{"dp_type": "Project", "free_text": "Polynya"}
[{"awards": "2135695 Emslie, Steven; 2135696 Polito, Michael", "bounds_geometry": "POLYGON((-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70.8,-180 -71.6,-180 -72.4,-180 -73.2,-180 -74,-180 -74.8,-180 -75.6,-180 -76.4,-180 -77.2,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -77.2,160 -76.4,160 -75.6,160 -74.8,160 -74,160 -73.2,160 -72.4,160 -71.6,160 -70.8,160 -70,162 -70,164 -70,166 -70,168 -70,170 -70,172 -70,174 -70,176 -70,178 -70,-180 -70))", "dataset_titles": "Stable isotopes of Adelie Penguin chick bone collagen", "datasets": [{"dataset_uid": "601913", "doi": "10.15784/601913", "keywords": "Adelie Penguin; Antarctica; Cryosphere; Foraging; Polynya; Pygoscelis Adeliae; Ross Sea; Stable Isotopes", "people": "Powers, Shannon; Emslie, Steven D.; Reaves, Megan", "repository": "USAP-DC", "science_program": null, "title": "Stable isotopes of Adelie Penguin chick bone collagen", "url": "https://www.usap-dc.org/view/dataset/601913"}], "date_created": "Fri, 28 Oct 2022 00:00:00 GMT", "description": "The Ad\u00e9lie penguin (Pygoscelis adeliae) is the most abundant penguin in Antarctica, though its populations are currently facing threats from climate change, loss of sea ice habitat and food supplies. In the Ross Sea region, the cold, dry environment has allowed preservation of Ad\u00e9lie penguin bones, feathers, eggshell and even mummified remains, at active and abandoned colonies that date from before the Last Glacial Maximum (more than 45,000 years ago) to the present. A warming period at 4,000-2,000 years ago, known as the penguin \u2018optimum\u2019, reduced sea ice extent and allowed this species to access and reproduce in the southern Ross Sea. This coastline likely will be reoccupied in the future as marine conditions change with current warming trends. This project will investigate ecological responses in diet and foraging behavior of the Ad\u00e9lie penguin using well-preserved bones and other tissues that date from before, during and after the penguin \u2018optimum\u2019. The Principal investigators will collect and analyze bones, feathers and eggshells from colonies in the Ross Sea to determine changes in population size and feeding locations over millennia. Most of these colonies are associated with highly productive areas of open water surrounded by sea ice. Current warming trends are causing relatively rapid ecological responses by this species and some of the largest colonies in the Ross Sea are likely to be abandoned in the next 50 years from rising sea level. The recently established Ross Sea Marine Protected Area aims to protect Ad\u00e9lie penguins and their foraging grounds in this region from human impacts and knowledge on how this species has responded to climate change in the past will support this goal. This project benefits NSF\u2019s mission to expand fundamental knowledge of Antarctic systems, biota, and processes. In association with their research program, the Principal Investigators will create undergraduate opportunities for research-driven coursework, will design K-12 curriculum and assess the effectiveness of these activities. Two graduate students will be supported by this project to update and refine the curricula working with K-12 teachers. There is also training and partial support included for one doctorate, two master and eight undergraduate students. General public will be reached through social media and YouTube channel productions. A suite of three stable isotopes (carbon, nitrogen, and sulfur) will be analyzed in Adelie penguin bones and feathers from active and abandoned colonies to assess ecological shifts through time. Stable isotope analyses of carbon and nitrogen (\u03b413C and \u03b415N) are commonly used to investigate animal migration, foraging locations and diet, especially in marine species that can travel over great distances. Sulfur (\u03b434S) is not as commonly used but is increasingly being applied to refine and corroborate data obtained from carbon and nitrogen analyses. Collagen is one of the best tissues for these analyses as it is abundant in bone, preserves well, and can be easily extracted for analysis. Using these three isotopes from collagen, ancient and modern penguin colonies will be investigated in the southern, central and northern Ross Sea to determine changes in populations and foraging locations over millennia. Most of these colonies are associated with one of three polynyas in the Ross Sea. This study will be the first of its kind to apply multiple stable isotope analyses to investigate a living species of seabird over millennia in a region where it still exists today. Results from this project will also inform management on best practices for Adelie penguin conservation affected by climate change. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -180.0, "geometry": "POINT(170 -74)", "instruments": null, "is_usap_dc": true, "keywords": "Climate Change; Adelie Penguin; Foraging Ecology; Ross Sea; PENGUINS; Holocene; Stable Isotopes", "locations": "Ross Sea", "north": -70.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Lane, Chad S; Polito, Michael", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Using Multiple Stable Isotopes to Investigate Middle to Late Holocene Ecological Responses by Adelie Penguins in the Ross Sea", "uid": "p0010388", "west": 160.0}, {"awards": "2011285 Santora, Jarrod; 2011454 Veit, Richard", "bounds_geometry": "POLYGON((-39 -53,-38.6 -53,-38.2 -53,-37.8 -53,-37.4 -53,-37 -53,-36.6 -53,-36.2 -53,-35.8 -53,-35.4 -53,-35 -53,-35 -53.2,-35 -53.4,-35 -53.6,-35 -53.8,-35 -54,-35 -54.2,-35 -54.4,-35 -54.6,-35 -54.8,-35 -55,-35.4 -55,-35.8 -55,-36.2 -55,-36.6 -55,-37 -55,-37.4 -55,-37.8 -55,-38.2 -55,-38.6 -55,-39 -55,-39 -54.8,-39 -54.6,-39 -54.4,-39 -54.2,-39 -54,-39 -53.8,-39 -53.6,-39 -53.4,-39 -53.2,-39 -53))", "dataset_titles": "Bird, Mammal, Plankton, Oceanographic data, South Georgia, July 2023; Winter marine communities of the Antarctic Peninsula", "datasets": [{"dataset_uid": "601795", "doi": "10.15784/601795", "keywords": "Antarctica; Antarctic Krill; Antarctic Peninsula; Cryosphere; Pack Ice; Polynya; Seabirds; Sea Ice; Winter; Zooplankton", "people": "Dietrich, Kim; Czapanskiy, Max; Santora, Jarrod; Reiss, Christian", "repository": "USAP-DC", "science_program": null, "title": "Winter marine communities of the Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601795"}, {"dataset_uid": "601890", "doi": "10.15784/601890", "keywords": "Abundance; Antarctica; Antarctic Winter; Birds; Cryosphere; CTD; Mammals; Plankton; South Georgia Island", "people": "Manne, Lisa; Veit, Richard; Santora, Jarrod; Czapanskiy, Max", "repository": "USAP-DC", "science_program": null, "title": "Bird, Mammal, Plankton, Oceanographic data, South Georgia, July 2023", "url": "https://www.usap-dc.org/view/dataset/601890"}], "date_created": "Thu, 06 Oct 2022 00:00:00 GMT", "description": "Part I: Non-technical description: Ocean warming in the western Antarctic Peninsula and Scotia Sea in winter is among the highest worldwide. This project will quantify the impact of the climate warming on seabirds. The study area is in South Georgia in the South Atlantic with the largest and most diverse seabird colonies in the world. Detecting and understanding how physics and biology interact to bring positive or negative population changes to seabirds has long challenged scientists. The team in this project hypothesizes that 1) Cold water seabird species decline while warm water species increase due to ocean warming observed in the last 30 years; 2) All species decrease with ocean warming, affecting how they interact with each other and in doing so, decreasing their chances of survival; and 3) Species profiles can be predicted using multiple environmental variables and models. To collect present-day data to compare with observations done in 1985, 1991 and 1993, 2 cruises are planned in the austral winter; the personnel will include the three Principal Investigators, all experienced with sampling