{"dp_type": "Dataset", "free_text": "Fish"}
[{"awards": "1947040 Postlethwait, John", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Tue, 11 Feb 2025 00:00:00 GMT", "description": "Trematomus scotti mt-co1 sequence alignment used to generate descriptive genetic statistics (number of segregating sites S, number of haplotypes h, haplotype diversity Hd, and nucleotide diversity \u03c0), estimate pairwise FST indices of genetic differences between geographic areas, and create a haplotype network.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Biota; CO1; COX1; Cryonotothenioid; Cryosphere; Genetic Sequences; MT-CO1; Nototheniidae; Notothenioid; Population Genetics", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Schiavon, Luca ; Papetti, Chiara; Postlethwait, John", "project_titles": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish ; Evolution of hemoglobin genes in notothenioid fishes", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}, {"proj_uid": "p0010221", "repository": "USAP-DC", "title": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Trematomus scotti mt-co1 sequence alignment.", "uid": "601892", "west": -180.0}, {"awards": "1947040 Postlethwait, John", "bounds_geometry": ["POLYGON((-62 -64,-56.9 -64,-51.8 -64,-46.7 -64,-41.6 -64,-36.5 -64,-31.400000000000002 -64,-26.300000000000004 -64,-21.200000000000003 -64,-16.1 -64,-11 -64,-11 -65.3,-11 -66.6,-11 -67.9,-11 -69.2,-11 -70.5,-11 -71.8,-11 -73.1,-11 -74.4,-11 -75.7,-11 -77,-16.1 -77,-21.2 -77,-26.299999999999997 -77,-31.4 -77,-36.5 -77,-41.599999999999994 -77,-46.699999999999996 -77,-51.8 -77,-56.9 -77,-62 -77,-62 -75.7,-62 -74.4,-62 -73.1,-62 -71.8,-62 -70.5,-62 -69.2,-62 -67.9,-62 -66.6,-62 -65.3,-62 -64))"], "date_created": "Tue, 11 Feb 2025 00:00:00 GMT", "description": "Morphological, fecundity, and age data of Trematomus scotti from Andvord Bay and the Weddell Sea.", "east": -11.0, "geometry": ["POINT(-36.5 -70.5)"], "keywords": "Age; Antarctica; Biota; Cryonotothenioid; Cryosphere; Fecundity; Growth; Length; Nototheniidae; Oceans; Otolith; Reproduction; Weight", "locations": "Antarctica; Antarctica", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Valdivieso, Alejandro; Sguotti, Camilla; Cal\u00ec, Federico; Riginella, Emilio; Streeter, Margaret; Grondin, Jacob; Le Francois, Nathalie; Lucassen, Magnus; Mark, Felix C; Detrich, H. William; Papetti, Chiara; Postlethwait, John; La Mesa, Mario", "project_titles": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish ; Evolution of hemoglobin genes in notothenioid fishes", "projects": [{"proj_uid": "p0010221", "repository": "USAP-DC", "title": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish "}, {"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Morphological, fecundity, and age data of Trematomus scotti from Andvord Bay and the Weddell Sea.", "uid": "601893", "west": -62.0}, {"awards": "1745130 Moran, Amy", "bounds_geometry": null, "date_created": "Sat, 04 Jan 2025 00:00:00 GMT", "description": "Counts of Odontaster along 50-m transects at the McMurdo Intake Jetty (2019, 2020) and Cinder Cones (2022), including incidence of SSWS and staging of each visibly affected individual starfish.", "east": null, "geometry": null, "keywords": "Antarctica; Cryosphere; McMurdo; McMurdo Sound", "locations": "McMurdo Sound; McMurdo; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Moran, Amy; Thurber, Andrew", "project_titles": "Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development ", "projects": [{"proj_uid": "p0010187", "repository": "USAP-DC", "title": "Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Survey Metadata. All counts of Odontaster validus from SSWS surveys at the McMurdo Intake Jetty and Cinder Cones", "uid": "601869", "west": null}, {"awards": "2026045 Schofield, Oscar; 1543383 Postlethwait, John; 0636696 DeVries, Arthur; 1142158 Cheng, Chi-Hing; 1440435 Ducklow, Hugh", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Mon, 22 Jul 2024 00:00:00 GMT", "description": "This data set includes photographs and metadata from phylogenetic analyses associated with the description of Akarotaxis gouldae n. sp., or the Banded Dragonfish (Bathydraconidae).", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Bellingshausen Sea; Cryosphere; Southern Ocean", "locations": "Bellingshausen Sea; Antarctica; Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Corso, Andrew; Desvignes, Thomas; McDowell, Jan; Cheng, Chi-Hing; Biesack, Ellen; Steinberg, Deborah; Hilton, Eric", "project_titles": "Antarctic Fish and MicroRNA Control of Development and Physiology; Antarctic Notothenioid Fish Freeze Avoidance and Genome-wide Evolution for Life in the Cold; Environmental, Organismal and Evolutionary Physiology of Freeze Avoidance in Antarctic Notothenioid Fishes; Evolution of hemoglobin genes in notothenioid fishes; LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem", "projects": [{"proj_uid": "p0010091", "repository": "USAP-DC", "title": "Antarctic Notothenioid Fish Freeze Avoidance and Genome-wide Evolution for Life in the Cold"}, {"proj_uid": "p0000133", "repository": "USAP-DC", "title": "LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem"}, {"proj_uid": "p0010085", "repository": "USAP-DC", "title": "Antarctic Fish and MicroRNA Control of Development and Physiology"}, {"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}, {"proj_uid": "p0000560", "repository": "USAP-DC", "title": "Environmental, Organismal and Evolutionary Physiology of Freeze Avoidance in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LTER", "south": -90.0, "title": "Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)", "uid": "601811", "west": -180.0}, {"awards": "1744999 Todgham, Anne", "bounds_geometry": null, "date_created": "Wed, 07 Feb 2024 00:00:00 GMT", "description": "In this study we examined aerobic metabolic capacity in three species, Trematomus bernacchii, T. pennellii and T. newnesi, and between two life stages, juvenile and adult, by assessing mitochondrial function of permeabilized cardiac fibers.", "east": null, "geometry": null, "keywords": "Antarctica; McMurdo Sound", "locations": "Antarctica; McMurdo Sound", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Todgham, Anne; Mandic, Milica; Frazier, Amanda; Naslund, Andrew", "project_titles": "Interacting Stressors: Metabolic Capacity to Acclimate under Ocean Warming and CO2- Acidification in Early Developmental Stages of Antarctic Fishes", "projects": [{"proj_uid": "p0010241", "repository": "USAP-DC", "title": "Interacting Stressors: Metabolic Capacity to Acclimate under Ocean Warming and CO2- Acidification in Early Developmental Stages of Antarctic Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "A comparative and ontogenetic examination of mitochondrial function in Antarctic notothenioid species", "uid": "601766", "west": null}, {"awards": "1744999 Todgham, Anne", "bounds_geometry": null, "date_created": "Tue, 06 Feb 2024 00:00:00 GMT", "description": "This dataset records temperature preference of two species of Antarctic nototheniod fishes, as described in the draft manuscript \u2018Naslund et al. (Forthcoming 2024) Differential temperature preferences exhibited in the juvenile Antarctic notothenioids Trematomus bernacchii and Trematomus pennellii.", "east": null, "geometry": null, "keywords": "Antarctica; McMurdo Sound; Ross Sea", "locations": "McMurdo Sound; Antarctica; Ross Sea", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Todgham, Anne; Naslund, Andrew; Zillig, Ken; Mandic, Milica; Frazier, Amanda", "project_titles": "Interacting Stressors: Metabolic Capacity to Acclimate under Ocean Warming and CO2- Acidification in Early Developmental Stages of Antarctic Fishes", "projects": [{"proj_uid": "p0010241", "repository": "USAP-DC", "title": "Interacting Stressors: Metabolic Capacity to Acclimate under Ocean Warming and CO2- Acidification in Early Developmental Stages of Antarctic Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Differential temperature preferences exhibited in the juvenile Antarctic notothenioids Trematomus bernacchii and Trematomus pennellii", "uid": "601765", "west": null}, {"awards": "2138277 Gallagher, Katherine", "bounds_geometry": ["POLYGON((-90 -55,-85.5 -55,-81 -55,-76.5 -55,-72 -55,-67.5 -55,-63 -55,-58.5 -55,-54 -55,-49.5 -55,-45 -55,-45 -57.5,-45 -60,-45 -62.5,-45 -65,-45 -67.5,-45 -70,-45 -72.5,-45 -75,-45 -77.5,-45 -80,-49.5 -80,-54 -80,-58.5 -80,-63 -80,-67.5 -80,-72 -80,-76.5 -80,-81 -80,-85.5 -80,-90 -80,-90 -77.5,-90 -75,-90 -72.5,-90 -70,-90 -67.5,-90 -65,-90 -62.5,-90 -60,-90 -57.5,-90 -55))"], "date_created": "Wed, 13 Sep 2023 00:00:00 GMT", "description": "These data represent simulated buoyant debris released along the West Antarctic Peninsula. Files include latitude, longitude, and depth of particles released along the West Antarctic Peninsula within the Regional Ocean Modeling System (ROMS) framework. Data currently cover 4 austral summers: 2008, 2009, 2018, and 2019. A total of 12 simulations were conducted, simulating debris fields from 4 potential sources: non-point sources, tourism, fishing, and research.", "east": -45.0, "geometry": ["POINT(-67.5 -67.5)"], "keywords": "Antarctica; Modeling; Regional Ocean Modeling System; West Antarctic Shelf", "locations": "West Antarctic Shelf; Antarctica", "north": -55.0, "nsf_funding_programs": "Post Doc/Travel", "persons": "Gallagher, Katherine", "project_titles": "OPP-PRF Pygoscelis Penguin Response to Potential Prey Retention along the West Antarctic Peninsula", "projects": [{"proj_uid": "p0010349", "repository": "USAP-DC", "title": "OPP-PRF Pygoscelis Penguin Response to Potential Prey Retention along the West Antarctic Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "Simulated marine debris trajectories along the West Antarctic Peninsula in 2008-2009 and 2018-2019", "uid": "601734", "west": -90.0}, {"awards": "1543383 Postlethwait, John; 1947040 Postlethwait, John; 2232891 Postlethwait, John", "bounds_geometry": ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"], "date_created": "Fri, 08 Sep 2023 00:00:00 GMT", "description": "Phylogenetic tree of Notothenioid species used in analyses and results of the HyPhy MEME tests for sites evolving under episodic diversifying selection in notothenioid hemoglobin genes in the research article \u201cCold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\u201d by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Genetic Analysis; Hemoglobin; Icefish; Notothenioid; Notothenioid Fishes; Plunderfish; Sub-Antarctic", "locations": "Antarctica; Sub-Antarctic", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Postlethwait, John", "project_titles": "Evolution of hemoglobin genes in notothenioid fishes", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "MEME tests of sites evolving under episodic diversifying selection in notothenioid hemoglobin genes.", "uid": "601730", "west": -180.0}, {"awards": "1543383 Postlethwait, John; 1947040 Postlethwait, John; 2232891 Postlethwait, John", "bounds_geometry": ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"], "date_created": "Fri, 08 Sep 2023 00:00:00 GMT", "description": "Phylogenetic tree of Notothenioid species used in analyses and results of the HyPhy aBSREL tests for diversifying selection in notothenioid hemoglobin genes in the research article \u201cCold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\u201d by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Gene; Genetic Analysis; Hemoglobin; Icefish; Notothenioid; Notothenioid Fishes; Plunderfish; Sub-Antarctic", "locations": "Antarctica; Antarctica; Sub-Antarctic", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Postlethwait, John", "project_titles": "Evolution of hemoglobin genes in notothenioid fishes", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "aBSREL tests for episodic diversifying selection on hemoglobin genes in notothenioids.", "uid": "601728", "west": -180.0}, {"awards": "1543383 Postlethwait, John; 1947040 Postlethwait, John; 2232891 Postlethwait, John", "bounds_geometry": ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"], "date_created": "Fri, 08 Sep 2023 00:00:00 GMT", "description": "Phylogenetic tree of Notothenioid species used in analyses and results of the HyPhy RELAX tests for pervasive changes in strength of natural selection on hemoglobin genes in the research article \u201cCold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\u201d by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Genetic Analysis; Hemoglobin; Icefish; Notothenioid; Notothenioid Fishes; Plunderfish; Sub-Antarctic", "locations": "Antarctica; Sub-Antarctic", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Postlethwait, John", "project_titles": "Evolution of hemoglobin genes in notothenioid fishes", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "RELAX tests for pervasive changes in strength of natural selection on hemoglobin genes in notothenioids.", "uid": "601731", "west": -180.0}, {"awards": "2232891 Postlethwait, John; 1543383 Postlethwait, John; 1947040 Postlethwait, John", "bounds_geometry": ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"], "date_created": "Fri, 08 Sep 2023 00:00:00 GMT", "description": "Results of hemoglobin gene KaKs (dN/dS) analyses in notothenioids in the research article \u201cCold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\u201d by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Genetic Analysis; Hemoglobin; Icefish; Notothenioid; Notothenioid Fishes; Plunderfish; Sub-Antarctic", "locations": "Antarctica; Sub-Antarctic", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Postlethwait, John", "project_titles": "Evolution of hemoglobin genes in notothenioid fishes", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Rates of hemoglobin evolution among genes and across notothenioid species.", "uid": "601729", "west": -180.0}, {"awards": "1543383 Postlethwait, John; 1947040 Postlethwait, John; 2232891 Postlethwait, John", "bounds_geometry": ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"], "date_created": "Fri, 08 Sep 2023 00:00:00 GMT", "description": "Notothenioid hemoglobin protein 3D modeling using SWISS-MODEL in the research article \u201cCold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\u201d by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Genetic Analysis; Hemoglobin; Icefish; Notothenioid; Notothenioid Fishes; Plunderfish; Sub-Antarctic", "locations": "Antarctica; Sub-Antarctic", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Postlethwait, John", "project_titles": "Evolution of hemoglobin genes in notothenioid fishes", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Notothenioid hemoglobin protein 3D modeling.", "uid": "601732", "west": -180.0}, {"awards": "2232891 Postlethwait, John; 1947040 Postlethwait, John; 1543383 Postlethwait, John", "bounds_geometry": ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"], "date_created": "Thu, 24 Aug 2023 00:00:00 GMT", "description": "All input and output files of the phylogenetic trees of hemoglobin proteins in Notothenioids from the study \"Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\" by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, and John H. Postlethwait.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Gene; Hemoglobin; Icefish; Notothenioid; Plunderfish; Sub-Antarctic", "locations": "Sub-Antarctic; Antarctica", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Postlethwait, John", "project_titles": "Evolution of hemoglobin genes in notothenioid fishes", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Phylogenetic trees of hemoglobin proteins in notothenioids from the study \"Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\"", "uid": "601722", "west": -180.0}, {"awards": "2232891 Postlethwait, John; 1543383 Postlethwait, John; 1947040 Postlethwait, John", "bounds_geometry": ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"], "date_created": "Thu, 24 Aug 2023 00:00:00 GMT", "description": "Phylogenetic tree of 36 notothenioid species and five outgroup used throughout the study \"Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\" by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Gene; Hemoglobin; Icefish; Notothenioid; Plunderfish; Sub-Antarctic", "locations": "Antarctica; Sub-Antarctic", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Postlethwait, John", "project_titles": "Evolution of hemoglobin genes in notothenioid fishes", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Notothenioid species tree used in the study \"Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\"", "uid": "601721", "west": -180.0}, {"awards": "1443637 Zakon, Harold; 1245752 Karentz, Deneb", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Fri, 16 Jun 2023 00:00:00 GMT", "description": "This dataset is recordings of current, temperature, and voltage for TRPA1b and TRPV1a from Antarctic notothenioids fishes, plus metadata. TRPA1b and TRPV1a were found to be heat activated and multiple modulators of activity were tested. Paper can be accessed at: https://doi.org/10.1098/rsob.20230215. Supplementary material can be accessed at: https://doi.org/10.6084/m9.figshare.c.6858595.v2.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Notothenioid; Southern Ocean", "locations": "Southern Ocean; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "York, Julia", "project_titles": "Analysis of Voltage-gated Ion Channels in Antarctic Fish", "projects": [{"proj_uid": "p0010331", "repository": "USAP-DC", "title": "Analysis of Voltage-gated Ion Channels in Antarctic Fish"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Temperature activated transient receptor potential ion channels from Antarctic fishes", "uid": "601695", "west": -180.0}, {"awards": "1543539 Liwanag, Heather", "bounds_geometry": null, "date_created": "Tue, 13 Dec 2022 00:00:00 GMT", "description": "These data were collected in 2017 and 2019 in McMurdo Sound, Antarctica. Included are reported dose of sedation drugs administered to Weddell seal pups during a longitudinal study at 4 age timepoints during early devleopment. Vital signs including heart rate (HR) and respiration rate (RR) during sedation are included, as are reactions to the drugs, such as if and how many apnea events were recorded, whether an animal exhibited cyanosis. \r\nThis study was conducted with ethical approval from NOAA Fisheries under the Marine Mammal Protection Act (permit # 21006-01), the Antarctic Conservation Act (permit # 2018-013 M#1) and the California Polytechnic University Institutional Animal Care and Use Committee (#1605 and 1904).", "east": null, "geometry": null, "keywords": "Antarctica; McMurdo Sound; Weddell Seal", "locations": "Antarctica; McMurdo Sound", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Pearson, Linnea", "project_titles": "RUI: Growing Up on Ice: Physiological Adaptations and Developmental Plasticity in Weddell Seal Pups Across Two Extreme Physical Environments", "projects": [{"proj_uid": "p0010144", "repository": "USAP-DC", "title": "RUI: Growing Up on Ice: Physiological Adaptations and Developmental Plasticity in Weddell Seal Pups Across Two Extreme Physical Environments"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Sedation dose and response", "uid": "601631", "west": null}, {"awards": "1947040 Postlethwait, John", "bounds_geometry": ["POLYGON((-63.1 -63.9,-63.02 -63.9,-62.94 -63.9,-62.86 -63.9,-62.78 -63.9,-62.7 -63.9,-62.62 -63.9,-62.54 -63.9,-62.46 -63.9,-62.38 -63.9,-62.3 -63.9,-62.3 -64.01,-62.3 -64.12,-62.3 -64.23,-62.3 -64.34,-62.3 -64.45,-62.3 -64.56,-62.3 -64.67,-62.3 -64.78,-62.3 -64.89,-62.3 -65,-62.38 -65,-62.46 -65,-62.54 -65,-62.62 -65,-62.7 -65,-62.78 -65,-62.86 -65,-62.94 -65,-63.02 -65,-63.1 -65,-63.1 -64.89,-63.1 -64.78,-63.1 -64.67,-63.1 -64.56,-63.1 -64.45,-63.1 -64.34,-63.1 -64.23,-63.1 -64.12,-63.1 -64.01,-63.1 -63.9))"], "date_created": "Tue, 15 Mar 2022 00:00:00 GMT", "description": "In situ hybridization of Notoxcellia coronata and host fish Trematomus scotti 18S SSU rRNA and of Notoxcellia picta and host fish Nototheniops larseni in alternate sections of tumor xenomas.", "east": -62.3, "geometry": ["POINT(-62.7 -64.45)"], "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "locations": "Antarctic Peninsula; Antarctica", "north": -63.9, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Postlethwait, John", "project_titles": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish ", "projects": [{"proj_uid": "p0010221", "repository": "USAP-DC", "title": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "In situ hybridization of X-cell and host fish 18S SSU rRNA in alternate sections of tumor xenomas.", "uid": "601539", "west": -63.1}, {"awards": "1947040 Postlethwait, John", "bounds_geometry": ["POLYGON((-62.9 -64.7,-62.84 -64.7,-62.78 -64.7,-62.72 -64.7,-62.66 -64.7,-62.6 -64.7,-62.54 -64.7,-62.48 -64.7,-62.42 -64.7,-62.36 -64.7,-62.3 -64.7,-62.3 -64.73,-62.3 -64.76,-62.3 -64.79,-62.3 -64.82,-62.3 -64.85,-62.3 -64.88,-62.3 -64.91,-62.3 -64.94,-62.3 -64.97,-62.3 -65,-62.36 -65,-62.42 -65,-62.48 -65,-62.54 -65,-62.6 -65,-62.66 -65,-62.72 -65,-62.78 -65,-62.84 -65,-62.9 -65,-62.9 -64.97,-62.9 -64.94,-62.9 -64.91,-62.9 -64.88,-62.9 -64.85,-62.9 -64.82,-62.9 -64.79,-62.9 -64.76,-62.9 -64.73,-62.9 -64.7))"], "date_created": "Tue, 15 Mar 2022 00:00:00 GMT", "description": "Multi-layer 3D models and videos of Tsco_18_08 from high-field microMRI data.", "east": -62.3, "geometry": ["POINT(-62.6 -64.85)"], "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "locations": "Antarctic Peninsula; Antarctica", "north": -64.7, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Lauridsen, Henrik; Desvignes, Thomas; Postlethwait, John", "project_titles": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish ", "projects": [{"proj_uid": "p0010221", "repository": "USAP-DC", "title": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "microMRI analyses of Trematomus scotti Tsco_18_08 with X-cell xenomas", "uid": "601538", "west": -62.9}, {"awards": "1947040 Postlethwait, John", "bounds_geometry": ["POLYGON((-63.1 -63.9,-63.02 -63.9,-62.94 -63.9,-62.86 -63.9,-62.78 -63.9,-62.7 -63.9,-62.62 -63.9,-62.54 -63.9,-62.46 -63.9,-62.38 -63.9,-62.3 -63.9,-62.3 -64.01,-62.3 -64.12,-62.3 -64.23,-62.3 -64.34,-62.3 -64.45,-62.3 -64.56,-62.3 -64.67,-62.3 -64.78,-62.3 -64.89,-62.3 -65,-62.38 -65,-62.46 -65,-62.54 -65,-62.62 -65,-62.7 -65,-62.78 -65,-62.86 -65,-62.94 -65,-63.02 -65,-63.1 -65,-63.1 -64.89,-63.1 -64.78,-63.1 -64.67,-63.1 -64.56,-63.1 -64.45,-63.1 -64.34,-63.1 -64.23,-63.1 -64.12,-63.1 -64.01,-63.1 -63.9))"], "date_created": "Mon, 14 Mar 2022 00:00:00 GMT", "description": "Metagenomic analyses of apparently healthy and tumor samples using Kaiju v.1.7.4 software and a custom database generated from NCBI NR database retrieved on July 24th, 2021, and containing all viruses, archaea, and bacteria sequences, as well as microbial eukaryotes and Trematomus spp. fish sequences.", "east": -62.3, "geometry": ["POINT(-62.7 -64.45)"], "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "locations": "Antarctic Peninsula; Antarctica", "north": -63.9, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Fontenele, Rafaela S. ; Kraberger, Simona ; Varsani, Arvind; Postlethwait, John", "project_titles": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish ", "projects": [{"proj_uid": "p0010221", "repository": "USAP-DC", "title": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Metagenomic analysis of apparently healthy and tumor samples using Kaiju software ", "uid": "601537", "west": -63.1}, {"awards": "1947040 Postlethwait, John", "bounds_geometry": ["POLYGON((-63.1 -63.9,-63.02 -63.9,-62.94 -63.9,-62.86 -63.9,-62.78 -63.9,-62.7 -63.9,-62.62 -63.9,-62.54 -63.9,-62.46 -63.9,-62.38 -63.9,-62.3 -63.9,-62.3 -64.01,-62.3 -64.12,-62.3 -64.23,-62.3 -64.34,-62.3 -64.45,-62.3 -64.56,-62.3 -64.67,-62.3 -64.78,-62.3 -64.89,-62.3 -65,-62.38 -65,-62.46 -65,-62.54 -65,-62.62 -65,-62.7 -65,-62.78 -65,-62.86 -65,-62.94 -65,-63.02 -65,-63.1 -65,-63.1 -64.89,-63.1 -64.78,-63.1 -64.67,-63.1 -64.56,-63.1 -64.45,-63.1 -64.34,-63.1 -64.23,-63.1 -64.12,-63.1 -64.01,-63.1 -63.9))"], "date_created": "Mon, 14 Mar 2022 00:00:00 GMT", "description": "Histopathology images of X-cell xenomas in Trematomus scotti and in Nototheniops larseni.", "east": -62.3, "geometry": ["POINT(-62.7 -64.45)"], "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "locations": "Antarctica; Antarctic Peninsula", "north": -63.9, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Kent, Michael L. ; Murray, Katrina N. ; Postlethwait, John", "project_titles": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish ", "projects": [{"proj_uid": "p0010221", "repository": "USAP-DC", "title": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Histopathology of X-cell xenomas in Trematomus scotti and Nototheniops larseni.", "uid": "601536", "west": -63.1}, {"awards": "1840058 Jenouvrier, Stephanie", "bounds_geometry": null, "date_created": "Fri, 04 Feb 2022 00:00:00 GMT", "description": "Many animals form long-term monogamous pair-bonds, and the disruption of a pair-bond (through either divorce or widowhood) can have significant consequences for individual vital rates (survival, breeding, and breeding success probabilities) and life-history outcomes (lifetime reproductive success, life expectancy). Here, we investigated the causes and consequences of pair-bond disruption in wandering albatross (Diomedea exulans). State-of-the-art statistical and mathematical approaches were developed to estimate divorce and widowhood rates and their impacts on vital rates and life-history outcomes. In this population, females incur a higher mortality rate due to incidental fishery bycatch, hence the population is male-skewed. Therefore, we first posited that males show higher widowhood rates negatively correlated with fishing effort, and females have higher divorce rates because they have more mating opportunities. Furthermore, we expected that divorce can be an adaptive strategy, whereby individuals improve breeding success by breeding with a new partner of better quality. Finally, we posited that pair-bond disruptions can reduce survival and breeding probabilities due to the cost of remating processes, with important consequences for life-history outcomes. As expected, we show that males have higher widowhood rates than females and females have higher divorce rates in this male-skewed population. However, no correlation was found between fishing effort and male widowhood. Secondly, contrary to our expectation, we found that divorce is likely non-adaptive in this population. We propose that divorce in this population is caused by an intruder who outcompetes the original partner in line with the \"forced divorce\" hypothesis. Furthermore, we found a 16.7% and 18.0% reduction in lifetime reproductive