[{"awards": "1542723 Alexander, Becky", "bounds_geometry": "POINT(-112.05 -79.28)", "dataset_titles": "WAIS Divide ice core nitrate isotopes", "datasets": [{"dataset_uid": "601456", "doi": "10.15784/601456", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Chemistry; Ice Core Records; Nitrate; Nitrate Isotopes; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Alexander, Becky", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide ice core nitrate isotopes", "url": "https://www.usap-dc.org/view/dataset/601456"}], "date_created": "Mon, 13 Feb 2023 00:00:00 GMT", "description": "The Earth\u0027s atmosphere is a highly oxidizing medium. The abundance of oxidants such as ozone in the atmosphere strongly influences the concentrations of pollutants and greenhouse gases, with implications for human health and welfare. Because oxidants are not preserved in geological archives, knowledge of how oxidants have varied in the past under changing climate conditions is extremely limited. This award will measure a proxy for oxidant concentrations in a West Antarctic ice core over several major climate transitions over the past 50,000 years. These measurements will complement similar measurements from a Greenland ice core, which showed significant changes in atmospheric oxidants over major climate transitions covering this same time period. The addition of measurements from Antarctica will allow researchers to examine if the oxidant changes suggested by the Greenland ice core record are regional or global in scale. Knowledge of how oxidants vary naturally with climate will better inform predictions of the composition of the future atmosphere under a warming climate.\u003cbr/\u003e\u003cbr/\u003eThis award will support measurements of the isotopic composition of nitrate in a West Antarctic ice core as a proxy for oxidant concentrations in the past atmosphere. The nitrogen isotopes of nitrate provide information on the degree of preservation of nitrate in the ice core record, and thus aid in the interpretation of the observed variability in the observed nitrate concentrations and oxygen isotopes in ice core records. By providing information about the spatial scale of oxidant changes over abrupt climate change events during the last glacial period, this project may also improve our understanding of mechanisms driving these abrupt events. Insight from this project will prove valuable for forecasting the response of stratospheric circulation to climate change, which has large implications for climate feedbacks and tropospheric composition. In addition, the information gleaned from this project on the mechanisms and feedbacks during abrupt climate change events will help determine the likelihood of such rapid events occurring in the future, which would have dramatic impacts on humankind. This award will provide training for one graduate and one undergraduate student, and will support the development of a hands-on activity related to rapid climate change to be used at the annual Polar Science Weekend at the Pacific Science Center in Seattle, WA.", "east": -112.05, "geometry": "POINT(-112.05 -79.28)", "instruments": null, "is_usap_dc": true, "keywords": "Nitrate Isotopes; ICE CORE RECORDS; WAIS Divide; LABORATORY", "locations": "WAIS Divide", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Alexander, Becky", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.28, "title": "Measuring an Ice-core Proxy for Relative Oxidant Abundances over Glacial-interglacial and Rapid Climate changes in a West Antarctic Ice Core", "uid": "p0010403", "west": -112.05}, {"awards": "1744871 Robinson, Rebecca", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Diatom assemblage from IODP Site U1357; Diatom-bound and bulk sedimentary N isotopes from ODP Site 1098, Western Antarctic Peninsula; Diatom-bound and bulk sedimentary nitrogen isotopes from IODP Site U1357; Dissolved nutrients, cell counts, and nitrogen isotope measurements from Chaetoceros socialis culture experiments; ODP Site 1098 deglacial diatom assemblage; Sediment chemistry of ODP Site 1098", "datasets": [{"dataset_uid": "601816", "doi": "10.15784/601816", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Geochemistry; Sediment", "people": "Robinson, Rebecca; Kelly, Roger; Jones, Colin; Dove, Isabel", "repository": "USAP-DC", "science_program": null, "title": "Diatom-bound and bulk sedimentary N isotopes from ODP Site 1098, Western Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601816"}, {"dataset_uid": "601727", "doi": "10.15784/601727", "keywords": "Antarctica", "people": "Dove, Isabel", "repository": "USAP-DC", "science_program": null, "title": "Dissolved nutrients, cell counts, and nitrogen isotope measurements from Chaetoceros socialis culture experiments", "url": "https://www.usap-dc.org/view/dataset/601727"}, {"dataset_uid": "601777", "doi": "10.15784/601777", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Sediment Core Data", "people": "Dove, Isabel", "repository": "USAP-DC", "science_program": null, "title": "ODP Site 1098 deglacial diatom assemblage", "url": "https://www.usap-dc.org/view/dataset/601777"}, {"dataset_uid": "601778", "doi": "10.15784/601778", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere", "people": "Dove, Isabel", "repository": "USAP-DC", "science_program": null, "title": "Sediment chemistry of ODP Site 1098", "url": "https://www.usap-dc.org/view/dataset/601778"}, {"dataset_uid": "601817", "doi": "10.15784/601817", "keywords": "Antarctica; Cryosphere; Wilkes Land", "people": "Kelly, Roger; Robinson, Rebecca; Dove, Isabel", "repository": "USAP-DC", "science_program": null, "title": "Diatom-bound and bulk sedimentary nitrogen isotopes from IODP Site U1357", "url": "https://www.usap-dc.org/view/dataset/601817"}, {"dataset_uid": "601818", "doi": "10.15784/601818", "keywords": "Antarctica; Cryosphere; Geochemistry; Sediment; Wilkes Land", "people": "Dove, Isabel", "repository": "USAP-DC", "science_program": null, "title": "Diatom assemblage from IODP Site U1357", "url": "https://www.usap-dc.org/view/dataset/601818"}], "date_created": "Wed, 28 Jul 2021 00:00:00 GMT", "description": "The chemical composition of diatom fossils in the Southern Ocean provides information about the environmental history of Antarctica, including sea ice extent, biological production, and ocean nutrient distribution. The sea ice zone is an important habitat for a group of diatoms, largely from the genus Chaetoceros, that have a unique life cycle stage under environmental stress, when they produce a structure called a resting spore. Resting spores are meant to reseed the surface ocean when conditions are more favorable. The production of these heavy resting spores tends to remove significant amounts of carbon and silicon, essential nutrients, out of the surface ocean. As a result, this group has the potential to remove carbon from the surface ocean and can impact the sedimentary record scientists use to reconstruct environmental change. \r\n\r\nThis project explores the role of resting spores and nutrients in the sedimentary record using the nitrogen isotopic signature of these fossils and how those measurements are used to estimate carbon cycle changes. Measurements of nitrogen stable isotopes of nitrate, biomass, and diatom-bound nitrogen and silicon-to-nitrogen ratios of individual species grown in the laboratory are used to quantify how resting spores record nutrient drawdown in the water column and to what degree their signature is biased toward low nutrient conditions. Laboratory incubations were conducted with surface sediment containing Chaetoceros spp.. The emergence of vegetative cells and subsequent formation of resting spores is manipulated with the addition of nutrients, primarily nitrate. The resulting samples, both of vegetative cells and resting spores were measured for diatom-bound d15N. Resting spore d15N values are consistently lower than the vegetative d15N \r\n from the same incubations. The incubation results will be used to quantify nutrient drawdown in sea ice environments during two contrasting intervals in earth history, the last ice age and the warm Pliocene. The project provided training and research opportunities for undergraduate and graduate students. Research efforts in Antarctic earth sciences are disseminated through an interactive display at the home institution and during university sponsored events.\r\n\r\nThis work addresses uncertainties in how Chaetoceros resting spores record surface nutrient conditions in their nitrogen stable isotopic composition, the relative impact of their specific signal with respect to the full sedimentary assemblage, and their potential to bias or enhance environmental reconstructions in the sea ice zone. \r\n", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; USAP-DC; Antarctica; ISOTOPES; MARINE SEDIMENTS; LABORATORY; USA/NSF; NITROGEN; AMD", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Robinson, Rebecca", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information?", "uid": "p0010234", "west": -180.0}, {"awards": "1643345 Popp, Brian; 1643466 Hollibaugh, James", "bounds_geometry": "POLYGON((-78.20206667 -64.03195833,-76.785055836 -64.03195833,-75.368045002 -64.03195833,-73.951034168 -64.03195833,-72.534023334 -64.03195833,-71.1170125 -64.03195833,-69.700001666 -64.03195833,-68.282990832 -64.03195833,-66.865979998 -64.03195833,-65.448969164 -64.03195833,-64.03195833 -64.03195833,-64.03195833 -64.554377497,-64.03195833 -65.076796664,-64.03195833 -65.599215831,-64.03195833 -66.121634998,-64.03195833 -66.644054165,-64.03195833 -67.166473332,-64.03195833 -67.688892499,-64.03195833 -68.211311666,-64.03195833 -68.733730833,-64.03195833 -69.25615,-65.448969164 -69.25615,-66.865979998 -69.25615,-68.282990832 -69.25615,-69.700001666 -69.25615,-71.1170125 -69.25615,-72.534023334 -69.25615,-73.951034168 -69.25615,-75.368045002 -69.25615,-76.785055836 -69.25615,-78.20206667 -69.25615,-78.20206667 -68.733730833,-78.20206667 -68.211311666,-78.20206667 -67.688892499,-78.20206667 -67.166473332,-78.20206667 -66.644054165,-78.20206667 -66.121634998,-78.20206667 -65.599215831,-78.20206667 -65.076796664,-78.20206667 -64.554377497,-78.20206667 -64.03195833))", "dataset_titles": "\"Collaborative research: Chemoautotrophy in Antarctic bacterioplankton communities supported by the oxidation of urea-derived nitrogen\"; Expedition data of LMG1801", "datasets": [{"dataset_uid": "200124", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1801", "url": "https://www.rvdata.us/search/cruise/LMG1801"}, {"dataset_uid": "200193", "doi": "Not yet assigned", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "\"Collaborative research: Chemoautotrophy in Antarctic bacterioplankton communities supported by the oxidation of urea-derived nitrogen\"", "url": "https://www.bco-dmo.org/project/775717"}], "date_created": "Fri, 18 Dec 2020 00:00:00 GMT", "description": "The project addressed fundamental questions regarding the role of nitrification (the conversion of ammonium to nitrate by a two-step process involving two different guilds of microorganisms: ammonia- and nitrite-oxidizers) in the Antarctic marine ecosystem. Specifically, the project evaluated the contribution of carbon fixation supported by energy derived from the oxidation of nitrogen compounds (chemoautotrophy) to the overall supply of organic carbon to the food web of the Southern Ocean. Additionally, the project aimed to determine the significance of the contribution of other sources of reduced nitrogen, specifically organic nitrogen and urea, to nitrification because these contributions may not be assessed by standard protocols. \n\n\u003cbr\u003e\u003cbr\u003eWe quantified the oxidation rates of 15N supplied as ammonium, urea and nitrite, which allowed us to estimate the contribution of urea-derived N and complete nitrification (ammonia to nitrate, N-3 to N+5) to chemoautotrophy in Antarctic coastal waters. We compared these estimates to direct measurements of the incorporation of dissolved inorganic 14C into organic matter in the dark for an independent estimate of chemoautotrophy. We made measurements on samples taken from the major water masses: surface water (~10 m), winter water (35-174 m), circumpolar deep water (175-1000 m) and slope water (\u003e1000 m); on a cruise surveying the continental shelf and slope west of the Antarctic Peninsula in the austral summer of 2018 (LMG18-01). Samples were also taken to measure the concentrations of nitrite, ammonia, urea and polyamines; for qPCR analysis of the abundance of relevant marker genes; and for studies of processes related to the core questions of the study. The project relied on collaboration with the Palmer LTER for ancillary data (bacterioplankton abundance and production, chlorophyll, physical and additional chemical variables). The synergistic activities of this project along with the LTER activities provides a unique opportunity to assess chemoautotrophy in context of the overall ecosystem\u0027s dynamics, including both primary and secondary production processes.\n\u003cbr\u003e\u003cbr\u003eThis project resulted in the training of a postdoctoral researcher and provide undergraduate students opportunities to gain hand-on experience with research on microbial geochemistry. This project contributed substantially to understanding an important aspect of nitrogen cycling and bacterioplankton production in the study area. Both PIs participate fully in the education and outreach efforts of the Palmer LTER, including making highlights of the findings available for posting to the LTER project web site, posting material to web sites at their respective departments, and incorporating material from the study in lectures and seminars presented at their respective institutions. \n", "east": -64.03195833, "geometry": "POINT(-71.1170125 -66.644054165)", "instruments": null, "is_usap_dc": true, "keywords": "Pal-Lter; NITROGEN; SHIPS; USAP-DC; MARINE ECOSYSTEMS; BACTERIA/ARCHAEA; BIOGEOCHEMICAL CYCLES; Amd/Us; West Antarctic Shelf; USA/NSF; AMD", "locations": "West Antarctic Shelf; Pal-Lter", "north": -64.03195833, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hollibaugh, James T.; Popp, Brian", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "R2R", "repositories": "BCO-DMO; R2R", "science_programs": null, "south": -69.25615, "title": "Collaborative Research: Chemoautotrophy in Antarctic Bacterioplankton Communities Supported by the Oxidation of Urea-derived Nitrogen", "uid": "p0010150", "west": -78.20206667}, {"awards": "1341736 Adams, Byron", "bounds_geometry": "POLYGON((-177.4099 -84.4661,-177.08229 -84.4661,-176.75468 -84.4661,-176.42707 -84.4661,-176.09946 -84.4661,-175.77185 -84.4661,-175.44424 -84.4661,-175.11663000000001 -84.4661,-174.78902 -84.4661,-174.46141 -84.4661,-174.1338 -84.4661,-174.1338 -84.56828,-174.1338 -84.67045999999999,-174.1338 -84.77264,-174.1338 -84.87482,-174.1338 -84.977,-174.1338 -85.07918,-174.1338 -85.18136,-174.1338 -85.28354,-174.1338 -85.38571999999999,-174.1338 -85.4879,-174.46141 -85.4879,-174.78902 -85.4879,-175.11663000000001 -85.4879,-175.44424 -85.4879,-175.77185 -85.4879,-176.09946 -85.4879,-176.42707 -85.4879,-176.75468 -85.4879,-177.08229 -85.4879,-177.4099 -85.4879,-177.4099 -85.38571999999999,-177.4099 -85.28354,-177.4099 -85.18136,-177.4099 -85.07918,-177.4099 -84.977,-177.4099 -84.87482,-177.4099 -84.77264,-177.4099 -84.67045999999999,-177.4099 -84.56828,-177.4099 -84.4661))", "dataset_titles": "Dataset DS-TAMS: Genetic diversity of Collembola from the Transantarctic Mountains; GenBank accession numbers MN619477 to MN619610; Meteoric 10Be data of soils from the Shackleton Glacier region; Shackleton Glacier region soil water-soluble geochemical data; Shackleton Glacier region water-soluble salt isotopes; Soil invertebrate surveys from the Shackleton Glacier region of Antarctica during the 2017-2018 austral summer", "datasets": [{"dataset_uid": "601421", "doi": "10.15784/601421", "keywords": "Antarctica; Be-10; Beryllium-10; Cosmogenic Radionuclides; Geochemistry; Geomorphology; Shackleton Glacier; Surface Exposure Dates", "people": "Diaz, Melisa A.", "repository": "USAP-DC", "science_program": null, "title": "Meteoric 10Be data of soils from the Shackleton Glacier region", "url": "https://www.usap-dc.org/view/dataset/601421"}, {"dataset_uid": "601419", "doi": "10.15784/601419", "keywords": "Antarctica; Geochemistry; Nitrate; Shackleton Glacier; Stable Isotopes; Sulfate; Transantarctic Mountains", "people": "Lyons, W. Berry; Gardner, Christopher B.; Diaz, Melisa A.", "repository": "USAP-DC", "science_program": null, "title": "Shackleton Glacier region water-soluble salt isotopes", "url": "https://www.usap-dc.org/view/dataset/601419"}, {"dataset_uid": "200175", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "GenBank accession numbers MN619477 to MN619610", "url": "https://www.ncbi.nlm.nih.gov/nuccore/MN619477"}, {"dataset_uid": "200174", "doi": "10.5883/DS-TAMS", "keywords": null, "people": null, "repository": "Barcode of Life Datasystems (BOLD)", "science_program": null, "title": "Dataset DS-TAMS: Genetic diversity of Collembola from the Transantarctic Mountains", "url": "http://dx.doi.org/10.5883/DS-TAMS"}, {"dataset_uid": "601418", "doi": "10.15784/601418", "keywords": "Antarctica; Geochemistry; Shackleton Glacier", "people": "Lyons, W. Berry; Diaz, Melisa A.; Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "Shackleton Glacier region soil water-soluble geochemical data", "url": "https://www.usap-dc.org/view/dataset/601418"}, {"dataset_uid": "200258", "doi": "doi:10.6073/pasta/7959821e5f6f8d56d94bb6a26873b3ae", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "Soil invertebrate surveys from the Shackleton Glacier region of Antarctica during the 2017-2018 austral summer", "url": "https://doi.org/10.6073/pasta/7959821e5f6f8d56d94bb6a26873b3ae"}], "date_created": "Mon, 02 Nov 2020 00:00:00 GMT", "description": "The project will characterize the functional, taxonomic, biotic and abiotic drivers of soil ecosystems in the Trans Antarctic Mountains (one of the most remote and harsh terrestrial landscapes on the planet). The work will utilize new high-throughput DNA and RNA sequencing technologies to identify members of the microbial communities and determine if the microbial community structures are independent of local environmental heterogeneities. In addition the project will determine if microbial diversity and function are correlated with time since the last glacial maximum (LGM). The expected results will greatly contribute to our knowledge regarding rates of microbial succession and help define the some of the limits to life and life-maintaining processes on Earth.\u003cbr/\u003e\u003cbr/\u003eThe project will analyze genomes and RNA derived from these genomes to describe the relationships between biodiversity and ecosystem functioning from soils above and below LGM elevations and to correlate these with the environmental drivers associated with their development during the last ~18,000 years. The team will identify the taxonomic diversity and the functional genetic composition within a broad suite of soil biota and examine their patterns of assembly and distribution within the framework of their geological legacies. The project will mentor participants from undergraduate students to postdoctoral researchers and prepare them to effectively engage in research to meet their career aspirations. The project will contribute to ongoing public education efforts through relationships with K-12 teachers and administrators- to include University-Public School partnerships. Less formal activities include public lecture series and weblogs aimed at providing information on Antarctic polar desert ecosystems to the general public. Targeted classrooms near each PI\u0027s institution will participate in online, real-time discussions about current topics in Antarctic ecosystems research.", "east": -174.1338, "geometry": "POINT(-175.77185 -84.977)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; LABORATORY; AMD; Amd/Us; USA/NSF; TERRESTRIAL ECOSYSTEMS; Transantarctic Mountains; USAP-DC", "locations": "Transantarctic Mountains", "north": -84.4661, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Adams, Byron; Fierer, Noah; Wall, Diana; Diaz, Melisa A.; Gardner, Christopher B.; Lyons, W. Berry", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "Barcode of Life Datasystems (BOLD); EDI; NCBI GenBank; USAP-DC", "science_programs": null, "south": -85.4879, "title": "Collaborative Research: The Role of Glacial History on the Structure and Functioning of Ecological Communities in the Shackleton Glacier Region of the Transantarctic Mountains", "uid": "p0010140", "west": -177.4099}, {"awards": "1543450 Countway, Peter", "bounds_geometry": "POLYGON((-66 -63,-65.7 -63,-65.4 -63,-65.1 -63,-64.8 -63,-64.5 -63,-64.2 -63,-63.9 -63,-63.6 -63,-63.3 -63,-63 -63,-63 -63.3,-63 -63.6,-63 -63.9,-63 -64.2,-63 -64.5,-63 -64.8,-63 -65.1,-63 -65.4,-63 -65.7,-63 -66,-63.3 -66,-63.6 -66,-63.9 -66,-64.2 -66,-64.5 -66,-64.8 -66,-65.1 -66,-65.4 -66,-65.7 -66,-66 -66,-66 -65.7,-66 -65.4,-66 -65.1,-66 -64.8,-66 -64.5,-66 -64.2,-66 -63.9,-66 -63.6,-66 -63.3,-66 -63))", "dataset_titles": "Biogenic Sulfur Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments; Dissolved Inorganic Nutrient Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments ; Dissolved Organic Carbon (DOC) and Total Dissolved Nitrogen (TDN) Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments; Flow Cytometry Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments; Heterotrophic Bacterial Production Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments; Western Antarctic Peninsula plankton raw sequence reads", "datasets": [{"dataset_uid": "601648", "doi": "10.15784/601648", "keywords": "Antarctica; Biota; Dimethyl Sulfide; Dimethylsulfoniopropionate; Dimethylsulfoxide; DMSP; DMSP Lyase; Palmer Station", "people": "Matrai, Patricia; Countway, Peter", "repository": "USAP-DC", "science_program": null, "title": "Biogenic Sulfur Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments", "url": "https://www.usap-dc.org/view/dataset/601648"}, {"dataset_uid": "601646", "doi": "10.15784/601646", "keywords": "Antarctica; Carbon; Dissolved Organic Carbon; Nitrogen; Palmer Station; TDN; Total Dissolved Nitrogen", "people": "Countway, Peter; Matrai, Patricia", "repository": "USAP-DC", "science_program": null, "title": "Dissolved Organic Carbon (DOC) and Total Dissolved Nitrogen (TDN) Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments", "url": "https://www.usap-dc.org/view/dataset/601646"}, {"dataset_uid": "601644", "doi": "10.15784/601644", "keywords": "3H-Leu; Antarctica; Bacteria; Biota; DMSP; Heterotrophic Bacterial Production; Palmer Station", "people": "Matrai, Patricia; Countway, Peter", "repository": "USAP-DC", "science_program": null, "title": "Heterotrophic Bacterial Production Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments", "url": "https://www.usap-dc.org/view/dataset/601644"}, {"dataset_uid": "601647", "doi": "10.15784/601647", "keywords": "Antarctica; Palmer Station; Phytoplankton", "people": "Countway, Peter; Matrai, Patricia", "repository": "USAP-DC", "science_program": null, "title": "Flow Cytometry Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments", "url": "https://www.usap-dc.org/view/dataset/601647"}, {"dataset_uid": "200337", "doi": "", "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Western Antarctic Peninsula plankton raw sequence reads", "url": "https://dataview.ncbi.nlm.nih.gov/object/PRJNA870587?reviewer=bmud2tbbrqbus79i2n2hb83uio"}, {"dataset_uid": "601645", "doi": "10.15784/601645", "keywords": "Antarctica; Nitrate; Nitrite; Palmer Station; Phosphate", "people": "Countway, Peter; Matrai, Patricia", "repository": "USAP-DC", "science_program": null, "title": "Dissolved Inorganic Nutrient Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments ", "url": "https://www.usap-dc.org/view/dataset/601645"}], "date_created": "Sat, 01 Aug 2020 00:00:00 GMT", "description": "The Southern Ocean in the vicinity of Antarctica is a region characterized by seasonally-driven marine phytoplankton blooms that are often dominated by microalgal species which produce large amounts of dimethylsulfoniopropionate (DMSP). DMSP can be converted to the compound dimethylsulfide (DMS) which is a molecule that can escape into the atmosphere where it is known to have strong condensation properties that are involved in regional cloud formation. Production of DMSP can influence the diversity and composition of microbial assemblages in seawater and the types and activities of microbes in the seawater will likely affect the magnitude of DMSP\\DMS production. The project examined the role of DMSP in structuring the microbial communities in Antarctic waters and how this structuring may influence DMSP cycling. The project interacted with elementary students in Maine and brought undergraduate students to Bigelow Laboratory. The project also engaged with a science writer and illustrator who joined the team in Palmer Station in 2018. Many posts are available at xxx\r\n\r\nThe project is examining (1) the extent to which the cycling of DMSP in southern ocean waters influenced the composition and diversity of bacterial and protistan assemblages; (2) conversely, whether the composition and diversity of southern ocean protistan and bacterial assemblages influenced the magnitude and rates of DMSP cycling; we are awaiting results on (3) the expression of DMSP degradation genes by marine bacteria seasonally and in response to field experimental additions of DMSP; and, this year (2020-21), we will synthesize these results by quantifying (4) the microbial networks resulting from the presence of DMSP-producers and DMSP-consumers along with their predators, all involved in the cycling of DMSP in southern ocean waters. The work was accomplished by conducting continuous growth experiments with DMSP-amended natural samples of different microbial communities present in summer (2016-17) and fall (2018) at Palmer Station, WAP. Data from the molecular (such as 16S/ 18S tag sequences, DMSP-cycle gene transcripts) and biogeochemical (such as biogenic sulfur cycling, bacterial production, microbial biomass) investigations will be integrated via network analysis in the coming year (2020-21). ", "east": -63.0, "geometry": "POINT(-64.5 -64.5)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; COMMUNITY DYNAMICS; FIELD INVESTIGATION; AMD; PLANKTON; Amd/Us; BIOGEOCHEMICAL CYCLES; Palmer Station; USA/NSF", "locations": "Palmer Station", "north": -63.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Countway, Peter", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "GenBank; USAP-DC", "science_programs": null, "south": -66.0, "title": "Microbial Community Structure and Expression of Functional Genes Involved in the Seasonal Cycling of DMSP in the Southern Ocean", "uid": "p0010120", "west": -66.0}, {"awards": "1443336 Osterberg, Erich; 1443663 Cole-Dai, Jihong; 1443397 Kreutz, Karl", "bounds_geometry": "POINT(-180 -90)", "dataset_titles": "Preliminary SPC14 high-resolution Fe and Mn biologically relevant and dissolved trace metal concentrations spanning -42 \u2013 54,300 years BP.; South Pole Ice Core Holocene Major Ion Dataset; South Pole Ice Core Sea Salt and Major Ions; South Pole ice core (SPC14) discrete methane data; South Pole (SPC14) microparticle concentration, mass concentration, flux, particle-size-distribution mode, and aspect ratio measurements; SPICEcore 400-480 m Major Ions SDSU; The South Pole Ice Core (SPICEcore) chronology and supporting data", "datasets": [{"dataset_uid": "601206", "doi": "10.15784/601206", "keywords": "Antarctica; Calcium (ca); Chemistry:ice; Chemistry:Ice; Depth; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciochemistry; Glaciology; Ice; Ice Core; Ice Core Chemistry; Ice Core Data; Ice Core Records; Ice Core Stratigraphy; Nitrate; Nitrogen Isotopes; Paleoclimate; Snow/ice; Snow/Ice; South Pole; SPICEcore", "people": "Epifanio, Jenna; Kreutz, Karl; Cox, Thomas S.; Thundercloud, Zayta; Cole-Dai, Jihong; Fegyveresi, John; Severinghaus, Jeffrey P.; McConnell, Joseph; Sigl, Michael; Souney, Joseph Jr.; Bay, Ryan; Buizert, Christo; Iverson, Nels; Osterberg, Erich; Waddington, Edwin D.; Alley, Richard; Jones, Tyler R.; Casey, Kimberly A.; Nicewonger, Melinda R.; Aydin, Murat; Ferris, David G.; Kahle, Emma; Morris, Valerie; Steig, Eric J.; Sowers, Todd A.; Beaudette, Ross; Brook, Edward J.; Ortman, Nikolas; Dunbar, Nelia; Fudge, T. J.; Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "The South Pole Ice Core (SPICEcore) chronology and supporting data", "url": "https://www.usap-dc.org/view/dataset/601206"}, {"dataset_uid": "601381", "doi": "10.15784/601381", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Methane; South Pole; SPICEcore", "people": "Fudge, T. J.; Kennedy, Joshua A.; Ferris, David G.; Kalk, Michael; Hood, Ekaterina; Osterberg, Erich; Winski, Dominic A.; Steig, Eric J.; Kahle, Emma; Sowers, Todd A.; Edwards, Jon S.; Aydin, Murat; Kreutz, Karl; Buizert, Christo; Brook, Edward J.; Epifanio, Jenna; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core (SPC14) discrete methane data", "url": "https://www.usap-dc.org/view/dataset/601381"}, {"dataset_uid": "601675", "doi": "10.15784/601675", "keywords": "Antarctica; South Pole; SPICEcore", "people": "Kreutz, Karl", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Preliminary SPC14 high-resolution Fe and Mn biologically relevant and dissolved trace metal concentrations spanning -42 \u2013 54,300 years BP.", "url": "https://www.usap-dc.org/view/dataset/601675"}, {"dataset_uid": "601850", "doi": "10.15784/601850", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Holocene Major Ion Dataset", "url": "https://www.usap-dc.org/view/dataset/601850"}, {"dataset_uid": "601430", "doi": "10.15784/601430", "keywords": "Antarctica; Ions; South Pole; SPICEcore", "people": "Cole-Dai, Jihong; Larrick, Carleigh", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SPICEcore 400-480 m Major Ions SDSU", "url": "https://www.usap-dc.org/view/dataset/601430"}, {"dataset_uid": "601851", "doi": "10.15784/601851", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Sea Salt and Major Ions", "url": "https://www.usap-dc.org/view/dataset/601851"}, {"dataset_uid": "601553", "doi": "10.15784/601553", "keywords": "Antarctica; Dust; Ice Core; South Pole", "people": "Kreutz, Karl", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole (SPC14) microparticle concentration, mass concentration, flux, particle-size-distribution mode, and aspect ratio measurements", "url": "https://www.usap-dc.org/view/dataset/601553"}], "date_created": "Thu, 29 Aug 2019 00:00:00 