region of the world ocean. This project continues a multi-year time series of shipboard chemical measurements in the Drake Passage to detect changes in the ocean carbon cycle and to improve the understanding of mechanisms driving natural variability and long-term change in the Southern Ocean. This project is a continuation of collection of upper ocean measurements of the underway surface partial pressure of carbon dioxide (pCO2), using frequent ferry crossings of the Drake Passage by the RV/AS LMGould, the USAP supply ship. Overall, more than 200 transects over the past decade (since 2002) have now been accumulated of pCO2 profiles, along with discrete samples for other parameters of interest in studying the ocean carbonate system such as total CO2 (TCO2) values, isotopic (13C/12C and 14C/12C) ratios in surface TCO2. The Drake Passage data are made readily available to the international science community and serve as both validation and constraints of remotely sensed observations and numerical coupled earth systems models.", "east": -55.0, "geometry": "POINT(-64 -60)", "instruments": null, "is_usap_dc": true, "keywords": "Drake Passage; NUTRIENTS; BIOGEOCHEMICAL CYCLES; DISSOLVED GASES; TRACE GASES/TRACE SPECIES", "locations": "Drake Passage", "north": -53.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Munro, David; Sweeney, Colm; Lovenduski, Nicole S; Stephens, Britton", "platforms": null, "repo": "NCEI", "repositories": "NCEI", "science_programs": null, "south": -67.0, "title": "Collaborative Research: Investigating Biogeochemical Fluxes and Linkages To Climate Change With Multi-Scale Observations In The Drake Passage", "uid": "p0010407", "west": -73.0}, {"awards": "2135184 Arrigo, Kevin; 2135186 Baumberger, Tamara; 2135185 Resing, Joseph", "bounds_geometry": "POLYGON((155 -61,156.5 -61,158 -61,159.5 -61,161 -61,162.5 -61,164 -61,165.5 -61,167 -61,168.5 -61,170 -61,170 -61.2,170 -61.4,170 -61.6,170 -61.8,170 -62,170 -62.2,170 -62.4,170 -62.6,170 -62.8,170 -63,168.5 -63,167 -63,165.5 -63,164 -63,162.5 -63,161 -63,159.5 -63,158 -63,156.5 -63,155 -63,155 -62.8,155 -62.6,155 -62.4,155 -62.2,155 -62,155 -61.8,155 -61.6,155 -61.4,155 -61.2,155 -61))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 30 Sep 2022 00:00:00 GMT", "description": "Phytoplankton blooms throughout the world\u2019s oceans support critical marine ecosystems and help remove carbon dioxide (CO2) from the atmosphere. Traditionally, it has been assumed that phytoplankton blooms in the Southern Ocean are stimulated by iron from either nearby land or sea-ice. However, recent work demonstrates that hydrothermal vents may be an additional iron source for phytoplankton blooms. This enhancement of phytoplankton productivity by different iron sources supports rich marine ecosystems and leads to the sequestration of carbon in the deep ocean. Our proposed work will uncover the importance of hydrothermal activity in stimulating a large phytoplankton bloom along the southern boundary of the Antarctic Circumpolar Current just north of the Ross Sea. It will also lead towards a better understanding of the overall impact of hydrothermal activity on the carbon cycle in the Southern Ocean, which appears to trigger local hotspots of biological activity which are a potential sink for atmospheric CO2. This project will encourage the participation of underrepresented groups in ocean sciences, as well as providing educational opportunities for high school and undergraduate students, through three different programs. Stanford University\u2019s Summer Undergraduate Research in Geoscience and Engineering (SURGE) program provides undergraduates from different US universities and diverse cultural backgrounds the opportunity to spend a summer doing a research project at Stanford. The Stanford Earth Summer Undergraduate Research Program (SESUR) is for Stanford undergraduates who want to learn more about environmental science by performing original research. Finally, Stanford\u2019s School of Earth, Energy, and Environmental Sciences High School Internship Program enables young scientists to serve as mentors, prepares high school students for college, and serves to strengthen the partnership between Stanford and local schools. Students present their results at the Fall AGU meeting as part of the AGU Bright STaRS program. This project will form the basis of at least two PhD dissertations. The Stanford student will participate in Stanford\u2019s Woods Institute Rising Environmental Leaders Program (RELP), a year-round program that helps graduate students hone their leadership and communication skills to maximize the impact of their research. The graduate student will also participate in Stanford\u2019s Grant Writing Academy where they will receive training in developing and articulating research strategies to tackle important scientific questions. This interdisciplinary program combines satellite and ship-based measurements of a large poorly understood phytoplankton bloom (the AAR bloom) in the northwestern Ross Sea sector of the Southern Ocean with a detailed modeling study of the physical processes linking deep dissolved iron (DFe) reservoirs to the surface phytoplankton bloom. Prior to the cruise, we will implement a numerical model (CROCO) for our study region so that we can better understand the circulation, plumes, turbulence, fronts, and eddy field around the AAR bloom and how they transport and mix hydrothermally produced DFe vertically. Post cruise, observations of the vertical distribution of 3He (combined with DMn and DFe), will be used as initial conditions for a passive tracer in the model, and tracer dispersal will be assessed to better quantify the role of the various turbulent processes in upwelling DFe-rich waters to the upper ocean. The satellite-based component of the program will characterize the broader sampling region before, during, and after our cruise. During the cruise, our automated software system at Stanford University will download and process images of sea ice concentration, Chl-a concentration, sea surface temperature (SST), and sea surface height (SSH) and send them electronically to the ship. Operationally, our goal is to use all available satellite data and preliminary model results to target shipboard sampling both geographically and temporally to optimize sampling of the AAR bloom. We will use available BGC-Argo float data to help characterize the AAR bloom. In collaboration with SOCCOM, we will deploy additional BGC-Argo floats (if available) during our transit through the study area to allow us to better characterize the bloom. The centerpiece of our program will be a 40-day process study cruise in austral summer. The cruise will consist of an initial \u201cradiator\u201d pattern of hydrographic surveys/sections along the AAR followed by CTDs to selected submarine volcanoes. When/if eddies are identified, they will be sampled either during or after the initial surveys. The radiator pattern, or parts thereof, will be repeated 2-3 times. Hydrographic survey stations will include vertical profiles of temperature, salinity, oxygen, oxidation-reduction potential, light scatter, and PAR (400-700 nm). Samples will be collected for trace metals, ligands, 3He, and total suspended matter. Where intense hydrothermal activity is identified, samples for pH and total CO2 will also be collected to characterize the hydrothermal system. Water samples will be collected for characterization of macronutrients, and phytoplankton physiology, abundance, species composition, and size. During transits, we will continuously measure atmospheric conditions, current speed and direction, and surface SST, salinity, pCO2, and fluorescence from the ship\u2019s systems to provide detailed maps of these parameters. The ship will be used as a platform for conducting phytoplankton DFe bioassay experiments at key stations throughout the study region both inside and outside the bloom. We will also perform detailed comparisons of algal taxonomic composition, physiology, and size structure inside and outside the bloom to determine the potential importance of each community on local biogeochemistry. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 170.0, "geometry": "POINT(162.5 -62)", "instruments": null, "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; Antarctica; TRACE ELEMENTS; Hydrothermal Vent; Phytoplankton; Primary Production", "locations": "Antarctica", "north": -61.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Arrigo, Kevin; Thomas, Leif N; Baumberger, Tamara; Resing, Joseph", "platforms": null, "repositories": null, "science_programs": null, "south": -63.0, "title": "Collaborative Research: Understanding the Massive Phytoplankton Blooms over the Australian-Antarctic Ridge", "uid": "p0010381", "west": 155.0}, {"awards": "2123333 Fitzsimmons, Jessica; 2123354 Conway, Timothy; 2123491 John, Seth", "bounds_geometry": "POLYGON((-135 -66,-131.5 -66,-128 -66,-124.5 -66,-121 -66,-117.5 -66,-114 -66,-110.5 -66,-107 -66,-103.5 -66,-100 -66,-100 -67,-100 -68,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-103.5 -76,-107 -76,-110.5 -76,-114 -76,-117.5 -76,-121 -76,-124.5 -76,-128 -76,-131.5 -76,-135 -76,-135 -75,-135 -74,-135 -73,-135 -72,-135 -71,-135 -70,-135 -69,-135 -68,-135 -67,-135 -66))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 08 Sep 2022 00:00:00 GMT", "description": "The goal of the international GEOTRACES program is to understand the distributions of trace chemical elements and their isotopes (TEIs) in the oceans. Many trace metals such as iron are essential for life and thus considered nutrients for phytoplankton growth, with trace metal cycling being especially important for influencing carbon cycling in the iron-limited Southern Ocean, where episodic supply of iron from a range of different external sources is important. The primary goal of this project is to measure the dissolved concentrations, size partitioning, and dissolved isotope signature of Fe on a transect of water-column stations throughout the Amundsen Sea and surrounding region of the Antarctic Margin, as part of the GP17-ANT Expedition. The secondary goal of this project is to analyze the concentrations and size partitioning of the trace metals manganese, zinc, copper, cadmium, nickel, and lead in all water-column samples, measure the isotope ratios of zinc, cadmium, nickel, and copper in a subset of water column samples, and measure the Fe isotopic signature of aerosols, porewaters, and particles. Observations from this project will be incorporated into regional and global biogeochemistry models to assess TEI cycling within the Amundsen Sea and implications for the wider Southern Ocean. This project spans three institutions, four graduate students, undergraduate students, and will provide ultrafiltered samples and data to other PIs as service. The US GEOTRACES GP17 ANT expedition, planned for austral summer 2023/2024 aims to determine the distribution and cycling of trace elements and their isotopes in the Amundsen Sea Sector (100-135\u00b0W) of the Antarctic Margin. The cruise will follow the Amundsen Sea \u2018conveyor belt\u2019 by sampling waters coming from the Antarctic Circumpolar Current onto the continental shelf, including near the Dotson and Pine Island ice shelves, the productive Amundsen Sea Polynya (ASP), and outflowing waters. Episodic addition of dissolved Fe and other TEIs from dust, ice-shelves, melting ice, and sediments drive seasonal primary productivity and carbon export over the Antarctic shelf and offshore into Southern Ocean. Seasonal coastal polynyas such as the highly productive ASP thus act as key levers on global carbon cycling. However, field observations of TEIs in such regions remain scarce, and biogeochemical cycling processes are poorly captured in models of ocean biogeochemistry. The investigators will use their combined analytical toolbox, in collaboration with the diagnostic chemical tracers and regional models of other funded groups to address four main objectives: 1) What is the relative importance of different sources in supplying Fe and other TEIs to the ASP? 2) What is the physiochemical speciation of this Fe, and its potential for transport? 3) How do biological uptake, scavenging and regeneration in the ASP influence TEI distributions, stoichiometry, and nutrient limitation? 4) What is the flux and signature of TEIs transported offshore to the ACC and Southern Ocean? This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -100.0, "geometry": "POINT(-117.5 -71)", "instruments": null, "is_usap_dc": true, "keywords": "R/V NBP; Amundsen Sea; TRACE ELEMENTS; BIOGEOCHEMICAL CYCLES", "locations": "Amundsen Sea", "north": -66.0, "nsf_funding_programs": "Chemical Oceanography; Chemical Oceanography; Chemical Oceanography", "paleo_time": null, "persons": "Conway, Timothy; Fitzsimmons, Jessica; John, Seth", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repositories": null, "science_programs": null, "south": -76.0, "title": "Collaborative Research: US GEOTRACES GP17-ANT: Dissolved concentrations, isotopes, and colloids of the bioactive trace metals", "uid": "p0010374", "west": -135.0}, {"awards": "2147045 Learman, Deric", "bounds_geometry": "POLYGON((-180 -60,-168 -60,-156 -60,-144 -60,-132 -60,-120 -60,-108 -60,-96 -60,-84 -60,-72 -60,-60 -60,-60 -62,-60 -64,-60 -66,-60 -68,-60 -70,-60 -72,-60 -74,-60 -76,-60 -78,-60 -80,-72 -80,-84 -80,-96 -80,-108 -80,-120 -80,-132 -80,-144 -80,-156 -80,-168 -80,180 -80,171 -80,162 -80,153 -80,144 -80,135 -80,126 -80,117 -80,108 -80,99 -80,90 -80,90 -78,90 -76,90 -74,90 -72,90 -70,90 -68,90 -66,90 -64,90 -62,90 -60,99 -60,108 -60,117 -60,126 -60,135 -60,144 -60,153 -60,162 -60,171 -60,-180 -60))", "dataset_titles": "Physical and geochemical data from shelf sediments eastern Antarctica", "datasets": [{"dataset_uid": "601876", "doi": "10.15784/601876", "keywords": "Antarctica; Cryosphere", "people": "Learman, Deric", "repository": "USAP-DC", "science_program": null, "title": "Physical and geochemical data from shelf sediments eastern Antarctica", "url": "https://www.usap-dc.org/view/dataset/601876"}], "date_created": "Tue, 30 Aug 2022 00:00:00 GMT", "description": "Microbes in Antarctic surface marine sediments have an important role in degrading organic matter and releasing nutrients to the ocean. Organic matter degradation is at the center of the carbon cycle in the ocean, providing valuable information on nutrient recycling, food availability to animals and carbon dioxide release to the atmosphere. The functionality of these microbes has been inferred by their genomics, however these methods only address the possible function, not their actual rates. In this project the PIs plan to combine genomics methods with cellular estimates of enzyme abundance and activity as a way to determine the rates of carbon degradation. This project aims to sample in several regions of Antarctica to provide a large-scale picture of the processes under study and understand the importance of microbial community composition and environmental factors, such as primary productivity, have on microbial activity. The proposed work will combine research tools such as metagenomics, meta-transcriptomics, and metabolomics coupled with chemical data and enzyme assays to establish degradation of organic matter in Antarctic sediments. This project benefits NSFs goals of understanding the adaptation of Antarctic organisms to the cold and isolated environment, critical to predict effects of climate change to polar organisms, as well as contribute to our knowledge of how Antarctic organisms have adapted to this environment. Society will benefit from this project by education of 2 graduate students, undergraduates and K-12 students as well as increase public literacy through short videos production shared in YouTube. The PIs propose to advance understanding of polar microbial community function, by measuring enzyme and gene function of complex organic matter degradation in several ocean regions, providing a circum-Antarctic description of sediment processes. Two hypotheses are proposed. The first hypothesis states that many genes for the degradation of complex organic matter will be shared in sediments throughout a sampling transect and that where variations in gene content occur, it will reflect differences in the quantity and quality of organic matter, not regional variability. The second hypothesis states that a fraction of gene transcripts for organic matter degradation will not result in measurable enzyme activity due to post-translational modification or rapid degradation of the enzymes. The PIs will analyze sediment cores already collected in a 2020 cruise to the western Antarctic Peninsula with the additional request of participating in a cruise in 2023 to East Antarctica. The PIs will analyze sediments for metagenomics, meta-transcriptomics, and metabolomics coupled with geochemical data and enzyme assays to establish microbial degradation of complex organic matter in Antarctic sediments. Organic carbon concentrations and content in sediments will be measured with \u03b413C, \u03b415N, TOC porewater fluorescence in bulk organic carbon. Combined with determination of geographical variability as well as dependence on carbon sources, results from this study could provide the basis for new hypotheses on how climate variability, with increased water temperature, affects geochemistry in the Southern Ocean. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 90.0, "geometry": "POINT(-165 -70)", "instruments": null, "is_usap_dc": true, "keywords": "BENTHIC; ECOSYSTEM FUNCTIONS; Weddell Sea; Antarctic Peninsula; SEDIMENT CHEMISTRY; R/V NBP", "locations": "Antarctic Peninsula; Weddell Sea", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Learman, Deric", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "Collaborative Research: ANT LIA: Connecting Metagenome Potential to Microbial Function: Investigating Microbial Degradation of Complex Organic Matter Antarctic Benthic Sediments", "uid": "p0010373", "west": -60.0}, {"awards": "2220969 Manucharyan, Georgy; 2220968 Stewart, Andrew", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Sun, 07 Aug 2022 00:00:00 GMT", "description": "The world ocean is continuously in motion, and a large fraction of this motion takes the form of \"eddies\", nearly-horizontal swirls of water spanning tens to hundreds of kilometers. These eddies affect the ocean by mediating large-scale currents, redistributing heat, and supplying nutrients to oceanic ecosystems. Consequently, the ocean science community has historically invested substantial effort in characterizing the properties and impact of these eddies. In polar regions, the sea ice cover inhibits observations of eddies, and the relatively small horizontal size of the eddies hampers computer simulations of their behavior. Nonetheless, previous studies have identified an active population of eddies beneath the Arctic sea ice and shown that these eddies play a crucial role in maintaining the large-scale circulation in the Arctic seas. However, there has been no systematic attempt to study such eddies under Antarctic sea ice, leaving a significant gap in our understanding of eddies and their contribution to the large-scale ocean circulation around Antarctica. The proposed research combines multiple approaches to improve our understanding of the eddy dynamics. Statistical characterizations of the sub-sea ice eddy field will be derived using hydrographic observations under Antarctic sea ice from Argo floats and instrumented seals. High-resolution global ocean and sea ice models will be used to track the simulated eddies back to their formation sites to identify the eddy formation mechanisms. Theoretical calculations will be conducted to test the hypothesis that the eddies primarily originate from hydrodynamic instabilities associated with subsurface density gradients. These theoretical, modeling, and data analysis approaches will be combined to estimate the eddies\u0027 contribution to lateral tracer transports and their impact on mean circulations of the near-Antarctic ocean. The proposed work will facilitate future scientific endeavors by providing publicly-available databases of detected eddy properties. This project will support the research of several junior scientists: an undergraduate student, two graduate students, and an early-career faculty member. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; OCEAN CURRENTS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Stewart, Andrew; Bianchi, Daniele", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Characteristics and Origins of Eddies beneath Antarctic Sea Ice", "uid": "p0010366", "west": -180.0}, {"awards": "1937546 Morgan-Kiss, Rachael; 1937595 Briggs, Brandon", "bounds_geometry": "POLYGON((162 -77.616667,162.1 -77.616667,162.2 -77.616667,162.3 -77.616667,162.4 -77.616667,162.5 -77.616667,162.6 -77.616667,162.7 -77.616667,162.8 -77.616667,162.9 -77.616667,163 -77.616667,163 -77.6283336,163 -77.6400002,163 -77.6516668,163 -77.6633334,163 -77.67500000000001,163 -77.68666660000001,163 -77.69833320000001,163 -77.7099998,163 -77.7216664,163 -77.733333,162.9 -77.733333,162.8 -77.733333,162.7 -77.733333,162.6 -77.733333,162.5 -77.733333,162.4 -77.733333,162.3 -77.733333,162.2 -77.733333,162.1 -77.733333,162 -77.733333,162 -77.7216664,162 -77.7099998,162 -77.69833320000001,162 -77.68666660000001,162 -77.67500000000001,162 -77.6633334,162 -77.6516668,162 -77.6400002,162 -77.6283336,162 -77.616667))", "dataset_titles": "18S rRNA from McMurdo Dry Valley lakes", "datasets": [{"dataset_uid": "200436", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "18S rRNA from McMurdo Dry Valley lakes", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1125919/"}], "date_created": "Wed, 27 Jul 2022 00:00:00 GMT", "description": "Part I: Non-technical description: Microbial communities are of more than just a scientific curiosity. Microbes represent the single largest source of evolutionary and biochemical diversity on the planet. They are the major agents for cycling carbon, nitrogen, phosphorus, and other elements through the ecosystem. Despite their importance in ecosystem function, microbes are still generally overlooked in food web models and nutrient cycles. Moreover, microbes do not live in isolation: their growth and metabolism are influenced by complex interactions with other microorganisms. This project will focus on the ecology, activity and roles of microbial communities in Antarctic Lake ecosystems. The team will characterize the genetic underpinnings of microbial interactions and the influence of environmental gradients (e.g. light, nutrients, oxygen, sulfur) and seasons (e.g. summer vs. winter) on microbial networks in Lake Fryxell and Lake Bonney in the Taylor Valley within the McMurdo Dry Valley region. Finally, the project furthers the NSF goals of training new generations of scientists by including undergraduate and graduate students, a postdoctoral researcher and a middle school teacher in both lab and field research activities. This partnership will involve a number of other outreach training activities, including visits to classrooms and community events, participation in social media platforms, and webinars. Part II: Technical description: Ecosystem function in the extreme Antarctic Dry Valleys ecosystem is dependent on complex biogeochemical interactions between physiochemical environmental factors (e.g. light, nutrients, oxygen, sulfur), time of year (e.g. summer vs. winter) and microbes. Microbial network complexity can vary in relation to specific abiotic factors, which has important implications on the fragility and resilience of ecosystems under threat of environmental change. This project will evaluate the influence of biogeochemical factors on microbial interactions and network complexity in two Antarctic ice-covered lakes. The study will be structured by three main objectives: 1) infer positive and negative interactions from rich spatial and temporal datasets and investigate the influence of biogeochemical gradients on microbial network complexity using a variety of molecular approaches; 2) directly observe interactions among microbial eukaryotes and their partners using flow cytometry, single-cell sorting and microscopy; and 3) develop metabolic models of specific interactions using metagenomics. Outcomes from amplicon sequencing, meta-omics, and single-cell genomic approaches will be integrated to map specific microbial network complexity and define the role of interactions and metabolic activity onto trends in limnological biogeochemistry in different seasons. These studies will be essential to determine the relationship between network complexity and future climate conditions. Undergraduate researchers will be recruited from both an REU program with a track record of attracting underrepresented minorities and two minority-serving institutions. To further increase polar literacy training and educational impacts, the field team will include a teacher as part of a collaboration with the successful NSF-funded PolarTREC program and participation in activities designed for public outreach. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.0, "geometry": "POINT(162.5 -77.67500000000001)", "instruments": null, "is_usap_dc": true, "keywords": "MICROALGAE; AQUATIC ECOSYSTEMS; Antarctica; LAKE/POND; BACTERIA/ARCHAEA; COMMUNITY DYNAMICS", "locations": "Antarctica", "north": -77.616667, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Morgan-Kiss, Rachael; Briggs, Brandon", "platforms": null, "repo": "NCBI SRA", "repositories": "NCBI SRA", "science_programs": null, "south": -77.733333, "title": "ANT LIA: Collaborative Research: Genetic Underpinnings of Microbial Interactions in Chemically Stratified Antarctic Lakes", "uid": "p0010355", "west": 162.0}, {"awards": "2012247 Groff, Dulcinea; 2012444 Cimino, Megan; 2012365 Johnston, David", "bounds_geometry": "POLYGON((-65 -64.5,-64.8 -64.5,-64.6 -64.5,-64.4 -64.5,-64.2 -64.5,-64 -64.5,-63.8 -64.5,-63.6 -64.5,-63.4 -64.5,-63.2 -64.5,-63 -64.5,-63 -64.55,-63 -64.6,-63 -64.65,-63 -64.7,-63 -64.75,-63 -64.8,-63 -64.85,-63 -64.9,-63 -64.95,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.95,-65 -64.9,-65 -64.85,-65 -64.8,-65 -64.75,-65 -64.7,-65 -64.65,-65 -64.6,-65 -64.55,-65 -64.5))", "dataset_titles": "Aerial data from drone surveys of coastal habitats on the West Antarctic Peninsula during austral summer (January\u2013March 2020 and February\u2013March 2019); Data from: Terrestrial spatial distribution and summer abundance of Antarctic fur seals (Arctocephalus gazella) near Palmer Station, Antarctica, from drone surveys", "datasets": [{"dataset_uid": "200471", "doi": "10.7924/r4sf2xs2w", "keywords": null, "people": null, "repository": "Duke Research Repository", "science_program": null, "title": "Aerial data from drone surveys of coastal habitats on the West Antarctic Peninsula during austral summer (January\u2013March 2020 and February\u2013March 2019)", "url": "https://research.repository.duke.edu/concern/datasets/r207tq370?locale=en"}, {"dataset_uid": "200472", "doi": "10.5061/dryad.qv9s4mwp0", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Data from: Terrestrial spatial distribution and summer abundance of Antarctic fur seals (Arctocephalus gazella) near Palmer Station, Antarctica, from drone surveys", "url": "https://datadryad.org/dataset/doi:10.5061/dryad.qv9s4mwp0"}], "date_created": "Sun, 24 Jul 2022 00:00:00 GMT", "description": "This award is funded in whole or part under the American Rescue Plan Act of 2021 (Public Law 117-2). Part I: Non-technical description: Ad\u00e9lie penguin colonies are declining and disappearing from the western Antarctic Peninsula. However, not all colonies in a certain area decline or disappear at the same rate. This research project will evaluate the influence of terrestrial surface properties on Ad\u00e9lie penguin colonies, leveraging five decades of research on seabirds near Palmer Station where an Ad\u00e9lie colony on Litchfield Island became extinct in 2007 while other colonies nearby are still present. The researchers will combine information obtained from remote sensing, UAS (Unoccupied Aircraft System, or drones) high-resolution maps, reconstruction of past moss banks and modeling with machine learning tools to define suitable penguin and peatbank moss habitats and explore the influence of microclimate on their distributions. In particular, the researchers are asking if guano from penguin colonies could act as fertilizers of moss banks in the presence of localized wind patters that can carry airborne nitrogen to the mosses. Modeling will relate penguin and peatbank moss spatial patterns to environmental variables and provide a greater understanding of how continued environmental change could impact these communities. The project allows for documentation of terrestrial Antarctic ecosystems in support of seabirds and provisioning of such information to the broader science community that seeks to study penguins, educating graduate and undergraduate students and a post-doctoral researcher. The research team includes two young women as Principal Investigators, one of them from an under-represented ethnic minority, first time Antarctic Principal Investigator, from an EPSCoR state (Wyoming), broadening participation in Antarctic research. Researchers will serve as student mentors through the Duke Bass Connections program entitled Biogeographic Assessment of Antarctic Coastal Habitats. This program supports an interdisciplinary team of graduate and undergraduate students collaborating with project faculty and experts on cutting-edge research bridging the classroom and the real world. Part II: Technical description: This research aims to understand the changes at the microclimate scale (meters) by analyzing present and past Ad\u00e9lie penguin colonies and moss peatbanks in islands around Palmer Station in the western Antarctic Peninsula \u2013 interlinked systems that are typically considered in isolation. By integrating in situ and remote data, this project will synthesize the drivers of biogeomorphology on small islands of the Antarctic Peninsula, a region of rapid change where plants and animals often co-occur and animal presence often determines the habitation of plants. A multi-disciplinary approach combine field measurements, remote sensing, UAS (Unoccupied Aircraft Systems) maps, paleoecology and modeling with machine learning to define suitable habitats and the influence of microclimates on penguin and peatbank distributions. The link between the two aspects of this study, peatbanks and penguins, is the potential source of nutrients for peat mosses from penguin guano. Peatbank and penguin distribution will be modeled and all models will be validated using in situ information from moss samples that will identify mechanistic processes. This project leverages 5 decades of seabird research in the area and high-definition remote sensing provided by the Polar Geospatial center to study the microclimate of Litchfield Island where an Ad\u00e9lie colony became extinct in 2007 when other colonies nearby are still present. The research team includes two early career women as Principal Investigators, one of them from an under-represented ethnic minority, first time Antarctic Principal Investigator, from an EPSCoR state (Wyoming). Researchers will serve as mentors for students through the Duke Bass Connections program entitled Biogeogrpahic Assessment of Antarctic Coastal Habitats which bridges the classroom and the real world. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -63.0, "geometry": "POINT(-64 -64.75)", "instruments": null, "is_usap_dc": true, "keywords": "Palmer Station; Antarctic Peninsula; COASTAL; STABLE ISOTOPES; TOPOGRAPHIC EFFECTS; PALEOCLIMATE RECONSTRUCTIONS; MACROFOSSILS; PLANTS; PENGUINS; ISOTOPES; VISIBLE IMAGERY; RADIOCARBON; Anvers Island", "locations": "Antarctic Peninsula; Anvers Island; Palmer Station", "north": -64.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Groff, Dulcinea; Cimino, Megan; Johnston, David", "platforms": null, "repo": "Duke Research Repository", "repositories": "Dryad; Duke Research Repository", "science_programs": null, "south": -65.0, "title": "Collaborative Research: Common Environmental Drivers Determine the Occupation Chronology of Ad\u00e9lie Penguins and Moss Peatbanks on the Western Antarctic Peninsula", "uid": "p0010354", "west": -65.0}, {"awards": "1745023 Hennon, Tyler; 1745009 Kohut, Josh; 1745011 Klinck, John; 1745081 Bernard, Kim; 1744884 Oliver, Matthew; 1745018 Fraser, William", "bounds_geometry": "POLYGON((-75 -60,-73 -60,-71 -60,-69 -60,-67 -60,-65 -60,-63 -60,-61 -60,-59 -60,-57 -60,-55 -60,-55 -61,-55 -62,-55 -63,-55 -64,-55 -65,-55 -66,-55 -67,-55 -68,-55 -69,-55 -70,-57 -70,-59 -70,-61 -70,-63 -70,-65 -70,-67 -70,-69 -70,-71 -70,-73 -70,-75 -70,-75 -69,-75 -68,-75 -67,-75 -66,-75 -65,-75 -64,-75 -63,-75 -62,-75 -61,-75 -60))", "dataset_titles": "Antarctic ACROBAT data; CTD Data from IFCB Sampling; Finite Time Lyapunov Exponent Results, Calculated from High Frequency Radar Observed Surface Currents; High Frequency Radar, Palmer Deep; IFCB Image Data; Relative Particle Density; SWARM AMLR moorings - acoustic data; SWARM Glider Data near Palmer Deep; WAP model float data; Winds from Joubin and Wauwerman Islands", "datasets": [{"dataset_uid": "200396", "doi": "10.26008/1912/bco-dmo.867442.2", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "WAP model float data", "url": "https://www.bco-dmo.org/dataset/867442"}, {"dataset_uid": "200390", "doi": "10.26008/1912/bco-dmo.865030.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "CTD Data from IFCB Sampling", "url": "https://www.bco-dmo.org/dataset/865030"}, {"dataset_uid": "200398", "doi": "", "keywords": null, "people": null, "repository": "IOOS Glider DAAC", "science_program": null, "title": "SWARM Glider Data near Palmer Deep", "url": "https://gliders.ioos.us/erddap/search/index.html?page=1\u0026itemsPerPage=1000\u0026searchFor=swarm"}, {"dataset_uid": "200392", "doi": "10.26008/1912/bco-dmo.917884.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "High Frequency Radar, Palmer Deep", "url": "https://www.bco-dmo.org/dataset/917884"}, {"dataset_uid": "200397", "doi": "10.26008/1912/bco-dmo.865098.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Winds from Joubin and Wauwerman Islands", "url": "https://www.bco-dmo.org/dataset/865098"}, {"dataset_uid": "200394", "doi": "10.26008/1912/bco-dmo.917926.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Relative Particle Density", "url": "https://www.bco-dmo.org/dataset/917926"}, {"dataset_uid": "200393", "doi": "10.26008/1912/bco-dmo.865002.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "IFCB Image Data", "url": "https://www.bco-dmo.org/dataset/865002"}, {"dataset_uid": "200389", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Antarctic ACROBAT data", "url": "https://www.bco-dmo.org/dataset/916046"}, {"dataset_uid": "200391", "doi": "10.26008/1912/bco-dmo.917914.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Finite Time Lyapunov Exponent Results, Calculated from High Frequency Radar Observed Surface Currents", "url": "https://www.bco-dmo.org/dataset/917914"}, {"dataset_uid": "200395", "doi": "10.26008/1912/bco-dmo.872729.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "SWARM AMLR moorings - acoustic data", "url": "https://www.bco-dmo.org/dataset/872729"}], "date_created": "Tue, 05 Jul 2022 00:00:00 GMT", "description": "Undersea canyons play disproportionately important roles as oceanic biological hotspots and are critical for our understanding of many coastal ecosystems. Canyon-associated biological hotspots have persisted for thousands of years Along the Western Antarctic Peninsula, despite significant climate variability. Observations of currents over Palmer Deep canyon, a representative hotspot along the Western Antarctic Peninsula, indicate that surface phytoplankton blooms enter and exit the local hotspot on scales of ~1-2 days. This time of residence is in conflict with the prevailing idea that canyon associated hotspots are primarily maintained by phytoplankton that are locally grown in association with these features by the upwelling of deep waters rich with nutrients that fuel the phytoplankton growth. Instead, the implication is that horizontal ocean circulation is likely more important to maintaining these biological hotspots than local upwelling through its physical concentrating effects. This project seeks to better resolve the factors that create and maintain focused areas of biological activity at canyons along the Western Antarctic Peninsula and create local foraging areas for marine mammals and birds. The project focus is in the analysis of the ocean transport and concentration mechanisms that sustain these biological hotspots, connecting oceanography to phytoplankton and krill, up through the food web to one of the resident predators, penguins. In addition, the research will engage with teachers from school districts serving underrepresented and underserved students by integrating the instructors and their students completely with the science team. Students will conduct their own research with the same data over the same time as researchers on the project. Revealing the fundamental mechanisms that sustain these known hotspots will significantly advance our understanding of the observed connection between submarine canyons and persistent penguin population hotspots over ecological time, and provide a new model for how Antarctic hotspots function. To understand the physical mechanisms that support persistent hotspots along the Western Antarctic Peninsula (WAP), this project will integrate a modeling and field program that will target the processes responsible for transporting and concentrating phytoplankton and krill biomass to known penguin foraging locations. Within the Palmer Deep canyon, a representative hotspot, the team will deploy a High Frequency Radar (HFR) coastal surface current mapping network, uniquely equipped to identify the eddies and frontal regions that concentrate phytoplankton and krill. The field program, centered on surface features identified by the HFR, will include (i) a coordinated fleet of gliders to survey hydrography, chlorophyll fluorescence, optical backscatter, and active acoustics at the scale of the targeted convergent features; (ii) precise penguin tracking with GPS-linked satellite telemetry and time-depth recorders (TDRs); (iii) and weekly small boat surveys that adaptively target and track convergent features to measure phytoplankton, krill, and hydrography. A high resolution physical model will generalize our field measurements to other known hotspots along the WAP through simulation and determine which physical mechanisms lead to the maintenance of these hotspots. The project will also engage educators, students, and members of the general public in Antarctic research and data analysis with an education program that will advance teaching and learning as well as broadening participation of under-represented groups. This engagement includes professional development workshops, live connections to the public and classrooms, student research symposia, and program evaluation. Together the integrated research and engagement will advance our understanding of the role regional transport pathways and local depth dependent concentrating physical mechanisms play in sustaining these biological hotspots. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -55.0, "geometry": "POINT(-65 -65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CONDUCTIVITY SENSORS \u003e CONDUCTIVITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e RADIATION SENSORS", "is_usap_dc": true, "keywords": "MOORED; WATER TEMPERATURE; CONDUCTIVITY; FLUORESCENCE; UNCREWED VEHICLES; Palmer Station; PHOTOSYNTHETICALLY ACTIVE RADIATION; PELAGIC; OCEAN MIXED LAYER; SURFACE; SALINITY; WATER PRESSURE; LIVING ORGANISM; MODELS; ACOUSTIC SCATTERING", "locations": "Palmer Station", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Instrumentation and Support; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science", "paleo_time": "NOT APPLICABLE", "persons": "Bernard, Kim; Oliver, Matthew; Kohut, Josh; Fraser, William; Klinck, John M.; Statcewich, Hank", "platforms": "LIVING ORGANISM-BASED PLATFORMS \u003e LIVING ORGANISM; OTHER \u003e MODELS; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED; WATER-BASED PLATFORMS \u003e UNCREWED VEHICLES; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE", "repo": "BCO-DMO", "repositories": "BCO-DMO; IOOS Glider DAAC", "science_programs": null, "south": -70.0, "title": "Collaborative Research: Physical Mechanisms Driving Food Web Focusing in Antarctic Biological Hotspots", "uid": "p0010346", "west": -75.0}, {"awards": "2149500 Chambers, Don", "bounds_geometry": "POLYGON((-180 -30,-144 -30,-108 -30,-72 -30,-36 -30,0 -30,36 -30,72 -30,108 -30,144 -30,180 -30,180 -36,180 -42,180 -48,180 -54,180 -60,180 -66,180 -72,180 -78,180 -84,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84,-180 -78,-180 -72,-180 -66,-180 -60,-180 -54,-180 -48,-180 -42,-180 -36,-180 -30))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 14 Mar 2022 00:00:00 GMT", "description": "The Southern Ocean accounts for ~40% of the total ocean uptake of anthropogenic carbon dioxide despite covering only 20% of the global ocean surface, and is particularly rich in long-lived eddies. These eddies, or large ocean whirlpools which can be observed from space, can alter air-sea fluxes of carbon dioxide in ways that are not yet fully understood. New observations from autonomous platforms measuring ocean carbon content suggest that there is significant heterogeneity in ocean carbon fluxes which can be linked to these dynamic eddy features. Due to computational and time limitations, ocean eddies are not explicitly represented in most global climate simulations, limiting our ability to understand the role eddies play in the ocean carbon cycle. This study will explore the impact of eddies on ocean carbon content and air-sea carbon dioxide fluxes in the Southern Ocean using both simulated- and observation-based strategies and the findings will improve our understanding of the ocean\u2019s role in the carbon cycle and in global climate. While this work will primarily be focused on the Southern Ocean, the results will be globally applicable. The researchers will also broaden interest in physical and chemical oceanography among middle school-age girls in the University of South Florida\u2019s Oceanography Camp for Girls by augmenting existing lessons with computational methods in oceanography. This project aims to quantify the impacts of mesoscale eddy processes on ocean carbon content and air-sea carbon dioxide (CO2) fluxes in the Southern Ocean. For the modeling component, the investigators will explore relationships between eddies, ocean carbon content, and air-sea CO2 fluxes within the 1/6-degree resolution Biogeochemical Southern Ocean State Estimate (B-SOSE). They investigators will produce high-resolution composites of the carbon content and physical structure within both cyclonic and anticyclonic eddies by region, quantify the influence of these eddies on the overall simulated air-sea CO2 flux, and diagnose the physical mechanisms driving this influence. For the observational component, the investigators will match eddies observed via satellite altimetry to ocean carbon observations and characterize observed relationships between eddies and ocean carbon content with a focus on Southern Ocean winter observations where light limits biological processes, allowing isolation of the contribution of physical processes. This work will also provide motivation for higher resolution and better eddy parameterizations in climate models, more mesoscale biogeochemical observations, and integration of satellite sea surface height data into efforts to map air-sea fluxes of CO2. Each summer, the PI delivers a lab lesson at the University of South Florida Oceanography Camp for Girls, recognized by NSF as a \u201cModel STEM Program for Women and Girls\u201d focused on broadening participation by placing emphasis on recruiting a diverse group of young women. As part of this project, the existing interactive Jupyter Notebook-based Python coding Lab lesson will be augmented with a B-SOSE-themed modeling component, which will broaden interest in physical and chemical oceanography and data science, and expose campers to computational methods in oceanography. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; Southern Ocean; PH; BIOGEOCHEMICAL CYCLES; AMD; OCEAN CHEMISTRY; OCEAN MIXED LAYER; USA/NSF; NITROGEN; OCEAN CURRENTS; SALINITY/DENSITY; USAP-DC; OCEAN TEMPERATURE; MODELS; CHLOROPHYLL; DISSOLVED GASES; NUTRIENTS", "locations": "Southern Ocean", "north": -30.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Williams, Nancy; Chambers, Don; Tamsitt, Veronica", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Diagnosing the Role of Ocean Eddies in Carbon Cycling from a High-resolution Data Assimilating Ocean Biogeochemical Model", "uid": "p0010309", "west": -180.0}, {"awards": "1643534 Cassar, Nicolas", "bounds_geometry": "POLYGON((-83 -62,-80.3 -62,-77.6 -62,-74.9 -62,-72.2 -62,-69.5 -62,-66.8 -62,-64.1 -62,-61.4 -62,-58.7 -62,-56 -62,-56 -63.1,-56 -64.2,-56 -65.3,-56 -66.4,-56 -67.5,-56 -68.6,-56 -69.7,-56 -70.8,-56 -71.9,-56 -73,-58.7 -73,-61.4 -73,-64.1 -73,-66.8 -73,-69.5 -73,-72.2 -73,-74.9 -73,-77.6 -73,-80.3 -73,-83 -73,-83 -71.9,-83 -70.8,-83 -69.7,-83 -68.6,-83 -67.5,-83 -66.4,-83 -65.3,-83 -64.2,-83 -63.1,-83 -62))", "dataset_titles": "Palmer LTER 18S rRNA gene metabarcodin; rDNA amplicon sequencing of WAP microbial community", "datasets": [{"dataset_uid": "200285", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "Palmer LTER 18S rRNA gene metabarcodin", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA508517"}, {"dataset_uid": "200286", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "rDNA amplicon sequencing of WAP microbial community", "url": "https://www.ncbi.nlm.nih.gov/sra/SRR6162326/"}], "date_created": "Thu, 03 Mar 2022 00:00:00 GMT", "description": "This project seeks to make detailed measurements of the oxygen content of the surface ocean along the Western Antarctic Peninsula. Detailed maps of changes in net oxygen content will be combined with measurements of the surface water chemistry and phytoplankton distributions. The project will determine the extent to which on-shore or offshore phytoplankton blooms along the peninsula are likely to lead to different amounts of carbon being exported to the deeper ocean. The project team members will participate in the development of new learning tools at the Museum of Life and Science. They will also teach secondary school students about aquatic biogeochemistry and climate, drawing directly from the active science supported by this grant. The project will analyze oxygen in relation to argon that will allow determination of the physical and biological contributions to surface ocean oxygen dynamics. These assessments will be combined with spatial and temporal distributions of nutrients (iron and macronutrients) and irradiances. This will allow the investigators to unravel the complex interplay between ice dynamics, iron and physical mixing dynamics as they relate to Net Community Production (NCP) in the region. NCP measurements will be normalized to Particulate Organic Carbon (POC) and be used to help identify area of \"High Biomass and Low NCP\" and those with \"Low Biomass and High NCP\" as a function of microbial plankton community composition. The team will use machine learning methods- including decision tree assemblages and genetic programming- to identify plankton groups key to facilitating biological carbon fluxes. Decomposing the oxygen signal along the West Antarctic Peninsula will also help elucidate biotic and abiotic drivers of the O2 saturation to further contextualize the growing inventory of oxygen measurements (e.g. by Argo floats) throughout the global oceans.", "east": -56.0, "geometry": "POINT(-69.5 -67.5)", "instruments": null, "is_usap_dc": true, "keywords": "West Antarctica; USAP-DC; BIOGEOCHEMICAL CYCLES; AMD; USA/NSF; LABORATORY; Amd/Us", "locations": "West Antarctica", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Cassar, Nicolas", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "NCBI", "repositories": "NCBI", "science_programs": null, "south": -73.0, "title": "Biological and Physical Drivers of Oxygen Saturation and Net Community Production Variability along the Western Antarctic Peninsula", "uid": "p0010303", "west": -83.0}, {"awards": "1643917 Fricker, Helen", "bounds_geometry": "POLYGON((-163.646 -84.186,-162.58715 -84.186,-161.5283 -84.186,-160.46945 -84.186,-159.4106 -84.186,-158.35175 -84.186,-157.2929 -84.186,-156.23405 -84.186,-155.1752 -84.186,-154.11635 -84.186,-153.0575 -84.186,-153.0575 -84.20871,-153.0575 -84.23142,-153.0575 -84.25413,-153.0575 -84.27684,-153.0575 -84.29955,-153.0575 -84.32226,-153.0575 -84.34497,-153.0575 -84.36768,-153.0575 -84.39039,-153.0575 -84.4131,-154.11635 -84.4131,-155.1752 -84.4131,-156.23405 -84.4131,-157.2929 -84.4131,-158.35175 -84.4131,-159.4106 -84.4131,-160.46945 -84.4131,-161.5283 -84.4131,-162.58715 -84.4131,-163.646 -84.4131,-163.646 -84.39039,-163.646 -84.36768,-163.646 -84.34497,-163.646 -84.32226,-163.646 -84.29955,-163.646 -84.27684,-163.646 -84.25413,-163.646 -84.23142,-163.646 -84.20871,-163.646 -84.186))", "dataset_titles": "Wideband magnetotelluric responses from Whillans Ice Stream, West Antarctica", "datasets": [{"dataset_uid": "601526", "doi": "10.15784/601526", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Stream; Magnetotelluric; Subglacial; Whillans Ice Stream", "people": "Fricker, Helen; Gustafson, Chloe; Key, Kerry; Siegfried, Matthew", "repository": "USAP-DC", "science_program": null, "title": "Wideband magnetotelluric responses from Whillans Ice Stream, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/601526"}], "date_created": "Sat, 26 Feb 2022 00:00:00 GMT", "description": "The Antarctic ice sheet is underlain by a dynamic water system that lubricates the flow of ice streams and outlet glaciers, provides a habitat for a diverse microbial ecosystem, and delivers freshwater and nutrients to the Southern Ocean. However, imaging this subglacial environment is difficult: Antarctica is a vast continent with ice up to four kilometers (2.5 miles) thick. To detect water at the ice-bed interface and in deeper groundwater reservoirs, this project will adapt a technique called electromagnetic sounding that is well-established on land and in the ocean for imaging fluids beneath the surface. Groundwater is estimated to be a significant part of the subglacial water budget in Antarctica, yet previous observational approaches have been unable to characterize its volume and distribution. This project will thus yield critical information about how ice-rock-water-ocean systems interact and inform our understanding of ice-sheet processes, global nutrient cycles, and freshwater flux to the ocean. The project will provide cross-disciplinary training for a graduate student and postdoctoral scientist, and develop an educational outreach program through the Birch Aquarium. Standard geophysical surveying techniques used in glaciology to image subglacial water (radio-echo sounding and active-source seismology) are not directly sensitive to water content. In contrast, ground-based electromagnetic (EM) methods are sensitive to water content through its impact on bulk conductivity. Although EM methods are well-established for high-precision mapping of hydrology in other geological environments, their application on ice sheets is in its infancy. The proposed work will adapt both passive- and active-source EM techniques to glaciological questions to quantify the three-dimensional structure of subglacial water beneath an ice stream and in a grounding zone. The project will perform a suite of synthetic inversion studies to determine the range of applications of EM techniques in glaciology and execute a field experiment on the Whillans Ice Plain to investigate two hypotheses about the subglacial water system based on previous observational and modeling results: (1) Subglacial Lake Whillans is underlain by a deep, saline groundwater reservoir; and (2) there is an estuary-like zone of mixing between fresh subglacial water and seawater near, and possibly landward, of the grounding line.", "east": -153.0575, "geometry": "POINT(-158.35175 -84.29955)", "instruments": null, "is_usap_dc": true, "keywords": "Whillans Ice Stream; GROUND WATER; USA/NSF; USAP-DC; AMD; GEOMAGNETIC INDUCTION; Amd/Us; FIELD SURVEYS", "locations": "Whillans Ice Stream", "north": -84.186, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Key, Kerry; Fricker, Helen; Siegfried, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.4131, "title": "Mapping Antarctic Subglacial Water with Novel Electromagnetic Techniques", "uid": "p0010300", "west": -163.646}, {"awards": "1946326 Doran, Peter", "bounds_geometry": "POLYGON((161 -77.4,161.3 -77.4,161.6 -77.4,161.9 -77.4,162.2 -77.4,162.5 -77.4,162.8 -77.4,163.1 -77.4,163.4 -77.4,163.7 -77.4,164 -77.4,164 -77.46,164 -77.52,164 -77.58,164 -77.64,164 -77.7,164 -77.76,164 -77.82,164 -77.88,164 -77.94,164 -78,163.7 -78,163.4 -78,163.1 -78,162.8 -78,162.5 -78,162.2 -78,161.9 -78,161.6 -78,161.3 -78,161 -78,161 -77.94,161 -77.88,161 -77.82,161 -77.76,161 -77.7,161 -77.64,161 -77.58,161 -77.52,161 -77.46,161 -77.4))", "dataset_titles": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers: Infrared Stimulated Luminescence data; EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers: in situ 14C data", "datasets": [{"dataset_uid": "601520", "doi": "10.15784/601520", "keywords": "Antarctica; Sample/collection Description; Sample/Collection Description; Sample Location; Taylor Valley", "people": "Doran, Peter; Stone, Michael", "repository": "USAP-DC", "science_program": "LTER", "title": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers: Infrared Stimulated Luminescence data", "url": "https://www.usap-dc.org/view/dataset/601520"}, {"dataset_uid": "601521", "doi": "10.15784/601521", "keywords": "Antarctica; Carbon-14; Sample/collection Description; Sample/Collection Description; Sample Location; Taylor Valley", "people": "Doran, Peter; Stone, Michael", "repository": "USAP-DC", "science_program": null, "title": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers: in situ 14C data", "url": "https://www.usap-dc.org/view/dataset/601521"}], "date_created": "Mon, 31 Jan 2022 00:00:00 GMT", "description": "Correlating ecosystem responses to past climate forcing is highly dependent on the use of reliable techniques for establishing the age of events (dating techniques). In Antarctic dry regions (land areas without glaciers), carbon-14 dating has been used to assess the ages of organic deposits left behind by ancient lakes. However, the reliability of the ages is debatable because of possible contamination with \"old carbon\" from the surrounding landscape. The proposed research will attempt to establish two alternate dating techniques, in situ carbon-14 cosmogenic radionuclide exposure dating and optically stimulated luminescence (OSL), as reliable alternate dating methods for lake history in Antarctic dry areas that are not contaminated by the old carbon. The end goal will be to increase scientific understanding of lake level fluctuation in the lakes of Taylor Valley, Antarctica so that inference about past climate, glacier, and ecosystem response can be inferred. The results of this study will provide a coarse-scale absolute chronology for lake level history in Taylor Valley, demonstrate that exposure dating and OSL are effective means to understand the physical dynamics of ancient water bodies, and increase the current understanding of polar lacustrine and ice sheet responses to past and present climatic changes. These chronologies will allow polar lake level fluctuations to be correlated with past changes in global and regional climate, providing information critical for understanding and modeling the physical responses of these environments to modern change. This research supports a PhD student; the student will highlight this work with grade school classes in the United States. This research aims to establish in situ carbon-14 exposure dating and OSL as reliable alternate (to carbon-14 of organic lake deposits) geochronometers that can be used to settle the long-disputed lacustrine history and chronology of Taylor Valley, Antarctica and elsewhere. Improved lake level history will have significant impacts for the McMurdo Dry Valleys Long Term Ecological Research (MCM LTER) site as the legacy of fluctuating lake levels of the past affects the distribution of organic matter and nutrients, and impacts biological connectivity valley-wide. This work will provide insight into the carbon reservoir of large glacial lakes in the late Holocene and have implications for previously reported radiocarbon chronologies. OSL samples will be analyzed in the Desert Research Institute Luminescence Laboratory in Reno, NV. For the in situ carbon-14 work, rock samples extracted from boulders and bedrock surfaces will be prepared at Tulane University. The prepared in situ carbon-14 samples will be analyzed at the National Ocean Sciences Accelerator Mass Spectrometry laboratory in Woods Hole, MA. The two datasets will be combined to produce a reliable, coarse scale chronology for late Quaternary lake level fluctuations in Taylor Valley. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 164.0, "geometry": "POINT(162.5 -77.7)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Amd/Us; Taylor Valley; AGE DETERMINATIONS; USA/NSF; AMD; USAP-DC", "locations": "Taylor Valley", "north": -77.4, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Earth Sciences", "paleo_time": null, "persons": "Doran, Peter", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LTER", "south": -78.0, "title": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers", "uid": "p0010294", "west": 161.0}, {"awards": "1744785 Barrett, John", "bounds_geometry": "POLYGON((-180 -77.62,-145.683 -77.62,-111.366 -77.62,-77.049 -77.62,-42.732 -77.62,-8.415 -77.62,25.902 -77.62,60.219 -77.62,94.536 -77.62,128.853 -77.62,163.17 -77.62,163.17 -77.618,163.17 -77.616,163.17 -77.614,163.17 -77.612,163.17 -77.61,163.17 -77.608,163.17 -77.606,163.17 -77.604,163.17 -77.602,163.17 -77.6,128.853 -77.6,94.536 -77.6,60.219 -77.6,25.902 -77.6,-8.415 -77.6,-42.732 -77.6,-77.049 -77.6,-111.366 -77.6,-145.683 -77.6,180 -77.6,178.319 -77.6,176.638 -77.6,174.957 -77.6,173.276 -77.6,171.595 -77.6,169.914 -77.6,168.233 -77.6,166.552 -77.6,164.871 -77.6,163.19 -77.6,163.19 -77.602,163.19 -77.604,163.19 -77.606,163.19 -77.608,163.19 -77.61,163.19 -77.612,163.19 -77.614,163.19 -77.616,163.19 -77.618,163.19 -77.62,164.871 -77.62,166.552 -77.62,168.233 -77.62,169.914 -77.62,171.595 -77.62,173.276 -77.62,174.957 -77.62,176.638 -77.62,178.319 -77.62,-180 -77.62))", "dataset_titles": "McMurdo Dry Valleys LTER: Microbial mat biomass and Normalized Difference Vegetation Index (NDVI) values from Lake Fryxell Basin, Antarctica", "datasets": [{"dataset_uid": "200260", "doi": "doi:10.6073/pasta/9acbbde9abc1e013f8c9fd9c383327f4", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "McMurdo Dry Valleys LTER: Microbial mat biomass and Normalized Difference Vegetation Index (NDVI) values from Lake Fryxell Basin, Antarctica", "url": "https://doi.org/10.6073/pasta/9acbbde9abc1e013f8c9fd9c383327f4"}], "date_created": "Tue, 30 Nov 2021 00:00:00 GMT", "description": "Microbial mats are found throughout the McMurdo Dry Valleys where summer snowmelt provides liquid water that allows these mats to flourish. Researchers have long studied the environmental conditions microbial mats need to grow. Despite these efforts, it has been difficult to develop a broad picture of these unique ecosystems. Recent advances in satellite technology now provide researchers an exciting new tool to study these special Antarctic ecosystems from space using the unique spectral signatures associated with microbial mats. This new technology not only offers the promise that microbial mats can be mapped and studied from space, this research will also help protect these delicate environments from potentially harmful human impacts that can occur when studying them from the ground. This project will use satellite imagery and spectroscopic techniques to identify and map microbial mat communities and relate their properties and distributions to both field and lab-based measurements. This research provides an exciting new tool to help document and understand the distribution of a major component of the Antarctic ecosystem in the McMurdo Dry Valleys. The goal of this project is to establish quantitative relationships between spectral signatures derived from orbit and the physiological status and biogeochemical properties of microbial mat communities in Taylor Valley, Antarctica, as measured by field and laboratory analyses on collected samples. The goal wioll be met by (1) refining atmospheric correction techniques using in situ radiometric rectification to derive accurate surface spectra; (2) collecting multispectral orbital images concurrent with in situ sampling and spectral measurements in the field to ensure temporal comparability; (3) measuring sediment, water, and microbial mat samples for organic and inorganic carbon content, essential biogeochemical nutrients, and chlorophyll-a to determine relevant mat characteristics; and (4) quantitatively associating these laboratory-derived characteristics with field-derived and orbital spectral signatures and parameters. The result of this work will be a more robust quantitative link between the distribution of microbial mat communities and their biogeochemical properties to landscape-scale spectral signatures. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.19, "geometry": "POINT(-16.82 -77.61)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; ECOSYSTEM FUNCTIONS; FIELD SURVEYS; USAP-DC; USA/NSF; Taylor Valley; Amd/Us", "locations": "Taylor Valley", "north": -77.6, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Barrett, John; Salvatore, Mark", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "EDI", "repositories": "EDI", "science_programs": null, "south": -77.62, "title": "Collaborative Research: Remote characterization of microbial mats in Taylor Valley, Antarctica through in situ sampling and spectral validation", "uid": "p0010281", "west": 163.17}, {"awards": "1643871 van Gestel, Natasja; 1947562 van Gestel, Natasja", "bounds_geometry": "POLYGON((-65 -64.5,-64.8 -64.5,-64.6 -64.5,-64.4 -64.5,-64.2 -64.5,-64 -64.5,-63.8 -64.5,-63.6 -64.5,-63.4 -64.5,-63.2 -64.5,-63 -64.5,-63 -64.55,-63 -64.6,-63 -64.65,-63 -64.7,-63 -64.75,-63 -64.8,-63 -64.85,-63 -64.9,-63 -64.95,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.95,-65 -64.9,-65 -64.85,-65 -64.8,-65 -64.75,-65 -64.7,-65 -64.65,-65 -64.6,-65 -64.55,-65 -64.5))", "dataset_titles": "2022-2023 Palmer Station terrestrial carbon fluxes - field warming experiment; Soil moisture and soil temperature data (0-5 cm) near Palmer Station, Antarctica", "datasets": [{"dataset_uid": "601877", "doi": "10.15784/601877", "keywords": "Antarctica; Antarctic Peninsula; Conductivity; Cryosphere; Palmer Station; Soil; Temperature", "people": "van Gestel, Natasja", "repository": "USAP-DC", "science_program": null, "title": "Soil moisture and soil temperature data (0-5 cm) near Palmer Station, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601877"}, {"dataset_uid": "601853", "doi": "10.15784/601853", "keywords": "Antarctica; CO2; Cryosphere; Field Investigations; Palmer Station", "people": "van Gestel, Natasja", "repository": "USAP-DC", "science_program": null, "title": "2022-2023 Palmer Station terrestrial carbon fluxes - field warming experiment", "url": "https://www.usap-dc.org/view/dataset/601853"}], "date_created": "Sat, 21 Aug 2021 00:00:00 GMT", "description": "Part I: Non-technical description: Earth\u2019s terrestrial ecosystems have the potential to either slow down or hasten the pace of climate change. The direction depends in part on both plant and microbial responses to warming. This study uses Antarctica as a model ecosystem to study the carbon balance of a simplified ecosystem (simplified compared to terrestrial ecosystems elsewhere) in response to a warming treatment. Carbon balance is dictated by sequestered carbon (through photosynthesis) and released carbon (plant and microbial respiration). Hence, to best assess plant and microbial responses to warming, this study uses a plant gradient that starts at the glacier (no plants, only soil microbes) to an old site entirely covered by plants. Experimental warming in the field is achieved by open-top chambers that warm the air and soil inside. The net ecosystem carbon exchange, the net result of sequestered and released carbon, will be measured in warmed and control plots with a state-of-the art gas exchange machine. Laboratory temperature incubation studies will supplement field work to attribute changes in carbon fluxes to individual plant species and soil microbial taxa (i.e., \u201cspecies\u201d). Data from this study will feed into earth system climate change models. The importance of this study will be shared with the broader community through the production of a video series created by an award-winning science media production company, an Antarctic blog, and through interactions with schools in the United States (on-site through Skype and in-person visits). Part II: Technical description: Responses of the carbon balance of terrestrial ecosystems to warming will feed back to the pace of climate change, but the size and direction of this feedback are poorly constrained. Least known are the effects of warming on carbon losses from soil, and clarifying the major microbial controls is an important research frontier. This study uses a series of experiments and observations to investigate microbial, including autotrophic taxa, and plant controls of net ecosystem productivity in response to warming in intact ecosystems. Field warming is achieved using open-top chambers paired with control plots, arrayed along a productivity gradient. Along this gradient, incoming and outgoing carbon fluxes will be measured at the ecosystem-level. The goal is to tie warming-induced shifts in net ecosystem carbon balance to warming effects on soil microbes and plants. The field study will be supplemented with lab temperature incubations. Because soil microbes dominate biogeochemical cycles in Antarctica, a major focus of this study is to determine warming responses of bacteria, fungi and archaea. This is achieved using a cutting-edge stable isotope technique, quantitative stable isotope probing (qSIP) developed by the proposing research team, that can identify the taxa that are active and involved in processing new carbon. This technique can identify individual microbial taxa that are actively participating in biogeochemical cycling of nutrients (through combined use of 18O-water and 13C-bicarbonate) and thus can be distinguished from those that are simply present (cold-preserved). The study further assesses photosynthetic uptake of carbon by the vegetation and their sensitivity to warming. Results will advance research in climate change, plant and soil microbial ecology, and ecosystem modeling. Science communication will be achieved through an informative video series, a daily Antarctic blog, and online- and in-person visits to schools in the United States. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -63.0, "geometry": "POINT(-64 -64.75)", "instruments": null, "is_usap_dc": true, "keywords": "Palmer Station; TERRESTRIAL ECOSYSTEMS; USA/NSF; AMD; Amd/Us; USAP-DC; FIELD SURVEYS", "locations": "Palmer Station", "north": -64.5, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science", "paleo_time": null, "persons": "van Gestel, Natasja", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Antarctica as a Model System for Responses of Terrestrial Carbon Balance to Warming", "uid": "p0010251", "west": -65.0}, {"awards": "1941292 St-Laurent, Pierre; 1941304 Sherrell, Robert; 1941327 Stammerjohn, Sharon; 1941483 Yager, Patricia; 1941308 Fitzsimmons, Jessica", "bounds_geometry": "POLYGON((-120 -71,-118 -71,-116 -71,-114 -71,-112 -71,-110 -71,-108 -71,-106 -71,-104 -71,-102 -71,-100 -71,-100 -71.4,-100 -71.8,-100 -72.2,-100 -72.6,-100 -73,-100 -73.4,-100 -73.8,-100 -74.2,-100 -74.6,-100 -75,-102 -75,-104 -75,-106 -75,-108 -75,-110 -75,-112 -75,-114 -75,-116 -75,-118 -75,-120 -75,-120 -74.6,-120 -74.2,-120 -73.8,-120 -73.4,-120 -73,-120 -72.6,-120 -72.2,-120 -71.8,-120 -71.4,-120 -71))", "dataset_titles": "Dataset: A numerical simulation of the ocean, sea ice and ice shelves in the Amundsen Sea (Antarctica) over the period 2006-2022 and its associated code and input files; Expedition Data of NBP2202; Numerical experiments examining the response of onshore oceanic heat supply to yearly changes in the Amundsen Sea icescape (Antarctica); Vertical ocean profiles collected by a Conductivity-Temperature-Depth (CTD) package in the Amundsen Sea", "datasets": [{"dataset_uid": "200400", "doi": "10.17882/99231", "keywords": null, "people": null, "repository": "SEANOE", "science_program": null, "title": "Numerical experiments examining the response of onshore oceanic heat supply to yearly changes in the Amundsen Sea icescape (Antarctica)", "url": "https://doi.org/10.17882/99231"}, {"dataset_uid": "601785", "doi": "10.15784/601785", "keywords": "Amundsen Sea; Antarctica; Cryosphere; CTD; NBP2202; Oceanography; R/v Nathaniel B. Palmer", "people": "Stammerjohn, Sharon", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Vertical ocean profiles collected by a Conductivity-Temperature-Depth (CTD) package in the Amundsen Sea", "url": "https://www.usap-dc.org/view/dataset/601785"}, {"dataset_uid": "200399", "doi": "10.25773/bt54-sj65", "keywords": null, "people": null, "repository": "William \u0026 Mary ScholarWorks", "science_program": null, "title": "Dataset: A numerical simulation of the ocean, sea ice and ice shelves in the Amundsen Sea (Antarctica) over the period 2006-2022 and its associated code and input files", "url": "https://doi.org/10.25773/bt54-sj65"}, {"dataset_uid": "200311", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP2202", "url": "https://www.rvdata.us/search/cruise/NBP2202"}], "date_created": "Fri, 20 Aug 2021 00:00:00 GMT", "description": "Part I: Non-technical summary: The Amundsen Sea is adjacent to the West Antarctic Ice Sheet (WAIS) and hosts the most productive coastal ecosystem in all of Antarctica, with vibrant green waters visible from space and an atmospheric carbon dioxide uptake rate ten times higher than the Southern Ocean average. The region is also an area highly impacted by climate change and glacier ice loss. Upwelling of warm deep water is causing melt under the ice sheet, which is contributing to sea level rise and added nutrient inputs to the region. This is a project that is jointly funded by the National Science Foundation\u2019s Directorate of Geosciences (NSF/GEO) and the National Environment Research Council (NERC) of the United Kingdom (UK) via the NSF/GEO-NERC Lead Agency Agreement. This Agreement allows a single joint US/UK proposal to be submitted and peer-reviewed by the Agency whose investigator has the largest proportion of the budget. Upon successful joint determination of an award, each Agency funds the proportion of the budget and the investigators associated with its own country. In this collaboration, the US team will undertake biogeochemical sampling alongside a UK-funded physical oceanographic program to evaluate the contribution of micronutrients such as iron from glacial meltwater to ecosystem productivity and carbon cycling. Measurements will be incorporated into computer simulations to examine ecosystem responses to further glacial melting. Results will help predict future impacts on the region and determine whether the climate sensitivity of the Amundsen Sea ecosystem represents the front line of processes generalizable to the greater Antarctic. This study is aligned with the large International Thwaites Glacier Collaboration (ITGC) and will make data available to the full scientific community. The program will provide training for undergraduate, graduate, post-doctoral, and early-career scientists in both science and communication. The team will also develop out-of-school science experiences for middle and high schoolers related to climate change and Antarctica. Part II: Technical summary: The Amundsen Sea hosts the most productive polynya in all of Antarctica, with atmospheric carbon dioxide uptake rates ten times higher than the Southern Ocean average. The region is vulnerable to climate change, experiencing rapid losses in sea ice, a changing icescape and some of the fastest melting glaciers flowing from the West Antarctic Ice Sheet, a process being studied by the International Thwaites Glacier Collaboration. The biogeochemical composition of the outflow from the glaciers surrounding the Amundsen Sea is largely unstudied. In collaboration with a UK-funded physical oceanographic program, ARTEMIS is using shipboard sampling for trace metals, carbonate system, nutrients, organic matter, and microorganisms, with biogeochemical sensors on autonomous vehicles to gather data needed to understand the impact of the melting ice sheet on both the coastal ecosystem and the regional carbon cycle. These measurements, along with access to the advanced physical oceanographic measurements will allow this team to 1) bridge the gap between biogeochemistry and physics by adding estimates of fluxes and transport of limiting micronutrients; 2) provide biogeochemical context to broaden understanding of the global significance of ocean-ice shelf interactions; 3) determine processes and scales of variability in micronutrient supply that drive the ten-fold increase in carbon dioxide uptake, and 4) identify small-scale processes key to iron and carbon cycling using optimized field sampling. Observations will be integrated into an ocean model to enhance predictive capabilities of regional ocean function. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -100.0, "geometry": "POINT(-110 -73)", "instruments": null, "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; USA/NSF; USAP-DC; AMD; Amundsen Sea; Amd/Us; SHIPS", "locations": "Amundsen Sea", "north": -71.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Yager, Patricia; Medeiros, Patricia; Sherrell, Robert; St-Laurent, Pierre; Fitzsimmons, Jessica; Stammerjohn, Sharon", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "SEANOE", "repositories": "R2R; SEANOE; USAP-DC; William \u0026 Mary ScholarWorks", "science_programs": "Thwaites (ITGC)", "south": -75.0, "title": "NSFGEO-NERC: Collaborative Research: Accelerating Thwaites Ecosystem Impacts for the Southern Ocean (ARTEMIS)", "uid": "p0010249", "west": -120.0}, {"awards": "1644171 Blackburn, Terrence", "bounds_geometry": "POLYGON((162 -77.5,162.2 -77.5,162.4 -77.5,162.6 -77.5,162.8 -77.5,163 -77.5,163.2 -77.5,163.4 -77.5,163.6 -77.5,163.8 -77.5,164 -77.5,164 -77.525,164 -77.55,164 -77.575,164 -77.6,164 -77.625,164 -77.65,164 -77.675,164 -77.7,164 -77.725,164 -77.75,163.8 -77.75,163.6 -77.75,163.4 -77.75,163.2 -77.75,163 -77.75,162.8 -77.75,162.6 -77.75,162.4 -77.75,162.2 -77.75,162 -77.75,162 -77.725,162 -77.7,162 -77.675,162 -77.65,162 -77.625,162 -77.6,162 -77.575,162 -77.55,162 -77.525,162 -77.5))", "dataset_titles": "Isotopic ratios for subglacial precipitates from East Antarctica; U-Th isotopes and major elements in sediments from Taylor Valley, Antarctica", "datasets": [{"dataset_uid": "601806", "doi": "10.15784/601806", "keywords": "Antarctica; Cryosphere; Erosion; Isotope Data; Major Elements; Soil; Taylor Glacier; Taylor Valley", "people": "Piccione, Gavin; Tulaczyk, Slawek; Blackburn, Terrence; Edwards, Graham", "repository": "USAP-DC", "science_program": null, "title": "U-Th isotopes and major elements in sediments from Taylor Valley, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601806"}, {"dataset_uid": "200240", "doi": "10.26022/IEDA/111548 ", "keywords": null, "people": null, "repository": "EarthChem", "science_program": null, "title": "Isotopic ratios for subglacial precipitates from East Antarctica", "url": "https://doi.org/10.26022/IEDA/111548"}], "date_created": "Fri, 13 Aug 2021 00:00:00 GMT", "description": "A\u00a0nontechnical\u00a0description of the project The primary scientific goal of the project is to test whether Taylor Valley, Antarctica has been eroded significantly by glaciers in the last ~2 million years (Ma). Taylor Valley is one of the Dry Valleys of the Transantarctic Mountains, which are characterized by low mean annual temperatures, low precipitation, and limited erosion. These conditions have allowed fragile glacial landforms to be preserved for up to 15 Ma. Sediment eroded and deposited by glaciers is found on the valley walls and floors, with progressively younger deposits preserved at lower elevations. Scientists can date glacial deposits to understand the process and timing of past glacial erosion. Previous work in the Dry Valleys region suggested that extremely cold glaciers like Taylor Glacier, a major outlet glacier entering the valleys, were not erosive during the last several million years. This research will test a new hypothesis that glacial erosion and sediment production beneath Taylor Glacier have been active in the last few million years. This hypothesis will be tested using a new isotopic dating method called \"comminution dating\u0027 which determines when fine-grained sediment particles called silt were formed. If the sediment age is young, then the results will suggest that glacial processes have been more dynamic than previously thought. Overall, this study will increase our understanding of the nature and extent of past glaciations in Antarctica. Because the silt produced by erosion sediment is a nutrient for local ecosystems, the results will also shed light on delivery of nutrients to soils, streams, and coastal zones in high polar regions. This project will be led by an early career scientist and includes training of a Ph.D. student. A\u00a0technical description of the project There is a long-standing scientific controversy about the stability of the East Antarctic Ice Sheet with much evidence centered in the Dry Valleys region of South Victoria Land. A prevailing view of geomorphologists is that the landscape has been very stable and that the effects of glaciation have been minimal for the past ~15 Ma. This project will distinguish between two end-member scenarios of glacial erosion and deposition by Taylor Glacier, an outlet glacier of the East Antarctic Ice Sheet that terminates in Taylor Valley in the Dry Valleys region of Antarctica. In the first scenario, all valley relief is generated prior to 15 Ma when non-polar climates enabled warm-based glaciers to incise and widen ancient river channels. In this case, younger glacial deposits record advances of cold-based glaciers of decreasing ice volume and limited glacial erosion, and sediment generation resulted in glacial deposits composed primarily of older recycled sediments. In the second scenario, selective erosion of the valley floor has continued to deepen Taylor Valley but has not affected the adjacent peaks over the last 2 Ma. In this scenario, the \"bathtub rings\" of Quaternary glacial deposits situated at progressively lower elevations through time could be due to the lowering of the valley floor by subglacial erosion and with it, production of new sediment which is now incorporated into these deposits. While either scenario would result in the present-day topography, they differ in the implied evolution of regional glacial ice volume over time and the timing of both valley relief production and generation of fine-grained particles. The two scenarios will be tested by placing time constraints on fine particle production using U-series comminution dating. This new geochronologic tool exploits the loss of 234U due to alpha-recoil. The deficiency in 234U only becomes detectable in fine-grained particles with a sufficiently high surface-area-to-volume ratio which can incur appreciable 234U loss. The timing of comminution and particle size controls the magnitude of 234U loss. While this geochronologic tool is in its infancy, the scientific goal of this proposal can be achieved by resolving between ancient and recently comminuted fine particles, a binary question that the preliminary modeling and measured data show is readily resolved.", "east": 164.0, "geometry": "POINT(163 -77.625)", "instruments": null, "is_usap_dc": true, "keywords": "ICE SHEETS; Taylor Valley", "locations": "Taylor Valley", "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Blackburn, Terrence; Tulaczyk, Slawek", "platforms": null, "repo": "USAP-DC", "repositories": "EarthChem; USAP-DC", "science_programs": null, "south": -77.75, "title": "U-Series Comminution Age Constraints on Taylor Valley Erosion", "uid": "p0010243", "west": 162.0}, {"awards": "1744871 Robinson, Rebecca", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Diatom assemblage from IODP Site U1357; Diatom-bound and bulk sedimentary N isotopes from ODP Site 1098, Western Antarctic Peninsula; Diatom-bound and bulk sedimentary nitrogen isotopes from IODP Site U1357; Dissolved nutrients, cell counts, and nitrogen isotope measurements from Chaetoceros socialis culture experiments; ODP Site 1098 deglacial diatom assemblage; Sediment chemistry of ODP Site 1098", "datasets": [{"dataset_uid": "601818", "doi": "10.15784/601818", "keywords": "Antarctica; Cryosphere; Geochemistry; Sediment; Wilkes Land", "people": "Dove, Isabel", "repository": "USAP-DC", "science_program": null, "title": "Diatom assemblage from IODP Site U1357", "url": "https://www.usap-dc.org/view/dataset/601818"}, {"dataset_uid": "601727", "doi": "10.15784/601727", "keywords": "Antarctica", "people": "Dove, Isabel", "repository": "USAP-DC", "science_program": null, "title": "Dissolved nutrients, cell counts, and nitrogen isotope measurements from Chaetoceros socialis culture experiments", "url": "https://www.usap-dc.org/view/dataset/601727"}, {"dataset_uid": "601816", "doi": "10.15784/601816", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Geochemistry; Sediment", "people": "Dove, Isabel; Jones, Colin; Kelly, Roger; Robinson, Rebecca", "repository": "USAP-DC", "science_program": null, "title": "Diatom-bound and bulk sedimentary N isotopes from ODP Site 1098, Western Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601816"}, {"dataset_uid": "601778", "doi": "10.15784/601778", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere", "people": "Dove, Isabel", "repository": "USAP-DC", "science_program": null, "title": "Sediment chemistry of ODP Site 1098", "url": "https://www.usap-dc.org/view/dataset/601778"}, {"dataset_uid": "601817", "doi": "10.15784/601817", "keywords": "Antarctica; Cryosphere; Wilkes Land", "people": "Dove, Isabel; Kelly, Roger; Robinson, Rebecca", "repository": "USAP-DC", "science_program": null, "title": "Diatom-bound and bulk sedimentary nitrogen isotopes from IODP Site U1357", "url": "https://www.usap-dc.org/view/dataset/601817"}, {"dataset_uid": "601777", "doi": "10.15784/601777", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Sediment Core Data", "people": "Dove, Isabel", "repository": "USAP-DC", "science_program": null, "title": "ODP Site 1098 deglacial diatom assemblage", "url": "https://www.usap-dc.org/view/dataset/601777"}], "date_created": "Wed, 28 Jul 2021 00:00:00 GMT", "description": "The chemical composition of diatom fossils in the Southern Ocean provides information about the environmental history of Antarctica, including sea ice extent, biological production, and ocean nutrient distribution. The sea ice zone is an important habitat for a group of diatoms, largely from the genus Chaetoceros, that have a unique life cycle stage under environmental stress, when they produce a structure called a resting spore. Resting spores are meant to reseed the surface ocean when conditions are more favorable. The production of these heavy resting spores tends to remove significant amounts of carbon and silicon, essential nutrients, out of the surface ocean. As a result, this group has the potential to remove carbon from the surface ocean and can impact the sedimentary record scientists use to reconstruct environmental change. This project explores the role of resting spores in the sedimentary record using the nitrogen isotopic signature of these fossils and how those measurements are used to estimate carbon cycle changes. The work will include laboratory incubations of these organisms to answer if and how the chemistry of the resting spores differs from that of a typical diatom cell. The incubation results will be used to evaluate nutrient drawdown in sea ice environments during two contrasting intervals in earth history, the last ice age and the warm Pliocene. This work should have significant impact on how the scientific community considers the impact of seasonal sea ice cover in the Southern Ocean in terms of how it responds to and regulates global climate. The project provides training and research opportunities for undergraduate and graduate students. Ongoing research efforts in Antarctic earth sciences will be disseminated through an interactive display at the home institution. The work proposed here will address uncertainties in how Chaetoceros resting spores record surface nutrient conditions in their nitrogen stable isotopic composition, the relative impact of their specific signal with respect to the full sedimentary assemblage, and their potential to bias or enhance environmental reconstructions in the sea ice zone. Measurements of nitrogen stable isotopes of nitrate, biomass, and diatom-bound nitrogen and silicon-to-nitrogen ratios of individual species grown in the laboratory will be used to quantify how resting spores record nutrient drawdown in the water column and to what degree their signature is biased toward low nutrient conditions. These relationships will be used to inform diatom-bound nitrogen isotope reconstructions of nutrient drawdown from a Pliocene coastal polyna and an open ocean core that spans the last glacial maximum. This proposal capitalizes on the availability of Southern Ocean isolates of Chaetoceros spp. collected in 2017 for the proposed culture work and archived sediment cores and/or existing data. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; USAP-DC; Antarctica; ISOTOPES; MARINE SEDIMENTS; LABORATORY; USA/NSF; NITROGEN; AMD", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Robinson, Rebecca", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information?", "uid": "p0010234", "west": -180.0}, {"awards": "2031442 Learman, Deric", "bounds_geometry": "POLYGON((-180 -60,-167.5 -60,-155 -60,-142.5 -60,-130 -60,-117.5 -60,-105 -60,-92.5 -60,-80 -60,-67.5 -60,-55 -60,-55 -62,-55 -64,-55 -66,-55 -68,-55 -70,-55 -72,-55 -74,-55 -76,-55 -78,-55 -80,-67.5 -80,-80 -80,-92.5 -80,-105 -80,-117.5 -80,-130 -80,-142.5 -80,-155 -80,-167.5 -80,180 -80,178 -80,176 -80,174 -80,172 -80,170 -80,168 -80,166 -80,164 -80,162 -80,160 -80,160 -78,160 -76,160 -74,160 -72,160 -70,160 -68,160 -66,160 -64,160 -62,160 -60,162 -60,164 -60,166 -60,168 -60,170 -60,172 -60,174 -60,176 -60,178 -60,-180 -60))", "dataset_titles": "Physical and geochemical data from shelf sediments near the Antartic Pennisula", "datasets": [{"dataset_uid": "601607", "doi": "10.15784/601607", "keywords": "Antarctica; Antarctic Peninsula; Grain Size; Grain Size Analysis; Marine Geoscience; Marine Sediments; Organic Matter Geochemistry; Sediment Core Data; Shelf Sediments; Weddell Sea", "people": "Learman, Deric", "repository": "USAP-DC", "science_program": null, "title": "Physical and geochemical data from shelf sediments near the Antartic Pennisula", "url": "https://www.usap-dc.org/view/dataset/601607"}], "date_created": "Wed, 28 Jul 2021 00:00:00 GMT", "description": "Western Antarctica is one of the fastest warming locations on Earth. Its changing climate will lead to an increase in sea-level and will also alter regional water temperature and chemistry. These changes will directly alter the microbes that inhabit the ecosystem. Microbes are the smallest forms of life on Earth, but they are also the most abundant. They drive cycling of essential nutrients, such as carbon and nitrogen that are found in ocean sediments. In this way they form the foundation of the food chain that supports larger and more complex life. However, we do not know much about how different communities of microbes break down sediments in Antarctica and this will influence the chemistry of those waters. This research will determine how communities of microbes on the coastal shelf of Antarctica degrade complex organic sediments using genetic and chemical data. This data will identify the species in the community, what enzymes they are producing and what chemical reactions they are driving. This research will create broader impacts as the data will be used to create in-class activities that improve a student\u2019s data analysis and critical thinking skills. The data will be used in graduate, undergraduate and K-12 classrooms. This research will provide genetic and enzymatic insight into how microbial communities in benthic sediments on the coastal shelf of Antarctica degrade complex organic matter. The current understanding of how benthic microbial communities respond to and then degrade complex organic matter in Antarctica is fragmented. Recent work suggests benthic microbial communities are shaped by organic matter availability. However, those studies were observational and did not directly examine community function. A preliminary study of metagenomic data from western Antarctic marine sediments, indicates a genetic potential for organic matter degradation but functional data was not been collected. Other studies have examined either enzyme activity or metagenomic potential, but few have been able to directly connect the two. To address this gap in knowledge, this study will utilize metagenomics and metatranscriptomics, coupled with microcosm experiments, enzyme assays, and geochemical data. It will examine Antarctic microbial communities from the Ross Sea, the Bransfield Strait and Weddell Sea to document how the relationship between a communities\u2019 enzymatic activity and the genes used to degrade complex organic matter is related to sediment breakdown. The data will expand our current knowledge of microbial genetic potential and provide a solid understanding of enzyme function as it relates to degradation of complex organic matter in those marine sediments. It will thereby improve our understanding of temperature change on the chemistry of Antarctic seawater. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 160.0, "geometry": "POINT(-127.5 -70)", "instruments": null, "is_usap_dc": true, "keywords": "ECOSYSTEM FUNCTIONS; USAP-DC; Antarctic Peninsula; BENTHIC; SHIPS; SEDIMENT CHEMISTRY; Amd/Us; AMD; USA/NSF; Weddell Sea", "locations": "Antarctic Peninsula; Weddell Sea", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Learman, Deric", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "RAPID: Meta-genomic and Transcriptomic Investigation of Complex Organic Matter Degradation in Antarctic Benthic Sediments", "uid": "p0010235", "west": -55.0}, {"awards": "1846837 Bowman, Jeff", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 25 Jun 2021 00:00:00 GMT", "description": "The coastal Antarctic is undergoing great environmental change. Physical changes in the environment, such as altered sea ice duration and extent, have a direct impact on the phytoplankton and bacteria species which form the base of the marine foodweb. Photosynthetic phytoplankton are the ocean\u0027s primary producers, transforming (fixing) CO2 into organic carbon molecules and providing a source of food for zooplankton and larger predators. When phytoplankton are consumed by zooplankton, or killed by viral attack, they release large amounts of organic carbon and nutrients into the environment. Heterotrophic bacteria must eat other things, and function as \"master recyclers\", consuming these materials and converting them to bacterial biomass which can feed larger organisms such as protists. Some protists are heterotrophs, but others are mixotrophs, able to grow by photosynthesis or heterotrophy. Previous work suggests that by killing and eating bacteria, protists and viruses may regulate bacterial populations, but how these processes are regulated in Antarctic waters is poorly understood. This project will use experiments to determine the rate at which Antarctic protists consume bacteria, and field studies to identify the major bacterial taxa involved in carbon uptake and recycling. In addition, this project will use new sequencing technology to obtain completed genomes for many Antarctic marine bacteria. To place this work in an ecosystem context this project will use microbial diversity data to inform rates associated with key microbial processes within the PALMER ecosystem model. This project addresses critical unknowns regarding the ecological role of heterotrophic marine bacteria in the coastal Antarctic and the top-down controls on bacterial populations. Previous work suggests that at certain times of the year grazing by heterotrophic and mixotrophic protists may meet or exceed bacterial production rates. Similarly, in more temperate waters bacteriophages (viruses) are thought to contribute significantly to bacterial mortality during the spring and summer. These different top-down controls have implications for carbon flow through the marine foodweb, because protists are grazed more efficiently by higher trophic levels than are bacteria. This project will use a combination of grazing experiments and field observations to assess the temporal dynamics of mortality due to temperate bacteriophage and protists. Although many heterotrophic bacterial strains observed in the coastal Antarctic are taxonomically similar to strains from other regions, recent work suggest that they are phylogenetically and genetically distinct. To better understand the ecological function and evolutionary trajectories of key Antarctic marine bacteria, their genomes will be isolated and sequenced. Then, these genomes will be used to improve the predictions of the paprica metabolic inference pipeline, and our understanding of the relationship between heterotrophic bacteria and their major predators in the Antarctic marine environment. Finally, researchers will modify the Regional Test-Bed Model model to enable microbial diversity data to be used to optimize the starting conditions of key parameters, and to constrain the model\u0027s data assimilation methods. There is an extensive education and outreach component to this project that is designed to engage students and the public in diverse activities centered on Antarctic microbiota and marine sciences. A new module on Antarctic marine science will be developed for the popular Sally Ride Science program, and two existing undergraduate courses at UC San Diego will be strengthened with laboratory modules introducing emerging technology, and with cutting-edge polar science. A PhD student and a post-doctoral researcher will be supported by this project. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Magmatic Volatiles; BACTERIA/ARCHAEA; VIRUSES; USA/NSF; Palmer Station; ECOSYSTEM FUNCTIONS; COMMUNITY DYNAMICS; LABORATORY; Amd/Us; PROTISTS; AMD; USAP-DC", "locations": "Palmer Station", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bowman, Jeff; Connors, Elizabeth", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "CAREER: Understanding microbial heterotrophic processes in coastal Antarctic waters", "uid": "p0010201", "west": null}, {"awards": "1644187 Tulaczyk, Slawek", "bounds_geometry": "POLYGON((161 -76.9,161.75 -76.9,162.5 -76.9,163.25 -76.9,164 -76.9,164.75 -76.9,165.5 -76.9,166.25 -76.9,167 -76.9,167.75 -76.9,168.5 -76.9,168.5 -77.04,168.5 -77.18,168.5 -77.32,168.5 -77.46,168.5 -77.6,168.5 -77.74,168.5 -77.88,168.5 -78.02,168.5 -78.16,168.5 -78.3,167.75 -78.3,167 -78.3,166.25 -78.3,165.5 -78.3,164.75 -78.3,164 -78.3,163.25 -78.3,162.5 -78.3,161.75 -78.3,161 -78.3,161 -78.16,161 -78.02,161 -77.88,161 -77.74,161 -77.6,161 -77.46,161 -77.32,161 -77.18,161 -77.04,161 -76.9))", "dataset_titles": "ANTAEM project airborne EM resistivity data from McMurdo Region", "datasets": [{"dataset_uid": "601373", "doi": "10.15784/601373", "keywords": "Antarctica; Dry Valleys; Hydrology; Ice Shelf; McMurdo; Permafrost", "people": "Tulaczyk, Slawek", "repository": "USAP-DC", "science_program": null, "title": "ANTAEM project airborne EM resistivity data from McMurdo Region", "url": "https://www.usap-dc.org/view/dataset/601373"}], "date_created": "Sun, 13 Sep 2020 00:00:00 GMT", "description": "In Antarctica, millions of years of freezing have led to the development of hundreds of meters of thick permafrost (i.e., frozen ground). Recent research demonstrated that this slow freezing has trapped and concentrated water into local and regional briny aquifers, many times more salty than seawater. Because salt depresses the freezing point of water, these saline brines are able to persist as liquid water at temperatures well below the normal freezing point of freshwater. Such unusual groundwater systems may support microbial life, supply nutrients to coastal ocean and ice-covered lakes, and influence motion of glaciers. These briny aquifers also represent potential terrestrial analogs for deep life habitats on other planets, such as Mars, and provide a testing ground for the search for extraterrestrial water. Whereas much effort has been invested in understanding the physics, chemistry, and biology of surface and near-surface waters in cold polar regions, it has been comparably difficult to investigate deep subsurface aquifers in such settings. Airborne ElectroMagnetics (AEM) subsurface imaging provides an efficient way for mapping salty groundwater. An international collaboration with the University of Aarhus in Denmark will enable knowledge and skill transfer in AEM techniques that will enhance US polar research capabilities and provide US undergraduates and graduate students with unique training experiences. This project will survey over 1000 km2 of ocean and land near McMurdo Station in Antarctica, and will reveal if cold polar deserts hide a subsurface pool of liquid water. This will have significant implications for understanding cold polar glaciers, ice-covered lakes, frozen ground, and polar microbiology as well as for predictions of their response to future change. Improvements in permafrost mapping techniques and understanding of permafrost and of underlying groundwaters will benefit human use of high polar regions in the Antarctic and the Arctic. The project will provide the first integrative system-scale overview of subsurface water distribution and hydrological connectivity in a partly ice-free coastal region of Antarctica, the McMurdo Dry Valleys. Liquid water is relatively scarce in this environment but plays an outsized role by influencing, and integrating, biological, biogeochemical, glaciological, and geological processes. Whereas surface hydrology and its role in ecosystem processes has been thoroughly studied over the last several decades, it has been difficult to map out and characterize subsurface water reservoirs and to understand their interactions with regional lakes, glaciers, and coastal waters. The proposed project builds on the \"proof-of-concept\" use of AEM technology in 2011. Improvements in sensor and data processing capabilities will result in about double the depth of penetration of the subsurface during the new data collection when compared to the 2011 proof-of-concept survey, which reached depths of 300-400m. The first field season will focus on collecting deep soundings with a ground-based system in key locations where: (i) independent constraints on subsurface structure exist from past drilling projects, and (ii) the 2011 resistivity dataset indicates the need for deeper penetration and high signal-to-noise ratios achievable only with a ground-based system. The regional airborne survey will take place during the second field season and will yield subsurface electrical resistivity data from across several valleys of different sizes and different ice cover fractions.", "east": 168.5, "geometry": "POINT(164.75 -77.6)", "instruments": null, "is_usap_dc": true, "keywords": "FROZEN GROUND; GLACIERS/ICE SHEETS; HELICOPTER; GROUND WATER; RIVERS/STREAMS; Dry Valleys", "locations": "Dry Valleys", "north": -76.9, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Earth Sciences", "paleo_time": null, "persons": "Tulaczyk, Slawek; Mikucki, Jill", "platforms": "AIR-BASED PLATFORMS \u003e ROTORCRAFT/HELICOPTER \u003e HELICOPTER", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.3, "title": "Collaborative Research: Antarctic Airborne ElectroMagnetics (ANTAEM) - Revealing Subsurface Water in Coastal Antarctica", "uid": "p0010129", "west": 161.0}, {"awards": "1543347 Rosenheim, Brad; 1543396 Christner, Brent; 1543405 Leventer, Amy; 1543453 Lyons, W. Berry; 1543537 Priscu, John; 1543441 Fricker, Helen", "bounds_geometry": "POLYGON((-163.611 -84.33543,-162.200034 -84.33543,-160.789068 -84.33543,-159.378102 -84.33543,-157.967136 -84.33543,-156.55617 -84.33543,-155.145204 -84.33543,-153.734238 -84.33543,-152.323272 -84.33543,-150.912306 -84.33543,-149.50134 -84.33543,-149.50134 -84.3659157,-149.50134 -84.3964014,-149.50134 -84.4268871,-149.50134 -84.4573728,-149.50134 -84.4878585,-149.50134 -84.5183442,-149.50134 -84.5488299,-149.50134 -84.5793156,-149.50134 -84.6098013,-149.50134 -84.640287,-150.912306 -84.640287,-152.323272 -84.640287,-153.734238 -84.640287,-155.145204 -84.640287,-156.55617 -84.640287,-157.967136 -84.640287,-159.378102 -84.640287,-160.789068 -84.640287,-162.200034 -84.640287,-163.611 -84.640287,-163.611 -84.6098013,-163.611 -84.5793156,-163.611 -84.5488299,-163.611 -84.5183442,-163.611 -84.4878585,-163.611 -84.4573728,-163.611 -84.4268871,-163.611 -84.3964014,-163.611 -84.3659157,-163.611 -84.33543))", "dataset_titles": "Antarctica - PI Continuous - GZ01-WIS_GroundingZone_01 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - GZ13-WIS_GroundingZone_13 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA02-WIS_LAKES_02 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA06-WIS_LAKES_06 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA07-WIS_LAKES_07 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA09-WIS_LAKES_09 P.S. - GPS/GNSS Observations Dataset; Bistatic Radar Sounding of Whillans Ice Stream, Antarctica and Store Glacier, Greenland; CTD data from Mercer Subglacial Lake and access borehole; Discrete bulk sediment properties data from Mercer Subglacial Lake; Isotopic data from Whillans Ice Stream grounding zone, West Antarctica; Mercer Subglacial Lake radiocarbon and stable isotope data ; Mercer Subglacial Lake (SLM) microbial composition: 16S rRNA genes (Sequence Read Archive; BioProject: PRJNA790995); Mercer Subglacial Lake (SLM) noble gas and isotopic data; Mercer Subglacial Lake water column viral metagenomic sequencing; Salsa sediment cores; Sediment porewater properties data from Mercer Subglacial Lake; Water column biogeochemical data from Mercer Subglacial Lake", "datasets": [{"dataset_uid": "200342", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Mercer Subglacial Lake water column viral metagenomic sequencing", "url": "https://www.ncbi.nlm.nih.gov/biosample/32811410"}, {"dataset_uid": "200214", "doi": "10.7283/YW8Z-TK03", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA02-WIS_LAKES_02 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/YW8Z-TK03"}, {"dataset_uid": "200246", "doi": "", "keywords": null, "people": null, "repository": "OSU-MGR", "science_program": null, "title": "Salsa sediment cores", "url": "https://osu-mgr.org"}, {"dataset_uid": "200215", "doi": "10.7283/C503-KS23", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA06-WIS_LAKES_06 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/C503-KS23"}, {"dataset_uid": "601663", "doi": "10.15784/601663", "keywords": "Antarctica; Carbon; Cell Counts; Geochemistry; Glacier; Glaciers/ice Sheet; Glaciers/Ice Sheet; Mercer Subglacial Lake; Microbes; Nutrients; SALSA; Stable Isotopes; Trace Elements; West Antarctic Ice Sheet", "people": "Priscu, John; Dore, John; Skidmore, Mark; Hawkings, Jon; Steigmeyer, August; Li, Wei; Barker, Joel; Tranter, Martyn; Science Team, SALSA", "repository": "USAP-DC", "science_program": null, "title": "Water column biogeochemical data from Mercer Subglacial Lake", "url": "https://www.usap-dc.org/view/dataset/601663"}, {"dataset_uid": "200216", "doi": "10.7283/F8NH-CV04", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA07-WIS_LAKES_07 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/F8NH-CV04"}, {"dataset_uid": "601672", "doi": "10.15784/601672", "keywords": "Antarctica; Isotope; Mercer Subglacial Lake; Radiocarbon; Subglacial Lake", "people": "Rosenheim, Brad; Venturelli, Ryan", "repository": "USAP-DC", "science_program": null, "title": "Mercer Subglacial Lake radiocarbon and stable isotope data ", "url": "https://www.usap-dc.org/view/dataset/601672"}, {"dataset_uid": "200213", "doi": "10.7283/F7BB-JH05", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - GZ13-WIS_GroundingZone_13 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/F7BB-JH05"}, {"dataset_uid": "200282", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Mercer Subglacial Lake (SLM) microbial composition: 16S rRNA genes (Sequence Read Archive; BioProject: PRJNA790995)", "url": "https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA790995"}, {"dataset_uid": "601661", "doi": "10.15784/601661", "keywords": "Antarctica; Carbon; Glacier; Glaciers/ice Sheet; Glaciers/Ice Sheet; Iron; Mercer Subglacial Lake; Mineralogy; Particle Size; Physical Properties; SALSA; Sediment Core; Sulfur; West Antarctic Ice Sheet", "people": "Campbell, Timothy; Michaud, Alexander; Hawkings, Jon; Skidmore, Mark; Tranter, Martyn; Venturelli, Ryan A; Dore, John; Science Team, SALSA", "repository": "USAP-DC", "science_program": null, "title": "Discrete bulk sediment properties data from Mercer Subglacial Lake", "url": "https://www.usap-dc.org/view/dataset/601661"}, {"dataset_uid": "200212", "doi": "10.7283/PT0Q-JB95", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - GZ01-WIS_GroundingZone_01 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/PT0Q-JB95"}, {"dataset_uid": "601360", "doi": "10.15784/601360", "keywords": "Antarctica; Radiocarbon; Sediment; Whillans Ice Stream", "people": "Venturelli, Ryan A", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Isotopic data from Whillans Ice Stream grounding zone, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/601360"}, {"dataset_uid": "601472", "doi": "10.15784/601472", "keywords": "Antarctica; Bistatic Radar; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS Data; Greenland; Lake Whillans; Radar; Store Glacier; Whillans Ice Stream; WISSARD", "people": "Schroeder, Dustin; Siegfried, Matthew; Peters, Sean; MacKie, Emma; Dawson, Eliza; Christoffersen, Poul; Bienert, Nicole", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Bistatic Radar Sounding of Whillans Ice Stream, Antarctica and Store Glacier, Greenland", "url": "https://www.usap-dc.org/view/dataset/601472"}, {"dataset_uid": "601498", "doi": "10.15784/601498", "keywords": "Antarctica; Mercer Subglacial Lake; Noble Gas", "people": "Lyons, W. Berry; Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "Mercer Subglacial Lake (SLM) noble gas and isotopic data", "url": "https://www.usap-dc.org/view/dataset/601498"}, {"dataset_uid": "601657", "doi": "10.15784/601657", "keywords": "Antarctica; Conductivity; CTD; Depth; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hot Water Drill; Mercer Subglacial Lake; Physical Properties; SALSA; Subglacial Lake; Temperature", "people": "Leventer, Amy; Dore, John; Priscu, John; Rosenheim, Brad", "repository": "USAP-DC", "science_program": null, "title": "CTD data from Mercer Subglacial Lake and access borehole", "url": "https://www.usap-dc.org/view/dataset/601657"}, {"dataset_uid": "200217", "doi": "10.7283/3JMY-Y504", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA09-WIS_LAKES_09 