of seabirds, plankton and oceanography, with 2 graduate and 5 undergraduate students. Models will be developed based on the cruise data and the environmental change experienced in the last 30 years. The research will improve our understanding of seabird and marine mammal winter ecology, and how they interact with the environment. This project benefits NSF\u0027s goals to expand the fundamental knowledge of Antarctic systems, biota, and processes. The project will provide an exceptional opportunity to teach polar field skills to undergraduates by bringing 5 students to engage in the research cruises. To further increase polar literacy training and educational impacts, broader impacts include the production of an educational documentary that will be coupled to field surveys to assess public perceptions about climate change. Part II: Technical description: Ocean warming in the western Antarctic Peninsula and Scotia Sea in winter is among the highest worldwide. Based on previous work, the Principal Investigators in this project want to test the hypothesis that warming would have decreased seabird abundance and species associations in the South Georgia region of the South Atlantic. A main premise of this proposal is that because of marine environmental change, the structure of the seabird communities has also changed, and potentially in a manner that has diminished the mutually beneficial dynamics of positive interactions, with subsequent consequences to fitness and population trends. The study is structured by 3 main objectives: 1) identify changes in krill, bird and mammal abundance that have occurred from previous sampling off both ends of South Georgia during winter in 1985, 1991 and 1993, 2) identify pairings of species that benefit each other in searching for prey, and quantify how such relationships have changed since 1985, and 3) make predictions about how these changes in species pairing might continue given predicted future changes in climate. The novelty of the approach is the conceptual model that inter-species associations inform birds of food availability and that the associations decrease if bird abundance decreases, thus warming could decrease overall population fitness. These studies will be essential to establish if behavioral patterns in seabird modulate their response to climate change. The project will provide exceptional educational opportunity to undergraduates by bringing 5 students to participate on the cruises. To further increase polar literacy training and educational impacts, broader impacts include the production of an educational documentary that will be coupled to field surveys to assess public perceptions about climate change. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -35.0, "geometry": "POINT(-37 -54)", "instruments": null, "is_usap_dc": true, "keywords": "Local Enhancement; South Georgia Island; Mutualism; Climate Change; Positive Interactions; Seabirds; COMMUNITY DYNAMICS; SPECIES/POPULATION INTERACTIONS; R/V NBP", "locations": "South Georgia Island", "north": -53.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Veit, Richard; Manne, Lisa; Santora, Jarrod", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -55.0, "title": "Collaborative Research: Climate, Changing Abundance and Species Interactions of Marine Birds and Mammals at South Georgia in Winter", "uid": "p0010382", "west": -39.0}, {"awards": "1744562 Loose, Brice", "bounds_geometry": "POLYGON((-180 -71,-179.9 -71,-179.8 -71,-179.7 -71,-179.6 -71,-179.5 -71,-179.4 -71,-179.3 -71,-179.2 -71,-179.1 -71,-179 -71,-179 -71.7,-179 -72.4,-179 -73.1,-179 -73.8,-179 -74.5,-179 -75.2,-179 -75.9,-179 -76.6,-179 -77.3,-179 -78,-179.1 -78,-179.2 -78,-179.3 -78,-179.4 -78,-179.5 -78,-179.6 -78,-179.7 -78,-179.8 -78,-179.9 -78,180 -78,177.5 -78,175 -78,172.5 -78,170 -78,167.5 -78,165 -78,162.5 -78,160 -78,157.5 -78,155 -78,155 -77.3,155 -76.6,155 -75.9,155 -75.2,155 -74.5,155 -73.8,155 -73.1,155 -72.4,155 -71.7,155 -71,157.5 -71,160 -71,162.5 -71,165 -71,167.5 -71,170 -71,172.5 -71,175 -71,177.5 -71,-180 -71))", "dataset_titles": "Expedition Data of NBP1704; NBP1704 Expedition Data; PIPERS Noble Gases", "datasets": [{"dataset_uid": "200329", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Expedition Data of NBP1704", "url": "https://www.marine-geo.org/tools/entry/NBP1704"}, {"dataset_uid": "001363", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1704 Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1704"}, {"dataset_uid": "601609", "doi": "10.15784/601609", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Mass Spectrometer; NBP1704; Noble Gas; Oceans; Ross Sea; R/v Nathaniel B. Palmer", "people": "Loose, Brice", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Noble Gases", "url": "https://www.usap-dc.org/view/dataset/601609"}], "date_created": "Wed, 14 Sep 2022 00:00:00 GMT", "description": "Near the Antarctic coast, polynyas are open-water regions where extreme heat loss in winter causes seawater to become cold, salty, and dense enough to sink into the deep sea. The formation of this dense water has regional and global importance because it influences the ocean current system. Polynya processes are also tied to the amount of sea ice formed, ocean heat lost to atmosphere, and atmospheric CO2 absorbed by the Southern Ocean. Unfortunately, the ocean-atmosphere interactions that influence the deep ocean water properties are difficult to observe directly during the Antarctic winter. This project will combine field measurements and laboratory experiments to investigate whether differences in the concentration of noble gasses (helium, neon, argon, xenon, and krypton) dissolved in ocean waters can be linked to environmental conditions at the time of their formation. If so, noble gas concentrations could provide insight into the mechanisms controlling shelf and bottom-water properties, and be used to reconstruct past climate conditions. Project results will contribute to the Southern Ocean Observing System (SOOS) theme of The Future and Consequences of Carbon Uptake in the Southern Ocean. The project will also train undergraduate and graduate students in environmental monitoring, and earth and ocean sciences methods. Understanding the causal links between Antarctic coastal processes and changes in the deep ocean system requires study of winter polynya processes. The winter period of intense ocean heat loss and sea ice production impacts two important Antarctic water masses: High-Salinity Shelf Water (HSSW), and Antarctic Bottom Water (AABW), which then influence the strength of the ocean solubility pump and meridional overturning circulation. To better characterize how sea ice cover, ocean-atmosphere exchange, brine rejection, and glacial melt influence the physical properties of AABW and HSSW, this project will analyze samples and data collected from two Ross Sea polynyas during the 2017 PIPERS winter cruise. Gas concentrations will be measured in seawater samples collected by a CTD rosette, from an underwater mass-spectrometer, and from a benchtop Membrane Inlet Mass Spectrometer. Noble gas concentrations will reveal the ocean-atmosphere (dis)equilibrium that exists at the time that surface water is transformed into HSSW and AABW, and provide a fingerprint of past conditions. In addition, nitrogen (N2), oxygen (O2), argon, and CO2 concentration will be used to determine the net metabolic balance, and to evaluate the efficacy of N2 as an alternative to O2 as glacial meltwater tracer. Laboratory experiments will determine the gas partitioning ratios during sea ice formation. Findings will be synthesized with PIPERS and related projects, and so provide an integrated view of the role of the wintertime Antarctic coastal system on deep water composition. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -179.0, "geometry": "POINT(168 -74.5)", "instruments": null, "is_usap_dc": true, "keywords": "Helium Isotopes; R/V NBP; DISSOLVED GASES; POLYNYAS; Ross Sea", "locations": "Ross Sea", "north": -71.