{"dp_type": "Dataset", "free_text": "isotopes"}
[{"awards": "1841228 Lyons, W. Berry", "bounds_geometry": ["POINT(163.5074 -77.5789)"], "date_created": "Mon, 28 Oct 2024 00:00:00 GMT", "description": "This dataset includes aqueous chemistry of water from the hyporheic zone in Wales Stream, Taylor Valley, Antarctica, just upstream from New Harbor Camp. Data includes major ions, nutrients, trace elements, stable iron isotopes, and stable isotopes of water.", "east": 163.5074, "geometry": ["POINT(163.5074 -77.5789)"], "keywords": "Antarctica; Cryosphere; Nutrients; Stable Isotopes; Taylor Valley; Trace Elements", "locations": "Taylor Valley; Antarctica", "north": -77.5789, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Gardner, Christopher B.", "project_titles": "Fe Behavior and Bioavailability in Sub-aerial Runoff into the Ross Sea", "projects": [{"proj_uid": "p0010483", "repository": "USAP-DC", "title": "Fe Behavior and Bioavailability in Sub-aerial Runoff into the Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.5789, "title": "Hyporheic zone geochemistry of Wales Stream, Taylor Valley, Antarctica", "uid": "601847", "west": 163.5074}, {"awards": "1841228 Lyons, W. Berry", "bounds_geometry": ["POLYGON((163.38627 -77.56133,163.39875899999998 -77.56133,163.411248 -77.56133,163.423737 -77.56133,163.436226 -77.56133,163.448715 -77.56133,163.46120399999998 -77.56133,163.473693 -77.56133,163.48618199999999 -77.56133,163.498671 -77.56133,163.51116 -77.56133,163.51116 -77.564889,163.51116 -77.568448,163.51116 -77.572007,163.51116 -77.575566,163.51116 -77.579125,163.51116 -77.582684,163.51116 -77.586243,163.51116 -77.58980199999999,163.51116 -77.593361,163.51116 -77.59692,163.498671 -77.59692,163.48618199999999 -77.59692,163.473693 -77.59692,163.46120399999998 -77.59692,163.448715 -77.59692,163.436226 -77.59692,163.423737 -77.59692,163.411248 -77.59692,163.39875899999998 -77.59692,163.38627 -77.59692,163.38627 -77.593361,163.38627 -77.58980199999999,163.38627 -77.586243,163.38627 -77.582684,163.38627 -77.579125,163.38627 -77.575566,163.38627 -77.572007,163.38627 -77.568448,163.38627 -77.564889,163.38627 -77.56133))"], "date_created": "Mon, 28 Oct 2024 00:00:00 GMT", "description": "This dataset includes the stable isotope signature of massive buried ice, eastern Taylor Valley, Antarctica collected during the austral summer season of 2019-2020", "east": 163.51116, "geometry": ["POINT(163.448715 -77.579125)"], "keywords": "Antarctica; Buried Ice; Cryosphere; Stable Isotopes; Stable Water Isotopes; Taylor Valley", "locations": "Taylor Valley; Antarctica", "north": -77.56133, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Gardner, Christopher B.", "project_titles": "Fe Behavior and Bioavailability in Sub-aerial Runoff into the Ross Sea", "projects": [{"proj_uid": "p0010483", "repository": "USAP-DC", "title": "Fe Behavior and Bioavailability in Sub-aerial Runoff into the Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.59692, "title": "Isotopic signature of massive buried ice, eastern Taylor Valley, Antarctica", "uid": "601848", "west": 163.38627}, {"awards": "1744871 Robinson, Rebecca", "bounds_geometry": ["POLYGON((-80 -59,-76.8 -59,-73.6 -59,-70.4 -59,-67.2 -59,-64 -59,-60.8 -59,-57.599999999999994 -59,-54.4 -59,-51.2 -59,-48 -59,-48 -60.6,-48 -62.2,-48 -63.8,-48 -65.4,-48 -67,-48 -68.6,-48 -70.2,-48 -71.8,-48 -73.4,-48 -75,-51.2 -75,-54.4 -75,-57.6 -75,-60.8 -75,-64 -75,-67.2 -75,-70.4 -75,-73.6 -75,-76.8 -75,-80 -75,-80 -73.4,-80 -71.8,-80 -70.2,-80 -68.6,-80 -67,-80 -65.4,-80 -63.8,-80 -62.2,-80 -60.6,-80 -59))"], "date_created": "Tue, 13 Aug 2024 00:00:00 GMT", "description": "This dataset includes measurements of diatom-bound nitrogen isotopic composition (d15Ndb; \u2030 vs air), bulk sedimentary nitrogen isotopic composition (d15Nbulk; \u2030 vs air), and total nitrogen (wt%) from 81 Holocene and late deglacial-aged samples from ODP Site 1098B on the western Antarctic Peninsula.", "east": -48.0, "geometry": ["POINT(-64 -67)"], "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Geochemistry; Sediment", "locations": "Antarctic Peninsula; Antarctica", "north": -59.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Dove, Isabel; Jones, Colin; Kelly, Roger; Robinson, Rebecca", "project_titles": "The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information?", "projects": [{"proj_uid": "p0010234", "repository": "USAP-DC", "title": "The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information?"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.0, "title": "Diatom-bound and bulk sedimentary N isotopes from ODP Site 1098, Western Antarctic Peninsula", "uid": "601816", "west": -80.0}, {"awards": "1744871 Robinson, Rebecca", "bounds_geometry": ["POLYGON((100 -62,104.4 -62,108.8 -62,113.2 -62,117.6 -62,122 -62,126.4 -62,130.8 -62,135.2 -62,139.6 -62,144 -62,144 -64,144 -66,144 -68,144 -70,144 -72,144 -74,144 -76,144 -78,144 -80,144 -82,139.6 -82,135.2 -82,130.8 -82,126.4 -82,122 -82,117.6 -82,113.19999999999999 -82,108.8 -82,104.4 -82,100 -82,100 -80,100 -78,100 -76,100 -74,100 -72,100 -70,100 -68,100 -66,100 -64,100 -62))"], "date_created": "Tue, 13 Aug 2024 00:00:00 GMT", "description": "This dataset includes measurements of diatom-bound nitrogen isotopic composition (d15Ndb; \u2030 vs air), bulk sedimentary nitrogen isotopic composition (d15Nbulk; \u2030 vs air), and total nitrogen (wt%) from 121 samples from IODP Site U1357B in the Adelie Basin. The sediments are Holocene age (11 kyBP to present).", "east": 144.0, "geometry": ["POINT(122 -72)"], "keywords": "Antarctica; Cryosphere; Wilkes Land", "locations": "Wilkes Land; Antarctica", "north": -62.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Dove, Isabel; Kelly, Roger; Robinson, Rebecca", "project_titles": "The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information?", "projects": [{"proj_uid": "p0010234", "repository": "USAP-DC", "title": "The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information?"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.0, "title": "Diatom-bound and bulk sedimentary nitrogen isotopes from IODP Site U1357", "uid": "601817", "west": 100.0}, {"awards": "1745078 Brook, Edward J.", "bounds_geometry": null, "date_created": "Tue, 23 Jul 2024 00:00:00 GMT", "description": "This dataset includes ~60-year resolution measurements of the Carbon-13 and Deuterium isotopic Composition of Atmospheric Methane (\u03b413C-CH4 and \u03b4D-CH4, respectively) of gas bubbles from the WAIS Divide Replicate Ice Core. All measurements were made at the University of Bern Ice Core Laboratory (Bern, Switzerland) using a new methane stable isotope analytical system. The data includes depth-adjacent replicate samples (separated by no more than 0.3m of depth). The data are displayed as a function of WAIS Divide Replicate Core depth and were corrected for gravitational and diffusional fractionation that occurs in the firn column according to Buizert et al., 2013. 1-sigma measurement uncertainty is also included and is determined from analytical uncertainty and uncertainties associated with diffusional and gravitational fractionation. Additional funding for this work was provided by the Swiss National Foundation, Awards #200020_172506 and #200020B_200328L.", "east": null, "geometry": null, "keywords": "Abrupt Climate Change; Antarctica; Atmospheric Gases; Biogeochemical Cycles; Carbon Cycle; Cryosphere; Greenhouse Gas; Methane; West Antarctic Ice Sheet Divide", "locations": "West Antarctic Ice Sheet Divide; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Riddell-Young, Benjamin; Lee, James; Schmitt, Jochen; Fischer, Hubertus; Bauska, Thomas; Menking, Andy; Iseli, Rene; Clark, Reid; Brook, Edward J.", "project_titles": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores", "projects": [{"proj_uid": "p0010416", "repository": "USAP-DC", "title": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Carbon-13 and Deuterium isotopic composition of atmospheric methane across Heinrich Stadial 4, and Dansgaard Oesgher Event 8, WAIS Divide Replicate Ice Core, Antarctica", "uid": "601813", "west": null}, {"awards": "2042495 Blackburn, Terrence; 1644171 Blackburn, Terrence", "bounds_geometry": ["POLYGON((161.9 -77.65,161.96 -77.65,162.02 -77.65,162.08 -77.65,162.14000000000001 -77.65,162.2 -77.65,162.26 -77.65,162.32 -77.65,162.38 -77.65,162.44 -77.65,162.5 -77.65,162.5 -77.66000000000001,162.5 -77.67,162.5 -77.68,162.5 -77.69,162.5 -77.7,162.5 -77.71000000000001,162.5 -77.72,162.5 -77.73,162.5 -77.74,162.5 -77.75,162.44 -77.75,162.38 -77.75,162.32 -77.75,162.26 -77.75,162.2 -77.75,162.14000000000001 -77.75,162.08 -77.75,162.02 -77.75,161.96 -77.75,161.9 -77.75,161.9 -77.74,161.9 -77.73,161.9 -77.72,161.9 -77.71000000000001,161.9 -77.7,161.9 -77.69,161.9 -77.68,161.9 -77.67,161.9 -77.66000000000001,161.9 -77.65))"], "date_created": "Mon, 01 Jul 2024 00:00:00 GMT", "description": "This dataset contains uranium and thorium isotopic compositions (U-234, U-235, U-238, Th-230, Th-232) and major element compositions (Al, K, Na, Ca, Fe, Mn, reported as oxides) for silicate sediments from glaciogenic drifts associated with advances of Taylor Glacier in Taylor Valley, Antarctica. Isotopic measurements were obtained by ID-TIMS in the Keck Isotope Facility at UC Santa Cruz and elemental measurements were obtained by ICP-OES in the Plasma Analytical Laboratory. All measurements include fully propagated analytical and systematic (e.g. isotopic tracer) uncertainties. Chemical index of alteration was calculated from major element data. Prior to measurements, sediments were sieved to \u2264125 \u03bcm grain sizes, separated into quartz-feldspar-rich and clay-rich aliquots by hydraulic settling, and subjected to sequential chemical extractions (\"leaching\") prior to silicate digestion.", "east": 162.5, "geometry": ["POINT(162.2 -77.7)"], "keywords": "Antarctica; Cryosphere; Erosion; Isotope Data; Major Elements; Soil; Taylor Glacier; Taylor Valley", "locations": "Antarctica; Taylor Glacier; Taylor Valley", "north": -77.65, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Edwards, Graham; Piccione, Gavin; Blackburn, Terrence; Tulaczyk, Slawek", "project_titles": "Collaborative Research: Reconstructing East Antarctica\u2019s Past Response to Climate using Subglacial Precipitates; U-Series Comminution Age Constraints on Taylor Valley Erosion", "projects": [{"proj_uid": "p0010243", "repository": "USAP-DC", "title": "U-Series Comminution Age Constraints on Taylor Valley Erosion"}, {"proj_uid": "p0010192", "repository": "USAP-DC", "title": "Collaborative Research: Reconstructing East Antarctica\u2019s Past Response to Climate using Subglacial Precipitates"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.75, "title": "U-Th isotopes and major elements in sediments from Taylor Valley, Antarctica", "uid": "601806", "west": 161.9}, {"awards": "1903681 Brook, Edward J.", "bounds_geometry": ["POLYGON((160 -77.6,160.25 -77.6,160.5 -77.6,160.75 -77.6,161 -77.6,161.25 -77.6,161.5 -77.6,161.75 -77.6,162 -77.6,162.25 -77.6,162.5 -77.6,162.5 -77.63,162.5 -77.66,162.5 -77.69,162.5 -77.72,162.5 -77.75,162.5 -77.78,162.5 -77.81,162.5 -77.84,162.5 -77.87,162.5 -77.9,162.25 -77.9,162 -77.9,161.75 -77.9,161.5 -77.9,161.25 -77.9,161 -77.9,160.75 -77.9,160.5 -77.9,160.25 -77.9,160 -77.9,160 -77.87,160 -77.84,160 -77.81,160 -77.78,160 -77.75,160 -77.72,160 -77.69,160 -77.66,160 -77.63,160 -77.6))"], "date_created": "Wed, 26 Jun 2024 00:00:00 GMT", "description": "This data set is a new N2O isotopic data set including site preference isotopic data derived from ice core samples containing air spanning the deglacial N2O rise (16.5-13.2 ka). The data extend through the Younger Dryas cooling interval, when N2O decreased by about 30 ppb (13.2-11.9 ka). The data set also contains N2O isotope records spanning the Heinrich Stadial 4 / Dansgaard-Oeschger 8 (HS4/DO8) transition (39.8-35.8 ka), an example of cyclical millennial-scale N2O variability characteristic of the last ice age. ", "east": 162.5, "geometry": ["POINT(161.25 -77.75)"], "keywords": "Antarctica; Cryosphere; Ice Core; Nitrous Oxide; Taylor Glacier", "locations": "Taylor Glacier; Taylor Glacier; Antarctica", "north": -77.6, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Menking, Andy; Brook, Edward J.", "project_titles": "Deciphering Changes in Atmospheric Nitrous Oxide Concentration During the Last Ice Age Using the Intramolecular Site-Preference of Nitrogen Isotopes", "projects": [{"proj_uid": "p0010465", "repository": "USAP-DC", "title": "Deciphering Changes in Atmospheric Nitrous Oxide Concentration During the Last Ice Age Using the Intramolecular Site-Preference of Nitrogen Isotopes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Final N2O isotopic data including isotopomer ratios for the last deglaciation and Heinrich Stadia 4/Dansgaard Oeschger Event 8", "uid": "601803", "west": 160.0}, {"awards": "2042495 Blackburn, Terrence", "bounds_geometry": ["POINT(157 -76)"], "date_created": "Tue, 30 Apr 2024 00:00:00 GMT", "description": "This dataset represents geochemical analyses on sample PRR-50504, a chemical precipitate deposited beneath the East Antarctic Ice Sheet and collected at Elephant Moraine. The data include U-series geochronological data, carbon and oxygen stable isotope data, Sr isotopic data, and laser ablation elemental analyses. This material is based on services provided by the Polar Rock Repository with support from the National Science Foundation, under Cooperative Agreement OPP-2137467.", "east": 157.0, "geometry": ["POINT(157 -76)"], "keywords": "Antarctica; Carbon; Carbon Isotopes; Cryosphere; East Antarctica; Elephant Moraine; Geochronology; Isotope Data; Opal; Oxygen Isotope; Sr; Subglacial; U", "locations": "Antarctica; Elephant Moraine; East Antarctica", "north": -76.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Piccione, Gavin", "project_titles": "Collaborative Research: Reconstructing East Antarctica\u2019s Past Response to Climate using Subglacial Precipitates", "projects": [{"proj_uid": "p0010192", "repository": "USAP-DC", "title": "Collaborative Research: Reconstructing East Antarctica\u2019s Past Response to Climate using Subglacial Precipitates"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.0, "title": "U-series Geochronology, Isotope, and Elemental Geochemistry of a Subglacial Precipitate that Formed Across Termination III", "uid": "601781", "west": 157.0}, {"awards": "0739512 Walker, Sally; 1745064 Perez-Huerta, Alberto; 1745057 Walker, Sally; 1745080 Gillikin, David", "bounds_geometry": null, "date_created": "Mon, 05 Feb 2024 00:00:00 GMT", "description": "Adamussium colbecki is a large thin-shelled scallop common in Antarctic waters and well represented in the fossil record. Shell nitrogen isotopes in carbonate bound organic matter (d15NCBOM) have the potential to record sea ice state over time. Recent studies illustrated that d15NCBOM values provide a similar proxy as soft tissue d15N values which are in turn are predicably related to food d15N values (Gillikin et al., 2017, GCA, 200, 55\u201366, doi: 10.1016/j.gca.2016.12.008). Sea-ice organic N should have higher d15N values compared to open water organics due to nitrate draw down in the ice (Fripiat et al., 2014, Global Biogeochem. Cycles, 28, 115\u2013130, doi:10.1002/2013GB004729). To test this hypothesis we analyzed A. colbecki shells from Explorers Cove and Bay of Sails, western McMurdo Sound, Antarctica. These sites have different sea ice states: persistent (multiannual) sea ice at Explorers Cove and annual sea ice (that melts out every year) at Bay of Sails. Six adults shells collected at these sites in 2008 (3 from each site) and two juveniles collected in 2016 from Explorers Cove were be serially sampled for d15NCBOM values from the growing shell margin to the umbo. d15NCBOM values from Explorers Cove with persistent sea ice cover were consistently higher (+10 \u00b1 0.7 \u2030) than those from Bay of Sails where the sea ice melts out every year (+8 \u00b1 0.5 \u2030; t-test p\u003c0.0001). d15NCBOM data from Mid- to Late Holocene shells that grew in these locations will also be presented. We posit that nitrogen isotopes in A. colbecki shells have a high potential to record sea ice cover.", "east": null, "geometry": null, "keywords": "Adamussium Colbecki; Antarctica; Biota; Carbon Isotopes; Explorers Cove; Nitrogen Isotopes; Oxygen Isotope; Scallop", "locations": "Explorers Cove; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Gillikin, David; Puhalski, Emma; Camarra, Steve; Cronin, Kelly; Verheyden, Anouk; Walker, Sally", "project_titles": "Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores; Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past", "projects": [{"proj_uid": "p0000203", "repository": "USAP-DC", "title": "Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores"}, {"proj_uid": "p0010238", "repository": "USAP-DC", "title": "Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Nitrogen, carbon, and oxygen isotopes in the shell of the Antarctic scallop Adamussium colbecki as a proxy for sea ice cover in Antarctica.", "uid": "601764", "west": null}, {"awards": "1745080 Gillikin, David; 0739512 Walker, Sally; 1745057 Walker, Sally; 1341612 Bowser, Samuel; 1745064 Perez-Huerta, Alberto", "bounds_geometry": ["POLYGON((163 -77.2,163.2 -77.2,163.4 -77.2,163.6 -77.2,163.8 -77.2,164 -77.2,164.2 -77.2,164.4 -77.2,164.6 -77.2,164.8 -77.2,165 -77.2,165 -77.25,165 -77.3,165 -77.35000000000001,165 -77.4,165 -77.45,165 -77.5,165 -77.55,165 -77.60000000000001,165 -77.65,165 -77.7,164.8 -77.7,164.6 -77.7,164.4 -77.7,164.2 -77.7,164 -77.7,163.8 -77.7,163.6 -77.7,163.4 -77.7,163.2 -77.7,163 -77.7,163 -77.65,163 -77.60000000000001,163 -77.55,163 -77.5,163 -77.45,163 -77.4,163 -77.35000000000001,163 -77.3,163 -77.25,163 -77.2))"], "date_created": "Fri, 12 Jan 2024 00:00:00 GMT", "description": "This dataset contains stable isotopes of carbon and oxygen sampled from 6 adult and 2 juvenile Adamussium colbecki valves. Three of the adults were collected live from Bay of Sails. Three of the adults and the two juveniles were collected from Explorers Cove. ", "east": 165.0, "geometry": ["POINT(164 -77.45)"], "keywords": "Adamussium Colbecki; Antarctica; Bay Of Sails; Carbon; Explorers Cove; McMurdo Sound; Oxygen; Stable Isotopes", "locations": "Antarctica; Explorers Cove; Bay Of Sails; McMurdo Sound", "north": -77.2, "nsf_funding_programs": null, "persons": "Cronin, Kelly; Gillikin, David; Puhalski, Emma; Camarra, Steve; Andrus, Fred; Perez-Huerta, Alberto; Verheyden, Anouk; Bowser, Samuel S.; Walker, Sally", "project_titles": "Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past", "projects": [{"proj_uid": "p0010238", "repository": "USAP-DC", "title": "Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.7, "title": "Stable isotopes of Oxygen and Carbon in Adamissium colbecki from Explorers Cove and Bay of Sails", "uid": "601761", "west": 163.0}, {"awards": "0538657 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(-112.05 -79.28)"], "date_created": "Fri, 20 Oct 2023 00:00:00 GMT", "description": "Major gas components of air data set, containing d15N, d18O of O2, dO2/N2, and dAr/N2 from the WAIS Divide ice core at high resolution. These data are used to constrain surface temperature, biosphere oxygen cycling, and firn thickness through the past \u003e60 kyr.", "east": -112.05, "geometry": ["POINT(-112.05 -79.28)"], "keywords": "Antarctica; Delta 15N; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Gas Records; Ice Core Records; Isotope; Nitrogen; Nitrogen Isotopes; Oxygen; Oxygen Isotope; Snow/ice; Snow/Ice; WAIS; WAIS Divide", "locations": "Antarctica; WAIS Divide; WAIS", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.", "project_titles": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate", "projects": [{"proj_uid": "p0000036", "repository": "USAP-DC", "title": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.28, "title": "d15N and d18O of air in the WAIS Divide ice core", "uid": "601747", "west": -112.05}, {"awards": "1043092 Steig, Eric", "bounds_geometry": ["POINT(-112.05 -79.28)"], "date_created": "Fri, 13 Oct 2023 00:00:00 GMT", "description": "This data set contains the final Discrete WAIS ice core WDC06A Methane (CH4) data. The data have been transferred from NSIDC (nsidc0631_sowers) with minimal metadata.", "east": -112.05, "geometry": ["POINT(-112.05 -79.28)"], "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Methane; WAIS", "locations": "Antarctica; WAIS; WAIS", "north": -79.28, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Sowers, Todd A.; Brook, Edward J.", "project_titles": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "projects": [{"proj_uid": "p0000078", "repository": "USAP-DC", "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core"}, {"proj_uid": "p0000010", "repository": "USAP-DC", "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.28, "title": "WAIS Divide Ice Core Discrete CH4 (80-3403m)", "uid": "601741", "west": -112.05}, {"awards": "1745078 Brook, Edward J.", "bounds_geometry": ["POINT(-112.05 -79.28)"], "date_created": "Thu, 05 Oct 2023 00:00:00 GMT", "description": "This dataset includes measurements of atmospheric methane from samples from the NEEM, GISP2 and WAIS Divide ice cores. All measurements were made at the Oregon State University Ice Core and Quaternary Geochemistry Laboratory (Corvallis, OR) using an established analytical system. 433 samples from the NEEM ice core were measured between 1420 and 1560m depths. A measurement uncertainty ranging from 2.8 to 4.2 ppb, depending on the measurement year, was determined from replicate samples. 340 samples from the GISP2 ice core were measured between 1740 and 2060m depths. A measurement uncertainty ranging from 3.1 to 3.4 ppb, depending on the measurement year, was determined from replicate samples. All GISP2 and NEEM data were corrected for excess methane contamination using the established relationship between excess methane and Ca2+ (Lee et al., 2020). Both corrected and uncorrected data are included in the publication. 340 samples from the GISP2 ice core were measured between 1957 and 3081m depths. A measurement uncertainty ranging from 3.1 to 3.4 ppb, depending on the measurement year, was determined from replicate samples. Depths reflect the mid-points of the depth range of each samples, which is typically ~8cm. All replicate measurements are included in the dataset.\r\n\r\nLee, J. E. et al. Excess methane in Greenland ice cores associated with high dust concentrations. Geochimica et cosmochimica acta 270, 409-430 (2020).", "east": -112.05, "geometry": ["POINT(-112.05 -79.28)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Greenland; Ice Core Records; Methane; West Antarctic Ice Sheet", "locations": "West Antarctic Ice Sheet; Antarctica; Greenland", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Riddell-Young, Benjamin; Martin, Kaden; Rosen, Julia; Lee, James; Edwards, Jon S.; Brook, Edward J.", "project_titles": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores", "projects": [{"proj_uid": "p0010416", "repository": "USAP-DC", "title": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.28, "title": "Atmospheric methane across the Last Glacial Maximum and deglaciation from the GISP2, NEEM and WAIS Divide ice cores ", "uid": "601737", "west": -112.05}, {"awards": "1745078 Brook, Edward J.", "bounds_geometry": ["POINT(-112.05 -79.28)"], "date_created": "Mon, 02 Oct 2023 00:00:00 GMT", "description": "This dataset includes estimates of the atmospheric methane relative interpolar difference (rIPD) across the Last Glacial Maximum and Deglaciation. The rIPD was calculated using discrete, high-resolution methane measurements from the WAIS Divide, NEEM and GISP2 ice cores. Two independent IPD records were determined: One using NEEM and WAIS and one using GISP2 and WAIS. The dataset includes rIPD values calculated using both Greenland methane data both corrected and uncorrected for excess methane (Lee et al., 2020). The rIPD was calculated by smoothing each methane record and synchronizing them to the WD2014 gas age scale. 1-sigma rIPD uncertainties are included. This dataset also includes the output of the four-box troposphere model used to interpret the rIPD. For both excess methane-corrected records, the model output and 1-sigma uncertainty is provided for northern extratropical (30N - 90N) and total tropical (30S - 30N) sources in Tg yr-1. For the NEEM-derived rIPD, sections of the rIPD where atmospheric methane changed rapidly were deemed untrustworthy were removed from the dataset.\r\n\r\nLee, J. E. et al. Excess methane in Greenland ice cores associated with high dust concentrations. Geochimica et cosmochimica acta 270, 409-430 (2020).", "east": -112.05, "geometry": ["POINT(-112.05 -79.28)"], "keywords": "Antarctica; Greenland; Methane; Paleoclimate; West Antarctic Ice Sheet", "locations": "Antarctica; West Antarctic Ice Sheet; Greenland", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Riddell-Young, Benjamin; Rosen, Julia; Buizert, Christo; Martin, Kaden; Lee, James; Edwards, Jon S.; M\u00fchl, Michaela; Schmitt, Jochen; Fischer, Hubertus; Blunier, Thomas; Brook, Edward J.", "project_titles": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores", "projects": [{"proj_uid": "p0010416", "repository": "USAP-DC", "title": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.28, "title": "Atmospheric methane interpolar difference and four-box troposphere model output across the Last Glacial Maximum and Deglaciation", "uid": "601736", "west": -112.05}, {"awards": "1745078 Brook, Edward J.", "bounds_geometry": ["POINT(-112.086 -79.468)"], "date_created": "Wed, 26 Apr 2023 00:00:00 GMT", "description": "This dataset includes ~60-year resolution measurements of the Carbon-13 isotopic Composition of Atmospheric Methane (\u03b413C-CH4) of gas bubbles from the WAIS Divide Ice Core. All measurements were made at the Oregon State University Ice Core and Quaternary Geochemistry Laboratory (Corvallis, OR) using a new methane stable isotope analytical system. The data includes depth-adjacent replicate samples (separated by no more than 0.3m of depth) and is split up into two sheets for the two different intervals measured (Heinrich Stadial 1 and Heinrich Stadial 5 / Dansgaard Oeschger Event 12). The data are displayed as a function of WAIS Divide depth and were corrected for gravitational and diffusional fractionation that occurs in the firn column according to Buizert et al., 2013. 1-sigma measurement uncertainty is also included and is determined from analytical uncertainty and uncertainties associated with diffusional and gravitational fractionation.\r\n\r\nThe manuscript presenting and analyzing these data is in preparation for publication as of April 2023. ", "east": -112.086, "geometry": ["POINT(-112.086 -79.468)"], "keywords": "Antarctica; Methane; West Antarctic Ice Sheet", "locations": "West Antarctic Ice Sheet; Antarctica", "north": -79.468, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Riddell-Young, Benjamin", "project_titles": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores", "projects": [{"proj_uid": "p0010416", "repository": "USAP-DC", "title": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.468, "title": "Carbon-13 isotopic composition of atmospheric methane across Heinrich Stadials 1 and 5, and Dansgaard Oesgher Event 12, WAIS Divide Ice Core, Antarctica", "uid": "601683", "west": -112.086}, {"awards": "1445205 Putkonen, Jaakko", "bounds_geometry": ["POLYGON((157.45 -83.14,157.45299999999997 -83.14,157.456 -83.14,157.459 -83.14,157.462 -83.14,157.46499999999997 -83.14,157.468 -83.14,157.471 -83.14,157.474 -83.14,157.47699999999998 -83.14,157.48 -83.14,157.48 -83.141,157.48 -83.142,157.48 -83.143,157.48 -83.144,157.48 -83.14500000000001,157.48 -83.146,157.48 -83.147,157.48 -83.14800000000001,157.48 -83.149,157.48 -83.15,157.47699999999998 -83.15,157.474 -83.15,157.471 -83.15,157.468 -83.15,157.46499999999997 -83.15,157.462 -83.15,157.459 -83.15,157.456 -83.15,157.45299999999997 -83.15,157.45 -83.15,157.45 -83.149,157.45 -83.14800000000001,157.45 -83.147,157.45 -83.146,157.45 -83.14500000000001,157.45 -83.144,157.45 -83.143,157.45 -83.142,157.45 -83.141,157.45 -83.14))"], "date_created": "Thu, 09 Feb 2023 00:00:00 GMT", "description": "These data include the measurements and analyses done on a ~10 meter long ice cores drilled in Ong Valley buried ice site. Further descriptions can be found in the related paper listed below.", "east": 157.48, "geometry": ["POINT(157.46499999999997 -83.14500000000001)"], "keywords": "Antarctica; Buried Ice; Cosmogenic Isotopes; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Old Ice; Ong Valley", "locations": "Antarctica; Ong Valley", "north": -83.14, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Putkonen, Jaakko; Bergelin, Marie", "project_titles": "Collaborative Research: Long Term Sublimation/Preservation of Two Separate, Buried Glacier Ice Masses, Ong Valley, Southern Transantarctic Mountains", "projects": [{"proj_uid": "p0010231", "repository": "USAP-DC", "title": "Collaborative Research: Long Term Sublimation/Preservation of Two Separate, Buried Glacier Ice Masses, Ong Valley, Southern Transantarctic Mountains"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -83.15, "title": "Old Ice, Ong Valley, Transantarctic Mountains", "uid": "601665", "west": 157.45}, {"awards": "1543537 Priscu, John", "bounds_geometry": ["POINT(-149.50134 -84.640287)"], "date_created": "Fri, 03 Feb 2023 00:00:00 GMT", "description": "This dataset contains measurements of sediment porewater properties from cores collected from Mercer Subglacial Lake by the SALSA project. Included are: specific conductance; water stable isotopes (\u03b42H and \u03b418O); dissolved gases (methane and its stable isotopes \u03b413C and \u03b42H, ethylene, and ethane); and major anions and cations.", "east": -149.50134, "geometry": ["POINT(-149.50134 -84.640287)"], "keywords": "Antarctica; Gas; Geochemistry; Glacier; Glaciology; Mercer Subglacial Lake; Methane; SALSA; Sediment Core; West Antarctic Ice Sheet", "locations": "Mercer Subglacial Lake; Antarctica; West Antarctic Ice Sheet; Mercer Subglacial Lake", "north": -84.640287, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Dore, John; Michaud, Alexander; Skidmore, Mark; Tranter, Martyn; Steigmeyer, August; Science Team, SALSA", "project_titles": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments", "projects": [{"proj_uid": "p0010119", "repository": "USAP-DC", "title": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.640287, "title": "Sediment porewater properties data from Mercer Subglacial Lake", "uid": "601664", "west": -149.50134}, {"awards": "1543537 Priscu, John", "bounds_geometry": ["POINT(-149.50134 -84.640287)"], "date_created": "Wed, 01 Feb 2023 00:00:00 GMT", "description": "This dataset contains water column biogeochemical properties measured on discrete samples collected from Mercer Subglacial Lake by the SALSA project. Data included are: specific conductance; carbonic acid system parameters (total alkalinity, total inorganic carbon, and pH); water stable isotopes (\u03b42H and \u03b418O); dissolved gases (oxygen, methane, nitrous oxide, and hydrogen); dissolved nutrients (ammonium, nitrite and phosphate), major anions (including nitrate) and cations; size-fractionated colloidal and dissolved trace elements); dissolved organic carbon; and microbial cell and virus-like particle counts.", "east": -149.50134, "geometry": ["POINT(-149.50134 -84.640287)"], "keywords": "Antarctica; Carbon; Cell Counts; Geochemistry; Glacier; Glaciers/ice Sheet; Glaciers/Ice Sheet; Mercer Subglacial Lake; Microbes; Nutrients; SALSA; Stable Isotopes; Trace Elements; West Antarctic Ice Sheet", "locations": "West Antarctic Ice Sheet; Mercer Subglacial Lake; Antarctica; Mercer Subglacial Lake", "north": -84.640287, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Dore, John; Skidmore, Mark; Hawkings, Jon; Steigmeyer, August; Li, Wei; Barker, Joel; Tranter, Martyn; Priscu, John; Science Team, SALSA", "project_titles": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments", "projects": [{"proj_uid": "p0010119", "repository": "USAP-DC", "title": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.640287, "title": "Water column biogeochemical data from Mercer Subglacial Lake", "uid": "601663", "west": -149.50134}, {"awards": "1841844 Steig, Eric; 2019719 Brook, Edward", "bounds_geometry": null, "date_created": "Wed, 25 Jan 2023 00:00:00 GMT", "description": "This data set contains replicate measurements of D17O from a 92-m deep section of core at Summit, Greenland and other operational data necessary to reconstruct figures presented in Davidge et al., 2022. Details of the entire dataset and a description of the relevant methods can be found in Davidge et al., 2022. The names of each sheet indicate the corresponding figure numbers. The D17O record spans about two years of accumulation. Discrete measurements by laser spectroscopy are provided at 1.4-cm resolution. For the purpose of method development, continuous-flow measurements are provided with nine replicates and are averaged to multiple depth resolutions as described in Davidge et al., 2022.", "east": null, "geometry": null, "keywords": "Antarctica; Continuous Flow; Glaciology; Greenland; Ice Core Data; Laser Spectroscopy; Oxygen Isotope; Triple Oxygen Isotopes", "locations": "Greenland; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "persons": "Davidge, Lindsey", "project_titles": "Center for Oldest Ice Exploration", "projects": [{"proj_uid": "p0010321", "repository": "USAP-DC", "title": "Center for Oldest Ice Exploration"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Hercules Dome Ice Core", "south": null, "title": "Replicate O-17-excess by continuous flow laser spectroscopy for an ice core section at Summit, Greenland", "uid": "601659", "west": null}, {"awards": "1744602 Iken, Katrin", "bounds_geometry": ["POLYGON((-68 -64.5,-67.5 -64.5,-67 -64.5,-66.5 -64.5,-66 -64.5,-65.5 -64.5,-65 -64.5,-64.5 -64.5,-64 -64.5,-63.5 -64.5,-63 -64.5,-63 -64.95,-63 -65.4,-63 -65.85,-63 -66.3,-63 -66.75,-63 -67.2,-63 -67.65,-63 -68.1,-63 -68.55,-63 -69,-63.5 -69,-64 -69,-64.5 -69,-65 -69,-65.5 -69,-66 -69,-66.5 -69,-67 -69,-67.5 -69,-68 -69,-68 -68.55,-68 -68.1,-68 -67.65,-68 -67.2,-68 -66.75,-68 -66.3,-68 -65.85,-68 -65.4,-68 -64.95,-68 -64.5))"], "date_created": "Tue, 10 Jan 2023 00:00:00 GMT", "description": "The purpose of this dataset was to determine the importance of macroalgal primary producers to the coastal invertebrate food webs along a gradient of sites with increasing mean annual sea ice cover. This dataset contains the carbon and nitrogen stable isotope values, in addition to carbon and nitrogen content, of various coastal primary producers and invertebrate consumers from 15 stations along the Antarctic Peninsula from 64 to 69 degree latitude south collected in 2019. Primary producers included multiple species of macroalgae, particulate organic matter (POM) as a proxy of phytoplankton production, and benthic diatoms (where they occurred). Consumers included various benthic invertebrates of different feeding types, from suspension feeders (like sponges and ascidians) to predators/omnivores (like sea stars). ", "east": -63.0, "geometry": ["POINT(-65.5 -66.75)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Carbon; Carbon Isotopes; LMG1904; Nitrogen Isotopes; Oceans", "locations": "Antarctica; Antarctic Peninsula", "north": -64.