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/3JMY-Y504"}, {"dataset_uid": "601664", "doi": "10.15784/601664", "keywords": "Antarctica; Gas; Geochemistry; Glacier; Glaciology; Mercer Subglacial Lake; Methane; SALSA; Sediment Core; West Antarctic Ice Sheet", "people": "Skidmore, Mark; Science Team, SALSA; Steigmeyer, August; Tranter, Martyn; Michaud, Alexander; Dore, John", "repository": "USAP-DC", "science_program": null, "title": "Sediment porewater properties data from Mercer Subglacial Lake", "url": "https://www.usap-dc.org/view/dataset/601664"}], "date_created": "Thu, 16 Jul 2020 00:00:00 GMT", "description": "The Antarctic subglacial environment remains one of the least explored regions on Earth. This project will examine the physical and biological characteristics of Subglacial Lake Mercer, a lake that lies 1200m beneath the West Antarctic Ice Sheet. This study will address key questions relating to the stability of the ice sheet, the subglacial hydrological system, and the deep-cold subglacial biosphere. The education and outreach component aims to widely disseminate results to the scientific community and to the general public through short films, a blog, and a website. Subglacial Lake Mercer is one of the larger hydrologically active lakes in the southern basin of the Whillans Ice Plain, West Antarctica. It receives about 25 percent of its water from East Antarctica with the remainder originating from West Antarctica, is influenced by drain/fill cycles in a lake immediately upstream (Subglacial Lake Conway), and lies about 100 km upstream of the present grounding line of the Ross Ice Shelf. This site will yield information on the history of the Whillans and Mercer Ice Streams, and on grounding line migration. The integrated study will include direct sampling of basal ice, water, and sediment from the lake in concert with surface geophysical surveys over a three-year period to define the hydrological connectivity among lakes on the Whillans Ice Plain and their flow paths to the sea. The geophysical surveys will furnish information on subglacial hydrology, aid the site selection for hot-water drilling, and provide spatial context for interpreting findings. The hot-water-drilled boreholes will be used to collect basal ice samples, provide access for direct measurement of subglacial physical, chemical, and biological conditions in the water column and sediments, and to explore the subglacial water cavities using a remotely operated vehicle equipped with sensors, cameras, and sampling equipment. Data collected from this study will address the overarching hypothesis \"Contemporary biodiversity and carbon cycling in hydrologically-active subglacial environments associated with the Mercer and Whillans ice streams are regulated by the mineralization and cycling of relict marine organic matter and through interactions among ice, rock, water, and sediments\". The project will be undertaken by a collaborative team of scientists, with expertise in microbiology, biogeochemistry, hydrology, geophysics, glaciology, marine geology, paleoceanography, and science communication.", "east": -149.50134, "geometry": "POINT(-156.55617 -84.4878585)", "instruments": null, "is_usap_dc": true, "keywords": "SEDIMENTS; Antarctica; ISOTOPES; Subglacial Lake; USAP-DC; VIRUSES; PALEOCLIMATE RECONSTRUCTIONS; BACTERIA/ARCHAEA; LABORATORY; Radiocarbon; Whillans Ice Stream; AMD; SALSA; ECOSYSTEM FUNCTIONS; RADIOCARBON; FIELD INVESTIGATION; ICE MOTION; Mercer Ice Stream; Amd/Us; USA/NSF; GLACIERS/ICE SHEETS", "locations": "Antarctica; Mercer Ice Stream; Whillans Ice Stream", "north": -84.33543, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Instrumentation and Support; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Glaciology; Antarctic Integrated System Science", "paleo_time": null, "persons": "Rosenheim, Brad; Fricker, Helen; Priscu, John; Leventer, Amy; Dore, John; Lyons, W. Berry; Christner, Brent", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "GenBank", "repositories": "GenBank; NCBI GenBank; OSU-MGR; UNAVCO; USAP-DC", "science_programs": null, "south": -84.640287, "title": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments", "uid": "p0010119", "west": -163.611}, {"awards": "1551195 Burdige, David", "bounds_geometry": "POLYGON((-71 -64,-70.1 -64,-69.2 -64,-68.3 -64,-67.4 -64,-66.5 -64,-65.6 -64,-64.7 -64,-63.8 -64,-62.9 -64,-62 -64,-62 -64.4,-62 -64.8,-62 -65.2,-62 -65.6,-62 -66,-62 -66.4,-62 -66.8,-62 -67.2,-62 -67.6,-62 -68,-62.9 -68,-63.8 -68,-64.7 -68,-65.6 -68,-66.5 -68,-67.4 -68,-68.3 -68,-69.2 -68,-70.1 -68,-71 -68,-71 -67.6,-71 -67.2,-71 -66.8,-71 -66.4,-71 -66,-71 -65.6,-71 -65.2,-71 -64.8,-71 -64.4,-71 -64))", "dataset_titles": "Expedition data of NBP1601; Project: Organic Carbon Oxidation and Iron Remobilization by West Antarctic Shelf Sediments", "datasets": [{"dataset_uid": "200148", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Project: Organic Carbon Oxidation and Iron Remobilization by West Antarctic Shelf Sediments", "url": "https://www.bco-dmo.org/project/806864"}, {"dataset_uid": "002665", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1601", "url": "https://www.rvdata.us/search/cruise/NBP1601"}], "date_created": "Tue, 16 Jun 2020 00:00:00 GMT", "description": "General Statement: The continental shelf region west of the Antarctic Peninsula has recently undergone dramatic changes and ecosystem shifts, and the community of organisms that live in, or feed off, the sea floor sediments is being impacted by species invasions from the north. Previous studies of these sediments indicate that this community may consume much more of the regional productivity than previously estimated, suggesting that sediments are a rich and important component of this ecosystem and one that may be ripe for dramatic change. Furthermore, under richer sediment conditions, iron is mobilized and released back to the water column. Since productivity in this ecosystem is thought to be limited by the availability of iron, increased rates of iron release from these sediments could stimulate productivity and promote greater overall ecosystem change. In this research, a variety of sites across the shelf region will be sampled to accurately evaluate the role of sediments in consuming ecosystem productivity and to estimate the current level of iron release from the sediments. This project will provide a baseline set of sediment results that will present a more complete picture of the west Antarctic shelf ecosystem, will allow for comparison with water column measurements and for evaluation of the fundamental workings of this important ecosystem. This is particularly important since high latitude systems may be vulnerable to the effects of climate fluctuations. Both graduate and undergraduate students will be trained. Presentations will be made at scientific meetings, at other universities, and at outreach events. A project web site will present key results to the public and explain how this new information improves understanding of Antarctic ecosystems. Technical Description of Project: In order to determine the role of sediments within the west Antarctic shelf ecosystem, this project will determine the rates of sediment organic matter oxidation at a variety of sites across the Palmer Long Term Ecosystem Research (LTER) study region. To estimate the rates of release of iron and manganese from the sediments, these same sites will be sampled for detailed vertical distributions of the concentrations of these metals both in the porewaters and in important mineral phases. Since sediment sampling will be done at LTER sites, the sediment data can be correlated with the rich productivity data set from the LTER. In detail, the project: a) will determine the rates of oxygen consumption, organic carbon oxidation, nutrient release, and iron mobilization by shelf sediments west of the Antarctic Peninsula; b) will investigate the vertical distribution of diagenetic reactions within the sediments; and c) will assess the regional importance of these sediment rates. Sediment cores will be used to determine sediment-water fluxes of dissolved oxygen, total carbon dioxide, nutrients, and the vertical distributions of these dissolved compounds, as well as iron and manganese in the pore waters. Bulk sediment properties of porosity, organic carbon and nitrogen content, carbonate content, biogenic silica content, and multiple species of solid-phase iron, manganese, and sulfur species will also be determined. These measurements will allow determination of total organic carbon oxidation and denitrification rates, and the proportion of aerobic versus anaerobic respiration at each site. Sediment diagenetic modeling will link the processes of organic matter oxidation to metal mobilization. Pore water and solid phase iron and manganese distributions will be used to model iron diagenesis in these sediments and to estimate the iron flux from the sediments to the overlying waters. Finally, the overall regional average and distribution of the sediment processes will be compared with the distributions of seasonally averaged chlorophyll biomass and productivity.", "east": -62.0, "geometry": "POINT(-66.5 -66)", "instruments": null, "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; Iron Remobilization; R/V NBP; NBP1601; SEDIMENT CHEMISTRY; USAP-DC; West Antarctic Shelf", "locations": "West Antarctic Shelf", "north": -64.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Burdige, David; Christensen, John", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "BCO-DMO", "repositories": "BCO-DMO; R2R", "science_programs": null, "south": -68.0, "title": "Organic carbon oxidation and iron remobilization by West Antarctic shelf sediments ", "uid": "p0010108", "west": -71.0}, {"awards": "9978236 Bell, Robin", "bounds_geometry": "POLYGON((101 -75.5,101.9 -75.5,102.8 -75.5,103.7 -75.5,104.6 -75.5,105.5 -75.5,106.4 -75.5,107.3 -75.5,108.2 -75.5,109.1 -75.5,110 -75.5,110 -75.85,110 -76.2,110 -76.55,110 -76.9,110 -77.25,110 -77.6,110 -77.95,110 -78.3,110 -78.65,110 -79,109.1 -79,108.2 -79,107.3 -79,106.4 -79,105.5 -79,104.6 -79,103.7 -79,102.8 -79,101.9 -79,101 -79,101 -78.65,101 -78.3,101 -77.95,101 -77.6,101 -77.25,101 -76.9,101 -76.55,101 -76.2,101 -75.85,101 -75.5))", "dataset_titles": "SOAR-Lake Vostok Survey airborne radar data; SOAR-Lake Vostok Survey bed elevation data; SOAR-Lake Vostok Survey Gravity data; SOAR-Lake Vostok Survey ice thickness data; SOAR-Lake Vostok survey magnetic anomaly data; SOAR-Lake Vostok Survey surface elevation data", "datasets": [{"dataset_uid": "601296", "doi": " 10.1594/IEDA/306564", "keywords": "Airborne Magnetic; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Lake Vostok; Magnetic; Magnetic Anomaly; Magnetometer; Potential Field; SOAR; Solid Earth", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok survey magnetic anomaly data", "url": "https://www.usap-dc.org/view/dataset/601296"}, {"dataset_uid": "601299", "doi": "10.1594/IEDA/306565", "keywords": "Airborne Laser Altimeters; Airborne Laser Altimetry; Airborne Radar; Airplane; Antarctica; Bed Elevation; Bedrock Elevation; Digital Elevation Model; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Lake Vostok; Radar; Radar Echo Sounder; SOAR", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey bed elevation data", "url": "https://www.usap-dc.org/view/dataset/601299"}, {"dataset_uid": "601300", "doi": "10.1594/IEDA/306568", "keywords": "Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Lake Vostok; Navigation; Radar; SOAR; Subglacial Lakes", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey airborne radar data", "url": "https://www.usap-dc.org/view/dataset/601300"}, {"dataset_uid": "601295", "doi": "10.1594/IEDA/306563", "keywords": "Airborne Gravity; Airplane; Antarctica; East Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Lake Vostok; Potential Field; Solid Earth", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey Gravity data", "url": "https://www.usap-dc.org/view/dataset/601295"}, {"dataset_uid": "601298", "doi": "10.1594/IEDA/306566", "keywords": "Airborne Altimetry; Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Ice Sheet Elevation; Ice Surface; Lake Vostok; Radar Echo Sounder; SOAR; Surface Elevation", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey surface elevation data", "url": "https://www.usap-dc.org/view/dataset/601298"}, {"dataset_uid": "601297", "doi": "10.1594/IEDA/306567", "keywords": "Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Sheet; Ice Stratigraphy; Ice Thickness; Ice Thickness Distribution; Lake Vostok; Radar; Radar Altimetry; Radar Echo Sounder; SOAR; Subglacial Lake", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey ice thickness data", "url": "https://www.usap-dc.org/view/dataset/601297"}], "date_created": "Fri, 24 Apr 2020 00:00:00 GMT", "description": "9978236 Bell Abstract This award, provided by the Office of Polar Programs under the Life in Extreme Environments (LExEn) Program, supports a geophysical study of Lake Vostok, a large lake beneath the East Antarctic Ice Sheet. Subglacial ecosystems, in particular subglacial lake ecosystems are extreme oligotrophic environments. These environments, and the ecosystems which may exist within them, should provide key insights into a range of fundamental questions about the development of Earth and other bodies in the Solar System including: 1) the processes associated with rapid evolutionary radiation after the extensive Neoproterozoic glaciations; 2) the overall carbon cycle through glacial and interglacial periods; and 3) the possible adaptations organisms may require to thrive in environments such as on Europa, the ice covered moon of Jupiter. Over 70 subglacial lakes have been identified beneath the 3-4 kilometer thick ice of Antarctica. One lake, Lake Vostok, is sufficiently large to be clearly identified from space with satellite altimetry. Lake Vostok is similar to Lake Ontario in area but with a much larger volume including measured water depths of 600 meters. The overlying ice sheet is acting as a conveyer belt continually delivering new water, nutrients, gas hydrates, sediments and microbes as the ice sheet flows across the lake. The goal of this program is to determine the fundamental boundary conditions for this subglacial lake as an essential first step toward understanding the physical processes within the lake. An aerogeophysical survey over the lake and into the surrounding regions will be acquired to meet this goal. This data set includes gravity, magnetic, laser altimetry and ice penetrating radar data and will be used to compile a basic set of ice surface elevation, subglacial topography, gravity and magnetic anomaly maps. Potential field methods widely used in the oil industry will be modified to estimate the subglacial topography from gravity data where the ice penetrating radar will be unable to recover the depth of the lake. A similar method can be modified to estimate the thickness of the sediments beneath the lake from magnetic data. These methods will be tested and applied to subglacial lakes near South Pole prior to the Lake Vostok field campaign and will provide valuable comparisons to the planned survey. Once the methods have been adjusted for the Lake Vostok application, maps of the water cavity and sediment thickness beneath the lake will be produced. These maps will become tools to explore the geologic origin of the lake. The two endmember models are, first, that the lake is an active tectonic rift such as Lake Baikal and, second, the lake is the result of glacial scouring. The distinct characteristics of an extensional rift can be easily identified with our aerogeophysical survey. The geological interpretation of the airborne geophysical survey will provide the first geological constraints of the interior of the East Antarctic continent based on modern data. In addition, the underlying geology will influence the ecosystem within the lake. One of the critical issues for the ecosystem within the lake will be the flux of nutrients. A preliminary estimation of the regions of freezing and melting based on the distance between distinctive internal layers observed on the radar data will be made. These basic boundary conditions will provide guidance for a potential international effort aimed at in situ exploration of the lake and improve the understanding of East Antarctic geologic structures.", "east": 110.0, "geometry": "POINT(105.5 -77.25)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e MAGNETOMETERS \u003e MGF; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e AIRGRAV", "is_usap_dc": true, "keywords": "Gravity; GLACIERS/ICE SHEETS; East Antarctica; USAP-DC; Lake Vostok; Airborne Radar; Subglacial Lake; MAGNETIC FIELD; GRAVITY", "locations": "East Antarctica; Lake Vostok", "north": -75.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bell, Robin; Studinger, Michael S.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work\r\n", "uid": "p0010097", "west": 101.0}, {"awards": "1341432 Brzezinski, Mark; 1341464 Robinson, Rebecca", "bounds_geometry": "POLYGON((-175 -54,-174 -54,-173 -54,-172 -54,-171 -54,-170 -54,-169 -54,-168 -54,-167 -54,-166 -54,-165 -54,-165 -55.3,-165 -56.6,-165 -57.9,-165 -59.2,-165 -60.5,-165 -61.8,-165 -63.1,-165 -64.4,-165 -65.7,-165 -67,-166 -67,-167 -67,-168 -67,-169 -67,-170 -67,-171 -67,-172 -67,-173 -67,-174 -67,-175 -67,-175 -65.7,-175 -64.4,-175 -63.1,-175 -61.8,-175 -60.5,-175 -59.2,-175 -57.9,-175 -56.6,-175 -55.3,-175 -54))", "dataset_titles": "Diatom assemblage counts from NBP17-02 shipboard carboy experiments; Dissolved nutrient profiles from along 170\u00b0W between 67 and 54\u00b0S; Expedition Data of NBP1702; Particle composition measurements from along 170\u00b0W between 67-54\u00b0S; Particulate silicon and nitrogen concentrations and isotopic composition measurements in McLane pump profiles from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean; Silicon concentration and isotopic composition measurements in pore waters and sediments from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean; Surface Southern Ocean community growouts to evaluate the diatom bound N isotope proxy", "datasets": [{"dataset_uid": "601522", "doi": "10.15784/601522", "keywords": "Antarctica; Nitrogen Isotopes; Oceans; Paleoproxies; Southern Ocean", "people": "Jones, Colin; Riesselman, Christina; Robinson, Rebecca; Closset, Ivia; Kelly, Roger; Robinson, Rebecca ; Brzezinski, Mark", "repository": "USAP-DC", "science_program": null, "title": "Surface Southern Ocean community growouts to evaluate the diatom bound N isotope proxy", "url": "https://www.usap-dc.org/view/dataset/601522"}, {"dataset_uid": "601523", "doi": "10.15784/601523", "keywords": "Antarctica; Biota; Carboy Growouts; Diatom; Diatom Assemblage Data; NBP1702; Oceans; R/v Nathaniel B. Palmer; Southern Ocean; Southern Ocean Summer", "people": "Jones, Colin; Robinson, Rebecca; Riesselman, Christina; Robinson, Rebecca ", "repository": "USAP-DC", "science_program": null, "title": "Diatom assemblage counts from NBP17-02 shipboard carboy experiments", "url": "https://www.usap-dc.org/view/dataset/601523"}, {"dataset_uid": "601562", "doi": "10.15784/601562", "keywords": "Antarctica; Biogenic Silica; Chemistry:sediment; Chemistry:Sediment; Lithogenic Silica; Marine Geoscience; NBP1702; Pore Water Biogeochemistry; Sediment; Silicon Cycle; Silicon Stable Isotope; Southern Ocean", "people": "Jones, Janice L.; Closset, Ivia; Brzezinski, Mark", "repository": "USAP-DC", "science_program": null, "title": "Silicon concentration and isotopic composition measurements in pore waters and sediments from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean", "url": "https://www.usap-dc.org/view/dataset/601562"}, {"dataset_uid": "601276", "doi": "10.15784/601276", "keywords": "Antarctica; Biogenic Silica; Nitrogen Isotopes; Southern Ocean", "people": "Robinson, Rebecca; Brzezinski, Mark", "repository": "USAP-DC", "science_program": null, "title": "Particle composition measurements from along 170\u00b0W between 67-54\u00b0S", "url": "https://www.usap-dc.org/view/dataset/601276"}, {"dataset_uid": "200126", "doi": "10.7284/907211", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP1702", "url": "https://www.rvdata.us/search/cruise/NBP1702"}, {"dataset_uid": "601269", "doi": "10.15784/601269", "keywords": "Antarctica; Chlorophyll; Southern Ocean", "people": "Robinson, Rebecca; Brzezinski, Mark", "repository": "USAP-DC", "science_program": null, "title": "Dissolved nutrient profiles from along 170\u00b0W between 67 and 54\u00b0S", "url": "https://www.usap-dc.org/view/dataset/601269"}, {"dataset_uid": "601576", "doi": "10.15784/601576", "keywords": "Antarctica; Biogenic Silica; Chemistry:sediment; Chemistry:Sediment; Diatom; Diatom Bound; Lithogenic Silica; Marine Geoscience; NBP1702; Nitrogen Isotopes; Silicon Cycle; Silicon Stable Isotope; Southern Ocean", "people": "Robinson, Rebecca; Brzezinski, Mark; Jones, Janice L.; Closset, Ivia", "repository": "USAP-DC", "science_program": null, "title": " Particulate silicon and nitrogen concentrations and isotopic composition measurements in McLane pump profiles from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean", "url": "https://www.usap-dc.org/view/dataset/601576"}], "date_created": "Wed, 26 Feb 2020 00:00:00 GMT", "description": "Collaborative Proposal: A field and laboratory examination of the diatom N and Si isotope proxies: Implications for assessing the Southern Ocean biological pump The rise in atmospheric carbon dioxide concentrations and associated climate changes make understanding the role of the ocean in large scale carbon cycle a priority. Geologic samples allow exploration of potential mechanisms for carbon dioxide drawdown during glacial periods through the use of geochemical proxies. Nitrogen and silicon isotope signatures from fossil diatoms (microscopic plants) are used to investigate changes in the physical supply and biological demand for nutrients (like nitrogen and silicon and carbon) in the Southern Ocean. The project will evaluate the use the nitrogen and silicon isotope proxies through a series of laboratory experiments and Southern Ocean field sampling. The results will provide quantification of real relationships between nitrogen and silicon isotopes and nutrient usage in the Southern Ocean and allow exploration of the role of other factors, including biological diversity, ice cover, and mixing, in altering the chemical signatures recorded by diatoms. Seafloor sediment samples will be used to evaluate how well the signal created in the water column is recorded by fossil diatoms buried in the seafloor. Improving the nutrient isotope proxies will allow for a more quantitative understanding of the role of polar biology in regulating natural variation in atmospheric carbon dioxide. The project will also result in the training of a graduate student and development of outreach materials targeting a broad popular audience. This project seeks to test the fidelity of the diatom nitrogen and silicon isotope proxies, two commonly used paleoceanographic tools for investigating the role of the Southern Ocean biological pump in regulating atmospheric CO2 concentrations on glacial-interglacial timescales. Existing ground-truthing data, including culture experiments, surface sediment data and downcore reconstructions, all suggest that nutrient utilization is the primary driver of isotopic variation in the Southern Ocean. However, strong contribution of interspecific variation is implied by recent culture results. Moreover, field and laboratory studies present some contradictory results in terms of the relative importance of interspecific variation and of inferred post-depositional alteration of the nutrient isotope signals. Here, a first order test of the N and Si diatom nutrient isotope paleo-proxies, involving water column dissolved and particulate sampling and laboratory culturing of field-isolates, is proposed. Southern Ocean water, biomass, live diatoms and fossil diatom sampling will be conducted to investigate species and assemblage related variability in diatom nitrogen and silicon isotopes and their relationship to surface nutrient fields and early diagenesis. Access to fresh materials produced in an analogous environmental context to the sediments of primary interest is critical for making robust paleoceanographic reconstructions. Field sampling will occur along 175\u00b0W, transecting the Antarctic Circumpolar Current from the subtropics to the marginal ice edge. Collection of water, sinking/suspended particles and multi-core samples from 13 stations and 3 shipboard incubation experiments will be used to test four proposed hypotheses that together evaluate the significance of existing culture results and seek to allow the best use of diatom nutrient isotope proxies in evaluating the biological pump.", "east": -165.0, "geometry": "POINT(-170 -60.5)", "instruments": null, "is_usap_dc": true, "keywords": "Southern Ocean; AMD; NITROGEN ISOTOPES; R/V NBP; NSF/USA; NUTRIENTS; USAP-DC; Amd/Us", "locations": "Southern Ocean", "north": -54.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Robinson, Rebecca; Brzezinski, Mark", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -67.0, "title": "Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump", "uid": "p0010083", "west": -175.0}, {"awards": "1643684 Saito, Mak; 1644073 DiTullio, Giacomo", "bounds_geometry": "POLYGON((-180 -72,-173.6 -72,-167.2 -72,-160.8 -72,-154.4 -72,-148 -72,-141.6 -72,-135.2 -72,-128.8 -72,-122.4 -72,-116 -72,-116 -72.7,-116 -73.4,-116 -74.1,-116 -74.8,-116 -75.5,-116 -76.2,-116 -76.9,-116 -77.6,-116 -78.3,-116 -79,-122.4 -79,-128.8 -79,-135.2 -79,-141.6 -79,-148 -79,-154.4 -79,-160.8 -79,-167.2 -79,-173.6 -79,180 -79,178 -79,176 -79,174 -79,172 -79,170 -79,168 -79,166 -79,164 -79,162 -79,160 -79,160 -78.3,160 -77.6,160 -76.9,160 -76.2,160 -75.5,160 -74.8,160 -74.1,160 -73.4,160 -72.7,160 -72,162 -72,164 -72,166 -72,168 -72,170 -72,172 -72,174 -72,176 -72,178 -72,-180 -72))", "dataset_titles": "Algal pigment concentrations from the Ross Sea; Biogenic silica concentrations from the Ross Sea; NBP1801 Expedition data; Nutrients from NBP18-01 CICLOPS", "datasets": [{"dataset_uid": "601225", "doi": "10.15784/601225", "keywords": "Antarctica; Biogenic Silica; Biogenic Silica Concentrations; Chemistry:Water; Geochemistry; NBP1801; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Sea Water; Southern Ocean; Spectroscopy; Water Measurements; Water Samples", "people": "Ditullio, Giacomo; Schanke, Nicole", "repository": "USAP-DC", "science_program": null, "title": "Biogenic silica concentrations from the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/601225"}, {"dataset_uid": "601428", "doi": "10.15784/601428", "keywords": "Amundsen Sea; Antarctica; NBP1801; Nitrate; Nitrite; Nutrients; Phosphate; Ross Sea; R/v Nathaniel B. Palmer; Silicic Acid; Terra Nova Bay", "people": "Saito, Mak", "repository": "USAP-DC", "science_program": null, "title": "Nutrients from NBP18-01 CICLOPS", "url": "https://www.usap-dc.org/view/dataset/601428"}, {"dataset_uid": "200056", "doi": "10.7284/907753", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1801 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1801"}, {"dataset_uid": "601205", "doi": "10.15784/601205", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Chlorophyll; Chromatography; Liquid Chromatograph; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Sea Water; Seawater Measurements; Southern Ocean; Water Measurements; Water Samples", "people": "Ditullio, Giacomo", "repository": "USAP-DC", "science_program": null, "title": "Algal pigment concentrations from the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/601205"}], "date_created": "Thu, 08 Aug 2019 00:00:00 GMT", "description": "Phytoplankton blooms in the coastal waters of the Ross Sea, Antarctica are typically dominated by either diatoms or Phaeocystis Antarctica (a flagellated algae that often can form large colonies in a gelatinous matrix). The project seeks to determine if an association of bacterial populations with Phaeocystis antarctica colonies can directly supply Phaeocystis with Vitamin B12, which can be an important co-limiting micronutrient in the Ross Sea. The supply of an essential vitamin coupled with the ability to grow at lower iron concentrations may put Phaeocystis at a competitive advantage over diatoms. Because Phaeocystis cells can fix more carbon than diatoms and Phaeocystis are not grazed as efficiently as diatoms, the project will help in refining understanding of carbon dynamics in the region as well as the basis of the food web webs. Such understanding also has the potential to help refine predictive ecological models for the region. The project will conduct public outreach activities and will contribute to undergraduate and graduate research. Engagement of underrepresented students will occur during summer student internships. A collaboration with Italian Antarctic researchers, who have been studying the Terra Nova Bay ecosystem since the 1980s, aims to enhance the project and promote international scientific collaborations. The study will test whether a mutualistic symbioses between attached bacteria and Phaeocystis provides colonial cells a mechanism for alleviating chronic Vitamin B12 co-limitation effects thereby conferring them with a competitive advantage over diatom communities. The use of drifters in a time series study will provide the opportunity to track in both space and time a developing algal bloom in Terra Nova Bay and to determine community structure and the physiological nutrient status of microbial populations. A combination of flow cytometry, proteomics, metatranscriptomics, radioisotopic and stable isotopic labeling experiments will determine carbon and nutrient uptake rates and the role of bacteria in mitigating potential vitamin B12 and iron limitation. Membrane inlet and proton transfer reaction mass spectrometry will also be used to estimate net community production and release of volatile organic carbon compounds that are climatically active. Understanding how environmental parameters can influence microbial community dynamics in Antarctic coastal waters will advance an understanding of how changes in ocean stratification and chemistry could impact the biogeochemistry and food web dynamics of Southern Ocean ecosystems.", "east": 160.0, "geometry": "POINT(-158 -75.5)", "instruments": null, "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; NBP1801; Amd/Us; USA/NSF; USAP-DC; NUTRIENTS; PIGMENTS; CHLOROPHYLL; R/V NBP; Ross Sea; AMD", "locations": "Ross Sea", "north": -72.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "DiTullio, Giacomo; Lee, Peter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -79.0, "title": "Collaborative Research: Cobalamin and Iron Co-Limitation Of Phytoplankton Species in Terra Nova Bay", "uid": "p0010045", "west": -116.0}, {"awards": "1401489 Sigman, Daniel", "bounds_geometry": "POLYGON((-180 -45,-144 -45,-108 -45,-72 -45,-36 -45,0 -45,36 -45,72 -45,108 -45,144 -45,180 -45,180 -47.5,180 -50,180 -52.5,180 -55,180 -57.5,180 -60,180 -62.5,180 -65,180 -67.5,180 -70,144 -70,108 -70,72 -70,36 -70,0 -70,-36 -70,-72 -70,-108 -70,-144 -70,-180 -70,-180 -67.5,-180 -65,-180 -62.5,-180 -60,-180 -57.5,-180 -55,-180 -52.5,-180 -50,-180 -47.5,-180 -45))", "dataset_titles": "Deep-sea coral evidence for lower Southern Ocean surface nitrate concentrations during the last ice age; Diatom-bound N isotope records over the last two glacial cycles in sediment core PS75/072-4.; Diatom-bound nitrogen isotope and opal flux records over the Holocene period in Southern Ocean sediment cores MD12-3396, MD11-3353 and PS75/072-4.; GOSHIP section IO8S and P18S", "datasets": [{"dataset_uid": "200049", "doi": "doi.org/10.1594/PANGAEA.848271", "keywords": null, "people": null, "repository": "PANGAEA", "science_program": null, "title": "Diatom-bound N isotope records over the last two glacial cycles in sediment core PS75/072-4.", "url": "https://doi.org/10.1594/PANGAEA.848271"}, {"dataset_uid": "200051", "doi": "", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Deep-sea coral evidence for lower Southern Ocean surface nitrate concentrations during the last ice age", "url": "https://www.pnas.org/content/suppl/2017/03/14/1615718114.DCSupplemental"}, {"dataset_uid": "200048", "doi": "doi.pangaea.de/10.1594/PANGAEA.891436.", "keywords": null, "people": null, "repository": "PANGAEA", "science_program": null, "title": "Diatom-bound nitrogen isotope and opal flux records over the Holocene period in Southern Ocean sediment cores MD12-3396, MD11-3353 and PS75/072-4.", "url": "https://doi.pangaea.de/10.1594/PANGAEA.891436"}, {"dataset_uid": "200050", "doi": "", "keywords": null, "people": null, "repository": "CLIVAR", "science_program": null, "title": "GOSHIP section IO8S and P18S", "url": "https://cchdo.ucsd.edu/"}], "date_created": "Thu, 08 Aug 2019 00:00:00 GMT", "description": "ABSTRACT Intellectual Merit: The high concentration of the major nutrients nitrate and phosphate is a fundamental characteristic of the Antarctic Zone in the Southern Ocean and is central to its role in global ocean fertility and the global carbon cycle. The isotopic composition of diatom-bound organic nitrogen is one of the best hopes for reconstructing the nutrient status of polar surface waters over glacial cycles, which in turn may hold the explanation for the decline in atmospheric carbon dioxide during ice ages. The PIs propose to generate detailed diatom-bound nitrogen isotope (\u0026#948;15Ndb) records from high sedimentation rate cores from the Kerguelen Plateau. Because the cores were collected at relatively shallow seafloor depths, they have adequate planktonic and benthic foraminifera to develop accurate age models. The resulting data could be compared with climate records from Antarctic ice cores and other archives to investigate climate-related changes, including the major steps into and out of ice ages and the millennial-scale events that occur during ice ages and at their ends. The records generated in this project will provide a critical test of hypotheses for the cause of lower ice age CO2. Broader impacts: This study will contribute to the goal of understanding ice ages and past CO2 changes, which both have broad implications for future climate. Undergraduates will undertake summer internships, with the possibility of extending their work into junior year projects and senior theses. In addition, the PI will lead modules for two Princeton programs for middle school teachers and will host a teacher for a six-week summer research project.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; South Pacific Ocean; USAP-DC; NOT APPLICABLE", "locations": "South Pacific Ocean", "north": -45.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Sigman, Daniel", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "PANGAEA", "repositories": "CLIVAR; PANGAEA; Publication", "science_programs": null, "south": -70.0, "title": "High-resolution, Assemblage-specific Records of Diatom-bound N Isotopes from the Indian Sector of the Antarctic Ocean", "uid": "p0010046", "west": -180.0}, {"awards": "1744645 Young, Jodi", "bounds_geometry": "POLYGON((-64.4 -64.2,-64.38 -64.2,-64.36 -64.2,-64.34 -64.2,-64.32 -64.2,-64.3 -64.2,-64.28 -64.2,-64.26 -64.2,-64.24 -64.2,-64.22 -64.2,-64.2 -64.2,-64.2 -64.26,-64.2 -64.32,-64.2 -64.38,-64.2 -64.44,-64.2 -64.5,-64.2 -64.56,-64.2 -64.62,-64.2 -64.68,-64.2 -64.74,-64.2 -64.8,-64.22 -64.8,-64.24 -64.8,-64.26 -64.8,-64.28 -64.8,-64.3 -64.8,-64.32 -64.8,-64.34 -64.8,-64.36 -64.8,-64.38 -64.8,-64.4 -64.8,-64.4 -64.74,-64.4 -64.68,-64.4 -64.62,-64.4 -64.56,-64.4 -64.5,-64.4 -64.44,-64.4 -64.38,-64.4 -64.32,-64.4 -64.26,-64.4 -64.2))", "dataset_titles": "Dataset: Particulate Organic Carbon and Particulate Nitrogen; Dataset: Photosynthetic Pigments; Dataset: Physical Profiles of Temperature, Salinity, and Brine Volume; Sea-ice diatom compatible solute shifts", "datasets": [{"dataset_uid": "200378", "doi": "10.26008/1912/bco-dmo.913655.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Dataset: Physical Profiles of Temperature, Salinity, and Brine Volume", "url": "https://www.bco-dmo.org/dataset/913655"}, {"dataset_uid": "200377", "doi": "10.26008/1912/bco-dmo.913222.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Dataset: Photosynthetic Pigments", "url": "https://www.bco-dmo.org/dataset/913222"}, {"dataset_uid": "200322", "doi": "10.21228/M84386", "keywords": null, "people": null, "repository": "Metabolomics workbench", "science_program": null, "title": "Sea-ice diatom compatible solute shifts", "url": "https://www.metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=Study\u0026StudyID=ST001393"}, {"dataset_uid": "200376", "doi": "10.26008/1912/bco-dmo.913566.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Dataset: Particulate Organic Carbon and Particulate Nitrogen", "url": "https://www.bco-dmo.org/dataset/913566"}], "date_created": "Tue, 23 Jul 2019 00:00:00 GMT", "description": "Rapid changes in the extent and thickness of sea ice during the austral spring subject microorganisms within or attached to the ice to large fluctuations in temperature, salinity, light and nutrients. This project aims to identify cellular responses in sea-ice algae to increasing temperature and decreasing salinity during the spring melt along the western Antarctic Peninsula and to determine how associated changes at the cellular level can potentially affect dynamic, biologically driven processes. Understanding how sea-ice algae cope with, and are adapted to, their environment will not only help predict how polar ecosystems may change as the extent and thickness of sea ice change, but will also provide a better understanding of the widespread success of photosynthetic life on Earth. The scientific context and resulting advances from the research will be communicated to the general public through outreach activities that includes work with Science Communication Fellows and the popular Polar Science Weekend at the Pacific Science Center in Seattle, Washington. The project will provide student training to college students as well as provide for educational experiences for K-12 school children. There is currently a poor understanding of feedback relationships that exist between the rapidly changing environment in the western Antarctic Peninsula region and sea-ice algal production. The large shifts in temperature and salinity that algae experience during the spring melt affect critical cellular processes, including rates of enzyme-catalyzed reactions involved in photosynthesis and respiration, and the production of stress-protective compounds. These changes in cellular processes are poorly constrained but can be large and may have impacts on local ecosystem productivity and biogeochemical cycles. In particular, this study will focus on the thermal sensitivity of enzymes and the cycling of compatible solutes and exopolymers used for halo- and cryo-protection, and how they influence primary production and the biogeochemical cycling of carbon and nitrogen. Approaches will include field sampling during spring melt, incubation experiments of natural sea-ice communities under variable temperature and salinity conditions, and controlled manipulation of sea-ice algal species in laboratory culture. Employment of a range of techniques, from fast repetition rate fluorometry and gross and net photosynthetic measurements to metabolomics and enzyme kinetics, will tease apart the mechanistic effects of temperature and salinity on cell metabolism and primary production with the goal of quantifying how these changes will impact biogeochemical processes along the western Antarctic Peninsula. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -64.2, "geometry": "POINT(-64.3 -64.5)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; SHIPS; DIATOMS; Antarctic Peninsula", "locations": "Antarctic Peninsula", "north": -64.2, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Young, Jodi; Deming, Jody", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "BCO-DMO", "repositories": "BCO-DMO; Metabolomics workbench", "science_programs": null, "south": -64.8, "title": "Spring Blooms of Sea Ice Algae Along the Western Antarctic Peninsula: Effects of Warming and Freshening on Cell Physiology and Biogeochemical Cycles.", "uid": "p0010039", "west": -64.4}, {"awards": "1744849 Sokol, Eric; 1744785 Barrett, John; 1745053 Salvatore, Mark", "bounds_geometry": "POLYGON((162.92 -77.56,162.971 -77.56,163.022 -77.56,163.073 -77.56,163.124 -77.56,163.175 -77.56,163.226 -77.56,163.277 -77.56,163.328 -77.56,163.379 -77.56,163.43 -77.56,163.43 -77.571,163.43 -77.582,163.43 -77.593,163.43 -77.604,163.43 -77.615,163.43 -77.626,163.43 -77.637,163.43 -77.648,163.43 -77.659,163.43 -77.67,163.379 -77.67,163.328 -77.67,163.277 -77.67,163.226 -77.67,163.175 -77.67,163.124 -77.67,163.073 -77.67,163.022 -77.67,162.971 -77.67,162.92 -77.67,162.92 -77.659,162.92 -77.648,162.92 -77.637,162.92 -77.626,162.92 -77.615,162.92 -77.604,162.92 -77.593,162.92 -77.582,162.92 -77.571,162.92 -77.56))", "dataset_titles": "McMurdo Dry Valleys LTER: Microbial mat biomass and Normalized Difference Vegetation Index (NDVI) values from Lake Fryxell Basin, Antarctica, January 2018", "datasets": [{"dataset_uid": "200344", "doi": "10.6073/pasta/9acbbde9abc1e013f8c9fd9c383327f4", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "McMurdo Dry Valleys LTER: Microbial mat biomass and Normalized Difference Vegetation Index (NDVI) values from Lake Fryxell Basin, Antarctica, January 2018", "url": "https://portal.edirepository.org/nis/mapbrowse?packageid=knb-lter-mcm.263.1"}], "date_created": "Wed, 03 Jul 2019 00:00:00 GMT", "description": "Microbial mats are found throughout the McMurdo Dry Valleys where summer snowmelt provides liquid water that allows these mats to flourish. Researchers have long studied the environmental conditions microbial mats need to grow. Despite these efforts, it has been difficult to develop a broad picture of these unique ecosystems. Recent advances in satellite technology now provide researchers an exciting new tool to study these special Antarctic ecosystems from space using the unique spectral signatures associated with microbial mats. This new technology not only offers the promise that microbial mats can be mapped and studied from space, this research will also help protect these delicate environments from potentially harmful human impacts that can occur when studying them from the ground. This project will use satellite imagery and spectroscopic techniques to identify and map microbial mat communities and relate their properties and distributions to both field and lab-based measurements. This research provides an exciting new tool to help document and understand the distribution of a major component of the Antarctic ecosystem in the McMurdo Dry Valleys. The goal of this project is to establish quantitative relationships between spectral signatures derived from orbit and the physiological status and biogeochemical properties of microbial mat communities in Taylor Valley, Antarctica, as measured by field and laboratory analyses on collected samples. The goal wioll be met by (1) refining atmospheric correction techniques using in situ radiometric rectification to derive accurate surface spectra; (2) collecting multispectral orbital images concurrent with in situ sampling and spectral measurements in the field to ensure temporal comparability; (3) measuring sediment, water, and microbial mat samples for organic and inorganic carbon content, essential biogeochemical nutrients, and chlorophyll-a to determine relevant mat characteristics; and (4) quantitatively associating these laboratory-derived characteristics with field-derived and orbital spectral signatures and parameters. The result of this work will be a more robust quantitative link between the distribution of microbial mat communities and their biogeochemical properties to landscape-scale spectral signatures. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.43, "geometry": "POINT(163.175 -77.615)", "instruments": null, "is_usap_dc": true, "keywords": "RIVERS/STREAM; CYANOBACTERIA (BLUE-GREEN ALGAE); USAP-DC; Taylor Valley; INFRARED IMAGERY; WORLDVIEW-2; WORLDVIEW-3; Antarctica; FIELD INVESTIGATION; Amd/Us; ACTIVE LAYER", "locations": "Antarctica; Taylor Valley", "north": -77.56, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Salvatore, Mark; Barrett, John; Sokol, Eric", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e WORLDVIEW \u003e WORLDVIEW-2; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e WORLDVIEW \u003e WORLDVIEW-3", "repo": "EDI", "repositories": "EDI", "science_programs": null, "south": -77.67, "title": "COLLABORATIVE RESEARCH: Remote Characterization of Microbial Mats in Taylor Valley, Antarctica, through In Situ Sampling and Spectral Validation", "uid": "p0010036", "west": 162.92}, {"awards": "2023425 Schofield, Oscar; 1440435 Ducklow, Hugh", "bounds_geometry": "POLYGON((-80 -63,-78.3 -63,-76.6 -63,-74.9 -63,-73.2 -63,-71.5 -63,-69.8 -63,-68.1 -63,-66.4 -63,-64.7 -63,-63 -63,-63 -63.8,-63 -64.6,-63 -65.4,-63 -66.2,-63 -67,-63 -67.8,-63 -68.6,-63 -69.4,-63 -70.2,-63 -71,-64.7 -71,-66.4 -71,-68.1 -71,-69.8 -71,-71.5 -71,-73.2 -71,-74.9 -71,-76.6 -71,-78.3 -71,-80 -71,-80 -70.2,-80 -69.4,-80 -68.6,-80 -67.8,-80 -67,-80 -66.2,-80 -65.4,-80 -64.6,-80 -63.8,-80 -63))", "dataset_titles": "Environmental Data Initiative Repository, Supporting LTER; Expedition Data; Expedition data of LMG1501; Expedition data of LMG1601; Expedition data of LMG1701; Expedition data of LMG1801; Expedition data of LMG1901; Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae); UAV images and video of whales in the Antarctic Penisula during LMG1802", "datasets": [{"dataset_uid": "200125", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1901", "url": "https://www.rvdata.us/search/cruise/LMG1901"}, {"dataset_uid": "001367", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1701"}, {"dataset_uid": "601811", "doi": null, "keywords": "Antarctica; Bellingshausen Sea; Cryosphere; Southern Ocean", "people": "Biesack, Ellen; Corso, Andrew; Desvignes, Thomas; McDowell, Jan; Cheng, Chi-Hing; Steinberg, Deborah; Hilton, Eric", "repository": "USAP-DC", "science_program": "LTER", "title": "Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)", "url": "https://www.usap-dc.org/view/dataset/601811"}, {"dataset_uid": "601318", "doi": "10.15784/601318", "keywords": "Aerial Imagery; Antarctica; Antarctic Peninsula; Biota; Camera; Humpback Whales; LMG1802; LTER; Minke Whales; Oceans; Palmer Station; Photo; Photo/video; Photo/Video; R/v Laurence M. Gould; Species Size; UAV; Video Data; Whales", "people": "Bierlich, KC; Dale, Julian; Friedlaender, Ari; Nowacek, Douglas; Boyer, Keyvi", "repository": "USAP-DC", "science_program": "LTER", "title": "UAV images and video of whales in the Antarctic Penisula during LMG1802", "url": "https://www.usap-dc.org/view/dataset/601318"}, {"dataset_uid": "002729", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1701", "url": "https://www.rvdata.us/search/cruise/LMG1701"}, {"dataset_uid": "200124", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1801", "url": "https://www.rvdata.us/search/cruise/LMG1801"}, {"dataset_uid": "200122", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1501", "url": "https://www.rvdata.us/search/cruise/LMG1501"}, {"dataset_uid": "200123", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1601", "url": "https://www.rvdata.us/search/cruise/LMG1601"}, {"dataset_uid": "000246", "doi": "", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "Environmental Data Initiative Repository, Supporting LTER", "url": "https://portal.edirepository.org/nis/browseServlet?searchValue=PAL"}], "date_created": "Fri, 11 May 2018 00:00:00 GMT", "description": "The Palmer Antarctica LTER (Long Term Ecological Research) site has been in operation since 1990. The goal of all the LTER sites is to conduct policy-relevant research on ecological questions that require tens of years of data, and cover large geographical areas. For the Palmer Antarctica LTER, the questions are centered around how the marine ecosystem west of the Antarctica peninsula is responding to a climate that is changing as rapidly as any place on the Earth. For example, satellite observations over the past 35 years indicate the average duration of sea ice cover is now ~90 days (3 months!) shorter than it was. The extended period of open water has implications for many aspects of ecosystem research, with the concurrent decrease of Ad\u00e8lie penguins within this region regularly cited as an exemplar of climate change impacts in Antarctica. Cutting edge technologies such as autonomous underwater (and possibly airborne) vehicles, seafloor moorings, and numerical modeling, coupled with annual oceanographic cruises, and weekly environmental sampling, enables the Palmer Antarctica LTER to expand and bridge the time and space scales needed to assess climatic impacts. This award includes for the first time study of the roles of whales as major predators in the seasonal sea ice zone ecosystem. The team will also focus on submarine canyons, special regions of enhanced biological activity, along the Western Antarctic Peninsula (WAP). The current award\u0027s overarching research question is: How do seasonality, interannual variability, and long term trends in sea ice extent and duration influence the structure and dynamics of marine ecosystems and biogeochemical cycling? Specific foci within the broad question include: 1. Long-term change and ecosystem transitions. What is the sensitivity or resilience of the ecosystem to external perturbations as a function of the ecosystem state? 2. Lateral connectivity and vertical stratification. What are the effects of lateral transports of freshwater, heat and nutrients on local ocean stratification and productivity and how do they drive changes in the ecosystem? 3. Top-down controls and shifting baselines. How is the ecosystem responding to the cessation of whaling and subsequent long-term recovery of whale stocks? 4. Foodweb structure and biogeochemical processes. How do temporal and spatial variations in foodweb structure influence carbon and nutrient cycling, export, and storage? The broader impacts of the award leverage local educational partnerships including the Sandwich, MA STEM Academy, the New England Aquarium, and the NSF funded Polar Learning and Responding (PoLAR) Climate Change Education Partnership at Columbia\u0027s Earth Institute to build new synergies between Arctic and Antarctic, marine and terrestrial scientists and students, governments and NGOs. The Palmer Antarctic LTER will also conduct appropriate cross LTER site comparisons, and serve as a leader in information management to enable knowledge-building within and beyond the Antarctic, oceanographic, and LTER communities.", "east": -63.0, "geometry": "POINT(-71.5 -67)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "PELAGIC; USAP-DC; R/V LMG; NOT APPLICABLE; Palmer Station; LMG1701", "locations": "Palmer Station", "north": -63.