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Loose, Brice", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "MGDS", "repositories": "MGDS; R2R; USAP-DC", "science_programs": null, "south": -78.0, "title": "Measuring Dissolved Gases to Reveal the Processes that Drive the Solubility Pump and Determine Gas Concentration in Antarctic Bottom Water", "uid": "p0010376", "west": 155.0}, {"awards": "2123333 Fitzsimmons, Jessica; 2123354 Conway, Timothy; 2123491 John, Seth", "bounds_geometry": "POLYGON((-135 -66,-131.5 -66,-128 -66,-124.5 -66,-121 -66,-117.5 -66,-114 -66,-110.5 -66,-107 -66,-103.5 -66,-100 -66,-100 -67,-100 -68,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-103.5 -76,-107 -76,-110.5 -76,-114 -76,-117.5 -76,-121 -76,-124.5 -76,-128 -76,-131.5 -76,-135 -76,-135 -75,-135 -74,-135 -73,-135 -72,-135 -71,-135 -70,-135 -69,-135 -68,-135 -67,-135 -66))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 08 Sep 2022 00:00:00 GMT", "description": "The goal of the international GEOTRACES program is to understand the distributions of trace chemical elements and their isotopes (TEIs) in the oceans. Many trace metals such as iron are essential for life and thus considered nutrients for phytoplankton growth, with trace metal cycling being especially important for influencing carbon cycling in the iron-limited Southern Ocean, where episodic supply of iron from a range of different external sources is important. The primary goal of this project is to measure the dissolved concentrations, size partitioning, and dissolved isotope signature of Fe on a transect of water-column stations throughout the Amundsen Sea and surrounding region of the Antarctic Margin, as part of the GP17-ANT Expedition. The secondary goal of this project is to analyze the concentrations and size partitioning of the trace metals manganese, zinc, copper, cadmium, nickel, and lead in all water-column samples, measure the isotope ratios of zinc, cadmium, nickel, and copper in a subset of water column samples, and measure the Fe isotopic signature of aerosols, porewaters, and particles. Observations from this project will be incorporated into regional and global biogeochemistry models to assess TEI cycling within the Amundsen Sea and implications for the wider Southern Ocean. This project spans three institutions, four graduate students, undergraduate students, and will provide ultrafiltered samples and data to other PIs as service. The US GEOTRACES GP17 ANT expedition, planned for austral summer 2023/2024 aims to determine the distribution and cycling of trace elements and their isotopes in the Amundsen Sea Sector (100-135\u00b0W) of the Antarctic Margin. The cruise will follow the Amundsen Sea \u2018conveyor belt\u2019 by sampling waters coming from the Antarctic Circumpolar Current onto the continental shelf, including near the Dotson and Pine Island ice shelves, the productive Amundsen Sea Polynya (ASP), and outflowing waters. Episodic addition of dissolved Fe and other TEIs from dust, ice-shelves, melting ice, and sediments drive seasonal primary productivity and carbon export over the Antarctic shelf and offshore into Southern Ocean. Seasonal coastal polynyas such as the highly productive ASP thus act as key levers on global carbon cycling. However, field observations of TEIs in such regions remain scarce, and biogeochemical cycling processes are poorly captured in models of ocean biogeochemistry. The investigators will use their combined analytical toolbox, in collaboration with the diagnostic chemical tracers and regional models of other funded groups to address four main objectives: 1) What is the relative importance of different sources in supplying Fe and other TEIs to the ASP? 2) What is the physiochemical speciation of this Fe, and its potential for transport? 3) How do biological uptake, scavenging and regeneration in the ASP influence TEI distributions, stoichiometry, and nutrient limitation? 4) What is the flux and signature of TEIs transported offshore to the ACC and Southern Ocean? This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -100.0, "geometry": "POINT(-117.5 -71)", "instruments": null, "is_usap_dc": true, "keywords": "R/V NBP; Amundsen Sea; TRACE ELEMENTS; BIOGEOCHEMICAL CYCLES", "locations": "Amundsen Sea", "north": -66.0, "nsf_funding_programs": "Chemical Oceanography; Chemical Oceanography; Chemical Oceanography", "paleo_time": null, "persons": "Conway, Timothy; Fitzsimmons, Jessica; John, Seth", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repositories": null, "science_programs": null, "south": -76.0, "title": "Collaborative Research: US GEOTRACES GP17-ANT: Dissolved concentrations, isotopes, and colloids of the bioactive trace metals", "uid": "p0010374", "west": -135.0}, {"awards": "2205008 Walker, Catherine", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Sun, 07 Aug 2022 00:00:00 GMT", "description": "Most of the mass loss from the Antarctic Ice Sheet, a major contributor to sea level rise, occurs at its margins, where ice meets the ocean. Glaciers and ice streams flow towards the coast and can go afloat over the water, forming ice shelves. Ice shelves make up almost half of the entire Antarctic coastline, and hold back the flow of inland ice in Antarctica continent; thus they are integral to the overall stability of the Antarctic Ice Sheet. Ice shelves lose mass by two main processes: iceberg calving and basal melting. Temporal and spatial fluctuations in both are driven by various processes; a major driver of ice shelf melt is the heat provided by the neighboring Southern Ocean. Ocean heat, in turn, is driven by various aspects of the ice shelf environment. One of the most significant contributors to changes in the ocean\u2019s heat content is the presence of sea ice. This research will focus on the effects of coastal polynyas (areas of open water amidst sea ice), how they modulate the local ocean environment, and how that environment drives ice shelf basal melting. To date, the relationship between polynyas and ice shelf melt has not been characterized on an Antarctic-wide scale. Understanding the feedbacks between polynya size and duration, ocean stratification, and ice shelf melt, and the strength of those feedbacks, will improve the ability to characterize influences on the long-term stability of ice shelves, and in turn, the Antarctic Ice Sheet as a whole. A critical aspect of this study is that it will provide a framework for understanding ice shelf-ocean interaction across a diverse range of geographic settings. This, together with improvements of various models, will help interpret the impacts of future climate change on these systems, as their responses are likely quite variable and, overall, different from the large-scale response of the ice sheet. This project will also provide a broader context to better design future observational studies of specific coastal polynya and ice shelf processes. This study focuses on four main hypotheses: 1) Variations of coastal polynya extent are correlated with those of the ice shelf melt rates, and this correlation varies around Antarctica; 2) Polynya extent modulates a feedback between ice shelf melt and accretion regimes through stratification of local waters; 3) Polynya extent together with seafloor bathymetry regulate the volume of warm offshore waters that reach ice margins; and 4) The strength of the feedback between polynya and glacier ice varies with geographic setting and influences the long-term stability of the glacial system. Observational data, including ice-penetrating radar, radar and laser altimetry, and in situ hydrographic data, and derived data sets from the Southern Ocean State Estimate (SOSE) project and BedMachine Antarctica, will be used in conjunction with ocean (MIT global circulation model, MITgcm) and ice sheet (Ice sheet and Sea-level System Model, ISSM) models to reveal underlying dynamics. The joint analysis of the observational data enables an investigation of polynya, ocean, and ice shelf signals and their interplay over time across a range of settings. The results of this data analysis also provide inputs and validation data for the modeling tasks, which will allow for characterization of the feedbacks in our observations. The coupled modeling will enable us to examine the interaction between polynya circulation and ice shelves in different dynamical regimes and to understand ice and ocean feedback over time. Diagnosing and interpreting the pan-Antarctic spatial variability of the polynya-ice shelf interaction are the main objectives of this research and separates this study from other projects targeted at the interactive processes in specific regions. As such, this research focuses on seven preliminary target sites around the Antarctic coast to establish a framework for interpreting coupled ice shelf-ocean variability across a diverse range of geographic settings. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "United States Of America; ICE EXTENT; GLACIERS/ICE SHEETS", "locations": "United States Of America", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science", "paleo_time": null, "persons": "Walker, Catherine; Zhang, Weifeng; Seroussi, Helene", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Investigating the Role of Coastal Polynya Variability in Modulating Antarctic Marine-Terminating Glacier Drawdown", "uid": "p0010364", "west": -180.0}, {"awards": "2040048 Ballard, Grant; 2040199 Ainley, David; 2040571 Smith, Walker", "bounds_geometry": "POLYGON((164 -74,165.6 -74,167.2 -74,168.8 -74,170.4 -74,172 -74,173.6 -74,175.2 -74,176.8 -74,178.4 -74,180 -74,180 -74.4,180 -74.8,180 -75.2,180 -75.6,180 -76,180 -76.4,180 -76.8,180 -77.2,180 -77.6,180 -78,178.4 -78,176.8 -78,175.2 -78,173.6 -78,172 -78,170.4 -78,168.8 -78,167.2 -78,165.6 -78,164 -78,164 -77.6,164 -77.2,164 -76.8,164 -76.4,164 -76,164 -75.6,164 -75.2,164 -74.8,164 -74.4,164 -74))", "dataset_titles": "Seaglider data from the Western Ross Sea, Antarctica, November 2022-January 2023", "datasets": [{"dataset_uid": "200418", "doi": "10.5285/0a1c43b9-4738-75e0-e063-6c86abc0ea24", "keywords": null, "people": null, "repository": "BODC", "science_program": null, "title": "Seaglider data from the Western Ross Sea, Antarctica, November 2022-January 2023", "url": "\r\nhttps://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/0a1c43b9-4738-75e0-e063-6c86abc0ea24\r\n"}], "date_created": "Mon, 25 Oct 2021 00:00:00 GMT", "description": "NSFGEO-NERC Collaborative Research: P2P: Predators to Plankton \u2013 Biophysical controls in Antarctic polynyas Part I: Non-technical description: The Ross Sea, a globally important ecological hotspot, hosts 25% to 45% of the world populations of Ad\u00e9lie and Emperor penguins, South Polar skuas, Antarctic petrels, and Weddell seals. It is also one of the few marine protected areas within the Southern Ocean, designed to protect the workings of its ecosystem. To achieve conservation requires participation in an international research and monitoring program, and more importantly integration of what is known about penguin as predators and the biological oceanography of their habitat. The project will acquire data on these species\u2019 role within the local food web through assessing of Ad\u00e9lie penguin feeding grounds and food choices, while multi-sensor ocean gliders autonomously quantify prey abundance and distribution as well as ocean properties, including phytoplankton, at the base of the food web. Additionally, satellite imagery will quantify sea ice and whales, known penguin competitors, within the penguins\u2019 foraging area. Experienced and young researchers will be involved in this project, as will a public outreach program that reaches more than 200 school groups per field season, and with an excess of one million visits to a website on penguin ecology. Lessons about ecosystem change, and how it is measured, i.e. the STEM fields, will be emphasized. Results will be distributed to the world scientific and management communities. Part II: Technical description: This project, in collaboration with the United Kingdom (UK) National Environmental Research Council (NERC), assesses food web structure in the southwestern Ross Sea, a major portion of the recently established Ross Sea Region Marine Protected Area that has been designed to protect the region\u2019s food web structure, dynamics and function. The in-depth, integrated ecological information collected in this study will contribute to the management of this system. The southwestern Ross Sea, especially the marginal ice zone of the Ross Sea Polynya (RSP), supports global populations of iconic and indicator species: 25% of Emperor penguins, 30% of Ad\u00e9lie penguins, 50% of South Polar skuas, and 45% of Weddell seals. However, while individually well researched, the role of these members as predators has been poorly integrated into understanding of Ross Sea food web dynamics and biogeochemistry. Information from multi-sensor ocean gliders, high-resolution satellite imagery, diet analysis and biologging of penguins, when integrated, will facilitate understanding of the \u2018preyscape\u2019 within the intensively investigated biogeochemistry of the RSP. UK collaborators will provide state-of-the-art glider technology, glider programming, ballasting, and operation and expertise to evaluate the oceanographic conditions of the study area. Several young scientists will be involved, as well as an existing outreach program already developed that reaches annually more than 200 K-12 school groups and has more than one million website visits per month. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(172 -76)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; AQUATIC SCIENCES; USA/NSF; Amd/Us; Biologging; AMD; Foraging Ecology; FIELD SURVEYS; Ross Sea; Adelie Penguin", "locations": "Ross Sea", "north": -74.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ainley, David; Santora, Jarrod; Varsani, Arvind; Smith, Walker; Ballard, Grant; Schmidt, Annie", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "BODC", "repositories": "BODC", "science_programs": null, "south": -78.0, "title": "NSFGEO-NERC: Collaborative Research \"P2P: Predators to Plankton -Biophysical Controls in Antarctic Polynyas\"", "uid": "p0010273", "west": 164.0}, {"awards": "1941304 Sherrell, Robert; 1941483 Yager, Patricia; 1941292 St-Laurent, Pierre; 1941308 Fitzsimmons, Jessica; 1941327 Stammerjohn, Sharon", "bounds_geometry": "POLYGON((-120 -71,-118 -71,-116 -71,-114 -71,-112 -71,-110 -71,-108 -71,-106 -71,-104 -71,-102 -71,-100 -71,-100 -71.4,-100 -71.8,-100 -72.2,-100 -72.6,-100 -73,-100 -73.4,-100 -73.8,-100 -74.2,-100 -74.6,-100 -75,-102 -75,-104 -75,-106 -75,-108 -75,-110 -75,-112 -75,-114 -75,-116 -75,-118 -75,-120 -75,-120 -74.6,-120 -74.2,-120 -73.8,-120 -73.4,-120 -73,-120 -72.6,-120 -72.2,-120 -71.8,-120 -71.4,-120 -71))", "dataset_titles": "Dataset: A numerical simulation of the ocean, sea ice and ice shelves in the Amundsen Sea (Antarctica) over the period 2006-2022 and its associated code and input files; Expedition Data of NBP2202; Numerical experiments examining the response of onshore oceanic heat supply to yearly changes in the Amundsen Sea icescape (Antarctica); Vertical ocean profiles collected by a Conductivity-Temperature-Depth (CTD) package in the Amundsen Sea", "datasets": [{"dataset_uid": "200311", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP2202", "url": "https://www.rvdata.us/search/cruise/NBP2202"}, {"dataset_uid": "200400", "doi": "10.17882/99231", "keywords": null, "people": null, "repository": "SEANOE", "science_program": null, "title": "Numerical experiments examining the response of onshore oceanic heat supply to yearly changes in the Amundsen Sea icescape (Antarctica)", "url": "https://doi.org/10.17882/99231"}, {"dataset_uid": "200399", "doi": "10.25773/bt54-sj65", "keywords": null, "people": null, "repository": "William \u0026 Mary ScholarWorks", "science_program": null, "title": "Dataset: A numerical simulation of the ocean, sea ice and ice shelves in the Amundsen Sea (Antarctica) over