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Iken, Katrin", "project_titles": "Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity", "projects": [{"proj_uid": "p0010104", "repository": "USAP-DC", "title": "Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -69.0, "title": "Carbon and nitrogen isotope data along a gradient at the Antarctic Peninsula", "uid": "601653", "west": -68.0}, {"awards": "1043092 Steig, Eric; 1807522 Jones, Tyler", "bounds_geometry": ["POINT(-112.085 -79.467)"], "date_created": "Thu, 01 Sep 2022 00:00:00 GMT", "description": "We analyzed a continuous record of water-isotope ratios from the West Antarctic Ice Sheet (WAIS) Divide ice core to reveal summer and winter temperature changes through the last 11,000 years. ", "east": -112.085, "geometry": ["POINT(-112.085 -79.467)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Seasonality; Seasonal Temperatures; Temperature; Water Isotopes; West Antarctic Ice Sheet", "locations": "Antarctica; West Antarctic Ice Sheet", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "persons": "Jones, Tyler R.", "project_titles": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core; Collaborative Research: Targeted resampling of deep polar ice cores using information theory", "projects": [{"proj_uid": "p0010100", "repository": "USAP-DC", "title": "Collaborative Research: Targeted resampling of deep polar ice cores using information theory"}, {"proj_uid": "p0000078", "repository": "USAP-DC", "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Seasonal temperatures in West Antarctica during the Holocene ", "uid": "601603", "west": -112.085}, {"awards": "1643664 Severinghaus, Jeffrey", "bounds_geometry": null, "date_created": "Tue, 16 Aug 2022 00:00:00 GMT", "description": "This data set comprises measurements of noble and inert gases in the firn at the DE08-OH site sampled in 2018-2019 near the summit of Law Dome, Antarctica. The data show the expected gravitational enrichment of heavy isotopes with depth, somewhat attenuated by the high accumulation rate and a near-surface well-mixed zone (convective zone), and the \"lock-in\" horizon at 68 m depth. As seen at many other sites, the heavy isotope of oxygen 18O is depleted progressively with depth within the lock-in zone due to faster gas permeation of 16O16O relative to 18O16O from compressed air bubbles.", "east": null, "geometry": null, "keywords": "Antarctica; Firn; Firn Density; Gravitational Settling; Inert Gases; Law Dome", "locations": "Antarctica; Law Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.", "project_titles": "Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability", "projects": [{"proj_uid": "p0010341", "repository": "USAP-DC", "title": "Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Law Dome DE08-OH firn air 15N, O2/N2, Ar/N2, 18O of O2", "uid": "601598", "west": null}, {"awards": "1643664 Severinghaus, Jeffrey", "bounds_geometry": null, "date_created": "Tue, 16 Aug 2022 00:00:00 GMT", "description": "This data set consists of high-precision krypton and argon isotope measurements, along with 15N and 18O of O2. This data tests the hypothesis that the 2nd order parameter 86Krexcess (86Kr/82Kr - 40Ar/36Ar) serves as a proxy indicator of past storminess, via atmospheric pressure changes that cause barometric pumping in the firn and hence greater gravitational disequilibrium in the heavier Kr atom than in Ar. These measurements were made as part of the US-Australian Law Dome DE08-OH campaign in 2018-2019. Nitrogen and dioxygen isotopes were also measured.", "east": null, "geometry": null, "keywords": "Antarctica; Ice Core; Law Dome; Noble Gas", "locations": "Law Dome; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.", "project_titles": "Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability", "projects": [{"proj_uid": "p0010341", "repository": "USAP-DC", "title": "Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Law Dome DE08-OH site noble gases in ice: testing the 86Krexcess proxy", "uid": "601597", "west": null}, {"awards": "1903681 Brook, Edward J.", "bounds_geometry": ["POLYGON((161.745 -77.745,161.746 -77.745,161.747 -77.745,161.748 -77.745,161.749 -77.745,161.75 -77.745,161.751 -77.745,161.752 -77.745,161.753 -77.745,161.754 -77.745,161.755 -77.745,161.755 -77.74600000000001,161.755 -77.747,161.755 -77.748,161.755 -77.749,161.755 -77.75,161.755 -77.751,161.755 -77.752,161.755 -77.753,161.755 -77.75399999999999,161.755 -77.755,161.754 -77.755,161.753 -77.755,161.752 -77.755,161.751 -77.755,161.75 -77.755,161.749 -77.755,161.748 -77.755,161.747 -77.755,161.746 -77.755,161.745 -77.755,161.745 -77.75399999999999,161.745 -77.753,161.745 -77.752,161.745 -77.751,161.745 -77.75,161.745 -77.749,161.745 -77.748,161.745 -77.747,161.745 -77.74600000000001,161.745 -77.745))"], "date_created": "Tue, 02 Aug 2022 00:00:00 GMT", "description": "Measurements of the isotopic composition of atmospheric nitrous oxide from samples from the Taylor Glacier, Antarctica, spanning the last deglaciation (21-11 ka) and part of the last glacial period (40 to 36 ka). Data set includes the site preference of 15-N in N2O. A manuscript describing these data is currently in preparation. Data are referenced to in house air standards at OSU which are currently being cross calibrated with other laboratories. ", "east": 161.755, "geometry": ["POINT(161.75 -77.75)"], "keywords": "Antarctica; Nitrous Oxide; Taylor Glacier", "locations": "Antarctica; Taylor Glacier", "north": -77.745, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Menking, Andy; Brook, Edward J.", "project_titles": "Deciphering Changes in Atmospheric Nitrous Oxide Concentration During the Last Ice Age Using the Intramolecular Site-Preference of Nitrogen Isotopes", "projects": [{"proj_uid": "p0010465", "repository": "USAP-DC", "title": "Deciphering Changes in Atmospheric Nitrous Oxide Concentration During the Last Ice Age Using the Intramolecular Site-Preference of Nitrogen Isotopes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.755, "title": "Preliminary nitrous oxide site preference isotopic data for last deglaciation from Taylor Glacier", "uid": "601592", "west": 161.745}, {"awards": "1341464 Robinson, Rebecca; 1341432 Brzezinski, Mark", "bounds_geometry": ["POLYGON((-175 -54,-174 -54,-173 -54,-172 -54,-171 -54,-170 -54,-169 -54,-168 -54,-167 -54,-166 -54,-165 -54,-165 -55.3,-165 -56.6,-165 -57.9,-165 -59.2,-165 -60.5,-165 -61.8,-165 -63.1,-165 -64.4,-165 -65.7,-165 -67,-166 -67,-167 -67,-168 -67,-169 -67,-170 -67,-171 -67,-172 -67,-173 -67,-174 -67,-175 -67,-175 -65.7,-175 -64.4,-175 -63.1,-175 -61.8,-175 -60.5,-175 -59.2,-175 -57.9,-175 -56.6,-175 -55.3,-175 -54))"], "date_created": "Thu, 02 Jun 2022 00:00:00 GMT", "description": "This dataset contains data for particulate silicon, particulate carbon, particulate nitrogen, stable isotopes of nitrogen and stable isotopes of silicon in particulates from McLane pump profiles", "east": -165.0, "geometry": ["POINT(-170 -60.5)"], "keywords": "Antarctica; Biogenic Silica; Chemistry:sediment; Chemistry:Sediment; Diatom; Diatom Bound; Lithogenic Silica; Marine Geoscience; NBP1702; Nitrogen Isotopes; Silicon Cycle; Silicon Stable Isotope; Southern Ocean", "locations": "Southern Ocean; Southern Ocean; Antarctica", "north": -54.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Jones, Janice L.; Closset, Ivia; Robinson, Rebecca; Brzezinski, Mark", "project_titles": "Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump", "projects": [{"proj_uid": "p0010083", "repository": "USAP-DC", "title": "Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": " Particulate silicon and nitrogen concentrations and isotopic composition measurements in McLane pump profiles from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean", "uid": "601576", "west": -175.0}, {"awards": "1341432 Brzezinski, Mark", "bounds_geometry": ["POLYGON((-175 -54,-174 -54,-173 -54,-172 -54,-171 -54,-170 -54,-169 -54,-168 -54,-167 -54,-166 -54,-165 -54,-165 -55.3,-165 -56.6,-165 -57.9,-165 -59.2,-165 -60.5,-165 -61.8,-165 -63.1,-165 -64.4,-165 -65.7,-165 -67,-166 -67,-167 -67,-168 -67,-169 -67,-170 -67,-171 -67,-172 -67,-173 -67,-174 -67,-175 -67,-175 -65.7,-175 -64.4,-175 -63.1,-175 -61.8,-175 -60.5,-175 -59.2,-175 -57.9,-175 -56.6,-175 -55.3,-175 -54))"], "date_created": "Mon, 16 May 2022 00:00:00 GMT", "description": "This dataset contains data for stable isotopes of silicon in pore water, interstitial water, sediments and CTD profiles.", "east": -165.0, "geometry": ["POINT(-170 -60.5)"], "keywords": "Antarctica; Biogenic Silica; Chemistry:sediment; Chemistry:Sediment; Lithogenic Silica; Marine Geoscience; NBP1702; Pore Water Biogeochemistry; Sediment; Silicon Cycle; Silicon Stable Isotope; Southern Ocean", "locations": "Southern Ocean; Antarctica", "north": -54.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Closset, Ivia; Jones, Janice L.; Brzezinski, Mark", "project_titles": "Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump", "projects": [{"proj_uid": "p0010083", "repository": "USAP-DC", "title": "Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "Silicon concentration and isotopic composition measurements in seawater profiles, pore waters, interstitial waters and sediments from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean", "uid": "601562", "west": -175.0}, {"awards": "1341464 Robinson, Rebecca", "bounds_geometry": ["POLYGON((-170.4 -60.8,-170.36 -60.8,-170.32 -60.8,-170.28 -60.8,-170.24 -60.8,-170.2 -60.8,-170.16 -60.8,-170.12 -60.8,-170.08 -60.8,-170.04 -60.8,-170 -60.8,-170 -61.34,-170 -61.88,-170 -62.42,-170 -62.96,-170 -63.5,-170 -64.04,-170 -64.58,-170 -65.12,-170 -65.66,-170 -66.2,-170.04 -66.2,-170.08 -66.2,-170.12 -66.2,-170.16 -66.2,-170.2 -66.2,-170.24 -66.2,-170.28 -66.2,-170.32 -66.2,-170.36 -66.2,-170.4 -66.2,-170.4 -65.66,-170.4 -65.12,-170.4 -64.58,-170.4 -64.04,-170.4 -63.5,-170.4 -62.96,-170.4 -62.42,-170.4 -61.88,-170.4 -61.34,-170.4 -60.8))"], "date_created": "Mon, 14 Feb 2022 00:00:00 GMT", "description": "Tracking variations in the surface ocean supply and demand of nitrate, a key marine nutrient, can help constrain the contribution of biological production in driving past climate shifts. The nitrogen isotopic composition (as \u03b415N) of organic matter in marine sediments is a proxy for surface ocean nitrate supply and demand over time but it may be subject to alteration during sinking and burial. The isotopic composition of nitrogen contained in the shells, or frustules, of diatoms (\u03b415NDB) is protected and is therefore a potentially more robust tracer of nitrate use in the past. Here we show that \u03b415NDB in Southern Ocean community cultures does not depend on species composition. We found the \u03b5DB (= biomass \u03b415N - \u03b415NDB) of the community growouts was -4.8 \u00b1 0.8\u2030, more than 10\u2030 different from previous monospecific growouts, but statistically indistinguishable from previous Southern Ocean and North Pacific surface ocean observations. The two community growouts, seeded with populations from 66\u00b0 and 61\u00b0S, had distinct community compositions but indistinguishable \u03b5DB, suggesting species composition does not primarily set \u03b415NDB values in the Southern Ocean. Our results demonstrate that under nitrate-replete conditions, \u03b415NDB values of frustules sinking from the surface ocean robustly track surface ocean nitrate \u03b415N values and therefore nitrate supply and demand. ", "east": -170.0, "geometry": ["POINT(-170.2 -63.5)"], "keywords": "Antarctica; Nitrogen Isotopes; Oceans; Paleoproxies; Southern Ocean", "locations": "Antarctica; Southern Ocean", "north": -60.8, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Jones, Colin; Robinson, Rebecca; Brzezinski, Mark; Riesselman, Christina; Closset, Ivia; Kelly, Roger; Robinson, Rebecca ", "project_titles": "Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump", "projects": [{"proj_uid": "p0010083", "repository": "USAP-DC", "title": "Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -66.2, "title": "Surface Southern Ocean community growouts to evaluate the diatom bound N isotope proxy", "uid": "601522", "west": -170.4}, {"awards": "1643494 Saal, Alberto", "bounds_geometry": ["POLYGON((-68.074 -57.345,-66.6033 -57.345,-65.1326 -57.345,-63.6619 -57.345,-62.1912 -57.345,-60.7205 -57.345,-59.2498 -57.345,-57.7791 -57.345,-56.3084 -57.345,-54.8377 -57.345,-53.367 -57.345,-53.367 -58.1252,-53.367 -58.9054,-53.367 -59.6856,-53.367 -60.4658,-53.367 -61.246,-53.367 -62.0262,-53.367 -62.8064,-53.367 -63.5866,-53.367 -64.3668,-53.367 -65.147,-54.8377 -65.147,-56.3084 -65.147,-57.7791 -65.147,-59.2498 -65.147,-60.7205 -65.147,-62.1912 -65.147,-63.6619 -65.147,-65.1326 -65.147,-66.6033 -65.147,-68.074 -65.147,-68.074 -64.3668,-68.074 -63.5866,-68.074 -62.8064,-68.074 -62.0262,-68.074 -61.246,-68.074 -60.4658,-68.074 -59.6856,-68.074 -58.9054,-68.074 -58.1252,-68.074 -57.345))"], "date_created": "Mon, 07 Feb 2022 00:00:00 GMT", "description": "", "east": -53.367, "geometry": ["POINT(-60.7205 -61.246)"], "keywords": "Antarctica; Antarctic Peninsula; Chemical Composition; Chemistry:rock; Chemistry:Rock; Geochemistry; Isotope Data; Trace Elements", "locations": "Antarctica; Antarctic Peninsula", "north": -57.345, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Saal, Alberto", "project_titles": "Magmatic Volatiles, Unraveling the Reservoirs and Processes of the Volcanism in the Antarctic Peninsula", "projects": [{"proj_uid": "p0010196", "repository": "USAP-DC", "title": "Magmatic Volatiles, Unraveling the Reservoirs and Processes of the Volcanism in the Antarctic Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.147, "title": "Major, trace elements contents and radiogenic isotopes of erupted lavas Antarctic Peninsula and Phoenix Ridge", "uid": "601519", "west": -68.074}, {"awards": "1443710 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(0 -90)"], "date_created": "Thu, 03 Feb 2022 00:00:00 GMT", "description": "We present measurements gas measurements from the South Pole Ice Core, including the isotopic composition of molecular nitrogen (\u03b415N) and argon (\u03b440Ar), and the argon-nitrogen ratio (\u03b4Ar/N2). The measurements were made between approximately 490 and 1310 m depth, which is between 5 and 30 kyr BP on the SP19 Gas Chronology.\r\nThe measurements allow us to reconstruct the past amounts of gravitational and thermal fractionation in the firn and thus reconstruct past firn thickness and temperature gradient. These reconstructions are also included.\r\n", "east": 0.0, "geometry": ["POINT(0 -90)"], "keywords": "Antarctica; Argon; Argon Isotopes; Firn; Firn Temperature Gradient; Firn Thickness; Gas Isotopes; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Nitrogen; Nitrogen Isotopes; South Pole; SPICEcore", "locations": "Antarctica; South Pole; South Pole; Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Morgan, Jacob; Severinghaus, Jeffrey P.", "project_titles": "Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core", "projects": [{"proj_uid": "p0010005", "repository": "USAP-DC", "title": "Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "South Pole Ice Core Isotopes of N2 and Ar", "uid": "601517", "west": 0.0}, {"awards": "1644013 Gaetani, Glenn", "bounds_geometry": ["POLYGON((164.1 -77.1,164.65 -77.1,165.2 -77.1,165.75 -77.1,166.3 -77.1,166.85 -77.1,167.4 -77.1,167.95 -77.1,168.5 -77.1,169.05 -77.1,169.6 -77.1,169.6 -77.235,169.6 -77.37,169.6 -77.505,169.6 -77.64,169.6 -77.775,169.6 -77.91,169.6 -78.045,169.6 -78.18,169.6 -78.315,169.6 -78.45,169.05 -78.45,168.5 -78.45,167.95 -78.45,167.4 -78.45,166.85 -78.45,166.3 -78.45,165.75 -78.45,165.2 -78.45,164.65 -78.45,164.1 -78.45,164.1 -78.315,164.1 -78.18,164.1 -78.045,164.1 -77.91,164.1 -77.775,164.1 -77.64,164.1 -77.505,164.1 -77.37,164.1 -77.235,164.1 -77.1))"], "date_created": "Wed, 12 Jan 2022 00:00:00 GMT", "description": "G170 Secondary Ion Mass Spectrometry Analyses of Melt Inclusion Hydrogen Isotopes", "east": 169.6, "geometry": ["POINT(166.85 -77.775)"], "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Hydrogen; Ion Mass Spectrometry; Ross Island", "locations": "Ross Island; Antarctica", "north": -77.1, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Gaetani, Glenn", "project_titles": "Collaborative Research: Determining Magma Storage Depths and Ascent Rates for the Erebus Volcanic Province, Antarctica Using Diffusive Water Loss from Olivine-hosted Melt Inclusion", "projects": [{"proj_uid": "p0010081", "repository": "USAP-DC", "title": "Collaborative Research: Determining Magma Storage Depths and Ascent Rates for the Erebus Volcanic Province, Antarctica Using Diffusive Water Loss from Olivine-hosted Melt Inclusion"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.45, "title": "G170 Secondary Ion Mass Spectrometry Analyses of Melt Inclusion Hydrogen Isotopes", "uid": "601507", "west": 164.1}, {"awards": "1543453 Lyons, W. Berry", "bounds_geometry": ["POINT(-149.50134 -84.640287)"], "date_created": "Thu, 23 Dec 2021 00:00:00 GMT", "description": "This dataset includes the following measurements from Niskin casts at Mercer Subglacial Lake as part of the SALSA project: noble gases and their isotopes, d13C-DIC, Ge, 87Sr/86Sr, and 234U/238U", "east": -149.50134, "geometry": ["POINT(-149.50134 -84.640287)"], "keywords": "Antarctica; Mercer Subglacial Lake; Noble Gas", "locations": "Mercer Subglacial Lake; Antarctica", "north": -84.640287, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Gardner, Christopher B.; Lyons, W. Berry", "project_titles": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments", "projects": [{"proj_uid": "p0010119", "repository": "USAP-DC", "title": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.640287, "title": "Mercer Subglacial Lake (SLM) noble gas and isotopic data", "uid": "601498", "west": -149.50134}, {"awards": "1542723 Alexander, Becky", "bounds_geometry": ["POINT(-112.05 -79.28)"], "date_created": "Tue, 22 Jun 2021 00:00:00 GMT", "description": "This dataset contains measurements of nitrate oxygen (D17O) and nitrogen (d15N) isotopes from the WAIS Divide ice core (WDC06A). The time resolution is variable throughout the record. The data includes 15 discreet samples between 2900 - 67,000 years before 1950 and 305 continuous measurements between 36,000-52,000 years before 1950. The depth range is 700 - 3401 m. Each sample covered 1 m depth. The time resolution ranged from 5 years/m at the top to 200 years/m at the bottom.", "east": -112.05, "geometry": ["POINT(-112.05 -79.28)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Chemistry; Ice Core Records; Nitrate; Nitrate Isotopes; WAIS Divide Ice Core; West Antarctic Ice Sheet", "locations": "Antarctica; West Antarctic Ice Sheet", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Alexander, Becky", "project_titles": "Measuring an Ice-core Proxy for Relative Oxidant Abundances over Glacial-interglacial and Rapid Climate changes in a West Antarctic Ice Core", "projects": [{"proj_uid": "p0010403", "repository": "USAP-DC", "title": "Measuring an Ice-core Proxy for Relative Oxidant Abundances over Glacial-interglacial and Rapid Climate changes in a West Antarctic Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.28, "title": "WAIS Divide ice core nitrate isotopes", "uid": "601456", "west": -112.05}, {"awards": "1341736 Adams, Byron; 1341631 Lyons, W. Berry", "bounds_geometry": ["POLYGON((-177.3907 -84.46466667,-177.06501 -84.46466667,-176.73932 -84.46466667,-176.41363 -84.46466667,-176.08794 -84.46466667,-175.76225 -84.46466667,-175.43656 -84.46466667,-175.11087 -84.46466667,-174.78518 -84.46466667,-174.45949 -84.46466667,-174.1338 -84.46466667,-174.1338 -84.566988336,-174.1338 -84.669310002,-174.1338 -84.771631668,-174.1338 -84.873953334,-174.1338 -84.976275,-174.1338 -85.078596666,-174.1338 -85.180918332,-174.1338 -85.283239998,-174.1338 -85.385561664,-174.1338 -85.48788333,-174.45949 -85.48788333,-174.78518 -85.48788333,-175.11087 -85.48788333,-175.43656 -85.48788333,-175.76225 -85.48788333,-176.08794 -85.48788333,-176.41363 -85.48788333,-176.73932 -85.48788333,-177.06501 -85.48788333,-177.3907 -85.48788333,-177.3907 -85.385561664,-177.3907 -85.283239998,-177.3907 -85.180918332,-177.3907 -85.078596666,-177.3907 -84.976275,-177.3907 -84.873953334,-177.3907 -84.771631668,-177.3907 -84.669310002,-177.3907 -84.566988336,-177.3907 -84.46466667))"], "date_created": "Sat, 02 Jan 2021 00:00:00 GMT", "description": "Soil samples were collected from the Shackleton Glacier region, located in the Queen Maud Mountains during the 2017-2018 austral summer. A subset of 27 samples were analyzed for stable isotopes of S, N, C, and O in nitrate, sulfate, and (bi)carbonate. ). \u03b415N-NO3 values ranged from -47.8 to 20.4\u2030 and, while all \u039417O-NO3 values are positive, they ranged from 15.7 to 45.9\u2030. \u03b434S-SO4 and \u03b418O-SO4 values ranged from 12.5 and 17.9\u2030 and -14.5 to -7.1\u2030, respectively. Total inorganic carbon isotopes ((bi)carbonate) in bulk soil samples ranged from 0.2 to 8.5\u2030 for \u03b413C and -38.8 to -9.6\u2030 for \u03b418O.", "east": -174.1338, "geometry": ["POINT(-175.76225 -84.976275)"], "keywords": "Antarctica; Geochemistry; Nitrate; Shackleton Glacier; Stable Isotopes; Sulfate; Transantarctic Mountains", "locations": "Antarctica; Shackleton Glacier; Transantarctic Mountains", "north": -84.46466667, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Diaz, Melisa A.; Lyons, W. Berry; Gardner, Christopher B.", "project_titles": "Collaborative Research: The Role of Glacial History on the Structure and Functioning of Ecological Communities in the Shackleton Glacier Region of the Transantarctic Mountains", "projects": [{"proj_uid": "p0010140", "repository": "USAP-DC", "title": "Collaborative Research: The Role of Glacial History on the Structure and Functioning of Ecological Communities in the Shackleton Glacier Region of the Transantarctic Mountains"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.48788333, "title": "Shackleton Glacier region water-soluble salt isotopes", "uid": "601419", "west": -177.3907}, {"awards": "1043092 Steig, Eric", "bounds_geometry": ["POLYGON((-158.72 -77.79,-154.056 -77.79,-149.392 -77.79,-144.728 -77.79,-140.064 -77.79,-135.4 -77.79,-130.736 -77.79,-126.072 -77.79,-121.408 -77.79,-116.744 -77.79,-112.08 -77.79,-112.08 -78.178,-112.08 -78.566,-112.08 -78.954,-112.08 -79.342,-112.08 -79.73,-112.08 -80.118,-112.08 -80.506,-112.08 -80.894,-112.08 -81.282,-112.08 -81.67,-116.744 -81.67,-121.408 -81.67,-126.072 -81.67,-130.736 -81.67,-135.4 -81.67,-140.064 -81.67,-144.728 -81.67,-149.392 -81.67,-154.056 -81.67,-158.72 -81.67,-158.72 -81.282,-158.72 -80.894,-158.72 -80.506,-158.72 -80.118,-158.72 -79.73,-158.72 -79.342,-158.72 -78.954,-158.72 -78.566,-158.72 -78.178,-158.72 -77.79))"], "date_created": "Tue, 22 Dec 2020 00:00:00 GMT", "description": "This data set contains the VSMOW-SLAP d17O, d18O, and 17O-excess data from the WAIS Divide Ice Core Project, Siple Dome and Taylor Dome, along with the published and VSMOW-SLAP normalized d17O, d18O, and 17O-excess for Vostok [Landais et al. 2008], EPICA Dome C and Talos Dome [Winkler et al., 2012]. The data cover the Last Glacial Maximum (25-20 ka), through the Early Holocene (12-9 ka) and into present-day (past 2 kyr)", "east": -112.08, "geometry": ["POINT(-135.4 -79.73)"], "keywords": "Antarctica; Ice Core; Oxygen Isotope; WAIS Divide", "locations": "WAIS Divide; Antarctica", "north": -77.79, "nsf_funding_programs": null, "persons": "Steig, Eric J.; Schoenemann, Spruce", "project_titles": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "projects": [{"proj_uid": "p0000010", "repository": "USAP-DC", "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -81.67, "title": "17O excess from WAIS Divide, 0 to 25 ka BP", "uid": "601413", "west": -158.72}, {"awards": "1443105 Steig, Eric", "bounds_geometry": ["POINT(180 -90)"], "date_created": "Wed, 28 Oct 2020 00:00:00 GMT", "description": "This data set provides the input and output data used in Kahle et al. 2020 to reconstruct climate variables at the South Pole. The files below include high resolution water isotopes, water isotope diffusion length, and various reconstructions of temperature, accumulation rate, and thinning function for the SPC14 ice core. An inverse approach was used to combine information from water isotope diffusion length, Dage, and annual-layer thickness to solve for temperature, accumulation rate, and thinning function. Corrections were applied to account for the advection of ice from upstream to yield estimates for the South Pole site. Updated data for Hires_Water_Isotopes_halfcm.txt is available at www.usap-dc.org/view/dataset/601429.", "east": 180.0, "geometry": ["POINT(180 -90)"], "keywords": "Accumulation; Antarctica; Diffusion Length; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Dynamic; Layer Thinning; Oxygen Isotope; South Pole; SPICEcore; Temperature", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Kahle, Emma; Steig, Eric J.; Jones, Tyler R.; Fudge, T. J.; Koutnik, Michelle; Morris, Valerie; Vaughn, Bruce; Schauer, Andrew; Stevens, Max; Conway, Howard; Waddington, Edwin D.; Buizert, Christo; Epifanio, Jenna; White, James", "project_titles": "Collaborative Research: A 1500m Ice Core from South Pole; Collaborative Research: Record of the Triple-oxygen Isotope and Hydrogen Isotope Composition of Ice from an Ice Core at South Pole", "projects": [{"proj_uid": "p0010060", "repository": "USAP-DC", "title": "Collaborative Research: A 1500m Ice Core from South Pole"}, {"proj_uid": "p0010065", "repository": "USAP-DC", "title": "Collaborative Research: Record of the Triple-oxygen Isotope and Hydrogen Isotope Composition of Ice from an Ice Core at South Pole"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)", "uid": "601396", "west": 180.0}, {"awards": "1443386 Emslie, Steven", "bounds_geometry": ["POINT(162.95 -75.55)"], "date_created": "Thu, 24 Sep 2020 00:00:00 GMT", "description": "This dataset provides the results of radiocarbon and stable isotope analyses of Adelie penguin chick bone collagen.", "east": 162.95, "geometry": ["POINT(162.95 -75.55)"], "keywords": "Adelie Penguin; Antarctica; Cape Irizar; Drygalski Ice Tongue; Ross Sea; Stable Isotopes", "locations": "Ross Sea; Cape Irizar; Drygalski Ice Tongue; Antarctica", "north": -75.55, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Emslie, Steven", "project_titles": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators", "projects": [{"proj_uid": "p0010047", "repository": "USAP-DC", "title": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.55, "title": "Ancient Adelie penguin colony revealed by snowmelt at Cape Irizar, Ross Sea, Antarctica", "uid": "601374", "west": 162.95}, {"awards": "1043167 White, James", "bounds_geometry": ["POINT(-112.1115 -79.481)"], "date_created": "Mon, 27 Jul 2020 00:00:00 GMT", "description": "The original water stable isotope data for the WAIS Divide Deep Ice Core was generated under the University of Colorado INSTAAR Stable Isotope Lab (NSF Award# 1443328). This data set contains high-resolution dD and d18O data for the West Antarctic Ice Sheet (WAIS) Divide Ice core. Drilling was initiated in 2006 and completed in 2011, and subsequent analyses on the ice were performed at the University of Colorado INSTAAR Stable Isotope Lab using Continuous Flow Analysis (CFA), completed in 2015 and described in Jones et al. (2017). The targeted resampling of the WAIS Divide Ice core (1035.4 to 1368.2 m) was completed in 2019 (NSF OPP - Antarctic Glaciology 1807522) to replace data analyzed on an older generation Laser Absorption Spectroscopy instrument. The resampling interval was identified using information theory (Garland and Jones et al. 2018). \r\n", "east": -112.1115, "geometry": ["POINT(-112.1115 -79.481)"], "keywords": "Antarctica; Delta 18O; Isotope; WAIS Divide; WAIS Divide Ice Core; West Antarctic Ice Sheet", "locations": "West Antarctic Ice Sheet; Antarctica; WAIS Divide", "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences", "persons": "Jones, Tyler R.; Morris, Valerie; Garland, Joshua; Vaughn, Bruce; White, James", "project_titles": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "projects": [{"proj_uid": "p0000078", "repository": "USAP-DC", "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Resampling of Deep Polar Ice Cores using Information Theory", "uid": "601365", "west": -112.1115}, {"awards": "1443482 Mak, John", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 09 Jul 2020 00:00:00 GMT", "description": "Data from measurement of CO mixing ratios and stable isotopes from the South Pole Ice Core for the first ca 10,000 years BP", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; CO; Delta 13C; Delta 18O; South Pole; SPICEcore", "locations": "South Pole; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Mak, John", "project_titles": "Collaborative Research: Using Stable Isotopes to Constrain the Atmospheric Carbon Monoxide Budget over the Last 20,000 Years", "projects": [{"proj_uid": "p0010117", "repository": "USAP-DC", "title": "Collaborative Research: Using Stable Isotopes to Constrain the Atmospheric Carbon Monoxide Budget over the Last 20,000 Years"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Carbon monoxide mixing ratios and stable isotopic values, SPICE", "uid": "601356", "west": -180.0}, {"awards": "1341658 Mukhopadhyay, Sujoy", "bounds_geometry": ["POLYGON((-116.46 -84.78,-116.452 -84.78,-116.444 -84.78,-116.436 -84.78,-116.428 -84.78,-116.42 -84.78,-116.412 -84.78,-116.404 -84.78,-116.396 -84.78,-116.388 -84.78,-116.38 -84.78,-116.38 -84.781,-116.38 -84.782,-116.38 -84.783,-116.38 -84.784,-116.38 -84.785,-116.38 -84.786,-116.38 -84.787,-116.38 -84.788,-116.38 -84.789,-116.38 -84.79,-116.388 -84.79,-116.396 -84.79,-116.404 -84.79,-116.412 -84.79,-116.42 -84.79,-116.428 -84.79,-116.436 -84.79,-116.444 -84.79,-116.452 -84.79,-116.46 -84.79,-116.46 -84.789,-116.46 -84.788,-116.46 -84.787,-116.46 -84.786,-116.46 -84.785,-116.46 -84.784,-116.46 -84.783,-116.46 -84.782,-116.46 -84.781,-116.46 -84.78))"], "date_created": "Sun, 28 Jun 2020 00:00:00 GMT", "description": "The data set consists of cosmogenic berrylium-10 and aluminum-26, along with neon-21, in a set of 4 rock-cores obtained from the Ohio Range, West Antarctica. The rock cores were obtained using the WInkie drill. The depth to the cores varies from 12 meters to 28 meters. The recovered rock cores analyzed for the cosmogenic isotopes varies from 22 cm long to 50 cm long. The data include the following formation: sample details, cosmogenic berrylium-10, aluminum-26 and upper bounds for cosmogenic 21 (since samples have nucleogenic 21) and the step heating data for neon. The data are in Mircrosoft excel format.", "east": -116.38, "geometry": ["POINT(-116.42 -84.785)"], "keywords": "Aluminum-26; Antarctica; Beryllium-10; Cosmogenic Dating; Cosmogenic Radionuclides; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Fluctuations; Ohio Range; Rocks", "locations": "Antarctica; Ohio Range", "north": -84.78, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Mukhopadhyay, Sujoy", "project_titles": "Constraining Plio-Pleistocene West Antarctic Ice Sheet Behavior from the Ohio Range and Scott Glacier", "projects": [{"proj_uid": "p0010113", "repository": "USAP-DC", "title": "Constraining Plio-Pleistocene West Antarctic Ice Sheet Behavior from the Ohio Range and Scott Glacier"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.79, "title": "Ohio Range Subglacial rock core cosmogenic nuclide data", "uid": "601351", "west": -116.46}, {"awards": "1443576 Panter, Kurt", "bounds_geometry": ["POLYGON((-154.1 -86.9,-154.03 -86.9,-153.96 -86.9,-153.89 -86.9,-153.82 -86.9,-153.75 -86.9,-153.68 -86.9,-153.61 -86.9,-153.54 -86.9,-153.47 -86.9,-153.4 -86.9,-153.4 -86.92,-153.4 -86.94,-153.4 -86.96,-153.4 -86.98,-153.4 -87,-153.4 -87.02,-153.4 -87.04,-153.4 -87.06,-153.4 -87.08,-153.4 -87.1,-153.47 -87.1,-153.54 -87.1,-153.61 -87.1,-153.68 -87.1,-153.75 -87.1,-153.82 -87.1,-153.89 -87.1,-153.96 -87.1,-154.03 -87.1,-154.1 -87.1,-154.1 -87.08,-154.1 -87.06,-154.1 -87.04,-154.1 -87.02,-154.1 -87,-154.1 -86.98,-154.1 -86.96,-154.1 -86.94,-154.1 -86.92,-154.1 -86.9))"], "date_created": "Fri, 05 Jun 2020 00:00:00 GMT", "description": "Mt. Early and Sheridan Bluff (87\u00b0S) are the above ice expression of Earth\u2019s southernmost volcanic field that lies approximately 300 km from the South Pole. The dataset supplies the locations and lithological descriptions of the units that the samples were collected from for dating and petrological study. Fundamental compositional information on the mafic volcanic rock samples include whole rock MgO concentrations (wt.