GMT", "description": "This collaborative project explores the signatures and causes of natural climate change in the region surrounding Antarctica over the last 40,000 years as the Earth transitioned from an ice age into the modern warm period. The researchers will investigate how the wind belts that surround Antarctica changed in their strength and position through time, and document explosive volcanic eruptions and CO2 cycling in the Southern Ocean as potential climate forcing mechanisms over this interval. Understanding how and why the climate varied naturally in the past is critical for improving understanding of modern climate change and projections of future climate under higher levels of atmospheric CO2. \u003cbr/\u003e\u003cbr/\u003eThe investigators plan to conduct a suite of chemical measurements along the 1500m length of the South Pole Ice Core, including major ion and trace element concentrations, and microparticle (dust) concentrations and size distributions. These measurements will (1) extend the South Pole record of explosive volcanic eruptions to 40,000 years using sulfate and particle data; (2) establish the relative timing of climate changes in dust source regions of Patagonia, New Zealand, and Australia using dust flux data; (3) investigate changes in the strength and position of the westerly wind belt using dust size distribution data; and (4) quantify the flux of bioavailable trace metals deposited as dust to the Southern Ocean over time. These chemistry records will also be critical for creating the timescale that will be used by all researchers studying records from the South Pole core. The project will support four graduate students and several undergraduate students across three different institutions, and become a focus of the investigators\u0027 efforts to disseminate outcomes of climate change science to the broader community.", "east": -180.0, "geometry": "POINT(-180 -90)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; ICE CORE RECORDS; USAP-DC; Amd/Us; USA/NSF; LABORATORY; AMD", "locations": "Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Osterberg, Erich", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements", "uid": "p0010051", "west": -180.0}, {"awards": "1644073 DiTullio, Giacomo; 1643684 Saito, Mak", "bounds_geometry": "POLYGON((-180 -72,-173.6 -72,-167.2 -72,-160.8 -72,-154.4 -72,-148 -72,-141.6 -72,-135.2 -72,-128.8 -72,-122.4 -72,-116 -72,-116 -72.7,-116 -73.4,-116 -74.1,-116 -74.8,-116 -75.5,-116 -76.2,-116 -76.9,-116 -77.6,-116 -78.3,-116 -79,-122.4 -79,-128.8 -79,-135.2 -79,-141.6 -79,-148 -79,-154.4 -79,-160.8 -79,-167.2 -79,-173.6 -79,180 -79,178 -79,176 -79,174 -79,172 -79,170 -79,168 -79,166 -79,164 -79,162 -79,160 -79,160 -78.3,160 -77.6,160 -76.9,160 -76.2,160 -75.5,160 -74.8,160 -74.1,160 -73.4,160 -72.7,160 -72,162 -72,164 -72,166 -72,168 -72,170 -72,172 -72,174 -72,176 -72,178 -72,-180 -72))", "dataset_titles": "Algal pigment concentrations from the Ross Sea; Biogenic silica concentrations from the Ross Sea; NBP1801 Expedition data; Nutrients from NBP18-01 CICLOPS", "datasets": [{"dataset_uid": "200056", "doi": "10.7284/907753", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1801 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1801"}, {"dataset_uid": "601225", "doi": "10.15784/601225", "keywords": "Antarctica; Biogenic Silica; Biogenic Silica Concentrations; Chemistry:Water; Geochemistry; NBP1801; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Sea Water; Southern Ocean; Spectroscopy; Water Measurements; Water Samples", "people": "Schanke, Nicole; Ditullio, Giacomo", "repository": "USAP-DC", "science_program": null, "title": "Biogenic silica concentrations from the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/601225"}, {"dataset_uid": "601428", "doi": "10.15784/601428", "keywords": "Amundsen Sea; Antarctica; NBP1801; Nitrate; Nitrite; Nutrients; Phosphate; Ross Sea; R/v Nathaniel B. Palmer; Silicic Acid; Terra Nova Bay", "people": "Saito, Mak", "repository": "USAP-DC", "science_program": null, "title": "Nutrients from NBP18-01 CICLOPS", "url": "https://www.usap-dc.org/view/dataset/601428"}, {"dataset_uid": "601205", "doi": "10.15784/601205", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Chlorophyll; Chromatography; Liquid Chromatograph; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Sea Water; Seawater Measurements; Southern Ocean; Water Measurements; Water Samples", "people": "Ditullio, Giacomo", "repository": "USAP-DC", "science_program": null, "title": "Algal pigment concentrations from the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/601205"}], "date_created": "Thu, 08 Aug 2019 00:00:00 GMT", "description": "Phytoplankton blooms in the coastal waters of the Ross Sea, Antarctica are typically dominated by either diatoms or Phaeocystis Antarctica (a flagellated algae that often can form large colonies in a gelatinous matrix). The project seeks to determine if an association of bacterial populations with Phaeocystis antarctica colonies can directly supply Phaeocystis with Vitamin B12, which can be an important co-limiting micronutrient in the Ross Sea. The supply of an essential vitamin coupled with the ability to grow at lower iron concentrations may put Phaeocystis at a competitive advantage over diatoms. Because Phaeocystis cells can fix more carbon than diatoms and Phaeocystis are not grazed as efficiently as diatoms, the project will help in refining understanding of carbon dynamics in the region as well as the basis of the food web webs. Such understanding also has the potential to help refine predictive ecological models for the region. The project will conduct public outreach activities and will contribute to undergraduate and graduate research. Engagement of underrepresented students will occur during summer student internships. A collaboration with Italian Antarctic researchers, who have been studying the Terra Nova Bay ecosystem since the 1980s, aims to enhance the project and promote international scientific collaborations. \u003cbr/\u003e\u003cbr/\u003eThe study will test whether a mutualistic symbioses between attached bacteria and Phaeocystis provides colonial cells a mechanism for alleviating chronic Vitamin B12 co-limitation effects thereby conferring them with a competitive advantage over diatom communities. The use of drifters in a time series study will provide the opportunity to track in both space and time a developing algal bloom in Terra Nova Bay and to determine community structure and the physiological nutrient status of microbial populations. A combination of flow cytometry, proteomics, metatranscriptomics, radioisotopic and stable isotopic labeling experiments will determine carbon and nutrient uptake rates and the role of bacteria in mitigating potential vitamin B12 and iron limitation. Membrane inlet and proton transfer reaction mass spectrometry will also be used to estimate net community production and release of volatile organic carbon compounds that are climatically active. Understanding how environmental parameters can influence microbial community dynamics in Antarctic coastal waters will advance an understanding of how changes in ocean stratification and chemistry could impact the biogeochemistry and food web dynamics of Southern Ocean ecosystems.", "east": 160.0, "geometry": "POINT(-158 -75.5)", "instruments": null, "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; NBP1801; Amd/Us; USA/NSF; USAP-DC; NUTRIENTS; PIGMENTS; CHLOROPHYLL; R/V NBP; Ross Sea; AMD", "locations": "Ross Sea", "north": -72.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "DiTullio, Giacomo; Lee, Peter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -79.0, "title": "Collaborative Research: Cobalamin and Iron Co-Limitation Of Phytoplankton Species in Terra Nova Bay", "uid": "p0010045", "west": -116.0}, {"awards": "1401489 Sigman, Daniel", "bounds_geometry": "POLYGON((-180 -45,-144 -45,-108 -45,-72 -45,-36 -45,0 -45,36 -45,72 -45,108 -45,144 -45,180 -45,180 -47.5,180 -50,180 -52.5,180 -55,180 -57.5,180 -60,180 -62.5,180 -65,180 -67.5,180 -70,144 -70,108 -70,72 -70,36 -70,0 -70,-36 -70,-72 -70,-108 -70,-144 -70,-180 -70,-180 -67.5,-180 -65,-180 -62.5,-180 -60,-180 -57.5,-180 -55,-180 -52.5,-180 -50,-180 -47.5,-180 -45))", "dataset_titles": "Deep-sea coral evidence for lower Southern Ocean surface nitrate concentrations during the last ice age; Diatom-bound N isotope records over the last two glacial cycles in sediment core PS75/072-4.; Diatom-bound nitrogen isotope and opal flux records over the Holocene period in Southern Ocean sediment cores MD12-3396, MD11-3353 and PS75/072-4.; GOSHIP section IO8S and P18S", "datasets": [{"dataset_uid": "200048", "doi": "doi.pangaea.de/10.1594/PANGAEA.891436.", "keywords": null, "people": null, "repository": "PANGAEA", "science_program": null, "title": "Diatom-bound nitrogen isotope and opal flux records over the Holocene period in Southern Ocean sediment cores MD12-3396, MD11-3353 and PS75/072-4.", "url": "https://doi.pangaea.de/10.1594/PANGAEA.891436"}, {"dataset_uid": "200050", "doi": "", "keywords": null, "people": null, "repository": "CLIVAR", "science_program": null, "title": "GOSHIP section IO8S and P18S", "url": "https://cchdo.ucsd.edu/"}, {"dataset_uid": "200049", "doi": "doi.org/10.1594/PANGAEA.848271", "keywords": null, "people": null, "repository": "PANGAEA", "science_program": null, "title": "Diatom-bound N isotope records over the last two glacial cycles in sediment core PS75/072-4.", "url": "https://doi.org/10.1594/PANGAEA.848271"}, {"dataset_uid": "200051", "doi": "", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Deep-sea coral evidence for lower Southern Ocean surface nitrate concentrations during the last ice age", "url": "https://www.pnas.org/content/suppl/2017/03/14/1615718114.DCSupplemental"}], "date_created": "Thu, 08 Aug 2019 00:00:00 GMT", "description": "ABSTRACT\u003cbr/\u003eIntellectual Merit:\u003cbr/\u003eThe high concentration of the major nutrients nitrate and phosphate is a fundamental characteristic of the Antarctic Zone in the Southern Ocean and is central to its role in global ocean fertility and the global carbon cycle. The isotopic composition of diatom-bound organic nitrogen is one of the best hopes for reconstructing the nutrient status of polar surface waters over glacial cycles, which in turn may hold the explanation for the decline in atmospheric carbon dioxide during ice ages. The PIs propose to generate detailed diatom-bound nitrogen isotope (\u0026#948;15Ndb) records from high sedimentation rate cores from the Kerguelen Plateau. Because the cores were collected at relatively shallow seafloor depths, they have adequate planktonic and benthic foraminifera to develop accurate age models. The resulting data could be compared with climate records from Antarctic ice cores and other archives to investigate climate-related changes, including the major steps into and out of ice ages and the millennial-scale events that occur during ice ages and at their ends. The records generated in this project will provide a critical test of hypotheses for the cause of lower ice age CO2.\u003cbr/\u003e\u003cbr/\u003eBroader impacts:\u003cbr/\u003eThis study will contribute to the goal of understanding ice ages and past CO2 changes, which both have broad implications for future climate. Undergraduates will undertake summer internships, with the possibility of extending their work into junior year projects and senior theses. In addition, the PI will lead modules for two Princeton programs for middle school teachers and will host a teacher for a six-week summer research project.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; South Pacific Ocean; USAP-DC; NOT APPLICABLE", "locations": "South Pacific Ocean", "north": -45.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Sigman, Daniel", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "PANGAEA", "repositories": "CLIVAR; PANGAEA; Publication", "science_programs": null, "south": -70.0, "title": "High-resolution, Assemblage-specific Records of Diatom-bound N Isotopes from the Indian Sector of the Antarctic Ocean", "uid": "p0010046", "west": -180.0}, {"awards": "1443474 Jenkins, Bethany", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP1608", "datasets": [{"dataset_uid": "002664", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1608", "url": "https://www.rvdata.us/search/cruise/NBP1608"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "This project focuses on an important group of photosynthetic algae in the Southern Ocean (SO), diatoms, and the roles associated bacterial communities play in modulating their growth. Diatom growth fuels the SO food web and balances atmospheric carbon dioxide by sequestering the carbon used for growth to the deep ocean on long time scales as cells sink below the surface. The diatom growth is limited by the available iron in the seawater, most of which is not freely available to the diatoms but instead is tightly bound to other compounds. The nature of these compounds and how phytoplankton acquire iron from them is critical to understanding productivity in this region and globally. The investigators will conduct experiments to characterize the relationship between diatoms, their associated bacteria, and iron in open ocean and inshore waters. Experiments will involve supplying nutrients at varying nutrient ratios to natural phytoplankton assemblages to determine how diatoms and their associated bacteria respond to different conditions. This will provide valuable data that can be used by climate and food web modelers and it will help us better understand the relationship between iron, a key nutrient in the ocean, and the organisms at the base of the food web that use iron for photosynthetic growth and carbon uptake. The project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. The project supports early career senior investigators and the training of graduate and undergraduate students as well as outreach activities with middle school Girl Scouts in Rhode Island, inner city middle and high school age girls in Virginia, and middle school girls in Florida.\u003cbr/\u003e\u003cbr/\u003eThe project combines trace metal biogeochemistry, phytoplankton cultivation, and molecular biology to address questions regarding the production of iron-binding compounds and the role of diatom-bacterial interactions in this iron-limited region. Iron is an essential micronutrient for marine phytoplankton. Phytoplankton growth in the SO is limited by a lack of sufficient iron, with important consequences for carbon cycling and climate in this high latitude regime. Some of the major outstanding questions in iron biogeochemistry relate to the organic compounds that bind \u003e99.9% of dissolved iron in surface oceans. The investigators\u0027 prior research in this region suggests that production of strong iron-binding compounds in the SO is linked to diatom blooms in waters with high nitrate to iron ratios. The sources of these compounds are unknown but the investigators hypothesize that they may be from bacteria, which are known to produce such compounds for their own use. The project will test three hypotheses concerning the production of these iron-binding compounds, limitations on the biological availability of iron even if present in high concentrations, and the roles of diatom-associated bacteria in these processes. Results from this project will provide fundamental information about the biogeochemical trigger, and biological sources and function, of natural strong iron-binding compound production in the SO, where iron plays a critical role in phytoplankton productivity, carbon cycling, and climate regulation.