success (LRS) only for divorced and widowed males, respectively, due to missing breeding seasons after a pair-bond disruption. Finally, we found that divorced individuals are more likely to divorce again, but whether this is related to specific individual characteristics remains an important area of investigation. \r\n\r\nDescription of data processing:\r\nThis file includes: (1) observation events data; (2) E-surge GEPAT (Generator of pattern of elementary matrices) code for fitting MULTIEVENT-CAPTURE-MARK-RECAPTURE (MECMR) models; and (3) pair-bond status and breeding success data to perform all the analysis described in Sun et al. (2022, Ecological Monographs) ", "east": null, "geometry": null, "keywords": "Antarctica; Biota; Wandering Albatross", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Jenouvrier, Stephanie; Sun, Ruijiao; Barbraud, Christophe; Delord, Karine", "project_titles": "Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics", "projects": [{"proj_uid": "p0010090", "repository": "USAP-DC", "title": "Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Causes and consequences of pair-bond disruption in a sex-skewed population of a long-lived monogamous seabird: the wandering Albatross", "uid": "601518", "west": null}, {"awards": "1947040 Postlethwait, John", "bounds_geometry": ["POLYGON((-63.1 -63.9,-63.02 -63.9,-62.94 -63.9,-62.86 -63.9,-62.78 -63.9,-62.7 -63.9,-62.62 -63.9,-62.54 -63.9,-62.46 -63.9,-62.38 -63.9,-62.3 -63.9,-62.3 -64.01,-62.3 -64.12,-62.3 -64.23,-62.3 -64.34,-62.3 -64.45,-62.3 -64.56,-62.3 -64.67,-62.3 -64.78,-62.3 -64.89,-62.3 -65,-62.38 -65,-62.46 -65,-62.54 -65,-62.62 -65,-62.7 -65,-62.78 -65,-62.86 -65,-62.94 -65,-63.02 -65,-63.1 -65,-63.1 -64.89,-63.1 -64.78,-63.1 -64.67,-63.1 -64.56,-63.1 -64.45,-63.1 -64.34,-63.1 -64.23,-63.1 -64.12,-63.1 -64.01,-63.1 -63.9))"], "date_created": "Tue, 04 Jan 2022 00:00:00 GMT", "description": "Nucleic acid sequences, sequence alignments, model selection results, and phylogenetic trees from the phylogenetic placement of Notoxcellia species. ", "east": -62.3, "geometry": ["POINT(-62.7 -64.45)"], "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Biota; Notoxcellia Coronata; Notoxcellia Picta; Oceans; Perkinsozoa; Xcellidae", "locations": "Antarctica; Antarctic Peninsula", "north": -63.9, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Varsani, Arvind; Postlethwait, John", "project_titles": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish ", "projects": [{"proj_uid": "p0010221", "repository": "USAP-DC", "title": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Phylogenetic Analysis of Notoxcellia species.", "uid": "601501", "west": -63.1}, {"awards": "1947040 Postlethwait, John", "bounds_geometry": ["POLYGON((-65.3 -63.3,-65 -63.3,-64.7 -63.3,-64.4 -63.3,-64.1 -63.3,-63.8 -63.3,-63.5 -63.3,-63.2 -63.3,-62.9 -63.3,-62.6 -63.3,-62.3 -63.3,-62.3 -63.47,-62.3 -63.64,-62.3 -63.81,-62.3 -63.98,-62.3 -64.15,-62.3 -64.32,-62.3 -64.49,-62.3 -64.66,-62.3 -64.83,-62.3 -65,-62.6 -65,-62.9 -65,-63.2 -65,-63.5 -65,-63.8 -65,-64.1 -65,-64.4 -65,-64.7 -65,-65 -65,-65.3 -65,-65.3 -64.83,-65.3 -64.66,-65.3 -64.49,-65.3 -64.32,-65.3 -64.15,-65.3 -63.98,-65.3 -63.81,-65.3 -63.64,-65.3 -63.47,-65.3 -63.3))"], "date_created": "Thu, 16 Dec 2021 00:00:00 GMT", "description": "Temperature profiles at five fishing locations on the West Antarctic Peninsula during austral fall 2018. All profiles were recorded using a DST centi-TD Miniature Temperature and Depth Data Logger (Star-Oddi, Gar\u00f0ab\u00e6r, Iceland) mounted on one of the two otters of the fishing net, thus continuously recording temperature while going down, at the bottom, and while ascending the water column. The two temperature profiles in the Gerlache Strait were recorded using XBT probes (Expendable Bathythermograph) Sippican Deep Blue 760-M and thus show unidirectional temperature profiles.", "east": -62.3, "geometry": ["POINT(-63.8 -64.15)"], "keywords": "Antarctica; Antarctic Peninsula", "locations": "Antarctica; Antarctic Peninsula", "north": -63.3, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas", "project_titles": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish ", "projects": [{"proj_uid": "p0010221", "repository": "USAP-DC", "title": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Temperature profiles at five fishing locations on the West Antarctic Peninsula during austral fall 2018.", "uid": "601495", "west": -65.3}, {"awards": "1947040 Postlethwait, John", "bounds_geometry": ["POLYGON((-62.9 -64.7,-62.84 -64.7,-62.78 -64.7,-62.72 -64.7,-62.66 -64.7,-62.6 -64.7,-62.54 -64.7,-62.48 -64.7,-62.42 -64.7,-62.36 -64.7,-62.3 -64.7,-62.3 -64.73,-62.3 -64.76,-62.3 -64.79,-62.3 -64.82,-62.3 -64.85,-62.3 -64.88,-62.3 -64.91,-62.3 -64.94,-62.3 -64.97,-62.3 -65,-62.36 -65,-62.42 -65,-62.48 -65,-62.54 -65,-62.6 -65,-62.66 -65,-62.72 -65,-62.78 -65,-62.84 -65,-62.9 -65,-62.9 -64.97,-62.9 -64.94,-62.9 -64.91,-62.9 -64.88,-62.9 -64.85,-62.9 -64.82,-62.9 -64.79,-62.9 -64.76,-62.9 -64.73,-62.9 -64.7))"], "date_created": "Thu, 16 Dec 2021 00:00:00 GMT", "description": "Pictures of Trematomus scotti specimens displaying visible X-cell infections. Images for the left and right sides of the fish are provided for each specimen, along with an image for each side showing the grid-point categorization as 1) healthy skin, 2) moderately affected skin, and 3) severely affected skin, and associated ImageJ ROI and count files.", "east": -62.3, "geometry": ["POINT(-62.6 -64.85)"], "keywords": "Andvord Bay; Antarctica; Fish", "locations": "Antarctica; Andvord Bay", "north": -64.7, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Lauridsen, Henrik; Postlethwait, John; Desvignes, Thomas", "project_titles": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish ", "projects": [{"proj_uid": "p0010221", "repository": "USAP-DC", "title": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Fish pictures and skin pathology of X-cell infection in Trematomus scotti.", "uid": "601496", "west": -62.9}, {"awards": "1947040 Postlethwait, John", "bounds_geometry": ["POLYGON((-62.9 -64.7,-62.84 -64.7,-62.78 -64.7,-62.72 -64.7,-62.66 -64.7,-62.6 -64.7,-62.54 -64.7,-62.48 -64.7,-62.42 -64.7,-62.36 -64.7,-62.3 -64.7,-62.3 -64.73,-62.3 -64.76,-62.3 -64.79,-62.3 -64.82,-62.3 -64.85,-62.3 -64.88,-62.3 -64.91,-62.3 -64.94,-62.3 -64.97,-62.3 -65,-62.36 -65,-62.42 -65,-62.48 -65,-62.54 -65,-62.6 -65,-62.66 -65,-62.72 -65,-62.78 -65,-62.84 -65,-62.9 -65,-62.9 -64.97,-62.9 -64.94,-62.9 -64.91,-62.9 -64.88,-62.9 -64.85,-62.9 -64.82,-62.9 -64.79,-62.9 -64.76,-62.9 -64.73,-62.9 -64.7))"], "date_created": "Thu, 16 Dec 2021 00:00:00 GMT", "description": "Excel file containing specimen field identifications, capture location, presence or absence of visible tumors, weight (g), standard length (cm), sex, and the percentage of skin visually affected by X-cells, moderately affected, and severely affected by X-cells.", "east": -62.3, "geometry": ["POINT(-62.6 -64.85)"], "keywords": "Andvord Bay; Antarctica; Fish", "locations": "Antarctica; Andvord Bay", "north": -64.7, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Postlethwait, John; Desvignes, Thomas; Lauridsen, Henrik; Le Francois, Nathalie", "project_titles": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish ", "projects": [{"proj_uid": "p0010221", "repository": "USAP-DC", "title": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Morphological and pathological data of Trematomus scotti specimens captured on May 30th, 2018 in Andvord Bay.", "uid": "601494", "west": -62.9}, {"awards": "1745057 Walker, Sally", "bounds_geometry": ["POLYGON((163.4 -77.3,163.46 -77.3,163.52 -77.3,163.58 -77.3,163.64 -77.3,163.7 -77.3,163.76 -77.3,163.82 -77.3,163.88 -77.3,163.94 -77.3,164 -77.3,164 -77.33,164 -77.36,164 -77.39,164 -77.42,164 -77.45,164 -77.48,164 -77.51,164 -77.54,164 -77.57,164 -77.6,163.94 -77.6,163.88 -77.6,163.82 -77.6,163.76 -77.6,163.7 -77.6,163.64 -77.6,163.58 -77.6,163.52 -77.6,163.46 -77.6,163.4 -77.6,163.4 -77.57,163.4 -77.54,163.4 -77.51,163.4 -77.48,163.4 -77.45,163.4 -77.42,163.4 -77.39,163.4 -77.36,163.4 -77.33,163.4 -77.3))"], "date_created": "Wed, 11 Aug 2021 00:00:00 GMT", "description": "This dataset contains yearly growth increments (mm) of live-collected Adamussium colbecki from Explorers Cove and Bay of Sails in Western McMurdo Sound. Annual growth is delineated by annuli (external growth bands; see Cronin et al., 2020). Straight length measurements were taken with digital calipers from umbo to ventral margin along the central axis. The purpose of data collection was to compare growth and lifespan of A. colbecki under annual and multiannual sea ice. ", "east": 164.0, "geometry": ["POINT(163.7 -77.45)"], "keywords": "Adamussium Colbecki; Antarctica; Growth; McMurdo Sound; Shell Fish", "locations": "McMurdo Sound; Antarctica", "north": -77.3, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Cronin, Kelly; Walker, Sally", "project_titles": "Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past", "projects": [{"proj_uid": "p0010238", "repository": "USAP-DC", "title": "Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.6, "title": "Annual growth of Adamussium colbecki from Explorers Cove and Bay of Sails", "uid": "601468", "west": 163.4}, {"awards": "1644196 Cziko, Paul", "bounds_geometry": ["POLYGON((162.647931 -77.000624,163.049652 -77.000624,163.451373 -77.000624,163.853094 -77.000624,164.254815 -77.000624,164.656536 -77.000624,165.058257 -77.000624,165.459978 -77.000624,165.861699 -77.000624,166.26342 -77.000624,166.665141 -77.000624,166.665141 -77.0856883,166.665141 -77.1707526,166.665141 -77.2558169,166.665141 -77.3408812,166.665141 -77.4259455,166.665141 -77.5110098,166.665141 -77.5960741,166.665141 -77.6811384,166.665141 -77.7662027,166.665141 -77.851267,166.26342 -77.851267,165.861699 -77.851267,165.459978 -77.851267,165.058257 -77.851267,164.656536 -77.851267,164.254815 -77.851267,163.853094 -77.851267,163.451373 -77.851267,163.049652 -77.851267,162.647931 -77.851267,162.647931 -77.7662027,162.647931 -77.6811384,162.647931 -77.5960741,162.647931 -77.5110098,162.647931 -77.4259455,162.647931 -77.3408812,162.647931 -77.2558169,162.647931 -77.1707526,162.647931 -77.0856883,162.647931 -77.000624))"], "date_created": "Sun, 03 Jan 2021 00:00:00 GMT", "description": "Nearshore benthic seawater temperature (plus pressure and salinity for some sites) in McMurdo Sound, Antarctica for 2017-2019. Data includes those from standalone temperature (sometimes pressure) for several sites around McMurdo Sound as well as data from the cabled McMurdo Oceanographic Observatory moored conductivity-temperature-depth (CTD) sensor at the McMurdo Station seawater intake jetty. Data are from high precision SeaBird sensors (SBE56, SBE39, SBE19Plus and SBE37), with sample intervals from 90 sec to 15 min, depending on site. Sampled sites include Explorer\u0027s Cove at New Harbor, Cape Evans, Granite Harbor, and the McMurdo Station jetty. All sensors were deployed near or on the benthos at 20-25 m deep, in typical nearshore benthic fish and invertebrate habitat.", "east": 166.665141, "geometry": ["POINT(164.656536 -77.4259455)"], "keywords": "Antarctica; Benthic Ecology; CTD; Depth; McMurdo Sound; Oceanography; Oceans; Physical Oceanography; Pressure; Salinity; Seawater Measurements; Seawater Temperature; Supercooling; Tides", "locations": "Antarctica; McMurdo Sound", "north": -77.000624, "nsf_funding_programs": "Antarctic Instrumentation and Support", "persons": "Cziko, Paul", "project_titles": "Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0010147", "repository": "USAP-DC", "title": "Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.851267, "title": "High-resolution nearshore benthic seawater temperature from around McMurdo Sound, Antarctica (2017-2019)", "uid": "601420", "west": 162.647931}, {"awards": "1644196 Cziko, Paul", "bounds_geometry": ["POINT(166.6645 -77.851)"], "date_created": "Tue, 29 Dec 2020 00:00:00 GMT", "description": "Long-term images taken by the camera from the McMurdo Oceanographic Observatory mooring in McMurdo Sound, Antarctica during its 2-year deployment (2017-2019). The mooring was situated at the seawater terminus of the McMurdo Station seawater intake jetty at 21 m deep, typically under thick sea ice cover. The automated 360\u00b0 pan-tilt-zoom (ptz) camera, inside of an air-filled self-cleaning dome, was programmed to move to 42 ptz \"waypoints\" every hour and take a still 1920x1080 JPG image for archiving. Lights, oriented in one direction only, illuminated a rock/rubble slope for much of each winter, when there was no natural illumination. The camera was situated on a concrete block, which elevated the camera about 1m off of the seabed. Motile and sessile benthic biota, including notothenioid fishes, anemones, pycnogonids, asteroids, soft-corals, sponges, and nudibranchs are commonly seen in the images. Some ptz waypoints survey the water column and underside of the sea ice, capturing also the presence of larval/juvenile fishes and other plankton/nekton in the water column. Maximum intervals between subsequent images from the same ptz waypoint were about 1 hour, though many waypoints were captured at somewhat higher frequency. Interval images, taken at 5-min intervals irrespective of camera orientation, were also captured. Images are occasionally obscured/impacted by the camera dome\u0027s wiper, darkness, low visibility, minor fouling of the camera dome, and out-of-focus lens elements. ", "east": 166.6645, "geometry": ["POINT(166.6645 -77.851)"], "keywords": "Antarctica; Benthic Ecology; Benthic Invertebrates; Biota; McMurdo Sound; Notothenioid; Notothenioid Fishes; Photo/video; Photo/Video; Rocky Reef Community; Soft-Bottom Community; Timelaps Images", "locations": "McMurdo Sound; Antarctica", "north": -77.851, "nsf_funding_programs": "Antarctic Instrumentation and Support", "persons": "Cziko, Paul", "project_titles": "Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0010147", "repository": "USAP-DC", "title": "Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.851, "title": "Long-term underwater images from around a single mooring site in McMurdo Sound, Antarctica (2017-2019)", "uid": "601417", "west": 166.6645}, {"awards": "1644196 Cziko, Paul", "bounds_geometry": ["POINT(166.6645 -77.851)"], "date_created": "Tue, 29 Dec 2020 00:00:00 GMT", "description": "Broadband underwater acoustic recordings from the McMurdo Oceanographic Observatory mooring near the seaward terminus of the McMurdo Station seawater intake jetty. An omnidirectional Ocean Sonics icListen hydrophone (SB2-ETH, SN 1713) recorded continuously at 512 kilosamples/second (256 kHz Nyquist frequency; 24 bit) for 2 years. The hydrophone was mounted vertically on a steel strut (insulated with rubber sheet) at about 70 cm above the mud/gravel seabed at 21m deep, with the sloping 45\u00b0 rubble face of the jetty just behind the hydrophone. Temporal coverage is \u003e90%, with gaps and truncated files arising due to network and power outages and software bugs. The audio recordings are 10 minute WAV files, compressed using the lossless FLAC code (Free Lossless Audio Codec, xiph.org; about 33MB of data/minute compressed; 100MB/min uncompressed). The hydrophone was under thick (to 3 m) sea ice cover for the majority of the dataset. The majority of the recorded biological sounds were produced by Weddell seals. Orca were present intermittently (~10 days total) in January-March in both summers. Known non-biological sounds include irregular low-intensity, broad-spectrum clicks and cracks from the sea ice cover, occasional wind noise, a 1.5-s gurgle with components to 200kHz every 90s from the CTD\u2019s pump, a broad-spectrum mechanical sound for 3 min every 4 h from the observatory\u0027s underwater camera cleaning system, low-intensity whines (about 18, 58, 83, and 130 kHz, though variable over the dataset) thought to be from the station seawater pumps (\u003e100 m away within the jetty\u2019s well casing), and intermittent noises from tracked-vehicles and helicopters (September\u2013February), SCUBA divers (October\u2013December), and ships (January). Given hosting limitations, only every 6th file (roughly 10min/hour) has been archived here. Additional data can be obtained by contacting the primary author of the dataset, who will maintain it for as long as possible. Audio spectrogram images (PNGs) at three frequency ranges (three stacked panels per image, upper limits of 2.5, 25, and 256 kHz) from the entire dataset (all data, not subsampled) are also archived separately.", "east": 166.6645, "geometry": ["POINT(166.6645 -77.851)"], "keywords": "Antarctica; Bioacoustics; Biota; Hydroacoustics; Killer Whales; Leptonychotes Weddellii; McMurdo Sound; Oceans; Orcinus Orca; Sea Ice; Weddell Seal; Whales", "locations": "Antarctica; McMurdo Sound", "north": -77.851, "nsf_funding_programs": "Antarctic Instrumentation and Support", "persons": "Cziko, Paul", "project_titles": "Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0010147", "repository": "USAP-DC", "title": "Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.851, "title": "Long-term broadband underwater acoustic recordings from McMurdo Sound, Antarctica (2017-2019)", "uid": "601416", "west": 166.6645}, {"awards": "1341663 O\u0027Brien, Kristin; 1341602 Crockett, Elizabeth", "bounds_geometry": null, "date_created": "Thu, 24 Dec 2020 00:00:00 GMT", "description": "Antarctic notothenioids are noted for extreme stenothermy, yet underpinnings of their thermal limits are not fully understood. We hypothesized that properties of ventricular membranes could explain previously observed differences among notothenioids in temperature onset of cardiac arrhythmias and persistent asystole. Microsomes were prepared using ventricles from six species of notothenioids, including four species from the hemoglobin-less (Hb-) family Channichthyidae (icefishes), which also differentially express cardiac myoglobin (Mb), and two species from the (Hb+) Nototheniidae. We determined membrane fluidity and structural integrity by quantifying fluorescence depolarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) and leakage of 5(6)-carboxyfluorescein, respectively, over a temperature range from ambient (0 \u00b0C) to 20 \u00b0C. Compositions of membrane phospholipids and cholesterol contents were also quantified. Membranes from all four species of icefishes exhibited greater fluidity than membranes from the red-blooded species N. coriiceps. Thermal sensitivity of fluidity did not vary among species. The greatest thermal sensitivity to leakage occurred between 0 and 5 \u00b0C for all species, while membranes from the icefish, Chaenocephalus aceratus (Hb-/Mb-) displayed leakage that was nearly 1.5-fold greater than leakage in N. coriiceps (Hb+/Mb+). Contents of phosphatidylethanolamine (PE) were approximately 1.5-fold greater in icefishes than in red-blooded fishes, and phospholipids had a higher degree of unsaturation in icefishes than in Hb + notothenioids. Cholesterol contents were lowest in Champsocephalus gunnari (Hb-/Mb-) and highest in the two Hb+/Mb + species, G. gibberifrons and N. coriiceps. Our results reveal marked differences in membrane properties and indicate a breach in membrane fluidity and structural integrity at a lower temperature in icefishes than in red-blooded notothenioids. ", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula", "locations": "Antarctic Peninsula; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "O\u0027Brien, Kristin; Evans, Elizabeth; Farnoud, Amir; Crockett, Elizabeth", "project_titles": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0010084", "repository": "USAP-DC", "title": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Thermal sensitivity of membrane fluidity and integrity in hearts of Antarctic fishes that vary in expression of hemoglobin and myoglobin", "uid": "601414", "west": null}, {"awards": "1341602 Crockett, Elizabeth; 1341663 O\u0027Brien, Kristin", "bounds_geometry": null, "date_created": "Fri, 18 Dec 2020 00:00:00 GMT", "description": "In fishes, the spleen can function as an important reservoir for red blood cells (RBCs), which, following splenic contraction, may be released into the circulation to increase haematocrit during energy\u2010demanding activities. This trait is particularly pronounced in red\u2010blooded Antarctic fishes in which the spleen can sequester a large proportion of RBCs during rest, thereby reducing blood viscosity, which may serve as an adaptation to life in cold environments. In one species, Pagothenia borchgrevinki, it has previously been shown that splenic contraction primarily depends on cholinergic stimulation. The aim of the present study was to investigate the regulation of splenic contraction in five other Antarctic fish species, three red\u2010blooded notothenioids (Dissostichus mawsoni Norman, 1937, Gobionotothen gibberifrons L\u00f6nnberg, 1905, Notothenia coriiceps Richardson 1844) and two white\u2010blooded \u201cicefish\u201d (Chaenocephalus aceratus L\u00f6nnberg, 1906 and Champsocephalus gunnari L\u00f6nnberg, 1905), which lack haemoglobin and RBCs, but nevertheless possess a large spleen. In all species, splenic strips constricted in response to both cholinergic (carbachol) and adrenergic (adrenaline) agonists. Surprisingly, in the two species of icefish, the spleen responded with similar sensitivity to red\u2010blooded species, despite contraction being of little obvious benefit for releasing RBCs into the circulation. Although the icefish lineage lost functional haemoglobin before diversifying over the past 7.8\u20134.8 millions of years, they retain the capacity to contract the spleen, likely as a vestige inherited from their red\u2010blooded ancestors.", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula", "locations": "Antarctica; Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "O\u0027Brien, Kristin; Joyce, William; Axelsson, Michael", "project_titles": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0010084", "repository": "USAP-DC", "title": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Measurements of splenic contraction in Antarctic fishes", "uid": "601407", "west": null}, {"awards": "1341663 O\u0027Brien, Kristin; 1341602 Crockett, Elizabeth", "bounds_geometry": null, "date_created": "Fri, 18 Dec 2020 00:00:00 GMT", "description": "We tested the hypothesis that blackfin icefish (Chaenocephalus aceratus), one of the six species in the family Channichthyidae (the icefishes) that do not express haemoglobin and myoglobin, lack regulatory cardiovascular flexibility during acute warming and activity. The experimental protocols were designed to optimize the surgical protocol and minimize stress. First, minimally invasive heart rate (fH) measurements were made during a thermal ramp until cardiac failure in C. aceratus and compared with those from the closely related red-blooded black rockcod (Notothenia coriiceps). Then, integrative cardiovascular adjustments were more extensively studied using flow probes and intravascular catheters in C. aceratus during acute warming (from 0 to 8\u00b0C) at rest and after imposed activity. Chaenocephalus aceratus had a lower routine fH than N. coriiceps (9 beats min-1 versus 14 beats min-1) and a lower peak fH during acute warming (38 beats min-1 versus 55 beats min-1) with a similar cardiac breakpoint temperature (13 and 14\u00b0C, respectively). Routine cardiac output (Q\u0307) for C. aceratus at \u223c0\u00b0C was much lower (26.6 ml min-1 kg-1) than previously reported, probably because fish in the present study had a low fH (12 beats min-1) indicative of a high routine vagal tone and low stress. Chaenocephalus aceratus increased oxygen consumption during acute warming and with activity. Correspondingly, Q\u0307 increased considerably (maximally 86.3 ml min-1 kg-1), as did vascular conductance (5-fold). Thus, unlike earlier suggestions, these data provide convincing evidence that icefish can mount a well-developed cardiovascular regulation of heart rate, cardiac output and vascular conductance, and this regulatory capacity provides flexibility during acute warming. ", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Fish", "locations": "Antarctica; Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Joyce, William; Farrell, Anthony; Axelsson, Michael; Egginton, Stuart; Crockett, Elizabeth; O\u0027Brien, Kristin", "project_titles": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0010084", "repository": "USAP-DC", "title": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Effects of acute warming on cardiovascular performance of Antarctic fishes", "uid": "601410", "west": null}, {"awards": "1341602 Crockett, Elizabeth; 1341663 O\u0027Brien, Kristin", "bounds_geometry": null, "date_created": "Fri, 18 Dec 2020 00:00:00 GMT", "description": "Icefishes characteristically lack the oxygen-binding protein haemoglobin and therefore are especially reliant on cardiovascular regulation to augment oxygen transport when oxygen demand increases, such as during activity and warming. Using both in vivo and in vitro experiments, we evaluated the roles for adrenaline and adenosine, two well-established cardio- and vasoactive molecules, in regulating the cardiovascular system of the blackfin icefish, Chaenocephalus aceratus. Despite increasing cardiac contractility (increasing twitch force and contraction kinetics in isometric myocardial strip preparations) and accelerating heart rate (\u0192H), adrenaline (5 nmol kg-1 bolus intra-arterial injection) did not significantly increase cardiac output (Q\u0307) in vivo because it elicited a large decrease in vascular conductance (Gsys). In contrast, and despite preliminary data suggesting a direct negative inotropic effect of adenosine on isolated atria and little effect on isolated ventricle strips, adenosine (500 nmol kg-1) generated a large increase in Q\u0307 by increasing Gsys, a change reminiscent of that previously reported during both acute warming and invoked activity. Our data thus illustrate how Q\u0307 in C. aceratus may be much more dependent on peripheral control of vasomotor tone than direct regulation of the heart. ", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula", "locations": "Antarctic Peninsula; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Joyce, Michael; Axelsson, Michael; Farrell, Anthony; Egginton, Stuart; O\u0027Brien, Kristin", "project_titles": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0010084", "repository": "USAP-DC", "title": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Adrenergic and adenosinergic regulation of the cardiovascular system in the Antarctic icefish Chaenocephalus aceratus", "uid": "601409", "west": null}, {"awards": "1341663 O\u0027Brien, Kristin", "bounds_geometry": null, "date_created": "Fri, 