%), the forsterite content of olivine and the oxygen isotopic composition of olivine. The dataset also provides a record of what samples have been analyzed for major and trace elements by XRF and ICP-MS, mineral chemistry by EMPA, radiogenic isotopes of Sr, Nd and Pb on whole rock powders by ICP-MS and dating by 40Ar/39Ar method.", "east": -153.4, "geometry": ["POINT(-153.75 -87)"], "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochronology; Glacial Volcanism; Magma Differentiation; Major Elements; Mantle Melting; Solid Earth; Trace Elements; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica", "north": -86.9, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Panter, Kurt", "project_titles": "Investigating Early Miocene Sub-ice Volcanoes in Antarctica for Improved Modeling and understanding of a Large Magmatic Province", "projects": [{"proj_uid": "p0010105", "repository": "USAP-DC", "title": "Investigating Early Miocene Sub-ice Volcanoes in Antarctica for Improved Modeling and understanding of a Large Magmatic Province"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.1, "title": "Volcanological and Petrological measurements on Mt. Early and Sheridan Bluff volcanoes, upper Scott Glacier, Antarctica ", "uid": "601331", "west": -154.1}, {"awards": "1443386 Emslie, Steven", "bounds_geometry": ["POLYGON((-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -61.130769444,-180 -62.261538888,-180 -63.392308332,-180 -64.523077776,-180 -65.65384722,-180 -66.784616664,-180 -67.915386108,-180 -69.046155552,-180 -70.176924996,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,180 -71.30769444,179.019305556 -71.30769444,178.038611112 -71.30769444,177.057916668 -71.30769444,176.077222224 -71.30769444,175.09652778 -71.30769444,174.115833336 -71.30769444,173.135138892 -71.30769444,172.154444448 -71.30769444,171.173750004 -71.30769444,170.19305556 -71.30769444,170.19305556 -70.176924996,170.19305556 -69.046155552,170.19305556 -67.915386108,170.19305556 -66.784616664,170.19305556 -65.65384722,170.19305556 -64.523077776,170.19305556 -63.392308332,170.19305556 -62.261538888,170.19305556 -61.130769444,170.19305556 -60,171.173750004 -60,172.154444448 -60,173.135138892 -60,174.115833336 -60,175.09652778 -60,176.077222224 -60,177.057916668 -60,178.038611112 -60,179.019305556 -60,-180 -60))"], "date_created": "Tue, 02 Jun 2020 00:00:00 GMT", "description": "We report new discoveries and radiocarbon dates on active and abandoned Ad\u00e9lie penguin (Pygoscelis adeliae) colonies at Cape Adare, Antarctica. This colony, first established at approximately 2000 BP (calendar years before present, i.e. 1950), is currently the largest for this species with approximately 338 000 breeding pairs, most located on lowlying Ridley Beach. We hypothesize that this colony first formed after fast ice began blocking open-water access by breeding penguins to the Scott Coast in the southern Ross Sea during a cooling period also at approximately 2000 BP. Our results suggest that the new colony at Cape Adare continued to grow, expanding to a large upper terrace above Ridley Beach, until it exceeded approximately 500 000 breeding pairs (a \u0027supercolony\u0027) by approximately 1200 BP. The high marine productivity associated with the Ross Sea polynya and continental shelf break supported this growth, but the colony collapsed to its present size for unknown reasons after approximately 1200 BP. Ridley Beach will probably be abandoned in the near future due to rising sea level in this region. We predict that penguins will retreat to higher elevations at Cape Adare and that the Scott Coast will be reoccupied by breeding penguins as fast ice continues to dissipate earlier each summer, restoring open-water access to beaches there.", "east": 170.19305556, "geometry": ["POINT(175.09652778 -65.65384722)"], "keywords": "Adelie Penguin; Antarctica; Biota; Cape Adare; East Antarctica; Population Movement; Pygoscelis Adeliae; Radiocarbon; Ross Sea; Sea Level Rise; Stable Isotopes", "locations": "Ross Sea; Antarctica; East Antarctica; Cape Adare", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "McKenzie, Ashley; Patterson, William; Emslie, Steven", "project_titles": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators", "projects": [{"proj_uid": "p0010047", "repository": "USAP-DC", "title": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -71.30769444, "title": "The rise and fall of an ancient Adelie penguin \u0027supercolony\u0027 at Cape Adare, Antarctica", "uid": "601327", "west": -180.0}, {"awards": "1807522 Jones, Tyler", "bounds_geometry": ["POINT(-112.1115 -79.481)"], "date_created": "Tue, 26 May 2020 00:00:00 GMT", "description": "The original water stable isotope data for the WAIS Divide Deep Ice Core was generated under the University of Colorado INSTAAR Stable Isotope Lab (NSF Award# 1443328). This data set contains high-resolution dD and d18O data for the West Antarctic Ice Sheet (WAIS) Divide Ice core. Drilling was initiated in 2006 and completed in 2011, and subsequent analyses on the ice were performed at the University of Colorado INSTAAR Stable Isotope Lab using Continuous Flow Analysis (CFA). The targeted resampling of the WAIS Divide Ice core (1035.4 - 1368.2m) occurred for this grant (NSF OPP - Antarctic Glaciology 1807522) to replace data analyzed on an older generation Laser Absorption Spectroscopy instrument. The resampling interval was identified using information theory.", "east": -112.1115, "geometry": ["POINT(-112.1115 -79.481)"], "keywords": "Antarctica; Delta 18O; Delta Deuterium; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Snow/ice; Snow/Ice; WAIS Divide Ice Core; Water Isotopes; West Antarctic Ice Sheet", "locations": "West Antarctic Ice Sheet; Antarctica", "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Morris, Valerie; Jones, Tyler R.; Vaughn, Bruce; White, James", "project_titles": "Collaborative Research: Targeted resampling of deep polar ice cores using information theory", "projects": [{"proj_uid": "p0010100", "repository": "USAP-DC", "title": "Collaborative Research: Targeted resampling of deep polar ice cores using information theory"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Mid-Holocene high-resolution water isotope time series for the WAIS Divide ice core", "uid": "601326", "west": -112.1115}, {"awards": "1341432 Brzezinski, Mark; 1341464 Robinson, Rebecca", "bounds_geometry": ["POLYGON((-175 -54,-174 -54,-173 -54,-172 -54,-171 -54,-170 -54,-169 -54,-168 -54,-167 -54,-166 -54,-165 -54,-165 -55.3,-165 -56.6,-165 -57.9,-165 -59.2,-165 -60.5,-165 -61.8,-165 -63.1,-165 -64.4,-165 -65.7,-165 -67,-166 -67,-167 -67,-168 -67,-169 -67,-170 -67,-171 -67,-172 -67,-173 -67,-174 -67,-175 -67,-175 -65.7,-175 -64.4,-175 -63.1,-175 -61.8,-175 -60.5,-175 -59.2,-175 -57.9,-175 -56.6,-175 -55.3,-175 -54))"], "date_created": "Thu, 09 Apr 2020 00:00:00 GMT", "description": "This dataset contains profiles of water column particulate organic carbon (POC), total particulate nitrogen (TPN), biogenic silica, and d15N of TPN from McLane pump casts (4 depths/cast).", "east": -165.0, "geometry": ["POINT(-170 -60.5)"], "keywords": "Antarctica; Biogenic Silica; Nitrogen Isotopes; Southern Ocean", "locations": "Antarctica; Southern Ocean", "north": -54.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Robinson, Rebecca; Brzezinski, Mark", "project_titles": "Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump", "projects": [{"proj_uid": "p0010083", "repository": "USAP-DC", "title": "Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "Particle composition measurements from along 170\u00b0W between 67-54\u00b0S", "uid": "601276", "west": -175.0}, {"awards": "1443471 Koutnik, Michelle", "bounds_geometry": ["POINT(-98.16 -89.99)"], "date_created": "Wed, 25 Mar 2020 00:00:00 GMT", "description": "The South Pole Ice Core (SPICEcore), which spans the past 54,300 years, was drilled far from an ice divide such that ice recovered at depth originated upstream of the core site. If the climate is different upstream, the climate history recovered from the core will be a combination of the upstream conditions advected to the core site and temporal changes. Here, we evaluate the impact of ice advection on two fundamental records from SPICEcore: accumulation rate and water isotopes. We determined past locations of ice deposition based on GPS measurements of the modern velocity field spanning 100 km upstream, where ice of ~20 ka age would likely have originated. Beyond 100 km, there are no velocity measurements, but ice likely originates from Titan Dome, an additional 90 km distant. Shallow radar measurements extending 100 km upstream from the core site reveal large (~20%) variations in accumulation but no significant trend. Water isotope ratios, measured at 12.5 km intervals for the first 100 km of the flowline, show a decrease with elevation of -0.008\u2030 m-1 for \u03b418O. Advection adds approximately 1\u2030 for \u03b418O to the LGM-to-modern change. We also use an existing ensemble of continental ice-sheet model runs to assess the ice sheet elevation change through time. The magnitude of elevation change is likely small and the sign uncertain. Assuming a lapse rate of 10\u00b0C per km of elevation, the inference of LGM-to-modern temperature change is ~1.4\u00b0C smaller than if the flow from upstream is not considered. ", "east": -98.16, "geometry": ["POINT(-98.16 -89.99)"], "keywords": "Antarctica; Ice Core Data; South Pole; SPICEcore", "locations": "South Pole; Antarctica", "north": -89.99, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Fudge, T. J.", "project_titles": "Collaborative Research: Characterization of Upstream Ice and Firn Dynamics affecting the South Pole Ice Core", "projects": [{"proj_uid": "p0000200", "repository": "USAP-DC", "title": "Collaborative Research: Characterization of Upstream Ice and Firn Dynamics affecting the South Pole Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -89.99, "title": "SPICEcore Advection", "uid": "601266", "west": -98.16}, {"awards": "1443585 Polito, Michael; 1826712 McMahon, Kelton; 1443386 Emslie, Steven; 1443424 McMahon, Kelton", "bounds_geometry": ["POLYGON((-63.56 -60.72,-61.664 -60.72,-59.768 -60.72,-57.872 -60.72,-55.976 -60.72,-54.08 -60.72,-52.184 -60.72,-50.288 -60.72,-48.392 -60.72,-46.496 -60.72,-44.6 -60.72,-44.6 -61.106,-44.6 -61.492,-44.6 -61.878,-44.6 -62.264,-44.6 -62.65,-44.6 -63.036,-44.6 -63.422,-44.6 -63.808,-44.6 -64.194,-44.6 -64.58,-46.496 -64.58,-48.392 -64.58,-50.288 -64.58,-52.184 -64.58,-54.08 -64.58,-55.976 -64.58,-57.872 -64.58,-59.768 -64.58,-61.664 -64.58,-63.56 -64.58,-63.56 -64.194,-63.56 -63.808,-63.56 -63.422,-63.56 -63.036,-63.56 -62.65,-63.56 -62.264,-63.56 -61.878,-63.56 -61.492,-63.56 -61.106,-63.56 -60.72))"], "date_created": "Tue, 17 Dec 2019 00:00:00 GMT", "description": "This data set contains measurements of nitrogen (\u03b415N) stable isotope values of twelve individual amino acids from breast feathers of gentoo penguins (Pygoscelis papua) and chinstrap penguins (Pygoscelis antarctica) collected from museum archives between the 1930s and 2010s. Stable isotope analyses were conducted using a gas chromatograph coupled to a continuous flow stable isotope ratio mass spectrometer. The data set also includes trophic positions of penguins calculated from individual amino acid \u03b415N values.\r\nThe data set indexes each individual penguin with species, collection institution, catalog number, sex, locality, latitude, longitude, year of sample collection, nitrogen isotope ratios, and calculated trophic position. Details of the data set and all relevant methods are provided in McMahon et al. 2020 Proc Natl Acad Sci DOI: 10.1073/pnas.1913093116 ", "east": -44.6, "geometry": ["POINT(-54.08 -62.65)"], "keywords": "Amino Acids; Antarctica; Antarctic Peninsula; Biota; Isotope Data; Nitrogen Isotopes; Oceans; Penguin; Southern Ocean; Stable Isotope Analysis", "locations": "Antarctica; Antarctica; Antarctic Peninsula; Southern Ocean", "north": -60.72, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "McMahon, Kelton; Polito, Michael", "project_titles": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators", "projects": [{"proj_uid": "p0010047", "repository": "USAP-DC", "title": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.58, "title": "Amino acid nitrogen isotope values of penguins from the Antarctic Peninsula region 1930s to 2010s", "uid": "601232", "west": -63.56}, {"awards": "1826712 McMahon, Kelton; 1443585 Polito, Michael; 1443386 Emslie, Steven; 1443424 McMahon, Kelton", "bounds_geometry": ["POLYGON((-63 -60,-62.1 -60,-61.2 -60,-60.3 -60,-59.4 -60,-58.5 -60,-57.6 -60,-56.7 -60,-55.8 -60,-54.9 -60,-54 -60,-54 -60.4,-54 -60.8,-54 -61.2,-54 -61.6,-54 -62,-54 -62.4,-54 -62.8,-54 -63.2,-54 -63.6,-54 -64,-54.9 -64,-55.8 -64,-56.7 -64,-57.6 -64,-58.5 -64,-59.4 -64,-60.3 -64,-61.2 -64,-62.1 -64,-63 -64,-63 -63.6,-63 -63.2,-63 -62.8,-63 -62.4,-63 -62,-63 -61.6,-63 -61.2,-63 -60.8,-63 -60.4,-63 -60))"], "date_created": "Fri, 13 Sep 2019 00:00:00 GMT", "description": "This data set contains measurements of carbon (\u03b413C) and nitrogen (\u03b415N) stable isotope values of whole-body Antarctic krill (Euphausia superba) collected from trawl surveys of waters surrounding the South Shetland Islands and the northern Antarctic Peninsula during the 2006-07 and 2008-90 Austral summers. Stable isotope analyses were conducted using an elemental analyzer coupled to a continuous flow stable isotope ratio mass spectrometer. Individual krill were lipid-extracted prior to analyses. The data set also includes latitude, longitude, month, and year of sample collection, standard length of the krill to the nearest mm, age class, sex, and carbon to nitrogen ratios. Details of the data set and all relevant methods are provided in Polito et al., 2013 and Polito et al., 2019.", "east": -54.0, "geometry": ["POINT(-58.5 -62)"], "keywords": "Antarctica; Antarctic Krill; Antarctic Peninsula; Biota; Carbon Isotopes; Isotope Data; Krill; Nitrogen Isotopes; Oceans; Southern Ocean; Stable Isotope Analysis", "locations": "Antarctica; Antarctic Peninsula; Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Polito, Michael", "project_titles": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators", "projects": [{"proj_uid": "p0010047", "repository": "USAP-DC", "title": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.0, "title": "Carbon and nitrogen stable isotope values of Antarctic Krill from the South Shetland Islands and the northern Antarctic Peninsula 2007 and 2009", "uid": "601210", "west": -63.0}, {"awards": "1443336 Osterberg, Erich", "bounds_geometry": ["POINT(-180 -90)"], "date_created": "Thu, 29 Aug 2019 00:00:00 GMT", "description": "The South Pole Ice Core (SPICEcore) was drilled in 2014-2016 to provide a detailed multi-proxy archive of paleoclimate conditions in East Antarctica during the Holocene and late Pleistocene. Interpretation of these records requires an accurate depth-age relationship. Here, we present the SP19 timescale for the age of the ice of SPICEcore. SP19 is synchronized to the WD2014 chronology from the West Antarctic Ice Sheet Divide (WAIS Divide) ice core using stratigraphic matching of 251 volcanic events. These events indicate an age of 54,302 +/- 519 years BP (before the year 1950) at the bottom of SPICEcore. Annual layers identified in sodium and magnesium ions to 11,341 BP were used to interpolate between stratigraphic volcanic tie points, yielding an annually-resolved chronology through the Holocene. Estimated timescale uncertainty during the Holocene is less than 18 years relative to WD2014, with the exception of the interval between 1800 to 3100 BP when uncertainty estimates reach +/- 25 years due to widely spaced volcanic tie points. Prior to the Holocene, uncertainties remain within 124 years relative to WD2014. Results show an average Holocene accumulation rate of 7.4 cm/yr (water equivalent). The time variability of accumulation rate is consistent with expectations for steady-state ice flow through the modern spatial pattern of accumulation rate. Time variations in nitrate concentration, nitrate seasonal amplitude, and \u03b415N of N2 in turn are as expected for the accumulation-rate variations. The highly variable yet well-constrained Holocene accumulation history at the site can help improve scientific understanding of deposition-sensitive climate proxies such as \u03b415N of N2 and photolyzed chemical compounds.", "east": -180.0, "geometry": ["POINT(-180 -90)"], "keywords": "Antarctica; Calcium (ca); Chemistry:ice; Chemistry:Ice; Depth; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciochemistry; Glaciology; Ice; Ice Core; Ice Core Chemistry; Ice Core Data; Ice Core Records; Ice Core Stratigraphy; Nitrate; Nitrogen Isotopes; Paleoclimate; Snow/ice; Snow/Ice; South Pole; SPICEcore", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Winski, Dominic A.; Fudge, T. J.; Dunbar, Nelia; Buizert, Christo; Bay, Ryan; Souney, Joseph Jr.; Sigl, Michael; McConnell, Joseph; Fegyveresi, John; Cole-Dai, Jihong; Thundercloud, Zayta; Cox, Thomas S.; Kreutz, Karl; Epifanio, Jenna; Ortman, Nikolas; Brook, Edward J.; Beaudette, Ross; Sowers, Todd A.; Steig, Eric J.; Morris, Valerie; Kahle, Emma; Ferris, David G.; Aydin, Murat; Nicewonger, Melinda R.; Casey, Kimberly A.; Alley, Richard; Waddington, Edwin D.; Osterberg, Erich; Severinghaus, Jeffrey P.; Jones, Tyler R.; Iverson, Nels", "project_titles": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements", "projects": [{"proj_uid": "p0010051", "repository": "USAP-DC", "title": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "The South Pole Ice Core (SPICEcore) chronology and supporting data", "uid": "601206", "west": -180.0}, {"awards": "1443263 Higgins, John", "bounds_geometry": ["POINT(159.35507 -76.73286)"], "date_created": "Wed, 14 Aug 2019 00:00:00 GMT", "description": "This file includes the concentration of carbon dioxide (CO2) and methane (CH4) and the stable carbon isotope composition of CO2 in Allan Hills ice cores (ALHIC1502 and ALHIC1503).", "east": 159.35507, "geometry": ["POINT(159.35507 -76.73286)"], "keywords": "Allan Hills; Allan Hills Project; Antarctica; Carbon Dioxide; Carbon Isotopes; Chemistry:ice; Chemistry:Ice; CO2; Gas Chromatography; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Gas Records; Ice Core Records; Mass Spectrometer; Mass Spectrometry; Methane; Snow/ice; Snow/Ice", "locations": "Antarctica; Allan Hills", "north": -76.73286, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Yan, Yuzhen; Bender, Michael; Brook, Edward J.; Higgins, John", "project_titles": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "projects": [{"proj_uid": "p0000760", "repository": "USAP-DC", "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73286, "title": "Carbon dioxide concentration and its stable carbon isotope composition in Allan Hills ice cores", "uid": "601202", "west": 159.35507}, {"awards": "1245659 Petrenko, Vasilii; 1245821 Brook, Edward J.; 1246148 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(162.167 -77.733)"], "date_created": "Mon, 12 Aug 2019 00:00:00 GMT", "description": "New ice cores retrieved from the Taylor Glacier (Antarctica) blue ice area contain ice and air spanning the Marine Isotope Stage (MIS) 5-4 transition, a period of global cooling and ice sheet expansion. We determine chronologies for the ice and air bubbles in the new ice cores by visually matching variations in gas- and ice- phase tracers to preexisting ice core records. The chronologies reveal an ice age-gas age difference (\u0394age) approaching 10 ka during MIS 4, implying very low snow accumulation in the Taylor Glacier accumulation zone. A revised chronology for the analagous section of the Taylor Dome ice core (84 to 55 ka), located to the south of the Taylor Glacier accumulation zone, shows that \u0394age did not exceed 3 ka. The difference in \u0394age between the two records during MIS 4 is similar in magnitude but opposite in direction to what is observed at the Last Glacial Maximum. This relationship implies that a spatial gradient in snow accumulation existed across the Taylor Dome region during MIS 4 that was oriented in the opposite direction of the accumulation gradient during the Last Glacial Maximum.", "east": 162.167, "geometry": ["POINT(162.167 -77.733)"], "keywords": "Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; CO2; Dust; Gas; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Mass Spectrometer; Methane; Nitrogen Isotopes; Oxygen Isotope; Paleoclimate; Snow/ice; Snow/Ice; Taylor Dome; Taylor Dome Ice Core", "locations": "Taylor Dome; Antarctica", "north": -77.733, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "persons": "Menking, James; Brook, Edward J.; Marcott, Shaun; Barker, Stephen; Shackleton, Sarah; Dyonisius, Michael; Petrenko, Vasilii; McConnell, Joseph; Rhodes, Rachel; Bauska, Thomas; Baggenstos, Daniel; Severinghaus, Jeffrey P.", "project_titles": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "projects": [{"proj_uid": "p0000283", "repository": "USAP-DC", "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.733, "title": "Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores", "uid": "601198", "west": 162.167}, {"awards": "1144176 Lyons, W. Berry", "bounds_geometry": ["POLYGON((162.250099 -77.719928,162.2519358 -77.719928,162.2537726 -77.719928,162.2556094 -77.719928,162.2574462 -77.719928,162.259283 -77.719928,162.2611198 -77.719928,162.2629566 -77.719928,162.2647934 -77.719928,162.2666302 -77.719928,162.268467 -77.719928,162.268467 -77.7201251,162.268467 -77.7203222,162.268467 -77.7205193,162.268467 -77.7207164,162.268467 -77.7209135,162.268467 -77.7211106,162.268467 -77.7213077,162.268467 -77.7215048,162.268467 -77.7217019,162.268467 -77.721899,162.2666302 -77.721899,162.2647934 -77.721899,162.2629566 -77.721899,162.2611198 -77.721899,162.259283 -77.721899,162.2574462 -77.721899,162.2556094 -77.721899,162.2537726 -77.721899,162.2519358 -77.721899,162.250099 -77.721899,162.250099 -77.7217019,162.250099 -77.7215048,162.250099 -77.7213077,162.250099 -77.7211106,162.250099 -77.7209135,162.250099 -77.7207164,162.250099 -77.7205193,162.250099 -77.7203222,162.250099 -77.7201251,162.250099 -77.719928))"], "date_created": "Tue, 07 May 2019 00:00:00 GMT", "description": "Blood Falls is a hypersaline, iron\u2010rich discharge at the terminus of the Taylor Glacier in the McMurdo Dry Valleys, Antarctica. In November 2014, brine in a conduit within the glacier was penetrated and sampled using clean\u2010entry techniques and a thermoelectric melting probe called the IceMole. We analyzed the englacial brine sample for filterable iron (fFe), total Fe, major cations and anions, nutrients, organic carbon, and perchlorate. In addition, aliquots were analyzed for minor and trace elements and isotopes including \u03b4D and \u03b418O of water, \u03b434S and \u03b418O of sulfate, 234U, 238U, \u03b411B, 87Sr/86Sr, and \u03b481Br. These measurements were made in order to (1) determine the source and geochemical evolution of the brine and (2) compare the chemistry of the brine to that of nearby hypersaline lake waters and previous supraglacially sampled collections of Blood Falls outflow that were interpreted as end\u2010member brines.", "east": 162.268467, "geometry": ["POINT(162.259283 -77.7209135)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Subglacial Brine", "locations": "Antarctica", "north": -77.719928, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Lyons, W. Berry; Gardner, Christopher B.", "project_titles": "Collaborative Research: MIDGE: Minimally Invasive Direct Glacial Exploration of Biogeochemistry, Hydrology and Glaciology of Blood Falls, McMurdo Dry Valleys", "projects": [{"proj_uid": "p0000002", "repository": "USAP-DC", "title": "Collaborative Research: MIDGE: Minimally Invasive Direct Glacial Exploration of Biogeochemistry, Hydrology and Glaciology of Blood Falls, McMurdo Dry Valleys"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.721899, "title": "The Geochemistry of englacial brine from Taylor Glacier, Antarctica.", "uid": "601179", "west": 162.250099}, {"awards": "1245659 Petrenko, Vasilii; 1246148 Severinghaus, Jeffrey; 1245821 Brook, Edward J.; 0739766 Brook, Edward J.", "bounds_geometry": ["POLYGON((161.68 -77.73,161.7 -77.73,161.72 -77.73,161.74 -77.73,161.76 -77.73,161.78 -77.73,161.8 -77.73,161.82 -77.73,161.84 -77.73,161.86 -77.73,161.88 -77.73,161.88 -77.734,161.88 -77.738,161.88 -77.742,161.88 -77.746,161.88 -77.75,161.88 -77.754,161.88 -77.758,161.88 -77.762,161.88 -77.766,161.88 -77.77,161.86 -77.77,161.84 -77.77,161.82 -77.77,161.8 -77.77,161.78 -77.77,161.76 -77.77,161.74 -77.77,161.72 -77.77,161.7 -77.77,161.68 -77.77,161.68 -77.766,161.68 -77.762,161.68 -77.758,161.68 -77.754,161.68 -77.75,161.68 -77.746,161.68 -77.742,161.68 -77.738,161.68 -77.734,161.68 -77.73))"], "date_created": "Tue, 23 Apr 2019 00:00:00 GMT", "description": "Noble gas data from Taylor Glacier for mean ocean temperature reconstruction during the Younger Dryas. Also includes field measurements of methane and standard deviations of replicate CO2 measurements from WAIS Divide. ", "east": 161.88, "geometry": ["POINT(161.78 -77.75)"], "keywords": "Antarctica; CO2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Methane; Noble Gas; Noble Gas Isotopes; Snow/ice; Snow/Ice; Taylor Glacier; Younger Dryas", "locations": "Taylor Glacier; Antarctica", "north": -77.73, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Shackleton, Sarah", "project_titles": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "projects": [{"proj_uid": "p0000283", "repository": "USAP-DC", "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": -77.77, "title": "Taylor Glacier Noble Gases - Younger Dryas", "uid": "601176", "west": 161.68}, {"awards": "1543031 Ivany, Linda", "bounds_geometry": ["POLYGON((-57 -64,-56.9 -64,-56.8 -64,-56.7 -64,-56.6 -64,-56.5 -64,-56.4 -64,-56.3 -64,-56.2 -64,-56.1 -64,-56 -64,-56 -64.05,-56 -64.1,-56 -64.15,-56 -64.2,-56 -64.25,-56 -64.3,-56 -64.35,-56 -64.4,-56 -64.45,-56 -64.5,-56.1 -64.5,-56.2 -64.5,-56.3 -64.5,-56.4 -64.5,-56.5 -64.5,-56.6 -64.5,-56.7 -64.5,-56.8 -64.5,-56.9 -64.5,-57 -64.5,-57 -64.45,-57 -64.4,-57 -64.35,-57 -64.3,-57 -64.25,-57 -64.2,-57 -64.15,-57 -64.1,-57 -64.05,-57 -64))"], "date_created": "Mon, 22 Apr 2019 00:00:00 GMT", "description": "Serially-sampled high-resolution organic carbon isotope data from middle Eocene (~42 Ma) driftwood preserved within the La Meseta Formation, Seymour Island, Antarctica.", "east": -56.0, "geometry": ["POINT(-56.5 -64.25)"], "keywords": "Antarctica; Carbon Isotopes; Driftwood; Eocene; Geochemistry; Geochronology; Isotope Data; La Meseta Formation; Mass Spectrometer; Mass Spectrometry; Organic Carbon Isotopes; Seasonality; Seymour Island; Wood", "locations": "Antarctica; La Meseta Formation; Seymour Island", "north": -64.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Judd, Emily", "project_titles": "Seasonality, Summer Cooling, and Calibrating the Approach of the Icehouse in Late Eocene Antarctica", "projects": [{"proj_uid": "p0010025", "repository": "USAP-DC", "title": "Seasonality, Summer Cooling, and Calibrating the Approach of the Icehouse in Late Eocene Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.5, "title": "Organic carbon isotope data from serially sampled Eocene driftwood from the La Meseta Fm., Seymour Island, Antarctica", "uid": "601173", "west": -57.0}, {"awards": "1443710 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(0 -90)"], "date_created": "Sat, 02 Feb 2019 00:00:00 GMT", "description": "This data set includes major atmospheric gas and gas isotope data from the SPICECORE project, which recovered a 1750-m ice core at the South Pole in 2015. 15N, 18O of O2, O2/N2, and Ar/N2 are included.", "east": 0.0, "geometry": ["POINT(0 -90)"], "keywords": "Antarctica; Antarctic Ice Sheet; Chemistry:gas; Chemistry:Gas; Chemistry:ice; Chemistry:Ice; Delta 18O; Dole Effect; Firn Thickness; Gas Isotopes; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Gravitational Settling; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Inert Gases; Nitrogen; Nitrogen Isotopes; Oxygen; Oxygen Isotope; Snow/ice; Snow/Ice; South Pole; SPICEcore", "locations": "Antarctica; South Pole; Antarctic Ice Sheet", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.", "project_titles": "Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core", "projects": [{"proj_uid": "p0010005", "repository": "USAP-DC", "title": "Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "South Pole (SPICECORE) 15N, 18O, O2/N2 and Ar/N2", "uid": "601152", "west": 0.0}, {"awards": "1443306 Mayewski, Paul; 1443263 Higgins, John", "bounds_geometry": ["POLYGON((159.35343 -76.73165,159.360199 -76.73165,159.366968 -76.73165,159.373737 -76.73165,159.380506 -76.73165,159.387275 -76.73165,159.394044 -76.73165,159.400813 -76.73165,159.407582 -76.73165,159.414351 -76.73165,159.42112 -76.73165,159.42112 -76.731833,159.42112 -76.732016,159.42112 -76.732199,159.42112 -76.732382,159.42112 -76.732565,159.42112 -76.732748,159.42112 -76.732931,159.42112 -76.733114,159.42112 -76.733297,159.42112 -76.73348,159.414351 -76.73348,159.407582 -76.73348,159.400813 -76.73348,159.394044 -76.73348,159.387275 -76.73348,159.380506 -76.73348,159.373737 -76.73348,159.366968 -76.73348,159.360199 -76.73348,159.35343 -76.73348,159.35343 -76.733297,159.35343 -76.733114,159.35343 -76.732931,159.35343 -76.732748,159.35343 -76.732565,159.35343 -76.732382,159.35343 -76.732199,159.35343 -76.732016,159.35343 -76.731833,159.35343 -76.73165))"], "date_created": "Wed, 17 Oct 2018 00:00:00 GMT", "description": "Stable water isotope data for the surface ice samples (listed as point numbers \u00ad coordinates provided) collected at the Allan Hills Blue ice area have been generated under a collaborative effort by the University of Maine Climate Change Institute (NSF Award#1443306) and Princeton University (NSF Award# 1443263). This data set contains stable isotope data (dD, d18O) of meltwater samples collected from the\r\narea(76.73165 to 76.73348 S,\u00a0159.35343 to 159.42112 E).", "east": 159.42112, "geometry": ["POINT(159.387275 -76.732565)"], "keywords": "Allan Hills; Allan Hills Project; Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; Delta 18O; Delta Deuterium; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Gas Records; Ice Core Records; Oxygen; Snow/ice; Snow/Ice; Stable Water Isotopes; Transantarctic Mountains", "locations": "Antarctica; Transantarctic Mountains; Allan Hills", "north": -76.73165, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "persons": "Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Yan, Yuzhen", "project_titles": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "projects": [{"proj_uid": "p0000760", "repository": "USAP-DC", "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73348, "title": "Stable water isotope data for the surface samples collected at the Allan Hills Blue ice area", "uid": "601130", "west": 159.35343}, {"awards": "1443263 Higgins, John; 1443306 Mayewski, Paul", "bounds_geometry": ["POINT(159.35507 -76.73286)"], "date_created": "Wed, 17 Oct 2018 00:00:00 GMT", "description": "Stable water isotope data for the ice core drilled at the Allan Hills Blue ice area have been generated under a collaborative effort by the University of Maine Climate Change Institute (NSF Award#1443306) and Princeton University (NSF Award# 1443263). This data set contains \r\nstable isotope data (dD, d18O) of meltwater samples collected from the ice core AH-1502 (76.73286 S, 159.35507 E) was drilled in 2015-16 field season to 197 meters below the surface.", "east": 159.35507, "geometry": ["POINT(159.35507 -76.73286)"], "keywords": "Allan Hills; Allan Hills Project; Antarctica; Blue Ice; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Isotope Data; Oxygen; Snow/ice; Snow/Ice; Stable Water Isotopes; Transantarctic Mountains", "locations": "Antarctica; Transantarctic Mountains; Allan Hills", "north": -76.73286, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "persons": "Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Yan, Yuzhen", "project_titles": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "projects": [{"proj_uid": "p0000760", "repository": "USAP-DC", "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73286, "title": "Stable water isotope data for the AH-1502 ice core drilled at the Allan Hills Blue ice area", "uid": "601129", "west": 159.35507}, {"awards": "1443306 Mayewski, Paul; 1443263 Higgins, John", "bounds_geometry": ["POINT(159.3562 -76.73243)"], "date_created": "Tue, 16 Oct 2018 00:00:00 GMT", "description": "Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills\r Blue ice area have been generated under a collaborative effort by the\r University of Maine Climate Change Institute (NSF Award#1443263) and\r Princeton University (NSF Award# 1443263). This data set contains stable isotope data (dD, d18O) of meltwater samples collected from the\r ice core AH-1503 (76.73243 S,\u00a0159.3562 E). Ice core site AH-1503 used the same borehole as AH- BIT58 drilled down to 124 m during the 2011-12 field season. All drilling was conducted with a 3\" Eclipse drill (Ice Drilling Design and Operations (IDDO)).\r\n", "east": 159.3562, "geometry": ["POINT(159.3562 -76.73243)"], "keywords": "Allan Hills; Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope Record; Mass Spectrometry; Stable Water Isotopes", "locations": "Antarctica; Allan Hills", "north": -76.73243, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "persons": "Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Yan, Yuzhen", "project_titles": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "projects": [{"proj_uid": "p0000760", "repository": "USAP-DC", "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73243, "title": "Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills Blue ice area", "uid": "601128", "west": 159.3562}, {"awards": "1043471 Kaplan, Michael", "bounds_geometry": ["POLYGON((-112.5 -79.468,-112.4586 -79.468,-112.4172 -79.468,-112.3758 -79.468,-112.3344 -79.468,-112.293 -79.468,-112.2516 -79.468,-112.2102 -79.468,-112.1688 -79.468,-112.1274 -79.468,-112.086 -79.468,-112.086 -79.4712,-112.086 -79.4744,-112.086 -79.4776,-112.086 -79.4808,-112.086 -79.484,-112.086 -79.4872,-112.086 -79.4904,-112.086 -79.4936,-112.086 -79.4968,-112.086 -79.5,-112.1274 -79.5,-112.1688 -79.5,-112.2102 -79.5,-112.2516 -79.5,-112.293 -79.5,-112.3344 -79.5,-112.3758 -79.5,-112.4172 -79.5,-112.4586 -79.5,-112.5 -79.5,-112.5 -79.4968,-112.5 -79.4936,-112.5 -79.4904,-112.5 -79.4872,-112.5 -79.484,-112.5 -79.4808,-112.5 -79.4776,-112.5 -79.4744,-112.5 -79.4712,-112.5 -79.468))"], "date_created": "Fri, 27 Oct 2017 00:00:00 GMT", "description": "Listed are samples of WAIS Divide and Byrd (deep) ice that were analyzed for radiogenic isotopes at LDEO.", "east": -112.086, "geometry": ["POINT(-112.293 -79.484)"], "keywords": "Antarctica; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Sample/collection Description; Sample/Collection Description; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.468, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Kaplan, Michael", "project_titles": "A Study of Atmospheric Dust in the WAIS Divide Ice Core Based on Sr-Nd-Pb-He Isotopes", "projects": [{"proj_uid": "p0000081", "repository": "USAP-DC", "title": "A Study of Atmospheric Dust in the WAIS Divide Ice Core Based on Sr-Nd-Pb-He Isotopes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.5, "title": "List of samples of WAIS Divide and Byrd (deep) ice that were analyzed for radiogenic isotopes at LDEO", "uid": "601065", "west": -112.5}, {"awards": "0538657 Severinghaus, Jeffrey", "bounds_geometry": ["POLYGON((-113 -79,-112.8 -79,-112.6 -79,-112.4 -79,-112.2 -79,-112 -79,-111.8 -79,-111.6 -79,-111.4 -79,-111.2 -79,-111 -79,-111 -79.1,-111 -79.2,-111 -79.3,-111 -79.4,-111 -79.5,-111 -79.6,-111 -79.7,-111 -79.8,-111 -79.9,-111 -80,-111.2 -80,-111.4 -80,-111.6 -80,-111.8 -80,-112 -80,-112.2 -80,-112.4 -80,-112.6 -80,-112.8 -80,-113 -80,-113 -79.9,-113 -79.8,-113 -79.7,-113 -79.6,-113 -79.5,-113 -79.4,-113 -79.3,-113 -79.2,-113 -79.1,-113 -79))"], "date_created": "Fri, 18 Aug 2017 00:00:00 GMT", "description": "This data set contains measurements of d18Oatm (d18O of O2), d15N, dAr/N2, and dO2/N2 in gas bubbles from the WAIS Divide ice core. The time resolution is variable throughout the record but is ~100 years on average (from 65 ka to present). All measurements were made in the Noble Gas Isotope Laboratory at Scripps Institution of Oceanography (La Jolla, CA). The data set includes all replicate measurements as well as replicate-mean values and a calculation of measurement precision (pooled standard deviation). The second sheet of this data set includes fitted d18Oatm curves for the past 50 ka from both the WAIS Divide and Siple Dome Antarctic ice cores, both on the WD2014 timescale (Buizert et al., 2015). The second sheet also includes calculations of the time derivative of d18Oatm and d e LAND in both ice cores individual as well as in a composite record. Details of the entire data set and all relevant methods are provided in Seltzer et al., 2017.", "east": -111.0, "geometry": ["POINT(-112 -79.5)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Gas; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; WAIS Divide Ice Core", "locations": "Antarctica", "north": -79.