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ducklow, Hugh; Martinson, Doug; Schofield, Oscar", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "EDI; R2R; USAP-DC", "science_programs": "LTER", "south": -71.0, "title": "LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem", "uid": "p0000133", "west": -80.0}, {"awards": "1246292 Cary, Stephen", "bounds_geometry": "POLYGON((161.36062 -77.20215,161.610171 -77.20215,161.859722 -77.20215,162.109273 -77.20215,162.358824 -77.20215,162.608375 -77.20215,162.857926 -77.20215,163.107477 -77.20215,163.357028 -77.20215,163.606579 -77.20215,163.85613 -77.20215,163.85613 -77.291278,163.85613 -77.380406,163.85613 -77.469534,163.85613 -77.558662,163.85613 -77.64779,163.85613 -77.736918,163.85613 -77.826046,163.85613 -77.915174,163.85613 -78.004302,163.85613 -78.09343,163.606579 -78.09343,163.357028 -78.09343,163.107477 -78.09343,162.857926 -78.09343,162.608375 -78.09343,162.358824 -78.09343,162.109273 -78.09343,161.859722 -78.09343,161.610171 -78.09343,161.36062 -78.09343,161.36062 -78.004302,161.36062 -77.915174,161.36062 -77.826046,161.36062 -77.736918,161.36062 -77.64779,161.36062 -77.558662,161.36062 -77.469534,161.36062 -77.380406,161.36062 -77.291278,161.36062 -77.20215))", "dataset_titles": "Carbon-fixation rates and associated microbial communities; Carbon-fixation rates and associated microbial communities residing in arid and ephemerally wet Antarctic Dry Valley soils; Importance of Heterotrophic and Phototrophic N2 Fixation in the McMurdo Dry Valleys ; Microbial community composition of transiently wetted Antarctic Dry Valley soils.; Microbial population dynamics along a terrestrial Antarctic moisture gradient; Microbial population dynamics along a terrestrial wetted gradient", "datasets": [{"dataset_uid": "002738", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Carbon-fixation rates and associated microbial communities", "url": "https://www.ncbi.nlm.nih.gov/protein/?term=craig%20cary"}, {"dataset_uid": "002736", "doi": "", "keywords": null, "people": null, "repository": "EMBL", "science_program": null, "title": "Microbial population dynamics along a terrestrial Antarctic moisture gradient", "url": "https://www.ebi.ac.uk/ena/data/view/PRJEB27415"}, {"dataset_uid": "002737", "doi": "", "keywords": null, "people": null, "repository": "KNB", "science_program": null, "title": "Carbon-fixation rates and associated microbial communities residing in arid and ephemerally wet Antarctic Dry Valley soils", "url": "https://knb.ecoinformatics.org/view/knb.756.1"}, {"dataset_uid": "200013", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Importance of Heterotrophic and Phototrophic N2 Fixation in the McMurdo Dry Valleys ", "url": "https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA505820"}, {"dataset_uid": "200014", "doi": "", "keywords": null, "people": null, "repository": "EMBL", "science_program": null, "title": "Microbial population dynamics along a terrestrial wetted gradient", "url": "https://www.ebi.ac.uk/ena/data/view/PRJEB7939"}, {"dataset_uid": "200015", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Microbial community composition of transiently wetted Antarctic Dry Valley soils.", "url": "https://www.ncbi.nlm.nih.gov/popset/?term=KP836071%20to%20KP836108"}], "date_created": "Wed, 14 Mar 2018 00:00:00 GMT", "description": "The McMurdo Dry Valleys in Antarctica are recognized as being the driest, coldest and probably one of the harshest environments on Earth. In addition to the lack of water, the biota in the valleys face a very limited supply of nutrients such as nitrogen compounds - necessary for protein synthesis. The glacial streams of the Dry Valleys have extensive cyanobacterial (blue green algae) mats that are a major source of carbon and nitrogen compounds to biota in this region. While cyanobacteria in streams are important as a source of these compounds, other non-photosynthetic bacteria also contribute a significant fraction (~50%) of fixed nitrogen compounds to valley biota. This research effort will involve an examination of exactly which non-phototrophic bacteria are involved in nitrogen fixation and what environmental factors are responsible for controlling nitrogen fixation by these microbes. This work will resolve the environmental factors that control the activity, abundance and diversity of nitrogen-fixing microbes across four of the McMurdo Dry Valleys. This will allow for comparisons among sites of differing latitude, temperature, elevation and exposure to water. These results will be integrated into a landscape wetness model that will help determine the impact of both cyanobacterial and non-photosynthetic nitrogen fixing microorganisms in this very harsh environment. The Dry Valleys in many ways resemble the Martian environment, and understanding the primitive life and very simple nutrient cycling in the Dry Valleys has relevance for understanding how life might have once existed on other planets. Furthermore, the study of microbes from extreme environments has resulted in numerous biotechnological applications such as the polymerase chain reaction for amplifying DNA and mechanisms for freeze resistance in agricultural crops. Thus, this research should yield insights into how biota survive in extreme environments, and these insights could lead to other commercial applications.", "east": 163.85613, "geometry": "POINT(162.608375 -77.64779)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; Antarctica; USAP-DC; RIVERS/STREAM", "locations": "Antarctica", "north": -77.20215, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Cary, Stephen", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "NCBI GenBank", "repositories": "EMBL; KNB; NCBI GenBank", "science_programs": null, "south": -78.09343, "title": "Collaborative Research: Importance of Heterotrophic and Phototrophic N2 Fixation in the McMurdo Dry Valleys on Local, Regional and Landscape Scales", "uid": "p0000235", "west": 161.36062}, {"awards": "1056396 Morgan-Kiss, Rachael", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Genetic sequence identifier: Accession Numbers: GU132860-GU132939; JN091926-JN091960; JQ9243533-JQ924384; KJ848331-KJ848439; KU196097-KU196166; PRJNA396917", "datasets": [{"dataset_uid": "000241", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Genetic sequence identifier: Accession Numbers: GU132860-GU132939; JN091926-JN091960; JQ9243533-JQ924384; KJ848331-KJ848439; KU196097-KU196166; PRJNA396917", "url": "https://www.ncbi.nlm.nih.gov/genbank/"}], "date_created": "Mon, 26 Feb 2018 00:00:00 GMT", "description": "This CAREER proposal will support an early career female PI to establish an integrated research and education program in the fields of polar biology and environmental microbiology, focusing on single-celled eukaryotes (protists) in high latitude ice-covered Antarctic lakes systems. Protists play important roles in energy flow and material cycling, and act as both primary producers (fixing inorganic carbon by photosynthesis) and consumers (preying on bacteria by phagotrophic digestion). The McMurdo Dry Valleys (MDV) located in Victoria Land, Antarctica, harbor microbial communities which are isolated in the unique aquatic ecosystem of perennially ice-capped lakes. The lakes support exclusively microbial consortia in chemically stratified water columns that are not influenced by seasonal mixing, allochthonous inputs, or direct human impact. This project will exploit permanently stratified biogeochemistry that is unique across the water columns of several MDV lakes to address gaps in our understanding of protist trophic function in aquatic food webs. The proposed research will examine (1) the impact of permanent biogeochemical gradients on protist trophic strategy, (2) the effect of major abiotic drivers (light and nutrients) on the distribution of two key mixotrophic and photoautotrophic protist species, and (3) the effect of episodic nutrient pulses on mixotroph communities in high latitude (ultraoligotrophic) MDV lakes versus low latitude (eutrophic) watersheds. The project will impact the fields of microbial ecology and environmental microbiology by combining results from field, laboratory and in situ incubation studies to synthesize new models for the protist trophic roles in the aquatic food web. The research component of this proposed project will be tightly integrated with the development of two new education activities designed to exploit the inherent excitement associated with polar biological research. The educational objectives are: 1) to establish a teaching module in polar biology in a core undergraduate course for microbiology majors; 2) to develop an instructional module to engage middle school girls in STEM disciplines. Undergraduates and middle school girls will also work with a doctoral student on his experiments in local Ohio watersheds.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Morgan-Kiss, Rachael", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "NCBI GenBank", "repositories": "NCBI GenBank", "science_programs": null, "south": -90.0, "title": "CAREER:Protist Nutritional Strategies in Permanently Stratified Antarctic Lakes", "uid": "p0000310", "west": -180.0}, {"awards": "1425989 Sarmiento, Jorge", "bounds_geometry": "POLYGON((-180 -52.6153,-168.67689 -52.6153,-157.35378 -52.6153,-146.03067 -52.6153,-134.70756 -52.6153,-123.38445 -52.6153,-112.06134 -52.6153,-100.73823 -52.6153,-89.41512 -52.6153,-78.09201 -52.6153,-66.7689 -52.6153,-66.7689 -55.18958,-66.7689 -57.76386,-66.7689 -60.33814,-66.7689 -62.91242,-66.7689 -65.4867,-66.7689 -68.06098,-66.7689 -70.63526,-66.7689 -73.20954,-66.7689 -75.78382,-66.7689 -78.3581,-78.09201 -78.3581,-89.41512 -78.3581,-100.73823 -78.3581,-112.06134 -78.3581,-123.38445 -78.3581,-134.70756 -78.3581,-146.03067 -78.3581,-157.35378 -78.3581,-168.67689 -78.3581,180 -78.3581,178.62318 -78.3581,177.24636 -78.3581,175.86954 -78.3581,174.49272 -78.3581,173.1159 -78.3581,171.73908 -78.3581,170.36226 -78.3581,168.98544 -78.3581,167.60862 -78.3581,166.2318 -78.3581,166.2318 -75.78382,166.2318 -73.20954,166.2318 -70.63526,166.2318 -68.06098,166.2318 -65.4867,166.2318 -62.91242,166.2318 -60.33814,166.2318 -57.76386,166.2318 -55.18958,166.2318 -52.6153,167.60862 -52.6153,168.98544 -52.6153,170.36226 -52.6153,171.73908 -52.6153,173.1159 -52.6153,174.49272 -52.6153,175.86954 -52.6153,177.24636 -52.6153,178.62318 -52.6153,-180 -52.6153))", "dataset_titles": "Biogeochemical profiling float data from the Southern Ocean Carbon and Climate Observation and Modeling (SOCCOM) program.UCSD Research Data Collections DOI:10.6075/J09021PC; Expedition Data; Model output NOAA GFDL CM2_6 Cant Hant storage", "datasets": [{"dataset_uid": "000208", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Biogeochemical profiling float data from the Southern Ocean Carbon and Climate Observation and Modeling (SOCCOM) program.UCSD Research Data Collections DOI:10.6075/J09021PC", "url": "http://library.ucsd.edu/dc/object/bb66239018"}, {"dataset_uid": "001369", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1701"}, {"dataset_uid": "601144", "doi": "10.15784/601144", "keywords": "Antarctica; Anthropogenic Heat; Atmosphere; Carbon Storage; Climate Change; Eddy; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Heat Budget; Modeling; Model Output; Oceans; Paleoclimate; Snow/ice; Snow/Ice; Southern Ocean", "people": "Chen, Haidi", "repository": "USAP-DC", "science_program": null, "title": "Model output NOAA GFDL CM2_6 Cant Hant storage", "url": "https://www.usap-dc.org/view/dataset/601144"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project seeks to drive a transformative shift in our understanding of the crucial role of the Southern Ocean in taking up anthropogenic carbon and heat, and resupplying nutrients from the abyss to the surface. An observational program will generate vast amounts of new biogeochemical data that will provide a greatly improved view of the dynamics and ecosystem responses of the Southern Ocean. A modeling component will apply these observations to enhancing understanding of the current ocean, reducing uncertainty in projections of future carbon and nutrient cycles and climate. Because it serves as the primary gateway through which the intermediate, deep, and bottom waters of the ocean interact with the surface layers and thus the atmosphere, the Southern Ocean has a profound influence on the oceanic uptake of anthropogenic carbon and heat as well as nutrient resupply from the abyss to the surface. Yet it is the least observed and understood region of the world ocean. The oceanographic community is on the cusp of two major advances that have the potential to transform understanding of the Southern Ocean. The first is the development of new biogeochemical sensors mounted on autonomous profiling floats that allow sampling of ocean biogeochemistry and acidification in 3-dimensional space with a temporal resolution of five to ten days. The SOCCOM float program proposed will increase the average number of biogeochemical profiles measured per month in the Southern Ocean by ~10-30x. The second is that the climate modeling community now has the computational resources and physical understanding to develop fully coupled climate models that can represent crucial mesoscale processes in the Southern Ocean, as well as corresponding models that assimilate observations to produce a state estimate. Together with the observations, this new generation of models provides the tools to vastly improve understanding of Southern Ocean processes and the ability to quantitatively assess uptake of anthropogenic carbon and heat, as well as nutrient resupply, both today and into the future. In order to take advantage of the above technological and modeling breakthroughs, SOCCOM will implement the following research programs: * Theme 1: Observations. Scripps Institution of Oceanography will lead a field program to expand the number of Southern Ocean autonomous profiling floats and equip them with sensors to measure pH, nitrate, and oxygen. The University of Washington and Monterey Bay Aquarium Research Institute will design, build, and oversee deployment of the floats. Scripps will also develop a mesoscale eddying Southern Ocean state estimate that assimilates physical and biogeochemical data into the MIT ocean general circulation model. * Theme 2: Modeling. University of Arizona and Princeton University, together with NOAA\u0027s Geophysical Fluid Dynamics Laboratory (GFDL), will use SOCCOM observations to develop data/model assessment metrics and next-generation model analysis and evaluation, with the goal of improving process level understanding and reducing the uncertainty in projections of our future climate. Led by Climate Central, an independent, non-profit journalism and research organization that promotes understanding of climate science, SOCCOM will collaborate with educators and media professionals to inform policymakers and the public about the challenges of climate change and its impacts on marine life in the context of the Southern Ocean. In addition, the integrated team of SOCCOM scientists and educators will: * communicate data and results of the SOCCOM efforts quickly to the public through established data networks, publications, broadcast media, and a public portal; * train a new generation of diverse ocean scientists, including undergraduate students, graduate students, and postdoctoral fellows versed in field techniques, data calibration, modeling, and communication of research to non-scientists; * transfer new sensor technology and related software to autonomous instrument providers and manufacturers to ensure that they become widely useable.", "east": -66.7689, "geometry": "POINT(-130.26855 -65.4867)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "USAP-DC; R/V NBP; NBP1701; CLIMATE MODELS", "locations": null, "north": -52.6153, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science", "paleo_time": null, "persons": "Sarmiento, Jorge; Rynearson, Tatiana", "platforms": "OTHER \u003e MODELS \u003e CLIMATE MODELS; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "PI website", "repositories": "PI website; R2R; USAP-DC", "science_programs": null, "south": -78.3581, "title": "Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM)", "uid": "p0000197", "west": 166.2318}, {"awards": "1443474 Jenkins, Bethany", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP1608", "datasets": [{"dataset_uid": "002664", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1608", "url": "https://www.rvdata.us/search/cruise/NBP1608"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "This project focuses on an important group of photosynthetic algae in the Southern Ocean (SO), diatoms, and the roles associated bacterial communities play in modulating their growth. Diatom growth fuels the SO food web and balances atmospheric carbon dioxide by sequestering the carbon used for growth to the deep ocean on long time scales as cells sink below the surface. The diatom growth is limited by the available iron in the seawater, most of which is not freely available to the diatoms but instead is tightly bound to other compounds. The nature of these compounds and how phytoplankton acquire iron from them is critical to understanding productivity in this region and globally. The investigators will conduct experiments to characterize the relationship between diatoms, their associated bacteria, and iron in open ocean and inshore waters. Experiments will involve supplying nutrients at varying nutrient ratios to natural phytoplankton assemblages to determine how diatoms and their associated bacteria respond to different conditions. This will provide valuable data that can be used by climate and food web modelers and it will help us better understand the relationship between iron, a key nutrient in the ocean, and the organisms at the base of the food web that use iron for photosynthetic growth and carbon uptake. The project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. The project supports early career senior investigators and the training of graduate and undergraduate students as well as outreach activities with middle school Girl Scouts in Rhode Island, inner city middle and high school age girls in Virginia, and middle school girls in Florida. The project combines trace metal biogeochemistry, phytoplankton cultivation, and molecular biology to address questions regarding the production of iron-binding compounds and the role of diatom-bacterial interactions in this iron-limited region. Iron is an essential micronutrient for marine phytoplankton. Phytoplankton growth in the SO is limited by a lack of sufficient iron, with important consequences for carbon cycling and climate in this high latitude regime. Some of the major outstanding questions in iron biogeochemistry relate to the organic compounds that bind \u003e99.9% of dissolved iron in surface oceans. The investigators\u0027 prior research in this region suggests that production of strong iron-binding compounds in the SO is linked to diatom blooms in waters with high nitrate to iron ratios. The sources of these compounds are unknown but the investigators hypothesize that they may be from bacteria, which are known to produce such compounds for their own use. The project will test three hypotheses concerning the production of these iron-binding compounds, limitations on the biological availability of iron even if present in high concentrations, and the roles of diatom-associated bacteria in these processes. Results from this project will provide fundamental information about the biogeochemical trigger, and biological sources and function, of natural strong iron-binding compound production in the SO, where iron plays a critical role in phytoplankton productivity, carbon cycling, and climate regulation.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V NBP; NBP1608", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Jenkins, Bethany", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Investigating Iron-inding Ligands in Southern Ocean Diatom Communities: The Role of Diatom-Bacteria Associations", "uid": "p0000852", "west": null}, {"awards": "1341284 Swanger, Kate", "bounds_geometry": "POLYGON((161 -77.5,161.2 -77.5,161.4 -77.5,161.6 -77.5,161.8 -77.5,162 -77.5,162.2 -77.5,162.4 -77.5,162.6 -77.5,162.8 -77.5,163 -77.5,163 -77.525,163 -77.55,163 -77.575,163 -77.6,163 -77.625,163 -77.65,163 -77.675,163 -77.7,163 -77.725,163 -77.75,162.8 -77.75,162.6 -77.75,162.4 -77.75,162.2 -77.75,162 -77.75,161.8 -77.75,161.6 -77.75,161.4 -77.75,161.2 -77.75,161 -77.75,161 -77.725,161 -77.7,161 -77.675,161 -77.65,161 -77.625,161 -77.6,161 -77.575,161 -77.55,161 -77.525,161 -77.5))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 09 Oct 2017 00:00:00 GMT", "description": "Paragraph for Laypersons: This research focuses on the history of rock glaciers and buried glacial ice in the McMurdo Dry Valleys region of Antarctica. Rock glaciers are flowing mixtures of ice and sediments common throughout alpine and high-latitude regions on Earth and Mars. Despite similar appearances, rock glaciers can form under highly variable environmental and hydrological conditions. The main research questions addressed here are: 1) what environmental and climatological conditions foster long-term preservation of rock glaciers in Antarctica, 2) what role do rock glaciers play in Antarctic landscape evolution and the local water cycle, and 3) what can rock glaciers reveal about the extent and timing of previous glacial advances? The project will involve two Antarctic field seasons to image the interior of Antarctic rock glaciers using ground-penetrating radar, to gather ice cores for chemical analyses, and to gather surface sediments for dating. The Dry Valleys host the world?s southernmost terrestrial ecosystem (soil, stream and lake micro-organisms and mosses); rock glaciers and ground-ice are an important and poorly-studied source of meltwater and nutrients for these ecosystems. This research will shed light on the glacial and hydrological history of the Dry Valleys region and the general environmental conditions the foster rock glaciers, features that generally occur in warmer and/or wetter locations. The research will provide support for five graduate/undergraduate students, who will actively gather data in the field, followed by interpretation, dissemination and presentation of the data. Additionally, the researchers will participate in a range of educational activities including outreach with local K-12 in the Lowell, MA region, such as summer workshops and classroom visits with hands-on activities. A series of time-lapse images of hydrological processes, and videos of researchers in the field, will serve as a dramatic centerpiece in community and school presentations. Paragraph for Scientific Community: Rock glaciers are common in the McMurdo Dry Valleys, but are concentrated in a few isolated regions: western Taylor Valley, western Wright Valley, Pearse Valley and Bull Pass. The investigators hypothesize that the origin and age of these features varies by region: that rock glaciers in Pearse and Taylor valley originated as buried glacier ice, whereas rock glaciers in Wright Valley formed through permafrost processes, such as mobilization of ice-rich talus. To address these hypotheses, the project will: 1) develop relative and absolute chronologies for the rock glaciers through field mapping and optically stimulated luminescence dating of overlying sediments, 2) assess the origin of clean-ice cores through stable isotopic analyses, and 3) determine if present-day soil-moisture and temperature conditions are conducive to rock glacier formation/preservation. The proposed research will provide insight into the spatial and temporal distribution of buried glacier ice and melt-water-derived ground ice in the McMurdo Dry Valleys, with implications for glacial history, as well as the potential role of rock glaciers in the regional hydrologic cycle (and the role of ground-ice as a source for moisture and nutrient for local ecosystems). The project will provide general constraints on the climatic and hydrologic conditions that foster permafrost rock glaciers, features that generally occur under warmer and wetter conditions than those found in the present-day McMurdo Dry Valleys. The application of OSL and cosmogenic exposure dating is novel to rock glaciers, geomorphic features that have proven difficult to date, despite their ubiquity in Antarctica and their potential scientific importance. The research will provide support for five graduate/undergraduate students, who will participate in the field work, followed by interpretation, dissemination and presentation of the data. The researchers will participate in a range of educational activities including outreach with local K-12 in the Lowell, MA region, such as summer workshops and classroom visits with hands-on activities.", "east": 163.0, "geometry": "POINT(162 -77.625)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Swanger, Kate", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -77.75, "title": "Origin and Climatic Significance of Rock Glaciers in the McMurdo Dry Valleys: Assessing Spatial and Temporal Variability", "uid": "p0000297", "west": 161.0}, {"awards": "0838948 Hofmann, Eileen", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 14 Nov 2013 00:00:00 GMT", "description": "Abstract\u003cbr/\u003e\u003cbr/\u003eThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThe Ross Sea is a highly productive area within the Southern Ocean, but it experiences substantial variability in both physical (temperature, ice concentrations, salinity, winds, and current velocities) and biogeochemical (chlorophyll, productivity, micronutrients, higher trophic level standing stocks, gases, etc.) conditions. Understanding the temporal and spatial oceanographic variations in physical forcing is essential to understanding the ecological functioning within the Ross Sea. There are a number of models of the physical oceanography of the Ross Sea that characterize the observed circulation. Unfortunately, data on the appropriate time scales (daily, monthly, seasonal, and interannual) to completely evaluate those models are lacking. The proposed research is a demonstration project to characterize the physical and biological oceanography of the southern Ross Sea using newly developed Glider technology to sample the region continuously through the growing season, to collect temperature, salinity, fluorescence, oxygen and optical transmission data. These field data will be used to assist in evaluation of an eddy-resolving ROMS-based coupled circulation-biological model, and, along with satellite ocean color information, will be assimilated into an ecosystem model. Data assimilation techniques will reduce the model uncertainties of the circulation and food webs of the region. The intellectual merit of this effort arises from the combination of field-based investigations using a novel technology (one that is far more cost-effective than ship-based studies) with state-of-the-art biological-physical models and advanced data assimilation techniques. The research will provide new insights into the complex oceanographic phenomena of the Antarctic continental shelves and is a novel method of continuing the studies of the southern Ross Sea. Broader impacts of the proposed research include training of graduate and undergraduate students and partnership with several ongoing outreach programs dealing with scientific research in the Southern Ocean. At least 2 graduate students will be supported by this research, and it will be a critical component of a variety of outreach programs in Virginia, including a High School Marine Science Day, Boy and Girl Scout education, and middle school curriculum improvement. The investigators also will create a web site to foster immediate release of the data collected by the glider, and seek a linkage with schools at various levels (middle, high school and Universities) that potentially could incorporate the data into classroom activities", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hofmann, Eileen; Dinniman, Michael; Klinck, John M.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Seasonal Evolution of Chemical and Biological Variability in the Ross Sea", "uid": "p0000262", "west": null}, {"awards": "0636218 Gillies, John", "bounds_geometry": "POLYGON((161.85075 -77.37241,161.990843 -77.37241,162.130936 -77.37241,162.271029 -77.37241,162.411122 -77.37241,162.551215 -77.37241,162.691308 -77.37241,162.831401 -77.37241,162.971494 -77.37241,163.111587 -77.37241,163.25168 -77.37241,163.25168 -77.395964,163.25168 -77.419518,163.25168 -77.443072,163.25168 -77.466626,163.25168 -77.49018000000001,163.25168 -77.513734,163.25168 -77.537288,163.25168 -77.56084200000001,163.25168 -77.584396,163.25168 -77.60795,163.111587 -77.60795,162.971494 -77.60795,162.831401 -77.60795,162.691308 -77.60795,162.551215 -77.60795,162.411122 -77.60795,162.271029 -77.60795,162.130936 -77.60795,161.990843 -77.60795,161.85075 -77.60795,161.85075 -77.584396,161.85075 -77.56084200000001,161.85075 -77.537288,161.85075 -77.513734,161.85075 -77.49018000000001,161.85075 -77.466626,161.85075 -77.443072,161.85075 -77.419518,161.85075 -77.395964,161.85075 -77.37241))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 05 Jun 2012 00:00:00 GMT", "description": "This project characterizes wind-driven sediment transport in the McMurdo Dry Valleys of \u003cbr/\u003eAntarctica during both winter and summer periods. Wind is the primary sculptor of\u003cbr/\u003eterrain in this region and winter measurements, which have never been undertaken, are\u003cbr/\u003eessential for determining the frequency and magnitude of transport events. The projects\u003cbr/\u003egoal is to determine if the existing landforms represent relics from past climate regimes\u003cbr/\u003eor contemporary processes. The project involves two major activities: (1) dynamic and\u003cbr/\u003etime-integrated measurements of sand transport to characterize the seasonal behavior,\u003cbr/\u003efrequency, and magnitude at four sites and (2) detailed surveying of an unusual\u003cbr/\u003ewind-formed surface feature, the gravel megaripples found in the Wright Valley. In\u003cbr/\u003eaddition to interpreting Dry Valleys geomorphology, these data will provide a more\u003cbr/\u003equantitative assessment of wind-aided distribution of nutrients, plants, and animals to\u003cbr/\u003eterrestrial and aquatic ecosystems throughout the Dry Valleys. This research will also\u003cbr/\u003eprovide quantitative information on the effects of extreme cold and low humidity on\u003cbr/\u003etransport thresholds and rates, which can be applied to cold desert environments of the\u003cbr/\u003eArctic, Antarctic, and Mars.", "east": 163.25168, "geometry": "POINT(162.551215 -77.49018)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": -77.37241, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Gillies, John", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -77.60795, "title": "Dynamics of Aeolian Processes in the McMurdo Dry Valleys, Antarctica", "uid": "p0000739", "west": 161.85075}, {"awards": "0230499 Kieber, David", "bounds_geometry": "POLYGON((-179.99998 -43.58056,-143.999984 -43.58056,-107.999988 -43.58056,-71.999992 -43.58056,-35.999996 -43.58056,0 -43.58056,35.999996 -43.58056,71.999992 -43.58056,107.999988 -43.58056,143.999984 -43.58056,179.99998 -43.58056,179.99998 -46.971468,179.99998 -50.362376,179.99998 -53.753284,179.99998 -57.144192,179.99998 -60.5351,179.99998 -63.926008,179.99998 -67.316916,179.99998 -70.707824,179.99998 -74.098732,179.99998 -77.48964,143.999984 -77.48964,107.999988 -77.48964,71.999992 -77.48964,35.999996 -77.48964,0 -77.48964,-35.999996 -77.48964,-71.999992 -77.48964,-107.999988 -77.48964,-143.999984 -77.48964,-179.99998 -77.48964,-179.99998 -74.098732,-179.99998 -70.707824,-179.99998 -67.316916,-179.99998 -63.926008,-179.99998 -60.5351,-179.99998 -57.144192,-179.99998 -53.753284,-179.99998 -50.362376,-179.99998 -46.971468,-179.99998 -43.58056))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001616", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0409"}], "date_created": "Tue, 17 Jan 2012 00:00:00 GMT", "description": "Areas of the Southern Ocean have spectacular blooms of phytoplankton during the austral spring and early summer. One of the dominant phytoplankton species, the haptophyte Phaeocystis antarctica, is a prolific producer of the organic sulfur compound dimethylsulfoniopropionate (DMSP) and Phaeocystis blooms are associated with some of the world\u0027s highest concentrations of DMSP and its volatile degradation product, dimethylsulfide (DMS). Sulfur, in the form of DMS, is transferred from the oceans to the atmosphere and can affect the chemistry of precipitation and influence cloud properties and possibly climate. DMSP and DMS are also quantitatively significant components of the carbon, sulfur and energy flows in many marine food webs, although very little information is available on these processes in high latitude systems. \u003cbr/\u003e\u003cbr/\u003eThis project will study how solar radiation and iron cycling affect DMSP and DMS production by phytoplankton, and the subsequent utilization of these labile forms of organic matter by the microbial food web. Four interrelated hypotheses will be tested in field-based experiments and in situ observations: 1) solar radiation, including enhanced UV-B due to seasonal ozone depletion, plays an important role in determining the net ecosystem production of DMS in the Ross Sea; 2) development of shallow mixed layers promotes the accumulation of DMS in surface waters, because of enhanced exposure of plankton communities to high doses of solar radiation; 3) DMSP production and turnover represent a significant part of the carbon and sulfur flux through polar food webs; 4) bloom development and resulting nutrient depletion (e.g., iron) will result in high production rates of DMSP and high DMS concentrations and atmospheric fluxes. Results from this study will greatly improve understanding of the underlying mechanisms controlling DMSP and DMS concentrations in polar waters, thereby improving our ability to predict DMS fluxes to the atmosphere from this important climatic region. \u003cbr/\u003e\u003cbr/\u003eBoth Drs. Kieber and Kiene actively engage high school, undergraduate and graduate students in their research and are involved in formal programs that target underrepresented groups (NSF-REU and the American Chemical Society-SEED). This project will continue this type of educational outreach. The PIs also teach undergraduate and graduate courses and incorporation of research experiences into their classes will enrich student learning experiences.", "east": 179.99998, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -43.58056, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Kiene, Ronald", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.48964, "title": "Collaborative Research: Impact of Solar Radiation and Nutrients on Biogeochemical Cycling of DMSP and DMS in the Ross Sea, Antarctica", "uid": "p0000582", "west": -179.99998}, {"awards": "0230497 Kiene, Ronald", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0409", "datasets": [{"dataset_uid": "002640", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0409", "url": "https://www.rvdata.us/search/cruise/NBP0409"}, {"dataset_uid": "001616", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0409"}], "date_created": "Tue, 17 Jan 2012 00:00:00 GMT", "description": "Areas of the Southern Ocean have spectacular blooms of phytoplankton during the austral spring and early summer. One of the dominant phytoplankton species, the haptophyte Phaeocystis antarctica, is a prolific producer of the organic sulfur compound dimethylsulfoniopropionate (DMSP) and Phaeocystis blooms are associated with some of the world\u0027s highest concentrations of DMSP and its volatile degradation product, dimethylsulfide (DMS). Sulfur, in the form of DMS, is transferred from the oceans to the atmosphere and can affect the chemistry of precipitation and influence cloud properties and possibly climate. DMSP and DMS are also quantitatively significant components of the carbon, sulfur and energy flows in many marine food webs, although very little information is available on these processes in high latitude systems. \u003cbr/\u003e\u003cbr/\u003eThis project will study how solar radiation and iron cycling affect DMSP and DMS production by phytoplankton, and the subsequent utilization of these labile forms of organic matter by the microbial food web. Four interrelated hypotheses will be tested in field-based experiments and in situ observations: 1) solar radiation, including enhanced UV-B due to seasonal ozone depletion, plays an important role in determining the net ecosystem production of DMS in the Ross Sea; 2) development of shallow mixed layers promotes the accumulation of DMS in surface waters, because of enhanced exposure of plankton communities to high doses of solar radiation; 3) DMSP production and turnover represent a significant part of the carbon and sulfur flux through polar food webs; 4) bloom development and resulting nutrient depletion (e.g., iron) will result in high production rates of DMSP and high DMS concentrations and atmospheric fluxes. Results from this study will greatly improve understanding of the underlying mechanisms controlling DMSP and DMS concentrations in polar waters, thereby improving our ability to predict DMS fluxes to the atmosphere from this important climatic region. \u003cbr/\u003e\u003cbr/\u003eBoth Drs. Kieber and Kiene actively engage high school, undergraduate and graduate students in their research and are involved in formal programs that target underrepresented groups (NSF-REU and the American Chemical Society-SEED). This project will continue this type of educational outreach. The PIs also teach undergraduate and graduate courses and incorporation of research experiences into their classes will enrich student learning experiences.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Kiene, Ronald", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Impact of Solar Radiation and Nutrients on Biogeochemical Cycling of DMSP and DMS in the Ross Sea, Antarctica", "uid": "p0000832", "west": null}, {"awards": "0835480 Paulsen, Timothy", "bounds_geometry": "POLYGON((160 -84,161.5 -84,163 -84,164.5 -84,166 -84,167.5 -84,169 -84,170.5 -84,172 -84,173.5 -84,175 -84,175 -84.15,175 -84.3,175 -84.45,175 -84.6,175 -84.75,175 -84.9,175 -85.05,175 -85.2,175 -85.35,175 -85.5,173.5 -85.5,172 -85.5,170.5 -85.5,169 -85.5,167.5 -85.5,166 -85.5,164.5 -85.5,163 -85.5,161.5 -85.5,160 -85.5,160 -85.35,160 -85.2,160 -85.05,160 -84.9,160 -84.75,160 -84.6,160 -84.45,160 -84.3,160 -84.15,160 -84))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 18 Aug 2010 00:00:00 GMT", "description": "This Small Grant for Exploratory Research investigates the origin of the Queen Maud Mountains, Antarctica, to understand the geodynamic processes that shaped Gondwana. Ages of various rock units will be determined using LA-MC-ICPMS analyses of zircons and 40Ar-39Ar analyses of hornblende. The project?s goal is to time deformation , sedimentary unit deposition, magmatism, and regional cooling. Results will be correlated with related rock units in Australia. By constraining the length and time scales of processes, the outcomes will offer insight into the geodynamic processes that caused deformation, such as slab roll-back or extension. In addition, dating these sedimentary units may offer insight into the Cambrian explosion of life, since the sediment flux caused by erosion of these mountains is conjectured to have seeded the ocean with the nutrients required for organisms to develop hard body parts. The broader impacts include support for undergraduate research.", "east": 175.0, "geometry": "POINT(167.5 -84.75)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": -84.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Paulsen, Timothy", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -85.5, "title": "SGER:Exploratory Research on the Timing of Early Paleozoic Orogenesis along Gonwana\u0027s Paleo-Pacific Margin, Queen Maud Mountains, Antarctica", "uid": "p0000336", "west": 160.0}, {"awards": "9910102 Padman, Laurence", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0104; Expedition data of NBP0202; Expedition data of NBP0204", "datasets": [{"dataset_uid": "002657", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002597", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0204", "url": "https://www.rvdata.us/search/cruise/NBP0204"}, {"dataset_uid": "002606", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002643", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0204", "url": "https://www.rvdata.us/search/cruise/NBP0204"}, {"dataset_uid": "002586", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0202", "url": "https://www.rvdata.us/search/cruise/NBP0202"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project is a contribution to a coordinated attempt to understand the interactions of biological and physical dynamics by developing relationships among the evolution of the antarctic winter ice and snow cover, biological habitat variability, and the seasonal progression of marine ecological processes. The work will be carried out in the context of the Southern Ocean Experiment of the Global Ocean Ecosystem Dynamics Study (Globec), a large, multi-investigator study of the winter survival strategy of krill under the antarctic sea ice in the vicinity of Marguerite Bay on the western side of the Antarctic Peninsula. There are several aspects to this project: One is the collection, analysis, and archiving of Acoustic Doppler Current Profiler (ADCP), and Conductivity-Temperature-Depth (CTD) data in order to characterize mesoscale circulation features and the regional hydrography. Another is to develop an accurate and fully validated model of tidal currents in Marguerite Bay. A third is to provide a data set of small-scale processes such as shear instabilities, tidal stirring, mesoscale eddies, and double diffusion, that are required for the effective parameterization of the vertical diffusivities of heat, salt, and nutrients. The results of this project will provide a unified data set that satisfies the data requirement of the coordinated chemical and biological studies which will link water column and sea ice processes with the biology of krill and its predators. The results further will help to link these winter observations to similar observations made in summer and elsewhere around Antarctic in the international context of the Globec program. The overall objective is to develop a comprehensive ecosystem model that will test our understanding of the system, determine its sensitivities, and to provide an organizing mechanism for integrating the Southern Ocean Globec observations. ***", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Padman, Laurence", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Mesoscale Circulation, Tides and Mixing on the Western Antarctic Peninsula Shelf: A Component of WINDSSOCK (ESR proposal #99-48)", "uid": "p0000806", "west": null}, {"awards": "0087401 Smith, Walker", "bounds_geometry": null, "dataset_titles": "Current Meter Data from the Ross Sea acquired with a Mooring deployed in December 2005 and recovered during the Nathaniel B. Palmer expedition NBP0601A (2006); Expedition data of NBP0301B; Expedition data of NBP0305A; Expedition data of NBP0501; Expedition data of NBP0601A; Fluorometer Data acquired on Moorings deployed the Ross Sea and recovered during the Nathaniel B. Palmer expedition NBP0601A (2006); Processed Fluid Chemistry Data from the Ross Sea acquired during the Nathaniel B. Palmer expedition NBP0601A", "datasets": [{"dataset_uid": "002627", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "601339", "doi": null, "keywords": "Antarctica; Current Meter; Mooring; NBP0601A; Oceans; Physical Oceanography; Ross Sea; Southern Ocean", "people": "Asper, Vernon; Smith, Walker", "repository": "USAP-DC", "science_program": null, "title": "Current Meter Data from the Ross Sea acquired with a Mooring deployed in December 2005 and recovered during the Nathaniel B. Palmer expedition NBP0601A (2006)", "url": "https://www.usap-dc.org/view/dataset/601339"}, {"dataset_uid": "002623", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0601A", "url": "https://www.rvdata.us/search/cruise/NBP0601A"}, {"dataset_uid": "601333", "doi": null, "keywords": "Antarctica; Flourometer; Mooring; NBP0601A; Ross Sea; Southern Ocean", "people": "Asper, Vernon; Smith, Walker", "repository": "USAP-DC", "science_program": null, "title": "Fluorometer Data acquired on Moorings deployed the Ross Sea and recovered during the Nathaniel B. Palmer expedition NBP0601A (2006)", "url": "https://www.usap-dc.org/view/dataset/601333"}, {"dataset_uid": "002622", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "002621", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0305A", "url": "https://www.rvdata.us/search/cruise/NBP0305A"}, {"dataset_uid": "002583", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0301B", "url": "https://www.rvdata.us/search/cruise/NBP0301B"}, {"dataset_uid": "601341", "doi": null, "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Fluid Chemistry Data; Mooring; NBP0601A; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Seawater Measurements; Southern Ocean", "people": "Smith, Walker; Asper, Vernon", "repository": "USAP-DC", "science_program": null, "title": "Processed Fluid Chemistry Data from the Ross Sea acquired during the Nathaniel B. Palmer expedition NBP0601A", "url": "https://www.usap-dc.org/view/dataset/601341"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "During the past few decades of oceanographic research, it has been recognized that significant variations in biogeochemical processes occur among years. Interannual variations in the Southern Ocean are known to occur in ice extent and concentration, in the composition of herbivore communities, and in bird and marine mammal distributions and reproductive success. However, little is known about the interannual variations in production of phytoplankton or the role that these variations play in the food web. This project will collect time series data on the seasonal production of phytoplankton in the southern Ross Sea, Antarctica. Furthermore, it will assess the interannual variations of the production of the two major functional groups of the system, diatoms and Phaeocystis Antarctica, a colonial haptophyte. The Ross Sea provides a unique setting for this type of investigation for a number of reasons. For example, a de facto time-series has already been initiated in the Ross Sea through the concentration of a number of programs in the past ten years. It also is well known that the species diversity is reduced relative to other systems and its seasonal production is as great as anywhere in the Antarctic. Most importantly, seasonal production of both the total phytoplankton community (as well as its two functional groups) can be estimated from late summer nutrient profiles. The project will involve short cruises on the US Coast Guard ice breakers in the southern Ross Sea that will allow the collection of water column nutrient and particulate after data at specific locations in the late summer of each of five years. Additionally, two moorings with in situ nitrate analyzers moored at fifteen will be deployed, thus collecting for the first time in the in the Antarctic a time-series of euphotic zone nutrient concentrations over the entire growing season. All nutrient data will be used to calculate seasonal production for each year in the southern Ross Sea and compared to previously collected information, thereby providing an assessment of interannual variations in net community production. Particulate matter data will allow us to estimate the amount of export from the surface layer by late summer, and therefore calculate the interannual variability of this ecosystem process. Interannual variations of seasonal production (and of the major taxa of producers) are a potentially significant feature in the growth and survival of higher trophic levels within the food web of the Ross Sea. They are also important in order to understand the natural variability in biogeochemical processes of the region. Because polar regions such as the Ross Sea are predicted to be impacted by future climate change, biological changes are also anticipated. Placing these changes in the context of natural variability is an essential element of understanding and predicting such alterations. This research thus seeks to quantify the natural variability of an Antarctic coastal system, and ultimately understand its causes and impacts on food webs and biogeochemical cycles of the Ross Sea.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "Ross Sea; AMD; USAP-DC; Amd/Us; USA/NSF; R/V NBP", "locations": "Ross Sea", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Walker; Gordon, Arnold", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "Interannual Variability in the Antarctic-Ross Sea (IVARS): Nutrients and Seasonal Production", "uid": "p0000803", "west": null}, {"awards": "0444134 Mitchell, B. Gregory", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0606", "datasets": [{"dataset_uid": "002646", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0606", "url": "https://www.rvdata.us/search/cruise/NBP0606"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The Shackleton Fracture Zone (SFZ) in Drake Passage of the Southern Ocean defines a boundary between low and high phytoplankton waters. Low chlorophyll water flowing through the southern Drake Passage emerges as high chlorophyll water to the east, and recent evidence indicates that the Southern Antarctic Circumpolar Current Front (SACCF) is steered south of the SFZ onto the Antarctic Peninsula shelf where mixing between the water types occurs. The mixed water is then advected off-shelf with elevated iron and phytoplankton biomass. The SFZ is therefore an ideal natural laboratory to improve the understanding of plankton community responses to natural iron fertilization, and how these processes influence export of organic carbon to the ocean interior. The bathymetry of the region is hypothesized to influence mesoscale circulation and transport of iron, leading to the observed patterns in phytoplankton biomass. The position of the Antarctic Circumpolar Current (ACC) is further hypothesized to influence the magnitude of the flow of ACC water onto the peninsula shelf, mediating the amount of iron transported into the Scotia Sea. To address these hypotheses, a research cruise will be conducted near the SFZ and to the east in the southern Scotia Sea. A mesoscale station grid for vertical profiles, water sampling, and bottle incubation enrichment experiments will complement rapid surface surveys of chemical, plankton, and hydrographic properties. Distributions of manganese, aluminum and radium isotopes will be determined to trace iron sources and estimate mixing rates. Phytoplankton and bacterial physiological states (including responses to iron enrichment) and the structure of the plankton communities will be studied. The primary goal is to better understand how plankton productivity, community structure and export production in the Southern Ocean are affected by the coupling between bathymetry, mesoscale circulation, and distributions of limiting nutrients. The proposed work represents an interdisciplinary approach to address the fundamental physical, chemical and biological processes that contribute to the abrupt transition in chl-a which occurs near the SFZ. Given recent indications that the Southern Ocean is warming, it is important to advance the understanding of conditions that regulate the present ecosystem structure in order to predict the effects of climate variability. This project will promote training and learning across a broad spectrum of groups. Funds are included to support postdocs, graduate students, and undergraduates. In addition, this project will contribute to the development of content for the Polar Science Station website, which has been a resource since 2001 for instructors and students in adult education, home schooling, tribal schools, corrections education, family literacy programs, and the general public.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Mitchell, B.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Plankton Community Structure and Iron Distribution in the Southern Drake Passage and Scotia Sea", "uid": "p0000837", "west": null}, {"awards": "9317379 Foster, Theodore", "bounds_geometry": "POLYGON((143.4953 -43.56287,146.46757 -43.56287,149.43984 -43.56287,152.41211 -43.56287,155.38438 -43.56287,158.35665 -43.56287,161.32892 -43.56287,164.30119 -43.56287,167.27346 -43.56287,170.24573 -43.56287,173.218 -43.56287,173.218 -46.238515,173.218 -48.91416,173.218 -51.589805,173.218 -54.26545,173.218 -56.941095,173.218 -59.61674,173.218 -62.292385,173.218 -64.96803,173.218 -67.643675,173.218 -70.31932,170.24573 -70.31932,167.27346 -70.31932,164.30119 -70.31932,161.32892 -70.31932,158.35665 -70.31932,155.38438 -70.31932,152.41211 -70.31932,149.43984 -70.31932,146.46757 -70.31932,143.4953 -70.31932,143.4953 -67.643675,143.4953 -64.96803,143.4953 -62.292385,143.4953 -59.61674,143.4953 -56.941095,143.4953 -54.26545,143.4953 -51.589805,143.4953 -48.91416,143.4953 -46.238515,143.4953 -43.56287))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002240", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9502"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9317379 Foster This project is study of the deep and bottom water formation processes of the antarctic continental shelf off Wilkes Land between 145 deg E longitude and 160 deg E longitude. The project is to be carried out jointly with an Australian oceanographic project. Preliminary work in 1985 has shown that hydrographic sections in this area are quite similar to those of known deep water formation regions in the southern Weddell Sea. This project will include the year-long deployment of six current meter moorings, and tracer studies (oxygen, carbon dioxide, chlorofluorocarbons, stable isotopes, and nutrients) to test whether shelf waves and tides are the principal mechanism for mixing shelf water with the off-shore intermediate water. Two oceanographic cruises are planned for this work: a cruise of the RVIB Nathaniel B. Palmer in February 1995, and a cruise of the Australian ship R/V Aurora Australis in February 1996. ***", "east": 173.218, "geometry": "POINT(158.35665 -56.941095)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -43.56287, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Foster, Theodore; Foster, Ted", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -70.31932, "title": "Deep Water Formation off the Eastern Wilkes Land Coast of Antarctica", "uid": "p0000645", "west": 143.4953}, {"awards": "0338248 Takahashi, Taro", "bounds_geometry": "POLYGON((-68.0051 -52.7573,-67.35191 -52.7573,-66.69872 -52.7573,-66.04553 -52.7573,-65.39234 -52.7573,-64.73915 -52.7573,-64.08596 -52.7573,-63.43277 -52.7573,-62.77958 -52.7573,-62.12639 -52.7573,-61.4732 -52.7573,-61.4732 -53.96927,-61.4732 -55.18124,-61.4732 -56.39321,-61.4732 -57.60518,-61.4732 -58.81715,-61.4732 -60.02912,-61.4732 -61.24109,-61.4732 -62.45306,-61.4732 -63.66503,-61.4732 -64.877,-62.12639 -64.877,-62.77958 -64.877,-63.43277 -64.877,-64.08596 -64.877,-64.73915 -64.877,-65.39234 -64.877,-66.04553 -64.877,-66.69872 -64.877,-67.35191 -64.877,-68.0051 -64.877,-68.0051 -63.66503,-68.0051 -62.45306,-68.0051 -61.24109,-68.0051 -60.02912,-68.0051 -58.81715,-68.0051 -57.60518,-68.0051 -56.39321,-68.0051 -55.18124,-68.0051 -53.96927,-68.0051 -52.7573))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001572", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0603"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This proposal is for the continuation and expansion of an underway program on the R/V Laurence M. Gould to measure dissolved carbon dioxide gas (pCO2) along with occasional total carbon dioxide (TCO2) in surface waters on transects of Drake Passage. The added observations include dissolved oxygen, as well as nutrient and carbon-13. The proposed work is similar to the underway measurement program made aboard R/V Nathaniel B. Palmer, and complements similar surface temperature and current data.