18 Dec 2020 00:00:00 GMT", "description": "The Southern Ocean has experienced stable, cold temperatures for over 10 million years, yet particular regions are currently undergoing rapid warming. To investigate the impacts of warming on cardiovascular oxygen transport, we compared the cardio-respiratory performance in an Antarctic notothenioid (Notothenia coriiceps) that was maintained at 0 or 5\u00b0C for 6.0-9.5 weeks. When compared at the fish\u0027s respective acclimation temperature, the oxygen consumption rate and cardiac output were significantly higher in 5\u00b0C-acclimated than 0\u00b0C-acclimated fish. The 2.7-fold elevation in cardiac output in 5\u00b0C-acclimated fish (17.4 vs. 6.5 ml min-1 kg-1) was predominantly due to a doubling of stroke volume, likely in response to increased cardiac preload, as measured by higher central venous pressure (0.15 vs. 0.08 kPa); tachycardia was minor (29.5 vs. 25.2 beats min-1). When fish were acutely warmed, oxygen consumption rate increased by similar amounts in 0\u00b0C- and 5\u00b0C-acclimated fish at equivalent test temperatures. In both acclimation groups, the increases in oxygen consumption rate during acute heating were supported by increased cardiac output achieved by elevating heart rate, while stroke volume changed relatively little. Cardiac output was similar between both acclimation groups until 12\u00b0C when cardiac output became significantly higher in 5\u00b0C-acclimated fish, driven largely by their higher stroke volume. Although cardiac arrhythmias developed at a similar temperature (~14.5\u00b0C) in both acclimation groups, the hearts of 5\u00b0C-acclimated fish continued to pump until significantly higher temperatures (CTmax for cardiac function 17.7 vs. 15.0\u00b0C for 0\u00b0C-acclimated fish). These results demonstrate that N. coriiceps is capable of increasing routine cardiac output during both acute and chronic warming, although the mechanisms are different (heart rate-dependent versus primarily stroke volume-dependent regulation, respectively). Cardiac performance was enhanced at higher temperatures following 5\u00b0C acclimation, suggesting cardiovascular function may not constrain the capacity of N. coriiceps to withstand a warming climate.", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula", "locations": "Antarctic Peninsula; Antarctica", "north": null, "nsf_funding_programs": null, "persons": "Joyce, William; Egginton, Stuart; Farrell, Anthony; Axelsson, Michael; Crockett, Elizabeth; O\u0027Brien, Kristin", "project_titles": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0010084", "repository": "USAP-DC", "title": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Acclimation of cardiovascular function in Notothenia coriiceps", "uid": "601408", "west": null}, {"awards": "1341663 O\u0027Brien, Kristin; 1341602 Crockett, Elizabeth", "bounds_geometry": null, "date_created": "Fri, 18 Dec 2020 00:00:00 GMT", "description": "The ability of Antarctic notothenioid fishes to mount a robust molecular response to hypoxia is largely unknown. The transcription factor, hypoxia-inducible factor-1 (HIF-1), a heterodimer of HIF-1\u03b1 and HIF-1\u03b2 subunits, is the master regulator of oxygen homeostasis in most metazoans. We sought to determine if, in the hearts of Antarctic notothenioids, HIF-1 is activated and functional in response to either an acute heat stress or hypoxia. The red-blooded Notothenia coriiceps and the hemoglobinless icefish, Chaenocephalus aceratus, were exposed to their critical thermal maximum (CTMAX) or hypoxia (5.0 \u00b1 0.3 mg of O2 L-1) for 2 h. Additionally, N. coriiceps was exposed to 2.3 \u00b1 0.3 mg of O2 L-1 for 12 h, and red-blooded Gobionotothen gibberifrons was exposed to both levels of hypoxia. Levels of HIF-1\u03b1 were quantified in nuclei isolated from heart ventricles using western blotting. Transcript levels of genes involved in anaerobic metabolism, and known to be regulated by HIF-1, were quantified by real-time PCR, and lactate levels were measured in heart ventricles. Protein levels of HIF-1\u03b1 increase in nuclei of hearts of N. coriiceps and C. aceratus in response to exposure to CTMAX and in hearts of N. coriiceps exposed to severe hypoxia, yet mRNA levels of anaerobic metabolic genes do not increase in any species, nor do lactate levels increase, suggesting that HIF-1 does not stimulate metabolic remodeling in hearts of notothenioids under these conditions. Together, these data suggest that Antarctic notothenioids may be vulnerable to hypoxic events, which are likely to increase with climate warming. ", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula", "locations": "Antarctic Peninsula; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "O\u0027Brien, Kristin", "project_titles": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0010084", "repository": "USAP-DC", "title": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Hypoxia response of hearts of Antarctic fishes", "uid": "601406", "west": null}, {"awards": "1341663 O\u0027Brien, Kristin", "bounds_geometry": null, "date_created": "Fri, 18 Dec 2020 00:00:00 GMT", "description": "Studies in temperate fishes provide evidence that cardiac mitochondrial function and the capacity to fuel cardiac work contribute to thermal tolerance. Here, we tested the hypothesis that decreased cardiac aerobic metabolic capacity contributes to the lower thermal tolerance of the haemoglobinless Antarctic icefish, Chaenocephalus aceratus, compared with that of the red-blooded Antarctic species, Notothenia coriiceps. Maximal activities of citrate synthase (CS) and lactate dehydrogenase (LDH), respiration rates of isolated mitochondria, adenylate levels and changes in mitochondrial protein expression were quantified from hearts of animals held at ambient temperature or exposed to their critical thermal maximum (CTmax). Compared with C. aceratus, activity of CS, ATP concentration and energy charge were higher in hearts of N. coriiceps at ambient temperature and CTmax While state 3 mitochondrial respiration rates were not impaired by exposure to CTmax in either species, state 4 rates, indicative of proton leakage, increased following exposure to CTmax in C. aceratus but not N. coriiceps The interactive effect of temperature and species resulted in an increase in antioxidants and aerobic metabolic enzymes in N. coriiceps but not in C. aceratus Together, our results support the hypothesis that the lower aerobic metabolic capacity of C. aceratus hearts contributes to its low thermal tolerance. ", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula", "locations": "Antarctic Peninsula; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "O\u0027Brien, Kristin", "project_titles": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0010084", "repository": "USAP-DC", "title": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Cardiac metabolism in Antarctic fishes in response to an acute increase in temperature", "uid": "601405", "west": null}, {"awards": "0231006 DeVries, Arthur; 1142158 Cheng, Chi-Hing", "bounds_geometry": ["POLYGON((163 -76.5,163.5 -76.5,164 -76.5,164.5 -76.5,165 -76.5,165.5 -76.5,166 -76.5,166.5 -76.5,167 -76.5,167.5 -76.5,168 -76.5,168 -76.63,168 -76.76,168 -76.89,168 -77.02,168 -77.15,168 -77.28,168 -77.41,168 -77.54,168 -77.67,168 -77.8,167.5 -77.8,167 -77.8,166.5 -77.8,166 -77.8,165.5 -77.8,165 -77.8,164.5 -77.8,164 -77.8,163.5 -77.8,163 -77.8,163 -77.67,163 -77.54,163 -77.41,163 -77.28,163 -77.15,163 -77.02,163 -76.89,163 -76.76,163 -76.63,163 -76.5))"], "date_created": "Wed, 08 Apr 2020 00:00:00 GMT", "description": "Benthic seawater temperature (within 10cm of the bottom) from near the McMurdo Station, Ross Island, Antarctica saltwater intake jetty. Data collected at two nearby locations: On muddy bottom at base of artificial rock jetty (~25m depth), and ~50m west of the Jetty in sponge/spicule mat habitat (~40m depth).", "east": 168.0, "geometry": ["POINT(165.5 -77.15)"], "keywords": "Antarctica; Benthic; McMurdo Sound; Mcmurdo Station; Oceans; Physical Oceanography; Temperature Probe; Water Temperature", "locations": "Antarctica; McMurdo Sound", "north": -76.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Cheng, Chi-Hing; Cziko, Paul; Devries, Arthur", "project_titles": "Antarctic Notothenioid Fish Freeze Avoidance and Genome-wide Evolution for Life in the Cold", "projects": [{"proj_uid": "p0010091", "repository": "USAP-DC", "title": "Antarctic Notothenioid Fish Freeze Avoidance and Genome-wide Evolution for Life in the Cold"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.8, "title": "High-resolution benthic seawater temperature record 1999-2012 (25-40m depth) from near intake jetty at McMurdo Station, Antarctica", "uid": "601275", "west": 163.0}, {"awards": "1443346 Stone, John", "bounds_geometry": ["POLYGON((-174 -84.5,-172.4 -84.5,-170.8 -84.5,-169.2 -84.5,-167.6 -84.5,-166 -84.5,-164.4 -84.5,-162.8 -84.5,-161.2 -84.5,-159.6 -84.5,-158 -84.5,-158 -84.63,-158 -84.76,-158 -84.89,-158 -85.02,-158 -85.15,-158 -85.28,-158 -85.41,-158 -85.54,-158 -85.67,-158 -85.8,-159.6 -85.8,-161.2 -85.8,-162.8 -85.8,-164.4 -85.8,-166 -85.8,-167.6 -85.8,-169.2 -85.8,-170.8 -85.8,-172.4 -85.8,-174 -85.8,-174 -85.67,-174 -85.54,-174 -85.41,-174 -85.28,-174 -85.15,-174 -85.02,-174 -84.89,-174 -84.76,-174 -84.63,-174 -84.5))"], "date_created": "Thu, 21 Nov 2019 00:00:00 GMT", "description": "This data set contains measurements of cosmic-ray-produced Be-10 in quartz from glacial erratics and bedrock at sites along and adjacent to Liv Glacier and Amundsen Glacier in the southern Transantarctic Mountains. Samples were collected during the 2016-17 and 2017-18 field seasons working from remote camps along the coast. Locations were determined by hand-held GPS. Elevations are based on barometric altimetry corrected for daily drift and referenced to precise (geodetic) GPS benchmarks established over a range of altitudes at each site. Horizon geometry and the resulting topographic shielding of the cosmic ray flux was determined from vertically-oriented full-sky (fisheye) photographs at each sample location. Samples were processed at the University of Washington Cosmogenic Nuclide Laboratory using established procedures for mineral separation, dissolution, beryllium extraction and purification, described at http://depts.washington.edu/cosmolab/chem.shtml. Beryllium isotope ratios were measured at the Lawrence Livermore Center for Accelerator Mass Spectrometry (LLNL-CAMS) relative to the KNSTD-Be-01-5-4 standard, assuming a standard Be-10/Be-9 ratio of 2.851E-12 (07KNSTD normalization). Data are reported as input for the online CRONUS cosmogenic nuclide calculator (V3, current at the time of submission in November 2019). Exposure ages can be obtained by entering the data into the CRONUS calculator, at: http://hess.ess.washington.edu/math/v3/v3_age_in.html .\r\nData for each sample consists of two lines of input parameters, as follows:\t\t\t\t\t\t\t\t\t\r\n{Sample_name, Latitude (DD), Longitude (DD), Altitude (m asl), Scaling_function, Thickness (cm), Density (g/cm^3), Horizon_correction, Erosion_rate (cm/yr), Year_sampled}\r\n{Sample_name, Nuclide (in this case Be-10), Target_mineral (quartz), Be-10_concentration (atom/g), Error_Be-10_concentration (atom/g), Normalization}\r\nFurther information about the V3 input format is given at:\r\nhttp://hess.ess.washington.edu/math/docs/v3/v3_input_explained.html", "east": -158.0, "geometry": ["POINT(-166 -85.15)"], "keywords": "Antarctica; Be-10; Beryllium-10; Cosmogenic; Cosmogenic Dating; Cosmogenic Radionuclides; Deglaciation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Liv Glacier; Rocks; Ross Ice Sheet; Surface Exposure Dates; Transantarctic Mountains", "locations": "Liv Glacier; Transantarctic Mountains; Antarctica; Ross Ice Sheet", "north": -84.5, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Stone, John", "project_titles": "Collaborative Research: High-resolution Reconstruction of Holocene Deglaciation in the Southern Ross Embayment", "projects": [{"proj_uid": "p0010053", "repository": "USAP-DC", "title": "Collaborative Research: High-resolution Reconstruction of Holocene Deglaciation in the Southern Ross Embayment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.8, "title": "Cosmogenic nuclide data from glacial deposits along the Liv Glacier coast", "uid": "601226", "west": -174.0}, {"awards": "1141877 Aronson, Richard", "bounds_geometry": null, "date_created": "Fri, 27 Jul 2018 00:00:00 GMT", "description": "This data set includes measurements of the percent calcium, thickness, and microhardness of the exoskeleton in Paralomis birsteini, Cancer borealis, and Callinectes sapidus. Measurements were taken in the carapace, major chela, and minor chela of each crab. Paralomis birsteini were trapped at ~1350 m depth off Marguerite Bay, western Antarctic Peninsula in 2015. Cancer borealis were trapped in the Gulf of Maine, USA at ~50 m depth, and Callinectes sapidus were trapped in Florida, USA at depths shallower than 30 m. ", "east": null, "geometry": null, "keywords": "Antarctica; Biota; Callinectes; Exoskeleton; Fish; Glaciers/ice Sheet; Glaciers/Ice Sheet; Paralomis", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Steffel, Brittan", "project_titles": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos", "projects": [{"proj_uid": "p0000303", "repository": "USAP-DC", "title": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Material properties of the exoskeleton of Paralomis birsteini", "uid": "601109", "west": null}, {"awards": "1246317 Mittal, Rajat", "bounds_geometry": null, "date_created": "Wed, 27 Sep 2017 00:00:00 GMT", "description": "Spongiobranchaea australis is a gymnosome pteropod that is abundant in the Southern Ocean. Videos of specimens of S. Australis collected near Palmer Station in April 2014, were used to develop computational fluid dynamics models and simulations of swimming hydrodynamics conducted. The deposited movie shows the computed vortex structures for a swimming S. Australis.", "east": null, "geometry": null, "keywords": "Biota; Fish; Southern Ocean", "locations": "Southern Ocean", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Mittal, Rajat", "project_titles": "Collaborative Research: Pteropod Swimming Behavior as a Bio Assay for Ocean Acidification", "projects": [{"proj_uid": "p0000139", "repository": "USAP-DC", "title": "Collaborative Research: Pteropod Swimming Behavior as a Bio Assay for Ocean Acidification"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Hydrodynamics of Spongiobranchaea australis", "uid": "601058", "west": null}, {"awards": "1142122 Miller, Nathan", "bounds_geometry": ["POLYGON((166.5 -77.5,166.55 -77.5,166.6 -77.5,166.65 -77.5,166.7 -77.5,166.75 -77.5,166.8 -77.5,166.85 -77.5,166.9 -77.5,166.95 -77.5,167 -77.5,167 -77.55,167 -77.6,167 -77.65,167 -77.7,167 -77.75,167 -77.8,167 -77.85,167 -77.9,167 -77.95,167 -78,166.95 -78,166.9 -78,166.85 -78,166.8 -78,166.75 -78,166.7 -78,166.65 -78,166.6 -78,166.55 -78,166.5 -78,166.5 -77.95,166.5 -77.9,166.5 -77.85,166.5 -77.8,166.5 -77.75,166.5 -77.7,166.5 -77.65,166.5 -77.6,166.5 -77.55,166.5 -77.5))"], "date_created": "Mon, 07 Aug 2017 00:00:00 GMT", "description": "This dataset includes data from the publication Flynn and Todgham 2017 - Thermal windows and metabolic performance curves in a developing Antarctic fish. Included are data on embryo survival, development, and metabolic rate.", "east": 167.0, "geometry": ["POINT(166.75 -77.75)"], "keywords": "Antarctica; Biota; Fish; McMurdo Sound; Oceans; Ross Sea; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "McMurdo Sound; Ross Sea; Antarctica; Southern Ocean", "north": -77.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Todgham, Anne; Miller, Nathan", "project_titles": "RUI: Synergistic effects of Ocean Acidification and Warming on Larval Development in Antarctic Fishes", "projects": [{"proj_uid": "p0000411", "repository": "USAP-DC", "title": "RUI: Synergistic effects of Ocean Acidification and Warming on Larval Development in Antarctic Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Thermal windows and metabolic performance curves in a developing Antarctic fish", "uid": "601040", "west": 166.5}, {"awards": "1142122 Miller, Nathan", "bounds_geometry": ["POLYGON((166 -77.5,166.1 -77.5,166.2 -77.5,166.3 -77.5,166.4 -77.5,166.5 -77.5,166.6 -77.5,166.7 -77.5,166.8 -77.5,166.9 -77.5,167 -77.5,167 -77.55,167 -77.6,167 -77.65,167 -77.7,167 -77.75,167 -77.8,167 -77.85,167 -77.9,167 -77.95,167 -78,166.9 -78,166.8 -78,166.7 -78,166.6 -78,166.5 -78,166.4 -78,166.3 -78,166.2 -78,166.1 -78,166 -78,166 -77.95,166 -77.9,166 -77.85,166 -77.8,166 -77.75,166 -77.7,166 -77.65,166 -77.6,166 -77.55,166 -77.5))"], "date_created": "Mon, 07 Aug 2017 00:00:00 GMT", "description": "This dataset includes data from the publication Davis et al - Antarctic emerald rockcod have the capacity to compensate for warming when uncoupled from CO2-acidification. Included are data on cardiorespiratory physiology, survival, metabolic rate, metabolic enzyme activity, behavior (scototaxis \u0026 activity) and seawater chemistry.", "east": 167.0, "geometry": ["POINT(166.5 -77.75)"], "keywords": "Antarctica; Biota; Chemistry:fluid; Chemistry:Fluid; CTD Data; Fish; McMurdo Sound; Ocean Acidification; Oceans; Physical Oceanography; Ross Sea; Southern Ocean", "locations": "Antarctica; Ross Sea; Southern Ocean; McMurdo Sound", "north": -77.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Todgham, Anne; Miller, Nathan", "project_titles": "RUI: Synergistic effects of Ocean Acidification and Warming on Larval Development in Antarctic Fishes", "projects": [{"proj_uid": "p0000411", "repository": "USAP-DC", "title": "RUI: Synergistic effects of Ocean Acidification and Warming on Larval Development in Antarctic Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Antarctic emerald rockcod have the capacity to compensate for warming when uncoupled from CO2-acidification", "uid": "601039", "west": 166.0}, {"awards": "1142122 Miller, Nathan", "bounds_geometry": ["POLYGON((166.163 -76.665,166.2635 -76.665,166.364 -76.665,166.4645 -76.665,166.565 -76.665,166.6655 -76.665,166.766 -76.665,166.8665 -76.665,166.967 -76.665,167.0675 -76.665,167.168 -76.665,167.168 -76.782,167.168 -76.899,167.168 -77.016,167.168 -77.133,167.168 -77.25,167.168 -77.367,167.168 -77.484,167.168 -77.601,167.168 -77.718,167.168 -77.835,167.0675 -77.835,166.967 -77.835,166.8665 -77.835,166.766 -77.835,166.6655 -77.835,166.565 -77.835,166.4645 -77.835,166.364 -77.835,166.2635 -77.835,166.163 -77.835,166.163 -77.718,166.163 -77.601,166.163 -77.484,166.163 -77.367,166.163 -77.25,166.163 -77.133,166.163 -77.016,166.163 -76.899,166.163 -76.782,166.163 -76.665))"], "date_created": "Thu, 01 Jun 2017 00:00:00 GMT", "description": "This dataset includes data from the publication \"Flynn, et al. (2015) - Ocean acidification exerts negative effects under warming conditions in a developing Antarctic fish\". Included are data on embryo survival, development, metabolic rate, metabolic enzyme activity (citrate synthase), whole embryo osmolality and seawater chemistry.", "east": 167.168, "geometry": ["POINT(166.6655 -77.25)"], "keywords": "Antarctica; Biota; Chemistry:fluid; Chemistry:Fluid; CTD Data; Fish; McMurdo Sound; Ocean Acidification; Oceans; Physical Oceanography; Ross Sea; Southern Ocean", "locations": "Ross Sea; Antarctica; Southern Ocean; McMurdo Sound", "north": -76.665, "nsf_funding_programs": null, "persons": "Miller, Nathan; Todgham, Anne; Davis, Brittany; Flynn, Erin", "project_titles": "RUI: Synergistic effects of Ocean Acidification and Warming on Larval Development in Antarctic Fishes", "projects": [{"proj_uid": "p0000411", "repository": "USAP-DC", "title": "RUI: Synergistic effects of Ocean Acidification and Warming on Larval Development in Antarctic Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.835, "title": "Physiological and biochemical measurements on Antarctic dragonfish (Gymnodraco acuticeps) from McMurdo Sound", "uid": "601026", "west": 166.163}, {"awards": "1142122 Miller, Nathan", "bounds_geometry": ["POLYGON((166.163 -76.665,166.2635 -76.665,166.364 -76.665,166.4645 -76.665,166.565 -76.665,166.6655 -76.665,166.766 -76.665,166.8665 -76.665,166.967 -76.665,167.0675 -76.665,167.168 -76.665,167.168 -76.782,167.168 -76.899,167.168 -77.016,167.168 -77.133,167.168 -77.25,167.168 -77.367,167.168 -77.484,167.168 -77.601,167.168 -77.718,167.168 -77.835,167.0675 -77.835,166.967 -77.835,166.8665 -77.835,166.766 -77.835,166.6655 -77.835,166.565 -77.835,166.4645 -77.835,166.364 -77.835,166.2635 -77.835,166.163 -77.835,166.163 -77.718,166.163 -77.601,166.163 -77.484,166.163 -77.367,166.163 -77.25,166.163 -77.133,166.163 -77.016,166.163 -76.899,166.163 -76.782,166.163 -76.665))"], "date_created": "Sat, 20 May 2017 00:00:00 GMT", "description": "This dataset includes data from the publication \"Davis, et al. (2016) - Juvenile Antarctic rockcod (Trematomus bernacchii) are physiologically robust to CO2-acidified seawater\". Included are data on cardiorespiratory physiology, survival, metabolic rate, metabolic enzyme activity (citrate synthase) and seawater chemistry.", "east": 167.168, "geometry": ["POINT(166.6655 -77.25)"], "keywords": "Antarctica; Biota; Fish; McMurdo Sound; Oceans; Ross Sea; Southern Ocean", "locations": "McMurdo Sound; Southern Ocean; Antarctica; Ross Sea", "north": -76.665, "nsf_funding_programs": null, "persons": "Miller, Nathan; Todgham, Anne; Davis, Brittany; Flynn, Erin", "project_titles": "RUI: Synergistic effects of Ocean Acidification and Warming on Larval Development in Antarctic Fishes", "projects": [{"proj_uid": "p0000411", "repository": "USAP-DC", "title": "RUI: Synergistic effects of Ocean Acidification and Warming on Larval Development in Antarctic Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.835, "title": "Physiological and biochemical measurements on juvenile Antarctic rockcod (Trematomus bernacchii) from McMurdo Sound", "uid": "601025", "west": 166.163}, {"awards": "1043576 Crockett, Elizabeth", "bounds_geometry": null, "date_created": "Tue, 13 Dec 2016 00:00:00 GMT", "description": "Positioning and depth recordings were made using instruments aboard the ARSV Laurence M Gould.", "east": null, "geometry": null, "keywords": "Antarctica; Biota; Southern Ocean", "locations": "Antarctica; Southern Ocean", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Crockett, Elizabeth", "project_titles": "Collaborative research: Redox Balance in Antarctic Notothenioid fishes: Do Icefishes have an Advantage?", "projects": [{"proj_uid": "p0000320", "repository": "USAP-DC", "title": "Collaborative research: Redox Balance in Antarctic Notothenioid fishes: Do Icefishes have an Advantage?"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Electronic fishing logs LM Gould 2015", "uid": "600390", "west": null}, {"awards": "1043781 O\u0027Brien, Kristin", "bounds_geometry": null, "date_created": "Tue, 06 Dec 2016 00:00:00 GMT", "description": null, "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Fish; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Antarctic Peninsula; Antarctica; Southern Ocean", "north": null, "nsf_funding_programs": null, "persons": "O\u0027Brien, Kristin", "project_titles": "Collaborative research: Redox Balance in Antarctic Notothenioid fishes: Do Icefishes have an Advantage?", "projects": [{"proj_uid": "p0000320", "repository": "USAP-DC", "title": "Collaborative research: Redox Balance in Antarctic Notothenioid fishes: Do Icefishes have an Advantage?"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Redox Balance in Antarctic Notothenioid Fishes", "uid": "600382", "west": null}, {"awards": "1321782 Costa, Daniel", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "Identifying the basic habitat requirements of Antarctic predators is fundamental to understanding how they will respond to the human-induced challenges of commercial fisheries and climate change. This understanding can only be achieved if the underlying linkages to physical processes are related to animal movements. As part of the international Retrospective Analysis of Antarctic Tracking Data (RAATD) organized by the SCAR Expert Group of Birds and Marine Mammals, this research will collate and synthesize tracking data from crabeater seals, Lobodon carcinophagus, and Weddell seals, Leptonychotes weddelli. These data will be combined with all available data from the Southern Ocean that has been collected by researchers from Norway, United Kingdom, Germany, Australia and the USA. These data will be analyzed using a common analytical approach and synthesized into a synoptic view of these two species across the Southern Ocean. The diving and movement patterns will be examined for each species. As well, the total home range and core habitat utilization patterns for each species and region will be determined. This study will develop global habitat maps for each species based on physical and biological attributes of their \u0027hot-spots\u0027 and then overlay all the species specific maps to identify multi-species areas of ecological significance. Broader impacts include support and training for a postdoctoral scholar, the production of a publicly available database and the participation in an international data synthesis effort.\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Animal Tracking; Antarctica; Biota; Oceans; Sample/collection Description; Sample/Collection Description; Seals; Southern Ocean", "locations": "Antarctica; Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Costa, Daniel", "project_titles": "Retrospective Analysis of Antarctic Tracking data (RAATD): International Crabeater and Weddell Seal Tracking Data Sets", "projects": [{"proj_uid": "p0000346", "repository": "USAP-DC", "title": "Retrospective Analysis of Antarctic Tracking data (RAATD): International Crabeater and Weddell Seal Tracking Data Sets"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Retrospective Analysis of Antarctic Tracking data (RAATD): International Crabeater and Weddell Seal Tracking Data Sets", "uid": "600137", "west": -180.0}, {"awards": "0944220 Ponganis, Paul", "bounds_geometry": ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Emperor penguins (Aptenodytes forsteri) and leopard seals (Hydrurga leptonyx) are iconic, top predators in Antarctica. Understanding their physiological ecology is essential to the assessment of their adaptability to the threats of climate change, pollution, and overfishing. The proposed research has multipronged objectives. Prior results suggest that Emperor penguins have flexible (vs. static) aerobic dive limits (ADL) that vary with the type of dive, and that the role of heart rate in utilization of oxygen stores also varies with dive type. A series of physiological measurements are proposed with backpack electrocardiogram recorders, that will allow further delineation of patterns and interrelationships among heart rate, dive behavior, and oxygen stores. Importantly, the research will be done on free diving emperors, and not individuals confined to a dive hole, thereby providing a more genuine measure of diving physiology and behavior. A separate objective is to examine foraging behavior of leopard seals, using a backpack digital camera and time depth recorder. Leopard seal behavior and prey intake is poorly quantified, but known to be significant. Accordingly the research is somewhat exploratory but will provide important baseline data. Finally, the P.I. proposes to continue long term overflight censuses of Emperor penguin colonies in the Ross Sea. Broader impacts include collaboration with National Geographic television, graduate student training, and development of sedation techniques for leopard seals.