[{"awards": "2218996 Collins, Kristina", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Sun, 07 Aug 2022 00:00:00 GMT", "description": "Magnetic field variations on the Earth\u2019s surface can be used to remote sense and characterize electrical currents and plasma waves in the near-Earth space environment that can affect technology, for example by inducing currents in power grids. Asymmetries between the space environment in the polar regions of the northern and southern hemispheres can profoundly affect these magnetic field variations. Magnetometers, which measure the strength and direction of magnetic fields, have been installed in the Arctic and Antarctic at opposite ends of the Earth\u2019s magnetic field lines. By looking at data from both sets of magnetometers, researchers can determine whether disturbances in the Earth\u2019s magnetosphere (a region of near-Earth space dominated by the Earth\u2019s magnetic field) caused by the Sun impact the Northern hemisphere, the Southern hemisphere or both, and thus understand the sources of north-south hemisphere asymmetries. Some events that appear in the magnetometer data may be difficult for computers to identify, but easy for people to identify if the data is translated into sound. Researchers will develop a tool for listening to data in a virtual reality environment, so that data from various instruments can be played back, making it easier to explore datasets intuitively. This system will be prototyped using a mixed reality headset for use in both science and education and may be used to analyze data taken at the same time by sensors on the ground and on satellites.\r\n\r\nThis project will examine one particular type of disturbance \u2013 magnetosheath jets \u2013 and its relation to plasma waves by addressing the question \u201cDo magnetosheath jets routinely drive Pc5/Pc6 geomagnetic pulsations?\u201d via the analysis of magnetometer data from geomagnetically conjugate (based on the International Geomagnetic Reference Field, IGRF) Arctic and Antarctic magnetometers. This question will be approached first through traditional plotting and visual analysis, then by presenting datastreams as sound sources situated in a virtual audio environment developed in the Unity game engine and integrated with mixed reality presentation via the Microsoft Hololens platform. This approach will leverage human capabilities for spatial discrimination of sounds to identify geomagnetic pulsations (surface magnetic field variations related to plasma waves in outer space) related to magnetosheath jet events with potentially large north-south hemispheric asymmetries, spatially localized wave activity, and irregular waveforms. The resulting presentation modality will make use of existing repositories of magnetometer data and may potentially be extended to the presentation of synchronous datasets from multiple sensing networks.\r\n", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "MAGNETIC FIELD", "locations": null, "north": -60.0, "nsf_funding_programs": "Post Doc/Travel", "paleo_time": null, "persons": "Collins, Kristina", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "OPP-PRF: Conjugate Experiment to Explore Magnetospheric Phenomena Via Spatial Sonification and Mixed Reality", "uid": "p0010363", "west": -180.0}, {"awards": "1643669 Petrenko, Vasilii; 1643716 Buizert, Christo; 1643664 Severinghaus, Jeffrey", "bounds_geometry": "POLYGON((112 -66,112.2 -66,112.4 -66,112.6 -66,112.8 -66,113 -66,113.2 -66,113.4 -66,113.6 -66,113.8 -66,114 -66,114 -66.1,114 -66.2,114 -66.3,114 -66.4,114 -66.5,114 -66.6,114 -66.7,114 -66.8,114 -66.9,114 -67,113.8 -67,113.6 -67,113.4 -67,113.2 -67,113 -67,112.8 -67,112.6 -67,112.4 -67,112.2 -67,112 -67,112 -66.9,112 -66.8,112 -66.7,112 -66.6,112 -66.5,112 -66.4,112 -66.3,112 -66.2,112 -66.1,112 -66))", "dataset_titles": "Concentration and isotopic composition of atmospheric N2O over the last century; Law Dome DE08-OH firn air 15N, O2/N2, Ar/N2, 18O of O2; Law Dome DE08-OH site noble gases in ice: testing the 86Krexcess proxy", "datasets": [{"dataset_uid": "601597", "doi": "10.15784/601597", "keywords": "Antarctica; Cryosphere; ice cores; Law Dome; noble gases", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Law Dome DE08-OH site noble gases in ice: testing the 86Krexcess proxy", "url": "https://www.usap-dc.org/view/dataset/601597"}, {"dataset_uid": "601598", "doi": "10.15784/601598", "keywords": "Antarctica; Cryosphere; Firn; firn densification; Gravitational Settling; Inert Gases; Law Dome", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Law Dome DE08-OH firn air 15N, O2/N2, Ar/N2, 18O of O2", "url": "https://www.usap-dc.org/view/dataset/601598"}, {"dataset_uid": "601693", "doi": "10.15784/601693", "keywords": "Antarctic; Antarctica; Anthropogenic Emission; Atmosphere; Cryosphere; Cryosphere; Greenhouse Gas; Greenland; Ice Core Data; Nitrification and Denitrification Processes; Nitrous Oxide; Site-specific 15N isotopomer; Styx Glacier", "people": "Yoshida, Naohiro ; Langenfelds, Ray L ; Joong Kim, Seong; Etheridge, David; Buizert, Christo ; Toyoda, Sakae ; Ghosh, Sambit; Ahn, Jinho ", "repository": "USAP-DC", "science_program": null, "title": "Concentration and isotopic composition of atmospheric N2O over the last century", "url": "https://www.usap-dc.org/view/dataset/601693"}], "date_created": "Fri, 17 Jun 2022 00:00:00 GMT", "description": "Hydroxyl radicals are responsible for removal of most atmospheric trace gases, including pollutants and important greenhouse gases. They have been called the \"detergent of the atmosphere\". Changes in hydroxyl radical concentration in response to large changes in reactive trace gas emissions, which may happen in the future, are uncertain. This project aims to provide the first estimates of the variability of atmospheric hydroxyl radicals since about 1880 AD when anthropogenic emissions of reactive trace gases were minimal. This will improve understanding of their stability in response to large changes in emissions. The project will also investigate whether ice cores record past changes in Southern Hemisphere westerly winds. These winds are a key component of the global climate system, and have an important influence on ocean circulation and possibly on atmospheric carbon dioxide concentrations. The project team will include three early career scientists, a postdoctoral researcher, and graduate and undergraduate students, working in collaboration with senior scientists and Australian collaborators. \u003cbr/\u003e \u003cbr/\u003eFirn air and shallow ice to a depth of about 233 m will be sampled at the Law Dome high-accumulation coastal site in East Antarctica. Trapped air will be extracted from the ice cores on site immediately after drilling. Carbon-14 of carbon monoxide (14CO) will be analyzed in firn and ice-core air samples. Corrections will be made for the in situ cosmogenic 14CO component in the ice, allowing for the atmospheric 14CO history to be reconstructed. This 14CO history will be interpreted with the aid of a chemistry-transport model to place the first observational constraints on the variability of Southern Hemisphere hydroxyl radical concentration after about 1880 AD. An additional component of the project will analyze Krypton-86 in the firn-air and ice-core samples. These measurements will explore whether ice-core Krypton-86 acts as a proxy for barometric pressure variability, and whether this proxy can be used in Antarctic ice cores to infer past movement of the Southern Hemisphere westerly winds.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 114.0, "geometry": "POINT(113 -66.5)", "instruments": null, "is_usap_dc": true, "keywords": "LABORATORY; AMD; TRACE GASES/TRACE SPECIES; Law Dome; USAP-DC; ICE CORE AIR BUBBLES; AMD/US; USA/NSF", "locations": "Law Dome", "north": -66.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Petrenko, Vasilii; Murray, Lee T; Buizert, Christo; Petrenko, Vasilii; Murray, Lee T", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability", "uid": "p0010341", "west": 112.0}, {"awards": "1823135 Bromwich, David", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "YOPP-SH Analysis and Forecast Results. ", "datasets": [{"dataset_uid": "200287", "doi": "", "keywords": null, "people": null, "repository": "PI webpage", "science_program": null, "title": "YOPP-SH Analysis and Forecast Results. ", "url": "http://polarmet.osu.edu/YOPP-SH/"}], "date_created": "Mon, 14 Mar 2022 00:00:00 GMT", "description": "This research will take advantage of the greater number of Antarctic weather observations collected as part of the World Meteorological Organization\u0027s \"Year of Polar Prediction\". Researchers will use these additional observations to study new ways of incorporating data into existing weather prediction models. The primary goal of this research is to improve the accuracy of weather forecasts in Antarctica. This work is important, as the harsh weather in Antarctica greatly impacts scientific research and the support of this research. Being able to accurately predict changing weather increases the safety and efficiency of Antarctic field science and operations. \r\nThe proposed effort seeks to advance goals of the World Meteorological Organization\u0027s Polar Prediction Project and its Year of Polar Prediction-Southern Hemisphere (YOPP-SH) effort. Researchers will investigate and demonstrate the forecast impact of enhanced atmospheric observations obtained from YOPP-SH\u0027s Special Observing Period on polar numerical weather prediction. This will be done by using the Antarctic Mesoscale Prediction System (AMPS). AMPS is the primary numerical weather prediction capability for the United States Antarctic Program (USAP). Modeling experimentation will assess the impact of Special Observing Period data on Antarctic forecasts and will serve as a vehicle for testing new data assimilation approaches for AMPS. The primary goal for this work is improved forecasting and numerical weather prediction tools. Outcomes will include quantification of the value of enhanced southern hemisphere atmospheric observations. This work will also help improve AMPS and its ability to support the USAP.\r\nThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; WATER VAPOR PROFILES; USAP-DC; AMD; COMPUTERS; AMD/US; VERTICAL PROFILES; Antarctica; WIND PROFILES", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Bromwich, David; Powers, Jordan", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS", "repo": "PI webpage", "repositories": "Other", "science_programs": null, "south": -90.0, "title": "Application of Year of Polar Prediction- Southern Hemisphere (YOPP-SH) Observations for Improvement of Antarctic Numerical Weather Prediction", "uid": "p0010308", "west": -180.0}, {"awards": "1643394 Buizert, Christo", "bounds_geometry": "POLYGON((-180 -65,-144 -65,-108 -65,-72 -65,-36 -65,0 -65,36 -65,72 -65,108 -65,144 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.5,-180 -85,-180 -82.5,-180 -80,-180 -77.5,-180 -75,-180 -72.5,-180 -70,-180 -67.5,-180 -65))", "dataset_titles": "Antarctica 40,000 Year Temperature and Elevation Reconstructions; GISP2 and WAIS Divide Ice Cores 60,000 Year Surface Temperature Reconstructions; WAIS Divide 67-6ka nssS Data and EDML, EDC and TALDICE Volcanic Tie Points", "datasets": [{"dataset_uid": "200256", "doi": "", "keywords": null, "people": null, "repository": "National Centers for Environmental Information", "science_program": null, "title": "WAIS Divide 67-6ka nssS Data and EDML, EDC and TALDICE Volcanic Tie Points", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/24530"}, {"dataset_uid": "200255", "doi": "", "keywords": null, "people": null, "repository": "National Centers for Environmental Information", "science_program": null, "title": "Antarctica 40,000 Year Temperature and Elevation Reconstructions", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/32632"}, {"dataset_uid": "200257", "doi": "", "keywords": null, "people": null, "repository": "National Centers for Environmental Information", "science_program": null, "title": "GISP2 and WAIS Divide Ice Cores 60,000 Year Surface Temperature Reconstructions", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/34133"}], "date_created": "Wed, 10 Nov 2021 00:00:00 GMT", "description": "This award supports a project to use ice cores to study teleconnections between the northern hemisphere, tropics, and Antarctica during very abrupt climate events that occurred during the last ice age (from 70,000 to 11,000 years ago). The observations can be used to test scientific theories about the role of the westerly winds on atmospheric carbon dioxide. In a warming world, snow fall in Antarctica is expected to increase, which can reduce the Antarctic contribution to sea level rise, all else being equal. The study will investigate how snow fall changed in the past in response to changes in temperature and atmospheric circulation, which can help improve projections of future sea level rise. Antarctica is important for the future evolution of our planet in several ways; it has the largest inventory of land-based ice, equivalent to about 58 m of global sea level and currently contributes about 0.3 mm per year to global sea level rise, which is expected to increase in the future due to global warming. The oceans surrounding Antarctica help regulate the uptake of human-produced carbon dioxide. Shifts in the position and strength of the southern hemisphere westerly winds could change the amount of carbon dioxide that is absorbed by the ocean, which will influence the rate of global warming. The climate and winds near and over Antarctica are linked to the rest of our planet via so-called climatic teleconnections. This means that climate changes in remote places can influence the climate of Antarctica. Understanding how these climatic teleconnections work in both the ocean and atmosphere is an important goal of climate research. The funds will further contribute towards training of a postdoctoral researcher and an early-career researcher; outreach to public schools; and the communication of research findings to the general public via the media, local events, and a series of Wikipedia articles.\r\n\r\nThe project will help to fully characterize the timing and spatial pattern of millennial-scale Antarctic climate change during the deglaciation and Dansgaard-Oeschger (DO) cycles using multiple synchronized Antarctic ice cores. The phasing of Antarctic climate change relative to Greenland DO events can distinguish between fast atmospheric teleconnections on sub-decadal timescales, and slow oceanic ones on centennial time scales. Preliminary work suggests that the spatial pattern of Antarctic change can fingerprint specific changes to the atmospheric circulation; in particular, the proposed work will clarify past movements of the Southern Hemisphere westerly winds during the DO cycle, which have been hypothesized. The project will help resolve a discrepancy between two previous seminal studies on the precise timing of interhemispheric coupling between ice cores in both hemispheres. The study will further provide state-of-the-art, internally-consistent ice core chronologies for all US Antarctic ice cores, as well as stratigraphic ties that can be used to integrate them into a next-generation Antarctic-wide ice core chronological framework. Combined with ice-flow modeling, these chronologies will be used for a continent-wide study of the relationship between ice sheet accumulation and temperature during the last deglaciation.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "AMD/US; ISOTOPES; USA/NSF; AMD; Antarctica; ICE CORE RECORDS; USAP-DC; VOLCANIC DEPOSITS; MODELS", "locations": "Antarctica", "north": -65.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Buizert, Christo; Wettstein, Justin", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "National Centers for Environmental Information", "repositories": "Other", "science_programs": null, "south": -90.0, "title": "Collaborative Research: The Timing and Spatial Expression of the Bipolar Seesaw in Antarctica from Synchronized Ice Cores", "uid": "p0010279", "west": -180.0}, {"awards": "2046240 Khan, Alia", "bounds_geometry": "POLYGON((-75 -62,-73.5 -62,-72 -62,-70.5 -62,-69 -62,-67.5 -62,-66 -62,-64.5 -62,-63 -62,-61.5 -62,-60 -62,-60 -62.85,-60 -63.7,-60 -64.55,-60 -65.4,-60 -66.25,-60 -67.1,-60 -67.95,-60 -68.8,-60 -69.65,-60 -70.5,-61.5 -70.5,-63 -70.5,-64.5 -70.5,-66 -70.5,-67.5 -70.5,-69 -70.5,-70.5 -70.5,-72 -70.5,-73.5 -70.5,-75 -70.5,-75 -69.65,-75 -68.8,-75 -67.95,-75 -67.1,-75 -66.25,-75 -65.4,-75 -64.55,-75 -63.7,-75 -62.85,-75 -62))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 10 Sep 2021 00:00:00 GMT", "description": "Rapid and persistent climate warming in the Western Antarctic Peninsula is likely resulting in intensified snow-algae growth and an extended bloom season in coastal areas. Similarly, deposition of light absorbing particles (LAPs) onto Antarctica cryosphere surfaces, such as black carbon from intensifying Southern Hemisphere wildfire seasons, and dust from the expansion of ice-free regions in the Antarctic Peninsula, may be increasing. The presence of snow algae blooms and LAPs enhance the absorption of solar radiation by snow and ice surfaces. This positive feedback creates a measurable radiative forcing, which can have immediate local and long-term regional impacts on albedo, snow melt and downstream ecosystems. This project will investigate the spatial and temporal distribution of snow algae, black carbon and dust across the Western Antarctica Peninsula region, their response to climate warming, and their role in regional snow and ice melt. Data will be collected across multiple spatial scales from in situ field measurements and sample collection to imagery from ground-based photos and high resolution multi-spectral satellite sensors. Ground measurements will inform development and application of novel algorithms to map algal bloom extent through time using 0.5-3m spatial resolution multi-spectral satellite imagery. Results will be used to improve snow algae parameterization in a new version of the Snow Ice Aerosol Radiation model (SNICARv3) that includes bio-albedo feedbacks, eventually informing models of ice-free area expansion through incorporation of SNICARv3 in the Community Earth System Model. Citizen scientists will be mentored and engaged in the research through an active partnership with the International Association of Antarctic Tour Operators that frequently visits the region. The cruise ship association will facilitate sampling to develop a unique snow algae observing network to validate remote sensing algorithms that map snow algae with high-resolution multi-spectral satellite imagery from space. These time-series will inform instantaneous and interannual radiative forcing calculations to assess impacts of snow algae and LAPs on regional snow melt. Quantifying the spatio-temporal growing season of snow algae and impacts from black carbon and dust will increase our ability to model their impact on snow melt, regional climate warming and ice-free expansion in the Antarctic Peninsula region.", "east": -60.0, "geometry": "POINT(-67.5 -66.25)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Antarctic Peninsula; AMD/US; AMD; SNOW/ICE CHEMISTRY; USA/NSF; USAP-DC; SNOW", "locations": "Antarctic Peninsula", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Khan, Alia", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -70.5, "title": "CAREER: Coastal Antarctic Snow Algae and Light Absorbing Particles: Snowmelt, Climate and Ecosystem Impacts", "uid": "p0010263", "west": -75.0}, {"awards": "2114786 Warnock, Jonathan", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 09 Sep 2021 00:00:00 GMT", "description": "The potential for future sea level rise from melting and collapse of Antarctic ice sheets and glaciers is concerning. We can improve our understanding of how water is exchanged between Antarctic ice sheets and the ocean by studying how ice sheets behaved in past climates, especially conditions that were similar to or warmer than those at present. For this project, the research team will document Antarctica\u2019s response across an interval when Earth transitioned from the warm Pliocene into the Pleistocene ice ages by combining marine and land evidence for glacier variations from sites near the Antarctic Peninsula, complimented by detailed work on timescales and fossil evidence for environmental change. An important goal is to test whether Antarctica\u2019s glaciers changed at the same time as glaciers in the Northern Hemisphere as Earth\u0027s most recent Ice Age intensified, or alternatively responded to regional climate forcing in the Southern Hemisphere. Eleven investigators from seven US institutions, as well as Argentine collaborators, will study new sediment cores from the International Ocean Discovery Program, as well as legacy cores from that program and on-land outcrops on James Ross Island. The group embraces a vertically integrated research program that allows high school, undergraduate, graduate, post-docs and faculty to work together on the same projects. This structure leverages the benefits of near-peer mentoring and the development of a robust collaborative research network while allowing all participants to take ownership of different parts of the project. All members of the team are firmly committed to attracting researchers from under-represented groups and will do this through existing channels as well as via co-creating programming that centers the perspectives of diverse students in conversations about sea-level rise and climate change.\r\nThe proposed research seeks to understand phasing between Northern and Southern Hemisphere glacier and climate changes, as a means to understand drivers and teleconnections. The dynamics of past Antarctic glaciation can be studied using the unique isotope geochemical and mineralogic fingerprints from glacial sectors tied to a well-constrained time model for the stratigraphic successions. The proposed work would further refine the stratigraphic context through coupled biostratigraphic and magnetostratigraphic work. The magnitude of iceberg calving and paths of icebergs will be revealed using the flux, geochemical and mineralogic signatures, and 40Ar/39Ar and U-Pb geochronology of ice-rafted detritus. These provenance tracers will establish which sectors of Antarctica\u2019s ice sheets are more vulnerable to collapse, and the timing and pacing of these events will be revealed by their stratigraphic context. Additionally, the team will work with Argentine collaborators to connect the marine and terrestrial records by studying glacier records intercalated with volcanic flows on James Ross Island. These new constraints will be integrated with a state of the art ice-sheet model to link changes in ice dynamics with their underlying causes. Together, these tight stratigraphic constraints, geochemical signatures, and ice-sheet model simulations will provide a means to compare to the global records of climate change, understand their primary drivers, and elucidate the role of the Antarctic ice sheet in a major, global climatic shift from the Pliocene into the Pleistocene.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "MICROFOSSILS; USAP-DC; FIELD SURVEYS; AMD/US; Weddell Sea Embayment; USA/NSF; SEA ICE; PALEOCLIMATE RECONSTRUCTIONS; SEA SURFACE TEMPERATURE; AMD", "locations": "Weddell Sea Embayment", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Warnock, Jonathan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Linking Marine and Terrestrial Sedimentary Evidence for Plio-pleistocene Variability of Weddell Embayment and Antarctic Peninsula Glaciation", "uid": "p0010260", "west": null}, {"awards": "1954241 O\u0027\u0027Brien, Kristin", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 17 Aug 2021 00:00:00 GMT", "description": "The frequency and severity of hypoxic events are increasing in marine and freshwater environments worldwide with climate warming, threatening the health of aquatic ecosystems and the viability of fish populations. The Southern Ocean surrounding Antarctica has historically been a stable, icy-cold, and oxygen-rich environment, but is now warming at an unprecedented rate and faster than all other regions in the Southern hemisphere. Evolution at sub-zero temperatures has equipped Antarctic fishes with traits allowing them to thrive in frigid waters, but has diminished their resilience to warming. Presently little is known about the ability of Antarctic fishes to withstand hypoxic conditions that often accompany warming. This research will investigate the hypoxia tolerance of four species of Antarctic fishes, including two species of icefishes that lack the oxygen-carrying protein, hemoglobin, which may compromise their ability to oxygenate tissues under hypoxic conditions. The hypoxia tolerance of Antarctic fish species will be compared to that of a related fish species inhabiting coastal regions of South America. Physiological and biochemical responses to hypoxia will be evaluated and compared amongst the five species to bolster our predictions of the capacity of Antarctic fishes to cope with a changing environment. This research will provide training opportunities for undergraduate and graduate students, and a postdoctoral research fellow. A year-long seminar series hosted by the Aquarium of the Pacific will feature female scientists who work in Antarctica to inspire youth in the greater Los Angeles area to pursue careers in science.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; AMD; AMD/US; USA/NSF; Palmer Station; FIELD SURVEYS; FISH", "locations": "Palmer Station", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "O\u0027Brien, Kristin", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": null, "title": "ANT LIA: Hypoxia Tolerance in Notothenioid Fishes", "uid": "p0010246", "west": null}, {"awards": "1744861 Kim, Hyomin; 1744828 Xu, Zhonghua; 1745041 Lessard, Marc", "bounds_geometry": "POLYGON((6 -69,14.3 -69,22.6 -69,30.9 -69,39.2 -69,47.5 -69,55.8 -69,64.1 -69,72.4 -69,80.7 -69,89 -69,89 -70.6,89 -72.2,89 -73.8,89 -75.4,89 -77,89 -78.6,89 -80.2,89 -81.8,89 -83.4,89 -85,80.7 -85,72.4 -85,64.1 -85,55.8 -85,47.5 -85,39.2 -85,30.9 -85,22.6 -85,14.3 -85,6 -85,6 -83.4,6 -81.8,6 -80.2,6 -78.6,6 -77,6 -75.4,6 -73.8,6 -72.2,6 -70.6,6 -69))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 01 Jul 2021 00:00:00 GMT", "description": "This proposal is directed toward an investigation of the coupling phenomena between the solar wind and the Earth\u0027s magnetosphere and ionosphere, particularly on the day side of the Earth and observed simultaneously at high latitudes in both northern and southern hemispheres. Through past NSF support, several magnetometers have been deployed in Antarctica, Greenland, and Svalbard, while new collaborations have been developed with the Polar Research Institute of China (PRIC) to further increase coverage through data sharing. This project will expand the existing Virginia Tech-PRIC partnership to include New Jersey Institute of Technology, University of New Hampshire, and the Technical University of Denmark and (1) construct two new stations to be deployed by PRIC along a chain from Zhongshan station to Dome A to complete a conjugate area array, (2) integrate data from all stations into a common\r\nformat, and (3) address two focused science questions. Both instrument deployment and data processing efforts are motivated by a large number of solar wind-magnetosphere-ionosphere (SWMI) coupling science questions; this project will address two questions pertaining to Ultra Low Frequency (ULF) waves: (1) What is the global ULF response to Hot Flow Anomalies (HFA) and how is it affected by asymmetries in the SWMI system? (2) How do dawn-dusk and north-south asymmetries in the coupled SWMI system affect global ULF wave properties during periods with large, steady east-west Interplanetary Magnetic field (IMF By)? This proposal requires fieldwork in the Antarctic, but all fieldwork will be conducted by PRIC.\r\n", "east": 89.0, "geometry": "POINT(47.5 -77)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; Antarctica; AMD/US; USA/NSF; MAGNETIC FIELDS/MAGNETIC CURRENTS; FIELD SURVEYS; AURORAE; AMD", "locations": "Antarctica", "north": -69.0, "nsf_funding_programs": "Antarctic Astrophysics and Geospace Sciences; Antarctic Astrophysics and Geospace Sciences; Antarctic Astrophysics and Geospace Sciences", "paleo_time": null, "persons": "Xu, Zhonghua; Clauer, Calvin", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -85.0, "title": "Collaborative Proposal: A High-Latitude Conjugate Area Array Experiment to Investigate Solar Wind - Magnetosphere - Ionosphere Coupling", "uid": "p0010222", "west": 6.0}, {"awards": "1744965 Diao, Minghui; 1744946 Gettelman, Andrew", "bounds_geometry": "POINT(166.7 -77.8)", "dataset_titles": "AWARE_Campaign_Data; Diao, M. (2020). VCSEL 1 Hz Water Vapor Data Version 1.0 for NSF SOCRATES Campaign; Diao, M. (2020). VCSEL 25 Hz Water Vapor Data Version 1.0 for NSF SOCRATES Campaign", "datasets": [{"dataset_uid": "200224", "doi": "10.26023/KFSD-Y8DQ-YC0D", "keywords": null, "people": null, "repository": "UCAR/NCAR - Earth Observing Laboratory", "science_program": null, "title": "Diao, M. (2020). VCSEL 1 Hz Water Vapor Data Version 1.0 for NSF SOCRATES Campaign", "url": "https://data.eol.ucar.edu/dataset/552.051"}, {"dataset_uid": "200225", "doi": "10.26023/V925-2H41-SD0F", "keywords": null, "people": null, "repository": "UCAR/NCAR - Earth Observing Laboratory", "science_program": null, "title": "Diao, M. (2020). VCSEL 25 Hz Water Vapor Data Version 1.0 for NSF SOCRATES Campaign", "url": "https://data.eol.ucar.edu/dataset/290779"}, {"dataset_uid": "200223", "doi": "10.17632/x6n4r3yxb2.1", "keywords": null, "people": null, "repository": "data.mendeley.com", "science_program": null, "title": "AWARE_Campaign_Data", "url": "http://dx.doi.org/10.17632/x6n4r3yxb2.1"}], "date_created": "Mon, 28 Jun 2021 00:00:00 GMT", "description": "Ice supersaturation plays a key role in cloud formation and evolution, and it determines the partitioning among ice, liquid and vapor phases. Over the Southern Ocean and Antarctica, the transition between mixed-phase and ice clouds significantly impacts the radiative effects of clouds. Remote regions such as the Antarctica and Southern Ocean historically have been under-sampled by in-situ observations, especially by airborne observations. Even though more attention has been given to the cloud microphysical properties over these regions, the distribution and characteristics of ice supersaturation and its role in the current and future climate have not been fully investigated at the higher latitudes in the Southern Hemisphere. One of the main objectives of this study is to analyze observations from three recent major field campaigns sponsored by NSF and DOE, which provide intensive in-situ, airborne measurements over the Southern Ocean and ground-based observations at McMurdo station in Antarctica.