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V NBP; NBP1608", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Jenkins, Bethany", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Investigating Iron-inding Ligands in Southern Ocean Diatom Communities: The Role of Diatom-Bacteria Associations", "uid": "p0000852", "west": null}, {"awards": "1425989 Sarmiento, Jorge", "bounds_geometry": "POLYGON((-180 -52.6153,-168.67689 -52.6153,-157.35378 -52.6153,-146.03067 -52.6153,-134.70756 -52.6153,-123.38445 -52.6153,-112.06134 -52.6153,-100.73823 -52.6153,-89.41512 -52.6153,-78.09201 -52.6153,-66.7689 -52.6153,-66.7689 -55.18958,-66.7689 -57.76386,-66.7689 -60.33814,-66.7689 -62.91242,-66.7689 -65.4867,-66.7689 -68.06098,-66.7689 -70.63526,-66.7689 -73.20954,-66.7689 -75.78382,-66.7689 -78.3581,-78.09201 -78.3581,-89.41512 -78.3581,-100.73823 -78.3581,-112.06134 -78.3581,-123.38445 -78.3581,-134.70756 -78.3581,-146.03067 -78.3581,-157.35378 -78.3581,-168.67689 -78.3581,180 -78.3581,178.62318 -78.3581,177.24636 -78.3581,175.86954 -78.3581,174.49272 -78.3581,173.1159 -78.3581,171.73908 -78.3581,170.36226 -78.3581,168.98544 -78.3581,167.60862 -78.3581,166.2318 -78.3581,166.2318 -75.78382,166.2318 -73.20954,166.2318 -70.63526,166.2318 -68.06098,166.2318 -65.4867,166.2318 -62.91242,166.2318 -60.33814,166.2318 -57.76386,166.2318 -55.18958,166.2318 -52.6153,167.60862 -52.6153,168.98544 -52.6153,170.36226 -52.6153,171.73908 -52.6153,173.1159 -52.6153,174.49272 -52.6153,175.86954 -52.6153,177.24636 -52.6153,178.62318 -52.6153,-180 -52.6153))", "dataset_titles": "Biogeochemical profiling float data from the Southern Ocean Carbon and Climate Observation and Modeling (SOCCOM) program.UCSD Research Data Collections DOI:10.6075/J09021PC; Expedition Data; Model output NOAA GFDL CM2_6 Cant Hant storage", "datasets": [{"dataset_uid": "601144", "doi": "10.15784/601144", "keywords": "Antarctica; Anthropogenic Heat; Atmosphere; Carbon Storage; Climate Change; Eddy; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Heat Budget; Modeling; Model Output; Oceans; Paleoclimate; Snow/ice; Snow/Ice; Southern Ocean", "people": "Chen, Haidi", "repository": "USAP-DC", "science_program": null, "title": "Model output NOAA GFDL CM2_6 Cant Hant storage", "url": "https://www.usap-dc.org/view/dataset/601144"}, {"dataset_uid": "000208", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Biogeochemical profiling float data from the Southern Ocean Carbon and Climate Observation and Modeling (SOCCOM) program.UCSD Research Data Collections DOI:10.6075/J09021PC", "url": "http://library.ucsd.edu/dc/object/bb66239018"}, {"dataset_uid": "001369", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1701"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project seeks to drive a transformative shift in our understanding of the crucial role of the Southern Ocean in taking up anthropogenic carbon and heat, and resupplying nutrients from the abyss to the surface. An observational program will generate vast amounts of new biogeochemical data that will provide a greatly improved view of the dynamics and ecosystem responses of the Southern Ocean. A modeling component will apply these observations to enhancing understanding of the current ocean, reducing uncertainty in projections of future carbon and nutrient cycles and climate.\u003cbr/\u003e\u003cbr/\u003eBecause it serves as the primary gateway through which the intermediate, deep, and bottom waters of the ocean interact with the surface layers and thus the atmosphere, the Southern Ocean has a profound influence on the oceanic uptake of anthropogenic carbon and heat as well as nutrient resupply from the abyss to the surface. Yet it is the least observed and understood region of the world ocean. The oceanographic community is on the cusp of two major advances that have the potential to transform understanding of the Southern Ocean. The first is the development of new biogeochemical sensors mounted on autonomous profiling floats that allow sampling of ocean biogeochemistry and acidification in 3-dimensional space with a temporal resolution of five to ten days. The SOCCOM float program proposed will increase the average number of biogeochemical profiles measured per month in the Southern Ocean by ~10-30x. The second is that the climate modeling community now has the computational resources and physical understanding to develop fully coupled climate models that can represent crucial mesoscale processes in the Southern Ocean, as well as corresponding models that assimilate observations to produce a state estimate. Together with the observations, this new generation of models provides the tools to vastly improve understanding of Southern Ocean processes and the ability to quantitatively assess uptake of anthropogenic carbon and heat, as well as nutrient resupply, both today and into the future.\u003cbr/\u003e\u003cbr/\u003eIn order to take advantage of the above technological and modeling breakthroughs, SOCCOM will implement the following research programs:\u003cbr/\u003e* Theme 1: Observations. Scripps Institution of Oceanography will lead a field program to expand the number of Southern Ocean autonomous profiling floats and equip them with sensors to measure pH, nitrate, and oxygen. The University of Washington and Monterey Bay Aquarium Research Institute will design, build, and oversee deployment of the floats. Scripps will also develop a mesoscale eddying Southern Ocean state estimate that assimilates physical and biogeochemical data into the MIT ocean general circulation model.\u003cbr/\u003e* Theme 2: Modeling. University of Arizona and Princeton University, together with NOAA\u0027s Geophysical Fluid Dynamics Laboratory (GFDL), will use SOCCOM observations to develop data/model assessment metrics and next-generation model analysis and evaluation, with the goal of improving process level understanding and reducing the uncertainty in projections of our future climate.\u003cbr/\u003e\u003cbr/\u003eLed by Climate Central, an independent, non-profit journalism and research organization that promotes understanding of climate science, SOCCOM will collaborate with educators and media professionals to inform policymakers and the public about the challenges of climate change and its impacts on marine life in the context of the Southern Ocean. In addition, the integrated team of SOCCOM scientists and educators will:\u003cbr/\u003e* communicate data and results of the SOCCOM efforts quickly to the public through established data networks, publications, broadcast media, and a public portal;\u003cbr/\u003e* train a new generation of diverse ocean scientists, including undergraduate students, graduate students, and postdoctoral fellows versed in field techniques, data calibration, modeling, and communication of research to non-scientists;\u003cbr/\u003e* transfer new sensor technology and related software to autonomous instrument providers and manufacturers to ensure that they become widely useable.", "east": -66.7689, "geometry": "POINT(-130.26855 -65.4867)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "USAP-DC; R/V NBP; NBP1701; CLIMATE MODELS", "locations": null, "north": -52.6153, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Sarmiento, Jorge; Rynearson, Tatiana", "platforms": "OTHER \u003e MODELS \u003e CLIMATE MODELS; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "PI website; R2R; USAP-DC", "science_programs": null, "south": -78.3581, "title": "Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM)", "uid": "p0000197", "west": 166.2318}, {"awards": "1246223 Hastings, Meredith", "bounds_geometry": "POINT(-112.1115 -79.481)", "dataset_titles": "WAIS Divide WDC06A Nitrate Isotope Record", "datasets": [{"dataset_uid": "601022", "doi": "10.15784/601022", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Nitrate; WAIS Divide; WAIS Divide Ice Core", "people": "Hastings, Meredith; Buffen, Aron", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide WDC06A Nitrate Isotope Record", "url": "https://www.usap-dc.org/view/dataset/601022"}], "date_created": "Tue, 02 May 2017 00:00:00 GMT", "description": "Hastings/1246223\u003cbr/\u003e\u003cbr/\u003eThis award supports a project with the aim of distinguishing the sources of nitrate deposition to the West Antarctic Ice Sheet (WAIS) using isotopic ratios snow in archive snow and ice samples. The isotopic composition of nitrate has been shown to contain information about the source of the nitrate (i.e. nitrogen oxides = NOx = NO+NO2) and the oxidation processes that convert NOx to nitrate in the atmosphere prior to deposition. A difficulty in interpreting records in the context of NOx sources is that nitrate can be post-depositionally processed in surface snow, such that the archived record does not reflect the composition of the atmosphere. This intellectual merit of this work specifically aims to investigate variability in the isotopic composition of nitrate in snow and ice from the WAIS in the context of accumulation rate, NOx source emissions, and atmospheric chemistry. These records will be interpreted in the context of our understanding of biospheric (biomass burning, microbial processes in soils), atmospheric (lightning, transport, chemistry), and climate (temperature, accumulation rate) changes over time. A graduate student will be supported as part of this project, and both graduate student and PI will be involved in communicating the utility and results of polar research to elementary school students in the Providence, RI area. The broader impacts of the project also include making efforts to attract more young, female scientists to polar research by establishing a connection between the Earth Science Women\u0027s Network (ESWN), an organization PI Hastings helped to establish, and the Association of Polar Early Career Scientists (APECS). Finally, results of all measurements will be presented at relevant conferences, made available publicly and published in peer-reviewed journals.", "east": -112.1115, "geometry": "POINT(-112.1115 -79.481)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hastings, Meredith", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Investigating Source, Chemistry and Climate changes using the Isotopic Composition of Nitrate in Antarctic Snow and Ice", "uid": "p0000399", "west": -112.1115}, {"awards": "0538049 Steig, Eric; 0538520 Thiemens, Mark", "bounds_geometry": "POINT(-112.085 -79.5)", "dataset_titles": "Multiple Isotope Analysis of Sulfate in the West Antarctic Ice Sheet Divide Ice Core; WAIS Divide sulfate and nitrate isotopes; WAIS ice core isotope data #387, 385 (full data link not provided)", "datasets": [{"dataset_uid": "002512", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "WAIS ice core isotope data #387, 385 (full data link not provided)", "url": "http://www.waisdivide.unh.edu/"}, {"dataset_uid": "609479", "doi": "10.7265/N5BG2KXH", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Thiemens, Mark H.", "repository": "USAP-DC", "science_program": null, "title": "Multiple Isotope Analysis of Sulfate in the West Antarctic Ice Sheet Divide Ice Core", "url": "https://www.usap-dc.org/view/dataset/609479"}, {"dataset_uid": "601007", "doi": "10.15784/601007", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Nitrate; Oxygen Isotope; Sulfate; WAIS Divide; WAIS Divide Ice Core", "people": "Steig, Eric J.; Alexander, Becky", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide sulfate and nitrate isotopes", "url": "https://www.usap-dc.org/view/dataset/601007"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "0538520\u003cbr/\u003eThiemens\u003cbr/\u003eThis award supports a project to develop the first complete record of multiple isotope ratios of nitrate and sulfate covering the last ~100,000 years, from the deep ice core planned for the central ice divide of the West Antarctic Ice Sheet (WAIS). The WAIS Divide ice core will be the highest resolution long ice core obtained from Antarctica and we can expect important complementary information to be available, including accurate knowledge of past accumulation rates, temperatures, and compounds such as H2O2, CO and CH4. These compounds play significant roles in global atmospheric chemistry and climate. Especially great potential lies in the use of multiple isotope signatures. The unique mass independent fractionation (MIF) 17O signature of ozone is observed in both nitrate and sulfate, due to the interaction of their precursors with ozone. The development of methods to measure the multiple-isotope composition of small samples of sulfate and nitrate makes continuous high resolution measurements on ice cores feasible for the first time. Recent work has shown that such measurements can be used to determine the hydroxyl radial (OH) and ozone (O3) concentrations in the paleoatmosphere as well as to apportion sulfate and nitrate sources. There is also considerable potential in using these isotope measurements to quantify post depositional changes. In the first two years, continuous measurements from the upper ~100-m of ice at WAIS divide will be obtained, to provide a detailed look at seasonal through centennial scale variability. In the third year, measurements will be made throughout the available depth of the deep core (expected to reach ~500 m at this time). The broader impacts of the project include applications to diverse fields including atmospheric chemistry, glaciology, meteorology, and paleoclimatology. Because nitrate and sulfate are important atmospheric pollutants, the results will also have direct and relevance to global environmental policy. This project will coincide with the International Polar Year (2007-2008), and contributes to goals of the IPY, which include the fostering of interdisciplinary research toward enhanced understanding of atmospheric chemistry and climate in the polar regions.", "east": -112.085, "geometry": "POINT(-112.085 -79.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Isotope Ratios; Temperature; Sulfate; West Antarctic; Paleoatmosphere; LABORATORY; Ice Core; Ice Core Data; Mass Independent Fractionation; FIELD SURVEYS; Not provided; Accumulation Rate; Oxygen Isotope; FIELD INVESTIGATION; Ice Core Chemistry; Isotope", "locations": "West Antarctic", "north": -79.5, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Alexander, Becky; Steig, Eric J.; Thiemens, Mark H.