\n", "east": -150.0, "geometry": ["POINT(-155 -73)"], "keywords": "Antarctica; Biota; Electrocardiogram; Penguin; Southern Ocean", "locations": "Antarctica; Southern Ocean", "north": -68.0, "nsf_funding_programs": null, "persons": "Ponganis, Paul", "project_titles": "The Physiological Ecology of Two Antarctic Icons: Emperor Penguins and Leopard Seals", "projects": [{"proj_uid": "p0000349", "repository": "USAP-DC", "title": "The Physiological Ecology of Two Antarctic Icons: Emperor Penguins and Leopard Seals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "The Physiological Ecology of Two Antarctic Icons: Emperor Penguins and Leopard Seals", "uid": "600113", "west": -160.0}, {"awards": "1019305 Grim, Jeffrey", "bounds_geometry": null, "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Survival of Antarctic notothenioid fishes in the context of global climate change will depend upon the impact of rising oceanic temperatures on their embryonic development, yet little is known regarding the molecular mechanisms underlying this complex suite of processes. Many notothenioids are characterized by secondary pelagicism, which enables them to exploit food sources in the water column and is supported in part by skeletal pedomorphism. Here the PI proposes to examine the hypothesis that reactive oxygen species (ROS) regulate notothenioid skeletal pedomorphism. The research objectives are : 1) To quantify and localize ROS production and identify the point(s) of origin of ROS production in embryonic Antarctic fishes that differ in skeletal phenotypes 2) To determine whether the time course of embryogenesis and the extent of osteological development in embryonic Antarctic fishes can be altered by changing the oxidative status of the animal during embryogenesis 3) To evaluate whether transgenic alteration of oxidative status can induce skeletal pedomorphism in a fish model. Broader Impacts will include teaching undergraduate lectures, recruiting undergraduate students to help with lab analyses (and possibly field work), lectures and demonstrations to high school students, and allowing secondary educators access to personal photos and videos of research animals for curriculum development.", "east": null, "geometry": null, "keywords": "Biota; Fish Logs; LMG1203; LMG1204; LMG1205; Oceans; Pot; Southern Ocean; Trawl", "locations": "Southern Ocean", "north": null, "nsf_funding_programs": null, "persons": "Grim, Jeffrey", "project_titles": "PostDoctoral Research Fellowship", "projects": [{"proj_uid": "p0000482", "repository": "USAP-DC", "title": "PostDoctoral Research Fellowship"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Impact of Rising Oceanic Temperatures on the Embryonic Development of Antarctic Notothenioid Fishes", "uid": "600119", "west": null}, {"awards": "0741301 O\u0027Brien, Kristin", "bounds_geometry": ["POLYGON((-64.45 -63.29,-64.249 -63.29,-64.048 -63.29,-63.847 -63.29,-63.646 -63.29,-63.445 -63.29,-63.244 -63.29,-63.043 -63.29,-62.842 -63.29,-62.641 -63.29,-62.44 -63.29,-62.44 -63.371,-62.44 -63.452,-62.44 -63.533,-62.44 -63.614,-62.44 -63.695,-62.44 -63.776,-62.44 -63.857,-62.44 -63.938,-62.44 -64.019,-62.44 -64.1,-62.641 -64.1,-62.842 -64.1,-63.043 -64.1,-63.244 -64.1,-63.445 -64.1,-63.646 -64.1,-63.847 -64.1,-64.048 -64.1,-64.249 -64.1,-64.45 -64.1,-64.45 -64.019,-64.45 -63.938,-64.45 -63.857,-64.45 -63.776,-64.45 -63.695,-64.45 -63.614,-64.45 -63.533,-64.45 -63.452,-64.45 -63.371,-64.45 -63.29))"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "Antarctic notothenioid fishes have evolved in the Southern Ocean for 10-14 MY under an unusual set of circumstances. Their characteristics include the complete absence of the circulating oxygen-binding protein, hemoglobin (Hb) within the Channichthyid (Icefish) family of notothenioids. Moreover, some species within the 16 members of this family have also lost the ability to express the oxygen-binding and storage protein, myoglobin (Mb) in cardiac muscle. Our previous work has determined that the loss of Hb and/or Mb is correlated with significant increases in densities of mitochondria within oxidative tissues, and extensive remodeling of these vital organelles. To date, nothing is known about how modifications in mitochondrial architecture of icefishes affect organelle function, or more importantly, how they affect organismal-level physiology. Most critical for Antarctic fishes is that mitochondrial characteristics have been linked to how well ectotherms can withstand increases in temperature. \nThis collaborative research project will address the hypothesis that the unusual mitochondrial architecture of Antarctic Channichthyids has led to changes in function that impact their ability to withstand elevations in temperature. Specifically, the research will (1) determine if the unusual mitochondrial architecture of icefishes affects function and contributes to organismal thermal sensitivity, (2) identify differences in organismal thermal tolerance between red- and white- blooded notothenioids, (3) identify molecular mechanisms regulating changes in mitochondrial structure in icefishes. The results may establish channichthyid icefishes as a sentinel taxon for signaling the impact of global warming on the Southern Ocean. Broad impacts of this project will be realized by participation of high school biology teachers in field work through cooperation with the ARMADA project at the University of Rhode Island, as well as graduate education.\n", "east": -62.44, "geometry": ["POINT(-63.445 -63.695)"], "keywords": "Biota; Oceans; Pot; Southern Ocean; Trawl", "locations": "Southern Ocean", "north": -63.29, "nsf_funding_programs": null, "persons": "O\u0027Brien, Kristin", "project_titles": "Collaborative Research: Linkages among Mitochondrial Form, Function and Thermal Tolerance of Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0000483", "repository": "USAP-DC", "title": "Collaborative Research: Linkages among Mitochondrial Form, Function and Thermal Tolerance of Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.1, "title": "Linkages among Mitochondrial Form, Function and Thermal Tolerance of Antarctic Notothenioid Fishes", "uid": "600084", "west": -64.45}, {"awards": "0944743 Buckley, Bradley", "bounds_geometry": ["POINT(166.66667 -77.83333)"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "The research will investigate a novel mechanism by which cold-adapted fishes of the Southern Ocean sense and respond to elevated temperatures. It is hypothesized that sub-lethal heat stress may induce cell cycle arrest and/or programmed cell death through apoptosis. The study will use genome-enabled technologies to examine the environmental control over gene expression in Antarctic species and will build direct mechanistic links between the expression of a specific signaling pathway gene and heat-induced changes in cells. Prior results support the hypothesis that heat stress results in cell cycle arrest and, in some cases, programmed cell death in Antarctic fishes. If so, this represents a novel, modified version of the well-conserved cellular stress response found in essentially all other species and suggests that warming ocean temperatures may have profound cellular and physiological impacts on these extremely stenothermal species. The P.I. conducts outreach activities with the Oregon Museum of Science and Industry, will be involved in developing a science curriculum for the Native American Youth and Family Center (NAYA) Early College Academy in Portland, and supports the educational and professional development of both undergraduate and graduate students at Portland State University.\n", "east": 166.66667, "geometry": ["POINT(166.66667 -77.83333)"], "keywords": "Biota; Southern Ocean", "locations": "Southern Ocean", "north": -77.83333, "nsf_funding_programs": null, "persons": "Buckley, Bradley", "project_titles": "The Cellular Stress Response in Cold-adapted Organisms: Building Novel Mechanistic Links between Heat Stress, Cell Cycle Arrest and Apoptosis in Antarctic Fishes.", "projects": [{"proj_uid": "p0000493", "repository": "USAP-DC", "title": "The Cellular Stress Response in Cold-adapted Organisms: Building Novel Mechanistic Links between Heat Stress, Cell Cycle Arrest and Apoptosis in Antarctic Fishes."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.83333, "title": "The Cellular Stress Response in Cold-adapted Organisms: Building Novel Mechanistic Links between Heat Stress, Cell Cycle Arrest and Apoptosis in Antarctic Fishes.", "uid": "600118", "west": 166.66667}, {"awards": "0838773 McClintock, James", "bounds_geometry": ["POLYGON((-79 -60,-76.4 -60,-73.8 -60,-71.2 -60,-68.6 -60,-66 -60,-63.4 -60,-60.8 -60,-58.2 -60,-55.6 -60,-53 -60,-53 -61,-53 -62,-53 -63,-53 -64,-53 -65,-53 -66,-53 -67,-53 -68,-53 -69,-53 -70,-55.6 -70,-58.2 -70,-60.8 -70,-63.4 -70,-66 -70,-68.6 -70,-71.2 -70,-73.8 -70,-76.4 -70,-79 -70,-79 -69,-79 -68,-79 -67,-79 -66,-79 -65,-79 -64,-79 -63,-79 -62,-79 -61,-79 -60))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "The near shore environments of the western Antarctic Peninsula (WAP) harbor extremely high densities of mesograzers (small invertebrate predators approximately 1-25 mm in length) such as benthic amphipods, as well as rich assemblages of macroalgae, endophytes, and macroinvertebrates. Unlike temperate and tropical shallow marine environments, where fish and sea urchins are key grazers structuring the community, mesograzers appear to be much more important in the WAP. Accordingly, the proposed research has two main objectives: (1) To further investigate the interactions between the ecologically dominant large macrophytes, filamentous epi/endophytes, and mesograzers and (2) To determine the nature of interactions between mesograzers and sessile invertebrates. Specifically, the research will examine the following hypotheses: 1: The effects of endophytes on macrophytes are often negative, and consequently macrophytes defend against endophytic infection. 2: Mesoherbivores prevent filamentous algal species, common in the intertidal, from dominating subtidal assemblages. 3: Mesograzer predation pressure on sessile benthic macroinvertebrates, primarily sponges and tunicates, is greatest in shallow habitats dominated by macrophytes, and this impacts depth distributions of macroinvertebrate species. 4: Benthic macroinvertebrates may defend against mesograzers with secondary metabolites which effect molting and/or deter feeding. Broader impacts include involvement of undergraduates, including minorities, in research; training of graduate students, and continuation of the highly successful UAB IN ANTARCTICA interactive web program (two time recipient of awards of excellence from the US Council for Advancement and Support of Education). The researchers also will share their scientific endeavors with teachers, K-12 students, and other members of the community at large while in residence in Antarctica. In addition, the investigators will request the participation of a PolarTREC teacher.", "east": -53.0, "geometry": ["POINT(-66 -65)"], "keywords": "Algae; Antarctica; Antarctic Peninsula; Biota; Oceans; Southern Ocean", "locations": "Antarctica; Southern Ocean; Antarctic Peninsula", "north": -60.0, "nsf_funding_programs": null, "persons": "McClintock, James; Amsler, Charles", "project_titles": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula; Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing", "projects": [{"proj_uid": "p0010016", "repository": "USAP-DC", "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing"}, {"proj_uid": "p0000475", "repository": "USAP-DC", "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula", "uid": "600095", "west": -79.0}, {"awards": "0838776 Baker, Bill", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "The near shore environments of the western Antarctic Peninsula (WAP) harbor extremely high densities of mesograzers (small invertebrate predators approximately 1-25 mm in length) such as benthic amphipods, as well as rich assemblages of macroalgae, endophytes, and macroinvertebrates. Unlike temperate and tropical shallow marine environments, where fish and sea urchins are key grazers structuring the community, mesograzers appear to be much more important in the WAP. Accordingly, the proposed research has two main objectives: (1) To further investigate the interactions between the ecologically dominant large macrophytes, filamentous epi/endophytes, and mesograzers and (2) To determine the nature of interactions between mesograzers and sessile invertebrates. Specifically, the research will examine the following hypotheses: 1: The effects of endophytes on macrophytes are often negative, and consequently macrophytes defend against endophytic infection. 2: Mesoherbivores prevent filamentous algal species, common in the intertidal, from dominating subtidal assemblages. 3: Mesograzer predation pressure on sessile benthic macroinvertebrates, primarily sponges and tunicates, is greatest in shallow habitats dominated by macrophytes, and this impacts depth distributions of macroinvertebrate species. 4: Benthic macroinvertebrates may defend against mesograzers with secondary metabolites which effect molting and/or deter feeding. Broader impacts include involvement of undergraduates, including minorities, in research; training of graduate students, and continuation of the highly successful UAB IN ANTARCTICA interactive web program (two time recipient of awards of excellence from the US Council for Advancement and Support of Education). The researchers also will share their scientific endeavors with teachers, K-12 students, and other members of the community at large while in residence in Antarctica. In addition, the investigators will request the participation of a PolarTREC teacher.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Algae; Antarctica; Antarctic Peninsula; Biota; Oceans; Southern Ocean", "locations": "Antarctic Peninsula; Southern Ocean; Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Baker, Bill", "project_titles": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula; Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing", "projects": [{"proj_uid": "p0000475", "repository": "USAP-DC", "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula"}, {"proj_uid": "p0010016", "repository": "USAP-DC", "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula", "uid": "600096", "west": -180.0}, {"awards": "0528728 Vernet, Maria", "bounds_geometry": ["POLYGON((-69.08 -64.8,-68.632 -64.8,-68.184 -64.8,-67.736 -64.8,-67.288 -64.8,-66.84 -64.8,-66.392 -64.8,-65.944 -64.8,-65.496 -64.8,-65.048 -64.8,-64.6 -64.8,-64.6 -65.121,-64.6 -65.442,-64.6 -65.763,-64.6 -66.084,-64.6 -66.405,-64.6 -66.726,-64.6 -67.047,-64.6 -67.368,-64.6 -67.689,-64.6 -68.01,-65.048 -68.01,-65.496 -68.01,-65.944 -68.01,-66.392 -68.01,-66.84 -68.01,-67.288 -68.01,-67.736 -68.01,-68.184 -68.01,-68.632 -68.01,-69.08 -68.01,-69.08 -67.689,-69.08 -67.368,-69.08 -67.047,-69.08 -66.726,-69.08 -66.405,-69.08 -66.084,-69.08 -65.763,-69.08 -65.442,-69.08 -65.121,-69.08 -64.8))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. This collaborative project is concerned with the synthesis and modeling of lower trophic levels.", "east": -64.6, "geometry": ["POINT(-66.84 -66.405)"], "keywords": "Bellingshausen Sea; Biota; Oceans; Phytoplankton; Southern Ocean", "locations": "Southern Ocean; Bellingshausen Sea", "north": -64.8, "nsf_funding_programs": null, "persons": "Vernet, Maria", "project_titles": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "projects": [{"proj_uid": "p0000522", "repository": "USAP-DC", "title": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -68.01, "title": "The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "uid": "600048", "west": -69.08}, {"awards": "0529087 Ross, Robin", "bounds_geometry": ["POLYGON((-71 -61,-70 -61,-69 -61,-68 -61,-67 -61,-66 -61,-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-61 -61.9,-61 -62.8,-61 -63.7,-61 -64.6,-61 -65.5,-61 -66.4,-61 -67.3,-61 -68.2,-61 -69.1,-61 -70,-62 -70,-63 -70,-64 -70,-65 -70,-66 -70,-67 -70,-68 -70,-69 -70,-70 -70,-71 -70,-71 -69.1,-71 -68.2,-71 -67.3,-71 -66.4,-71 -65.5,-71 -64.6,-71 -63.7,-71 -62.8,-71 -61.9,-71 -61))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. This collaborative project is concerned with the synthesis and modeling of lower trophic levels.", "east": -61.0, "geometry": ["POINT(-66 -65.5)"], "keywords": "Bellingshausen Sea; Biota; Oceans; Southern Ocean", "locations": "Bellingshausen Sea; Southern Ocean", "north": -61.0, "nsf_funding_programs": null, "persons": "Quetin, Langdon B.; Ross, Robin Macurda", "project_titles": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "projects": [{"proj_uid": "p0000522", "repository": "USAP-DC", "title": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "uid": "600049", "west": -71.0}, {"awards": "0529666 Fritsen, Christian", "bounds_geometry": ["POLYGON((-180 -39.23,-144 -39.23,-108 -39.23,-72 -39.23,-36 -39.23,0 -39.23,36 -39.23,72 -39.23,108 -39.23,144 -39.23,180 -39.23,180 -44.307,180 -49.384,180 -54.461,180 -59.538,180 -64.615,180 -69.692,180 -74.769,180 -79.846,180 -84.923,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.923,-180 -79.846,-180 -74.769,-180 -69.692,-180 -64.615,-180 -59.538,-180 -54.461,-180 -49.384,-180 -44.307,-180 -39.23))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. It is currently in a synthesis and modeling phase. This collaborative project is concerned with the lower trophic levels, and will be integrated with other synthesis and modeling studies that deal with grazers, predators, and other higher trophic levels.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Bellingshausen Sea; Cryosphere; Oceans; Photosynthetically Active Radiation (par); Sea Ice; Sea Surface; Southern Ocean; Total Integrated Exposure To PAR", "locations": "Bellingshausen Sea; Sea Surface; Southern Ocean", "north": -39.23, "nsf_funding_programs": null, "persons": "Fritsen, Christian", "project_titles": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "projects": [{"proj_uid": "p0000522", "repository": "USAP-DC", "title": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "uid": "600050", "west": -180.0}, {"awards": "0538479 Seibel, Brad", "bounds_geometry": ["POLYGON((166 -77,166.1 -77,166.2 -77,166.3 -77,166.4 -77,166.5 -77,166.6 -77,166.7 -77,166.8 -77,166.9 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.9 -78,166.8 -78,166.7 -78,166.6 -78,166.5 -78,166.4 -78,166.3 -78,166.2 -78,166.1 -78,166 -78,166 -77.9,166 -77.8,166 -77.7,166 -77.6,166 -77.5,166 -77.4,166 -77.3,166 -77.2,166 -77.1,166 -77))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Rising atmospheric carbon dioxide concentrations have resulted in greater oceanic uptake of anthropogenic carbon dioxide. Elevated partial pressure of carbon dioxide can impact marine organisms both via decreased carbonate saturation that affects calcification rates and via disturbance to acid-base (metabolic) physiology. Pteropod molluscs (Thecosomata) form shells made of aragonite, a type of calcium carbonate that is highly soluble, suggesting that these organisms may be particularly sensitive to increasing carbon dioxide and reduced carbonate ion concentration. Thecosome pteropods, which dominate the calcium carbonate export south of the Antarctic Polar Front, will be the first major group of marine calcifying organisms to experience carbonate undersaturation within parts of their present-day geographical ranges as a result of anthropogenic carbon dioxide. An unusual, co-evolved relationship between thecosomes and their specialized gymnosome predators provides a unique backdrop against which to assess the physiological and ecological importance of elevated partial pressure of carbon dioxide. Pteropods are functionally important components of the Antarctic ecosystem with potential to influence phytoplankton stocks, carbon export, and dimethyl sulfide levels that, in turn, influence global climate through ocean-atmosphere feedback loops. The research will quantify the impact of elevated carbon dioxide on a dominant aragonitic pteropod, Limacina helicina, and its specialist predator, the gymnosome Clione antarctica, in the Ross Sea through laboratory experimentation. Results will be disseminated broadly to enhance scientific understanding in this field. The project involves collaboration between researchers at a predominantly undergraduate institution with a significant enrollment of students that are typically underrepresented in the research environment (California State University San Marcos - CSUSM) and at a Ph.D.-granting institution (University of Rhode Island - URI). The program will promote education and learning through the joint education of undergraduate students and graduate students at CSUSM and URI as part of a research team, as well as through the teaching activities of the principal investigators. Dr. Keating, CSUSM professor of science education, will participate in the McMurdo fieldwork and lead the outreach opportunities for the project.", "east": 167.0, "geometry": ["POINT(166.5 -77.5)"], "keywords": "Biota; CO2; Mcmurdo Station; Oceans; Ross Island; Sample/collection Description; Sample/Collection Description; Shell Fish; Southern Ocean", "locations": "Southern Ocean; Ross Island", "north": -77.0, "nsf_funding_programs": null, "persons": "Seibel, Brad", "project_titles": "Collaborative Research: Impacts of Elevated pCO2 on a Dominant Aragonitic Pteropod (Thecosomata) and its Specialist Predator (Gymnosomata) in the Ross Sea", "projects": [{"proj_uid": "p0000694", "repository": "USAP-DC", "title": "Collaborative Research: Impacts of Elevated pCO2 on a Dominant Aragonitic Pteropod (Thecosomata) and its Specialist Predator (Gymnosomata) in the Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Impacts of Elevated pCO2 on a Dominant Aragonitic Pteropod (Thecosomata) and its Specialist Predator (Gymnosomata) in the Ross Sea", "uid": "600055", "west": 166.0}, {"awards": "0436190 Eastman, Joseph", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "Patterns of biodiversity, as revealed by basic research in organismal biology, may be derived from ecological and evolutionary processes expressed in unique settings, such as Antarctica. The polar regions and their faunas are commanding increased attention as declining species diversity, environmental change, commercial fisheries, and resource management are now being viewed in a global context. Commercial fishing is known to have a direct and pervasive effect on marine biodiversity, and occurs in the Southern Ocean as far south as the Ross Sea. The nature of fish biodiversity in the Antarctic is different than in all other ocean shelf areas. Waters of the Antarctic continental shelf are ice covered for most of the year and water temperatures are nearly constant at -1.5 C. In these waters components of the phyletically derived Antarctic clade of Notothenioids dominate fish diversity. In some regions, including the southwestern Ross Sea, Notothenioids are overwhelmingly dominant in terms of number of species, abundance, and biomass. Such dominance by a single taxonomic group is unique among shelf faunas of the world. In the absence of competition from a taxonomically diverse fauna, Notothenioids underwent a habitat or depth related diversification keyed to the utilization of unfilled niches in the water column, especially pelagic or partially pelagic zooplanktivory and piscivory. This has been accomplished in the absence of a swim bladder for buoyancy control. They also may form a special type of adaptive radiation known as a species flock, which is an assemblage of a disproportionately high number of related species that have evolved rapidly within a defined area where most species are endemic. Diversification in buoyancy is the hallmark of the notothenioid radiation. Buoyancy is the feature of notothenioid biology that determines whether a species lives on the substrate, in the water column or both. Buoyancy also influences other key aspects of life history including swimming, feeding and reproduction and thus has implications for the role of the species in the ecosystem. With similarities to classic evolutionary hot spots, the Antarctic shelf and its Notothenioid radiation merit further exploration. The 2004 \u0027International Collaborative Expedition to collect and study Fish Indigenous to Sub-Antarctic Habitats,\u0027 or, \u0027ICEFISH,\u0027 provided a platform for collection of notothenioid fishes from sub-Antarctic waters between South America and Africa, which will be examined in this project. This study will determine buoyancy for samples of all notothenioid species captured during the ICEFISH cruise. This essential aspect of the biology is known for only 19% of the notothenioid fauna. Also, the gross and microscopic anatomy of brains and sense organs of the phyletically basal families Bovichtidae, Eleginopidae, and of the non-Antarctic species of the primarily Antarctic family Nototheniidae will be examined. The fish biodiversity and endemicity in poorly known localities along the ICEFISH cruise track, seamounts and deep trenches will be quantified. Broader impacts include improved information for comprehending and conserving biodiversity, a scientific and societal priority.