[{"awards": null, "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 12 Feb 2024 00:00:00 GMT", "description": "Undersea canyons play disproportionately important roles as oceanic biological hotspots and are critical for our understanding of many coastal ecosystems. Canyon-associated biological hotspots have persisted for thousands of years Along the Western Antarctic Peninsula, despite significant climate variability. Observations of currents over Palmer Deep canyon, a representative hotspot along the Western Antarctic Peninsula, indicate that surface phytoplankton blooms enter and exit the local hotspot on scales of ~1-2 days. This time of residence is in conflict with the prevailing idea that canyon associated hotspots are primarily maintained by phytoplankton that are locally grown in association with these features by the upwelling of deep waters rich with nutrients that fuel the phytoplankton growth. Instead, the implication is that horizontal ocean circulation is likely more important to maintaining these biological hotspots than local upwelling through its physical concentrating effects. This project seeks to better resolve the factors that create and maintain focused areas of biological activity at canyons along the Western Antarctic Peninsula and create local foraging areas for marine mammals and birds. The project focus is in the analysis of the ocean transport and concentration mechanisms that sustain these biological hotspots, connecting oceanography to phytoplankton and krill, up through the food web to one of the resident predators, penguins. In addition, the research will engage with teachers from school districts serving underrepresented and underserved students by integrating the instructors and their students completely with the science team. Students will conduct their own research with the same data over the same time as researchers on the project. Revealing the fundamental mechanisms that sustain these known hotspots will significantly advance our understanding of the observed connection between submarine canyons and persistent penguin population hotspots over ecological time, and provide a new model for how Antarctic hotspots function.\u003cbr/\u003e \u003cbr/\u003e \u003cbr/\u003eTo understand the physical mechanisms that support persistent hotspots along the Western Antarctic Peninsula (WAP), this project will integrate a modeling and field program that will target the processes responsible for transporting and concentrating phytoplankton and krill biomass to known penguin foraging locations. Within the Palmer Deep canyon, a representative hotspot, the team will deploy a High Frequency Radar (HFR) coastal surface current mapping network, uniquely equipped to identify the eddies and frontal regions that concentrate phytoplankton and krill. The field program, centered on surface features identified by the HFR, will include (i) a coordinated fleet of gliders to survey hydrography, chlorophyll fluorescence, optical backscatter, and active acoustics at the scale of the targeted convergent features; (ii) precise penguin tracking with GPS-linked satellite telemetry and time-depth recorders (TDRs); (iii) and weekly small boat surveys that adaptively target and track convergent features to measure phytoplankton, krill, and hydrography. A high resolution physical model will generalize our field measurements to other known hotspots along the WAP through simulation and determine which physical mechanisms lead to the maintenance of these hotspots. The project will also engage educators, students, and members of the general public in Antarctic research and data analysis with an education program that will advance teaching and learning as well as broadening participation of under-represented groups. This engagement includes professional development workshops, live connections to the public and classrooms, student research symposia, and program evaluation. Together the integrated research and engagement will advance our understanding of the role regional transport pathways and local depth dependent concentrating physical mechanisms play in sustaining these biological hotspots.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Palmer Station; BENTHIC; PENGUINS; FLUORESCENCE; PHYTOPLANKTON", "locations": "Palmer Station", "north": null, "nsf_funding_programs": null, "paleo_time": null, "persons": null, "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Physical Mechanisms Driving Food Web Focusing in Antarctic Biological Hotspots", "uid": "p0010448", "west": null}, {"awards": "2001646 Chereskin, Teresa; 1542902 Chereskin, Teresa", "bounds_geometry": "POLYGON((-68 -54,-66.7 -54,-65.4 -54,-64.1 -54,-62.8 -54,-61.5 -54,-60.2 -54,-58.9 -54,-57.6 -54,-56.3 -54,-55 -54,-55 -55,-55 -56,-55 -57,-55 -58,-55 -59,-55 -60,-55 -61,-55 -62,-55 -63,-55 -64,-56.3 -64,-57.6 -64,-58.9 -64,-60.2 -64,-61.5 -64,-62.8 -64,-64.1 -64,-65.4 -64,-66.7 -64,-68 -64,-68 -63,-68 -62,-68 -61,-68 -60,-68 -59,-68 -58,-68 -57,-68 -56,-68 -55,-68 -54))", "dataset_titles": "Joint Archive for shipboard ADCP data; World Ocean Database", "datasets": [{"dataset_uid": "200355", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "World Ocean Database", "url": "https://www.nodc.noaa.gov/OC5/SELECT/dbsearch/dbsearch.html"}, {"dataset_uid": "200354", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Joint Archive for shipboard ADCP data", "url": "https://uhslc.soest.hawaii.edu/sadcp/"}], "date_created": "Fri, 03 Mar 2023 00:00:00 GMT", "description": "The Antarctic Circumpolar Current (ACC) is the largest current on the planet, flowing west to east around Antarctica, forming a barrier that separates warmer waters to the north from colder waters to the south. Ocean eddies (like atmospheric storms) break through the ACC barrier, transferring heat across the ACC towards Antarctica. When warmer ocean waters intrude onto the Antarctic continental shelves, they contribute to glacial melt and ice shelf retreat. Over the past several decades, the Southern Ocean has warmed and winds have increased due to climate change. Somewhat surprisingly the ACC, though pushed by faster winds, has not accelerated; a faster current would present a stronger barrier to heat transfer. Instead, ocean eddies have increased. These eddies are concentrated at 6-7 \"hot spots\". Drake Passage is one of these hot spots. As the narrowest land gap on the entire circumpolar path of the ACC, Drake Passsage is an ideal monitoring spot. However, it is also one of the windiest and roughest stretches of water on the globe. The only ship that crosses Drake Passage year-round is the USAP supply vessel for Palmer Station, making it a unique platform to monitor the currents and temperature with a minimum of personnel and resources. The Drake Passage time series of upper ocean currents and temperature is now in its 24th year. The upper ocean temperature measurements have found significant warming in Drake Passage. The upper ocean current measurements have confirmed that the ACC has remained steady on average but have also revealed a complicated filamented current structure. Combining temperature and current measurements has provided a better understanding of heat transfer across the ACC by eddies. The time series has also provided valuable ground-truth for satellite measurements and for numerical model predictions looking at the entire ACC. Our studies are focused on examining low-frequency variability - seasonal, interannual, and decadal - in order to provide baselines from which to evaluate and interpret physical and biogeochemical changes occurring in the Southern Ocean. \r\n", "east": -55.0, "geometry": "POINT(-61.5 -59)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "R/V LMG; Drake Passage; WATER TEMPERATURE; Antarctic Circumpolar Current; Heat Flux", "locations": "Drake Passage", "north": -54.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Chereskin, Teresa; Sprintall, Janet", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "NCEI", "repositories": "NCEI", "science_programs": null, "south": -64.0, "title": "High Resolution Underway Air-Sea Observations in Drake Passage for Climate Science", "uid": "p0010409", "west": -68.0}, {"awards": "2012365 Johnston, David; 2012247 Groff, Dulcinea; 2012444 Cimino, Megan", "bounds_geometry": "POLYGON((-65 -64.5,-64.8 -64.5,-64.6 -64.5,-64.4 -64.5,-64.2 -64.5,-64 -64.5,-63.8 -64.5,-63.6 -64.5,-63.4 -64.5,-63.2 -64.5,-63 -64.5,-63 -64.55,-63 -64.6,-63 -64.65,-63 -64.7,-63 -64.75,-63 -64.8,-63 -64.85,-63 -64.9,-63 -64.95,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.95,-65 -64.9,-65 -64.85,-65 -64.8,-65 -64.75,-65 -64.7,-65 -64.65,-65 -64.6,-65 -64.55,-65 -64.5))", "dataset_titles": null, "datasets": null, "date_created": "Sun, 24 Jul 2022 00:00:00 GMT", "description": "This award is funded in whole or part under the American Rescue Plan Act of 2021 (Public Law 117-2). \r\nPart I: Non-technical description: \r\nAdlie penguin colonies are declining and disappearing from the western Antarctic Peninsula. However, not all colonies in a certain area decline or disappear at the same rate. This research project will evaluate the influence of terrestrial surface properties on Adlie penguin colonies, leveraging five decades of research on seabirds near Palmer Station where an Adlie colony on Litchfield Island became extinct in 2007 while other colonies nearby are still present. The researchers will combine information obtained from remote sensing, UAS (Unoccupied Aircraft System, or drones) high-resolution maps, reconstruction of past moss banks and modeling with machine learning tools to define suitable penguin and peatbank moss habitats and explore the influence of microclimate on their distributions. In particular, the researchers are asking if guano from penguin colonies could act as fertilizers of moss banks in the presence of localized wind patters that can carry airborne nitrogen to the mosses. Modeling will relate penguin and peatbank moss spatial patterns to environmental variables and provide a greater understanding of how continued environmental change could impact these communities. The project allows for documentation of terrestrial Antarctic ecosystems in support of seabirds and provisioning of such information to the broader science community that seeks to study penguins, educating graduate and undergraduate students and a post-doctoral researcher. The research team includes two young women as Principal Investigators, one of them from an under-represented ethnic minority, first time Antarctic Principal Investigator, from an EPSCoR state (Wyoming), broadening participation in Antarctic research. Researchers will serve as student mentors through the Duke Bass Connections program entitled Biogeographic Assessment of Antarctic Coastal Habitats. This program supports an interdisciplinary team of graduate and undergraduate students collaborating with project faculty and experts on cutting-edge research bridging the classroom and the real world.\r\n\r\nPart II: Technical description: \r\nThis research aims to understand the changes at the microclimate scale (meters) by analyzing present and past Adlie penguin colonies and moss peatbanks in islands around Palmer Station in the western Antarctic Peninsula interlinked systems that are typically considered in isolation. By integrating in situ and remote data, this project will synthesize the drivers of biogeomorphology on small islands of the Antarctic Peninsula, a region of rapid change where plants and animals often co-occur and animal presence often determines the habitation of plants. A multi-disciplinary approach combine field measurements, remote sensing, UAS (Unoccupied Aircraft Systems) maps, paleoecology and modeling with machine learning to define suitable habitats and the influence of microclimates on penguin and peatbank distributions. The link between the two aspects of this study, peatbanks and penguins, is the potential source of nutrients for peat mosses from penguin guano. Peatbank and penguin distribution will be modeled and all models will be validated using in situ information from moss samples that will identify mechanistic processes. This project leverages 5 decades of seabird research in the area and high-definition remote sensing provided by the Polar Geospatial center to study the microclimate of Litchfield Island where an Adlie colony became extinct in 2007 when other colonies nearby are still present. The research team includes two early career women as Principal Investigators, one of them from an under-represented ethnic minority, first time Antarctic Principal Investigator, from an EPSCoR state (Wyoming). Researchers will serve as mentors for students through the Duke Bass Connections program entitled Biogeogrpahic Assessment of Antarctic Coastal Habitats which bridges the classroom and the real world.\r\n\r\nThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -63.0, "geometry": "POINT(-64 -64.75)", "instruments": null, "is_usap_dc": true, "keywords": "Palmer Station; Antarctic Peninsula; COASTAL; STABLE ISOTOPES; TOPOGRAPHIC EFFECTS; PALEOCLIMATE RECONSTRUCTIONS; MACROFOSSILS; PLANTS; PENGUINS; ISOTOPES; VISIBLE IMAGERY; RADIOCARBON; Anvers Island", "locations": "Antarctic Peninsula; Anvers Island; Palmer Station", "north": -64.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Groff, Dulcinea; Cimino, Megan; Johnston, David", "platforms": null, "repositories": null, "science_programs": null, "south": -65.0, "title": "Collaborative Research: Common Environmental Drivers Determine the Occupation Chronology of Ad\u00e9lie Penguins and Moss Peatbanks on the Western Antarctic Peninsula", "uid": "p0010354", "west": -65.0}, {"awards": "1744885 Moline, Mark", "bounds_geometry": "POLYGON((-64.643 -64.703149,-64.5388975 -64.703149,-64.43479500000001 -64.703149,-64.3306925 -64.703149,-64.22659 -64.703149,-64.1224875 -64.703149,-64.018385 -64.703149,-63.9142825 -64.703149,-63.81018 -64.703149,-63.706077500000006 -64.703149,-63.601975 -64.703149,-63.601975 -64.7258003,-63.601975 -64.7484516,-63.601975 -64.77110289999999,-63.601975 -64.7937542,-63.601975 -64.8164055,-63.601975 -64.8390568,-63.601975 -64.86170809999999,-63.601975 -64.8843594,-63.601975 -64.9070107,-63.601975 -64.929662,-63.706077500000006 -64.929662,-63.81018 -64.929662,-63.9142825 -64.929662,-64.018385 -64.929662,-64.1224875 -64.929662,-64.22659 -64.929662,-64.3306925 -64.929662,-64.43479500000001 -64.929662,-64.5388975 -64.929662,-64.643 -64.929662,-64.643 -64.9070107,-64.643 -64.8843594,-64.643 -64.86170809999999,-64.643 -64.8390568,-64.643 -64.8164055,-64.643 -64.7937542,-64.643 -64.77110289999999,-64.643 -64.7484516,-64.643 -64.7258003,-64.643 -64.703149))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 18 Jul 2022 00:00:00 GMT", "description": "This research project will use specially designed autonomous underwater vehicles (AUVs) to investigate interactions between Adelie and Gentoo penguins (the predators) and their primary food source, Antarctic krill (prey). While it has long been known that penguins feed on krill, details about how they search for food and target individual prey items is less well understood. Krill aggregate in large swarms, and the size or the depth of these swarms may influence the feeding behavior of penguins. Similarly, penguin feeding behaviors may differ based on characteristics of the environment, krill swarms, and the presence of other prey and predator species. This project will use specialized smart AUVs to simultaneously collect high-resolution observations of penguins, their prey, and environmental conditions. Data will shed light on strategies used by penguins prove foraging success during the critical summer chick-rearing period. This will improve predictions of how penguin populations may respond to changing environmental conditions in the rapidly warming Western Antarctic Peninsula region. Greater understanding of how individual behaviors shape food web structure can also inform conservation and management efforts in other marine ecosystems. This project has a robust public education and outreach plan linked with the Birch and Monterey Bay Aquariums.\u003cbr/\u003e\u003cbr/\u003ePrevious studies have shown that sub-mesoscale variability (1-10 km) in Antarctic krill densities and structure impact the foraging behavior of air-breathing predators. However, there is little understanding of how krill aggregation characteristics are linked to abundance on fine spatial scales, how these patterns are influenced by the habitat, or how prey characteristics influences the foraging behavior of predators. These data gaps remain because it is extremely challenging to collect detailed data on predators and prey simultaneously at the scale of an individual krill patch and single foraging event. Building on previously successful efforts, this project will integrate echosounders into autonomous underwater vehicles (AUVs), so that oceanographic variables and multi-frequency acoustic scattering from both prey and penguins can be collected simultaneously. This will allow for quantification of the environment at the scale of individual foraging events made by penguins during the critical 50+ day chick-rearing period. Work will be centered near Palmer Station, where long-term studies have provided significant insight into predator and prey population trends. The new data to be collected by this project will test hypotheses about how penguin prey selection and foraging behaviors are influenced by physical and biological features of their ocean habitat at extremely fine scale. By addressing the dynamic relationship between individual penguins, their prey, and habitat at the scale of individual foraging events, this study will begin to reveal the important processes regulating resource availability and identify what makes this region a profitable foraging habitat and breeding location.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -63.601975, "geometry": "POINT(-64.1224875 -64.8164055)", "instruments": null, "is_usap_dc": true, "keywords": "COASTAL; COMMUNITY DYNAMICS; ECOSYSTEM FUNCTIONS; SPECIES/POPULATION INTERACTIONS; Palmer Station; MICROALGAE; PENGUINS; ANIMALS/INVERTEBRATES", "locations": "Palmer Station", "north": -64.703149, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Moline, Mark; Benoit-Bird, Kelly; Cimino, Megan", "platforms": null, "repositories": null, "science_programs": null, "south": -64.929662, "title": "Collaborative Research: Linking Predator Behavior and Resource Distributions: Penguin-directed Exploration of an Ecological Hotspot", "uid": "p0010347", "west": -64.643}, {"awards": "1745018 Fraser, William; 1744884 Oliver, Matthew; 1745011 Klinck, John; 1745081 Bernard, Kim; 1745009 Kohut, Josh; 1745023 Hennon, Tyler", "bounds_geometry": "POLYGON((-75 -60,-73 -60,-71 -60,-69 -60,-67 -60,-65 -60,-63 -60,-61 -60,-59 -60,-57 -60,-55 -60,-55 -61,-55 -62,-55 -63,-55 -64,-55 -65,-55 -66,-55 -67,-55 -68,-55 -69,-55 -70,-57 -70,-59 -70,-61 -70,-63 -70,-65 -70,-67 -70,-69 -70,-71 -70,-73 -70,-75 -70,-75 -69,-75 -68,-75 -67,-75 -66,-75 -65,-75 -64,-75 -63,-75 -62,-75 -61,-75 -60))", "dataset_titles": "Antarctic ACROBAT data; CTD Data from IFCB Sampling; Finite Time Lyapunov Exponent Results, Calculated from High Frequency Radar Observed Surface Currents; High Frequency Radar, Palmer Deep; IFCB Image Data; Relative Particle Density; SWARM AMLR moorings - acoustic data; SWARM Glider Data near Palmer Deep; WAP model float data; Winds from Joubin and Wauwerman Islands", "datasets": [{"dataset_uid": "200393", "doi": "10.26008/1912/bco-dmo.865002.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "IFCB Image Data", "url": "https://www.bco-dmo.org/dataset/865002"}, {"dataset_uid": "200389", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Antarctic ACROBAT data", "url": "https://www.bco-dmo.org/dataset/916046"}, {"dataset_uid": "200390", "doi": "10.26008/1912/bco-dmo.865030.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "CTD Data from IFCB Sampling", "url": "https://www.bco-dmo.org/dataset/865030"}, {"dataset_uid": "200391", "doi": "10.26008/1912/bco-dmo.917914.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Finite Time Lyapunov Exponent Results, Calculated from High Frequency Radar Observed Surface Currents", "url": "https://www.bco-dmo.org/dataset/917914"}, {"dataset_uid": "200392", "doi": "10.26008/1912/bco-dmo.917884.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "High Frequency Radar, Palmer Deep", "url": "https://www.bco-dmo.org/dataset/917884"}, {"dataset_uid": "200398", "doi": "", "keywords": null, "people": null, "repository": "IOOS Glider DAAC", "science_program": null, "title": "SWARM Glider Data near Palmer Deep", "url": "https://gliders.ioos.us/erddap/search/index.html?page=1\u0026itemsPerPage=1000\u0026searchFor=swarm"}, {"dataset_uid": "200397", "doi": "10.26008/1912/bco-dmo.865098.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Winds from Joubin and Wauwerman Islands", "url": "https://www.bco-dmo.org/dataset/865098"}, {"dataset_uid": "200396", "doi": "10.26008/1912/bco-dmo.867442.2", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "WAP model float data", "url": "https://www.bco-dmo.org/dataset/867442"}, {"dataset_uid": "200395", "doi": "10.26008/1912/bco-dmo.872729.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "SWARM AMLR moorings - acoustic data", "url": "https://www.bco-dmo.org/dataset/872729"}, {"dataset_uid": "200394", "doi": "10.26008/1912/bco-dmo.917926.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Relative Particle Density", "url": "https://www.bco-dmo.org/dataset/917926"}], "date_created": "Tue, 05 Jul 2022 00:00:00 GMT", "description": "Undersea canyons play disproportionately important roles as oceanic biological hotspots and are critical for our understanding of many coastal ecosystems. Canyon-associated biological hotspots have persisted for thousands of years Along the Western Antarctic Peninsula, despite significant climate variability. Observations of currents over Palmer Deep canyon, a representative hotspot along the Western Antarctic Peninsula, indicate that surface phytoplankton blooms enter and exit the local hotspot on scales of ~1-2 days. This time of residence is in conflict with the prevailing idea that canyon associated hotspots are primarily maintained by phytoplankton that are locally grown in association with these features by the upwelling of deep waters rich with nutrients that fuel the phytoplankton growth. Instead, the implication is that horizontal ocean circulation is likely more important to maintaining these biological hotspots than local upwelling through its physical concentrating effects. This project seeks to better resolve the factors that create and maintain focused areas of biological activity at canyons along the Western Antarctic Peninsula and create local foraging areas for marine mammals and birds. The project focus is in the analysis of the ocean transport and concentration mechanisms that sustain these biological hotspots, connecting oceanography to phytoplankton and krill, up through the food web to one of the resident predators, penguins. In addition, the research will engage with teachers from school districts serving underrepresented and underserved students by integrating the instructors and their students completely with the science team. Students will conduct their own research with the same data over the same time as researchers on the project. Revealing the fundamental mechanisms that sustain these known hotspots will significantly advance our understanding of the observed connection between submarine canyons and persistent penguin population hotspots over ecological time, and provide a new model for how Antarctic hotspots function.\u003cbr/\u003e \u003cbr/\u003e \u003cbr/\u003eTo understand the physical mechanisms that support persistent hotspots along the Western Antarctic Peninsula (WAP), this project will integrate a modeling and field program that will target the processes responsible for transporting and concentrating phytoplankton and krill biomass to known penguin foraging locations. Within the Palmer Deep canyon, a representative hotspot, the team will deploy a High Frequency Radar (HFR) coastal surface current mapping network, uniquely equipped to identify the eddies and frontal regions that concentrate phytoplankton and krill. The field program, centered on surface features identified by the HFR, will include (i) a coordinated fleet of gliders to survey hydrography, chlorophyll fluorescence, optical backscatter, and active acoustics at the scale of the targeted convergent features; (ii) precise penguin tracking with GPS-linked satellite telemetry and time-depth recorders (TDRs); (iii) and weekly small boat surveys that adaptively target and track convergent features to measure phytoplankton, krill, and hydrography. A high resolution physical model will generalize our field measurements to other known hotspots along the WAP through simulation and determine which physical mechanisms lead to the maintenance of these hotspots. The project will also engage educators, students, and members of the general public in Antarctic research and data analysis with an education program that will advance teaching and learning as well as broadening participation of under-represented groups. This engagement includes professional development workshops, live connections to the public and classrooms, student research symposia, and program evaluation. Together the integrated research and engagement will advance our understanding of the role regional transport pathways and local depth dependent concentrating physical mechanisms play in sustaining these biological hotspots.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -55.0, "geometry": "POINT(-65 -65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CONDUCTIVITY SENSORS \u003e CONDUCTIVITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e RADIATION SENSORS", "is_usap_dc": true, "keywords": "MOORED; WATER TEMPERATURE; CONDUCTIVITY; FLUORESCENCE; UNCREWED VEHICLES; Palmer Station; PHOTOSYNTHETICALLY ACTIVE RADIATION; PELAGIC; OCEAN MIXED LAYER; SURFACE; SALINITY; WATER PRESSURE; LIVING ORGANISM; MODELS; ACOUSTIC SCATTERING", "locations": "Palmer Station", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Instrumentation and Support; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": "NOT APPLICABLE", "persons": "Bernard, Kim; Oliver, Matthew; Kohut, Josh; Fraser, William; Klinck, John M.; Statcewich, Hank", "platforms": "LIVING ORGANISM-BASED PLATFORMS \u003e LIVING ORGANISM; OTHER \u003e MODELS; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED; WATER-BASED PLATFORMS \u003e UNCREWED VEHICLES; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE", "repo": "BCO-DMO", "repositories": "BCO-DMO; IOOS Glider DAAC", "science_programs": null, "south": -70.0, "title": "Collaborative Research: Physical Mechanisms Driving Food Web Focusing in Antarctic Biological Hotspots", "uid": "p0010346", "west": -75.0}, {"awards": "1951090 Stukel, Michael", "bounds_geometry": "POLYGON((-80 -63,-78.2 -63,-76.4 -63,-74.6 -63,-72.8 -63,-71 -63,-69.2 -63,-67.4 -63,-65.6 -63,-63.8 -63,-62 -63,-62 -63.7,-62 -64.4,-62 -65.1,-62 -65.8,-62 -66.5,-62 -67.2,-62 -67.9,-62 -68.6,-62 -69.3,-62 -70,-63.8 -70,-65.6 -70,-67.4 -70,-69.2 -70,-71 -70,-72.8 -70,-74.6 -70,-76.4 -70,-78.2 -70,-80 -70,-80 -69.3,-80 -68.6,-80 -67.9,-80 -67.2,-80 -66.5,-80 -65.8,-80 -65.1,-80 -64.4,-80 -63.7,-80 -63))", "dataset_titles": "BCO-DMO Project Page", "datasets": [{"dataset_uid": "200294", "doi": null, "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "BCO-DMO Project Page", "url": "https://www.bco-dmo.org/project/838048"}], "date_created": "Fri, 03 Jun 2022 00:00:00 GMT", "description": "Algae in the surface ocean convert carbon dioxide into organic carbon through photosynthesis. The biological carbon pump transports this organic carbon from the atmosphere to the deep ocean where it can be stored for tens to hundreds of years. Annually, the amount transported is similar to that humans are currently emitting by burning fossil fuels. However, at present we cannot predict how this important process will change with a warming ocean. These investigators plan to develop a 15+ year time-series of vertical carbon transfer for the Western Antarctic Peninsula; a highly productive Antarctic ecosystem. This region is also rapid transition to warmer temperatures leading to reduced sea ice coverage. This work will help researchers better understand how the carbon cycle in the Western Antarctic Peninsula will respond to climate change. The researchers will develop the first large-scale time-series of carbon flux anywhere in the ocean. This research will also support the education and training of a graduate student and support the integration of concepts in Antarctic research into two undergraduate courses designed for non-science majors and advanced earth science students. The researchers will also develop educational modules for introducing elementary and middle-school age students to important concepts such as gross and net primary productivity, feedbacks in the marine and atmospheric systems, and the differences between correlation and causation. Results from this proposal will also be incorporated into a children?s book, ?Plankton do the Strangest Things?, that is targeted at 5-7 year olds and is designed to introduce them to the incredible diversity and fascinating adaptations of microscopic marine organisms.\u003cbr/\u003e\u003cbr/\u003e This research seeks to leverage 6 years (2015-2020) of 234Th samples collected on Palmer LTER program, 5 years of prior measurements (2009-2010, 2012-2014), and upcoming cruises (2021-2023) to develop a time-series of summertime particle flux in the WAP that stretches for 15 years. The 238U-234Th disequilibrium approach utilizes changes in the activity of the particle-active radio-isotope 234Th relative to its parent nuclide 238U to quantify the flux of sinking carbon out of the surface ocean (over a time-scale of ~one month). This proposal will fund 234Th analyses from nine years? worth of cruises (2015-2023) and extensive analyses designed to investigate the processes driving inter-annual variability in the BCP. These include: 1) physical modeling to quantify the importance of advection and diffusion in the 234Th budget, 2) time-series analyses of particle flux, and 3) statistical modeling of the relationships between particle flux and multiple presumed drivers (biological, chemical, physical, and climate indices) measured by collaborators in the Palmer LTER program. This multi-faceted approach is critical for linking the measurements to models and for predicting responses to climate change. It will also test the hypothesis that export flux is decreasing in the northern WAP, increasing in the southern WAP, and increasing when integrated over the entire region as a result of earlier sea ice retreat and a larger ice-free zone. The project will also investigate relationships between carbon export and multiple potentially controlling factors including: primary productivity, algal biomass and taxonomic composition, biological oxygen saturation, zooplankton biomass and taxonomic composition, bacterial production, temperature, wintertime sea ice extent, date of sea ice retreat, and climate modes.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -62.0, "geometry": "POINT(-71 -66.5)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; AMD; FIELD INVESTIGATION; Palmer Station; USAP-DC; BIOGEOCHEMICAL CYCLES; USA/NSF", "locations": "Palmer Station", "north": -63.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Stukel, Michael", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": -70.0, "title": "Quantifying Processes Driving Interannual Variability in the Biological Carbon Pump in the Western Antarctic Peninsula", "uid": "p0010332", "west": -80.0}, {"awards": "1326541 Oliver, Matthew; 1326167 Fraser, William; 1327248 Kohut, Josh; 1331681 Bernard, Kim; 1324313 Winsor, Peter", "bounds_geometry": "POLYGON((-65 -62,-64.5 -62,-64 -62,-63.5 -62,-63 -62,-62.5 -62,-62 -62,-61.5 -62,-61 -62,-60.5 -62,-60 -62,-60 -62.3,-60 -62.6,-60 -62.9,-60 -63.2,-60 -63.5,-60 -63.8,-60 -64.1,-60 -64.4,-60 -64.7,-60 -65,-60.5 -65,-61 -65,-61.5 -65,-62 -65,-62.5 -65,-63 -65,-63.5 -65,-64 -65,-64.5 -65,-65 -65,-65 -64.7,-65 -64.4,-65 -64.1,-65 -63.8,-65 -63.5,-65 -63.2,-65 -62.9,-65 -62.6,-65 -62.3,-65 -62))", "dataset_titles": "Expedition Data; Expedition data of LMG1509", "datasets": [{"dataset_uid": "002730", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1509", "url": "https://www.rvdata.us/search/cruise/LMG1509"}, {"dataset_uid": "001378", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1509"}], "date_created": "Mon, 27 Sep 2021 00:00:00 GMT", "description": "The application of innovative ocean observing and animal telemetry technology over Palmer Deep (Western Antarctic Peninsula; WAP) is leading to new understanding, and also to many new questions related to polar ecosystem processes and their control by bio-physical interactions in the polar environment. This multi-platform field study will investigate the impact of coastal physical processes (e.g. tides, currents, upwelling events, sea-ice) on Ad\u00e9lie penguin foraging ecology in the vicinity of Palmer Deep, off Anvers Island, WAP. Guided by real-time surface convergence and divergences based on remotely sensed surface current maps derived from a coastal network of High Frequency Radars (HFRs), a multidisciplinary research team will adaptively sample the distribution of phytoplankton and zooplankton, which influence Ad\u00e9lie penguin foraging ecology, to understand how local oceanographic processes structure the ecosystem. \u003cbr/\u003e\u003cbr/\u003eCore educational objectives of this proposal are to increase awareness and \u003cbr/\u003eunderstanding of (i) global climate change, (ii) the unique WAP ecosystem, (iii) innovative methods and technologies used by the researchers, and (iv) careers in ocean sciences, through interactive interviews with scientists, students, and technicians, during the field work. These activities will be directed towards instructional programming for K-16 students and their teachers. Researchers and educators will conduct formative and summative evaluation to improve the educational program and measure its impacts respectively.", "east": -60.0, "geometry": "POINT(-62.5 -63.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "R/V LMG; Palmer Station; PELAGIC; USA/NSF; Amd/Us; USAP-DC; AMD; LMG1509", "locations": "Palmer Station", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bernard, Kim; Kohut, Josh; Oliver, Matthew; Fraser, William; Winsor, Peter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.0, "title": "Collaborative Research: Impacts of Local Oceanographic Processes on Adelie Penguin Foraging Ecology Over Palmer Deep", "uid": "p0010268", "west": -65.0}, {"awards": "1947562 van Gestel, Natasja; 1643871 van Gestel, Natasja", "bounds_geometry": "POLYGON((-65 -64.5,-64.8 -64.5,-64.6 -64.5,-64.4 -64.5,-64.2 -64.5,-64 -64.5,-63.8 -64.5,-63.6 -64.5,-63.4 -64.5,-63.2 -64.5,-63 -64.5,-63 -64.55,-63 -64.6,-63 -64.65,-63 -64.7,-63 -64.75,-63 -64.8,-63 -64.85,-63 -64.9,-63 -64.95,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.95,-65 -64.9,-65 -64.85,-65 -64.8,-65 -64.75,-65 -64.7,-65 -64.65,-65 -64.6,-65 -64.55,-65 -64.5))", "dataset_titles": "2022-2023 Palmer Station terrestrial carbon fluxes - field warming experiment; Soil moisture and soil temperature data (0-5 cm) near Palmer Station, Antarctica", "datasets": [{"dataset_uid": "601877", "doi": "10.15784/601877", "keywords": "Antarctica; Antarctic Peninsula; Conductivity; Cryosphere; Palmer Station; Soil; Temperature", "people": "van Gestel, Natasja", "repository": "USAP-DC", "science_program": null, "title": "Soil moisture and soil temperature data (0-5 cm) near Palmer Station, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601877"}, {"dataset_uid": "601853", "doi": "10.15784/601853", "keywords": "Antarctica; CO2; Cryosphere; Field Investigations; Palmer Station", "people": "van Gestel, Natasja", "repository": "USAP-DC", "science_program": null, "title": "2022-2023 Palmer Station terrestrial carbon fluxes - field warming experiment", "url": "https://www.usap-dc.org/view/dataset/601853"}], "date_created": "Sat, 21 Aug 2021 00:00:00 GMT", "description": "Responses of the carbon balance of terrestrial ecosystems to warming will feed back to the pace of climate change, but the size and direction of this feedback are poorly constrained. Least known are the effects of warming on carbon losses from soil, and clarifying the major microbial controls is an important research frontier. This study uses a series of experiments and observations to investigate microbial, including autotrophic taxa, and plant controls of net ecosystem productivity in response to warming in intact ecosystems. Field warming is achieved using open-top chambers paired with control plots, arrayed along a productivity gradient. Along this gradient incoming and outgoing carbon fluxes will be measured at the ecosystem-level. The goal is to tie warming-induced shifts in net ecosystem carbon balance to warming effects on soil microbes and plants. The field study will be supplemented with lab temperature incubations. Because soil microbes dominate biogeochemical cycles in Antarctica, a major focus of this study is to determine warming responses of bacteria, fungi and archaea. This is achieved using a cutting-edge stable isotope technique, quantitative stable isotope probing (qSIP) developed by the proposing research team, that can identify the taxa that are active and involved in processing new carbon. This technique can identify individual microbial taxa that are actively participating in biogeochemical cycling of nutrients (through combined use of 18O-water and 13C-bicarbonate) and thus can be distinguished from those that are simply present (cold-preserved). The study further assesses photosynthetic uptake of carbon by the vegetation and their sensitivity to warming. Results will advance research in climate change, plant and soil microbial ecology, and ecosystem modeling.", "east": -63.0, "geometry": "POINT(-64 -64.75)", "instruments": null, "is_usap_dc": true, "keywords": "Palmer Station; TERRESTRIAL ECOSYSTEMS; USA/NSF; AMD; Amd/Us; USAP-DC; FIELD SURVEYS", "locations": "Palmer Station", "north": -64.