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "Project website", "repositories": "Project website; USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.5, "title": "Collaborative Research: Multiple-isotope Analysis of Nitrate and Sulfate in the West Antarctic Ice Sheet Divide Ice Core", "uid": "p0000020", "west": -112.085}, {"awards": "0087401 Smith, Walker", "bounds_geometry": null, "dataset_titles": "Current Meter Data from the Ross Sea acquired with a Mooring deployed in December 2005 and recovered during the Nathaniel B. Palmer expedition NBP0601A (2006); Expedition data of NBP0301B; Expedition data of NBP0305A; Expedition data of NBP0501; Expedition data of NBP0601A; Fluorometer Data acquired on Moorings deployed the Ross Sea and recovered during the Nathaniel B. Palmer expedition NBP0601A (2006); Processed Fluid Chemistry Data from the Ross Sea acquired during the Nathaniel B. Palmer expedition NBP0601A", "datasets": [{"dataset_uid": "601339", "doi": null, "keywords": "Antarctica; Current Meter; Mooring; NBP0601A; Oceans; Physical Oceanography; Ross Sea; Southern Ocean", "people": "Smith, Walker; Asper, Vernon", "repository": "USAP-DC", "science_program": null, "title": "Current Meter Data from the Ross Sea acquired with a Mooring deployed in December 2005 and recovered during the Nathaniel B. Palmer expedition NBP0601A (2006)", "url": "https://www.usap-dc.org/view/dataset/601339"}, {"dataset_uid": "002622", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "002621", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0305A", "url": "https://www.rvdata.us/search/cruise/NBP0305A"}, {"dataset_uid": "601333", "doi": null, "keywords": "Antarctica; Flourometer; Mooring; NBP0601A; Ross Sea; Southern Ocean", "people": "Asper, Vernon; Smith, Walker", "repository": "USAP-DC", "science_program": null, "title": "Fluorometer Data acquired on Moorings deployed the Ross Sea and recovered during the Nathaniel B. Palmer expedition NBP0601A (2006)", "url": "https://www.usap-dc.org/view/dataset/601333"}, {"dataset_uid": "002627", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "002623", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0601A", "url": "https://www.rvdata.us/search/cruise/NBP0601A"}, {"dataset_uid": "002583", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0301B", "url": "https://www.rvdata.us/search/cruise/NBP0301B"}, {"dataset_uid": "601341", "doi": null, "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Fluid Chemistry Data; Mooring; NBP0601A; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Seawater Measurements; Southern Ocean", "people": "Smith, Walker; Asper, Vernon", "repository": "USAP-DC", "science_program": null, "title": "Processed Fluid Chemistry Data from the Ross Sea acquired during the Nathaniel B. Palmer expedition NBP0601A", "url": "https://www.usap-dc.org/view/dataset/601341"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "During the past few decades of oceanographic research, it has been recognized that significant variations in biogeochemical processes occur among years. Interannual variations in the Southern Ocean are known to occur in ice extent and concentration, in the composition of herbivore communities, and in bird and marine mammal distributions and reproductive success. However, little is known about the interannual variations in production of phytoplankton or the role that these variations play in the food web. This project will collect time series data on the seasonal production of phytoplankton in the southern Ross Sea, Antarctica. Furthermore, it will assess the interannual variations of the production of the two major functional groups of the system, diatoms and Phaeocystis Antarctica, a colonial haptophyte. The Ross Sea provides a unique setting for this type of investigation for a number of reasons. For example, a de facto time-series has already been initiated in the Ross Sea through the concentration of a number of programs in the past ten years. It also is well known that the species diversity is reduced relative to other systems and its seasonal production is as great as anywhere in the Antarctic. Most importantly, seasonal production of both the total phytoplankton community (as well as its two functional groups) can be estimated from late summer nutrient profiles. The project will involve short cruises on the US Coast Guard ice breakers in the southern Ross Sea that will allow the collection of water column nutrient and particulate after data at specific locations in the late summer of each of five years. Additionally, two moorings with in situ nitrate analyzers moored at fifteen will be deployed, thus collecting for the first time in the in the Antarctic a time-series of euphotic zone nutrient concentrations over the entire growing season. All nutrient data will be used to calculate seasonal production for each year in the southern Ross Sea and compared to previously collected information, thereby providing an assessment of interannual variations in net community production. Particulate matter data will allow us to estimate the amount of export from the surface layer by late summer, and therefore calculate the interannual variability of this ecosystem process. Interannual variations of seasonal production (and of the major taxa of producers) are a potentially significant feature in the growth and survival of higher trophic levels within the food web of the Ross Sea. They are also important in order to understand the natural variability in biogeochemical processes of the region. Because polar regions such as the Ross Sea are predicted to be impacted by future climate change, biological changes are also anticipated. Placing these changes in the context of natural variability is an essential element of understanding and predicting such alterations. This research thus seeks to quantify the natural variability of an Antarctic coastal system, and ultimately understand its causes and impacts on food webs and biogeochemical cycles of the Ross Sea.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "Ross Sea; AMD; USAP-DC; Amd/Us; USA/NSF; R/V NBP", "locations": "Ross Sea", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Walker; Gordon, Arnold", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "Interannual Variability in the Antarctic-Ross Sea (IVARS): Nutrients and Seasonal Production", "uid": "p0000803", "west": null}, {"awards": "9317587 Smith, Walker", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP9406", "datasets": [{"dataset_uid": "002252", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9406"}, {"dataset_uid": "002582", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP9406", "url": "https://www.rvdata.us/search/cruise/NBP9406"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The growing season for phytoplankton in polar oceans is short, but intense. There is an increasing body of evidence that in many Antarctic habitats, the most active period may be very early in the season, a period that has not been emphasized in previous investigations. This project is part of an interdisciplinary program that focuses on the dynamics of the spring phytoplankton bloom in a highly productive subsystem of the Antarctic, the Ross Sea. The overall program will test hypotheses related to the initiation of the phytoplankton bloom shortly after the onset of ice melt, the mechanisms controlling phytoplankton growth and productivity in spring, the implications and short-term fate of high productivity in spring, and the transition from spring to midsummer conditions. This component will conduct a set of process-oriented experiments designed to elucidate the controls of phytoplankton productivity, growth and accumulation as well as the mechanisms which control bacterial abundance and productivity in Antarctic waters. Specifically, the relative photosynthetic and nutrient (nitrate, ammonium) characteristics of diatom- vs. Phaeocystis- dominated assemblages will be examined to test if Phaeocystis simply grows faster under spring conditions in the Ross Sea. Phytoplankton and bacterial biomass, productivity and their interactions will be measured to elucidate the complex physical-chemical-biological interactions which occur. Substantial understanding of the mechanisms controlling phytoplankton growth and productivity in spring, the implications and short-term fate of high productivity in spring, and the transition from spring to midsummer conditions will result from this research. Finally, because the Antarctic is the ocean\u0027s largest high-nutrient, low biomass system, and hence has the greatest potential for sequestering carbon dioxide, knowledge of the dynamics of the Ross Sea phytoplankton will also increase our understanding of the carbo n cycle of the Southern Ocean.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Walker", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Bloom Dynamics and Food Web Structure in the Ross Sea: Primary Productivity, New Production and Bacterial Growth", "uid": "p0000802", "west": null}, {"awards": "0230288 Anastasio, Cort", "bounds_geometry": "POLYGON((123.30014 -75.093445,123.307404 -75.093445,123.314668 -75.093445,123.321932 -75.093445,123.329196 -75.093445,123.33646 -75.093445,123.343724 -75.093445,123.350988 -75.093445,123.358252 -75.093445,123.365516 -75.093445,123.37278 -75.093445,123.37278 -75.0952669,123.37278 -75.0970888,123.37278 -75.0989107,123.37278 -75.1007326,123.37278 -75.1025545,123.37278 -75.1043764,123.37278 -75.1061983,123.37278 -75.1080202,123.37278 -75.1098421,123.37278 -75.111664,123.365516 -75.111664,123.358252 -75.111664,123.350988 -75.111664,123.343724 -75.111664,123.33646 -75.111664,123.329196 -75.111664,123.321932 -75.111664,123.314668 -75.111664,123.307404 -75.111664,123.30014 -75.111664,123.30014 -75.1098421,123.30014 -75.1080202,123.30014 -75.1061983,123.30014 -75.1043764,123.30014 -75.1025545,123.30014 -75.1007326,123.30014 -75.0989107,123.30014 -75.0970888,123.30014 -75.0952669,123.30014 -75.093445))", "dataset_titles": "Light Absorption Coefficients for Soluble Species in Snow, Dome C, Antarctica", "datasets": [{"dataset_uid": "609519", "doi": "10.7265/N5MS3QP0", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Dome C Ice Core; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Physical Properties; Snow/ice; Snow/Ice", "people": "Anastasio, Cort; Robles, Tony", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Light Absorption Coefficients for Soluble Species in Snow, Dome C, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609519"}], "date_created": "Wed, 07 Mar 2007 00:00:00 GMT", "description": "Photochemical reactions in snow can have important effects on the chemistry and composition of the snowpack as well as the overlying atmosphere. For example, recent measurements in the Antarctic and Arctic have revealed that sunlit snow releases a number of important pollutants to the atmosphere. Our ability to understand and model this chemistry is currently limited, in part because we lack fundamental photochemical information for a number of important chemical species in snow. This award supports research that will help fill this gap by characterizing the low-temperature photochemistry of three of these key species: nitrite (NO2-), nitrous acid (HNO2), and hydrogen peroxide (HOOH). We will measure quantum yields for these reactions on ice using a sensitive technique that we recently developed during a study of nitrate (NO3-) photochemistry. In addition to this basic research, we will also measure the rates of formation of hydroxyl radical (OH), nitrogen oxides (NOx), and HOOH in illuminated Antarctic snow samples. These measurements will be important inputs for future models, and will allow us to test whether known species (e.g., NO3-, NO2- and HNO2) are responsible for most of snowpack reactivity (e.g., OH formation). Overall, results from this award will significantly improve our ability to understand snowpack chemistry, and the resulting effects on the atmosphere, both in the Antarctic as well as in the many other regions with permanent or seasonal snow. These results will also strengthen efforts to use ice core records to monitor global change. In addition to these impacts, this award will help train students and a postdoctoral fellow, and results from this work will be integrated into two classes in order to expose students to some of the important issues facing polar regions.", "east": 123.37278, "geometry": "POINT(123.33646 -75.1025545)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PHOTOMETERS \u003e SPECTROPHOTOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e HPLC; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Snow Chemistry; Antarctica; Snowpack Chemistry; Snow Samples; Hydrogen Peroxide; Snow Properties; Pollutants; Chemistry; Light Absorption; Antarctic; Chemical Species; Snow; East Antarctica; Organic Compounds; Photochemistry; LABORATORY", "locations": "Antarctica; East Antarctica; Antarctic", "north": -75.093445, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Anastasio, Cort; Robles, Tony", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Dome C Ice Core", "south": -75.111664, "title": "Laboratory Studies of Photochemistry in Antarctic Snow and Ice", "uid": "p0000175", "west": 123.30014}, {"awards": "0125761 Thiemens, Mark", "bounds_geometry": null, "dataset_titles": "Atmospheric Nitrate Isotopic Analysis at Amundsen-Scott South Pole Station, A Twenty-Five Year Record", "datasets": [{"dataset_uid": "609281", "doi": "10.7265/N5TT4NWF", "keywords": "Aerosol; Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; NBP1502; Snow/ice; Snow/Ice; South Pole Station", "people": "Savarino, Joel; Thiemens, Mark H.", "repository": "USAP-DC", "science_program": null, "title": "Atmospheric Nitrate Isotopic Analysis at Amundsen-Scott South Pole Station, A Twenty-Five Year Record", "url": "https://www.usap-dc.org/view/dataset/609281"}], "date_created": "Tue, 27 Dec 2005 00:00:00 GMT", "description": "This award supports a detailed laboratory analysis of the mass-independent isotopic composition of processes associated with atmospheric nitrate trapped in the snow pack at the South Pole. The project will specifically test if the oxygen isotopes 16O, 17O, 18O of nitrate can be used to probe the denitrification of the Antarctic stratosphere. Despite decades of research, there are several important issues in Antarctic atmospheric science, which are presently inadequately resolved. This includes quantification over time of the sources of nitrate aerosols. Today, little is known about the past denitrification of the stratosphere in high latitude regions. This lack of knowledge significantly limits our ability to understand the chemical state of ancient atmospheres and therefore evaluate present and past-coupled climate/atmosphere models. The role of nitrogen in environmental degradation is well known. This issue will also be addressed in this proposal. Atmospheric aerosols have now been shown to possess a mass-independent oxygen isotopic content. The proposed research will investigate the stable oxygen isotope ratios of nitrate in Antarctica both collected in real time and from the snow. Two periods of time will be covered. Full year nitrate aerosol collections, with week resolution time horizons, will be performed at the South Pole. Weekly aerosol collections will help us to identify any seasonal trend of the oxygen-17 excess anomaly, and eventually link this anomaly to the denitrification of the Antarctic stratosphere. This data set will also be used to test our assumption that the oxygen isotopic anomaly of nitrate is mainly formed in the stratosphere and is well preserved in the snow pack. If true, we will for the first time resolve an atmospheric signal extracted from a nitrate profile. The snow pit will allow us to see any trend in the data on a multiple decade timescale.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Snow; GROUND STATIONS; Ion Chemistry; South Pole; Not provided; Aerosol; Oxygen Isotope; GROUND-BASED OBSERVATIONS; Snow Pit; Antarctica; Admundsen-Scott Station", "locations": "Antarctica; South Pole", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Savarino, Joel; Thiemens, Mark H.