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Biota; NBP0404; Oceans; R/v Nathaniel B. Palmer; Southern Ocean", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Eastman, Joseph", "project_titles": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0000106", "repository": "USAP-DC", "title": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes", "uid": "600038", "west": -180.0}, {"awards": "0437887 Sidell, Bruce", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "The polar ocean presently surrounding Antarctica is the coldest, most thermally stable marine environment on earth. Because oxygen solubility in seawater is inversely proportional to temperature, the cold Antarctic seas are an exceptionally oxygen-rich aquatic habitat. Eight families of a single perciform suborder, the Notothenioidei, dominate the present fish fauna surrounding Antarctica. Notothenioids account for approximately 35% of fish species and 90% of fish biomass south of the Antarctic Polar Front. Radiation of closely related notothenioid species thus has occurred rapidly and under a very unusual set of conditions: relative oceanographic isolation from other faunas due to circumpolar currents and deep ocean trenches surrounding the continent, chronically, severely cold water temperatures, very high oxygen availability, very low levels of niche competition in a Southern Ocean depauperate of species subsequent to a dramatic crash in species diversity of fishes that occurred sometime between the mid-Tertiary and present. These features make Antarctic notothenioid fishes an uniquely attractive group for the study of physiological and biochemical adaptations to cold body temperature. Few distinctive features of Antarctic fishes are as unique as the pattern of expression of oxygen-binding proteins in one notothenioid family, the Channichthyidae (Antarctic icefishes). All channichthyid icefishes lack the circulating oxygen-binding protein, hemoglobin (Hb); the intracellular oxygen-binding protein, myoglobin (Mb) is not uniformly expressed in species of this family. Both proteins are normally considered essential for adequate delivery of oxygen to aerobically poised tissues of animals. To compensate for the absence of Hb, icefishes have developed large hearts, rapidly circulate a large blood volume and possess elaborate vasculature of larger lumenal diameter than is seen in red-blooded fishes. Loss of Mb expression in oxidative muscles correlates with dramatic elevation in density of mitochondria within the cell, although each individual organelle is less densely packed with respiratory proteins. Within the framework of oxygen movement, the adaptive significance of greater vascular density and mitochondrial populations is understandable but mechanisms underlying development of these characteristics remain unknown. The answer may lie in another major function of both Hb and Mb, degradation of the ubiquitous bioactive compound, nitric oxide (NO). The research will test the hypothesis that loss of hemoprotein expression in icefishes has resulted in an increase in levels of NO that mediate modification of vascular systems and expansion of mitochondrial populations in oxidative tissues. The objectives of the proposal are to quantify the vascular density of retinas in +Hb and -Hb notothenioid species, to characterize NOS isoforms and catalytic activity in retina and cardiac muscle of Antarctic notothenioid fishes, to evaluate level of expression of downstream factors implicat ed in angiogenesis (in retinal tissue) and mitochondrial biogenesis (in cardiac muscle), and to determine whether inhibition of NOS in vivo results in regression of angiogenic and mitochondrial biogenic responses in icefishes. Broader impacts range from basic biology, through training of young scientists, to enhanced understanding of clinically relevant biomedical processes.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Biota; Oceans; Pot; Sample/collection Description; Sample/Collection Description; Southern Ocean; Trawl", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Sidell, Bruce", "project_titles": "Collaborative Research: Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis.", "projects": [{"proj_uid": "p0000527", "repository": "USAP-DC", "title": "Collaborative Research: Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis", "uid": "600039", "west": -180.0}, {"awards": "0125098 Emslie, Steven", "bounds_geometry": ["POLYGON((-50 -60,-29 -60,-8 -60,13 -60,34 -60,55 -60,76 -60,97 -60,118 -60,139 -60,160 -60,160 -63,160 -66,160 -69,160 -72,160 -75,160 -78,160 -81,160 -84,160 -87,160 -90,139 -90,118 -90,97 -90,76 -90,55 -90,34 -90,13 -90,-8 -90,-29 -90,-50 -90,-50 -87,-50 -84,-50 -81,-50 -78,-50 -75,-50 -72,-50 -69,-50 -66,-50 -63,-50 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project will build on previous studies to investigate the occupation history and diet of Adelie penguins (Pygoscelis adeliae) in the Ross Sea region, Antarctica, with excavations of abandoned and active penguin colonies. Numerous active and abandoned colonies exist on the Victoria Land coast, from Cape Adare to Marble Point will be sampled. Some of these sites have been radiocarbon-dated and indicate a long occupation history for Adelie penguins extending to 13,000 years before present (B. P.). The material recovered from excavations, as demonstrated from previous investigations, will include penguin bones, tissue, and eggshell fragments as well as abundant remains of prey (fish bones, otoliths, squid beaks) preserved in ornithogenic (formed from bird guano) soils. These organic remains will be quantified and subjected to radiocarbon analyses to obtain a colonization history of penguins in this region. Identification of prey remains in the sediments will allow assessment of penguin diet. \n\nOther data (ancient DNA) from these sites will be analyzed through collaboration with New Zealand scientists. Past climatic conditions will be interpreted from published ice-core and marine-sediment records. These data will be used to test the hypothesis that Adelie penguins respond to climate change, past and present, in a predictable manner. In addition, the hypothesis that Adelie penguins alter their diet in accordance with climate, sea-ice conditions, and other marine environmental variables along a latitudinal gradient will be tested. Graduate and undergraduate students will be involved in this project and a project Web site will be developed to report results and maintain educational interaction between the PI and students at local middle and high schools in Wilmington, NC.", "east": 160.0, "geometry": ["POINT(55 -75)"], "keywords": "Antarctica; Biota; Geochronology; Oceans; Paleoclimate; Penguin; Radiocarbon; Ross Sea; Southern Ocean", "locations": "Antarctica; Ross Sea; Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Emslie, Steven", "project_titles": "Occupation History and Diet of Adelie Penguins in the Ross Sea Region", "projects": [{"proj_uid": "p0000220", "repository": "USAP-DC", "title": "Occupation History and Diet of Adelie Penguins in the Ross Sea Region"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Occupation History and Diet of Adelie Penguins in the Ross Sea Region", "uid": "600028", "west": -50.0}, {"awards": "0538594 Ponganis, Paul", "bounds_geometry": ["POLYGON((165.983 -77.683,166.0164 -77.683,166.0498 -77.683,166.0832 -77.683,166.1166 -77.683,166.15 -77.683,166.1834 -77.683,166.2168 -77.683,166.2502 -77.683,166.2836 -77.683,166.317 -77.683,166.317 -77.6897,166.317 -77.6964,166.317 -77.7031,166.317 -77.7098,166.317 -77.7165,166.317 -77.7232,166.317 -77.7299,166.317 -77.7366,166.317 -77.7433,166.317 -77.75,166.2836 -77.75,166.2502 -77.75,166.2168 -77.75,166.1834 -77.75,166.15 -77.75,166.1166 -77.75,166.0832 -77.75,166.0498 -77.75,166.0164 -77.75,165.983 -77.75,165.983 -77.7433,165.983 -77.7366,165.983 -77.7299,165.983 -77.7232,165.983 -77.7165,165.983 -77.7098,165.983 -77.7031,165.983 -77.6964,165.983 -77.6897,165.983 -77.683))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "The research will examine blood and muscle oxygen store depletion in relation to the documented aerobic dive limit (ADL, onset of post-dive blood lactate accumulation) in diving of emperor penguins. The intellectual merits of this proposal involve its evaluation of the physiological basis of the ADL concept. The ADL is probably the most commonly-used, but rarely measured, factor to interpret and model the behavior and foraging ecology of diving animals. Based on prior studies, and on recent investigations of respiratory and blood oxygen depletion during dives of emperor penguins, it is hypothesized that the ADL is a result of the depletion of myoglobin (Mb)-bound oxygen and increased glycolysis in the primary locomotory muscles. This project will accurately define the physiological mechanisms underlying the ADL through 1) evaluation of the rate and magnitude of muscle oxygen depletion during dives in relation to the previously measured ADL, 2) characterization of the hemoglobin-oxygen dissociation curve in blood of emperor penguins and comparison of that curve to those of other diving and non-diving species, 3) application of the emperor hemoglogin-oxygen dissociation curve to previously collected oxygen and hemoglobin data in order to estimate the rate and magnitude of blood oxygen depletion during dives, and 4) measurement of muscle phosphoocreatine and glycogen concentrations in order to estimate their potential contributions to muscle energy metabolism during diving. The project also continues the census and monitoring of the emperor colonies in the Ross Sea, which is especially important in light of both fisheries activity and the movement of iceberg B15-A. Broader impacts of the project include: 1) technological development of microprocessor-based, \u0027backpack\u0027 near-infrared spectrophotometer, which will be applicable not only to other species, but also to other fields (i.e., exercise physiology), 2) collaboration with the Department of Anesthesia at the U.S. Naval Hospital in San Diego in the training of anesthesia residents in research techniques, 3) the training and thesis research of two graduate students in these techniques and in Antarctic field research, and 4) a better understanding of the ADL concept and its use in the fields of diving behavior and physiology. In addition the annual census of emperor penguin colonies in the Ross Sea, in conjunction with the continued evaluation of previously developed remote cameras to monitor colony status, will form the basis of a new educational web site, and allow development of an educational outreach program to school children through SeaWorld of San Diego.", "east": 166.317, "geometry": ["POINT(166.15 -77.7165)"], "keywords": "Antarctica; Biota; Oceans; Penguin; Southern Ocean", "locations": "Antarctica; Southern Ocean", "north": -77.683, "nsf_funding_programs": null, "persons": "Ponganis, Paul", "project_titles": "The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins", "projects": [{"proj_uid": "p0000535", "repository": "USAP-DC", "title": "The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.75, "title": "The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins", "uid": "600057", "west": 165.983}, {"awards": "0229638 Ponganis, Paul", "bounds_geometry": ["POLYGON((163 -77,163.4 -77,163.8 -77,164.2 -77,164.6 -77,165 -77,165.4 -77,165.8 -77,166.2 -77,166.6 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.6 -78,166.2 -78,165.8 -78,165.4 -78,165 -78,164.6 -78,164.2 -78,163.8 -78,163.4 -78,163 -78,163 -77.9,163 -77.8,163 -77.7,163 -77.6,163 -77.5,163 -77.4,163 -77.3,163 -77.2,163 -77.1,163 -77))"], "date_created": "Tue, 01 Jan 2008 00:00:00 GMT", "description": "The emperor penguin, Aptenodytes forsteri, is the premier avian diver and a top predator in the Antarctic ecosystem. The routine occurrence of 500-m diver during foraging trips to sea is both a physiological and behavior enigma. The objectives of this project address how and why emperors dive as deep and long as they do. The project examines four major topics in the diving biology of emperor penguins: pressure tolerance, oxygen store management, end-organ tolerance of diving hypoxemia/ischemia, and deep-dive foraging behavior. These subjects are relevant to the role of the emperor as a top predator in the Antarctic ecosystem, and to critical concepts in diving physiology, including decompression sickness, nitrogen narcosis, shallow water blackout, hypoxemic tolerance, and extension of aerobic dive time. The following hypotheses will be tested: 1) Prevention of nitrogen narcosis and decompression sickness in emperor penguins is achieved by inhibition of pulmonary gas exchange at depth. 2) Shallow water black out does not occur because of greater cerebral hypoxemic tolerance, and, in deep dives, because of resumption of pulmonary gas exchange during final ascent. 3) The rate of depletion of the blood oxygen store is a function of depth of dive and heart rate. 4) The aerobic dive limit (ADL) reflects the onset of lactate accumulation in locomotory muscle, not total depletion of all oxygen stores. 5) Elevation of tissue antioxidant capacity and free-radical scavenging enzyme activities protect against the routine ischemia/reperfusion which occur during diving. 6) During deep dives, the Antarctic silverfish, Pleuorogramma antarcticum, is the primary prey item for emperors. In addition to evaluation of the hypotheses below, the project has broader impacts in several areas such as partnership with foreign and national institutes and organizations (e.g., the National Institute of Polar Research of Japan, Centro de Investigacioines del Noroeste of Mexico, National Geographic, the University of Texas Southwestern Medical Center, and Sea World). Participation in National Geographic television documentaries will provide unique educational opportunities for the general public; development of state-of-the-art technology (e.g., blood oxygen electrode recorders, blood samplers, and miniaturized digital cameras) will lay the groundwork for future research by this group and others; and the effects of the B15 iceberg on breeding success of emperor penguins will continue to be evaluated with population censuses during planned fieldwork at several Ross Sea emperor penguin colonies.", "east": 167.0, "geometry": ["POINT(165 -77.5)"], "keywords": "Antarctica; Biota; Oceans; Penguin; Southern Ocean", "locations": "Antarctica; Southern Ocean", "north": -77.0, "nsf_funding_programs": null, "persons": "Ponganis, Paul", "project_titles": "Diving Physiology and Behavior of Emperor Penguins", "projects": [{"proj_uid": "p0000239", "repository": "USAP-DC", "title": "Diving Physiology and Behavior of Emperor Penguins"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Diving Physiology and Behavior of Emperor Penguins", "uid": "600031", "west": 163.0}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": null, "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This data set contains ice core chemistry, timescale, isotope, and temperature data analyzed by several investigators. In January 1998, the collaborative ice-drilling project between Russia, \nthe United States, and France at the Russian Vostok station in East Antarctica \nyielded the deepest ice core ever recovered, reaching a depth of 3,623 m. Preliminary data indicate the Vostok ice-core record \nextends through four climate cycles, with ice slightly older than 400 kyr.", "east": null, "geometry": null, "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Lake Vostok; Paleoclimate; Physical Properties; Temperature; Vostok Ice Core", "locations": "Antarctica; Lake Vostok", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Lal, Devendra; Barnola, J. M.; Petit, Jean Robert; Jouzel, Jean; Sowers, Todd A.; Brook, Edward J.; Bender, Michael; Fishcer, Hubertus; Blunier, Thomas; Ruddiman, William; Raymo, Maureen; Lorius, Claude; Chappellaz, Jerome", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": null, "title": "Vostok Ice Core Chemistry, Timescale, Isotope, and Temperature Data", "uid": "609242", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Trematomus scotti mt-co1 sequence alignment.
|
1947040 |
2025-02-11 | Desvignes, Thomas; Schiavon, Luca ; Papetti, Chiara; Postlethwait, John |
Evolution of hemoglobin genes in notothenioid fishes EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish |
Trematomus scotti mt-co1 sequence alignment used to generate descriptive genetic statistics (number of segregating sites S, number of haplotypes h, haplotype diversity Hd, and nucleotide diversity π), estimate pairwise FST indices of genetic differences between geographic areas, and create a haplotype network. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Morphological, fecundity, and age data of Trematomus scotti from Andvord Bay and the Weddell Sea.
|
1947040 |
2025-02-11 | Desvignes, Thomas; Valdivieso, Alejandro; Sguotti, Camilla; Calì, Federico; Riginella, Emilio; Streeter, Margaret; Grondin, Jacob; Le Francois, Nathalie; Lucassen, Magnus; Mark, Felix C; Detrich, H. William; Papetti, Chiara; Postlethwait, John; La Mesa, Mario |
EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish Evolution of hemoglobin genes in notothenioid fishes |
Morphological, fecundity, and age data of Trematomus scotti from Andvord Bay and the Weddell Sea. | ["POLYGON((-62 -64,-56.9 -64,-51.8 -64,-46.7 -64,-41.6 -64,-36.5 -64,-31.400000000000002 -64,-26.300000000000004 -64,-21.200000000000003 -64,-16.1 -64,-11 -64,-11 -65.3,-11 -66.6,-11 -67.9,-11 -69.2,-11 -70.5,-11 -71.8,-11 -73.1,-11 -74.4,-11 -75.7,-11 -77,-16.1 -77,-21.2 -77,-26.299999999999997 -77,-31.4 -77,-36.5 -77,-41.599999999999994 -77,-46.699999999999996 -77,-51.8 -77,-56.9 -77,-62 -77,-62 -75.7,-62 -74.4,-62 -73.1,-62 -71.8,-62 -70.5,-62 -69.2,-62 -67.9,-62 -66.6,-62 -65.3,-62 -64))"] | ["POINT(-36.5 -70.5)"] | false | false |
Survey Metadata. All counts of Odontaster validus from SSWS surveys at the McMurdo Intake Jetty and Cinder Cones
|
1745130 |
2025-01-04 | Moran, Amy; Thurber, Andrew |
Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development |
Counts of Odontaster along 50-m transects at the McMurdo Intake Jetty (2019, 2020) and Cinder Cones (2022), including incidence of SSWS and staging of each visibly affected individual starfish. | [] | [] | false | false |
Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)
|
2026045 1543383 0636696 1142158 1440435 |
2024-07-22 | Corso, Andrew; Desvignes, Thomas; McDowell, Jan; Cheng, Chi-Hing; Biesack, Ellen; Steinberg, Deborah; Hilton, Eric |
Antarctic Notothenioid Fish Freeze Avoidance and Genome-wide Evolution for Life in the Cold LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem Antarctic Fish and MicroRNA Control of Development and Physiology Evolution of hemoglobin genes in notothenioid fishes Environmental, Organismal and Evolutionary Physiology of Freeze Avoidance in Antarctic Notothenioid Fishes |
This data set includes photographs and metadata from phylogenetic analyses associated with the description of Akarotaxis gouldae n. sp., or the Banded Dragonfish (Bathydraconidae). | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
A comparative and ontogenetic examination of mitochondrial function in Antarctic notothenioid species
|
1744999 |
2024-02-07 | Todgham, Anne; Mandic, Milica; Frazier, Amanda; Naslund, Andrew |
Interacting Stressors: Metabolic Capacity to Acclimate under Ocean Warming and CO2- Acidification in Early Developmental Stages of Antarctic Fishes |
In this study we examined aerobic metabolic capacity in three species, Trematomus bernacchii, T. pennellii and T. newnesi, and between two life stages, juvenile and adult, by assessing mitochondrial function of permeabilized cardiac fibers. | [] | [] | false | false |
Differential temperature preferences exhibited in the juvenile Antarctic notothenioids Trematomus bernacchii and Trematomus pennellii
|
1744999 |
2024-02-06 | Todgham, Anne; Naslund, Andrew; Zillig, Ken; Mandic, Milica; Frazier, Amanda |
Interacting Stressors: Metabolic Capacity to Acclimate under Ocean Warming and CO2- Acidification in Early Developmental Stages of Antarctic Fishes |
This dataset records temperature preference of two species of Antarctic nototheniod fishes, as described in the draft manuscript ‘Naslund et al. (Forthcoming 2024) Differential temperature preferences exhibited in the juvenile Antarctic notothenioids Trematomus bernacchii and Trematomus pennellii. | [] | [] | false | false |
Simulated marine debris trajectories along the West Antarctic Peninsula in 2008-2009 and 2018-2019
|
2138277 |
2023-09-13 | Gallagher, Katherine |
OPP-PRF Pygoscelis Penguin Response to Potential Prey Retention along the West Antarctic Peninsula |
These data represent simulated buoyant debris released along the West Antarctic Peninsula. Files include latitude, longitude, and depth of particles released along the West Antarctic Peninsula within the Regional Ocean Modeling System (ROMS) framework. Data currently cover 4 austral summers: 2008, 2009, 2018, and 2019. A total of 12 simulations were conducted, simulating debris fields from 4 potential sources: non-point sources, tourism, fishing, and research. | ["POLYGON((-90 -55,-85.5 -55,-81 -55,-76.5 -55,-72 -55,-67.5 -55,-63 -55,-58.5 -55,-54 -55,-49.5 -55,-45 -55,-45 -57.5,-45 -60,-45 -62.5,-45 -65,-45 -67.5,-45 -70,-45 -72.5,-45 -75,-45 -77.5,-45 -80,-49.5 -80,-54 -80,-58.5 -80,-63 -80,-67.5 -80,-72 -80,-76.5 -80,-81 -80,-85.5 -80,-90 -80,-90 -77.5,-90 -75,-90 -72.5,-90 -70,-90 -67.5,-90 -65,-90 -62.5,-90 -60,-90 -57.5,-90 -55))"] | ["POINT(-67.5 -67.5)"] | false | false |
MEME tests of sites evolving under episodic diversifying selection in notothenioid hemoglobin genes.
|
1543383 1947040 2232891 |
2023-09-08 | Desvignes, Thomas; Postlethwait, John |
Evolution of hemoglobin genes in notothenioid fishes |
Phylogenetic tree of Notothenioid species used in analyses and results of the HyPhy MEME tests for sites evolving under episodic diversifying selection in notothenioid hemoglobin genes in the research article “Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes” by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait. | ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"] | ["POINT(0 -89.999)"] | false | false |
aBSREL tests for episodic diversifying selection on hemoglobin genes in notothenioids.
|
1543383 1947040 2232891 |
2023-09-08 | Desvignes, Thomas; Postlethwait, John |
Evolution of hemoglobin genes in notothenioid fishes |
Phylogenetic tree of Notothenioid species used in analyses and results of the HyPhy aBSREL tests for diversifying selection in notothenioid hemoglobin genes in the research article “Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes” by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait. | ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"] | ["POINT(0 -89.999)"] | false | false |
RELAX tests for pervasive changes in strength of natural selection on hemoglobin genes in notothenioids.
|
1543383 1947040 2232891 |
2023-09-08 | Desvignes, Thomas; Postlethwait, John |
Evolution of hemoglobin genes in notothenioid fishes |
Phylogenetic tree of Notothenioid species used in analyses and results of the HyPhy RELAX tests for pervasive changes in strength of natural selection on hemoglobin genes in the research article “Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes” by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait. | ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"] | ["POINT(0 -89.999)"] | false | false |
Rates of hemoglobin evolution among genes and across notothenioid species.
|
2232891 1543383 1947040 |
2023-09-08 | Desvignes, Thomas; Postlethwait, John |
Evolution of hemoglobin genes in notothenioid fishes |
Results of hemoglobin gene KaKs (dN/dS) analyses in notothenioids in the research article “Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes” by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait. | ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"] | ["POINT(0 -89.999)"] | false | false |
Notothenioid hemoglobin protein 3D modeling.
|
1543383 1947040 2232891 |
2023-09-08 | Desvignes, Thomas; Postlethwait, John |
Evolution of hemoglobin genes in notothenioid fishes |
Notothenioid hemoglobin protein 3D modeling using SWISS-MODEL in the research article “Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes” by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait. | ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"] | ["POINT(0 -89.999)"] | false | false |
Phylogenetic trees of hemoglobin proteins in notothenioids from the study "Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes"
|
2232891 1947040 1543383 |
2023-08-24 | Desvignes, Thomas; Postlethwait, John |
Evolution of hemoglobin genes in notothenioid fishes |
All input and output files of the phylogenetic trees of hemoglobin proteins in Notothenioids from the study "Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes" by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, and John H. Postlethwait. | ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"] | ["POINT(0 -89.999)"] | false | false |
Notothenioid species tree used in the study "Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes"
|
2232891 1543383 1947040 |
2023-08-24 | Desvignes, Thomas; Postlethwait, John |
Evolution of hemoglobin genes in notothenioid fishes |
Phylogenetic tree of 36 notothenioid species and five outgroup used throughout the study "Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes" by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait. | ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"] | ["POINT(0 -89.999)"] | false | false |
Temperature activated transient receptor potential ion channels from Antarctic fishes
|
1443637 1245752 |
2023-06-16 | York, Julia |
Analysis of Voltage-gated Ion Channels in Antarctic Fish |
This dataset is recordings of current, temperature, and voltage for TRPA1b and TRPV1a from Antarctic notothenioids fishes, plus metadata. TRPA1b and TRPV1a were found to be heat activated and multiple modulators of activity were tested. Paper can be accessed at: https://doi.org/10.1098/rsob.20230215. Supplementary material can be accessed at: https://doi.org/10.6084/m9.figshare.c.6858595.v2. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Sedation dose and response
|
1543539 |
2022-12-13 | Pearson, Linnea |
RUI: Growing Up on Ice: Physiological Adaptations and Developmental Plasticity in Weddell Seal Pups Across Two Extreme Physical Environments |
These data were collected in 2017 and 2019 in McMurdo Sound, Antarctica. Included are reported dose of sedation drugs administered to Weddell seal pups during a longitudinal study at 4 age timepoints during early devleopment. Vital signs including heart rate (HR) and respiration rate (RR) during sedation are included, as are reactions to the drugs, such as if and how many apnea events were recorded, whether an animal exhibited cyanosis. This study was conducted with ethical approval from NOAA Fisheries under the Marine Mammal Protection Act (permit # 21006-01), the Antarctic Conservation Act (permit # 2018-013 M#1) and the California Polytechnic University Institutional Animal Care and Use Committee (#1605 and 1904). | [] | [] | false | false |
In situ hybridization of X-cell and host fish 18S SSU rRNA in alternate sections of tumor xenomas.