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Seltzer, Alan; Severinghaus, Jeffrey P.", "project_titles": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate", "projects": [{"proj_uid": "p0000036", "repository": "USAP-DC", "title": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -80.0, "title": "WAIS Divide d18Oatm and Siple Dome/WAIS Divide composite and individual delta epsilon LAND", "uid": "601041", "west": -113.0}, {"awards": "0838849 Bender, Michael", "bounds_geometry": ["POLYGON((159.02 -76.67,159.057 -76.67,159.094 -76.67,159.131 -76.67,159.168 -76.67,159.205 -76.67,159.242 -76.67,159.279 -76.67,159.316 -76.67,159.353 -76.67,159.39 -76.67,159.39 -76.687,159.39 -76.704,159.39 -76.721,159.39 -76.738,159.39 -76.755,159.39 -76.772,159.39 -76.789,159.39 -76.806,159.39 -76.823,159.39 -76.84,159.353 -76.84,159.316 -76.84,159.279 -76.84,159.242 -76.84,159.205 -76.84,159.168 -76.84,159.131 -76.84,159.094 -76.84,159.057 -76.84,159.02 -76.84,159.02 -76.823,159.02 -76.806,159.02 -76.789,159.02 -76.772,159.02 -76.755,159.02 -76.738,159.02 -76.721,159.02 -76.704,159.02 -76.687,159.02 -76.67))"], "date_created": "Mon, 27 Mar 2017 00:00:00 GMT", "description": "Measurements of Ar isotopes (40Ar/38Ar/36Ar) and other gas species (18O/16O of O2, 15N/14N of N2, O2/N2 and Ar/N2 ratios) from ice cores drilled in the Allan Hills Blue Ice Area", "east": 159.39, "geometry": ["POINT(159.205 -76.755)"], "keywords": "Allan Hills; Antarctica; Argon; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope", "locations": "Allan Hills; Antarctica", "north": -76.67, "nsf_funding_programs": null, "persons": "Higgins, John", "project_titles": "Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core", "projects": [{"proj_uid": "p0000148", "repository": "USAP-DC", "title": "Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.84, "title": "Gas measurement from Higgins et al., 2015 - PNAS", "uid": "601014", "west": 159.02}, {"awards": "0538049 Steig, Eric", "bounds_geometry": ["POINT(-112.085 -79.5)"], "date_created": "Thu, 09 Mar 2017 00:00:00 GMT", "description": "This data set contain oxygen isotopes of sulfate and nitrate and nitrogen isotopes of nitrate from the WAIS Divide ice core from the surface to 577 m depth at varying resolution", "east": -112.085, "geometry": ["POINT(-112.085 -79.5)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Nitrate; Oxygen Isotope; Sulfate; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.5, "nsf_funding_programs": null, "persons": "Alexander, Becky; Steig, Eric J.", "project_titles": "Collaborative Research: Multiple-isotope Analysis of Nitrate and Sulfate in the West Antarctic Ice Sheet Divide Ice Core", "projects": [{"proj_uid": "p0000020", "repository": "USAP-DC", "title": "Collaborative Research: Multiple-isotope Analysis of Nitrate and Sulfate in the West Antarctic Ice Sheet Divide Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.5, "title": "WAIS Divide sulfate and nitrate isotopes", "uid": "601007", "west": -112.085}, {"awards": "1043167 White, James", "bounds_geometry": ["POINT(-112.08 -79.47)"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public.", "east": -112.08, "geometry": ["POINT(-112.08 -79.47)"], "keywords": "Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; Snow Accumulation; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.47, "nsf_funding_programs": null, "persons": "White, James; Morris, Valerie; Vaughn, Bruce; Jones, Tyler R.", "project_titles": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "projects": [{"proj_uid": "p0000078", "repository": "USAP-DC", "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "uid": "600169", "west": -112.08}, {"awards": "1245821 Brook, Edward J.", "bounds_geometry": ["POINT(162.167 -77.733)"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, and delta 18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, delta 13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of delta 13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica.", "east": 162.167, "geometry": ["POINT(162.167 -77.733)"], "keywords": "Antarctica; Atmosphere; Geochemistry; Ice Core Records; Isotope; Paleoclimate; Taylor Glacier; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica; Taylor Glacier", "north": -77.733, "nsf_funding_programs": null, "persons": "Brook, Edward J.", "project_titles": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "projects": [{"proj_uid": "p0000283", "repository": "USAP-DC", "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.733, "title": "The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "uid": "600163", "west": 162.167}, {"awards": "0230316 White, James", "bounds_geometry": ["POINT(-134.43 -74.04)"], "date_created": "Tue, 24 Nov 2015 00:00:00 GMT", "description": "This data set consists of water isotope ratios from the Mt. Moulton ice-trench record, as well as data from the Taylor Dome, EPICA Dome C, Talos Dome, Vostok, and EPICA Dronning Maud Land ice cores.", "east": -134.43, "geometry": ["POINT(-134.43 -74.04)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Lake Vostok; Mount Moulton; Paleoclimate; Talos Dome; Taylor Dome", "locations": "Talos Dome; Antarctica; Epica Dome C; Mount Moulton; Lake Vostok; Taylor Dome", "north": -74.04, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Steig, Eric J.; White, James; Popp, Trevor", "project_titles": "Collaborative Research: Refining a 500-kry Climate Record From the Moulton Blue Ice Field in West Antarctica", "projects": [{"proj_uid": "p0000755", "repository": "USAP-DC", "title": "Collaborative Research: Refining a 500-kry Climate Record From the Moulton Blue Ice Field in West Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -74.04, "title": "Mount Moulton Isotopes and Other Ice Core Data", "uid": "609640", "west": -134.43}, {"awards": "0538657 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(-38.5 -76.2)"], "date_created": "Tue, 27 Oct 2015 00:00:00 GMT", "description": "This data set contains the results of Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) performed on an archive of the GISP2 ice core containing the rapid climate warming of Dansgaard-Oeschger Event 21.", "east": -38.5, "geometry": ["POINT(-38.5 -76.2)"], "keywords": "Arctic; Geochemistry; GISP; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate", "locations": "Arctic", "north": -76.2, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Haines, Skylar; Mayewski, Paul A.; Kurbatov, Andrei V.", "project_titles": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate", "projects": [{"proj_uid": "p0000036", "repository": "USAP-DC", "title": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.2, "title": "Ultra-High Resolution LA-ICP-MS Results: DO-21 Rapid Warming Event", "uid": "609635", "west": -38.5}, {"awards": "0538657 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(-112.08 -79.47)"], "date_created": "Tue, 20 Oct 2015 00:00:00 GMT", "description": "This data set is a low-resolution set of measurements of d15N of N2 and d18O of O2, along with dO2/N and dAr/N2 supporting data, in the WAIS Divide 3405 m long ice core recovered in 2011. Data are distributed via FTP.", "east": -112.08, "geometry": ["POINT(-112.08 -79.47)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.", "project_titles": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate", "projects": [{"proj_uid": "p0000036", "repository": "USAP-DC", "title": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Low-res d15N and d18O of O2 in the WAIS Divide 06A Deep Core", "uid": "609660", "west": -112.08}, {"awards": "0538657 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(-112.125 -79.463)"], "date_created": "Mon, 08 Jun 2015 00:00:00 GMT", "description": "This data set includes borehole temperature measurements performed in January 2008 and January 2009 at the West Antarctic Ice sheet divide from the 300 m hole WDC05A.", "east": -112.125, "geometry": ["POINT(-112.125 -79.463)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Temperature; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.463, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.; Orsi, Anais J.", "project_titles": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate", "projects": [{"proj_uid": "p0000036", "repository": "USAP-DC", "title": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.463, "title": "Borehole Temperature Measurement in WDC05A in January 2008 and January 2009", "uid": "609637", "west": -112.125}, {"awards": "1043092 Steig, Eric", "bounds_geometry": ["POINT(-112.05 -79.28)"], "date_created": "Tue, 28 Apr 2015 00:00:00 GMT", "description": "This data set contains complete low resolution (0.25 to 100 cm) oxygen isotope data from the WAIS Divide Ice Core WDC06A, 0 to 3404.7 m depth. Also included is the WDC2014 timescale.", "east": -112.05, "geometry": ["POINT(-112.05 -79.28)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Steig, Eric J.", "project_titles": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "projects": [{"proj_uid": "p0000010", "repository": "USAP-DC", "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.28, "title": "WAIS Divide WDC06A Oxygen Isotope Record", "uid": "609629", "west": -112.05}, {"awards": "0944653 Forster, Richard", "bounds_geometry": ["POLYGON((-119.4 -78.1,-118.46 -78.1,-117.52 -78.1,-116.58 -78.1,-115.64 -78.1,-114.7 -78.1,-113.76 -78.1,-112.82 -78.1,-111.88 -78.1,-110.94 -78.1,-110 -78.1,-110 -78.29,-110 -78.48,-110 -78.67,-110 -78.86,-110 -79.05,-110 -79.24,-110 -79.43,-110 -79.62,-110 -79.81,-110 -80,-110.94 -80,-111.88 -80,-112.82 -80,-113.76 -80,-114.7 -80,-115.64 -80,-116.58 -80,-117.52 -80,-118.46 -80,-119.4 -80,-119.4 -79.81,-119.4 -79.62,-119.4 -79.43,-119.4 -79.24,-119.4 -79.05,-119.4 -78.86,-119.4 -78.67,-119.4 -78.48,-119.4 -78.29,-119.4 -78.1))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "This award supports a project to broaden the knowledge of annual accumulation patterns over the West Antarctic Ice Sheet by processing existing near-surface radar data taken on the US ITASE traverse in 2000 and by gathering and validating new ultra/super-high-frequency (UHF) radar images of near surface layers (to depths of ~15 m), expanding abilities to monitor recent annual accumulation patterns from point source ice cores to radar lines. Shallow (15 m) ice cores will be collected in conjunction with UHF radar images to confirm that radar echoed returns correspond with annual layers, and/or sub-annual density changes in the near-surface snow, as determined from ice core stable isotopes. This project will additionally improve accumulation monitoring from space-borne instruments by comparing the spatial-radar-derived-annual accumulation time series to the passive microwave time series dating back over 3 decades and covering most of Antarctica. The intellectual merit of this project is that mapping the spatial and temporal variations in accumulation rates over the Antarctic ice sheet is essential for understanding ice sheet responses to climate forcing. Antarctic precipitation rate is projected to increase up to 20% in the coming century from the predicted warming. Accumulation is a key component for determining ice sheet mass balance and, hence, sea level rise, yet our ability to measure annual accumulation variability over the past 5 decades (satellite era) is mostly limited to point-source ice cores. Developing a radar and ice core derived annual accumulation dataset will provide validation data for space-born remote sensing algorithms, climate models and, additionally, establish accumulation trends. The broader impacts of the project are that it will advance discovery and understanding within the climatology, glaciology and remote sensing communities by verifying the use of UHF radars to monitor annual layers as determined by visual, chemical and isotopic analysis from corresponding shallow ice cores and will provide a dataset of annual to near-annual accumulation measurements over the past ~5 decades across WAIS divide from existing radar data and proposed radar data. By determining if temporal changes in the passive microwave signal are correlated with temporal changes in accumulation will help assess the utility of passive microwave remote sensing to monitor accumulation rates over ice sheets for future decades. The project will promote teaching, training and learning, and increase representation of underrepresented groups by becoming involved in the NASA History of Winter project and Thermochron Mission and by providing K-12 teachers with training to monitor snow accumulation and temperature here in the US, linking polar research to the student\u0027s backyard. The project will train both undergraduate and graduate students in polar research and will encouraging young investigators to become involved in careers in science. In particular, two REU students will participate in original research projects as part of this larger project, from development of a hypothesis to presentation and publication of the results. The support of a new, young woman scientist will help to increase gender diversity in polar research.\n", "east": -110.0, "geometry": ["POINT(-114.7 -79.05)"], "keywords": "Airborne Radar; Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -78.1, "nsf_funding_programs": null, "persons": "Forster, Richard", "project_titles": "Collaborative Research: Annual satellite era accumulation patterns over WAIS Divide: A study using shallow ice cores, near-surface radars and satellites", "projects": [{"proj_uid": "p0000079", "repository": "USAP-DC", "title": "Collaborative Research: Annual satellite era accumulation patterns over WAIS Divide: A study using shallow ice cores, near-surface radars and satellites"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -80.0, "title": "Annual Satellite Era Accumulation Patterns Over WAIS Divide: A Study Using Shallow Ice Cores, Near-Surface Radars and Satellites", "uid": "600146", "west": -119.4}, {"awards": "1142156 Marschall, Horst", "bounds_geometry": ["POLYGON((-6.44 -71.93,-5.378 -71.93,-4.316 -71.93,-3.254 -71.93,-2.192 -71.93,-1.13 -71.93,-0.068 -71.93,0.994 -71.93,2.056 -71.93,3.118 -71.93,4.18 -71.93,4.18 -71.998,4.18 -72.066,4.18 -72.134,4.18 -72.202,4.18 -72.27,4.18 -72.338,4.18 -72.406,4.18 -72.474,4.18 -72.542,4.18 -72.61,3.118 -72.61,2.056 -72.61,0.994 -72.61,-0.068 -72.61,-1.13 -72.61,-2.192 -72.61,-3.254 -72.61,-4.316 -72.61,-5.378 -72.61,-6.44 -72.61,-6.44 -72.542,-6.44 -72.474,-6.44 -72.406,-6.44 -72.338,-6.44 -72.27,-6.44 -72.202,-6.44 -72.134,-6.44 -72.066,-6.44 -71.998,-6.44 -71.93))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "Geochemical studies of single mineral grains in rocks can be probed to reconstruct the history of our planet. The mineral zircon (ZrSiO4) is of unique importance in that respect because of its reliability as a geologic clock due to its strong persistence against weathering, transport and changes in temperature and pressure. Uranium-Lead (U-Pb) dating of zircon grains is, perhaps, the most frequently employed method of extracting time information on geologic processes that shaped the continental crust, and has been used to constrain the evolution of continents and mountain belts through time. In addition, the isotopic composition of the element Hafnium (Hf) in zircon is used to date when the continental crust was generated by extraction of magma from the underlying mantle. Melting of rocks in the mantle and deep in the continental crust are key processes in the evolution of the continents, and they are recorded in the Hf isotopic signatures of zircon. Although the analytical procedures for U-Pb dating and Hf isotope analyses of zircon are robust now, our understanding of zircon growth and its exchange of elements and isotopes with its surrounding rock or magma are still underdeveloped. The focus of the proposed study, therefore, is to unravel the evolution of zircon Hf isotopes in rocks that were formed deep in the Earth\u0027s crust, and more specifically, to apply these isotopic methods to rocks collected in Dronning Maud Land (DML), East Antarctica.\n\nDronning Maud Land (DML) occupied a central location during the formation of supercontinents - large landmasses made up of all the continents that exist today - more than 500 million years ago. It is currently thought that supercontinents were formed and dismembered five or six times throughout Earth\u0027s history. The area of DML is key for understanding the formation history of the last two supercontinents. The boundaries of continents that were merged to form those supercontinents are most likely hidden in DML. In this study, the isotopic composition of zircon grains recovered from DML rocks will be employed to identify these boundaries across an extensive section through the area. The rock samples were collected by the investigator during a two-month expedition to Antarctica in the austral summer of 2007-2008. The results of dating and isotope analyses of zircon of the different DML crustal domains will deliver significant insight into the regional geology of East Antarctica and its previous northern extension into Africa. This has significance for the reconstruction of the supercontinents and defining the continental boundaries in DML.\n", "east": 4.18, "geometry": ["POINT(-1.13 -72.27)"], "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Dronning Maud Land; Geochemistry; Geochronology; Solid Earth", "locations": "Antarctica; Dronning Maud Land", "north": -71.93, "nsf_funding_programs": null, "persons": "Marschall, Horst", "project_titles": "Zircon Hf Isotopes and the Continental Evolution of Dronning Maud Land, East Antacrtica", "projects": [{"proj_uid": "p0000448", "repository": "USAP-DC", "title": "Zircon Hf Isotopes and the Continental Evolution of Dronning Maud Land, East Antacrtica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -72.61, "title": "Zircon Hf Isotopes and the Continental Evolution of Dronning Maud Land, East Antarctica", "uid": "600135", "west": -6.44}, {"awards": "0944489 Williams, Trevor", "bounds_geometry": ["POLYGON((-55 -58,-33.2 -58,-11.4 -58,10.4 -58,32.2 -58,54 -58,75.8 -58,97.6 -58,119.4 -58,141.2 -58,163 -58,163 -60,163 -62,163 -64,163 -66,163 -68,163 -70,163 -72,163 -74,163 -76,163 -78,141.2 -78,119.4 -78,97.6 -78,75.8 -78,54 -78,32.2 -78,10.4 -78,-11.4 -78,-33.2 -78,-55 -78,-55 -76,-55 -74,-55 -72,-55 -70,-55 -68,-55 -66,-55 -64,-55 -62,-55 -60,-55 -58))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to study the stability and dynamics of the East Antarctic ice sheet during the Pliocene in the area of the Wilkes and Aurora subglacial basins. Models indicate the ice sheet is most sensitive to warming in these low-lying areas. This study is important as there is very little direct evidence about which parts of the East Antarctic ice sheet became unstable under warm conditions. In a pilot study the PIs have shown that the isotopic geochemical signature of downcore ice-rafted debris (IRD) can be linked to continental source areas indicating which parts of the ice sheet reached the coast and calved IRD-bearing icebergs. Their initial results suggest rapid iceberg discharge from the Wilkes Land and Adelie Land coastal areas at times in the late Miocene and early Pliocene. In this study the PIs will analyze IRD from IODP sediment cores collected on the continental rise off East Antarctica. By analyzing 40Ar/39Ar ages of hornblende IRD grains, U-Pb ages of zircons, and Sm-Nd isotopes of the fine fraction of several IRD-rich layers for each core, they will be able to fingerprint continental source areas that indicate ice extent and dynamics on East Antarctica. The PIs will also carry out detailed studies across a few of these layers to characterize the anatomy of the ice-rafting event and better understand the mechanism of ice destabilization. Broader impacts: The data collected will be important for scientists in a broad variety of fields. The project will involve one undergraduate student and one summer intern at LDEO, and a graduate student at Imperial College London. The project will expose to cutting edge methodologies as well as an international research team. Data from the project will be deposited in the online databases (SedDB) and all results and methods will be made available to the scientific community through publications in peer-reviewed journals and attendance at international conferences\n", "east": 163.0, "geometry": ["POINT(54 -68)"], "keywords": "Geochronology; George V Land; IODP U1356; IODP U1361; Marine Sediments; ODP1165; Prydz Bay; Solid Earth; Southern Ocean; Wilkes Land", "locations": "Prydz Bay; Southern Ocean; Wilkes Land; George V Land", "north": -58.0, "nsf_funding_programs": null, "persons": "Williams, Trevor; Hemming, Sidney R.", "project_titles": "History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris", "projects": [{"proj_uid": "p0000353", "repository": "USAP-DC", "title": "History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris", "uid": "600116", "west": -55.0}, {"awards": "0337933 Cole-Dai, Jihong", "bounds_geometry": ["POINT(0 -90)"], "date_created": "Tue, 19 Nov 2013 00:00:00 GMT", "description": "A 180 m ice core drilled at South Pole in 2004/2005 was analyzed for concentrations of major ions at a depth resolution of approximately 2 cm. Measured ions are chloride, nitrate, sulfate, sodium, potassium, magnesium and calcium. The bottom of the core has been dated to 1830 years before 2004.", "east": 0.0, "geometry": ["POINT(0 -90)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ion Chromatograph; South Pole", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Cole-Dai, Jihong", "project_titles": "Collaborative Research: Investigating Atmospheric Chemistry and Dynamics through Oxygen and Sulfur Isotopes in Volcanic Sulfate from South Pole Ice Cores", "projects": [{"proj_uid": "p0000031", "repository": "USAP-DC", "title": "Collaborative Research: Investigating Atmospheric Chemistry and Dynamics through Oxygen and Sulfur Isotopes in Volcanic Sulfate from South Pole Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Major Ion Concentrations in 2004 South Pole Ice Core", "uid": "609542", "west": 0.0}, {"awards": "0838843 Kurbatov, Andrei", "bounds_geometry": ["POLYGON((159 -75.67,159.025 -75.67,159.05 -75.67,159.075 -75.67,159.1 -75.67,159.125 -75.67,159.15 -75.67,159.175 -75.67,159.2 -75.67,159.225 -75.67,159.25 -75.67,159.25 -75.786,159.25 -75.902,159.25 -76.018,159.25 -76.134,159.25 -76.25,159.25 -76.366,159.25 -76.482,159.25 -76.598,159.25 -76.714,159.25 -76.83,159.225 -76.83,159.2 -76.83,159.175 -76.83,159.15 -76.83,159.125 -76.83,159.1 -76.83,159.075 -76.83,159.05 -76.83,159.025 -76.83,159 -76.83,159 -76.714,159 -76.598,159 -76.482,159 -76.366,159 -76.25,159 -76.134,159 -76.018,159 -75.902,159 -75.786,159 -75.67))"], "date_created": "Thu, 24 Oct 2013 00:00:00 GMT", "description": "This data set includes stable water isotope values at 10 m resolution along an approximately 5 km transect through the main icefield of the Allan Hills Blue Ice Area, and at 15 cm within a 225 m core drilled at the midpoint of the transect.", "east": 159.25, "geometry": ["POINT(159.125 -76.25)"], "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Isotope", "locations": "Antarctica; Allan Hills", "north": -75.67, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Kurbatov, Andrei V.; Spaulding, Nicole; Mayewski, Paul A.; Introne, Douglas", "project_titles": "Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA); Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "projects": [{"proj_uid": "p0010253", "repository": "USAP-DC", "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area "}, {"proj_uid": "p0000046", "repository": "USAP-DC", "title": "Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.83, "title": "Allan Hills Stable Water Isotopes", "uid": "609541", "west": 159.0}, {"awards": "0944764 Brook, Edward J.", "bounds_geometry": ["POINT(-119.83 -80.01)", "POINT(-148.82 -81.66)"], "date_created": "Thu, 08 Aug 2013 00:00:00 GMT", "description": "During the last glacial period atmospheric carbon dioxide and temperature in Antarctica varied in a similar fashion on millennial time scales, but previous work indicates that these changes were gradual. In a detailed analysis of one event, we now find that approximately half of the CO2 increase that occurred during the 1500 year cold period between Dansgaard-Oeschger (DO) Events 8 and 9 happened rapidly, over less than two centuries. This rise in CO2 was synchronous with, or slightly later than, a rapid increase of Antarctic temperature inferred from stable isotopes.", "east": -119.83, "geometry": ["POINT(-119.83 -80.01)", "POINT(-148.82 -81.66)"], "keywords": "Antarctica; Arctic; Byrd; Chemistry:fluid; Chemistry:Fluid; CO2; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome Ice Core; Taylor Dome; Taylor Dome Ice Core", "locations": "Antarctica; Arctic; Taylor Dome", "north": -80.01, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Brook, Edward J.; Ahn, Jinho", "project_titles": "Atmospheric CO2 and Abrupt Climate Change", "projects": [{"proj_uid": "p0000179", "repository": "USAP-DC", "title": "Atmospheric CO2 and Abrupt Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core; Taylor Dome Ice Core; Byrd Ice Core", "south": -81.66, "title": "Abrupt Change in Atmospheric CO2 During the Last Ice Age", "uid": "609539", "west": -148.82}, {"awards": "0739598 Aydin, Murat", "bounds_geometry": ["POINT(-38.3833 72.5833)", "POINT(0 -90)", "POINT(112.09 -79.47)"], "date_created": "Wed, 30 Nov 2011 00:00:00 GMT", "description": "This data set contains ethane, propane, and n-butane measurements in firn air from the South Pole and the West Antarctic Ice Sheet (WAIS) Divide in Antarctica, and from Summit, Greenland. The WAIS Divide and South Pole samples were collected in December to January of of 2005/06 and 2008/09, respectively. The Summit firn was sampled in the summer of 2006. Analyses were conducted on a gas chromatography - mass spectrometry (GC-MS) system at the University of California, Irvine. Measurements and the associated uncertainties are reported as dry air molar mixing ratios in part per trillion (ppt). The reported measurements for each sampling depth represent a mean of multiple measurements on more than one flask in most cases.\n\nData are available via FTP in Microsoft Excel (.xls) format.", "east": 112.09, "geometry": ["POINT(-38.3833 72.5833)", "POINT(0 -90)", "POINT(112.09 -79.47)"], "keywords": "Antarctica; Arctic; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Greenland; Snow/ice; Snow/Ice; South Pole; WAIS Divide", "locations": "Greenland; Antarctica; South Pole; WAIS Divide; Arctic", "north": 72.5833, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Aydin, Murat; Saltzman, Eric", "project_titles": "Collaborative Research: Methane Isotopes, Hydrocarbons, and other Trace Gases in South Pole Firn Air", "projects": [{"proj_uid": "p0000162", "repository": "USAP-DC", "title": "Collaborative Research: Methane Isotopes, Hydrocarbons, and other Trace Gases in South Pole Firn Air"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Alkanes in Firn Air Samples, Antarctica and Greenland", "uid": "609504", "west": -38.3833}, {"awards": "0739491 Sowers, Todd", "bounds_geometry": ["POLYGON((-180 90,-144 90,-108 90,-72 90,-36 90,0 90,36 90,72 90,108 90,144 90,180 90,180 72,180 54,180 36,180 18,180 0,180 -18,180 -36,180 -54,180 -72,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -72,-180 -54,-180 -36,-180 -18,-180 0,-180 18,-180 36,-180 54,-180 72,-180 90))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "This data set contains depth profiles for delta carbon-13 (\u0026#948;13C) and delta deuterium (\u0026#948;D) of methane (CH\u003csub\u003e4\u003c/sub\u003e) in South Pole firn air. The investigators obtained air samples from two boreholes during December 2008 and January 2009, and subsequently determined isotope ratios at 18 depths. The profiles represent a roughly 100-year history of the isotopic composition of CH\u003csub\u003e4\u003c/sub\u003e at South Pole Station (no depth-age model provided).\n\nData are available via FTP as an ASCII text file (.txt) and a Microsoft Excel file (.xlsx).", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Isotope; Paleoclimate; Snow/ice; Snow/Ice; South Pole", "locations": "South Pole; Antarctica", "north": 90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Sowers, Todd A.", "project_titles": "Collaborative Research: Methane Isotopes, Hydrocarbons, and other Trace Gases in South Pole Firn Air", "projects": [{"proj_uid": "p0000162", "repository": "USAP-DC", "title": "Collaborative Research: Methane Isotopes, Hydrocarbons, and other Trace Gases in South Pole Firn Air"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Methane Isotopes in South Pole Firn Air, 2008", "uid": "609502", "west": -180.0}, {"awards": "0538520 Thiemens, Mark", "bounds_geometry": ["POINT(-114.216667 -78.916667)"], "date_created": "Mon, 01 Nov 2010 00:00:00 GMT", "description": "This data set contains measurements of multiple sulfur and oxygen isotopes from sulfates, from an ice core drilled at the West Antarctic Ice Sheet (WAIS) Divide site in 2005. The initial sulfate measurements, analyzed in 2008 from the 70 meter WAIS 2005A core, are 12 meter averages and span the pre-industrial to industrial transition, from the late 1700s to 2005. This data set is part of the West Antarctic Ice Sheet Divide Ice Core (WAISCORES) project.\n\nData are available via FTP in Microsoft Excel (.xlsx) format.", "east": -114.216667, "geometry": ["POINT(-114.216667 -78.916667)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -78.916667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Thiemens, Mark H.", "project_titles": "Collaborative Research: Multiple-isotope Analysis of Nitrate and Sulfate in the West Antarctic Ice Sheet Divide Ice Core", "projects": [{"proj_uid": "p0000020", "repository": "USAP-DC", "title": "Collaborative Research: Multiple-isotope Analysis of Nitrate and Sulfate in the West Antarctic Ice Sheet Divide Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.916667, "title": "Multiple Isotope Analysis of Sulfate in the West Antarctic Ice Sheet Divide Ice Core", "uid": "609479", "west": -114.216667}, {"awards": "0538580 Hemming, Sidney", "bounds_geometry": ["POLYGON((60 -60,72 -60,84 -60,96 -60,108 -60,120 -60,132 -60,144 -60,156 -60,168 -60,180 -60,180 -61,180 -62,180 -63,180 -64,180 -65,180 -66,180 -67,180 -68,180 -69,180 -70,168 -70,156 -70,144 -70,132 -70,120 -70,108 -70,96 -70,84 -70,72 -70,60 -70,60 -69,60 -68,60 -67,60 -66,60 -65,60 -64,60 -63,60 -62,60 -61,60 -60))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "This project studies sediment from the ocean floor to understand Antarctica\u0027s geologic history. Glacially eroded from the Antarctic continent, these sediments may offer insight into the 99% Antarctica covered by ice. The work\u0027s central focus is determining crust formation ages and thermal histories for three key areas of East Antarctica--Prydz Bay, eastern Weddell Sea, and Wilkes Land--through a combination of petrography, bulk sediment geochemistry and radiogenic isotopes, as well as isotope chronology of individual mineral grains. One specific objective is characterizing the composition of the Gamburtsev Mountains through studies of Eocene fluvial sediments from Prydz Bay. In addition to furthering our understanding of the hidden terrains of Antarctica, these terrigenous sediments will also serve as a natural laboratory to evaluate the effects of continental weathering on the Hf/Nd isotope systematics of seawater. An important broader impact of the project is providing exciting research projects for graduate and postdoctoral students using state of the art techniques in geochemistry.", "east": 180.0, "geometry": ["POINT(120 -65)"], "keywords": "Antarctica; Chemistry:sediment; Chemistry:Sediment; Geochemistry; Geochronology; Isotope Data; Marine Sediments; Oceans; Prydz Bay; Solid Earth; Southern Ocean; Weddell Sea; Wilkes Land", "locations": "Antarctica; Weddell Sea; Prydz Bay; Wilkes Land; Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "van de Flierdt, Tina; Goldstein, Steven L.; Hemming, Sidney R.", "project_titles": "Antarctica\u0027s Geological History Reflected in Sedimentary Radiogenic Isotopes", "projects": [{"proj_uid": "p0000524", "repository": "USAP-DC", "title": "Antarctica\u0027s Geological History Reflected in Sedimentary Radiogenic Isotopes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Antarctica\u0027s Geological History Reflected in Sedimentary Radiogenic Isotopes", "uid": "600056", "west": 60.0}, {"awards": "0440759 Sowers, Todd", "bounds_geometry": ["POINT(112.09 -79.47)"], "date_created": "Tue, 01 Dec 2009 00:00:00 GMT", "description": "This data set includes methane (CH4) isotope data from the West Antarctic Ice Sheet (WAIS) Divide ice core, WDC05A, in Antarctica. The data include depth, gas age, and the isotopic composition of methane (\u0026#8706;13C and \u0026#8706;D of CH4). The ice core was collected during the 2005-2006 Antarctic field season. The CH4 isotope data was generated in 2008 using wet extraction methodology. Samples span the last 1,000 years, at a resolution of about 15 years. Data for samples above 69 meters were from firn air, and data below 69 meters from ice. The dating of the ice was based on continuous chemical analyses above 69 meters and Electrical Conductivity/Dielectric Property (ECM/DEP) measurements from ice. Dating uncertainty is estimated to be better than five years.