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "South Pole Atmospheric Nitrate Isotopic Analysis (SPANIA)", "uid": "p0000242", "west": null}, {"awards": "9316564 Mayewski, Paul", "bounds_geometry": null, "dataset_titles": "Ross Ice Drainage System (RIDS) Glaciochemical Analysis; Siple Dome Ice Core Chemistry and Ion Data", "datasets": [{"dataset_uid": "609266", "doi": "10.7265/N5M906KG", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; Snow Pit", "people": "Kreutz, Karl; Mayewski, Paul A.; Meeker, Loren D.; Whitlow, Sallie; Twickler, Mark", "repository": "USAP-DC", "science_program": null, "title": "Ross Ice Drainage System (RIDS) Glaciochemical Analysis", "url": "https://www.usap-dc.org/view/dataset/609266"}, {"dataset_uid": "609251", "doi": "", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Mayewski, Paul A.; Dunbar, Nelia; Kreutz, Karl; Brook, Edward J.; Blunier, Thomas; Severinghaus, Jeffrey P.", "repository": "NCEI", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Ice Core Chemistry and Ion Data", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/2461"}], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "9316564 Mayewski This award is for support for a three year program to provide a high resolution record of the Antarctic climate through the acquisition, analysis, and interpretation of records of atmospheric chemical deposition taken from three ice cores located at sites within or immediately adjacent to the Ross Ice Drainage System (RIDS). These cores include one from Taylor Dome, and two from West Antarctic locations identified as potential deep drilling sites for the WAISCORES program. Collection of the two West Antarctic cores is intended to be a lightweight dry-drilling operation to depths of ~ 200 m, which will provide records of \u003e 2 kyr. Glaciochemical analyses will focus on the major cations and anions found in the antarctic atmosphere, plus methanesulfonic acid and selected measurements of the hydrogen ion, aluminum, iron, and silica. These analyses, and companion stable isotope and particle measurements to be carried out by other investigators require \u003c 7% by volume of each core, leaving \u003e 90% for other investigators and storage at the U.S. National Ice Core Laboratory. These records are intended to solve a variety of scientific objectives while also providing spatial sampling and reconnaissance for future U.S. efforts in West Antarctica. ***", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Magnesium; GROUND STATIONS; Nitrate; Methane Sulfonic Acid; Sodium; Ice Core Chemistry; Ammonium (NH4); Sulfate; Ice Core; Chloride; Potassium (k); Calcium (ca)", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Kreutz, Karl; Twickler, Mark; Whitlow, Sallie; Blunier, Thomas; Dunbar, Nelia; Brook, Edward J.; Mayewski, Paul A.; Meeker, Loren D.; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "NCEI; USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Ross Ice Drainage System (RIDS) Late Holocene Climate Variability", "uid": "p0000145", "west": null}, {"awards": "0126286 McConnell, Joseph", "bounds_geometry": "POLYGON((-180 -62.83,-144 -62.83,-108 -62.83,-72 -62.83,-36 -62.83,0 -62.83,36 -62.83,72 -62.83,108 -62.83,144 -62.83,180 -62.83,180 -65.547,180 -68.264,180 -70.981,180 -73.698,180 -76.415,180 -79.132,180 -81.849,180 -84.566,180 -87.283,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.283,-180 -84.566,-180 -81.849,-180 -79.132,-180 -76.415,-180 -73.698,-180 -70.981,-180 -68.264,-180 -65.547,-180 -62.83))", "dataset_titles": "Siple Shallow Core Density Data", "datasets": [{"dataset_uid": "609129", "doi": "10.7265/N52F7KCD", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Lamorey, Gregg W.", "repository": "USAP-DC", "science_program": null, "title": "Siple Shallow Core Density Data", "url": "https://www.usap-dc.org/view/dataset/609129"}], "date_created": "Mon, 19 Apr 2004 00:00:00 GMT", "description": "This award provides one year of support to use newly developed technology in which an ice-core melter is coupled with both an Inductively Coupled Plasma - Mass Spectrometer (ICP-MS) and a traditional Continuous Flow Analysis (CFA) system, to measure a continuous time series of chemical and trace element deposition on the Siple Dome ice core from West Antarctica. A coupled ice-core melter, ICP-MS, and CFA system will be used to measure concentrations of a number of elements, isotopes and chemical species at very high depth resolution (~2-cm) in the top 54 m of the Siple Dome A-core. Pilot data from analyses of ~6 m from the nearby but much lower accumulation J-core site at Siple Dome, together with more extensive results from Summit, Greenland, indicate that it will be possible to obtain exactly co-registered, high-quality records of at least 12 seasonally varying elements (sodium, magnesium, aluminum, potassium, calcium, iron, manganese, rubidium, strontium, zirconium, barium, lead) and three other chemical species and ions (ammonium, nitrate, calcium ion) with this system. Under this proposed research, we will also add continuous measurements of sulfate to our system. Because more than sufficient core from Siple Dome for these depths is archived at the National Ice Core Laboratory, the proposed research will require no fieldwork. The continuous, very high-resolution, ~350-y record of these elemental tracers will enhance the value of previous chemical and isotopic measurements that have been made on the Siple Dome core and will be particularly valuable for comparisons between ice-core proxies and modern instrumental data related to El Nino-Southern Oscillation (ENSO) as well as for validation of model simulations of atmospheric circulation. These data, and the expertise gained through this research, will be invaluable when this novel chemical analysis technology is eventually applied to deep ice-core records for the study of rapid climate-change events.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "WAISCORES; Siple Coast; Glaciology; Not provided; GROUND-BASED OBSERVATIONS; Ice Core; Siple; Antarctica; Density; Snow; Ice Sheet; Siple Dome; Shallow Core; GROUND STATIONS; Stratigraphy", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": -62.83, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Lamorey, Gregg W.; McConnell, Joseph", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -90.0, "title": "Continuous High Resolution Ice-Core Chemistry using ICP-MS at Siple Dome", "uid": "p0000159", "west": -180.0}, {"awards": "9526449 Mayewski, Paul", "bounds_geometry": null, "dataset_titles": "WAISCORES Snow Pit Chemistry, Antarctica", "datasets": [{"dataset_uid": "609420", "doi": "10.7265/N5SQ8XBR", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; Snow Pit; WAIS; WAISCORES", "people": "Kreutz, Karl; Mayewski, Paul A.", "repository": "USAP-DC", "science_program": null, "title": "WAISCORES Snow Pit Chemistry, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609420"}], "date_created": "Thu, 11 Jul 2002 00:00:00 GMT", "description": "This award is for support for a program of glaciochemical analyses of shallow and deep ice cores from Siple Dome, West Antarctica. Measurements that have been proposed include chloride, nitrate, sulfate, calcium, magnesium, sodium, potassium, ammonium and methansulfonic acid. These measurements will provide information about past volcanic events, biomass source strength, sea ice fluctuations, atmospheric circulation, changes in ice-free areas and the environmental response to Earth orbit insolation changes and solar variability. The glaciochemical records from the Siple Dome core will be developed at a resolution sufficient to compare with the Summit, Greenland record, thus allowing a bipolar comparison of climate change event timing and magnitude. As part of this award, an international workshop will be held during the first year to formulate a science plan for the International Transantarctic Scientific Expedition (ITASE), a program of regional surveys documenting the spatial distribution of properties measured in ice cores .", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Ion Chemistry; Antarctic; Snow Chemistry; Stable Isotopes; Snow Density; Siple Dome; GROUND-BASED OBSERVATIONS", "locations": "Antarctic; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Kreutz, Karl; Mayewski, Paul A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Siple Dome Deep Ice Core Glaciochemistry and Regional Survey - A Contribution to the WAIS Initiative", "uid": "p0000012", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
The Results Map and the Results Table
The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
As the map is panned or zoomed, the highlighted rows in the table will update.
If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page.
The bounds for the project(s)/dataset(s) selected will be displayed in red.
The selected result(s) will be highlighted in red and brought to the top of the table.
The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds
and highlight the centroid on the Results Map.
Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other
search criteria already selected.
After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
Clicking Clear in the map will clear any drawn polygon.
Clicking Search in the map, or Search on the form will have the same effect.
The returned results will be any projects/datasets with bounds that intersect the polygon.
Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
The Earth's atmosphere is a highly oxidizing medium. The abundance of oxidants such as ozone in the atmosphere strongly influences the concentrations of pollutants and greenhouse gases, with implications for human health and welfare. Because oxidants are not preserved in geological archives, knowledge of how oxidants have varied in the past under changing climate conditions is extremely limited. This award will measure a proxy for oxidant concentrations in a West Antarctic ice core over several major climate transitions over the past 50,000 years. These measurements will complement similar measurements from a Greenland ice core, which showed significant changes in atmospheric oxidants over major climate transitions covering this same time period. The addition of measurements from Antarctica will allow researchers to examine if the oxidant changes suggested by the Greenland ice core record are regional or global in scale. Knowledge of how oxidants vary naturally with climate will better inform predictions of the composition of the future atmosphere under a warming climate.<br/><br/>This award will support measurements of the isotopic composition of nitrate in a West Antarctic ice core as a proxy for oxidant concentrations in the past atmosphere. The nitrogen isotopes of nitrate provide information on the degree of preservation of nitrate in the ice core record, and thus aid in the interpretation of the observed variability in the observed nitrate concentrations and oxygen isotopes in ice core records. By providing information about the spatial scale of oxidant changes over abrupt climate change events during the last glacial period, this project may also improve our understanding of mechanisms driving these abrupt events. Insight from this project will prove valuable for forecasting the response of stratospheric circulation to climate change, which has large implications for climate feedbacks and tropospheric composition. In addition, the information gleaned from this project on the mechanisms and feedbacks during abrupt climate change events will help determine the likelihood of such rapid events occurring in the future, which would have dramatic impacts on humankind. This award will provide training for one graduate and one undergraduate student, and will support the development of a hands-on activity related to rapid climate change to be used at the annual Polar Science Weekend at the Pacific Science Center in Seattle, WA.
The chemical composition of diatom fossils in the Southern Ocean provides information about the environmental history of Antarctica, including sea ice extent, biological production, and ocean nutrient distribution. The sea ice zone is an important habitat for a group of diatoms, largely from the genus Chaetoceros, that have a unique life cycle stage under environmental stress, when they produce a structure called a resting spore. Resting spores are meant to reseed the surface ocean when conditions are more favorable. The production of these heavy resting spores tends to remove significant amounts of carbon and silicon, essential nutrients, out of the surface ocean. As a result, this group has the potential to remove carbon from the surface ocean and can impact the sedimentary record scientists use to reconstruct environmental change.
This project explores the role of resting spores and nutrients in the sedimentary record using the nitrogen isotopic signature of these fossils and how those measurements are used to estimate carbon cycle changes. Measurements of nitrogen stable isotopes of nitrate, biomass, and diatom-bound nitrogen and silicon-to-nitrogen ratios of individual species grown in the laboratory are used to quantify how resting spores record nutrient drawdown in the water column and to what degree their signature is biased toward low nutrient conditions. Laboratory incubations were conducted with surface sediment containing Chaetoceros spp.. The emergence of vegetative cells and subsequent formation of resting spores is manipulated with the addition of nutrients, primarily nitrate. The resulting samples, both of vegetative cells and resting spores were measured for diatom-bound d15N. Resting spore d15N values are consistently lower than the vegetative d15N
from the same incubations. The incubation results will be used to quantify nutrient drawdown in sea ice environments during two contrasting intervals in earth history, the last ice age and the warm Pliocene. The project provided training and research opportunities for undergraduate and graduate students. Research efforts in Antarctic earth sciences are disseminated through an interactive display at the home institution and during university sponsored events.
This work addresses uncertainties in how Chaetoceros resting spores record surface nutrient conditions in their nitrogen stable isotopic composition, the relative impact of their specific signal with respect to the full sedimentary assemblage, and their potential to bias or enhance environmental reconstructions in the sea ice zone.
The project addressed fundamental questions regarding the role of nitrification (the conversion of ammonium to nitrate by a two-step process involving two different guilds of microorganisms: ammonia- and nitrite-oxidizers) in the Antarctic marine ecosystem. Specifically, the project evaluated the contribution of carbon fixation supported by energy derived from the oxidation of nitrogen compounds (chemoautotrophy) to the overall supply of organic carbon to the food web of the Southern Ocean. Additionally, the project aimed to determine the significance of the contribution of other sources of reduced nitrogen, specifically organic nitrogen and urea, to nitrification because these contributions may not be assessed by standard protocols.