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Earth Sciences", "paleo_time": null, "persons": "van Gestel, Natasja", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Antarctica as a Model System for Responses of Terrestrial Carbon Balance to Warming", "uid": "p0010251", "west": -65.0}, {"awards": "1954241 O\u0027\u0027Brien, Kristin", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 17 Aug 2021 00:00:00 GMT", "description": "The frequency and severity of hypoxic events are increasing in marine and freshwater environments worldwide with climate warming, threatening the health of aquatic ecosystems and the viability of fish populations. The Southern Ocean surrounding Antarctica has historically been a stable, icy-cold, and oxygen-rich environment, but is now warming at an unprecedented rate and faster than all other regions in the Southern hemisphere. Evolution at sub-zero temperatures has equipped Antarctic fishes with traits allowing them to thrive in frigid waters, but has diminished their resilience to warming. Presently little is known about the ability of Antarctic fishes to withstand hypoxic conditions that often accompany warming. This research will investigate the hypoxia tolerance of four species of Antarctic fishes, including two species of icefishes that lack the oxygen-carrying protein, hemoglobin, which may compromise their ability to oxygenate tissues under hypoxic conditions. The hypoxia tolerance of Antarctic fish species will be compared to that of a related fish species inhabiting coastal regions of South America. Physiological and biochemical responses to hypoxia will be evaluated and compared amongst the five species to bolster our predictions of the capacity of Antarctic fishes to cope with a changing environment. This research will provide training opportunities for undergraduate and graduate students, and a postdoctoral research fellow. A year-long seminar series hosted by the Aquarium of the Pacific will feature female scientists who work in Antarctica to inspire youth in the greater Los Angeles area to pursue careers in science.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Palmer Station; FIELD SURVEYS; USAP-DC; AMD; USA/NSF; Amd/Us; FISH", "locations": "Palmer Station", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "O\u0027Brien, Kristin", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": null, "title": "ANT LIA: Hypoxia Tolerance in Notothenioid Fishes", "uid": "p0010246", "west": null}, {"awards": "1840949 Fields, David; 1840941 Murphy, David; 1840927 Weissburg, Marc", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 25 Jun 2021 00:00:00 GMT", "description": "Overview: This project has two goals. The first is to investigate the responses of Antarctic krill Euphasia superba to flow and chemical stimuli indicating food and predation risk, the interaction of these cues, and how krill responses to these cues depend on the photic environment. This project will will determine threshold responses, the ability of krill to orient to horizontal and vertical flows, whether chemical cues polarize responses to flow and whether this differs with attractive vs. aversive cues, and how these responses are affected by light intensity. This will determine how and under what specific conditions the flow, chemical and light environment can either attract or repel krill, and whether krill can use flows to transport themselves towards beneficial environments and away from risky ones. The second goal is to examine whether the behavioral responses of individual krill can be scaled up to predict the properties of aggregations such as density, coherence, swimming speed and direction. This project will use a modeling approach to determine properties of krill aggregations in defined oceanographic conditions characteristic of the southern ocean to examine links between individual behavior and aggregation properties in physically realistic scenarios.\r\n\r\nIntellectual Merit:\r\nKrill are an ecologically important component of all high latitude food webs and constitute a growing fishery yet we know very little about their behavior in response to environmentally relevant chemical, flow and photic conditions. Understanding krill demography can be enabled by examining individual responses to light, attractive (food related) and aversive (predator related) chemical cues, flow, light and their interactions. This analysis can be used to define/predict preferred environments, define the capacity of krill to detect and move to them (and away from unfavorable ones), better parameterize models of DVM, and krill energetics. Linking individual behavior to aggregations will improve our ability to use passive acoustic sampling of krill to understand their biology by providing insight into what krill are doing in aggregations that display particular features, and help define useful properties to characterize aggregations. The role of biology vs. physical forcing in determining zooplankton distributions, and the relationship between individual behavior and emergent group properties are fundamental questions.\r\n\r\nBroader Impacts:\r\nAntarctic krill (Eupahusia superba) are dominant members of the Southern Ocean. They are a critical resource for higher predators, are considered an ecosystem engineer, are the most highly linked species in Antarctic food webs, exert top down control on phytoplankton abundance and represent the largest Antarctic fishery. This project will therefore impact our understanding of the ecology of high latitude systems, their capacity to respond to environmental perturbations (like climate change), and krill fisheries management. Project PIs will engage conservation and management experts to vet and use the developed software tools, as well as to share results. The project will support one post-doctoral associate to be trained in a highly interdisciplinary environment, and provide graduate and undergraduate research opportunities in ocean sciences, biology and engineering. Products will include open source code for behavioral modeling, K12 curricular materials based on these models as well as digital archives of krill behavior, and a variety of public engagement activities.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "ANIMAL ECOLOGY AND BEHAVIOR; AMD; FIELD INVESTIGATION; Amd/Us; USAP-DC; Palmer Station; USA/NSF", "locations": "Palmer Station", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Record, Nicholas ; Weissburg, Marc", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Individual Based Approaches to Understanding Krill Distributions and Aggregations", "uid": "p0010202", "west": null}, {"awards": "1846837 Bowman, Jeff", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 25 Jun 2021 00:00:00 GMT", "description": "The coastal Antarctic is undergoing great environmental change. Physical changes in the environment, such as altered sea ice duration and extent, have a direct impact on the phytoplankton and bacteria species which form the base of the marine foodweb. Photosynthetic phytoplankton are the ocean\u0027s primary producers, transforming (fixing) CO2 into organic carbon molecules and providing a source of food for zooplankton and larger predators. When phytoplankton are consumed by zooplankton, or killed by viral attack, they release large amounts of organic carbon and nutrients into the environment. Heterotrophic bacteria must eat other things, and function as \"master recyclers\", consuming these materials and converting them to bacterial biomass which can feed larger organisms such as protists. Some protists are heterotrophs, but others are mixotrophs, able to grow by photosynthesis or heterotrophy. Previous work suggests that by killing and eating bacteria, protists and viruses may regulate bacterial populations, but how these processes are regulated in Antarctic waters is poorly understood. This project will use experiments to determine the rate at which Antarctic protists consume bacteria, and field studies to identify the major bacterial taxa involved in carbon uptake and recycling. In addition, this project will use new sequencing technology to obtain completed genomes for many Antarctic marine bacteria. To place this work in an ecosystem context this project will use microbial diversity data to inform rates associated with key microbial processes within the PALMER ecosystem model.\r\n\r\nThis project addresses critical unknowns regarding the ecological role of heterotrophic marine bacteria in the coastal Antarctic and the top-down controls on bacterial populations. Previous work suggests that at certain times of the year grazing by heterotrophic and mixotrophic protists may meet or exceed bacterial production rates. Similarly, in more temperate waters bacteriophages (viruses) are thought to contribute significantly to bacterial mortality during the spring and summer. These different top-down controls have implications for carbon flow through the marine foodweb, because protists are grazed more efficiently by higher trophic levels than are bacteria. This project uses a combination of grazing experiments and field observations to assess the temporal dynamics of mortality due to temperate bacteriophage and protists. Although many heterotrophic bacterial strains observed in the coastal Antarctic are taxonomically similar to strains from other regions, recent work suggest that they are phylogenetically and genetically distinct. To better understand the ecological function and evolutionary trajectories of key Antarctic marine bacteria, their genomes will be isolated and sequenced. Then, these genomes will be used to improve the predictions of the paprica metabolic inference pipeline, and our understanding of the relationship between heterotrophic bacteria and their major predators in the Antarctic marine environment. Finally, the research team will modify the Regional Test-Bed Model model to enable microbial diversity data to be used to optimize the starting conditions of key parameters, and to constrain the model\u0027s data assimilation methods.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Magmatic Volatiles; BACTERIA/ARCHAEA; VIRUSES; USA/NSF; Palmer Station; ECOSYSTEM FUNCTIONS; COMMUNITY DYNAMICS; LABORATORY; Amd/Us; PROTISTS; AMD; USAP-DC", "locations": "Palmer Station", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bowman, Jeff; Connors, Elizabeth", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "CAREER: Understanding microbial heterotrophic processes in coastal Antarctic waters", "uid": "p0010201", "west": null}, {"awards": "1850988 Teets, Nicholas", "bounds_geometry": "POLYGON((-64.366767 -62.68104,-63.9917036 -62.68104,-63.6166402 -62.68104,-63.2415768 -62.68104,-62.8665134 -62.68104,-62.49145 -62.68104,-62.1163866 -62.68104,-61.7413232 -62.68104,-61.3662598 -62.68104,-60.9911964 -62.68104,-60.616133 -62.68104,-60.616133 -62.9537037,-60.616133 -63.2263674,-60.616133 -63.4990311,-60.616133 -63.7716948,-60.616133 -64.0443585,-60.616133 -64.3170222,-60.616133 -64.5896859,-60.616133 -64.8623496,-60.616133 -65.1350133,-60.616133 -65.407677,-60.9911964 -65.407677,-61.3662598 -65.407677,-61.7413232 -65.407677,-62.1163866 -65.407677,-62.49145 -65.407677,-62.8665134 -65.407677,-63.2415768 -65.407677,-63.6166402 -65.407677,-63.9917036 -65.407677,-64.366767 -65.407677,-64.366767 -65.1350133,-64.366767 -64.8623496,-64.366767 -64.5896859,-64.366767 -64.3170222,-64.366767 -64.0443585,-64.366767 -63.7716948,-64.366767 -63.4990311,-64.366767 -63.2263674,-64.366767 -62.9537037,-64.366767 -62.68104))", "dataset_titles": "Belgica antarctica collection sites - Summer 2023/2024 field season; Cold and dehydration tolerance of Belgica antarctica from three distinct geographic locations; Cross-tolerance in Belgica antarctica near Palmer Peninsula; Data from microplastics exposure in Belgica antarctica; Fine\u2011scale variation in microhabitat conditions influences physiology and metabolism in an Antarctic insect; Information on 2023 collection sites for Belgica antarctica; LMG2002 Expedtition Data; Long-term recovery from freezing in Belgica antarctica; Multiple stress tolerance in the Antarctic midge; Simulated winter warming negatively impacts survival of Antarcticas only endemic insect; Stress tolerance in Belgica antarctica and Eretmoptera murphyi", "datasets": [{"dataset_uid": "601865", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Seasonality", "people": "Gantz, Josiah D.; Teets, Nicholas; Spacht, Drew; Devlin, Jack; Lee, Richard; Denlinger, David; McCabe, Eleanor", "repository": "USAP-DC", "science_program": null, "title": "Fine\u2011scale variation in microhabitat conditions influences physiology and metabolism in an Antarctic insect", "url": "https://www.usap-dc.org/view/dataset/601865"}, {"dataset_uid": "601866", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Cryosphere", "people": "Devlin, Jack; Teets, Nicholas", "repository": "USAP-DC", "science_program": null, "title": "Data from microplastics exposure in Belgica antarctica", "url": "https://www.usap-dc.org/view/dataset/601866"}, {"dataset_uid": "601867", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Cryosphere", "people": "Teets, Nicholas", "repository": "USAP-DC", "science_program": null, "title": "Multiple stress tolerance in the Antarctic midge", "url": "https://www.usap-dc.org/view/dataset/601867"}, {"dataset_uid": "601872", "doi": null, "keywords": "Antarctica; Belgica Antarctica; Cryosphere", "people": "Colinet, Herve; Hayward, Scott; Michel, Andrew; Sousa Lima, Cleverson", "repository": "USAP-DC", "science_program": null, "title": "Cross-tolerance in Belgica antarctica near Palmer Peninsula", "url": "https://www.usap-dc.org/view/dataset/601872"}, {"dataset_uid": "601698", "doi": "10.15784/601698", "keywords": "Antarctica; Belgica Antarctica; Palmer Station", "people": "Sousa Lima, Cleverson; Lecheta, Melise; Devlin, Jack; Teets, Nicholas", "repository": "USAP-DC", "science_program": null, "title": "Long-term recovery from freezing in Belgica antarctica", "url": "https://www.usap-dc.org/view/dataset/601698"}, {"dataset_uid": "601874", "doi": null, "keywords": "Antarctica; Belgica Antarctica; Cryosphere", "people": "Teets, Nicholas; Sousa Lima, Cleverson; Michel, Andrew; Hayward, Scott", "repository": "USAP-DC", "science_program": null, "title": "Stress tolerance in Belgica antarctica and Eretmoptera murphyi", "url": "https://www.usap-dc.org/view/dataset/601874"}, {"dataset_uid": "601875", "doi": null, "keywords": "Antarctica; Cryosphere", "people": "Sousa Lima, Cleverson; Hayward, Scott; Teets, Nicholas; Michel, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Belgica antarctica collection sites - Summer 2023/2024 field season", "url": "https://www.usap-dc.org/view/dataset/601875"}, {"dataset_uid": "200222", "doi": "10.7284/908802", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "LMG2002 Expedtition Data", "url": "https://www.rvdata.us/search/cruise/LMG2002"}, {"dataset_uid": "200425", "doi": "", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Simulated winter warming negatively impacts survival of Antarcticas only endemic insect", "url": "https://www.usap-dc.org/view/dataset/601694"}, {"dataset_uid": "601687", "doi": "10.15784/601687", "keywords": "Antarctica; Antarctic Peninsula; Belgica Antarctica; Biota; Sample Location", "people": "Kawarasaki, Yuta; Devlin, Jack; Teets, Nicholas; Michel, Andrew; Peter, Convey; Gantz, Joseph; Pavinato, Vitor; Sousa Lima, Cleverson", "repository": "USAP-DC", "science_program": null, "title": "Information on 2023 collection sites for Belgica antarctica", "url": "https://www.usap-dc.org/view/dataset/601687"}, {"dataset_uid": "601864", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Cryosphere", "people": "Kawarasaki, Yuta; Teets, Nicholas", "repository": "USAP-DC", "science_program": null, "title": "Cold and dehydration tolerance of Belgica antarctica from three distinct geographic locations", "url": "https://www.usap-dc.org/view/dataset/601864"}], "date_created": "Fri, 25 Jun 2021 00:00:00 GMT", "description": "The cold, dry terrestrial environments of Antarctica are inhospitable for insects, and only three midge species make Antarctica home. Of these, Belgica antarctica is the only species found exclusively in Antarctica, and it has been a resident of Antarctica since the continent split from South America ~30 million years ago. Thus, this species is an excellent system to model the biological history of Antarctica throughout its repeated glaciation events and shifts in climate. This insect is also a classic example of extreme adaptation, and much previous work has focused on identifying the genetic and physiological mechanisms that allow this species to survive where no other insect is capable. However, it has been difficult to pinpoint the unique evolutionary adaptations that are required to survive in Antarctica due to a lack of information from closely related Antarctic and sub-Antarctic species. This project will compare adaptations, genome sequences, and population characteristics of four midge species that span an environmental gradient from sub-Antarctic to Antarctic habitats. In addition to B. antarctica, these species include two species that are strictly sub-Antarctic and a third that is native to the sub-Antarctic but has invaded parts of Antarctica. The researchers, comprised of scientists from the US, UK, Chile, and France, will sample insects from across their geographic range and measure their ability to tolerate environmental stressors (i.e., cold and desiccation), quantify molecular responses to stress, and compare the makeup of the genome and patterns of genetic diversity. This research will contribute to a greater understanding of adaptation to extremes, to an understanding of biodiversity on the planet and to understanding and predicting changes accompanying environmental change. The project will train two graduate students and two postdoctoral researchers, and a K-12 educator will be a member of the field team and will assist with fieldwork and facilitate outreach with schools in the US. The project includes partnership activities with several STEM education organizations to deliver educational content to K-12 and secondary students. This is a project that is jointly funded by the National Science Foundation\u0027s Directorate of Geosciences (NSF/GEO) and the National Environment Research Council (NERC) of the United Kingdom (UK) via the NSF/GEO-NERC Lead Agency Agreement. This Agreement allows a single joint US/UK proposal to be submitted and peer-reviewed by the Agency whose investigator has the largest proportion of the budget. Each Agency funds the proportion of the budget and the investigators associated with its own country. UK participation in this project includes deploying scientists as part of the field team, supporting field and sampling logistics at remote Antarctic sites, and genome sequencing, annotation, and analyses.\r\n\r\nThis project focuses on the key physiological adaptations and molecular processes that allow a select few insect species to survive in Antarctica. The focal species are all wingless with limited dispersal capacity, suggesting there is also significant potential to locally adapt to variable environmental conditions across the range of these species. The central hypothesis is that similar molecular mechanisms drive both population-level adaptation to local environmental conditions and macroevolutionary changes across species living in different environments. The specific aims of the project are to 1) Characterize conserved and species-specific adaptations to extreme environments through comparative physiology and transcriptomics, 2) Compare the genome sequences of these species to identify genetic signatures of extreme adaption, and 3) Investigate patterns of diversification and local adaptation across each species? range using population genomics. The project establishes an international collaboration of researchers from the US, UK, Chile, and France with shared interests and complementary expertise in the biology, genomics, and conservation of Antarctic arthropods. The Broader Impacts of the project include training students and partnering with the Living Arts and Science Center to design and implement educational content for K-12 students.\r\n\r\nThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -60.616133, "geometry": "POINT(-62.49145 -64.0443585)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Peninsula; Livingston Island; Antarctica; USAP-DC; AMD; R/V LMG; USA/NSF; ARTHROPODS; Amd/Us; Anvers Island", "locations": "Antarctica; Antarctic Peninsula; Anvers Island; Livingston Island", "north": -62.68104, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Teets, Nicholas; Michel, Andrew", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -65.407677, "title": "NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects", "uid": "p0010203", "west": -64.366767}, {"awards": "1848887 McClintock, James", "bounds_geometry": "POINT(-64.0527 -64.77423)", "dataset_titles": "2020 and 2023 Underwater video transect community analysis data; 2020 daily seawater carbonate chemistry; 2023 daily seawater carbonate chemistry; Amphipod counts from 2020 ocean acidification experiment; Feeding of Gondogeneia antarctica maintained under ambient and low pH treatments; Palatability of Desmarestia menziesii extracts from ambient and low pH treatments; Palatability of Palmaria decipiens thallus from ambient and low pH treatments; Underwater transect videos used for 2020 and 2023 community analyses", "datasets": [{"dataset_uid": "601796", "doi": "10.15784/601796", "keywords": "Antarctica; Biota; Cryosphere; Oceans; Southern Ocean; Video Transects", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Underwater transect videos used for 2020 and 2023 community analyses", "url": "https://www.usap-dc.org/view/dataset/601796"}, {"dataset_uid": "601700", "doi": "10.15784/601700", "keywords": "Antarctica; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "2020 daily seawater carbonate chemistry", "url": "https://www.usap-dc.org/view/dataset/601700"}, {"dataset_uid": "601701", "doi": "10.15784/601701", "keywords": "Antarctica; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "2023 daily seawater carbonate chemistry", "url": "https://www.usap-dc.org/view/dataset/601701"}, {"dataset_uid": "601787", "doi": "10.15784/601787", "keywords": "Antarctica; Antarctic Peninsula; Biota; Cryosphere; Species Abundance; Video Transects", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "2020 and 2023 Underwater video transect community analysis data", "url": "https://www.usap-dc.org/view/dataset/601787"}, {"dataset_uid": "601793", "doi": "10.15784/601793", "keywords": "Antarctica; Cryosphere; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Feeding of Gondogeneia antarctica maintained under ambient and low pH treatments", "url": "https://www.usap-dc.org/view/dataset/601793"}, {"dataset_uid": "601792", "doi": "10.15784/601792", "keywords": "Antarctica; Cryosphere; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Palatability of Palmaria decipiens thallus from ambient and low pH treatments", "url": "https://www.usap-dc.org/view/dataset/601792"}, {"dataset_uid": "601791", "doi": "10.15784/601791", "keywords": "Antarctica; Cryosphere; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Palatability of Desmarestia menziesii extracts from ambient and low pH treatments", "url": "https://www.usap-dc.org/view/dataset/601791"}, {"dataset_uid": "601702", "doi": "10.15784/601702", "keywords": "Antarctica; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Amphipod counts from 2020 ocean acidification experiment", "url": "https://www.usap-dc.org/view/dataset/601702"}], "date_created": "Mon, 21 Jun 2021 00:00:00 GMT", "description": "Undersea forests of seaweeds dominate the shallow waters of the central and northern coast of the western Antarctic Peninsula and provide critical structural habitat and carbon resources (food) for a host of marine organisms. Most of the seaweeds are chemically defended against herbivores yet support very high densities of herbivorous shrimp-like grazers (crustaceans, primarily amphipods) which greatly benefit their hosts by consuming filamentous and microscopic algae that otherwise overgrow the seaweeds. The amphipods benefit from the association with the chemically defended seaweeds by gaining an associational refuge from fish predation. The project builds on recent work that has demonstrated that several species of amphipods that are key members of crustacean assemblages associated with the seaweeds suffer significant mortality when chronically exposed to increased seawater acidity (reduced pH) and elevated temperatures representative of near-future oceans. By simulating these environmental conditions in the laboratory at Palmer Station, Antarctica, the investigators will test the overall hypothesis that ocean acidification will play a significant role in structuring crustacean assemblages associated with seaweeds. Broader impacts include expanding fundamental knowledge of the impacts of global climate change by focusing on a geographic region of the earth uniquely susceptible to climate change. This project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This includes training graduate students and early career scientists with an emphasis on diversity, presentations to K-12 groups and the general public, and a variety of social media-based outreach programs.\r\n\r\nThe project will compare population and assemblage-wide impacts of natural (ambient) and carbon dioxide enriched seawater on assemblages of seaweed-associated crustacean grazers. Based on prior results, it is likely that some species will be relative \"winners\" and some will be relative \"losers\" under the changed conditions. The project will then aim to carry out measurements of growth, calcification, mineralogy, the incidence of molts, and biochemical and energetic body composition for two key amphipod \"winners\" and two key amphipod \"losers\". These measurements will allow an assessment of what factors drive species-specific enhanced or diminished performance under conditions of ocean acidification and sea surface warming. The project will expand on what little is known about prospective impacts of changing conditions on benthic marine Crustacea, in Antarctica, a taxonomic group that faces the additional physiological stressor of molting. The project is likely to provide additional insight on the indirect regulation of the seaweeds that comprise Antarctic undersea forests that provide key architectural components of the coastal marine ecosystem.", "east": -64.0527, "geometry": "POINT(-64.0527 -64.77423)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; Amd/Us; AMD; COASTAL; BENTHIC; USAP-DC; Palmer Station; ANIMALS/INVERTEBRATES; FIELD INVESTIGATION; MACROALGAE (SEAWEEDS)", "locations": "Palmer Station", "north": -64.77423, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Amsler, Charles; McClintock, James", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.77423, "title": "Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica", "uid": "p0010193", "west": -64.0527}, {"awards": "1753101 Bernard, Kim", "bounds_geometry": "POLYGON((-65 -64,-64.7 -64,-64.4 -64,-64.1 -64,-63.8 -64,-63.5 -64,-63.2 -64,-62.9 -64,-62.6 -64,-62.3 -64,-62 -64,-62 -64.1,-62 -64.2,-62 -64.3,-62 -64.4,-62 -64.5,-62 -64.6,-62 -64.7,-62 -64.8,-62 -64.9,-62 -65,-62.3 -65,-62.6 -65,-62.9 -65,-63.2 -65,-63.5 -65,-63.8 -65,-64.1 -65,-64.4 -65,-64.7 -65,-65 -65,-65 -64.9,-65 -64.8,-65 -64.7,-65 -64.6,-65 -64.5,-65 -64.4,-65 -64.3,-65 -64.2,-65 -64.1,-65 -64))", "dataset_titles": "2019 Krill Carbon Content; 2019 Krill Morphometrics; CAREER: \"The Omnivores Dilemma\": The Effect of Autumn Diet on Winter Physiology and Condition of Juvenile Antarctic Krill; Expedition of NBP2205; Feeding Experiment - Krill Lipid Classes; Gerlache Strait Krill Demographics", "datasets": [{"dataset_uid": "601707", "doi": "10.15784/601707", "keywords": "Antarctica; Antarctic Krill; Palmer Station; Winter", "people": "Bernard, Kim", "repository": "USAP-DC", "science_program": null, "title": "Feeding Experiment - Krill Lipid Classes", "url": "https://www.usap-dc.org/view/dataset/601707"}, {"dataset_uid": "200369", "doi": "10.7284/909918", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition of NBP2205", "url": "https://www.rvdata.us/search/cruise/NBP2205"}, {"dataset_uid": "601708", "doi": "10.15784/601708", "keywords": "Antarctica; Antarctic Krill; Palmer Station; Winter", "people": "Bernard, Kim", "repository": "USAP-DC", "science_program": null, "title": "2019 Krill Morphometrics", "url": "https://www.usap-dc.org/view/dataset/601708"}, {"dataset_uid": "200368", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "CAREER: \"The Omnivores Dilemma\": The Effect of Autumn Diet on Winter Physiology and Condition of Juvenile Antarctic Krill", "url": "https://www.bco-dmo.org/project/824760"}, {"dataset_uid": "601709", "doi": "10.15784/601709", "keywords": "Antarctica; Antarctic Krill; Palmer Station; Winter", "people": "Bernard, Kim", "repository": "USAP-DC", "science_program": null, "title": "2019 Krill Carbon Content", "url": "https://www.usap-dc.org/view/dataset/601709"}, {"dataset_uid": "601706", "doi": "10.15784/601706", "keywords": "Abundance; Antarctica; Antarctic Krill", "people": "Bernard, Kim", "repository": "USAP-DC", "science_program": null, "title": "Gerlache Strait Krill Demographics", "url": "https://www.usap-dc.org/view/dataset/601706"}], "date_created": "Mon, 31 Aug 2020 00:00:00 GMT", "description": "Antarctic krill are essential in the Southern Ocean as they support vast numbers of marine mammals, seabirds and fishes, some of which feed almost exclusively on krill. Antarctic krill also constitute a target species for industrial fisheries in the Southern Ocean. The success of Antarctic krill populations is largely determined by the ability of their young to survive the long, dark winter, where food is extremely scarce. To survive the long-dark winter, young Antarctic krill must have a high-quality diet in autumn. However, warming in certain parts of Antarctica is changing the dynamics and quality of the polar food web, resulting in a shift in the type of food available to young krill in autumn. It is not yet clear how these dynamic changes are affecting the ability of krill to survive the winter. This project aims to fill an important gap in current knowledge on an understudied stage of the Antarctic krill life cycle, the 1-year old juveniles. The results derived from this work will contribute to the development of improved bioenergetic, population and ecosystem models, and will advance current scientific understanding of this critical Antarctic species. This CAREER projects core education and outreach objectives seek to enhance education and increase diversity within STEM fields. An undergraduate course will be developed that will integrate undergraduate research and writing in way that promotes authentic scientific inquiry and analysis of original research data by the students, and that enhances their communication skills. A graduate course will be developed that will promote students skills in communicating their own research to a non-scientific audience. Graduate students will be supported through the proposed study and will gain valuable research experience. Traditionally underserved undergraduate students will be recruited to conduct independent research under the umbrella of the larger project. Throughout each field season, the research team will maintain a weekly blog that will include short videos, photographs and text highlighting the research, as well as their experiences living and working in Antarctica. The aim of the blog will be to engage the public and increase awareness and understanding of Antarctic ecosystems and the impact of warming, and of the scientific process of research and discovery.\u003cbr/\u003e\u003cbr/\u003eIn this 5-year CAREER project, the investigator will use a combination of empirical and theoretical techniques to assess the effects of diet on 1-year old krill in autumn-winter. The research is centered on four hypotheses: (H1) autumn diet affects 1-year old krill physiology and condition at the onset of winter; (H2) autumn diet has an effect on winter physiology and condition of 1-year old krill under variable winter food conditions; (H3) the rate of change in physiology and condition of 1-year old krill from autumn to winter is dependent on autumn diet; and (H4) the winter energy budget of 1-year old krill will vary between years and will be dependent on autumn diet. Long-term feeding experiments and in situ sampling will be used to measure changes in the physiology and condition of krill in relation to their diet and feeding environment. Empirically-derived data will be used to develop theoretical models of growth rates and energy budgets to determine how diet will influence the overwinter survival of 1-year old krill. The research will be integrated with an education and outreach plan to (1) develop engaging undergraduate and graduate courses, (2) train and develop young scientists for careers in polar research, and (3) engage the public and increase their awareness and understanding.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSFs statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -62.0, "geometry": "POINT(-63.5 -64.5)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Peninsula; AMD; FIELD INVESTIGATION; ANIMALS/INVERTEBRATES; PELAGIC; Anvers Island; Amd/Us; USAP-DC; NSF/USA", "locations": "Antarctic Peninsula; Anvers Island", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bernard, Kim", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "BCO-DMO; R2R; USAP-DC", "science_programs": null, "south": -65.0, "title": "CAREER: \"The Omnivore\u0027s Dilemma\": The Effect of Autumn Diet on Winter Physiology and Condition of Juvenile Antarctic Krill", "uid": "p0010124", "west": -65.0}, {"awards": "1543450 Countway, Peter", "bounds_geometry": "POLYGON((-66 -63,-65.7 -63,-65.4 -63,-65.1 -63,-64.8 -63,-64.5 -63,-64.2 -63,-63.9 -63,-63.6 -63,-63.3 -63,-63 -63,-63 -63.3,-63 -63.6,-63 -63.9,-63 -64.2,-63 -64.5,-63 -64.8,-63 -65.1,-63 -65.4,-63 -65.7,-63 -66,-63.3 -66,-63.6 -66,-63.9 -66,-64.2 -66,-64.5 -66,-64.8 -66,-65.1 -66,-65.4 -66,-65.7 -66,-66 -66,-66 -65.7,-66 -65.4,-66 -65.1,-66 -64.8,-66 -64.5,-66 -64.2,-66 -63.9,-66 -63.6,-66 -63.3,-66 -63))", "dataset_titles": "Biogenic Sulfur Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments; Dissolved Inorganic Nutrient Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments ; Dissolved Organic Carbon (DOC) and Total Dissolved Nitrogen (TDN) Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments; Flow Cytometry Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments; Heterotrophic Bacterial Production Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments; Western Antarctic Peninsula plankton raw sequence reads", "datasets": [{"dataset_uid": "601645", "doi": "10.15784/601645", "keywords": "Antarctica; Nitrate; Nitrite; Palmer Station; Phosphate", "people": "Countway, Peter; Matrai, Patricia", "repository": "USAP-DC", "science_program": null, "title": "Dissolved Inorganic Nutrient Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments ", "url": "https://www.usap-dc.org/view/dataset/601645"}, {"dataset_uid": "200337", "doi": "", "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Western Antarctic Peninsula plankton raw sequence reads", "url": "https://dataview.ncbi.nlm.nih.gov/object/PRJNA870587?reviewer=bmud2tbbrqbus79i2n2hb83uio"}, {"dataset_uid": "601644", "doi": "10.15784/601644", "keywords": "3H-Leu; Antarctica; Bacteria; Biota; DMSP; Heterotrophic Bacterial Production; Palmer Station", "people": "Matrai, Patricia; Countway, Peter", "repository": "USAP-DC", "science_program": null, "title": "Heterotrophic Bacterial Production Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments", "url": "https://www.usap-dc.org/view/dataset/601644"}, {"dataset_uid": "601648", "doi": "10.15784/601648", "keywords": "Antarctica; Biota; Dimethyl Sulfide; Dimethylsulfoniopropionate; Dimethylsulfoxide; DMSP; DMSP Lyase; Palmer Station", "people": "Matrai, Patricia; Countway, Peter", "repository": "USAP-DC", "science_program": null, "title": "Biogenic Sulfur Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments", "url": "https://www.usap-dc.org/view/dataset/601648"}, {"dataset_uid": "601647", "doi": "10.15784/601647", "keywords": "Antarctica; Palmer Station; Phytoplankton", "people": "Countway, Peter; Matrai, Patricia", "repository": "USAP-DC", "science_program": null, "title": "Flow Cytometry Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments", "url": "https://www.usap-dc.org/view/dataset/601647"}, {"dataset_uid": "601646", "doi": "10.15784/601646", "keywords": "Antarctica; Carbon; Dissolved Organic Carbon; Nitrogen; Palmer Station; TDN; Total Dissolved Nitrogen", "people": "Countway, Peter; Matrai, Patricia", "repository": "USAP-DC", "science_program": null, "title": "Dissolved Organic Carbon (DOC) and Total Dissolved Nitrogen (TDN) Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments", "url": "https://www.usap-dc.org/view/dataset/601646"}], "date_created": "Sat, 01 Aug 2020 00:00:00 GMT", "description": "The Southern Ocean in the vicinity of Antarctica is a region characterized by seasonally-driven marine phytoplankton blooms that are often dominated by microalgal species which produce large amounts of dimethylsulfoniopropionate (DMSP). DMSP can be converted to the compound dimethylsulfide (DMS) which is a molecule that can escape into the atmosphere where it is known to have strong condensation properties that are involved in regional cloud formation. Production of DMSP can influence the diversity and composition of microbial assemblages in seawater and the types and activities of microbes in the seawater will likely affect the magnitude of DMSP\\DMS production. The project examined the role of DMSP in structuring the microbial communities in Antarctic waters and how this structuring may influence DMSP cycling. The project interacted with elementary students in Maine and brought undergraduate students to Bigelow Laboratory. The project also engaged with a science writer and illustrator who joined the team in Palmer Station in 2018. Many posts are available at xxx\r\n\r\nThe project is examining (1) the extent to which the cycling of DMSP in southern ocean waters influenced the composition and diversity of bacterial and protistan assemblages; (2) conversely, whether the composition and diversity of southern ocean protistan and bacterial assemblages influenced the magnitude and rates of DMSP cycling; we are awaiting results on (3) the expression of DMSP degradation genes by marine bacteria seasonally and in response to field experimental additions of DMSP; and, this year (2020-21), we will synthesize these results by quantifying (4) the microbial networks resulting from the presence of DMSP-producers and DMSP-consumers along with their predators, all involved in the cycling of DMSP in southern ocean waters. The work was accomplished by conducting continuous growth experiments with DMSP-amended natural samples of different microbial communities present in summer (2016-17) and fall (2018) at Palmer Station, WAP. Data from the molecular (such as 16S/ 18S tag sequences, DMSP-cycle gene transcripts) and biogeochemical (such as biogenic sulfur cycling, bacterial production, microbial biomass) investigations will be integrated via network analysis in the coming year (2020-21). ", "east": -63.0, "geometry": "POINT(-64.5 -64.5)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; COMMUNITY DYNAMICS; FIELD INVESTIGATION; AMD; PLANKTON; Amd/Us; BIOGEOCHEMICAL CYCLES; Palmer Station; USA/NSF", "locations": "Palmer Station", "north": -63.