\r\n\r\nThis project will analyze aircraft-based and ground-based observations over the Southern Ocean and Antarctica, and compare the observations with the Community Earth System Model Version 2 (CESM2) simulations. The focus will be on the observations of ice supersaturation and the relative humidity distribution in mixed-phase and ice clouds, as well as their relationship with cloud micro- and macrophysical properties. Observations will be compared to CESM2 simulations to elucidate model biases. Surface radiation and the precipitation budget at the McMurdo station will be quantified and compared against the CESM2 simulations to improve the fidelity of the representation of Antarctic climate (and climate prediction over Antarctica). Results from our research will be released to the community for improving the understanding of cloud radiative effects and the mass transport of water in the high southern latitudes. Comparisons between the simulations and observations will provide valuable information for improving the next generation CESM model. Two education/outreach projects will be carried out by PI Diao at San Jose State University (SJSU), including a unique undergraduate student research project with hands-on laboratory work on an airborne instrument, and an outreach program that uses social media to broadcast news on polar research to the public.", "east": 166.7, "geometry": "POINT(166.7 -77.8)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; USAP-DC; Chile; ATMOSPHERIC WATER VAPOR; ATMOSPHERIC TEMPERATURE; Antarctica; CLIMATE MODELS; Southern Ocean; AMD/US; USA/NSF; SNOW; AMD", "locations": "Antarctica; Southern Ocean; Chile", "north": -77.8, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Diao, Minghui; Gettelman, Andrew", "platforms": "OTHER \u003e MODELS \u003e CLIMATE MODELS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "UCAR/NCAR - Earth Observing Laboratory", "repositories": "Other", "science_programs": null, "south": -77.8, "title": "Collaborative Research: Ice Supersaturation over the Southern Ocean and Antarctica, and its Role in Climate", "uid": "p0010209", "west": 166.7}, {"awards": "2042495 Blackburn, Terrence; 2045611 Rasbury, Emma", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 18 Jun 2021 00:00:00 GMT", "description": "Efforts to improve sea level forecasting on a warming planet have focused on determining the temperature, sea level and extent of polar ice sheets during Earth\u2019s past warm periods. Large uncertainties, however, in reconstructions of past and future sea levels, result from the poorly constrained climate sensitivity of the Antarctic Ice sheet (AIS). This research project aims to develop the use of subglacial precipitates as an archive the Antarctic ice sheet (AIS) past response to climate change. The subglacial precipitates from East Antarctica form in water bodies beneath Antarctic ice and in doing so provide an entirely new and unique measure of how the AIS responds to climate change. In preliminary examination of these precipitates, we identified multiple samples consisting of cyclic opal and calcite that spans hundreds of thousands of years in duration. Our preliminary geochemical characterization of these samples indicates that the observed mineralogic changes result from a cyclic change in subglacial water compositions between isotopically and chemically distinct waters. Opal-forming waters are reduced (Ce* \u003c1 and high Fe/Mn) and exhibit elevated 234U/238U compositions similar to the saline groundwater brines found at the periphery of the AIS. Calcite-forming waters, are rather, oxidized and exhibit \u03b418O compositions consistent with derivation from the depleted polar plateau (\u003c -50 \u2030). 234U-230Th dates permit construction of a robust timeseries describing these mineralogic and compositional changes through time. Comparisons of these time series with other Antarctic climate records (e.g., ice core records) reveal that calcite forming events align with millennial scale changes in local temperature or \u201cAntarctic isotopic maximums\u201d, which represent Southern Hemisphere warm periods during low Atlantic Meridional overturning circulation. Ultimately, this project seeks to develop a comprehensive model as to how changes in the thermohaline cycle induce a glaciologic response which in turn induces a change in the composition of subglacial waters and the mineralogic phase recorded within the precipitate archive. ", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; FIELD INVESTIGATION; USAP-DC; East Antarctica; AMD; USA/NSF; AMD/US", "locations": "East Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Blackburn, Terrence; Tulaczyk, Slawek; Hain, Mathis; Rasbury, Troy", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Reconstructing East Antarctica\u2019s Past Response to Climate using Subglacial Precipitates", "uid": "p0010192", "west": -180.0}, {"awards": "1643551 Hansen, Samantha", "bounds_geometry": null, "dataset_titles": "Investigating Ultra-low Velocity Zones (ULVZs) using an Antarctic Dataset", "datasets": [{"dataset_uid": "601265", "doi": "10.15784/601265", "keywords": "Antarctica; Core-Mantle Boundary; Cryosphere; ScP; Southern Hemisphere; Ultra-low Velocity Zones", "people": "Rost, Sebastian; Hansen, Samantha; Carson, Sarah; Garnero, Edward; Yu, Shule", "repository": "USAP-DC", "science_program": null, "title": "Investigating Ultra-low Velocity Zones (ULVZs) using an Antarctic Dataset", "url": "https://www.usap-dc.org/view/dataset/601265"}], "date_created": "Fri, 09 Oct 2020 00:00:00 GMT", "description": "Non-Technical Project Description\u003cbr/\u003e\u003cbr/\u003eThis research will study Ultralow Velocity Zones (ULVZs), located in Earth\u0027s interior on top of the boundary between the Earth\u0027s solid mantle and its fluid outer core. The ULVZs are so named because seismic waves passing through the Earth slow down dramatically when they encounter these zones. While ULVZs are thought to be related to melting processes, there is growing controversy regarding their origin and the role they play in the thermal and chemical evolution of our planet. The ULVZs may include the largest magma chambers in Earth\u0027s interior. Currently, researchers have only searched 40% of Earth\u0027s core-mantle boundary for the ULVZs and this project would use existing seismic data to map an unexplored area under Antarctica and interpret the nature of the ULVZs. This project will support two graduate students and create opportunities for undergraduate involvement. Project results will be published in scientific journals, presented at science fairs, and communicated through the researchers\u0027 websites. The research team will also take part in the NSF-sponsored PolarTREC (Teachers and Researchers Exploring and Collaborating) program to communicate the science to students and the broader community. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eTechnical Project Description\u003cbr/\u003e\u003cbr/\u003eThe National Research Council has highlighted high-resolution imaging of core-mantle boundary (CMB) structure as a high-priority, emerging research opportunity in the Earth Sciences since anomalies along the CMB likely play a critical role in the thermal and chemical evolution of our planet. Of particular interest are ultralow velocity zones (ULVZs), thin laterally-varying boundary layers associated with dramatic seismic velocity decreases and increases in density that are seen just above the CMB. Many questions exist regarding the origin of ULVZs, but incomplete seismic sampling of the lowermost mantle has limited our ability to map global ULVZ structure in detail. Using recently collected data from the Transantarctic Mountains Northern Network (TAMNNET) in Antarctica, this project will use core-reflected seismic phases (ScP, PcP, and ScS) to investigate ULVZ presence/absence along previously unexplored sections of the CMB. The data sampling includes the southern boundary of the Pacific Large Low Shear Velocity Province (LLSVP), a dominant feature in global shear wave tomography models, and will allow the researchers to examine a possible connection between ULVZs and LLSVPs. The main objectives of the project are to: 1) use TAMNNET data to document ULVZ presence/absence in previously unexplored regions of the lowermost mantle with array-based approaches; 2) model the data with 1- and 2.5-D wave propagation tools to obtain ULVZ properties and to assess trade-offs among the models; 3) use high quality events to augment the densely-spaced TAMNNET data with that from the more geographically-distributed, open-access Antarctic stations to increase CMB coverage with single-station analyses; and 4) explore the implications of ULVZ solution models for origin, present-day dynamics, and evolution, including their connection to other deep mantle structures, like LLSVPs.\u003cbr/\u003e\u003cbr/\u003eThe project aims to provide new constraints on ULVZs, including their potential connection to LLSVPs, and thus relates to other seismic and geodynamic investigations focused on processes within the Earth?s interior. This project will promote a new research collaboration between The University of Alabama (UA) and Arizona State University (ASU), each of which brings specific strengths to the initiative.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; Antarctica; SEISMIC PROFILE; NOT APPLICABLE", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Hansen, Samantha", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Antarctic Seismic Investigations of ULVZ Structure", "uid": "p0010136", "west": null}, {"awards": "1341663 O\u0027Brien, Kristin; 1341602 Crockett, Elizabeth", "bounds_geometry": null, "dataset_titles": "Acclimation of cardiovascular function in Notothenia coriiceps; Adrenergic and adenosinergic regulation of the cardiovascular system in the Antarctic icefish Chaenocephalus aceratus; Cardiac metabolism in Antarctic fishes in response to an acute increase in temperature; Chaenocephalus aceratus HIF-1A mRNA, complete cds; Chionodraco rastrospinosus HIF-1A mRNA, partial cds; Effects of acute warming on cardiovascular performance of Antarctic fishes; Eleginops maclovinus HIF-1A mRNA, partial cds; Gymnodraco acuticeps HIF-1A mRNA, partial cds; Hypoxia response of hearts of Antarctic fishes; Maximum cardiac performance of Antarctic fishes that lack haemoglobin and myoglobin: exploring the effect of warming on nature\u2019s natural knockouts; Measurements of splenic contraction in Antarctic fishes; Mitochondrial membranes in cardiac muscle from Antarctic notothenioid fishes vary in phospholipid composition and membrane fluidity; Notothenia coriiceps HIF-1A mRNA, complete cds; Parachaenichthys charcoti HIF-1A mRNA, partial cds; Physical, chemical, and functional properties of neuronal membranes vary between species of Antarctic notothenioids differing in thermal tolerance; Thermal sensitivity of membrane fluidity and integrity in hearts of Antarctic fishes that vary in expression of hemoglobin and myoglobin", "datasets": [{"dataset_uid": "200184", "doi": "10.5061/dryad.83vc5", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Maximum cardiac performance of Antarctic fishes that lack haemoglobin and myoglobin: exploring the effect of warming on nature\u2019s natural knockouts", "url": "https://doi.org/10.5061/dryad.83vc5"}, {"dataset_uid": "200185", "doi": "10.5061/dryad.k90h35k", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Mitochondrial membranes in cardiac muscle from Antarctic notothenioid fishes vary in phospholipid composition and membrane fluidity", "url": "https://doi.org/10.5061/dryad.k90h35k"}, {"dataset_uid": "601414", "doi": "10.15784/601414", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere", "people": "O\u0027Brien, Kristin; Crockett, Elizabeth; Farnoud, Amir; Evans, Elizabeth", "repository": "USAP-DC", "science_program": null, "title": "Thermal sensitivity of membrane fluidity and integrity in hearts of Antarctic fishes that vary in expression of hemoglobin and myoglobin", "url": "https://www.usap-dc.org/view/dataset/601414"}, {"dataset_uid": "601405", "doi": "10.15784/601405", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere", "people": "O\u0027Brien, Kristin", "repository": "USAP-DC", "science_program": null, "title": "Cardiac metabolism in Antarctic fishes in response to an acute increase in temperature", "url": "https://www.usap-dc.org/view/dataset/601405"}, {"dataset_uid": "200191", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Gymnodraco acuticeps HIF-1A mRNA, partial cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/kx950832"}, {"dataset_uid": "200190", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Parachaenichthys charcoti HIF-1A mRNA, partial cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/KX950833"}, {"dataset_uid": "601407", "doi": "10.15784/601407", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere", "people": "O\u0027Brien, Kristin; Axelsson, Michael; Joyce, William", "repository": "USAP-DC", "science_program": null, "title": "Measurements of splenic contraction in Antarctic fishes", "url": "https://www.usap-dc.org/view/dataset/601407"}, {"dataset_uid": "200189", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Eleginops maclovinus HIF-1A mRNA, partial cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/KX950830"}, {"dataset_uid": "601408", "doi": "10.15784/601408", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere", "people": "Axelsson, Michael; Egginton, Stuart; Joyce, William; O\u0027Brien, Kristin; Crockett, Elizabeth; Farrell, Anthony", "repository": "USAP-DC", "science_program": null, "title": "Acclimation of cardiovascular function in Notothenia coriiceps", "url": "https://www.usap-dc.org/view/dataset/601408"}, {"dataset_uid": "601409", "doi": "10.15784/601409", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere", "people": "Axelsson, Michael; Joyce, Michael; O\u0027Brien, Kristin; Egginton, Stuart; Farrell, Anthony", "repository": "USAP-DC", "science_program": null, "title": "Adrenergic and adenosinergic regulation of the cardiovascular system in the Antarctic icefish Chaenocephalus aceratus", "url": "https://www.usap-dc.org/view/dataset/601409"}, {"dataset_uid": "200188", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Notothenia coriiceps HIF-1A mRNA, complete cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/KX950829"}, {"dataset_uid": "200187", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Chaenocephalus aceratus HIF-1A mRNA, complete cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/KX950828"}, {"dataset_uid": "601406", "doi": "10.15784/601406", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere", "people": "O\u0027Brien, Kristin", "repository": "USAP-DC", "science_program": null, "title": "Hypoxia response of hearts of Antarctic fishes", "url": "https://www.usap-dc.org/view/dataset/601406"}, {"dataset_uid": "601410", "doi": "10.15784/601410", "keywords": "Antarctica; Antarctic Peninsula; Biology; Cryosphere; Fish", "people": "Axelsson, Michael; Egginton, Stuart; Farrell, Anthony; Joyce, William; O\u0027Brien, Kristin; Crockett, Elizabeth", "repository": "USAP-DC", "science_program": null, "title": "Effects of acute warming on cardiovascular performance of Antarctic fishes", "url": "https://www.usap-dc.org/view/dataset/601410"}, {"dataset_uid": "200186", "doi": "10.5061/dryad.qm0b25h", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Physical, chemical, and functional properties of neuronal membranes vary between species of Antarctic notothenioids differing in thermal tolerance", "url": "https://doi.org/10.5061/dryad.qm0b25h"}, {"dataset_uid": "200192", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Chionodraco rastrospinosus HIF-1A mRNA, partial cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/kx950831"}], "date_created": "Wed, 26 Feb 2020 00:00:00 GMT", "description": "The ocean surrounding Antarctica is home to an extraordinary assemblage of fishes, dominated by a single group that are extremely well-suited to life in icy waters and which are of significant ecological importance there. Of great concern is the capacity of these fishes to withstand increases in temperature as the region of the Western Antarctic Peninsula warms at a rate faster than any other area in the Southern hemisphere. One particular group of Antarctic fishes, known as the icefishes, are particularly vulnerable to increases in temperature because unlike all other vertebrates on earth, icefishes are white-blooded due to their lack of the oxygen-binding protein hemoglobin. This greatly reduces their capacity to transport and deliver oxygen to tissues compared to red-blooded Antarctic fishes. Previous studies have shown that icefishes are indeed less tolerant to elevations in temperature but the underlying factors are completely unknown. Additionally, it is not understood if red- or white-blooded Antarctic fishes can adjust, or acclimate, to modest increases in temperature, similar to those changes in temperature the animals might experience as the earth warms. The investigators will determine if heart function and/or nervous system function limits thermal tolerance of Antarctic fishes, and will determine their capacity to acclimate to warmer temperatures. The project will further the NSF goal of training new generations of scientists by training graduate and undergraduate students. In addition, the project will collaborate with a high school biology teacher from a school which serves a largely minority student body. The students will learn about the marine environment, and will construct a camera to be used in the field to learn more about Antarctic fishes. Two students and the teacher will also attend a summer marine biology internship program.\u003cbr/\u003e\u003cbr/\u003eAntarctic fishes within the suborder Notothenioidei (called \"notothenioids\") are among the organisms on earth least able to deal with changes in temperature. The hemoglobinless icefish are even less able to withstand temperature changes than are red-blooded notothenioids. While this is well documented, the underlying physiological and biochemical mechanisms responsible are unknown. The investigators will test the hypotheses that cardiac work is significantly greater in icefishes compared to red-blooded species, and that as temperature increases, the greater cardiac work of icefishes, coupled with reduced blood oxygen-carrying capacity, results in cardiac failure at a lower temperature compared to red-blooded species. They also hypothesize that neuronal function limits thermal tolerance of red-blooded notothenioids. These hypotheses will be tested using a wide variety of experiments. For example, the investigators will measure heart rate concurrently with critical thermal maximum. They will also characterize metabolic and gene-expression responses to elevated temperature and determine if mitochondrial function contributes to thermal tolerance using a variety of techniques. To determine if neuronal function limits thermal tolerance they will quantify behavioral responses to warming of whole animals and to warming of only the brain area. They will also determine if acclimation to warmer temperatures impacts heart function and they will measure activities of a variety of enzymes from central metabolic pathways.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; AMD; AMD/US; FISH; USA/NSF; Antarctic Peninsula; LABORATORY; FIELD INVESTIGATION; USAP-DC", "locations": "Antarctica; Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Crockett, Elizabeth; O\u0027Brien, Kristin", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "Dryad", "repositories": "GenBank; Other; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes", "uid": "p0010084", "west": null}, {"awards": "1443585 Polito, Michael; 1443424 McMahon, Kelton; 1443386 Emslie, Steven; 1826712 McMahon, Kelton", "bounds_geometry": "POLYGON((-180 -60,-166 -60,-152 -60,-138 -60,-124 -60,-110 -60,-96 -60,-82 -60,-68 -60,-54 -60,-40 -60,-40 -61.8,-40 -63.6,-40 -65.4,-40 -67.2,-40 -69,-40 -70.8,-40 -72.6,-40 -74.4,-40 -76.2,-40 -78,-54 -78,-68 -78,-82 -78,-96 -78,-110 -78,-124 -78,-138 -78,-152 -78,-166 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -76.2,160 -74.4,160 -72.6,160 -70.8,160 -69,160 -67.2,160 -65.4,160 -63.6,160 -61.8,160 -60,162 -60,164 -60,166 -60,168 -60,170 -60,172 -60,174 -60,176 -60,178 -60,-180 -60))", "dataset_titles": "Amino acid nitrogen isotope values of penguins from the Antarctic Peninsula region 1930s to 2010s; Ancient Adelie penguin colony revealed by snowmelt at Cape Irizar, Ross Sea, Antarctica; Carbon and nitrogen stable isotope values of Antarctic Krill from the South Shetland Islands and the northern Antarctic Peninsula 2007 and 2009; Radiocarbon dates from pygoscelid penguin tissues excavated at Stranger Point, King George Island, Antarctic Peninsula; Radiocarbon dating and stable isotope values of penguin and seal tissues recovered from ornithogenic soils on Platter Island, Danger Islands Archipelago, Antarctic Peninsula in December 2015.; Radioisotope dates and carbon (\u03b413C) and nitrogen (\u03b415N) stable isotope values from modern and mummified Ad\u00e9lie Penguin chick carcasses and tissue from the Ross Sea, Antarctica; Radiometric dating, geochemical proxies, and predator biological remains obtained from aquatic sediment cores on South Georgia Island.; Receding ice drove parallel expansions in Southern Ocean penguin; SNP data from \"Receding ice drove parallel expansions in Southern Ocean penguins\".; Stable isotope analysis of multiple tissues from chick carcasses of three pygoscelid penguins in Antarctica; The rise and fall of an ancient Adelie penguin \u0027supercolony\u0027 at Cape Adare, Antarctica", "datasets": [{"dataset_uid": "601382", "doi": "10.15784/601382", "keywords": "25 de Mayo/King George Island; Antarctica; Biology; Cryosphere; Delta 13C; Delta 15N; Dietary Shifts; Opportunistic Sampling; Penguins; Pygoscelis Penguins; Stranger Point", "people": "Emslie, Steven; Ciriani, Yanina", "repository": "USAP-DC", "science_program": null, "title": "Stable isotope analysis of multiple tissues from chick carcasses of three pygoscelid penguins in Antarctica", "url": "https://www.usap-dc.org/view/dataset/601382"}, {"dataset_uid": "601327", "doi": "10.15784/601327", "keywords": "Adelie Penguin; Antarctica; Biology; Biosphere; Cape Adare; Cryosphere; East Antarctica; Population Movement; Pygoscelis Adeliae; Radiocarbon; Ross Sea; Sea Level Rise; Stable Isotopes", "people": "McKenzie, Ashley; Patterson, William; Emslie, Steven", "repository": "USAP-DC", "science_program": null, "title": "The rise and fall of an ancient Adelie penguin \u0027supercolony\u0027 at Cape Adare, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601327"}, {"dataset_uid": "200180", "doi": "", "keywords": null, "people": null, "repository": "NCBI Bioproject", "science_program": null, "title": "Receding ice drove parallel expansions in Southern Ocean penguin", "url": "https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA589336"}, {"dataset_uid": "601232", "doi": "10.15784/601232", "keywords": "Amino Acids; Antarctica; Antarctic Peninsula; Biology; Biosphere; Cryosphere; isotope data; Nitrogen Isotopes; Oceans; Penguins; Southern Ocean; Stable Isotope Analysis", "people": "McMahon, Kelton; Polito, Michael", "repository": "USAP-DC", "science_program": null, "title": "Amino acid nitrogen isotope values of penguins from the Antarctic Peninsula region 1930s to 2010s", "url": "https://www.usap-dc.org/view/dataset/601232"}, {"dataset_uid": "200181", "doi": "10.6084/m9.figshare.c.4475300.v1", "keywords": null, "people": null, "repository": "Figshare", "science_program": null, "title": "SNP data from \"Receding ice drove parallel expansions in Southern Ocean penguins\".", "url": "https://doi.org/10.6084/m9.figshare.c.4475300.v1"}, {"dataset_uid": "601212", "doi": "10.15784/601212", "keywords": "Abandoned Colonies; Antarctica; Antarctic Peninsula; Cryosphere; Geochronology; Glaciers/Ice Sheet; Glaciology; Holocene; Holocene Beach Deposit; Penguin; Radiocarbon; Radiocarbon Dates; Snow/Ice; Stranger Point", "people": "Emslie, Steven", "repository": "USAP-DC", "science_program": null, "title": "Radiocarbon dates from pygoscelid penguin tissues excavated at Stranger Point, King George Island, Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601212"}, {"dataset_uid": "601364", "doi": "10.15784/601364", "keywords": "Antarctica; Antarctic Peninsula; Arctocephalus gazella; Carbon; Cryosphere; Holocene; Nitrogen; Paleoecology; Penguin; Pygoscelis spp.; Stable Isotope Analysis; Weddell Sea", "people": "Polito, Michael; Herman, Rachael; Kalvakaalva, Rohit; Clucas, Gemma", "repository": "USAP-DC", "science_program": null, "title": "Radiocarbon dating and stable isotope values of penguin and seal tissues recovered from ornithogenic soils on Platter Island, Danger Islands Archipelago, Antarctic Peninsula in December 2015.", "url": "https://www.usap-dc.org/view/dataset/601364"}, {"dataset_uid": "601509", "doi": "10.15784/601509", "keywords": "Antarctica; Antarctic Fur Seal; Cryosphere; Elemental Concentrations; King Penguin; Population Dynamics; South Atlantic Ocean; South Georgia Island; Stable Isotope Analysis; Sub-Antarctic", "people": "Kristan, Allyson; Maiti, Kanchan; McMahon, Kelton; Polito, Michael", "repository": "USAP-DC", "science_program": null, "title": "Radiometric dating, geochemical proxies, and predator biological remains obtained from aquatic sediment cores on South Georgia Island.", "url": "https://www.usap-dc.org/view/dataset/601509"}, {"dataset_uid": "601263", "doi": "10.15784/601263", "keywords": "Abandoned Colonies; Antarctica; Cryosphere; Holocene; Penguin; Ross Sea; Stable Isotope Analysis", "people": "Kristan, Allyson; Emslie, Steven; Patterson, William", "repository": "USAP-DC", "science_program": null, "title": "Radioisotope dates and carbon (\u03b413C) and nitrogen (\u03b415N) stable isotope values from modern and mummified Ad\u00e9lie Penguin chick carcasses and tissue from the Ross Sea, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601263"}, {"dataset_uid": "601374", "doi": "10.15784/601374", "keywords": "Adelie Penguin; Antarctica; Cape Irizar; Cryosphere; Drygalski Ice Tongue; Ross Sea; Stable Isotopes", "people": "Emslie, Steven", "repository": "USAP-DC", "science_program": null, "title": "Ancient Adelie penguin colony revealed by snowmelt at Cape Irizar, Ross Sea, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601374"}, {"dataset_uid": "601210", "doi": "10.15784/601210", "keywords": "Antarctica; Antarctic Krill; Antarctic Peninsula; Biology; Biosphere; Carbon Isotopes; Cryosphere; isotope data; Krill; Nitrogen Isotopes; Oceans; Southern Ocean; Stable Isotope Analysis", "people": "Polito, Michael", "repository": "USAP-DC", "science_program": null, "title": "Carbon and nitrogen stable isotope values of Antarctic Krill from the South Shetland Islands and the northern Antarctic Peninsula 2007 and 2009", "url": "https://www.usap-dc.org/view/dataset/601210"}], "date_created": "Thu, 08 Aug 2019 00:00:00 GMT", "description": "The Antarctic marine ecosystem is highly productive and supports a diverse range of ecologically and commercially important species. A key species in this ecosystem is Antarctic krill, which in addition to being commercially harvested, is the principle prey of a wide range of marine organisms including penguins, seals and whales. The aim of this study is to use penguins and other krill predators as sensitive indicators of past changes in the Antarctic marine food web resulting from climate variability and the historic harvesting of seals and whales by humans. Specifically this study will recover and analyze modern (\u003c20 year old), historic (20-200 year old) and ancient (200-10,000 year old) penguin and other krill predator tissues to track their past diets and population movements relative to shifts in climate and the availability of Antarctic krill. Understanding how krill predators were affected by these factors in the past will allow us to better understand how these predators, the krill they depend on, and the Antarctic marine ecosystem as a whole will respond to current challenges such as global climate change and an expanding commercial fishery for Antarctic krill. The project will further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This project will support the cross-institutional training of undergraduate and graduate students in advanced analytical techniques in the fields of ecology and biogeochemistry. In addition, this project includes educational outreach aimed encouraging participation in science careers by engaging K-12 students in scientific issues related to Antarctica, penguins, marine ecology, biogeochemistry, and global climate change.