Project Information
Collaborative Research: Role of Nutrient Limitation and Viral Interactions on Antarctic Microbial Community Assembly: A Cryoconite Microcosm Study
Start Date:
End Date:
Cryoconite holes are sediment-filled melt holes in the surface of glaciers that can be important sites of active microbial life in an otherwise mostly frozen and barren landscape. Previous studies in the McMurdo Dry Valleys, Antarctica suggest that viral infections of microbes, and a general lack of fertilizers (i.e., nutrients), may be important factors shaping the development and functioning of microbial communities in cryoconite holes. The researchers propose an experimental approach to understand how nutrient limitation affects diversity (number of species) and overall abundance of microbes, and how the diversity and abundance of microbes in turn affects the diversity, abundance, and infection type of viruses that parasitize the microbes in cryoconite sediments. The researchers will use sediments previously collected from Antarctic glaciers that have varying concentrations of viruses and nutrients, to set up a nutrient-addition experiment to determine how nutrients affect microbial and viral population dynamics. The results will deepen our understanding of how microbial communities in general are shaped by nutrients and viruses and give new insights into the functioning of viruses in extremely cold environments. The researchers will publish their findings in scientific journals and will share their discoveries with K-12 students from rural schools in collaboration with the Pinhead Institute and will connect undergraduate students from under-represented minorities to polar research through participation in the universitys Science, Technology, Engineering & Mathematics Routes Uplift Research Program. Outreach will be achieved through videos produced and distributed by a professional science communicator. The research advances a National Science Foundation goal of expanding fundamental knowledge of Antarctic systems, biota, and processes by utilizing the unique characteristics of the Antarctic region as a science observing platform. The Principal Investigators propose an experimental approach to understand how nutrient limitation affects microbial diversity and abundances and their cascading effects on virus diversity, abundance, and mode of infection (lysis vs. lysogeny) in Antarctic cryoconite holes. Cryoconite holes are ideal natural microcosms for manipulative studies, not available in other cryospheric ecosystems. The PIs will use previously collected cryoconite from across a gradient of both viral diversity and nutrient levels to address questions about key limiting nutrients and microbial-viral community dynamics in cryoconite sediments. Nutrient manipulation experiments will be conducted in a growth chamber that closely approximates the light and temperature regime of in situ cryoconite holes to test three core hypotheses: (1) phosphorus availability limits microbial productivity and abundance in cryoconite holes; (2) relaxing nutrient limitation in cryoconite from low-diversity glaciers will increase species diversity, leading microbial communities to resemble those found on more nutrient-rich glaciers; (3) relaxing nutrient limitation will increase the diversity and abundance of viruses by increasing the availability of suitable hosts, and decrease the prevalence of lysogenic infections. By manipulating nutrient limitation within a realistic range, this project will help verify hypothesized phosphorus limitation of Antarctic cryoconite holes and will extend understanding of the connections between nutrients, diversity, and viral infection dynamics in the cryosphere more generally. A better understanding of these dynamics in cryoconite sediments improves the ability of scientists to forecast future impacts of environmental changes in the cryosphere. This award reflects NSF''s statutory mission and has been deemed worthy of support through evaluation using the Foundation''s intellectual merit and broader impacts review criteria.
Person Role
Varsani, Arvind Investigator
Porazinska, Dorota Investigator
Schmidt, Steven Investigator and contact
Bergstrom, Anna Investigator
Antarctic Organisms and Ecosystems Award # 2137378
Antarctic Organisms and Ecosystems Award # 2137377
Antarctic Organisms and Ecosystems Award # 2137376
Antarctic Organisms and Ecosystems Award # 2137375
AMD - DIF Record(s)
Data Management Plan
None in the Database
Product Level:
Not provided

This project has been viewed 10 times since May 2019 (based on unique date-IP combinations)