the period 2006-2022 and its associated code and input files", "url": "https://doi.org/10.25773/bt54-sj65"}, {"dataset_uid": "601785", "doi": "10.15784/601785", "keywords": "Amundsen Sea; Antarctica; Cryosphere; CTD; NBP2202; Oceanography; R/v Nathaniel B. Palmer", "people": "Stammerjohn, Sharon", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Vertical ocean profiles collected by a Conductivity-Temperature-Depth (CTD) package in the Amundsen Sea", "url": "https://www.usap-dc.org/view/dataset/601785"}], "date_created": "Fri, 20 Aug 2021 00:00:00 GMT", "description": "Part I: Non-technical summary: The Amundsen Sea is adjacent to the West Antarctic Ice Sheet (WAIS) and hosts the most productive coastal ecosystem in all of Antarctica, with vibrant green waters visible from space and an atmospheric carbon dioxide uptake rate ten times higher than the Southern Ocean average. The region is also an area highly impacted by climate change and glacier ice loss. Upwelling of warm deep water is causing melt under the ice sheet, which is contributing to sea level rise and added nutrient inputs to the region. This is a project that is jointly funded by the National Science Foundation\u2019s Directorate of Geosciences (NSF/GEO) and the National Environment Research Council (NERC) of the United Kingdom (UK) via the NSF/GEO-NERC Lead Agency Agreement. This Agreement allows a single joint US/UK proposal to be submitted and peer-reviewed by the Agency whose investigator has the largest proportion of the budget. Upon successful joint determination of an award, each Agency funds the proportion of the budget and the investigators associated with its own country. In this collaboration, the US team will undertake biogeochemical sampling alongside a UK-funded physical oceanographic program to evaluate the contribution of micronutrients such as iron from glacial meltwater to ecosystem productivity and carbon cycling. Measurements will be incorporated into computer simulations to examine ecosystem responses to further glacial melting. Results will help predict future impacts on the region and determine whether the climate sensitivity of the Amundsen Sea ecosystem represents the front line of processes generalizable to the greater Antarctic. This study is aligned with the large International Thwaites Glacier Collaboration (ITGC) and will make data available to the full scientific community. The program will provide training for undergraduate, graduate, post-doctoral, and early-career scientists in both science and communication. The team will also develop out-of-school science experiences for middle and high schoolers related to climate change and Antarctica. Part II: Technical summary: The Amundsen Sea hosts the most productive polynya in all of Antarctica, with atmospheric carbon dioxide uptake rates ten times higher than the Southern Ocean average. The region is vulnerable to climate change, experiencing rapid losses in sea ice, a changing icescape and some of the fastest melting glaciers flowing from the West Antarctic Ice Sheet, a process being studied by the International Thwaites Glacier Collaboration. The biogeochemical composition of the outflow from the glaciers surrounding the Amundsen Sea is largely unstudied. In collaboration with a UK-funded physical oceanographic program, ARTEMIS is using shipboard sampling for trace metals, carbonate system, nutrients, organic matter, and microorganisms, with biogeochemical sensors on autonomous vehicles to gather data needed to understand the impact of the melting ice sheet on both the coastal ecosystem and the regional carbon cycle. These measurements, along with access to the advanced physical oceanographic measurements will allow this team to 1) bridge the gap between biogeochemistry and physics by adding estimates of fluxes and transport of limiting micronutrients; 2) provide biogeochemical context to broaden understanding of the global significance of ocean-ice shelf interactions; 3) determine processes and scales of variability in micronutrient supply that drive the ten-fold increase in carbon dioxide uptake, and 4) identify small-scale processes key to iron and carbon cycling using optimized field sampling. Observations will be integrated into an ocean model to enhance predictive capabilities of regional ocean function. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -100.0, "geometry": "POINT(-110 -73)", "instruments": null, "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; USA/NSF; USAP-DC; AMD; Amundsen Sea; Amd/Us; SHIPS", "locations": "Amundsen Sea", "north": -71.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Yager, Patricia; Medeiros, Patricia; Sherrell, Robert; St-Laurent, Pierre; Fitzsimmons, Jessica; Stammerjohn, Sharon", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "R2R", "repositories": "R2R; SEANOE; USAP-DC; William \u0026 Mary ScholarWorks", "science_programs": "Thwaites (ITGC)", "south": -75.0, "title": "NSFGEO-NERC: Collaborative Research: Accelerating Thwaites Ecosystem Impacts for the Southern Ocean (ARTEMIS)", "uid": "p0010249", "west": -120.0}, {"awards": "1643652 Hofmann, Eileen; 1643618 Arrigo, Kevin", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic biological model output; Antarctic dFe model dyes", "datasets": [{"dataset_uid": "200211", "doi": "10.26008/1912/bco-dmo.858663.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Antarctic biological model output", "url": "https://www.bco-dmo.org/dataset/858663"}, {"dataset_uid": "200210", "doi": "10.26008/1912/bco-dmo.782848.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Antarctic dFe model dyes", "url": "https://www.bco-dmo.org/dataset/782848"}], "date_created": "Thu, 29 Apr 2021 00:00:00 GMT", "description": "Coastal waters surrounding Antarctica represent some of the most biologically rich and most untouched ecosystems on Earth. In large part, this biological richness is concentrated within the numerous openings that riddle the expansive sea ice (these openings are known as polynyas) near the Antarctic continent. These polynyas represent regions of enhanced production known as hot-spots and support the highest animal densities in the Southern Ocean. Many of them are also located adjacent to floating extensions of the vast Antarctic Ice Sheet and receive a substantial amount of meltwater runoff each year during the summer. However, little is known about the specific processes that make these ecosystems so biologically productive. Of the 46 Antarctic coastal polynyas that are presently known, only a handful have been investigated in detail. This project will develop ecosystem models for the Ross Sea polynya, Amundsen polynya, and Pine Island polynya; three of the most productive Antarctic coastal polynyas. The primary goal is to use these models to better understand the fundamental physical, chemical, and biological interacting processes and differences in these processes that make these systems so biologically productive yet different in some respects (e.g. size and productivity) during the present day settings. Modeling efforts will also be extended to potentially assess how these ecosystems may have functioned in the past and how they might change in the future under different physical and chemical and climatic settings. The project will advance the education of underrepresented minorities through Stanford?s Summer Undergraduate Research in Geoscience and Engineering (SURGE) Program. SURGE will provide undergraduates the opportunity to gain mentored research experiences at Stanford University in engineering and the geosciences. Old Dominion University also will utilize an outreach programs for local public and private schools as well as an ongoing program supporting the Boy Scout Oceanography merit badge program to create outreach and education impacts. Polynyas (areas of open water surrounded by sea ice) are disproportionately productive regions of polar ecosystems, yet controls on their high rates of production are not well understood. This project will provide quantitative assessments of the physical and chemical processes that control phytoplankton abundance and productivity within polynyas, how these differ for different polynyas, and how polynyas may change in the future. Of particular interest are the interactions among processes within the polynyas and the summertime melting of nearby ice sheets, including the Thwaites and Pine Island glaciers. In this proposed study, we will develop a set of comprehensive, high resolution coupled physical-biological models and implement these for three major, but diverse, Antarctic polynyas. These polynyas, the Ross Sea polynya, the Amundsen polynya, and Pine Island polynya, account for \u003e50% of the total Antarctic polynya production. The research questions to be addressed are: 1) What environmental factors exert the greatest control of primary production in polynyas around Antarctica? 