\u003cbr/\u003e\u003cbr/\u003eThis research will help place recent ecological changes in the Southern Ocean into a larger historical context by examining decadal and millennial-scale shifts in the diets and population movements of Antarctic krill predators (penguins, seals, and squid) in concert with climate variability and commercial harvesting. This will be achieved by coupling advanced stable and radio isotope techniques, particularly compound-specific stable isotope analysis, with unprecedented access to modern, historical, and well-preserved paleo-archives of Antarctic predator tissues dating throughout the Holocene. This approach will allow the project to empirically test if observed shifts in Antarctic predator bulk tissue stable isotope values over the past millennia were caused by climate-driven shifts at the base of the food web in addition to, or rather than, shifts in predator diets due to a competitive release following the historic harvesting of krill eating whale and seals. In addition, this project will track the large-scale abandonment and reoccupation of penguin colonies around Antarctica in response to changes in climate and sea ice conditions over the past several millennia. These integrated field studies and laboratory analyses will provide new insights into the underlying mechanisms that influenced past shifts in the diets and population movements of charismatic krill predators such as penguins. This will allow for improved projections of the ecosystem consequences of future climate change and anthropogenic harvesting scenarios in the Antarctica that are likely to affect the availability of Antarctic krill.", "east": -40.0, "geometry": "POINT(-120 -69)", "instruments": null, "is_usap_dc": true, "keywords": "ANIMAL ECOLOGY AND BEHAVIOR; South Shetland Islands; Penguins; Antarctica; PENGUINS; Southern Hemisphere; FIELD INVESTIGATION; AMD/US; Stable Isotopes; Polar; Krill; Ross Sea; USA/NSF; Weddell Sea; AMD; MACROFOSSILS; MARINE ECOSYSTEMS; USAP-DC", "locations": "Southern Hemisphere; Ross Sea; South Shetland Islands; Weddell Sea; Polar; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Polito, Michael; Emslie, Steven; Kelton, McMahon; Patterson, William; McCarthy, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "Other; USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators", "uid": "p0010047", "west": 160.0}, {"awards": "1543229 Severinghaus, Jeffrey; 1543267 Brook, Edward", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Multi-site ice core Krypton stable isotope ratios; Noble Gas Data from recent ice in Antarctica for 86Kr problem", "datasets": [{"dataset_uid": "601394", "doi": "10.15784/601394", "keywords": "Antarctica; Bruce Plateau; Cryosphere; Glaciers/Ice Sheet; Glaciology; Greenland Ice Cap; Ice Core; Ice Core Chemistry; Ice Core Records; James Ross Island; Krypton; Law Dome; Low Dome Ice Core; Roosevelt Island; Siple Dome; Siple Dome Ice Core; South Pole; SPICECORE; WAIS divide; WAIS Divide Ice Core", "people": "Brook, Edward J.; Buizert, Christo; Shackleton, Sarah; Severinghaus, Jeffrey P.; Mosley-Thompson, Ellen; Mulvaney, Robert; Pyne, Rebecca L.; Baggenstos, Daniel; Bereiter, Bernhard; Etheridge, David; Bertler, Nancy", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Multi-site ice core Krypton stable isotope ratios", "url": "https://www.usap-dc.org/view/dataset/601394"}, {"dataset_uid": "601394", "doi": "10.15784/601394", "keywords": "Antarctica; Bruce Plateau; Cryosphere; Glaciers/Ice Sheet; Glaciology; Greenland Ice Cap; Ice Core; Ice Core Chemistry; Ice Core Records; James Ross Island; Krypton; Law Dome; Low Dome Ice Core; Roosevelt Island; Siple Dome; Siple Dome Ice Core; South Pole; SPICECORE; WAIS divide; WAIS Divide Ice Core", "people": "Brook, Edward J.; Bertler, Nancy; Mosley-Thompson, Ellen; Baggenstos, Daniel; Shackleton, Sarah; Buizert, Christo; Mulvaney, Robert; Etheridge, David; Severinghaus, Jeffrey P.; Pyne, Rebecca L.; Bereiter, Bernhard", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Multi-site ice core Krypton stable isotope ratios", "url": "https://www.usap-dc.org/view/dataset/601394"}, {"dataset_uid": "601195", "doi": "10.15784/601195", "keywords": "Antarctica; Cryosphere; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Krypton; Noble Gas; Xenon", "people": "Severinghaus, Jeffrey P.; Shackleton, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Noble Gas Data from recent ice in Antarctica for 86Kr problem", "url": "https://www.usap-dc.org/view/dataset/601195"}, {"dataset_uid": "601394", "doi": "10.15784/601394", "keywords": "Antarctica; Bruce Plateau; Cryosphere; Glaciers/Ice Sheet; Glaciology; Greenland Ice Cap; Ice Core; Ice Core Chemistry; Ice Core Records; James Ross Island; Krypton; Law Dome; Low Dome Ice Core; Roosevelt Island; Siple Dome; Siple Dome Ice Core; South Pole; SPICECORE; WAIS divide; WAIS Divide Ice Core", "people": "Baggenstos, Daniel; Severinghaus, Jeffrey P.; Mosley-Thompson, Ellen; Bereiter, Bernhard; Shackleton, Sarah; Bertler, Nancy; Etheridge, David; Brook, Edward J.; Mulvaney, Robert; Buizert, Christo; Pyne, Rebecca L.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Multi-site ice core Krypton stable isotope ratios", "url": "https://www.usap-dc.org/view/dataset/601394"}], "date_created": "Wed, 10 Jul 2019 00:00:00 GMT", "description": "Overview: The funded work investigated whether ice core 86Kr acts as a proxy for barometric pressure variability, and whether this proxy can be used in Antarctic ice cores to infer past movement of the Southern Hemisphere (SH) westerly winds. Pressure variations drive macroscopic air movement in the firn column, which reduces the gravitational isotopic enrichment of slow-diffusing gases (such as Kr). The 86Kr deviation from gravitational equilibrium (denoted D86Kr) thus reflects the magnitude of pressure variations (among other things). Atmospheric reanalysis data suggest that pressure variability over Antarctica is linked to the Southern Annular Mode (SAM) index and the position of the SH westerly winds. Preliminary data from the WAIS Divide ice core show a large excursion in D86Kr during the last deglaciation (20-9 ka before present). In this project the investigators (1) performed high-precision 86Kr analysis on ice core and firn air samples to establish whether D86Kr is linked to pressure variability; (2) Refined the deglacial WAIS Divide record of Kr isotopes; (3) Investigated the role of pressure variability in firn air transport using firn air models with firn microtomography data and Lattice- Boltzmann modeling; and (4) Investigated how barometric pressure variability in Antarctica is linked to the SAM index and the position/strength of the SH westerlies in past and present climates using GCM and reanalysis data. A key finding was that D86Kr in recent ice samples (e.g. last 50 years) from a broad spatial array of sites in Antarctica and Greenland showed a significant correlation with directly measured barometric pressure variability at the ice core site. This strongly supports the hypothesis that 86Kr can be used as a paleo-proxy for storminess.\r\nIntellectual Merit: The SH westerlies are a key component of the global climate system; they are an important control on the global oceanic overturning circulation and possibly on atmospheric CO2 concentrations. Poleward movement of the SH westerlies during the last deglaciation has been hypothesized, yet evidence from proxy and modeling studies remains inconclusive. The funded work could provide valuable new constraints on deglacial movement of the SH westerlies. This record can be compared to high-resolution CO2 data from the same core, allowing us to test hypotheses that link CO2 to the SH westerlies. Climate proxies are at the heart of paleoclimate research. The funded work has apparently led to the discovery of a completely new proxy, opening up exciting new research possibilities and increasing the scientific value of existing ice cores. Once validated, the 86Kr proxy could be applied to other time periods as well, providing a long-term perspective on the movement of the SH westerlies. The funded work has furthermore provided valuable new insights into firn air transport. \r\n\r\nBroader impact: The Southern Ocean is presently an important sink of atmospheric CO2, thereby reducing the warming associated with anthropogenic CO2 emissions. Stratospheric ozone depletion and greenhouse warming have displaced the SH westerlies poleward, with potential consequences for the future magnitude of this oceanic carbon uptake. The funded work may provide a paleo-perspective on past movement of the SH westerlies and its link to atmospheric CO2, which could guide projections of future oceanic CO2 uptake, with strong societal benefits. The awarded funds supported and trained an early-career postdoctoral scholar at OSU, and fostered (international) collaboration. Data from the study will be available to the scientific community and the broad public through recognized data centers. During this project the PI and senior personnel have continued their commitment to public outreach through media interviews and speaking to schools and the public about their work. The PI provides services to the community by chairing the IPICS (International Partnership in Ice Core Sciences) working group and organizing annual PIRE (Partnerships in International Research and Education) workshops.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Noble Gas; Ice Core; AMD/US; USA/NSF; FIRN; ICE CORE RECORDS; Antarctica; USAP-DC; AMD; Greenland; LABORATORY; Krypton; ATMOSPHERIC PRESSURE; Xenon", "locations": "Greenland; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.; Brook, Edward J.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative research: Kr-86 as a proxy for barometric pressure variability and movement of the SH westerlies during the last\r\ndeglaciation", "uid": "p0010037", "west": -180.0}, {"awards": "1341311 Timmermann, Axel", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "784 ka transient Antarctic ice-sheet model simulation data", "datasets": [{"dataset_uid": "000247", "doi": "", "keywords": null, "people": null, "repository": "IBS Center for Climate Physics ICCP", "science_program": null, "title": "784 ka transient Antarctic ice-sheet model simulation data", "url": "http://climatedata.ibs.re.kr/grav/data/psu-love/antarctic-ice-sheet"}], "date_created": "Tue, 26 Jun 2018 00:00:00 GMT", "description": "This award supports a project to study the physical processes that synchronize glacial-scale variability between the Northern Hemisphere ice sheets and the Antarctic ice-sheet. Using a coupled numerical ice-sheet earth-system model, the research team will explore the cryospheric responses to past changes in greenhouse gas concentrations and variations in earth\u0027s orbit and tilt. First capturing the sensitivity of each individual ice-sheet to these forcings and then determining their joint variability induced by changes in sea level, ocean temperatures and atmospheric circulation, the researchers will quantify the relative roles of local versus remote effects on long-term ice volume variability. The numerical experiments will provide deeper physical insights into the underlying dynamics of past Antarctic ice-volume changes and their contribution to global sea level. Output from the transient earth system model simulations will be directly compared with ice-core data from previous and ongoing drilling efforts, such as West Antarctic Ice Sheet (WAIS) Divide. Specific questions that will be addressed include: 1) Did the high-latitude Southern Hemispheric atmospheric and oceanic climate, relevant to Antarctic ice sheet forcing, respond to local insolation variations, CO2, Northern Hemispheric changes, or a combination thereof?; 2) How did WAIS and East Antarctic Ice Sheet (EAIS) vary through the Last Glacial Termination and into the Holocene (21 ka- present)?; 3) Did the WAIS (or EAIS) contribute to rapid sea-level fluctuations during this period, such as Meltwater Pulse 1A? 4) Did WAIS collapse fully at Stage 5e (~ 125 ka), and what was its timing relative to the maximum Greenland retreat?; and 5) How did the synchronized behavior of Northern Hemisphere and Southern Hemisphere ice-sheet variations affect the strength of North Atlantic Deep Water and Antarctic Bottom Water formation and the respective overturning cells? The transient earth-system model simulations conducted as part of this project will be closely compared with paleo-climate reconstructions from ice cores, sediment cores and terrestrial data. This will generate an integrated understanding of the hemispheric contributions of deglacial climate change, the origin of meltwater pulses, and potential thresholds in the coupled ice-sheet climate system in response to different types of forcings. A well-informed long-term societal response to sea level rise requires a detailed understanding of ice-sheet sensitivities to external forcing. The proposed research will strongly contribute to this task through numerical modeling and paleo-data analysis. The research team will make the resulting model simulations available on the web-based data server at the Asia Pacific Data Research Center (APDRC) to enable further analysis by the scientific community. As part of this project a female graduate student and a postdoctoral researcher will receive training in earth-system and ice-sheet modeling and paleo-climate dynamics. This award has no field work in Antarctica.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Timmermann, Axel", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "IBS Center for Climate Physics ICCP", "repositories": "Other", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Bipolar Coupling of late Quaternary Ice Sheet Variability", "uid": "p0000379", "west": -180.0}, {"awards": "1341729 Kirschvink, Joseph", "bounds_geometry": "POLYGON((-58.9 -63.5,-58.63 -63.5,-58.36 -63.5,-58.09 -63.5,-57.82 -63.5,-57.55 -63.5,-57.28 -63.5,-57.01 -63.5,-56.74 -63.5,-56.47 -63.5,-56.2 -63.5,-56.2 -63.62,-56.2 -63.74,-56.2 -63.86,-56.2 -63.98,-56.2 -64.1,-56.2 -64.22,-56.2 -64.34,-56.2 -64.46,-56.2 -64.58,-56.2 -64.7,-56.47 -64.7,-56.74 -64.7,-57.01 -64.7,-57.28 -64.7,-57.55 -64.7,-57.82 -64.7,-58.09 -64.7,-58.36 -64.7,-58.63 -64.7,-58.9 -64.7,-58.9 -64.58,-58.9 -64.46,-58.9 -64.34,-58.9 -64.22,-58.9 -64.1,-58.9 -63.98,-58.9 -63.86,-58.9 -63.74,-58.9 -63.62,-58.9 -63.5))", "dataset_titles": "2016 Paleomagnetic samples from the James Ross Basin, Antarctica; Expedition data of NBP1601", "datasets": [{"dataset_uid": "601094", "doi": "10.15784/601094", "keywords": "Antarctica; Cryosphere; Geochronology; Geology/Geophysics - Other; Glaciology; James Ross Basin; Marine Geoscience; Marine Sediments", "people": "Kirschvink, Joseph; Skinner, Steven", "repository": "USAP-DC", "science_program": null, "title": "2016 Paleomagnetic samples from the James Ross Basin, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601094"}, {"dataset_uid": "002665", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1601", "url": "https://www.rvdata.us/search/cruise/NBP1601"}], "date_created": "Fri, 27 Apr 2018 00:00:00 GMT", "description": "Non-Technical Summary:\u003cbr/\u003e About 80 million years ago, the tip of the Antarctic Peninsula in the vicinity of what is now James Ross Island experienced an episode of rapid subsidence, creating a broad depositional basin that collected sediments eroding from the high mountains to the West. This depression accumulated a thick sequence of fossil-rich, organic-rich sediments of the sort that are known to preserve hydrocarbons, and for which Argentina, Chile, and the United Kingdom have overlapping territorial claims. The rocks preserve one of the highest resolution records of the biological and climatic events that led to the eventual death of the dinosaurs at the Cretaceous-Tertiary boundary (about 66 million years ago). A previous collaboration between scientists from the Instituto Ant\u00c3\u00a1rtico Argentino (IAA) and NSF-supported teams from Caltech and the University of Washington were able to show that this mass extinction event started nearly 50,000 years before the sudden impact of an asteroid. The asteroid obviously hit the biosphere hard, but something else knocked it off balance well before the asteroid hit. \u003cbr/\u003e A critical component of the previous work was the use of reversals in the polarity of the Earth?s magnetic field as a dating tool ? magnetostratigraphy. This allowed the teams to correlate the pattern of magnetic reversals from Antarctica with elsewhere on the planet. This includes data from a major volcanic eruption (a flood basalt province) that covered much of India 65 million years ago. The magnetic patterns indicate that the Antarctic extinction started with the first pulse of this massive eruption, which was also coincident with a rapid spike in polar temperature. The Argentinian and US collaborative teams will extend this magnetic polarity record back another ~ 20 million years in time, and expand it laterally to provide magnetic reversal time lines across the depositional basin. They hope to recover the end of the Cretaceous Long Normal interval, which is one of the most distinctive events in the history of Earth?s magnetic field. The new data should refine depositional models of the basin, allow better estimates of potential hydrocarbon reserves, and allow biotic events in the Southern hemisphere to be compared more precisely with those elsewhere on Earth. Other potential benefits of this work include exposing several US students and postdoctoral fellows to field based research in Antarctica, expanding the international aspects of this collaborative work via joint IAA/US field deployments, and follow-up laboratory investigations and personnel exchange of the Junior scientists.\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eTechnical Description of Project \u003cbr/\u003eThe proposed research will extend the stratigraphic record in the late Cretaceous and early Tertiary sediments (~ 83 to 65 Ma before present) of the James Ross Basin, Antarctica, using paleo-magnetic methods. Recent efforts provided new methods to analyze these rocks, yielding their primary magnetization, and producing both magnetic polarity patterns and paleomagnetic pole positions. This provided the first reliable age constraints for the younger sediments on Seymour Island, and quantified the sedimentation rate in this part of the basin. The new data will allow resolution of the stable, remnant magnetization of the sediments from the high deposition rate James Ross basin (Tobin et al., 2012), yielding precise chronology/stratigraphy. This approach will be extended to the re-maining portions of this sedimentary basin, and will allow quantitative estimates for tectonic and sedimentary processes between Cretaceous and Early Tertiary time. The proposed field work will refine the position of several geomagnetic reversals that occurred be-tween the end of the Cretaceous long normal period (Chron 34N, ~ 83 Ma), and the lower portion of Chron 31R (~ 71 Ma). Brandy Bay provides the best locality for calibrating the stratigraphic position of the top of the Cretaceous Long Normal Chron, C34N. Although the top of the Cretaceous long normal Chron is one of the most important correlation horizons in the entire geological timescale, it is not properly correlated to the southern hemisphere biostratigraphy. Locating this event, as well as the other reversals, will be a major addition to understanding of the geological history of the Antarctic Peninsula. These data will also help refine tectonic models for the evolution of the Southern continents, which will be of use across the board for workers in Cretaceous stratigraphy (including those involved in oil exploration).\u003cbr/\u003eThis research is a collaborative effort with Dr. Edward Olivero of the Centro Austral de Investigaciones Cientificas (CADIC/CONICET) and Prof. Augusto Rapalini of the University of Buenos Aires. The collaboration will include collection of samples on their future field excursions to important targets on and around James Ross Island, supported by the Argentinian Antarctic Program (IAA). Argentinian scientists and students will also be involved in the US Antarctic program deployments, proposed here for the R/V Laurence Gould, and will continue the pattern of joint international publication of the results.", "east": -56.2, "geometry": "POINT(-57.55 -64.1)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; R/V NBP; USAP-DC", "locations": null, "north": -63.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kirschvink, Joseph; Christensen, John", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "Other; USAP-DC", "science_programs": null, "south": -64.7, "title": "Paleomagnetism and Magnetostratigraphy of the James Ross Basin, Antarctica", "uid": "p0000276", "west": -58.9}, {"awards": "1142166 McConnell, Joseph", "bounds_geometry": "POINT(-112.1115 -79.481)", "dataset_titles": "WAIS Divide Ice-Core Aerosol Records from 1300 to 3404 m", "datasets": [{"dataset_uid": "601008", "doi": "10.15784/601008", "keywords": "Aerosol; Antarctica; Cryosphere; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Aerosol Records from 1300 to 3404 m", "url": "https://www.usap-dc.org/view/dataset/601008"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "McConnell/1142166\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to use unprecedented aerosol and continuous gas (methane, carbon monoxide) measurements of the deepest section of the West Antarctic Ice Sheet (WAIS) Divide ice core to investigate rapid climate changes in Antarctica during the ~60,000 year long Marine Isotope Stage 3 period of the late Pleistocene. These analyses, combined with others, will take advantage of the high snow accumulation of the WAIS Divide ice core to yield the highest time resolution glaciochemical and gas record of any deep Antarctic ice core for this time period. The research will expand already funded discrete gas measurements and extend currently funded continuous aerosol measurements on the WAIS Divide ice core from ~25,000 to ~60,000 years before present, spanning Heinrich events 3 to 6 and Antarctic Isotope Maximum (AIM, corresponding to the Northern Hemisphere Dansgaard-Oeschger) events 3 to 14. With other high resolution Greenland cores and lower resolution Antarctic cores, the combined record will yield new insights into worldwide climate dynamics and abrupt change. The intellectual merit of the work is that it will be used to address the science goals of the WAIS Divide project including the identification of dust and biomass burning tracers such as black carbon and carbon monoxide which reflect mid- and low-latitude climate and atmospheric circulation patterns, and fallout from these sources affects marine and terrestrial biogeochemical cycles. Similarly, sea salt and ocean productivity tracers reflect changes in sea ice extent, marine primary productivity, wind speeds above the ocean, and atmospheric circulation. Volcanic tracers address the relationship between northern, tropical, and southern climates as well as stability of the West Antarctic ice sheet and sea level change. When combined with other gas records from WAIS Divide, the records developed here will transform understanding of mid- and low-latitude drivers of Antarctic, Southern Hemisphere, and global climate rapid changes and the timing of such changes. The broader impacts of the work are that it will enhance infrastructure through expansion of continuous ice core analytical techniques, train students and support collaboration between two U.S. institutions (DRI and OSU). All data will be made available to the scientific community and the public and will include participation the WAIS Divide Outreach Program. Extensive graduate and undergraduate student involvement is planned. Student recruitment will be made from under-represented groups building on a long track record. Broad outreach will be achieved through collaborations with the global and radiative modeling communities, NESTA-related and other educational outreach efforts, and public lectures. This proposed project does not require field work in the Antarctic.", "east": -112.1115, "geometry": "POINT(-112.1115 -79.481)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "McConnell, Joseph", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Collaborative Research: Investigating Upper Pleistocene Rapid Climate Change using Continuous, Ultra-High-Resolution Aerosol and Gas Measurements in the WAIS Divide Ice Core", "uid": "p0000287", "west": -112.1115}, {"awards": "0947821 Ashworth, Allan", "bounds_geometry": "POLYGON((-180 -85.095235,-145.3719418 -85.095235,-110.7438836 -85.095235,-76.1158254 -85.095235,-41.4877672 -85.095235,-6.859709 -85.095235,27.7683492 -85.095235,62.3964074 -85.095235,97.0244656 -85.095235,131.6525238 -85.095235,166.280582 -85.095235,166.280582 -85.0996451,166.280582 -85.1040552,166.280582 -85.1084653,166.280582 -85.1128754,166.280582 -85.1172855,166.280582 -85.1216956,166.280582 -85.1261057,166.280582 -85.1305158,166.280582 -85.1349259,166.280582 -85.139336,131.6525238 -85.139336,97.0244656 -85.139336,62.3964074 -85.139336,27.7683492 -85.139336,-6.859709 -85.139336,-41.4877672 -85.139336,-76.1158254 -85.139336,-110.7438836 -85.139336,-145.3719418 -85.139336,180 -85.139336,178.6280582 -85.139336,177.2561164 -85.139336,175.8841746 -85.139336,174.5122328 -85.139336,173.140291 -85.139336,171.7683492 -85.139336,170.3964074 -85.139336,169.0244656 -85.139336,167.6525238 -85.139336,166.280582 -85.139336,166.280582 -85.1349259,166.280582 -85.1305158,166.280582 -85.1261057,166.280582 -85.1216956,166.280582 -85.1172855,166.280582 -85.1128754,166.280582 -85.1084653,166.280582 -85.1040552,166.280582 -85.0996451,166.280582 -85.095235,167.6525238 -85.095235,169.0244656 -85.095235,170.3964074 -85.095235,171.7683492 -85.095235,173.140291 -85.095235,174.5122328 -85.095235,175.8841746 -85.095235,177.2561164 -85.095235,178.6280582 -85.095235,-180 -85.095235))", "dataset_titles": "Neogene Paleoecology of the Beardmore Glacier Region", "datasets": [{"dataset_uid": "600387", "doi": "10.15784/600387", "keywords": "Antarctica; Beardmore Glacier; Biology; Cryosphere; Fossil; GPS; Oliver Bluffs; Paleoclimate; Sample/Collection Description; Seeds; Solid Earth; Transantarctic Mountains", "people": "Ashworth, Allan", "repository": "USAP-DC", "science_program": null, "title": "Neogene Paleoecology of the Beardmore Glacier Region", "url": "https://www.usap-dc.org/view/dataset/600387"}], "date_created": "Thu, 12 Jan 2017 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe primary goal of this project is to sample two beds in the Meyer Desert Formation, which are known to be especially fossiliferous containing plants, insects, other arthropods, freshwater mollusks, and fish. There is a possibility that the teeth and bones of a small marsupial could also be found. Previous studies have demonstrated that these horizons contain unique fossil assemblages that provide information used to reconstruct paleoenvironments and paleoclimate. The fossils represent organisms previously not found in Antarctica and consequently their study will lead to the development of new hypotheses concerning southern hemisphere biogeography. The new discoveries will also increase knowledge of paleoenvironments and paleoclimates as well as biogeographic relationships of the biota of the southern hemisphere. For some organisms, such as Nothofagus (Southern Beech) or the trechine groundbeetle, fossils would confirm that Antarctica was inhabited as part of Gondwana. For other fossils, such as the cyclorrhaphan fly or freshwater mollusks not expected to have inhabited Antarctica, the discoveries will require a reassessment of phylogenetic interpretations and a reinvestigation of the role of Antarctica in the evolutionary history of those organisms. The new fossil-based knowledge will require integration with interpretations from cladistics and molecular genetics to develop more comprehensive phylogenetic hypotheses for a range of organisms.