\u003cbr/\u003eThe Southern Ocean is an important component of the global carbon budget. Low surface temperatures with consequently low vertical stability, ice formation, and high winds produce a very active environment for the exchange of gaseous carbon dioxide between the atmospheric and oceanic reservoirs. The Drake Passage is the narrowest point through which the Antarctic Circumpolar Current and its associated fronts must pass, and is the most efficient location for the measurement of latitudinal gradients of gas exchange. The generated time series will contribute towards two scientific goals: the quantification of the spatial and temporal variability and trends of surface carbon dioxide, oxygen, nutrients and C-13, and an understanding of the dominant processes that contribute to the observed variability.", "east": -61.4732, "geometry": "POINT(-64.73915 -58.81715)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.7573, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Takahashi, Taro", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -64.877, "title": "Collaborative Research: Processes Driving Spatial and Temporal Variability of Surface pCO2 in the Drake Passage", "uid": "p0000572", "west": -68.0051}, {"awards": "0636975 Sweeney, Colm", "bounds_geometry": null, "dataset_titles": "Expedition data of LMG0909", "datasets": [{"dataset_uid": "002721", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0909", "url": "https://www.rvdata.us/search/cruise/LMG0909"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The proposed project will expand the suite of observations and lengthen the existing time series of underway surface dissolved carbon dioxide (pCO2) measurements transects across the Drake Passage on the R/VIB L.M. Gould. The additional observations include oxygen, nutrients and total CO2 (TCO2) concentrations, and the 13C to 12C ratio of TCO2. The continued and expanded time series will contribute towards two main scientific goals: the quantification of the spatial and temporal variability and the trends of surface carbon dioxide species in four major water mass regimes in the Drake Passage, and the understanding of the dominant processes and changes in those processes that contribute to the variability in surface pCO2 and the resulting air-sea flux of CO2 in the Drake Passage. The expanded program will also include the analysis of the 14C/12C of TCO2 and the specific study of the observations on one short wintertime cruise, with the objective of testing the hypothesis that the dissolved carbon dioxide in surface waters of the Drake Passage is determined by the degree of winter mixing. This is of special significance in light of two scenarios that may be affecting the ventilation of Southern Ocean deep water now and in the future: a decrease in water column stratification with the observations of higher zonal winds, or an increase in stratification due to higher precipitation and warming from climate change. If winter mixing determines the mean annual pCO2 in the Drake Passage, the increasing trend in atmospheric pCO2 should have little effect on sea surface pCO2.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Sweeney, Colm; Sweeney, Colm", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Surface pCO2 and the effects of Winter Time Overturning in the Drake Passage", "uid": "p0000872", "west": null}, {"awards": "0440478 Tang, Kam", "bounds_geometry": "POINT(166.66267 -77.85067)", "dataset_titles": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial Forms of Phaeocystis Antarctica", "datasets": [{"dataset_uid": "600043", "doi": "10.15784/600043", "keywords": "Biota; McMurdo Sound; Oceans; Phytoplankton; Ross Sea; Southern Ocean; Zooplankton", "people": "Tang, Kam; Smith, Walker", "repository": "USAP-DC", "science_program": null, "title": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial Forms of Phaeocystis Antarctica", "url": "https://www.usap-dc.org/view/dataset/600043"}], "date_created": "Mon, 04 May 2009 00:00:00 GMT", "description": "Phaeocystis Antarctica is a widely distributed phytoplankton that forms dense blooms and aggregates in the Southern Ocean. This phytoplankton and plays important roles in polar ecology and biogeochemistry, in part because it is a dominant primary producer, a main component of organic matter vertical fluxes, and the principal producer of volatile organic sulfur in the region. Yet P. Antarctica is also one of the lesser known species in terms of its physiology, life history and trophic relationships with other organisms; furthermore, information collected on other Phaeocystis species and from different locations may not be applicable to P. Antarctica in the Ross Sea. P. Antarctica occurs mainly as two morphotypes: solitary cells and mucilaginous colonies, which differ significantly in size, architecture and chemical composition. Relative dominance between solitary cells and colonies determines not only the size spectrum of the population, but also its carbon dynamics, nutrient uptake and utilization. Conventional thinking of the planktonic trophic processes is also challenged by the fact that colony formation could effectively alter the predator-prey interactions and interspecific competition. However, the factors that regulate the differences between solitary and colonial forms of P. Antarctica are not well-understood. The research objective of this proposal is therefore to address these over-arching questions:\u003cbr/\u003eo Do P. Antarctica solitary cells and colonies differ in growth, composition and\u003cbr/\u003ephotosynthetic rates?\u003cbr/\u003eo How do nutrients and grazers affect colony development and size distribution of P. \u003cbr/\u003eAntarctica?\u003cbr/\u003eo How do nutrients and grazers act synergistically to affect the long-term population\u003cbr/\u003edynamics of P. Antarctica? Experiments will be conducted in the McMurdo station with natural P. Antarctica assemblages and co-occurring grazers. Laboratory experiments will be conducted to study size-specific growth and photosynthetic rates of P. Antarctica, size-specific grazing mortality due to microzooplankton and mesozooplankton, the effects of macronutrients on the (nitrogen compounds) relative dominance of solitary cells and colonies, and the effects of micronutrient (Fe) and grazing related chemical signals on P. Antarctica colony development. Because this species is of critical importance in the Southern Ocean, and because this research will provide critical information on factors that regulate the role of P.Antarctica in food webs and biogeochemical cycles, a major gap in knowledge will be addressed. This project will train two marine science PhD students. The investigators will also collaborate with the School of Education and a marine science museum to communicate polar science to a broader audience.", "east": 166.66267, "geometry": "POINT(166.66267 -77.85067)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.85067, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Tang, Kam; Smith, Walker", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.85067, "title": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial forms of Phaeocystis antarctica", "uid": "p0000214", "west": 166.66267}, {"awards": "0741403 Sherrell, Robert", "bounds_geometry": "POLYGON((-180 -69,-172.5 -69,-165 -69,-157.5 -69,-150 -69,-142.5 -69,-135 -69,-127.5 -69,-120 -69,-112.5 -69,-105 -69,-105 -69.9,-105 -70.8,-105 -71.7,-105 -72.6,-105 -73.5,-105 -74.4,-105 -75.3,-105 -76.2,-105 -77.1,-105 -78,-112.5 -78,-120 -78,-127.5 -78,-135 -78,-142.5 -78,-150 -78,-157.5 -78,-165 -78,-172.5 -78,180 -78,178.8 -78,177.6 -78,176.4 -78,175.2 -78,174 -78,172.8 -78,171.6 -78,170.4 -78,169.2 -78,168 -78,168 -77.1,168 -76.2,168 -75.3,168 -74.4,168 -73.5,168 -72.6,168 -71.7,168 -70.8,168 -69.9,168 -69,169.2 -69,170.4 -69,171.6 -69,172.8 -69,174 -69,175.2 -69,176.4 -69,177.6 -69,178.8 -69,-180 -69))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 10 Mar 2009 00:00:00 GMT", "description": "Abstract\u003cbr/\u003e\u003cbr/\u003eThe research objective is (1) to determine the distributions and dynamics of a full suite of bioactive trace metals in dissolved and suspended particulate forms, along sampling transects of the Amundsen and Ross Seas. And (2) to test the sensitivity of overall cellular metal stoichiometry (metal/carbon ratios) to natural gradients in species assemblage and Fe availability. Our earlier findings from a single Ross Sea station and from a Drake Passage crossing suggest that Fe-limited phytoplankton cells are unusually enriched in Zn, Cu and Cd relative to biomass carbon, with strong implications for the biogeochemical cycling of these elements relative to carbon fluxes in the Southern Ocean. In collaboration with other researchers on the cruise, we will also measure metal stoichiometry of cells exposed to predicted 2010 temperature and carbon dioxide levels in shipboard incubation studies, as a window into possible effects of climate change on metals biogeochemistry in these regions. This proposal will support close international collaborations and lasting infrastructure development as US and Swedish scientists, and more importantly, their students, work toward shared the shared goal of understanding a region that is experiencing one of the fastest rates of climate change on the globe. Trace metal micro-nutrients are a key control on the productivity of Antarctic marine ecosystems. Our results will be made widely available through research publications and internet-available databases, and public outreach through COSEE at Rutgers University.", "east": -105.0, "geometry": "POINT(-148.5 -73.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -69.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Sherrell, Robert", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -78.0, "title": "SGER: Science-of-Opportunity Aboard Icebreaker Oden: Bioactive trace metals in the Amundsen and Ross Seas", "uid": "p0000561", "west": 168.0}, {"awards": "0444040 Zhou, Meng; 0443403 Measures, Christopher; 0230445 Measures, Christopher", "bounds_geometry": "POLYGON((-63 -60.3,-62 -60.3,-61 -60.3,-60 -60.3,-59 -60.3,-58 -60.3,-57 -60.3,-56 -60.3,-55 -60.3,-54 -60.3,-53 -60.3,-53 -60.77,-53 -61.24,-53 -61.71,-53 -62.18,-53 -62.65,-53 -63.12,-53 -63.59,-53 -64.06,-53 -64.53,-53 -65,-54 -65,-55 -65,-56 -65,-57 -65,-58 -65,-59 -65,-60 -65,-61 -65,-62 -65,-63 -65,-63 -64.53,-63 -64.06,-63 -63.59,-63 -63.12,-63 -62.65,-63 -62.18,-63 -61.71,-63 -61.24,-63 -60.77,-63 -60.3))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001663", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0402"}], "date_created": "Mon, 12 Jan 2009 00:00:00 GMT", "description": "The Shackleton Fracture Zone (SFZ) in the Drake Passage defines a boundary between low and high phytoplankton waters. West of Drake Passage, Southern Ocean waters south of the Polar Front and north of the Antarctic continent shelf have very low satellite-derived surface chlorophyll concentrations. Chlorophyll and mesoscale eddy kinetic energy are higher east of SFZ compared to values west of the ridge. In situ data from a 10-year survey of the region as part of the National Marine Fisheries Service\u0027s Antarctic Marine Living Resources program confirm the existence of a strong hydrographic and chlorophyll gradient in the region. An interdisciplinary team of scientists hypothesizes that bathymetry, including the 2000 m deep SFZ, influences mesoscale circulation and transport of iron leading to the observed phytoplankton patterns. To address this\u003cbr/\u003ehypothesis, the team proposes to examine phytoplankton and bacterial physiological states (including responses to iron enrichment) and structure of the plankton communities from virus to zooplankton, the concentration and distribution of Fe, Mn, and Al, and mesoscale flow patterns near the SFZ. Relationships between iron concentrations and phytoplankton characteristics will be examined in the context of the mesoscale transport of trace nutrients to determine how much of the observed variability in phytoplankton biomass can be attributed to iron supply, and to determine the most important sources of iron to pelagic waters east of the Drake Passage. The goal is to better understand how plankton productivity and community structure in the Southern Ocean are affected by the coupling between bathymetry, mesoscale circulation, and limiting nutrient distributions.\u003cbr/\u003e\u003cbr/\u003eThe research program includes rapid surface surveys of chemical, plankton, and hydrographic properties complemented by a mesoscale station grid for vertical profiles, water sampling, and bottle incubation enrichment experiments. Distributions of manganese and aluminum will be determined to help distinguish aeolian, continental shelf and upwelling sources of iron. The physiological state of the phytoplankton will be monitored by active fluorescence methods sensitive to the effects of iron limitation. Mass concentrations of pigment, carbon and nitrogen will be obtained by analysis of filtered samples, cell size distributions by flow cytometry, and species identification by microscopy. Primary production and photosynthesis parameters (absorption, quantum yields, variable fluorescence) will be measured on depth profiles, during surface surveys and on bulk samples from enrichment experiments. Viruses and bacteria will be examined for abundances, and bacterial production will be assessed in terms of whether it is limited by either iron or organic carbon sources. The proposed work will improve our understanding of processes controlling distributions of iron and the response of plankton communities in the Southern Ocean. This proposal also includes an outreach component comprised of Research Experiences for Undergraduates (REU), Teachers Experiencing the Antarctic and Arctic (TEA), and the creation of an educational website and K-12 curricular modules based on the project.", "east": -53.0, "geometry": "POINT(-58 -62.65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "R/V LMG", "locations": null, "north": -60.3, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Measures, Christopher; Selph, Karen; Zhou, Meng", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.0, "title": "Collaborative Research: Plankton Community Structure and Iron Distribution in the Southern Drake Passage", "uid": "p0000585", "west": -63.0}, {"awards": "0701232 Martinson, Douglas", "bounds_geometry": "POLYGON((-72 -64,-71.2 -64,-70.4 -64,-69.6 -64,-68.8 -64,-68 -64,-67.2 -64,-66.4 -64,-65.6 -64,-64.8 -64,-64 -64,-64 -64.4,-64 -64.8,-64 -65.2,-64 -65.6,-64 -66,-64 -66.4,-64 -66.8,-64 -67.2,-64 -67.6,-64 -68,-64.8 -68,-65.6 -68,-66.4 -68,-67.2 -68,-68 -68,-68.8 -68,-69.6 -68,-70.4 -68,-71.2 -68,-72 -68,-72 -67.6,-72 -67.2,-72 -66.8,-72 -66.4,-72 -66,-72 -65.6,-72 -65.2,-72 -64.8,-72 -64.4,-72 -64))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 03 Jun 2008 00:00:00 GMT", "description": "The Antarctic Peninsula (AP) is characterized by (1) the most rapid recent regional (winter) warming (5.35 times global mean), (2) a loss of nearly all its perennial sea ice cover on its western margin, and (3) 87% of the glaciers in retreat, contributing to global sea level rise. An ability to understand this change depends upon researchers\u0027 ability to better understand the underlying sources of this change and their driving mechanisms. Despite intensive efforts, the western AP (WAP) is chronically under-sampled. Therefore developing a capability to maintain a sustained in situ presence is a high scientific priority. The current proposal addresses this critical need through 2 objectives: (1) establish the feasibility of a Slocum Webb ocean glider to enable real-time high resolution data-adaptive polar oceanographic research; (2) address a critical question involving the regional climate change by measuring the ocean heat budget within a grid containing 14 years of ship-based ocean snapshots. This will involve the launch of the glider during the PAL-LTER austral summer research cruise, where it will fly the full along-shore distance of the LTER sample grid to be recovered at the southern extreme when the ship arrives there later in the summer. The glider will provide nearly continuous ocean property (temperature, salinity and pressure) coverage over this distance.\u003cbr/\u003e\u003cbr/\u003eIntellectual merit. The proposed activity will involve state of the art sampling methodology that will revolutionize the ability to address climate change and other scientific issues requiring sampling densities that could not be achieved by research vessels. Specifically, the adaptive sampling capability of the glider will be used to alter its course allowing identification of routes by which the source waters of the ocean heat (and nutrients) enter the continental shelf region, while the near-continuous sampling will provide a diagnosis of how well standard shipborne stations close the heat budget. Resources are adequate for this study due to heavy leveraging by the availability of the Rutgers SLOCUM Web glider, glider control center and participation of the team of experts that flew the first such glider.\u003cbr/\u003e\u003cbr/\u003eBroader Impacts. The proposed activity will advance discovery and understanding of the WAP responses to climate variability, to study the intricate feedback mechanisms associated with this variability and to better understand the chemical and physical processes associated with climate change. The data will be made available across the World Wide Web as it is collected, almost in real time, a potential bonanza for scientists during the upcoming International Polar Year, for classroom instruction and general outreach. Society will ultimately benefit from the improved knowledge of how climate change elsewhere in the world is impacting the unique ecosystem of the Antarctic, and driving glacial melt (sea level rise), among its other influences.", "east": -64.0, "geometry": "POINT(-68 -66)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e TEMPERATURE PROFILERS", "is_usap_dc": false, "keywords": "Pressure; Oceanography; AUVS; SLOCUM Web Glider; Salinity; Climate; Sampling", "locations": null, "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Martinson, Douglas; Kerfoot, John", "platforms": "WATER-BASED PLATFORMS \u003e UNCREWED VEHICLES \u003e SUBSURFACE \u003e AUVS", "repositories": null, "science_programs": null, "south": -68.0, "title": "Collaborative Research: Sloccum Glider in Western Antarctic Peninsula Continental Shelf Waters Pilot Study", "uid": "p0000734", "west": -72.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Effects of Environmental Change on Microbial Self-organized Patterns in Antarctic Lakes
|
2333917 |
2025-02-27 | Dong, Xiaoli; Sumner, Dawn | No dataset link provided | Ecosystems worldwide are threatened by anthropogenic changes in climate. Lakes are widely regarded as sentinels of climate change and, among these, polar lakes are the most sensitive. Beneath meters of permanent ice and liquid water, many Antarctic lakes contain complex microbial communities that are already being transformed by climate change. The structurally complex spatial patterns that these microbes create provide the opportunity to pursue research questions about spatial ecology that cannot be addressed elsewhere. This project focuses on research that will advance understanding of the spatial structure of benthic communities in Antarctic lakes, their relationships with environmental conditions, and predictions for likely changes in the future. This project will also advance methods in integrating the morphology and spatial patterning of modern microbial communities in relationship to their biophysical and biochemical environments. The quantitative framework being developed has potential to refine understanding of controls on microbial community patterning and thus interpretation of both the effects of climate change and ancient fossil microbial communities in the geologic record. Such understanding will address key questions about Earth’s evolutionary and environmental history and future. Lake Vanda in the McMurdo Dry Valleys, Antarctic, has modern microbial pinnacles covering its lake floor. Using existing datasets on spatial structure of benthic communities from 37 sites on the floor of Lake Vanda, the project team will apply recent theories from Spatial Ecology to investigate the mechanisms that give rise to spatial patterns of pinnacles formed by benthic microbes. The work addresses two questions: (1) What are the morphological and spatial patterns of pinnacles and how do they vary over developmental stages, along environment gradients, and from 2013 to 2023? And (2) what mechanisms give rise to the geometry of individual pinnacles and their spatial distribution? Lake Vanda provides an exceptional opportunity to address these questions. It features well characterized gradients in sedimentation, nutrients, irradiance, transport mechanism, and colonization history. Benthic communities at different locations in the lake manifest distinct spatial patterns, as they experience distinct conditions. Lake level has increased >10 m in the past few decades, creating additional opportunities for a “natural experiment” on pattern development by comparing relatively newly flooded substrates (pinnacles of 1 to 15 years old) with deeper, well-developed mats (> 70 years old). Since microbial communities respond to environmental change rapidly, analyses can characterize changes in patterns in pinnacle spatial data collected 9 years apart (Dec 2013 and Jan 2023), providing the opportunity to directly assess responses of spatially self-organized ecosystems to environmental change. As such, Lake Vanda is a natural laboratory that allows research (1) to effectively sort out mechanisms of pattern formation affecting benthic microbial communities residing there; and (2) to test the theory of spatial self-organization: mechanisms of pattern formation and responses to perturbations, applicable to ecosystems worldwide. Research questions will be addressed by integrating existing datasets, spatial pattern analyses, Bayesian statistical models, and process-based numerical models. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((161 -77.5,161.1 -77.5,161.2 -77.5,161.3 -77.5,161.4 -77.5,161.5 -77.5,161.6 -77.5,161.7 -77.5,161.8 -77.5,161.9 -77.5,162 -77.5,162 -77.51,162 -77.52,162 -77.53,162 -77.53999999999999,162 -77.55,162 -77.56,162 -77.57,162 -77.58,162 -77.58999999999999,162 -77.6,161.9 -77.6,161.8 -77.6,161.7 -77.6,161.6 -77.6,161.5 -77.6,161.4 -77.6,161.3 -77.6,161.2 -77.6,161.1 -77.6,161 -77.6,161 -77.58999999999999,161 -77.58,161 -77.57,161 -77.56,161 -77.55,161 -77.53999999999999,161 -77.53,161 -77.52,161 -77.51,161 -77.5)) | POINT(161.5 -77.55) | false | false | |||||||||||||||||||||
Fe Behavior and Bioavailability in Sub-aerial Runoff into the Ross Sea
|
1841228 |
2024-10-16 | Lyons, W. Berry; Gardner, Christopher B. | Phytoplankton, or microscopic marine algae, are an important part of the carbon cycle and can lower the rates of atmospheric carbon dioxide by transferring the atmospheric carbon into the oceans. The concentration of phytoplankton in the Southern Ocean is regularly limited by the availability of marine iron. This in turn influences the rate of carbon transfer from the atmosphere to the ocean. The primary source of iron in the Southern Ocean is eroded continental rock. Understanding the current and future sources of iron to the Southern Ocean as a result of increased melting of terrestrial glaciers is necessary for predicting future concentrations of Southern Ocean phytoplankton and the subsequent influence on the carbon cycle. A poorly understood source of iron to the Southern Ocean is stream input from ice-free regions such as the McMurdo Dry Valleys in Antarctica. This source of iron is likely to become larger if glaciers retreat. This study investigates the sources and amount of iron transported by McMurdo Dry Valley streams directly into the Southern Ocean. Because not all forms of iron can be used by phytoplankton, experiments will be performed to determine how available iron is to phytoplankton and how iron mixes with seawater. Immersive 360-degree video, infographics, and educational videos of findings from this project will be shared on social media, at schools and science events, and in an urban science center. In the Southern Ocean (SO) there is an excess of macronutrients but regional primary production is limited or co-limited due to iron. An addition of iron to the ocean will affect biochemical cycles, increase primary production, and affect the structure and composition of phytoplankton communities in the SO. Iron flux to the SO is globally significant, as increased Fe fertilization leads to increased carbon sequestration which acts as a negative feedback to increased atmospheric pCO2. One source of potentially bioavailable iron to the coastal regions of the SO is from direct sub-aerial stream discharge in ice-free areas of Antarctica, a source that may become more important if terrestrial glaciers retreat. It is imperative to understand the source, nature, potential fate, and flux of iron to the SO if better predictive models for the carbon cycle and atmospheric chemistry are to be developed. This project will investigate in-stream processes and characteristics controlling dissolved iron draining into the Ross Sea including photoreduction, temperature, and complexation with organic matter. The novel study will quantify bioavailability of particulate iron and bioavailability of dissolved iron in Antarctic in streams draining into the SO. On-site speciation measurements will be performed on dissolved iron species, particulate iron speciation will be determined using high-resolution spectroscopy, mixing experiments will be performed with coastal marine water, and the bioavailability of Fe will be determined through marine bioassays. This project will provide two students with valuable Antarctic field experience and reach thousands of individuals through existing partnerships with K-12 schools, public STEM events, an urban science center, and a strong social media presence. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((163.37428 -77.558627,163.3922735 -77.558627,163.410267 -77.558627,163.4282605 -77.558627,163.446254 -77.558627,163.4642475 -77.558627,163.482241 -77.558627,163.5002345 -77.558627,163.518228 -77.558627,163.5362215 -77.558627,163.554215 -77.558627,163.554215 -77.56397510000001,163.554215 -77.5693232,163.554215 -77.5746713,163.554215 -77.5800194,163.554215 -77.5853675,163.554215 -77.59071560000001,163.554215 -77.5960637,163.554215 -77.60141180000001,163.554215 -77.6067599,163.554215 -77.612108,163.5362215 -77.612108,163.518228 -77.612108,163.5002345 -77.612108,163.482241 -77.612108,163.4642475 -77.612108,163.446254 -77.612108,163.4282605 -77.612108,163.410267 -77.612108,163.3922735 -77.612108,163.37428 -77.612108,163.37428 -77.6067599,163.37428 -77.60141180000001,163.37428 -77.5960637,163.37428 -77.59071560000001,163.37428 -77.5853675,163.37428 -77.5800194,163.37428 -77.5746713,163.37428 -77.5693232,163.37428 -77.56397510000001,163.37428 -77.558627)) | POINT(163.4642475 -77.5853675) | false | false | ||||||||||||||||||||||
RAPID: Is Biomass Mobilization at Ice-covered Lake Fryxell, Antarctica reaching a Critical Threshold?
|
2336354 |
2024-07-05 | Juarez Rivera, Marisol |
|
Perennially ice-covered lakes in the McMurdo Dry Valleys of Antarctica contain abundant microbial mats, and the export of this mat material can fertilize the surrounding polar desert ecosystems. These desert soils are one of the most organic-poor on earth yet host a community of microorganisms. Microbial mat material is exported from the shallow, gas-supersaturated regions of the lakes when gas bubbles form in the mats, lifting them to the ice cover; the perennial ice cover maintains gas supersaturation. These mats freeze in and are exported to the surrounding soils through ice ablation. The largest seasonal decrease and thinnest ice cover in the history of Lake Fryxell was recorded during the 2022-2023 Austral summer. In this thin ice year, the water column dissolved oxygen increased over prior observations, and the lake bottom surface area with bubble-disrupted mat was more than double that observed in 1980-1981 and 2006-2007. This work will constrain mat mobilization within and out of Lake Fryxell in the McMurdo Dry Valleys during a period of unprecedented ice thinning to understand how future changing regional climate and predicted seasonal loss of lake ice cover will affect nutrient transport in the McMurdo Dry Valleys. Exceptional years of mat export are hypothesized to have the most significant impact on nutrient export to soil communities; variability in mat liftoff may thus play a role in the McMurdo Dry Valleys ecosystem response to changing climate. The perennial ice cover of lakes in the McMurdo Dry Valleys of Antarctica modulates the transfer of gasses, organic and inorganic material, between the lakes and surrounding soils. The export of biomass in these lakes is driven by the supersaturation of atmospheric gasses in the shallow regions under perennial ice cover. Gas bubbles nucleate in the mats, producing buoyancy that lifts them to the bottom of the ice, where they freeze in and are exported to the surrounding soils through ice ablation. These mats represent a significant source of biomass and nutrients to the McMurdo Dry Valleys soils, which are among the most organic-poor on earth. Nevertheless, this biomass remains unaccounted for in organic carbon cycling models for the McMurdo Dry Valleys. Ice cover data from the McMurdo Dry Valleys Long Term Ecological Research Project shows that the ice thickness has undergone cyclical variation over the last 40 years, reaching the largest seasonal decrease and thinnest ice-cover in the recorded history of Lake Fryxell during the 2022-2023 austral summer. Preliminary work shows that the surface area with mat liftoff at Lake Fryxell is more than double that observed in 1980-1981 and 2006-2007, coinciding with this unprecedented thinning of the ice-cover and an increase in the water column dissolved O2. This research will constrain biomass mobilization within and out of Lake Fryxell in the McMurdo Dry Valleys during a period of unprecedented ice thinning. The researchers hypothesize that a thinner ice cover promotes more biomass mobilization by 1) stimulating additional production of gas bubbles from the existing gas-supersaturated waters during summertime photosynthesis to create microbial mat liftoff and 2) promoting mat liftoff in deeper, thicker microbial mats, and 3) that this biomass can be traced into the soils by characterizing its chemistry and modeling the most likely depositional settings. This work will use microbial mat samples, lake dissolved oxygen and photosynthetically active radiation data and underwater drone footage documenting the depth distribution of liftoff mats in January 2023, and long-term ice cover thickness, photosynthetically active radiation, and lake level change data collected by the McMurdo Dry Valleys Long Term Ecological Research Project to test hypotheses 1-3. The dispersal of the liftoff mat exposed at Lake Fryxell surface will be modeled using a Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Exceptional liftoff years like the present are hypothesized to have the most significant impact on the soil communities as the rates of soil respiration increase with the addition of carbon. However, continued warming in the next 10 - 40 years may result in seasonal loss of the ice cover and cessation of liftoff mat export. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((160 -76.5,160.45 -76.5,160.9 -76.5,161.35 -76.5,161.8 -76.5,162.25 -76.5,162.7 -76.5,163.15 -76.5,163.6 -76.5,164.05 -76.5,164.5 -76.5,164.5 -76.7,164.5 -76.9,164.5 -77.1,164.5 -77.3,164.5 -77.5,164.5 -77.7,164.5 -77.9,164.5 -78.1,164.5 -78.3,164.5 -78.5,164.05 -78.5,163.6 -78.5,163.15 -78.5,162.7 -78.5,162.25 -78.5,161.8 -78.5,161.35 -78.5,160.9 -78.5,160.45 -78.5,160 -78.5,160 -78.3,160 -78.1,160 -77.9,160 -77.7,160 -77.5,160 -77.3,160 -77.1,160 -76.9,160 -76.7,160 -76.5)) | POINT(162.25 -77.5) | false | false | |||||||||||||||||||||
Siderophore utilization by dinoflagellates as a strategy for iron acquisition
|
2207011 |
2024-03-04 | Granger, Julie; Lin, Senjie | No dataset link provided | Phytoplankton are microscopic single-celled plants that grow at the sun-lit surface of the ocean. In the Southern Ocean around Antarctica, phytoplankton live in sub-optimal conditions because the amount of iron in seawater is insufficient for growth. Moreover, the chemical composition of Southern Ocean phytoplankton is distinct from that in other ocean regions, with a higher proportion of phosphorus relative to other elements, a characteristic that ultimately influences the distribution of nutrients ocean-wide. The researchers hypothesize that the high phosphorus composition of phytoplankton in the Southern Ocean is caused by their low iron content. Specifically, they postulate that a phosphorus-rich molecule, phytic acid, is synthesized by phytoplankton in order to assist in the storage of iron in designated cellular compartments, such as vacuoles. Recent observations show that some phytoplankton can absorb phytic acid, suggesting that it may be produced by certain species. Phytic acid is pervasive in soils, wherein it aids absorption of iron via plant roots and could similarly help phytoplankton in the Southern Ocean acquire iron via the cell membranes. This project benefits the National Science Foundation's goals of improving understanding of interactions between the Southern Ocean and the global ocean, of expanding fundamental knowledge of Antarctic biota and associated processes by focusing on phytoplankton species unique to the Antarctic. As part of this project, the Department of Marine Sciences from the College of Liberal Arts and Sciences at the University of Connecticut will sponsor the recruitment, relocation and mentorship of a graduate student under-represented in the sciences. This project aims to determine whether the unusual elemental composition of phytoplankton at the Southern Ocean is a result of anemia. The work will query whether inositol hexakisphosphate (phytic acid) aids Antarctic phytoplankton acquire and store iron, resulting in an elevated fraction of cellular phosphorus relative to other elements. The researchers, including a graduate student, will conduct laboratory culture experiments with phytoplankton strains isolated from the Southern Ocean. They will grow cells in iron- deficient versus iron-replete media to see if their phosphorus content is higher in iron-deficient conditions. They will test whether cells grown with sufficient phosphorus acquire more iron, allowing them to grow better in iron-deficient conditions than cells deriving from phosphorus-poor conditions. They will also query whether cells grown in iron-deficient conditions achieve faster growth rates in the presence of phytic acid. Results will inform the design of CRISPR mutants with which to investigate phosphorus and iron co-metabolism in Antarctic marine phytoplankton. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||||||||||||
Collaborative Research: Physical Mechanisms Driving Food Web Focusing in Antarctic Biological Hotspots
|
None | 2024-02-12 | None | No dataset link provided | Undersea canyons play disproportionately important roles as oceanic biological hotspots and are critical for our understanding of many coastal ecosystems. Canyon-associated biological hotspots have persisted for thousands of years Along the Western Antarctic Peninsula, despite significant climate variability. Observations of currents over Palmer Deep canyon, a representative hotspot along the Western Antarctic Peninsula, indicate that surface phytoplankton blooms enter and exit the local hotspot on scales of ~1-2 days. This time of residence is in conflict with the prevailing idea that canyon associated hotspots are primarily maintained by phytoplankton that are locally grown in association with these features by the upwelling of deep waters rich with nutrients that fuel the phytoplankton growth. Instead, the implication is that horizontal ocean circulation is likely more important to maintaining these biological hotspots than local upwelling through its physical concentrating effects. This project seeks to better resolve the factors that create and maintain focused areas of biological activity at canyons along the Western Antarctic Peninsula and create local foraging areas for marine mammals and birds. The project focus is in the analysis of the ocean transport and concentration mechanisms that sustain these biological hotspots, connecting oceanography to phytoplankton and krill, up through the food web to one of the resident predators, penguins. In addition, the research will engage with teachers from school districts serving underrepresented and underserved students by integrating the instructors and their students completely with the science team. Students will conduct their own research with the same data over the same time as researchers on the project. Revealing the fundamental mechanisms that sustain these known hotspots will significantly advance our understanding of the observed connection between submarine canyons and persistent penguin population hotspots over ecological time, and provide a new model for how Antarctic hotspots function.<br/> <br/> <br/>To understand the physical mechanisms that support persistent hotspots along the Western Antarctic Peninsula (WAP), this project will integrate a modeling and field program that will target the processes responsible for transporting and concentrating phytoplankton and krill biomass to known penguin foraging locations. Within the Palmer Deep canyon, a representative hotspot, the team will deploy a High Frequency Radar (HFR) coastal surface current mapping network, uniquely equipped to identify the eddies and frontal regions that concentrate phytoplankton and krill. The field program, centered on surface features identified by the HFR, will include (i) a coordinated fleet of gliders to survey hydrography, chlorophyll fluorescence, optical backscatter, and active acoustics at the scale of the targeted convergent features; (ii) precise penguin tracking with GPS-linked satellite telemetry and time-depth recorders (TDRs); (iii) and weekly small boat surveys that adaptively target and track convergent features to measure phytoplankton, krill, and hydrography. A high resolution physical model will generalize our field measurements to other known hotspots along the WAP through simulation and determine which physical mechanisms lead to the maintenance of these hotspots. The project will also engage educators, students, and members of the general public in Antarctic research and data analysis with an education program that will advance teaching and learning as well as broadening participation of under-represented groups. This engagement includes professional development workshops, live connections to the public and classrooms, student research symposia, and program evaluation. Together the integrated research and engagement will advance our understanding of the role regional transport pathways and local depth dependent concentrating physical mechanisms play in sustaining these biological hotspots.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | |||||||||||||||||||||
Collaborative Research: Role of Nutrient Limitation and Viral Interactions on Antarctic Microbial Community Assembly: A Cryoconite Microcosm Study
|
2137378 2137377 2137375 2137376 |
2023-05-10 | Varsani, Arvind; Porazinska, Dorota; Schmidt, Steven; Bergstrom, Anna | No dataset link provided | Cryoconite holes are sediment-filled melt holes in the surface of glaciers that can be important sites of active microbial life in an otherwise mostly frozen and barren landscape. Previous studies in the McMurdo Dry Valleys, Antarctica suggest that viral infections of microbes, and a general lack of fertilizers (i.e., nutrients), may be important factors shaping the development and functioning of microbial communities in cryoconite holes. The researchers propose an experimental approach to understand how nutrient limitation affects diversity (number of species) and overall abundance of microbes, and how the diversity and abundance of microbes in turn affects the diversity, abundance, and infection type of viruses that parasitize the microbes in cryoconite sediments. The researchers will use sediments previously collected from Antarctic glaciers that have varying concentrations of viruses and nutrients, to set up a nutrient-addition experiment to determine how nutrients affect microbial and viral population dynamics. The results will deepen our understanding of how microbial communities in general are shaped by nutrients and viruses and give new insights into the functioning of viruses in extremely cold environments. The researchers will publish their findings in scientific journals and will share their discoveries with K-12 students from rural schools in collaboration with the Pinhead Institute and will connect undergraduate students from under-represented minorities to polar research through participation in the university’s Science, Technology, Engineering & Mathematics Routes Uplift Research Program. Outreach will be achieved through videos produced and distributed by a professional science communicator. The research advances a National Science Foundation goal of expanding fundamental knowledge of Antarctic systems, biota, and processes by utilizing the unique characteristics of the Antarctic region as a science observing platform. The Principal Investigators propose an experimental approach to understand how nutrient limitation affects microbial diversity and abundances and their cascading effects on virus diversity, abundance, and mode of infection (lysis vs. lysogeny) in Antarctic cryoconite holes. Cryoconite holes are ideal natural microcosms for manipulative studies, not available in other cryospheric ecosystems. The PIs will use previously collected cryoconite from across a gradient of both viral diversity and nutrient levels to address questions about key limiting nutrients and microbial-viral community dynamics in cryoconite sediments. Nutrient manipulation experiments will be conducted in a growth chamber that closely approximates the light and temperature regime of in situ cryoconite holes to test three core hypotheses: (1) phosphorus availability limits microbial productivity and abundance in cryoconite holes; (2) relaxing nutrient limitation in cryoconite from low-diversity glaciers will increase species diversity, leading microbial communities to resemble those found on more nutrient-rich glaciers; (3) relaxing nutrient limitation will increase the diversity and abundance of viruses by increasing the availability of suitable hosts, and decrease the prevalence of lysogenic infections. By manipulating nutrient limitation within a realistic range, this project will help verify hypothesized phosphorus limitation of Antarctic cryoconite holes and will extend understanding of the connections between nutrients, diversity, and viral infection dynamics in the cryosphere more generally. A better understanding of these dynamics in cryoconite sediments improves the ability of scientists to forecast future impacts of environmental changes in the cryosphere. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | |||||||||||||||||||||
ANT LIA: Collaborative Research: Mixotrophic Grazing as a Strategy to meet Nutritional Requirements in the Iron and Manganese Deficient Southern Ocean
|
2240780 |
2023-03-13 | Cohen, Natalie; Millette, Nicole | No dataset link provided | Mixotrophs are essential components of the Antarctic planktonic community able to photosynthesize and also ingest small particles like bacteria to meet their nutritional needs. This project aims to understand the physiological response of mixotrophs exposed to micronutrient limitation in the Southern Ocean, specifically iron, manganese and simultaneous limitation of more than one trace metal, or colimitation. Such environmental conditions are characteristic of the Southern Ocean and can only be tested with local algae. The Principal Investigators hypothesize that under trace metal colimitation, some mixotrophs will have a competitive advantage by increasing their ability to consume particles to obtain energy and trace metals from their prey. Given the lack of understanding of how mixotrophs have adapted to the micronutrient limitation, the researchers propose studies with microalgal cultures isolated from the Southern Ocean; they will measure growth responses, consumption behavior, changes in cellular chemistry and transcription of genetic material in response to iron and manganese limitation. This project benefits the National Science Foundation goals of understanding Life in Antarctica and adaptation of organisms to this extreme environment. Society will benefit from the training proposed, whereby students from rural colleges will be instructed in computer coding and scientific data analyses. Furthermore, this work will support one graduate student, two undergraduate summer interns, and two early career scientists. The Principal Investigators hypothesize that under Fe-Mn colimitation, some mixotrophs will have a competitive advantage by increasing their grazing rates to obtain energy, Fe, and Mn from their prey. Given the lack of understanding of how mixotrophs have adapted to seasonal changes in the availability of these micronutrients and how they influence mixotrophic growth dynamics, the PIs propose culture studies to measure growth responses, grazing behavior, and changes in elemental stoichiometry in response to Fe and Mn limitation. Transcriptomic analyses will reveal the metabolic underpinnings of trophic behavior and micronutrient stress responses, with implications for key biogeochemical processes such as carbon fixation, remineralization, and nutrient cycling. Results are expected to clarify the ecological roles of Antarctic mixotrophs and elucidate the adaptations of Southern Ocean organisms to their unique polar ecosystem following the 2015 Strategic Vision for Polar Programs. This work will support one graduate student, two undergraduate summer interns, and two early career scientists. A series of virtual coding and bioinformatic workshops will be organized, in which basic principles of coding, and data processing used in the proposed analysis will be taught to undergraduate students. Small colleges in rural areas will be targeted for 8 modules on bioinformatics training. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||||||||||||
Collaborative Research: Investigating Biogeochemical Fluxes and Linkages To Climate Change With Multi-Scale Observations In The Drake Passage
|
1543457 1543511 |
2023-02-22 | Munro, David; Sweeney, Colm; Lovenduski, Nicole S; Stephens, Britton | The Southern Ocean plays a key role in modulating the global carbon cycle, but the size and even the sign of the global ocean flux terms of the atmospheric burden of man-made CO2 are still uncertain. This is in part due to the lack of measurements in this remote region of the world ocean. This project continues a multi-year time series of shipboard chemical measurements in the Drake Passage to detect changes in the ocean carbon cycle and to improve the understanding of mechanisms driving natural variability and long-term change in the Southern Ocean. This project is a continuation of collection of upper ocean measurements of the underway surface partial pressure of carbon dioxide (pCO2), using frequent ferry crossings of the Drake Passage by the RV/AS LMGould, the USAP supply ship. Overall, more than 200 transects over the past decade (since 2002) have now been accumulated of pCO2 profiles, along with discrete samples for other parameters of interest in studying the ocean carbonate system such as total CO2 (TCO2) values, isotopic (13C/12C and 14C/12C) ratios in surface TCO2. The Drake Passage data are made readily available to the international science community and serve as both validation and constraints of remotely sensed observations and numerical coupled earth systems models. | POLYGON((-73 -53,-71.2 -53,-69.4 -53,-67.6 -53,-65.8 -53,-64 -53,-62.2 -53,-60.4 -53,-58.6 -53,-56.8 -53,-55 -53,-55 -54.4,-55 -55.8,-55 -57.2,-55 -58.6,-55 -60,-55 -61.4,-55 -62.8,-55 -64.2,-55 -65.6,-55 -67,-56.8 -67,-58.6 -67,-60.4 -67,-62.2 -67,-64 -67,-65.8 -67,-67.6 -67,-69.4 -67,-71.2 -67,-73 -67,-73 -65.6,-73 -64.2,-73 -62.8,-73 -61.4,-73 -60,-73 -58.6,-73 -57.2,-73 -55.8,-73 -54.4,-73 -53)) | POINT(-64 -60) | false | false | ||||||||||||||||||||||
Collaborative Research: Understanding the Massive Phytoplankton Blooms over the Australian-Antarctic Ridge
|
2135184 2135186 2135185 |
2022-09-30 | Arrigo, Kevin; Thomas, Leif N; Baumberger, Tamara; Resing, Joseph | No dataset link provided | Phytoplankton blooms throughout the world’s oceans support critical marine ecosystems and help remove carbon dioxide (CO2) from the atmosphere. Traditionally, it has been assumed that phytoplankton blooms in the Southern Ocean are stimulated by iron from either nearby land or sea-ice. However, recent work demonstrates that hydrothermal vents may be an additional iron source for phytoplankton blooms. This enhancement of phytoplankton productivity by different iron sources supports rich marine ecosystems and leads to the sequestration of carbon in the deep ocean. Our proposed work will uncover the importance of hydrothermal activity in stimulating a large phytoplankton bloom along the southern boundary of the Antarctic Circumpolar Current just north of the Ross Sea. It will also lead towards a better understanding of the overall impact of hydrothermal activity on the carbon cycle in the Southern Ocean, which appears to trigger local hotspots of biological activity which are a potential sink for atmospheric CO2. This project will encourage the participation of underrepresented groups in ocean sciences, as well as providing educational opportunities for high school and undergraduate students, through three different programs. Stanford University’s Summer Undergraduate Research in Geoscience and Engineering (SURGE) program provides undergraduates from different US universities and diverse cultural backgrounds the opportunity to spend a summer doing a research project at Stanford. The Stanford Earth Summer Undergraduate Research Program (SESUR) is for Stanford undergraduates who want to learn more about environmental science by performing original research. Finally, Stanford’s School of Earth, Energy, and Environmental Sciences High School Internship Program enables young scientists to serve as mentors, prepares high school students for college, and serves to strengthen the partnership between Stanford and local schools. Students present their results at the Fall AGU meeting as part of the AGU Bright STaRS program. This project will form the basis of at least two PhD dissertations. The Stanford student will participate in Stanford’s Woods Institute Rising Environmental Leaders Program (RELP), a year-round program that helps graduate students hone their leadership and communication skills to maximize the impact of their research. The graduate student will also participate in Stanford’s Grant Writing Academy where they will receive training in developing and articulating research strategies to tackle important scientific questions. This interdisciplinary program combines satellite and ship-based measurements of a large poorly understood phytoplankton bloom (the AAR bloom) in the northwestern Ross Sea sector of the Southern Ocean with a detailed modeling study of the physical processes linking deep dissolved iron (DFe) reservoirs to the surface phytoplankton bloom. Prior to the cruise, we will implement a numerical model (CROCO) for our study region so that we can better understand the circulation, plumes, turbulence, fronts, and eddy field around the AAR bloom and how they transport and mix hydrothermally produced DFe vertically. Post cruise, observations of the vertical distribution of 3He (combined with DMn and DFe), will be used as initial conditions for a passive tracer in the model, and tracer dispersal will be assessed to better quantify the role of the various turbulent processes in upwelling DFe-rich waters to the upper ocean. The satellite-based component of the program will characterize the broader sampling region before, during, and after our cruise. During the cruise, our automated software system at Stanford University will download and process images of sea ice concentration, Chl-a concentration, sea surface temperature (SST), and sea surface height (SSH) and send them electronically to the ship. Operationally, our goal is to use all available satellite data and preliminary model results to target shipboard sampling both geographically and temporally to optimize sampling of the AAR bloom. We will use available BGC-Argo float data to help characterize the AAR bloom. In collaboration with SOCCOM, we will deploy additional BGC-Argo floats (if available) during our transit through the study area to allow us to better characterize the bloom. The centerpiece of our program will be a 40-day process study cruise in austral summer. The cruise will consist of an initial “radiator” pattern of hydrographic surveys/sections along the AAR followed by CTDs to selected submarine volcanoes. When/if eddies are identified, they will be sampled either during or after the initial surveys. The radiator pattern, or parts thereof, will be repeated 2-3 times. Hydrographic survey stations will include vertical profiles of temperature, salinity, oxygen, oxidation-reduction potential, light scatter, and PAR (400-700 nm). Samples will be collected for trace metals, ligands, 3He, and total suspended matter. Where intense hydrothermal activity is identified, samples for pH and total CO2 will also be collected to characterize the hydrothermal system. Water samples will be collected for characterization of macronutrients, and phytoplankton physiology, abundance, species composition, and size. During transits, we will continuously measure atmospheric conditions, current speed and direction, and surface SST, salinity, pCO2, and fluorescence from the ship’s systems to provide detailed maps of these parameters. The ship will be used as a platform for conducting phytoplankton DFe bioassay experiments at key stations throughout the study region both inside and outside the bloom. We will also perform detailed comparisons of algal taxonomic composition, physiology, and size structure inside and outside the bloom to determine the potential importance of each community on local biogeochemistry. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((155 -61,156.5 -61,158 -61,159.5 -61,161 -61,162.5 -61,164 -61,165.5 -61,167 -61,168.5 -61,170 -61,170 -61.2,170 -61.4,170 -61.6,170 -61.8,170 -62,170 -62.2,170 -62.4,170 -62.6,170 -62.8,170 -63,168.5 -63,167 -63,165.5 -63,164 -63,162.5 -63,161 -63,159.5 -63,158 -63,156.5 -63,155 -63,155 -62.8,155 -62.6,155 -62.4,155 -62.2,155 -62,155 -61.8,155 -61.6,155 -61.4,155 -61.2,155 -61)) | POINT(162.5 -62) | false | false | |||||||||||||||||||||
Collaborative Research: US GEOTRACES GP17-ANT: Dissolved concentrations, isotopes, and colloids of the bioactive trace metals
|
2123333 2123354 2123491 |