\n\nData are available via FTP in Microsoft Excel (.xls) tab delimited format", "east": 112.09, "geometry": ["POINT(112.09 -79.47)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Methane; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Sowers, Todd A.", "project_titles": "Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site", "projects": [{"proj_uid": "p0000368", "repository": "USAP-DC", "title": "Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Methane Isotopes from the WAIS Divide Ice Core", "uid": "609435", "west": 112.09}, {"awards": "0440975 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(-119.533333 -80.016667)"], "date_created": "Fri, 17 Jul 2009 00:00:00 GMT", "description": "This data set consists of Gas-isotopic data from the Siple Dome and and Greenland Ice Sheet Project 2 (GISP2) ice cores covering roughly the last 100,000 years (100 ka), consisting of d15N (15N/14N) of N2, d18O (18O/16O) of O2, dO2/N2, and dAr/N2. Derived parameters include d18Oatm, d15N, dO2/N2, and dAr/N2. \n\nData are available via FTP as ASCII text files (.txt) and Microsoft Excel files (.xls).", "east": -119.533333, "geometry": ["POINT(-119.533333 -80.016667)"], "keywords": "Antarctica; Arctic; Atmosphere; Byrd Glacier; Byrd Ice Core; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; Siple Dome; Siple Dome Ice Core", "locations": "Byrd Glacier; Siple Dome; Antarctica; Arctic", "north": -80.016667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.", "project_titles": "Nitrogen and oxygen gas isotopes in the Siple Dome and Byrd ice cores", "projects": [{"proj_uid": "p0000450", "repository": "USAP-DC", "title": "Nitrogen and oxygen gas isotopes in the Siple Dome and Byrd ice cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -80.016667, "title": "Nitrogen and Oxygen Gas Isotopes in the Siple Dome and Byrd Ice Cores, Antarctica", "uid": "609407", "west": -119.533333}, {"awards": "0228052 Kreutz, Karl", "bounds_geometry": ["POLYGON((161.04 -77.3,161.239 -77.3,161.438 -77.3,161.637 -77.3,161.836 -77.3,162.035 -77.3,162.234 -77.3,162.433 -77.3,162.632 -77.3,162.831 -77.3,163.03 -77.3,163.03 -77.378,163.03 -77.456,163.03 -77.534,163.03 -77.612,163.03 -77.69,163.03 -77.768,163.03 -77.846,163.03 -77.924,163.03 -78.002,163.03 -78.08,162.831 -78.08,162.632 -78.08,162.433 -78.08,162.234 -78.08,162.035 -78.08,161.836 -78.08,161.637 -78.08,161.438 -78.08,161.239 -78.08,161.04 -78.08,161.04 -78.002,161.04 -77.924,161.04 -77.846,161.04 -77.768,161.04 -77.69,161.04 -77.612,161.04 -77.534,161.04 -77.456,161.04 -77.378,161.04 -77.3))"], "date_created": "Wed, 01 Jul 2009 00:00:00 GMT", "description": "This data set includes high-resolution ice core records from the Dry Valleys region of Antarctica, and provides interpretations of interannual to decadal-scale climate variability during the last 2000 years (late Holocene). Intermediate-length ice cores (100 to 200 meters) were drilled at four sites along transects in the Taylor and Wright valleys, and analyzed for stable isotopes and major ions. The data set includes high-resolution ice core data for each study site. It also includes mass balance, borehole temperature, and snowpit data for each site, and Global Positioning System (GPS) velocity data for some of the sites. Snow pit data from three additional sites in the same region is also available. Data are available via FTP, in Microsoft Excel (.xls), ASCII text (.txt), and Microsoft Word (.doc) file formats.", "east": 163.03, "geometry": ["POINT(162.035 -77.69)"], "keywords": "Antarctica; Borehole Temperature; Chemistry:ice; Chemistry:Ice; Dry Valleys; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Mass Balance; Paleoclimate; Physical Properties", "locations": "Antarctica; Dry Valleys", "north": -77.3, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Kreutz, Karl; Mayewski, Paul A.", "project_titles": "Dry Valleys Late Holocene Climate Variability", "projects": [{"proj_uid": "p0000155", "repository": "USAP-DC", "title": "Dry Valleys Late Holocene Climate Variability"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.08, "title": "Late Holocene Climate Variability, Dry Valleys, Antarctica", "uid": "609399", "west": 161.04}, {"awards": null, "bounds_geometry": null, "date_created": "Thu, 26 Mar 2009 00:00:00 GMT", "description": "Radium and Thorium isotope data summaries from AMLR and NBP cruises to the Antarctic in 2006 Naturally occurring radium isotopes (224Ra, 226Ra, 228Ra) were used in determining lateral mixing processes which are reported in dpm/m3. Particulate organic Carbon (POC) flux was determined through measuring Thorium (234Th) reported in dpm/kg. \n\nCruises \n AMLR (Antarctic Marine Living Resources) R/V Yuzhmorgeologiya Jan/2006: \n The research program was focused in the southern Drake Passage along the Shackelton Shelf located near the Bransfield Strait. Samples were obtained from the R/V Yuzhmorgeologiya and inflatables that were taken to island locations. \n \n Lat/Lon Bounding Box \n -62.2538Lat, -62.9966Lon \n -63.2335Lat, -59.0332Lon \n -59.9964Lat, -55.7612Lon \n -61.4995Lat, -53.9996Lon \n \n NBP (Nathaniel B. Palmer) R/V Nathaniel B. Palmer July/2006: \n The research was conducted in the same region of the Drake Passage as the AMLR cruise. Samples were obtained aboard the R/V Nathaniel B. Palmer \n \n Lat/Lon bounding box \n -60.4991Lat, -58.5613Lon \n -62.3599Lat, -58.0392Lon \n -60.2783Lat, -57.4509Lon \n -61.2683Lat, -54.2852Lon ", "east": null, "geometry": null, "keywords": null, "locations": null, "north": null, "nsf_funding_programs": null, "persons": null, "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": null, "title": "Radium and Thorium isotope data summaries from AMLR and NBP cruises to the Antarctic in 2006", "uid": "600003", "west": null}, {"awards": "0440414 Steig, Eric", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This award supports a project to obtain stable isotope profiles from shallow (\u003c100 m) ice cores from East Antarctica, to add to the growing database of environmental proxy data collected under the auspices of the \"ITASE\" (International TransAntarctic Scientific Expedition) program. In Antarctica, the instrumental record of climate is particularly short (~40 years except in a few isolated locations on the coast), and ice core proxy data are the only means available for extending this record into the past. The use of stable isotopes of water (18-O/16-O and D/H ratios) from ice cores as proxies for temperature is well established for both very short (i.e. seasonal) and long timescales (centuries, millennia). Using multivariate regression methods and shallow ice cores from West Antarctica, a reconstruction of Antarctic climate over the last ~150 years has been developed which suggests the continent has been warming, on average, at a rate of ~0.2 K/century. Further improving these reconstructions is the chief motivation for further extending the US ITASE project. Ten to fifteen shallow (~100 m) from Victoria Land, East Antarctica will be obtained and analyzed. The core will be collected along a traverse route beginning at Taylor Dome and ending at the South Pole. Age-depth relationships for the cores will be determined through a combination of stable isotopes, visual stratigraphy and seasonal chemical signatures and marker horizons. Reconstructions of Antarctic climate obtained from these cores will be incorporated into the global network of paleoclimate information, which has been important in science, policy and educational contexts. The project will include graduate student and postdoctoral training and field experience.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Atmosphere; Climate; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; ITASE; Meteorology; Paleoclimate; Satellite Remote Sensing; Weather Station Data", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Steig, Eric J.", "project_titles": "Stable Isotope Studies at East Antarctic US ITASE Sites", "projects": [{"proj_uid": "p0000202", "repository": "USAP-DC", "title": "Stable Isotope Studies at East Antarctic US ITASE Sites"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "Stable Isotope Studies at East Antarctic US ITASE Sites", "uid": "600042", "west": -180.0}, {"awards": "0126057 Brook, Edward J.", "bounds_geometry": null, "date_created": "Tue, 16 Dec 2008 00:00:00 GMT", "description": "Ice Core Interplanetary Dust Helium Isotope Data Helium isotope data from Ice Cores at GISP2 (Greenland) and Vostok (Antarctica) as a proxy for extraterrestrial dust flux.\n", "east": null, "geometry": null, "keywords": "Antarctica; Arctic; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Lake Vostok; Paleoclimate; Vostok Ice Core", "locations": "Arctic; Antarctica; Lake Vostok", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Brook, Edward J.; Kurz, Mark D.", "project_titles": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change", "projects": [{"proj_uid": "p0000034", "repository": "USAP-DC", "title": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "GISP2 (D Core) Helium Isotopes from Interplanetary Dust", "uid": "609361", "west": null}, {"awards": "0125579 Cuffey, Kurt", "bounds_geometry": ["POLYGON((160 -77.83333,160.3 -77.83333,160.6 -77.83333,160.9 -77.83333,161.2 -77.83333,161.5 -77.83333,161.8 -77.83333,162.1 -77.83333,162.4 -77.83333,162.7 -77.83333,163 -77.83333,163 -77.849997,163 -77.866664,163 -77.883331,163 -77.899998,163 -77.916665,163 -77.933332,163 -77.949999,163 -77.966666,163 -77.983333,163 -78,162.7 -78,162.4 -78,162.1 -78,161.8 -78,161.5 -78,161.2 -78,160.9 -78,160.6 -78,160.3 -78,160 -78,160 -77.983333,160 -77.966666,160 -77.949999,160 -77.933332,160 -77.916665,160 -77.899998,160 -77.883331,160 -77.866664,160 -77.849997,160 -77.83333))"], "date_created": "Wed, 28 Nov 2007 00:00:00 GMT", "description": "This data set contains Oxygen and Deuterium isotope ratios for approximately 980 sites on the surface of the ablation zone of Taylor Glacier, Antarctica. The data set gives latitude and longitude of collection, oxygen ratio (18/16) in per mil, and Deuterium ratio (H/D) in per mil. Data are in space-delimited ASCII text format and are available via FTP.", "east": 163.0, "geometry": ["POINT(161.5 -77.916665)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Isotope; Taylor Glacier", "locations": "Taylor Glacier; Antarctica", "north": -77.83333, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Cuffey, Kurt M.; Bliss, Andrew; Kavanaugh, Jeffrey; Aciego, Sarah", "project_titles": "Collaborative Research: Dynamics and Climatic Response of the Taylor Glacier System", "projects": [{"proj_uid": "p0000084", "repository": "USAP-DC", "title": "Collaborative Research: Dynamics and Climatic Response of the Taylor Glacier System"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Stable Isotopes of Ice on the Surface of Taylor Glacier, Antarctica", "uid": "609323", "west": 160.0}, {"awards": "0125761 Thiemens, Mark", "bounds_geometry": ["POINT(139.2728 -89.9975)"], "date_created": "Wed, 01 Nov 2006 00:00:00 GMT", "description": "This data set contains snow pit measurements of oxygen isotopes, \u003csup\u003e17\u003c/sup\u003eO and \u003csup\u003e18\u003c/sup\u003eO, in nitrate and ion concentrations, and surface measurements of oxygen isotopes in nitrate and in nitrate aerosols from the Amundsen-Scott South Pole Station, Antarctica. The 6-meter snow pit provides investigators with a 25-year record of nitrate isotope variations and ion concentrations for a period spanning from 1979 to 2004. Monthly surface snow and weekly aerosol collections yield a year-long record of nitrate isotopic composition starting 01 December 2003 and ending 31 December 2004.\n\nLittle is known about the past denitrification of the stratosphere in high latitude regions. Such knowledge is important to understanding the chemical state of the ancient atmospheres and evaluating the present climate models. With this research, investigators aim to understand the denitrification of the Antarctic stratosphere and quantify the sources of nitrate aerosols over time.\n\nData are in Microsoft Excel format and are available via FTP.", "east": 139.2728, "geometry": ["POINT(139.2728 -89.9975)"], "keywords": "Aerosol; Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; NBP1502; Snow/ice; Snow/Ice; South Pole Station", "locations": "Antarctica; South Pole Station", "north": -89.9975, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Thiemens, Mark H.; Savarino, Joel", "project_titles": "South Pole Atmospheric Nitrate Isotopic Analysis (SPANIA)", "projects": [{"proj_uid": "p0000242", "repository": "USAP-DC", "title": "South Pole Atmospheric Nitrate Isotopic Analysis (SPANIA)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -89.9975, "title": "Atmospheric Nitrate Isotopic Analysis at Amundsen-Scott South Pole Station, A Twenty-Five Year Record", "uid": "609281", "west": 139.2728}, {"awards": "0225992 Fahnestock, Mark; 0125570 Scambos, Ted", "bounds_geometry": ["POLYGON((124.4345 -80.77546,124.443718 -80.77546,124.452936 -80.77546,124.462154 -80.77546,124.471372 -80.77546,124.48059 -80.77546,124.489808 -80.77546,124.499026 -80.77546,124.508244 -80.77546,124.517462 -80.77546,124.52668 -80.77546,124.52668 -80.776922,124.52668 -80.778384,124.52668 -80.779846,124.52668 -80.781308,124.52668 -80.78277,124.52668 -80.784232,124.52668 -80.785694,124.52668 -80.787156,124.52668 -80.788618,124.52668 -80.79008,124.517462 -80.79008,124.508244 -80.79008,124.499026 -80.79008,124.489808 -80.79008,124.48059 -80.79008,124.471372 -80.79008,124.462154 -80.79008,124.452936 -80.79008,124.443718 -80.79008,124.4345 -80.79008,124.4345 -80.788618,124.4345 -80.787156,124.4345 -80.785694,124.4345 -80.784232,124.4345 -80.78277,124.4345 -80.781308,124.4345 -80.779846,124.4345 -80.778384,124.4345 -80.776922,124.4345 -80.77546))"], "date_created": "Thu, 05 Oct 2006 00:00:00 GMT", "description": "The Antarctic megadune research was conducted during two field seasons, one in November 2002 and the other during the period of December 2003 through January 2004. The megadune field site is located on the East Antarctic Plateau, southeast of Vostok station. The objectives of this multi-facetted research are 1) to determine the physical characteristics of the firn across the dunes including typical climate indicators such as stable isotopes and major chemical species and 2) to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. It is important to improve our current understanding of the megadunes because of their extreme nature, their broad extent, and their potential impact on the climate record. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on the past terrestrial climate or on processes active on other planets.\n\nSnow megadunes are undulating variations in accumulation and surface texture with wavelengths of 2 to 5 km and amplitudes up to 5 meters. The features cover 500,000 km\u003csup\u003e2\u003c/sup\u003e of the East Antarctic plateau, occurring in areas of moderate regional slope and low accumulation on the flanks of the ice sheet between 2500 and 3800 meters elevation. Landsat images and aerial photography indicate the dunes consist of alternating surfaces of glaze and rough sastrugi, with gradational boundaries. This pattern is oriented perpendicular to the mean wind direction, as modeled in katabatic wind studies. Glazed surfaces cover the leeward faces and troughs; rough sastrugi cover the windward faces and crests. The megadune pattern is crossed by smooth to eroded wind-parallel longitudinal dunes. Wind-eroded longitudinal dunes form spectacular 1-meter-high sastrugi in nearby areas.\n\nThis data set contains automated weather station (AWS) data from two sites. The Mac site was oriented on the rough sastrugi-covered windward face and the Zoe site was on the glazed leeward face. The AWSs collected data throughout the year from 16 January 2004 to 17 November 2004. Investigators received data from the two field sites via the ARGOS Satellite System (http://www.argosinc.com/). Data are provided in space-delimited ASCII text format and are available via FTP.", "east": 124.52668, "geometry": ["POINT(124.48059 -80.78277)"], "keywords": "Antarctica; Atmosphere; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Meteorology; Snow/ice; Snow/Ice", "locations": "East Antarctic Plateau; Antarctica", "north": -80.77546, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Fahnestock, Mark; Scambos, Ted; Haran, Terry; Bauer, Rob", "project_titles": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "projects": [{"proj_uid": "p0000587", "repository": "USAP-DC", "title": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.79008, "title": "AWS Data: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "uid": "609283", "west": 124.4345}, {"awards": "0125276 Albert, Mary", "bounds_geometry": ["POLYGON((124.0218 -80.5304,124.22264 -80.5304,124.42348 -80.5304,124.62432 -80.5304,124.82516 -80.5304,125.026 -80.5304,125.22684 -80.5304,125.42768 -80.5304,125.62852 -80.5304,125.82936 -80.5304,126.0302 -80.5304,126.0302 -80.55538,126.0302 -80.58036,126.0302 -80.60534,126.0302 -80.63032,126.0302 -80.6553,126.0302 -80.68028,126.0302 -80.70526,126.0302 -80.73024,126.0302 -80.75522,126.0302 -80.7802,125.82936 -80.7802,125.62852 -80.7802,125.42768 -80.7802,125.22684 -80.7802,125.026 -80.7802,124.82516 -80.7802,124.62432 -80.7802,124.42348 -80.7802,124.22264 -80.7802,124.0218 -80.7802,124.0218 -80.75522,124.0218 -80.73024,124.0218 -80.70526,124.0218 -80.68028,124.0218 -80.6553,124.0218 -80.63032,124.0218 -80.60534,124.0218 -80.58036,124.0218 -80.55538,124.0218 -80.5304))"], "date_created": "Sat, 10 Jun 2006 00:00:00 GMT", "description": "The Antarctic megadune research was conducted during two field seasons, one in November 2002 and the other in December 2003 through January 2004. The megadune field site is located on the East Antarctic Plateau, southeast of Vostok station. The objectives of this multi-facetted research are to determine the physical characteristics of the firn across the dunes including typical climate indicators such as stable isotopes and major chemical species and to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. It is important to improve our current understanding of the megadunes because of their extreme nature, their broad extent, and their potential impact on the climate record. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on past terrestrial climate or on processes active on other planets.\n\nSnow megadunes are undulating variations in accumulation and surface texture with wavelengths of 2 to 5 km and amplitudes up to 5 meters. The features cover 500,000 km\u003csup\u003e2\u003c/sup\u003e of the East Antarctic plateau, occurring in areas of moderate regional slope and low accumulation on the flanks of the ice sheet between 2500 and 3800 meters elevation. Landsat images and aerial photography indicate the dunes consist of alternating surfaces of glaze and rough sastrugi, with gradational boundaries. This pattern is oriented perpendicular to the mean wind direction, as modeled in katabatic wind studies. Glaze surfaces cover the leeward faces and troughs; rough sastrugi cover the windward faces and crests. The megadune pattern is crossed by smooth to eroded wind-parallel longitudinal dunes. Wind-eroded longitudinal dunes form spectacular 1-meter-high sastrugi in nearby areas.\n\nThis data set contains ground penetrating radar (GPR) data showing surface morphology and internal layering structure along with global positioning system (GPS) data collected within an area of 60 km\u003csup\u003e2\u003c/sup\u003e. GPS data are provided in space-delimited ASCII text Microsoft Excel formats, while GPR data are in JPEG format. Data are available via FTP.", "east": 126.0302, "geometry": ["POINT(125.026 -80.6553)"], "keywords": "Antarctica; East Antarctic Plateau; Glaciology; GPR; GPS; Navigation; Paleoclimate; Snow/ice; Snow/Ice", "locations": "East Antarctic Plateau; Antarctica", "north": -80.5304, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Scambos, Ted; Bauer, Rob", "project_titles": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "projects": [{"proj_uid": "p0000587", "repository": "USAP-DC", "title": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.7802, "title": "GPR and GPS Data: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation", "uid": "609282", "west": 124.0218}, {"awards": "9615292 Wahlen, Martin", "bounds_geometry": null, "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This data set includes chemistry, ion, and istotope data from Taylor Dome, part of the East Antarctic ice sheet. Deep drilling at Taylor Dome successfully reached bedrock at a depth of 554 meters during the 1993-1994 austral summer. The Taylor Dome ice core is only the second core (after Vostok) to provide a stratigraphically undisturbed record through the entire last glacial cycle (the last 130,000 years or more).", "east": null, "geometry": null, "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "locations": "Antarctica; Taylor Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Smith, Jesse; Sowers, Todd A.; Brook, Edward J.; Mayewski, Paul A.; Steig, Eric J.; Indermuhle, A.", "project_titles": "Carbon Dioxide and Carbon Isotopes in the Taylor Dome and Vostok Ice Cores", "projects": [{"proj_uid": "p0000153", "repository": "USAP-DC", "title": "Carbon Dioxide and Carbon Isotopes in the Taylor Dome and Vostok Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": null, "title": "Taylor Dome Ice Core Chemistry, Ion, and Isotope Data", "uid": "609246", "west": null}, {"awards": "8613786 Mayewski, Paul; 8411018 Frisic, David", "bounds_geometry": null, "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This data set includes beta profiles, chemistry, and density data obtained from Dominion Range ice cores. The Dominion Range is on the East Antarctic Ice Sheet. The chemistry data consists of the composition of oxygen-isotopes and trapped gasses. Other information includes ice thickness, mean annual net accumulation, and crystal size. The core samples were collected in the austral summer of 1984-85. \n", "east": null, "geometry": null, "keywords": "Antarctica; Beta Profiles; Chemistry:ice; Chemistry:Ice; Density; Dominion Range; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Physical Properties", "locations": "Antarctica; Dominion Range", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Sowers, Todd A.; Saltzman, Eric; Watson, M. Scott; Grootes, Pieter; Mayewski, Paul A.; Meese, Deb; Gow, Tony", "project_titles": "Characterization of Climatic Events for the Last 2 x 103y through the Retrieval of Ice Cores from the Transantarctic Mountains, Antarctica", "projects": [{"proj_uid": "p0000169", "repository": "USAP-DC", "title": "Characterization of Climatic Events for the Last 2 x 103y through the Retrieval of Ice Cores from the Transantarctic Mountains, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Dominion Range Ice Core Beta Profiles, Chemistry, and Density Data", "uid": "609248", "west": null}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POINT(-180 -90)"], "date_created": "Thu, 24 Jun 2004 00:00:00 GMT", "description": "Information from 6-meter snow pits dug close to the South Pole in\naustral summer 1988-1989 by the Glacier Research Group of the\nUniversity of New Hampshire (location - 38 km on grid 90 from South\nPole station - eastern margin of clean air sector) are available.\n\nMajor ion chemistry (Na, K, Mg, Ca, Cl, NO3, SO4), oxygen isotopes\n(I8O), H2O2, and beta from a 6-meter snow pit covering the period 1955\nto 1989 are included. Major ion chemistry for a series of surface snow\nsamples were also collected on the traverse to the pit.", "east": -180.0, "geometry": ["POINT(-180 -90)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciology; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; South Pole", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Mayewski, Paul A.; Whitlow, Sallie", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "South Pole Snow Pit, 1988 and 1989", "uid": "609086", "west": -180.0}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POINT(-149 -81)"], "date_created": "Mon, 18 Aug 2003 00:00:00 GMT", "description": "This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica.\n\nThis data set provides measurements of stable isotopes of water and deuterium excess for the Siple Dome ice cores. The shallow cores from Siple Dome were analyzed for isotopes with sub-annual temporal detail.", "east": -149.0, "geometry": ["POINT(-149 -81)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "locations": "Siple Dome; Antarctica", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Steig, Eric J.; White, James", "project_titles": null, "projects": null, "repositories": null, "science_programs": "Siple Dome Ice Core", "south": -81.0, "title": "Siple Dome Highlights: Stable isotopes", "uid": "609134", "west": -149.0}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POINT(158 -77)"], "date_created": "Mon, 18 Aug 2003 00:00:00 GMT", "description": "The collection site is Taylor Dome, an ice-accumulation area on the East Antarctic ice sheet. The dome is a ridge about 20 x 80 km, which lies inland of the Transantarctic Mountains. Deep drilling by the Polar Ice Coring Office (PICO) at Taylor Dome reached bedrock at a depth of 554 meters during the 1993-1994 austral summer season.\n\n\u003cp\u003eThis data set includes mesurements of:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eberyllium-10 (betd.txt)\u003c/li\u003e\n\u003cli\u003eoxygen isotopes (hi18o_td.txt and lo18o_td.txt)\u003c/li\u003e\n\u003cli\u003edeuterium isotopes (deld_20cm.txt and deld_td.txt).\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThese data were produced at the University of Washington from samples obtained in the field and via the University of New Hampshire automatic melting system. For beryllium, deuterium, and 20-cm oxygen isotope data, the st9810 ice age (kyB1950) timescale is used. For 0.5- to 1-m oxygen isotope data, the st9507 is used.\u003c/p\u003e", "east": 158.0, "geometry": ["POINT(158 -77)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "locations": "Taylor Dome; Antarctica", "north": -77.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Steig, Eric J.; White, James", "project_titles": null, "projects": null, "repositories": null, "science_programs": "Taylor Dome Ice Core", "south": -77.0, "title": "Taylor Dome Ice Core Data", "uid": "609132", "west": 158.0}, {"awards": "9615292 Wahlen, Martin", "bounds_geometry": ["POINT(158.71 -77.8)"], "date_created": "Tue, 01 Jan 2002 00:00:00 GMT", "description": "These data describe the concentration and carbon-isotopic composition (d13CO2) of atmospheric CO2 from air trapped in ice between 27,000 and 1,300 years before present from Taylor Dome, Antarctica. Data are used to investigate the causes of the CO2 concentration increase that occurred during the transition between the last glacial maximum (LGM) and the Holocene. Data are in tab-delimited ASCII and Excel formats, and are available via ftp.", "east": 158.71, "geometry": ["POINT(158.71 -77.8)"], "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "locations": "Taylor Dome; Antarctica", "north": -77.8, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Wahlen, Martin", "project_titles": "Carbon Dioxide and Carbon Isotopes in the Taylor Dome and Vostok Ice Cores", "projects": [{"proj_uid": "p0000153", "repository": "USAP-DC", "title": "Carbon Dioxide and Carbon Isotopes in the Taylor Dome and Vostok Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.8, "title": "Carbon-Isotopic Composition of Atmospheric CO2 since the Last Glacial Maximum", "uid": "609108", "west": 158.71}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Hyporheic zone geochemistry of Wales Stream, Taylor Valley, Antarctica
|
1841228 |
2024-10-28 | Gardner, Christopher B. |
Fe Behavior and Bioavailability in Sub-aerial Runoff into the Ross Sea |
This dataset includes aqueous chemistry of water from the hyporheic zone in Wales Stream, Taylor Valley, Antarctica, just upstream from New Harbor Camp. Data includes major ions, nutrients, trace elements, stable iron isotopes, and stable isotopes of water. | ["POINT(163.5074 -77.5789)"] | ["POINT(163.5074 -77.5789)"] | false | false |
Isotopic signature of massive buried ice, eastern Taylor Valley, Antarctica
|
1841228 |
2024-10-28 | Gardner, Christopher B. |
Fe Behavior and Bioavailability in Sub-aerial Runoff into the Ross Sea |
This dataset includes the stable isotope signature of massive buried ice, eastern Taylor Valley, Antarctica collected during the austral summer season of 2019-2020 | ["POLYGON((163.38627 -77.56133,163.39875899999998 -77.56133,163.411248 -77.56133,163.423737 -77.56133,163.436226 -77.56133,163.448715 -77.56133,163.46120399999998 -77.56133,163.473693 -77.56133,163.48618199999999 -77.56133,163.498671 -77.56133,163.51116 -77.56133,163.51116 -77.564889,163.51116 -77.568448,163.51116 -77.572007,163.51116 -77.575566,163.51116 -77.579125,163.51116 -77.582684,163.51116 -77.586243,163.51116 -77.58980199999999,163.51116 -77.593361,163.51116 -77.59692,163.498671 -77.59692,163.48618199999999 -77.59692,163.473693 -77.59692,163.46120399999998 -77.59692,163.448715 -77.59692,163.436226 -77.59692,163.423737 -77.59692,163.411248 -77.59692,163.39875899999998 -77.59692,163.38627 -77.59692,163.38627 -77.593361,163.38627 -77.58980199999999,163.38627 -77.586243,163.38627 -77.582684,163.38627 -77.579125,163.38627 -77.575566,163.38627 -77.572007,163.38627 -77.568448,163.38627 -77.564889,163.38627 -77.56133))"] | ["POINT(163.448715 -77.579125)"] | false | false |
Diatom-bound and bulk sedimentary N isotopes from ODP Site 1098, Western Antarctic Peninsula
|
1744871 |
2024-08-13 | Dove, Isabel; Jones, Colin; Kelly, Roger; Robinson, Rebecca |
The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information? |
This dataset includes measurements of diatom-bound nitrogen isotopic composition (d15Ndb; ‰ vs air), bulk sedimentary nitrogen isotopic composition (d15Nbulk; ‰ vs air), and total nitrogen (wt%) from 81 Holocene and late deglacial-aged samples from ODP Site 1098B on the western Antarctic Peninsula. | ["POLYGON((-80 -59,-76.8 -59,-73.6 -59,-70.4 -59,-67.2 -59,-64 -59,-60.8 -59,-57.599999999999994 -59,-54.4 -59,-51.2 -59,-48 -59,-48 -60.6,-48 -62.2,-48 -63.8,-48 -65.4,-48 -67,-48 -68.6,-48 -70.2,-48 -71.8,-48 -73.4,-48 -75,-51.2 -75,-54.4 -75,-57.6 -75,-60.8 -75,-64 -75,-67.2 -75,-70.4 -75,-73.6 -75,-76.8 -75,-80 -75,-80 -73.4,-80 -71.8,-80 -70.2,-80 -68.6,-80 -67,-80 -65.4,-80 -63.8,-80 -62.2,-80 -60.6,-80 -59))"] | ["POINT(-64 -67)"] | false | false |
Diatom-bound and bulk sedimentary nitrogen isotopes from IODP Site U1357
|
1744871 |
2024-08-13 | Dove, Isabel; Kelly, Roger; Robinson, Rebecca |
The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information? |
This dataset includes measurements of diatom-bound nitrogen isotopic composition (d15Ndb; ‰ vs air), bulk sedimentary nitrogen isotopic composition (d15Nbulk; ‰ vs air), and total nitrogen (wt%) from 121 samples from IODP Site U1357B in the Adelie Basin. The sediments are Holocene age (11 kyBP to present). | ["POLYGON((100 -62,104.4 -62,108.8 -62,113.2 -62,117.6 -62,122 -62,126.4 -62,130.8 -62,135.2 -62,139.6 -62,144 -62,144 -64,144 -66,144 -68,144 -70,144 -72,144 -74,144 -76,144 -78,144 -80,144 -82,139.6 -82,135.2 -82,130.8 -82,126.4 -82,122 -82,117.6 -82,113.19999999999999 -82,108.8 -82,104.4 -82,100 -82,100 -80,100 -78,100 -76,100 -74,100 -72,100 -70,100 -68,100 -66,100 -64,100 -62))"] | ["POINT(122 -72)"] | false | false |
Carbon-13 and Deuterium isotopic composition of atmospheric methane across Heinrich Stadial 4, and Dansgaard Oesgher Event 8, WAIS Divide Replicate Ice Core, Antarctica
|
1745078 |
2024-07-23 | Riddell-Young, Benjamin; Lee, James; Schmitt, Jochen; Fischer, Hubertus; Bauska, Thomas; Menking, Andy; Iseli, Rene; Clark, Reid; Brook, Edward J. |
Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores |
This dataset includes ~60-year resolution measurements of the Carbon-13 and Deuterium isotopic Composition of Atmospheric Methane (δ13C-CH4 and δD-CH4, respectively) of gas bubbles from the WAIS Divide Replicate Ice Core. All measurements were made at the University of Bern Ice Core Laboratory (Bern, Switzerland) using a new methane stable isotope analytical system. The data includes depth-adjacent replicate samples (separated by no more than 0.3m of depth). The data are displayed as a function of WAIS Divide Replicate Core depth and were corrected for gravitational and diffusional fractionation that occurs in the firn column according to Buizert et al., 2013. 1-sigma measurement uncertainty is also included and is determined from analytical uncertainty and uncertainties associated with diffusional and gravitational fractionation. Additional funding for this work was provided by the Swiss National Foundation, Awards #200020_172506 and #200020B_200328L. | [] | [] | false | false |
U-Th isotopes and major elements in sediments from Taylor Valley, Antarctica
|
2042495 1644171 |
2024-07-01 | Edwards, Graham; Piccione, Gavin; Blackburn, Terrence; Tulaczyk, Slawek |
U-Series Comminution Age Constraints on Taylor Valley Erosion Collaborative Research: Reconstructing East Antarctica’s Past Response to Climate using Subglacial Precipitates |
This dataset contains uranium and thorium isotopic compositions (U-234, U-235, U-238, Th-230, Th-232) and major element compositions (Al, K, Na, Ca, Fe, Mn, reported as oxides) for silicate sediments from glaciogenic drifts associated with advances of Taylor Glacier in Taylor Valley, Antarctica. Isotopic measurements were obtained by ID-TIMS in the Keck Isotope Facility at UC Santa Cruz and elemental measurements were obtained by ICP-OES in the Plasma Analytical Laboratory. All measurements include fully propagated analytical and systematic (e.g. isotopic tracer) uncertainties. Chemical index of alteration was calculated from major element data. Prior to measurements, sediments were sieved to ≤125 μm grain sizes, separated into quartz-feldspar-rich and clay-rich aliquots by hydraulic settling, and subjected to sequential chemical extractions ("leaching") prior to silicate digestion. | ["POLYGON((161.9 -77.65,161.96 -77.65,162.02 -77.65,162.08 -77.65,162.14000000000001 -77.65,162.2 -77.65,162.26 -77.65,162.32 -77.65,162.38 -77.65,162.44 -77.65,162.5 -77.65,162.5 -77.66000000000001,162.5 -77.67,162.5 -77.68,162.5 -77.69,162.5 -77.7,162.5 -77.71000000000001,162.5 -77.72,162.5 -77.73,162.5 -77.74,162.5 -77.75,162.44 -77.75,162.38 -77.75,162.32 -77.75,162.26 -77.75,162.2 -77.75,162.14000000000001 -77.75,162.08 -77.75,162.02 -77.75,161.96 -77.75,161.9 -77.75,161.9 -77.74,161.9 -77.73,161.9 -77.72,161.9 -77.71000000000001,161.9 -77.7,161.9 -77.69,161.9 -77.68,161.9 -77.67,161.9 -77.66000000000001,161.9 -77.65))"] | ["POINT(162.2 -77.7)"] | false | false |
Final N2O isotopic data including isotopomer ratios for the last deglaciation and Heinrich Stadia 4/Dansgaard Oeschger Event 8
|
1903681 |
2024-06-26 | Menking, Andy; Brook, Edward J. |
Deciphering Changes in Atmospheric Nitrous Oxide Concentration During the Last Ice Age Using the Intramolecular Site-Preference of Nitrogen Isotopes |
This data set is a new N2O isotopic data set including site preference isotopic data derived from ice core samples containing air spanning the deglacial N2O rise (16.5-13.2 ka). The data extend through the Younger Dryas cooling interval, when N2O decreased by about 30 ppb (13.2-11.9 ka). The data set also contains N2O isotope records spanning the Heinrich Stadial 4 / Dansgaard-Oeschger 8 (HS4/DO8) transition (39.8-35.8 ka), an example of cyclical millennial-scale N2O variability characteristic of the last ice age. | ["POLYGON((160 -77.6,160.25 -77.6,160.5 -77.6,160.75 -77.6,161 -77.6,161.25 -77.6,161.5 -77.6,161.75 -77.6,162 -77.6,162.25 -77.6,162.5 -77.6,162.5 -77.63,162.5 -77.66,162.5 -77.69,162.5 -77.72,162.5 -77.75,162.5 -77.78,162.5 -77.81,162.5 -77.84,162.5 -77.87,162.5 -77.9,162.25 -77.9,162 -77.9,161.75 -77.9,161.5 -77.9,161.25 -77.9,161 -77.9,160.75 -77.9,160.5 -77.9,160.25 -77.9,160 -77.9,160 -77.87,160 -77.84,160 -77.81,160 -77.78,160 -77.75,160 -77.72,160 -77.69,160 -77.66,160 -77.63,160 -77.6))"] | ["POINT(161.25 -77.75)"] | false | false |
U-series Geochronology, Isotope, and Elemental Geochemistry of a Subglacial Precipitate that Formed Across Termination III
|
2042495 |
2024-04-30 | Piccione, Gavin |
Collaborative Research: Reconstructing East Antarctica’s Past Response to Climate using Subglacial Precipitates |
This dataset represents geochemical analyses on sample PRR-50504, a chemical precipitate deposited beneath the East Antarctic Ice Sheet and collected at Elephant Moraine. The data include U-series geochronological data, carbon and oxygen stable isotope data, Sr isotopic data, and laser ablation elemental analyses. This material is based on services provided by the Polar Rock Repository with support from the National Science Foundation, under Cooperative Agreement OPP-2137467. | ["POINT(157 -76)"] | ["POINT(157 -76)"] | false | false |
Nitrogen, carbon, and oxygen isotopes in the shell of the Antarctic scallop Adamussium colbecki as a proxy for sea ice cover in Antarctica.