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThe discovery of fossils in Antarctica and implications for climate change has proven to be popular with the media. This attention will help disseminate the results of this study. Before the field season, the PI will work with local media and with area schools to set up field interviews and web casts from Antarctica. The project will also involve the training of a graduate student in the field and in the follow up studies of the fossils in the laboratory.", "east": 166.280582, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -85.095235, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Ashworth, Allan", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.139336, "title": "Neogene Paleoecology of the Beardmore Glacier Region", "uid": "p0000424", "west": 166.280582}, {"awards": "1043554 Willenbring, Jane", "bounds_geometry": "POINT(161.5 -77.5)", "dataset_titles": "Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins", "datasets": [{"dataset_uid": "600379", "doi": "10.15784/600379", "keywords": "Antarctica; Chemistry:Rock; Cosmogenic Radionuclides; Cryosphere; Geochronology; Glaciers/Ice Sheet; Glaciology; Isotope; Sample/Collection Description; Transantarctic Mountains", "people": "Willenbring, Jane", "repository": "USAP-DC", "science_program": null, "title": "Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins", "url": "https://www.usap-dc.org/view/dataset/600379"}], "date_created": "Wed, 09 Nov 2016 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe PIs propose to address the question of whether ice surface melting zones developed at high elevations during warm climatic phases in the Transantarctic Mountains. Evidence from sediment cores drilled by the ANDRILL program indicates that open water in the Ross Sea could have been a source of warmth during Pliocene and Pleistocene. The question is whether marine warmth penetrated inland to the ice sheet margins. The glacial record may be ill suited to answer this question, as cold-based glaciers may respond too slowly to register brief warmth. Questions also surround possible orbital controls on regional climate and ice sheet margins. Northern Hemisphere insolation at obliquity and precession timescales is thought to control Antarctic climate through oceanic or atmospheric connections, but new thinking suggests that the duration of Southern Hemisphere summer may be more important. The PIs propose to use high elevation alluvial deposits in the Transantarctic Mountains as a proxy for inland warmth. These relatively young fans, channels, and debris flow levees stand out as visible evidence for the presence of melt water in an otherwise ancient, frozen landscape. Based on initial analyses of an alluvial fan in the Olympus Range, these deposits are sensitive recorders of rare melt events that occur at orbital timescales. For their study they will 1) map alluvial deposits using aerial photography, satellite imagery and GPS assisted field surveys to establish water sources and to quantify parameters effecting melt water production, 2) date stratigraphic sequences within these deposits using OSL, cosmogenic nuclide, and interbedded volcanic ash chronologies, 3) use paired nuclide analyses to estimate exposure and burial times, and rates of deposition and erosion, and 4) use micro and regional scale climate modeling to estimate paleoenvironmental conditions associated with melt events.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis study will produce a record of inland melting from sites adjacent to ice sheet margins to help determine controls on regional climate along margins of the East Antarctic Ice Sheet to aid ice sheet and sea level modeling studies. The proposal will support several graduate and undergraduates. A PhD student will be supported on existing funding. The PIs will work with multiple K 12 schools to conduct interviews and webcasts from Antarctica and they will make follow up visits to classrooms after the field season is complete.", "east": 161.5, "geometry": "POINT(161.5 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Willenbring, Jane", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.5, "title": "Collaborative Research: Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins", "uid": "p0000429", "west": 161.5}, {"awards": "1303896 Kirschvink, Joseph", "bounds_geometry": "POLYGON((-57 -63,-56.9 -63,-56.8 -63,-56.7 -63,-56.6 -63,-56.5 -63,-56.4 -63,-56.3 -63,-56.2 -63,-56.1 -63,-56 -63,-56 -63.2,-56 -63.4,-56 -63.6,-56 -63.8,-56 -64,-56 -64.2,-56 -64.4,-56 -64.6,-56 -64.8,-56 -65,-56.1 -65,-56.2 -65,-56.3 -65,-56.4 -65,-56.5 -65,-56.6 -65,-56.7 -65,-56.8 -65,-56.9 -65,-57 -65,-57 -64.8,-57 -64.6,-57 -64.4,-57 -64.2,-57 -64,-57 -63.8,-57 -63.6,-57 -63.4,-57 -63.2,-57 -63))", "dataset_titles": "Magnetostratigraphy of Cretaceous Sediments in the James Ross Island Basin, Antarctica", "datasets": [{"dataset_uid": "600136", "doi": "10.15784/600136", "keywords": "Antarctica; Cryosphere; GPS; James Ross Basin; Sample/Collection Description; Solid Earth", "people": "Kirschvink, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Magnetostratigraphy of Cretaceous Sediments in the James Ross Island Basin, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600136"}], "date_created": "Sat, 23 May 2015 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe PI will collect samples to extend the magneto-stratigraphic record of late Cretaceous sediments of the James Ross Basin, Antarctica. RAPID support will allow him to take advantage of an invitation from the Instituto Antartico Argentino (IAA) to participate on an excursion to James Ross Island in the Antarctic Peninsula. The PI hopes to collect samples that will refine the position of several geomagnetic reversals between the end of the Cretaceous long normal Chron and the lower portion of Chron 31R. The Brandy Bay locality targeted by this expedition is the best place in the basin for calibrating the biostratigraphic position of the top of the Cretaceous Long Normal Chron, which is one of the most reliable correlation horizons in the entire Geological Time Scale.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThe top of the Cretaceous long normal Chron is not properly correlated to southern hemisphere biostratigraphy. Locating this event will be a major addition to understanding geological time. This expedition will provide opportunities for an undergraduate student. This project is based on a productive collaboration with an Argentine scientist.", "east": -56.0, "geometry": "POINT(-56.5 -64)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -63.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kirschvink, Joseph", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Magnetostratigraphy of Cretaceous Sediments in the James Ross Island Basin, Antarctica", "uid": "p0000419", "west": -57.0}, {"awards": "0632322 Wilson, Terry; 0632136 Nyblade, Andrew", "bounds_geometry": "POLYGON((-20 -70,-1 -70,18 -70,37 -70,56 -70,75 -70,94 -70,113 -70,132 -70,151 -70,170 -70,170 -72,170 -74,170 -76,170 -78,170 -80,170 -82,170 -84,170 -86,170 -88,170 -90,151 -90,132 -90,113 -90,94 -90,75 -90,56 -90,37 -90,18 -90,-1 -90,-20 -90,-20 -88,-20 -86,-20 -84,-20 -82,-20 -80,-20 -78,-20 -76,-20 -74,-20 -72,-20 -70))", "dataset_titles": "Incorporated Research Institutions for Seismology (IRIS); University NAVSTAR Consortium (UNAVCO)", "datasets": [{"dataset_uid": "000132", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Incorporated Research Institutions for Seismology (IRIS)", "url": "http://www.iris.edu/mda/YT?timewindow=2007-2018"}, {"dataset_uid": "000131", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "University NAVSTAR Consortium (UNAVCO)", "url": "http://www.unavco.org/data/gps-gnss/data-access-methods/dai2/app/dai2.html#groupingMod=contains;grouping=POLENET%20-%20ANET;scope=Station;sampleRate=normal"}], "date_created": "Thu, 22 Jan 2015 00:00:00 GMT", "description": "This project constructs POLENET a network of GPS and seismic stations in West Antarctica to understand how the mass of the West Antarctic ice sheet (WAIS) changes with time. The information is ultimately used to predict sea level rise accompanying global warming and interpret climate change records. The GPS (global positioning system) stations measure vertical and horizontal movements of bedrock, while the seismic stations characterize physical properties of the ice/rock interface, lithosphere, and mantle. Combined with satellite data, this project offers a more complete picture of the ice sheet\u0027s current state, its likely change in the near future, and its overall size during the last glacial maximum. This data will also be used to infer sub-ice sheet geology and the terrestrial heat flux, critical inputs to models of glacier movement. As well, this project improves tomographic models of the earth\u0027s deep interior and core through its location in the Earth\u0027s poorly instrumented southern hemisphere. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eBroader impacts of this project are varied. The work is relevant to society for improving our understanding of the impacts of global warming on sea level rise. It also supports education at the postdoctoral, graduate, and undergraduate levels, and outreach to groups underrepresented in the sciences. As an International Polar Year contribution, this project establishes a legacy of infrastructure for polar measurements. It also involves an international collaboration of twenty four countries. For more information see IPY Project #185 at IPY.org. NSF is supporting a complementary Arctic POLENET array being constructed in Greenland under NSF Award #0632320.", "east": 170.0, "geometry": "POINT(75 -80)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; West Antarctic ice sheet (WAIS); ice/rock interface; sub-ice sheet geology; Mass Balance; terrestrial heat flux; Antarctica; COMPUTERS; Climate Change; bedrock; Seismic; FIELD SURVEYS; LABORATORY; Not provided; sea level", "locations": "Antarctica", "north": -70.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Wilson, Terry; Bevis, Michael; Anandakrishnan, Sridhar; Wiens, Douglas; Aster, Richard; Smalley, Robert; Nyblade, Andrew; Winberry, Paul; Hothem, Larry; Dalziel, Ian W.; Huerta, Audrey D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e MODELS \u003e COMPUTERS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "IRIS", "repositories": "IRIS; UNAVCO", "science_programs": null, "south": -90.0, "title": "Collaborative Research: IPY: POLENET-Antarctica: Investigating Links Between Geodynamics and Ice Sheets", "uid": "p0000315", "west": -20.0}, {"awards": "0839066 Cole-Dai, Jihong", "bounds_geometry": null, "dataset_titles": "Major Ion Chemistry Data of WAIS Divide Ice Core Brittle Ice", "datasets": [{"dataset_uid": "609546", "doi": "10.7265/N5RF5S0D", "keywords": "Antarctica; Chemistry:Ice; Cryosphere; Geochemistry; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ion Chromatograph; WAIS divide; WAIS Divide Ice Core", "people": "Cole-Dai, Jihong", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Major Ion Chemistry Data of WAIS Divide Ice Core Brittle Ice", "url": "https://www.usap-dc.org/view/dataset/609546"}], "date_created": "Wed, 19 Mar 2014 00:00:00 GMT", "description": "Cole-Dai/0839066\u003cbr/\u003e\u003cbr/\u003eThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to make continuous major ion analyses in the West Antarctica Ice Sheet Divide (WAIS Divide) ice core by sampling the brittle ice zone (approximately from 500 m to 1500 m). The intellectual merit of the project is that these will likely be the only chemical measurements on the brittle ice zone and, therefore, will bridge the gap in the expected continuous records of climate, ice sheet dynamics and biological evolution based on chemical measurements. High resolution sampling and analysis, probably on selected portions and depth intervals in the brittle ice zone, will help with the independent, high-precision dating of the WAIS Divide core and contribute to the achievement of the major objectives of the WAIS Divide project?development of high resolution climate records with which to investigate issues of climate forcing by greenhouse gases and the role of Antarctica and Southern Hemisphere in the global climate system. Planned collaboration with other WAIS Divide investigators will develop the longest and most detailed volcanic record from Antarctica ice cores. The broader impacts of this project include a contribution to enhancing our knowledge of the climate system. Such improvements in understanding of the global climate system and the ability to predict the magnitude and uncertainty of future changes are highly relevant to the global community. The project will support post-doctoral scientists and graduate students, including those from under-represented groups, will contribute to education, an help to train future scientists and promote diversity in research and education. Public outreach activities of this project will contribute to informal science education of school age children in the Eastern South Dakota region.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "GROUND-BASED OBSERVATIONS; WAISCORES; Paleoclimate; LABORATORY; Ion Chromatograph; Ions; Not provided; Ice Core", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "NOT APPLICABLE", "persons": "Cole-Dai, Jihong", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Major Ion Chemical Analysis of Brittle Ice in the WAIS Divide Ice Core", "uid": "p0000047", "west": null}, {"awards": "1043621 Weygand, James", "bounds_geometry": "POLYGON((-180 -54.5,-144 -54.5,-108 -54.5,-72 -54.5,-36 -54.5,0 -54.5,36 -54.5,72 -54.5,108 -54.5,144 -54.5,180 -54.5,180 -57,180 -59.5,180 -62,180 -64.5,180 -67,180 -69.5,180 -72,180 -74.5,180 -77,180 -79.5,144 -79.5,108 -79.5,72 -79.5,36 -79.5,0 -79.5,-36 -79.5,-72 -79.5,-108 -79.5,-144 -79.5,-180 -79.5,-180 -77,-180 -74.5,-180 -72,-180 -69.5,-180 -67,-180 -64.5,-180 -62,-180 -59.5,-180 -57,-180 -54.5))", "dataset_titles": "Southern Auroral Electrojet Index", "datasets": [{"dataset_uid": "002542", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Southern Auroral Electrojet Index", "url": "http://vmo.igpp.ucla.edu/search/?words=spase://VMO/NumericalData/SAE/Magnetometer/PT60S"}], "date_created": "Mon, 15 Apr 2013 00:00:00 GMT", "description": "The auroral electrojet index (AE) is used as an indicator of geomagnetic activity at high latitudes representing the strength of auroral electrojet currents in the Northern polar ionosphere. A similar AE index for the Southern hemisphere is not available due to lack of complete coverage the Southern auroral zone (half of which extends over the ocean) with continuous magnetometer observations. While in general global auroral phenomena are expected to be conjugate, differences have been observed in the conjugate observations from the ground and from the Earth\u0027s satellites. These differences indicate a need for an equivalent Southern auroral geomagnetic activity index. The goal of this award is to create the Southern AE (SAE) index that would accurately reflect auroral activity in that hemisphere. With this index, it would be possible to investigate the similarities and the cause of differences between the SAE and \"standard\" AE index from the Northern hemisphere. It would also make it possible to identify when the SAE does not provide a reliable calculation of the Southern hemisphere activity, and to determine when it is statistically beneficial to consider the SAE index in addition to the standard AE while analyzing geospace data from the Northern and Southern polar regions. The study will address these questions by creating the SAE index and its \"near-conjugate\" NAE index from collected Antarctic magnetometer data, and will analyze variations in the cross-correlation of these indices and their differences as a function of geomagnetic activity, season, Universal Time, Magnetic Local Time, and interplanetary magnetic field and solar wind plasma parameters. The broader impact resulting from the proposed effort is in its importance to the worldwide geospace scientific community that currently uses only the standard AE index in a variety of geospace models as necessary input.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -54.5, "nsf_funding_programs": "Antarctic Astrophysics and Geospace Sciences", "paleo_time": null, "persons": "Weygand, James", "platforms": "Not provided", "repo": "PI website", "repositories": "Other", "science_programs": null, "south": -79.5, "title": "A Comparison of Conjugate Auroral Electojet Indices", "uid": "p0000500", "west": -180.0}, {"awards": "0636740 Kreutz, Karl; 0636767 Dunbar, Nelia", "bounds_geometry": "POINT(112.11666 -79.46666)", "dataset_titles": "Microparticle, Conductivity, and Density Measurements from the WAIS Divide Deep Ice Core, Antarctica; Snowpit Chemistry - Methods Comparison, WAIS Divide, Antarctica; Snowpit evidence of the 2011 Puyehue-Cordon Caulle (Chile) eruption in West Antarctica; WAIS Divide Microparticle Concentration and Size Distribution, 0-2400 ka; WAIS Divide Snowpit Chemical and Isotope Measurements, Antarctica; WAIS Divide WDC06A Discrete ICP-MS Chemistry", "datasets": [{"dataset_uid": "609620", "doi": "10.7265/N5Q81B1X", "keywords": "Antarctica; Chemistry:Ice; Cryosphere; Geochemistry; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Trace Elements; WAIS divide; WAIS Divide Ice Core", "people": "Kreutz, Karl; Koffman, Bess", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Snowpit Chemistry - Methods Comparison, WAIS Divide, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609620"}, {"dataset_uid": "609616", "doi": "10.7265/N5KK98QZ", "keywords": "Antarctica; Cryosphere; Dust; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Particle Size; WAIS divide; WAIS Divide Ice Core", "people": "Kreutz, Karl; Koffman, Bess", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Microparticle Concentration and Size Distribution, 0-2400 ka", "url": "https://www.usap-dc.org/view/dataset/609616"}, {"dataset_uid": "601023", "doi": "10.15784/601023", "keywords": "Antarctica; Chemistry:Ice; Cryosphere; Geochemistry; Glaciers/Ice Sheet; Glaciology; Ice Core Records; ICP-MS; Isotope; WAIS divide; WAIS Divide Ice Core", "people": "Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide WDC06A Discrete ICP-MS Chemistry", "url": "https://www.usap-dc.org/view/dataset/601023"}, {"dataset_uid": "609499", "doi": "10.7265/N5K07264", "keywords": "Antarctica; Cryosphere; Density; Electrical Conductivity; Glaciers/Ice Sheet; Ice Core Records; Microparticle Concentration; Physical Properties; WAIS divide; WAIS Divide Ice Core", "people": "Breton, Daniel; Kreutz, Karl; Koffman, Bess; Hamilton, Gordon S.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Microparticle, Conductivity, and Density Measurements from the WAIS Divide Deep Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609499"}, {"dataset_uid": "609506", "doi": "10.7265/N5SJ1HHN", "keywords": "Antarctica; Chemistry:Ice; Cryosphere; Geochemistry; Glaciers/Ice Sheet; Isotope; Microparticle Concentration; Snow/Ice; WAIS divide; WAIS Divide Ice Core", "people": "Koffman, Bess; Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Snowpit Chemical and Isotope Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609506"}, {"dataset_uid": "601036", "doi": "10.15784/601036", "keywords": "Antarctica; Chemistry:Ice; Cryosphere; Geochemistry; Geochronology; Glaciers/Ice Sheet; Ice Core Records; IntraContinental Magmatism; Snow Pit; Tephra; WAIS divide; WAIS Divide Ice Core", "people": "Koffman, Bess; Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Snowpit evidence of the 2011 Puyehue-Cordon Caulle (Chile) eruption in West Antarctica", "url": "https://www.usap-dc.org/view/dataset/601036"}], "date_created": "Tue, 19 Jun 2012 00:00:00 GMT", "description": "This award supports a project to perform continuous microparticle concentration and size distribution measurements (using coulter counter and state-of-the-art laser detector methods), analysis of biologically relevant trace elements associated with microparticles (Fe, Zn, Co, Cd, Cu), and tephra measurements on the WAIS Divide ice core. This initial three-year project includes analysis of ice core spanning the instrumental (~1850-present) to mid- Holocene (~5000 years BP) period, with sample resolution ranging from subannual to decadal. The intellectual merit of the project is that it will help in establishing the relationships among climate, atmospheric aerosols from terrestrial and volcanic sources, ocean biogeochemistry, and greenhouse gases on several timescales which remain a fundamental problem in paleoclimatology. The atmospheric mineral dust plays an important but uncertain role in direct radiative forcing, and the microparticle datasets produced in this project will allow us to examine changes in South Pacific aerosol loading, atmospheric dynamics, and dust source area climate. The phasing of changes in aerosol properties within Antarctica, throughout the Southern Hemisphere, and globally is unclear, largely due to the limited number of annually dated records extending into the glacial period and the lack of a\u003cbr/\u003etephra framework to correlate records. The broader impacts of the proposed research are an interdisciplinary approach to climate science problems, and will contribute to several WAIS Divide science themes as well as the broader paleoclimate and oceanographic communities. Because the research topics have a large and direct societal relevance, the project will form a centerpiece of various outreach efforts at UMaine and NMT including institution websites, public speaking, local K-12 school interaction, media interviews and news releases, and popular literature. At least one PhD student and one MS student will be directly supported by this project, including fieldwork, core processing, laboratory analysis, and data interpretation/publication. We expect that one graduate student per year will apply for a core handler/assistant driller position through the WAIS Divide Science Coordination Office, and that undergraduate student involvement will result in several Capstone experience projects (a UMaine graduation requirement). Data and ideas generated from the project will be integrated into undergraduate and graduate course curricula at both institutions.", "east": 112.11666, "geometry": "POINT(112.11666 -79.46666)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PARTICLE DETECTORS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e LOPC-PMS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e ICE CORE MELTER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PARTICLE DETECTORS", "is_usap_dc": true, "keywords": "Microparticles Size; LABORATORY; Ice Core Data; oxygen isotope; microparticle; WAIS divide; Tephra; Antarctica; FIELD SURVEYS; ice core dust; West Antarctica; Greenhouse Gases; Ice Core; Microparticles; Not provided; Trace Elements; WAIS Divide-project; FIELD INVESTIGATION; atmospheric dynamics; paleoclimatology; AGDC-project; Snow Pit; Holocene; ice cores; Ice Core Chemistry; Isotope; AGDC; atmospheric aerosols; radiative forcing; Snow Chemistry", "locations": "Antarctica; WAIS divide; West Antarctica", "north": -79.46666, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Koffman, Bess; Kreutz, Karl; Breton, Daniel; Dunbar, Nelia; Hamilton, Gordon S.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.46666, "title": "Collaborative Research: Microparticle/tephra analysis of the WAIS Divide ice core", "uid": "p0000040", "west": 112.11666}, {"awards": "0538538 Sowers, Todd; 0538578 Brook, Edward", "bounds_geometry": null, "dataset_titles": "Late Holocene Methane Concentrations from WAIS Divide and GISP2; Methane Concentrations from the WAIS Divide Ice Core (WDC06A), 60 to 11,300 ybp; The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.", "datasets": [{"dataset_uid": "609586", "doi": "10.7265/N5W66HQQ", "keywords": "Antarctica; Arctic; Chemistry:Fluid; Cryosphere; Geochemistry; GISP2; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; WAIS divide; WAIS Divide Ice Core", "people": "Mitchell, Logan E", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Late Holocene Methane Concentrations from WAIS Divide and GISP2", "url": "https://www.usap-dc.org/view/dataset/609586"}, {"dataset_uid": "609509", "doi": "10.7265/N5J1013R", "keywords": "Antarctica; Atmosphere; Chemistry:Fluid; Cryosphere; Geochemistry; Glaciers/Ice Sheet; Ice Core Records; Methane; Paleoclimate; WAIS divide; WAIS Divide Ice Core", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Methane Concentrations from the WAIS Divide Ice Core (WDC06A), 60 to 11,300 ybp", "url": "https://www.usap-dc.org/view/dataset/609509"}, {"dataset_uid": "001303", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.", "url": "https://nsidc.org/data/agdc"}], "date_created": "Thu, 19 Apr 2012 00:00:00 GMT", "description": "Sowers/Brook\u003cbr/\u003e0538538\u003cbr/\u003eThis award supports a project to develop a high-resolution (every 50 yr) methane data set that will play a pivotal role in developing the timescale for the new deep ice core being drilled at the West Antarctic Ice Sheet Divide (WAIS Divde) site as well as providing a common stratigraphic framework for comparing climate records from Greenland and WAIS Divide. Certain key intervals will be measured at even higher resolution to assist in precisely defining the phasing of abrupt climate change between the northern and southern hemispheres. Concurrent analysis of a suit of samples from both the WAIS Divide and GISP2 ice cores throughout the last 110kyr is also proposed, to establish the inter-hemispheric methane gradient which will be used to identify geographic areas responsible for the climate-related methane emission changes. A large gas measurement inter-calibration of numerous laboratories, utilizing both compressed air cylinders and WAIS Divide ice core samples, will also be performed. The intellectual merit of the proposed work is that it will provide the chronological control needed to examine the timing of changes in climate proxies, and critical chronological ties to the Greenland ice core records via methane variations. In addition, the project addresses the question of what methane sources were active during the ice age and will help to answer the fundamental question of what part of the biosphere controlled past methane variations. The broader impact of the proposed work is that it will directly benefit all ice core paleoclimate research and will impact the paleoclimate studies that rely on ice core timescales for correlation purposes. The project will also support a Ph.D. student at Oregon State University who will have the opportunity to be involved in a major new ice coring effort with international elements. Undergraduates at Penn State will gain valuable laboratory experience and participate fully in the project. The proposed work will underpin the WAIS Divide chronology, which will be fundamental to all graduate student projects that involve the core. The international inter-calibration effort will strengthen ties between research institutions on four continents and will be conducted as part of the International Polar Year research agenda.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Methane Concentration; WAIS Divide-project; Antarctica; West Antarctica; GROUND-BASED OBSERVATIONS; Methane; AGDC; FIELD INVESTIGATION; Ice Core; FIELD SURVEYS; WAIS divide; Antarctic; LABORATORY; AGDC-project; CH4", "locations": "Antarctic; WAIS divide; Antarctica; West Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; NOT APPLICABLE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Lee, James; Buizert, Christo; Brook, Edward J.; Mitchell, Logan E; Sowers, Todd A.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "NSIDC; USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Collaborative Research: Constructing an Ultra-high Resolution Atmospheric Methane Record for the Last 140,000 Years from WAIS Divide Core.", "uid": "p0000025", "west": null}, {"awards": "0739780 Taylor, Kendrick", "bounds_geometry": "POINT(-112.117 -79.666)", "dataset_titles": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "datasets": [{"dataset_uid": "600142", "doi": "10.15784/600142", "keywords": "Antarctica; Atmosphere; Black Carbon; Chemistry:Ice; Cryosphere; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS divide; WAIS Divide Ice Core", "people": "Taylor, Kendrick C.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "url": "https://www.usap-dc.org/view/dataset/600142"}], "date_created": "Thu, 28 Apr 2011 00:00:00 GMT", "description": "Edwards/0739780\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to develop a 2,000-year high-temporal resolution record of biomass burning from the analysis of black carbon in the WAIS Divide bedrock ice core. Pilot data for the WAIS WD05A core demonstrates that we now have the ability to reconstruct this record with minimal impact on the amount of ice available for other projects. The intellectual merit of this project is that black carbon (BC) aerosols result solely from combustion and play a critical but poorly quantified role in global climate forcing and the carbon cycle. When incorporated into snow and ice, BC increases absorption of solar radiation making seasonal snow packs, mountain glaciers, polar ice sheets, and sea ice much more vulnerable to climate warming. BC emissions in the Southern Hemisphere are dominated by biomass burning in the tropical regions of Southern Africa, South America and South Asia. Biomass burning, which results from both climate and human activities, alters the atmospheric composition of greenhouse gases, aerosols and perturbs key biogeochemical cycles. A long-term record of biomass burning is needed to aid in the interpretation of ice core gas composition and will provide important information regarding human impacts on the environment and climate before instrumental records. The broader impacts of the project are that it represents a paradigm shift in our ability to reconstruct the history of fire from ice core records and to understand its impact on atmospheric chemistry and climate over millennial time scales. This type of data is especially needed to drive global circulation model simulations of black carbon aerosols, which have been found to be an important component of global warming and which may be perturbing the hydrologic cycle. The project will also employ undergraduate students and is committed to attracting underrepresented groups to the physical sciences. The project?s outreach component will be conducted as part of the WAIS project outreach program and will reach a wide audience.", "east": -112.117, "geometry": "POINT(-112.117 -79.666)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "WAIS project; FIELD INVESTIGATION; Ice Core Chemistry; gas record; gas measurement; Not provided; WAIS divide; Biomass burning; Ice Core; Greenhouse Gases; black carbon (BC) aerosols; Ice Core Gas Composition; Antarctica; FIELD SURVEYS; LABORATORY; Bedrock Ice Core; West Antarctica; Ice Core Gas Records; Methane; Atmospheric Chemistry", "locations": "Antarctica; West Antarctica; WAIS divide", "north": -79.666, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward J.; McConnell, Joseph; Mitchell, Logan E; Sowers, Todd A.; Taylor, Kendrick C.", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.666, "title": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "uid": "p0000022", "west": -112.117}, {"awards": "0839858 Clauer, Calvin Robert", "bounds_geometry": "POLYGON((-1 -77,9.4 -77,19.8 -77,30.2 -77,40.6 -77,51 -77,61.4 -77,71.8 -77,82.2 -77,92.6 -77,103 -77,103 -77.8,103 -78.6,103 -79.4,103 -80.2,103 -81,103 -81.8,103 -82.6,103 -83.4,103 -84.2,103 -85,92.6 -85,82.2 -85,71.8 -85,61.4 -85,51 -85,40.6 -85,30.2 -85,19.8 -85,9.4 -85,-1 -85,-1 -84.2,-1 -83.4,-1 -82.6,-1 -81.8,-1 -81,-1 -80.2,-1 -79.4,-1 -78.6,-1 -77.8,-1 -77))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 30 Jul 2010 00:00:00 GMT", "description": "\"This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\"\u003cbr/\u003e\u003cbr/\u003eThe solar wind - magnetosphere - ionosphere system and the space weather phenomena it controls is a complex and dynamic environment that has increasing recognition of potentially impacting critical human technological infrastructure. To be able to forecast, and thus adapt to, the impact space weather events may have on infrastructure as diverse as satellite communications and power grids, it is necessary to develop accurate geomagnetic models of the Sun-Earth environment. Due to the dipole nature of the planet\u0027s magnetic field, the Earth\u0027s outer magnetosphere maps to relatively small regions in the polar and auroral latitudes in both hemispheres. The northern hemisphere is relatively well instrumented. However, lack of sufficient observations particularly notable in the Southern hemisphere lessens our ability to validate global models of the geospace environment. The main magnetic dipole is offset and tilted, resulting in a weaker polar field in the southern hemisphere. Seasonal ionospheric electrodynamic asymetries similarly result. The magnitudes of both these effects need to be measured and more fully understood to build reliable Space Weather models.