2) What are the controlling physics that leads to the heterogeneity of dissolved iron (dFe) supply to the euphotic zone in polynyas around the Antarctic continental shelf? What effect does this have on local rates of primary production? 3) What are the likely changes in the supply of dFe to the euphotic zone in the next several decades due to climate-induced changes in the physics (winds, sea-ice, ice shelf basal melt, cross-shelf exchange, stratification and vertical mixing) and how will this affect primary productivity around the continent? The Ross Sea, Amundsen, and Pine Island polynyas are some of the best-sampled polynyas in Antarctica, facilitating model parameterization and validation. Furthermore, these polynyas differ widely in their size, location, sea ice dynamics, relationship to melting ice shelves, and distance from the continental shelf break, making them ideal case studies. For comparison, the western Antarctic Peninsula (wAP), a productive continental shelf where polynyas are a relatively minor contributor to biological production, will also be modeled. Investigating specific processes within different types Antarctic coastal waters will provide a better understand of how these important biological oases function and how they might change under different environmental conditions.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Trace Metal; AMD; PELAGIC; POLYNYAS; PHYTOPLANKTON; MODELS; Amd/Us; USAP-DC; MICROALGAE; USA/NSF; Polynya; TRACE ELEMENTS; ICE SHEETS; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "van Dijken, Gert; Arrigo, Kevin; Dinniman, Michael; Hofmann, Eileen", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Elucidating Environmental Controls of Productivity in Polynas and the Western Antarctic Peninsula", "uid": "p0010175", "west": -180.0}, {"awards": "1542962 Anderson, Robert", "bounds_geometry": "POLYGON((-171 -57,-170.8 -57,-170.6 -57,-170.4 -57,-170.2 -57,-170 -57,-169.8 -57,-169.6 -57,-169.4 -57,-169.2 -57,-169 -57,-169 -57.72,-169 -58.44,-169 -59.16,-169 -59.88,-169 -60.6,-169 -61.32,-169 -62.04,-169 -62.76,-169 -63.48,-169 -64.2,-169.2 -64.2,-169.4 -64.2,-169.6 -64.2,-169.8 -64.2,-170 -64.2,-170.2 -64.2,-170.4 -64.2,-170.6 -64.2,-170.8 -64.2,-171 -64.2,-171 -63.48,-171 -62.76,-171 -62.04,-171 -61.32,-171 -60.6,-171 -59.88,-171 -59.16,-171 -58.44,-171 -57.72,-171 -57))", "dataset_titles": "Expedition Data of NBP1702; Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean ; Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean (SNOWBIRDS)", "datasets": [{"dataset_uid": "200126", "doi": "10.7284/907211", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP1702", "url": "https://www.rvdata.us/search/cruise/NBP1702"}, {"dataset_uid": "200165", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean (SNOWBIRDS)", "url": "https://www.bco-dmo.org/dataset/813379/data"}, {"dataset_uid": "200166", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean ", "url": "https://www.ncdc.noaa.gov/paleo/study/31312"}], "date_created": "Fri, 25 Sep 2020 00:00:00 GMT", "description": "Scientists established more than 30 years ago that the climate-related variability of carbon dioxide levels in the atmosphere over Earth\u0027s ice-age cycles was regulated by the ocean. Hypotheses to explain how the ocean regulates atmospheric carbon dioxide have long been debated, but they have proven to be difficult to test. Work proposed here will test one leading hypothesis, specifically that the ocean experienced greater density stratification during the ice ages. That is, with greater stratification during the ice ages and slower replacement of deep water by cold dense water formed near the poles, the deep ocean would have held more carbon dioxide, which is produced by biological respiration of the organic carbon that constantly rains to the abyss in the form of dead organisms and organic debris that sink from the sunlit surface ocean. To test this hypothesis, the degree of ocean stratification during the last ice age and the rate of deep-water replacement will be constrained by comparing the radiocarbon ages of organisms that grew in the surface ocean and at the sea floor within a critical region around Antarctica, where most of the replacement of deep waters occurs. Completing this work will contribute toward improved models of future climate change. Climate scientists rely on models to estimate the amount of fossil fuel carbon dioxide that will be absorbed by the ocean in the future. Currently the ocean absorbs about 25% of the carbon dioxide produced by burning fossil fuels. Most of this carbon is absorbed in the Southern Ocean (the region around Antarctica). How this will change in the future is poorly known. Models have difficulty representing physical conditions in the Southern Ocean accurately, thereby adding substantial uncertainty to projections of future ocean uptake of carbon dioxide. Results of the proposed study will provide a benchmark to test the ability of models to simulate ocean processes under climate conditions distinctly different from those that occur today, ultimately leading to improvement of the models and to more reliable projections of future absorption of carbon dioxide by the ocean. The proposed work will add a research component to an existing scientific expedition to the Southern Ocean, in the region between the Ross Sea and New Zealand, that will collect sediment cores at three to five locations down the northern flank of the Pacific-Antarctic Ridge at approximately 170\u00b0W. The goal is to collect sediments at each location deposited since early in the peak of the last ice age. This region is unusual in the Southern Ocean in that sediments deposited during the last ice age contain foraminifera, tiny organisms with calcium carbonate shells, in much greater abundance than in other regions of the Southern Ocean. Foraminifera are widely used as an archive of several geochemical tracers of past ocean conditions. In the proposed work the radiocarbon age of foraminifera that inhabited the surface ocean will be compared with the age of contemporary specimens that grew on the seabed. The difference in age between surface and deep-swelling organisms will be used to discriminate between two proposed mechanisms of deep water renewal during the ice age: formation in coastal polynyas around the edge of Antarctica, much as occurs today, versus formation by open-ocean convection in deep-water regions far from the continent. If the latter mechanism prevails, then it is expected that surface and deep-dwelling foraminifera will exhibit similar radiocarbon ages. In the case of dominance of deep-water formation in coastal polynyas, one expects to find very different radiocarbon ages in the two populations of foraminifera. In the extreme case of greater ocean stratification during the last ice age, one even expects the surface dwellers to appear to be older than contemporary bottom dwellers because the targeted core sites lie directly under the region where the oldest deep waters return to the surface following their long circuitous transit through the deep ocean. The primary objective of the proposed work is to reconstruct the water mass age structure of the Southern Ocean during the last ice age, which, in turn, is a primary factor that controls the amount of carbon dioxide stored in the deep sea. In addition, the presence of foraminifera in the cores to be recovered provides a valuable resource for many other paleoceanographic applications, such as: 1) the application of nitrogen isotopes to constrain the level of nutrient utilization in the Southern Ocean and, thus, the efficiency of the ocean?s biological pump, 2) the application of neodymium isotopes to constrain the transport history of deep water masses, 3) the application of boron isotopes and boron/calcium ratios to constrain the pH and inorganic carbon system parameters of ice-age seawater, and 4) the exploitation of metal/calcium ratios in foraminifera to reconstruct the temperature (Mg/Ca) and nutrient content (Cd/Ca) of deep waters during the last ice age at a location near their source near Antarcitca.", "east": -169.0, "geometry": "POINT(-170 -60.6)", "instruments": null, "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; SEDIMENT CHEMISTRY; South Pacific Ocean; SHIPS", "locations": "South Pacific Ocean", "north": -57.