2022-09-08 | Conway, Timothy; Fitzsimmons, Jessica; John, Seth | No dataset link provided | The goal of the international GEOTRACES program is to understand the distributions of trace chemical elements and their isotopes (TEIs) in the oceans. Many trace metals such as iron are essential for life and thus considered nutrients for phytoplankton growth, with trace metal cycling being especially important for influencing carbon cycling in the iron-limited Southern Ocean, where episodic supply of iron from a range of different external sources is important. The primary goal of this project is to measure the dissolved concentrations, size partitioning, and dissolved isotope signature of Fe on a transect of water-column stations throughout the Amundsen Sea and surrounding region of the Antarctic Margin, as part of the GP17-ANT Expedition. The secondary goal of this project is to analyze the concentrations and size partitioning of the trace metals manganese, zinc, copper, cadmium, nickel, and lead in all water-column samples, measure the isotope ratios of zinc, cadmium, nickel, and copper in a subset of water column samples, and measure the Fe isotopic signature of aerosols, porewaters, and particles. Observations from this project will be incorporated into regional and global biogeochemistry models to assess TEI cycling within the Amundsen Sea and implications for the wider Southern Ocean. This project spans three institutions, four graduate students, undergraduate students, and will provide ultrafiltered samples and data to other PIs as service. The US GEOTRACES GP17 ANT expedition, planned for austral summer 2023/2024 aims to determine the distribution and cycling of trace elements and their isotopes in the Amundsen Sea Sector (100-135°W) of the Antarctic Margin. The cruise will follow the Amundsen Sea ‘conveyor belt’ by sampling waters coming from the Antarctic Circumpolar Current onto the continental shelf, including near the Dotson and Pine Island ice shelves, the productive Amundsen Sea Polynya (ASP), and outflowing waters. Episodic addition of dissolved Fe and other TEIs from dust, ice-shelves, melting ice, and sediments drive seasonal primary productivity and carbon export over the Antarctic shelf and offshore into Southern Ocean. Seasonal coastal polynyas such as the highly productive ASP thus act as key levers on global carbon cycling. However, field observations of TEIs in such regions remain scarce, and biogeochemical cycling processes are poorly captured in models of ocean biogeochemistry. The investigators will use their combined analytical toolbox, in collaboration with the diagnostic chemical tracers and regional models of other funded groups to address four main objectives: 1) What is the relative importance of different sources in supplying Fe and other TEIs to the ASP? 2) What is the physiochemical speciation of this Fe, and its potential for transport? 3) How do biological uptake, scavenging and regeneration in the ASP influence TEI distributions, stoichiometry, and nutrient limitation? 4) What is the flux and signature of TEIs transported offshore to the ACC and Southern Ocean? This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-135 -66,-131.5 -66,-128 -66,-124.5 -66,-121 -66,-117.5 -66,-114 -66,-110.5 -66,-107 -66,-103.5 -66,-100 -66,-100 -67,-100 -68,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-103.5 -76,-107 -76,-110.5 -76,-114 -76,-117.5 -76,-121 -76,-124.5 -76,-128 -76,-131.5 -76,-135 -76,-135 -75,-135 -74,-135 -73,-135 -72,-135 -71,-135 -70,-135 -69,-135 -68,-135 -67,-135 -66)) | POINT(-117.5 -71) | false | false | |||||||||||||||||||||
Collaborative Research: ANT LIA: Connecting Metagenome Potential to Microbial Function: Investigating Microbial Degradation of Complex Organic Matter Antarctic Benthic Sediments
|
2147045 |
2022-08-30 | Learman, Deric |
|
Microbes in Antarctic surface marine sediments have an important role in degrading organic matter and releasing nutrients to the ocean. Organic matter degradation is at the center of the carbon cycle in the ocean, providing valuable information on nutrient recycling, food availability to animals and carbon dioxide release to the atmosphere. The functionality of these microbes has been inferred by their genomics, however these methods only address the possible function, not their actual rates. In this project the PIs plan to combine genomics methods with cellular estimates of enzyme abundance and activity as a way to determine the rates of carbon degradation. This project aims to sample in several regions of Antarctica to provide a large-scale picture of the processes under study and understand the importance of microbial community composition and environmental factors, such as primary productivity, have on microbial activity. The proposed work will combine research tools such as metagenomics, meta-transcriptomics, and metabolomics coupled with chemical data and enzyme assays to establish degradation of organic matter in Antarctic sediments. This project benefits NSFs goals of understanding the adaptation of Antarctic organisms to the cold and isolated environment, critical to predict effects of climate change to polar organisms, as well as contribute to our knowledge of how Antarctic organisms have adapted to this environment. Society will benefit from this project by education of 2 graduate students, undergraduates and K-12 students as well as increase public literacy through short videos production shared in YouTube. The PIs propose to advance understanding of polar microbial community function, by measuring enzyme and gene function of complex organic matter degradation in several ocean regions, providing a circum-Antarctic description of sediment processes. Two hypotheses are proposed. The first hypothesis states that many genes for the degradation of complex organic matter will be shared in sediments throughout a sampling transect and that where variations in gene content occur, it will reflect differences in the quantity and quality of organic matter, not regional variability. The second hypothesis states that a fraction of gene transcripts for organic matter degradation will not result in measurable enzyme activity due to post-translational modification or rapid degradation of the enzymes. The PIs will analyze sediment cores already collected in a 2020 cruise to the western Antarctic Peninsula with the additional request of participating in a cruise in 2023 to East Antarctica. The PIs will analyze sediments for metagenomics, meta-transcriptomics, and metabolomics coupled with geochemical data and enzyme assays to establish microbial degradation of complex organic matter in Antarctic sediments. Organic carbon concentrations and content in sediments will be measured with δ13C, δ15N, TOC porewater fluorescence in bulk organic carbon. Combined with determination of geographical variability as well as dependence on carbon sources, results from this study could provide the basis for new hypotheses on how climate variability, with increased water temperature, affects geochemistry in the Southern Ocean. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-168 -60,-156 -60,-144 -60,-132 -60,-120 -60,-108 -60,-96 -60,-84 -60,-72 -60,-60 -60,-60 -62,-60 -64,-60 -66,-60 -68,-60 -70,-60 -72,-60 -74,-60 -76,-60 -78,-60 -80,-72 -80,-84 -80,-96 -80,-108 -80,-120 -80,-132 -80,-144 -80,-156 -80,-168 -80,180 -80,171 -80,162 -80,153 -80,144 -80,135 -80,126 -80,117 -80,108 -80,99 -80,90 -80,90 -78,90 -76,90 -74,90 -72,90 -70,90 -68,90 -66,90 -64,90 -62,90 -60,99 -60,108 -60,117 -60,126 -60,135 -60,144 -60,153 -60,162 -60,171 -60,-180 -60)) | POINT(-165 -70) | false | false | |||||||||||||||||||||
Collaborative Research: Characteristics and Origins of Eddies beneath Antarctic Sea Ice
|
2220969 2220968 |
2022-08-07 | Stewart, Andrew; Bianchi, Daniele | No dataset link provided | The world ocean is continuously in motion, and a large fraction of this motion takes the form of "eddies", nearly-horizontal swirls of water spanning tens to hundreds of kilometers. These eddies affect the ocean by mediating large-scale currents, redistributing heat, and supplying nutrients to oceanic ecosystems. Consequently, the ocean science community has historically invested substantial effort in characterizing the properties and impact of these eddies. In polar regions, the sea ice cover inhibits observations of eddies, and the relatively small horizontal size of the eddies hampers computer simulations of their behavior. Nonetheless, previous studies have identified an active population of eddies beneath the Arctic sea ice and shown that these eddies play a crucial role in maintaining the large-scale circulation in the Arctic seas. However, there has been no systematic attempt to study such eddies under Antarctic sea ice, leaving a significant gap in our understanding of eddies and their contribution to the large-scale ocean circulation around Antarctica. The proposed research combines multiple approaches to improve our understanding of the eddy dynamics. Statistical characterizations of the sub-sea ice eddy field will be derived using hydrographic observations under Antarctic sea ice from Argo floats and instrumented seals. High-resolution global ocean and sea ice models will be used to track the simulated eddies back to their formation sites to identify the eddy formation mechanisms. Theoretical calculations will be conducted to test the hypothesis that the eddies primarily originate from hydrodynamic instabilities associated with subsurface density gradients. These theoretical, modeling, and data analysis approaches will be combined to estimate the eddies' contribution to lateral tracer transports and their impact on mean circulations of the near-Antarctic ocean. The proposed work will facilitate future scientific endeavors by providing publicly-available databases of detected eddy properties. This project will support the research of several junior scientists: an undergraduate student, two graduate students, and an early-career faculty member. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||||||||||||
ANT LIA: Collaborative Research: Genetic Underpinnings of Microbial Interactions in Chemically Stratified Antarctic Lakes
|
1937546 1937595 |
2022-07-27 | Morgan-Kiss, Rachael; Briggs, Brandon |
|
Part I: Non-technical description: Microbial communities are of more than just a scientific curiosity. Microbes represent the single largest source of evolutionary and biochemical diversity on the planet. They are the major agents for cycling carbon, nitrogen, phosphorus, and other elements through the ecosystem. Despite their importance in ecosystem function, microbes are still generally overlooked in food web models and nutrient cycles. Moreover, microbes do not live in isolation: their growth and metabolism are influenced by complex interactions with other microorganisms. This project will focus on the ecology, activity and roles of microbial communities in Antarctic Lake ecosystems. The team will characterize the genetic underpinnings of microbial interactions and the influence of environmental gradients (e.g. light, nutrients, oxygen, sulfur) and seasons (e.g. summer vs. winter) on microbial networks in Lake Fryxell and Lake Bonney in the Taylor Valley within the McMurdo Dry Valley region. Finally, the project furthers the NSF goals of training new generations of scientists by including undergraduate and graduate students, a postdoctoral researcher and a middle school teacher in both lab and field research activities. This partnership will involve a number of other outreach training activities, including visits to classrooms and community events, participation in social media platforms, and webinars. Part II: Technical description: Ecosystem function in the extreme Antarctic Dry Valleys ecosystem is dependent on complex biogeochemical interactions between physiochemical environmental factors (e.g. light, nutrients, oxygen, sulfur), time of year (e.g. summer vs. winter) and microbes. Microbial network complexity can vary in relation to specific abiotic factors, which has important implications on the fragility and resilience of ecosystems under threat of environmental change. This project will evaluate the influence of biogeochemical factors on microbial interactions and network complexity in two Antarctic ice-covered lakes. The study will be structured by three main objectives: 1) infer positive and negative interactions from rich spatial and temporal datasets and investigate the influence of biogeochemical gradients on microbial network complexity using a variety of molecular approaches; 2) directly observe interactions among microbial eukaryotes and their partners using flow cytometry, single-cell sorting and microscopy; and 3) develop metabolic models of specific interactions using metagenomics. Outcomes from amplicon sequencing, meta-omics, and single-cell genomic approaches will be integrated to map specific microbial network complexity and define the role of interactions and metabolic activity onto trends in limnological biogeochemistry in different seasons. These studies will be essential to determine the relationship between network complexity and future climate conditions. Undergraduate researchers will be recruited from both an REU program with a track record of attracting underrepresented minorities and two minority-serving institutions. To further increase polar literacy training and educational impacts, the field team will include a teacher as part of a collaboration with the successful NSF-funded PolarTREC program and participation in activities designed for public outreach. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((162 -77.616667,162.1 -77.616667,162.2 -77.616667,162.3 -77.616667,162.4 -77.616667,162.5 -77.616667,162.6 -77.616667,162.7 -77.616667,162.8 -77.616667,162.9 -77.616667,163 -77.616667,163 -77.6283336,163 -77.6400002,163 -77.6516668,163 -77.6633334,163 -77.67500000000001,163 -77.68666660000001,163 -77.69833320000001,163 -77.7099998,163 -77.7216664,163 -77.733333,162.9 -77.733333,162.8 -77.733333,162.7 -77.733333,162.6 -77.733333,162.5 -77.733333,162.4 -77.733333,162.3 -77.733333,162.2 -77.733333,162.1 -77.733333,162 -77.733333,162 -77.7216664,162 -77.7099998,162 -77.69833320000001,162 -77.68666660000001,162 -77.67500000000001,162 -77.6633334,162 -77.6516668,162 -77.6400002,162 -77.6283336,162 -77.616667)) | POINT(162.5 -77.67500000000001) | false | false | |||||||||||||||||||||
Collaborative Research: Common Environmental Drivers Determine the Occupation Chronology of Adélie Penguins and Moss Peatbanks on the Western Antarctic Peninsula
|
2012247 2012444 2012365 |
2022-07-24 | Groff, Dulcinea; Cimino, Megan; Johnston, David | This award is funded in whole or part under the American Rescue Plan Act of 2021 (Public Law 117-2). Part I: Non-technical description: Adélie penguin colonies are declining and disappearing from the western Antarctic Peninsula. However, not all colonies in a certain area decline or disappear at the same rate. This research project will evaluate the influence of terrestrial surface properties on Adélie penguin colonies, leveraging five decades of research on seabirds near Palmer Station where an Adélie colony on Litchfield Island became extinct in 2007 while other colonies nearby are still present. The researchers will combine information obtained from remote sensing, UAS (Unoccupied Aircraft System, or drones) high-resolution maps, reconstruction of past moss banks and modeling with machine learning tools to define suitable penguin and peatbank moss habitats and explore the influence of microclimate on their distributions. In particular, the researchers are asking if guano from penguin colonies could act as fertilizers of moss banks in the presence of localized wind patters that can carry airborne nitrogen to the mosses. Modeling will relate penguin and peatbank moss spatial patterns to environmental variables and provide a greater understanding of how continued environmental change could impact these communities. The project allows for documentation of terrestrial Antarctic ecosystems in support of seabirds and provisioning of such information to the broader science community that seeks to study penguins, educating graduate and undergraduate students and a post-doctoral researcher. The research team includes two young women as Principal Investigators, one of them from an under-represented ethnic minority, first time Antarctic Principal Investigator, from an EPSCoR state (Wyoming), broadening participation in Antarctic research. Researchers will serve as student mentors through the Duke Bass Connections program entitled Biogeographic Assessment of Antarctic Coastal Habitats. This program supports an interdisciplinary team of graduate and undergraduate students collaborating with project faculty and experts on cutting-edge research bridging the classroom and the real world. Part II: Technical description: This research aims to understand the changes at the microclimate scale (meters) by analyzing present and past Adélie penguin colonies and moss peatbanks in islands around Palmer Station in the western Antarctic Peninsula – interlinked systems that are typically considered in isolation. By integrating in situ and remote data, this project will synthesize the drivers of biogeomorphology on small islands of the Antarctic Peninsula, a region of rapid change where plants and animals often co-occur and animal presence often determines the habitation of plants. A multi-disciplinary approach combine field measurements, remote sensing, UAS (Unoccupied Aircraft Systems) maps, paleoecology and modeling with machine learning to define suitable habitats and the influence of microclimates on penguin and peatbank distributions. The link between the two aspects of this study, peatbanks and penguins, is the potential source of nutrients for peat mosses from penguin guano. Peatbank and penguin distribution will be modeled and all models will be validated using in situ information from moss samples that will identify mechanistic processes. This project leverages 5 decades of seabird research in the area and high-definition remote sensing provided by the Polar Geospatial center to study the microclimate of Litchfield Island where an Adélie colony became extinct in 2007 when other colonies nearby are still present. The research team includes two early career women as Principal Investigators, one of them from an under-represented ethnic minority, first time Antarctic Principal Investigator, from an EPSCoR state (Wyoming). Researchers will serve as mentors for students through the Duke Bass Connections program entitled Biogeogrpahic Assessment of Antarctic Coastal Habitats which bridges the classroom and the real world. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-65 -64.5,-64.8 -64.5,-64.6 -64.5,-64.4 -64.5,-64.2 -64.5,-64 -64.5,-63.8 -64.5,-63.6 -64.5,-63.4 -64.5,-63.2 -64.5,-63 -64.5,-63 -64.55,-63 -64.6,-63 -64.65,-63 -64.7,-63 -64.75,-63 -64.8,-63 -64.85,-63 -64.9,-63 -64.95,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.95,-65 -64.9,-65 -64.85,-65 -64.8,-65 -64.75,-65 -64.7,-65 -64.65,-65 -64.6,-65 -64.55,-65 -64.5)) | POINT(-64 -64.75) | false | false | ||||||||||||||||||||||
Collaborative Research: Physical Mechanisms Driving Food Web Focusing in Antarctic Biological Hotspots
|
1745023 1745009 1745011 1745081 1744884 1745018 |
2022-07-05 | Bernard, Kim; Oliver, Matthew; Kohut, Josh; Fraser, William; Klinck, John M.; Statcewich, Hank |
|
Undersea canyons play disproportionately important roles as oceanic biological hotspots and are critical for our understanding of many coastal ecosystems. Canyon-associated biological hotspots have persisted for thousands of years Along the Western Antarctic Peninsula, despite significant climate variability. Observations of currents over Palmer Deep canyon, a representative hotspot along the Western Antarctic Peninsula, indicate that surface phytoplankton blooms enter and exit the local hotspot on scales of ~1-2 days. This time of residence is in conflict with the prevailing idea that canyon associated hotspots are primarily maintained by phytoplankton that are locally grown in association with these features by the upwelling of deep waters rich with nutrients that fuel the phytoplankton growth. Instead, the implication is that horizontal ocean circulation is likely more important to maintaining these biological hotspots than local upwelling through its physical concentrating effects. This project seeks to better resolve the factors that create and maintain focused areas of biological activity at canyons along the Western Antarctic Peninsula and create local foraging areas for marine mammals and birds. The project focus is in the analysis of the ocean transport and concentration mechanisms that sustain these biological hotspots, connecting oceanography to phytoplankton and krill, up through the food web to one of the resident predators, penguins. In addition, the research will engage with teachers from school districts serving underrepresented and underserved students by integrating the instructors and their students completely with the science team. Students will conduct their own research with the same data over the same time as researchers on the project. Revealing the fundamental mechanisms that sustain these known hotspots will significantly advance our understanding of the observed connection between submarine canyons and persistent penguin population hotspots over ecological time, and provide a new model for how Antarctic hotspots function. To understand the physical mechanisms that support persistent hotspots along the Western Antarctic Peninsula (WAP), this project will integrate a modeling and field program that will target the processes responsible for transporting and concentrating phytoplankton and krill biomass to known penguin foraging locations. Within the Palmer Deep canyon, a representative hotspot, the team will deploy a High Frequency Radar (HFR) coastal surface current mapping network, uniquely equipped to identify the eddies and frontal regions that concentrate phytoplankton and krill. The field program, centered on surface features identified by the HFR, will include (i) a coordinated fleet of gliders to survey hydrography, chlorophyll fluorescence, optical backscatter, and active acoustics at the scale of the targeted convergent features; (ii) precise penguin tracking with GPS-linked satellite telemetry and time-depth recorders (TDRs); (iii) and weekly small boat surveys that adaptively target and track convergent features to measure phytoplankton, krill, and hydrography. A high resolution physical model will generalize our field measurements to other known hotspots along the WAP through simulation and determine which physical mechanisms lead to the maintenance of these hotspots. The project will also engage educators, students, and members of the general public in Antarctic research and data analysis with an education program that will advance teaching and learning as well as broadening participation of under-represented groups. This engagement includes professional development workshops, live connections to the public and classrooms, student research symposia, and program evaluation. Together the integrated research and engagement will advance our understanding of the role regional transport pathways and local depth dependent concentrating physical mechanisms play in sustaining these biological hotspots. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-75 -60,-73 -60,-71 -60,-69 -60,-67 -60,-65 -60,-63 -60,-61 -60,-59 -60,-57 -60,-55 -60,-55 -61,-55 -62,-55 -63,-55 -64,-55 -65,-55 -66,-55 -67,-55 -68,-55 -69,-55 -70,-57 -70,-59 -70,-61 -70,-63 -70,-65 -70,-67 -70,-69 -70,-71 -70,-73 -70,-75 -70,-75 -69,-75 -68,-75 -67,-75 -66,-75 -65,-75 -64,-75 -63,-75 -62,-75 -61,-75 -60)) | POINT(-65 -65) | false | false | |||||||||||||||||||||
Collaborative Research: Diagnosing the Role of Ocean Eddies in Carbon Cycling from a High-resolution Data Assimilating Ocean Biogeochemical Model
|
2149500 |
2022-03-14 | Williams, Nancy; Chambers, Don; Tamsitt, Veronica | No dataset link provided | The Southern Ocean accounts for ~40% of the total ocean uptake of anthropogenic carbon dioxide despite covering only 20% of the global ocean surface, and is particularly rich in long-lived eddies. These eddies, or large ocean whirlpools which can be observed from space, can alter air-sea fluxes of carbon dioxide in ways that are not yet fully understood. New observations from autonomous platforms measuring ocean carbon content suggest that there is significant heterogeneity in ocean carbon fluxes which can be linked to these dynamic eddy features. Due to computational and time limitations, ocean eddies are not explicitly represented in most global climate simulations, limiting our ability to understand the role eddies play in the ocean carbon cycle. This study will explore the impact of eddies on ocean carbon content and air-sea carbon dioxide fluxes in the Southern Ocean using both simulated- and observation-based strategies and the findings will improve our understanding of the ocean’s role in the carbon cycle and in global climate. While this work will primarily be focused on the Southern Ocean, the results will be globally applicable. The researchers will also broaden interest in physical and chemical oceanography among middle school-age girls in the University of South Florida’s Oceanography Camp for Girls by augmenting existing lessons with computational methods in oceanography. This project aims to quantify the impacts of mesoscale eddy processes on ocean carbon content and air-sea carbon dioxide (CO2) fluxes in the Southern Ocean. For the modeling component, the investigators will explore relationships between eddies, ocean carbon content, and air-sea CO2 fluxes within the 1/6-degree resolution Biogeochemical Southern Ocean State Estimate (B-SOSE). They investigators will produce high-resolution composites of the carbon content and physical structure within both cyclonic and anticyclonic eddies by region, quantify the influence of these eddies on the overall simulated air-sea CO2 flux, and diagnose the physical mechanisms driving this influence. For the observational component, the investigators will match eddies observed via satellite altimetry to ocean carbon observations and characterize observed relationships between eddies and ocean carbon content with a focus on Southern Ocean winter observations where light limits biological processes, allowing isolation of the contribution of physical processes. This work will also provide motivation for higher resolution and better eddy parameterizations in climate models, more mesoscale biogeochemical observations, and integration of satellite sea surface height data into efforts to map air-sea fluxes of CO2. Each summer, the PI delivers a lab lesson at the University of South Florida Oceanography Camp for Girls, recognized by NSF as a “Model STEM Program for Women and Girls” focused on broadening participation by placing emphasis on recruiting a diverse group of young women. As part of this project, the existing interactive Jupyter Notebook-based Python coding Lab lesson will be augmented with a B-SOSE-themed modeling component, which will broaden interest in physical and chemical oceanography and data science, and expose campers to computational methods in oceanography. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -30,-144 -30,-108 -30,-72 -30,-36 -30,0 -30,36 -30,72 -30,108 -30,144 -30,180 -30,180 -36,180 -42,180 -48,180 -54,180 -60,180 -66,180 -72,180 -78,180 -84,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84,-180 -78,-180 -72,-180 -66,-180 -60,-180 -54,-180 -48,-180 -42,-180 -36,-180 -30)) | POINT(0 -89.999) | false | false | |||||||||||||||||||||
Biological and Physical Drivers of Oxygen Saturation and Net Community Production Variability along the Western Antarctic Peninsula
|
1643534 |
2022-03-03 | Cassar, Nicolas |
|
This project seeks to make detailed measurements of the oxygen content of the surface ocean along the Western Antarctic Peninsula. Detailed maps of changes in net oxygen content will be combined with measurements of the surface water chemistry and phytoplankton distributions. The project will determine the extent to which on-shore or offshore phytoplankton blooms along the peninsula are likely to lead to different amounts of carbon being exported to the deeper ocean. The project team members will participate in the development of new learning tools at the Museum of Life and Science. They will also teach secondary school students about aquatic biogeochemistry and climate, drawing directly from the active science supported by this grant. The project will analyze oxygen in relation to argon that will allow determination of the physical and biological contributions to surface ocean oxygen dynamics. These assessments will be combined with spatial and temporal distributions of nutrients (iron and macronutrients) and irradiances. This will allow the investigators to unravel the complex interplay between ice dynamics, iron and physical mixing dynamics as they relate to Net Community Production (NCP) in the region. NCP measurements will be normalized to Particulate Organic Carbon (POC) and be used to help identify area of "High Biomass and Low NCP" and those with "Low Biomass and High NCP" as a function of microbial plankton community composition. The team will use machine learning methods- including decision tree assemblages and genetic programming- to identify plankton groups key to facilitating biological carbon fluxes. Decomposing the oxygen signal along the West Antarctic Peninsula will also help elucidate biotic and abiotic drivers of the O2 saturation to further contextualize the growing inventory of oxygen measurements (e.g. by Argo floats) throughout the global oceans. | POLYGON((-83 -62,-80.3 -62,-77.6 -62,-74.9 -62,-72.2 -62,-69.5 -62,-66.8 -62,-64.1 -62,-61.4 -62,-58.7 -62,-56 -62,-56 -63.1,-56 -64.2,-56 -65.3,-56 -66.4,-56 -67.5,-56 -68.6,-56 -69.7,-56 -70.8,-56 -71.9,-56 -73,-58.7 -73,-61.4 -73,-64.1 -73,-66.8 -73,-69.5 -73,-72.2 -73,-74.9 -73,-77.6 -73,-80.3 -73,-83 -73,-83 -71.9,-83 -70.8,-83 -69.7,-83 -68.6,-83 -67.5,-83 -66.4,-83 -65.3,-83 -64.2,-83 -63.1,-83 -62)) | POINT(-69.5 -67.5) | false | false | |||||||||||||||||||||
Mapping Antarctic Subglacial Water with Novel Electromagnetic Techniques
|
1643917 |
2022-02-26 | Key, Kerry; Fricker, Helen; Siegfried, Matthew |
|
The Antarctic ice sheet is underlain by a dynamic water system that lubricates the flow of ice streams and outlet glaciers, provides a habitat for a diverse microbial ecosystem, and delivers freshwater and nutrients to the Southern Ocean. However, imaging this subglacial environment is difficult: Antarctica is a vast continent with ice up to four kilometers (2.5 miles) thick. To detect water at the ice-bed interface and in deeper groundwater reservoirs, this project will adapt a technique called electromagnetic sounding that is well-established on land and in the ocean for imaging fluids beneath the surface. Groundwater is estimated to be a significant part of the subglacial water budget in Antarctica, yet previous observational approaches have been unable to characterize its volume and distribution. This project will thus yield critical information about how ice-rock-water-ocean systems interact and inform our understanding of ice-sheet processes, global nutrient cycles, and freshwater flux to the ocean. The project will provide cross-disciplinary training for a graduate student and postdoctoral scientist, and develop an educational outreach program through the Birch Aquarium. Standard geophysical surveying techniques used in glaciology to image subglacial water (radio-echo sounding and active-source seismology) are not directly sensitive to water content. In contrast, ground-based electromagnetic (EM) methods are sensitive to water content through its impact on bulk conductivity. Although EM methods are well-established for high-precision mapping of hydrology in other geological environments, their application on ice sheets is in its infancy. The proposed work will adapt both passive- and active-source EM techniques to glaciological questions to quantify the three-dimensional structure of subglacial water beneath an ice stream and in a grounding zone. The project will perform a suite of synthetic inversion studies to determine the range of applications of EM techniques in glaciology and execute a field experiment on the Whillans Ice Plain to investigate two hypotheses about the subglacial water system based on previous observational and modeling results: (1) Subglacial Lake Whillans is underlain by a deep, saline groundwater reservoir; and (2) there is an estuary-like zone of mixing between fresh subglacial water and seawater near, and possibly landward, of the grounding line. | POLYGON((-163.646 -84.186,-162.58715 -84.186,-161.5283 -84.186,-160.46945 -84.186,-159.4106 -84.186,-158.35175 -84.186,-157.2929 -84.186,-156.23405 -84.186,-155.1752 -84.186,-154.11635 -84.186,-153.0575 -84.186,-153.0575 -84.20871,-153.0575 -84.23142,-153.0575 -84.25413,-153.0575 -84.27684,-153.0575 -84.29955,-153.0575 -84.32226,-153.0575 -84.34497,-153.0575 -84.36768,-153.0575 -84.39039,-153.0575 -84.4131,-154.11635 -84.4131,-155.1752 -84.4131,-156.23405 -84.4131,-157.2929 -84.4131,-158.35175 -84.4131,-159.4106 -84.4131,-160.46945 -84.4131,-161.5283 -84.4131,-162.58715 -84.4131,-163.646 -84.4131,-163.646 -84.39039,-163.646 -84.36768,-163.646 -84.34497,-163.646 -84.32226,-163.646 -84.29955,-163.646 -84.27684,-163.646 -84.25413,-163.646 -84.23142,-163.646 -84.20871,-163.646 -84.186)) | POINT(-158.35175 -84.29955) | false | false | |||||||||||||||||||||
EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers
|
1946326 |
2022-01-31 | Doran, Peter | Correlating ecosystem responses to past climate forcing is highly dependent on the use of reliable techniques for establishing the age of events (dating techniques). In Antarctic dry regions (land areas without glaciers), carbon-14 dating has been used to assess the ages of organic deposits left behind by ancient lakes. However, the reliability of the ages is debatable because of possible contamination with "old carbon" from the surrounding landscape. The proposed research will attempt to establish two alternate dating techniques, in situ carbon-14 cosmogenic radionuclide exposure dating and optically stimulated luminescence (OSL), as reliable alternate dating methods for lake history in Antarctic dry areas that are not contaminated by the old carbon. The end goal will be to increase scientific understanding of lake level fluctuation in the lakes of Taylor Valley, Antarctica so that inference about past climate, glacier, and ecosystem response can be inferred. The results of this study will provide a coarse-scale absolute chronology for lake level history in Taylor Valley, demonstrate that exposure dating and OSL are effective means to understand the physical dynamics of ancient water bodies, and increase the current understanding of polar lacustrine and ice sheet responses to past and present climatic changes. These chronologies will allow polar lake level fluctuations to be correlated with past changes in global and regional climate, providing information critical for understanding and modeling the physical responses of these environments to modern change. This research supports a PhD student; the student will highlight this work with grade school classes in the United States. This research aims to establish in situ carbon-14 exposure dating and OSL as reliable alternate (to carbon-14 of organic lake deposits) geochronometers that can be used to settle the long-disputed lacustrine history and chronology of Taylor Valley, Antarctica and elsewhere. Improved lake level history will have significant impacts for the McMurdo Dry Valleys Long Term Ecological Research (MCM LTER) site as the legacy of fluctuating lake levels of the past affects the distribution of organic matter and nutrients, and impacts biological connectivity valley-wide. This work will provide insight into the carbon reservoir of large glacial lakes in the late Holocene and have implications for previously reported radiocarbon chronologies. OSL samples will be analyzed in the Desert Research Institute Luminescence Laboratory in Reno, NV. For the in situ carbon-14 work, rock samples extracted from boulders and bedrock surfaces will be prepared at Tulane University. The prepared in situ carbon-14 samples will be analyzed at the National Ocean Sciences Accelerator Mass Spectrometry laboratory in Woods Hole, MA. The two datasets will be combined to produce a reliable, coarse scale chronology for late Quaternary lake level fluctuations in Taylor Valley. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((161 -77.4,161.3 -77.4,161.6 -77.4,161.9 -77.4,162.2 -77.4,162.5 -77.4,162.8 -77.4,163.1 -77.4,163.4 -77.4,163.7 -77.4,164 -77.4,164 -77.46,164 -77.52,164 -77.58,164 -77.64,164 -77.7,164 -77.76,164 -77.82,164 -77.88,164 -77.94,164 -78,163.7 -78,163.4 -78,163.1 -78,162.8 -78,162.5 -78,162.2 -78,161.9 -78,161.6 -78,161.3 -78,161 -78,161 -77.94,161 -77.88,161 -77.82,161 -77.76,161 -77.7,161 -77.64,161 -77.58,161 -77.52,161 -77.46,161 -77.4)) | POINT(162.5 -77.7) | false | false | ||||||||||||||||||||||
Collaborative Research: Remote characterization of microbial mats in Taylor Valley, Antarctica through in situ sampling and spectral validation
|
1744785 |
2021-11-30 | Barrett, John; Salvatore, Mark |
|
Microbial mats are found throughout the McMurdo Dry Valleys where summer snowmelt provides liquid water that allows these mats to flourish. Researchers have long studied the environmental conditions microbial mats need to grow. Despite these efforts, it has been difficult to develop a broad picture of these unique ecosystems. Recent advances in satellite technology now provide researchers an exciting new tool to study these special Antarctic ecosystems from space using the unique spectral signatures associated with microbial mats. This new technology not only offers the promise that microbial mats can be mapped and studied from space, this research will also help protect these delicate environments from potentially harmful human impacts that can occur when studying them from the ground. This project will use satellite imagery and spectroscopic techniques to identify and map microbial mat communities and relate their properties and distributions to both field and lab-based measurements. This research provides an exciting new tool to help document and understand the distribution of a major component of the Antarctic ecosystem in the McMurdo Dry Valleys. The goal of this project is to establish quantitative relationships between spectral signatures derived from orbit and the physiological status and biogeochemical properties of microbial mat communities in Taylor Valley, Antarctica, as measured by field and laboratory analyses on collected samples. The goal wioll be met by (1) refining atmospheric correction techniques using in situ radiometric rectification to derive accurate surface spectra; (2) collecting multispectral orbital images concurrent with in situ sampling and spectral measurements in the field to ensure temporal comparability; (3) measuring sediment, water, and microbial mat samples for organic and inorganic carbon content, essential biogeochemical nutrients, and chlorophyll-a to determine relevant mat characteristics; and (4) quantitatively associating these laboratory-derived characteristics with field-derived and orbital spectral signatures and parameters. The result of this work will be a more robust quantitative link between the distribution of microbial mat communities and their biogeochemical properties to landscape-scale spectral signatures. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -77.62,-145.683 -77.62,-111.366 -77.62,-77.049 -77.62,-42.732 -77.62,-8.415 -77.62,25.902 -77.62,60.219 -77.62,94.536 -77.62,128.853 -77.62,163.17 -77.62,163.17 -77.618,163.17 -77.616,163.17 -77.614,163.17 -77.612,163.17 -77.61,163.17 -77.608,163.17 -77.606,163.17 -77.604,163.17 -77.602,163.17 -77.6,128.853 -77.6,94.536 -77.6,60.219 -77.6,25.902 -77.6,-8.415 -77.6,-42.732 -77.6,-77.049 -77.6,-111.366 -77.6,-145.683 -77.6,180 -77.6,178.319 -77.6,176.638 -77.6,174.957 -77.6,173.276 -77.6,171.595 -77.6,169.914 -77.6,168.233 -77.6,166.552 -77.6,164.871 -77.6,163.19 -77.6,163.19 -77.602,163.19 -77.604,163.19 -77.606,163.19 -77.608,163.19 -77.61,163.19 -77.612,163.19 -77.614,163.19 -77.616,163.19 -77.618,163.19 -77.62,164.871 -77.62,166.552 -77.62,168.233 -77.62,169.914 -77.62,171.595 -77.62,173.276 -77.62,174.957 -77.62,176.638 -77.62,178.319 -77.62,-180 -77.62)) | POINT(-16.82 -77.61) | false | false | |||||||||||||||||||||
Antarctica as a Model System for Responses of Terrestrial Carbon Balance to Warming
|
1643871 1947562 |
2021-08-21 | van Gestel, Natasja |
|
Part I: Non-technical description: Earth’s terrestrial ecosystems have the potential to either slow down or hasten the pace of climate change. The direction depends in part on both plant and microbial responses to warming. This study uses Antarctica as a model ecosystem to study the carbon balance of a simplified ecosystem (simplified compared to terrestrial ecosystems elsewhere) in response to a warming treatment. Carbon balance is dictated by sequestered carbon (through photosynthesis) and released carbon (plant and microbial respiration). Hence, to best assess plant and microbial responses to warming, this study uses a plant gradient that starts at the glacier (no plants, only soil microbes) to an old site entirely covered by plants. Experimental warming in the field is achieved by open-top chambers that warm the air and soil inside. The net ecosystem carbon exchange, the net result of sequestered and released carbon, will be measured in warmed and control plots with a state-of-the art gas exchange machine. Laboratory temperature incubation studies will supplement field work to attribute changes in carbon fluxes to individual plant species and soil microbial taxa (i.e., “species”). Data from this study will feed into earth system climate change models. The importance of this study will be shared with the broader community through the production of a video series created by an award-winning science media production company, an Antarctic blog, and through interactions with schools in the United States (on-site through Skype and in-person visits). Part II: Technical description: Responses of the carbon balance of terrestrial ecosystems to warming will feed back to the pace of climate change, but the size and direction of this feedback are poorly constrained. Least known are the effects of warming on carbon losses from soil, and clarifying the major microbial controls is an important research frontier. This study uses a series of experiments and observations to investigate microbial, including autotrophic taxa, and plant controls of net ecosystem productivity in response to warming in intact ecosystems. Field warming is achieved using open-top chambers paired with control plots, arrayed along a productivity gradient. Along this gradient, incoming and outgoing carbon fluxes will be measured at the ecosystem-level. The goal is to tie warming-induced shifts in net ecosystem carbon balance to warming effects on soil microbes and plants. The field study will be supplemented with lab temperature incubations. Because soil microbes dominate biogeochemical cycles in Antarctica, a major focus of this study is to determine warming responses of bacteria, fungi and archaea. This is achieved using a cutting-edge stable isotope technique, quantitative stable isotope probing (qSIP) developed by the proposing research team, that can identify the taxa that are active and involved in processing new carbon. This technique can identify individual microbial taxa that are actively participating in biogeochemical cycling of nutrients (through combined use of 18O-water and 13C-bicarbonate) and thus can be distinguished from those that are simply present (cold-preserved). The study further assesses photosynthetic uptake of carbon by the vegetation and their sensitivity to warming. Results will advance research in climate change, plant and soil microbial ecology, and ecosystem modeling. Science communication will be achieved through an informative video series, a daily Antarctic blog, and online- and in-person visits to schools in the United States. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-65 -64.5,-64.8 -64.5,-64.6 -64.5,-64.4 -64.5,-64.2 -64.5,-64 -64.5,-63.8 -64.5,-63.6 -64.5,-63.4 -64.5,-63.2 -64.5,-63 -64.5,-63 -64.55,-63 -64.6,-63 -64.65,-63 -64.7,-63 -64.75,-63 -64.8,-63 -64.85,-63 -64.9,-63 -64.95,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.95,-65 -64.9,-65 -64.85,-65 -64.8,-65 -64.75,-65 -64.7,-65 -64.65,-65 -64.6,-65 -64.55,-65 -64.5)) | POINT(-64 -64.75) | false | false | |||||||||||||||||||||
NSFGEO-NERC: Collaborative Research: Accelerating Thwaites Ecosystem Impacts for the Southern Ocean (ARTEMIS)
|
1941292 1941304 1941327 1941483 1941308 |
2021-08-20 | Yager, Patricia; Medeiros, Patricia; Sherrell, Robert; St-Laurent, Pierre; Fitzsimmons, Jessica; Stammerjohn, Sharon | Part I: Non-technical summary: The Amundsen Sea is adjacent to the West Antarctic Ice Sheet (WAIS) and hosts the most productive coastal ecosystem in all of Antarctica, with vibrant green waters visible from space and an atmospheric carbon dioxide uptake rate ten times higher than the Southern Ocean average. The region is also an area highly impacted by climate change and glacier ice loss. Upwelling of warm deep water is causing melt under the ice sheet, which is contributing to sea level rise and added nutrient inputs to the region. This is a project that is jointly funded by the National Science Foundation’s Directorate of Geosciences (NSF/GEO) and the National Environment Research Council (NERC) of the United Kingdom (UK) via the NSF/GEO-NERC Lead Agency Agreement. This Agreement allows a single joint US/UK proposal to be submitted and peer-reviewed by the Agency whose investigator has the largest proportion of the budget. Upon successful joint determination of an award, each Agency funds the proportion of the budget and the investigators associated with its own country. In this collaboration, the US team will undertake biogeochemical sampling alongside a UK-funded physical oceanographic program to evaluate the contribution of micronutrients such as iron from glacial meltwater to ecosystem productivity and carbon cycling. Measurements will be incorporated into computer simulations to examine ecosystem responses to further glacial melting. Results will help predict future impacts on the region and determine whether the climate sensitivity of the Amundsen Sea ecosystem represents the front line of processes generalizable to the greater Antarctic. This study is aligned with the large International Thwaites Glacier Collaboration (ITGC) and will make data available to the full scientific community. The program will provide training for undergraduate, graduate, post-doctoral, and early-career scientists in both science and communication. The team will also develop out-of-school science experiences for middle and high schoolers related to climate change and Antarctica. Part II: Technical summary: The Amundsen Sea hosts the most productive polynya in all of Antarctica, with atmospheric carbon dioxide uptake rates ten times higher than the Southern Ocean average. The region is vulnerable to climate change, experiencing rapid losses in sea ice, a changing icescape and some of the fastest melting glaciers flowing from the West Antarctic Ice Sheet, a process being studied by the International Thwaites Glacier Collaboration. The biogeochemical composition of the outflow from the glaciers surrounding the Amundsen Sea is largely unstudied. In collaboration with a UK-funded physical oceanographic program, ARTEMIS is using shipboard sampling for trace metals, carbonate system, nutrients, organic matter, and microorganisms, with biogeochemical sensors on autonomous vehicles to gather data needed to understand the impact of the melting ice sheet on both the coastal ecosystem and the regional carbon cycle. These measurements, along with access to the advanced physical oceanographic measurements will allow this team to 1) bridge the gap between biogeochemistry and physics by adding estimates of fluxes and transport of limiting micronutrients; 2) provide biogeochemical context to broaden understanding of the global significance of ocean-ice shelf interactions; 3) determine processes and scales of variability in micronutrient supply that drive the ten-fold increase in carbon dioxide uptake, and 4) identify small-scale processes key to iron and carbon cycling using optimized field sampling. Observations will be integrated into an ocean model to enhance predictive capabilities of regional ocean function. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-120 -71,-118 -71,-116 -71,-114 -71,-112 -71,-110 -71,-108 -71,-106 -71,-104 -71,-102 -71,-100 -71,-100 -71.4,-100 -71.8,-100 -72.2,-100 -72.6,-100 -73,-100 -73.4,-100 -73.8,-100 -74.2,-100 -74.6,-100 -75,-102 -75,-104 -75,-106 -75,-108 -75,-110 -75,-112 -75,-114 -75,-116 -75,-118 -75,-120 -75,-120 -74.6,-120 -74.2,-120 -73.8,-120 -73.4,-120 -73,-120 -72.6,-120 -72.2,-120 -71.8,-120 -71.4,-120 -71)) | POINT(-110 -73) | false | false | ||||||||||||||||||||||
U-Series Comminution Age Constraints on Taylor Valley Erosion
|
1644171 |
2021-08-13 | Blackburn, Terrence; Tulaczyk, Slawek |
|
A nontechnical description of the project The primary scientific goal of the project is to test whether Taylor Valley, Antarctica has been eroded significantly by glaciers in the last ~2 million years (Ma). Taylor Valley is one of the Dry Valleys of the Transantarctic Mountains, which are characterized by low mean annual temperatures, low precipitation, and limited erosion. These conditions have allowed fragile glacial landforms to be preserved for up to 15 Ma. Sediment eroded and deposited by glaciers is found on the valley walls and floors, with progressively younger deposits preserved at lower elevations. Scientists can date glacial deposits to understand the process and timing of past glacial erosion. Previous work in the Dry Valleys region suggested that extremely cold glaciers like Taylor Glacier, a major outlet glacier entering the valleys, were not erosive during the last several million years. This research will test a new hypothesis that glacial erosion and sediment production beneath Taylor Glacier have been active in the last few million years. This hypothesis will be tested using a new isotopic dating method called "comminution dating' which determines when fine-grained sediment particles called silt were formed. If the sediment age is young, then the results will suggest that glacial processes have been more dynamic than previously thought. Overall, this study will increase our understanding of the nature and extent of past glaciations in Antarctica. Because the silt produced by erosion sediment is a nutrient for local ecosystems, the results will also shed light on delivery of nutrients to soils, streams, and coastal zones in high polar regions. This project will be led by an early career scientist and includes training of a Ph.D. student. A technical description of the project There is a long-standing scientific controversy about the stability of the East Antarctic Ice Sheet with much evidence centered in the Dry Valleys region of South Victoria Land. A prevailing view of geomorphologists is that the landscape has been very stable and that the effects of glaciation have been minimal for the past ~15 Ma. This project will distinguish between two end-member scenarios of glacial erosion and deposition by Taylor Glacier, an outlet glacier of the East Antarctic Ice Sheet that terminates in Taylor Valley in the Dry Valleys region of Antarctica. In the first scenario, all valley relief is generated prior to 15 Ma when non-polar climates enabled warm-based glaciers to incise and widen ancient river channels. In this case, younger glacial deposits record advances of cold-based glaciers of decreasing ice volume and limited glacial erosion, and sediment generation resulted in glacial deposits composed primarily of older recycled sediments. In the second scenario, selective erosion of the valley floor has continued to deepen Taylor Valley but has not affected the adjacent peaks over the last 2 Ma. In this scenario, the "bathtub rings" of Quaternary glacial deposits situated at progressively lower elevations through time could be due to the lowering of the valley floor by subglacial erosion and with it, production of new sediment which is now incorporated into these deposits. While either scenario would result in the present-day topography, they differ in the implied evolution of regional glacial ice volume over time and the timing of both valley relief production and generation of fine-grained particles. The two scenarios will be tested by placing time constraints on fine particle production using U-series comminution dating. This new geochronologic tool exploits the loss of 234U due to alpha-recoil. The deficiency in 234U only becomes detectable in fine-grained particles with a sufficiently high surface-area-to-volume ratio which can incur appreciable 234U loss. The timing of comminution and particle size controls the magnitude of 234U loss. While this geochronologic tool is in its infancy, the scientific goal of this proposal can be achieved by resolving between ancient and recently comminuted fine particles, a binary question that the preliminary modeling and measured data show is readily resolved. | POLYGON((162 -77.5,162.2 -77.5,162.4 -77.5,162.6 -77.5,162.8 -77.5,163 -77.5,163.2 -77.5,163.4 -77.5,163.6 -77.5,163.8 -77.5,164 -77.5,164 -77.525,164 -77.55,164 -77.575,164 -77.6,164 -77.625,164 -77.65,164 -77.675,164 -77.7,164 -77.725,164 -77.75,163.8 -77.75,163.6 -77.75,163.4 -77.75,163.2 -77.75,163 -77.75,162.8 -77.75,162.6 -77.75,162.4 -77.75,162.2 -77.75,162 -77.75,162 -77.725,162 -77.7,162 -77.675,162 -77.65,162 -77.625,162 -77.6,162 -77.575,162 -77.55,162 -77.525,162 -77.5)) | POINT(163 -77.625) | false | false | |||||||||||||||||||||
The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information?