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Countway, Peter", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "GenBank; USAP-DC", "science_programs": null, "south": -66.0, "title": "Microbial Community Structure and Expression of Functional Genes Involved in the Seasonal Cycling of DMSP in the Southern Ocean", "uid": "p0010120", "west": -66.0}, {"awards": "1543328 Van Mooy, Benjamin", "bounds_geometry": null, "dataset_titles": "Lipidomics of Antarctic waters. (TBD)", "datasets": [{"dataset_uid": "200149", "doi": "TBD", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Lipidomics of Antarctic waters. (TBD)", "url": "https://www.bco-dmo.org/data"}], "date_created": "Fri, 19 Jun 2020 00:00:00 GMT", "description": "The depletion of stratospheric ozone over Antarctica leads to abnormally high levels of ultraviolet radiation (UVR) from the sun reaching the surface of the ocean. This phenomenon is predicted to continue for the next half century, despite bans on ozone-destroying pollutants. Phytoplankton in the near surface ocean are subjected to variable amounts of UVR and contain a lot of lipids (fats). Because phytoplankton are at the base of the food chain their lipids makes their way into the Antarctic marine ecosystem\u0027s food web. The molecular structures of phytoplankton lipids are easily altered by UVR. When this happens, their lipids can be transformed from healthy molecules into potentially harmful molecules(oxylipins) known to be disruptive to reproductive and developmental processes. This project will use state-of-the-art molecular methods to answer questions about extent to which UVR damages lipid molecules in phytoplankton, and how these resultant molecules might effect the food chain in the ocean near Antarctica. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eLipid peroxidation is often invoked as consequence of increased exposure of phytoplankton to UVR-produced reactive oxygen species (ROS), but the literature is practically silent on peroxidized lipids and their byproducts (i.e. oxylipins) in the ocean. In waters of the West Antarctic Peninsula (WAP), spring-time blooms of diatoms contribute significantly to overall marine primary production. Oxylipins from diatoms can be highly bioactive; their impact on zooplankton grazers, bacteria, and other phytoplankton has been the subject of intense study. However, almost all of this work has focused on the production of oxylipins via enzymatic pathways, not by pathways involving UVR and/or ROS. Furthermore, rigorous experimental work on the effects of oxylipins has been confined almost exclusively to pure cultures and artificial communities. Thus, the true potential of these molecules to disrupt carbon cycling is very poorly-constrained, and is entirely unknown in the waters of the WAP. Armed with new highly-sensitive, state-of-the-art analytical techniques based on high-mass-resolution mass spectrometry, the principal investigator and his research group have begun to uncover an exquisite diversity of oxylipins in natural WAP planktonic communities. These techniques will be applied to understand the connections between UVR, ROS, oxylipins, and carbon cycling. The project will answer the question of how UVR, via ROS, affects oxylipin production by diatoms in WAP surface waters in controlled experiments conducted at a field station. With the answer to this question in hand, the project will also seek to answer how this phenomenon impacts the flow of carbon, particularly the export of organic carbon from the system, during a research cruise. The level of UVR-induced stresses experienced by oxylipin-rich planktonic communities in the WAP is unique, making Antarctica the only location for answering these fundamental questions. Major activities will include laboratory experiments with artificial membranes and diatom cultures, as well field experiments with phytoplankton, zooplankton, and bacteria in WAP waters.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Oxylipins; Palmer Station; UV Radiation; USAP-DC; West Antarctic Shelf; NOT APPLICABLE; AQUATIC SCIENCES; Phytoplankton", "locations": "West Antarctic Shelf; Palmer Station", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Van Mooy, Benjamin", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": null, "title": "Production and Fate of Oxylipins in Waters of the Western Antarctic Peninsula: Linkages Between UV Radiation, Lipid Peroxidation, and Carbon Cycling", "uid": "p0010109", "west": null}, {"awards": "1543383 Postlethwait, John", "bounds_geometry": "POLYGON((-66 -62,-65.2 -62,-64.4 -62,-63.6 -62,-62.8 -62,-62 -62,-61.2 -62,-60.4 -62,-59.6 -62,-58.8 -62,-58 -62,-58 -62.4,-58 -62.8,-58 -63.2,-58 -63.6,-58 -64,-58 -64.4,-58 -64.8,-58 -65.2,-58 -65.6,-58 -66,-58.8 -66,-59.6 -66,-60.4 -66,-61.2 -66,-62 -66,-62.8 -66,-63.6 -66,-64.4 -66,-65.2 -66,-66 -66,-66 -65.6,-66 -65.2,-66 -64.8,-66 -64.4,-66 -64,-66 -63.6,-66 -63.2,-66 -62.8,-66 -62.4,-66 -62))", "dataset_titles": "C. aceratus pronephric kidney (head kidney) miRNA; Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae); mirtop\r\ncommand lines tool to annotate miRNAs with a standard mirna/isomir naming; Patagonotothen cornucola isolate Pcor_18_01 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial; Patagonotothen sima isolate Psim_18_11 cardiac muscle myosin heavy chain 6 (myh6) gene, partial cds; Patagonotothen sima isolate Psim_18_11 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial; Patagonotothen sima isolate Psim_18_12 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial; Prost!, a tool for miRNA annotation and next generation smallRNA sequencing experiment analysis; Quantifying expression levels of smallRNAs between tissues in Danio Rerio strain AB.; Quantifying expression levels of smallRNAs between tissues in three-spined stickleback", "datasets": [{"dataset_uid": "200130", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "C. aceratus pronephric kidney (head kidney) miRNA", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=SRP069031"}, {"dataset_uid": "200136", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Patagonotothen sima isolate Psim_18_11 cardiac muscle myosin heavy chain 6 (myh6) gene, partial cds", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=MN136234+"}, {"dataset_uid": "200129", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "Quantifying expression levels of smallRNAs between tissues in Danio Rerio strain AB.", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=SRP039502"}, {"dataset_uid": "200128", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "Quantifying expression levels of smallRNAs between tissues in three-spined stickleback", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=SRP157992"}, {"dataset_uid": "200134", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Patagonotothen sima isolate Psim_18_11 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=MN136232"}, {"dataset_uid": "200135", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Patagonotothen sima isolate Psim_18_12 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=MN136233+"}, {"dataset_uid": "200132", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "mirtop\r\ncommand lines tool to annotate miRNAs with a standard mirna/isomir naming", "url": "https://github.com/miRTop"}, {"dataset_uid": "200133", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Patagonotothen cornucola isolate Pcor_18_01 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=MN136231"}, {"dataset_uid": "601811", "doi": null, "keywords": "Antarctica; Bellingshausen Sea; Cryosphere; Southern Ocean", "people": "McDowell, Jan; Corso, Andrew; Desvignes, Thomas; Cheng, Chi-Hing; Biesack, Ellen; Steinberg, Deborah; Hilton, Eric", "repository": "USAP-DC", "science_program": "LTER", "title": "Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)", "url": "https://www.usap-dc.org/view/dataset/601811"}, {"dataset_uid": "200131", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Prost!, a tool for miRNA annotation and next generation smallRNA sequencing experiment analysis", "url": "https://github.com/uoregon-postlethwait/prost"}], "date_created": "Wed, 26 Feb 2020 00:00:00 GMT", "description": "microRNAs (miRNAs) are key post-transcriptional regulators of gene expression that modulate development and physiology in temperate animals. Although miRNAs act by binding to messenger RNAs (mRNAs), a process that is strongly sensitive to temperature, miRNAs have yet not been studied in Antarctic animals, including Notothenioid fish, which dominate the Southern Ocean. This project will compare miRNA regulation in 1) Antarctic vs. temperate fish to learn the roles of miRNA regulation in adaptation to constant cold; and in 2) bottom-dwelling, dense-boned, red-blooded Nototheniods vs. high buoyancy, osteopenic, white-blooded icefish to understand miRNA regulation in specialized organs after the evolution of the loss of hemoglobin genes and red blood cells, the origin of enlarged heart and vasculature, and the evolution of increased buoyancy, which arose by decreased bone mineralization and increased lipid deposition. Aim 1 is to test the hypothesis that Antarctic fish evolved miRNA-related genome specializations in response to constant cold. The project will compare four Antarctic Notothenioid species to two temperate Notothenioids and two temperate laboratory species to test the hypotheses that (a) Antarctic fish evolved miRNA genome repertoires by loss of ancestral genes and/or gain of new genes, (b) express miRNAs that are involved in cold tolerance, and (c) respond to temperature change by changing miRNA gene expression. Aim 2 is to test the hypothesis that the evolution of icefish from red-blooded bottom-dwelling ancestors was accompanied by an altered miRNA genomic repertoire, sequence, and/or expression. The project will test the hypotheses that (a) miRNAs in icefish evolved in sequence and/or in expression in icefish specializations, including head kidney (origin of red blood cells); heart (changes in vascular system), cranium and pectoral girdle (reduced bone mineral density); and skeletal muscle (lipid deposition), and (b) miRNAs that evolved in icefish specializations had ancestral functions related to their derived roles in icefish, as determined by functional tests of zebrafish orthologs of icefish miRNAs in developing zebrafish. The program will isolate, sequence, and determine the expression of miRNAs and mRNAs using high-throughput transcriptomics and novel software. Results will show how the microRNA system evolves in vertebrate animals pushed to physiological extremes and provide insights into the prospects of key species in the most rapidly warming part of the globe.", "east": -58.0, "geometry": "POINT(-62 -64)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; Palmer Station; NOT APPLICABLE; FISH", "locations": "Palmer Station", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Postlethwait, John; Desvignes, Thomas", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "NCBI SRA", "repositories": "GitHub; NCBI GenBank; NCBI SRA; USAP-DC", "science_programs": null, "south": -66.0, "title": "Antarctic Fish and MicroRNA Control of Development and Physiology", "uid": "p0010085", "west": -66.0}, {"awards": "1341494 Gao, Yuan", "bounds_geometry": "POINT(-64.05 -64.77)", "dataset_titles": "Concentrations and Particle Size Distributions of Aerosol Trace Elements; Particle sizes of aerosol iron", "datasets": [{"dataset_uid": "601257", "doi": "10.15784/601257", "keywords": "Aerosol Concentration; Antarctica; Chemistry:gas; Chemistry:Gas; Iron; Palmer Station; Particle Size", "people": "Gao, Yuan", "repository": "USAP-DC", "science_program": null, "title": "Particle sizes of aerosol iron", "url": "https://www.usap-dc.org/view/dataset/601257"}, {"dataset_uid": "601370", "doi": "10.15784/601370", "keywords": "Antarctica; Antarctic Peninsula; Palmer Station; Trace Elements", "people": "Gao, Yuan", "repository": "USAP-DC", "science_program": null, "title": "Concentrations and Particle Size Distributions of Aerosol Trace Elements", "url": "https://www.usap-dc.org/view/dataset/601370"}], "date_created": "Thu, 20 Feb 2020 00:00:00 GMT", "description": "The research seeks to further quantify the input of atmospheric Fe into the sparsely sampled Southern Ocean (SO), specifically in the vicinity of the West Antarctic Peninsula (WAP) and adjacent continental shelf waters in the Drake Passage. This is typically a high nutrient low chlorophyll region where surface trace metal and primary productivity data are suggestive of Fe limitation. The WAP is characterized by high productivity in the austral summer, and at this time may be in the path of northern dust (aeolian Fe) input or subject to melt influx of elevated Fe accumulated from glacial and present-day sea ice sources.\u003cbr/\u003e\u003cbr/\u003ePrimary scientific questions are: (1) to what extent does atmospheric Fe contribute to nutrient cycles and ecosystem dynamics in the SO? (2) How is warming climate occurring in the WAP affecting the aerosol composition of the maritime atmosphere. The primary productivity of the Southern Ocean is key to understanding oceanic uptake of anthropogenic greenhouse gases such as carbon dioxide.", "east": -64.05, "geometry": "POINT(-64.05 -64.77)", "instruments": null, "is_usap_dc": true, "keywords": "Aerosol Concentration; TRACE GASES/TRACE SPECIES; Particle Size; Palmer Station; FIELD INVESTIGATION; Trace Elements; Iron; AEROSOL OPTICAL DEPTH/THICKNESS; USAP-DC", "locations": "Palmer Station", "north": -64.77, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Gao, Yuan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.77, "title": "Quantifying Atmospheric Iron Properties over West Antarctic Peninsula", "uid": "p0010082", "west": -64.05}, {"awards": "1543412 Reinfelder, John", "bounds_geometry": null, "dataset_titles": "16S rRNA gene libraries of krill gut microbial communities; Microbial gene libraries of krill gut microbial communities", "datasets": [{"dataset_uid": "200024", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Microbial gene libraries of krill gut microbial communities", "url": "https://nam02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fbioproject%2F531145\u0026amp;data=02%7C01%7Creinfeld%40envsci.rutgers.edu%7C7e30a0192dc748ab271408d6b9d57d08%7Cb92d2b234d35447093ff69aca6632ffe%7C1%7C0%7C636900723909188941\u0026amp;sdata=G6cNg4bBHzeikrWSCYITcT6XS3NLWwjQ1yNdwtrALPc%3D\u0026amp;reserved=0"}, {"dataset_uid": "601171", "doi": "10.15784/601171", "keywords": "Antarctica; Biota; Krill; LTER Palmer Station; Microbiome; Oceans; Southern Ocean", "people": "Reinfelder, John", "repository": "USAP-DC", "science_program": "LTER", "title": "16S rRNA gene libraries of krill gut microbial communities", "url": "https://www.usap-dc.org/view/dataset/601171"}], "date_created": "Sun, 31 Mar 2019 00:00:00 GMT", "description": "The goal of this project was to conduct a preliminary assessment of gut microbiomes in Antarctic krill (Euphasia superba) collected in coastal waters west of the Antarctic Peninsula and identify organisms potentially capable of catalyzing the production of methylmercury. DNA was extracted from composite krill digestive tracts and eukaryotic DNA removed. Prokaryotic microbial DNA extracted from krill digestive tracts was sequenced and gene libraries were constructed. Genera of anaerobic microorganisms which are known to support mercury methylation were identified.", "east": -68.2816, "geometry": "POINT(-69.09295 -66.8017)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; Antarctica; NOT APPLICABLE; BACTERIA/ARCHAEA", "locations": "Antarctica", "north": -65.8708, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Schaefer, Jeffra; Reinfelder, John; Barkar, T.", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "NCBI GenBank", "repositories": "NCBI GenBank; USAP-DC", "science_programs": "LTER", "south": -67.7326, "title": "Methylmercury in Antarctic Krill Microbiomes", "uid": "p0010023", "west": -69.9043}, {"awards": "1245766 Waller, Rhian", "bounds_geometry": "POINT(-63.0796667 -61.5157)", "dataset_titles": "Expedition Data; Log Sheets of coral samples for LMG1509", "datasets": [{"dataset_uid": "001378", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1509"}, {"dataset_uid": "601160", "doi": "10.15784/601160", "keywords": "Antarctica; Antarctic Peninsula; Biota; Corals; CTD; LMG1509; Oceans; Otter Trawl; R/v Laurence M. Gould; Sample/collection Description; Sample/Collection Description; Sample Location; Southern Ocean", "people": "Waller, Rhian", "repository": "USAP-DC", "science_program": null, "title": "Log Sheets of coral samples for LMG1509", "url": "https://www.usap-dc.org/view/dataset/601160"}], "date_created": "Thu, 07 Mar 2019 00:00:00 GMT", "description": "The Western Antarctic Peninsula is experiencing climate change at one of the fastest rates of anywhere around the globe. Accelerated climate change is likely to affect the many benthic marine invertebrates that live within narrow temperature windows along the Antarctic Continental Shelf in presently unidentified ways. At present however, there are few data on the physiological consequences of climate change on the sensitive larval stages of cold-water corals, and none on species living in thermal extremes such as polar waters. This project will collect the larvae of the non-seasonal, brooding scleractinian Flabellum impensum to be used in a month-long climate change experiment at Palmer Station. Multidisciplinary techniques will be used to examine larval development and cellular stress using a combination of electron microscopy, flow cytometry, and Inductively Coupled Plasma Mass Spectometry. Data from this project will form the first systematic study of the larval stages of polar cold-water corals, and how these stages are affected by temperature stress at the cellular and developmental level. \u003cbr/\u003e\u003cbr/\u003eCold-water corals have been shown to be important ecosystem engineers, providing habitat for thousands of associated species, including many that are of commercial importance. Understanding how the larvae of these corals react to warming trends seen today in our oceans will allow researchers to predict future changes in important benthic communities around the globe. Associated education and outreach include: 1) Increasing student participation in polar research by involving postdoctoral and undergraduate students in the field and research program; ii) promotion of K-12 teaching and learning programs by providing information via a research website, Twitter, and in-school talks in the local area; iii) making the data collected available to the wider research community via peer reviewed published literature and iv) reaching a larger public audience through such venues as interviews in the popular media, You Tube and other popular media outlets, and local talks to the general public.", "east": -63.0796667, "geometry": "POINT(-63.0796667 -61.5157)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e TRAWLS/NETS \u003e OTTER TRAWL", "is_usap_dc": true, "keywords": "AQUATIC SCIENCES; ANIMALS/INVERTEBRATES; R/V LMG; Southern Ocean; USAP-DC; WATER TEMPERATURE", "locations": "Southern Ocean", "north": -61.5157, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Waller, Rhian; Jay, Lunden", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -61.5157, "title": "Cold Corals in Hot Water - Investigating the Physiological Responses of Antarctic Coral Larvae to Climate change Stress", "uid": "p0010017", "west": -63.0796667}, {"awards": "1341339 Baker, Bill; 1341333 McClintock, James", "bounds_geometry": "POLYGON((-65 -65,-64.8 -65,-64.6 -65,-64.4 -65,-64.2 -65,-64 -65,-63.8 -65,-63.6 -65,-63.4 -65,-63.2 -65,-63 -65,-63 -64.9,-63 -64.8,-63 -64.7,-63 -64.6,-63 -64.5,-63 -64.4,-63 -64.3,-63 -64.2,-63 -64.1,-63 -64,-63.2 -64,-63.4 -64,-63.6 -64,-63.8 -64,-64 -64,-64.2 -64,-64.4 -64,-64.6 -64,-64.8 -64,-65 -64,-65 -64.1,-65 -64.2,-65 -64.3,-65 -64.4,-65 -64.5,-65 -64.6,-65 -64.7,-65 -64.8,-65 -64.9,-65 -65))", "dataset_titles": "Data from Amsler et al. 2019 Antarctic Science; Plocamium cartilagineum field chemotyping; Plocamium reproductive system data and R code; Plocamium transect and transplant data; Raw gastropod collection data from Amsler et al. 2022 Antarctic Science; Supplementary information provided with Murray et al.: Discovery of an Antarctic ascidian-associated uncultivated Verrucomicrobia with antimelanoma palmerolide biosynthetic potential; Synoicum adareanum sampling underwater video Mar 2011 Palmer Station Antarctica; The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2010 experimental data; The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2010 field data; The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2011 Clad Outplant; The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2013 Chemo Phylo data", "datasets": [{"dataset_uid": "600047", "doi": "10.15784/600047", "keywords": "Antarctica; Biota; Oceans; Southern Ocean", "people": "Baker, Bill", "repository": "USAP-DC", "science_program": null, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2010 experimental data", "url": "https://www.usap-dc.org/view/dataset/600047"}, {"dataset_uid": "601215", "doi": "10.15784/601215", "keywords": "Algae; Antarctica; Biota; Chemical Ecology; Chemotyping; Halogenated Monoterpenes; Natural Products; Oceans; Palmer Station; Plocamium Cartilagineum; Southern Ocean; Terpenes", "people": "Baker, Bill", "repository": "USAP-DC", "science_program": null, "title": "Plocamium cartilagineum field chemotyping", "url": "https://www.usap-dc.org/view/dataset/601215"}, {"dataset_uid": "600046", "doi": "10.15784/600046", "keywords": "Antarctica; Biota; Oceans; Southern Ocean", "people": "Amsler, Charles; McClintock, James", "repository": "USAP-DC", "science_program": null, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2010 field data", "url": "https://www.usap-dc.org/view/dataset/600046"}, {"dataset_uid": "600095", "doi": "10.15784/600095", "keywords": "Algae; Antarctica; Antarctic Peninsula; Biota; Oceans; Southern Ocean", "people": "Amsler, Charles; McClintock, James", "repository": "USAP-DC", "science_program": null, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2011 Clad Outplant", "url": "https://www.usap-dc.org/view/dataset/600095"}, {"dataset_uid": "601621", "doi": "10.15784/601621", "keywords": "Antarctica; Benthic; Biota; Macroalgae; Mesograzer; Microscopy; Oceans; Secondary Metabolites", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Plocamium transect and transplant data", "url": "https://www.usap-dc.org/view/dataset/601621"}, {"dataset_uid": "601622", "doi": "10.15784/601622", "keywords": "Antarctica; Benthic; Biota; Macroalgae; Population Genetics", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Plocamium reproductive system data and R code", "url": "https://www.usap-dc.org/view/dataset/601622"}, {"dataset_uid": "600096", "doi": "10.15784/600096", "keywords": "Algae; Antarctica; Antarctic Peninsula; Biota; Oceans; Southern Ocean", "people": "Baker, Bill", "repository": "USAP-DC", "science_program": null, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - 2013 Chemo Phylo data", "url": "https://www.usap-dc.org/view/dataset/600096"}, {"dataset_uid": "601533", "doi": "10.15784/601533", "keywords": "Antarctica; Benthos; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Raw gastropod collection data from Amsler et al. 2022 Antarctic Science", "url": "https://www.usap-dc.org/view/dataset/601533"}, {"dataset_uid": "200357", "doi": "10.5061/dryad.gxd2547gw", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Synoicum adareanum sampling underwater video Mar 2011 Palmer Station Antarctica", "url": "https://datadryad.org/stash/dataset/doi:10.5061/dryad.gxd2547gw"}, {"dataset_uid": "200356", "doi": "10.5061/dryad.8sf7m0cpp", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Supplementary information provided with Murray et al.: Discovery of an Antarctic ascidian-associated uncultivated Verrucomicrobia with antimelanoma palmerolide biosynthetic potential", "url": "https://datadryad.org/stash/dataset/doi:10.5061/dryad.8sf7m0cpp"}, {"dataset_uid": "601159", "doi": "601159", "keywords": "Antarctica; Benthic; Biota; Macroalgae; Mesograzer; Microscopy; Oceans; Zooplankton", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Data from Amsler et al. 2019 Antarctic Science", "url": "https://www.usap-dc.org/view/dataset/601159"}], "date_created": "Tue, 05 Mar 2019 00:00:00 GMT", "description": "The coastal environments of the western Antarctic Peninsula harbor rich assemblages of marine animals and algae. The importance of the interactions between these groups of organisms in the ecology of coastal Antarctica are well known and often mediated by chemical defenses in the tissues of the algae. These chemicals are meant to deter feeding by snails and other marine animals making the Antarctic Peninsula an excellent place to ask important questions about the functional and evolutionary significance of chemical compound diversity for marine communities. This project will focus on three main objectives: the first objective is to expand the current understanding of the relationship between algae and their associated marine animals. The second objective focuses on the diversity of chemical compounds used to defend algae from being consumed. The third objective seeks to understand how marine animals can benefit from these compounds by consuming the algae that contain them, and then using those compounds to chemically deter predators. The field components of this research will be performed during three expeditions to the US Palmer Station, Antarctica. During these expeditions, a variety of laboratory feeding bioassays, manipulative field and laboratory experiments, and on-site chemical analyses will be performed. The investigators will also foster opportunities to integrate their NSF research with a variety of educational activities. As in the past they will support undergraduate research, both through NSF programs as well as home, university-based, programs, and they will also continue to support and foster graduate education. Through their highly successful University of Alabama in Antarctica interactive web program (two time recipient of awards of excellence from the US Council for Advancement and Support of Education), they will continue to involve large numbers of teachers, K-12 students, and other members of the community at large in their scientific endeavors in Antarctica. In addition, the investigators have hosted K-12 teachers on their Antarctic field teams through the former NSF Teachers Experiencing Antarctica and the Arctic program and will pursue participation in PolarTREC, the successor to this valuable program. Moreover, they will actively participate in outreach efforts by presenting numerous talks on their research to local school and community groups. \u003cbr/\u003e\u003cbr/\u003eThe near shore environments of the western Antarctic Peninsula harbor rich assemblages of macroalgae and macroinvertebrates. The importance of predator-prey interactions and chemical defenses in mediating community-wide trophic interactions makes the western Antarctic Peninsula an excellent place to ask important questions about the functional and evolutionary significance of defensive compound diversity for marine communities. This project will focus on three main objectives which are a direct outcome of the past studies of the chemical ecology of shallow-water marine macroalgae and invertebrates on the Antarctic Peninsula by this group of investigators. The first objective is to expand the current understanding of a community-wide mutualism between macroalgae and their associated amphipods to include gastropods, which are also abundant on many macroalgae. The second objective focuses on the diversity of chemical compounds used to defend macroalgae from being consumed, particularly in the common red alga Plocamium cartilagineum. The third objective seeks to understand the relationship between P. cartilagineum and the amphipod Paradexamine fissicauda, including the ecological benefits and costs to P. fissicauda resulting from the ability to consume P. cartilagineum and other chemically defended red algae. The investigators will focus on the costs and benefits related to the ability of P. fissicauda to sequester defensive compounds from the alga P. cartilagineum and use those chemicals to defend itself from predation. The field components of this research will be performed during three expeditions to Palmer Station, Antarctica. During these expeditions, a variety of laboratory feeding bioassays, manipulative field and laboratory experiments, and on-site chemical analyses will be performed. Phylogenetic analyses, detailed secondary metabolite chemical analyses and purifications, and other data analyses will also be performed at the investigators\u0027 home institutions between and after their field seasons.", "east": -63.0, "geometry": "POINT(-64 -64.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; Antarctica; BENTHIC; USAP-DC", "locations": "Antarctica", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Amsler, Charles; Baker, Bill; McClintock, James", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "Dryad; USAP-DC", "science_programs": null, "south": -65.0, "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing", "uid": "p0010016", "west": -65.0}, {"awards": "1656344 Bowman, Jeff", "bounds_geometry": "POLYGON((-64.1 -64.75,-64.08 -64.75,-64.06 -64.75,-64.04 -64.75,-64.02 -64.75,-64 -64.75,-63.98 -64.75,-63.96 -64.75,-63.94 -64.75,-63.92 -64.75,-63.9 -64.75,-63.9 -64.775,-63.9 -64.8,-63.9 -64.825,-63.9 -64.85,-63.9 -64.875,-63.9 -64.9,-63.9 -64.925,-63.9 -64.95,-63.9 -64.975,-63.9 -65,-63.92 -65,-63.94 -65,-63.96 -65,-63.98 -65,-64 -65,-64.02 -65,-64.04 -65,-64.06 -65,-64.08 -65,-64.1 -65,-64.1 -64.975,-64.1 -64.95,-64.1 -64.925,-64.1 -64.9,-64.1 -64.875,-64.1 -64.85,-64.1 -64.825,-64.1 -64.8,-64.1 -64.775,-64.1 -64.75))", "dataset_titles": "\r\nMetadata accompanying BioProject SUB4579142 ; Western Antarctic Peninsula Marine Metatranscriptomes Sep 29 2018", "datasets": [{"dataset_uid": "601153", "doi": "", "keywords": "Antarctic; Antarctica; Bacteria; Bacteria Production; Biota; Chlorophyll; LTER Palmer Station; Primary Production; Sea Ice; Southern Ocean", "people": "Bowman, Jeff", "repository": "USAP-DC", "science_program": null, "title": "\r\nMetadata accompanying BioProject SUB4579142 ", "url": "https://www.usap-dc.org/view/dataset/601153"}, {"dataset_uid": "200010", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "Western Antarctic Peninsula Marine Metatranscriptomes Sep 29 2018", "url": "https://submit.ncbi.nlm.nih.gov/subs/sra/SUB4579142/overview"}], "date_created": "Thu, 31 Jan 2019 00:00:00 GMT", "description": "This EAGER project will compare gene expression patterns in the planktonic communities under ice covers that form in coastal embayment\u0027s in the Antarctic Peninsula. Previous efforts taking advantage of unique ice conditions in November and December of 2015 allowed researchers to conduct an experiment to examine the role of sea ice cover on microbial carbon and energy transfer during the winter-spring transition. The EAGER effort will enable the researchers to conduct the \"omics\" analyses of the phytoplankton to determine predominant means by which energy is acquired and used in these settings. This EAGER effort will apply new expertise to fill an existing gap in ecological observations along the West Antarctic Peninsula. The principle product of the proposed work will be a novel dataset to be analyzed and by an early career researcher from an underserved community (veteran). \u003cbr/\u003e\u003cbr/\u003eThe critical baseline data contained in this dataset enable a comparison of eukaryotic and prokaryotic gene expression patterns to establish the relative importance of chemoautotrophy, heterotrophy, mixotrophy, and phototrophy during the experiments. this information and data will be made immediately available to the broader scientific community, and will enable the development of further hypotheses on ecosystem change as sea ice cover changes in the region. Very little gene expression data is currently available for the Antarctic marine environment, and no gene expression data is available during the ecologically critical winter to spring transition. Moreover, ice cover in bays is common along the West Antarctic Peninsula yet the opportunity to study cryptophyte phytoplankton physiology beneath such ice conditions in coastal embayments is rare.", "east": -63.9, "geometry": "POINT(-64 -64.875)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; NOT APPLICABLE; Antarctica; COASTAL", "locations": "Antarctica", "north": -64.75, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bowman, Jeff", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "NCBI SRA; USAP-DC", "science_programs": null, "south": -65.0, "title": "A Preliminary Assessment of the Influence of Ice Cover on Microbial Carbon and Energy Acquisition during the Antarctic Winter-spring Seasonal Transition", "uid": "p0010003", "west": -64.1}, {"awards": "1246293 Saba, Grace", "bounds_geometry": null, "dataset_titles": "2014 Antarctic krill growth experiment - submitted", "datasets": [{"dataset_uid": "002572", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "2014 Antarctic krill growth experiment - submitted", "url": "https://www.bco-dmo.org/project/721363"}], "date_created": "Fri, 14 Sep 2018 00:00:00 GMT", "description": "Climate change projections for this century suggest that the Southern Ocean will be the first region to be affected by seawater chemistry changes associated with enhanced carbon dioxide (CO2). Additionally, regions of the Southern Ocean are warming faster than any other locations on the planet. Ocean acidification and warming may act synergistically to impair the performance of different organisms by simultaneously increasing metabolic needs and reducing oxygen transport. However, no studies have measured krill acid-base regulation, metabolism, growth, or reproduction in the context of ocean acidification or synergistic \u0027greenhouse\u0027 conditions of elevated CO2 and temperature. In the present project, the investigators will conduct both short and prolonged exposure experiments at Palmer Station, Antarctica to determine the responses of Euphausia superba to elevated CO2 and temperature. The investigators will test hypotheses related to acid-base compensation and acclimation of various life stages of krill to elevated CO2 and temperature. Furthermore, they will determine these impacts on feeding, respiration, metabolism, growth, and reproduction.\u003cbr/\u003e\u003cbr/\u003eThe Antarctic krill, Euphausia superba, is a key component of Antarctic food webs as they are a primary food source for many of the top predators in the Southern Ocean including baleen whales, seals, penguins, and other sea birds. This project will determine the responses of Antarctic krill exposed to elevated CO2 and temperature and whether or not krill have the capacity to fully compensate under future ocean conditions. The proposed field effort will be complemented by an extensive broader impact effort focused on bringing marine science to both rural and urban high school students in the Midwest (Kansas). The core educational objectives of this proposal are to 1) instruct students about potential careers in marine science, 2) engage students and promote their interest in the scientific process, critical thinking, and applications of science, mathematics, and technology, and 3) and increase student and teacher awareness and understanding of the oceans and global climate change, with special focus on the Western Antarctic Peninsula region. Finally, this project will engage undergraduate and graduate students in the production, analysis, presentation and publication of datasets.