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, Robert; Fleisher, Martin; Pavia, Frank", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "R2R", "repositories": "BCO-DMO; NCEI; R2R", "science_programs": null, "south": -64.2, "title": "Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean", "uid": "p0010130", "west": -171.0}, {"awards": "1543483 Sedwick, Peter", "bounds_geometry": "POLYGON((-180 -66,-179.5 -66,-179 -66,-178.5 -66,-178 -66,-177.5 -66,-177 -66,-176.5 -66,-176 -66,-175.5 -66,-175 -66,-175 -67.2,-175 -68.4,-175 -69.6,-175 -70.8,-175 -72,-175 -73.2,-175 -74.4,-175 -75.6,-175 -76.8,-175 -78,-175.5 -78,-176 -78,-176.5 -78,-177 -78,-177.5 -78,-178 -78,-178.5 -78,-179 -78,-179.5 -78,180 -78,178.5 -78,177 -78,175.5 -78,174 -78,172.5 -78,171 -78,169.5 -78,168 -78,166.5 -78,165 -78,165 -76.8,165 -75.6,165 -74.4,165 -73.2,165 -72,165 -70.8,165 -69.6,165 -68.4,165 -67.2,165 -66,166.5 -66,168 -66,169.5 -66,171 -66,172.5 -66,174 -66,175.5 -66,177 -66,178.5 -66,-180 -66))", "dataset_titles": "Impact of Convective Processes and Sea Ice Formation on the Distribution of Iron in the Ross Sea: Closing the Seasonal Cycle; NBP1704 Expedition Data", "datasets": [{"dataset_uid": "001363", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1704 Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1704"}, {"dataset_uid": "200150", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Impact of Convective Processes and Sea Ice Formation on the Distribution of Iron in the Ross Sea: Closing the Seasonal Cycle", "url": "https://www.bco-dmo.org/project/815403"}], "date_created": "Mon, 22 Jun 2020 00:00:00 GMT", "description": "The waters of the Ross Sea continental shelf are among the most productive in the Southern Ocean, and may comprise a significant regional oceanic sink for atmospheric carbon dioxide. In this region, primary production can be limited by the supply of dissolved iron to surface waters during the growing season. Water-column observations, sampling and measurements are to be carried out in the late autumn-early winter time frame on the Ross Sea continental shelf and coastal polynyas (Terra Nova Bay and Ross Ice Shelf polynyas), in order to better understand what drives the biogeochemical redistribution of micronutrient iron species during the onset of convective mixing and sea-ice formation at this time of year, thereby setting conditions for primary production during the following spring. The spectacular field setting and remote, hostile conditions that accompany the proposed field study present exciting possibilities for STEM education and training. At the K-12 level, the project seeks to support the development of educational outreach materials targeting elementary and middle school students, pre-service science teachers, and in-service science teachers.", "east": 165.0, "geometry": "POINT(175 -72)", "instruments": null, "is_usap_dc": true, "keywords": "POLYNYAS; USAP-DC; NBP1704; Iron; Ross Sea; TRACE ELEMENTS; SALINITY/DENSITY; R/V NBP; MARINE ECOSYSTEMS; BIOGEOCHEMICAL CYCLES", "locations": "Ross Sea", "north": -66.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Sedwick, Peter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "BCO-DMO; R2R", "science_programs": null, "south": -78.0, "title": "Impact of Convective Processes and Sea Ice Formation on the Distribution of Iron in the Ross Sea: Closing the Seasonal Cycle", "uid": "p0010111", "west": -175.0}, {"awards": "1743035 Saba, Grace", "bounds_geometry": "POLYGON((164 -72.2,165 -72.2,166 -72.2,167 -72.2,168 -72.2,169 -72.2,170 -72.2,171 -72.2,172 -72.2,173 -72.2,174 -72.2,174 -72.74,174 -73.28,174 -73.82,174 -74.36,174 -74.9,174 -75.44,174 -75.98,174 -76.52,174 -77.06,174 -77.6,173 -77.6,172 -77.6,171 -77.6,170 -77.6,169 -77.6,168 -77.6,167 -77.6,166 -77.6,165 -77.6,164 -77.6,164 -77.06,164 -76.52,164 -75.98,164 -75.44,164 -74.9,164 -74.36,164 -73.82,164 -73.28,164 -72.74,164 -72.2))", "dataset_titles": "Grazing rates of Euphausia crystallorophias from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, Jan.-Feb. 2018; NBP1801 Expedition data; ru32-20180109T0531; Zooplankton abundance from Isaacs-Kid Midwater Trawl (IKMT) hauls from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, Jan.-Feb. 2018; Zooplankton abundance from ring net tows from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, January 2018", "datasets": [{"dataset_uid": "200137", "doi": "10.1575/1912/bco-dmo.789299.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Zooplankton abundance from ring net tows from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, January 2018", "url": "https://www.bco-dmo.org/dataset/789299"}, {"dataset_uid": "200056", "doi": "10.7284/907753", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1801 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1801"}, {"dataset_uid": "200140", "doi": "", "keywords": null, "people": null, "repository": "ERDDAP", "science_program": null, "title": "ru32-20180109T0531", "url": "http://slocum-data.marine.rutgers.edu/erddap/tabledap/ru32-20180109T0531-profile-sci-delayed.html"}, {"dataset_uid": "200139", "doi": "10.1575/1912/bco-dmo.792478.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Grazing rates of Euphausia crystallorophias from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, Jan.-Feb. 2018", "url": "https://www.bco-dmo.org/dataset/792478"}, {"dataset_uid": "200138", "doi": "10.1575/1912/bco-dmo.792385.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Zooplankton abundance from Isaacs-Kid Midwater Trawl (IKMT) hauls from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, Jan.-Feb. 2018", "url": "https://www.bco-dmo.org/dataset/792385"}], "date_created": "Thu, 27 Feb 2020 00:00:00 GMT", "description": "The Ross Sea is the one of the most productive regions in Antarctica and supports large populations of several key species in the Ross Sea food web, including copepods, crystal krill (Euphausia crystallorophias), and Antarctic silverfish (Pleuragramma antarcticum). Copepods and crystal krill dominate the diets of Antarctic silverfish, the dominant fish species in the high Antarctic zone, and silverfish are a major link between lower (copepods, krill) and higher (fishes, marine mammals, flighted birds, Ad\u00e9lie and Emperor penguins) trophic levels. Despite the significance of these key species, there is limited understanding of copepod, krill, and silverfish mesoscale distribution, spatial structure of age/maturity classes, and their interactions with physical drivers within the Ross Sea. Autonomous underwater profiling gliders are a developing technology that offers the potential for providing high spatial, temporal, and depth resolution data on regional scales. The project will test the capability of a multi-frequency echo sounder integrated into a Slocum Webb glider with the aim of providing the first glider-based acoustic