<br><br>We quantified the oxidation rates of 15N supplied as ammonium, urea and nitrite, which allowed us to estimate the contribution of urea-derived N and complete nitrification (ammonia to nitrate, N-3 to N+5) to chemoautotrophy in Antarctic coastal waters. We compared these estimates to direct measurements of the incorporation of dissolved inorganic 14C into organic matter in the dark for an independent estimate of chemoautotrophy. We made measurements on samples taken from the major water masses: surface water (~10 m), winter water (35-174 m), circumpolar deep water (175-1000 m) and slope water (>1000 m); on a cruise surveying the continental shelf and slope west of the Antarctic Peninsula in the austral summer of 2018 (LMG18-01). Samples were also taken to measure the concentrations of nitrite, ammonia, urea and polyamines; for qPCR analysis of the abundance of relevant marker genes; and for studies of processes related to the core questions of the study. The project relied on collaboration with the Palmer LTER for ancillary data (bacterioplankton abundance and production, chlorophyll, physical and additional chemical variables). The synergistic activities of this project along with the LTER activities provides a unique opportunity to assess chemoautotrophy in context of the overall ecosystem's dynamics, including both primary and secondary production processes.
<br><br>This project resulted in the training of a postdoctoral researcher and provide undergraduate students opportunities to gain hand-on experience with research on microbial geochemistry. This project contributed substantially to understanding an important aspect of nitrogen cycling and bacterioplankton production in the study area. Both PIs participate fully in the education and outreach efforts of the Palmer LTER, including making highlights of the findings available for posting to the LTER project web site, posting material to web sites at their respective departments, and incorporating material from the study in lectures and seminars presented at their respective institutions.
The project will characterize the functional, taxonomic, biotic and abiotic drivers of soil ecosystems in the Trans Antarctic Mountains (one of the most remote and harsh terrestrial landscapes on the planet). The work will utilize new high-throughput DNA and RNA sequencing technologies to identify members of the microbial communities and determine if the microbial community structures are independent of local environmental heterogeneities. In addition the project will determine if microbial diversity and function are correlated with time since the last glacial maximum (LGM). The expected results will greatly contribute to our knowledge regarding rates of microbial succession and help define the some of the limits to life and life-maintaining processes on Earth.<br/><br/>The project will analyze genomes and RNA derived from these genomes to describe the relationships between biodiversity and ecosystem functioning from soils above and below LGM elevations and to correlate these with the environmental drivers associated with their development during the last ~18,000 years. The team will identify the taxonomic diversity and the functional genetic composition within a broad suite of soil biota and examine their patterns of assembly and distribution within the framework of their geological legacies. The project will mentor participants from undergraduate students to postdoctoral researchers and prepare them to effectively engage in research to meet their career aspirations. The project will contribute to ongoing public education efforts through relationships with K-12 teachers and administrators- to include University-Public School partnerships. Less formal activities include public lecture series and weblogs aimed at providing information on Antarctic polar desert ecosystems to the general public. Targeted classrooms near each PI's institution will participate in online, real-time discussions about current topics in Antarctic ecosystems research.
The Southern Ocean in the vicinity of Antarctica is a region characterized by seasonally-driven marine phytoplankton blooms that are often dominated by microalgal species which produce large amounts of dimethylsulfoniopropionate (DMSP). DMSP can be converted to the compound dimethylsulfide (DMS) which is a molecule that can escape into the atmosphere where it is known to have strong condensation properties that are involved in regional cloud formation. Production of DMSP can influence the diversity and composition of microbial assemblages in seawater and the types and activities of microbes in the seawater will likely affect the magnitude of DMSP\DMS production. The project examined the role of DMSP in structuring the microbial communities in Antarctic waters and how this structuring may influence DMSP cycling. The project interacted with elementary students in Maine and brought undergraduate students to Bigelow Laboratory. The project also engaged with a science writer and illustrator who joined the team in Palmer Station in 2018. Many posts are available at xxx
The project is examining (1) the extent to which the cycling of DMSP in southern ocean waters influenced the composition and diversity of bacterial and protistan assemblages; (2) conversely, whether the composition and diversity of southern ocean protistan and bacterial assemblages influenced the magnitude and rates of DMSP cycling; we are awaiting results on (3) the expression of DMSP degradation genes by marine bacteria seasonally and in response to field experimental additions of DMSP; and, this year (2020-21), we will synthesize these results by quantifying (4) the microbial networks resulting from the presence of DMSP-producers and DMSP-consumers along with their predators, all involved in the cycling of DMSP in southern ocean waters. The work was accomplished by conducting continuous growth experiments with DMSP-amended natural samples of different microbial communities present in summer (2016-17) and fall (2018) at Palmer Station, WAP. Data from the molecular (such as 16S/ 18S tag sequences, DMSP-cycle gene transcripts) and biogeochemical (such as biogenic sulfur cycling, bacterial production, microbial biomass) investigations will be integrated via network analysis in the coming year (2020-21).
This collaborative project explores the signatures and causes of natural climate change in the region surrounding Antarctica over the last 40,000 years as the Earth transitioned from an ice age into the modern warm period. The researchers will investigate how the wind belts that surround Antarctica changed in their strength and position through time, and document explosive volcanic eruptions and CO2 cycling in the Southern Ocean as potential climate forcing mechanisms over this interval. Understanding how and why the climate varied naturally in the past is critical for improving understanding of modern climate change and projections of future climate under higher levels of atmospheric CO2. <br/><br/>The investigators plan to conduct a suite of chemical measurements along the 1500m length of the South Pole Ice Core, including major ion and trace element concentrations, and microparticle (dust) concentrations and size distributions. These measurements will (1) extend the South Pole record of explosive volcanic eruptions to 40,000 years using sulfate and particle data; (2) establish the relative timing of climate changes in dust source regions of Patagonia, New Zealand, and Australia using dust flux data; (3) investigate changes in the strength and position of the westerly wind belt using dust size distribution data; and (4) quantify the flux of bioavailable trace metals deposited as dust to the Southern Ocean over time. These chemistry records will also be critical for creating the timescale that will be used by all researchers studying records from the South Pole core. The project will support four graduate students and several undergraduate students across three different institutions, and become a focus of the investigators' efforts to disseminate outcomes of climate change science to the broader community.
Phytoplankton blooms in the coastal waters of the Ross Sea, Antarctica are typically dominated by either diatoms or Phaeocystis Antarctica (a flagellated algae that often can form large colonies in a gelatinous matrix). The project seeks to determine if an association of bacterial populations with Phaeocystis antarctica colonies can directly supply Phaeocystis with Vitamin B12, which can be an important co-limiting micronutrient in the Ross Sea. The supply of an essential vitamin coupled with the ability to grow at lower iron concentrations may put Phaeocystis at a competitive advantage over diatoms. Because Phaeocystis cells can fix more carbon than diatoms and Phaeocystis are not grazed as efficiently as diatoms, the project will help in refining understanding of carbon dynamics in the region as well as the basis of the food web webs. Such understanding also has the potential to help refine predictive ecological models for the region. The project will conduct public outreach activities and will contribute to undergraduate and graduate research. Engagement of underrepresented students will occur during summer student internships. A collaboration with Italian Antarctic researchers, who have been studying the Terra Nova Bay ecosystem since the 1980s, aims to enhance the project and promote international scientific collaborations. <br/><br/>The study will test whether a mutualistic symbioses between attached bacteria and Phaeocystis provides colonial cells a mechanism for alleviating chronic Vitamin B12 co-limitation effects thereby conferring them with a competitive advantage over diatom communities. The use of drifters in a time series study will provide the opportunity to track in both space and time a developing algal bloom in Terra Nova Bay and to determine community structure and the physiological nutrient status of microbial populations. A combination of flow cytometry, proteomics, metatranscriptomics, radioisotopic and stable isotopic labeling experiments will determine carbon and nutrient uptake rates and the role of bacteria in mitigating potential vitamin B12 and iron limitation. Membrane inlet and proton transfer reaction mass spectrometry will also be used to estimate net community production and release of volatile organic carbon compounds that are climatically active. Understanding how environmental parameters can influence microbial community dynamics in Antarctic coastal waters will advance an understanding of how changes in ocean stratification and chemistry could impact the biogeochemistry and food web dynamics of Southern Ocean ecosystems.
ABSTRACT<br/>Intellectual Merit:<br/>The high concentration of the major nutrients nitrate and phosphate is a fundamental characteristic of the Antarctic Zone in the Southern Ocean and is central to its role in global ocean fertility and the global carbon cycle. The isotopic composition of diatom-bound organic nitrogen is one of the best hopes for reconstructing the nutrient status of polar surface waters over glacial cycles, which in turn may hold the explanation for the decline in atmospheric carbon dioxide during ice ages. The PIs propose to generate detailed diatom-bound nitrogen isotope (δ15Ndb) records from high sedimentation rate cores from the Kerguelen Plateau. Because the cores were collected at relatively shallow seafloor depths, they have adequate planktonic and benthic foraminifera to develop accurate age models. The resulting data could be compared with climate records from Antarctic ice cores and other archives to investigate climate-related changes, including the major steps into and out of ice ages and the millennial-scale events that occur during ice ages and at their ends. The records generated in this project will provide a critical test of hypotheses for the cause of lower ice age CO2.<br/><br/>Broader impacts:<br/>This study will contribute to the goal of understanding ice ages and past CO2 changes, which both have broad implications for future climate. Undergraduates will undertake summer internships, with the possibility of extending their work into junior year projects and senior theses. In addition, the PI will lead modules for two Princeton programs for middle school teachers and will host a teacher for a six-week summer research project.
This project focuses on an important group of photosynthetic algae in the Southern Ocean (SO), diatoms, and the roles associated bacterial communities play in modulating their growth. Diatom growth fuels the SO food web and balances atmospheric carbon dioxide by sequestering the carbon used for growth to the deep ocean on long time scales as cells sink below the surface. The diatom growth is limited by the available iron in the seawater, most of which is not freely available to the diatoms but instead is tightly bound to other compounds. The nature of these compounds and how phytoplankton acquire iron from them is critical to understanding productivity in this region and globally. The investigators will conduct experiments to characterize the relationship between diatoms, their associated bacteria, and iron in open ocean and inshore waters. Experiments will involve supplying nutrients at varying nutrient ratios to natural phytoplankton assemblages to determine how diatoms and their associated bacteria respond to different conditions. This will provide valuable data that can be used by climate and food web modelers and it will help us better understand the relationship between iron, a key nutrient in the ocean, and the organisms at the base of the food web that use iron for photosynthetic growth and carbon uptake. The project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. The project supports early career senior investigators and the training of graduate and undergraduate students as well as outreach activities with middle school Girl Scouts in Rhode Island, inner city middle and high school age girls in Virginia, and middle school girls in Florida.<br/><br/>The project combines trace metal biogeochemistry, phytoplankton cultivation, and molecular biology to address questions regarding the production of iron-binding compounds and the role of diatom-bacterial interactions in this iron-limited region. Iron is an essential micronutrient for marine phytoplankton. Phytoplankton growth in the SO is limited by a lack of sufficient iron, with important consequences for carbon cycling and climate in this high latitude regime. Some of the major outstanding questions in iron biogeochemistry relate to the organic compounds that bind >99.9% of dissolved iron in surface oceans. The investigators' prior research in this region suggests that production of strong iron-binding compounds in the SO is linked to diatom blooms in waters with high nitrate to iron ratios. The sources of these compounds are unknown but the investigators hypothesize that they may be from bacteria, which are known to produce such compounds for their own use. The project will test three hypotheses concerning the production of these iron-binding compounds, limitations on the biological availability of iron even if present in high concentrations, and the roles of diatom-associated bacteria in these processes. Results from this project will provide fundamental information about the biogeochemical trigger, and biological sources and function, of natural strong iron-binding compound production in the SO, where iron plays a critical role in phytoplankton productivity, carbon cycling, and climate regulation.
Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project seeks to drive a transformative shift in our understanding of the crucial role of the Southern Ocean in taking up anthropogenic carbon and heat, and resupplying nutrients from the abyss to the surface. An observational program will generate vast amounts of new biogeochemical data that will provide a greatly improved view of the dynamics and ecosystem responses of the Southern Ocean. A modeling component will apply these observations to enhancing understanding of the current ocean, reducing uncertainty in projections of future carbon and nutrient cycles and climate.<br/><br/>Because it serves as the primary gateway through which the intermediate, deep, and bottom waters of the ocean interact with the surface layers and thus the atmosphere, the Southern Ocean has a profound influence on the oceanic uptake of anthropogenic carbon and heat as well as nutrient resupply from the abyss to the surface. Yet it is the least observed and understood region of the world ocean. The oceanographic community is on the cusp of two major advances that have the potential to transform understanding of the Southern Ocean. The first is the development of new biogeochemical sensors mounted on autonomous profiling floats that allow sampling of ocean biogeochemistry and acidification in 3-dimensional space with a temporal resolution of five to ten days. The SOCCOM float program proposed will increase the average number of biogeochemical profiles measured per month in the Southern Ocean by ~10-30x. The second is that the climate modeling community now has the computational resources and physical understanding to develop fully coupled climate models that can represent crucial mesoscale processes in the Southern Ocean, as well as corresponding models that assimilate observations to produce a state estimate. Together with the observations, this new generation of models provides the tools to vastly improve understanding of Southern Ocean processes and the ability to quantitatively assess uptake of anthropogenic carbon and heat, as well as nutrient resupply, both today and into the future.<br/><br/>In order to take advantage of the above technological and modeling breakthroughs, SOCCOM will implement the following research programs:<br/>* Theme 1: Observations. Scripps Institution of Oceanography will lead a field program to expand the number of Southern Ocean autonomous profiling floats and equip them with sensors to measure pH, nitrate, and oxygen. The University of Washington and Monterey Bay Aquarium Research Institute will design, build, and oversee deployment of the floats. Scripps will also develop a mesoscale eddying Southern Ocean state estimate that assimilates physical and biogeochemical data into the MIT ocean general circulation model.<br/>* Theme 2: Modeling. University of Arizona and Princeton University, together with NOAA's Geophysical Fluid Dynamics Laboratory (GFDL), will use SOCCOM observations to develop data/model assessment metrics and next-generation model analysis and evaluation, with the goal of improving process level understanding and reducing the uncertainty in projections of our future climate.<br/><br/>Led by Climate Central, an independent, non-profit journalism and research organization that promotes understanding of climate science, SOCCOM will collaborate with educators and media professionals to inform policymakers and the public about the challenges of climate change and its impacts on marine life in the context of the Southern Ocean. In addition, the integrated team of SOCCOM scientists and educators will:<br/>* communicate data and results of the SOCCOM efforts quickly to the public through established data networks, publications, broadcast media, and a public portal;<br/>* train a new generation of diverse ocean scientists, including undergraduate students, graduate students, and postdoctoral fellows versed in field techniques, data calibration, modeling, and communication of research to non-scientists;<br/>* transfer new sensor technology and related software to autonomous instrument providers and manufacturers to ensure that they become widely useable.