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; NOT APPLICABLE", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Saba, Grace", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": null, "title": "Collaborative Research: Synergistic effects of Elevated Carbon Dioxide (CO2) and Temperature on the Metabolism, Growth, and Reproduction of Antarctic Krill (Euphausia Superba)", "uid": "p0000700", "west": null}, {"awards": "1440435 Ducklow, Hugh; 2023425 Schofield, Oscar", "bounds_geometry": "POLYGON((-80 -63,-78.3 -63,-76.6 -63,-74.9 -63,-73.2 -63,-71.5 -63,-69.8 -63,-68.1 -63,-66.4 -63,-64.7 -63,-63 -63,-63 -63.8,-63 -64.6,-63 -65.4,-63 -66.2,-63 -67,-63 -67.8,-63 -68.6,-63 -69.4,-63 -70.2,-63 -71,-64.7 -71,-66.4 -71,-68.1 -71,-69.8 -71,-71.5 -71,-73.2 -71,-74.9 -71,-76.6 -71,-78.3 -71,-80 -71,-80 -70.2,-80 -69.4,-80 -68.6,-80 -67.8,-80 -67,-80 -66.2,-80 -65.4,-80 -64.6,-80 -63.8,-80 -63))", "dataset_titles": "Environmental Data Initiative Repository, Supporting LTER; Expedition Data; Expedition data of LMG1501; Expedition data of LMG1601; Expedition data of LMG1701; Expedition data of LMG1801; Expedition data of LMG1901; Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae); UAV images and video of whales in the Antarctic Penisula during LMG1802", "datasets": [{"dataset_uid": "200123", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1601", "url": "https://www.rvdata.us/search/cruise/LMG1601"}, {"dataset_uid": "200122", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1501", "url": "https://www.rvdata.us/search/cruise/LMG1501"}, {"dataset_uid": "002729", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1701", "url": "https://www.rvdata.us/search/cruise/LMG1701"}, {"dataset_uid": "601811", "doi": null, "keywords": "Antarctica; Bellingshausen Sea; Cryosphere; Southern Ocean", "people": "McDowell, Jan; Corso, Andrew; Desvignes, Thomas; Cheng, Chi-Hing; Biesack, Ellen; Steinberg, Deborah; Hilton, Eric", "repository": "USAP-DC", "science_program": "LTER", "title": "Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)", "url": "https://www.usap-dc.org/view/dataset/601811"}, {"dataset_uid": "601318", "doi": "10.15784/601318", "keywords": "Aerial Imagery; Antarctica; Antarctic Peninsula; Biota; Camera; Humpback Whales; LMG1802; LTER; Minke Whales; Oceans; Palmer Station; Photo; Photo/video; Photo/Video; R/v Laurence M. Gould; Species Size; UAV; Video Data; Whales", "people": "Boyer, Keyvi; Friedlaender, Ari; Dale, Julian; Nowacek, Douglas; Bierlich, KC", "repository": "USAP-DC", "science_program": "LTER", "title": "UAV images and video of whales in the Antarctic Penisula during LMG1802", "url": "https://www.usap-dc.org/view/dataset/601318"}, {"dataset_uid": "000246", "doi": "", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "Environmental Data Initiative Repository, Supporting LTER", "url": "https://portal.edirepository.org/nis/browseServlet?searchValue=PAL"}, {"dataset_uid": "001367", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1701"}, {"dataset_uid": "200125", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1901", "url": "https://www.rvdata.us/search/cruise/LMG1901"}, {"dataset_uid": "200124", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1801", "url": "https://www.rvdata.us/search/cruise/LMG1801"}], "date_created": "Fri, 11 May 2018 00:00:00 GMT", "description": "The Palmer Antarctica LTER (Long Term Ecological Research) site has been in operation since 1990. The goal of all the LTER sites is to conduct policy-relevant research on ecological questions that require tens of years of data, and cover large geographical areas. For the Palmer Antarctica LTER, the questions are centered around how the marine ecosystem west of the Antarctica peninsula is responding to a climate that is changing as rapidly as any place on the Earth. For example, satellite observations over the past 35 years indicate the average duration of sea ice cover is now ~90 days (3 months!) shorter than it was. The extended period of open water has implications for many aspects of ecosystem research, with the concurrent decrease of Ad\u00c3\u00a8lie penguins within this region regularly cited as an exemplar of climate change impacts in Antarctica. Cutting edge technologies such as autonomous underwater (and possibly airborne) vehicles, seafloor moorings, and numerical modeling, coupled with annual oceanographic cruises, and weekly environmental sampling, enables the Palmer Antarctica LTER to expand and bridge the time and space scales needed to assess climatic impacts. This award includes for the first time study of the roles of whales as major predators in the seasonal sea ice zone ecosystem. The team will also focus on submarine canyons, special regions of enhanced biological activity, along the Western Antarctic Peninsula (WAP).\u003cbr/\u003e\u003cbr/\u003eThe current award\u0027s overarching research question is: How do seasonality, interannual variability, and long term trends in sea ice extent and duration influence the structure and dynamics of marine ecosystems and biogeochemical cycling? Specific foci within the broad question include: 1. Long-term change and ecosystem transitions. What is the sensitivity or resilience of the ecosystem to external perturbations as a function of the ecosystem state? 2. Lateral connectivity and vertical stratification. What are the effects of lateral transports of freshwater, heat and nutrients on local ocean stratification and productivity and how do they drive changes in the ecosystem? 3. Top-down controls and shifting baselines. How is the ecosystem responding to the cessation of whaling and subsequent long-term recovery of whale stocks? 4. Foodweb structure and biogeochemical processes. How do temporal and spatial variations in foodweb structure influence carbon and nutrient cycling, export, and storage? The broader impacts of the award leverage local educational partnerships including the Sandwich, MA STEM Academy, the New England Aquarium, and the NSF funded Polar Learning and Responding (PoLAR) Climate Change Education Partnership at Columbia\u0027s Earth Institute to build new synergies between Arctic and Antarctic, marine and terrestrial scientists and students, governments and NGOs. The Palmer Antarctic LTER will also conduct appropriate cross LTER site comparisons, and serve as a leader in information management to enable knowledge-building within and beyond the Antarctic, oceanographic, and LTER communities.", "east": -63.0, "geometry": "POINT(-71.5 -67)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "PELAGIC; USAP-DC; R/V LMG; NOT APPLICABLE; Palmer Station; LMG1701", "locations": "Palmer Station", "north": -63.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ducklow, Hugh; Martinson, Doug; Schofield, Oscar", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "EDI; R2R; USAP-DC", "science_programs": "LTER", "south": -71.0, "title": "LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem", "uid": "p0000133", "west": -80.0}, {"awards": "1245703 Manahan, Donal", "bounds_geometry": "POLYGON((-68.0574 -52.7267,-67.39775 -52.7267,-66.7381 -52.7267,-66.07845 -52.7267,-65.4188 -52.7267,-64.75915 -52.7267,-64.0995 -52.7267,-63.43985 -52.7267,-62.7802 -52.7267,-62.12055 -52.7267,-61.4609 -52.7267,-61.4609 -53.95849,-61.4609 -55.19028,-61.4609 -56.42207,-61.4609 -57.65386,-61.4609 -58.88565,-61.4609 -60.11744,-61.4609 -61.34923,-61.4609 -62.58102,-61.4609 -63.81281,-61.4609 -65.0446,-62.12055 -65.0446,-62.7802 -65.0446,-63.43985 -65.0446,-64.0995 -65.0446,-64.75915 -65.0446,-65.4188 -65.0446,-66.07845 -65.0446,-66.7381 -65.0446,-67.39775 -65.0446,-68.0574 -65.0446,-68.0574 -63.81281,-68.0574 -62.58102,-68.0574 -61.34923,-68.0574 -60.11744,-68.0574 -58.88565,-68.0574 -57.65386,-68.0574 -56.42207,-68.0574 -55.19028,-68.0574 -53.95849,-68.0574 -52.7267))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001372", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1606"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "This project will support two training courses that will introduce early-career scientists from a wide range of disciplinary backgrounds to key issues in polar science, and especially to provide the opportunity to gain hands-on experience in Antarctic field activities. Antarctica is an ideal location to study a wide variety of questions in biology. However, few students and early-career scientists have the opportunity to work on-site in Antarctica unless they are directly associated with a senior scientist who has a funded Antarctic project. The project will further the NSF goal of training new generations of scientists by providing hands-on training in Antarctica during one course at Palmer Station in 2016 and another at McMurdo Station in 2018. This represents a continuation of nine previous courses at McMurdo Station which have a proven record of introducing participants to Antarctic science under realistic field conditions, providing opportunities to understand and appreciate the complexities and logistical challenges of undertaking science in Antarctica, enhancing the professional careers of the participants, and increasing international collaborations for early-career scientists.\u003cbr/\u003e\u003cbr/\u003eThe proposed training courses will be open to Ph.D. students and post-doctoral scientists who have interests in the study of Antarctic marine organisms to help prepare them for success in developing their own independent research programs in polar regions. Long-standing and recent questions in evolution and ecology of Antarctic organisms will be examined with 1) field collections, 2) physiological experiments on whole organisms, 3) studies of isolated cells and tissues, 4) experiments on macromolecular processes (e.g., enzymes), and 5) molecular biological analyses.", "east": -61.4609, "geometry": "POINT(-64.75915 -58.88565)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V LMG; LMG1606", "locations": null, "north": -52.7267, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Manahan, Donal", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.0446, "title": "Collaborative Research: Biological Adaptations to Environmental Change in Antarctica - An Advanced Training Program for Early Career Scientists", "uid": "p0000392", "west": -68.0574}, {"awards": "1246317 Mittal, Rajat; 1246296 Yen, Jeannette", "bounds_geometry": null, "dataset_titles": "Hydrodynamics of Spongiobranchaea australis; Tomographic PIV measurements of swimming shelled Antarctic pteropod", "datasets": [{"dataset_uid": "601108", "doi": "10.15784/601108", "keywords": "Antarctica; Biota; Glaciology", "people": "Webster, Donald R; Yen, Jeannette; Adhikari, Deepak", "repository": "USAP-DC", "science_program": null, "title": "Tomographic PIV measurements of swimming shelled Antarctic pteropod", "url": "https://www.usap-dc.org/view/dataset/601108"}, {"dataset_uid": "601058", "doi": "10.15784/601058", "keywords": "Biota; Fish; Southern Ocean", "people": "Mittal, Rajat", "repository": "USAP-DC", "science_program": null, "title": "Hydrodynamics of Spongiobranchaea australis", "url": "https://www.usap-dc.org/view/dataset/601058"}], "date_created": "Fri, 29 Sep 2017 00:00:00 GMT", "description": "Ocean acidification (OA) poses a serious threat, particularly to organisms that precipitate calcium carbonate from seawater. One organism with an aragonite shell that is a key to high latitude ecosystems is the pteropod. With OA, the pteropod shell will thin because the aragonite is highly soluble. As the shell thins, it changes the mass distribution and buoyancy of the animal, which will affect locomotion and through it, all locomotion dependent behavior such as foraging, mating, predator avoidance and migratory patterns. A lower shell weight will be counterbalanced by a smaller mucus web potentially decreasing ingestion rates and carbon flux rates. This interdisciplinary research relies on biological studies of swimming behavior of the pteropod mollusk Limacina helicina in their natural environments with fluid mechanics analyses of swimming hydrodynamics via 3D tomographic particle-image velocimetry and computational fluid dynamics (CFD). This work will: (a) determine how the L. helicina uses its ?wings? (parapodia) to propel itself; (b) examine whether its locomotory kinematics provide efficient propulsion; (c) identify the factors that influence swimming trajectory and ?wobble?; and (d) synthesize all data and insights into guidelines for the potential use of pteropod swimming behavior as a bioassay for OA.\u003cbr/\u003e\u003cbr/\u003eThe loss of these sentinels of anthropogenic increases in CO2 may result in an ecological shift since thecosome pteropods are responsible for ingesting nearly half the primary production in the Southern Ocean and also serve as a primary food resource to upper trophic levels like fish. Since locomotory data can be gathered immediately, the bioassay being developed in this proposal may serve as an early warning of the impending onset of OA effects on this important member of the plankton. Students and researchers will collaborate in a rich interdisciplinary research environment by working with a biological oceanographer, a fluid mechanics expert and a CFD expert ? coupled with the teamsmanship needed for work in the Antarctic. By setting up a one-of-a-kind 3D tomography system for visualizing flow around planktonic organisms in Norway and at Palmer Station, we increase international exchange of state-of-the-art techniques. The educational impact of the current research will be multiplied by including in the research team, undergraduate students, high-school students and underrepresented minorities in addition to graduate students.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; NOT APPLICABLE; Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Yen, Jeannette; Mittal, Rajat; Webster, Donald R", "platforms": "Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Pteropod Swimming Behavior as a Bio Assay for Ocean Acidification", "uid": "p0000139", "west": null}, {"awards": "1141993 Rich, Jeremy", "bounds_geometry": "POLYGON((-60 -70,-59.3 -70,-58.6 -70,-57.9 -70,-57.2 -70,-56.5 -70,-55.8 -70,-55.1 -70,-54.4 -70,-53.7 -70,-53 -70,-53 -70.9,-53 -71.8,-53 -72.7,-53 -73.6,-53 -74.5,-53 -75.4,-53 -76.3,-53 -77.2,-53 -78.1,-53 -79,-53.7 -79,-54.4 -79,-55.1 -79,-55.8 -79,-56.5 -79,-57.2 -79,-57.9 -79,-58.6 -79,-59.3 -79,-60 -79,-60 -78.1,-60 -77.2,-60 -76.3,-60 -75.4,-60 -74.5,-60 -73.6,-60 -72.7,-60 -71.8,-60 -70.9,-60 -70))", "dataset_titles": "Seasonal Succession of Bacterial Communities in Coastal Waters of the Western Antarctic Peninsula", "datasets": [{"dataset_uid": "601032", "doi": "10.15784/601032", "keywords": "Antarctica; Antarctic Peninsula; Bacteria; Biota; Genetic; Geochemistry; Palmer Station; Sample/collection Description; Sample/Collection Description; Sea Water; Southern Ocean", "people": "Rich, Jeremy", "repository": "USAP-DC", "science_program": null, "title": "Seasonal Succession of Bacterial Communities in Coastal Waters of the Western Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601032"}], "date_created": "Thu, 15 Jun 2017 00:00:00 GMT", "description": "The Western Antarctic Peninsula (WAP) has experienced unprecedented warming and shifts in sea ice cover over the past fifty years. How these changes impact marine microbial communities, and subsequently how these shifts in the biota may affect the carbon cycle in surface waters is unknown. This work will examine how these ecosystem-level changes affect microbial community structure and function. This research will use modern metagenomic and transcriptomic approaches to test the hypothesis that the introduction of organic matter from spring phytoplankton blooms drives turnover in microbial communities. This research will characterize patterns in bacterial and archaeal succession during the transition from the austral winter at two long-term monitoring sites: Palmer Station in the north and Rothera Station in the south. This project will also include microcosm incubations to directly assess the effects of additions of organic carbon and melted sea ice on microbial community structure and function. The results of this work will provide a broader understanding of the roles of both rare and abundant microorganisms in carbon cycling within the WAP region, and how these communities may shift in structure and function in response to climate change. Results will be widely disseminated through publications as well as through presentations at national and international meetings. The research will provide training opportunities for both graduate and undergraduate students and will enhance international collaborations with the British Antarctic Survey.", "east": -53.0, "geometry": "POINT(-56.5 -74.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -70.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Rich, Jeremy", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "Collaborative Research: Microbial Community Assembly in Coastal Waters of the Western Antarctic Peninsula", "uid": "p0000409", "west": -60.0}, {"awards": "1332492 Lohmann, Rainer", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Origin of Persistent Organic Pollutants in the Antarctic Atmosphere, Snow and Marine Food Web", "datasets": [{"dataset_uid": "600138", "doi": "10.15784/600138", "keywords": "Animal Tracking; Antarctica; Antarctic Peninsula; Atmosphere; Biota; Chemistry:fluid; Chemistry:Fluid; Human Dimensions; McMurdo Sound; Oceans; Palmer Station; Pollution; Ross Sea; Sample/collection Description; Sample/Collection Description; Seals; Southern Ocean; Weddell Sea", "people": "Lohmann, Rainer", "repository": "USAP-DC", "science_program": null, "title": "Origin of Persistent Organic Pollutants in the Antarctic Atmosphere, Snow and Marine Food Web", "url": "https://www.usap-dc.org/view/dataset/600138"}], "date_created": "Tue, 09 Jun 2015 00:00:00 GMT", "description": "Many persistent organic pollutants (POPs), though banned in the U.S. since the 1970s, remain in the environment and continue to reach hitherto pristine regions such as the Arctic and Antarctic. The overall goals of this RAPID project are to better understand the remobilization of POPs from melting glaciers in the Antarctic, and their transfer into the food-web. Legacy POPs have characteristic chemical signatures that will be used ascertain the origin of POPs in the Antarctic atmosphere and marine food-web. Samples that were collected in 2010 will be analyzed for a wide range of legacy POPs, and their behavior will be contrasted with results for emerging contaminants. The intellectual merit of the proposed research combines (a) the use of chemical signatures to assess whether melting glaciers are releasing legacy POPs back into the Antarctic marine ecosystem, and (b) a better understanding of the food-web dynamics of legacy POPs versus emerging organic pollutants.\u003cbr/\u003e\u003cbr/\u003eThe broader impacts of the proposed research project will include the training of the next generation of scientists through support for a graduate student and a postdoctoral scholar. As well, this work will result in a better understanding of the relationship between pollutants, trophic food web ecology and global climate change in the pristine Antarctic ecosystem.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Lohmann, Rainer", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "RAPID: Origin of Persistent Organic Pollutants in the Antarctic Atmosphere, Snow and Marine Food WEB", "uid": "p0000344", "west": -180.0}, {"awards": "1043532 Grzymski, Joseph", "bounds_geometry": "POINT(-64 -64.7)", "dataset_titles": "NCBI GenBank Sequences# PRJNA244317, PRJNA242746", "datasets": [{"dataset_uid": "000168", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "NCBI GenBank Sequences# PRJNA244317, PRJNA242746", "url": "http://www.ncbi.nlm.nih.gov/genbank/"}], "date_created": "Mon, 08 Sep 2014 00:00:00 GMT", "description": "The proposed research will investigate the genomic basis of the physiological and ecological transition of Antarctic marine phytoplankton from a cold dark winter to a warmer, brighter spring. During a field season at Palmer Station, functional genomics (using next generation sequencing technology to identify expressed genes) and in situ fluorometry (FRRF) will be integrated with classical ecological methods to investigate photosynthetic adaptation during phytoplankton species succession from late winter into spring. Using large data sets, this project will test whether amino acid usages differ based on expression. The specific objectives are (1) To characterize phytoplankton succession from the winter to spring transition, and (2) To correlate community gene expression profiles to adaptational differences among taxa. Broader impacts include training of a post doctoral researcher and two undergraduate science majors, with efforts to attract students from underrepresented groups. The P.I.s also will prepare presentations for the public, regarding research experiences, research results, and the importance of climate change.", "east": -64.0, "geometry": "POINT(-64 -64.7)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -64.7, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Grzymski, Joseph", "platforms": "Not provided", "repo": "NCBI GenBank", "repositories": "NCBI GenBank", "science_programs": null, "south": -64.7, "title": "Collaborative Research: Functional Genomics and Physiological Ecology of Seasonal Succession in Antarctic Phytoplankton: Adaptations to Light and Temperature", "uid": "p0000462", "west": -64.0}, {"awards": "0838996 Hollibaugh, James", "bounds_geometry": "POLYGON((-79 -63,-77.5 -63,-76 -63,-74.5 -63,-73 -63,-71.5 -63,-70 -63,-68.5 -63,-67 -63,-65.5 -63,-64 -63,-64 -63.8,-64 -64.6,-64 -65.4,-64 -66.2,-64 -67,-64 -67.8,-64 -68.6,-64 -69.4,-64 -70.2,-64 -71,-65.5 -71,-67 -71,-68.5 -71,-70 -71,-71.5 -71,-73 -71,-74.5 -71,-76 -71,-77.5 -71,-79 -71,-79 -70.2,-79 -69.4,-79 -68.6,-79 -67.8,-79 -67,-79 -66.2,-79 -65.4,-79 -64.6,-79 -63.8,-79 -63))", "dataset_titles": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula; Expedition data of LMG1006", "datasets": [{"dataset_uid": "002722", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1006", "url": "https://www.rvdata.us/search/cruise/LMG1006"}, {"dataset_uid": "600105", "doi": "10.15784/600105", "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; LMG1006; LMG1101; LTER Palmer Station; Oceans; Southern Ocean", "people": "Hollibaugh, James T.", "repository": "USAP-DC", "science_program": null, "title": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/600105"}], "date_created": "Thu, 13 Mar 2014 00:00:00 GMT", "description": "Ammonia oxidation is the first step in the conversion of regenerated nitrogen to dinitrogen gas, a 3-step pathway mediated by 3 distinct guilds of bacteria and archaea. Ammonia oxidation and the overall process of nitrification-denitrification have received relatively little attention in polar oceans where the effects of climate change on biogeochemical rates are likely to be pronounced. Previous work on Ammonia Oxidizing Archaea (AOA) in the Palmer LTER study area West of the Antarctic Peninsula (WAP), has suggested strong vertical segregation of crenarchaeote metabolism, with the \"winter water\" (WW, ~50-100 m depth range) dominated by non-AOA crenarchaeotes, while Crenarchaeota populations in the \"circumpolar deep water\" (CDW), which lies immediately below the winter water (150-3500 m), are dominated by AOA. Analysis of a limited number of samples from the Arctic Ocean did not reveal a comparable vertical segregation of AOA, and suggested that AOA and Crenarchaeota abundance is much lower there than in the Antarctic. These findings led to 3 hypotheses that will be tested in this project: 1) the apparent low abundance of Crenarchaeota and AOA in Arctic Ocean samples may be due to spatial or temporal variability in populations; 2) the WW population of Crenarchaeota in the WAP is dominated by a heterotroph; 3) the WW population of Crenarchaeota in the WAP \"grows in\" during spring and summer after this water mass forms. \u003cbr/\u003e\u003cbr/\u003eThe study will contribute substantially to understanding an important aspect of the nitrogen cycle in the Palmer LTER (Long Term Ecological Research) study area by providing insights into the ecology and physiology of AOA. The natural segregation of crenarchaeote phenotypes in waters of the WAP, coupled with metagenomic studies in progress in the same area by others (A. Murray, H. Ducklow), offers the possibility of major breakthroughs in understanding of the metabolic capabilities of these organisms. This knowledge is needed to model how water column nitrification will respond to changes in polar ecosystems accompanying global climate change. The Principal Investigator will participate fully in the education and outreach efforts of the Palmer LTER, including making highlights of our findings available for posting to their project web site and participating in outreach (for example, Schoolyard LTER). The research also will involve undergraduates (including the field work if possible) and will support high school interns in the P.I.\u0027s laboratory over the summer.", "east": -64.0, "geometry": "POINT(-71.5 -67)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "R/V LMG", "locations": null, "north": -63.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hollibaugh, James T.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": "LTER", "south": -71.0, "title": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula", "uid": "p0000359", "west": -79.0}, {"awards": "0739515 Fagan, William", "bounds_geometry": "POLYGON((-68.383 -60.65,-66.10137 -60.65,-63.81974 -60.65,-61.53811 -60.65,-59.25648 -60.65,-56.97485 -60.65,-54.69322 -60.65,-52.41159 -60.65,-50.12996 -60.65,-47.84833 -60.65,-45.5667 -60.65,-45.5667 -61.4145,-45.5667 -62.179,-45.5667 -62.9435,-45.5667 -63.708,-45.5667 -64.4725,-45.5667 -65.237,-45.5667 -66.0015,-45.5667 -66.766,-45.5667 -67.5305,-45.5667 -68.295,-47.84833 -68.295,-50.12996 -68.295,-52.41159 -68.295,-54.69322 -68.295,-56.97485 -68.295,-59.25648 -68.295,-61.53811 -68.295,-63.81974 -68.295,-66.10137 -68.295,-68.383 -68.295,-68.383 -67.5305,-68.383 -66.766,-68.383 -66.0015,-68.383 -65.237,-68.383 -64.4725,-68.383 -63.708,-68.383 -62.9435,-68.383 -62.179,-68.383 -61.4145,-68.383 -60.65))", "dataset_titles": "Data Paper, ESA Ecology", "datasets": [{"dataset_uid": "000141", "doi": "", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Data Paper, ESA Ecology", "url": "http://dx.doi.org/10.1890/13-1108.1"}], "date_created": "Fri, 17 Jan 2014 00:00:00 GMT", "description": "This five-year project seeks to characterize decadal scale changes in penguin and seabird populations on the Antarctic Peninsula, and to identify the factors driving these long-term changes. Two interconnected research activities are proposed: 1. Continued, long-term monitoring and censusing of penguin and seabird populations at \u003e117 sites throughout the Antarctic Peninsula via opportunistic ship-based data collection. 2. Synthesis and quantitative analyses of datasets detailing long-term changes in five penguin and seabird species from diverse sites throughout the Antarctic Peninsula. When complete, the penguin/seabird database will incorporate data from the Antarctic Site Inventory (ASI), the CCAMLR database, the US AMLR database, the LTER database from Palmer Station, data from British and Argentine researchers, historic census data compiled by the Scientific Committee on Antarctic Research (SCAR), and, when possible, additional privately held datasets. Additional data for temperature change, sea ice coverage, the seasonal timing and intensity of human visitation, and other factors have been gathered and will be analyzed together with population trajectories within a spatially explicit framework. The research will include hierarchical statistical analyses to characterize the long-term population dynamics of several key polar species across multiple spatial scales (sites, regions, and the Peninsula). Analyses also will focus on specific subsets of the overall database to contrast visitor impacts on paired colonies, sites, and regions that share similar environmental conditions but differ in the intensity of tourism. \u003cbr/\u003e\u003cbr/\u003eThe Broader Impacts include (1) research training and first-time Antarctic experiences for a postdoctoral researcher and several graduate students, all of whom will then be better positioned to bring their expertise in spatial and/or quantitative/theoretical ecology to bear on questions in polar research; (2) assembly and analysis of a large, multi-season database of penguin and seabird time series from the Antarctic Peninsula that will be publicly available, (3) assistance in distinguishing the impacts of tourism versus climate change on seabird populations. Under the Environmental Protocol to the Antarctic Treaty, Treaty Parties are charged with regular and effective monitoring to assess the impacts of human activities. This project will uniquely assist Parties in fulfilling this mandate.", "east": -45.5667, "geometry": "POINT(-56.97485 -64.4725)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.65, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Fagan, William; Lynch, Heather", "platforms": "Not provided", "repo": "Publication", "repositories": "Publication", "science_programs": null, "south": -68.295, "title": "Collaborative Research: Multispecies, Multiscale Investigations of Longterm Changes in Penguin and Seabird Populations on the Antarctic Peninsula", "uid": "p0000465", "west": -68.383}, {"awards": "0838830 Cottrell, Matthew", "bounds_geometry": "POLYGON((-64.079666 -64.77966,-64.07576590000001 -64.77966,-64.0718658 -64.77966,-64.0679657 -64.77966,-64.0640656 -64.77966,-64.06016550000001 -64.77966,-64.0562654 -64.77966,-64.0523653 -64.77966,-64.04846520000001 -64.77966,-64.0445651 -64.77966,-64.040665 -64.77966,-64.040665 -64.78326100000001,-64.040665 -64.786862,-64.040665 -64.790463,-64.040665 -64.794064,-64.040665 -64.797665,-64.040665 -64.801266,-64.040665 -64.804867,-64.040665 -64.808468,-64.040665 -64.812069,-64.040665 -64.81567,-64.0445651 -64.81567,-64.04846520000001 -64.81567,-64.0523653 -64.81567,-64.0562654 -64.81567,-64.06016550000001 -64.81567,-64.0640656 -64.81567,-64.0679657 -64.81567,-64.0718658 -64.81567,-64.07576590000001 -64.81567,-64.079666 -64.81567,-64.079666 -64.812069,-64.079666 -64.808468,-64.079666 -64.804867,-64.079666 -64.801266,-64.079666 -64.797665,-64.079666 -64.794064,-64.079666 -64.790463,-64.079666 -64.786862,-64.079666 -64.78326100000001,-64.079666 -64.77966))", "dataset_titles": "Photoheterotrophic Microbes in the West Antarctic Peninsula Marine Ecosystem", "datasets": [{"dataset_uid": "600097", "doi": "10.15784/600097", "keywords": "Antarctic Peninsula; Biota; LTER Palmer Station; Microbiology; Oceans; Southern Ocean", "people": "Kirchman, David; Cottrell, Matthew", "repository": "USAP-DC", "science_program": null, "title": "Photoheterotrophic Microbes in the West Antarctic Peninsula Marine Ecosystem", "url": "https://www.usap-dc.org/view/dataset/600097"}], "date_created": "Mon, 16 Dec 2013 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eLight quality and availability are likely to change in polar ecosystems as ice coverage and thickness decrease. How microbes adjust to these and other changes will have huge impacts on the polar marine ecosystems. Little is known about photoheterotrophic prokaryotes, which are hypothesized to gain a metabolic advantage by harvesting light energy in addition to utilizing dissolved organic matter (DOM). Photoheterotrophy is not included in current models of carbon cycling and energy flow. This research will examine three questions: 1. Are photoheterotrophic microbes present and active in Antarctic waters in winter and summer? 2. Does community structure of photoheterotrophs shift between summer and winter? 3. Which microbial groups assimilate more DOM in light than in the dark? The research will test hypotheses about activity of photoheterotrophs in winter and in summer, shifts in community structure between light and dark seasons and the potentially unique impacts of photoheterotrophs on biogeochemical processes in the Antarctic. The project will directly support a graduate student, will positively impact the NSF REU program at the College of Marine and Earth Studies, and will include students from the nation?s oldest historical minority college. The results will be featured during weekly tours of Lewes facilities (about 1000 visitors per year) and during Coast Day, an annual open-house that attracts about 10,000 visitors.", "east": -64.040665, "geometry": "POINT(-64.0601655 -64.797665)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -64.77966, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Cottrell, Matthew; David, Kirchman", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.81567, "title": "Photoheterotrophic Microbes in the West Antarctic Peninsula Marine Ecosystem", "uid": "p0000473", "west": -64.079666}, {"awards": "1043564 Karentz, Deneb", "bounds_geometry": null, "dataset_titles": "Expedition data of LMG1106A", "datasets": [{"dataset_uid": "002686", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1106A", "url": "https://www.rvdata.us/search/cruise/LMG1106A"}], "date_created": "Tue, 17 Jan 2012 00:00:00 GMT", "description": "The proposed research will investigate the genomic basis of the physiological and ecological transition of Antarctic marine phytoplankton from a cold dark winter to a warmer, brighter spring. During a field season at Palmer Station, functional genomics (using next generation sequencing technology to identify expressed genes) and in situ fluorometry (FRRF) will be integrated with classical ecological methods to investigate photosynthetic adaptation during phytoplankton species succession from late winter into spring. Using large data sets, this project will test whether amino acid usages differ based on expression. The specific objectives are (1) To characterize phytoplankton succession from the winter to spring transition, and (2) To correlate community gene expression profiles to adaptational differences among taxa. Broader impacts include training of a post doctoral researcher and two undergraduate science majors, with efforts to attract students from underrepresented groups. The P.I.s also will prepare presentations for the public, regarding research experiences, research results, and the importance of climate change.