\u003cbr/\u003e\u003cbr/\u003eThis project seeks continued development and deployment of a chain of magnetometers located along the southern high latitude 40 degree magnetic meridian to provide conjugate inter-hemispheric measurements complementing the data from the existing dense Greenland west coast magnetometer array. Such measurements open the promise of simultaneous data from northern and southern hemispheres to enable the investigation of inter-hemispheric electrodynamic coupling throughout the entire outer magnetosphere.", "east": 103.0, "geometry": "POINT(51 -81)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.0, "nsf_funding_programs": null, "paleo_time": null, "persons": "Clauer, Calvin; Ledvina, Brent", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -85.0, "title": "Polar Experimantal Network for Geospace Upper-atmosphere Investigations (PENGUIn): Interhemispheric Investigations along the 40 Degree Magnetic Meridian", "uid": "p0000480", "west": -1.0}, {"awards": "9814349 Hall, Brenda", "bounds_geometry": "POLYGON((-70.4838 -52.3532,-68.92937 -52.3532,-67.37494 -52.3532,-65.82051 -52.3532,-64.26608 -52.3532,-62.71165 -52.3532,-61.15722 -52.3532,-59.60279 -52.3532,-58.04836 -52.3532,-56.49393 -52.3532,-54.9395 -52.3532,-54.9395 -53.61625,-54.9395 -54.8793,-54.9395 -56.14235,-54.9395 -57.4054,-54.9395 -58.66845,-54.9395 -59.9315,-54.9395 -61.19455,-54.9395 -62.4576,-54.9395 -63.72065,-54.9395 -64.9837,-56.49393 -64.9837,-58.04836 -64.9837,-59.60279 -64.9837,-61.15722 -64.9837,-62.71165 -64.9837,-64.26608 -64.9837,-65.82051 -64.9837,-67.37494 -64.9837,-68.92937 -64.9837,-70.4838 -64.9837,-70.4838 -63.72065,-70.4838 -62.4576,-70.4838 -61.19455,-70.4838 -59.9315,-70.4838 -58.66845,-70.4838 -57.4054,-70.4838 -56.14235,-70.4838 -54.8793,-70.4838 -53.61625,-70.4838 -52.3532))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001743", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0209"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award supports a two year program to produce a new reconstruction of ice extent, elevation and thickness at the Last Glacial Maximum (LGM) for the South Shetland Islands in the Antarctic Peninsula. One field season on Livingston Island will involve mapping the areal extent and geomorphology of glacial drift and determining the elevation and distribution of trimlines. In addition, ice flow direction will be determined by mapping and measuring the elevation of erosional features and the position of erratic boulders. One of the main goals of this work will be to demonstrate whether or not organic material suitable for radiocarbon dating exists in the South Shetland Islands. If so, the age of the deposits will be determined by measuring the carbon-14 age of plant, algal, and fungal remains preserved at the base of the deposits, as well as incorporated marine shells, seal skin and other organic material that may be found in raised beach deposits. Another goal will be to concentrate on the development of relative sea-level curves from 2-3 key areas to show whether or not construction of such curves for the South Shetland Islands is possible. The new reconstruction of ice extent, elevation and thickness at the Last Glacial Maximum for the South Shetland Islands which will be produced by this work will be useful in studies of ocean circulation and ice dynamics in the vicinity of the Drake Passage. It will also contribute to the production of a deglacial chronology which will afford important clues about the mechanisms controlling ice retreat in this region of the southern hemisphere.", "east": -54.9395, "geometry": "POINT(-62.71165 -58.66845)", "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.3532, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hall, Brenda; Taylor, Frederick", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "Other", "science_programs": null, "south": -64.9837, "title": "AMS Radiocarbon Chronology of Glacier Fluctuations in the South Shetland Islands During the Last Glacial/Interglacial Hemicycle:Implications for Global Climate Change", "uid": "p0000596", "west": -70.4838}, {"awards": "9527876 Anderson, John", "bounds_geometry": "POLYGON((-179.9996 -70.29238,-143.99968 -70.29238,-107.99976 -70.29238,-71.99984 -70.29238,-35.99992 -70.29238,0 -70.29238,35.99992 -70.29238,71.99984 -70.29238,107.99976 -70.29238,143.99968 -70.29238,179.9996 -70.29238,179.9996 -71.048723,179.9996 -71.805066,179.9996 -72.561409,179.9996 -73.317752,179.9996 -74.074095,179.9996 -74.830438,179.9996 -75.586781,179.9996 -76.343124,179.9996 -77.099467,179.9996 -77.85581,143.99968 -77.85581,107.99976 -77.85581,71.99984 -77.85581,35.99992 -77.85581,0 -77.85581,-35.99992 -77.85581,-71.99984 -77.85581,-107.99976 -77.85581,-143.99968 -77.85581,-179.9996 -77.85581,-179.9996 -77.099467,-179.9996 -76.343124,-179.9996 -75.586781,-179.9996 -74.830438,-179.9996 -74.074095,-179.9996 -73.317752,-179.9996 -72.561409,-179.9996 -71.805066,-179.9996 -71.048723,-179.9996 -70.29238))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002125", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9801"}, {"dataset_uid": "002067", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9902"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Anderson OPP 9527876 Abstract This award supports continuation of a long term investigation of the continental shelf sediments that is aimed at examining the configuration of the West Antarctic Ice Sheet during the last glacial maximum, the events and mechanisms involved in its retreat, and the timing of retreat. The project involves: 1) characterizing variations in the ice sheet grounding zone in a latitudinal transect extending from Ross Sea to Bransfield Basin, 2) reconstructing conditions at the ice/bed interface prior to and after ice sheet retreat, and 3) radiometrically dating ice sheet retreat along this transect. Detailed sea floor imagery (multibeam and deep-tow side-scan sonar), high resolution seismic reflection profiles, and sediment cores will be used to map and characterize prior grounding zones. Of particular concern are features that indicate the amount and organization (channelization) of basal meltwater and the extent of bed deformation that occurred in different ice streams. The timing of ice sheet retreat provides information about the link between Northern and Southern hemisphere ice expansion, and the role of eustasy in ice sheet decoupling. This research should lead to better predictive models to determine which ice streams are most unstable and likely, therefore, to serve as Oweak linksO in the long term behavior of West Antarctic Ice Sheet.", "east": 179.9996, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -70.29238, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "Other", "science_programs": null, "south": -77.85581, "title": "Mechanism and Timing of West Antarctic Ice Sheet Retreat at the End of the Last Glacial Maximum", "uid": "p0000624", "west": -179.9996}, {"awards": "9528807 Gordon, Arnold", "bounds_geometry": "POLYGON((-69.58631 -52.35405,-66.572039 -52.35405,-63.557768 -52.35405,-60.543497 -52.35405,-57.529226 -52.35405,-54.514955 -52.35405,-51.500684 -52.35405,-48.486413 -52.35405,-45.472142 -52.35405,-42.457871 -52.35405,-39.4436 -52.35405,-39.4436 -53.54563,-39.4436 -54.73721,-39.4436 -55.92879,-39.4436 -57.12037,-39.4436 -58.31195,-39.4436 -59.50353,-39.4436 -60.69511,-39.4436 -61.88669,-39.4436 -63.07827,-39.4436 -64.26985,-42.457871 -64.26985,-45.472142 -64.26985,-48.486413 -64.26985,-51.500684 -64.26985,-54.514955 -64.26985,-57.529226 -64.26985,-60.543497 -64.26985,-63.557768 -64.26985,-66.572039 -64.26985,-69.58631 -64.26985,-69.58631 -63.07827,-69.58631 -61.88669,-69.58631 -60.69511,-69.58631 -59.50353,-69.58631 -58.31195,-69.58631 -57.12037,-69.58631 -55.92879,-69.58631 -54.73721,-69.58631 -53.54563,-69.58631 -52.35405))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002142", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9705"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9528807 Gordon The proposed project is part of a multi-institutional integrated study of the outflow of newly formed bottom water from the Weddell Sea and its dispersion into the South Atlantic Ocean. It builds upon earlier successful studies of the inflow of intermediate water masses into the Eastern Weddell Sea, their modification within the Weddell Gyre, and their interaction with bottom water formation processes in the western Weddell Sea. The study is called Deep Ocean Ventilation Through Antarctic Intermediate Layers (DOVETAIL) and includes six components involving hydrographic measurements, natural tracer experiments, and modeling studies. The study will be centered east of the Drake Passage where water masses from the Weddell Sea and the Scotia Sea come together in the Weddell-Scotia Confluence, and will be carried out in cooperation with the national antarctic programs of Germany and Spain. This particular component concerns observations of the temperature and salinity structure, as well as the chemical nature of the water column in the confluence region. The study has four related objectives. The first is to assess the quantity and the physical and chemical characteristics of Weddell Sea source waters for the confluence. The second is to describe the dominant processes associated with spreading and sinking of dense antarctic waters within the Weddell-Scotia Confluence. The third is to estimate the ventilation rate of the world ocean, and the fourth is to estimate seasonal fluctuations in the regional ocean transport and hydrographic structure and to assess the likely influence of seasonal to interannual variability on rates of ventilation by Weddell Sea waters. Ventilation of the deep ocean -- the rising of sub-surface water masses to the surface to be recharged with atmospheric gases and to give up heat to the atmosphere -- is a uniquely antarctic phenomenon that has significant consequences for global change by affecting the g lobal reservoir of carbon dioxide, and by modulating the amount and extent of seasonal sea ice in the southern hemisphere. This component will make systematic observations of the temperature salinity structure of the water and undertake an extensive sampling program for other chemical studies. The purpose is to identify the individual water masses and to relate their temperature and salinity characteristics to the modification processes within the Weddell Sea. ***", "east": -39.4436, "geometry": "POINT(-54.514955 -58.31195)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.35405, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Gordon, Arnold", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "Other", "science_programs": null, "south": -64.26985, "title": "Deep Ocean Ventilation Through Antarctic Intermediate Layers (DOVETAIL)", "uid": "p0000630", "west": -69.58631}, {"awards": "0837988 Steig, Eric", "bounds_geometry": "POLYGON((-180 -65,-144 -65,-108 -65,-72 -65,-36 -65,0 -65,36 -65,72 -65,108 -65,144 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.5,-180 -85,-180 -82.5,-180 -80,-180 -77.5,-180 -75,-180 -72.5,-180 -70,-180 -67.5,-180 -65))", "dataset_titles": "West Antarctica Ice Core and Climate Model Data", "datasets": [{"dataset_uid": "609536", "doi": "10.7265/N5QJ7F8B", "keywords": "Antarctica; Chemistry:Fluid; Cryosphere; Geochemistry; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; WAIS divide", "people": "Steig, Eric J.", "repository": "USAP-DC", "science_program": null, "title": "West Antarctica Ice Core and Climate Model Data", "url": "https://www.usap-dc.org/view/dataset/609536"}], "date_created": "Fri, 30 Apr 2010 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). \u003cbr/\u003e\u003cbr/\u003eThis award supports a project to reconstruct the past physical and chemical climate of Antarctica, with an emphasis on the region surrounding the Ross Sea Embayment, using \u003e60 ice cores collected in this region by US ITASE and by Australian, Brazilian, Chilean, and New Zealand ITASE teams. The ice core records are annually resolved and exceptionally well dated, and will provide, through the analyses of stable isotopes, major soluble ions and for some trace elements, instrumentally calibrated proxies for past temperature, precipitation, atmospheric circulation, chemistry of the atmosphere, sea ice extent, and volcanic activity. These records will be used to understand the role of solar, volcanic, and human forcing on Antarctic climate and to investigate the character of recent abrupt climate change over Antarctica in the context of broader Southern Hemisphere and global climate variability. The intellectual merit of the project is that ITASE has resulted in an array of ice core records, increasing the spatial resolution of observations of recent Antarctic climate variability by more than an order of magnitude and provides the basis for assessment of past and current change and establishes a framework for monitoring of future climate change in the Southern Hemisphere. This comes at a critical time as global record warming and other impacts are noted in the Southern Ocean, the Antarctic Peninsula, and on the Antarctic ice sheet. The broader impacts of the project are that Post-doctoral and graduate students involved in the project will benefit from exposure to observational and modeling approaches to climate change research and working meetings to be held at the two collaborating institutions plus other prominent climate change institutions. The results are of prime interest to the public and the media Websites hosted by the two collaborating institutions contain climate change position papers, scientific exchanges concerning current climate change issues, and scientific contribution series.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Deuterium Isotopes; Not provided; WAIS Divide-project; GROUND-BASED OBSERVATIONS; AGDC-project; Deuterium Excess", "locations": null, "north": -65.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Steig, Eric J.", "platforms": "Not provided; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Antarctic Climate Reconstruction Utilizing the US ITASE Ice Core Array (2009- 2012)", "uid": "p0000180", "west": -180.0}, {"awards": "0512971 Brook, Edward; 0126057 Brook, Edward", "bounds_geometry": null, "dataset_titles": "Antarctic and Greenland Climate Change Comparison; GISP2 (B and D Core) Methane Concentrations; GISP2 (D Core) Helium Isotopes from Interplanetary Dust; GISP2 (D Core) Methane Concentration Data; Siple Dome Methane Record", "datasets": [{"dataset_uid": "609361", "doi": "", "keywords": "Antarctica; Arctic; Atmosphere; Chemistry:Fluid; Cryosphere; Geochemistry; GISP2; Glaciers/Ice Sheet; Ice Core Records; Isotope; Lake Vostok; Paleoclimate; Vostok Ice Core", "people": "Kurz, Mark D.; Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "GISP2 (D Core) Helium Isotopes from Interplanetary Dust", "url": "https://www.usap-dc.org/view/dataset/609361"}, {"dataset_uid": "609124", "doi": "10.7265/N5KH0K8R", "keywords": "Antarctica; Chemistry:Fluid; Chemistry:Ice; Cryosphere; Geochemistry; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Methane Record", "url": "https://www.usap-dc.org/view/dataset/609124"}, {"dataset_uid": "609125", "doi": "", "keywords": "Arctic; Chemistry:Fluid; Chemistry:Ice; Cryosphere; Geochemistry; GISP2; Glaciers/Ice Sheet; Glaciology; Greenland; Ice Core Records; Methane; Paleoclimate", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "GISP2 (B and D Core) Methane Concentrations", "url": "https://www.usap-dc.org/view/dataset/609125"}, {"dataset_uid": "609253", "doi": "", "keywords": "Antarctica; Chemistry:Ice; Cryosphere; Geochemistry; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Vostok Ice Core", "people": "Blunier, Thomas; Brook, Edward J.; Chappellaz, Jerome; Stauffer, Bernhard", "repository": "USAP-DC", "science_program": null, "title": "Antarctic and Greenland Climate Change Comparison", "url": "https://www.usap-dc.org/view/dataset/609253"}, {"dataset_uid": "609360", "doi": "", "keywords": "Antarctica; Arctic; Atmosphere; Chemistry:Fluid; Cryosphere; Geochemistry; GISP2; Glaciers/Ice Sheet; Ice Core Records; Methane; Paleoclimate; Taylor Dome", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "GISP2 (D Core) Methane Concentration Data", "url": "https://www.usap-dc.org/view/dataset/609360"}], "date_created": "Tue, 16 Dec 2008 00:00:00 GMT", "description": "This award supports work on trapped gases in Antarctic and other ice cores for paleoenvironmental and chronological purposes. The project will complete a ~ 100,000 year, high-resolution record of atmospheric methane from the Siple Dome ice core and use these data to construct a precise chronology for climate events recorded by the Siple Dome record. In addition, the resolution of the GISP2 (Greenland) ice core record will be increased in some critical intervals to help with the Siple Dome chronology and that of future ice cores. Finally, an upgrade to the analytical capabilities of the laboratory, including increasing precision and throughput and decreasing sample size needed for ice core methane measurements will be an important goal of this work. The proposed work will contribute to the understanding of the timing of rapid climate change in the Northern and Southern hemispheres during the last glacial period, the evolution of the global methane budget in the late Quaternary, and the late Quaternary climate history of Antarctica. It will also improve our ability to generate methane records for future ice coring projects, and inform and enrich the educational and outreach activities of our laboratory.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Ice Sheet; Snow; isotopes; Siple Coast; GROUND STATIONS; WAISCORES; GROUND-BASED OBSERVATIONS; Ice Core; Siple; Antarctica; Methane; Glaciology; Interplanetary Dust; FIELD SURVEYS; Stratigraphy; Siple Dome; Not provided; gas measurement; NSIDC", "locations": "Antarctica; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Glaciology; Antarctic Organisms and Ecosystems; Antarctic Glaciology", "paleo_time": null, "persons": "Blunier, Thomas; Chappellaz, Jerome; Stauffer, Bernhard; Kurz, Mark D.; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change", "uid": "p0000034", "west": null}, {"awards": "0228052 Kreutz, Karl", "bounds_geometry": "POLYGON((161.0434 -77.3002,161.241645 -77.3002,161.43989 -77.3002,161.638135 -77.3002,161.83638 -77.3002,162.034625 -77.3002,162.23287 -77.3002,162.431115 -77.3002,162.62936 -77.3002,162.827605 -77.3002,163.02585 -77.3002,163.02585 -77.3784846,163.02585 -77.4567692,163.02585 -77.5350538,163.02585 -77.6133384,163.02585 -77.691623,163.02585 -77.7699076,163.02585 -77.8481922,163.02585 -77.9264768,163.02585 -78.0047614,163.02585 -78.083046,162.827605 -78.083046,162.62936 -78.083046,162.431115 -78.083046,162.23287 -78.083046,162.034625 -78.083046,161.83638 -78.083046,161.638135 -78.083046,161.43989 -78.083046,161.241645 -78.083046,161.0434 -78.083046,161.0434 -78.0047614,161.0434 -77.9264768,161.0434 -77.8481922,161.0434 -77.7699076,161.0434 -77.691623,161.0434 -77.6133384,161.0434 -77.5350538,161.0434 -77.4567692,161.0434 -77.3784846,161.0434 -77.3002))", "dataset_titles": "Late Holocene Climate Variability, Dry Valleys, Antarctica", "datasets": [{"dataset_uid": "609399", "doi": "10.7265/N5FF3Q92", "keywords": "Antarctica; Borehole Temperature; Chemistry:Ice; Cryosphere; Dry Valleys; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Mass Balance; Paleoclimate; Physical Properties", "people": "Kreutz, Karl; Mayewski, Paul A.", "repository": "USAP-DC", "science_program": null, "title": "Late Holocene Climate Variability, Dry Valleys, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609399"}], "date_created": "Tue, 21 Oct 2008 00:00:00 GMT", "description": "This award supports a project to collect and develop high-resolution ice core records from the Dry Valleys region of Antarctica, and provide interpretations of interannual to decadal-scale climate variability during the last 2000 years (late Holocene). The project will test hypotheses related to ocean/atmosphere teleconnections (e.g., El Nino Southern Oscillation, Antarctic Oscillation) that may be responsible for major late Holocene climate events such as the Little Ice Age in the Southern Hemisphere. Conceptual and quantitative models of these processes in the Dry Valleys during the late Holocene are critical for understanding recent climate changes, and represent the main scientific merit of the project. We plan to collect intermediate-length ice cores (100-200m) at four sites along transects in Taylor Valley and Wright Valley, and analyze each core at high resolution for stable isotopes (d18O, dD), major ions (Na+, Mg2+, Ca2+, K+, NH4+, Cl-, NO3-, SO42-, MSA), and trace elements (Al, Fe, S, Sr, B). A suite of statistical techniques will be applied to the multivariate glaciochemical dataset to identify chemical associations and to calibrate the time-series records with available instrumental data. Broader impacts of the project include: 1) contributions to several ongoing interdisciplinary Antarctic research programs; 2) graduate and undergraduate student involvement in field, laboratory, and data interpretation activities; 3) use of project data and ideas in several UMaine courses and outreach activities; and 4) data dissemination through peer-reviewed publications, UMaine and other paleoclimate data archive websites, and presentations at national and international meetings.", "east": 163.02585, "geometry": "POINT(162.034625 -77.691623)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MC-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; Antarctic Oscillation; glaciochemical; Holocene; Climate Research; Climate; AWS Climate Data; GPS; Paleoclimate; LABORATORY; Climate Variation; Not provided; Climate Change; Dry Valleys; Ice Core Records; Wright Valley; ENSO; ice cores; Antarctica; El Nino Southern Oscillation; Taylor Valley; Little Ice Age; FIELD SURVEYS; variability; Stable Isotopes", "locations": "Antarctica; Dry Valleys; Taylor Valley", "north": -77.3002, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Kreutz, Karl; Arcone, Steven; Mayewski, Paul A.", "platforms": "SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.083046, "title": "Dry Valleys Late Holocene Climate Variability", "uid": "p0000155", "west": 161.0434}, {"awards": "0124049 Berger, Glenn", "bounds_geometry": "POLYGON((161.4 -77.5,161.6 -77.5,161.8 -77.5,162 -77.5,162.20000000000002 -77.5,162.4 -77.5,162.6 -77.5,162.8 -77.5,163 -77.5,163.20000000000002 -77.5,163.4 -77.5,163.4 -77.52,163.4 -77.54,163.4 -77.56,163.4 -77.58,163.4 -77.6,163.4 -77.62,163.4 -77.64,163.4 -77.66,163.4 -77.68,163.4 -77.7,163.20000000000002 -77.7,163 -77.7,162.8 -77.7,162.6 -77.7,162.4 -77.7,162.20000000000002 -77.7,162 -77.7,161.8 -77.7,161.6 -77.7,161.4 -77.7,161.4 -77.68,161.4 -77.66,161.4 -77.64,161.4 -77.62,161.4 -77.6,161.4 -77.58,161.4 -77.56,161.4 -77.54,161.4 -77.52,161.4 -77.5))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 25 Aug 2008 00:00:00 GMT", "description": "0124049\u003cbr/\u003eBerger\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to add to the understanding of what drives glacial cycles. Most researchers agree that Milankovitch seasonal forcing paces the ice ages but how these insolation changes are leveraged into abrupt global climate change remains unknown. A current popular view is that the climate of Antarctica and the Southern Ocean leads that of the rest of the world by a couple thousand years at Termination I and by even greater margins during previous terminations. This project will integrate the geomorphological record of glacial history with a series of cores taken from the lake bottoms in the Dry Valleys of the McMurdo Sound region of Antarctica. Using a modified Livingstone corer, transects of long cores will be obtained from Lakes Fryxell, Bonney, Joyce, and Vanda. A multiparameter approach will be employed which is designed to extract the greatest possible amount of former water-level, glaciological, and paleoenvironmental data from Dry Valleys lakes. Estimates of hydrologic changes will come from different proxies, including grain size, stratigraphy, evaporite mineralogy, stable isotope and trace element chemistry, and diatom assemblage analysis. The chronology, necessary to integrate the cores with the geomorphological record, as well as for comparisons with Antarctic ice-core and glacial records, will come from Uranium-Thorium, Uranium-Helium, and Carbon-14 dating of carbonates, as well as luminescence sediment dating. Evaluation of the link between lake-level and climate will come from hydrological and energy-balance modelling. Combination of the more continuous lake-core sequences with the spatially extensive geomorphological record will result in an integrated Antarctic lake-level and paleoclimate dataset that extends back at least 30,000 years. This record will be compared to Dry Valleys glacier records and to the Antarctic ice cores to address questions of regional climate variability, and then to other Southern Hemisphere and Northern Hemisphere records to assess interhemispheric synchrony or asynchrony of climate change.", "east": 163.4, "geometry": "POINT(162.4 -77.6)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LASERS", "is_usap_dc": false, "keywords": "Dry Valleys; lake cores; luminescence geochronology; Antarctic lake-level; Stratigraphy; Climate Variability; shoreline deposits; Grain Size; Paleoclimate; Antarctica; LABORATORY", "locations": "Dry Valleys; Antarctica", "north": -77.5, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Berger, Glenn; Hall, Brenda; Doran, Peter", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -77.7, "title": "Collaborative Research: Millennial Scale Fluctuations of Dry Valleys Lakes: Implications for Regional Climate Variability and the Interhemispheric (a)Synchrony of Climate Change", "uid": "p0000219", "west": 161.4}, {"awards": "0338224 Putkonen, Jaakko", "bounds_geometry": "POLYGON((161 -77,161.3 -77,161.6 -77,161.9 -77,162.2 -77,162.5 -77,162.8 -77,163.1 -77,163.4 -77,163.7 -77,164 -77,164 -77.1,164 -77.2,164 -77.3,164 -77.4,164 -77.5,164 -77.6,164 -77.7,164 -77.8,164 -77.9,164 -78,163.7 -78,163.4 -78,163.1 -78,162.8 -78,162.5 -78,162.2 -78,161.9 -78,161.6 -78,161.3 -78,161 -78,161 -77.9,161 -77.8,161 -77.7,161 -77.6,161 -77.5,161 -77.4,161 -77.3,161 -77.2,161 -77.1,161 -77))", "dataset_titles": "Cosmogenic nucilde data at ICE-D", "datasets": [{"dataset_uid": "200298", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nucilde data at ICE-D", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Tue, 20 Nov 2007 00:00:00 GMT", "description": "This work will study cosmogenic isotope profiles of rock and sediment in the Dry Valleys of Antarctica to understand their origin. The results will provide important constraints on the history of the East Antarctic Ice Sheet. The near-perfect preservation of volcanic ash and overlying sediments suggests that hyperarid cold conditions have prevailed in the Dry Valleys for over 10 Myr. The survival of these sediments also suggests that warm-based ice has not entered the valley system and ice sheet expansion has been minimal. Other evidence, however, suggests that the Dry Valleys have experienced considerably more sediment erosion than generally believed: 1) the cosmogenic exposure ages of boulders and bedrock in the Valleys all show generally younger ages than volcanic ash deposits used to determine minimum ages of moraines and drifts, 2) there appears to be a discrepancy between the suggested extreme preservation of unconsolidated slope deposits (\u003e10 Myr) and adjacent bedrock that has eroded 2.6-6 m during the same time interval. The fact that the till and moraine exposure ages generally post date the overlying volcanic ash deposits could reflect expansion of continental ice sheet into the Dry Valleys with cold-based ice, thus both preserving the landscape and shielding the surfaces from cosmic radiation. Another plausible explanation of the young cosmogenic exposure ages is erosion of the sediments and gradual exhumation of formerly buried boulders to the surface. Cosmogenic isotope systematics are especially well suited to address these questions. We will measure multiple cosmogenic isotopes in profiles of rock and sediment to determine the minimum exposure ages, the degree of soil stability or mixing, and the shielding history of surfaces by cold based ice. We expect to obtain unambiguous minimum ages for deposits. In addition, we should be able to identify areas disturbed by periglacial activity, constrain the timing of such activity, and account for the patchy preservation of important stratigraphic markers such as volcanic ash. The broader impacts of this project include graduate and undergraduate education, and improving our understanding of the dynamics of Southern Hemisphere climate on timescales of millions of years, which has major implications for understanding the controls and impacts of global climate change.", "east": 164.0, "geometry": "POINT(162.5 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "ICE SHEETS; Dry Valleys; Not provided", "locations": "Dry Valleys", "north": -77.