|
0739512 1745064 1745057 1745080 |
2024-02-05 | Gillikin, David; Puhalski, Emma; Camarra, Steve; Cronin, Kelly; Verheyden, Anouk; Walker, Sally |
Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past |
Adamussium colbecki is a large thin-shelled scallop common in Antarctic waters and well represented in the fossil record. Shell nitrogen isotopes in carbonate bound organic matter (d15NCBOM) have the potential to record sea ice state over time. Recent studies illustrated that d15NCBOM values provide a similar proxy as soft tissue d15N values which are in turn are predicably related to food d15N values (Gillikin et al., 2017, GCA, 200, 55–66, doi: 10.1016/j.gca.2016.12.008). Sea-ice organic N should have higher d15N values compared to open water organics due to nitrate draw down in the ice (Fripiat et al., 2014, Global Biogeochem. Cycles, 28, 115–130, doi:10.1002/2013GB004729). To test this hypothesis we analyzed A. colbecki shells from Explorers Cove and Bay of Sails, western McMurdo Sound, Antarctica. These sites have different sea ice states: persistent (multiannual) sea ice at Explorers Cove and annual sea ice (that melts out every year) at Bay of Sails. Six adults shells collected at these sites in 2008 (3 from each site) and two juveniles collected in 2016 from Explorers Cove were be serially sampled for d15NCBOM values from the growing shell margin to the umbo. d15NCBOM values from Explorers Cove with persistent sea ice cover were consistently higher (+10 ± 0.7 ‰) than those from Bay of Sails where the sea ice melts out every year (+8 ± 0.5 ‰; t-test p<0.0001). d15NCBOM data from Mid- to Late Holocene shells that grew in these locations will also be presented. We posit that nitrogen isotopes in A. colbecki shells have a high potential to record sea ice cover. | [] | [] | false | false |
Stable isotopes of Oxygen and Carbon in Adamissium colbecki from Explorers Cove and Bay of Sails
|
1745080 0739512 1745057 1341612 1745064 |
2024-01-12 | Cronin, Kelly; Gillikin, David; Puhalski, Emma; Camarra, Steve; Andrus, Fred; Perez-Huerta, Alberto; Verheyden, Anouk; Bowser, Samuel S.; Walker, Sally |
Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past |
This dataset contains stable isotopes of carbon and oxygen sampled from 6 adult and 2 juvenile Adamussium colbecki valves. Three of the adults were collected live from Bay of Sails. Three of the adults and the two juveniles were collected from Explorers Cove. | ["POLYGON((163 -77.2,163.2 -77.2,163.4 -77.2,163.6 -77.2,163.8 -77.2,164 -77.2,164.2 -77.2,164.4 -77.2,164.6 -77.2,164.8 -77.2,165 -77.2,165 -77.25,165 -77.3,165 -77.35000000000001,165 -77.4,165 -77.45,165 -77.5,165 -77.55,165 -77.60000000000001,165 -77.65,165 -77.7,164.8 -77.7,164.6 -77.7,164.4 -77.7,164.2 -77.7,164 -77.7,163.8 -77.7,163.6 -77.7,163.4 -77.7,163.2 -77.7,163 -77.7,163 -77.65,163 -77.60000000000001,163 -77.55,163 -77.5,163 -77.45,163 -77.4,163 -77.35000000000001,163 -77.3,163 -77.25,163 -77.2))"] | ["POINT(164 -77.45)"] | false | false |
d15N and d18O of air in the WAIS Divide ice core
|
0538657 |
2023-10-20 | Severinghaus, Jeffrey P. |
Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate |
Major gas components of air data set, containing d15N, d18O of O2, dO2/N2, and dAr/N2 from the WAIS Divide ice core at high resolution. These data are used to constrain surface temperature, biosphere oxygen cycling, and firn thickness through the past >60 kyr. | ["POINT(-112.05 -79.28)"] | ["POINT(-112.05 -79.28)"] | false | false |
WAIS Divide Ice Core Discrete CH4 (80-3403m)
|
1043092 |
2023-10-13 | Sowers, Todd A.; Brook, Edward J. |
Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core |
This data set contains the final Discrete WAIS ice core WDC06A Methane (CH4) data. The data have been transferred from NSIDC (nsidc0631_sowers) with minimal metadata. | ["POINT(-112.05 -79.28)"] | ["POINT(-112.05 -79.28)"] | false | false |
Atmospheric methane across the Last Glacial Maximum and deglaciation from the GISP2, NEEM and WAIS Divide ice cores
|
1745078 |
2023-10-05 | Riddell-Young, Benjamin; Martin, Kaden; Rosen, Julia; Lee, James; Edwards, Jon S.; Brook, Edward J. |
Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores |
This dataset includes measurements of atmospheric methane from samples from the NEEM, GISP2 and WAIS Divide ice cores. All measurements were made at the Oregon State University Ice Core and Quaternary Geochemistry Laboratory (Corvallis, OR) using an established analytical system. 433 samples from the NEEM ice core were measured between 1420 and 1560m depths. A measurement uncertainty ranging from 2.8 to 4.2 ppb, depending on the measurement year, was determined from replicate samples. 340 samples from the GISP2 ice core were measured between 1740 and 2060m depths. A measurement uncertainty ranging from 3.1 to 3.4 ppb, depending on the measurement year, was determined from replicate samples. All GISP2 and NEEM data were corrected for excess methane contamination using the established relationship between excess methane and Ca2+ (Lee et al., 2020). Both corrected and uncorrected data are included in the publication. 340 samples from the GISP2 ice core were measured between 1957 and 3081m depths. A measurement uncertainty ranging from 3.1 to 3.4 ppb, depending on the measurement year, was determined from replicate samples. Depths reflect the mid-points of the depth range of each samples, which is typically ~8cm. All replicate measurements are included in the dataset. Lee, J. E. et al. Excess methane in Greenland ice cores associated with high dust concentrations. Geochimica et cosmochimica acta 270, 409-430 (2020). | ["POINT(-112.05 -79.28)"] | ["POINT(-112.05 -79.28)"] | false | false |
Atmospheric methane interpolar difference and four-box troposphere model output across the Last Glacial Maximum and Deglaciation
|
1745078 |
2023-10-02 | Riddell-Young, Benjamin; Rosen, Julia; Buizert, Christo; Martin, Kaden; Lee, James; Edwards, Jon S.; Mühl, Michaela; Schmitt, Jochen; Fischer, Hubertus; Blunier, Thomas; Brook, Edward J. |
Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores |
This dataset includes estimates of the atmospheric methane relative interpolar difference (rIPD) across the Last Glacial Maximum and Deglaciation. The rIPD was calculated using discrete, high-resolution methane measurements from the WAIS Divide, NEEM and GISP2 ice cores. Two independent IPD records were determined: One using NEEM and WAIS and one using GISP2 and WAIS. The dataset includes rIPD values calculated using both Greenland methane data both corrected and uncorrected for excess methane (Lee et al., 2020). The rIPD was calculated by smoothing each methane record and synchronizing them to the WD2014 gas age scale. 1-sigma rIPD uncertainties are included. This dataset also includes the output of the four-box troposphere model used to interpret the rIPD. For both excess methane-corrected records, the model output and 1-sigma uncertainty is provided for northern extratropical (30N - 90N) and total tropical (30S - 30N) sources in Tg yr-1. For the NEEM-derived rIPD, sections of the rIPD where atmospheric methane changed rapidly were deemed untrustworthy were removed from the dataset. Lee, J. E. et al. Excess methane in Greenland ice cores associated with high dust concentrations. Geochimica et cosmochimica acta 270, 409-430 (2020). | ["POINT(-112.05 -79.28)"] | ["POINT(-112.05 -79.28)"] | false | false |
Carbon-13 isotopic composition of atmospheric methane across Heinrich Stadials 1 and 5, and Dansgaard Oesgher Event 12, WAIS Divide Ice Core, Antarctica
|
1745078 |
2023-04-26 | Riddell-Young, Benjamin |
Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores |
This dataset includes ~60-year resolution measurements of the Carbon-13 isotopic Composition of Atmospheric Methane (δ13C-CH4) of gas bubbles from the WAIS Divide Ice Core. All measurements were made at the Oregon State University Ice Core and Quaternary Geochemistry Laboratory (Corvallis, OR) using a new methane stable isotope analytical system. The data includes depth-adjacent replicate samples (separated by no more than 0.3m of depth) and is split up into two sheets for the two different intervals measured (Heinrich Stadial 1 and Heinrich Stadial 5 / Dansgaard Oeschger Event 12). The data are displayed as a function of WAIS Divide depth and were corrected for gravitational and diffusional fractionation that occurs in the firn column according to Buizert et al., 2013. 1-sigma measurement uncertainty is also included and is determined from analytical uncertainty and uncertainties associated with diffusional and gravitational fractionation. The manuscript presenting and analyzing these data is in preparation for publication as of April 2023. | ["POINT(-112.086 -79.468)"] | ["POINT(-112.086 -79.468)"] | false | false |
Old Ice, Ong Valley, Transantarctic Mountains
|
1445205 |
2023-02-09 | Putkonen, Jaakko; Bergelin, Marie |
Collaborative Research: Long Term Sublimation/Preservation of Two Separate, Buried Glacier Ice Masses, Ong Valley, Southern Transantarctic Mountains |
These data include the measurements and analyses done on a ~10 meter long ice cores drilled in Ong Valley buried ice site. Further descriptions can be found in the related paper listed below. | ["POLYGON((157.45 -83.14,157.45299999999997 -83.14,157.456 -83.14,157.459 -83.14,157.462 -83.14,157.46499999999997 -83.14,157.468 -83.14,157.471 -83.14,157.474 -83.14,157.47699999999998 -83.14,157.48 -83.14,157.48 -83.141,157.48 -83.142,157.48 -83.143,157.48 -83.144,157.48 -83.14500000000001,157.48 -83.146,157.48 -83.147,157.48 -83.14800000000001,157.48 -83.149,157.48 -83.15,157.47699999999998 -83.15,157.474 -83.15,157.471 -83.15,157.468 -83.15,157.46499999999997 -83.15,157.462 -83.15,157.459 -83.15,157.456 -83.15,157.45299999999997 -83.15,157.45 -83.15,157.45 -83.149,157.45 -83.14800000000001,157.45 -83.147,157.45 -83.146,157.45 -83.14500000000001,157.45 -83.144,157.45 -83.143,157.45 -83.142,157.45 -83.141,157.45 -83.14))"] | ["POINT(157.46499999999997 -83.14500000000001)"] | false | false |
Sediment porewater properties data from Mercer Subglacial Lake
|
1543537 |
2023-02-03 | Dore, John; Michaud, Alexander; Skidmore, Mark; Tranter, Martyn; Steigmeyer, August; Science Team, SALSA |
Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments |
This dataset contains measurements of sediment porewater properties from cores collected from Mercer Subglacial Lake by the SALSA project. Included are: specific conductance; water stable isotopes (δ2H and δ18O); dissolved gases (methane and its stable isotopes δ13C and δ2H, ethylene, and ethane); and major anions and cations. | ["POINT(-149.50134 -84.640287)"] | ["POINT(-149.50134 -84.640287)"] | false | false |
Water column biogeochemical data from Mercer Subglacial Lake
|
1543537 |
2023-02-01 | Dore, John; Skidmore, Mark; Hawkings, Jon; Steigmeyer, August; Li, Wei; Barker, Joel; Tranter, Martyn; Priscu, John; Science Team, SALSA |
Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments |
This dataset contains water column biogeochemical properties measured on discrete samples collected from Mercer Subglacial Lake by the SALSA project. Data included are: specific conductance; carbonic acid system parameters (total alkalinity, total inorganic carbon, and pH); water stable isotopes (δ2H and δ18O); dissolved gases (oxygen, methane, nitrous oxide, and hydrogen); dissolved nutrients (ammonium, nitrite and phosphate), major anions (including nitrate) and cations; size-fractionated colloidal and dissolved trace elements); dissolved organic carbon; and microbial cell and virus-like particle counts. | ["POINT(-149.50134 -84.640287)"] | ["POINT(-149.50134 -84.640287)"] | false | false |
Replicate O-17-excess by continuous flow laser spectroscopy for an ice core section at Summit, Greenland
|
1841844 2019719 |
2023-01-25 | Davidge, Lindsey |
Center for Oldest Ice Exploration |
This data set contains replicate measurements of D17O from a 92-m deep section of core at Summit, Greenland and other operational data necessary to reconstruct figures presented in Davidge et al., 2022. Details of the entire dataset and a description of the relevant methods can be found in Davidge et al., 2022. The names of each sheet indicate the corresponding figure numbers. The D17O record spans about two years of accumulation. Discrete measurements by laser spectroscopy are provided at 1.4-cm resolution. For the purpose of method development, continuous-flow measurements are provided with nine replicates and are averaged to multiple depth resolutions as described in Davidge et al., 2022. | [] | [] | false | false |
Carbon and nitrogen isotope data along a gradient at the Antarctic Peninsula
|
1744602 |
2023-01-10 | Iken, Katrin |
Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity |
The purpose of this dataset was to determine the importance of macroalgal primary producers to the coastal invertebrate food webs along a gradient of sites with increasing mean annual sea ice cover. This dataset contains the carbon and nitrogen stable isotope values, in addition to carbon and nitrogen content, of various coastal primary producers and invertebrate consumers from 15 stations along the Antarctic Peninsula from 64 to 69 degree latitude south collected in 2019. Primary producers included multiple species of macroalgae, particulate organic matter (POM) as a proxy of phytoplankton production, and benthic diatoms (where they occurred). Consumers included various benthic invertebrates of different feeding types, from suspension feeders (like sponges and ascidians) to predators/omnivores (like sea stars). | ["POLYGON((-68 -64.5,-67.5 -64.5,-67 -64.5,-66.5 -64.5,-66 -64.5,-65.5 -64.5,-65 -64.5,-64.5 -64.5,-64 -64.5,-63.5 -64.5,-63 -64.5,-63 -64.95,-63 -65.4,-63 -65.85,-63 -66.3,-63 -66.75,-63 -67.2,-63 -67.65,-63 -68.1,-63 -68.55,-63 -69,-63.5 -69,-64 -69,-64.5 -69,-65 -69,-65.5 -69,-66 -69,-66.5 -69,-67 -69,-67.5 -69,-68 -69,-68 -68.55,-68 -68.1,-68 -67.65,-68 -67.2,-68 -66.75,-68 -66.3,-68 -65.85,-68 -65.4,-68 -64.95,-68 -64.5))"] | ["POINT(-65.5 -66.75)"] | false | false |
Seasonal temperatures in West Antarctica during the Holocene
|
1043092 1807522 |
2022-09-01 | Jones, Tyler R. |
Collaborative Research: Targeted resampling of deep polar ice cores using information theory Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core |
We analyzed a continuous record of water-isotope ratios from the West Antarctic Ice Sheet (WAIS) Divide ice core to reveal summer and winter temperature changes through the last 11,000 years. | ["POINT(-112.085 -79.467)"] | ["POINT(-112.085 -79.467)"] | false | false |
Law Dome DE08-OH firn air 15N, O2/N2, Ar/N2, 18O of O2
|
1643664 |
2022-08-16 | Severinghaus, Jeffrey P. |
Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability |
This data set comprises measurements of noble and inert gases in the firn at the DE08-OH site sampled in 2018-2019 near the summit of Law Dome, Antarctica. The data show the expected gravitational enrichment of heavy isotopes with depth, somewhat attenuated by the high accumulation rate and a near-surface well-mixed zone (convective zone), and the "lock-in" horizon at 68 m depth. As seen at many other sites, the heavy isotope of oxygen 18O is depleted progressively with depth within the lock-in zone due to faster gas permeation of 16O16O relative to 18O16O from compressed air bubbles. | [] | [] | false | false |
Law Dome DE08-OH site noble gases in ice: testing the 86Krexcess proxy
|
1643664 |
2022-08-16 | Severinghaus, Jeffrey P. |
Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability |
This data set consists of high-precision krypton and argon isotope measurements, along with 15N and 18O of O2. This data tests the hypothesis that the 2nd order parameter 86Krexcess (86Kr/82Kr - 40Ar/36Ar) serves as a proxy indicator of past storminess, via atmospheric pressure changes that cause barometric pumping in the firn and hence greater gravitational disequilibrium in the heavier Kr atom than in Ar. These measurements were made as part of the US-Australian Law Dome DE08-OH campaign in 2018-2019. Nitrogen and dioxygen isotopes were also measured. | [] | [] | false | false |
Preliminary nitrous oxide site preference isotopic data for last deglaciation from Taylor Glacier
|
1903681 |
2022-08-02 | Menking, Andy; Brook, Edward J. |
Deciphering Changes in Atmospheric Nitrous Oxide Concentration During the Last Ice Age Using the Intramolecular Site-Preference of Nitrogen Isotopes |
Measurements of the isotopic composition of atmospheric nitrous oxide from samples from the Taylor Glacier, Antarctica, spanning the last deglaciation (21-11 ka) and part of the last glacial period (40 to 36 ka). Data set includes the site preference of 15-N in N2O. A manuscript describing these data is currently in preparation. Data are referenced to in house air standards at OSU which are currently being cross calibrated with other laboratories. | ["POLYGON((161.745 -77.745,161.746 -77.745,161.747 -77.745,161.748 -77.745,161.749 -77.745,161.75 -77.745,161.751 -77.745,161.752 -77.745,161.753 -77.745,161.754 -77.745,161.755 -77.745,161.755 -77.74600000000001,161.755 -77.747,161.755 -77.748,161.755 -77.749,161.755 -77.75,161.755 -77.751,161.755 -77.752,161.755 -77.753,161.755 -77.75399999999999,161.755 -77.755,161.754 -77.755,161.753 -77.755,161.752 -77.755,161.751 -77.755,161.75 -77.755,161.749 -77.755,161.748 -77.755,161.747 -77.755,161.746 -77.755,161.745 -77.755,161.745 -77.75399999999999,161.745 -77.753,161.745 -77.752,161.745 -77.751,161.745 -77.75,161.745 -77.749,161.745 -77.748,161.745 -77.747,161.745 -77.74600000000001,161.745 -77.745))"] | ["POINT(161.75 -77.75)"] | false | false |
Particulate silicon and nitrogen concentrations and isotopic composition measurements in McLane pump profiles from 67°S to 55°S latitude in the Pacific Sector of the Southern Ocean
|
1341464 1341432 |
2022-06-02 | Jones, Janice L.; Closset, Ivia; Robinson, Rebecca; Brzezinski, Mark |
Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump |
This dataset contains data for particulate silicon, particulate carbon, particulate nitrogen, stable isotopes of nitrogen and stable isotopes of silicon in particulates from McLane pump profiles | ["POLYGON((-175 -54,-174 -54,-173 -54,-172 -54,-171 -54,-170 -54,-169 -54,-168 -54,-167 -54,-166 -54,-165 -54,-165 -55.3,-165 -56.6,-165 -57.9,-165 -59.2,-165 -60.5,-165 -61.8,-165 -63.1,-165 -64.4,-165 -65.7,-165 -67,-166 -67,-167 -67,-168 -67,-169 -67,-170 -67,-171 -67,-172 -67,-173 -67,-174 -67,-175 -67,-175 -65.7,-175 -64.4,-175 -63.1,-175 -61.8,-175 -60.5,-175 -59.2,-175 -57.9,-175 -56.6,-175 -55.3,-175 -54))"] | ["POINT(-170 -60.5)"] | false | false |
Silicon concentration and isotopic composition measurements in seawater profiles, pore waters, interstitial waters and sediments from 67°S to 55°S latitude in the Pacific Sector of the Southern Ocean
|
1341432 |
2022-05-16 | Closset, Ivia; Jones, Janice L.; Brzezinski, Mark |
Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump |
This dataset contains data for stable isotopes of silicon in pore water, interstitial water, sediments and CTD profiles. | ["POLYGON((-175 -54,-174 -54,-173 -54,-172 -54,-171 -54,-170 -54,-169 -54,-168 -54,-167 -54,-166 -54,-165 -54,-165 -55.3,-165 -56.6,-165 -57.9,-165 -59.2,-165 -60.5,-165 -61.8,-165 -63.1,-165 -64.4,-165 -65.7,-165 -67,-166 -67,-167 -67,-168 -67,-169 -67,-170 -67,-171 -67,-172 -67,-173 -67,-174 -67,-175 -67,-175 -65.7,-175 -64.4,-175 -63.1,-175 -61.8,-175 -60.5,-175 -59.2,-175 -57.9,-175 -56.6,-175 -55.3,-175 -54))"] | ["POINT(-170 -60.5)"] | false | false |
Surface Southern Ocean community growouts to evaluate the diatom bound N isotope proxy
|
1341464 |
2022-02-14 | Jones, Colin; Robinson, Rebecca; Brzezinski, Mark; Riesselman, Christina; Closset, Ivia; Kelly, Roger; Robinson, Rebecca |
Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump |
Tracking variations in the surface ocean supply and demand of nitrate, a key marine nutrient, can help constrain the contribution of biological production in driving past climate shifts. The nitrogen isotopic composition (as δ15N) of organic matter in marine sediments is a proxy for surface ocean nitrate supply and demand over time but it may be subject to alteration during sinking and burial. The isotopic composition of nitrogen contained in the shells, or frustules, of diatoms (δ15NDB) is protected and is therefore a potentially more robust tracer of nitrate use in the past. Here we show that δ15NDB in Southern Ocean community cultures does not depend on species composition. We found the εDB (= biomass δ15N - δ15NDB) of the community growouts was -4.8 ± 0.8‰, more than 10‰ different from previous monospecific growouts, but statistically indistinguishable from previous Southern Ocean and North Pacific surface ocean observations. The two community growouts, seeded with populations from 66° and 61°S, had distinct community compositions but indistinguishable εDB, suggesting species composition does not primarily set δ15NDB values in the Southern Ocean. Our results demonstrate that under nitrate-replete conditions, δ15NDB values of frustules sinking from the surface ocean robustly track surface ocean nitrate δ15N values and therefore nitrate supply and demand. | ["POLYGON((-170.4 -60.8,-170.36 -60.8,-170.32 -60.8,-170.28 -60.8,-170.24 -60.8,-170.2 -60.8,-170.16 -60.8,-170.12 -60.8,-170.08 -60.8,-170.04 -60.8,-170 -60.8,-170 -61.34,-170 -61.88,-170 -62.42,-170 -62.96,-170 -63.5,-170 -64.04,-170 -64.58,-170 -65.12,-170 -65.66,-170 -66.2,-170.04 -66.2,-170.08 -66.2,-170.12 -66.2,-170.16 -66.2,-170.2 -66.2,-170.24 -66.2,-170.28 -66.2,-170.32 -66.2,-170.36 -66.2,-170.4 -66.2,-170.4 -65.66,-170.4 -65.12,-170.4 -64.58,-170.4 -64.04,-170.4 -63.5,-170.4 -62.96,-170.4 -62.42,-170.4 -61.88,-170.4 -61.34,-170.4 -60.8))"] | ["POINT(-170.2 -63.5)"] | false | false |
Major, trace elements contents and radiogenic isotopes of erupted lavas Antarctic Peninsula and Phoenix Ridge
|
1643494 |
2022-02-07 | Saal, Alberto |
Magmatic Volatiles, Unraveling the Reservoirs and Processes of the Volcanism in the Antarctic Peninsula |
["POLYGON((-68.074 -57.345,-66.6033 -57.345,-65.1326 -57.345,-63.6619 -57.345,-62.1912 -57.345,-60.7205 -57.345,-59.2498 -57.345,-57.7791 -57.345,-56.3084 -57.345,-54.8377 -57.345,-53.367 -57.345,-53.367 -58.1252,-53.367 -58.9054,-53.367 -59.6856,-53.367 -60.4658,-53.367 -61.246,-53.367 -62.0262,-53.367 -62.8064,-53.367 -63.5866,-53.367 -64.3668,-53.367 -65.147,-54.8377 -65.147,-56.3084 -65.147,-57.7791 -65.147,-59.2498 -65.147,-60.7205 -65.147,-62.1912 -65.147,-63.6619 -65.147,-65.1326 -65.147,-66.6033 -65.147,-68.074 -65.147,-68.074 -64.3668,-68.074 -63.5866,-68.074 -62.8064,-68.074 -62.0262,-68.074 -61.246,-68.074 -60.4658,-68.074 -59.6856,-68.074 -58.9054,-68.074 -58.1252,-68.074 -57.345))"] | ["POINT(-60.7205 -61.246)"] | false | false | |
South Pole Ice Core Isotopes of N2 and Ar
|
1443710 |
2022-02-03 | Morgan, Jacob; Severinghaus, Jeffrey P. |
Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core |
We present measurements gas measurements from the South Pole Ice Core, including the isotopic composition of molecular nitrogen (δ15N) and argon (δ40Ar), and the argon-nitrogen ratio (δAr/N2). The measurements were made between approximately 490 and 1310 m depth, which is between 5 and 30 kyr BP on the SP19 Gas Chronology. The measurements allow us to reconstruct the past amounts of gravitational and thermal fractionation in the firn and thus reconstruct past firn thickness and temperature gradient. These reconstructions are also included. | ["POINT(0 -90)"] | ["POINT(0 -90)"] | false | false |
G170 Secondary Ion Mass Spectrometry Analyses of Melt Inclusion Hydrogen Isotopes
|
1644013 |
2022-01-12 | Gaetani, Glenn |
Collaborative Research: Determining Magma Storage Depths and Ascent Rates for the Erebus Volcanic Province, Antarctica Using Diffusive Water Loss from Olivine-hosted Melt Inclusion |
G170 Secondary Ion Mass Spectrometry Analyses of Melt Inclusion Hydrogen Isotopes | ["POLYGON((164.1 -77.1,164.65 -77.1,165.2 -77.1,165.75 -77.1,166.3 -77.1,166.85 -77.1,167.4 -77.1,167.95 -77.1,168.5 -77.1,169.05 -77.1,169.6 -77.1,169.6 -77.235,169.6 -77.37,169.6 -77.505,169.6 -77.64,169.6 -77.775,169.6 -77.91,169.6 -78.045,169.6 -78.18,169.6 -78.315,169.6 -78.45,169.05 -78.45,168.5 -78.45,167.95 -78.45,167.4 -78.45,166.85 -78.45,166.3 -78.45,165.75 -78.45,165.2 -78.45,164.65 -78.45,164.1 -78.45,164.1 -78.315,164.1 -78.18,164.1 -78.045,164.1 -77.91,164.1 -77.775,164.1 -77.64,164.1 -77.505,164.1 -77.37,164.1 -77.235,164.1 -77.1))"] | ["POINT(166.85 -77.775)"] | false | false |
Mercer Subglacial Lake (SLM) noble gas and isotopic data
|
1543453 |
2021-12-23 | Gardner, Christopher B.; Lyons, W. Berry |
Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments |
This dataset includes the following measurements from Niskin casts at Mercer Subglacial Lake as part of the SALSA project: noble gases and their isotopes, d13C-DIC, Ge, 87Sr/86Sr, and 234U/238U | ["POINT(-149.50134 -84.640287)"] | ["POINT(-149.50134 -84.640287)"] | false | false |
WAIS Divide ice core nitrate isotopes
|
1542723 |
2021-06-22 | Alexander, Becky |
Measuring an Ice-core Proxy for Relative Oxidant Abundances over Glacial-interglacial and Rapid Climate changes in a West Antarctic Ice Core |
This dataset contains measurements of nitrate oxygen (D17O) and nitrogen (d15N) isotopes from the WAIS Divide ice core (WDC06A). The time resolution is variable throughout the record. The data includes 15 discreet samples between 2900 - 67,000 years before 1950 and 305 continuous measurements between 36,000-52,000 years before 1950. The depth range is 700 - 3401 m. Each sample covered 1 m depth. The time resolution ranged from 5 years/m at the top to 200 years/m at the bottom. | ["POINT(-112.05 -79.28)"] | ["POINT(-112.05 -79.28)"] | false | false |
Shackleton Glacier region water-soluble salt isotopes
|
1341736 1341631 |
2021-01-02 | Diaz, Melisa A.; Lyons, W. Berry; Gardner, Christopher B. |
Collaborative Research: The Role of Glacial History on the Structure and Functioning of Ecological Communities in the Shackleton Glacier Region of the Transantarctic Mountains |
Soil samples were collected from the Shackleton Glacier region, located in the Queen Maud Mountains during the 2017-2018 austral summer. A subset of 27 samples were analyzed for stable isotopes of S, N, C, and O in nitrate, sulfate, and (bi)carbonate. ). δ15N-NO3 values ranged from -47.8 to 20.4‰ and, while all Δ17O-NO3 values are positive, they ranged from 15.7 to 45.9‰. δ34S-SO4 and δ18O-SO4 values ranged from 12.5 and 17.9‰ and -14.5 to -7.1‰, respectively. Total inorganic carbon isotopes ((bi)carbonate) in bulk soil samples ranged from 0.2 to 8.5‰ for δ13C and -38.8 to -9.6‰ for δ18O. | ["POLYGON((-177.3907 -84.46466667,-177.06501 -84.46466667,-176.73932 -84.46466667,-176.41363 -84.46466667,-176.08794 -84.46466667,-175.76225 -84.46466667,-175.43656 -84.46466667,-175.11087 -84.46466667,-174.78518 -84.46466667,-174.45949 -84.46466667,-174.1338 -84.46466667,-174.1338 -84.566988336,-174.1338 -84.669310002,-174.1338 -84.771631668,-174.1338 -84.873953334,-174.1338 -84.976275,-174.1338 -85.078596666,-174.1338 -85.180918332,-174.1338 -85.283239998,-174.1338 -85.385561664,-174.1338 -85.48788333,-174.45949 -85.48788333,-174.78518 -85.48788333,-175.11087 -85.48788333,-175.43656 -85.48788333,-175.76225 -85.48788333,-176.08794 -85.48788333,-176.41363 -85.48788333,-176.73932 -85.48788333,-177.06501 -85.48788333,-177.3907 -85.48788333,-177.3907 -85.385561664,-177.3907 -85.283239998,-177.3907 -85.180918332,-177.3907 -85.078596666,-177.3907 -84.976275,-177.3907 -84.873953334,-177.3907 -84.771631668,-177.3907 -84.669310002,-177.3907 -84.566988336,-177.3907 -84.46466667))"] | ["POINT(-175.76225 -84.976275)"] | false | false |
17O excess from WAIS Divide, 0 to 25 ka BP
|
1043092 |
2020-12-22 | Steig, Eric J.; Schoenemann, Spruce |
Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core |
This data set contains the VSMOW-SLAP d17O, d18O, and 17O-excess data from the WAIS Divide Ice Core Project, Siple Dome and Taylor Dome, along with the published and VSMOW-SLAP normalized d17O, d18O, and 17O-excess for Vostok [Landais et al. 2008], EPICA Dome C and Talos Dome [Winkler et al., 2012]. The data cover the Last Glacial Maximum (25-20 ka), through the Early Holocene (12-9 ka) and into present-day (past 2 kyr) | ["POLYGON((-158.72 -77.79,-154.056 -77.79,-149.392 -77.79,-144.728 -77.79,-140.064 -77.79,-135.4 -77.79,-130.736 -77.79,-126.072 -77.79,-121.408 -77.79,-116.744 -77.79,-112.08 -77.79,-112.08 -78.178,-112.08 -78.566,-112.08 -78.954,-112.08 -79.342,-112.08 -79.73,-112.08 -80.118,-112.08 -80.506,-112.08 -80.894,-112.08 -81.282,-112.08 -81.67,-116.744 -81.67,-121.408 -81.67,-126.072 -81.67,-130.736 -81.67,-135.4 -81.67,-140.064 -81.67,-144.728 -81.67,-149.392 -81.67,-154.056 -81.67,-158.72 -81.67,-158.72 -81.282,-158.72 -80.894,-158.72 -80.506,-158.72 -80.118,-158.72 -79.73,-158.72 -79.342,-158.72 -78.954,-158.72 -78.566,-158.72 -78.178,-158.72 -77.79))"] | ["POINT(-135.4 -79.73)"] | false | false |
Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)
|
1443105 |
2020-10-28 | Kahle, Emma; Steig, Eric J.; Jones, Tyler R.; Fudge, T. J.; Koutnik, Michelle; Morris, Valerie; Vaughn, Bruce; Schauer, Andrew; Stevens, Max; Conway, Howard; Waddington, Edwin D.; Buizert, Christo; Epifanio, Jenna; White, James |
Collaborative Research: A 1500m Ice Core from South Pole Collaborative Research: Record of the Triple-oxygen Isotope and Hydrogen Isotope Composition of Ice from an Ice Core at South Pole |
This data set provides the input and output data used in Kahle et al. 2020 to reconstruct climate variables at the South Pole. The files below include high resolution water isotopes, water isotope diffusion length, and various reconstructions of temperature, accumulation rate, and thinning function for the SPC14 ice core. An inverse approach was used to combine information from water isotope diffusion length, Dage, and annual-layer thickness to solve for temperature, accumulation rate, and thinning function. Corrections were applied to account for the advection of ice from upstream to yield estimates for the South Pole site. Updated data for Hires_Water_Isotopes_halfcm.txt is available at www.usap-dc.org/view/dataset/601429. | ["POINT(180 -90)"] | ["POINT(180 -90)"] | false | false |
Ancient Adelie penguin colony revealed by snowmelt at Cape Irizar, Ross Sea, Antarctica
|
1443386 |
2020-09-24 | Emslie, Steven |
Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators |
This dataset provides the results of radiocarbon and stable isotope analyses of Adelie penguin chick bone collagen. | ["POINT(162.95 -75.55)"] | ["POINT(162.95 -75.55)"] | false | false |
Resampling of Deep Polar Ice Cores using Information Theory
|
1043167 |
2020-07-27 | Jones, Tyler R.; Morris, Valerie; Garland, Joshua; Vaughn, Bruce; White, James |
Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core |
The original water stable isotope data for the WAIS Divide Deep Ice Core was generated under the University of Colorado INSTAAR Stable Isotope Lab (NSF Award# 1443328). This data set contains high-resolution dD and d18O data for the West Antarctic Ice Sheet (WAIS) Divide Ice core. Drilling was initiated in 2006 and completed in 2011, and subsequent analyses on the ice were performed at the University of Colorado INSTAAR Stable Isotope Lab using Continuous Flow Analysis (CFA), completed in 2015 and described in Jones et al. (2017). The targeted resampling of the WAIS Divide Ice core (1035.4 to 1368.2 m) was completed in 2019 (NSF OPP - Antarctic Glaciology 1807522) to replace data analyzed on an older generation Laser Absorption Spectroscopy instrument. The resampling interval was identified using information theory (Garland and Jones et al. 2018). | ["POINT(-112.1115 -79.481)"] | ["POINT(-112.1115 -79.481)"] | false | false |
Carbon monoxide mixing ratios and stable isotopic values, SPICE
|
1443482 |
2020-07-09 | Mak, John |
Collaborative Research: Using Stable Isotopes to Constrain the Atmospheric Carbon Monoxide Budget over the Last 20,000 Years |
Data from measurement of CO mixing ratios and stable isotopes from the South Pole Ice Core for the first ca 10,000 years BP | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Ohio Range Subglacial rock core cosmogenic nuclide data
|
1341658 |
2020-06-28 | Mukhopadhyay, Sujoy |
Constraining Plio-Pleistocene West Antarctic Ice Sheet Behavior from the Ohio Range and Scott Glacier |
The data set consists of cosmogenic berrylium-10 and aluminum-26, along with neon-21, in a set of 4 rock-cores obtained from the Ohio Range, West Antarctica. The rock cores were obtained using the WInkie drill. The depth to the cores varies from 12 meters to 28 meters. The recovered rock cores analyzed for the cosmogenic isotopes varies from 22 cm long to 50 cm long. The data include the following formation: sample details, cosmogenic berrylium-10, aluminum-26 and upper bounds for cosmogenic 21 (since samples have nucleogenic 21) and the step heating data for neon. The data are in Mircrosoft excel format. | ["POLYGON((-116.46 -84.78,-116.452 -84.78,-116.444 -84.78,-116.436 -84.78,-116.428 -84.78,-116.42 -84.78,-116.412 -84.78,-116.404 -84.78,-116.396 -84.78,-116.388 -84.78,-116.38 -84.78,-116.38 -84.781,-116.38 -84.782,-116.38 -84.783,-116.38 -84.784,-116.38 -84.785,-116.38 -84.786,-116.38 -84.787,-116.38 -84.788,-116.38 -84.789,-116.38 -84.79,-116.388 -84.79,-116.396 -84.79,-116.404 -84.79,-116.412 -84.79,-116.42 -84.79,-116.428 -84.79,-116.436 -84.79,-116.444 -84.79,-116.452 -84.79,-116.46 -84.79,-116.46 -84.789,-116.46 -84.788,-116.46 -84.787,-116.46 -84.786,-116.46 -84.785,-116.46 -84.784,-116.46 -84.783,-116.46 -84.782,-116.46 -84.781,-116.46 -84.78))"] | ["POINT(-116.42 -84.785)"] | false | false |
Volcanological and Petrological measurements on Mt. Early and Sheridan Bluff volcanoes, upper Scott Glacier, Antarctica
|
1443576 |
2020-06-05 | Panter, Kurt |
Investigating Early Miocene Sub-ice Volcanoes in Antarctica for Improved Modeling and understanding of a Large Magmatic Province |