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Karentz, Deneb", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Functional Genomics and Physiological Ecology of Seasonal Succession in Antarctic Phytoplankton: Adaptations to Light and Temperature", "uid": "p0000861", "west": null}, {"awards": "0635470 Detrich, H. William", "bounds_geometry": "POLYGON((-67.41667 -61.2,-66.27667 -61.2,-65.13667 -61.2,-63.99667 -61.2,-62.85667 -61.2,-61.71667 -61.2,-60.57667 -61.2,-59.43667 -61.2,-58.29667 -61.2,-57.15667 -61.2,-56.01667 -61.2,-56.01667 -61.71,-56.01667 -62.22,-56.01667 -62.73,-56.01667 -63.24,-56.01667 -63.75,-56.01667 -64.26,-56.01667 -64.77,-56.01667 -65.28,-56.01667 -65.79,-56.01667 -66.3,-57.15667 -66.3,-58.29667 -66.3,-59.43667 -66.3,-60.57667 -66.3,-61.71667 -66.3,-62.85667 -66.3,-63.99667 -66.3,-65.13667 -66.3,-66.27667 -66.3,-67.41667 -66.3,-67.41667 -65.79,-67.41667 -65.28,-67.41667 -64.77,-67.41667 -64.26,-67.41667 -63.75,-67.41667 -63.24,-67.41667 -62.73,-67.41667 -62.22,-67.41667 -61.71,-67.41667 -61.2))", "dataset_titles": "Expedition Data; Expedition data of LMG1003; Expedition data of LMG1004; Sequence data", "datasets": [{"dataset_uid": "000133", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Sequence data", "url": "http://www.ncbi.nlm.nih.gov/genbank/"}, {"dataset_uid": "001509", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0806"}, {"dataset_uid": "001508", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0807"}, {"dataset_uid": "002684", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1003", "url": "https://www.rvdata.us/search/cruise/LMG1003"}, {"dataset_uid": "002685", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1004", "url": "https://www.rvdata.us/search/cruise/LMG1004"}], "date_created": "Mon, 06 Sep 2010 00:00:00 GMT", "description": "Abstract\u003cbr/\u003e\u003cbr/\u003eSince the advent of Antarctic continental glaciation, the opening of the Drake Passage between South America and the Antarctic Peninsula, and the onset of cooling of the Southern Ocean ~38-25 million years ago, evolution of the Antarctic marine biota has been driven by the development of extreme cold temperatures. Because they live at very low and stable temperatures, Antarctic fishes of the suborder Nototheniodei are particularly attractive as models for understanding the mechanisms of biomolecular cold adaptation, or the compensatory restructuring of biochemical and physiological systems to preserve biological function in cold thermal regimes. Two interrelated and potentially co-evolved systems, the tubulins that form microtubules and the chaperonin-containing TCP1 (t-complex protein-1) complex (CCT) that assists the folding of tubulins, provide an unparalleled opportunity to elucidate these mechanisms. This research will yield new and important knowledge regarding: 1) cold adaptation of microtubule assembly and of chaperonin function; and 2) the co-evolutionary origin of tubulin-binding specificity by CCT. The first objective of this proposal is to determine the contributions of five novel amino acid substitutions found in Antarctic fish beta-tubulins to microtubule assembly at cold temperature. The second objective is to establish a chaperonin folding system in vitro using CCT purified from testis tissue of Antarctic fishes and to evaluate its thermal properties and mechanism. The third objective is to evaluate, through phylogenetically controlled contrasts, the hypothesis that CCT and its tubulin substrates from Antarctic fishes have co-evolved to function at cold temperatures. The broader impacts of this proposal include introduction of graduate and REU undergraduate students of Northeastern University to state-of-the-art biochemical, cellular, and molecular-biological research relevant to ecological and environmental issues of the Antarctic marine ecosystem. Because much of the research on the biogenesis and function of cold-adapted proteins will be performed in the field at Palmer Station, these students will gain invaluable experience in the practical considerations of expeditionary biological science. The research also will increase knowledge about molecular cold adaptation in one of the Earth\u0027s extreme environments, and hence is relevant to the formulation of refined hypotheses regarding potential extraterrestrial life on Mars or Europa. The cold-functioning chaperonin protein folding system will be of great value to the biopharmaceutical and biotechnological industries for use in folding insoluble proteins.", "east": -56.01667, "geometry": "POINT(-61.71667 -63.75)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "R/V LMG", "locations": null, "north": -61.2, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Detrich, H. William", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "NCBI GenBank", "repositories": "NCBI GenBank; R2R", "science_programs": null, "south": -66.3, "title": "Protein Folding and Function at Cold Temperature: Co-Evolution of the Chaperonin CCT and Tubulins from Antarctic Fishes", "uid": "p0000470", "west": -67.41667}, {"awards": "0839119 Wu, Qian", "bounds_geometry": "POLYGON((-68.1 -63.8,-67.29 -63.8,-66.48 -63.8,-65.67 -63.8,-64.86 -63.8,-64.05 -63.8,-63.24 -63.8,-62.43 -63.8,-61.62 -63.8,-60.81 -63.8,-60 -63.8,-60 -64.1,-60 -64.4,-60 -64.7,-60 -65,-60 -65.3,-60 -65.6,-60 -65.9,-60 -66.2,-60 -66.5,-60 -66.8,-60.81 -66.8,-61.62 -66.8,-62.43 -66.8,-63.24 -66.8,-64.05 -66.8,-64.86 -66.8,-65.67 -66.8,-66.48 -66.8,-67.29 -66.8,-68.1 -66.8,-68.1 -66.5,-68.1 -66.2,-68.1 -65.9,-68.1 -65.6,-68.1 -65.3,-68.1 -65,-68.1 -64.7,-68.1 -64.4,-68.1 -64.1,-68.1 -63.8))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 12 Jul 2010 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). This project will deploy a new Fabry-Perot interferometer (FPI) at the U.S. Palmer Station located in the Antarctic Peninsula. The FPI will observe mesospheric and thermospheric neutral winds and temperatures using multiple nightglow emissions (OH, 892 nm, 87 km; O 557.7 nm, 97 km; O 630 nm, 250 km; and O2 (0-1) 865 nm, 94 km). The project\u0027s team will collaborate with Australian scientists who operate similar FPI instruments at their Antarctic stations Mawson and Davis to jointly analyze the neutral wind and temperature data distributions over the continent and address the following scientific problems: (1) Thermospheric neutral winds effects on the Weddell Sea Anomaly, (2) Non-migrating tides in the mesosphere and lower thermosphere, (3) Lower thermospheric meridional wind circulation and mesosphere wind shear, (4) High-latitude geomagnetic field effects on the mid-latitude thermosphere, and (4) Conjugacy studies of the mesosphere and thermosphere with the incoherent scatter radar and FPI observations from Millstone Hill, Massachusetts. The fieldwork and analysis efforts associated with this project are highly suitable for involvement and research training of graduate students.", "east": -60.0, "geometry": "POINT(-64.05 -65.3)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e INTERFEROMETERS \u003e FPI", "is_usap_dc": false, "keywords": "GROUND STATIONS; Thermospheric Winds; Fpi", "locations": null, "north": -63.8, "nsf_funding_programs": "Antarctic Astrophysics and Geospace Sciences", "paleo_time": null, "persons": "Wu, Qian", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repositories": null, "science_programs": null, "south": -66.8, "title": "Collaborative Research: Thermospheric Neutral Wind Observation from the Antarctic Peninsula", "uid": "p0000472", "west": -68.1}, {"awards": "0636806 Smith, Craig; 0636773 DeMaster, David", "bounds_geometry": "POLYGON((-71.2358 -52.7603,-69.75336 -52.7603,-68.27092 -52.7603,-66.78848 -52.7603,-65.30604 -52.7603,-63.8236 -52.7603,-62.34116 -52.7603,-60.85872 -52.7603,-59.37628 -52.7603,-57.89384 -52.7603,-56.4114 -52.7603,-56.4114 -54.29969,-56.4114 -55.83908,-56.4114 -57.37847,-56.4114 -58.91786,-56.4114 -60.45725,-56.4114 -61.99664,-56.4114 -63.53603,-56.4114 -65.07542,-56.4114 -66.61481,-56.4114 -68.1542,-57.89384 -68.1542,-59.37628 -68.1542,-60.85872 -68.1542,-62.34116 -68.1542,-63.8236 -68.1542,-65.30604 -68.1542,-66.78848 -68.1542,-68.27092 -68.1542,-69.75336 -68.1542,-71.2358 -68.1542,-71.2358 -66.61481,-71.2358 -65.07542,-71.2358 -63.53603,-71.2358 -61.99664,-71.2358 -60.45725,-71.2358 -58.91786,-71.2358 -57.37847,-71.2358 -55.83908,-71.2358 -54.29969,-71.2358 -52.7603))", "dataset_titles": "Expedition Data; Expedition data of LMG0802; Expedition data of LMG0902; Expedition Data of LMG0902; Expedition data of NBP0808; Labile Organic Carbon distributions on the West Antarctic Peninsula Shelf; Species List, Species Abundance, and Sediment Geochemistry processed data acquired during Laurence M. Gould expedition LMG0802", "datasets": [{"dataset_uid": "002611", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0808", "url": "https://www.rvdata.us/search/cruise/NBP0808"}, {"dataset_uid": "001513", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0802"}, {"dataset_uid": "601319", "doi": "10.15784/601319", "keywords": "Antarctica; Antarctic Peninsula; Biota; Bioturbation Coefficients; Diagenesis; Labile Organic Carbon; LOC Mean Residence Times; Marguerite Bay; Oceans; Organic Carbon Degradation Rates; Sediment Core", "people": "DeMaster, David; Taylor, Richard; Smith, Craig; Isla, Enrique; Thomas, Carrie", "repository": "USAP-DC", "science_program": null, "title": "Labile Organic Carbon distributions on the West Antarctic Peninsula Shelf", "url": "https://www.usap-dc.org/view/dataset/601319"}, {"dataset_uid": "601303", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; Chlorophyll Concentration; LMG0802; Marcofauna; Megafauna; Oceans; R/v Laurence M. Gould; Seafloor Sampling; Species Abundance", "people": "Smith, Craig; DeMaster, David", "repository": "USAP-DC", "science_program": null, "title": "Species List, Species Abundance, and Sediment Geochemistry processed data acquired during Laurence M. Gould expedition LMG0802", "url": "https://www.usap-dc.org/view/dataset/601303"}, {"dataset_uid": "001486", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of LMG0902", "url": "https://www.rvdata.us/search/cruise/LMG0902"}, {"dataset_uid": "002669", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0902", "url": "https://www.rvdata.us/search/cruise/LMG0902"}, {"dataset_uid": "002727", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0902", "url": "https://www.rvdata.us/search/cruise/LMG0902"}, {"dataset_uid": "002726", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0802", "url": "https://www.rvdata.us/search/cruise/LMG0802"}, {"dataset_uid": "002725", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0802", "url": "https://www.rvdata.us/search/cruise/LMG0802"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The Antarctic Peninsula region exhibits one of the largest warming trends in the world. Climate change in this region will reduce the duration of winter sea-ice cover, altering both the pelagic ecosystem and bentho-pelagic coupling. We postulate that shelf benthic ecosystems are highly suitable for tracking climate change because they act as \"low-pass\" filters, removing high-frequency seasonal noise and responding to longer-term trends in pelagic ecosystem structure and export production. We propose to conduct a 3-year study of bentho-pelagic coupling along a latitudinal climate gradient on the Antarctic Peninsula to explore the potential impacts of climate change (e.g., reduction in sea-ice duration) on Antarctic shelf ecosystems. We will conduct three cruises during summer and winter regimes along a 5- station transect from Smith Island to Marguerite Bay, evaluating a broad range of benthic ecological and biogeochemical processes. Specifically, we will examine the feeding strategies of benthic deposit feeders along this climatic gradient to elucidate the potential response of this major trophic group to climatic warming. In addition, we will (1) quantify carbon and nitrogen cycling and burial at the seafloor and (2) document changes in megafaunal, macrofaunal, and microbial community structure along this latitudinal gradient. We expect to develop predictive insights into the response of Antarctic shelf ecosystems to some of the effects of climate warming (e.g., a reduction in winter sea-ice duration). The proposed research will considerably broaden the ecological and carbon-flux measurements made as parts of the Palmer Station LTER and GLOBEC programs by providing a complementary benthic component. This project also will promote science education from the 9th grade to graduate-student levels. We will partner with the NSF-sponsored Southeastern Center for Ocean Science Education Excellence to reach students of all races in all areas of NC, SC and GA. The project will also benefit students at the post secondary level by supporting three graduate and two undergraduate students. During each of the three field excursions, NCSU and UH students will travel to Chile and Antarctica to participate in scientific research. Lastly, all three PIs will incorporate material from this project into their undergraduate and graduate courses.", "east": -56.4114, "geometry": "POINT(-63.8236 -60.45725)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS", "is_usap_dc": false, "keywords": "LMG0802; R/V LMG; AMD; Amd/Us; LMG0902; USA/NSF; NBP0808; USAP-DC; R/V NBP", "locations": null, "north": -52.7603, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "DeMaster, David; Smith, Craig", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -68.1542, "title": "Collaborative Research: Benthic Faunal Feeding Dynamics on the Antarctic Shelf and the Effects of Global Climate Change on Bentho-Pelagic Coupling", "uid": "p0000552", "west": -71.2358}, {"awards": "9118439 Karl, David", "bounds_geometry": "POLYGON((-76.8432 -52.3533,-74.99221 -52.3533,-73.14122 -52.3533,-71.29023 -52.3533,-69.43924 -52.3533,-67.58825 -52.3533,-65.73726 -52.3533,-63.88627 -52.3533,-62.03528 -52.3533,-60.18429 -52.3533,-58.3333 -52.3533,-58.3333 -54.01689,-58.3333 -55.68048,-58.3333 -57.34407,-58.3333 -59.00766,-58.3333 -60.67125,-58.3333 -62.33484,-58.3333 -63.99843,-58.3333 -65.66202,-58.3333 -67.32561,-58.3333 -68.9892,-60.18429 -68.9892,-62.03528 -68.9892,-63.88627 -68.9892,-65.73726 -68.9892,-67.58825 -68.9892,-69.43924 -68.9892,-71.29023 -68.9892,-73.14122 -68.9892,-74.99221 -68.9892,-76.8432 -68.9892,-76.8432 -67.32561,-76.8432 -65.66202,-76.8432 -63.99843,-76.8432 -62.33484,-76.8432 -60.67125,-76.8432 -59.00766,-76.8432 -57.34407,-76.8432 -55.68048,-76.8432 -54.01689,-76.8432 -52.3533))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002292", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9302"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The annual advance and retreat of pack ice may be the major physical determinant of spatial/temporal changes in the structure and function of antarctic marine communities. Interannual cycles and/or trends in the annual extent of pack ice may also have significant effects on all levels of the food web, from total annual primary production to breeding success in seabirds. Historical records indicate a 6 to 8 year cycle in the maximum extent of pack ice in the winter. During this decade winters were colder in 1980 and 1981, and again in 1986 and 1987. In order to understand the interactions between pack ice and ecosystem dynamics, especially the influences of the well- documented interannual variability in ice cover on representative populations, a long-term ecological research (LTER) site has been established in the Antarctic Peninsula region near Palmer Station. The LTER project, will conduct comprehensive measurements of ice-dominated ecosystems in this region with a focus on primary production, krill populations and swarms and seabirds. A primary emphasis will be placed on the development of ecosystem models that will provide a predictive capability for issues related to global environmental change. This proposal will add to the existing LTER project detailed studies of the biogeochemical cycling of carbon and associated bioelements. The microbiology and carbon flux component of LTER will provide measurements of a suite of core parameters relevant to the carbon cycle and will test several hypotheses pertaining to carbon flux, including bacterial productivity and nutrient regeneration.", "east": -58.3333, "geometry": "POINT(-67.58825 -60.67125)", "instruments": null, "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.3533, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Karl, David; Ross, Robin Macurda", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": "LTER", "south": -68.9892, "title": "Long-term Ecological Research (LTER) on the Antarctic Marine Ecosystem: Microbiology and Carbon Flux", "uid": "p0000651", "west": -76.8432}, {"awards": "8915730 Foster, Theodore", "bounds_geometry": "POLYGON((-70.9 -52.3533,-67.79577 -52.3533,-64.69154 -52.3533,-61.58731 -52.3533,-58.48308 -52.3533,-55.37885 -52.3533,-52.27462 -52.3533,-49.17039 -52.3533,-46.06616 -52.3533,-42.96193 -52.3533,-39.8577 -52.3533,-39.8577 -53.78259,-39.8577 -55.21188,-39.8577 -56.64117,-39.8577 -58.07046,-39.8577 -59.49975,-39.8577 -60.92904,-39.8577 -62.35833,-39.8577 -63.78762,-39.8577 -65.21691,-39.8577 -66.6462,-42.96193 -66.6462,-46.06616 -66.6462,-49.17039 -66.6462,-52.27462 -66.6462,-55.37885 -66.6462,-58.48308 -66.6462,-61.58731 -66.6462,-64.69154 -66.6462,-67.79577 -66.6462,-70.9 -66.6462,-70.9 -65.21691,-70.9 -63.78762,-70.9 -62.35833,-70.9 -60.92904,-70.9 -59.49975,-70.9 -58.07046,-70.9 -56.64117,-70.9 -55.21188,-70.9 -53.78259,-70.9 -52.3533))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002310", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9207"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project is a two-year investigation into the dynamics and processes of deep water mass formation in the western Weddell Sea, combining physical and chemical oceanographic techniques to produce a coherent picture of the importance of this unique region to the structure of the world ocean. In the global context, this area is a major water mass modification site, involving open ocean convective events, the continental margin, and the ice cover. At this time the various water types that combine to form Weddell Sea Deep Water and Antarctic Bottom Water, and the conditions under which these water masses form, are not known well enough to establish direct physical links and volumetric budgets. It is suspected that the outflow from the Weddell Sea is restricted to quite narrow boundary currents flowing near the base of the continental shelf, and consequently may be observed with conventional current meter moorings from the shelf into the deep ocean. Two oceanographic expeditions to the western Weddell Sea are planned as part of this study: the first in the 1990/91, and the second in 1991/92. The objectives will be to measure the flow of newly-formed bottom water and to explore the sinking process of near-surface waters in the open ocean to see how these affect the deep water flows. In the first year the primary objective will be to set out an array of eight current meters in the bottom water core, while a secondary objective will be to grapple for an existing array that was set out in early 1988 but could not be recovered in 1989 because Antarctic Program ship resources had to be diverted to deal with the oil spill at Palmer Station. In the second year the array will be retrieved. Hydrographic cruises in order to define the upper ocean temperatures and salinity structure in the outflow region where unusually large step structures have been found in the past. A chemistry program consistent with the objectives of the World Ocean Circulation Experiment (WOCE) and presently planned experiments in the South Atlantic Ocean, will be integrated into the cruises carried out under this project.", "east": -39.8577, "geometry": "POINT(-55.37885 -59.49975)", "instruments": null, "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.3533, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Foster, Theodore; Foster, Ted", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -66.6462, "title": "Antarctic Bottom Water Formation", "uid": "p0000654", "west": -70.9}, {"awards": "9505596 Fraser, William", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP9906", "datasets": [{"dataset_uid": "002594", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP9906", "url": "https://www.rvdata.us/search/cruise/NBP9906"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Not Available", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Raymond", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Changes in Adelie Penguin Populations at Palmer Station: TheEffects of Human Disturbance and Long-Term Environmental Change", "uid": "p0000813", "west": null}, {"awards": "0130525 Fraser, William", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0105", "datasets": [{"dataset_uid": "002605", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0105", "url": "https://www.rvdata.us/search/cruise/NBP0105"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The potential consequence of human impact on wildlife in Antarctica has been debated for many decades. Scientists, support staff and visitors in Antarctica may have an effect on the behavior and population dynamics of marine mammals and seabirds. Since the early 1970\u0027s, shipboard tourism has expanded to the point where it is timely to address the question, using a scientific research approach. The focus of this study is to examine the potential effect of tourist activities on the Adelie Penguins (Pygoscelis adeliae) in the Antarctic Peninsula. The topic has gathered the interest and opinions of those in private industry, the scientific community, government organizations and environmental groups. A key concern is that increases in these activities may eventually overcome the ability of research to address critical issues in a timely and biologically meaningful manner. The approach to understanding how tourism might affect Adelie Penguins must involve both a study of human activity and a study of natural variability in the physical environment. The ongoing Palmer Long Term Ecological Research program focuses on the ecosystem and its components and thus addresses the issues of natural variability. This project focuses on the human dimension and continues a tourist-monitoring program begun as a pilot project near Palmer Station. This site is in a geographic location that mirrors current patterns in tourism and tourist-wildlife interactions in the western Antarctic Peninsula. It also offers a setting that provides unique opportunities for human impacts research. This includes the presence of long-term databases that document environmental variability over multiple time and space scales in both marine and terrestrial habitats, and the ability to examine potential tourist impacts as part of controlled experiments. The results of the study will have important implications to understanding interactions between climate change and ecosystem response, and for detecting, mitigating and managing the consequences of human activities such as tourism.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Fraser, William; Smith, Raymond", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Monitoring the Human Impact and Environmental Variability on Adelie Penguins at Palmer Station, Antarctica", "uid": "p0000819", "west": null}, {"awards": "0125818 Gargett, Ann", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0508", "datasets": [{"dataset_uid": "001584", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0508"}, {"dataset_uid": "002610", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0508", "url": "https://www.rvdata.us/search/cruise/NBP0508"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Ultraviolet radiation influences the dynamics of plankton processes in the near-surface waters of most aquatic ecosystems. In particular, the Southern Ocean is affected in the austral spring period when biologically damaging ultraviolet radiation is enhanced by ozone depletion. While progress has been made in estimating the quantitative impact of ultraviolet radiation on bacteria and phytoplankton in the Southern Ocean, some important issues remain to be resolved. Little is known about responses in systems dominated by the colonial haptophyte Phaeocystis antarctica, which dominates spring blooms in a polyna that develops in the southern Ross Sea. The Ross Sea is also of interest because of the occurrence of open water at a far southerly location in the spring, well within the ozone hole, and continuous daylight, with implications for the regulation of DNA repair. A number of studies suggest that vertical mixing can significant modify the impact of ultraviolet radiation in the Southern Ocean and elsewhere. However, there are limited measurements of turbulence intensity in the surface layer and measurements have not been integrated with parallel studies of ultraviolet radiation effects on phytoplankton and bacterioplankton. To address these issues, this collaborative study will focus on vertical mixing and the impact of ultraviolet radiation in the Ross Sea. The spectral and temporal responses of phytoplankton and bacterioplankton to ultraviolet radiation will be characterized in both laboratory and solar incubations. These will lead to the definition of biological weighting functions and response models capable of predicting the depth and time distribution of ultraviolet radiation impacts on photosynthesis, bacterial incorporation and DNA damage in the surface layer. Diel sampling will measure depth-dependent profiles of DNA damage, bacterial incorporation, photosynthesis and fluorescence parameters over a 24 h cycle. Sampling will include stations with contrasting wind-driven mixing and stratification as the polyna develops. The program of vertical mixing measurements is optimized for the typical springtime Ross Sea situation in which turbulence of intermediate intensity is insufficient to mix the upper layer thoroughly in the presence of stabilizing influences like solar heating and/or surface freshwater input from melting ice. Fine-scale vertical density profiles will be measured with a free-fall CTD unit and the profiles will be used to directly estimate large-eddy scales by determining Thorpe scales. Eddy scales and estimated turbulent diffusivities will be directly related to surface layer effects, and used to generate lagrangian depth-time trajectories in models of ultraviolet radiation responses in the surface mixed layer. The proposed research will be the first in-depth study of ultraviolet radiation effects in the Ross Sea and provide a valuable comparison with previous work in the Weddell-Scotia Confluence and Palmer Station regions. It will also enhance the understanding of vertical mixing processes, trophic interactions and biogeochemical cycling in the Ross Sea.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V NBP; B-15J", "locations": "B-15J", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Neale, Patrick", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Interactive effects of UV and vertical mixing on phytoplankton and bacterioplankton in the Ross Sea", "uid": "p0000822", "west": null}, {"awards": "9615342 Neale, Patrick", "bounds_geometry": null, "dataset_titles": "Expedition data of LMG9809", "datasets": [{"dataset_uid": "002720", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG9809", "url": "https://www.rvdata.us/search/cruise/LMG9809"}, {"dataset_uid": "002719", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG9809", "url": "https://www.rvdata.us/search/cruise/LMG9809"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Increases in ultraviolet-B radiation (UV-B, 280-320) associated with the Antarctic ozone hole have been shown to inhibit the photosynthesis of phytoplankton, but the overall effect on water column production is still a matter of debate and continued investigation. Investigations have also revealed that even at \"normal\" levels of Antarctic stratospheric ozone, UV-B and UV-A (320-400 nm) appear to have strong effects on water column production. The role of UV in the ecology of phytoplankton primary production has probably been underappreciated in the past and could be particularly important to the estimation of primary production in the presence of vertical mixing. This research focuses on quantifying UV effects on photosynthesis of Antarctic phytoplankton by defining biological weighting functions for UV-inhibition. In the past, techniques were developed to describe photosynthesis as a function of UV and visible irradiance using laboratory cultures. Further experimentation with natural assemblages from McMurdo Station in Antarctica showed that biological weighting functions are strongly related to light history. Most recently, measurements in the open waters of the Southern Ocean confirmed that there is substantial variability in the susceptibility of phytoplankton assemblages to UV. It was also discovered that inhibition of photosynthesis in Antarctic phytoplankton got progressively worse on the time scale of hours, with no evidence of recovery. Even under benign conditions, losses of photosynthetic capability persisted unchanged for several hours. This was in contrast with laboratory cultures and some natural assemblages which quickly attained a steady- state rate of photosynthesis during exposure to UV, reflecting a balance between damage and recovery processes. Slow reversal of UV-induced damage has profound consequences for water-column photosynthesis, especially during vertical mixing. Results to date have been used to model th e influence of UV, ozone depletion and vertical mixing on photosynthesis in Antarctic waters. Data indicate that normal levels of UV can have a significant impact on natural phytoplankton and that the effects can be exacerbated by ozone depletion as well as vertical mixing. Critical questions remain poorly resolved, however, and these are the focus of the present proposal. New theoretical and experimental approaches will be used to investigate UV responses in both the open waters of the Weddell-Scotia confluence and coastal waters near Palmer Station. In particular, measurements will be made of the kinetics of UV inhibition and recovery on time scales ranging from minutes to days. Variability in biological weighting functions between will be calculated for pelagic and coastal phytoplankton in the Southern Ocean. The results will provide absolute estimates of photosynthesis under in situ, as well as under altered, UV irradiance; broaden the range of assemblages for which biological weighting functions have been determined; and clarify how kinetics of inhibition and recovery should be represented in mixed layer models.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Mopper, Kenneth; Neale, Patrick", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "New Approaches to Measuring and Understanding the Effects of Ultraviolet Radiation on Photosynthesis by Antarctic Phytoplankton", "uid": "p0000871", "west": null}, {"awards": "0230069 Naveen, Ron", "bounds_geometry": "POLYGON((-68.0489 -52.7302,-66.96539 -52.7302,-65.88188 -52.7302,-64.79837 -52.7302,-63.71486 -52.7302,-62.63135 -52.7302,-61.54784 -52.7302,-60.46433 -52.7302,-59.38082 -52.7302,-58.29731 -52.7302,-57.2138 -52.7302,-57.2138 -53.97453,-57.2138 -55.21886,-57.2138 -56.46319,-57.2138 -57.70752,-57.2138 -58.95185,-57.2138 -60.19618,-57.2138 -61.44051,-57.2138 -62.68484,-57.2138 -63.92917,-57.2138 -65.1735,-58.29731 -65.1735,-59.38082 -65.1735,-60.46433 -65.1735,-61.54784 -65.1735,-62.63135 -65.1735,-63.71486 -65.1735,-64.79837 -65.1735,-65.88188 -65.1735,-66.96539 -65.1735,-68.0489 -65.1735,-68.0489 -63.92917,-68.0489 -62.68484,-68.0489 -61.44051,-68.0489 -60.19618,-68.0489 -58.95185,-68.0489 -57.70752,-68.0489 -56.46319,-68.0489 -55.21886,-68.0489 -53.97453,-68.0489 -52.7302))", "dataset_titles": "Expedition Data; Expedition data of LMG0413A; Expedition data of LMG0514; Expedition data of LMG0611; Long-term Data Collection at Select Antarctic Peninsula Visitor Sites", "datasets": [{"dataset_uid": "600032", "doi": "10.15784/600032", "keywords": "Antarctica; Biota; Penguin; Petermann Island", "people": "Naveen, Ronald", "repository": "USAP-DC", "science_program": null, "title": "Long-term Data Collection at Select Antarctic Peninsula Visitor Sites", "url": "https://www.usap-dc.org/view/dataset/600032"}, {"dataset_uid": "001686", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0308"}, {"dataset_uid": "002680", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0514", "url": "https://www.rvdata.us/search/cruise/LMG0514"}, {"dataset_uid": "002679", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0413A", "url": "https://www.rvdata.us/search/cruise/LMG0413A"}, {"dataset_uid": "001585", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0514"}, {"dataset_uid": "002681", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0611", "url": "https://www.rvdata.us/search/cruise/LMG0611"}, {"dataset_uid": "001547", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0611B"}, {"dataset_uid": "001626", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0413A"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The Antarctic Site Inventory Project has collected biological data and site-descriptive information in the Antarctic Peninsula region since 1994. This research effort has provided data on those sites which are visited by tourists on shipboard expeditions in the region. The aim is to obtain data on the population status of several key species of Antarctic seabirds, which might be affected by the cumulative impact resulting from visits to the sites. This project will continue the effort by focusing on two heavily-visited Antarctic Peninsula sites: Paulet Island, in the northwestern Weddell Sea and Petermann Island, in the Lemaire Channel near Anvers Island. These sites were selected because both rank among the ten most visited sites in Antarctica each year in terms of numbers of visitors and zodiac landings; both are diverse in species composition, and both are sensitive to potential environmental disruptions from visitors. These data collected focus on two important biological parameters for penguins and blue-eyed shags: (1) breeding population size (number of occupied nests) and (2) breeding success (number of chicks per occupied nests). A long-term data program will be supported, with studies at the two sites over a five-year period. The main focus will be at Petermann Island, selected for intensive study due to its visitor status and location in the region near Palmer Station. This will allow for comparative data with the Palmer Long Term Ecological Research program. Demographic data will be collected in accordance with Standard Methods established by the Convention for the Conservation of Antarctic Marine Living Resources Ecosystem Monitoring Program and thus will be comparable with similar data sets being collected by other international Antarctic Treaty nation research programs. While separating human-induced change from change resulting from a combination of environmental factors will be difficult, this work will provide a first step to identify potential impacts. These long-term data sets will contribute to a better understanding of biological processes in the entire region and will contribute valuable information to be used by the Antarctic Treaty Parties as they address issues in environmental stewardship in Antarctica.", "east": -57.2138, "geometry": "POINT(-62.63135 -58.95185)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "R/V LMG; FIELD SURVEYS", "locations": null, "north": -52.7302, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Yen, Jeannette; Naveen, Ronald; Leger, Dave", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -65.1735, "title": "Long-term Data Collection at Select Antarctic Peninsula Visitor Sites", "uid": "p0000122", "west": -68.0489}, {"awards": "0636696 DeVries, Arthur", "bounds_geometry": "POLYGON((-68.0025 -52.7599,-67.07254 -52.7599,-66.14258 -52.7599,-65.21262 -52.7599,-64.28266 -52.7599,-63.3527 -52.7599,-62.42274 -52.7599,-61.49278 -52.7599,-60.56282 -52.7599,-59.63286 -52.7599,-58.7029 -52.7599,-58.7029 -53.98242,-58.7029 -55.20494,-58.7029 -56.42746,-58.7029 -57.64998,-58.7029 -58.8725,-58.7029 -60.09502,-58.7029 -61.31754,-58.7029 -62.54006,-58.7029 -63.76258,-58.7029 -64.9851,-59.63286 -64.9851,-60.56282 -64.9851,-61.49278 -64.9851,-62.42274 -64.9851,-63.3527 -64.9851,-64.28266 -64.9851,-65.21262 -64.9851,-66.14258 -64.9851,-67.07254 -64.9851,-68.0025 -64.9851,-68.0025 -63.76258,-68.0025 -62.54006,-68.0025 -61.31754,-68.0025 -60.09502,-68.0025 -58.8725,-68.0025 -57.64998,-68.0025 -56.42746,-68.0025 -55.20494,-68.0025 -53.98242,-68.0025 -52.7599))", "dataset_titles": "Expedition Data; Expedition data of LMG0809; Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)", "datasets": [{"dataset_uid": "601811", "doi": null, "keywords": "Antarctica; Bellingshausen Sea; Cryosphere; Southern Ocean", "people": "McDowell, Jan; Corso, Andrew; Desvignes, Thomas; Cheng, Chi-Hing; Biesack, Ellen; Steinberg, Deborah; Hilton, Eric", "repository": "USAP-DC", "science_program": "LTER", "title": "Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)", "url": "https://www.usap-dc.org/view/dataset/601811"}, {"dataset_uid": "001504", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0809"}, {"dataset_uid": "002728", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0809", "url": "https://www.rvdata.us/search/cruise/LMG0809"}, {"dataset_uid": "001493", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0810"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Antarctic notothenioid fish evolved antifreeze (AF) proteins that prevent ice crystals that enter their body fluids from growing, and thereby avoid freezing in their icy habitats. However, even in the extreme cold Antarctic marine environment, regional gradations of severity are found. The biological correlate for environmental severity in fish is the endogenous ice load, which likely determines the tolerable limit of environmental severity for notothenioid habitation. The endogenous ice load develops from environmental ice crystals entering through body surfaces and somehow localizing to the spleen. How prone the surface tissues are to ice entry, how ice reaches the spleen, and what the fate of splenic ice is, requires elucidation. Spleen sequestration of ice raises the hypothesis that macrophages may play a role in the translocation and perhaps elimination of AF-bound ice crystals. Antifreeze glycoproteins (AFGP) act in concert with a second, recently discovered antifreeze called antifreeze potentiating protein (AFPP), necessitating an assessment of the contribution of AFPP to freezing avoidance. Recent research suggests that the exocrine pancreas and the anterior stomach, not the liver, synthesize AFGPs and secrete them into the intestine, from where they may be returned to the blood. A GI-to-blood transport is a highly unconventional path for a major plasma protein and also begs the questions, What is the source of blood AFPP?. Why are two distinct AF proteins needed and what is the chronology of their evolution? What genomic changes in the DNA are associated with the development or loss of the antifreeze trait? Experiments described in this proposal address these interrelated questions of environmental, organismal, and evolutionary physiology, and will further our understanding of novel vertebrate physiologies, the limits of environmental adaptation, and climatically driven changes in the genome. The proposed research will (1) determine the temporal and spatial heterogeneity of environmental temperature and iciness in progressively more severe fish habitats in the greater McMurdo Sound area, and in the milder Arthur Harbor at Palmer Station. The splenic ice load in fishes inhabiting these sites will be determined to correlate to environmental severity and habitability. (2) Assess the surface tissue site of ice entry and their relative barrier properties in intact fish and isolated tissues preparations (3) Assess the role of immune cells in the fate of endogenous ice, (4) determine whether the blood AFGPs are from intestinal/rectal uptake, (5) examine the contribution of AFPP to the total blood AF activity (6) evaluate the progression of genomic changes in the AFGP locus across Notothenioidei as modulated by disparate thermal environments, in four selected species through the analyses of large insert DNA BAC clones. The origin and evolution of AFPP will be examined also by analyzing BAC clones encompassing the AFPP genomic locus. The broader impacts of the proposed research include training of graduate and undergraduate students in research approaches ranging from physical field measurements to cutting edge genomics. Undergraduate research projects have lead to co-authored publications and will continue to do so. Outreach includes establishing Wiki websites on topics of Antarctic fish biology and freeze avoidance, providing advisory services to the San Francisco Science Exploratorium, and making BAC libraries available to interested polar biologists. This research theme has repeatedly received national and international science news coverage and will continue to be disseminated to the public in that manner.", "east": -58.7029, "geometry": "POINT(-63.3527 -58.8725)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.7599, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Devries, Arthur", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -64.9851, "title": "Environmental, Organismal and Evolutionary Physiology of Freeze Avoidance in Antarctic Notothenioid Fishes", "uid": "p0000560", "west": -68.0025}, {"awards": "0631328 Zamzow, Jill", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 10 Nov 2009 00:00:00 GMT", "description": "The applicant will use this Polar Postdoctoral Fellowship to study top-down effects on community structure (habitat choice and behavior of amphipods, the dominant mesograzers) in macroalgal communities in the vicinity of Palmer Station, Antarctica, where amphipods are not only extremely abundant, but their distributions are very different on palatable vs. unpalatable macroalgae. Pilot studies have suggested that these differences in community structure may be driven by algal chemistry and predation. The effects of algal chemistry on amphipod habitat choice, both in the presence and absence of predators will be tested experimentally, as will the question of whether amphipod host-alga choice results in any reduction of predation risk. Mesograzers in general, and amphipods in particular, are an essential trophic link in marine systems worldwide, and in particular, are a critical component of antarctic near-shore ecosystems. However despite their high abundance and species richness, little is known of their functional ecology or trophodynamics, and little research has investigated the trophic dynamics, behavior, or ecology of these organisms. This project will work out the basic biology of the system, by examining amphipod distributions on Himantothallus (a brown macroalga) and in the stomach contents of Notothenia coriiceps (a small cod-like antarctic fish) and determining whether prey selectivity of amphipod species is occurring. A series of laboratory experiments will investigate the influence(s) of predators, algal chemistry, and thallus structure on amphipod behavior and habitat choice, and test the predation risk associated with amphipod host-alga choice.