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Putkonen, Jaakko", "platforms": "Not provided", "repo": "ICE-D", "repositories": "Other", "science_programs": null, "south": -78.0, "title": "Stability of Landscapes and Ice Sheets in Dry Valleys, Antarctica: A Systematic Study of Exposure Ages of Soils and Surface Deposits", "uid": "p0000575", "west": 161.0}, {"awards": "0003844 Case, Judd", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG0309", "datasets": [{"dataset_uid": "002676", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0309", "url": "https://www.rvdata.us/search/cruise/LMG0309"}, {"dataset_uid": "001683", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0309"}], "date_created": "Wed, 28 Mar 2007 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research project between the Saint Mary\u0027s College of California, the South Dakota School of Mines and technology, and the Argentine Antarctic Institute (Instituto Antartico Argentino or IAA) to investigate the Late Mesozoic vertebrate paleontology of the James Ross Basin in the Antarctic Peninsula region. The Campanian through the Maastrichtian ages (80 to 65 million years ago) is an important time interval concerning vertebrate biogeography (i.e. dispersals and separations due to moving landmasses) and evolution between Antarctica and other Southern Hemisphere continents (including India, i.e. Gondwana). Moreover, the dispersal of terrestrial vertebrates (i.e. dinosaurs and marsupial mammals) from North America to Antarctica and beyond (e.g. Australia) via Patagonia and the Antarctic Peninsula, as well as the dispersal of modern birds from Antarctica northward are important unresolved questions in paleontology. These dispersal events include vertebrates not only in the terrestrial realms, but also in marine settings. Both widely distributed and localized marine reptile species have been identified in Antarctica, creating questions concerning their dispersal in conjunction with the terrestrial animals.\u003cbr/\u003e\u003cbr/\u003eThe Antarctic Peninsula and Patagonia represent the western-most portion of the Weddellian Paleobiogeographic Province, a region that extends from Patagonia through the Antarctic Peninsula and western Antarctica to Australia and New Zealand. Within this province lie the dispersal routes for interchanges of vertebrates between South America and: 1) Madagascar and India, and 2) Australia. As the result of previous work by the principal investigators, it is postulated that an isthmus between more northern South America and the Antarctic craton has served to bring typical North American dinosaurs, such as hadrosaurs (duck-billed dinosaurs) and presumably marsupials traveling overland, while marine reptiles swam along coastal waters, to Antarctica in the latest Cretaceous. Finally, this region has served as the cradle for the evolution, if not the origin, for groups of modern birds, and evolution of a suite of typical southern hemisphere plants.\u003cbr/\u003e\u003cbr/\u003eIn order to confirm and expand upon these hypotheses, investigations into the latest Cretaceous deposits of the James Ross Basin, Antarctica Peninsula must be continued. The Cape Lamb and Sandwich Bluff geological units, of the Lopez de Bertodano Formation in the James Ross Basin along the eastern Antarctic Peninsula, exhibit a mixture of marine and terrestrial deposits. The following vertebrates have been recovered from these sedimentary deposits during previous field seasons: plesiosaur and mosasaur marine reptiles; plant eating dinosaurs; a meat eating dinosaur; and a variety of modern bird groups, including shorebirds, wading birds and lagoonal birds.\u003cbr/\u003e\u003cbr/\u003eThis project will undertake new fieldwork to recover new specimens in order to test biogeographic and evolutionary hypotheses concerning Late Cretaceous vertebrates in Gondwana. Fieldwork is planned in January 2002 and 2003 to explore the eastern slopes of Cape Lamb, Sandwich Bluff and False Island Point on Vega Island, and the Santa Marta Cove area of James Ross Island.\u003cbr/\u003e\u003cbr/\u003eThis research will result in important new insights about the evolution and geographic dispersal of several vertebrate species. The results are important to understanding the development and evolution of life on Earth.\u003cbr/\u003e\u003cbr/\u003eThis is a collaborative research project with Argentinean scientists from the IAA and it continues a productive collaboration that began in 1995. In addition, collaboration with vertebrate paleontologists from the Museo de La Plata, both in the field and at our respective institutions in Argentina and in the United States, will continue.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "Not provided; R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e MESOZOIC \u003e CRETACEOUS", "persons": "Case, Judd; Blake, Daniel", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; Not provided", "repo": "R2R", "repositories": "Other", "science_programs": null, "south": null, "title": "Collaborative Research: Evolution and Biogeography of Late Cretaceous Vertebrates from the James Ross Basin, Antarctic Peninsula", "uid": "p0000129", "west": null}, {"awards": "9615333 Saltzman, Eric", "bounds_geometry": "POINT(-148.8 -81.7)", "dataset_titles": "Biogenic Sulfur in the Siple Dome Ice Core", "datasets": [{"dataset_uid": "609201", "doi": "10.7265/N5S180F1", "keywords": "Antarctica; Biosphere; Chemistry:Ice; Cryosphere; Geochemistry; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Saltzman, Eric; Dioumaeva, Irina; Finley, Brandon", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Biogenic Sulfur in the Siple Dome Ice Core", "url": "https://www.usap-dc.org/view/dataset/609201"}], "date_created": "Tue, 09 Mar 2004 00:00:00 GMT", "description": "This award is for support for four years of funding for a program of biogenic sulfur measurements on the Siple Dome ice core. Biogenic sulfur is a major aerosol-forming constituent of the atmosphere and has potentially important links to the earth\u0027s radiation budget. Previous work on the Vostok ice core has demonstrated a remarkable climate-related variability in biogenic sulfur, suggesting that the sulfur cycle may act to stabilize climate (keep the glacial atmosphere cool and the interglacial atmosphere warm) in the Southern Hemisphere. In this study, methane-sulfonate (MSA) will be measured on the Siple Dome ice core as part of the West Antarctic ice sheet program (WAIS). Siple Dome is located in a region which is strongly impacted by the incursion of marine air onto the Antarctic plateau. Because of its proximity to the coast and meteorological setting, it is expected that variability in high-latitude marine biogenic sulfur emissions should dominate the MSA record at this site. In addition to the deep ice core record, samples from shallow cores will also be analyzed to provide information about regional variability and decadal-to-centennial scale variability in the deposition of sulfur-containing aerosols from high latitude source regions over the past 200 years.", "east": -148.8, "geometry": "POINT(-148.8 -81.7)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; FIELD INVESTIGATION; Not provided; Siple Dome; GROUND-BASED OBSERVATIONS; LABORATORY; Methanesulfonate; AGDC-project; Biogenic Sulfur", "locations": "Siple Dome", "north": -81.7, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Saltzman, Eric; Dioumaeva, Irina; Finley, Brandon", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.7, "title": "Biogenic Sulfur in the Siple Dome Ice Core", "uid": "p0000251", "west": -148.8}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
The Results Map and the Results Table
The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
As the map is panned or zoomed, the highlighted rows in the table will update.
If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page.
The bounds for the project(s)/dataset(s) selected will be displayed in red.
The selected result(s) will be highlighted in red and brought to the top of the table.
The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds
and highlight the centroid on the Results Map.
Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other
search criteria already selected.
After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
Clicking Clear in the map will clear any drawn polygon.
Clicking Search in the map, or Search on the form will have the same effect.
The returned results will be any projects/datasets with bounds that intersect the polygon.
Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Magnetic field variations on the Earth’s surface can be used to remote sense and characterize electrical currents and plasma waves in the near-Earth space environment that can affect technology, for example by inducing currents in power grids. Asymmetries between the space environment in the polar regions of the northern and southern hemispheres can profoundly affect these magnetic field variations. Magnetometers, which measure the strength and direction of magnetic fields, have been installed in the Arctic and Antarctic at opposite ends of the Earth’s magnetic field lines. By looking at data from both sets of magnetometers, researchers can determine whether disturbances in the Earth’s magnetosphere (a region of near-Earth space dominated by the Earth’s magnetic field) caused by the Sun impact the Northern hemisphere, the Southern hemisphere or both, and thus understand the sources of north-south hemisphere asymmetries. Some events that appear in the magnetometer data may be difficult for computers to identify, but easy for people to identify if the data is translated into sound. Researchers will develop a tool for listening to data in a virtual reality environment, so that data from various instruments can be played back, making it easier to explore datasets intuitively. This system will be prototyped using a mixed reality headset for use in both science and education and may be used to analyze data taken at the same time by sensors on the ground and on satellites.
This project will examine one particular type of disturbance – magnetosheath jets – and its relation to plasma waves by addressing the question “Do magnetosheath jets routinely drive Pc5/Pc6 geomagnetic pulsations?” via the analysis of magnetometer data from geomagnetically conjugate (based on the International Geomagnetic Reference Field, IGRF) Arctic and Antarctic magnetometers. This question will be approached first through traditional plotting and visual analysis, then by presenting datastreams as sound sources situated in a virtual audio environment developed in the Unity game engine and integrated with mixed reality presentation via the Microsoft Hololens platform. This approach will leverage human capabilities for spatial discrimination of sounds to identify geomagnetic pulsations (surface magnetic field variations related to plasma waves in outer space) related to magnetosheath jet events with potentially large north-south hemispheric asymmetries, spatially localized wave activity, and irregular waveforms. The resulting presentation modality will make use of existing repositories of magnetometer data and may potentially be extended to the presentation of synchronous datasets from multiple sensing networks.
Hydroxyl radicals are responsible for removal of most atmospheric trace gases, including pollutants and important greenhouse gases. They have been called the "detergent of the atmosphere". Changes in hydroxyl radical concentration in response to large changes in reactive trace gas emissions, which may happen in the future, are uncertain. This project aims to provide the first estimates of the variability of atmospheric hydroxyl radicals since about 1880 AD when anthropogenic emissions of reactive trace gases were minimal. This will improve understanding of their stability in response to large changes in emissions. The project will also investigate whether ice cores record past changes in Southern Hemisphere westerly winds. These winds are a key component of the global climate system, and have an important influence on ocean circulation and possibly on atmospheric carbon dioxide concentrations. The project team will include three early career scientists, a postdoctoral researcher, and graduate and undergraduate students, working in collaboration with senior scientists and Australian collaborators. <br/> <br/>Firn air and shallow ice to a depth of about 233 m will be sampled at the Law Dome high-accumulation coastal site in East Antarctica. Trapped air will be extracted from the ice cores on site immediately after drilling. Carbon-14 of carbon monoxide (14CO) will be analyzed in firn and ice-core air samples. Corrections will be made for the in situ cosmogenic 14CO component in the ice, allowing for the atmospheric 14CO history to be reconstructed. This 14CO history will be interpreted with the aid of a chemistry-transport model to place the first observational constraints on the variability of Southern Hemisphere hydroxyl radical concentration after about 1880 AD. An additional component of the project will analyze Krypton-86 in the firn-air and ice-core samples. These measurements will explore whether ice-core Krypton-86 acts as a proxy for barometric pressure variability, and whether this proxy can be used in Antarctic ice cores to infer past movement of the Southern Hemisphere westerly winds.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This research will take advantage of the greater number of Antarctic weather observations collected as part of the World Meteorological Organization's "Year of Polar Prediction". Researchers will use these additional observations to study new ways of incorporating data into existing weather prediction models. The primary goal of this research is to improve the accuracy of weather forecasts in Antarctica. This work is important, as the harsh weather in Antarctica greatly impacts scientific research and the support of this research. Being able to accurately predict changing weather increases the safety and efficiency of Antarctic field science and operations.
The proposed effort seeks to advance goals of the World Meteorological Organization's Polar Prediction Project and its Year of Polar Prediction-Southern Hemisphere (YOPP-SH) effort. Researchers will investigate and demonstrate the forecast impact of enhanced atmospheric observations obtained from YOPP-SH's Special Observing Period on polar numerical weather prediction. This will be done by using the Antarctic Mesoscale Prediction System (AMPS). AMPS is the primary numerical weather prediction capability for the United States Antarctic Program (USAP). Modeling experimentation will assess the impact of Special Observing Period data on Antarctic forecasts and will serve as a vehicle for testing new data assimilation approaches for AMPS. The primary goal for this work is improved forecasting and numerical weather prediction tools. Outcomes will include quantification of the value of enhanced southern hemisphere atmospheric observations. This work will also help improve AMPS and its ability to support the USAP.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This award supports a project to use ice cores to study teleconnections between the northern hemisphere, tropics, and Antarctica during very abrupt climate events that occurred during the last ice age (from 70,000 to 11,000 years ago). The observations can be used to test scientific theories about the role of the westerly winds on atmospheric carbon dioxide. In a warming world, snow fall in Antarctica is expected to increase, which can reduce the Antarctic contribution to sea level rise, all else being equal. The study will investigate how snow fall changed in the past in response to changes in temperature and atmospheric circulation, which can help improve projections of future sea level rise. Antarctica is important for the future evolution of our planet in several ways; it has the largest inventory of land-based ice, equivalent to about 58 m of global sea level and currently contributes about 0.3 mm per year to global sea level rise, which is expected to increase in the future due to global warming. The oceans surrounding Antarctica help regulate the uptake of human-produced carbon dioxide. Shifts in the position and strength of the southern hemisphere westerly winds could change the amount of carbon dioxide that is absorbed by the ocean, which will influence the rate of global warming. The climate and winds near and over Antarctica are linked to the rest of our planet via so-called climatic teleconnections. This means that climate changes in remote places can influence the climate of Antarctica. Understanding how these climatic teleconnections work in both the ocean and atmosphere is an important goal of climate research. The funds will further contribute towards training of a postdoctoral researcher and an early-career researcher; outreach to public schools; and the communication of research findings to the general public via the media, local events, and a series of Wikipedia articles.
The project will help to fully characterize the timing and spatial pattern of millennial-scale Antarctic climate change during the deglaciation and Dansgaard-Oeschger (DO) cycles using multiple synchronized Antarctic ice cores. The phasing of Antarctic climate change relative to Greenland DO events can distinguish between fast atmospheric teleconnections on sub-decadal timescales, and slow oceanic ones on centennial time scales. Preliminary work suggests that the spatial pattern of Antarctic change can fingerprint specific changes to the atmospheric circulation; in particular, the proposed work will clarify past movements of the Southern Hemisphere westerly winds during the DO cycle, which have been hypothesized. The project will help resolve a discrepancy between two previous seminal studies on the precise timing of interhemispheric coupling between ice cores in both hemispheres. The study will further provide state-of-the-art, internally-consistent ice core chronologies for all US Antarctic ice cores, as well as stratigraphic ties that can be used to integrate them into a next-generation Antarctic-wide ice core chronological framework. Combined with ice-flow modeling, these chronologies will be used for a continent-wide study of the relationship between ice sheet accumulation and temperature during the last deglaciation.
Rapid and persistent climate warming in the Western Antarctic Peninsula is likely resulting in intensified snow-algae growth and an extended bloom season in coastal areas. Similarly, deposition of light absorbing particles (LAPs) onto Antarctica cryosphere surfaces, such as black carbon from intensifying Southern Hemisphere wildfire seasons, and dust from the expansion of ice-free regions in the Antarctic Peninsula, may be increasing. The presence of snow algae blooms and LAPs enhance the absorption of solar radiation by snow and ice surfaces. This positive feedback creates a measurable radiative forcing, which can have immediate local and long-term regional impacts on albedo, snow melt and downstream ecosystems. This project will investigate the spatial and temporal distribution of snow algae, black carbon and dust across the Western Antarctica Peninsula region, their response to climate warming, and their role in regional snow and ice melt. Data will be collected across multiple spatial scales from in situ field measurements and sample collection to imagery from ground-based photos and high resolution multi-spectral satellite sensors. Ground measurements will inform development and application of novel algorithms to map algal bloom extent through time using 0.5-3m spatial resolution multi-spectral satellite imagery. Results will be used to improve snow algae parameterization in a new version of the Snow Ice Aerosol Radiation model (SNICARv3) that includes bio-albedo feedbacks, eventually informing models of ice-free area expansion through incorporation of SNICARv3 in the Community Earth System Model. Citizen scientists will be mentored and engaged in the research through an active partnership with the International Association of Antarctic Tour Operators that frequently visits the region. The cruise ship association will facilitate sampling to develop a unique snow algae observing network to validate remote sensing algorithms that map snow algae with high-resolution multi-spectral satellite imagery from space. These time-series will inform instantaneous and interannual radiative forcing calculations to assess impacts of snow algae and LAPs on regional snow melt. Quantifying the spatio-temporal growing season of snow algae and impacts from black carbon and dust will increase our ability to model their impact on snow melt, regional climate warming and ice-free expansion in the Antarctic Peninsula region.
The potential for future sea level rise from melting and collapse of Antarctic ice sheets and glaciers is concerning. We can improve our understanding of how water is exchanged between Antarctic ice sheets and the ocean by studying how ice sheets behaved in past climates, especially conditions that were similar to or warmer than those at present. For this project, the research team will document Antarctica’s response across an interval when Earth transitioned from the warm Pliocene into the Pleistocene ice ages by combining marine and land evidence for glacier variations from sites near the Antarctic Peninsula, complimented by detailed work on timescales and fossil evidence for environmental change. An important goal is to test whether Antarctica’s glaciers changed at the same time as glaciers in the Northern Hemisphere as Earth's most recent Ice Age intensified, or alternatively responded to regional climate forcing in the Southern Hemisphere. Eleven investigators from seven US institutions, as well as Argentine collaborators, will study new sediment cores from the International Ocean Discovery Program, as well as legacy cores from that program and on-land outcrops on James Ross Island. The group embraces a vertically integrated research program that allows high school, undergraduate, graduate, post-docs and faculty to work together on the same projects. This structure leverages the benefits of near-peer mentoring and the development of a robust collaborative research network while allowing all participants to take ownership of different parts of the project. All members of the team are firmly committed to attracting researchers from under-represented groups and will do this through existing channels as well as via co-creating programming that centers the perspectives of diverse students in conversations about sea-level rise and climate change.
The proposed research seeks to understand phasing between Northern and Southern Hemisphere glacier and climate changes, as a means to understand drivers and teleconnections. The dynamics of past Antarctic glaciation can be studied using the unique isotope geochemical and mineralogic fingerprints from glacial sectors tied to a well-constrained time model for the stratigraphic successions. The proposed work would further refine the stratigraphic context through coupled biostratigraphic and magnetostratigraphic work. The magnitude of iceberg calving and paths of icebergs will be revealed using the flux, geochemical and mineralogic signatures, and 40Ar/39Ar and U-Pb geochronology of ice-rafted detritus. These provenance tracers will establish which sectors of Antarctica’s ice sheets are more vulnerable to collapse, and the timing and pacing of these events will be revealed by their stratigraphic context. Additionally, the team will work with Argentine collaborators to connect the marine and terrestrial records by studying glacier records intercalated with volcanic flows on James Ross Island. These new constraints will be integrated with a state of the art ice-sheet model to link changes in ice dynamics with their underlying causes. Together, these tight stratigraphic constraints, geochemical signatures, and ice-sheet model simulations will provide a means to compare to the global records of climate change, understand their primary drivers, and elucidate the role of the Antarctic ice sheet in a major, global climatic shift from the Pliocene into the Pleistocene.
The frequency and severity of hypoxic events are increasing in marine and freshwater environments worldwide with climate warming, threatening the health of aquatic ecosystems and the viability of fish populations. The Southern Ocean surrounding Antarctica has historically been a stable, icy-cold, and oxygen-rich environment, but is now warming at an unprecedented rate and faster than all other regions in the Southern hemisphere. Evolution at sub-zero temperatures has equipped Antarctic fishes with traits allowing them to thrive in frigid waters, but has diminished their resilience to warming. Presently little is known about the ability of Antarctic fishes to withstand hypoxic conditions that often accompany warming. This research will investigate the hypoxia tolerance of four species of Antarctic fishes, including two species of icefishes that lack the oxygen-carrying protein, hemoglobin, which may compromise their ability to oxygenate tissues under hypoxic conditions. The hypoxia tolerance of Antarctic fish species will be compared to that of a related fish species inhabiting coastal regions of South America. Physiological and biochemical responses to hypoxia will be evaluated and compared amongst the five species to bolster our predictions of the capacity of Antarctic fishes to cope with a changing environment. This research will provide training opportunities for undergraduate and graduate students, and a postdoctoral research fellow. A year-long seminar series hosted by the Aquarium of the Pacific will feature female scientists who work in Antarctica to inspire youth in the greater Los Angeles area to pursue careers in science.
This proposal is directed toward an investigation of the coupling phenomena between the solar wind and the Earth's magnetosphere and ionosphere, particularly on the day side of the Earth and observed simultaneously at high latitudes in both northern and southern hemispheres. Through past NSF support, several magnetometers have been deployed in Antarctica, Greenland, and Svalbard, while new collaborations have been developed with the Polar Research Institute of China (PRIC) to further increase coverage through data sharing. This project will expand the existing Virginia Tech-PRIC partnership to include New Jersey Institute of Technology, University of New Hampshire, and the Technical University of Denmark and (1) construct two new stations to be deployed by PRIC along a chain from Zhongshan station to Dome A to complete a conjugate area array, (2) integrate data from all stations into a common
format, and (3) address two focused science questions. Both instrument deployment and data processing efforts are motivated by a large number of solar wind-magnetosphere-ionosphere (SWMI) coupling science questions; this project will address two questions pertaining to Ultra Low Frequency (ULF) waves: (1) What is the global ULF response to Hot Flow Anomalies (HFA) and how is it affected by asymmetries in the SWMI system? (2) How do dawn-dusk and north-south asymmetries in the coupled SWMI system affect global ULF wave properties during periods with large, steady east-west Interplanetary Magnetic field (IMF By)? This proposal requires fieldwork in the Antarctic, but all fieldwork will be conducted by PRIC.
Ice supersaturation plays a key role in cloud formation and evolution, and it determines the partitioning among ice, liquid and vapor phases. Over the Southern Ocean and Antarctica, the transition between mixed-phase and ice clouds significantly impacts the radiative effects of clouds. Remote regions such as the Antarctica and Southern Ocean historically have been under-sampled by in-situ observations, especially by airborne observations. Even though more attention has been given to the cloud microphysical properties over these regions, the distribution and characteristics of ice supersaturation and its role in the current and future climate have not been fully investigated at the higher latitudes in the Southern Hemisphere. One of the main objectives of this study is to analyze observations from three recent major field campaigns sponsored by NSF and DOE, which provide intensive in-situ, airborne measurements over the Southern Ocean and ground-based observations at McMurdo station in Antarctica.