Mt. Early and Sheridan Bluff (87°S) are the above ice expression of Earth’s southernmost volcanic field that lies approximately 300 km from the South Pole. The dataset supplies the locations and lithological descriptions of the units that the samples were collected from for dating and petrological study. Fundamental compositional information on the mafic volcanic rock samples include whole rock MgO concentrations (wt.%), the forsterite content of olivine and the oxygen isotopic composition of olivine. The dataset also provides a record of what samples have been analyzed for major and trace elements by XRF and ICP-MS, mineral chemistry by EMPA, radiogenic isotopes of Sr, Nd and Pb on whole rock powders by ICP-MS and dating by 40Ar/39Ar method. | ["POLYGON((-154.1 -86.9,-154.03 -86.9,-153.96 -86.9,-153.89 -86.9,-153.82 -86.9,-153.75 -86.9,-153.68 -86.9,-153.61 -86.9,-153.54 -86.9,-153.47 -86.9,-153.4 -86.9,-153.4 -86.92,-153.4 -86.94,-153.4 -86.96,-153.4 -86.98,-153.4 -87,-153.4 -87.02,-153.4 -87.04,-153.4 -87.06,-153.4 -87.08,-153.4 -87.1,-153.47 -87.1,-153.54 -87.1,-153.61 -87.1,-153.68 -87.1,-153.75 -87.1,-153.82 -87.1,-153.89 -87.1,-153.96 -87.1,-154.03 -87.1,-154.1 -87.1,-154.1 -87.08,-154.1 -87.06,-154.1 -87.04,-154.1 -87.02,-154.1 -87,-154.1 -86.98,-154.1 -86.96,-154.1 -86.94,-154.1 -86.92,-154.1 -86.9))"] | ["POINT(-153.75 -87)"] | false | false |
The rise and fall of an ancient Adelie penguin 'supercolony' at Cape Adare, Antarctica
|
1443386 |
2020-06-02 | McKenzie, Ashley; Patterson, William; Emslie, Steven |
Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators |
We report new discoveries and radiocarbon dates on active and abandoned Adélie penguin (Pygoscelis adeliae) colonies at Cape Adare, Antarctica. This colony, first established at approximately 2000 BP (calendar years before present, i.e. 1950), is currently the largest for this species with approximately 338 000 breeding pairs, most located on lowlying Ridley Beach. We hypothesize that this colony first formed after fast ice began blocking open-water access by breeding penguins to the Scott Coast in the southern Ross Sea during a cooling period also at approximately 2000 BP. Our results suggest that the new colony at Cape Adare continued to grow, expanding to a large upper terrace above Ridley Beach, until it exceeded approximately 500 000 breeding pairs (a 'supercolony') by approximately 1200 BP. The high marine productivity associated with the Ross Sea polynya and continental shelf break supported this growth, but the colony collapsed to its present size for unknown reasons after approximately 1200 BP. Ridley Beach will probably be abandoned in the near future due to rising sea level in this region. We predict that penguins will retreat to higher elevations at Cape Adare and that the Scott Coast will be reoccupied by breeding penguins as fast ice continues to dissipate earlier each summer, restoring open-water access to beaches there. | ["POLYGON((-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -61.130769444,-180 -62.261538888,-180 -63.392308332,-180 -64.523077776,-180 -65.65384722,-180 -66.784616664,-180 -67.915386108,-180 -69.046155552,-180 -70.176924996,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,180 -71.30769444,179.019305556 -71.30769444,178.038611112 -71.30769444,177.057916668 -71.30769444,176.077222224 -71.30769444,175.09652778 -71.30769444,174.115833336 -71.30769444,173.135138892 -71.30769444,172.154444448 -71.30769444,171.173750004 -71.30769444,170.19305556 -71.30769444,170.19305556 -70.176924996,170.19305556 -69.046155552,170.19305556 -67.915386108,170.19305556 -66.784616664,170.19305556 -65.65384722,170.19305556 -64.523077776,170.19305556 -63.392308332,170.19305556 -62.261538888,170.19305556 -61.130769444,170.19305556 -60,171.173750004 -60,172.154444448 -60,173.135138892 -60,174.115833336 -60,175.09652778 -60,176.077222224 -60,177.057916668 -60,178.038611112 -60,179.019305556 -60,-180 -60))"] | ["POINT(175.09652778 -65.65384722)"] | false | false |
Mid-Holocene high-resolution water isotope time series for the WAIS Divide ice core
|
1807522 |
2020-05-26 | Morris, Valerie; Jones, Tyler R.; Vaughn, Bruce; White, James |
Collaborative Research: Targeted resampling of deep polar ice cores using information theory |
The original water stable isotope data for the WAIS Divide Deep Ice Core was generated under the University of Colorado INSTAAR Stable Isotope Lab (NSF Award# 1443328). This data set contains high-resolution dD and d18O data for the West Antarctic Ice Sheet (WAIS) Divide Ice core. Drilling was initiated in 2006 and completed in 2011, and subsequent analyses on the ice were performed at the University of Colorado INSTAAR Stable Isotope Lab using Continuous Flow Analysis (CFA). The targeted resampling of the WAIS Divide Ice core (1035.4 - 1368.2m) occurred for this grant (NSF OPP - Antarctic Glaciology 1807522) to replace data analyzed on an older generation Laser Absorption Spectroscopy instrument. The resampling interval was identified using information theory. | ["POINT(-112.1115 -79.481)"] | ["POINT(-112.1115 -79.481)"] | false | false |
Particle composition measurements from along 170°W between 67-54°S
|
1341432 1341464 |
2020-04-09 | Robinson, Rebecca; Brzezinski, Mark |
Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump |
This dataset contains profiles of water column particulate organic carbon (POC), total particulate nitrogen (TPN), biogenic silica, and d15N of TPN from McLane pump casts (4 depths/cast). | ["POLYGON((-175 -54,-174 -54,-173 -54,-172 -54,-171 -54,-170 -54,-169 -54,-168 -54,-167 -54,-166 -54,-165 -54,-165 -55.3,-165 -56.6,-165 -57.9,-165 -59.2,-165 -60.5,-165 -61.8,-165 -63.1,-165 -64.4,-165 -65.7,-165 -67,-166 -67,-167 -67,-168 -67,-169 -67,-170 -67,-171 -67,-172 -67,-173 -67,-174 -67,-175 -67,-175 -65.7,-175 -64.4,-175 -63.1,-175 -61.8,-175 -60.5,-175 -59.2,-175 -57.9,-175 -56.6,-175 -55.3,-175 -54))"] | ["POINT(-170 -60.5)"] | false | false |
SPICEcore Advection
|
1443471 |
2020-03-25 | Fudge, T. J. |
Collaborative Research: Characterization of Upstream Ice and Firn Dynamics affecting the South Pole Ice Core |
The South Pole Ice Core (SPICEcore), which spans the past 54,300 years, was drilled far from an ice divide such that ice recovered at depth originated upstream of the core site. If the climate is different upstream, the climate history recovered from the core will be a combination of the upstream conditions advected to the core site and temporal changes. Here, we evaluate the impact of ice advection on two fundamental records from SPICEcore: accumulation rate and water isotopes. We determined past locations of ice deposition based on GPS measurements of the modern velocity field spanning 100 km upstream, where ice of ~20 ka age would likely have originated. Beyond 100 km, there are no velocity measurements, but ice likely originates from Titan Dome, an additional 90 km distant. Shallow radar measurements extending 100 km upstream from the core site reveal large (~20%) variations in accumulation but no significant trend. Water isotope ratios, measured at 12.5 km intervals for the first 100 km of the flowline, show a decrease with elevation of -0.008‰ m-1 for δ18O. Advection adds approximately 1‰ for δ18O to the LGM-to-modern change. We also use an existing ensemble of continental ice-sheet model runs to assess the ice sheet elevation change through time. The magnitude of elevation change is likely small and the sign uncertain. Assuming a lapse rate of 10°C per km of elevation, the inference of LGM-to-modern temperature change is ~1.4°C smaller than if the flow from upstream is not considered. | ["POINT(-98.16 -89.99)"] | ["POINT(-98.16 -89.99)"] | false | false |
Amino acid nitrogen isotope values of penguins from the Antarctic Peninsula region 1930s to 2010s
|
1443585 1826712 1443386 1443424 |
2019-12-17 | McMahon, Kelton; Polito, Michael |
Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators |
This data set contains measurements of nitrogen (δ15N) stable isotope values of twelve individual amino acids from breast feathers of gentoo penguins (Pygoscelis papua) and chinstrap penguins (Pygoscelis antarctica) collected from museum archives between the 1930s and 2010s. Stable isotope analyses were conducted using a gas chromatograph coupled to a continuous flow stable isotope ratio mass spectrometer. The data set also includes trophic positions of penguins calculated from individual amino acid δ15N values. The data set indexes each individual penguin with species, collection institution, catalog number, sex, locality, latitude, longitude, year of sample collection, nitrogen isotope ratios, and calculated trophic position. Details of the data set and all relevant methods are provided in McMahon et al. 2020 Proc Natl Acad Sci DOI: 10.1073/pnas.1913093116 | ["POLYGON((-63.56 -60.72,-61.664 -60.72,-59.768 -60.72,-57.872 -60.72,-55.976 -60.72,-54.08 -60.72,-52.184 -60.72,-50.288 -60.72,-48.392 -60.72,-46.496 -60.72,-44.6 -60.72,-44.6 -61.106,-44.6 -61.492,-44.6 -61.878,-44.6 -62.264,-44.6 -62.65,-44.6 -63.036,-44.6 -63.422,-44.6 -63.808,-44.6 -64.194,-44.6 -64.58,-46.496 -64.58,-48.392 -64.58,-50.288 -64.58,-52.184 -64.58,-54.08 -64.58,-55.976 -64.58,-57.872 -64.58,-59.768 -64.58,-61.664 -64.58,-63.56 -64.58,-63.56 -64.194,-63.56 -63.808,-63.56 -63.422,-63.56 -63.036,-63.56 -62.65,-63.56 -62.264,-63.56 -61.878,-63.56 -61.492,-63.56 -61.106,-63.56 -60.72))"] | ["POINT(-54.08 -62.65)"] | false | false |
Carbon and nitrogen stable isotope values of Antarctic Krill from the South Shetland Islands and the northern Antarctic Peninsula 2007 and 2009
|
1826712 1443585 1443386 1443424 |
2019-09-13 | Polito, Michael |
Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators |
This data set contains measurements of carbon (δ13C) and nitrogen (δ15N) stable isotope values of whole-body Antarctic krill (Euphausia superba) collected from trawl surveys of waters surrounding the South Shetland Islands and the northern Antarctic Peninsula during the 2006-07 and 2008-90 Austral summers. Stable isotope analyses were conducted using an elemental analyzer coupled to a continuous flow stable isotope ratio mass spectrometer. Individual krill were lipid-extracted prior to analyses. The data set also includes latitude, longitude, month, and year of sample collection, standard length of the krill to the nearest mm, age class, sex, and carbon to nitrogen ratios. Details of the data set and all relevant methods are provided in Polito et al., 2013 and Polito et al., 2019. | ["POLYGON((-63 -60,-62.1 -60,-61.2 -60,-60.3 -60,-59.4 -60,-58.5 -60,-57.6 -60,-56.7 -60,-55.8 -60,-54.9 -60,-54 -60,-54 -60.4,-54 -60.8,-54 -61.2,-54 -61.6,-54 -62,-54 -62.4,-54 -62.8,-54 -63.2,-54 -63.6,-54 -64,-54.9 -64,-55.8 -64,-56.7 -64,-57.6 -64,-58.5 -64,-59.4 -64,-60.3 -64,-61.2 -64,-62.1 -64,-63 -64,-63 -63.6,-63 -63.2,-63 -62.8,-63 -62.4,-63 -62,-63 -61.6,-63 -61.2,-63 -60.8,-63 -60.4,-63 -60))"] | ["POINT(-58.5 -62)"] | false | false |
The South Pole Ice Core (SPICEcore) chronology and supporting data
|
1443336 |
2019-08-29 | Winski, Dominic A.; Fudge, T. J.; Dunbar, Nelia; Buizert, Christo; Bay, Ryan; Souney, Joseph Jr.; Sigl, Michael; McConnell, Joseph; Fegyveresi, John; Cole-Dai, Jihong; Thundercloud, Zayta; Cox, Thomas S.; Kreutz, Karl; Epifanio, Jenna; Ortman, Nikolas; Brook, Edward J.; Beaudette, Ross; Sowers, Todd A.; Steig, Eric J.; Morris, Valerie; Kahle, Emma; Ferris, David G.; Aydin, Murat; Nicewonger, Melinda R.; Casey, Kimberly A.; Alley, Richard; Waddington, Edwin D.; Osterberg, Erich; Severinghaus, Jeffrey P.; Jones, Tyler R.; Iverson, Nels |
Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements |
The South Pole Ice Core (SPICEcore) was drilled in 2014-2016 to provide a detailed multi-proxy archive of paleoclimate conditions in East Antarctica during the Holocene and late Pleistocene. Interpretation of these records requires an accurate depth-age relationship. Here, we present the SP19 timescale for the age of the ice of SPICEcore. SP19 is synchronized to the WD2014 chronology from the West Antarctic Ice Sheet Divide (WAIS Divide) ice core using stratigraphic matching of 251 volcanic events. These events indicate an age of 54,302 +/- 519 years BP (before the year 1950) at the bottom of SPICEcore. Annual layers identified in sodium and magnesium ions to 11,341 BP were used to interpolate between stratigraphic volcanic tie points, yielding an annually-resolved chronology through the Holocene. Estimated timescale uncertainty during the Holocene is less than 18 years relative to WD2014, with the exception of the interval between 1800 to 3100 BP when uncertainty estimates reach +/- 25 years due to widely spaced volcanic tie points. Prior to the Holocene, uncertainties remain within 124 years relative to WD2014. Results show an average Holocene accumulation rate of 7.4 cm/yr (water equivalent). The time variability of accumulation rate is consistent with expectations for steady-state ice flow through the modern spatial pattern of accumulation rate. Time variations in nitrate concentration, nitrate seasonal amplitude, and δ15N of N2 in turn are as expected for the accumulation-rate variations. The highly variable yet well-constrained Holocene accumulation history at the site can help improve scientific understanding of deposition-sensitive climate proxies such as δ15N of N2 and photolyzed chemical compounds. | ["POINT(-180 -90)"] | ["POINT(-180 -90)"] | false | false |
Carbon dioxide concentration and its stable carbon isotope composition in Allan Hills ice cores
|
1443263 |
2019-08-14 | Yan, Yuzhen; Bender, Michael; Brook, Edward J.; Higgins, John |
Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area |
This file includes the concentration of carbon dioxide (CO2) and methane (CH4) and the stable carbon isotope composition of CO2 in Allan Hills ice cores (ALHIC1502 and ALHIC1503). | ["POINT(159.35507 -76.73286)"] | ["POINT(159.35507 -76.73286)"] | false | false |
Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores
|
1245659 1245821 1246148 |
2019-08-12 | Menking, James; Brook, Edward J.; Marcott, Shaun; Barker, Stephen; Shackleton, Sarah; Dyonisius, Michael; Petrenko, Vasilii; McConnell, Joseph; Rhodes, Rachel; Bauska, Thomas; Baggenstos, Daniel; Severinghaus, Jeffrey P. |
Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive |
New ice cores retrieved from the Taylor Glacier (Antarctica) blue ice area contain ice and air spanning the Marine Isotope Stage (MIS) 5-4 transition, a period of global cooling and ice sheet expansion. We determine chronologies for the ice and air bubbles in the new ice cores by visually matching variations in gas- and ice- phase tracers to preexisting ice core records. The chronologies reveal an ice age-gas age difference (Δage) approaching 10 ka during MIS 4, implying very low snow accumulation in the Taylor Glacier accumulation zone. A revised chronology for the analagous section of the Taylor Dome ice core (84 to 55 ka), located to the south of the Taylor Glacier accumulation zone, shows that Δage did not exceed 3 ka. The difference in Δage between the two records during MIS 4 is similar in magnitude but opposite in direction to what is observed at the Last Glacial Maximum. This relationship implies that a spatial gradient in snow accumulation existed across the Taylor Dome region during MIS 4 that was oriented in the opposite direction of the accumulation gradient during the Last Glacial Maximum. | ["POINT(162.167 -77.733)"] | ["POINT(162.167 -77.733)"] | false | false |
The Geochemistry of englacial brine from Taylor Glacier, Antarctica.
|
1144176 |
2019-05-07 | Lyons, W. Berry; Gardner, Christopher B. |
Collaborative Research: MIDGE: Minimally Invasive Direct Glacial Exploration of Biogeochemistry, Hydrology and Glaciology of Blood Falls, McMurdo Dry Valleys |
Blood Falls is a hypersaline, iron‐rich discharge at the terminus of the Taylor Glacier in the McMurdo Dry Valleys, Antarctica. In November 2014, brine in a conduit within the glacier was penetrated and sampled using clean‐entry techniques and a thermoelectric melting probe called the IceMole. We analyzed the englacial brine sample for filterable iron (fFe), total Fe, major cations and anions, nutrients, organic carbon, and perchlorate. In addition, aliquots were analyzed for minor and trace elements and isotopes including δD and δ18O of water, δ34S and δ18O of sulfate, 234U, 238U, δ11B, 87Sr/86Sr, and δ81Br. These measurements were made in order to (1) determine the source and geochemical evolution of the brine and (2) compare the chemistry of the brine to that of nearby hypersaline lake waters and previous supraglacially sampled collections of Blood Falls outflow that were interpreted as end‐member brines. | ["POLYGON((162.250099 -77.719928,162.2519358 -77.719928,162.2537726 -77.719928,162.2556094 -77.719928,162.2574462 -77.719928,162.259283 -77.719928,162.2611198 -77.719928,162.2629566 -77.719928,162.2647934 -77.719928,162.2666302 -77.719928,162.268467 -77.719928,162.268467 -77.7201251,162.268467 -77.7203222,162.268467 -77.7205193,162.268467 -77.7207164,162.268467 -77.7209135,162.268467 -77.7211106,162.268467 -77.7213077,162.268467 -77.7215048,162.268467 -77.7217019,162.268467 -77.721899,162.2666302 -77.721899,162.2647934 -77.721899,162.2629566 -77.721899,162.2611198 -77.721899,162.259283 -77.721899,162.2574462 -77.721899,162.2556094 -77.721899,162.2537726 -77.721899,162.2519358 -77.721899,162.250099 -77.721899,162.250099 -77.7217019,162.250099 -77.7215048,162.250099 -77.7213077,162.250099 -77.7211106,162.250099 -77.7209135,162.250099 -77.7207164,162.250099 -77.7205193,162.250099 -77.7203222,162.250099 -77.7201251,162.250099 -77.719928))"] | ["POINT(162.259283 -77.7209135)"] | false | false |
Taylor Glacier Noble Gases - Younger Dryas
|
1245659 1246148 1245821 0739766 |
2019-04-23 | Shackleton, Sarah |
Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive |
Noble gas data from Taylor Glacier for mean ocean temperature reconstruction during the Younger Dryas. Also includes field measurements of methane and standard deviations of replicate CO2 measurements from WAIS Divide. | ["POLYGON((161.68 -77.73,161.7 -77.73,161.72 -77.73,161.74 -77.73,161.76 -77.73,161.78 -77.73,161.8 -77.73,161.82 -77.73,161.84 -77.73,161.86 -77.73,161.88 -77.73,161.88 -77.734,161.88 -77.738,161.88 -77.742,161.88 -77.746,161.88 -77.75,161.88 -77.754,161.88 -77.758,161.88 -77.762,161.88 -77.766,161.88 -77.77,161.86 -77.77,161.84 -77.77,161.82 -77.77,161.8 -77.77,161.78 -77.77,161.76 -77.77,161.74 -77.77,161.72 -77.77,161.7 -77.77,161.68 -77.77,161.68 -77.766,161.68 -77.762,161.68 -77.758,161.68 -77.754,161.68 -77.75,161.68 -77.746,161.68 -77.742,161.68 -77.738,161.68 -77.734,161.68 -77.73))"] | ["POINT(161.78 -77.75)"] | false | false |
Organic carbon isotope data from serially sampled Eocene driftwood from the La Meseta Fm., Seymour Island, Antarctica
|
1543031 |
2019-04-22 | Judd, Emily |
Seasonality, Summer Cooling, and Calibrating the Approach of the Icehouse in Late Eocene Antarctica |
Serially-sampled high-resolution organic carbon isotope data from middle Eocene (~42 Ma) driftwood preserved within the La Meseta Formation, Seymour Island, Antarctica. | ["POLYGON((-57 -64,-56.9 -64,-56.8 -64,-56.7 -64,-56.6 -64,-56.5 -64,-56.4 -64,-56.3 -64,-56.2 -64,-56.1 -64,-56 -64,-56 -64.05,-56 -64.1,-56 -64.15,-56 -64.2,-56 -64.25,-56 -64.3,-56 -64.35,-56 -64.4,-56 -64.45,-56 -64.5,-56.1 -64.5,-56.2 -64.5,-56.3 -64.5,-56.4 -64.5,-56.5 -64.5,-56.6 -64.5,-56.7 -64.5,-56.8 -64.5,-56.9 -64.5,-57 -64.5,-57 -64.45,-57 -64.4,-57 -64.35,-57 -64.3,-57 -64.25,-57 -64.2,-57 -64.15,-57 -64.1,-57 -64.05,-57 -64))"] | ["POINT(-56.5 -64.25)"] | false | false |
South Pole (SPICECORE) 15N, 18O, O2/N2 and Ar/N2
|
1443710 |
2019-02-02 | Severinghaus, Jeffrey P. |
Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core |
This data set includes major atmospheric gas and gas isotope data from the SPICECORE project, which recovered a 1750-m ice core at the South Pole in 2015. 15N, 18O of O2, O2/N2, and Ar/N2 are included. | ["POINT(0 -90)"] | ["POINT(0 -90)"] | false | false |
Stable water isotope data for the surface samples collected at the Allan Hills Blue ice area
|
1443306 1443263 |
2018-10-17 | Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Yan, Yuzhen |
Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area |
Stable water isotope data for the surface ice samples (listed as point numbers coordinates provided) collected at the Allan Hills Blue ice area have been generated under a collaborative effort by the University of Maine Climate Change Institute (NSF Award#1443306) and Princeton University (NSF Award# 1443263). This data set contains stable isotope data (dD, d18O) of meltwater samples collected from the area(76.73165 to 76.73348 S, 159.35343 to 159.42112 E). | ["POLYGON((159.35343 -76.73165,159.360199 -76.73165,159.366968 -76.73165,159.373737 -76.73165,159.380506 -76.73165,159.387275 -76.73165,159.394044 -76.73165,159.400813 -76.73165,159.407582 -76.73165,159.414351 -76.73165,159.42112 -76.73165,159.42112 -76.731833,159.42112 -76.732016,159.42112 -76.732199,159.42112 -76.732382,159.42112 -76.732565,159.42112 -76.732748,159.42112 -76.732931,159.42112 -76.733114,159.42112 -76.733297,159.42112 -76.73348,159.414351 -76.73348,159.407582 -76.73348,159.400813 -76.73348,159.394044 -76.73348,159.387275 -76.73348,159.380506 -76.73348,159.373737 -76.73348,159.366968 -76.73348,159.360199 -76.73348,159.35343 -76.73348,159.35343 -76.733297,159.35343 -76.733114,159.35343 -76.732931,159.35343 -76.732748,159.35343 -76.732565,159.35343 -76.732382,159.35343 -76.732199,159.35343 -76.732016,159.35343 -76.731833,159.35343 -76.73165))"] | ["POINT(159.387275 -76.732565)"] | false | false |
Stable water isotope data for the AH-1502 ice core drilled at the Allan Hills Blue ice area
|
1443263 1443306 |
2018-10-17 | Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Yan, Yuzhen |
Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area |
Stable water isotope data for the ice core drilled at the Allan Hills Blue ice area have been generated under a collaborative effort by the University of Maine Climate Change Institute (NSF Award#1443306) and Princeton University (NSF Award# 1443263). This data set contains stable isotope data (dD, d18O) of meltwater samples collected from the ice core AH-1502 (76.73286 S, 159.35507 E) was drilled in 2015-16 field season to 197 meters below the surface. | ["POINT(159.35507 -76.73286)"] | ["POINT(159.35507 -76.73286)"] | false | false |
Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills Blue ice area
|
1443306 1443263 |
2018-10-16 | Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Yan, Yuzhen |
Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area |
Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills Blue ice area have been generated under a collaborative effort by the University of Maine Climate Change Institute (NSF Award#1443263) and Princeton University (NSF Award# 1443263). This data set contains stable isotope data (dD, d18O) of meltwater samples collected from the ice core AH-1503 (76.73243 S, 159.3562 E). Ice core site AH-1503 used the same borehole as AH- BIT58 drilled down to 124 m during the 2011-12 field season. All drilling was conducted with a 3" Eclipse drill (Ice Drilling Design and Operations (IDDO)). | ["POINT(159.3562 -76.73243)"] | ["POINT(159.3562 -76.73243)"] | false | false |
List of samples of WAIS Divide and Byrd (deep) ice that were analyzed for radiogenic isotopes at LDEO
|
1043471 |
2017-10-27 | Kaplan, Michael |
A Study of Atmospheric Dust in the WAIS Divide Ice Core Based on Sr-Nd-Pb-He Isotopes |
Listed are samples of WAIS Divide and Byrd (deep) ice that were analyzed for radiogenic isotopes at LDEO. | ["POLYGON((-112.5 -79.468,-112.4586 -79.468,-112.4172 -79.468,-112.3758 -79.468,-112.3344 -79.468,-112.293 -79.468,-112.2516 -79.468,-112.2102 -79.468,-112.1688 -79.468,-112.1274 -79.468,-112.086 -79.468,-112.086 -79.4712,-112.086 -79.4744,-112.086 -79.4776,-112.086 -79.4808,-112.086 -79.484,-112.086 -79.4872,-112.086 -79.4904,-112.086 -79.4936,-112.086 -79.4968,-112.086 -79.5,-112.1274 -79.5,-112.1688 -79.5,-112.2102 -79.5,-112.2516 -79.5,-112.293 -79.5,-112.3344 -79.5,-112.3758 -79.5,-112.4172 -79.5,-112.4586 -79.5,-112.5 -79.5,-112.5 -79.4968,-112.5 -79.4936,-112.5 -79.4904,-112.5 -79.4872,-112.5 -79.484,-112.5 -79.4808,-112.5 -79.4776,-112.5 -79.4744,-112.5 -79.4712,-112.5 -79.468))"] | ["POINT(-112.293 -79.484)"] | false | false |
WAIS Divide d18Oatm and Siple Dome/WAIS Divide composite and individual delta epsilon LAND
|
0538657 |
2017-08-18 | Seltzer, Alan; Severinghaus, Jeffrey P. |
Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate |
This data set contains measurements of d18Oatm (d18O of O2), d15N, dAr/N2, and dO2/N2 in gas bubbles from the WAIS Divide ice core. The time resolution is variable throughout the record but is ~100 years on average (from 65 ka to present). All measurements were made in the Noble Gas Isotope Laboratory at Scripps Institution of Oceanography (La Jolla, CA). The data set includes all replicate measurements as well as replicate-mean values and a calculation of measurement precision (pooled standard deviation). The second sheet of this data set includes fitted d18Oatm curves for the past 50 ka from both the WAIS Divide and Siple Dome Antarctic ice cores, both on the WD2014 timescale (Buizert et al., 2015). The second sheet also includes calculations of the time derivative of d18Oatm and d e LAND in both ice cores individual as well as in a composite record. Details of the entire data set and all relevant methods are provided in Seltzer et al., 2017. | ["POLYGON((-113 -79,-112.8 -79,-112.6 -79,-112.4 -79,-112.2 -79,-112 -79,-111.8 -79,-111.6 -79,-111.4 -79,-111.2 -79,-111 -79,-111 -79.1,-111 -79.2,-111 -79.3,-111 -79.4,-111 -79.5,-111 -79.6,-111 -79.7,-111 -79.8,-111 -79.9,-111 -80,-111.2 -80,-111.4 -80,-111.6 -80,-111.8 -80,-112 -80,-112.2 -80,-112.4 -80,-112.6 -80,-112.8 -80,-113 -80,-113 -79.9,-113 -79.8,-113 -79.7,-113 -79.6,-113 -79.5,-113 -79.4,-113 -79.3,-113 -79.2,-113 -79.1,-113 -79))"] | ["POINT(-112 -79.5)"] | false | false |
Gas measurement from Higgins et al., 2015 - PNAS
|
0838849 |
2017-03-27 | Higgins, John |
Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core |
Measurements of Ar isotopes (40Ar/38Ar/36Ar) and other gas species (18O/16O of O2, 15N/14N of N2, O2/N2 and Ar/N2 ratios) from ice cores drilled in the Allan Hills Blue Ice Area | ["POLYGON((159.02 -76.67,159.057 -76.67,159.094 -76.67,159.131 -76.67,159.168 -76.67,159.205 -76.67,159.242 -76.67,159.279 -76.67,159.316 -76.67,159.353 -76.67,159.39 -76.67,159.39 -76.687,159.39 -76.704,159.39 -76.721,159.39 -76.738,159.39 -76.755,159.39 -76.772,159.39 -76.789,159.39 -76.806,159.39 -76.823,159.39 -76.84,159.353 -76.84,159.316 -76.84,159.279 -76.84,159.242 -76.84,159.205 -76.84,159.168 -76.84,159.131 -76.84,159.094 -76.84,159.057 -76.84,159.02 -76.84,159.02 -76.823,159.02 -76.806,159.02 -76.789,159.02 -76.772,159.02 -76.755,159.02 -76.738,159.02 -76.721,159.02 -76.704,159.02 -76.687,159.02 -76.67))"] | ["POINT(159.205 -76.755)"] | false | false |
WAIS Divide sulfate and nitrate isotopes
|
0538049 |
2017-03-09 | Alexander, Becky; Steig, Eric J. |
Collaborative Research: Multiple-isotope Analysis of Nitrate and Sulfate in the West Antarctic Ice Sheet Divide Ice Core |
This data set contain oxygen isotopes of sulfate and nitrate and nitrogen isotopes of nitrate from the WAIS Divide ice core from the surface to 577 m depth at varying resolution | ["POINT(-112.085 -79.5)"] | ["POINT(-112.085 -79.5)"] | false | false |
Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core
|
1043167 |
2016-01-01 | White, James; Morris, Valerie; Vaughn, Bruce; Jones, Tyler R. |
Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core |
This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public. | ["POINT(-112.08 -79.47)"] | ["POINT(-112.08 -79.47)"] | false | false |
The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive
|
1245821 |
2016-01-01 | Brook, Edward J. |
Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive |
This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, and delta 18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, delta 13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of delta 13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica. | ["POINT(162.167 -77.733)"] | ["POINT(162.167 -77.733)"] | false | false |
Mount Moulton Isotopes and Other Ice Core Data
|
0230316 |
2015-11-24 | Steig, Eric J.; White, James; Popp, Trevor |
Collaborative Research: Refining a 500-kry Climate Record From the Moulton Blue Ice Field in West Antarctica |
This data set consists of water isotope ratios from the Mt. Moulton ice-trench record, as well as data from the Taylor Dome, EPICA Dome C, Talos Dome, Vostok, and EPICA Dronning Maud Land ice cores. | ["POINT(-134.43 -74.04)"] | ["POINT(-134.43 -74.04)"] | false | false |
Ultra-High Resolution LA-ICP-MS Results: DO-21 Rapid Warming Event
|
0538657 |
2015-10-27 | Haines, Skylar; Mayewski, Paul A.; Kurbatov, Andrei V. |
Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate |
This data set contains the results of Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) performed on an archive of the GISP2 ice core containing the rapid climate warming of Dansgaard-Oeschger Event 21. | ["POINT(-38.5 -76.2)"] | ["POINT(-38.5 -76.2)"] | false | false |
Low-res d15N and d18O of O2 in the WAIS Divide 06A Deep Core
|
0538657 |
2015-10-20 | Severinghaus, Jeffrey P. |
Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate |
This data set is a low-resolution set of measurements of d15N of N2 and d18O of O2, along with dO2/N and dAr/N2 supporting data, in the WAIS Divide 3405 m long ice core recovered in 2011. Data are distributed via FTP. | ["POINT(-112.08 -79.47)"] | ["POINT(-112.08 -79.47)"] | false | false |
Borehole Temperature Measurement in WDC05A in January 2008 and January 2009
|
0538657 |
2015-06-08 | Severinghaus, Jeffrey P.; Orsi, Anais J. |
Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate |
This data set includes borehole temperature measurements performed in January 2008 and January 2009 at the West Antarctic Ice sheet divide from the 300 m hole WDC05A. | ["POINT(-112.125 -79.463)"] | ["POINT(-112.125 -79.463)"] | false | false |
WAIS Divide WDC06A Oxygen Isotope Record
|
1043092 |
2015-04-28 | Steig, Eric J. |
Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core |
This data set contains complete low resolution (0.25 to 100 cm) oxygen isotope data from the WAIS Divide Ice Core WDC06A, 0 to 3404.7 m depth. Also included is the WDC2014 timescale. | ["POINT(-112.05 -79.28)"] | ["POINT(-112.05 -79.28)"] | false | false |
Annual Satellite Era Accumulation Patterns Over WAIS Divide: A Study Using Shallow Ice Cores, Near-Surface Radars and Satellites
|
0944653 |
2015-01-01 | Forster, Richard |
Collaborative Research: Annual satellite era accumulation patterns over WAIS Divide: A study using shallow ice cores, near-surface radars and satellites |
This award supports a project to broaden the knowledge of annual accumulation patterns over the West Antarctic Ice Sheet by processing existing near-surface radar data taken on the US ITASE traverse in 2000 and by gathering and validating new ultra/super-high-frequency (UHF) radar images of near surface layers (to depths of ~15 m), expanding abilities to monitor recent annual accumulation patterns from point source ice cores to radar lines. Shallow (15 m) ice cores will be collected in conjunction with UHF radar images to confirm that radar echoed returns correspond with annual layers, and/or sub-annual density changes in the near-surface snow, as determined from ice core stable isotopes. This project will additionally improve accumulation monitoring from space-borne instruments by comparing the spatial-radar-derived-annual accumulation time series to the passive microwave time series dating back over 3 decades and covering most of Antarctica. The intellectual merit of this project is that mapping the spatial and temporal variations in accumulation rates over the Antarctic ice sheet is essential for understanding ice sheet responses to climate forcing. Antarctic precipitation rate is projected to increase up to 20% in the coming century from the predicted warming. Accumulation is a key component for determining ice sheet mass balance and, hence, sea level rise, yet our ability to measure annual accumulation variability over the past 5 decades (satellite era) is mostly limited to point-source ice cores. Developing a radar and ice core derived annual accumulation dataset will provide validation data for space-born remote sensing algorithms, climate models and, additionally, establish accumulation trends. The broader impacts of the project are that it will advance discovery and understanding within the climatology, glaciology and remote sensing communities by verifying the use of UHF radars to monitor annual layers as determined by visual, chemical and isotopic analysis from corresponding shallow ice cores and will provide a dataset of annual to near-annual accumulation measurements over the past ~5 decades across WAIS divide from existing radar data and proposed radar data. By determining if temporal changes in the passive microwave signal are correlated with temporal changes in accumulation will help assess the utility of passive microwave remote sensing to monitor accumulation rates over ice sheets for future decades. The project will promote teaching, training and learning, and increase representation of underrepresented groups by becoming involved in the NASA History of Winter project and Thermochron Mission and by providing K-12 teachers with training to monitor snow accumulation and temperature here in the US, linking polar research to the student's backyard. The project will train both undergraduate and graduate students in polar research and will encouraging young investigators to become involved in careers in science. In particular, two REU students will participate in original research projects as part of this larger project, from development of a hypothesis to presentation and publication of the results. The support of a new, young woman scientist will help to increase gender diversity in polar research. | ["POLYGON((-119.4 -78.1,-118.46 -78.1,-117.52 -78.1,-116.58 -78.1,-115.64 -78.1,-114.7 -78.1,-113.76 -78.1,-112.82 -78.1,-111.88 -78.1,-110.94 -78.1,-110 -78.1,-110 -78.29,-110 -78.48,-110 -78.67,-110 -78.86,-110 -79.05,-110 -79.24,-110 -79.43,-110 -79.62,-110 -79.81,-110 -80,-110.94 -80,-111.88 -80,-112.82 -80,-113.76 -80,-114.7 -80,-115.64 -80,-116.58 -80,-117.52 -80,-118.46 -80,-119.4 -80,-119.4 -79.81,-119.4 -79.62,-119.4 -79.43,-119.4 -79.24,-119.4 -79.05,-119.4 -78.86,-119.4 -78.67,-119.4 -78.48,-119.4 -78.29,-119.4 -78.1))"] | ["POINT(-114.7 -79.05)"] | false | false |