|
1947040 |
2022-03-15 | Desvignes, Thomas; Postlethwait, John |
EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish |
In situ hybridization of Notoxcellia coronata and host fish Trematomus scotti 18S SSU rRNA and of Notoxcellia picta and host fish Nototheniops larseni in alternate sections of tumor xenomas. | ["POLYGON((-63.1 -63.9,-63.02 -63.9,-62.94 -63.9,-62.86 -63.9,-62.78 -63.9,-62.7 -63.9,-62.62 -63.9,-62.54 -63.9,-62.46 -63.9,-62.38 -63.9,-62.3 -63.9,-62.3 -64.01,-62.3 -64.12,-62.3 -64.23,-62.3 -64.34,-62.3 -64.45,-62.3 -64.56,-62.3 -64.67,-62.3 -64.78,-62.3 -64.89,-62.3 -65,-62.38 -65,-62.46 -65,-62.54 -65,-62.62 -65,-62.7 -65,-62.78 -65,-62.86 -65,-62.94 -65,-63.02 -65,-63.1 -65,-63.1 -64.89,-63.1 -64.78,-63.1 -64.67,-63.1 -64.56,-63.1 -64.45,-63.1 -64.34,-63.1 -64.23,-63.1 -64.12,-63.1 -64.01,-63.1 -63.9))"] | ["POINT(-62.7 -64.45)"] | false | false |
microMRI analyses of Trematomus scotti Tsco_18_08 with X-cell xenomas
|
1947040 |
2022-03-15 | Lauridsen, Henrik; Desvignes, Thomas; Postlethwait, John |
EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish |
Multi-layer 3D models and videos of Tsco_18_08 from high-field microMRI data. | ["POLYGON((-62.9 -64.7,-62.84 -64.7,-62.78 -64.7,-62.72 -64.7,-62.66 -64.7,-62.6 -64.7,-62.54 -64.7,-62.48 -64.7,-62.42 -64.7,-62.36 -64.7,-62.3 -64.7,-62.3 -64.73,-62.3 -64.76,-62.3 -64.79,-62.3 -64.82,-62.3 -64.85,-62.3 -64.88,-62.3 -64.91,-62.3 -64.94,-62.3 -64.97,-62.3 -65,-62.36 -65,-62.42 -65,-62.48 -65,-62.54 -65,-62.6 -65,-62.66 -65,-62.72 -65,-62.78 -65,-62.84 -65,-62.9 -65,-62.9 -64.97,-62.9 -64.94,-62.9 -64.91,-62.9 -64.88,-62.9 -64.85,-62.9 -64.82,-62.9 -64.79,-62.9 -64.76,-62.9 -64.73,-62.9 -64.7))"] | ["POINT(-62.6 -64.85)"] | false | false |
Metagenomic analysis of apparently healthy and tumor samples using Kaiju software
|
1947040 |
2022-03-14 | Desvignes, Thomas; Fontenele, Rafaela S. ; Kraberger, Simona ; Varsani, Arvind; Postlethwait, John |
EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish |
Metagenomic analyses of apparently healthy and tumor samples using Kaiju v.1.7.4 software and a custom database generated from NCBI NR database retrieved on July 24th, 2021, and containing all viruses, archaea, and bacteria sequences, as well as microbial eukaryotes and Trematomus spp. fish sequences. | ["POLYGON((-63.1 -63.9,-63.02 -63.9,-62.94 -63.9,-62.86 -63.9,-62.78 -63.9,-62.7 -63.9,-62.62 -63.9,-62.54 -63.9,-62.46 -63.9,-62.38 -63.9,-62.3 -63.9,-62.3 -64.01,-62.3 -64.12,-62.3 -64.23,-62.3 -64.34,-62.3 -64.45,-62.3 -64.56,-62.3 -64.67,-62.3 -64.78,-62.3 -64.89,-62.3 -65,-62.38 -65,-62.46 -65,-62.54 -65,-62.62 -65,-62.7 -65,-62.78 -65,-62.86 -65,-62.94 -65,-63.02 -65,-63.1 -65,-63.1 -64.89,-63.1 -64.78,-63.1 -64.67,-63.1 -64.56,-63.1 -64.45,-63.1 -64.34,-63.1 -64.23,-63.1 -64.12,-63.1 -64.01,-63.1 -63.9))"] | ["POINT(-62.7 -64.45)"] | false | false |
Histopathology of X-cell xenomas in Trematomus scotti and Nototheniops larseni.
|
1947040 |
2022-03-14 | Desvignes, Thomas; Kent, Michael L. ; Murray, Katrina N. ; Postlethwait, John |
EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish |
Histopathology images of X-cell xenomas in Trematomus scotti and in Nototheniops larseni. | ["POLYGON((-63.1 -63.9,-63.02 -63.9,-62.94 -63.9,-62.86 -63.9,-62.78 -63.9,-62.7 -63.9,-62.62 -63.9,-62.54 -63.9,-62.46 -63.9,-62.38 -63.9,-62.3 -63.9,-62.3 -64.01,-62.3 -64.12,-62.3 -64.23,-62.3 -64.34,-62.3 -64.45,-62.3 -64.56,-62.3 -64.67,-62.3 -64.78,-62.3 -64.89,-62.3 -65,-62.38 -65,-62.46 -65,-62.54 -65,-62.62 -65,-62.7 -65,-62.78 -65,-62.86 -65,-62.94 -65,-63.02 -65,-63.1 -65,-63.1 -64.89,-63.1 -64.78,-63.1 -64.67,-63.1 -64.56,-63.1 -64.45,-63.1 -64.34,-63.1 -64.23,-63.1 -64.12,-63.1 -64.01,-63.1 -63.9))"] | ["POINT(-62.7 -64.45)"] | false | false |
Causes and consequences of pair-bond disruption in a sex-skewed population of a long-lived monogamous seabird: the wandering Albatross
|
1840058 |
2022-02-04 | Jenouvrier, Stephanie; Sun, Ruijiao; Barbraud, Christophe; Delord, Karine |
Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics |
Many animals form long-term monogamous pair-bonds, and the disruption of a pair-bond (through either divorce or widowhood) can have significant consequences for individual vital rates (survival, breeding, and breeding success probabilities) and life-history outcomes (lifetime reproductive success, life expectancy). Here, we investigated the causes and consequences of pair-bond disruption in wandering albatross (Diomedea exulans). State-of-the-art statistical and mathematical approaches were developed to estimate divorce and widowhood rates and their impacts on vital rates and life-history outcomes. In this population, females incur a higher mortality rate due to incidental fishery bycatch, hence the population is male-skewed. Therefore, we first posited that males show higher widowhood rates negatively correlated with fishing effort, and females have higher divorce rates because they have more mating opportunities. Furthermore, we expected that divorce can be an adaptive strategy, whereby individuals improve breeding success by breeding with a new partner of better quality. Finally, we posited that pair-bond disruptions can reduce survival and breeding probabilities due to the cost of remating processes, with important consequences for life-history outcomes. As expected, we show that males have higher widowhood rates than females and females have higher divorce rates in this male-skewed population. However, no correlation was found between fishing effort and male widowhood. Secondly, contrary to our expectation, we found that divorce is likely non-adaptive in this population. We propose that divorce in this population is caused by an intruder who outcompetes the original partner in line with the "forced divorce" hypothesis. Furthermore, we found a 16.7% and 18.0% reduction in lifetime reproductive success (LRS) only for divorced and widowed males, respectively, due to missing breeding seasons after a pair-bond disruption. Finally, we found that divorced individuals are more likely to divorce again, but whether this is related to specific individual characteristics remains an important area of investigation. Description of data processing: This file includes: (1) observation events data; (2) E-surge GEPAT (Generator of pattern of elementary matrices) code for fitting MULTIEVENT-CAPTURE-MARK-RECAPTURE (MECMR) models; and (3) pair-bond status and breeding success data to perform all the analysis described in Sun et al. (2022, Ecological Monographs) | [] | [] | false | false |
Phylogenetic Analysis of Notoxcellia species.
|
1947040 |
2022-01-04 | Desvignes, Thomas; Varsani, Arvind; Postlethwait, John |
EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish |
Nucleic acid sequences, sequence alignments, model selection results, and phylogenetic trees from the phylogenetic placement of Notoxcellia species. | ["POLYGON((-63.1 -63.9,-63.02 -63.9,-62.94 -63.9,-62.86 -63.9,-62.78 -63.9,-62.7 -63.9,-62.62 -63.9,-62.54 -63.9,-62.46 -63.9,-62.38 -63.9,-62.3 -63.9,-62.3 -64.01,-62.3 -64.12,-62.3 -64.23,-62.3 -64.34,-62.3 -64.45,-62.3 -64.56,-62.3 -64.67,-62.3 -64.78,-62.3 -64.89,-62.3 -65,-62.38 -65,-62.46 -65,-62.54 -65,-62.62 -65,-62.7 -65,-62.78 -65,-62.86 -65,-62.94 -65,-63.02 -65,-63.1 -65,-63.1 -64.89,-63.1 -64.78,-63.1 -64.67,-63.1 -64.56,-63.1 -64.45,-63.1 -64.34,-63.1 -64.23,-63.1 -64.12,-63.1 -64.01,-63.1 -63.9))"] | ["POINT(-62.7 -64.45)"] | false | false |
Temperature profiles at five fishing locations on the West Antarctic Peninsula during austral fall 2018.
|
1947040 |
2021-12-16 | Desvignes, Thomas |
EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish |
Temperature profiles at five fishing locations on the West Antarctic Peninsula during austral fall 2018. All profiles were recorded using a DST centi-TD Miniature Temperature and Depth Data Logger (Star-Oddi, Garðabær, Iceland) mounted on one of the two otters of the fishing net, thus continuously recording temperature while going down, at the bottom, and while ascending the water column. The two temperature profiles in the Gerlache Strait were recorded using XBT probes (Expendable Bathythermograph) Sippican Deep Blue 760-M and thus show unidirectional temperature profiles. | ["POLYGON((-65.3 -63.3,-65 -63.3,-64.7 -63.3,-64.4 -63.3,-64.1 -63.3,-63.8 -63.3,-63.5 -63.3,-63.2 -63.3,-62.9 -63.3,-62.6 -63.3,-62.3 -63.3,-62.3 -63.47,-62.3 -63.64,-62.3 -63.81,-62.3 -63.98,-62.3 -64.15,-62.3 -64.32,-62.3 -64.49,-62.3 -64.66,-62.3 -64.83,-62.3 -65,-62.6 -65,-62.9 -65,-63.2 -65,-63.5 -65,-63.8 -65,-64.1 -65,-64.4 -65,-64.7 -65,-65 -65,-65.3 -65,-65.3 -64.83,-65.3 -64.66,-65.3 -64.49,-65.3 -64.32,-65.3 -64.15,-65.3 -63.98,-65.3 -63.81,-65.3 -63.64,-65.3 -63.47,-65.3 -63.3))"] | ["POINT(-63.8 -64.15)"] | false | false |
Fish pictures and skin pathology of X-cell infection in Trematomus scotti.
|
1947040 |
2021-12-16 | Lauridsen, Henrik; Postlethwait, John; Desvignes, Thomas |
EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish |
Pictures of Trematomus scotti specimens displaying visible X-cell infections. Images for the left and right sides of the fish are provided for each specimen, along with an image for each side showing the grid-point categorization as 1) healthy skin, 2) moderately affected skin, and 3) severely affected skin, and associated ImageJ ROI and count files. | ["POLYGON((-62.9 -64.7,-62.84 -64.7,-62.78 -64.7,-62.72 -64.7,-62.66 -64.7,-62.6 -64.7,-62.54 -64.7,-62.48 -64.7,-62.42 -64.7,-62.36 -64.7,-62.3 -64.7,-62.3 -64.73,-62.3 -64.76,-62.3 -64.79,-62.3 -64.82,-62.3 -64.85,-62.3 -64.88,-62.3 -64.91,-62.3 -64.94,-62.3 -64.97,-62.3 -65,-62.36 -65,-62.42 -65,-62.48 -65,-62.54 -65,-62.6 -65,-62.66 -65,-62.72 -65,-62.78 -65,-62.84 -65,-62.9 -65,-62.9 -64.97,-62.9 -64.94,-62.9 -64.91,-62.9 -64.88,-62.9 -64.85,-62.9 -64.82,-62.9 -64.79,-62.9 -64.76,-62.9 -64.73,-62.9 -64.7))"] | ["POINT(-62.6 -64.85)"] | false | false |
Morphological and pathological data of Trematomus scotti specimens captured on May 30th, 2018 in Andvord Bay.
|
1947040 |
2021-12-16 | Postlethwait, John; Desvignes, Thomas; Lauridsen, Henrik; Le Francois, Nathalie |
EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish |
Excel file containing specimen field identifications, capture location, presence or absence of visible tumors, weight (g), standard length (cm), sex, and the percentage of skin visually affected by X-cells, moderately affected, and severely affected by X-cells. | ["POLYGON((-62.9 -64.7,-62.84 -64.7,-62.78 -64.7,-62.72 -64.7,-62.66 -64.7,-62.6 -64.7,-62.54 -64.7,-62.48 -64.7,-62.42 -64.7,-62.36 -64.7,-62.3 -64.7,-62.3 -64.73,-62.3 -64.76,-62.3 -64.79,-62.3 -64.82,-62.3 -64.85,-62.3 -64.88,-62.3 -64.91,-62.3 -64.94,-62.3 -64.97,-62.3 -65,-62.36 -65,-62.42 -65,-62.48 -65,-62.54 -65,-62.6 -65,-62.66 -65,-62.72 -65,-62.78 -65,-62.84 -65,-62.9 -65,-62.9 -64.97,-62.9 -64.94,-62.9 -64.91,-62.9 -64.88,-62.9 -64.85,-62.9 -64.82,-62.9 -64.79,-62.9 -64.76,-62.9 -64.73,-62.9 -64.7))"] | ["POINT(-62.6 -64.85)"] | false | false |
Annual growth of Adamussium colbecki from Explorers Cove and Bay of Sails
|
1745057 |
2021-08-11 | Cronin, Kelly; Walker, Sally |
Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past |
This dataset contains yearly growth increments (mm) of live-collected Adamussium colbecki from Explorers Cove and Bay of Sails in Western McMurdo Sound. Annual growth is delineated by annuli (external growth bands; see Cronin et al., 2020). Straight length measurements were taken with digital calipers from umbo to ventral margin along the central axis. The purpose of data collection was to compare growth and lifespan of A. colbecki under annual and multiannual sea ice. | ["POLYGON((163.4 -77.3,163.46 -77.3,163.52 -77.3,163.58 -77.3,163.64 -77.3,163.7 -77.3,163.76 -77.3,163.82 -77.3,163.88 -77.3,163.94 -77.3,164 -77.3,164 -77.33,164 -77.36,164 -77.39,164 -77.42,164 -77.45,164 -77.48,164 -77.51,164 -77.54,164 -77.57,164 -77.6,163.94 -77.6,163.88 -77.6,163.82 -77.6,163.76 -77.6,163.7 -77.6,163.64 -77.6,163.58 -77.6,163.52 -77.6,163.46 -77.6,163.4 -77.6,163.4 -77.57,163.4 -77.54,163.4 -77.51,163.4 -77.48,163.4 -77.45,163.4 -77.42,163.4 -77.39,163.4 -77.36,163.4 -77.33,163.4 -77.3))"] | ["POINT(163.7 -77.45)"] | false | false |
High-resolution nearshore benthic seawater temperature from around McMurdo Sound, Antarctica (2017-2019)
|
1644196 |
2021-01-03 | Cziko, Paul |
Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes |
Nearshore benthic seawater temperature (plus pressure and salinity for some sites) in McMurdo Sound, Antarctica for 2017-2019. Data includes those from standalone temperature (sometimes pressure) for several sites around McMurdo Sound as well as data from the cabled McMurdo Oceanographic Observatory moored conductivity-temperature-depth (CTD) sensor at the McMurdo Station seawater intake jetty. Data are from high precision SeaBird sensors (SBE56, SBE39, SBE19Plus and SBE37), with sample intervals from 90 sec to 15 min, depending on site. Sampled sites include Explorer's Cove at New Harbor, Cape Evans, Granite Harbor, and the McMurdo Station jetty. All sensors were deployed near or on the benthos at 20-25 m deep, in typical nearshore benthic fish and invertebrate habitat. | ["POLYGON((162.647931 -77.000624,163.049652 -77.000624,163.451373 -77.000624,163.853094 -77.000624,164.254815 -77.000624,164.656536 -77.000624,165.058257 -77.000624,165.459978 -77.000624,165.861699 -77.000624,166.26342 -77.000624,166.665141 -77.000624,166.665141 -77.0856883,166.665141 -77.1707526,166.665141 -77.2558169,166.665141 -77.3408812,166.665141 -77.4259455,166.665141 -77.5110098,166.665141 -77.5960741,166.665141 -77.6811384,166.665141 -77.7662027,166.665141 -77.851267,166.26342 -77.851267,165.861699 -77.851267,165.459978 -77.851267,165.058257 -77.851267,164.656536 -77.851267,164.254815 -77.851267,163.853094 -77.851267,163.451373 -77.851267,163.049652 -77.851267,162.647931 -77.851267,162.647931 -77.7662027,162.647931 -77.6811384,162.647931 -77.5960741,162.647931 -77.5110098,162.647931 -77.4259455,162.647931 -77.3408812,162.647931 -77.2558169,162.647931 -77.1707526,162.647931 -77.0856883,162.647931 -77.000624))"] | ["POINT(164.656536 -77.4259455)"] | false | false |
Long-term underwater images from around a single mooring site in McMurdo Sound, Antarctica (2017-2019)
|
1644196 |
2020-12-29 | Cziko, Paul |
Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes |
Long-term images taken by the camera from the McMurdo Oceanographic Observatory mooring in McMurdo Sound, Antarctica during its 2-year deployment (2017-2019). The mooring was situated at the seawater terminus of the McMurdo Station seawater intake jetty at 21 m deep, typically under thick sea ice cover. The automated 360° pan-tilt-zoom (ptz) camera, inside of an air-filled self-cleaning dome, was programmed to move to 42 ptz "waypoints" every hour and take a still 1920x1080 JPG image for archiving. Lights, oriented in one direction only, illuminated a rock/rubble slope for much of each winter, when there was no natural illumination. The camera was situated on a concrete block, which elevated the camera about 1m off of the seabed. Motile and sessile benthic biota, including notothenioid fishes, anemones, pycnogonids, asteroids, soft-corals, sponges, and nudibranchs are commonly seen in the images. Some ptz waypoints survey the water column and underside of the sea ice, capturing also the presence of larval/juvenile fishes and other plankton/nekton in the water column. Maximum intervals between subsequent images from the same ptz waypoint were about 1 hour, though many waypoints were captured at somewhat higher frequency. Interval images, taken at 5-min intervals irrespective of camera orientation, were also captured. Images are occasionally obscured/impacted by the camera dome's wiper, darkness, low visibility, minor fouling of the camera dome, and out-of-focus lens elements. | ["POINT(166.6645 -77.851)"] | ["POINT(166.6645 -77.851)"] | false | false |
Long-term broadband underwater acoustic recordings from McMurdo Sound, Antarctica (2017-2019)
|
1644196 |
2020-12-29 | Cziko, Paul |
Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes |
Broadband underwater acoustic recordings from the McMurdo Oceanographic Observatory mooring near the seaward terminus of the McMurdo Station seawater intake jetty. An omnidirectional Ocean Sonics icListen hydrophone (SB2-ETH, SN 1713) recorded continuously at 512 kilosamples/second (256 kHz Nyquist frequency; 24 bit) for 2 years. The hydrophone was mounted vertically on a steel strut (insulated with rubber sheet) at about 70 cm above the mud/gravel seabed at 21m deep, with the sloping 45° rubble face of the jetty just behind the hydrophone. Temporal coverage is >90%, with gaps and truncated files arising due to network and power outages and software bugs. The audio recordings are 10 minute WAV files, compressed using the lossless FLAC code (Free Lossless Audio Codec, xiph.org; about 33MB of data/minute compressed; 100MB/min uncompressed). The hydrophone was under thick (to 3 m) sea ice cover for the majority of the dataset. The majority of the recorded biological sounds were produced by Weddell seals. Orca were present intermittently (~10 days total) in January-March in both summers. Known non-biological sounds include irregular low-intensity, broad-spectrum clicks and cracks from the sea ice cover, occasional wind noise, a 1.5-s gurgle with components to 200kHz every 90s from the CTD’s pump, a broad-spectrum mechanical sound for 3 min every 4 h from the observatory's underwater camera cleaning system, low-intensity whines (about 18, 58, 83, and 130 kHz, though variable over the dataset) thought to be from the station seawater pumps (>100 m away within the jetty’s well casing), and intermittent noises from tracked-vehicles and helicopters (September–February), SCUBA divers (October–December), and ships (January). Given hosting limitations, only every 6th file (roughly 10min/hour) has been archived here. Additional data can be obtained by contacting the primary author of the dataset, who will maintain it for as long as possible. Audio spectrogram images (PNGs) at three frequency ranges (three stacked panels per image, upper limits of 2.5, 25, and 256 kHz) from the entire dataset (all data, not subsampled) are also archived separately. | ["POINT(166.6645 -77.851)"] | ["POINT(166.6645 -77.851)"] | false | false |
Thermal sensitivity of membrane fluidity and integrity in hearts of Antarctic fishes that vary in expression of hemoglobin and myoglobin
|
1341663 1341602 |
2020-12-24 | O'Brien, Kristin; Evans, Elizabeth; Farnoud, Amir; Crockett, Elizabeth |
Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes |
Antarctic notothenioids are noted for extreme stenothermy, yet underpinnings of their thermal limits are not fully understood. We hypothesized that properties of ventricular membranes could explain previously observed differences among notothenioids in temperature onset of cardiac arrhythmias and persistent asystole. Microsomes were prepared using ventricles from six species of notothenioids, including four species from the hemoglobin-less (Hb-) family Channichthyidae (icefishes), which also differentially express cardiac myoglobin (Mb), and two species from the (Hb+) Nototheniidae. We determined membrane fluidity and structural integrity by quantifying fluorescence depolarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) and leakage of 5(6)-carboxyfluorescein, respectively, over a temperature range from ambient (0 °C) to 20 °C. Compositions of membrane phospholipids and cholesterol contents were also quantified. Membranes from all four species of icefishes exhibited greater fluidity than membranes from the red-blooded species N. coriiceps. Thermal sensitivity of fluidity did not vary among species. The greatest thermal sensitivity to leakage occurred between 0 and 5 °C for all species, while membranes from the icefish, Chaenocephalus aceratus (Hb-/Mb-) displayed leakage that was nearly 1.5-fold greater than leakage in N. coriiceps (Hb+/Mb+). Contents of phosphatidylethanolamine (PE) were approximately 1.5-fold greater in icefishes than in red-blooded fishes, and phospholipids had a higher degree of unsaturation in icefishes than in Hb + notothenioids. Cholesterol contents were lowest in Champsocephalus gunnari (Hb-/Mb-) and highest in the two Hb+/Mb + species, G. gibberifrons and N. coriiceps. Our results reveal marked differences in membrane properties and indicate a breach in membrane fluidity and structural integrity at a lower temperature in icefishes than in red-blooded notothenioids. | [] | [] | false | false |
Measurements of splenic contraction in Antarctic fishes
|
1341602 1341663 |
2020-12-18 | O'Brien, Kristin; Joyce, William; Axelsson, Michael |
Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes |
In fishes, the spleen can function as an important reservoir for red blood cells (RBCs), which, following splenic contraction, may be released into the circulation to increase haematocrit during energy‐demanding activities. This trait is particularly pronounced in red‐blooded Antarctic fishes in which the spleen can sequester a large proportion of RBCs during rest, thereby reducing blood viscosity, which may serve as an adaptation to life in cold environments. In one species, Pagothenia borchgrevinki, it has previously been shown that splenic contraction primarily depends on cholinergic stimulation. The aim of the present study was to investigate the regulation of splenic contraction in five other Antarctic fish species, three red‐blooded notothenioids (Dissostichus mawsoni Norman, 1937, Gobionotothen gibberifrons Lönnberg, 1905, Notothenia coriiceps Richardson 1844) and two white‐blooded “icefish” (Chaenocephalus aceratus Lönnberg, 1906 and Champsocephalus gunnari Lönnberg, 1905), which lack haemoglobin and RBCs, but nevertheless possess a large spleen. In all species, splenic strips constricted in response to both cholinergic (carbachol) and adrenergic (adrenaline) agonists. Surprisingly, in the two species of icefish, the spleen responded with similar sensitivity to red‐blooded species, despite contraction being of little obvious benefit for releasing RBCs into the circulation. Although the icefish lineage lost functional haemoglobin before diversifying over the past 7.8–4.8 millions of years, they retain the capacity to contract the spleen, likely as a vestige inherited from their red‐blooded ancestors. | [] | [] | false | false |
Effects of acute warming on cardiovascular performance of Antarctic fishes
|
1341663 1341602 |
2020-12-18 | Joyce, William; Farrell, Anthony; Axelsson, Michael; Egginton, Stuart; Crockett, Elizabeth; O'Brien, Kristin |
Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes |
We tested the hypothesis that blackfin icefish (Chaenocephalus aceratus), one of the six species in the family Channichthyidae (the icefishes) that do not express haemoglobin and myoglobin, lack regulatory cardiovascular flexibility during acute warming and activity. The experimental protocols were designed to optimize the surgical protocol and minimize stress. First, minimally invasive heart rate (fH) measurements were made during a thermal ramp until cardiac failure in C. aceratus and compared with those from the closely related red-blooded black rockcod (Notothenia coriiceps). Then, integrative cardiovascular adjustments were more extensively studied using flow probes and intravascular catheters in C. aceratus during acute warming (from 0 to 8°C) at rest and after imposed activity. Chaenocephalus aceratus had a lower routine fH than N. coriiceps (9 beats min-1 versus 14 beats min-1) and a lower peak fH during acute warming (38 beats min-1 versus 55 beats min-1) with a similar cardiac breakpoint temperature (13 and 14°C, respectively). Routine cardiac output (Q̇) for C. aceratus at ∼0°C was much lower (26.6 ml min-1 kg-1) than previously reported, probably because fish in the present study had a low fH (12 beats min-1) indicative of a high routine vagal tone and low stress. Chaenocephalus aceratus increased oxygen consumption during acute warming and with activity. Correspondingly, Q̇ increased considerably (maximally 86.3 ml min-1 kg-1), as did vascular conductance (5-fold). Thus, unlike earlier suggestions, these data provide convincing evidence that icefish can mount a well-developed cardiovascular regulation of heart rate, cardiac output and vascular conductance, and this regulatory capacity provides flexibility during acute warming. | [] | [] | false | false |
Adrenergic and adenosinergic regulation of the cardiovascular system in the Antarctic icefish Chaenocephalus aceratus
|
1341602 1341663 |
2020-12-18 | Joyce, Michael; Axelsson, Michael; Farrell, Anthony; Egginton, Stuart; O'Brien, Kristin |
Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes |
Icefishes characteristically lack the oxygen-binding protein haemoglobin and therefore are especially reliant on cardiovascular regulation to augment oxygen transport when oxygen demand increases, such as during activity and warming. Using both in vivo and in vitro experiments, we evaluated the roles for adrenaline and adenosine, two well-established cardio- and vasoactive molecules, in regulating the cardiovascular system of the blackfin icefish, Chaenocephalus aceratus. Despite increasing cardiac contractility (increasing twitch force and contraction kinetics in isometric myocardial strip preparations) and accelerating heart rate (ƒH), adrenaline (5 nmol kg-1 bolus intra-arterial injection) did not significantly increase cardiac output (Q̇) in vivo because it elicited a large decrease in vascular conductance (Gsys). In contrast, and despite preliminary data suggesting a direct negative inotropic effect of adenosine on isolated atria and little effect on isolated ventricle strips, adenosine (500 nmol kg-1) generated a large increase in Q̇ by increasing Gsys, a change reminiscent of that previously reported during both acute warming and invoked activity. Our data thus illustrate how Q̇ in C. aceratus may be much more dependent on peripheral control of vasomotor tone than direct regulation of the heart. | [] | [] | false | false |
Acclimation of cardiovascular function in Notothenia coriiceps
|
1341663 |
2020-12-18 | Joyce, William; Egginton, Stuart; Farrell, Anthony; Axelsson, Michael; Crockett, Elizabeth; O'Brien, Kristin |
Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes |
The Southern Ocean has experienced stable, cold temperatures for over 10 million years, yet particular regions are currently undergoing rapid warming. To investigate the impacts of warming on cardiovascular oxygen transport, we compared the cardio-respiratory performance in an Antarctic notothenioid (Notothenia coriiceps) that was maintained at 0 or 5°C for 6.0-9.5 weeks. When compared at the fish's respective acclimation temperature, the oxygen consumption rate and cardiac output were significantly higher in 5°C-acclimated than 0°C-acclimated fish. The 2.7-fold elevation in cardiac output in 5°C-acclimated fish (17.4 vs. 6.5 ml min-1 kg-1) was predominantly due to a doubling of stroke volume, likely in response to increased cardiac preload, as measured by higher central venous pressure (0.15 vs. 0.08 kPa); tachycardia was minor (29.5 vs. 25.2 beats min-1). When fish were acutely warmed, oxygen consumption rate increased by similar amounts in 0°C- and 5°C-acclimated fish at equivalent test temperatures. In both acclimation groups, the increases in oxygen consumption rate during acute heating were supported by increased cardiac output achieved by elevating heart rate, while stroke volume changed relatively little. Cardiac output was similar between both acclimation groups until 12°C when cardiac output became significantly higher in 5°C-acclimated fish, driven largely by their higher stroke volume. Although cardiac arrhythmias developed at a similar temperature (~14.5°C) in both acclimation groups, the hearts of 5°C-acclimated fish continued to pump until significantly higher temperatures (CTmax for cardiac function 17.7 vs. 15.0°C for 0°C-acclimated fish). These results demonstrate that N. coriiceps is capable of increasing routine cardiac output during both acute and chronic warming, although the mechanisms are different (heart rate-dependent versus primarily stroke volume-dependent regulation, respectively). Cardiac performance was enhanced at higher temperatures following 5°C acclimation, suggesting cardiovascular function may not constrain the capacity of N. coriiceps to withstand a warming climate. | [] | [] | false | false |
Hypoxia response of hearts of Antarctic fishes
|
1341663 1341602 |
2020-12-18 | O'Brien, Kristin |
Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes |
The ability of Antarctic notothenioid fishes to mount a robust molecular response to hypoxia is largely unknown. The transcription factor, hypoxia-inducible factor-1 (HIF-1), a heterodimer of HIF-1α and HIF-1β subunits, is the master regulator of oxygen homeostasis in most metazoans. We sought to determine if, in the hearts of Antarctic notothenioids, HIF-1 is activated and functional in response to either an acute heat stress or hypoxia. The red-blooded Notothenia coriiceps and the hemoglobinless icefish, Chaenocephalus aceratus, were exposed to their critical thermal maximum (CTMAX) or hypoxia (5.0 ± 0.3 mg of O2 L-1) for 2 h. Additionally, N. coriiceps was exposed to 2.3 ± 0.3 mg of O2 L-1 for 12 h, and red-blooded Gobionotothen gibberifrons was exposed to both levels of hypoxia. Levels of HIF-1α were quantified in nuclei isolated from heart ventricles using western blotting. Transcript levels of genes involved in anaerobic metabolism, and known to be regulated by HIF-1, were quantified by real-time PCR, and lactate levels were measured in heart ventricles. Protein levels of HIF-1α increase in nuclei of hearts of N. coriiceps and C. aceratus in response to exposure to CTMAX and in hearts of N. coriiceps exposed to severe hypoxia, yet mRNA levels of anaerobic metabolic genes do not increase in any species, nor do lactate levels increase, suggesting that HIF-1 does not stimulate metabolic remodeling in hearts of notothenioids under these conditions. Together, these data suggest that Antarctic notothenioids may be vulnerable to hypoxic events, which are likely to increase with climate warming. | [] | [] | false | false |
Cardiac metabolism in Antarctic fishes in response to an acute increase in temperature
|
1341663 |
2020-12-18 | O'Brien, Kristin |
Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes |
Studies in temperate fishes provide evidence that cardiac mitochondrial function and the capacity to fuel cardiac work contribute to thermal tolerance. Here, we tested the hypothesis that decreased cardiac aerobic metabolic capacity contributes to the lower thermal tolerance of the haemoglobinless Antarctic icefish, Chaenocephalus aceratus, compared with that of the red-blooded Antarctic species, Notothenia coriiceps. Maximal activities of citrate synthase (CS) and lactate dehydrogenase (LDH), respiration rates of isolated mitochondria, adenylate levels and changes in mitochondrial protein expression were quantified from hearts of animals held at ambient temperature or exposed to their critical thermal maximum (CTmax). Compared with C. aceratus, activity of CS, ATP concentration and energy charge were higher in hearts of N. coriiceps at ambient temperature and CTmax While state 3 mitochondrial respiration rates were not impaired by exposure to CTmax in either species, state 4 rates, indicative of proton leakage, increased following exposure to CTmax in C. aceratus but not N. coriiceps The interactive effect of temperature and species resulted in an increase in antioxidants and aerobic metabolic enzymes in N. coriiceps but not in C. aceratus Together, our results support the hypothesis that the lower aerobic metabolic capacity of C. aceratus hearts contributes to its low thermal tolerance. | [] | [] | false | false |
High-resolution benthic seawater temperature record 1999-2012 (25-40m depth) from near intake jetty at McMurdo Station, Antarctica
|
0231006 1142158 |
2020-04-08 | Cheng, Chi-Hing; Cziko, Paul; Devries, Arthur |
Antarctic Notothenioid Fish Freeze Avoidance and Genome-wide Evolution for Life in the Cold |
Benthic seawater temperature (within 10cm of the bottom) from near the McMurdo Station, Ross Island, Antarctica saltwater intake jetty. Data collected at two nearby locations: On muddy bottom at base of artificial rock jetty (~25m depth), and ~50m west of the Jetty in sponge/spicule mat habitat (~40m depth). | ["POLYGON((163 -76.5,163.5 -76.5,164 -76.5,164.5 -76.5,165 -76.5,165.5 -76.5,166 -76.5,166.5 -76.5,167 -76.5,167.5 -76.5,168 -76.5,168 -76.63,168 -76.76,168 -76.89,168 -77.02,168 -77.15,168 -77.28,168 -77.41,168 -77.54,168 -77.67,168 -77.8,167.5 -77.8,167 -77.8,166.5 -77.8,166 -77.8,165.5 -77.8,165 -77.8,164.5 -77.8,164 -77.8,163.5 -77.8,163 -77.8,163 -77.67,163 -77.54,163 -77.41,163 -77.28,163 -77.15,163 -77.02,163 -76.89,163 -76.76,163 -76.63,163 -76.5))"] | ["POINT(165.5 -77.15)"] | false | false |
Cosmogenic nuclide data from glacial deposits along the Liv Glacier coast
|
1443346 |
2019-11-21 | Stone, John |
Collaborative Research: High-resolution Reconstruction of Holocene Deglaciation in the Southern Ross Embayment |
This data set contains measurements of cosmic-ray-produced Be-10 in quartz from glacial erratics and bedrock at sites along and adjacent to Liv Glacier and Amundsen Glacier in the southern Transantarctic Mountains. Samples were collected during the 2016-17 and 2017-18 field seasons working from remote camps along the coast. Locations were determined by hand-held GPS. Elevations are based on barometric altimetry corrected for daily drift and referenced to precise (geodetic) GPS benchmarks established over a range of altitudes at each site. Horizon geometry and the resulting topographic shielding of the cosmic ray flux was determined from vertically-oriented full-sky (fisheye) photographs at each sample location. Samples were processed at the University of Washington Cosmogenic Nuclide Laboratory using established procedures for mineral separation, dissolution, beryllium extraction and purification, described at http://depts.washington.edu/cosmolab/chem.shtml. Beryllium isotope ratios were measured at the Lawrence Livermore Center for Accelerator Mass Spectrometry (LLNL-CAMS) relative to the KNSTD-Be-01-5-4 standard, assuming a standard Be-10/Be-9 ratio of 2.851E-12 (07KNSTD normalization). Data are reported as input for the online CRONUS cosmogenic nuclide calculator (V3, current at the time of submission in November 2019). Exposure ages can be obtained by entering the data into the CRONUS calculator, at: http://hess.ess.washington.edu/math/v3/v3_age_in.html . Data for each sample consists of two lines of input parameters, as follows: {Sample_name, Latitude (DD), Longitude (DD), Altitude (m asl), Scaling_function, Thickness (cm), Density (g/cm^3), Horizon_correction, Erosion_rate (cm/yr), Year_sampled} {Sample_name, Nuclide (in this case Be-10), Target_mineral (quartz), Be-10_concentration (atom/g), Error_Be-10_concentration (atom/g), Normalization} Further information about the V3 input format is given at: http://hess.ess.washington.edu/math/docs/v3/v3_input_explained.html | ["POLYGON((-174 -84.5,-172.4 -84.5,-170.8 -84.5,-169.2 -84.5,-167.6 -84.5,-166 -84.5,-164.4 -84.5,-162.8 -84.5,-161.2 -84.5,-159.6 -84.5,-158 -84.5,-158 -84.63,-158 -84.76,-158 -84.89,-158 -85.02,-158 -85.15,-158 -85.28,-158 -85.41,-158 -85.54,-158 -85.67,-158 -85.8,-159.6 -85.8,-161.2 -85.8,-162.8 -85.8,-164.4 -85.8,-166 -85.8,-167.6 -85.8,-169.2 -85.8,-170.8 -85.8,-172.4 -85.8,-174 -85.8,-174 -85.67,-174 -85.54,-174 -85.41,-174 -85.28,-174 -85.15,-174 -85.02,-174 -84.89,-174 -84.76,-174 -84.63,-174 -84.5))"] | ["POINT(-166 -85.15)"] | false | false |
Material properties of the exoskeleton of Paralomis birsteini
|
1141877 |
2018-07-27 | Steffel, Brittan |
Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos |
This data set includes measurements of the percent calcium, thickness, and microhardness of the exoskeleton in Paralomis birsteini, Cancer borealis, and Callinectes sapidus. Measurements were taken in the carapace, major chela, and minor chela of each crab. Paralomis birsteini were trapped at ~1350 m depth off Marguerite Bay, western Antarctic Peninsula in 2015. Cancer borealis were trapped in the Gulf of Maine, USA at ~50 m depth, and Callinectes sapidus were trapped in Florida, USA at depths shallower than 30 m. | [] | [] | false | false |
Hydrodynamics of Spongiobranchaea australis
|
1246317 |
2017-09-27 | Mittal, Rajat |
Collaborative Research: Pteropod Swimming Behavior as a Bio Assay for Ocean Acidification |
Spongiobranchaea australis is a gymnosome pteropod that is abundant in the Southern Ocean. Videos of specimens of S. Australis collected near Palmer Station in April 2014, were used to develop computational fluid dynamics models and simulations of swimming hydrodynamics conducted. The deposited movie shows the computed vortex structures for a swimming S. Australis. | [] | [] | false | false |
Thermal windows and metabolic performance curves in a developing Antarctic fish
|
1142122 |
2017-08-07 | Todgham, Anne; Miller, Nathan |
RUI: Synergistic effects of Ocean Acidification and Warming on Larval Development in Antarctic Fishes |
This dataset includes data from the publication Flynn and Todgham 2017 - Thermal windows and metabolic performance curves in a developing Antarctic fish. Included are data on embryo survival, development, and metabolic rate. | ["POLYGON((166.5 -77.5,166.55 -77.5,166.6 -77.5,166.65 -77.5,166.7 -77.5,166.75 -77.5,166.8 -77.5,166.85 -77.5,166.9 -77.5,166.95 -77.5,167 -77.5,167 -77.55,167 -77.6,167 -77.65,167 -77.7,167 -77.75,167 -77.8,167 -77.85,167 -77.9,167 -77.95,167 -78,166.95 -78,166.9 -78,166.85 -78,166.8 -78,166.75 -78,166.7 -78,166.65 -78,166.6 -78,166.55 -78,166.5 -78,166.5 -77.95,166.5 -77.9,166.5 -77.85,166.5 -77.8,166.5 -77.75,166.5 -77.7,166.5 -77.65,166.5 -77.6,166.5 -77.55,166.5 -77.5))"] | ["POINT(166.75 -77.75)"] | false | false |
Antarctic emerald rockcod have the capacity to compensate for warming when uncoupled from CO2-acidification
|
1142122 |
2017-08-07 | Todgham, Anne; Miller, Nathan |
RUI: Synergistic effects of Ocean Acidification and Warming on Larval Development in Antarctic Fishes |
This dataset includes data from the publication Davis et al - Antarctic emerald rockcod have the capacity to compensate for warming when uncoupled from CO2-acidification. Included are data on cardiorespiratory physiology, survival, metabolic rate, metabolic enzyme activity, behavior (scototaxis & activity) and seawater chemistry. | ["POLYGON((166 -77.5,166.1 -77.5,166.2 -77.5,166.3 -77.5,166.4 -77.5,166.5 -77.5,166.6 -77.5,166.7 -77.5,166.8 -77.5,166.9 -77.5,167 -77.5,167 -77.55,167 -77.6,167 -77.65,167 -77.7,167 -77.75,167 -77.8,167 -77.85,167 -77.9,167 -77.95,167 -78,166.9 -78,166.8 -78,166.7 -78,166.6 -78,166.5 -78,166.4 -78,166.3 -78,166.2 -78,166.1 -78,166 -78,166 -77.95,166 -77.9,166 -77.85,166 -77.8,166 -77.75,166 -77.7,166 -77.65,166 -77.6,166 -77.55,166 -77.5))"] | ["POINT(166.5 -77.75)"] | false | false |
Physiological and biochemical measurements on Antarctic dragonfish (Gymnodraco acuticeps) from McMurdo Sound
|
1142122 |
2017-06-01 | Miller, Nathan; Todgham, Anne; Davis, Brittany; Flynn, Erin |
RUI: Synergistic effects of Ocean Acidification and Warming on Larval Development in Antarctic Fishes |
This dataset includes data from the publication "Flynn, et al. (2015) - Ocean acidification exerts negative effects under warming conditions in a developing Antarctic fish". Included are data on embryo survival, development, metabolic rate, metabolic enzyme activity (citrate synthase), whole embryo osmolality and seawater chemistry. | ["POLYGON((166.163 -76.665,166.2635 -76.665,166.364 -76.665,166.4645 -76.665,166.565 -76.665,166.6655 -76.665,166.766 -76.665,166.8665 -76.665,166.967 -76.665,167.0675 -76.665,167.168 -76.665,167.168 -76.782,167.168 -76.899,167.168 -77.016,167.168 -77.133,167.168 -77.25,167.168 -77.367,167.168 -77.484,167.168 -77.601,167.168 -77.718,167.168 -77.835,167.0675 -77.835,166.967 -77.835,166.8665 -77.835,166.766 -77.835,166.6655 -77.835,166.565 -77.835,166.4645 -77.835,166.364 -77.835,166.2635 -77.835,166.163 -77.835,166.163 -77.718,166.163 -77.601,166.163 -77.484,166.163 -77.367,166.163 -77.25,166.163 -77.133,166.163 -77.016,166.163 -76.899,166.163 -76.782,166.163 -76.665))"] | ["POINT(166.6655 -77.25)"] | false | false |
Physiological and biochemical measurements on juvenile Antarctic rockcod (Trematomus bernacchii) from McMurdo Sound
|
1142122 |
2017-05-20 | Miller, Nathan; Todgham, Anne; Davis, Brittany; Flynn, Erin |
RUI: Synergistic effects of Ocean Acidification and Warming on Larval Development in Antarctic Fishes |
This dataset includes data from the publication "Davis, et al. (2016) - Juvenile Antarctic rockcod (Trematomus bernacchii) are physiologically robust to CO2-acidified seawater". Included are data on cardiorespiratory physiology, survival, metabolic rate, metabolic enzyme activity (citrate synthase) and seawater chemistry. | ["POLYGON((166.163 -76.665,166.2635 -76.665,166.364 -76.665,166.4645 -76.665,166.565 -76.665,166.6655 -76.665,166.766 -76.665,166.8665 -76.665,166.967 -76.665,167.0675 -76.665,167.168 -76.665,167.168 -76.782,167.168 -76.899,167.168 -77.016,167.168 -77.133,167.168 -77.25,167.168 -77.367,167.168 -77.484,167.168 -77.601,167.168 -77.718,167.168 -77.835,167.0675 -77.835,166.967 -77.835,166.8665 -77.835,166.766 -77.835,166.6655 -77.835,166.565 -77.835,166.4645 -77.835,166.364 -77.835,166.2635 -77.835,166.163 -77.835,166.163 -77.718,166.163 -77.601,166.163 -77.484,166.163 -77.367,166.163 -77.25,166.163 -77.133,166.163 -77.016,166.163 -76.899,166.163 -76.782,166.163 -76.665))"] | ["POINT(166.6655 -77.25)"] | false | false |
Electronic fishing logs LM Gould 2015
|
1043576 |
2016-12-13 | Crockett, Elizabeth |
Collaborative research: Redox Balance in Antarctic Notothenioid fishes: Do Icefishes have an Advantage? |
Positioning and depth recordings were made using instruments aboard the ARSV Laurence M Gould. | [] | [] | false | false |
Redox Balance in Antarctic Notothenioid Fishes
|
1043781 |
2016-12-06 | O'Brien, Kristin |
Collaborative research: Redox Balance in Antarctic Notothenioid fishes: Do Icefishes have an Advantage? |
None | [] | [] | false | false |
Retrospective Analysis of Antarctic Tracking data (RAATD): International Crabeater and Weddell Seal Tracking Data Sets
|
1321782 |
2015-01-01 | Costa, Daniel |
Retrospective Analysis of Antarctic Tracking data (RAATD): International Crabeater and Weddell Seal Tracking Data Sets |
Identifying the basic habitat requirements of Antarctic predators is fundamental to understanding how they will respond to the human-induced challenges of commercial fisheries and climate change. This understanding can only be achieved if the underlying linkages to physical processes are related to animal movements. As part of the international Retrospective Analysis of Antarctic Tracking Data (RAATD) organized by the SCAR Expert Group of Birds and Marine Mammals, this research will collate and synthesize tracking data from crabeater seals, Lobodon carcinophagus, and Weddell seals, Leptonychotes weddelli. These data will be combined with all available data from the Southern Ocean that has been collected by researchers from Norway, United Kingdom, Germany, Australia and the USA. These data will be analyzed using a common analytical approach and synthesized into a synoptic view of these two species across the Southern Ocean. The diving and movement patterns will be examined for each species. As well, the total home range and core habitat utilization patterns for each species and region will be determined. This study will develop global habitat maps for each species based on physical and biological attributes of their 'hot-spots' and then overlay all the species specific maps to identify multi-species areas of ecological significance. Broader impacts include support and training for a postdoctoral scholar, the production of a publicly available database and the participation in an international data synthesis effort. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
The Physiological Ecology of Two Antarctic Icons: Emperor Penguins and Leopard Seals
|
0944220 |
2014-01-01 | Ponganis, Paul |
The Physiological Ecology of Two Antarctic Icons: Emperor Penguins and Leopard Seals |
Emperor penguins (Aptenodytes forsteri) and leopard seals (Hydrurga leptonyx) are iconic, top predators in Antarctica. Understanding their physiological ecology is essential to the assessment of their adaptability to the threats of climate change, pollution, and overfishing. The proposed research has multipronged objectives. Prior results suggest that Emperor penguins have flexible (vs. static) aerobic dive limits (ADL) that vary with the type of dive, and that the role of heart rate in utilization of oxygen stores also varies with dive type. A series of physiological measurements are proposed with backpack electrocardiogram recorders, that will allow further delineation of patterns and interrelationships among heart rate, dive behavior, and oxygen stores. Importantly, the research will be done on free diving emperors, and not individuals confined to a dive hole, thereby providing a more genuine measure of diving physiology and behavior. A separate objective is to examine foraging behavior of leopard seals, using a backpack digital camera and time depth recorder. Leopard seal behavior and prey intake is poorly quantified, but known to be significant. Accordingly the research is somewhat exploratory but will provide important baseline data. Finally, the P.I. proposes to continue long term overflight censuses of Emperor penguin colonies in the Ross Sea. Broader impacts include collaboration with National Geographic television, graduate student training, and development of sedation techniques for leopard seals. | ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"] | ["POINT(-155 -73)"] | false | false |
Impact of Rising Oceanic Temperatures on the Embryonic Development of Antarctic Notothenioid Fishes
|
1019305 |
2014-01-01 | Grim, Jeffrey |
PostDoctoral Research Fellowship |
Survival of Antarctic notothenioid fishes in the context of global climate change will depend upon the impact of rising oceanic temperatures on their embryonic development, yet little is known regarding the molecular mechanisms underlying this complex suite of processes. Many notothenioids are characterized by secondary pelagicism, which enables them to exploit food sources in the water column and is supported in part by skeletal pedomorphism. Here the PI proposes to examine the hypothesis that reactive oxygen species (ROS) regulate notothenioid skeletal pedomorphism. The research objectives are : 1) To quantify and localize ROS production and identify the point(s) of origin of ROS production in embryonic Antarctic fishes that differ in skeletal phenotypes 2) To determine whether the time course of embryogenesis and the extent of osteological development in embryonic Antarctic fishes can be altered by changing the oxidative status of the animal during embryogenesis 3) To evaluate whether transgenic alteration of oxidative status can induce skeletal pedomorphism in a fish model. Broader Impacts will include teaching undergraduate lectures, recruiting undergraduate students to help with lab analyses (and possibly field work), lectures and demonstrations to high school students, and allowing secondary educators access to personal photos and videos of research animals for curriculum development. | [] | [] | false | false |
Linkages among Mitochondrial Form, Function and Thermal Tolerance of Antarctic Notothenioid Fishes
|
0741301 |
2013-01-01 | O'Brien, Kristin |
Collaborative Research: Linkages among Mitochondrial Form, Function and Thermal Tolerance of Antarctic Notothenioid Fishes |
Antarctic notothenioid fishes have evolved in the Southern Ocean for 10-14 MY under an unusual set of circumstances. Their characteristics include the complete absence of the circulating oxygen-binding protein, hemoglobin (Hb) within the Channichthyid (Icefish) family of notothenioids. Moreover, some species within the 16 members of this family have also lost the ability to express the oxygen-binding and storage protein, myoglobin (Mb) in cardiac muscle. Our previous work has determined that the loss of Hb and/or Mb is correlated with significant increases in densities of mitochondria within oxidative tissues, and extensive remodeling of these vital organelles. To date, nothing is known about how modifications in mitochondrial architecture of icefishes affect organelle function, or more importantly, how they affect organismal-level physiology. Most critical for Antarctic fishes is that mitochondrial characteristics have been linked to how well ectotherms can withstand increases in temperature. This collaborative research project will address the hypothesis that the unusual mitochondrial architecture of Antarctic Channichthyids has led to changes in function that impact their ability to withstand elevations in temperature. Specifically, the research will (1) determine if the unusual mitochondrial architecture of icefishes affects function and contributes to organismal thermal sensitivity, (2) identify differences in organismal thermal tolerance between red- and white- blooded notothenioids, (3) identify molecular mechanisms regulating changes in mitochondrial structure in icefishes. The results may establish channichthyid icefishes as a sentinel taxon for signaling the impact of global warming on the Southern Ocean. Broad impacts of this project will be realized by participation of high school biology teachers in field work through cooperation with the ARMADA project at the University of Rhode Island, as well as graduate education. | ["POLYGON((-64.45 -63.29,-64.249 -63.29,-64.048 -63.29,-63.847 -63.29,-63.646 -63.29,-63.445 -63.29,-63.244 -63.29,-63.043 -63.29,-62.842 -63.29,-62.641 -63.29,-62.44 -63.29,-62.44 -63.371,-62.44 -63.452,-62.44 -63.533,-62.44 -63.614,-62.44 -63.695,-62.44 -63.776,-62.44 -63.857,-62.44 -63.938,-62.44 -64.019,-62.44 -64.1,-62.641 -64.1,-62.842 -64.1,-63.043 -64.1,-63.244 -64.1,-63.445 -64.1,-63.646 -64.1,-63.847 -64.1,-64.048 -64.1,-64.249 -64.1,-64.45 -64.1,-64.45 -64.019,-64.45 -63.938,-64.45 -63.857,-64.45 -63.776,-64.45 -63.695,-64.45 -63.614,-64.45 -63.533,-64.45 -63.452,-64.45 -63.371,-64.45 -63.29))"] | ["POINT(-63.445 -63.695)"] | false | false |
The Cellular Stress Response in Cold-adapted Organisms: Building Novel Mechanistic Links between Heat Stress, Cell Cycle Arrest and Apoptosis in Antarctic Fishes.