This project will analyze aircraft-based and ground-based observations over the Southern Ocean and Antarctica, and compare the observations with the Community Earth System Model Version 2 (CESM2) simulations. The focus will be on the observations of ice supersaturation and the relative humidity distribution in mixed-phase and ice clouds, as well as their relationship with cloud micro- and macrophysical properties. Observations will be compared to CESM2 simulations to elucidate model biases. Surface radiation and the precipitation budget at the McMurdo station will be quantified and compared against the CESM2 simulations to improve the fidelity of the representation of Antarctic climate (and climate prediction over Antarctica). Results from our research will be released to the community for improving the understanding of cloud radiative effects and the mass transport of water in the high southern latitudes. Comparisons between the simulations and observations will provide valuable information for improving the next generation CESM model. Two education/outreach projects will be carried out by PI Diao at San Jose State University (SJSU), including a unique undergraduate student research project with hands-on laboratory work on an airborne instrument, and an outreach program that uses social media to broadcast news on polar research to the public.
Efforts to improve sea level forecasting on a warming planet have focused on determining the temperature, sea level and extent of polar ice sheets during Earth’s past warm periods. Large uncertainties, however, in reconstructions of past and future sea levels, result from the poorly constrained climate sensitivity of the Antarctic Ice sheet (AIS). This research project aims to develop the use of subglacial precipitates as an archive the Antarctic ice sheet (AIS) past response to climate change. The subglacial precipitates from East Antarctica form in water bodies beneath Antarctic ice and in doing so provide an entirely new and unique measure of how the AIS responds to climate change. In preliminary examination of these precipitates, we identified multiple samples consisting of cyclic opal and calcite that spans hundreds of thousands of years in duration. Our preliminary geochemical characterization of these samples indicates that the observed mineralogic changes result from a cyclic change in subglacial water compositions between isotopically and chemically distinct waters. Opal-forming waters are reduced (Ce* <1 and high Fe/Mn) and exhibit elevated 234U/238U compositions similar to the saline groundwater brines found at the periphery of the AIS. Calcite-forming waters, are rather, oxidized and exhibit δ18O compositions consistent with derivation from the depleted polar plateau (< -50 ‰). 234U-230Th dates permit construction of a robust timeseries describing these mineralogic and compositional changes through time. Comparisons of these time series with other Antarctic climate records (e.g., ice core records) reveal that calcite forming events align with millennial scale changes in local temperature or “Antarctic isotopic maximums”, which represent Southern Hemisphere warm periods during low Atlantic Meridional overturning circulation. Ultimately, this project seeks to develop a comprehensive model as to how changes in the thermohaline cycle induce a glaciologic response which in turn induces a change in the composition of subglacial waters and the mineralogic phase recorded within the precipitate archive.
Non-Technical Project Description<br/><br/>This research will study Ultralow Velocity Zones (ULVZs), located in Earth's interior on top of the boundary between the Earth's solid mantle and its fluid outer core. The ULVZs are so named because seismic waves passing through the Earth slow down dramatically when they encounter these zones. While ULVZs are thought to be related to melting processes, there is growing controversy regarding their origin and the role they play in the thermal and chemical evolution of our planet. The ULVZs may include the largest magma chambers in Earth's interior. Currently, researchers have only searched 40% of Earth's core-mantle boundary for the ULVZs and this project would use existing seismic data to map an unexplored area under Antarctica and interpret the nature of the ULVZs. This project will support two graduate students and create opportunities for undergraduate involvement. Project results will be published in scientific journals, presented at science fairs, and communicated through the researchers' websites. The research team will also take part in the NSF-sponsored PolarTREC (Teachers and Researchers Exploring and Collaborating) program to communicate the science to students and the broader community. <br/><br/><br/>Technical Project Description<br/><br/>The National Research Council has highlighted high-resolution imaging of core-mantle boundary (CMB) structure as a high-priority, emerging research opportunity in the Earth Sciences since anomalies along the CMB likely play a critical role in the thermal and chemical evolution of our planet. Of particular interest are ultralow velocity zones (ULVZs), thin laterally-varying boundary layers associated with dramatic seismic velocity decreases and increases in density that are seen just above the CMB. Many questions exist regarding the origin of ULVZs, but incomplete seismic sampling of the lowermost mantle has limited our ability to map global ULVZ structure in detail. Using recently collected data from the Transantarctic Mountains Northern Network (TAMNNET) in Antarctica, this project will use core-reflected seismic phases (ScP, PcP, and ScS) to investigate ULVZ presence/absence along previously unexplored sections of the CMB. The data sampling includes the southern boundary of the Pacific Large Low Shear Velocity Province (LLSVP), a dominant feature in global shear wave tomography models, and will allow the researchers to examine a possible connection between ULVZs and LLSVPs. The main objectives of the project are to: 1) use TAMNNET data to document ULVZ presence/absence in previously unexplored regions of the lowermost mantle with array-based approaches; 2) model the data with 1- and 2.5-D wave propagation tools to obtain ULVZ properties and to assess trade-offs among the models; 3) use high quality events to augment the densely-spaced TAMNNET data with that from the more geographically-distributed, open-access Antarctic stations to increase CMB coverage with single-station analyses; and 4) explore the implications of ULVZ solution models for origin, present-day dynamics, and evolution, including their connection to other deep mantle structures, like LLSVPs.<br/><br/>The project aims to provide new constraints on ULVZs, including their potential connection to LLSVPs, and thus relates to other seismic and geodynamic investigations focused on processes within the Earth?s interior. This project will promote a new research collaboration between The University of Alabama (UA) and Arizona State University (ASU), each of which brings specific strengths to the initiative.
The ocean surrounding Antarctica is home to an extraordinary assemblage of fishes, dominated by a single group that are extremely well-suited to life in icy waters and which are of significant ecological importance there. Of great concern is the capacity of these fishes to withstand increases in temperature as the region of the Western Antarctic Peninsula warms at a rate faster than any other area in the Southern hemisphere. One particular group of Antarctic fishes, known as the icefishes, are particularly vulnerable to increases in temperature because unlike all other vertebrates on earth, icefishes are white-blooded due to their lack of the oxygen-binding protein hemoglobin. This greatly reduces their capacity to transport and deliver oxygen to tissues compared to red-blooded Antarctic fishes. Previous studies have shown that icefishes are indeed less tolerant to elevations in temperature but the underlying factors are completely unknown. Additionally, it is not understood if red- or white-blooded Antarctic fishes can adjust, or acclimate, to modest increases in temperature, similar to those changes in temperature the animals might experience as the earth warms. The investigators will determine if heart function and/or nervous system function limits thermal tolerance of Antarctic fishes, and will determine their capacity to acclimate to warmer temperatures. The project will further the NSF goal of training new generations of scientists by training graduate and undergraduate students. In addition, the project will collaborate with a high school biology teacher from a school which serves a largely minority student body. The students will learn about the marine environment, and will construct a camera to be used in the field to learn more about Antarctic fishes. Two students and the teacher will also attend a summer marine biology internship program.<br/><br/>Antarctic fishes within the suborder Notothenioidei (called "notothenioids") are among the organisms on earth least able to deal with changes in temperature. The hemoglobinless icefish are even less able to withstand temperature changes than are red-blooded notothenioids. While this is well documented, the underlying physiological and biochemical mechanisms responsible are unknown. The investigators will test the hypotheses that cardiac work is significantly greater in icefishes compared to red-blooded species, and that as temperature increases, the greater cardiac work of icefishes, coupled with reduced blood oxygen-carrying capacity, results in cardiac failure at a lower temperature compared to red-blooded species. They also hypothesize that neuronal function limits thermal tolerance of red-blooded notothenioids. These hypotheses will be tested using a wide variety of experiments. For example, the investigators will measure heart rate concurrently with critical thermal maximum. They will also characterize metabolic and gene-expression responses to elevated temperature and determine if mitochondrial function contributes to thermal tolerance using a variety of techniques. To determine if neuronal function limits thermal tolerance they will quantify behavioral responses to warming of whole animals and to warming of only the brain area. They will also determine if acclimation to warmer temperatures impacts heart function and they will measure activities of a variety of enzymes from central metabolic pathways.
The Antarctic marine ecosystem is highly productive and supports a diverse range of ecologically and commercially important species. A key species in this ecosystem is Antarctic krill, which in addition to being commercially harvested, is the principle prey of a wide range of marine organisms including penguins, seals and whales. The aim of this study is to use penguins and other krill predators as sensitive indicators of past changes in the Antarctic marine food web resulting from climate variability and the historic harvesting of seals and whales by humans. Specifically this study will recover and analyze modern (<20 year old), historic (20-200 year old) and ancient (200-10,000 year old) penguin and other krill predator tissues to track their past diets and population movements relative to shifts in climate and the availability of Antarctic krill. Understanding how krill predators were affected by these factors in the past will allow us to better understand how these predators, the krill they depend on, and the Antarctic marine ecosystem as a whole will respond to current challenges such as global climate change and an expanding commercial fishery for Antarctic krill. The project will further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This project will support the cross-institutional training of undergraduate and graduate students in advanced analytical techniques in the fields of ecology and biogeochemistry. In addition, this project includes educational outreach aimed encouraging participation in science careers by engaging K-12 students in scientific issues related to Antarctica, penguins, marine ecology, biogeochemistry, and global climate change.<br/><br/>This research will help place recent ecological changes in the Southern Ocean into a larger historical context by examining decadal and millennial-scale shifts in the diets and population movements of Antarctic krill predators (penguins, seals, and squid) in concert with climate variability and commercial harvesting. This will be achieved by coupling advanced stable and radio isotope techniques, particularly compound-specific stable isotope analysis, with unprecedented access to modern, historical, and well-preserved paleo-archives of Antarctic predator tissues dating throughout the Holocene. This approach will allow the project to empirically test if observed shifts in Antarctic predator bulk tissue stable isotope values over the past millennia were caused by climate-driven shifts at the base of the food web in addition to, or rather than, shifts in predator diets due to a competitive release following the historic harvesting of krill eating whale and seals. In addition, this project will track the large-scale abandonment and reoccupation of penguin colonies around Antarctica in response to changes in climate and sea ice conditions over the past several millennia. These integrated field studies and laboratory analyses will provide new insights into the underlying mechanisms that influenced past shifts in the diets and population movements of charismatic krill predators such as penguins. This will allow for improved projections of the ecosystem consequences of future climate change and anthropogenic harvesting scenarios in the Antarctica that are likely to affect the availability of Antarctic krill.
Overview: The funded work investigated whether ice core 86Kr acts as a proxy for barometric pressure variability, and whether this proxy can be used in Antarctic ice cores to infer past movement of the Southern Hemisphere (SH) westerly winds. Pressure variations drive macroscopic air movement in the firn column, which reduces the gravitational isotopic enrichment of slow-diffusing gases (such as Kr). The 86Kr deviation from gravitational equilibrium (denoted D86Kr) thus reflects the magnitude of pressure variations (among other things). Atmospheric reanalysis data suggest that pressure variability over Antarctica is linked to the Southern Annular Mode (SAM) index and the position of the SH westerly winds. Preliminary data from the WAIS Divide ice core show a large excursion in D86Kr during the last deglaciation (20-9 ka before present). In this project the investigators (1) performed high-precision 86Kr analysis on ice core and firn air samples to establish whether D86Kr is linked to pressure variability; (2) Refined the deglacial WAIS Divide record of Kr isotopes; (3) Investigated the role of pressure variability in firn air transport using firn air models with firn microtomography data and Lattice- Boltzmann modeling; and (4) Investigated how barometric pressure variability in Antarctica is linked to the SAM index and the position/strength of the SH westerlies in past and present climates using GCM and reanalysis data. A key finding was that D86Kr in recent ice samples (e.g. last 50 years) from a broad spatial array of sites in Antarctica and Greenland showed a significant correlation with directly measured barometric pressure variability at the ice core site. This strongly supports the hypothesis that 86Kr can be used as a paleo-proxy for storminess.
Intellectual Merit: The SH westerlies are a key component of the global climate system; they are an important control on the global oceanic overturning circulation and possibly on atmospheric CO2 concentrations. Poleward movement of the SH westerlies during the last deglaciation has been hypothesized, yet evidence from proxy and modeling studies remains inconclusive. The funded work could provide valuable new constraints on deglacial movement of the SH westerlies. This record can be compared to high-resolution CO2 data from the same core, allowing us to test hypotheses that link CO2 to the SH westerlies. Climate proxies are at the heart of paleoclimate research. The funded work has apparently led to the discovery of a completely new proxy, opening up exciting new research possibilities and increasing the scientific value of existing ice cores. Once validated, the 86Kr proxy could be applied to other time periods as well, providing a long-term perspective on the movement of the SH westerlies. The funded work has furthermore provided valuable new insights into firn air transport.
Broader impact: The Southern Ocean is presently an important sink of atmospheric CO2, thereby reducing the warming associated with anthropogenic CO2 emissions. Stratospheric ozone depletion and greenhouse warming have displaced the SH westerlies poleward, with potential consequences for the future magnitude of this oceanic carbon uptake. The funded work may provide a paleo-perspective on past movement of the SH westerlies and its link to atmospheric CO2, which could guide projections of future oceanic CO2 uptake, with strong societal benefits. The awarded funds supported and trained an early-career postdoctoral scholar at OSU, and fostered (international) collaboration. Data from the study will be available to the scientific community and the broad public through recognized data centers. During this project the PI and senior personnel have continued their commitment to public outreach through media interviews and speaking to schools and the public about their work. The PI provides services to the community by chairing the IPICS (International Partnership in Ice Core Sciences) working group and organizing annual PIRE (Partnerships in International Research and Education) workshops.
This award supports a project to study the physical processes that synchronize glacial-scale variability between the Northern Hemisphere ice sheets and the Antarctic ice-sheet. Using a coupled numerical ice-sheet earth-system model, the research team will explore the cryospheric responses to past changes in greenhouse gas concentrations and variations in earth's orbit and tilt. First capturing the sensitivity of each individual ice-sheet to these forcings and then determining their joint variability induced by changes in sea level, ocean temperatures and atmospheric circulation, the researchers will quantify the relative roles of local versus remote effects on long-term ice volume variability. The numerical experiments will provide deeper physical insights into the underlying dynamics of past Antarctic ice-volume changes and their contribution to global sea level. Output from the transient earth system model simulations will be directly compared with ice-core data from previous and ongoing drilling efforts, such as West Antarctic Ice Sheet (WAIS) Divide. Specific questions that will be addressed include: 1) Did the high-latitude Southern Hemispheric atmospheric and oceanic climate, relevant to Antarctic ice sheet forcing, respond to local insolation variations, CO2, Northern Hemispheric changes, or a combination thereof?; 2) How did WAIS and East Antarctic Ice Sheet (EAIS) vary through the Last Glacial Termination and into the Holocene (21 ka- present)?; 3) Did the WAIS (or EAIS) contribute to rapid sea-level fluctuations during this period, such as Meltwater Pulse 1A? 4) Did WAIS collapse fully at Stage 5e (~ 125 ka), and what was its timing relative to the maximum Greenland retreat?; and 5) How did the synchronized behavior of Northern Hemisphere and Southern Hemisphere ice-sheet variations affect the strength of North Atlantic Deep Water and Antarctic Bottom Water formation and the respective overturning cells? The transient earth-system model simulations conducted as part of this project will be closely compared with paleo-climate reconstructions from ice cores, sediment cores and terrestrial data. This will generate an integrated understanding of the hemispheric contributions of deglacial climate change, the origin of meltwater pulses, and potential thresholds in the coupled ice-sheet climate system in response to different types of forcings. A well-informed long-term societal response to sea level rise requires a detailed understanding of ice-sheet sensitivities to external forcing. The proposed research will strongly contribute to this task through numerical modeling and paleo-data analysis. The research team will make the resulting model simulations available on the web-based data server at the Asia Pacific Data Research Center (APDRC) to enable further analysis by the scientific community. As part of this project a female graduate student and a postdoctoral researcher will receive training in earth-system and ice-sheet modeling and paleo-climate dynamics. This award has no field work in Antarctica.
Non-Technical Summary:<br/> About 80 million years ago, the tip of the Antarctic Peninsula in the vicinity of what is now James Ross Island experienced an episode of rapid subsidence, creating a broad depositional basin that collected sediments eroding from the high mountains to the West. This depression accumulated a thick sequence of fossil-rich, organic-rich sediments of the sort that are known to preserve hydrocarbons, and for which Argentina, Chile, and the United Kingdom have overlapping territorial claims. The rocks preserve one of the highest resolution records of the biological and climatic events that led to the eventual death of the dinosaurs at the Cretaceous-Tertiary boundary (about 66 million years ago). A previous collaboration between scientists from the Instituto Antártico Argentino (IAA) and NSF-supported teams from Caltech and the University of Washington were able to show that this mass extinction event started nearly 50,000 years before the sudden impact of an asteroid. The asteroid obviously hit the biosphere hard, but something else knocked it off balance well before the asteroid hit. <br/> A critical component of the previous work was the use of reversals in the polarity of the Earth?s magnetic field as a dating tool ? magnetostratigraphy. This allowed the teams to correlate the pattern of magnetic reversals from Antarctica with elsewhere on the planet. This includes data from a major volcanic eruption (a flood basalt province) that covered much of India 65 million years ago. The magnetic patterns indicate that the Antarctic extinction started with the first pulse of this massive eruption, which was also coincident with a rapid spike in polar temperature. The Argentinian and US collaborative teams will extend this magnetic polarity record back another ~ 20 million years in time, and expand it laterally to provide magnetic reversal time lines across the depositional basin. They hope to recover the end of the Cretaceous Long Normal interval, which is one of the most distinctive events in the history of Earth?s magnetic field. The new data should refine depositional models of the basin, allow better estimates of potential hydrocarbon reserves, and allow biotic events in the Southern hemisphere to be compared more precisely with those elsewhere on Earth. Other potential benefits of this work include exposing several US students and postdoctoral fellows to field based research in Antarctica, expanding the international aspects of this collaborative work via joint IAA/US field deployments, and follow-up laboratory investigations and personnel exchange of the Junior scientists.<br/><br/><br/>Technical Description of Project <br/>The proposed research will extend the stratigraphic record in the late Cretaceous and early Tertiary sediments (~ 83 to 65 Ma before present) of the James Ross Basin, Antarctica, using paleo-magnetic methods. Recent efforts provided new methods to analyze these rocks, yielding their primary magnetization, and producing both magnetic polarity patterns and paleomagnetic pole positions. This provided the first reliable age constraints for the younger sediments on Seymour Island, and quantified the sedimentation rate in this part of the basin. The new data will allow resolution of the stable, remnant magnetization of the sediments from the high deposition rate James Ross basin (Tobin et al., 2012), yielding precise chronology/stratigraphy. This approach will be extended to the re-maining portions of this sedimentary basin, and will allow quantitative estimates for tectonic and sedimentary processes between Cretaceous and Early Tertiary time. The proposed field work will refine the position of several geomagnetic reversals that occurred be-tween the end of the Cretaceous long normal period (Chron 34N, ~ 83 Ma), and the lower portion of Chron 31R (~ 71 Ma). Brandy Bay provides the best locality for calibrating the stratigraphic position of the top of the Cretaceous Long Normal Chron, C34N. Although the top of the Cretaceous long normal Chron is one of the most important correlation horizons in the entire geological timescale, it is not properly correlated to the southern hemisphere biostratigraphy. Locating this event, as well as the other reversals, will be a major addition to understanding of the geological history of the Antarctic Peninsula. These data will also help refine tectonic models for the evolution of the Southern continents, which will be of use across the board for workers in Cretaceous stratigraphy (including those involved in oil exploration).<br/>This research is a collaborative effort with Dr. Edward Olivero of the Centro Austral de Investigaciones Cientificas (CADIC/CONICET) and Prof. Augusto Rapalini of the University of Buenos Aires. The collaboration will include collection of samples on their future field excursions to important targets on and around James Ross Island, supported by the Argentinian Antarctic Program (IAA). Argentinian scientists and students will also be involved in the US Antarctic program deployments, proposed here for the R/V Laurence Gould, and will continue the pattern of joint international publication of the results.
McConnell/1142166<br/><br/>This award supports a project to use unprecedented aerosol and continuous gas (methane, carbon monoxide) measurements of the deepest section of the West Antarctic Ice Sheet (WAIS) Divide ice core to investigate rapid climate changes in Antarctica during the ~60,000 year long Marine Isotope Stage 3 period of the late Pleistocene. These analyses, combined with others, will take advantage of the high snow accumulation of the WAIS Divide ice core to yield the highest time resolution glaciochemical and gas record of any deep Antarctic ice core for this time period. The research will expand already funded discrete gas measurements and extend currently funded continuous aerosol measurements on the WAIS Divide ice core from ~25,000 to ~60,000 years before present, spanning Heinrich events 3 to 6 and Antarctic Isotope Maximum (AIM, corresponding to the Northern Hemisphere Dansgaard-Oeschger) events 3 to 14. With other high resolution Greenland cores and lower resolution Antarctic cores, the combined record will yield new insights into worldwide climate dynamics and abrupt change. The intellectual merit of the work is that it will be used to address the science goals of the WAIS Divide project including the identification of dust and biomass burning tracers such as black carbon and carbon monoxide which reflect mid- and low-latitude climate and atmospheric circulation patterns, and fallout from these sources affects marine and terrestrial biogeochemical cycles. Similarly, sea salt and ocean productivity tracers reflect changes in sea ice extent, marine primary productivity, wind speeds above the ocean, and atmospheric circulation. Volcanic tracers address the relationship between northern, tropical, and southern climates as well as stability of the West Antarctic ice sheet and sea level change. When combined with other gas records from WAIS Divide, the records developed here will transform understanding of mid- and low-latitude drivers of Antarctic, Southern Hemisphere, and global climate rapid changes and the timing of such changes. The broader impacts of the work are that it will enhance infrastructure through expansion of continuous ice core analytical techniques, train students and support collaboration between two U.S. institutions (DRI and OSU). All data will be made available to the scientific community and the public and will include participation the WAIS Divide Outreach Program. Extensive graduate and undergraduate student involvement is planned. Student recruitment will be made from under-represented groups building on a long track record. Broad outreach will be achieved through collaborations with the global and radiative modeling communities, NESTA-related and other educational outreach efforts, and public lectures. This proposed project does not require field work in the Antarctic.
Intellectual Merit: <br/>The primary goal of this project is to sample two beds in the Meyer Desert Formation, which are known to be especially fossiliferous containing plants, insects, other arthropods, freshwater mollusks, and fish. There is a possibility that the teeth and bones of a small marsupial could also be found. Previous studies have demonstrated that these horizons contain unique fossil assemblages that provide information used to reconstruct paleoenvironments and paleoclimate. The fossils represent organisms previously not found in Antarctica and consequently their study will lead to the development of new hypotheses concerning southern hemisphere biogeography. The new discoveries will also increase knowledge of paleoenvironments and paleoclimates as well as biogeographic relationships of the biota of the southern hemisphere. For some organisms, such as Nothofagus (Southern Beech) or the trechine groundbeetle, fossils would confirm that Antarctica was inhabited as part of Gondwana. For other fossils, such as the cyclorrhaphan fly or freshwater mollusks not expected to have inhabited Antarctica, the discoveries will require a reassessment of phylogenetic interpretations and a reinvestigation of the role of Antarctica in the evolutionary history of those organisms. The new fossil-based knowledge will require integration with interpretations from cladistics and molecular genetics to develop more comprehensive phylogenetic hypotheses for a range of organisms.<br/><br/>Broader impacts: <br/>The discovery of fossils in Antarctica and implications for climate change has proven to be popular with the media. This attention will help disseminate the results of this study. Before the field season, the PI will work with local media and with area schools to set up field interviews and web casts from Antarctica. The project will also involve the training of a graduate student in the field and in the follow up studies of the fossils in the laboratory.
Intellectual Merit: <br/>The PIs propose to address the question of whether ice surface melting zones developed at high elevations during warm climatic phases in the Transantarctic Mountains. Evidence from sediment cores drilled by the ANDRILL program indicates that open water in the Ross Sea could have been a source of warmth during Pliocene and Pleistocene. The question is whether marine warmth penetrated inland to the ice sheet margins. The glacial record may be ill suited to answer this question, as cold-based glaciers may respond too slowly to register brief warmth. Questions also surround possible orbital controls on regional climate and ice sheet margins. Northern Hemisphere insolation at obliquity and precession timescales is thought to control Antarctic climate through oceanic or atmospheric connections, but new thinking suggests that the duration of Southern Hemisphere summer may be more important. The PIs propose to use high elevation alluvial deposits in the Transantarctic Mountains as a proxy for inland warmth. These relatively young fans, channels, and debris flow levees stand out as visible evidence for the presence of melt water in an otherwise ancient, frozen landscape. Based on initial analyses of an alluvial fan in the Olympus Range, these deposits are sensitive recorders of rare melt events that occur at orbital timescales. For their study they will 1) map alluvial deposits using aerial photography, satellite imagery and GPS assisted field surveys to establish water sources and to quantify parameters effecting melt water production, 2) date stratigraphic sequences within these deposits using OSL, cosmogenic nuclide, and interbedded volcanic ash chronologies, 3) use paired nuclide analyses to estimate exposure and burial times, and rates of deposition and erosion, and 4) use micro and regional scale climate modeling to estimate paleoenvironmental conditions associated with melt events.<br/><br/>Broader impacts: <br/>This study will produce a record of inland melting from sites adjacent to ice sheet margins to help determine controls on regional climate along margins of the East Antarctic Ice Sheet to aid ice sheet and sea level modeling studies. The proposal will support several graduate and undergraduates. A PhD student will be supported on existing funding. The PIs will work with multiple K 12 schools to conduct interviews and webcasts from Antarctica and they will make follow up visits to classrooms after the field season is complete.
Intellectual Merit: <br/>The PI will collect samples to extend the magneto-stratigraphic record of late Cretaceous sediments of the James Ross Basin, Antarctica. RAPID support will allow him to take advantage of an invitation from the Instituto Antartico Argentino (IAA) to participate on an excursion to James Ross Island in the Antarctic Peninsula. The PI hopes to collect samples that will refine the position of several geomagnetic reversals between the end of the Cretaceous long normal Chron and the lower portion of Chron 31R. The Brandy Bay locality targeted by this expedition is the best place in the basin for calibrating the biostratigraphic position of the top of the Cretaceous Long Normal Chron, which is one of the most reliable correlation horizons in the entire Geological Time Scale.<br/><br/>Broader impacts: <br/>The top of the Cretaceous long normal Chron is not properly correlated to southern hemisphere biostratigraphy. Locating this event will be a major addition to understanding geological time. This expedition will provide opportunities for an undergraduate student. This project is based on a productive collaboration with an Argentine scientist.