Zircon Hf Isotopes and the Continental Evolution of Dronning Maud Land, East Antarctica
|
1142156 |
2015-01-01 | Marschall, Horst |
Zircon Hf Isotopes and the Continental Evolution of Dronning Maud Land, East Antacrtica |
Geochemical studies of single mineral grains in rocks can be probed to reconstruct the history of our planet. The mineral zircon (ZrSiO4) is of unique importance in that respect because of its reliability as a geologic clock due to its strong persistence against weathering, transport and changes in temperature and pressure. Uranium-Lead (U-Pb) dating of zircon grains is, perhaps, the most frequently employed method of extracting time information on geologic processes that shaped the continental crust, and has been used to constrain the evolution of continents and mountain belts through time. In addition, the isotopic composition of the element Hafnium (Hf) in zircon is used to date when the continental crust was generated by extraction of magma from the underlying mantle. Melting of rocks in the mantle and deep in the continental crust are key processes in the evolution of the continents, and they are recorded in the Hf isotopic signatures of zircon. Although the analytical procedures for U-Pb dating and Hf isotope analyses of zircon are robust now, our understanding of zircon growth and its exchange of elements and isotopes with its surrounding rock or magma are still underdeveloped. The focus of the proposed study, therefore, is to unravel the evolution of zircon Hf isotopes in rocks that were formed deep in the Earth's crust, and more specifically, to apply these isotopic methods to rocks collected in Dronning Maud Land (DML), East Antarctica. Dronning Maud Land (DML) occupied a central location during the formation of supercontinents - large landmasses made up of all the continents that exist today - more than 500 million years ago. It is currently thought that supercontinents were formed and dismembered five or six times throughout Earth's history. The area of DML is key for understanding the formation history of the last two supercontinents. The boundaries of continents that were merged to form those supercontinents are most likely hidden in DML. In this study, the isotopic composition of zircon grains recovered from DML rocks will be employed to identify these boundaries across an extensive section through the area. The rock samples were collected by the investigator during a two-month expedition to Antarctica in the austral summer of 2007-2008. The results of dating and isotope analyses of zircon of the different DML crustal domains will deliver significant insight into the regional geology of East Antarctica and its previous northern extension into Africa. This has significance for the reconstruction of the supercontinents and defining the continental boundaries in DML. | ["POLYGON((-6.44 -71.93,-5.378 -71.93,-4.316 -71.93,-3.254 -71.93,-2.192 -71.93,-1.13 -71.93,-0.068 -71.93,0.994 -71.93,2.056 -71.93,3.118 -71.93,4.18 -71.93,4.18 -71.998,4.18 -72.066,4.18 -72.134,4.18 -72.202,4.18 -72.27,4.18 -72.338,4.18 -72.406,4.18 -72.474,4.18 -72.542,4.18 -72.61,3.118 -72.61,2.056 -72.61,0.994 -72.61,-0.068 -72.61,-1.13 -72.61,-2.192 -72.61,-3.254 -72.61,-4.316 -72.61,-5.378 -72.61,-6.44 -72.61,-6.44 -72.542,-6.44 -72.474,-6.44 -72.406,-6.44 -72.338,-6.44 -72.27,-6.44 -72.202,-6.44 -72.134,-6.44 -72.066,-6.44 -71.998,-6.44 -71.93))"] | ["POINT(-1.13 -72.27)"] | false | false |
History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris
|
0944489 |
2014-01-01 | Williams, Trevor; Hemming, Sidney R. |
History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris |
Intellectual Merit: The PIs propose to study the stability and dynamics of the East Antarctic ice sheet during the Pliocene in the area of the Wilkes and Aurora subglacial basins. Models indicate the ice sheet is most sensitive to warming in these low-lying areas. This study is important as there is very little direct evidence about which parts of the East Antarctic ice sheet became unstable under warm conditions. In a pilot study the PIs have shown that the isotopic geochemical signature of downcore ice-rafted debris (IRD) can be linked to continental source areas indicating which parts of the ice sheet reached the coast and calved IRD-bearing icebergs. Their initial results suggest rapid iceberg discharge from the Wilkes Land and Adelie Land coastal areas at times in the late Miocene and early Pliocene. In this study the PIs will analyze IRD from IODP sediment cores collected on the continental rise off East Antarctica. By analyzing 40Ar/39Ar ages of hornblende IRD grains, U-Pb ages of zircons, and Sm-Nd isotopes of the fine fraction of several IRD-rich layers for each core, they will be able to fingerprint continental source areas that indicate ice extent and dynamics on East Antarctica. The PIs will also carry out detailed studies across a few of these layers to characterize the anatomy of the ice-rafting event and better understand the mechanism of ice destabilization. Broader impacts: The data collected will be important for scientists in a broad variety of fields. The project will involve one undergraduate student and one summer intern at LDEO, and a graduate student at Imperial College London. The project will expose to cutting edge methodologies as well as an international research team. Data from the project will be deposited in the online databases (SedDB) and all results and methods will be made available to the scientific community through publications in peer-reviewed journals and attendance at international conferences | ["POLYGON((-55 -58,-33.2 -58,-11.4 -58,10.4 -58,32.2 -58,54 -58,75.8 -58,97.6 -58,119.4 -58,141.2 -58,163 -58,163 -60,163 -62,163 -64,163 -66,163 -68,163 -70,163 -72,163 -74,163 -76,163 -78,141.2 -78,119.4 -78,97.6 -78,75.8 -78,54 -78,32.2 -78,10.4 -78,-11.4 -78,-33.2 -78,-55 -78,-55 -76,-55 -74,-55 -72,-55 -70,-55 -68,-55 -66,-55 -64,-55 -62,-55 -60,-55 -58))"] | ["POINT(54 -68)"] | false | false |
Major Ion Concentrations in 2004 South Pole Ice Core
|
0337933 |
2013-11-19 | Cole-Dai, Jihong |
Collaborative Research: Investigating Atmospheric Chemistry and Dynamics through Oxygen and Sulfur Isotopes in Volcanic Sulfate from South Pole Ice Cores |
A 180 m ice core drilled at South Pole in 2004/2005 was analyzed for concentrations of major ions at a depth resolution of approximately 2 cm. Measured ions are chloride, nitrate, sulfate, sodium, potassium, magnesium and calcium. The bottom of the core has been dated to 1830 years before 2004. | ["POINT(0 -90)"] | ["POINT(0 -90)"] | false | false |
Allan Hills Stable Water Isotopes
|
0838843 |
2013-10-24 | Kurbatov, Andrei V.; Spaulding, Nicole; Mayewski, Paul A.; Introne, Douglas |
Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA) |
This data set includes stable water isotope values at 10 m resolution along an approximately 5 km transect through the main icefield of the Allan Hills Blue Ice Area, and at 15 cm within a 225 m core drilled at the midpoint of the transect. | ["POLYGON((159 -75.67,159.025 -75.67,159.05 -75.67,159.075 -75.67,159.1 -75.67,159.125 -75.67,159.15 -75.67,159.175 -75.67,159.2 -75.67,159.225 -75.67,159.25 -75.67,159.25 -75.786,159.25 -75.902,159.25 -76.018,159.25 -76.134,159.25 -76.25,159.25 -76.366,159.25 -76.482,159.25 -76.598,159.25 -76.714,159.25 -76.83,159.225 -76.83,159.2 -76.83,159.175 -76.83,159.15 -76.83,159.125 -76.83,159.1 -76.83,159.075 -76.83,159.05 -76.83,159.025 -76.83,159 -76.83,159 -76.714,159 -76.598,159 -76.482,159 -76.366,159 -76.25,159 -76.134,159 -76.018,159 -75.902,159 -75.786,159 -75.67))"] | ["POINT(159.125 -76.25)"] | false | false |
Abrupt Change in Atmospheric CO2 During the Last Ice Age
|
0944764 |
2013-08-08 | Brook, Edward J.; Ahn, Jinho |
Atmospheric CO2 and Abrupt Climate Change |
During the last glacial period atmospheric carbon dioxide and temperature in Antarctica varied in a similar fashion on millennial time scales, but previous work indicates that these changes were gradual. In a detailed analysis of one event, we now find that approximately half of the CO2 increase that occurred during the 1500 year cold period between Dansgaard-Oeschger (DO) Events 8 and 9 happened rapidly, over less than two centuries. This rise in CO2 was synchronous with, or slightly later than, a rapid increase of Antarctic temperature inferred from stable isotopes. | ["POINT(-119.83 -80.01)", "POINT(-148.82 -81.66)"] | ["POINT(-119.83 -80.01)", "POINT(-148.82 -81.66)"] | false | false |
Alkanes in Firn Air Samples, Antarctica and Greenland
|
0739598 |
2011-11-30 | Aydin, Murat; Saltzman, Eric |
Collaborative Research: Methane Isotopes, Hydrocarbons, and other Trace Gases in South Pole Firn Air |
This data set contains ethane, propane, and n-butane measurements in firn air from the South Pole and the West Antarctic Ice Sheet (WAIS) Divide in Antarctica, and from Summit, Greenland. The WAIS Divide and South Pole samples were collected in December to January of of 2005/06 and 2008/09, respectively. The Summit firn was sampled in the summer of 2006. Analyses were conducted on a gas chromatography - mass spectrometry (GC-MS) system at the University of California, Irvine. Measurements and the associated uncertainties are reported as dry air molar mixing ratios in part per trillion (ppt). The reported measurements for each sampling depth represent a mean of multiple measurements on more than one flask in most cases. Data are available via FTP in Microsoft Excel (.xls) format. | ["POINT(-38.3833 72.5833)", "POINT(0 -90)", "POINT(112.09 -79.47)"] | ["POINT(-38.3833 72.5833)", "POINT(0 -90)", "POINT(112.09 -79.47)"] | false | false |
Methane Isotopes in South Pole Firn Air, 2008
|
0739491 |
2011-01-01 | Sowers, Todd A. |
Collaborative Research: Methane Isotopes, Hydrocarbons, and other Trace Gases in South Pole Firn Air |
This data set contains depth profiles for delta carbon-13 (δ13C) and delta deuterium (δD) of methane (CH<sub>4</sub>) in South Pole firn air. The investigators obtained air samples from two boreholes during December 2008 and January 2009, and subsequently determined isotope ratios at 18 depths. The profiles represent a roughly 100-year history of the isotopic composition of CH<sub>4</sub> at South Pole Station (no depth-age model provided). Data are available via FTP as an ASCII text file (.txt) and a Microsoft Excel file (.xlsx). | ["POLYGON((-180 90,-144 90,-108 90,-72 90,-36 90,0 90,36 90,72 90,108 90,144 90,180 90,180 72,180 54,180 36,180 18,180 0,180 -18,180 -36,180 -54,180 -72,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -72,-180 -54,-180 -36,-180 -18,-180 0,-180 18,-180 36,-180 54,-180 72,-180 90))"] | ["POINT(0 -89.999)"] | false | false |
Multiple Isotope Analysis of Sulfate in the West Antarctic Ice Sheet Divide Ice Core
|
0538520 |
2010-11-01 | Thiemens, Mark H. |
Collaborative Research: Multiple-isotope Analysis of Nitrate and Sulfate in the West Antarctic Ice Sheet Divide Ice Core |
This data set contains measurements of multiple sulfur and oxygen isotopes from sulfates, from an ice core drilled at the West Antarctic Ice Sheet (WAIS) Divide site in 2005. The initial sulfate measurements, analyzed in 2008 from the 70 meter WAIS 2005A core, are 12 meter averages and span the pre-industrial to industrial transition, from the late 1700s to 2005. This data set is part of the West Antarctic Ice Sheet Divide Ice Core (WAISCORES) project. Data are available via FTP in Microsoft Excel (.xlsx) format. | ["POINT(-114.216667 -78.916667)"] | ["POINT(-114.216667 -78.916667)"] | false | false |
Antarctica's Geological History Reflected in Sedimentary Radiogenic Isotopes
|
0538580 |
2010-01-01 | van de Flierdt, Tina; Goldstein, Steven L.; Hemming, Sidney R. |
Antarctica's Geological History Reflected in Sedimentary Radiogenic Isotopes |
This project studies sediment from the ocean floor to understand Antarctica's geologic history. Glacially eroded from the Antarctic continent, these sediments may offer insight into the 99% Antarctica covered by ice. The work's central focus is determining crust formation ages and thermal histories for three key areas of East Antarctica--Prydz Bay, eastern Weddell Sea, and Wilkes Land--through a combination of petrography, bulk sediment geochemistry and radiogenic isotopes, as well as isotope chronology of individual mineral grains. One specific objective is characterizing the composition of the Gamburtsev Mountains through studies of Eocene fluvial sediments from Prydz Bay. In addition to furthering our understanding of the hidden terrains of Antarctica, these terrigenous sediments will also serve as a natural laboratory to evaluate the effects of continental weathering on the Hf/Nd isotope systematics of seawater. An important broader impact of the project is providing exciting research projects for graduate and postdoctoral students using state of the art techniques in geochemistry. | ["POLYGON((60 -60,72 -60,84 -60,96 -60,108 -60,120 -60,132 -60,144 -60,156 -60,168 -60,180 -60,180 -61,180 -62,180 -63,180 -64,180 -65,180 -66,180 -67,180 -68,180 -69,180 -70,168 -70,156 -70,144 -70,132 -70,120 -70,108 -70,96 -70,84 -70,72 -70,60 -70,60 -69,60 -68,60 -67,60 -66,60 -65,60 -64,60 -63,60 -62,60 -61,60 -60))"] | ["POINT(120 -65)"] | false | false |
Methane Isotopes from the WAIS Divide Ice Core
|
0440759 |
2009-12-01 | Sowers, Todd A. |
Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site |
This data set includes methane (CH4) isotope data from the West Antarctic Ice Sheet (WAIS) Divide ice core, WDC05A, in Antarctica. The data include depth, gas age, and the isotopic composition of methane (∂13C and ∂D of CH4). The ice core was collected during the 2005-2006 Antarctic field season. The CH4 isotope data was generated in 2008 using wet extraction methodology. Samples span the last 1,000 years, at a resolution of about 15 years. Data for samples above 69 meters were from firn air, and data below 69 meters from ice. The dating of the ice was based on continuous chemical analyses above 69 meters and Electrical Conductivity/Dielectric Property (ECM/DEP) measurements from ice. Dating uncertainty is estimated to be better than five years. Data are available via FTP in Microsoft Excel (.xls) tab delimited format | ["POINT(112.09 -79.47)"] | ["POINT(112.09 -79.47)"] | false | false |
Nitrogen and Oxygen Gas Isotopes in the Siple Dome and Byrd Ice Cores, Antarctica
|
0440975 |
2009-07-17 | Severinghaus, Jeffrey P. |
Nitrogen and oxygen gas isotopes in the Siple Dome and Byrd ice cores |
This data set consists of Gas-isotopic data from the Siple Dome and and Greenland Ice Sheet Project 2 (GISP2) ice cores covering roughly the last 100,000 years (100 ka), consisting of d15N (15N/14N) of N2, d18O (18O/16O) of O2, dO2/N2, and dAr/N2. Derived parameters include d18Oatm, d15N, dO2/N2, and dAr/N2. Data are available via FTP as ASCII text files (.txt) and Microsoft Excel files (.xls). | ["POINT(-119.533333 -80.016667)"] | ["POINT(-119.533333 -80.016667)"] | false | false |
Late Holocene Climate Variability, Dry Valleys, Antarctica
|
0228052 |
2009-07-01 | Kreutz, Karl; Mayewski, Paul A. |
Dry Valleys Late Holocene Climate Variability |
This data set includes high-resolution ice core records from the Dry Valleys region of Antarctica, and provides interpretations of interannual to decadal-scale climate variability during the last 2000 years (late Holocene). Intermediate-length ice cores (100 to 200 meters) were drilled at four sites along transects in the Taylor and Wright valleys, and analyzed for stable isotopes and major ions. The data set includes high-resolution ice core data for each study site. It also includes mass balance, borehole temperature, and snowpit data for each site, and Global Positioning System (GPS) velocity data for some of the sites. Snow pit data from three additional sites in the same region is also available. Data are available via FTP, in Microsoft Excel (.xls), ASCII text (.txt), and Microsoft Word (.doc) file formats. | ["POLYGON((161.04 -77.3,161.239 -77.3,161.438 -77.3,161.637 -77.3,161.836 -77.3,162.035 -77.3,162.234 -77.3,162.433 -77.3,162.632 -77.3,162.831 -77.3,163.03 -77.3,163.03 -77.378,163.03 -77.456,163.03 -77.534,163.03 -77.612,163.03 -77.69,163.03 -77.768,163.03 -77.846,163.03 -77.924,163.03 -78.002,163.03 -78.08,162.831 -78.08,162.632 -78.08,162.433 -78.08,162.234 -78.08,162.035 -78.08,161.836 -78.08,161.637 -78.08,161.438 -78.08,161.239 -78.08,161.04 -78.08,161.04 -78.002,161.04 -77.924,161.04 -77.846,161.04 -77.768,161.04 -77.69,161.04 -77.612,161.04 -77.534,161.04 -77.456,161.04 -77.378,161.04 -77.3))"] | ["POINT(162.035 -77.69)"] | false | false |
Radium and Thorium isotope data summaries from AMLR and NBP cruises to the Antarctic in 2006
|
None | 2009-03-26 | None | No project link provided | Radium and Thorium isotope data summaries from AMLR and NBP cruises to the Antarctic in 2006 Naturally occurring radium isotopes (224Ra, 226Ra, 228Ra) were used in determining lateral mixing processes which are reported in dpm/m3. Particulate organic Carbon (POC) flux was determined through measuring Thorium (234Th) reported in dpm/kg. Cruises AMLR (Antarctic Marine Living Resources) R/V Yuzhmorgeologiya Jan/2006: The research program was focused in the southern Drake Passage along the Shackelton Shelf located near the Bransfield Strait. Samples were obtained from the R/V Yuzhmorgeologiya and inflatables that were taken to island locations. Lat/Lon Bounding Box -62.2538Lat, -62.9966Lon -63.2335Lat, -59.0332Lon -59.9964Lat, -55.7612Lon -61.4995Lat, -53.9996Lon NBP (Nathaniel B. Palmer) R/V Nathaniel B. Palmer July/2006: The research was conducted in the same region of the Drake Passage as the AMLR cruise. Samples were obtained aboard the R/V Nathaniel B. Palmer Lat/Lon bounding box -60.4991Lat, -58.5613Lon -62.3599Lat, -58.0392Lon -60.2783Lat, -57.4509Lon -61.2683Lat, -54.2852Lon | [] | [] | false | false |
Stable Isotope Studies at East Antarctic US ITASE Sites
|
0440414 |
2009-01-01 | Steig, Eric J. |
Stable Isotope Studies at East Antarctic US ITASE Sites |
This award supports a project to obtain stable isotope profiles from shallow (<100 m) ice cores from East Antarctica, to add to the growing database of environmental proxy data collected under the auspices of the "ITASE" (International TransAntarctic Scientific Expedition) program. In Antarctica, the instrumental record of climate is particularly short (~40 years except in a few isolated locations on the coast), and ice core proxy data are the only means available for extending this record into the past. The use of stable isotopes of water (18-O/16-O and D/H ratios) from ice cores as proxies for temperature is well established for both very short (i.e. seasonal) and long timescales (centuries, millennia). Using multivariate regression methods and shallow ice cores from West Antarctica, a reconstruction of Antarctic climate over the last ~150 years has been developed which suggests the continent has been warming, on average, at a rate of ~0.2 K/century. Further improving these reconstructions is the chief motivation for further extending the US ITASE project. Ten to fifteen shallow (~100 m) from Victoria Land, East Antarctica will be obtained and analyzed. The core will be collected along a traverse route beginning at Taylor Dome and ending at the South Pole. Age-depth relationships for the cores will be determined through a combination of stable isotopes, visual stratigraphy and seasonal chemical signatures and marker horizons. Reconstructions of Antarctic climate obtained from these cores will be incorporated into the global network of paleoclimate information, which has been important in science, policy and educational contexts. The project will include graduate student and postdoctoral training and field experience. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
GISP2 (D Core) Helium Isotopes from Interplanetary Dust
|
0126057 |
2008-12-16 | Brook, Edward J.; Kurz, Mark D. |
High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change |
Ice Core Interplanetary Dust Helium Isotope Data Helium isotope data from Ice Cores at GISP2 (Greenland) and Vostok (Antarctica) as a proxy for extraterrestrial dust flux. | [] | [] | false | false |
Stable Isotopes of Ice on the Surface of Taylor Glacier, Antarctica
|
0125579 |
2007-11-28 | Cuffey, Kurt M.; Bliss, Andrew; Kavanaugh, Jeffrey; Aciego, Sarah |
Collaborative Research: Dynamics and Climatic Response of the Taylor Glacier System |
This data set contains Oxygen and Deuterium isotope ratios for approximately 980 sites on the surface of the ablation zone of Taylor Glacier, Antarctica. The data set gives latitude and longitude of collection, oxygen ratio (18/16) in per mil, and Deuterium ratio (H/D) in per mil. Data are in space-delimited ASCII text format and are available via FTP. | ["POLYGON((160 -77.83333,160.3 -77.83333,160.6 -77.83333,160.9 -77.83333,161.2 -77.83333,161.5 -77.83333,161.8 -77.83333,162.1 -77.83333,162.4 -77.83333,162.7 -77.83333,163 -77.83333,163 -77.849997,163 -77.866664,163 -77.883331,163 -77.899998,163 -77.916665,163 -77.933332,163 -77.949999,163 -77.966666,163 -77.983333,163 -78,162.7 -78,162.4 -78,162.1 -78,161.8 -78,161.5 -78,161.2 -78,160.9 -78,160.6 -78,160.3 -78,160 -78,160 -77.983333,160 -77.966666,160 -77.949999,160 -77.933332,160 -77.916665,160 -77.899998,160 -77.883331,160 -77.866664,160 -77.849997,160 -77.83333))"] | ["POINT(161.5 -77.916665)"] | false | false |
Atmospheric Nitrate Isotopic Analysis at Amundsen-Scott South Pole Station, A Twenty-Five Year Record
|
0125761 |
2006-11-01 | Thiemens, Mark H.; Savarino, Joel |
South Pole Atmospheric Nitrate Isotopic Analysis (SPANIA) |
This data set contains snow pit measurements of oxygen isotopes, <sup>17</sup>O and <sup>18</sup>O, in nitrate and ion concentrations, and surface measurements of oxygen isotopes in nitrate and in nitrate aerosols from the Amundsen-Scott South Pole Station, Antarctica. The 6-meter snow pit provides investigators with a 25-year record of nitrate isotope variations and ion concentrations for a period spanning from 1979 to 2004. Monthly surface snow and weekly aerosol collections yield a year-long record of nitrate isotopic composition starting 01 December 2003 and ending 31 December 2004. Little is known about the past denitrification of the stratosphere in high latitude regions. Such knowledge is important to understanding the chemical state of the ancient atmospheres and evaluating the present climate models. With this research, investigators aim to understand the denitrification of the Antarctic stratosphere and quantify the sources of nitrate aerosols over time. Data are in Microsoft Excel format and are available via FTP. | ["POINT(139.2728 -89.9975)"] | ["POINT(139.2728 -89.9975)"] | false | false |
AWS Data: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation
|
0225992 0125570 |
2006-10-05 | Fahnestock, Mark; Scambos, Ted; Haran, Terry; Bauer, Rob |
Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation |
The Antarctic megadune research was conducted during two field seasons, one in November 2002 and the other during the period of December 2003 through January 2004. The megadune field site is located on the East Antarctic Plateau, southeast of Vostok station. The objectives of this multi-facetted research are 1) to determine the physical characteristics of the firn across the dunes including typical climate indicators such as stable isotopes and major chemical species and 2) to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. It is important to improve our current understanding of the megadunes because of their extreme nature, their broad extent, and their potential impact on the climate record. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on the past terrestrial climate or on processes active on other planets. Snow megadunes are undulating variations in accumulation and surface texture with wavelengths of 2 to 5 km and amplitudes up to 5 meters. The features cover 500,000 km<sup>2</sup> of the East Antarctic plateau, occurring in areas of moderate regional slope and low accumulation on the flanks of the ice sheet between 2500 and 3800 meters elevation. Landsat images and aerial photography indicate the dunes consist of alternating surfaces of glaze and rough sastrugi, with gradational boundaries. This pattern is oriented perpendicular to the mean wind direction, as modeled in katabatic wind studies. Glazed surfaces cover the leeward faces and troughs; rough sastrugi cover the windward faces and crests. The megadune pattern is crossed by smooth to eroded wind-parallel longitudinal dunes. Wind-eroded longitudinal dunes form spectacular 1-meter-high sastrugi in nearby areas. This data set contains automated weather station (AWS) data from two sites. The Mac site was oriented on the rough sastrugi-covered windward face and the Zoe site was on the glazed leeward face. The AWSs collected data throughout the year from 16 January 2004 to 17 November 2004. Investigators received data from the two field sites via the ARGOS Satellite System (http://www.argosinc.com/). Data are provided in space-delimited ASCII text format and are available via FTP. | ["POLYGON((124.4345 -80.77546,124.443718 -80.77546,124.452936 -80.77546,124.462154 -80.77546,124.471372 -80.77546,124.48059 -80.77546,124.489808 -80.77546,124.499026 -80.77546,124.508244 -80.77546,124.517462 -80.77546,124.52668 -80.77546,124.52668 -80.776922,124.52668 -80.778384,124.52668 -80.779846,124.52668 -80.781308,124.52668 -80.78277,124.52668 -80.784232,124.52668 -80.785694,124.52668 -80.787156,124.52668 -80.788618,124.52668 -80.79008,124.517462 -80.79008,124.508244 -80.79008,124.499026 -80.79008,124.489808 -80.79008,124.48059 -80.79008,124.471372 -80.79008,124.462154 -80.79008,124.452936 -80.79008,124.443718 -80.79008,124.4345 -80.79008,124.4345 -80.788618,124.4345 -80.787156,124.4345 -80.785694,124.4345 -80.784232,124.4345 -80.78277,124.4345 -80.781308,124.4345 -80.779846,124.4345 -80.778384,124.4345 -80.776922,124.4345 -80.77546))"] | ["POINT(124.48059 -80.78277)"] | false | false |
GPR and GPS Data: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation
|
0125276 |
2006-06-10 | Scambos, Ted; Bauer, Rob |
Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation |
The Antarctic megadune research was conducted during two field seasons, one in November 2002 and the other in December 2003 through January 2004. The megadune field site is located on the East Antarctic Plateau, southeast of Vostok station. The objectives of this multi-facetted research are to determine the physical characteristics of the firn across the dunes including typical climate indicators such as stable isotopes and major chemical species and to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. It is important to improve our current understanding of the megadunes because of their extreme nature, their broad extent, and their potential impact on the climate record. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on past terrestrial climate or on processes active on other planets. Snow megadunes are undulating variations in accumulation and surface texture with wavelengths of 2 to 5 km and amplitudes up to 5 meters. The features cover 500,000 km<sup>2</sup> of the East Antarctic plateau, occurring in areas of moderate regional slope and low accumulation on the flanks of the ice sheet between 2500 and 3800 meters elevation. Landsat images and aerial photography indicate the dunes consist of alternating surfaces of glaze and rough sastrugi, with gradational boundaries. This pattern is oriented perpendicular to the mean wind direction, as modeled in katabatic wind studies. Glaze surfaces cover the leeward faces and troughs; rough sastrugi cover the windward faces and crests. The megadune pattern is crossed by smooth to eroded wind-parallel longitudinal dunes. Wind-eroded longitudinal dunes form spectacular 1-meter-high sastrugi in nearby areas. This data set contains ground penetrating radar (GPR) data showing surface morphology and internal layering structure along with global positioning system (GPS) data collected within an area of 60 km<sup>2</sup>. GPS data are provided in space-delimited ASCII text Microsoft Excel formats, while GPR data are in JPEG format. Data are available via FTP. | ["POLYGON((124.0218 -80.5304,124.22264 -80.5304,124.42348 -80.5304,124.62432 -80.5304,124.82516 -80.5304,125.026 -80.5304,125.22684 -80.5304,125.42768 -80.5304,125.62852 -80.5304,125.82936 -80.5304,126.0302 -80.5304,126.0302 -80.55538,126.0302 -80.58036,126.0302 -80.60534,126.0302 -80.63032,126.0302 -80.6553,126.0302 -80.68028,126.0302 -80.70526,126.0302 -80.73024,126.0302 -80.75522,126.0302 -80.7802,125.82936 -80.7802,125.62852 -80.7802,125.42768 -80.7802,125.22684 -80.7802,125.026 -80.7802,124.82516 -80.7802,124.62432 -80.7802,124.42348 -80.7802,124.22264 -80.7802,124.0218 -80.7802,124.0218 -80.75522,124.0218 -80.73024,124.0218 -80.70526,124.0218 -80.68028,124.0218 -80.6553,124.0218 -80.63032,124.0218 -80.60534,124.0218 -80.58036,124.0218 -80.55538,124.0218 -80.5304))"] | ["POINT(125.026 -80.6553)"] | false | false |
Taylor Dome Ice Core Chemistry, Ion, and Isotope Data
|
9615292 |
2004-08-26 | Smith, Jesse; Sowers, Todd A.; Brook, Edward J.; Mayewski, Paul A.; Steig, Eric J.; Indermuhle, A. |
Carbon Dioxide and Carbon Isotopes in the Taylor Dome and Vostok Ice Cores |
This data set includes chemistry, ion, and istotope data from Taylor Dome, part of the East Antarctic ice sheet. Deep drilling at Taylor Dome successfully reached bedrock at a depth of 554 meters during the 1993-1994 austral summer. The Taylor Dome ice core is only the second core (after Vostok) to provide a stratigraphically undisturbed record through the entire last glacial cycle (the last 130,000 years or more). | [] | [] | false | false |
Dominion Range Ice Core Beta Profiles, Chemistry, and Density Data
|
8613786 8411018 |
2004-08-26 | Sowers, Todd A.; Saltzman, Eric; Watson, M. Scott; Grootes, Pieter; Mayewski, Paul A.; Meese, Deb; Gow, Tony |
Characterization of Climatic Events for the Last 2 x 103y through the Retrieval of Ice Cores from the Transantarctic Mountains, Antarctica |
This data set includes beta profiles, chemistry, and density data obtained from Dominion Range ice cores. The Dominion Range is on the East Antarctic Ice Sheet. The chemistry data consists of the composition of oxygen-isotopes and trapped gasses. Other information includes ice thickness, mean annual net accumulation, and crystal size. The core samples were collected in the austral summer of 1984-85. | [] | [] | false | false |
South Pole Snow Pit, 1988 and 1989
|
None | 2004-06-24 | Mayewski, Paul A.; Whitlow, Sallie | No project link provided | Information from 6-meter snow pits dug close to the South Pole in austral summer 1988-1989 by the Glacier Research Group of the University of New Hampshire (location - 38 km on grid 90 from South Pole station - eastern margin of clean air sector) are available. Major ion chemistry (Na, K, Mg, Ca, Cl, NO3, SO4), oxygen isotopes (I8O), H2O2, and beta from a 6-meter snow pit covering the period 1955 to 1989 are included. Major ion chemistry for a series of surface snow samples were also collected on the traverse to the pit. | ["POINT(-180 -90)"] | ["POINT(-180 -90)"] | false | false |
Siple Dome Highlights: Stable isotopes
|
None | 2003-08-18 | Steig, Eric J.; White, James | No project link provided | This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. This data set provides measurements of stable isotopes of water and deuterium excess for the Siple Dome ice cores. The shallow cores from Siple Dome were analyzed for isotopes with sub-annual temporal detail. | ["POINT(-149 -81)"] | ["POINT(-149 -81)"] | false | false |
Taylor Dome Ice Core Data
|
None | 2003-08-18 | Steig, Eric J.; White, James | No project link provided | The collection site is Taylor Dome, an ice-accumulation area on the East Antarctic ice sheet. The dome is a ridge about 20 x 80 km, which lies inland of the Transantarctic Mountains. Deep drilling by the Polar Ice Coring Office (PICO) at Taylor Dome reached bedrock at a depth of 554 meters during the 1993-1994 austral summer season. <p>This data set includes mesurements of:</p> <ul> <li>beryllium-10 (betd.txt)</li> <li>oxygen isotopes (hi18o_td.txt and lo18o_td.txt)</li> <li>deuterium isotopes (deld_20cm.txt and deld_td.txt).</li> </ul> <p>These data were produced at the University of Washington from samples obtained in the field and via the University of New Hampshire automatic melting system. For beryllium, deuterium, and 20-cm oxygen isotope data, the st9810 ice age (kyB1950) timescale is used. For 0.5- to 1-m oxygen isotope data, the st9507 is used.</p> | ["POINT(158 -77)"] | ["POINT(158 -77)"] | false | false |
Carbon-Isotopic Composition of Atmospheric CO2 since the Last Glacial Maximum
|
9615292 |
2002-01-01 | Wahlen, Martin |
Carbon Dioxide and Carbon Isotopes in the Taylor Dome and Vostok Ice Cores |
These data describe the concentration and carbon-isotopic composition (d13CO2) of atmospheric CO2 from air trapped in ice between 27,000 and 1,300 years before present from Taylor Dome, Antarctica. Data are used to investigate the causes of the CO2 concentration increase that occurred during the transition between the last glacial maximum (LGM) and the Holocene. Data are in tab-delimited ASCII and Excel formats, and are available via ftp. | ["POINT(158.71 -77.8)"] | ["POINT(158.71 -77.8)"] | false | false |