Hastings/1246223<br/><br/>This award supports a project with the aim of distinguishing the sources of nitrate deposition to the West Antarctic Ice Sheet (WAIS) using isotopic ratios snow in archive snow and ice samples. The isotopic composition of nitrate has been shown to contain information about the source of the nitrate (i.e. nitrogen oxides = NOx = NO+NO2) and the oxidation processes that convert NOx to nitrate in the atmosphere prior to deposition. A difficulty in interpreting records in the context of NOx sources is that nitrate can be post-depositionally processed in surface snow, such that the archived record does not reflect the composition of the atmosphere. This intellectual merit of this work specifically aims to investigate variability in the isotopic composition of nitrate in snow and ice from the WAIS in the context of accumulation rate, NOx source emissions, and atmospheric chemistry. These records will be interpreted in the context of our understanding of biospheric (biomass burning, microbial processes in soils), atmospheric (lightning, transport, chemistry), and climate (temperature, accumulation rate) changes over time. A graduate student will be supported as part of this project, and both graduate student and PI will be involved in communicating the utility and results of polar research to elementary school students in the Providence, RI area. The broader impacts of the project also include making efforts to attract more young, female scientists to polar research by establishing a connection between the Earth Science Women's Network (ESWN), an organization PI Hastings helped to establish, and the Association of Polar Early Career Scientists (APECS). Finally, results of all measurements will be presented at relevant conferences, made available publicly and published in peer-reviewed journals.
0538520<br/>Thiemens<br/>This award supports a project to develop the first complete record of multiple isotope ratios of nitrate and sulfate covering the last ~100,000 years, from the deep ice core planned for the central ice divide of the West Antarctic Ice Sheet (WAIS). The WAIS Divide ice core will be the highest resolution long ice core obtained from Antarctica and we can expect important complementary information to be available, including accurate knowledge of past accumulation rates, temperatures, and compounds such as H2O2, CO and CH4. These compounds play significant roles in global atmospheric chemistry and climate. Especially great potential lies in the use of multiple isotope signatures. The unique mass independent fractionation (MIF) 17O signature of ozone is observed in both nitrate and sulfate, due to the interaction of their precursors with ozone. The development of methods to measure the multiple-isotope composition of small samples of sulfate and nitrate makes continuous high resolution measurements on ice cores feasible for the first time. Recent work has shown that such measurements can be used to determine the hydroxyl radial (OH) and ozone (O3) concentrations in the paleoatmosphere as well as to apportion sulfate and nitrate sources. There is also considerable potential in using these isotope measurements to quantify post depositional changes. In the first two years, continuous measurements from the upper ~100-m of ice at WAIS divide will be obtained, to provide a detailed look at seasonal through centennial scale variability. In the third year, measurements will be made throughout the available depth of the deep core (expected to reach ~500 m at this time). The broader impacts of the project include applications to diverse fields including atmospheric chemistry, glaciology, meteorology, and paleoclimatology. Because nitrate and sulfate are important atmospheric pollutants, the results will also have direct and relevance to global environmental policy. This project will coincide with the International Polar Year (2007-2008), and contributes to goals of the IPY, which include the fostering of interdisciplinary research toward enhanced understanding of atmospheric chemistry and climate in the polar regions.
During the past few decades of oceanographic research, it has been recognized that significant variations in biogeochemical processes occur among years. Interannual variations in the Southern Ocean are known to occur in ice extent and concentration, in the composition of herbivore communities, and in bird and marine mammal distributions and reproductive success. However, little is known about the interannual variations in production of phytoplankton or the role that these variations play in the food web. This project will collect time series data on the seasonal production of phytoplankton in the southern Ross Sea, Antarctica. Furthermore, it will assess the interannual variations of the production of the two major functional groups of the system, diatoms and Phaeocystis Antarctica, a colonial haptophyte. The Ross Sea provides a unique setting for this type of investigation for a number of reasons. For example, a de facto time-series has already been initiated in the Ross Sea through the concentration of a number of programs in the past ten years. It also is well known that the species diversity is reduced relative to other systems and its seasonal production is as great as anywhere in the Antarctic. Most importantly, seasonal production of both the total phytoplankton community (as well as its two functional groups) can be estimated from late summer nutrient profiles. The project will involve short cruises on the US Coast Guard ice breakers in the southern Ross Sea that will allow the collection of water column nutrient and particulate after data at specific locations in the late summer of each of five years. Additionally, two moorings with in situ nitrate analyzers moored at fifteen will be deployed, thus collecting for the first time in the in the Antarctic a time-series of euphotic zone nutrient concentrations over the entire growing season. All nutrient data will be used to calculate seasonal production for each year in the southern Ross Sea and compared to previously collected information, thereby providing an assessment of interannual variations in net community production. Particulate matter data will allow us to estimate the amount of export from the surface layer by late summer, and therefore calculate the interannual variability of this ecosystem process. Interannual variations of seasonal production (and of the major taxa of producers) are a potentially significant feature in the growth and survival of higher trophic levels within the food web of the Ross Sea. They are also important in order to understand the natural variability in biogeochemical processes of the region. Because polar regions such as the Ross Sea are predicted to be impacted by future climate change, biological changes are also anticipated. Placing these changes in the context of natural variability is an essential element of understanding and predicting such alterations. This research thus seeks to quantify the natural variability of an Antarctic coastal system, and ultimately understand its causes and impacts on food webs and biogeochemical cycles of the Ross Sea.
The growing season for phytoplankton in polar oceans is short, but intense. There is an increasing body of evidence that in many Antarctic habitats, the most active period may be very early in the season, a period that has not been emphasized in previous investigations. This project is part of an interdisciplinary program that focuses on the dynamics of the spring phytoplankton bloom in a highly productive subsystem of the Antarctic, the Ross Sea. The overall program will test hypotheses related to the initiation of the phytoplankton bloom shortly after the onset of ice melt, the mechanisms controlling phytoplankton growth and productivity in spring, the implications and short-term fate of high productivity in spring, and the transition from spring to midsummer conditions. This component will conduct a set of process-oriented experiments designed to elucidate the controls of phytoplankton productivity, growth and accumulation as well as the mechanisms which control bacterial abundance and productivity in Antarctic waters. Specifically, the relative photosynthetic and nutrient (nitrate, ammonium) characteristics of diatom- vs. Phaeocystis- dominated assemblages will be examined to test if Phaeocystis simply grows faster under spring conditions in the Ross Sea. Phytoplankton and bacterial biomass, productivity and their interactions will be measured to elucidate the complex physical-chemical-biological interactions which occur. Substantial understanding of the mechanisms controlling phytoplankton growth and productivity in spring, the implications and short-term fate of high productivity in spring, and the transition from spring to midsummer conditions will result from this research. Finally, because the Antarctic is the ocean's largest high-nutrient, low biomass system, and hence has the greatest potential for sequestering carbon dioxide, knowledge of the dynamics of the Ross Sea phytoplankton will also increase our understanding of the carbo n cycle of the Southern Ocean.
Photochemical reactions in snow can have important effects on the chemistry and composition of the snowpack as well as the overlying atmosphere. For example, recent measurements in the Antarctic and Arctic have revealed that sunlit snow releases a number of important pollutants to the atmosphere. Our ability to understand and model this chemistry is currently limited, in part because we lack fundamental photochemical information for a number of important chemical species in snow. This award supports research that will help fill this gap by characterizing the low-temperature photochemistry of three of these key species: nitrite (NO2-), nitrous acid (HNO2), and hydrogen peroxide (HOOH). We will measure quantum yields for these reactions on ice using a sensitive technique that we recently developed during a study of nitrate (NO3-) photochemistry. In addition to this basic research, we will also measure the rates of formation of hydroxyl radical (OH), nitrogen oxides (NOx), and HOOH in illuminated Antarctic snow samples. These measurements will be important inputs for future models, and will allow us to test whether known species (e.g., NO3-, NO2- and HNO2) are responsible for most of snowpack reactivity (e.g., OH formation). Overall, results from this award will significantly improve our ability to understand snowpack chemistry, and the resulting effects on the atmosphere, both in the Antarctic as well as in the many other regions with permanent or seasonal snow. These results will also strengthen efforts to use ice core records to monitor global change. In addition to these impacts, this award will help train students and a postdoctoral fellow, and results from this work will be integrated into two classes in order to expose students to some of the important issues facing polar regions.
This award supports a detailed laboratory analysis of the mass-independent isotopic composition of processes associated with atmospheric nitrate trapped in the snow pack at the South Pole. The project will specifically test if the oxygen isotopes 16O, 17O, 18O of nitrate can be used to probe the denitrification of the Antarctic stratosphere. Despite decades of research, there are several important issues in Antarctic atmospheric science, which are presently inadequately resolved. This includes quantification over time of the sources of nitrate aerosols. Today, little is known about the past denitrification of the stratosphere in high latitude regions. This lack of knowledge significantly limits our ability to understand the chemical state of ancient atmospheres and therefore evaluate present and past-coupled climate/atmosphere models. The role of nitrogen in environmental degradation is well known. This issue will also be addressed in this proposal. Atmospheric aerosols have now been shown to possess a mass-independent oxygen isotopic content. The proposed research will investigate the stable oxygen isotope ratios of nitrate in Antarctica both collected in real time and from the snow. Two periods of time will be covered. Full year nitrate aerosol collections, with week resolution time horizons, will be performed at the South Pole. Weekly aerosol collections will help us to identify any seasonal trend of the oxygen-17 excess anomaly, and eventually link this anomaly to the denitrification of the Antarctic stratosphere. This data set will also be used to test our assumption that the oxygen isotopic anomaly of nitrate is mainly formed in the stratosphere and is well preserved in the snow pack. If true, we will for the first time resolve an atmospheric signal extracted from a nitrate profile. The snow pit will allow us to see any trend in the data on a multiple decade timescale.
9316564 Mayewski This award is for support for a three year program to provide a high resolution record of the Antarctic climate through the acquisition, analysis, and interpretation of records of atmospheric chemical deposition taken from three ice cores located at sites within or immediately adjacent to the Ross Ice Drainage System (RIDS). These cores include one from Taylor Dome, and two from West Antarctic locations identified as potential deep drilling sites for the WAISCORES program. Collection of the two West Antarctic cores is intended to be a lightweight dry-drilling operation to depths of ~ 200 m, which will provide records of > 2 kyr. Glaciochemical analyses will focus on the major cations and anions found in the antarctic atmosphere, plus methanesulfonic acid and selected measurements of the hydrogen ion, aluminum, iron, and silica. These analyses, and companion stable isotope and particle measurements to be carried out by other investigators require < 7% by volume of each core, leaving > 90% for other investigators and storage at the U.S. National Ice Core Laboratory. These records are intended to solve a variety of scientific objectives while also providing spatial sampling and reconnaissance for future U.S. efforts in West Antarctica. ***
This award provides one year of support to use newly developed technology in which an ice-core melter is coupled with both an Inductively Coupled Plasma - Mass Spectrometer (ICP-MS) and a traditional Continuous Flow Analysis (CFA) system, to measure a continuous time series of chemical and trace element deposition on the Siple Dome ice core from West Antarctica. A coupled ice-core melter, ICP-MS, and CFA system will be used to measure concentrations of a number of elements, isotopes and chemical species at very high depth resolution (~2-cm) in the top 54 m of the Siple Dome A-core. Pilot data from analyses of ~6 m from the nearby but much lower accumulation J-core site at Siple Dome, together with more extensive results from Summit, Greenland, indicate that it will be possible to obtain exactly co-registered, high-quality records of at least 12 seasonally varying elements (sodium, magnesium, aluminum, potassium, calcium, iron, manganese, rubidium, strontium, zirconium, barium, lead) and three other chemical species and ions (ammonium, nitrate, calcium ion) with this system. Under this proposed research, we will also add continuous measurements of sulfate to our system. Because more than sufficient core from Siple Dome for these depths is archived at the National Ice Core Laboratory, the proposed research will require no fieldwork. The continuous, very high-resolution, ~350-y record of these elemental tracers will enhance the value of previous chemical and isotopic measurements that have been made on the Siple Dome core and will be particularly valuable for comparisons between ice-core proxies and modern instrumental data related to El Nino-Southern Oscillation (ENSO) as well as for validation of model simulations of atmospheric circulation. These data, and the expertise gained through this research, will be invaluable when this novel chemical analysis technology is eventually applied to deep ice-core records for the study of rapid climate-change events.
This award is for support for a program of glaciochemical analyses of shallow and deep ice cores from Siple Dome, West Antarctica. Measurements that have been proposed include chloride, nitrate, sulfate, calcium, magnesium, sodium, potassium, ammonium and methansulfonic acid. These measurements will provide information about past volcanic events, biomass source strength, sea ice fluctuations, atmospheric circulation, changes in ice-free areas and the environmental response to Earth orbit insolation changes and solar variability. The glaciochemical records from the Siple Dome core will be developed at a resolution sufficient to compare with the Summit, Greenland record, thus allowing a bipolar comparison of climate change event timing and magnitude. As part of this award, an international workshop will be held during the first year to formulate a science plan for the International Transantarctic Scientific Expedition (ITASE), a program of regional surveys documenting the spatial distribution of properties measured in ice cores .