This project constructs POLENET a network of GPS and seismic stations in West Antarctica to understand how the mass of the West Antarctic ice sheet (WAIS) changes with time. The information is ultimately used to predict sea level rise accompanying global warming and interpret climate change records. The GPS (global positioning system) stations measure vertical and horizontal movements of bedrock, while the seismic stations characterize physical properties of the ice/rock interface, lithosphere, and mantle. Combined with satellite data, this project offers a more complete picture of the ice sheet's current state, its likely change in the near future, and its overall size during the last glacial maximum. This data will also be used to infer sub-ice sheet geology and the terrestrial heat flux, critical inputs to models of glacier movement. As well, this project improves tomographic models of the earth's deep interior and core through its location in the Earth's poorly instrumented southern hemisphere. <br/><br/><br/><br/>Broader impacts of this project are varied. The work is relevant to society for improving our understanding of the impacts of global warming on sea level rise. It also supports education at the postdoctoral, graduate, and undergraduate levels, and outreach to groups underrepresented in the sciences. As an International Polar Year contribution, this project establishes a legacy of infrastructure for polar measurements. It also involves an international collaboration of twenty four countries. For more information see IPY Project #185 at IPY.org. NSF is supporting a complementary Arctic POLENET array being constructed in Greenland under NSF Award #0632320.
Cole-Dai/0839066<br/><br/>This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>This award supports a project to make continuous major ion analyses in the West Antarctica Ice Sheet Divide (WAIS Divide) ice core by sampling the brittle ice zone (approximately from 500 m to 1500 m). The intellectual merit of the project is that these will likely be the only chemical measurements on the brittle ice zone and, therefore, will bridge the gap in the expected continuous records of climate, ice sheet dynamics and biological evolution based on chemical measurements. High resolution sampling and analysis, probably on selected portions and depth intervals in the brittle ice zone, will help with the independent, high-precision dating of the WAIS Divide core and contribute to the achievement of the major objectives of the WAIS Divide project?development of high resolution climate records with which to investigate issues of climate forcing by greenhouse gases and the role of Antarctica and Southern Hemisphere in the global climate system. Planned collaboration with other WAIS Divide investigators will develop the longest and most detailed volcanic record from Antarctica ice cores. The broader impacts of this project include a contribution to enhancing our knowledge of the climate system. Such improvements in understanding of the global climate system and the ability to predict the magnitude and uncertainty of future changes are highly relevant to the global community. The project will support post-doctoral scientists and graduate students, including those from under-represented groups, will contribute to education, an help to train future scientists and promote diversity in research and education. Public outreach activities of this project will contribute to informal science education of school age children in the Eastern South Dakota region.
The auroral electrojet index (AE) is used as an indicator of geomagnetic activity at high latitudes representing the strength of auroral electrojet currents in the Northern polar ionosphere. A similar AE index for the Southern hemisphere is not available due to lack of complete coverage the Southern auroral zone (half of which extends over the ocean) with continuous magnetometer observations. While in general global auroral phenomena are expected to be conjugate, differences have been observed in the conjugate observations from the ground and from the Earth's satellites. These differences indicate a need for an equivalent Southern auroral geomagnetic activity index. The goal of this award is to create the Southern AE (SAE) index that would accurately reflect auroral activity in that hemisphere. With this index, it would be possible to investigate the similarities and the cause of differences between the SAE and "standard" AE index from the Northern hemisphere. It would also make it possible to identify when the SAE does not provide a reliable calculation of the Southern hemisphere activity, and to determine when it is statistically beneficial to consider the SAE index in addition to the standard AE while analyzing geospace data from the Northern and Southern polar regions. The study will address these questions by creating the SAE index and its "near-conjugate" NAE index from collected Antarctic magnetometer data, and will analyze variations in the cross-correlation of these indices and their differences as a function of geomagnetic activity, season, Universal Time, Magnetic Local Time, and interplanetary magnetic field and solar wind plasma parameters. The broader impact resulting from the proposed effort is in its importance to the worldwide geospace scientific community that currently uses only the standard AE index in a variety of geospace models as necessary input.
This award supports a project to perform continuous microparticle concentration and size distribution measurements (using coulter counter and state-of-the-art laser detector methods), analysis of biologically relevant trace elements associated with microparticles (Fe, Zn, Co, Cd, Cu), and tephra measurements on the WAIS Divide ice core. This initial three-year project includes analysis of ice core spanning the instrumental (~1850-present) to mid- Holocene (~5000 years BP) period, with sample resolution ranging from subannual to decadal. The intellectual merit of the project is that it will help in establishing the relationships among climate, atmospheric aerosols from terrestrial and volcanic sources, ocean biogeochemistry, and greenhouse gases on several timescales which remain a fundamental problem in paleoclimatology. The atmospheric mineral dust plays an important but uncertain role in direct radiative forcing, and the microparticle datasets produced in this project will allow us to examine changes in South Pacific aerosol loading, atmospheric dynamics, and dust source area climate. The phasing of changes in aerosol properties within Antarctica, throughout the Southern Hemisphere, and globally is unclear, largely due to the limited number of annually dated records extending into the glacial period and the lack of a<br/>tephra framework to correlate records. The broader impacts of the proposed research are an interdisciplinary approach to climate science problems, and will contribute to several WAIS Divide science themes as well as the broader paleoclimate and oceanographic communities. Because the research topics have a large and direct societal relevance, the project will form a centerpiece of various outreach efforts at UMaine and NMT including institution websites, public speaking, local K-12 school interaction, media interviews and news releases, and popular literature. At least one PhD student and one MS student will be directly supported by this project, including fieldwork, core processing, laboratory analysis, and data interpretation/publication. We expect that one graduate student per year will apply for a core handler/assistant driller position through the WAIS Divide Science Coordination Office, and that undergraduate student involvement will result in several Capstone experience projects (a UMaine graduation requirement). Data and ideas generated from the project will be integrated into undergraduate and graduate course curricula at both institutions.
Sowers/Brook<br/>0538538<br/>This award supports a project to develop a high-resolution (every 50 yr) methane data set that will play a pivotal role in developing the timescale for the new deep ice core being drilled at the West Antarctic Ice Sheet Divide (WAIS Divde) site as well as providing a common stratigraphic framework for comparing climate records from Greenland and WAIS Divide. Certain key intervals will be measured at even higher resolution to assist in precisely defining the phasing of abrupt climate change between the northern and southern hemispheres. Concurrent analysis of a suit of samples from both the WAIS Divide and GISP2 ice cores throughout the last 110kyr is also proposed, to establish the inter-hemispheric methane gradient which will be used to identify geographic areas responsible for the climate-related methane emission changes. A large gas measurement inter-calibration of numerous laboratories, utilizing both compressed air cylinders and WAIS Divide ice core samples, will also be performed. The intellectual merit of the proposed work is that it will provide the chronological control needed to examine the timing of changes in climate proxies, and critical chronological ties to the Greenland ice core records via methane variations. In addition, the project addresses the question of what methane sources were active during the ice age and will help to answer the fundamental question of what part of the biosphere controlled past methane variations. The broader impact of the proposed work is that it will directly benefit all ice core paleoclimate research and will impact the paleoclimate studies that rely on ice core timescales for correlation purposes. The project will also support a Ph.D. student at Oregon State University who will have the opportunity to be involved in a major new ice coring effort with international elements. Undergraduates at Penn State will gain valuable laboratory experience and participate fully in the project. The proposed work will underpin the WAIS Divide chronology, which will be fundamental to all graduate student projects that involve the core. The international inter-calibration effort will strengthen ties between research institutions on four continents and will be conducted as part of the International Polar Year research agenda.
Edwards/0739780<br/><br/>This award supports a project to develop a 2,000-year high-temporal resolution record of biomass burning from the analysis of black carbon in the WAIS Divide bedrock ice core. Pilot data for the WAIS WD05A core demonstrates that we now have the ability to reconstruct this record with minimal impact on the amount of ice available for other projects. The intellectual merit of this project is that black carbon (BC) aerosols result solely from combustion and play a critical but poorly quantified role in global climate forcing and the carbon cycle. When incorporated into snow and ice, BC increases absorption of solar radiation making seasonal snow packs, mountain glaciers, polar ice sheets, and sea ice much more vulnerable to climate warming. BC emissions in the Southern Hemisphere are dominated by biomass burning in the tropical regions of Southern Africa, South America and South Asia. Biomass burning, which results from both climate and human activities, alters the atmospheric composition of greenhouse gases, aerosols and perturbs key biogeochemical cycles. A long-term record of biomass burning is needed to aid in the interpretation of ice core gas composition and will provide important information regarding human impacts on the environment and climate before instrumental records. The broader impacts of the project are that it represents a paradigm shift in our ability to reconstruct the history of fire from ice core records and to understand its impact on atmospheric chemistry and climate over millennial time scales. This type of data is especially needed to drive global circulation model simulations of black carbon aerosols, which have been found to be an important component of global warming and which may be perturbing the hydrologic cycle. The project will also employ undergraduate students and is committed to attracting underrepresented groups to the physical sciences. The project?s outreach component will be conducted as part of the WAIS project outreach program and will reach a wide audience.
"This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5)."<br/><br/>The solar wind - magnetosphere - ionosphere system and the space weather phenomena it controls is a complex and dynamic environment that has increasing recognition of potentially impacting critical human technological infrastructure. To be able to forecast, and thus adapt to, the impact space weather events may have on infrastructure as diverse as satellite communications and power grids, it is necessary to develop accurate geomagnetic models of the Sun-Earth environment. Due to the dipole nature of the planet's magnetic field, the Earth's outer magnetosphere maps to relatively small regions in the polar and auroral latitudes in both hemispheres. The northern hemisphere is relatively well instrumented. However, lack of sufficient observations particularly notable in the Southern hemisphere lessens our ability to validate global models of the geospace environment. The main magnetic dipole is offset and tilted, resulting in a weaker polar field in the southern hemisphere. Seasonal ionospheric electrodynamic asymetries similarly result. The magnitudes of both these effects need to be measured and more fully understood to build reliable Space Weather models.<br/><br/>This project seeks continued development and deployment of a chain of magnetometers located along the southern high latitude 40 degree magnetic meridian to provide conjugate inter-hemispheric measurements complementing the data from the existing dense Greenland west coast magnetometer array. Such measurements open the promise of simultaneous data from northern and southern hemispheres to enable the investigation of inter-hemispheric electrodynamic coupling throughout the entire outer magnetosphere.
This award supports a two year program to produce a new reconstruction of ice extent, elevation and thickness at the Last Glacial Maximum (LGM) for the South Shetland Islands in the Antarctic Peninsula. One field season on Livingston Island will involve mapping the areal extent and geomorphology of glacial drift and determining the elevation and distribution of trimlines. In addition, ice flow direction will be determined by mapping and measuring the elevation of erosional features and the position of erratic boulders. One of the main goals of this work will be to demonstrate whether or not organic material suitable for radiocarbon dating exists in the South Shetland Islands. If so, the age of the deposits will be determined by measuring the carbon-14 age of plant, algal, and fungal remains preserved at the base of the deposits, as well as incorporated marine shells, seal skin and other organic material that may be found in raised beach deposits. Another goal will be to concentrate on the development of relative sea-level curves from 2-3 key areas to show whether or not construction of such curves for the South Shetland Islands is possible. The new reconstruction of ice extent, elevation and thickness at the Last Glacial Maximum for the South Shetland Islands which will be produced by this work will be useful in studies of ocean circulation and ice dynamics in the vicinity of the Drake Passage. It will also contribute to the production of a deglacial chronology which will afford important clues about the mechanisms controlling ice retreat in this region of the southern hemisphere.
Anderson OPP 9527876 Abstract This award supports continuation of a long term investigation of the continental shelf sediments that is aimed at examining the configuration of the West Antarctic Ice Sheet during the last glacial maximum, the events and mechanisms involved in its retreat, and the timing of retreat. The project involves: 1) characterizing variations in the ice sheet grounding zone in a latitudinal transect extending from Ross Sea to Bransfield Basin, 2) reconstructing conditions at the ice/bed interface prior to and after ice sheet retreat, and 3) radiometrically dating ice sheet retreat along this transect. Detailed sea floor imagery (multibeam and deep-tow side-scan sonar), high resolution seismic reflection profiles, and sediment cores will be used to map and characterize prior grounding zones. Of particular concern are features that indicate the amount and organization (channelization) of basal meltwater and the extent of bed deformation that occurred in different ice streams. The timing of ice sheet retreat provides information about the link between Northern and Southern hemisphere ice expansion, and the role of eustasy in ice sheet decoupling. This research should lead to better predictive models to determine which ice streams are most unstable and likely, therefore, to serve as Oweak linksO in the long term behavior of West Antarctic Ice Sheet.
9528807 Gordon The proposed project is part of a multi-institutional integrated study of the outflow of newly formed bottom water from the Weddell Sea and its dispersion into the South Atlantic Ocean. It builds upon earlier successful studies of the inflow of intermediate water masses into the Eastern Weddell Sea, their modification within the Weddell Gyre, and their interaction with bottom water formation processes in the western Weddell Sea. The study is called Deep Ocean Ventilation Through Antarctic Intermediate Layers (DOVETAIL) and includes six components involving hydrographic measurements, natural tracer experiments, and modeling studies. The study will be centered east of the Drake Passage where water masses from the Weddell Sea and the Scotia Sea come together in the Weddell-Scotia Confluence, and will be carried out in cooperation with the national antarctic programs of Germany and Spain. This particular component concerns observations of the temperature and salinity structure, as well as the chemical nature of the water column in the confluence region. The study has four related objectives. The first is to assess the quantity and the physical and chemical characteristics of Weddell Sea source waters for the confluence. The second is to describe the dominant processes associated with spreading and sinking of dense antarctic waters within the Weddell-Scotia Confluence. The third is to estimate the ventilation rate of the world ocean, and the fourth is to estimate seasonal fluctuations in the regional ocean transport and hydrographic structure and to assess the likely influence of seasonal to interannual variability on rates of ventilation by Weddell Sea waters. Ventilation of the deep ocean -- the rising of sub-surface water masses to the surface to be recharged with atmospheric gases and to give up heat to the atmosphere -- is a uniquely antarctic phenomenon that has significant consequences for global change by affecting the g lobal reservoir of carbon dioxide, and by modulating the amount and extent of seasonal sea ice in the southern hemisphere. This component will make systematic observations of the temperature salinity structure of the water and undertake an extensive sampling program for other chemical studies. The purpose is to identify the individual water masses and to relate their temperature and salinity characteristics to the modification processes within the Weddell Sea. ***
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). <br/><br/>This award supports a project to reconstruct the past physical and chemical climate of Antarctica, with an emphasis on the region surrounding the Ross Sea Embayment, using >60 ice cores collected in this region by US ITASE and by Australian, Brazilian, Chilean, and New Zealand ITASE teams. The ice core records are annually resolved and exceptionally well dated, and will provide, through the analyses of stable isotopes, major soluble ions and for some trace elements, instrumentally calibrated proxies for past temperature, precipitation, atmospheric circulation, chemistry of the atmosphere, sea ice extent, and volcanic activity. These records will be used to understand the role of solar, volcanic, and human forcing on Antarctic climate and to investigate the character of recent abrupt climate change over Antarctica in the context of broader Southern Hemisphere and global climate variability. The intellectual merit of the project is that ITASE has resulted in an array of ice core records, increasing the spatial resolution of observations of recent Antarctic climate variability by more than an order of magnitude and provides the basis for assessment of past and current change and establishes a framework for monitoring of future climate change in the Southern Hemisphere. This comes at a critical time as global record warming and other impacts are noted in the Southern Ocean, the Antarctic Peninsula, and on the Antarctic ice sheet. The broader impacts of the project are that Post-doctoral and graduate students involved in the project will benefit from exposure to observational and modeling approaches to climate change research and working meetings to be held at the two collaborating institutions plus other prominent climate change institutions. The results are of prime interest to the public and the media Websites hosted by the two collaborating institutions contain climate change position papers, scientific exchanges concerning current climate change issues, and scientific contribution series.
This award supports work on trapped gases in Antarctic and other ice cores for paleoenvironmental and chronological purposes. The project will complete a ~ 100,000 year, high-resolution record of atmospheric methane from the Siple Dome ice core and use these data to construct a precise chronology for climate events recorded by the Siple Dome record. In addition, the resolution of the GISP2 (Greenland) ice core record will be increased in some critical intervals to help with the Siple Dome chronology and that of future ice cores. Finally, an upgrade to the analytical capabilities of the laboratory, including increasing precision and throughput and decreasing sample size needed for ice core methane measurements will be an important goal of this work. The proposed work will contribute to the understanding of the timing of rapid climate change in the Northern and Southern hemispheres during the last glacial period, the evolution of the global methane budget in the late Quaternary, and the late Quaternary climate history of Antarctica. It will also improve our ability to generate methane records for future ice coring projects, and inform and enrich the educational and outreach activities of our laboratory.
This award supports a project to collect and develop high-resolution ice core records from the Dry Valleys region of Antarctica, and provide interpretations of interannual to decadal-scale climate variability during the last 2000 years (late Holocene). The project will test hypotheses related to ocean/atmosphere teleconnections (e.g., El Nino Southern Oscillation, Antarctic Oscillation) that may be responsible for major late Holocene climate events such as the Little Ice Age in the Southern Hemisphere. Conceptual and quantitative models of these processes in the Dry Valleys during the late Holocene are critical for understanding recent climate changes, and represent the main scientific merit of the project. We plan to collect intermediate-length ice cores (100-200m) at four sites along transects in Taylor Valley and Wright Valley, and analyze each core at high resolution for stable isotopes (d18O, dD), major ions (Na+, Mg2+, Ca2+, K+, NH4+, Cl-, NO3-, SO42-, MSA), and trace elements (Al, Fe, S, Sr, B). A suite of statistical techniques will be applied to the multivariate glaciochemical dataset to identify chemical associations and to calibrate the time-series records with available instrumental data. Broader impacts of the project include: 1) contributions to several ongoing interdisciplinary Antarctic research programs; 2) graduate and undergraduate student involvement in field, laboratory, and data interpretation activities; 3) use of project data and ideas in several UMaine courses and outreach activities; and 4) data dissemination through peer-reviewed publications, UMaine and other paleoclimate data archive websites, and presentations at national and international meetings.
0124049<br/>Berger<br/><br/>This award supports a project to add to the understanding of what drives glacial cycles. Most researchers agree that Milankovitch seasonal forcing paces the ice ages but how these insolation changes are leveraged into abrupt global climate change remains unknown. A current popular view is that the climate of Antarctica and the Southern Ocean leads that of the rest of the world by a couple thousand years at Termination I and by even greater margins during previous terminations. This project will integrate the geomorphological record of glacial history with a series of cores taken from the lake bottoms in the Dry Valleys of the McMurdo Sound region of Antarctica. Using a modified Livingstone corer, transects of long cores will be obtained from Lakes Fryxell, Bonney, Joyce, and Vanda. A multiparameter approach will be employed which is designed to extract the greatest possible amount of former water-level, glaciological, and paleoenvironmental data from Dry Valleys lakes. Estimates of hydrologic changes will come from different proxies, including grain size, stratigraphy, evaporite mineralogy, stable isotope and trace element chemistry, and diatom assemblage analysis. The chronology, necessary to integrate the cores with the geomorphological record, as well as for comparisons with Antarctic ice-core and glacial records, will come from Uranium-Thorium, Uranium-Helium, and Carbon-14 dating of carbonates, as well as luminescence sediment dating. Evaluation of the link between lake-level and climate will come from hydrological and energy-balance modelling. Combination of the more continuous lake-core sequences with the spatially extensive geomorphological record will result in an integrated Antarctic lake-level and paleoclimate dataset that extends back at least 30,000 years. This record will be compared to Dry Valleys glacier records and to the Antarctic ice cores to address questions of regional climate variability, and then to other Southern Hemisphere and Northern Hemisphere records to assess interhemispheric synchrony or asynchrony of climate change.
This work will study cosmogenic isotope profiles of rock and sediment in the Dry Valleys of Antarctica to understand their origin. The results will provide important constraints on the history of the East Antarctic Ice Sheet. The near-perfect preservation of volcanic ash and overlying sediments suggests that hyperarid cold conditions have prevailed in the Dry Valleys for over 10 Myr. The survival of these sediments also suggests that warm-based ice has not entered the valley system and ice sheet expansion has been minimal. Other evidence, however, suggests that the Dry Valleys have experienced considerably more sediment erosion than generally believed: 1) the cosmogenic exposure ages of boulders and bedrock in the Valleys all show generally younger ages than volcanic ash deposits used to determine minimum ages of moraines and drifts, 2) there appears to be a discrepancy between the suggested extreme preservation of unconsolidated slope deposits (>10 Myr) and adjacent bedrock that has eroded 2.6-6 m during the same time interval. The fact that the till and moraine exposure ages generally post date the overlying volcanic ash deposits could reflect expansion of continental ice sheet into the Dry Valleys with cold-based ice, thus both preserving the landscape and shielding the surfaces from cosmic radiation. Another plausible explanation of the young cosmogenic exposure ages is erosion of the sediments and gradual exhumation of formerly buried boulders to the surface. Cosmogenic isotope systematics are especially well suited to address these questions. We will measure multiple cosmogenic isotopes in profiles of rock and sediment to determine the minimum exposure ages, the degree of soil stability or mixing, and the shielding history of surfaces by cold based ice. We expect to obtain unambiguous minimum ages for deposits. In addition, we should be able to identify areas disturbed by periglacial activity, constrain the timing of such activity, and account for the patchy preservation of important stratigraphic markers such as volcanic ash. The broader impacts of this project include graduate and undergraduate education, and improving our understanding of the dynamics of Southern Hemisphere climate on timescales of millions of years, which has major implications for understanding the controls and impacts of global climate change.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research project between the Saint Mary's College of California, the South Dakota School of Mines and technology, and the Argentine Antarctic Institute (Instituto Antartico Argentino or IAA) to investigate the Late Mesozoic vertebrate paleontology of the James Ross Basin in the Antarctic Peninsula region. The Campanian through the Maastrichtian ages (80 to 65 million years ago) is an important time interval concerning vertebrate biogeography (i.e. dispersals and separations due to moving landmasses) and evolution between Antarctica and other Southern Hemisphere continents (including India, i.e. Gondwana). Moreover, the dispersal of terrestrial vertebrates (i.e. dinosaurs and marsupial mammals) from North America to Antarctica and beyond (e.g. Australia) via Patagonia and the Antarctic Peninsula, as well as the dispersal of modern birds from Antarctica northward are important unresolved questions in paleontology. These dispersal events include vertebrates not only in the terrestrial realms, but also in marine settings. Both widely distributed and localized marine reptile species have been identified in Antarctica, creating questions concerning their dispersal in conjunction with the terrestrial animals.<br/><br/>The Antarctic Peninsula and Patagonia represent the western-most portion of the Weddellian Paleobiogeographic Province, a region that extends from Patagonia through the Antarctic Peninsula and western Antarctica to Australia and New Zealand. Within this province lie the dispersal routes for interchanges of vertebrates between South America and: 1) Madagascar and India, and 2) Australia. As the result of previous work by the principal investigators, it is postulated that an isthmus between more northern South America and the Antarctic craton has served to bring typical North American dinosaurs, such as hadrosaurs (duck-billed dinosaurs) and presumably marsupials traveling overland, while marine reptiles swam along coastal waters, to Antarctica in the latest Cretaceous. Finally, this region has served as the cradle for the evolution, if not the origin, for groups of modern birds, and evolution of a suite of typical southern hemisphere plants.<br/><br/>In order to confirm and expand upon these hypotheses, investigations into the latest Cretaceous deposits of the James Ross Basin, Antarctica Peninsula must be continued. The Cape Lamb and Sandwich Bluff geological units, of the Lopez de Bertodano Formation in the James Ross Basin along the eastern Antarctic Peninsula, exhibit a mixture of marine and terrestrial deposits. The following vertebrates have been recovered from these sedimentary deposits during previous field seasons: plesiosaur and mosasaur marine reptiles; plant eating dinosaurs; a meat eating dinosaur; and a variety of modern bird groups, including shorebirds, wading birds and lagoonal birds.<br/><br/>This project will undertake new fieldwork to recover new specimens in order to test biogeographic and evolutionary hypotheses concerning Late Cretaceous vertebrates in Gondwana. Fieldwork is planned in January 2002 and 2003 to explore the eastern slopes of Cape Lamb, Sandwich Bluff and False Island Point on Vega Island, and the Santa Marta Cove area of James Ross Island.<br/><br/>This research will result in important new insights about the evolution and geographic dispersal of several vertebrate species. The results are important to understanding the development and evolution of life on Earth.<br/><br/>This is a collaborative research project with Argentinean scientists from the IAA and it continues a productive collaboration that began in 1995. In addition, collaboration with vertebrate paleontologists from the Museo de La Plata, both in the field and at our respective institutions in Argentina and in the United States, will continue.
This award is for support for four years of funding for a program of biogenic sulfur measurements on the Siple Dome ice core. Biogenic sulfur is a major aerosol-forming constituent of the atmosphere and has potentially important links to the earth's radiation budget. Previous work on the Vostok ice core has demonstrated a remarkable climate-related variability in biogenic sulfur, suggesting that the sulfur cycle may act to stabilize climate (keep the glacial atmosphere cool and the interglacial atmosphere warm) in the Southern Hemisphere. In this study, methane-sulfonate (MSA) will be measured on the Siple Dome ice core as part of the West Antarctic ice sheet program (WAIS). Siple Dome is located in a region which is strongly impacted by the incursion of marine air onto the Antarctic plateau. Because of its proximity to the coast and meteorological setting, it is expected that variability in high-latitude marine biogenic sulfur emissions should dominate the MSA record at this site. In addition to the deep ice core record, samples from shallow cores will also be analyzed to provide information about regional variability and decadal-to-centennial scale variability in the deposition of sulfur-containing aerosols from high latitude source regions over the past 200 years.