|
0944743 |
2013-01-01 | Buckley, Bradley |
The Cellular Stress Response in Cold-adapted Organisms: Building Novel Mechanistic Links between Heat Stress, Cell Cycle Arrest and Apoptosis in Antarctic Fishes. |
The research will investigate a novel mechanism by which cold-adapted fishes of the Southern Ocean sense and respond to elevated temperatures. It is hypothesized that sub-lethal heat stress may induce cell cycle arrest and/or programmed cell death through apoptosis. The study will use genome-enabled technologies to examine the environmental control over gene expression in Antarctic species and will build direct mechanistic links between the expression of a specific signaling pathway gene and heat-induced changes in cells. Prior results support the hypothesis that heat stress results in cell cycle arrest and, in some cases, programmed cell death in Antarctic fishes. If so, this represents a novel, modified version of the well-conserved cellular stress response found in essentially all other species and suggests that warming ocean temperatures may have profound cellular and physiological impacts on these extremely stenothermal species. The P.I. conducts outreach activities with the Oregon Museum of Science and Industry, will be involved in developing a science curriculum for the Native American Youth and Family Center (NAYA) Early College Academy in Portland, and supports the educational and professional development of both undergraduate and graduate students at Portland State University. | ["POINT(166.66667 -77.83333)"] | ["POINT(166.66667 -77.83333)"] | false | false |
The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula
|
0838773 |
2011-01-01 | McClintock, James; Amsler, Charles |
Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula |
The near shore environments of the western Antarctic Peninsula (WAP) harbor extremely high densities of mesograzers (small invertebrate predators approximately 1-25 mm in length) such as benthic amphipods, as well as rich assemblages of macroalgae, endophytes, and macroinvertebrates. Unlike temperate and tropical shallow marine environments, where fish and sea urchins are key grazers structuring the community, mesograzers appear to be much more important in the WAP. Accordingly, the proposed research has two main objectives: (1) To further investigate the interactions between the ecologically dominant large macrophytes, filamentous epi/endophytes, and mesograzers and (2) To determine the nature of interactions between mesograzers and sessile invertebrates. Specifically, the research will examine the following hypotheses: 1: The effects of endophytes on macrophytes are often negative, and consequently macrophytes defend against endophytic infection. 2: Mesoherbivores prevent filamentous algal species, common in the intertidal, from dominating subtidal assemblages. 3: Mesograzer predation pressure on sessile benthic macroinvertebrates, primarily sponges and tunicates, is greatest in shallow habitats dominated by macrophytes, and this impacts depth distributions of macroinvertebrate species. 4: Benthic macroinvertebrates may defend against mesograzers with secondary metabolites which effect molting and/or deter feeding. Broader impacts include involvement of undergraduates, including minorities, in research; training of graduate students, and continuation of the highly successful UAB IN ANTARCTICA interactive web program (two time recipient of awards of excellence from the US Council for Advancement and Support of Education). The researchers also will share their scientific endeavors with teachers, K-12 students, and other members of the community at large while in residence in Antarctica. In addition, the investigators will request the participation of a PolarTREC teacher. | ["POLYGON((-79 -60,-76.4 -60,-73.8 -60,-71.2 -60,-68.6 -60,-66 -60,-63.4 -60,-60.8 -60,-58.2 -60,-55.6 -60,-53 -60,-53 -61,-53 -62,-53 -63,-53 -64,-53 -65,-53 -66,-53 -67,-53 -68,-53 -69,-53 -70,-55.6 -70,-58.2 -70,-60.8 -70,-63.4 -70,-66 -70,-68.6 -70,-71.2 -70,-73.8 -70,-76.4 -70,-79 -70,-79 -69,-79 -68,-79 -67,-79 -66,-79 -65,-79 -64,-79 -63,-79 -62,-79 -61,-79 -60))"] | ["POINT(-66 -65)"] | false | false |
The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula
|
0838776 |
2011-01-01 | Baker, Bill |
Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing |
The near shore environments of the western Antarctic Peninsula (WAP) harbor extremely high densities of mesograzers (small invertebrate predators approximately 1-25 mm in length) such as benthic amphipods, as well as rich assemblages of macroalgae, endophytes, and macroinvertebrates. Unlike temperate and tropical shallow marine environments, where fish and sea urchins are key grazers structuring the community, mesograzers appear to be much more important in the WAP. Accordingly, the proposed research has two main objectives: (1) To further investigate the interactions between the ecologically dominant large macrophytes, filamentous epi/endophytes, and mesograzers and (2) To determine the nature of interactions between mesograzers and sessile invertebrates. Specifically, the research will examine the following hypotheses: 1: The effects of endophytes on macrophytes are often negative, and consequently macrophytes defend against endophytic infection. 2: Mesoherbivores prevent filamentous algal species, common in the intertidal, from dominating subtidal assemblages. 3: Mesograzer predation pressure on sessile benthic macroinvertebrates, primarily sponges and tunicates, is greatest in shallow habitats dominated by macrophytes, and this impacts depth distributions of macroinvertebrate species. 4: Benthic macroinvertebrates may defend against mesograzers with secondary metabolites which effect molting and/or deter feeding. Broader impacts include involvement of undergraduates, including minorities, in research; training of graduate students, and continuation of the highly successful UAB IN ANTARCTICA interactive web program (two time recipient of awards of excellence from the US Council for Advancement and Support of Education). The researchers also will share their scientific endeavors with teachers, K-12 students, and other members of the community at large while in residence in Antarctica. In addition, the investigators will request the participation of a PolarTREC teacher. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)
|
0528728 |
2011-01-01 | Vernet, Maria |
Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK) |
This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. This collaborative project is concerned with the synthesis and modeling of lower trophic levels. | ["POLYGON((-69.08 -64.8,-68.632 -64.8,-68.184 -64.8,-67.736 -64.8,-67.288 -64.8,-66.84 -64.8,-66.392 -64.8,-65.944 -64.8,-65.496 -64.8,-65.048 -64.8,-64.6 -64.8,-64.6 -65.121,-64.6 -65.442,-64.6 -65.763,-64.6 -66.084,-64.6 -66.405,-64.6 -66.726,-64.6 -67.047,-64.6 -67.368,-64.6 -67.689,-64.6 -68.01,-65.048 -68.01,-65.496 -68.01,-65.944 -68.01,-66.392 -68.01,-66.84 -68.01,-67.288 -68.01,-67.736 -68.01,-68.184 -68.01,-68.632 -68.01,-69.08 -68.01,-69.08 -67.689,-69.08 -67.368,-69.08 -67.047,-69.08 -66.726,-69.08 -66.405,-69.08 -66.084,-69.08 -65.763,-69.08 -65.442,-69.08 -65.121,-69.08 -64.8))"] | ["POINT(-66.84 -66.405)"] | false | false |
The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)
|
0529087 |
2011-01-01 | Quetin, Langdon B.; Ross, Robin Macurda |
Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK) |
This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. This collaborative project is concerned with the synthesis and modeling of lower trophic levels. | ["POLYGON((-71 -61,-70 -61,-69 -61,-68 -61,-67 -61,-66 -61,-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-61 -61.9,-61 -62.8,-61 -63.7,-61 -64.6,-61 -65.5,-61 -66.4,-61 -67.3,-61 -68.2,-61 -69.1,-61 -70,-62 -70,-63 -70,-64 -70,-65 -70,-66 -70,-67 -70,-68 -70,-69 -70,-70 -70,-71 -70,-71 -69.1,-71 -68.2,-71 -67.3,-71 -66.4,-71 -65.5,-71 -64.6,-71 -63.7,-71 -62.8,-71 -61.9,-71 -61))"] | ["POINT(-66 -65.5)"] | false | false |
The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)
|
0529666 |
2011-01-01 | Fritsen, Christian |
Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK) |
This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. It is currently in a synthesis and modeling phase. This collaborative project is concerned with the lower trophic levels, and will be integrated with other synthesis and modeling studies that deal with grazers, predators, and other higher trophic levels. | ["POLYGON((-180 -39.23,-144 -39.23,-108 -39.23,-72 -39.23,-36 -39.23,0 -39.23,36 -39.23,72 -39.23,108 -39.23,144 -39.23,180 -39.23,180 -44.307,180 -49.384,180 -54.461,180 -59.538,180 -64.615,180 -69.692,180 -74.769,180 -79.846,180 -84.923,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.923,-180 -79.846,-180 -74.769,-180 -69.692,-180 -64.615,-180 -59.538,-180 -54.461,-180 -49.384,-180 -44.307,-180 -39.23))"] | ["POINT(0 -89.999)"] | false | false |
Impacts of Elevated pCO2 on a Dominant Aragonitic Pteropod (Thecosomata) and its Specialist Predator (Gymnosomata) in the Ross Sea
|
0538479 |
2010-01-01 | Seibel, Brad |
Collaborative Research: Impacts of Elevated pCO2 on a Dominant Aragonitic Pteropod (Thecosomata) and its Specialist Predator (Gymnosomata) in the Ross Sea |
Rising atmospheric carbon dioxide concentrations have resulted in greater oceanic uptake of anthropogenic carbon dioxide. Elevated partial pressure of carbon dioxide can impact marine organisms both via decreased carbonate saturation that affects calcification rates and via disturbance to acid-base (metabolic) physiology. Pteropod molluscs (Thecosomata) form shells made of aragonite, a type of calcium carbonate that is highly soluble, suggesting that these organisms may be particularly sensitive to increasing carbon dioxide and reduced carbonate ion concentration. Thecosome pteropods, which dominate the calcium carbonate export south of the Antarctic Polar Front, will be the first major group of marine calcifying organisms to experience carbonate undersaturation within parts of their present-day geographical ranges as a result of anthropogenic carbon dioxide. An unusual, co-evolved relationship between thecosomes and their specialized gymnosome predators provides a unique backdrop against which to assess the physiological and ecological importance of elevated partial pressure of carbon dioxide. Pteropods are functionally important components of the Antarctic ecosystem with potential to influence phytoplankton stocks, carbon export, and dimethyl sulfide levels that, in turn, influence global climate through ocean-atmosphere feedback loops. The research will quantify the impact of elevated carbon dioxide on a dominant aragonitic pteropod, Limacina helicina, and its specialist predator, the gymnosome Clione antarctica, in the Ross Sea through laboratory experimentation. Results will be disseminated broadly to enhance scientific understanding in this field. The project involves collaboration between researchers at a predominantly undergraduate institution with a significant enrollment of students that are typically underrepresented in the research environment (California State University San Marcos - CSUSM) and at a Ph.D.-granting institution (University of Rhode Island - URI). The program will promote education and learning through the joint education of undergraduate students and graduate students at CSUSM and URI as part of a research team, as well as through the teaching activities of the principal investigators. Dr. Keating, CSUSM professor of science education, will participate in the McMurdo fieldwork and lead the outreach opportunities for the project. | ["POLYGON((166 -77,166.1 -77,166.2 -77,166.3 -77,166.4 -77,166.5 -77,166.6 -77,166.7 -77,166.8 -77,166.9 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.9 -78,166.8 -78,166.7 -78,166.6 -78,166.5 -78,166.4 -78,166.3 -78,166.2 -78,166.1 -78,166 -78,166 -77.9,166 -77.8,166 -77.7,166 -77.6,166 -77.5,166 -77.4,166 -77.3,166 -77.2,166 -77.1,166 -77))"] | ["POINT(166.5 -77.5)"] | false | false |
Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes
|
0436190 |
2009-01-01 | Eastman, Joseph |
Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes |
Patterns of biodiversity, as revealed by basic research in organismal biology, may be derived from ecological and evolutionary processes expressed in unique settings, such as Antarctica. The polar regions and their faunas are commanding increased attention as declining species diversity, environmental change, commercial fisheries, and resource management are now being viewed in a global context. Commercial fishing is known to have a direct and pervasive effect on marine biodiversity, and occurs in the Southern Ocean as far south as the Ross Sea. The nature of fish biodiversity in the Antarctic is different than in all other ocean shelf areas. Waters of the Antarctic continental shelf are ice covered for most of the year and water temperatures are nearly constant at -1.5 C. In these waters components of the phyletically derived Antarctic clade of Notothenioids dominate fish diversity. In some regions, including the southwestern Ross Sea, Notothenioids are overwhelmingly dominant in terms of number of species, abundance, and biomass. Such dominance by a single taxonomic group is unique among shelf faunas of the world. In the absence of competition from a taxonomically diverse fauna, Notothenioids underwent a habitat or depth related diversification keyed to the utilization of unfilled niches in the water column, especially pelagic or partially pelagic zooplanktivory and piscivory. This has been accomplished in the absence of a swim bladder for buoyancy control. They also may form a special type of adaptive radiation known as a species flock, which is an assemblage of a disproportionately high number of related species that have evolved rapidly within a defined area where most species are endemic. Diversification in buoyancy is the hallmark of the notothenioid radiation. Buoyancy is the feature of notothenioid biology that determines whether a species lives on the substrate, in the water column or both. Buoyancy also influences other key aspects of life history including swimming, feeding and reproduction and thus has implications for the role of the species in the ecosystem. With similarities to classic evolutionary hot spots, the Antarctic shelf and its Notothenioid radiation merit further exploration. The 2004 'International Collaborative Expedition to collect and study Fish Indigenous to Sub-Antarctic Habitats,' or, 'ICEFISH,' provided a platform for collection of notothenioid fishes from sub-Antarctic waters between South America and Africa, which will be examined in this project. This study will determine buoyancy for samples of all notothenioid species captured during the ICEFISH cruise. This essential aspect of the biology is known for only 19% of the notothenioid fauna. Also, the gross and microscopic anatomy of brains and sense organs of the phyletically basal families Bovichtidae, Eleginopidae, and of the non-Antarctic species of the primarily Antarctic family Nototheniidae will be examined. The fish biodiversity and endemicity in poorly known localities along the ICEFISH cruise track, seamounts and deep trenches will be quantified. Broader impacts include improved information for comprehending and conserving biodiversity, a scientific and societal priority. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis
|
0437887 |
2009-01-01 | Sidell, Bruce |
Collaborative Research: Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis. |
The polar ocean presently surrounding Antarctica is the coldest, most thermally stable marine environment on earth. Because oxygen solubility in seawater is inversely proportional to temperature, the cold Antarctic seas are an exceptionally oxygen-rich aquatic habitat. Eight families of a single perciform suborder, the Notothenioidei, dominate the present fish fauna surrounding Antarctica. Notothenioids account for approximately 35% of fish species and 90% of fish biomass south of the Antarctic Polar Front. Radiation of closely related notothenioid species thus has occurred rapidly and under a very unusual set of conditions: relative oceanographic isolation from other faunas due to circumpolar currents and deep ocean trenches surrounding the continent, chronically, severely cold water temperatures, very high oxygen availability, very low levels of niche competition in a Southern Ocean depauperate of species subsequent to a dramatic crash in species diversity of fishes that occurred sometime between the mid-Tertiary and present. These features make Antarctic notothenioid fishes an uniquely attractive group for the study of physiological and biochemical adaptations to cold body temperature. Few distinctive features of Antarctic fishes are as unique as the pattern of expression of oxygen-binding proteins in one notothenioid family, the Channichthyidae (Antarctic icefishes). All channichthyid icefishes lack the circulating oxygen-binding protein, hemoglobin (Hb); the intracellular oxygen-binding protein, myoglobin (Mb) is not uniformly expressed in species of this family. Both proteins are normally considered essential for adequate delivery of oxygen to aerobically poised tissues of animals. To compensate for the absence of Hb, icefishes have developed large hearts, rapidly circulate a large blood volume and possess elaborate vasculature of larger lumenal diameter than is seen in red-blooded fishes. Loss of Mb expression in oxidative muscles correlates with dramatic elevation in density of mitochondria within the cell, although each individual organelle is less densely packed with respiratory proteins. Within the framework of oxygen movement, the adaptive significance of greater vascular density and mitochondrial populations is understandable but mechanisms underlying development of these characteristics remain unknown. The answer may lie in another major function of both Hb and Mb, degradation of the ubiquitous bioactive compound, nitric oxide (NO). The research will test the hypothesis that loss of hemoprotein expression in icefishes has resulted in an increase in levels of NO that mediate modification of vascular systems and expansion of mitochondrial populations in oxidative tissues. The objectives of the proposal are to quantify the vascular density of retinas in +Hb and -Hb notothenioid species, to characterize NOS isoforms and catalytic activity in retina and cardiac muscle of Antarctic notothenioid fishes, to evaluate level of expression of downstream factors implicat ed in angiogenesis (in retinal tissue) and mitochondrial biogenesis (in cardiac muscle), and to determine whether inhibition of NOS in vivo results in regression of angiogenic and mitochondrial biogenic responses in icefishes. Broader impacts range from basic biology, through training of young scientists, to enhanced understanding of clinically relevant biomedical processes. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Occupation History and Diet of Adelie Penguins in the Ross Sea Region
|
0125098 |
2009-01-01 | Emslie, Steven |
Occupation History and Diet of Adelie Penguins in the Ross Sea Region |
This project will build on previous studies to investigate the occupation history and diet of Adelie penguins (Pygoscelis adeliae) in the Ross Sea region, Antarctica, with excavations of abandoned and active penguin colonies. Numerous active and abandoned colonies exist on the Victoria Land coast, from Cape Adare to Marble Point will be sampled. Some of these sites have been radiocarbon-dated and indicate a long occupation history for Adelie penguins extending to 13,000 years before present (B. P.). The material recovered from excavations, as demonstrated from previous investigations, will include penguin bones, tissue, and eggshell fragments as well as abundant remains of prey (fish bones, otoliths, squid beaks) preserved in ornithogenic (formed from bird guano) soils. These organic remains will be quantified and subjected to radiocarbon analyses to obtain a colonization history of penguins in this region. Identification of prey remains in the sediments will allow assessment of penguin diet. Other data (ancient DNA) from these sites will be analyzed through collaboration with New Zealand scientists. Past climatic conditions will be interpreted from published ice-core and marine-sediment records. These data will be used to test the hypothesis that Adelie penguins respond to climate change, past and present, in a predictable manner. In addition, the hypothesis that Adelie penguins alter their diet in accordance with climate, sea-ice conditions, and other marine environmental variables along a latitudinal gradient will be tested. Graduate and undergraduate students will be involved in this project and a project Web site will be developed to report results and maintain educational interaction between the PI and students at local middle and high schools in Wilmington, NC. | ["POLYGON((-50 -60,-29 -60,-8 -60,13 -60,34 -60,55 -60,76 -60,97 -60,118 -60,139 -60,160 -60,160 -63,160 -66,160 -69,160 -72,160 -75,160 -78,160 -81,160 -84,160 -87,160 -90,139 -90,118 -90,97 -90,76 -90,55 -90,34 -90,13 -90,-8 -90,-29 -90,-50 -90,-50 -87,-50 -84,-50 -81,-50 -78,-50 -75,-50 -72,-50 -69,-50 -66,-50 -63,-50 -60))"] | ["POINT(55 -75)"] | false | false |
The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins
|
0538594 |
2009-01-01 | Ponganis, Paul |
The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins |
The research will examine blood and muscle oxygen store depletion in relation to the documented aerobic dive limit (ADL, onset of post-dive blood lactate accumulation) in diving of emperor penguins. The intellectual merits of this proposal involve its evaluation of the physiological basis of the ADL concept. The ADL is probably the most commonly-used, but rarely measured, factor to interpret and model the behavior and foraging ecology of diving animals. Based on prior studies, and on recent investigations of respiratory and blood oxygen depletion during dives of emperor penguins, it is hypothesized that the ADL is a result of the depletion of myoglobin (Mb)-bound oxygen and increased glycolysis in the primary locomotory muscles. This project will accurately define the physiological mechanisms underlying the ADL through 1) evaluation of the rate and magnitude of muscle oxygen depletion during dives in relation to the previously measured ADL, 2) characterization of the hemoglobin-oxygen dissociation curve in blood of emperor penguins and comparison of that curve to those of other diving and non-diving species, 3) application of the emperor hemoglogin-oxygen dissociation curve to previously collected oxygen and hemoglobin data in order to estimate the rate and magnitude of blood oxygen depletion during dives, and 4) measurement of muscle phosphoocreatine and glycogen concentrations in order to estimate their potential contributions to muscle energy metabolism during diving. The project also continues the census and monitoring of the emperor colonies in the Ross Sea, which is especially important in light of both fisheries activity and the movement of iceberg B15-A. Broader impacts of the project include: 1) technological development of microprocessor-based, 'backpack' near-infrared spectrophotometer, which will be applicable not only to other species, but also to other fields (i.e., exercise physiology), 2) collaboration with the Department of Anesthesia at the U.S. Naval Hospital in San Diego in the training of anesthesia residents in research techniques, 3) the training and thesis research of two graduate students in these techniques and in Antarctic field research, and 4) a better understanding of the ADL concept and its use in the fields of diving behavior and physiology. In addition the annual census of emperor penguin colonies in the Ross Sea, in conjunction with the continued evaluation of previously developed remote cameras to monitor colony status, will form the basis of a new educational web site, and allow development of an educational outreach program to school children through SeaWorld of San Diego. | ["POLYGON((165.983 -77.683,166.0164 -77.683,166.0498 -77.683,166.0832 -77.683,166.1166 -77.683,166.15 -77.683,166.1834 -77.683,166.2168 -77.683,166.2502 -77.683,166.2836 -77.683,166.317 -77.683,166.317 -77.6897,166.317 -77.6964,166.317 -77.7031,166.317 -77.7098,166.317 -77.7165,166.317 -77.7232,166.317 -77.7299,166.317 -77.7366,166.317 -77.7433,166.317 -77.75,166.2836 -77.75,166.2502 -77.75,166.2168 -77.75,166.1834 -77.75,166.15 -77.75,166.1166 -77.75,166.0832 -77.75,166.0498 -77.75,166.0164 -77.75,165.983 -77.75,165.983 -77.7433,165.983 -77.7366,165.983 -77.7299,165.983 -77.7232,165.983 -77.7165,165.983 -77.7098,165.983 -77.7031,165.983 -77.6964,165.983 -77.6897,165.983 -77.683))"] | ["POINT(166.15 -77.7165)"] | false | false |
Diving Physiology and Behavior of Emperor Penguins
|
0229638 |
2008-01-01 | Ponganis, Paul |
Diving Physiology and Behavior of Emperor Penguins |
The emperor penguin, Aptenodytes forsteri, is the premier avian diver and a top predator in the Antarctic ecosystem. The routine occurrence of 500-m diver during foraging trips to sea is both a physiological and behavior enigma. The objectives of this project address how and why emperors dive as deep and long as they do. The project examines four major topics in the diving biology of emperor penguins: pressure tolerance, oxygen store management, end-organ tolerance of diving hypoxemia/ischemia, and deep-dive foraging behavior. These subjects are relevant to the role of the emperor as a top predator in the Antarctic ecosystem, and to critical concepts in diving physiology, including decompression sickness, nitrogen narcosis, shallow water blackout, hypoxemic tolerance, and extension of aerobic dive time. The following hypotheses will be tested: 1) Prevention of nitrogen narcosis and decompression sickness in emperor penguins is achieved by inhibition of pulmonary gas exchange at depth. 2) Shallow water black out does not occur because of greater cerebral hypoxemic tolerance, and, in deep dives, because of resumption of pulmonary gas exchange during final ascent. 3) The rate of depletion of the blood oxygen store is a function of depth of dive and heart rate. 4) The aerobic dive limit (ADL) reflects the onset of lactate accumulation in locomotory muscle, not total depletion of all oxygen stores. 5) Elevation of tissue antioxidant capacity and free-radical scavenging enzyme activities protect against the routine ischemia/reperfusion which occur during diving. 6) During deep dives, the Antarctic silverfish, Pleuorogramma antarcticum, is the primary prey item for emperors. In addition to evaluation of the hypotheses below, the project has broader impacts in several areas such as partnership with foreign and national institutes and organizations (e.g., the National Institute of Polar Research of Japan, Centro de Investigacioines del Noroeste of Mexico, National Geographic, the University of Texas Southwestern Medical Center, and Sea World). Participation in National Geographic television documentaries will provide unique educational opportunities for the general public; development of state-of-the-art technology (e.g., blood oxygen electrode recorders, blood samplers, and miniaturized digital cameras) will lay the groundwork for future research by this group and others; and the effects of the B15 iceberg on breeding success of emperor penguins will continue to be evaluated with population censuses during planned fieldwork at several Ross Sea emperor penguin colonies. | ["POLYGON((163 -77,163.4 -77,163.8 -77,164.2 -77,164.6 -77,165 -77,165.4 -77,165.8 -77,166.2 -77,166.6 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.6 -78,166.2 -78,165.8 -78,165.4 -78,165 -78,164.6 -78,164.2 -78,163.8 -78,163.4 -78,163 -78,163 -77.9,163 -77.8,163 -77.7,163 -77.6,163 -77.5,163 -77.4,163 -77.3,163 -77.2,163 -77.1,163 -77))"] | ["POINT(165 -77.5)"] | false | false |
Vostok Ice Core Chemistry, Timescale, Isotope, and Temperature Data
|
None | 2004-08-26 | Lal, Devendra; Barnola, J. M.; Petit, Jean Robert; Jouzel, Jean; Sowers, Todd A.; Brook, Edward J.; Bender, Michael; Fishcer, Hubertus; Blunier, Thomas; Ruddiman, William; Raymo, Maureen; Lorius, Claude; Chappellaz, Jerome | No project link provided | This data set contains ice core chemistry, timescale, isotope, and temperature data analyzed by several investigators. In January 1998, the collaborative ice-drilling project between Russia, the United States, and France at the Russian Vostok station in East Antarctica yielded the deepest ice core ever recovered, reaching a depth of 3,623 m. Preliminary data indicate the Vostok ice-core record extends through four climate cycles, with ice slightly older than 400 kyr. | [] | [] | false | false |