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": null, "paleo_time": null, "persons": "Zamzow, Jill", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -90.0, "title": "PostDoctoral Research Fellowship", "uid": "p0000206", "west": -180.0}, {"awards": "0538627 Gill, John", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 08 Sep 2009 00:00:00 GMT", "description": "This proposal is focused on experimental studies of the thunderstorms electrodynamic coupling to the Earth\u0027s radiation belts through the upward lightning flashes that lead to ionospheric parameters variability, and the global lightning effects on climate. The intellectual merit of the proposed program lies in the importance of the electrodynamic coupling of lightning discharges to the overlying ionosphere and the radiation belts, both in terms of lightning-induced electron precipitation, and in terms of high altitude optical and gamma-ray emissions produced by energy originating in lightning discharges. Precipitation of the radiation belt particles by whistler waves launched by lightning discharges will be measured as associated localized and transient disturbances of the lower ionosphere, which are sensed remotely by means of their effect on the phase and amplitude of very low frequency (VLF) signals propagating in the Earth-ionosphere waveguide. The broader impacts of the proposed research program will include the development of new technologies of lightning detection, with few observation sites and on a global scale, which can then be implemented for the benefit of society, both in terms of agriculture, navigation and other ways in which lightning and thunderstorms may affect human life. The proposed program is a part of the international collaboration between the Antarctic Peninsula stations, as well as complements a similar set of measurements that are conducted by the Stanford University in the northern hemisphere under support from other sources. Coordinated measurements in both hemispheres are needed to study the geomagnetic conjugacy of the observed phenomena.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": null, "paleo_time": null, "persons": "Inan, Umran", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -90.0, "title": "ELF/VLF Observations of Lightning Discharges, Whistler-mode waves and Electron Precipitation at Palmer Station, Antarctica.", "uid": "p0000687", "west": -180.0}, {"awards": "0127022 Jeffrey, Wade", "bounds_geometry": "POLYGON((-177.639 -43.5676,-143.1091 -43.5676,-108.5792 -43.5676,-74.0493 -43.5676,-39.5194 -43.5676,-4.9895 -43.5676,29.5404 -43.5676,64.0703 -43.5676,98.6002 -43.5676,133.1301 -43.5676,167.66 -43.5676,167.66 -46.99877,167.66 -50.42994,167.66 -53.86111,167.66 -57.29228,167.66 -60.72345,167.66 -64.15462,167.66 -67.58579,167.66 -71.01696,167.66 -74.44813,167.66 -77.8793,133.1301 -77.8793,98.6002 -77.8793,64.0703 -77.8793,29.5404 -77.8793,-4.9895 -77.8793,-39.5194 -77.8793,-74.0493 -77.8793,-108.5792 -77.8793,-143.1091 -77.8793,-177.639 -77.8793,-177.639 -74.44813,-177.639 -71.01696,-177.639 -67.58579,-177.639 -64.15462,-177.639 -60.72345,-177.639 -57.29228,-177.639 -53.86111,-177.639 -50.42994,-177.639 -46.99877,-177.639 -43.5676))", "dataset_titles": "Expedition Data; Ross Sea microbial biomass and production", "datasets": [{"dataset_uid": "600029", "doi": "10.15784/600029", "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; CTD Data; Microbiology; Oceans; Phytoplankton; Ross Sea; Southern Ocean", "people": "Jeffrey, Wade H.", "repository": "USAP-DC", "science_program": null, "title": "Ross Sea microbial biomass and production", "url": "https://www.usap-dc.org/view/dataset/600029"}, {"dataset_uid": "001584", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0508"}, {"dataset_uid": "001690", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304B"}], "date_created": "Thu, 12 Jun 2008 00:00:00 GMT", "description": "Ultraviolet radiation influences the dynamics of plankton processes in the near-surface waters of most aquatic ecosystems. In particular, the Southern Ocean is affected in the austral spring period when biologically damaging ultraviolet radiation is enhanced by ozone depletion. While progress has been made in estimating the quantitative impact of ultraviolet radiation on bacteria and phytoplankton in the Southern Ocean, some important issues remain to be resolved. Little is known about responses in systems dominated by the colonial haptophyte Phaeocystis antarctica, which dominates spring blooms in a polyna that develops in the southern Ross Sea. The Ross Sea is also of interest because of the occurrence of open water at a far southerly location in the spring, well within the ozone hole, and continuous daylight, with implications for the regulation of DNA repair. A number of studies suggest that vertical mixing can significant modify the impact of ultraviolet radiation in the Southern Ocean and elsewhere. However, there are limited measurements of turbulence intensity in the surface layer and measurements have not been integrated with parallel studies of ultraviolet radiation effects on phytoplankton and bacterioplankton. To address these issues, this collaborative study will focus on vertical mixing and the impact of ultraviolet radiation in the Ross Sea. The spectral and temporal responses of phytoplankton and bacterioplankton to ultraviolet radiation will be characterized in both laboratory and solar incubations. These will lead to the definition of biological weighting functions and response models capable of predicting the depth and time distribution of ultraviolet radiation impacts on photosynthesis, bacterial incorporation and DNA damage in the surface layer. Diel sampling will measure depth-dependent profiles of DNA damage, bacterial incorporation, photosynthesis and fluorescence parameters over a 24 h cycle. Sampling will include stations with contrasting wind-driven mixing and stratification as the polyna develops. The program of vertical mixing measurements is optimized for the typical springtime Ross Sea situation in which turbulence of intermediate intensity is insufficient to mix the upper layer thoroughly in the presence of stabilizing influences like solar heating and/or surface freshwater input from melting ice. Fine-scale vertical density profiles will be measured with a free-fall CTD unit and the profiles will be used to directly estimate large-eddy scales by determining Thorpe scales. Eddy scales and estimated turbulent diffusivities will be directly related to surface layer effects, and used to generate lagrangian depth-time trajectories in models of ultraviolet radiation responses in the surface mixed layer. The proposed research will be the first in-depth study of ultraviolet radiation effects in the Ross Sea and provide a valuable comparison with previous work in the Weddell-Scotia Confluence and Palmer Station regions. It will also enhance the understanding of vertical mixing processes, trophic interactions and biogeochemical cycling in the Ross Sea.", "east": 167.66, "geometry": "POINT(-4.9895 -60.72345)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e WATER BOTTLES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUORESCENCE MICROSCOPY; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e GO-FLO BOTTLES", "is_usap_dc": true, "keywords": "R/V NBP; B-15J", "locations": "B-15J", "north": -43.5676, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Jeffrey, Wade H.; Neale, Patrick", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -77.8793, "title": "Collaborative Proposal: Interactive Effects of UV Radiation and Vertical Mixing on Phytoplankton and Bacterial Productivity of Ross See Phaeocystis Blooms", "uid": "p0000578", "west": -177.639}, {"awards": "0337656 Lee, Richard", "bounds_geometry": "POLYGON((-64.1 -64.75,-64.085 -64.75,-64.07 -64.75,-64.055 -64.75,-64.04 -64.75,-64.025 -64.75,-64.01 -64.75,-63.995 -64.75,-63.98 -64.75,-63.965 -64.75,-63.95 -64.75,-63.95 -64.757,-63.95 -64.764,-63.95 -64.771,-63.95 -64.778,-63.95 -64.785,-63.95 -64.792,-63.95 -64.799,-63.95 -64.806,-63.95 -64.813,-63.95 -64.82,-63.965 -64.82,-63.98 -64.82,-63.995 -64.82,-64.01 -64.82,-64.025 -64.82,-64.04 -64.82,-64.055 -64.82,-64.07 -64.82,-64.085 -64.82,-64.1 -64.82,-64.1 -64.813,-64.1 -64.806,-64.1 -64.799,-64.1 -64.792,-64.1 -64.785,-64.1 -64.778,-64.1 -64.771,-64.1 -64.764,-64.1 -64.757,-64.1 -64.75))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 06 Jun 2008 00:00:00 GMT", "description": "Polar terrestrial environments are often described as deserts, where water availability is recognized as one of the most important limits on the distribution of terrestrial organisms. In addition, prolonged low winter temperatures threaten survival, and summer temperatures challenge organisms with extensive diel variations and rapid transitions from freezing to desiccating conditions. Global warming has further impacted the extreme thermal and hydric conditions experienced by Antarctic terrestrial plant and arthropod communities, especially as a result of glacial retreat along the Antarctic Peninsula. This research will focus on thermal and hydric adaptations in the terrestrial midge, Belgica antarctica, the largest and most southerly holometabolous insect living in this challenging and changing environment. \u003cbr/\u003eOverwintering midge larvae encased in the frozen substrate must endure desert-like conditions for more than 300 days since free water is biologically unavailable as ice. During the summer, larvae may be immersed in melt water or outwash from penguin colonies and seal wallows, in addition to saltwater splash. Alternatively, the larvae may be subjected to extended periods of desiccation as their microhabitats dry out. Due to their small size, relative immobility and the patchiness of suitable microhabitats, larvae may thus be subjected to stresses that include desiccation, hypo- or hyperosmotic conditions, high salinity exposure, and anoxia for extended periods. Research efforts will focus in three areas relevant to the stress tolerance mechanisms operating in these midges:(1) obtaining a detailed characterization of microclimatic conditions experienced by B. antarctica, especially those related to thermal and hydric diversity, both seasonally and among microhabitat types in the vicinity of Palmer Station, Antarctica; (2) examining the effects of extreme fluctuations in water availability and effects on physiological and molecular responses - to determine if midge larvae utilize the mechanism of cryoprotective dehydration for winter survival, and if genes encoding heat shock proteins and other genes are upregulated in larval responses to dehydration and rehydration; (3) investigating the dietary transmission of cryoprotectants from plant to insect host, which will test the hypothesis that midge larvae acquire increased resistance to desiccation and temperature stress by acquiring cryoprotectants from their host plants. \u003cbr/\u003eThis project will provide outreach to both elementary and secondary educators and their students. The team will include a teacher who will benefit professionally by full participation in the research, and will also assist in providing outreach to other teachers and their students. From Palmer Station, the field team will communicate daily research progress by e-mail supplemented with digital pictures with teachers and their elementary students to stimulate interest in an Antarctic biology and scientific research. These efforts will be supplemented with presentations at local schools and national teacher meetings, and by publishing hands-on, inquiry-based articles related to cryobiology and polar biology in education journals. Furthermore, the principal investigators will maintain major commitments to training graduate students and postdoctoral scholars, as well as undergraduate students by providing extended research experience that includes publication of scientific papers and presentations at national meetings.", "east": -63.95, "geometry": "POINT(-64.025 -64.785)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -64.75, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Denlinger, David; Lee, Richard", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -64.82, "title": "Physiological and Molecular Mechanisms of Stress Tolerance in a Polar Insect", "uid": "p0000742", "west": -64.1}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
The Results Map and the Results Table
The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
As the map is panned or zoomed, the highlighted rows in the table will update.
If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page.
The bounds for the project(s)/dataset(s) selected will be displayed in red.
The selected result(s) will be highlighted in red and brought to the top of the table.
The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds
and highlight the centroid on the Results Map.
Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other
search criteria already selected.
After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
Clicking Clear in the map will clear any drawn polygon.
Clicking Search in the map, or Search on the form will have the same effect.
The returned results will be any projects/datasets with bounds that intersect the polygon.
Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Undersea canyons play disproportionately important roles as oceanic biological hotspots and are critical for our understanding of many coastal ecosystems. Canyon-associated biological hotspots have persisted for thousands of years Along the Western Antarctic Peninsula, despite significant climate variability. Observations of currents over Palmer Deep canyon, a representative hotspot along the Western Antarctic Peninsula, indicate that surface phytoplankton blooms enter and exit the local hotspot on scales of ~1-2 days. This time of residence is in conflict with the prevailing idea that canyon associated hotspots are primarily maintained by phytoplankton that are locally grown in association with these features by the upwelling of deep waters rich with nutrients that fuel the phytoplankton growth. Instead, the implication is that horizontal ocean circulation is likely more important to maintaining these biological hotspots than local upwelling through its physical concentrating effects. This project seeks to better resolve the factors that create and maintain focused areas of biological activity at canyons along the Western Antarctic Peninsula and create local foraging areas for marine mammals and birds. The project focus is in the analysis of the ocean transport and concentration mechanisms that sustain these biological hotspots, connecting oceanography to phytoplankton and krill, up through the food web to one of the resident predators, penguins. In addition, the research will engage with teachers from school districts serving underrepresented and underserved students by integrating the instructors and their students completely with the science team. Students will conduct their own research with the same data over the same time as researchers on the project. Revealing the fundamental mechanisms that sustain these known hotspots will significantly advance our understanding of the observed connection between submarine canyons and persistent penguin population hotspots over ecological time, and provide a new model for how Antarctic hotspots function.<br/> <br/> <br/>To understand the physical mechanisms that support persistent hotspots along the Western Antarctic Peninsula (WAP), this project will integrate a modeling and field program that will target the processes responsible for transporting and concentrating phytoplankton and krill biomass to known penguin foraging locations. Within the Palmer Deep canyon, a representative hotspot, the team will deploy a High Frequency Radar (HFR) coastal surface current mapping network, uniquely equipped to identify the eddies and frontal regions that concentrate phytoplankton and krill. The field program, centered on surface features identified by the HFR, will include (i) a coordinated fleet of gliders to survey hydrography, chlorophyll fluorescence, optical backscatter, and active acoustics at the scale of the targeted convergent features; (ii) precise penguin tracking with GPS-linked satellite telemetry and time-depth recorders (TDRs); (iii) and weekly small boat surveys that adaptively target and track convergent features to measure phytoplankton, krill, and hydrography. A high resolution physical model will generalize our field measurements to other known hotspots along the WAP through simulation and determine which physical mechanisms lead to the maintenance of these hotspots. The project will also engage educators, students, and members of the general public in Antarctic research and data analysis with an education program that will advance teaching and learning as well as broadening participation of under-represented groups. This engagement includes professional development workshops, live connections to the public and classrooms, student research symposia, and program evaluation. Together the integrated research and engagement will advance our understanding of the role regional transport pathways and local depth dependent concentrating physical mechanisms play in sustaining these biological hotspots.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Antarctic Circumpolar Current (ACC) is the largest current on the planet, flowing west to east around Antarctica, forming a barrier that separates warmer waters to the north from colder waters to the south. Ocean eddies (like atmospheric storms) break through the ACC barrier, transferring heat across the ACC towards Antarctica. When warmer ocean waters intrude onto the Antarctic continental shelves, they contribute to glacial melt and ice shelf retreat. Over the past several decades, the Southern Ocean has warmed and winds have increased due to climate change. Somewhat surprisingly the ACC, though pushed by faster winds, has not accelerated; a faster current would present a stronger barrier to heat transfer. Instead, ocean eddies have increased. These eddies are concentrated at 6-7 "hot spots". Drake Passage is one of these hot spots. As the narrowest land gap on the entire circumpolar path of the ACC, Drake Passsage is an ideal monitoring spot. However, it is also one of the windiest and roughest stretches of water on the globe. The only ship that crosses Drake Passage year-round is the USAP supply vessel for Palmer Station, making it a unique platform to monitor the currents and temperature with a minimum of personnel and resources. The Drake Passage time series of upper ocean currents and temperature is now in its 24th year. The upper ocean temperature measurements have found significant warming in Drake Passage. The upper ocean current measurements have confirmed that the ACC has remained steady on average but have also revealed a complicated filamented current structure. Combining temperature and current measurements has provided a better understanding of heat transfer across the ACC by eddies. The time series has also provided valuable ground-truth for satellite measurements and for numerical model predictions looking at the entire ACC. Our studies are focused on examining low-frequency variability - seasonal, interannual, and decadal - in order to provide baselines from which to evaluate and interpret physical and biogeochemical changes occurring in the Southern Ocean.
This award is funded in whole or part under the American Rescue Plan Act of 2021 (Public Law 117-2).
Part I: Non-technical description:
Adlie penguin colonies are declining and disappearing from the western Antarctic Peninsula. However, not all colonies in a certain area decline or disappear at the same rate. This research project will evaluate the influence of terrestrial surface properties on Adlie penguin colonies, leveraging five decades of research on seabirds near Palmer Station where an Adlie colony on Litchfield Island became extinct in 2007 while other colonies nearby are still present. The researchers will combine information obtained from remote sensing, UAS (Unoccupied Aircraft System, or drones) high-resolution maps, reconstruction of past moss banks and modeling with machine learning tools to define suitable penguin and peatbank moss habitats and explore the influence of microclimate on their distributions. In particular, the researchers are asking if guano from penguin colonies could act as fertilizers of moss banks in the presence of localized wind patters that can carry airborne nitrogen to the mosses. Modeling will relate penguin and peatbank moss spatial patterns to environmental variables and provide a greater understanding of how continued environmental change could impact these communities. The project allows for documentation of terrestrial Antarctic ecosystems in support of seabirds and provisioning of such information to the broader science community that seeks to study penguins, educating graduate and undergraduate students and a post-doctoral researcher. The research team includes two young women as Principal Investigators, one of them from an under-represented ethnic minority, first time Antarctic Principal Investigator, from an EPSCoR state (Wyoming), broadening participation in Antarctic research. Researchers will serve as student mentors through the Duke Bass Connections program entitled Biogeographic Assessment of Antarctic Coastal Habitats. This program supports an interdisciplinary team of graduate and undergraduate students collaborating with project faculty and experts on cutting-edge research bridging the classroom and the real world.
Part II: Technical description:
This research aims to understand the changes at the microclimate scale (meters) by analyzing present and past Adlie penguin colonies and moss peatbanks in islands around Palmer Station in the western Antarctic Peninsula interlinked systems that are typically considered in isolation. By integrating in situ and remote data, this project will synthesize the drivers of biogeomorphology on small islands of the Antarctic Peninsula, a region of rapid change where plants and animals often co-occur and animal presence often determines the habitation of plants. A multi-disciplinary approach combine field measurements, remote sensing, UAS (Unoccupied Aircraft Systems) maps, paleoecology and modeling with machine learning to define suitable habitats and the influence of microclimates on penguin and peatbank distributions. The link between the two aspects of this study, peatbanks and penguins, is the potential source of nutrients for peat mosses from penguin guano. Peatbank and penguin distribution will be modeled and all models will be validated using in situ information from moss samples that will identify mechanistic processes. This project leverages 5 decades of seabird research in the area and high-definition remote sensing provided by the Polar Geospatial center to study the microclimate of Litchfield Island where an Adlie colony became extinct in 2007 when other colonies nearby are still present. The research team includes two early career women as Principal Investigators, one of them from an under-represented ethnic minority, first time Antarctic Principal Investigator, from an EPSCoR state (Wyoming). Researchers will serve as mentors for students through the Duke Bass Connections program entitled Biogeogrpahic Assessment of Antarctic Coastal Habitats which bridges the classroom and the real world.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This research project will use specially designed autonomous underwater vehicles (AUVs) to investigate interactions between Adelie and Gentoo penguins (the predators) and their primary food source, Antarctic krill (prey). While it has long been known that penguins feed on krill, details about how they search for food and target individual prey items is less well understood. Krill aggregate in large swarms, and the size or the depth of these swarms may influence the feeding behavior of penguins. Similarly, penguin feeding behaviors may differ based on characteristics of the environment, krill swarms, and the presence of other prey and predator species. This project will use specialized smart AUVs to simultaneously collect high-resolution observations of penguins, their prey, and environmental conditions. Data will shed light on strategies used by penguins prove foraging success during the critical summer chick-rearing period. This will improve predictions of how penguin populations may respond to changing environmental conditions in the rapidly warming Western Antarctic Peninsula region. Greater understanding of how individual behaviors shape food web structure can also inform conservation and management efforts in other marine ecosystems. This project has a robust public education and outreach plan linked with the Birch and Monterey Bay Aquariums.<br/><br/>Previous studies have shown that sub-mesoscale variability (1-10 km) in Antarctic krill densities and structure impact the foraging behavior of air-breathing predators. However, there is little understanding of how krill aggregation characteristics are linked to abundance on fine spatial scales, how these patterns are influenced by the habitat, or how prey characteristics influences the foraging behavior of predators. These data gaps remain because it is extremely challenging to collect detailed data on predators and prey simultaneously at the scale of an individual krill patch and single foraging event. Building on previously successful efforts, this project will integrate echosounders into autonomous underwater vehicles (AUVs), so that oceanographic variables and multi-frequency acoustic scattering from both prey and penguins can be collected simultaneously. This will allow for quantification of the environment at the scale of individual foraging events made by penguins during the critical 50+ day chick-rearing period. Work will be centered near Palmer Station, where long-term studies have provided significant insight into predator and prey population trends. The new data to be collected by this project will test hypotheses about how penguin prey selection and foraging behaviors are influenced by physical and biological features of their ocean habitat at extremely fine scale. By addressing the dynamic relationship between individual penguins, their prey, and habitat at the scale of individual foraging events, this study will begin to reveal the important processes regulating resource availability and identify what makes this region a profitable foraging habitat and breeding location.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Undersea canyons play disproportionately important roles as oceanic biological hotspots and are critical for our understanding of many coastal ecosystems. Canyon-associated biological hotspots have persisted for thousands of years Along the Western Antarctic Peninsula, despite significant climate variability. Observations of currents over Palmer Deep canyon, a representative hotspot along the Western Antarctic Peninsula, indicate that surface phytoplankton blooms enter and exit the local hotspot on scales of ~1-2 days. This time of residence is in conflict with the prevailing idea that canyon associated hotspots are primarily maintained by phytoplankton that are locally grown in association with these features by the upwelling of deep waters rich with nutrients that fuel the phytoplankton growth. Instead, the implication is that horizontal ocean circulation is likely more important to maintaining these biological hotspots than local upwelling through its physical concentrating effects. This project seeks to better resolve the factors that create and maintain focused areas of biological activity at canyons along the Western Antarctic Peninsula and create local foraging areas for marine mammals and birds. The project focus is in the analysis of the ocean transport and concentration mechanisms that sustain these biological hotspots, connecting oceanography to phytoplankton and krill, up through the food web to one of the resident predators, penguins. In addition, the research will engage with teachers from school districts serving underrepresented and underserved students by integrating the instructors and their students completely with the science team. Students will conduct their own research with the same data over the same time as researchers on the project. Revealing the fundamental mechanisms that sustain these known hotspots will significantly advance our understanding of the observed connection between submarine canyons and persistent penguin population hotspots over ecological time, and provide a new model for how Antarctic hotspots function.<br/> <br/> <br/>To understand the physical mechanisms that support persistent hotspots along the Western Antarctic Peninsula (WAP), this project will integrate a modeling and field program that will target the processes responsible for transporting and concentrating phytoplankton and krill biomass to known penguin foraging locations. Within the Palmer Deep canyon, a representative hotspot, the team will deploy a High Frequency Radar (HFR) coastal surface current mapping network, uniquely equipped to identify the eddies and frontal regions that concentrate phytoplankton and krill. The field program, centered on surface features identified by the HFR, will include (i) a coordinated fleet of gliders to survey hydrography, chlorophyll fluorescence, optical backscatter, and active acoustics at the scale of the targeted convergent features; (ii) precise penguin tracking with GPS-linked satellite telemetry and time-depth recorders (TDRs); (iii) and weekly small boat surveys that adaptively target and track convergent features to measure phytoplankton, krill, and hydrography. A high resolution physical model will generalize our field measurements to other known hotspots along the WAP through simulation and determine which physical mechanisms lead to the maintenance of these hotspots. The project will also engage educators, students, and members of the general public in Antarctic research and data analysis with an education program that will advance teaching and learning as well as broadening participation of under-represented groups. This engagement includes professional development workshops, live connections to the public and classrooms, student research symposia, and program evaluation. Together the integrated research and engagement will advance our understanding of the role regional transport pathways and local depth dependent concentrating physical mechanisms play in sustaining these biological hotspots.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Algae in the surface ocean convert carbon dioxide into organic carbon through photosynthesis. The biological carbon pump transports this organic carbon from the atmosphere to the deep ocean where it can be stored for tens to hundreds of years. Annually, the amount transported is similar to that humans are currently emitting by burning fossil fuels. However, at present we cannot predict how this important process will change with a warming ocean. These investigators plan to develop a 15+ year time-series of vertical carbon transfer for the Western Antarctic Peninsula; a highly productive Antarctic ecosystem. This region is also rapid transition to warmer temperatures leading to reduced sea ice coverage. This work will help researchers better understand how the carbon cycle in the Western Antarctic Peninsula will respond to climate change. The researchers will develop the first large-scale time-series of carbon flux anywhere in the ocean. This research will also support the education and training of a graduate student and support the integration of concepts in Antarctic research into two undergraduate courses designed for non-science majors and advanced earth science students. The researchers will also develop educational modules for introducing elementary and middle-school age students to important concepts such as gross and net primary productivity, feedbacks in the marine and atmospheric systems, and the differences between correlation and causation. Results from this proposal will also be incorporated into a children?s book, ?Plankton do the Strangest Things?, that is targeted at 5-7 year olds and is designed to introduce them to the incredible diversity and fascinating adaptations of microscopic marine organisms.<br/><br/> This research seeks to leverage 6 years (2015-2020) of 234Th samples collected on Palmer LTER program, 5 years of prior measurements (2009-2010, 2012-2014), and upcoming cruises (2021-2023) to develop a time-series of summertime particle flux in the WAP that stretches for 15 years. The 238U-234Th disequilibrium approach utilizes changes in the activity of the particle-active radio-isotope 234Th relative to its parent nuclide 238U to quantify the flux of sinking carbon out of the surface ocean (over a time-scale of ~one month). This proposal will fund 234Th analyses from nine years? worth of cruises (2015-2023) and extensive analyses designed to investigate the processes driving inter-annual variability in the BCP. These include: 1) physical modeling to quantify the importance of advection and diffusion in the 234Th budget, 2) time-series analyses of particle flux, and 3) statistical modeling of the relationships between particle flux and multiple presumed drivers (biological, chemical, physical, and climate indices) measured by collaborators in the Palmer LTER program. This multi-faceted approach is critical for linking the measurements to models and for predicting responses to climate change. It will also test the hypothesis that export flux is decreasing in the northern WAP, increasing in the southern WAP, and increasing when integrated over the entire region as a result of earlier sea ice retreat and a larger ice-free zone. The project will also investigate relationships between carbon export and multiple potentially controlling factors including: primary productivity, algal biomass and taxonomic composition, biological oxygen saturation, zooplankton biomass and taxonomic composition, bacterial production, temperature, wintertime sea ice extent, date of sea ice retreat, and climate modes.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Responses of the carbon balance of terrestrial ecosystems to warming will feed back to the pace of climate change, but the size and direction of this feedback are poorly constrained. Least known are the effects of warming on carbon losses from soil, and clarifying the major microbial controls is an important research frontier. This study uses a series of experiments and observations to investigate microbial, including autotrophic taxa, and plant controls of net ecosystem productivity in response to warming in intact ecosystems. Field warming is achieved using open-top chambers paired with control plots, arrayed along a productivity gradient. Along this gradient incoming and outgoing carbon fluxes will be measured at the ecosystem-level. The goal is to tie warming-induced shifts in net ecosystem carbon balance to warming effects on soil microbes and plants. The field study will be supplemented with lab temperature incubations. Because soil microbes dominate biogeochemical cycles in Antarctica, a major focus of this study is to determine warming responses of bacteria, fungi and archaea. This is achieved using a cutting-edge stable isotope technique, quantitative stable isotope probing (qSIP) developed by the proposing research team, that can identify the taxa that are active and involved in processing new carbon. This technique can identify individual microbial taxa that are actively participating in biogeochemical cycling of nutrients (through combined use of 18O-water and 13C-bicarbonate) and thus can be distinguished from those that are simply present (cold-preserved). The study further assesses photosynthetic uptake of carbon by the vegetation and their sensitivity to warming. Results will advance research in climate change, plant and soil microbial ecology, and ecosystem modeling.
The frequency and severity of hypoxic events are increasing in marine and freshwater environments worldwide with climate warming, threatening the health of aquatic ecosystems and the viability of fish populations. The Southern Ocean surrounding Antarctica has historically been a stable, icy-cold, and oxygen-rich environment, but is now warming at an unprecedented rate and faster than all other regions in the Southern hemisphere. Evolution at sub-zero temperatures has equipped Antarctic fishes with traits allowing them to thrive in frigid waters, but has diminished their resilience to warming. Presently little is known about the ability of Antarctic fishes to withstand hypoxic conditions that often accompany warming. This research will investigate the hypoxia tolerance of four species of Antarctic fishes, including two species of icefishes that lack the oxygen-carrying protein, hemoglobin, which may compromise their ability to oxygenate tissues under hypoxic conditions. The hypoxia tolerance of Antarctic fish species will be compared to that of a related fish species inhabiting coastal regions of South America. Physiological and biochemical responses to hypoxia will be evaluated and compared amongst the five species to bolster our predictions of the capacity of Antarctic fishes to cope with a changing environment. This research will provide training opportunities for undergraduate and graduate students, and a postdoctoral research fellow. A year-long seminar series hosted by the Aquarium of the Pacific will feature female scientists who work in Antarctica to inspire youth in the greater Los Angeles area to pursue careers in science.
Overview: This project has two goals. The first is to investigate the responses of Antarctic krill Euphasia superba to flow and chemical stimuli indicating food and predation risk, the interaction of these cues, and how krill responses to these cues depend on the photic environment. This project will will determine threshold responses, the ability of krill to orient to horizontal and vertical flows, whether chemical cues polarize responses to flow and whether this differs with attractive vs. aversive cues, and how these responses are affected by light intensity. This will determine how and under what specific conditions the flow, chemical and light environment can either attract or repel krill, and whether krill can use flows to transport themselves towards beneficial environments and away from risky ones. The second goal is to examine whether the behavioral responses of individual krill can be scaled up to predict the properties of aggregations such as density, coherence, swimming speed and direction. This project will use a modeling approach to determine properties of krill aggregations in defined oceanographic conditions characteristic of the southern ocean to examine links between individual behavior and aggregation properties in physically realistic scenarios.