|
1744871 |
2021-07-28 | Robinson, Rebecca | The chemical composition of diatom fossils in the Southern Ocean provides information about the environmental history of Antarctica, including sea ice extent, biological production, and ocean nutrient distribution. The sea ice zone is an important habitat for a group of diatoms, largely from the genus Chaetoceros, that have a unique life cycle stage under environmental stress, when they produce a structure called a resting spore. Resting spores are meant to reseed the surface ocean when conditions are more favorable. The production of these heavy resting spores tends to remove significant amounts of carbon and silicon, essential nutrients, out of the surface ocean. As a result, this group has the potential to remove carbon from the surface ocean and can impact the sedimentary record scientists use to reconstruct environmental change. This project explores the role of resting spores in the sedimentary record using the nitrogen isotopic signature of these fossils and how those measurements are used to estimate carbon cycle changes. The work will include laboratory incubations of these organisms to answer if and how the chemistry of the resting spores differs from that of a typical diatom cell. The incubation results will be used to evaluate nutrient drawdown in sea ice environments during two contrasting intervals in earth history, the last ice age and the warm Pliocene. This work should have significant impact on how the scientific community considers the impact of seasonal sea ice cover in the Southern Ocean in terms of how it responds to and regulates global climate. The project provides training and research opportunities for undergraduate and graduate students. Ongoing research efforts in Antarctic earth sciences will be disseminated through an interactive display at the home institution. The work proposed here will address uncertainties in how Chaetoceros resting spores record surface nutrient conditions in their nitrogen stable isotopic composition, the relative impact of their specific signal with respect to the full sedimentary assemblage, and their potential to bias or enhance environmental reconstructions in the sea ice zone. Measurements of nitrogen stable isotopes of nitrate, biomass, and diatom-bound nitrogen and silicon-to-nitrogen ratios of individual species grown in the laboratory will be used to quantify how resting spores record nutrient drawdown in the water column and to what degree their signature is biased toward low nutrient conditions. These relationships will be used to inform diatom-bound nitrogen isotope reconstructions of nutrient drawdown from a Pliocene coastal polyna and an open ocean core that spans the last glacial maximum. This proposal capitalizes on the availability of Southern Ocean isolates of Chaetoceros spp. collected in 2017 for the proposed culture work and archived sediment cores and/or existing data. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||||||||||||||||||
RAPID: Meta-genomic and Transcriptomic Investigation of Complex Organic Matter Degradation in Antarctic Benthic Sediments
|
2031442 |
2021-07-28 | Learman, Deric |
|
Western Antarctica is one of the fastest warming locations on Earth. Its changing climate will lead to an increase in sea-level and will also alter regional water temperature and chemistry. These changes will directly alter the microbes that inhabit the ecosystem. Microbes are the smallest forms of life on Earth, but they are also the most abundant. They drive cycling of essential nutrients, such as carbon and nitrogen that are found in ocean sediments. In this way they form the foundation of the food chain that supports larger and more complex life. However, we do not know much about how different communities of microbes break down sediments in Antarctica and this will influence the chemistry of those waters. This research will determine how communities of microbes on the coastal shelf of Antarctica degrade complex organic sediments using genetic and chemical data. This data will identify the species in the community, what enzymes they are producing and what chemical reactions they are driving. This research will create broader impacts as the data will be used to create in-class activities that improve a student’s data analysis and critical thinking skills. The data will be used in graduate, undergraduate and K-12 classrooms. This research will provide genetic and enzymatic insight into how microbial communities in benthic sediments on the coastal shelf of Antarctica degrade complex organic matter. The current understanding of how benthic microbial communities respond to and then degrade complex organic matter in Antarctica is fragmented. Recent work suggests benthic microbial communities are shaped by organic matter availability. However, those studies were observational and did not directly examine community function. A preliminary study of metagenomic data from western Antarctic marine sediments, indicates a genetic potential for organic matter degradation but functional data was not been collected. Other studies have examined either enzyme activity or metagenomic potential, but few have been able to directly connect the two. To address this gap in knowledge, this study will utilize metagenomics and metatranscriptomics, coupled with microcosm experiments, enzyme assays, and geochemical data. It will examine Antarctic microbial communities from the Ross Sea, the Bransfield Strait and Weddell Sea to document how the relationship between a communities’ enzymatic activity and the genes used to degrade complex organic matter is related to sediment breakdown. The data will expand our current knowledge of microbial genetic potential and provide a solid understanding of enzyme function as it relates to degradation of complex organic matter in those marine sediments. It will thereby improve our understanding of temperature change on the chemistry of Antarctic seawater. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-167.5 -60,-155 -60,-142.5 -60,-130 -60,-117.5 -60,-105 -60,-92.5 -60,-80 -60,-67.5 -60,-55 -60,-55 -62,-55 -64,-55 -66,-55 -68,-55 -70,-55 -72,-55 -74,-55 -76,-55 -78,-55 -80,-67.5 -80,-80 -80,-92.5 -80,-105 -80,-117.5 -80,-130 -80,-142.5 -80,-155 -80,-167.5 -80,180 -80,178 -80,176 -80,174 -80,172 -80,170 -80,168 -80,166 -80,164 -80,162 -80,160 -80,160 -78,160 -76,160 -74,160 -72,160 -70,160 -68,160 -66,160 -64,160 -62,160 -60,162 -60,164 -60,166 -60,168 -60,170 -60,172 -60,174 -60,176 -60,178 -60,-180 -60)) | POINT(-127.5 -70) | false | false | |||||||||||||||||||||
CAREER: Understanding microbial heterotrophic processes in coastal Antarctic waters
|
1846837 |
2021-06-25 | Bowman, Jeff; Connors, Elizabeth | No dataset link provided | The coastal Antarctic is undergoing great environmental change. Physical changes in the environment, such as altered sea ice duration and extent, have a direct impact on the phytoplankton and bacteria species which form the base of the marine foodweb. Photosynthetic phytoplankton are the ocean's primary producers, transforming (fixing) CO2 into organic carbon molecules and providing a source of food for zooplankton and larger predators. When phytoplankton are consumed by zooplankton, or killed by viral attack, they release large amounts of organic carbon and nutrients into the environment. Heterotrophic bacteria must eat other things, and function as "master recyclers", consuming these materials and converting them to bacterial biomass which can feed larger organisms such as protists. Some protists are heterotrophs, but others are mixotrophs, able to grow by photosynthesis or heterotrophy. Previous work suggests that by killing and eating bacteria, protists and viruses may regulate bacterial populations, but how these processes are regulated in Antarctic waters is poorly understood. This project will use experiments to determine the rate at which Antarctic protists consume bacteria, and field studies to identify the major bacterial taxa involved in carbon uptake and recycling. In addition, this project will use new sequencing technology to obtain completed genomes for many Antarctic marine bacteria. To place this work in an ecosystem context this project will use microbial diversity data to inform rates associated with key microbial processes within the PALMER ecosystem model. This project addresses critical unknowns regarding the ecological role of heterotrophic marine bacteria in the coastal Antarctic and the top-down controls on bacterial populations. Previous work suggests that at certain times of the year grazing by heterotrophic and mixotrophic protists may meet or exceed bacterial production rates. Similarly, in more temperate waters bacteriophages (viruses) are thought to contribute significantly to bacterial mortality during the spring and summer. These different top-down controls have implications for carbon flow through the marine foodweb, because protists are grazed more efficiently by higher trophic levels than are bacteria. This project will use a combination of grazing experiments and field observations to assess the temporal dynamics of mortality due to temperate bacteriophage and protists. Although many heterotrophic bacterial strains observed in the coastal Antarctic are taxonomically similar to strains from other regions, recent work suggest that they are phylogenetically and genetically distinct. To better understand the ecological function and evolutionary trajectories of key Antarctic marine bacteria, their genomes will be isolated and sequenced. Then, these genomes will be used to improve the predictions of the paprica metabolic inference pipeline, and our understanding of the relationship between heterotrophic bacteria and their major predators in the Antarctic marine environment. Finally, researchers will modify the Regional Test-Bed Model model to enable microbial diversity data to be used to optimize the starting conditions of key parameters, and to constrain the model's data assimilation methods. There is an extensive education and outreach component to this project that is designed to engage students and the public in diverse activities centered on Antarctic microbiota and marine sciences. A new module on Antarctic marine science will be developed for the popular Sally Ride Science program, and two existing undergraduate courses at UC San Diego will be strengthened with laboratory modules introducing emerging technology, and with cutting-edge polar science. A PhD student and a post-doctoral researcher will be supported by this project. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | |||||||||||||||||||||
Collaborative Research: Antarctic Airborne ElectroMagnetics (ANTAEM) - Revealing Subsurface Water in Coastal Antarctica
|
1644187 |
2020-09-13 | Tulaczyk, Slawek; Mikucki, Jill |
|
In Antarctica, millions of years of freezing have led to the development of hundreds of meters of thick permafrost (i.e., frozen ground). Recent research demonstrated that this slow freezing has trapped and concentrated water into local and regional briny aquifers, many times more salty than seawater. Because salt depresses the freezing point of water, these saline brines are able to persist as liquid water at temperatures well below the normal freezing point of freshwater. Such unusual groundwater systems may support microbial life, supply nutrients to coastal ocean and ice-covered lakes, and influence motion of glaciers. These briny aquifers also represent potential terrestrial analogs for deep life habitats on other planets, such as Mars, and provide a testing ground for the search for extraterrestrial water. Whereas much effort has been invested in understanding the physics, chemistry, and biology of surface and near-surface waters in cold polar regions, it has been comparably difficult to investigate deep subsurface aquifers in such settings. Airborne ElectroMagnetics (AEM) subsurface imaging provides an efficient way for mapping salty groundwater. An international collaboration with the University of Aarhus in Denmark will enable knowledge and skill transfer in AEM techniques that will enhance US polar research capabilities and provide US undergraduates and graduate students with unique training experiences. This project will survey over 1000 km2 of ocean and land near McMurdo Station in Antarctica, and will reveal if cold polar deserts hide a subsurface pool of liquid water. This will have significant implications for understanding cold polar glaciers, ice-covered lakes, frozen ground, and polar microbiology as well as for predictions of their response to future change. Improvements in permafrost mapping techniques and understanding of permafrost and of underlying groundwaters will benefit human use of high polar regions in the Antarctic and the Arctic. The project will provide the first integrative system-scale overview of subsurface water distribution and hydrological connectivity in a partly ice-free coastal region of Antarctica, the McMurdo Dry Valleys. Liquid water is relatively scarce in this environment but plays an outsized role by influencing, and integrating, biological, biogeochemical, glaciological, and geological processes. Whereas surface hydrology and its role in ecosystem processes has been thoroughly studied over the last several decades, it has been difficult to map out and characterize subsurface water reservoirs and to understand their interactions with regional lakes, glaciers, and coastal waters. The proposed project builds on the "proof-of-concept" use of AEM technology in 2011. Improvements in sensor and data processing capabilities will result in about double the depth of penetration of the subsurface during the new data collection when compared to the 2011 proof-of-concept survey, which reached depths of 300-400m. The first field season will focus on collecting deep soundings with a ground-based system in key locations where: (i) independent constraints on subsurface structure exist from past drilling projects, and (ii) the 2011 resistivity dataset indicates the need for deeper penetration and high signal-to-noise ratios achievable only with a ground-based system. The regional airborne survey will take place during the second field season and will yield subsurface electrical resistivity data from across several valleys of different sizes and different ice cover fractions. | POLYGON((161 -76.9,161.75 -76.9,162.5 -76.9,163.25 -76.9,164 -76.9,164.75 -76.9,165.5 -76.9,166.25 -76.9,167 -76.9,167.75 -76.9,168.5 -76.9,168.5 -77.04,168.5 -77.18,168.5 -77.32,168.5 -77.46,168.5 -77.6,168.5 -77.74,168.5 -77.88,168.5 -78.02,168.5 -78.16,168.5 -78.3,167.75 -78.3,167 -78.3,166.25 -78.3,165.5 -78.3,164.75 -78.3,164 -78.3,163.25 -78.3,162.5 -78.3,161.75 -78.3,161 -78.3,161 -78.16,161 -78.02,161 -77.88,161 -77.74,161 -77.6,161 -77.46,161 -77.32,161 -77.18,161 -77.04,161 -76.9)) | POINT(164.75 -77.6) | false | false | |||||||||||||||||||||
Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments
|
1543347 1543396 1543405 1543453 1543537 1543441 |
2020-07-16 | Rosenheim, Brad; Fricker, Helen; Priscu, John; Leventer, Amy; Dore, John; Lyons, W. Berry; Christner, Brent | The Antarctic subglacial environment remains one of the least explored regions on Earth. This project will examine the physical and biological characteristics of Subglacial Lake Mercer, a lake that lies 1200m beneath the West Antarctic Ice Sheet. This study will address key questions relating to the stability of the ice sheet, the subglacial hydrological system, and the deep-cold subglacial biosphere. The education and outreach component aims to widely disseminate results to the scientific community and to the general public through short films, a blog, and a website. Subglacial Lake Mercer is one of the larger hydrologically active lakes in the southern basin of the Whillans Ice Plain, West Antarctica. It receives about 25 percent of its water from East Antarctica with the remainder originating from West Antarctica, is influenced by drain/fill cycles in a lake immediately upstream (Subglacial Lake Conway), and lies about 100 km upstream of the present grounding line of the Ross Ice Shelf. This site will yield information on the history of the Whillans and Mercer Ice Streams, and on grounding line migration. The integrated study will include direct sampling of basal ice, water, and sediment from the lake in concert with surface geophysical surveys over a three-year period to define the hydrological connectivity among lakes on the Whillans Ice Plain and their flow paths to the sea. The geophysical surveys will furnish information on subglacial hydrology, aid the site selection for hot-water drilling, and provide spatial context for interpreting findings. The hot-water-drilled boreholes will be used to collect basal ice samples, provide access for direct measurement of subglacial physical, chemical, and biological conditions in the water column and sediments, and to explore the subglacial water cavities using a remotely operated vehicle equipped with sensors, cameras, and sampling equipment. Data collected from this study will address the overarching hypothesis "Contemporary biodiversity and carbon cycling in hydrologically-active subglacial environments associated with the Mercer and Whillans ice streams are regulated by the mineralization and cycling of relict marine organic matter and through interactions among ice, rock, water, and sediments". The project will be undertaken by a collaborative team of scientists, with expertise in microbiology, biogeochemistry, hydrology, geophysics, glaciology, marine geology, paleoceanography, and science communication. | POLYGON((-163.611 -84.33543,-162.200034 -84.33543,-160.789068 -84.33543,-159.378102 -84.33543,-157.967136 -84.33543,-156.55617 -84.33543,-155.145204 -84.33543,-153.734238 -84.33543,-152.323272 -84.33543,-150.912306 -84.33543,-149.50134 -84.33543,-149.50134 -84.3659157,-149.50134 -84.3964014,-149.50134 -84.4268871,-149.50134 -84.4573728,-149.50134 -84.4878585,-149.50134 -84.5183442,-149.50134 -84.5488299,-149.50134 -84.5793156,-149.50134 -84.6098013,-149.50134 -84.640287,-150.912306 -84.640287,-152.323272 -84.640287,-153.734238 -84.640287,-155.145204 -84.640287,-156.55617 -84.640287,-157.967136 -84.640287,-159.378102 -84.640287,-160.789068 -84.640287,-162.200034 -84.640287,-163.611 -84.640287,-163.611 -84.6098013,-163.611 -84.5793156,-163.611 -84.5488299,-163.611 -84.5183442,-163.611 -84.4878585,-163.611 -84.4573728,-163.611 -84.4268871,-163.611 -84.3964014,-163.611 -84.3659157,-163.611 -84.33543)) | POINT(-156.55617 -84.4878585) | false | false | ||||||||||||||||||||||
Organic carbon oxidation and iron remobilization by West Antarctic shelf sediments
|
1551195 |
2020-06-16 | Burdige, David; Christensen, John |
|
General Statement: The continental shelf region west of the Antarctic Peninsula has recently undergone dramatic changes and ecosystem shifts, and the community of organisms that live in, or feed off, the sea floor sediments is being impacted by species invasions from the north. Previous studies of these sediments indicate that this community may consume much more of the regional productivity than previously estimated, suggesting that sediments are a rich and important component of this ecosystem and one that may be ripe for dramatic change. Furthermore, under richer sediment conditions, iron is mobilized and released back to the water column. Since productivity in this ecosystem is thought to be limited by the availability of iron, increased rates of iron release from these sediments could stimulate productivity and promote greater overall ecosystem change. In this research, a variety of sites across the shelf region will be sampled to accurately evaluate the role of sediments in consuming ecosystem productivity and to estimate the current level of iron release from the sediments. This project will provide a baseline set of sediment results that will present a more complete picture of the west Antarctic shelf ecosystem, will allow for comparison with water column measurements and for evaluation of the fundamental workings of this important ecosystem. This is particularly important since high latitude systems may be vulnerable to the effects of climate fluctuations. Both graduate and undergraduate students will be trained. Presentations will be made at scientific meetings, at other universities, and at outreach events. A project web site will present key results to the public and explain how this new information improves understanding of Antarctic ecosystems. Technical Description of Project: In order to determine the role of sediments within the west Antarctic shelf ecosystem, this project will determine the rates of sediment organic matter oxidation at a variety of sites across the Palmer Long Term Ecosystem Research (LTER) study region. To estimate the rates of release of iron and manganese from the sediments, these same sites will be sampled for detailed vertical distributions of the concentrations of these metals both in the porewaters and in important mineral phases. Since sediment sampling will be done at LTER sites, the sediment data can be correlated with the rich productivity data set from the LTER. In detail, the project: a) will determine the rates of oxygen consumption, organic carbon oxidation, nutrient release, and iron mobilization by shelf sediments west of the Antarctic Peninsula; b) will investigate the vertical distribution of diagenetic reactions within the sediments; and c) will assess the regional importance of these sediment rates. Sediment cores will be used to determine sediment-water fluxes of dissolved oxygen, total carbon dioxide, nutrients, and the vertical distributions of these dissolved compounds, as well as iron and manganese in the pore waters. Bulk sediment properties of porosity, organic carbon and nitrogen content, carbonate content, biogenic silica content, and multiple species of solid-phase iron, manganese, and sulfur species will also be determined. These measurements will allow determination of total organic carbon oxidation and denitrification rates, and the proportion of aerobic versus anaerobic respiration at each site. Sediment diagenetic modeling will link the processes of organic matter oxidation to metal mobilization. Pore water and solid phase iron and manganese distributions will be used to model iron diagenesis in these sediments and to estimate the iron flux from the sediments to the overlying waters. Finally, the overall regional average and distribution of the sediment processes will be compared with the distributions of seasonally averaged chlorophyll biomass and productivity. | POLYGON((-71 -64,-70.1 -64,-69.2 -64,-68.3 -64,-67.4 -64,-66.5 -64,-65.6 -64,-64.7 -64,-63.8 -64,-62.9 -64,-62 -64,-62 -64.4,-62 -64.8,-62 -65.2,-62 -65.6,-62 -66,-62 -66.4,-62 -66.8,-62 -67.2,-62 -67.6,-62 -68,-62.9 -68,-63.8 -68,-64.7 -68,-65.6 -68,-66.5 -68,-67.4 -68,-68.3 -68,-69.2 -68,-70.1 -68,-71 -68,-71 -67.6,-71 -67.2,-71 -66.8,-71 -66.4,-71 -66,-71 -65.6,-71 -65.2,-71 -64.8,-71 -64.4,-71 -64)) | POINT(-66.5 -66) | false | false | |||||||||||||||||||||
Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work
|
9978236 |
2020-04-24 | Bell, Robin; Studinger, Michael S. | 9978236 Bell Abstract This award, provided by the Office of Polar Programs under the Life in Extreme Environments (LExEn) Program, supports a geophysical study of Lake Vostok, a large lake beneath the East Antarctic Ice Sheet. Subglacial ecosystems, in particular subglacial lake ecosystems are extreme oligotrophic environments. These environments, and the ecosystems which may exist within them, should provide key insights into a range of fundamental questions about the development of Earth and other bodies in the Solar System including: 1) the processes associated with rapid evolutionary radiation after the extensive Neoproterozoic glaciations; 2) the overall carbon cycle through glacial and interglacial periods; and 3) the possible adaptations organisms may require to thrive in environments such as on Europa, the ice covered moon of Jupiter. Over 70 subglacial lakes have been identified beneath the 3-4 kilometer thick ice of Antarctica. One lake, Lake Vostok, is sufficiently large to be clearly identified from space with satellite altimetry. Lake Vostok is similar to Lake Ontario in area but with a much larger volume including measured water depths of 600 meters. The overlying ice sheet is acting as a conveyer belt continually delivering new water, nutrients, gas hydrates, sediments and microbes as the ice sheet flows across the lake. The goal of this program is to determine the fundamental boundary conditions for this subglacial lake as an essential first step toward understanding the physical processes within the lake. An aerogeophysical survey over the lake and into the surrounding regions will be acquired to meet this goal. This data set includes gravity, magnetic, laser altimetry and ice penetrating radar data and will be used to compile a basic set of ice surface elevation, subglacial topography, gravity and magnetic anomaly maps. Potential field methods widely used in the oil industry will be modified to estimate the subglacial topography from gravity data where the ice penetrating radar will be unable to recover the depth of the lake. A similar method can be modified to estimate the thickness of the sediments beneath the lake from magnetic data. These methods will be tested and applied to subglacial lakes near South Pole prior to the Lake Vostok field campaign and will provide valuable comparisons to the planned survey. Once the methods have been adjusted for the Lake Vostok application, maps of the water cavity and sediment thickness beneath the lake will be produced. These maps will become tools to explore the geologic origin of the lake. The two endmember models are, first, that the lake is an active tectonic rift such as Lake Baikal and, second, the lake is the result of glacial scouring. The distinct characteristics of an extensional rift can be easily identified with our aerogeophysical survey. The geological interpretation of the airborne geophysical survey will provide the first geological constraints of the interior of the East Antarctic continent based on modern data. In addition, the underlying geology will influence the ecosystem within the lake. One of the critical issues for the ecosystem within the lake will be the flux of nutrients. A preliminary estimation of the regions of freezing and melting based on the distance between distinctive internal layers observed on the radar data will be made. These basic boundary conditions will provide guidance for a potential international effort aimed at in situ exploration of the lake and improve the understanding of East Antarctic geologic structures. | POLYGON((101 -75.5,101.9 -75.5,102.8 -75.5,103.7 -75.5,104.6 -75.5,105.5 -75.5,106.4 -75.5,107.3 -75.5,108.2 -75.5,109.1 -75.5,110 -75.5,110 -75.85,110 -76.2,110 -76.55,110 -76.9,110 -77.25,110 -77.6,110 -77.95,110 -78.3,110 -78.65,110 -79,109.1 -79,108.2 -79,107.3 -79,106.4 -79,105.5 -79,104.6 -79,103.7 -79,102.8 -79,101.9 -79,101 -79,101 -78.65,101 -78.3,101 -77.95,101 -77.6,101 -77.25,101 -76.9,101 -76.55,101 -76.2,101 -75.85,101 -75.5)) | POINT(105.5 -77.25) | false | false | ||||||||||||||||||||||
Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump
|
1341432 1341464 |
2020-02-26 | Robinson, Rebecca; Brzezinski, Mark | Collaborative Proposal: A field and laboratory examination of the diatom N and Si isotope proxies: Implications for assessing the Southern Ocean biological pump The rise in atmospheric carbon dioxide concentrations and associated climate changes make understanding the role of the ocean in large scale carbon cycle a priority. Geologic samples allow exploration of potential mechanisms for carbon dioxide drawdown during glacial periods through the use of geochemical proxies. Nitrogen and silicon isotope signatures from fossil diatoms (microscopic plants) are used to investigate changes in the physical supply and biological demand for nutrients (like nitrogen and silicon and carbon) in the Southern Ocean. The project will evaluate the use the nitrogen and silicon isotope proxies through a series of laboratory experiments and Southern Ocean field sampling. The results will provide quantification of real relationships between nitrogen and silicon isotopes and nutrient usage in the Southern Ocean and allow exploration of the role of other factors, including biological diversity, ice cover, and mixing, in altering the chemical signatures recorded by diatoms. Seafloor sediment samples will be used to evaluate how well the signal created in the water column is recorded by fossil diatoms buried in the seafloor. Improving the nutrient isotope proxies will allow for a more quantitative understanding of the role of polar biology in regulating natural variation in atmospheric carbon dioxide. The project will also result in the training of a graduate student and development of outreach materials targeting a broad popular audience. This project seeks to test the fidelity of the diatom nitrogen and silicon isotope proxies, two commonly used paleoceanographic tools for investigating the role of the Southern Ocean biological pump in regulating atmospheric CO2 concentrations on glacial-interglacial timescales. Existing ground-truthing data, including culture experiments, surface sediment data and downcore reconstructions, all suggest that nutrient utilization is the primary driver of isotopic variation in the Southern Ocean. However, strong contribution of interspecific variation is implied by recent culture results. Moreover, field and laboratory studies present some contradictory results in terms of the relative importance of interspecific variation and of inferred post-depositional alteration of the nutrient isotope signals. Here, a first order test of the N and Si diatom nutrient isotope paleo-proxies, involving water column dissolved and particulate sampling and laboratory culturing of field-isolates, is proposed. Southern Ocean water, biomass, live diatoms and fossil diatom sampling will be conducted to investigate species and assemblage related variability in diatom nitrogen and silicon isotopes and their relationship to surface nutrient fields and early diagenesis. Access to fresh materials produced in an analogous environmental context to the sediments of primary interest is critical for making robust paleoceanographic reconstructions. Field sampling will occur along 175°W, transecting the Antarctic Circumpolar Current from the subtropics to the marginal ice edge. Collection of water, sinking/suspended particles and multi-core samples from 13 stations and 3 shipboard incubation experiments will be used to test four proposed hypotheses that together evaluate the significance of existing culture results and seek to allow the best use of diatom nutrient isotope proxies in evaluating the biological pump. | POLYGON((-175 -54,-174 -54,-173 -54,-172 -54,-171 -54,-170 -54,-169 -54,-168 -54,-167 -54,-166 -54,-165 -54,-165 -55.3,-165 -56.6,-165 -57.9,-165 -59.2,-165 -60.5,-165 -61.8,-165 -63.1,-165 -64.4,-165 -65.7,-165 -67,-166 -67,-167 -67,-168 -67,-169 -67,-170 -67,-171 -67,-172 -67,-173 -67,-174 -67,-175 -67,-175 -65.7,-175 -64.4,-175 -63.1,-175 -61.8,-175 -60.5,-175 -59.2,-175 -57.9,-175 -56.6,-175 -55.3,-175 -54)) | POINT(-170 -60.5) | false | false | ||||||||||||||||||||||
Collaborative Research: Cobalamin and Iron Co-Limitation Of Phytoplankton Species in Terra Nova Bay
|
1643684 1644073 |
2019-08-08 | DiTullio, Giacomo; Lee, Peter |
|
Phytoplankton blooms in the coastal waters of the Ross Sea, Antarctica are typically dominated by either diatoms or Phaeocystis Antarctica (a flagellated algae that often can form large colonies in a gelatinous matrix). The project seeks to determine if an association of bacterial populations with Phaeocystis antarctica colonies can directly supply Phaeocystis with Vitamin B12, which can be an important co-limiting micronutrient in the Ross Sea. The supply of an essential vitamin coupled with the ability to grow at lower iron concentrations may put Phaeocystis at a competitive advantage over diatoms. Because Phaeocystis cells can fix more carbon than diatoms and Phaeocystis are not grazed as efficiently as diatoms, the project will help in refining understanding of carbon dynamics in the region as well as the basis of the food web webs. Such understanding also has the potential to help refine predictive ecological models for the region. The project will conduct public outreach activities and will contribute to undergraduate and graduate research. Engagement of underrepresented students will occur during summer student internships. A collaboration with Italian Antarctic researchers, who have been studying the Terra Nova Bay ecosystem since the 1980s, aims to enhance the project and promote international scientific collaborations. The study will test whether a mutualistic symbioses between attached bacteria and Phaeocystis provides colonial cells a mechanism for alleviating chronic Vitamin B12 co-limitation effects thereby conferring them with a competitive advantage over diatom communities. The use of drifters in a time series study will provide the opportunity to track in both space and time a developing algal bloom in Terra Nova Bay and to determine community structure and the physiological nutrient status of microbial populations. A combination of flow cytometry, proteomics, metatranscriptomics, radioisotopic and stable isotopic labeling experiments will determine carbon and nutrient uptake rates and the role of bacteria in mitigating potential vitamin B12 and iron limitation. Membrane inlet and proton transfer reaction mass spectrometry will also be used to estimate net community production and release of volatile organic carbon compounds that are climatically active. Understanding how environmental parameters can influence microbial community dynamics in Antarctic coastal waters will advance an understanding of how changes in ocean stratification and chemistry could impact the biogeochemistry and food web dynamics of Southern Ocean ecosystems. | POLYGON((-180 -72,-173.6 -72,-167.2 -72,-160.8 -72,-154.4 -72,-148 -72,-141.6 -72,-135.2 -72,-128.8 -72,-122.4 -72,-116 -72,-116 -72.7,-116 -73.4,-116 -74.1,-116 -74.8,-116 -75.5,-116 -76.2,-116 -76.9,-116 -77.6,-116 -78.3,-116 -79,-122.4 -79,-128.8 -79,-135.2 -79,-141.6 -79,-148 -79,-154.4 -79,-160.8 -79,-167.2 -79,-173.6 -79,180 -79,178 -79,176 -79,174 -79,172 -79,170 -79,168 -79,166 -79,164 -79,162 -79,160 -79,160 -78.3,160 -77.6,160 -76.9,160 -76.2,160 -75.5,160 -74.8,160 -74.1,160 -73.4,160 -72.7,160 -72,162 -72,164 -72,166 -72,168 -72,170 -72,172 -72,174 -72,176 -72,178 -72,-180 -72)) | POINT(-158 -75.5) | false | false | |||||||||||||||||||||
High-resolution, Assemblage-specific Records of Diatom-bound N Isotopes from the Indian Sector of the Antarctic Ocean
|
1401489 |
2019-08-08 | Sigman, Daniel | ABSTRACT Intellectual Merit: The high concentration of the major nutrients nitrate and phosphate is a fundamental characteristic of the Antarctic Zone in the Southern Ocean and is central to its role in global ocean fertility and the global carbon cycle. The isotopic composition of diatom-bound organic nitrogen is one of the best hopes for reconstructing the nutrient status of polar surface waters over glacial cycles, which in turn may hold the explanation for the decline in atmospheric carbon dioxide during ice ages. The PIs propose to generate detailed diatom-bound nitrogen isotope (δ15Ndb) records from high sedimentation rate cores from the Kerguelen Plateau. Because the cores were collected at relatively shallow seafloor depths, they have adequate planktonic and benthic foraminifera to develop accurate age models. The resulting data could be compared with climate records from Antarctic ice cores and other archives to investigate climate-related changes, including the major steps into and out of ice ages and the millennial-scale events that occur during ice ages and at their ends. The records generated in this project will provide a critical test of hypotheses for the cause of lower ice age CO2. Broader impacts: This study will contribute to the goal of understanding ice ages and past CO2 changes, which both have broad implications for future climate. Undergraduates will undertake summer internships, with the possibility of extending their work into junior year projects and senior theses. In addition, the PI will lead modules for two Princeton programs for middle school teachers and will host a teacher for a six-week summer research project. | POLYGON((-180 -45,-144 -45,-108 -45,-72 -45,-36 -45,0 -45,36 -45,72 -45,108 -45,144 -45,180 -45,180 -47.5,180 -50,180 -52.5,180 -55,180 -57.5,180 -60,180 -62.5,180 -65,180 -67.5,180 -70,144 -70,108 -70,72 -70,36 -70,0 -70,-36 -70,-72 -70,-108 -70,-144 -70,-180 -70,-180 -67.5,-180 -65,-180 -62.5,-180 -60,-180 -57.5,-180 -55,-180 -52.5,-180 -50,-180 -47.5,-180 -45)) | POINT(0 -89.999) | false | false | ||||||||||||||||||||||
Spring Blooms of Sea Ice Algae Along the Western Antarctic Peninsula: Effects of Warming and Freshening on Cell Physiology and Biogeochemical Cycles.
|
1744645 |
2019-07-23 | Young, Jodi; Deming, Jody |
|
Rapid changes in the extent and thickness of sea ice during the austral spring subject microorganisms within or attached to the ice to large fluctuations in temperature, salinity, light and nutrients. This project aims to identify cellular responses in sea-ice algae to increasing temperature and decreasing salinity during the spring melt along the western Antarctic Peninsula and to determine how associated changes at the cellular level can potentially affect dynamic, biologically driven processes. Understanding how sea-ice algae cope with, and are adapted to, their environment will not only help predict how polar ecosystems may change as the extent and thickness of sea ice change, but will also provide a better understanding of the widespread success of photosynthetic life on Earth. The scientific context and resulting advances from the research will be communicated to the general public through outreach activities that includes work with Science Communication Fellows and the popular Polar Science Weekend at the Pacific Science Center in Seattle, Washington. The project will provide student training to college students as well as provide for educational experiences for K-12 school children. There is currently a poor understanding of feedback relationships that exist between the rapidly changing environment in the western Antarctic Peninsula region and sea-ice algal production. The large shifts in temperature and salinity that algae experience during the spring melt affect critical cellular processes, including rates of enzyme-catalyzed reactions involved in photosynthesis and respiration, and the production of stress-protective compounds. These changes in cellular processes are poorly constrained but can be large and may have impacts on local ecosystem productivity and biogeochemical cycles. In particular, this study will focus on the thermal sensitivity of enzymes and the cycling of compatible solutes and exopolymers used for halo- and cryo-protection, and how they influence primary production and the biogeochemical cycling of carbon and nitrogen. Approaches will include field sampling during spring melt, incubation experiments of natural sea-ice communities under variable temperature and salinity conditions, and controlled manipulation of sea-ice algal species in laboratory culture. Employment of a range of techniques, from fast repetition rate fluorometry and gross and net photosynthetic measurements to metabolomics and enzyme kinetics, will tease apart the mechanistic effects of temperature and salinity on cell metabolism and primary production with the goal of quantifying how these changes will impact biogeochemical processes along the western Antarctic Peninsula. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-64.4 -64.2,-64.38 -64.2,-64.36 -64.2,-64.34 -64.2,-64.32 -64.2,-64.3 -64.2,-64.28 -64.2,-64.26 -64.2,-64.24 -64.2,-64.22 -64.2,-64.2 -64.2,-64.2 -64.26,-64.2 -64.32,-64.2 -64.38,-64.2 -64.44,-64.2 -64.5,-64.2 -64.56,-64.2 -64.62,-64.2 -64.68,-64.2 -64.74,-64.2 -64.8,-64.22 -64.8,-64.24 -64.8,-64.26 -64.8,-64.28 -64.8,-64.3 -64.8,-64.32 -64.8,-64.34 -64.8,-64.36 -64.8,-64.38 -64.8,-64.4 -64.8,-64.4 -64.74,-64.4 -64.68,-64.4 -64.62,-64.4 -64.56,-64.4 -64.5,-64.4 -64.44,-64.4 -64.38,-64.4 -64.32,-64.4 -64.26,-64.4 -64.2)) | POINT(-64.3 -64.5) | false | false | |||||||||||||||||||||
COLLABORATIVE RESEARCH: Remote Characterization of Microbial Mats in Taylor Valley, Antarctica, through In Situ Sampling and Spectral Validation
|
1744849 1744785 1745053 |
2019-07-03 | Salvatore, Mark; Barrett, John; Sokol, Eric |
|
Microbial mats are found throughout the McMurdo Dry Valleys where summer snowmelt provides liquid water that allows these mats to flourish. Researchers have long studied the environmental conditions microbial mats need to grow. Despite these efforts, it has been difficult to develop a broad picture of these unique ecosystems. Recent advances in satellite technology now provide researchers an exciting new tool to study these special Antarctic ecosystems from space using the unique spectral signatures associated with microbial mats. This new technology not only offers the promise that microbial mats can be mapped and studied from space, this research will also help protect these delicate environments from potentially harmful human impacts that can occur when studying them from the ground. This project will use satellite imagery and spectroscopic techniques to identify and map microbial mat communities and relate their properties and distributions to both field and lab-based measurements. This research provides an exciting new tool to help document and understand the distribution of a major component of the Antarctic ecosystem in the McMurdo Dry Valleys. The goal of this project is to establish quantitative relationships between spectral signatures derived from orbit and the physiological status and biogeochemical properties of microbial mat communities in Taylor Valley, Antarctica, as measured by field and laboratory analyses on collected samples. The goal wioll be met by (1) refining atmospheric correction techniques using in situ radiometric rectification to derive accurate surface spectra; (2) collecting multispectral orbital images concurrent with in situ sampling and spectral measurements in the field to ensure temporal comparability; (3) measuring sediment, water, and microbial mat samples for organic and inorganic carbon content, essential biogeochemical nutrients, and chlorophyll-a to determine relevant mat characteristics; and (4) quantitatively associating these laboratory-derived characteristics with field-derived and orbital spectral signatures and parameters. The result of this work will be a more robust quantitative link between the distribution of microbial mat communities and their biogeochemical properties to landscape-scale spectral signatures. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((162.92 -77.56,162.971 -77.56,163.022 -77.56,163.073 -77.56,163.124 -77.56,163.175 -77.56,163.226 -77.56,163.277 -77.56,163.328 -77.56,163.379 -77.56,163.43 -77.56,163.43 -77.571,163.43 -77.582,163.43 -77.593,163.43 -77.604,163.43 -77.615,163.43 -77.626,163.43 -77.637,163.43 -77.648,163.43 -77.659,163.43 -77.67,163.379 -77.67,163.328 -77.67,163.277 -77.67,163.226 -77.67,163.175 -77.67,163.124 -77.67,163.073 -77.67,163.022 -77.67,162.971 -77.67,162.92 -77.67,162.92 -77.659,162.92 -77.648,162.92 -77.637,162.92 -77.626,162.92 -77.615,162.92 -77.604,162.92 -77.593,162.92 -77.582,162.92 -77.571,162.92 -77.56)) | POINT(163.175 -77.615) | false | false | |||||||||||||||||||||
LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem
|
2023425 1440435 |
2018-05-11 | Ducklow, Hugh; Martinson, Doug; Schofield, Oscar | The Palmer Antarctica LTER (Long Term Ecological Research) site has been in operation since 1990. The goal of all the LTER sites is to conduct policy-relevant research on ecological questions that require tens of years of data, and cover large geographical areas. For the Palmer Antarctica LTER, the questions are centered around how the marine ecosystem west of the Antarctica peninsula is responding to a climate that is changing as rapidly as any place on the Earth. For example, satellite observations over the past 35 years indicate the average duration of sea ice cover is now ~90 days (3 months!) shorter than it was. The extended period of open water has implications for many aspects of ecosystem research, with the concurrent decrease of Adèlie penguins within this region regularly cited as an exemplar of climate change impacts in Antarctica. Cutting edge technologies such as autonomous underwater (and possibly airborne) vehicles, seafloor moorings, and numerical modeling, coupled with annual oceanographic cruises, and weekly environmental sampling, enables the Palmer Antarctica LTER to expand and bridge the time and space scales needed to assess climatic impacts. This award includes for the first time study of the roles of whales as major predators in the seasonal sea ice zone ecosystem. The team will also focus on submarine canyons, special regions of enhanced biological activity, along the Western Antarctic Peninsula (WAP). The current award's overarching research question is: How do seasonality, interannual variability, and long term trends in sea ice extent and duration influence the structure and dynamics of marine ecosystems and biogeochemical cycling? Specific foci within the broad question include: 1. Long-term change and ecosystem transitions. What is the sensitivity or resilience of the ecosystem to external perturbations as a function of the ecosystem state? 2. Lateral connectivity and vertical stratification. What are the effects of lateral transports of freshwater, heat and nutrients on local ocean stratification and productivity and how do they drive changes in the ecosystem? 3. Top-down controls and shifting baselines. How is the ecosystem responding to the cessation of whaling and subsequent long-term recovery of whale stocks? 4. Foodweb structure and biogeochemical processes. How do temporal and spatial variations in foodweb structure influence carbon and nutrient cycling, export, and storage? The broader impacts of the award leverage local educational partnerships including the Sandwich, MA STEM Academy, the New England Aquarium, and the NSF funded Polar Learning and Responding (PoLAR) Climate Change Education Partnership at Columbia's Earth Institute to build new synergies between Arctic and Antarctic, marine and terrestrial scientists and students, governments and NGOs. The Palmer Antarctic LTER will also conduct appropriate cross LTER site comparisons, and serve as a leader in information management to enable knowledge-building within and beyond the Antarctic, oceanographic, and LTER communities. | POLYGON((-80 -63,-78.3 -63,-76.6 -63,-74.9 -63,-73.2 -63,-71.5 -63,-69.8 -63,-68.1 -63,-66.4 -63,-64.7 -63,-63 -63,-63 -63.8,-63 -64.6,-63 -65.4,-63 -66.2,-63 -67,-63 -67.8,-63 -68.6,-63 -69.4,-63 -70.2,-63 -71,-64.7 -71,-66.4 -71,-68.1 -71,-69.8 -71,-71.5 -71,-73.2 -71,-74.9 -71,-76.6 -71,-78.3 -71,-80 -71,-80 -70.2,-80 -69.4,-80 -68.6,-80 -67.8,-80 -67,-80 -66.2,-80 -65.4,-80 -64.6,-80 -63.8,-80 -63)) | POINT(-71.5 -67) | false | false | ||||||||||||||||||||||
Collaborative Research: Importance of Heterotrophic and Phototrophic N2 Fixation in the McMurdo Dry Valleys on Local, Regional and Landscape Scales
|
1246292 |
2018-03-14 | Cary, Stephen | The McMurdo Dry Valleys in Antarctica are recognized as being the driest, coldest and probably one of the harshest environments on Earth. In addition to the lack of water, the biota in the valleys face a very limited supply of nutrients such as nitrogen compounds - necessary for protein synthesis. The glacial streams of the Dry Valleys have extensive cyanobacterial (blue green algae) mats that are a major source of carbon and nitrogen compounds to biota in this region. While cyanobacteria in streams are important as a source of these compounds, other non-photosynthetic bacteria also contribute a significant fraction (~50%) of fixed nitrogen compounds to valley biota. This research effort will involve an examination of exactly which non-phototrophic bacteria are involved in nitrogen fixation and what environmental factors are responsible for controlling nitrogen fixation by these microbes. This work will resolve the environmental factors that control the activity, abundance and diversity of nitrogen-fixing microbes across four of the McMurdo Dry Valleys. This will allow for comparisons among sites of differing latitude, temperature, elevation and exposure to water. These results will be integrated into a landscape wetness model that will help determine the impact of both cyanobacterial and non-photosynthetic nitrogen fixing microorganisms in this very harsh environment. The Dry Valleys in many ways resemble the Martian environment, and understanding the primitive life and very simple nutrient cycling in the Dry Valleys has relevance for understanding how life might have once existed on other planets. Furthermore, the study of microbes from extreme environments has resulted in numerous biotechnological applications such as the polymerase chain reaction for amplifying DNA and mechanisms for freeze resistance in agricultural crops. Thus, this research should yield insights into how biota survive in extreme environments, and these insights could lead to other commercial applications. | POLYGON((161.36062 -77.20215,161.610171 -77.20215,161.859722 -77.20215,162.109273 -77.20215,162.358824 -77.20215,162.608375 -77.20215,162.857926 -77.20215,163.107477 -77.20215,163.357028 -77.20215,163.606579 -77.20215,163.85613 -77.20215,163.85613 -77.291278,163.85613 -77.380406,163.85613 -77.469534,163.85613 -77.558662,163.85613 -77.64779,163.85613 -77.736918,163.85613 -77.826046,163.85613 -77.915174,163.85613 -78.004302,163.85613 -78.09343,163.606579 -78.09343,163.357028 -78.09343,163.107477 -78.09343,162.857926 -78.09343,162.608375 -78.09343,162.358824 -78.09343,162.109273 -78.09343,161.859722 -78.09343,161.610171 -78.09343,161.36062 -78.09343,161.36062 -78.004302,161.36062 -77.915174,161.36062 -77.826046,161.36062 -77.736918,161.36062 -77.64779,161.36062 -77.558662,161.36062 -77.469534,161.36062 -77.380406,161.36062 -77.291278,161.36062 -77.20215)) | POINT(162.608375 -77.64779) | false | false | ||||||||||||||||||||||
CAREER:Protist Nutritional Strategies in Permanently Stratified Antarctic Lakes
|
1056396 |
2018-02-26 | Morgan-Kiss, Rachael |
|
This CAREER proposal will support an early career female PI to establish an integrated research and education program in the fields of polar biology and environmental microbiology, focusing on single-celled eukaryotes (protists) in high latitude ice-covered Antarctic lakes systems. Protists play important roles in energy flow and material cycling, and act as both primary producers (fixing inorganic carbon by photosynthesis) and consumers (preying on bacteria by phagotrophic digestion). The McMurdo Dry Valleys (MDV) located in Victoria Land, Antarctica, harbor microbial communities which are isolated in the unique aquatic ecosystem of perennially ice-capped lakes. The lakes support exclusively microbial consortia in chemically stratified water columns that are not influenced by seasonal mixing, allochthonous inputs, or direct human impact. This project will exploit permanently stratified biogeochemistry that is unique across the water columns of several MDV lakes to address gaps in our understanding of protist trophic function in aquatic food webs. The proposed research will examine (1) the impact of permanent biogeochemical gradients on protist trophic strategy, (2) the effect of major abiotic drivers (light and nutrients) on the distribution of two key mixotrophic and photoautotrophic protist species, and (3) the effect of episodic nutrient pulses on mixotroph communities in high latitude (ultraoligotrophic) MDV lakes versus low latitude (eutrophic) watersheds. The project will impact the fields of microbial ecology and environmental microbiology by combining results from field, laboratory and in situ incubation studies to synthesize new models for the protist trophic roles in the aquatic food web. The research component of this proposed project will be tightly integrated with the development of two new education activities designed to exploit the inherent excitement associated with polar biological research. The educational objectives are: 1) to establish a teaching module in polar biology in a core undergraduate course for microbiology majors; 2) to develop an instructional module to engage middle school girls in STEM disciplines. Undergraduates and middle school girls will also work with a doctoral student on his experiments in local Ohio watersheds. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||||||||||||
Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM)
|
1425989 |
2017-12-29 | Sarmiento, Jorge; Rynearson, Tatiana | Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project seeks to drive a transformative shift in our understanding of the crucial role of the Southern Ocean in taking up anthropogenic carbon and heat, and resupplying nutrients from the abyss to the surface. An observational program will generate vast amounts of new biogeochemical data that will provide a greatly improved view of the dynamics and ecosystem responses of the Southern Ocean. A modeling component will apply these observations to enhancing understanding of the current ocean, reducing uncertainty in projections of future carbon and nutrient cycles and climate. Because it serves as the primary gateway through which the intermediate, deep, and bottom waters of the ocean interact with the surface layers and thus the atmosphere, the Southern Ocean has a profound influence on the oceanic uptake of anthropogenic carbon and heat as well as nutrient resupply from the abyss to the surface. Yet it is the least observed and understood region of the world ocean. The oceanographic community is on the cusp of two major advances that have the potential to transform understanding of the Southern Ocean. The first is the development of new biogeochemical sensors mounted on autonomous profiling floats that allow sampling of ocean biogeochemistry and acidification in 3-dimensional space with a temporal resolution of five to ten days. The SOCCOM float program proposed will increase the average number of biogeochemical profiles measured per month in the Southern Ocean by ~10-30x. The second is that the climate modeling community now has the computational resources and physical understanding to develop fully coupled climate models that can represent crucial mesoscale processes in the Southern Ocean, as well as corresponding models that assimilate observations to produce a state estimate. Together with the observations, this new generation of models provides the tools to vastly improve understanding of Southern Ocean processes and the ability to quantitatively assess uptake of anthropogenic carbon and heat, as well as nutrient resupply, both today and into the future. In order to take advantage of the above technological and modeling breakthroughs, SOCCOM will implement the following research programs: * Theme 1: Observations. Scripps Institution of Oceanography will lead a field program to expand the number of Southern Ocean autonomous profiling floats and equip them with sensors to measure pH, nitrate, and oxygen. The University of Washington and Monterey Bay Aquarium Research Institute will design, build, and oversee deployment of the floats. Scripps will also develop a mesoscale eddying Southern Ocean state estimate that assimilates physical and biogeochemical data into the MIT ocean general circulation model. * Theme 2: Modeling. University of Arizona and Princeton University, together with NOAA's Geophysical Fluid Dynamics Laboratory (GFDL), will use SOCCOM observations to develop data/model assessment metrics and next-generation model analysis and evaluation, with the goal of improving process level understanding and reducing the uncertainty in projections of our future climate. Led by Climate Central, an independent, non-profit journalism and research organization that promotes understanding of climate science, SOCCOM will collaborate with educators and media professionals to inform policymakers and the public about the challenges of climate change and its impacts on marine life in the context of the Southern Ocean. In addition, the integrated team of SOCCOM scientists and educators will: * communicate data and results of the SOCCOM efforts quickly to the public through established data networks, publications, broadcast media, and a public portal; * train a new generation of diverse ocean scientists, including undergraduate students, graduate students, and postdoctoral fellows versed in field techniques, data calibration, modeling, and communication of research to non-scientists; * transfer new sensor technology and related software to autonomous instrument providers and manufacturers to ensure that they become widely useable. | POLYGON((-180 -52.6153,-168.67689 -52.6153,-157.35378 -52.6153,-146.03067 -52.6153,-134.70756 -52.6153,-123.38445 -52.6153,-112.06134 -52.6153,-100.73823 -52.6153,-89.41512 -52.6153,-78.09201 -52.6153,-66.7689 -52.6153,-66.7689 -55.18958,-66.7689 -57.76386,-66.7689 -60.33814,-66.7689 -62.91242,-66.7689 -65.4867,-66.7689 -68.06098,-66.7689 -70.63526,-66.7689 -73.20954,-66.7689 -75.78382,-66.7689 -78.3581,-78.09201 -78.3581,-89.41512 -78.3581,-100.73823 -78.3581,-112.06134 -78.3581,-123.38445 -78.3581,-134.70756 -78.3581,-146.03067 -78.3581,-157.35378 -78.3581,-168.67689 -78.3581,180 -78.3581,178.62318 -78.3581,177.24636 -78.3581,175.86954 -78.3581,174.49272 -78.3581,173.1159 -78.3581,171.73908 -78.3581,170.36226 -78.3581,168.98544 -78.3581,167.60862 -78.3581,166.2318 -78.3581,166.2318 -75.78382,166.2318 -73.20954,166.2318 -70.63526,166.2318 -68.06098,166.2318 -65.4867,166.2318 -62.91242,166.2318 -60.33814,166.2318 -57.76386,166.2318 -55.18958,166.2318 -52.6153,167.60862 -52.6153,168.98544 -52.6153,170.36226 -52.6153,171.73908 -52.6153,173.1159 -52.6153,174.49272 -52.6153,175.86954 -52.6153,177.24636 -52.6153,178.62318 -52.6153,-180 -52.6153)) | POINT(-130.26855 -65.4867) | false | false | ||||||||||||||||||||||
Collaborative Research: Investigating Iron-inding Ligands in Southern Ocean Diatom Communities: The Role of Diatom-Bacteria Associations
|
1443474 |
2017-12-29 | Jenkins, Bethany |
|
This project focuses on an important group of photosynthetic algae in the Southern Ocean (SO), diatoms, and the roles associated bacterial communities play in modulating their growth. Diatom growth fuels the SO food web and balances atmospheric carbon dioxide by sequestering the carbon used for growth to the deep ocean on long time scales as cells sink below the surface. The diatom growth is limited by the available iron in the seawater, most of which is not freely available to the diatoms but instead is tightly bound to other compounds. The nature of these compounds and how phytoplankton acquire iron from them is critical to understanding productivity in this region and globally. The investigators will conduct experiments to characterize the relationship between diatoms, their associated bacteria, and iron in open ocean and inshore waters. Experiments will involve supplying nutrients at varying nutrient ratios to natural phytoplankton assemblages to determine how diatoms and their associated bacteria respond to different conditions. This will provide valuable data that can be used by climate and food web modelers and it will help us better understand the relationship between iron, a key nutrient in the ocean, and the organisms at the base of the food web that use iron for photosynthetic growth and carbon uptake. The project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. The project supports early career senior investigators and the training of graduate and undergraduate students as well as outreach activities with middle school Girl Scouts in Rhode Island, inner city middle and high school age girls in Virginia, and middle school girls in Florida. The project combines trace metal biogeochemistry, phytoplankton cultivation, and molecular biology to address questions regarding the production of iron-binding compounds and the role of diatom-bacterial interactions in this iron-limited region. Iron is an essential micronutrient for marine phytoplankton. Phytoplankton growth in the SO is limited by a lack of sufficient iron, with important consequences for carbon cycling and climate in this high latitude regime. Some of the major outstanding questions in iron biogeochemistry relate to the organic compounds that bind >99.9% of dissolved iron in surface oceans. The investigators' prior research in this region suggests that production of strong iron-binding compounds in the SO is linked to diatom blooms in waters with high nitrate to iron ratios. The sources of these compounds are unknown but the investigators hypothesize that they may be from bacteria, which are known to produce such compounds for their own use. The project will test three hypotheses concerning the production of these iron-binding compounds, limitations on the biological availability of iron even if present in high concentrations, and the roles of diatom-associated bacteria in these processes. Results from this project will provide fundamental information about the biogeochemical trigger, and biological sources and function, of natural strong iron-binding compound production in the SO, where iron plays a critical role in phytoplankton productivity, carbon cycling, and climate regulation. | None | None | false | false | |||||||||||||||||||||
Origin and Climatic Significance of Rock Glaciers in the McMurdo Dry Valleys: Assessing Spatial and Temporal Variability
|
1341284 |
2017-10-09 | Swanger, Kate | No dataset link provided | Paragraph for Laypersons: This research focuses on the history of rock glaciers and buried glacial ice in the McMurdo Dry Valleys region of Antarctica. Rock glaciers are flowing mixtures of ice and sediments common throughout alpine and high-latitude regions on Earth and Mars. Despite similar appearances, rock glaciers can form under highly variable environmental and hydrological conditions. The main research questions addressed here are: 1) what environmental and climatological conditions foster long-term preservation of rock glaciers in Antarctica, 2) what role do rock glaciers play in Antarctic landscape evolution and the local water cycle, and 3) what can rock glaciers reveal about the extent and timing of previous glacial advances? The project will involve two Antarctic field seasons to image the interior of Antarctic rock glaciers using ground-penetrating radar, to gather ice cores for chemical analyses, and to gather surface sediments for dating. The Dry Valleys host the world?s southernmost terrestrial ecosystem (soil, stream and lake micro-organisms and mosses); rock glaciers and ground-ice are an important and poorly-studied source of meltwater and nutrients for these ecosystems. This research will shed light on the glacial and hydrological history of the Dry Valleys region and the general environmental conditions the foster rock glaciers, features that generally occur in warmer and/or wetter locations. The research will provide support for five graduate/undergraduate students, who will actively gather data in the field, followed by interpretation, dissemination and presentation of the data. Additionally, the researchers will participate in a range of educational activities including outreach with local K-12 in the Lowell, MA region, such as summer workshops and classroom visits with hands-on activities. A series of time-lapse images of hydrological processes, and videos of researchers in the field, will serve as a dramatic centerpiece in community and school presentations. Paragraph for Scientific Community: Rock glaciers are common in the McMurdo Dry Valleys, but are concentrated in a few isolated regions: western Taylor Valley, western Wright Valley, Pearse Valley and Bull Pass. The investigators hypothesize that the origin and age of these features varies by region: that rock glaciers in Pearse and Taylor valley originated as buried glacier ice, whereas rock glaciers in Wright Valley formed through permafrost processes, such as mobilization of ice-rich talus. To address these hypotheses, the project will: 1) develop relative and absolute chronologies for the rock glaciers through field mapping and optically stimulated luminescence dating of overlying sediments, 2) assess the origin of clean-ice cores through stable isotopic analyses, and 3) determine if present-day soil-moisture and temperature conditions are conducive to rock glacier formation/preservation. The proposed research will provide insight into the spatial and temporal distribution of buried glacier ice and melt-water-derived ground ice in the McMurdo Dry Valleys, with implications for glacial history, as well as the potential role of rock glaciers in the regional hydrologic cycle (and the role of ground-ice as a source for moisture and nutrient for local ecosystems). The project will provide general constraints on the climatic and hydrologic conditions that foster permafrost rock glaciers, features that generally occur under warmer and wetter conditions than those found in the present-day McMurdo Dry Valleys. The application of OSL and cosmogenic exposure dating is novel to rock glaciers, geomorphic features that have proven difficult to date, despite their ubiquity in Antarctica and their potential scientific importance. The research will provide support for five graduate/undergraduate students, who will participate in the field work, followed by interpretation, dissemination and presentation of the data. The researchers will participate in a range of educational activities including outreach with local K-12 in the Lowell, MA region, such as summer workshops and classroom visits with hands-on activities. | POLYGON((161 -77.5,161.2 -77.5,161.4 -77.5,161.6 -77.5,161.8 -77.5,162 -77.5,162.2 -77.5,162.4 -77.5,162.6 -77.5,162.8 -77.5,163 -77.5,163 -77.525,163 -77.55,163 -77.575,163 -77.6,163 -77.625,163 -77.65,163 -77.675,163 -77.7,163 -77.725,163 -77.75,162.8 -77.75,162.6 -77.75,162.4 -77.75,162.2 -77.75,162 -77.75,161.8 -77.75,161.6 -77.75,161.4 -77.75,161.2 -77.75,161 -77.75,161 -77.725,161 -77.7,161 -77.675,161 -77.65,161 -77.625,161 -77.6,161 -77.575,161 -77.55,161 -77.525,161 -77.5)) | POINT(162 -77.625) | false | false | |||||||||||||||||||||
Collaborative Research: Seasonal Evolution of Chemical and Biological Variability in the Ross Sea
|
0838948 |
2013-11-14 | Hofmann, Eileen; Dinniman, Michael; Klinck, John M. | No dataset link provided | Abstract<br/><br/>This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>The Ross Sea is a highly productive area within the Southern Ocean, but it experiences substantial variability in both physical (temperature, ice concentrations, salinity, winds, and current velocities) and biogeochemical (chlorophyll, productivity, micronutrients, higher trophic level standing stocks, gases, etc.) conditions. Understanding the temporal and spatial oceanographic variations in physical forcing is essential to understanding the ecological functioning within the Ross Sea. There are a number of models of the physical oceanography of the Ross Sea that characterize the observed circulation. Unfortunately, data on the appropriate time scales (daily, monthly, seasonal, and interannual) to completely evaluate those models are lacking. The proposed research is a demonstration project to characterize the physical and biological oceanography of the southern Ross Sea using newly developed Glider technology to sample the region continuously through the growing season, to collect temperature, salinity, fluorescence, oxygen and optical transmission data. These field data will be used to assist in evaluation of an eddy-resolving ROMS-based coupled circulation-biological model, and, along with satellite ocean color information, will be assimilated into an ecosystem model. Data assimilation techniques will reduce the model uncertainties of the circulation and food webs of the region. The intellectual merit of this effort arises from the combination of field-based investigations using a novel technology (one that is far more cost-effective than ship-based studies) with state-of-the-art biological-physical models and advanced data assimilation techniques. The research will provide new insights into the complex oceanographic phenomena of the Antarctic continental shelves and is a novel method of continuing the studies of the southern Ross Sea. Broader impacts of the proposed research include training of graduate and undergraduate students and partnership with several ongoing outreach programs dealing with scientific research in the Southern Ocean. At least 2 graduate students will be supported by this research, and it will be a critical component of a variety of outreach programs in Virginia, including a High School Marine Science Day, Boy and Girl Scout education, and middle school curriculum improvement. The investigators also will create a web site to foster immediate release of the data collected by the glider, and seek a linkage with schools at various levels (middle, high school and Universities) that potentially could incorporate the data into classroom activities | None | None | false | false | |||||||||||||||||||||
Dynamics of Aeolian Processes in the McMurdo Dry Valleys, Antarctica
|
0636218 |
2012-06-05 | Gillies, John | No dataset link provided | This project characterizes wind-driven sediment transport in the McMurdo Dry Valleys of <br/>Antarctica during both winter and summer periods. Wind is the primary sculptor of<br/>terrain in this region and winter measurements, which have never been undertaken, are<br/>essential for determining the frequency and magnitude of transport events. The projects<br/>goal is to determine if the existing landforms represent relics from past climate regimes<br/>or contemporary processes. The project involves two major activities: (1) dynamic and<br/>time-integrated measurements of sand transport to characterize the seasonal behavior,<br/>frequency, and magnitude at four sites and (2) detailed surveying of an unusual<br/>wind-formed surface feature, the gravel megaripples found in the Wright Valley. In<br/>addition to interpreting Dry Valleys geomorphology, these data will provide a more<br/>quantitative assessment of wind-aided distribution of nutrients, plants, and animals to<br/>terrestrial and aquatic ecosystems throughout the Dry Valleys. This research will also<br/>provide quantitative information on the effects of extreme cold and low humidity on<br/>transport thresholds and rates, which can be applied to cold desert environments of the<br/>Arctic, Antarctic, and Mars. | POLYGON((161.85075 -77.37241,161.990843 -77.37241,162.130936 -77.37241,162.271029 -77.37241,162.411122 -77.37241,162.551215 -77.37241,162.691308 -77.37241,162.831401 -77.37241,162.971494 -77.37241,163.111587 -77.37241,163.25168 -77.37241,163.25168 -77.395964,163.25168 -77.419518,163.25168 -77.443072,163.25168 -77.466626,163.25168 -77.49018000000001,163.25168 -77.513734,163.25168 -77.537288,163.25168 -77.56084200000001,163.25168 -77.584396,163.25168 -77.60795,163.111587 -77.60795,162.971494 -77.60795,162.831401 -77.60795,162.691308 -77.60795,162.551215 -77.60795,162.411122 -77.60795,162.271029 -77.60795,162.130936 -77.60795,161.990843 -77.60795,161.85075 -77.60795,161.85075 -77.584396,161.85075 -77.56084200000001,161.85075 -77.537288,161.85075 -77.513734,161.85075 -77.49018000000001,161.85075 -77.466626,161.85075 -77.443072,161.85075 -77.419518,161.85075 -77.395964,161.85075 -77.37241)) | POINT(162.551215 -77.49018) | false | false | |||||||||||||||||||||
Collaborative Research: Impact of Solar Radiation and Nutrients on Biogeochemical Cycling of DMSP and DMS in the Ross Sea, Antarctica
|
0230499 |
2012-01-17 | Kiene, Ronald |
|
Areas of the Southern Ocean have spectacular blooms of phytoplankton during the austral spring and early summer. One of the dominant phytoplankton species, the haptophyte Phaeocystis antarctica, is a prolific producer of the organic sulfur compound dimethylsulfoniopropionate (DMSP) and Phaeocystis blooms are associated with some of the world's highest concentrations of DMSP and its volatile degradation product, dimethylsulfide (DMS). Sulfur, in the form of DMS, is transferred from the oceans to the atmosphere and can affect the chemistry of precipitation and influence cloud properties and possibly climate. DMSP and DMS are also quantitatively significant components of the carbon, sulfur and energy flows in many marine food webs, although very little information is available on these processes in high latitude systems. <br/><br/>This project will study how solar radiation and iron cycling affect DMSP and DMS production by phytoplankton, and the subsequent utilization of these labile forms of organic matter by the microbial food web. Four interrelated hypotheses will be tested in field-based experiments and in situ observations: 1) solar radiation, including enhanced UV-B due to seasonal ozone depletion, plays an important role in determining the net ecosystem production of DMS in the Ross Sea; 2) development of shallow mixed layers promotes the accumulation of DMS in surface waters, because of enhanced exposure of plankton communities to high doses of solar radiation; 3) DMSP production and turnover represent a significant part of the carbon and sulfur flux through polar food webs; 4) bloom development and resulting nutrient depletion (e.g., iron) will result in high production rates of DMSP and high DMS concentrations and atmospheric fluxes. Results from this study will greatly improve understanding of the underlying mechanisms controlling DMSP and DMS concentrations in polar waters, thereby improving our ability to predict DMS fluxes to the atmosphere from this important climatic region. <br/><br/>Both Drs. Kieber and Kiene actively engage high school, undergraduate and graduate students in their research and are involved in formal programs that target underrepresented groups (NSF-REU and the American Chemical Society-SEED). This project will continue this type of educational outreach. The PIs also teach undergraduate and graduate courses and incorporation of research experiences into their classes will enrich student learning experiences. | POLYGON((-179.99998 -43.58056,-143.999984 -43.58056,-107.999988 -43.58056,-71.999992 -43.58056,-35.999996 -43.58056,0 -43.58056,35.999996 -43.58056,71.999992 -43.58056,107.999988 -43.58056,143.999984 -43.58056,179.99998 -43.58056,179.99998 -46.971468,179.99998 -50.362376,179.99998 -53.753284,179.99998 -57.144192,179.99998 -60.5351,179.99998 -63.926008,179.99998 -67.316916,179.99998 -70.707824,179.99998 -74.098732,179.99998 -77.48964,143.999984 -77.48964,107.999988 -77.48964,71.999992 -77.48964,35.999996 -77.48964,0 -77.48964,-35.999996 -77.48964,-71.999992 -77.48964,-107.999988 -77.48964,-143.999984 -77.48964,-179.99998 -77.48964,-179.99998 -74.098732,-179.99998 -70.707824,-179.99998 -67.316916,-179.99998 -63.926008,-179.99998 -60.5351,-179.99998 -57.144192,-179.99998 -53.753284,-179.99998 -50.362376,-179.99998 -46.971468,-179.99998 -43.58056)) | POINT(0 -89.999) | false | false | |||||||||||||||||||||
Collaborative Research: Impact of Solar Radiation and Nutrients on Biogeochemical Cycling of DMSP and DMS in the Ross Sea, Antarctica
|
0230497 |
2012-01-17 | Kiene, Ronald |
|
Areas of the Southern Ocean have spectacular blooms of phytoplankton during the austral spring and early summer. One of the dominant phytoplankton species, the haptophyte Phaeocystis antarctica, is a prolific producer of the organic sulfur compound dimethylsulfoniopropionate (DMSP) and Phaeocystis blooms are associated with some of the world's highest concentrations of DMSP and its volatile degradation product, dimethylsulfide (DMS). Sulfur, in the form of DMS, is transferred from the oceans to the atmosphere and can affect the chemistry of precipitation and influence cloud properties and possibly climate. DMSP and DMS are also quantitatively significant components of the carbon, sulfur and energy flows in many marine food webs, although very little information is available on these processes in high latitude systems. <br/><br/>This project will study how solar radiation and iron cycling affect DMSP and DMS production by phytoplankton, and the subsequent utilization of these labile forms of organic matter by the microbial food web. Four interrelated hypotheses will be tested in field-based experiments and in situ observations: 1) solar radiation, including enhanced UV-B due to seasonal ozone depletion, plays an important role in determining the net ecosystem production of DMS in the Ross Sea; 2) development of shallow mixed layers promotes the accumulation of DMS in surface waters, because of enhanced exposure of plankton communities to high doses of solar radiation; 3) DMSP production and turnover represent a significant part of the carbon and sulfur flux through polar food webs; 4) bloom development and resulting nutrient depletion (e.g., iron) will result in high production rates of DMSP and high DMS concentrations and atmospheric fluxes. Results from this study will greatly improve understanding of the underlying mechanisms controlling DMSP and DMS concentrations in polar waters, thereby improving our ability to predict DMS fluxes to the atmosphere from this important climatic region. <br/><br/>Both Drs. Kieber and Kiene actively engage high school, undergraduate and graduate students in their research and are involved in formal programs that target underrepresented groups (NSF-REU and the American Chemical Society-SEED). This project will continue this type of educational outreach. The PIs also teach undergraduate and graduate courses and incorporation of research experiences into their classes will enrich student learning experiences. | None | None | false | false | |||||||||||||||||||||
SGER:Exploratory Research on the Timing of Early Paleozoic Orogenesis along Gonwana's Paleo-Pacific Margin, Queen Maud Mountains, Antarctica
|
0835480 |
2010-08-18 | Paulsen, Timothy | No dataset link provided | This Small Grant for Exploratory Research investigates the origin of the Queen Maud Mountains, Antarctica, to understand the geodynamic processes that shaped Gondwana. Ages of various rock units will be determined using LA-MC-ICPMS analyses of zircons and 40Ar-39Ar analyses of hornblende. The project?s goal is to time deformation , sedimentary unit deposition, magmatism, and regional cooling. Results will be correlated with related rock units in Australia. By constraining the length and time scales of processes, the outcomes will offer insight into the geodynamic processes that caused deformation, such as slab roll-back or extension. In addition, dating these sedimentary units may offer insight into the Cambrian explosion of life, since the sediment flux caused by erosion of these mountains is conjectured to have seeded the ocean with the nutrients required for organisms to develop hard body parts. The broader impacts include support for undergraduate research. | POLYGON((160 -84,161.5 -84,163 -84,164.5 -84,166 -84,167.5 -84,169 -84,170.5 -84,172 -84,173.5 -84,175 -84,175 -84.15,175 -84.3,175 -84.45,175 -84.6,175 -84.75,175 -84.9,175 -85.05,175 -85.2,175 -85.35,175 -85.5,173.5 -85.5,172 -85.5,170.5 -85.5,169 -85.5,167.5 -85.5,166 -85.5,164.5 -85.5,163 -85.5,161.5 -85.5,160 -85.5,160 -85.35,160 -85.2,160 -85.05,160 -84.9,160 -84.75,160 -84.6,160 -84.45,160 -84.3,160 -84.15,160 -84)) | POINT(167.5 -84.75) | false | false | |||||||||||||||||||||
Mesoscale Circulation, Tides and Mixing on the Western Antarctic Peninsula Shelf: A Component of WINDSSOCK (ESR proposal #99-48)
|
9910102 |
2010-05-04 | Padman, Laurence |
|
This project is a contribution to a coordinated attempt to understand the interactions of biological and physical dynamics by developing relationships among the evolution of the antarctic winter ice and snow cover, biological habitat variability, and the seasonal progression of marine ecological processes. The work will be carried out in the context of the Southern Ocean Experiment of the Global Ocean Ecosystem Dynamics Study (Globec), a large, multi-investigator study of the winter survival strategy of krill under the antarctic sea ice in the vicinity of Marguerite Bay on the western side of the Antarctic Peninsula. There are several aspects to this project: One is the collection, analysis, and archiving of Acoustic Doppler Current Profiler (ADCP), and Conductivity-Temperature-Depth (CTD) data in order to characterize mesoscale circulation features and the regional hydrography. Another is to develop an accurate and fully validated model of tidal currents in Marguerite Bay. A third is to provide a data set of small-scale processes such as shear instabilities, tidal stirring, mesoscale eddies, and double diffusion, that are required for the effective parameterization of the vertical diffusivities of heat, salt, and nutrients. The results of this project will provide a unified data set that satisfies the data requirement of the coordinated chemical and biological studies which will link water column and sea ice processes with the biology of krill and its predators. The results further will help to link these winter observations to similar observations made in summer and elsewhere around Antarctic in the international context of the Globec program. The overall objective is to develop a comprehensive ecosystem model that will test our understanding of the system, determine its sensitivities, and to provide an organizing mechanism for integrating the Southern Ocean Globec observations. *** | None | None | false | false | |||||||||||||||||||||
Interannual Variability in the Antarctic-Ross Sea (IVARS): Nutrients and Seasonal Production
|
0087401 |
2010-05-04 | Smith, Walker; Gordon, Arnold | During the past few decades of oceanographic research, it has been recognized that significant variations in biogeochemical processes occur among years. Interannual variations in the Southern Ocean are known to occur in ice extent and concentration, in the composition of herbivore communities, and in bird and marine mammal distributions and reproductive success. However, little is known about the interannual variations in production of phytoplankton or the role that these variations play in the food web. This project will collect time series data on the seasonal production of phytoplankton in the southern Ross Sea, Antarctica. Furthermore, it will assess the interannual variations of the production of the two major functional groups of the system, diatoms and Phaeocystis Antarctica, a colonial haptophyte. The Ross Sea provides a unique setting for this type of investigation for a number of reasons. For example, a de facto time-series has already been initiated in the Ross Sea through the concentration of a number of programs in the past ten years. It also is well known that the species diversity is reduced relative to other systems and its seasonal production is as great as anywhere in the Antarctic. Most importantly, seasonal production of both the total phytoplankton community (as well as its two functional groups) can be estimated from late summer nutrient profiles. The project will involve short cruises on the US Coast Guard ice breakers in the southern Ross Sea that will allow the collection of water column nutrient and particulate after data at specific locations in the late summer of each of five years. Additionally, two moorings with in situ nitrate analyzers moored at fifteen will be deployed, thus collecting for the first time in the in the Antarctic a time-series of euphotic zone nutrient concentrations over the entire growing season. All nutrient data will be used to calculate seasonal production for each year in the southern Ross Sea and compared to previously collected information, thereby providing an assessment of interannual variations in net community production. Particulate matter data will allow us to estimate the amount of export from the surface layer by late summer, and therefore calculate the interannual variability of this ecosystem process. Interannual variations of seasonal production (and of the major taxa of producers) are a potentially significant feature in the growth and survival of higher trophic levels within the food web of the Ross Sea. They are also important in order to understand the natural variability in biogeochemical processes of the region. Because polar regions such as the Ross Sea are predicted to be impacted by future climate change, biological changes are also anticipated. Placing these changes in the context of natural variability is an essential element of understanding and predicting such alterations. This research thus seeks to quantify the natural variability of an Antarctic coastal system, and ultimately understand its causes and impacts on food webs and biogeochemical cycles of the Ross Sea. | None | None | false | false | ||||||||||||||||||||||
Collaborative Research: Plankton Community Structure and Iron Distribution in the Southern Drake Passage and Scotia Sea
|
0444134 |
2010-05-04 | Mitchell, B. |
|
The Shackleton Fracture Zone (SFZ) in Drake Passage of the Southern Ocean defines a boundary between low and high phytoplankton waters. Low chlorophyll water flowing through the southern Drake Passage emerges as high chlorophyll water to the east, and recent evidence indicates that the Southern Antarctic Circumpolar Current Front (SACCF) is steered south of the SFZ onto the Antarctic Peninsula shelf where mixing between the water types occurs. The mixed water is then advected off-shelf with elevated iron and phytoplankton biomass. The SFZ is therefore an ideal natural laboratory to improve the understanding of plankton community responses to natural iron fertilization, and how these processes influence export of organic carbon to the ocean interior. The bathymetry of the region is hypothesized to influence mesoscale circulation and transport of iron, leading to the observed patterns in phytoplankton biomass. The position of the Antarctic Circumpolar Current (ACC) is further hypothesized to influence the magnitude of the flow of ACC water onto the peninsula shelf, mediating the amount of iron transported into the Scotia Sea. To address these hypotheses, a research cruise will be conducted near the SFZ and to the east in the southern Scotia Sea. A mesoscale station grid for vertical profiles, water sampling, and bottle incubation enrichment experiments will complement rapid surface surveys of chemical, plankton, and hydrographic properties. Distributions of manganese, aluminum and radium isotopes will be determined to trace iron sources and estimate mixing rates. Phytoplankton and bacterial physiological states (including responses to iron enrichment) and the structure of the plankton communities will be studied. The primary goal is to better understand how plankton productivity, community structure and export production in the Southern Ocean are affected by the coupling between bathymetry, mesoscale circulation, and distributions of limiting nutrients. The proposed work represents an interdisciplinary approach to address the fundamental physical, chemical and biological processes that contribute to the abrupt transition in chl-a which occurs near the SFZ. Given recent indications that the Southern Ocean is warming, it is important to advance the understanding of conditions that regulate the present ecosystem structure in order to predict the effects of climate variability. This project will promote training and learning across a broad spectrum of groups. Funds are included to support postdocs, graduate students, and undergraduates. In addition, this project will contribute to the development of content for the Polar Science Station website, which has been a resource since 2001 for instructors and students in adult education, home schooling, tribal schools, corrections education, family literacy programs, and the general public. | None | None | false | false | |||||||||||||||||||||
Deep Water Formation off the Eastern Wilkes Land Coast of Antarctica
|
9317379 |
2010-05-04 | Foster, Theodore; Foster, Ted |
|
9317379 Foster This project is study of the deep and bottom water formation processes of the antarctic continental shelf off Wilkes Land between 145 deg E longitude and 160 deg E longitude. The project is to be carried out jointly with an Australian oceanographic project. Preliminary work in 1985 has shown that hydrographic sections in this area are quite similar to those of known deep water formation regions in the southern Weddell Sea. This project will include the year-long deployment of six current meter moorings, and tracer studies (oxygen, carbon dioxide, chlorofluorocarbons, stable isotopes, and nutrients) to test whether shelf waves and tides are the principal mechanism for mixing shelf water with the off-shore intermediate water. Two oceanographic cruises are planned for this work: a cruise of the RVIB Nathaniel B. Palmer in February 1995, and a cruise of the Australian ship R/V Aurora Australis in February 1996. *** | POLYGON((143.4953 -43.56287,146.46757 -43.56287,149.43984 -43.56287,152.41211 -43.56287,155.38438 -43.56287,158.35665 -43.56287,161.32892 -43.56287,164.30119 -43.56287,167.27346 -43.56287,170.24573 -43.56287,173.218 -43.56287,173.218 -46.238515,173.218 -48.91416,173.218 -51.589805,173.218 -54.26545,173.218 -56.941095,173.218 -59.61674,173.218 -62.292385,173.218 -64.96803,173.218 -67.643675,173.218 -70.31932,170.24573 -70.31932,167.27346 -70.31932,164.30119 -70.31932,161.32892 -70.31932,158.35665 -70.31932,155.38438 -70.31932,152.41211 -70.31932,149.43984 -70.31932,146.46757 -70.31932,143.4953 -70.31932,143.4953 -67.643675,143.4953 -64.96803,143.4953 -62.292385,143.4953 -59.61674,143.4953 -56.941095,143.4953 -54.26545,143.4953 -51.589805,143.4953 -48.91416,143.4953 -46.238515,143.4953 -43.56287)) | POINT(158.35665 -56.941095) | false | false | |||||||||||||||||||||
Collaborative Research: Processes Driving Spatial and Temporal Variability of Surface pCO2 in the Drake Passage
|
0338248 |
2010-05-04 | Takahashi, Taro |
|
This proposal is for the continuation and expansion of an underway program on the R/V Laurence M. Gould to measure dissolved carbon dioxide gas (pCO2) along with occasional total carbon dioxide (TCO2) in surface waters on transects of Drake Passage. The added observations include dissolved oxygen, as well as nutrient and carbon-13. The proposed work is similar to the underway measurement program made aboard R/V Nathaniel B. Palmer, and complements similar surface temperature and current data.<br/>The Southern Ocean is an important component of the global carbon budget. Low surface temperatures with consequently low vertical stability, ice formation, and high winds produce a very active environment for the exchange of gaseous carbon dioxide between the atmospheric and oceanic reservoirs. The Drake Passage is the narrowest point through which the Antarctic Circumpolar Current and its associated fronts must pass, and is the most efficient location for the measurement of latitudinal gradients of gas exchange. The generated time series will contribute towards two scientific goals: the quantification of the spatial and temporal variability and trends of surface carbon dioxide, oxygen, nutrients and C-13, and an understanding of the dominant processes that contribute to the observed variability. | POLYGON((-68.0051 -52.7573,-67.35191 -52.7573,-66.69872 -52.7573,-66.04553 -52.7573,-65.39234 -52.7573,-64.73915 -52.7573,-64.08596 -52.7573,-63.43277 -52.7573,-62.77958 -52.7573,-62.12639 -52.7573,-61.4732 -52.7573,-61.4732 -53.96927,-61.4732 -55.18124,-61.4732 -56.39321,-61.4732 -57.60518,-61.4732 -58.81715,-61.4732 -60.02912,-61.4732 -61.24109,-61.4732 -62.45306,-61.4732 -63.66503,-61.4732 -64.877,-62.12639 -64.877,-62.77958 -64.877,-63.43277 -64.877,-64.08596 -64.877,-64.73915 -64.877,-65.39234 -64.877,-66.04553 -64.877,-66.69872 -64.877,-67.35191 -64.877,-68.0051 -64.877,-68.0051 -63.66503,-68.0051 -62.45306,-68.0051 -61.24109,-68.0051 -60.02912,-68.0051 -58.81715,-68.0051 -57.60518,-68.0051 -56.39321,-68.0051 -55.18124,-68.0051 -53.96927,-68.0051 -52.7573)) | POINT(-64.73915 -58.81715) | false | false | |||||||||||||||||||||
Collaborative Research: Surface pCO2 and the effects of Winter Time Overturning in the Drake Passage
|
0636975 |
2010-05-04 | Sweeney, Colm; Sweeney, Colm |
|
The proposed project will expand the suite of observations and lengthen the existing time series of underway surface dissolved carbon dioxide (pCO2) measurements transects across the Drake Passage on the R/VIB L.M. Gould. The additional observations include oxygen, nutrients and total CO2 (TCO2) concentrations, and the 13C to 12C ratio of TCO2. The continued and expanded time series will contribute towards two main scientific goals: the quantification of the spatial and temporal variability and the trends of surface carbon dioxide species in four major water mass regimes in the Drake Passage, and the understanding of the dominant processes and changes in those processes that contribute to the variability in surface pCO2 and the resulting air-sea flux of CO2 in the Drake Passage. The expanded program will also include the analysis of the 14C/12C of TCO2 and the specific study of the observations on one short wintertime cruise, with the objective of testing the hypothesis that the dissolved carbon dioxide in surface waters of the Drake Passage is determined by the degree of winter mixing. This is of special significance in light of two scenarios that may be affecting the ventilation of Southern Ocean deep water now and in the future: a decrease in water column stratification with the observations of higher zonal winds, or an increase in stratification due to higher precipitation and warming from climate change. If winter mixing determines the mean annual pCO2 in the Drake Passage, the increasing trend in atmospheric pCO2 should have little effect on sea surface pCO2. | None | None | false | false | |||||||||||||||||||||
Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial forms of Phaeocystis antarctica
|
0440478 |
2009-05-04 | Tang, Kam; Smith, Walker |
|
Phaeocystis Antarctica is a widely distributed phytoplankton that forms dense blooms and aggregates in the Southern Ocean. This phytoplankton and plays important roles in polar ecology and biogeochemistry, in part because it is a dominant primary producer, a main component of organic matter vertical fluxes, and the principal producer of volatile organic sulfur in the region. Yet P. Antarctica is also one of the lesser known species in terms of its physiology, life history and trophic relationships with other organisms; furthermore, information collected on other Phaeocystis species and from different locations may not be applicable to P. Antarctica in the Ross Sea. P. Antarctica occurs mainly as two morphotypes: solitary cells and mucilaginous colonies, which differ significantly in size, architecture and chemical composition. Relative dominance between solitary cells and colonies determines not only the size spectrum of the population, but also its carbon dynamics, nutrient uptake and utilization. Conventional thinking of the planktonic trophic processes is also challenged by the fact that colony formation could effectively alter the predator-prey interactions and interspecific competition. However, the factors that regulate the differences between solitary and colonial forms of P. Antarctica are not well-understood. The research objective of this proposal is therefore to address these over-arching questions:<br/>o Do P. Antarctica solitary cells and colonies differ in growth, composition and<br/>photosynthetic rates?<br/>o How do nutrients and grazers affect colony development and size distribution of P. <br/>Antarctica?<br/>o How do nutrients and grazers act synergistically to affect the long-term population<br/>dynamics of P. Antarctica? Experiments will be conducted in the McMurdo station with natural P. Antarctica assemblages and co-occurring grazers. Laboratory experiments will be conducted to study size-specific growth and photosynthetic rates of P. Antarctica, size-specific grazing mortality due to microzooplankton and mesozooplankton, the effects of macronutrients on the (nitrogen compounds) relative dominance of solitary cells and colonies, and the effects of micronutrient (Fe) and grazing related chemical signals on P. Antarctica colony development. Because this species is of critical importance in the Southern Ocean, and because this research will provide critical information on factors that regulate the role of P.Antarctica in food webs and biogeochemical cycles, a major gap in knowledge will be addressed. This project will train two marine science PhD students. The investigators will also collaborate with the School of Education and a marine science museum to communicate polar science to a broader audience. | POINT(166.66267 -77.85067) | POINT(166.66267 -77.85067) | false | false | |||||||||||||||||||||
SGER: Science-of-Opportunity Aboard Icebreaker Oden: Bioactive trace metals in the Amundsen and Ross Seas
|
0741403 |
2009-03-10 | Sherrell, Robert | No dataset link provided | Abstract<br/><br/>The research objective is (1) to determine the distributions and dynamics of a full suite of bioactive trace metals in dissolved and suspended particulate forms, along sampling transects of the Amundsen and Ross Seas. And (2) to test the sensitivity of overall cellular metal stoichiometry (metal/carbon ratios) to natural gradients in species assemblage and Fe availability. Our earlier findings from a single Ross Sea station and from a Drake Passage crossing suggest that Fe-limited phytoplankton cells are unusually enriched in Zn, Cu and Cd relative to biomass carbon, with strong implications for the biogeochemical cycling of these elements relative to carbon fluxes in the Southern Ocean. In collaboration with other researchers on the cruise, we will also measure metal stoichiometry of cells exposed to predicted 2010 temperature and carbon dioxide levels in shipboard incubation studies, as a window into possible effects of climate change on metals biogeochemistry in these regions. This proposal will support close international collaborations and lasting infrastructure development as US and Swedish scientists, and more importantly, their students, work toward shared the shared goal of understanding a region that is experiencing one of the fastest rates of climate change on the globe. Trace metal micro-nutrients are a key control on the productivity of Antarctic marine ecosystems. Our results will be made widely available through research publications and internet-available databases, and public outreach through COSEE at Rutgers University. | POLYGON((-180 -69,-172.5 -69,-165 -69,-157.5 -69,-150 -69,-142.5 -69,-135 -69,-127.5 -69,-120 -69,-112.5 -69,-105 -69,-105 -69.9,-105 -70.8,-105 -71.7,-105 -72.6,-105 -73.5,-105 -74.4,-105 -75.3,-105 -76.2,-105 -77.1,-105 -78,-112.5 -78,-120 -78,-127.5 -78,-135 -78,-142.5 -78,-150 -78,-157.5 -78,-165 -78,-172.5 -78,180 -78,178.8 -78,177.6 -78,176.4 -78,175.2 -78,174 -78,172.8 -78,171.6 -78,170.4 -78,169.2 -78,168 -78,168 -77.1,168 -76.2,168 -75.3,168 -74.4,168 -73.5,168 -72.6,168 -71.7,168 -70.8,168 -69.9,168 -69,169.2 -69,170.4 -69,171.6 -69,172.8 -69,174 -69,175.2 -69,176.4 -69,177.6 -69,178.8 -69,-180 -69)) | POINT(-148.5 -73.5) | false | false | |||||||||||||||||||||
Collaborative Research: Plankton Community Structure and Iron Distribution in the Southern Drake Passage
|
0444040 0443403 0230445 |
2009-01-12 | Measures, Christopher; Selph, Karen; Zhou, Meng |
|
The Shackleton Fracture Zone (SFZ) in the Drake Passage defines a boundary between low and high phytoplankton waters. West of Drake Passage, Southern Ocean waters south of the Polar Front and north of the Antarctic continent shelf have very low satellite-derived surface chlorophyll concentrations. Chlorophyll and mesoscale eddy kinetic energy are higher east of SFZ compared to values west of the ridge. In situ data from a 10-year survey of the region as part of the National Marine Fisheries Service's Antarctic Marine Living Resources program confirm the existence of a strong hydrographic and chlorophyll gradient in the region. An interdisciplinary team of scientists hypothesizes that bathymetry, including the 2000 m deep SFZ, influences mesoscale circulation and transport of iron leading to the observed phytoplankton patterns. To address this<br/>hypothesis, the team proposes to examine phytoplankton and bacterial physiological states (including responses to iron enrichment) and structure of the plankton communities from virus to zooplankton, the concentration and distribution of Fe, Mn, and Al, and mesoscale flow patterns near the SFZ. Relationships between iron concentrations and phytoplankton characteristics will be examined in the context of the mesoscale transport of trace nutrients to determine how much of the observed variability in phytoplankton biomass can be attributed to iron supply, and to determine the most important sources of iron to pelagic waters east of the Drake Passage. The goal is to better understand how plankton productivity and community structure in the Southern Ocean are affected by the coupling between bathymetry, mesoscale circulation, and limiting nutrient distributions.<br/><br/>The research program includes rapid surface surveys of chemical, plankton, and hydrographic properties complemented by a mesoscale station grid for vertical profiles, water sampling, and bottle incubation enrichment experiments. Distributions of manganese and aluminum will be determined to help distinguish aeolian, continental shelf and upwelling sources of iron. The physiological state of the phytoplankton will be monitored by active fluorescence methods sensitive to the effects of iron limitation. Mass concentrations of pigment, carbon and nitrogen will be obtained by analysis of filtered samples, cell size distributions by flow cytometry, and species identification by microscopy. Primary production and photosynthesis parameters (absorption, quantum yields, variable fluorescence) will be measured on depth profiles, during surface surveys and on bulk samples from enrichment experiments. Viruses and bacteria will be examined for abundances, and bacterial production will be assessed in terms of whether it is limited by either iron or organic carbon sources. The proposed work will improve our understanding of processes controlling distributions of iron and the response of plankton communities in the Southern Ocean. This proposal also includes an outreach component comprised of Research Experiences for Undergraduates (REU), Teachers Experiencing the Antarctic and Arctic (TEA), and the creation of an educational website and K-12 curricular modules based on the project. | POLYGON((-63 -60.3,-62 -60.3,-61 -60.3,-60 -60.3,-59 -60.3,-58 -60.3,-57 -60.3,-56 -60.3,-55 -60.3,-54 -60.3,-53 -60.3,-53 -60.77,-53 -61.24,-53 -61.71,-53 -62.18,-53 -62.65,-53 -63.12,-53 -63.59,-53 -64.06,-53 -64.53,-53 -65,-54 -65,-55 -65,-56 -65,-57 -65,-58 -65,-59 -65,-60 -65,-61 -65,-62 -65,-63 -65,-63 -64.53,-63 -64.06,-63 -63.59,-63 -63.12,-63 -62.65,-63 -62.18,-63 -61.71,-63 -61.24,-63 -60.77,-63 -60.3)) | POINT(-58 -62.65) | false | false | |||||||||||||||||||||
Collaborative Research: Sloccum Glider in Western Antarctic Peninsula Continental Shelf Waters Pilot Study
|
0701232 |
2008-06-03 | Martinson, Douglas; Kerfoot, John | No dataset link provided | The Antarctic Peninsula (AP) is characterized by (1) the most rapid recent regional (winter) warming (5.35 times global mean), (2) a loss of nearly all its perennial sea ice cover on its western margin, and (3) 87% of the glaciers in retreat, contributing to global sea level rise. An ability to understand this change depends upon researchers' ability to better understand the underlying sources of this change and their driving mechanisms. Despite intensive efforts, the western AP (WAP) is chronically under-sampled. Therefore developing a capability to maintain a sustained in situ presence is a high scientific priority. The current proposal addresses this critical need through 2 objectives: (1) establish the feasibility of a Slocum Webb ocean glider to enable real-time high resolution data-adaptive polar oceanographic research; (2) address a critical question involving the regional climate change by measuring the ocean heat budget within a grid containing 14 years of ship-based ocean snapshots. This will involve the launch of the glider during the PAL-LTER austral summer research cruise, where it will fly the full along-shore distance of the LTER sample grid to be recovered at the southern extreme when the ship arrives there later in the summer. The glider will provide nearly continuous ocean property (temperature, salinity and pressure) coverage over this distance.<br/><br/>Intellectual merit. The proposed activity will involve state of the art sampling methodology that will revolutionize the ability to address climate change and other scientific issues requiring sampling densities that could not be achieved by research vessels. Specifically, the adaptive sampling capability of the glider will be used to alter its course allowing identification of routes by which the source waters of the ocean heat (and nutrients) enter the continental shelf region, while the near-continuous sampling will provide a diagnosis of how well standard shipborne stations close the heat budget. Resources are adequate for this study due to heavy leveraging by the availability of the Rutgers SLOCUM Web glider, glider control center and participation of the team of experts that flew the first such glider.<br/><br/>Broader Impacts. The proposed activity will advance discovery and understanding of the WAP responses to climate variability, to study the intricate feedback mechanisms associated with this variability and to better understand the chemical and physical processes associated with climate change. The data will be made available across the World Wide Web as it is collected, almost in real time, a potential bonanza for scientists during the upcoming International Polar Year, for classroom instruction and general outreach. Society will ultimately benefit from the improved knowledge of how climate change elsewhere in the world is impacting the unique ecosystem of the Antarctic, and driving glacial melt (sea level rise), among its other influences. | POLYGON((-72 -64,-71.2 -64,-70.4 -64,-69.6 -64,-68.8 -64,-68 -64,-67.2 -64,-66.4 -64,-65.6 -64,-64.8 -64,-64 -64,-64 -64.4,-64 -64.8,-64 -65.2,-64 -65.6,-64 -66,-64 -66.4,-64 -66.8,-64 -67.2,-64 -67.6,-64 -68,-64.8 -68,-65.6 -68,-66.4 -68,-67.2 -68,-68 -68,-68.8 -68,-69.6 -68,-70.4 -68,-71.2 -68,-72 -68,-72 -67.6,-72 -67.2,-72 -66.8,-72 -66.4,-72 -66,-72 -65.6,-72 -65.2,-72 -64.8,-72 -64.4,-72 -64)) | POINT(-68 -66) | false | false |