Intellectual Merit:
Krill are an ecologically important component of all high latitude food webs and constitute a growing fishery yet we know very little about their behavior in response to environmentally relevant chemical, flow and photic conditions. Understanding krill demography can be enabled by examining individual responses to light, attractive (food related) and aversive (predator related) chemical cues, flow, light and their interactions. This analysis can be used to define/predict preferred environments, define the capacity of krill to detect and move to them (and away from unfavorable ones), better parameterize models of DVM, and krill energetics. Linking individual behavior to aggregations will improve our ability to use passive acoustic sampling of krill to understand their biology by providing insight into what krill are doing in aggregations that display particular features, and help define useful properties to characterize aggregations. The role of biology vs. physical forcing in determining zooplankton distributions, and the relationship between individual behavior and emergent group properties are fundamental questions.
Broader Impacts:
Antarctic krill (Eupahusia superba) are dominant members of the Southern Ocean. They are a critical resource for higher predators, are considered an ecosystem engineer, are the most highly linked species in Antarctic food webs, exert top down control on phytoplankton abundance and represent the largest Antarctic fishery. This project will therefore impact our understanding of the ecology of high latitude systems, their capacity to respond to environmental perturbations (like climate change), and krill fisheries management. Project PIs will engage conservation and management experts to vet and use the developed software tools, as well as to share results. The project will support one post-doctoral associate to be trained in a highly interdisciplinary environment, and provide graduate and undergraduate research opportunities in ocean sciences, biology and engineering. Products will include open source code for behavioral modeling, K12 curricular materials based on these models as well as digital archives of krill behavior, and a variety of public engagement activities.
The coastal Antarctic is undergoing great environmental change. Physical changes in the environment, such as altered sea ice duration and extent, have a direct impact on the phytoplankton and bacteria species which form the base of the marine foodweb. Photosynthetic phytoplankton are the ocean's primary producers, transforming (fixing) CO2 into organic carbon molecules and providing a source of food for zooplankton and larger predators. When phytoplankton are consumed by zooplankton, or killed by viral attack, they release large amounts of organic carbon and nutrients into the environment. Heterotrophic bacteria must eat other things, and function as "master recyclers", consuming these materials and converting them to bacterial biomass which can feed larger organisms such as protists. Some protists are heterotrophs, but others are mixotrophs, able to grow by photosynthesis or heterotrophy. Previous work suggests that by killing and eating bacteria, protists and viruses may regulate bacterial populations, but how these processes are regulated in Antarctic waters is poorly understood. This project will use experiments to determine the rate at which Antarctic protists consume bacteria, and field studies to identify the major bacterial taxa involved in carbon uptake and recycling. In addition, this project will use new sequencing technology to obtain completed genomes for many Antarctic marine bacteria. To place this work in an ecosystem context this project will use microbial diversity data to inform rates associated with key microbial processes within the PALMER ecosystem model.
This project addresses critical unknowns regarding the ecological role of heterotrophic marine bacteria in the coastal Antarctic and the top-down controls on bacterial populations. Previous work suggests that at certain times of the year grazing by heterotrophic and mixotrophic protists may meet or exceed bacterial production rates. Similarly, in more temperate waters bacteriophages (viruses) are thought to contribute significantly to bacterial mortality during the spring and summer. These different top-down controls have implications for carbon flow through the marine foodweb, because protists are grazed more efficiently by higher trophic levels than are bacteria. This project uses a combination of grazing experiments and field observations to assess the temporal dynamics of mortality due to temperate bacteriophage and protists. Although many heterotrophic bacterial strains observed in the coastal Antarctic are taxonomically similar to strains from other regions, recent work suggest that they are phylogenetically and genetically distinct. To better understand the ecological function and evolutionary trajectories of key Antarctic marine bacteria, their genomes will be isolated and sequenced. Then, these genomes will be used to improve the predictions of the paprica metabolic inference pipeline, and our understanding of the relationship between heterotrophic bacteria and their major predators in the Antarctic marine environment. Finally, the research team will modify the Regional Test-Bed Model model to enable microbial diversity data to be used to optimize the starting conditions of key parameters, and to constrain the model's data assimilation methods.
The cold, dry terrestrial environments of Antarctica are inhospitable for insects, and only three midge species make Antarctica home. Of these, Belgica antarctica is the only species found exclusively in Antarctica, and it has been a resident of Antarctica since the continent split from South America ~30 million years ago. Thus, this species is an excellent system to model the biological history of Antarctica throughout its repeated glaciation events and shifts in climate. This insect is also a classic example of extreme adaptation, and much previous work has focused on identifying the genetic and physiological mechanisms that allow this species to survive where no other insect is capable. However, it has been difficult to pinpoint the unique evolutionary adaptations that are required to survive in Antarctica due to a lack of information from closely related Antarctic and sub-Antarctic species. This project will compare adaptations, genome sequences, and population characteristics of four midge species that span an environmental gradient from sub-Antarctic to Antarctic habitats. In addition to B. antarctica, these species include two species that are strictly sub-Antarctic and a third that is native to the sub-Antarctic but has invaded parts of Antarctica. The researchers, comprised of scientists from the US, UK, Chile, and France, will sample insects from across their geographic range and measure their ability to tolerate environmental stressors (i.e., cold and desiccation), quantify molecular responses to stress, and compare the makeup of the genome and patterns of genetic diversity. This research will contribute to a greater understanding of adaptation to extremes, to an understanding of biodiversity on the planet and to understanding and predicting changes accompanying environmental change. The project will train two graduate students and two postdoctoral researchers, and a K-12 educator will be a member of the field team and will assist with fieldwork and facilitate outreach with schools in the US. The project includes partnership activities with several STEM education organizations to deliver educational content to K-12 and secondary students. This is a project that is jointly funded by the National Science Foundation's Directorate of Geosciences (NSF/GEO) and the National Environment Research Council (NERC) of the United Kingdom (UK) via the NSF/GEO-NERC Lead Agency Agreement. This Agreement allows a single joint US/UK proposal to be submitted and peer-reviewed by the Agency whose investigator has the largest proportion of the budget. Each Agency funds the proportion of the budget and the investigators associated with its own country. UK participation in this project includes deploying scientists as part of the field team, supporting field and sampling logistics at remote Antarctic sites, and genome sequencing, annotation, and analyses.
This project focuses on the key physiological adaptations and molecular processes that allow a select few insect species to survive in Antarctica. The focal species are all wingless with limited dispersal capacity, suggesting there is also significant potential to locally adapt to variable environmental conditions across the range of these species. The central hypothesis is that similar molecular mechanisms drive both population-level adaptation to local environmental conditions and macroevolutionary changes across species living in different environments. The specific aims of the project are to 1) Characterize conserved and species-specific adaptations to extreme environments through comparative physiology and transcriptomics, 2) Compare the genome sequences of these species to identify genetic signatures of extreme adaption, and 3) Investigate patterns of diversification and local adaptation across each species? range using population genomics. The project establishes an international collaboration of researchers from the US, UK, Chile, and France with shared interests and complementary expertise in the biology, genomics, and conservation of Antarctic arthropods. The Broader Impacts of the project include training students and partnering with the Living Arts and Science Center to design and implement educational content for K-12 students.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Undersea forests of seaweeds dominate the shallow waters of the central and northern coast of the western Antarctic Peninsula and provide critical structural habitat and carbon resources (food) for a host of marine organisms. Most of the seaweeds are chemically defended against herbivores yet support very high densities of herbivorous shrimp-like grazers (crustaceans, primarily amphipods) which greatly benefit their hosts by consuming filamentous and microscopic algae that otherwise overgrow the seaweeds. The amphipods benefit from the association with the chemically defended seaweeds by gaining an associational refuge from fish predation. The project builds on recent work that has demonstrated that several species of amphipods that are key members of crustacean assemblages associated with the seaweeds suffer significant mortality when chronically exposed to increased seawater acidity (reduced pH) and elevated temperatures representative of near-future oceans. By simulating these environmental conditions in the laboratory at Palmer Station, Antarctica, the investigators will test the overall hypothesis that ocean acidification will play a significant role in structuring crustacean assemblages associated with seaweeds. Broader impacts include expanding fundamental knowledge of the impacts of global climate change by focusing on a geographic region of the earth uniquely susceptible to climate change. This project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This includes training graduate students and early career scientists with an emphasis on diversity, presentations to K-12 groups and the general public, and a variety of social media-based outreach programs.
The project will compare population and assemblage-wide impacts of natural (ambient) and carbon dioxide enriched seawater on assemblages of seaweed-associated crustacean grazers. Based on prior results, it is likely that some species will be relative "winners" and some will be relative "losers" under the changed conditions. The project will then aim to carry out measurements of growth, calcification, mineralogy, the incidence of molts, and biochemical and energetic body composition for two key amphipod "winners" and two key amphipod "losers". These measurements will allow an assessment of what factors drive species-specific enhanced or diminished performance under conditions of ocean acidification and sea surface warming. The project will expand on what little is known about prospective impacts of changing conditions on benthic marine Crustacea, in Antarctica, a taxonomic group that faces the additional physiological stressor of molting. The project is likely to provide additional insight on the indirect regulation of the seaweeds that comprise Antarctic undersea forests that provide key architectural components of the coastal marine ecosystem.
Antarctic krill are essential in the Southern Ocean as they support vast numbers of marine mammals, seabirds and fishes, some of which feed almost exclusively on krill. Antarctic krill also constitute a target species for industrial fisheries in the Southern Ocean. The success of Antarctic krill populations is largely determined by the ability of their young to survive the long, dark winter, where food is extremely scarce. To survive the long-dark winter, young Antarctic krill must have a high-quality diet in autumn. However, warming in certain parts of Antarctica is changing the dynamics and quality of the polar food web, resulting in a shift in the type of food available to young krill in autumn. It is not yet clear how these dynamic changes are affecting the ability of krill to survive the winter. This project aims to fill an important gap in current knowledge on an understudied stage of the Antarctic krill life cycle, the 1-year old juveniles. The results derived from this work will contribute to the development of improved bioenergetic, population and ecosystem models, and will advance current scientific understanding of this critical Antarctic species. This CAREER projects core education and outreach objectives seek to enhance education and increase diversity within STEM fields. An undergraduate course will be developed that will integrate undergraduate research and writing in way that promotes authentic scientific inquiry and analysis of original research data by the students, and that enhances their communication skills. A graduate course will be developed that will promote students skills in communicating their own research to a non-scientific audience. Graduate students will be supported through the proposed study and will gain valuable research experience. Traditionally underserved undergraduate students will be recruited to conduct independent research under the umbrella of the larger project. Throughout each field season, the research team will maintain a weekly blog that will include short videos, photographs and text highlighting the research, as well as their experiences living and working in Antarctica. The aim of the blog will be to engage the public and increase awareness and understanding of Antarctic ecosystems and the impact of warming, and of the scientific process of research and discovery.<br/><br/>In this 5-year CAREER project, the investigator will use a combination of empirical and theoretical techniques to assess the effects of diet on 1-year old krill in autumn-winter. The research is centered on four hypotheses: (H1) autumn diet affects 1-year old krill physiology and condition at the onset of winter; (H2) autumn diet has an effect on winter physiology and condition of 1-year old krill under variable winter food conditions; (H3) the rate of change in physiology and condition of 1-year old krill from autumn to winter is dependent on autumn diet; and (H4) the winter energy budget of 1-year old krill will vary between years and will be dependent on autumn diet. Long-term feeding experiments and in situ sampling will be used to measure changes in the physiology and condition of krill in relation to their diet and feeding environment. Empirically-derived data will be used to develop theoretical models of growth rates and energy budgets to determine how diet will influence the overwinter survival of 1-year old krill. The research will be integrated with an education and outreach plan to (1) develop engaging undergraduate and graduate courses, (2) train and develop young scientists for careers in polar research, and (3) engage the public and increase their awareness and understanding.<br/><br/>This award reflects NSFs statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Southern Ocean in the vicinity of Antarctica is a region characterized by seasonally-driven marine phytoplankton blooms that are often dominated by microalgal species which produce large amounts of dimethylsulfoniopropionate (DMSP). DMSP can be converted to the compound dimethylsulfide (DMS) which is a molecule that can escape into the atmosphere where it is known to have strong condensation properties that are involved in regional cloud formation. Production of DMSP can influence the diversity and composition of microbial assemblages in seawater and the types and activities of microbes in the seawater will likely affect the magnitude of DMSP\DMS production. The project examined the role of DMSP in structuring the microbial communities in Antarctic waters and how this structuring may influence DMSP cycling. The project interacted with elementary students in Maine and brought undergraduate students to Bigelow Laboratory. The project also engaged with a science writer and illustrator who joined the team in Palmer Station in 2018. Many posts are available at xxx
The project is examining (1) the extent to which the cycling of DMSP in southern ocean waters influenced the composition and diversity of bacterial and protistan assemblages; (2) conversely, whether the composition and diversity of southern ocean protistan and bacterial assemblages influenced the magnitude and rates of DMSP cycling; we are awaiting results on (3) the expression of DMSP degradation genes by marine bacteria seasonally and in response to field experimental additions of DMSP; and, this year (2020-21), we will synthesize these results by quantifying (4) the microbial networks resulting from the presence of DMSP-producers and DMSP-consumers along with their predators, all involved in the cycling of DMSP in southern ocean waters. The work was accomplished by conducting continuous growth experiments with DMSP-amended natural samples of different microbial communities present in summer (2016-17) and fall (2018) at Palmer Station, WAP. Data from the molecular (such as 16S/ 18S tag sequences, DMSP-cycle gene transcripts) and biogeochemical (such as biogenic sulfur cycling, bacterial production, microbial biomass) investigations will be integrated via network analysis in the coming year (2020-21).
The depletion of stratospheric ozone over Antarctica leads to abnormally high levels of ultraviolet radiation (UVR) from the sun reaching the surface of the ocean. This phenomenon is predicted to continue for the next half century, despite bans on ozone-destroying pollutants. Phytoplankton in the near surface ocean are subjected to variable amounts of UVR and contain a lot of lipids (fats). Because phytoplankton are at the base of the food chain their lipids makes their way into the Antarctic marine ecosystem's food web. The molecular structures of phytoplankton lipids are easily altered by UVR. When this happens, their lipids can be transformed from healthy molecules into potentially harmful molecules(oxylipins) known to be disruptive to reproductive and developmental processes. This project will use state-of-the-art molecular methods to answer questions about extent to which UVR damages lipid molecules in phytoplankton, and how these resultant molecules might effect the food chain in the ocean near Antarctica. <br/><br/><br/>Lipid peroxidation is often invoked as consequence of increased exposure of phytoplankton to UVR-produced reactive oxygen species (ROS), but the literature is practically silent on peroxidized lipids and their byproducts (i.e. oxylipins) in the ocean. In waters of the West Antarctic Peninsula (WAP), spring-time blooms of diatoms contribute significantly to overall marine primary production. Oxylipins from diatoms can be highly bioactive; their impact on zooplankton grazers, bacteria, and other phytoplankton has been the subject of intense study. However, almost all of this work has focused on the production of oxylipins via enzymatic pathways, not by pathways involving UVR and/or ROS. Furthermore, rigorous experimental work on the effects of oxylipins has been confined almost exclusively to pure cultures and artificial communities. Thus, the true potential of these molecules to disrupt carbon cycling is very poorly-constrained, and is entirely unknown in the waters of the WAP. Armed with new highly-sensitive, state-of-the-art analytical techniques based on high-mass-resolution mass spectrometry, the principal investigator and his research group have begun to uncover an exquisite diversity of oxylipins in natural WAP planktonic communities. These techniques will be applied to understand the connections between UVR, ROS, oxylipins, and carbon cycling. The project will answer the question of how UVR, via ROS, affects oxylipin production by diatoms in WAP surface waters in controlled experiments conducted at a field station. With the answer to this question in hand, the project will also seek to answer how this phenomenon impacts the flow of carbon, particularly the export of organic carbon from the system, during a research cruise. The level of UVR-induced stresses experienced by oxylipin-rich planktonic communities in the WAP is unique, making Antarctica the only location for answering these fundamental questions. Major activities will include laboratory experiments with artificial membranes and diatom cultures, as well field experiments with phytoplankton, zooplankton, and bacteria in WAP waters.
microRNAs (miRNAs) are key post-transcriptional regulators of gene expression that modulate development and physiology in temperate animals. Although miRNAs act by binding to messenger RNAs (mRNAs), a process that is strongly sensitive to temperature, miRNAs have yet not been studied in Antarctic animals, including Notothenioid fish, which dominate the Southern Ocean. This project will compare miRNA regulation in 1) Antarctic vs. temperate fish to learn the roles of miRNA regulation in adaptation to constant cold; and in 2) bottom-dwelling, dense-boned, red-blooded Nototheniods vs. high buoyancy, osteopenic, white-blooded icefish to understand miRNA regulation in specialized organs after the evolution of the loss of hemoglobin genes and red blood cells, the origin of enlarged heart and vasculature, and the evolution of increased buoyancy, which arose by decreased bone mineralization and increased lipid deposition. Aim 1 is to test the hypothesis that Antarctic fish evolved miRNA-related genome specializations in response to constant cold. The project will compare four Antarctic Notothenioid species to two temperate Notothenioids and two temperate laboratory species to test the hypotheses that (a) Antarctic fish evolved miRNA genome repertoires by loss of ancestral genes and/or gain of new genes, (b) express miRNAs that are involved in cold tolerance, and (c) respond to temperature change by changing miRNA gene expression. Aim 2 is to test the hypothesis that the evolution of icefish from red-blooded bottom-dwelling ancestors was accompanied by an altered miRNA genomic repertoire, sequence, and/or expression. The project will test the hypotheses that (a) miRNAs in icefish evolved in sequence and/or in expression in icefish specializations, including head kidney (origin of red blood cells); heart (changes in vascular system), cranium and pectoral girdle (reduced bone mineral density); and skeletal muscle (lipid deposition), and (b) miRNAs that evolved in icefish specializations had ancestral functions related to their derived roles in icefish, as determined by functional tests of zebrafish orthologs of icefish miRNAs in developing zebrafish. The program will isolate, sequence, and determine the expression of miRNAs and mRNAs using high-throughput transcriptomics and novel software. Results will show how the microRNA system evolves in vertebrate animals pushed to physiological extremes and provide insights into the prospects of key species in the most rapidly warming part of the globe.
The research seeks to further quantify the input of atmospheric Fe into the sparsely sampled Southern Ocean (SO), specifically in the vicinity of the West Antarctic Peninsula (WAP) and adjacent continental shelf waters in the Drake Passage. This is typically a high nutrient low chlorophyll region where surface trace metal and primary productivity data are suggestive of Fe limitation. The WAP is characterized by high productivity in the austral summer, and at this time may be in the path of northern dust (aeolian Fe) input or subject to melt influx of elevated Fe accumulated from glacial and present-day sea ice sources.<br/><br/>Primary scientific questions are: (1) to what extent does atmospheric Fe contribute to nutrient cycles and ecosystem dynamics in the SO? (2) How is warming climate occurring in the WAP affecting the aerosol composition of the maritime atmosphere. The primary productivity of the Southern Ocean is key to understanding oceanic uptake of anthropogenic greenhouse gases such as carbon dioxide.
The goal of this project was to conduct a preliminary assessment of gut microbiomes in Antarctic krill (Euphasia superba) collected in coastal waters west of the Antarctic Peninsula and identify organisms potentially capable of catalyzing the production of methylmercury. DNA was extracted from composite krill digestive tracts and eukaryotic DNA removed. Prokaryotic microbial DNA extracted from krill digestive tracts was sequenced and gene libraries were constructed. Genera of anaerobic microorganisms which are known to support mercury methylation were identified.
The Western Antarctic Peninsula is experiencing climate change at one of the fastest rates of anywhere around the globe. Accelerated climate change is likely to affect the many benthic marine invertebrates that live within narrow temperature windows along the Antarctic Continental Shelf in presently unidentified ways. At present however, there are few data on the physiological consequences of climate change on the sensitive larval stages of cold-water corals, and none on species living in thermal extremes such as polar waters. This project will collect the larvae of the non-seasonal, brooding scleractinian Flabellum impensum to be used in a month-long climate change experiment at Palmer Station. Multidisciplinary techniques will be used to examine larval development and cellular stress using a combination of electron microscopy, flow cytometry, and Inductively Coupled Plasma Mass Spectometry. Data from this project will form the first systematic study of the larval stages of polar cold-water corals, and how these stages are affected by temperature stress at the cellular and developmental level. <br/><br/>Cold-water corals have been shown to be important ecosystem engineers, providing habitat for thousands of associated species, including many that are of commercial importance. Understanding how the larvae of these corals react to warming trends seen today in our oceans will allow researchers to predict future changes in important benthic communities around the globe. Associated education and outreach include: 1) Increasing student participation in polar research by involving postdoctoral and undergraduate students in the field and research program; ii) promotion of K-12 teaching and learning programs by providing information via a research website, Twitter, and in-school talks in the local area; iii) making the data collected available to the wider research community via peer reviewed published literature and iv) reaching a larger public audience through such venues as interviews in the popular media, You Tube and other popular media outlets, and local talks to the general public.
The coastal environments of the western Antarctic Peninsula harbor rich assemblages of marine animals and algae. The importance of the interactions between these groups of organisms in the ecology of coastal Antarctica are well known and often mediated by chemical defenses in the tissues of the algae. These chemicals are meant to deter feeding by snails and other marine animals making the Antarctic Peninsula an excellent place to ask important questions about the functional and evolutionary significance of chemical compound diversity for marine communities. This project will focus on three main objectives: the first objective is to expand the current understanding of the relationship between algae and their associated marine animals. The second objective focuses on the diversity of chemical compounds used to defend algae from being consumed. The third objective seeks to understand how marine animals can benefit from these compounds by consuming the algae that contain them, and then using those compounds to chemically deter predators. The field components of this research will be performed during three expeditions to the US Palmer Station, Antarctica. During these expeditions, a variety of laboratory feeding bioassays, manipulative field and laboratory experiments, and on-site chemical analyses will be performed. The investigators will also foster opportunities to integrate their NSF research with a variety of educational activities. As in the past they will support undergraduate research, both through NSF programs as well as home, university-based, programs, and they will also continue to support and foster graduate education. Through their highly successful University of Alabama in Antarctica interactive web program (two time recipient of awards of excellence from the US Council for Advancement and Support of Education), they will continue to involve large numbers of teachers, K-12 students, and other members of the community at large in their scientific endeavors in Antarctica. In addition, the investigators have hosted K-12 teachers on their Antarctic field teams through the former NSF Teachers Experiencing Antarctica and the Arctic program and will pursue participation in PolarTREC, the successor to this valuable program. Moreover, they will actively participate in outreach efforts by presenting numerous talks on their research to local school and community groups. <br/><br/>The near shore environments of the western Antarctic Peninsula harbor rich assemblages of macroalgae and macroinvertebrates. The importance of predator-prey interactions and chemical defenses in mediating community-wide trophic interactions makes the western Antarctic Peninsula an excellent place to ask important questions about the functional and evolutionary significance of defensive compound diversity for marine communities. This project will focus on three main objectives which are a direct outcome of the past studies of the chemical ecology of shallow-water marine macroalgae and invertebrates on the Antarctic Peninsula by this group of investigators. The first objective is to expand the current understanding of a community-wide mutualism between macroalgae and their associated amphipods to include gastropods, which are also abundant on many macroalgae. The second objective focuses on the diversity of chemical compounds used to defend macroalgae from being consumed, particularly in the common red alga Plocamium cartilagineum. The third objective seeks to understand the relationship between P. cartilagineum and the amphipod Paradexamine fissicauda, including the ecological benefits and costs to P. fissicauda resulting from the ability to consume P. cartilagineum and other chemically defended red algae. The investigators will focus on the costs and benefits related to the ability of P. fissicauda to sequester defensive compounds from the alga P. cartilagineum and use those chemicals to defend itself from predation. The field components of this research will be performed during three expeditions to Palmer Station, Antarctica. During these expeditions, a variety of laboratory feeding bioassays, manipulative field and laboratory experiments, and on-site chemical analyses will be performed. Phylogenetic analyses, detailed secondary metabolite chemical analyses and purifications, and other data analyses will also be performed at the investigators' home institutions between and after their field seasons.
This EAGER project will compare gene expression patterns in the planktonic communities under ice covers that form in coastal embayment's in the Antarctic Peninsula. Previous efforts taking advantage of unique ice conditions in November and December of 2015 allowed researchers to conduct an experiment to examine the role of sea ice cover on microbial carbon and energy transfer during the winter-spring transition. The EAGER effort will enable the researchers to conduct the "omics" analyses of the phytoplankton to determine predominant means by which energy is acquired and used in these settings. This EAGER effort will apply new expertise to fill an existing gap in ecological observations along the West Antarctic Peninsula. The principle product of the proposed work will be a novel dataset to be analyzed and by an early career researcher from an underserved community (veteran). <br/><br/>The critical baseline data contained in this dataset enable a comparison of eukaryotic and prokaryotic gene expression patterns to establish the relative importance of chemoautotrophy, heterotrophy, mixotrophy, and phototrophy during the experiments. this information and data will be made immediately available to the broader scientific community, and will enable the development of further hypotheses on ecosystem change as sea ice cover changes in the region. Very little gene expression data is currently available for the Antarctic marine environment, and no gene expression data is available during the ecologically critical winter to spring transition. Moreover, ice cover in bays is common along the West Antarctic Peninsula yet the opportunity to study cryptophyte phytoplankton physiology beneath such ice conditions in coastal embayments is rare.
Climate change projections for this century suggest that the Southern Ocean will be the first region to be affected by seawater chemistry changes associated with enhanced carbon dioxide (CO2). Additionally, regions of the Southern Ocean are warming faster than any other locations on the planet. Ocean acidification and warming may act synergistically to impair the performance of different organisms by simultaneously increasing metabolic needs and reducing oxygen transport. However, no studies have measured krill acid-base regulation, metabolism, growth, or reproduction in the context of ocean acidification or synergistic 'greenhouse' conditions of elevated CO2 and temperature. In the present project, the investigators will conduct both short and prolonged exposure experiments at Palmer Station, Antarctica to determine the responses of Euphausia superba to elevated CO2 and temperature. The investigators will test hypotheses related to acid-base compensation and acclimation of various life stages of krill to elevated CO2 and temperature. Furthermore, they will determine these impacts on feeding, respiration, metabolism, growth, and reproduction.<br/><br/>The Antarctic krill, Euphausia superba, is a key component of Antarctic food webs as they are a primary food source for many of the top predators in the Southern Ocean including baleen whales, seals, penguins, and other sea birds. This project will determine the responses of Antarctic krill exposed to elevated CO2 and temperature and whether or not krill have the capacity to fully compensate under future ocean conditions. The proposed field effort will be complemented by an extensive broader impact effort focused on bringing marine science to both rural and urban high school students in the Midwest (Kansas). The core educational objectives of this proposal are to 1) instruct students about potential careers in marine science, 2) engage students and promote their interest in the scientific process, critical thinking, and applications of science, mathematics, and technology, and 3) and increase student and teacher awareness and understanding of the oceans and global climate change, with special focus on the Western Antarctic Peninsula region. Finally, this project will engage undergraduate and graduate students in the production, analysis, presentation and publication of datasets.
The Palmer Antarctica LTER (Long Term Ecological Research) site has been in operation since 1990. The goal of all the LTER sites is to conduct policy-relevant research on ecological questions that require tens of years of data, and cover large geographical areas. For the Palmer Antarctica LTER, the questions are centered around how the marine ecosystem west of the Antarctica peninsula is responding to a climate that is changing as rapidly as any place on the Earth. For example, satellite observations over the past 35 years indicate the average duration of sea ice cover is now ~90 days (3 months!) shorter than it was. The extended period of open water has implications for many aspects of ecosystem research, with the concurrent decrease of Adèlie penguins within this region regularly cited as an exemplar of climate change impacts in Antarctica. Cutting edge technologies such as autonomous underwater (and possibly airborne) vehicles, seafloor moorings, and numerical modeling, coupled with annual oceanographic cruises, and weekly environmental sampling, enables the Palmer Antarctica LTER to expand and bridge the time and space scales needed to assess climatic impacts. This award includes for the first time study of the roles of whales as major predators in the seasonal sea ice zone ecosystem. The team will also focus on submarine canyons, special regions of enhanced biological activity, along the Western Antarctic Peninsula (WAP).<br/><br/>The current award's overarching research question is: How do seasonality, interannual variability, and long term trends in sea ice extent and duration influence the structure and dynamics of marine ecosystems and biogeochemical cycling? Specific foci within the broad question include: 1. Long-term change and ecosystem transitions. What is the sensitivity or resilience of the ecosystem to external perturbations as a function of the ecosystem state? 2. Lateral connectivity and vertical stratification. What are the effects of lateral transports of freshwater, heat and nutrients on local ocean stratification and productivity and how do they drive changes in the ecosystem? 3. Top-down controls and shifting baselines. How is the ecosystem responding to the cessation of whaling and subsequent long-term recovery of whale stocks? 4. Foodweb structure and biogeochemical processes. How do temporal and spatial variations in foodweb structure influence carbon and nutrient cycling, export, and storage? The broader impacts of the award leverage local educational partnerships including the Sandwich, MA STEM Academy, the New England Aquarium, and the NSF funded Polar Learning and Responding (PoLAR) Climate Change Education Partnership at Columbia's Earth Institute to build new synergies between Arctic and Antarctic, marine and terrestrial scientists and students, governments and NGOs. The Palmer Antarctic LTER will also conduct appropriate cross LTER site comparisons, and serve as a leader in information management to enable knowledge-building within and beyond the Antarctic, oceanographic, and LTER communities.
This project will support two training courses that will introduce early-career scientists from a wide range of disciplinary backgrounds to key issues in polar science, and especially to provide the opportunity to gain hands-on experience in Antarctic field activities. Antarctica is an ideal location to study a wide variety of questions in biology. However, few students and early-career scientists have the opportunity to work on-site in Antarctica unless they are directly associated with a senior scientist who has a funded Antarctic project. The project will further the NSF goal of training new generations of scientists by providing hands-on training in Antarctica during one course at Palmer Station in 2016 and another at McMurdo Station in 2018. This represents a continuation of nine previous courses at McMurdo Station which have a proven record of introducing participants to Antarctic science under realistic field conditions, providing opportunities to understand and appreciate the complexities and logistical challenges of undertaking science in Antarctica, enhancing the professional careers of the participants, and increasing international collaborations for early-career scientists.<br/><br/>The proposed training courses will be open to Ph.D. students and post-doctoral scientists who have interests in the study of Antarctic marine organisms to help prepare them for success in developing their own independent research programs in polar regions. Long-standing and recent questions in evolution and ecology of Antarctic organisms will be examined with 1) field collections, 2) physiological experiments on whole organisms, 3) studies of isolated cells and tissues, 4) experiments on macromolecular processes (e.g., enzymes), and 5) molecular biological analyses.
Ocean acidification (OA) poses a serious threat, particularly to organisms that precipitate calcium carbonate from seawater. One organism with an aragonite shell that is a key to high latitude ecosystems is the pteropod. With OA, the pteropod shell will thin because the aragonite is highly soluble. As the shell thins, it changes the mass distribution and buoyancy of the animal, which will affect locomotion and through it, all locomotion dependent behavior such as foraging, mating, predator avoidance and migratory patterns. A lower shell weight will be counterbalanced by a smaller mucus web potentially decreasing ingestion rates and carbon flux rates. This interdisciplinary research relies on biological studies of swimming behavior of the pteropod mollusk Limacina helicina in their natural environments with fluid mechanics analyses of swimming hydrodynamics via 3D tomographic particle-image velocimetry and computational fluid dynamics (CFD). This work will: (a) determine how the L. helicina uses its ?wings? (parapodia) to propel itself; (b) examine whether its locomotory kinematics provide efficient propulsion; (c) identify the factors that influence swimming trajectory and ?wobble?; and (d) synthesize all data and insights into guidelines for the potential use of pteropod swimming behavior as a bioassay for OA.<br/><br/>The loss of these sentinels of anthropogenic increases in CO2 may result in an ecological shift since thecosome pteropods are responsible for ingesting nearly half the primary production in the Southern Ocean and also serve as a primary food resource to upper trophic levels like fish. Since locomotory data can be gathered immediately, the bioassay being developed in this proposal may serve as an early warning of the impending onset of OA effects on this important member of the plankton. Students and researchers will collaborate in a rich interdisciplinary research environment by working with a biological oceanographer, a fluid mechanics expert and a CFD expert ? coupled with the teamsmanship needed for work in the Antarctic. By setting up a one-of-a-kind 3D tomography system for visualizing flow around planktonic organisms in Norway and at Palmer Station, we increase international exchange of state-of-the-art techniques. The educational impact of the current research will be multiplied by including in the research team, undergraduate students, high-school students and underrepresented minorities in addition to graduate students.
The Western Antarctic Peninsula (WAP) has experienced unprecedented warming and shifts in sea ice cover over the past fifty years. How these changes impact marine microbial communities, and subsequently how these shifts in the biota may affect the carbon cycle in surface waters is unknown. This work will examine how these ecosystem-level changes affect microbial community structure and function. This research will use modern metagenomic and transcriptomic approaches to test the hypothesis that the introduction of organic matter from spring phytoplankton blooms drives turnover in microbial communities. This research will characterize patterns in bacterial and archaeal succession during the transition from the austral winter at two long-term monitoring sites: Palmer Station in the north and Rothera Station in the south. This project will also include microcosm incubations to directly assess the effects of additions of organic carbon and melted sea ice on microbial community structure and function. The results of this work will provide a broader understanding of the roles of both rare and abundant microorganisms in carbon cycling within the WAP region, and how these communities may shift in structure and function in response to climate change. Results will be widely disseminated through publications as well as through presentations at national and international meetings. The research will provide training opportunities for both graduate and undergraduate students and will enhance international collaborations with the British Antarctic Survey.
Many persistent organic pollutants (POPs), though banned in the U.S. since the 1970s, remain in the environment and continue to reach hitherto pristine regions such as the Arctic and Antarctic. The overall goals of this RAPID project are to better understand the remobilization of POPs from melting glaciers in the Antarctic, and their transfer into the food-web. Legacy POPs have characteristic chemical signatures that will be used ascertain the origin of POPs in the Antarctic atmosphere and marine food-web. Samples that were collected in 2010 will be analyzed for a wide range of legacy POPs, and their behavior will be contrasted with results for emerging contaminants. The intellectual merit of the proposed research combines (a) the use of chemical signatures to assess whether melting glaciers are releasing legacy POPs back into the Antarctic marine ecosystem, and (b) a better understanding of the food-web dynamics of legacy POPs versus emerging organic pollutants.<br/><br/>The broader impacts of the proposed research project will include the training of the next generation of scientists through support for a graduate student and a postdoctoral scholar. As well, this work will result in a better understanding of the relationship between pollutants, trophic food web ecology and global climate change in the pristine Antarctic ecosystem.
The proposed research will investigate the genomic basis of the physiological and ecological transition of Antarctic marine phytoplankton from a cold dark winter to a warmer, brighter spring. During a field season at Palmer Station, functional genomics (using next generation sequencing technology to identify expressed genes) and in situ fluorometry (FRRF) will be integrated with classical ecological methods to investigate photosynthetic adaptation during phytoplankton species succession from late winter into spring. Using large data sets, this project will test whether amino acid usages differ based on expression. The specific objectives are (1) To characterize phytoplankton succession from the winter to spring transition, and (2) To correlate community gene expression profiles to adaptational differences among taxa. Broader impacts include training of a post doctoral researcher and two undergraduate science majors, with efforts to attract students from underrepresented groups. The P.I.s also will prepare presentations for the public, regarding research experiences, research results, and the importance of climate change.
Ammonia oxidation is the first step in the conversion of regenerated nitrogen to dinitrogen gas, a 3-step pathway mediated by 3 distinct guilds of bacteria and archaea. Ammonia oxidation and the overall process of nitrification-denitrification have received relatively little attention in polar oceans where the effects of climate change on biogeochemical rates are likely to be pronounced. Previous work on Ammonia Oxidizing Archaea (AOA) in the Palmer LTER study area West of the Antarctic Peninsula (WAP), has suggested strong vertical segregation of crenarchaeote metabolism, with the "winter water" (WW, ~50-100 m depth range) dominated by non-AOA crenarchaeotes, while Crenarchaeota populations in the "circumpolar deep water" (CDW), which lies immediately below the winter water (150-3500 m), are dominated by AOA. Analysis of a limited number of samples from the Arctic Ocean did not reveal a comparable vertical segregation of AOA, and suggested that AOA and Crenarchaeota abundance is much lower there than in the Antarctic. These findings led to 3 hypotheses that will be tested in this project: 1) the apparent low abundance of Crenarchaeota and AOA in Arctic Ocean samples may be due to spatial or temporal variability in populations; 2) the WW population of Crenarchaeota in the WAP is dominated by a heterotroph; 3) the WW population of Crenarchaeota in the WAP "grows in" during spring and summer after this water mass forms. <br/><br/>The study will contribute substantially to understanding an important aspect of the nitrogen cycle in the Palmer LTER (Long Term Ecological Research) study area by providing insights into the ecology and physiology of AOA. The natural segregation of crenarchaeote phenotypes in waters of the WAP, coupled with metagenomic studies in progress in the same area by others (A. Murray, H. Ducklow), offers the possibility of major breakthroughs in understanding of the metabolic capabilities of these organisms. This knowledge is needed to model how water column nitrification will respond to changes in polar ecosystems accompanying global climate change. The Principal Investigator will participate fully in the education and outreach efforts of the Palmer LTER, including making highlights of our findings available for posting to their project web site and participating in outreach (for example, Schoolyard LTER). The research also will involve undergraduates (including the field work if possible) and will support high school interns in the P.I.'s laboratory over the summer.
This five-year project seeks to characterize decadal scale changes in penguin and seabird populations on the Antarctic Peninsula, and to identify the factors driving these long-term changes. Two interconnected research activities are proposed: 1. Continued, long-term monitoring and censusing of penguin and seabird populations at >117 sites throughout the Antarctic Peninsula via opportunistic ship-based data collection. 2. Synthesis and quantitative analyses of datasets detailing long-term changes in five penguin and seabird species from diverse sites throughout the Antarctic Peninsula. When complete, the penguin/seabird database will incorporate data from the Antarctic Site Inventory (ASI), the CCAMLR database, the US AMLR database, the LTER database from Palmer Station, data from British and Argentine researchers, historic census data compiled by the Scientific Committee on Antarctic Research (SCAR), and, when possible, additional privately held datasets. Additional data for temperature change, sea ice coverage, the seasonal timing and intensity of human visitation, and other factors have been gathered and will be analyzed together with population trajectories within a spatially explicit framework. The research will include hierarchical statistical analyses to characterize the long-term population dynamics of several key polar species across multiple spatial scales (sites, regions, and the Peninsula). Analyses also will focus on specific subsets of the overall database to contrast visitor impacts on paired colonies, sites, and regions that share similar environmental conditions but differ in the intensity of tourism. <br/><br/>The Broader Impacts include (1) research training and first-time Antarctic experiences for a postdoctoral researcher and several graduate students, all of whom will then be better positioned to bring their expertise in spatial and/or quantitative/theoretical ecology to bear on questions in polar research; (2) assembly and analysis of a large, multi-season database of penguin and seabird time series from the Antarctic Peninsula that will be publicly available, (3) assistance in distinguishing the impacts of tourism versus climate change on seabird populations. Under the Environmental Protocol to the Antarctic Treaty, Treaty Parties are charged with regular and effective monitoring to assess the impacts of human activities. This project will uniquely assist Parties in fulfilling this mandate.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>Light quality and availability are likely to change in polar ecosystems as ice coverage and thickness decrease. How microbes adjust to these and other changes will have huge impacts on the polar marine ecosystems. Little is known about photoheterotrophic prokaryotes, which are hypothesized to gain a metabolic advantage by harvesting light energy in addition to utilizing dissolved organic matter (DOM). Photoheterotrophy is not included in current models of carbon cycling and energy flow. This research will examine three questions: 1. Are photoheterotrophic microbes present and active in Antarctic waters in winter and summer? 2. Does community structure of photoheterotrophs shift between summer and winter? 3. Which microbial groups assimilate more DOM in light than in the dark? The research will test hypotheses about activity of photoheterotrophs in winter and in summer, shifts in community structure between light and dark seasons and the potentially unique impacts of photoheterotrophs on biogeochemical processes in the Antarctic. The project will directly support a graduate student, will positively impact the NSF REU program at the College of Marine and Earth Studies, and will include students from the nation?s oldest historical minority college. The results will be featured during weekly tours of Lewes facilities (about 1000 visitors per year) and during Coast Day, an annual open-house that attracts about 10,000 visitors.
The proposed research will investigate the genomic basis of the physiological and ecological transition of Antarctic marine phytoplankton from a cold dark winter to a warmer, brighter spring. During a field season at Palmer Station, functional genomics (using next generation sequencing technology to identify expressed genes) and in situ fluorometry (FRRF) will be integrated with classical ecological methods to investigate photosynthetic adaptation during phytoplankton species succession from late winter into spring. Using large data sets, this project will test whether amino acid usages differ based on expression. The specific objectives are (1) To characterize phytoplankton succession from the winter to spring transition, and (2) To correlate community gene expression profiles to adaptational differences among taxa. Broader impacts include training of a post doctoral researcher and two undergraduate science majors, with efforts to attract students from underrepresented groups. The P.I.s also will prepare presentations for the public, regarding research experiences, research results, and the importance of climate change.
Abstract<br/><br/>Since the advent of Antarctic continental glaciation, the opening of the Drake Passage between South America and the Antarctic Peninsula, and the onset of cooling of the Southern Ocean ~38-25 million years ago, evolution of the Antarctic marine biota has been driven by the development of extreme cold temperatures. Because they live at very low and stable temperatures, Antarctic fishes of the suborder Nototheniodei are particularly attractive as models for understanding the mechanisms of biomolecular cold adaptation, or the compensatory restructuring of biochemical and physiological systems to preserve biological function in cold thermal regimes. Two interrelated and potentially co-evolved systems, the tubulins that form microtubules and the chaperonin-containing TCP1 (t-complex protein-1) complex (CCT) that assists the folding of tubulins, provide an unparalleled opportunity to elucidate these mechanisms. This research will yield new and important knowledge regarding: 1) cold adaptation of microtubule assembly and of chaperonin function; and 2) the co-evolutionary origin of tubulin-binding specificity by CCT. The first objective of this proposal is to determine the contributions of five novel amino acid substitutions found in Antarctic fish beta-tubulins to microtubule assembly at cold temperature. The second objective is to establish a chaperonin folding system in vitro using CCT purified from testis tissue of Antarctic fishes and to evaluate its thermal properties and mechanism. The third objective is to evaluate, through phylogenetically controlled contrasts, the hypothesis that CCT and its tubulin substrates from Antarctic fishes have co-evolved to function at cold temperatures. The broader impacts of this proposal include introduction of graduate and REU undergraduate students of Northeastern University to state-of-the-art biochemical, cellular, and molecular-biological research relevant to ecological and environmental issues of the Antarctic marine ecosystem. Because much of the research on the biogenesis and function of cold-adapted proteins will be performed in the field at Palmer Station, these students will gain invaluable experience in the practical considerations of expeditionary biological science. The research also will increase knowledge about molecular cold adaptation in one of the Earth's extreme environments, and hence is relevant to the formulation of refined hypotheses regarding potential extraterrestrial life on Mars or Europa. The cold-functioning chaperonin protein folding system will be of great value to the biopharmaceutical and biotechnological industries for use in folding insoluble proteins.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). This project will deploy a new Fabry-Perot interferometer (FPI) at the U.S. Palmer Station located in the Antarctic Peninsula. The FPI will observe mesospheric and thermospheric neutral winds and temperatures using multiple nightglow emissions (OH, 892 nm, 87 km; O 557.7 nm, 97 km; O 630 nm, 250 km; and O2 (0-1) 865 nm, 94 km). The project's team will collaborate with Australian scientists who operate similar FPI instruments at their Antarctic stations Mawson and Davis to jointly analyze the neutral wind and temperature data distributions over the continent and address the following scientific problems: (1) Thermospheric neutral winds effects on the Weddell Sea Anomaly, (2) Non-migrating tides in the mesosphere and lower thermosphere, (3) Lower thermospheric meridional wind circulation and mesosphere wind shear, (4) High-latitude geomagnetic field effects on the mid-latitude thermosphere, and (4) Conjugacy studies of the mesosphere and thermosphere with the incoherent scatter radar and FPI observations from Millstone Hill, Massachusetts. The fieldwork and analysis efforts associated with this project are highly suitable for involvement and research training of graduate students.
The Antarctic Peninsula region exhibits one of the largest warming trends in the world. Climate change in this region will reduce the duration of winter sea-ice cover, altering both the pelagic ecosystem and bentho-pelagic coupling. We postulate that shelf benthic ecosystems are highly suitable for tracking climate change because they act as "low-pass" filters, removing high-frequency seasonal noise and responding to longer-term trends in pelagic ecosystem structure and export production. We propose to conduct a 3-year study of bentho-pelagic coupling along a latitudinal climate gradient on the Antarctic Peninsula to explore the potential impacts of climate change (e.g., reduction in sea-ice duration) on Antarctic shelf ecosystems. We will conduct three cruises during summer and winter regimes along a 5- station transect from Smith Island to Marguerite Bay, evaluating a broad range of benthic ecological and biogeochemical processes. Specifically, we will examine the feeding strategies of benthic deposit feeders along this climatic gradient to elucidate the potential response of this major trophic group to climatic warming. In addition, we will (1) quantify carbon and nitrogen cycling and burial at the seafloor and (2) document changes in megafaunal, macrofaunal, and microbial community structure along this latitudinal gradient. We expect to develop predictive insights into the response of Antarctic shelf ecosystems to some of the effects of climate warming (e.g., a reduction in winter sea-ice duration). The proposed research will considerably broaden the ecological and carbon-flux measurements made as parts of the Palmer Station LTER and GLOBEC programs by providing a complementary benthic component. This project also will promote science education from the 9th grade to graduate-student levels. We will partner with the NSF-sponsored Southeastern Center for Ocean Science Education Excellence to reach students of all races in all areas of NC, SC and GA. The project will also benefit students at the post secondary level by supporting three graduate and two undergraduate students. During each of the three field excursions, NCSU and UH students will travel to Chile and Antarctica to participate in scientific research. Lastly, all three PIs will incorporate material from this project into their undergraduate and graduate courses.
The annual advance and retreat of pack ice may be the major physical determinant of spatial/temporal changes in the structure and function of antarctic marine communities. Interannual cycles and/or trends in the annual extent of pack ice may also have significant effects on all levels of the food web, from total annual primary production to breeding success in seabirds. Historical records indicate a 6 to 8 year cycle in the maximum extent of pack ice in the winter. During this decade winters were colder in 1980 and 1981, and again in 1986 and 1987. In order to understand the interactions between pack ice and ecosystem dynamics, especially the influences of the well- documented interannual variability in ice cover on representative populations, a long-term ecological research (LTER) site has been established in the Antarctic Peninsula region near Palmer Station. The LTER project, will conduct comprehensive measurements of ice-dominated ecosystems in this region with a focus on primary production, krill populations and swarms and seabirds. A primary emphasis will be placed on the development of ecosystem models that will provide a predictive capability for issues related to global environmental change. This proposal will add to the existing LTER project detailed studies of the biogeochemical cycling of carbon and associated bioelements. The microbiology and carbon flux component of LTER will provide measurements of a suite of core parameters relevant to the carbon cycle and will test several hypotheses pertaining to carbon flux, including bacterial productivity and nutrient regeneration.
This project is a two-year investigation into the dynamics and processes of deep water mass formation in the western Weddell Sea, combining physical and chemical oceanographic techniques to produce a coherent picture of the importance of this unique region to the structure of the world ocean. In the global context, this area is a major water mass modification site, involving open ocean convective events, the continental margin, and the ice cover. At this time the various water types that combine to form Weddell Sea Deep Water and Antarctic Bottom Water, and the conditions under which these water masses form, are not known well enough to establish direct physical links and volumetric budgets. It is suspected that the outflow from the Weddell Sea is restricted to quite narrow boundary currents flowing near the base of the continental shelf, and consequently may be observed with conventional current meter moorings from the shelf into the deep ocean. Two oceanographic expeditions to the western Weddell Sea are planned as part of this study: the first in the 1990/91, and the second in 1991/92. The objectives will be to measure the flow of newly-formed bottom water and to explore the sinking process of near-surface waters in the open ocean to see how these affect the deep water flows. In the first year the primary objective will be to set out an array of eight current meters in the bottom water core, while a secondary objective will be to grapple for an existing array that was set out in early 1988 but could not be recovered in 1989 because Antarctic Program ship resources had to be diverted to deal with the oil spill at Palmer Station. In the second year the array will be retrieved. Hydrographic cruises in order to define the upper ocean temperatures and salinity structure in the outflow region where unusually large step structures have been found in the past. A chemistry program consistent with the objectives of the World Ocean Circulation Experiment (WOCE) and presently planned experiments in the South Atlantic Ocean, will be integrated into the cruises carried out under this project.
The potential consequence of human impact on wildlife in Antarctica has been debated for many decades. Scientists, support staff and visitors in Antarctica may have an effect on the behavior and population dynamics of marine mammals and seabirds. Since the early 1970's, shipboard tourism has expanded to the point where it is timely to address the question, using a scientific research approach. The focus of this study is to examine the potential effect of tourist activities on the Adelie Penguins (Pygoscelis adeliae) in the Antarctic Peninsula. The topic has gathered the interest and opinions of those in private industry, the scientific community, government organizations and environmental groups. A key concern is that increases in these activities may eventually overcome the ability of research to address critical issues in a timely and biologically meaningful manner. The approach to understanding how tourism might affect Adelie Penguins must involve both a study of human activity and a study of natural variability in the physical environment. The ongoing Palmer Long Term Ecological Research program focuses on the ecosystem and its components and thus addresses the issues of natural variability. This project focuses on the human dimension and continues a tourist-monitoring program begun as a pilot project near Palmer Station. This site is in a geographic location that mirrors current patterns in tourism and tourist-wildlife interactions in the western Antarctic Peninsula. It also offers a setting that provides unique opportunities for human impacts research. This includes the presence of long-term databases that document environmental variability over multiple time and space scales in both marine and terrestrial habitats, and the ability to examine potential tourist impacts as part of controlled experiments. The results of the study will have important implications to understanding interactions between climate change and ecosystem response, and for detecting, mitigating and managing the consequences of human activities such as tourism.
Ultraviolet radiation influences the dynamics of plankton processes in the near-surface waters of most aquatic ecosystems. In particular, the Southern Ocean is affected in the austral spring period when biologically damaging ultraviolet radiation is enhanced by ozone depletion. While progress has been made in estimating the quantitative impact of ultraviolet radiation on bacteria and phytoplankton in the Southern Ocean, some important issues remain to be resolved. Little is known about responses in systems dominated by the colonial haptophyte Phaeocystis antarctica, which dominates spring blooms in a polyna that develops in the southern Ross Sea. The Ross Sea is also of interest because of the occurrence of open water at a far southerly location in the spring, well within the ozone hole, and continuous daylight, with implications for the regulation of DNA repair. A number of studies suggest that vertical mixing can significant modify the impact of ultraviolet radiation in the Southern Ocean and elsewhere. However, there are limited measurements of turbulence intensity in the surface layer and measurements have not been integrated with parallel studies of ultraviolet radiation effects on phytoplankton and bacterioplankton. To address these issues, this collaborative study will focus on vertical mixing and the impact of ultraviolet radiation in the Ross Sea. The spectral and temporal responses of phytoplankton and bacterioplankton to ultraviolet radiation will be characterized in both laboratory and solar incubations. These will lead to the definition of biological weighting functions and response models capable of predicting the depth and time distribution of ultraviolet radiation impacts on photosynthesis, bacterial incorporation and DNA damage in the surface layer. Diel sampling will measure depth-dependent profiles of DNA damage, bacterial incorporation, photosynthesis and fluorescence parameters over a 24 h cycle. Sampling will include stations with contrasting wind-driven mixing and stratification as the polyna develops. The program of vertical mixing measurements is optimized for the typical springtime Ross Sea situation in which turbulence of intermediate intensity is insufficient to mix the upper layer thoroughly in the presence of stabilizing influences like solar heating and/or surface freshwater input from melting ice. Fine-scale vertical density profiles will be measured with a free-fall CTD unit and the profiles will be used to directly estimate large-eddy scales by determining Thorpe scales. Eddy scales and estimated turbulent diffusivities will be directly related to surface layer effects, and used to generate lagrangian depth-time trajectories in models of ultraviolet radiation responses in the surface mixed layer. The proposed research will be the first in-depth study of ultraviolet radiation effects in the Ross Sea and provide a valuable comparison with previous work in the Weddell-Scotia Confluence and Palmer Station regions. It will also enhance the understanding of vertical mixing processes, trophic interactions and biogeochemical cycling in the Ross Sea.
Increases in ultraviolet-B radiation (UV-B, 280-320) associated with the Antarctic ozone hole have been shown to inhibit the photosynthesis of phytoplankton, but the overall effect on water column production is still a matter of debate and continued investigation. Investigations have also revealed that even at "normal" levels of Antarctic stratospheric ozone, UV-B and UV-A (320-400 nm) appear to have strong effects on water column production. The role of UV in the ecology of phytoplankton primary production has probably been underappreciated in the past and could be particularly important to the estimation of primary production in the presence of vertical mixing. This research focuses on quantifying UV effects on photosynthesis of Antarctic phytoplankton by defining biological weighting functions for UV-inhibition. In the past, techniques were developed to describe photosynthesis as a function of UV and visible irradiance using laboratory cultures. Further experimentation with natural assemblages from McMurdo Station in Antarctica showed that biological weighting functions are strongly related to light history. Most recently, measurements in the open waters of the Southern Ocean confirmed that there is substantial variability in the susceptibility of phytoplankton assemblages to UV. It was also discovered that inhibition of photosynthesis in Antarctic phytoplankton got progressively worse on the time scale of hours, with no evidence of recovery. Even under benign conditions, losses of photosynthetic capability persisted unchanged for several hours. This was in contrast with laboratory cultures and some natural assemblages which quickly attained a steady- state rate of photosynthesis during exposure to UV, reflecting a balance between damage and recovery processes. Slow reversal of UV-induced damage has profound consequences for water-column photosynthesis, especially during vertical mixing. Results to date have been used to model th e influence of UV, ozone depletion and vertical mixing on photosynthesis in Antarctic waters. Data indicate that normal levels of UV can have a significant impact on natural phytoplankton and that the effects can be exacerbated by ozone depletion as well as vertical mixing. Critical questions remain poorly resolved, however, and these are the focus of the present proposal. New theoretical and experimental approaches will be used to investigate UV responses in both the open waters of the Weddell-Scotia confluence and coastal waters near Palmer Station. In particular, measurements will be made of the kinetics of UV inhibition and recovery on time scales ranging from minutes to days. Variability in biological weighting functions between will be calculated for pelagic and coastal phytoplankton in the Southern Ocean. The results will provide absolute estimates of photosynthesis under in situ, as well as under altered, UV irradiance; broaden the range of assemblages for which biological weighting functions have been determined; and clarify how kinetics of inhibition and recovery should be represented in mixed layer models.
The Antarctic Site Inventory Project has collected biological data and site-descriptive information in the Antarctic Peninsula region since 1994. This research effort has provided data on those sites which are visited by tourists on shipboard expeditions in the region. The aim is to obtain data on the population status of several key species of Antarctic seabirds, which might be affected by the cumulative impact resulting from visits to the sites. This project will continue the effort by focusing on two heavily-visited Antarctic Peninsula sites: Paulet Island, in the northwestern Weddell Sea and Petermann Island, in the Lemaire Channel near Anvers Island. These sites were selected because both rank among the ten most visited sites in Antarctica each year in terms of numbers of visitors and zodiac landings; both are diverse in species composition, and both are sensitive to potential environmental disruptions from visitors. These data collected focus on two important biological parameters for penguins and blue-eyed shags: (1) breeding population size (number of occupied nests) and (2) breeding success (number of chicks per occupied nests). A long-term data program will be supported, with studies at the two sites over a five-year period. The main focus will be at Petermann Island, selected for intensive study due to its visitor status and location in the region near Palmer Station. This will allow for comparative data with the Palmer Long Term Ecological Research program. Demographic data will be collected in accordance with Standard Methods established by the Convention for the Conservation of Antarctic Marine Living Resources Ecosystem Monitoring Program and thus will be comparable with similar data sets being collected by other international Antarctic Treaty nation research programs. While separating human-induced change from change resulting from a combination of environmental factors will be difficult, this work will provide a first step to identify potential impacts. These long-term data sets will contribute to a better understanding of biological processes in the entire region and will contribute valuable information to be used by the Antarctic Treaty Parties as they address issues in environmental stewardship in Antarctica.
Antarctic notothenioid fish evolved antifreeze (AF) proteins that prevent ice crystals that enter their body fluids from growing, and thereby avoid freezing in their icy habitats. However, even in the extreme cold Antarctic marine environment, regional gradations of severity are found. The biological correlate for environmental severity in fish is the endogenous ice load, which likely determines the tolerable limit of environmental severity for notothenioid habitation. The endogenous ice load develops from environmental ice crystals entering through body surfaces and somehow localizing to the spleen. How prone the surface tissues are to ice entry, how ice reaches the spleen, and what the fate of splenic ice is, requires elucidation. Spleen sequestration of ice raises the hypothesis that macrophages may play a role in the translocation and perhaps elimination of AF-bound ice crystals. Antifreeze glycoproteins (AFGP) act in concert with a second, recently discovered antifreeze called antifreeze potentiating protein (AFPP), necessitating an assessment of the contribution of AFPP to freezing avoidance. Recent research suggests that the exocrine pancreas and the anterior stomach, not the liver, synthesize AFGPs and secrete them into the intestine, from where they may be returned to the blood. A GI-to-blood transport is a highly unconventional path for a major plasma protein and also begs the questions, What is the source of blood AFPP?. Why are two distinct AF proteins needed and what is the chronology of their evolution? What genomic changes in the DNA are associated with the development or loss of the antifreeze trait? Experiments described in this proposal address these interrelated questions of environmental, organismal, and evolutionary physiology, and will further our understanding of novel vertebrate physiologies, the limits of environmental adaptation, and climatically driven changes in the genome. The proposed research will (1) determine the temporal and spatial heterogeneity of environmental temperature and iciness in progressively more severe fish habitats in the greater McMurdo Sound area, and in the milder Arthur Harbor at Palmer Station. The splenic ice load in fishes inhabiting these sites will be determined to correlate to environmental severity and habitability. (2) Assess the surface tissue site of ice entry and their relative barrier properties in intact fish and isolated tissues preparations (3) Assess the role of immune cells in the fate of endogenous ice, (4) determine whether the blood AFGPs are from intestinal/rectal uptake, (5) examine the contribution of AFPP to the total blood AF activity (6) evaluate the progression of genomic changes in the AFGP locus across Notothenioidei as modulated by disparate thermal environments, in four selected species through the analyses of large insert DNA BAC clones. The origin and evolution of AFPP will be examined also by analyzing BAC clones encompassing the AFPP genomic locus. The broader impacts of the proposed research include training of graduate and undergraduate students in research approaches ranging from physical field measurements to cutting edge genomics. Undergraduate research projects have lead to co-authored publications and will continue to do so. Outreach includes establishing Wiki websites on topics of Antarctic fish biology and freeze avoidance, providing advisory services to the San Francisco Science Exploratorium, and making BAC libraries available to interested polar biologists. This research theme has repeatedly received national and international science news coverage and will continue to be disseminated to the public in that manner.
The applicant will use this Polar Postdoctoral Fellowship to study top-down effects on community structure (habitat choice and behavior of amphipods, the dominant mesograzers) in macroalgal communities in the vicinity of Palmer Station, Antarctica, where amphipods are not only extremely abundant, but their distributions are very different on palatable vs. unpalatable macroalgae. Pilot studies have suggested that these differences in community structure may be driven by algal chemistry and predation. The effects of algal chemistry on amphipod habitat choice, both in the presence and absence of predators will be tested experimentally, as will the question of whether amphipod host-alga choice results in any reduction of predation risk. Mesograzers in general, and amphipods in particular, are an essential trophic link in marine systems worldwide, and in particular, are a critical component of antarctic near-shore ecosystems. However despite their high abundance and species richness, little is known of their functional ecology or trophodynamics, and little research has investigated the trophic dynamics, behavior, or ecology of these organisms. This project will work out the basic biology of the system, by examining amphipod distributions on Himantothallus (a brown macroalga) and in the stomach contents of Notothenia coriiceps (a small cod-like antarctic fish) and determining whether prey selectivity of amphipod species is occurring. A series of laboratory experiments will investigate the influence(s) of predators, algal chemistry, and thallus structure on amphipod behavior and habitat choice, and test the predation risk associated with amphipod host-alga choice.
This proposal is focused on experimental studies of the thunderstorms electrodynamic coupling to the Earth's radiation belts through the upward lightning flashes that lead to ionospheric parameters variability, and the global lightning effects on climate. The intellectual merit of the proposed program lies in the importance of the electrodynamic coupling of lightning discharges to the overlying ionosphere and the radiation belts, both in terms of lightning-induced electron precipitation, and in terms of high altitude optical and gamma-ray emissions produced by energy originating in lightning discharges. Precipitation of the radiation belt particles by whistler waves launched by lightning discharges will be measured as associated localized and transient disturbances of the lower ionosphere, which are sensed remotely by means of their effect on the phase and amplitude of very low frequency (VLF) signals propagating in the Earth-ionosphere waveguide. The broader impacts of the proposed research program will include the development of new technologies of lightning detection, with few observation sites and on a global scale, which can then be implemented for the benefit of society, both in terms of agriculture, navigation and other ways in which lightning and thunderstorms may affect human life. The proposed program is a part of the international collaboration between the Antarctic Peninsula stations, as well as complements a similar set of measurements that are conducted by the Stanford University in the northern hemisphere under support from other sources. Coordinated measurements in both hemispheres are needed to study the geomagnetic conjugacy of the observed phenomena.
Ultraviolet radiation influences the dynamics of plankton processes in the near-surface waters of most aquatic ecosystems. In particular, the Southern Ocean is affected in the austral spring period when biologically damaging ultraviolet radiation is enhanced by ozone depletion. While progress has been made in estimating the quantitative impact of ultraviolet radiation on bacteria and phytoplankton in the Southern Ocean, some important issues remain to be resolved. Little is known about responses in systems dominated by the colonial haptophyte Phaeocystis antarctica, which dominates spring blooms in a polyna that develops in the southern Ross Sea. The Ross Sea is also of interest because of the occurrence of open water at a far southerly location in the spring, well within the ozone hole, and continuous daylight, with implications for the regulation of DNA repair. A number of studies suggest that vertical mixing can significant modify the impact of ultraviolet radiation in the Southern Ocean and elsewhere. However, there are limited measurements of turbulence intensity in the surface layer and measurements have not been integrated with parallel studies of ultraviolet radiation effects on phytoplankton and bacterioplankton. To address these issues, this collaborative study will focus on vertical mixing and the impact of ultraviolet radiation in the Ross Sea. The spectral and temporal responses of phytoplankton and bacterioplankton to ultraviolet radiation will be characterized in both laboratory and solar incubations. These will lead to the definition of biological weighting functions and response models capable of predicting the depth and time distribution of ultraviolet radiation impacts on photosynthesis, bacterial incorporation and DNA damage in the surface layer. Diel sampling will measure depth-dependent profiles of DNA damage, bacterial incorporation, photosynthesis and fluorescence parameters over a 24 h cycle. Sampling will include stations with contrasting wind-driven mixing and stratification as the polyna develops. The program of vertical mixing measurements is optimized for the typical springtime Ross Sea situation in which turbulence of intermediate intensity is insufficient to mix the upper layer thoroughly in the presence of stabilizing influences like solar heating and/or surface freshwater input from melting ice. Fine-scale vertical density profiles will be measured with a free-fall CTD unit and the profiles will be used to directly estimate large-eddy scales by determining Thorpe scales. Eddy scales and estimated turbulent diffusivities will be directly related to surface layer effects, and used to generate lagrangian depth-time trajectories in models of ultraviolet radiation responses in the surface mixed layer. The proposed research will be the first in-depth study of ultraviolet radiation effects in the Ross Sea and provide a valuable comparison with previous work in the Weddell-Scotia Confluence and Palmer Station regions. It will also enhance the understanding of vertical mixing processes, trophic interactions and biogeochemical cycling in the Ross Sea.
Polar terrestrial environments are often described as deserts, where water availability is recognized as one of the most important limits on the distribution of terrestrial organisms. In addition, prolonged low winter temperatures threaten survival, and summer temperatures challenge organisms with extensive diel variations and rapid transitions from freezing to desiccating conditions. Global warming has further impacted the extreme thermal and hydric conditions experienced by Antarctic terrestrial plant and arthropod communities, especially as a result of glacial retreat along the Antarctic Peninsula. This research will focus on thermal and hydric adaptations in the terrestrial midge, Belgica antarctica, the largest and most southerly holometabolous insect living in this challenging and changing environment. <br/>Overwintering midge larvae encased in the frozen substrate must endure desert-like conditions for more than 300 days since free water is biologically unavailable as ice. During the summer, larvae may be immersed in melt water or outwash from penguin colonies and seal wallows, in addition to saltwater splash. Alternatively, the larvae may be subjected to extended periods of desiccation as their microhabitats dry out. Due to their small size, relative immobility and the patchiness of suitable microhabitats, larvae may thus be subjected to stresses that include desiccation, hypo- or hyperosmotic conditions, high salinity exposure, and anoxia for extended periods. Research efforts will focus in three areas relevant to the stress tolerance mechanisms operating in these midges:(1) obtaining a detailed characterization of microclimatic conditions experienced by B. antarctica, especially those related to thermal and hydric diversity, both seasonally and among microhabitat types in the vicinity of Palmer Station, Antarctica; (2) examining the effects of extreme fluctuations in water availability and effects on physiological and molecular responses - to determine if midge larvae utilize the mechanism of cryoprotective dehydration for winter survival, and if genes encoding heat shock proteins and other genes are upregulated in larval responses to dehydration and rehydration; (3) investigating the dietary transmission of cryoprotectants from plant to insect host, which will test the hypothesis that midge larvae acquire increased resistance to desiccation and temperature stress by acquiring cryoprotectants from their host plants. <br/>This project will provide outreach to both elementary and secondary educators and their students. The team will include a teacher who will benefit professionally by full participation in the research, and will also assist in providing outreach to other teachers and their students. From Palmer Station, the field team will communicate daily research progress by e-mail supplemented with digital pictures with teachers and their elementary students to stimulate interest in an Antarctic biology and scientific research. These efforts will be supplemented with presentations at local schools and national teacher meetings, and by publishing hands-on, inquiry-based articles related to cryobiology and polar biology in education journals. Furthermore, the principal investigators will maintain major commitments to training graduate students and postdoctoral scholars, as well as undergraduate students by providing extended research experience that includes publication of scientific papers and presentations at national meetings.