assessment of simultaneous distributions of three trophic levels in the Ross Sea. Complementary glider sensors measuring physical, chemical, and biological parameters will provide mesoscale and sub-mesoscale hydrographic information from which phytoplankton-zooplankton-fish interactions and the relationships between these organisms and physics drivers (sea ice, circulation features) will be investigated. The approach proposed here, glider acoustics, is relatively new and has the potential to be transformational for investigating food webs and the Ross Sea ecosystem. Researchers will modify and integrate an Acoustic Zooplankton and Fish Profiler (AZFP) multi-frequency echo sounder into a Slocum Webb G2 glider with the capability to differentiate between krill and other types of zooplankton, including copepods, and different sizes of krill and silverfish. The AZFP will be complemented with the existing glider sensors including a CTD, a WET Labs BB2FL ECO puck configured for simultaneous chlorophyll fluorescence (phytoplankton biomass) and optical backscatter measurements, and an Aanderaa Optode for measuring dissolved oxygen. The new sensor suite will be tested during a four-week glider deployment, where it will conduct acoustic surveys to map distribution and abundance of multiple zooplankton taxa and silverfish during the austral summer along the Terra Nova Bay polynya ice shelf and in adjacent continental shelf waters. The relationships between phytoplankton-zooplankton-fish distributions and the physical drivers of zooplankton and silverfish species and size distributions will be investigated. Coordinated ship-based acoustic sampling and net tows/trawls will be conducted multiple times during the glider deployment to validate glider acoustic-based species, size, and abundance measurements. Open accessible, automated data produced during this project will be made available through RUCOOL (Rutgers University Center for Ocean Observing Leadership) and THREDDS (Thematic Real-time Environmental Data Distribution System). The production of consistent, vertically-resolved, high resolution glider-based acoustic measurements will define a successful outcome of this project that should help in identifying the challenges in their use as a potentially cost-effective, automated examination of food webs in the Antarctic.", "east": 174.0, "geometry": "POINT(169 -74.9)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; FISH; Terra Nova Bay; AQUATIC SCIENCES; PELAGIC; PLANKTON; USAP-DC; ANIMALS/VERTEBRATES", "locations": "Terra Nova Bay", "north": -72.2, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Saba, Grace", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "BCO-DMO", "repositories": "BCO-DMO; ERDDAP; R2R", "science_programs": null, "south": -77.6, "title": "Using Bio-acoustics on an Autonomous Surveying Platform for the Examination of Phytoplankton-zooplankton and Fish Interactions in the Western Ross Sea", "uid": "p0010086", "west": 164.0}, {"awards": "1443424 McMahon, Kelton; 1443386 Emslie, Steven; 1443585 Polito, Michael; 1826712 McMahon, Kelton", "bounds_geometry": "POLYGON((-180 -60,-166 -60,-152 -60,-138 -60,-124 -60,-110 -60,-96 -60,-82 -60,-68 -60,-54 -60,-40 -60,-40 -61.8,-40 -63.6,-40 -65.4,-40 -67.2,-40 -69,-40 -70.8,-40 -72.6,-40 -74.4,-40 -76.2,-40 -78,-54 -78,-68 -78,-82 -78,-96 -78,-110 -78,-124 -78,-138 -78,-152 -78,-166 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -76.2,160 -74.4,160 -72.6,160 -70.8,160 -69,160 -67.2,160 -65.4,160 -63.6,160 -61.8,160 -60,162 -60,164 -60,166 -60,168 -60,170 -60,172 -60,174 -60,176 -60,178 -60,-180 -60))", "dataset_titles": "Amino acid nitrogen isotope values of modern and ancient Ad\u00e9lie penguin eggshells from the Ross Sea and Antarctic Peninsula regions; Amino acid nitrogen isotope values of penguins from the Antarctic Peninsula region 1930s to 2010s; Ancient Adelie penguin colony revealed by snowmelt at Cape Irizar, Ross Sea, Antarctica; Carbon and nitrogen stable isotope values of Antarctic Krill from the South Shetland Islands and the northern Antarctic Peninsula 2007 and 2009; Radiocarbon dates from pygoscelid penguin tissues excavated at Stranger Point, King George Island, Antarctic Peninsula; Radiocarbon dating and stable isotope values of penguin and seal tissues recovered from ornithogenic soils on Platter Island, Danger Islands Archipelago, Antarctic Peninsula in December 2015.; Radioisotope dates and carbon (\u03b413C) and nitrogen (\u03b415N) stable isotope values from modern and mummified Ad\u00e9lie Penguin chick carcasses and tissue from the Ross Sea, Antarctica; Radiometric dating, geochemical proxies, and predator biological remains obtained from aquatic sediment cores on South Georgia Island.; Receding ice drove parallel expansions in Southern Ocean penguin; SNP data from \"Receding ice drove parallel expansions in Southern Ocean penguins\".; Stable isotope analysis of multiple tissues from chick carcasses of three pygoscelid penguins in Antarctica; Stable isotopes of Adelie Penguin chick bone collagen; The rise and fall of an ancient Adelie penguin \u0027supercolony\u0027 at Cape Adare, Antarctica", "datasets": [{"dataset_uid": "601232", "doi": "10.15784/601232", "keywords": "Amino Acids; Antarctica; Antarctic Peninsula; Biota; Isotope Data; Nitrogen Isotopes; Oceans; Penguin; Southern Ocean; Stable Isotope Analysis", "people": "McMahon, Kelton; Polito, Michael", "repository": "USAP-DC", "science_program": null, "title": "Amino acid nitrogen isotope values of penguins from the Antarctic Peninsula region 1930s to 2010s", "url": "https://www.usap-dc.org/view/dataset/601232"}, {"dataset_uid": "200181", "doi": "10.6084/m9.figshare.c.4475300.v1", "keywords": null, "people": null, "repository": "Figshare", "science_program": null, "title": "SNP data from \"Receding ice drove parallel expansions in Southern Ocean penguins\".", "url": "https://doi.org/10.6084/m9.figshare.c.4475300.v1"}, {"dataset_uid": "601210", "doi": "10.15784/601210", "keywords": "Antarctica; Antarctic Krill; Antarctic Peninsula; Biota; Carbon Isotopes; Isotope Data; Krill; Nitrogen Isotopes; Oceans; Southern Ocean; Stable Isotope Analysis", "people": "Polito, Michael", "repository": "USAP-DC", "science_program": null, "title": "Carbon and nitrogen stable isotope values of Antarctic Krill from the South Shetland Islands and the northern Antarctic Peninsula 2007 and 2009", "url": "https://www.usap-dc.org/view/dataset/601210"}, {"dataset_uid": "601327", "doi": "10.15784/601327", "keywords": "Adelie Penguin; Antarctica; Biota; Cape Adare; East Antarctica; Population Movement; Pygoscelis Adeliae; Radiocarbon; Ross Sea; Sea Level Rise; Stable Isotopes", "people": "Emslie, Steven D.; McKenzie, Ashley; Patterson, William", "repository": "USAP-DC", "science_program": null, "title": "The rise and fall of an ancient Adelie penguin \u0027supercolony\u0027 at Cape Adare, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601327"}, {"dataset_uid": "601212", "doi": "10.15784/601212", "keywords": "Abandoned Colonies; Antarctica; Antarctic Peninsula; Beach Deposit; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Holocene; Penguin; Radiocarbon; Radiocarbon Dates; Snow/ice; Snow/Ice; Stranger Point", "people": "Emslie, Steven D.", "repository": "USAP-DC", "science_program": null, "title": "Radiocarbon dates from pygoscelid penguin tissues excavated at Stranger Point, King George Island, Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601212"}, {"dataset_uid": "200180", "doi": "", "keywords": null, "people": null, "repository": "NCBI BioProject", "science_program": null, "title": "Receding ice drove parallel expansions in Southern Ocean penguin", "url": "https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA589336"}, {"dataset_uid": "601913", "doi": "10.15784/601913", "keywords": "Adelie Penguin; Antarctica; Cryosphere; Foraging; Polynya; Pygoscelis Adeliae; Ross Sea; Stable Isotopes", "people": "Powers, Shannon; Emslie, Steven D.; Reaves, Megan", "repository": "USAP-DC", "science_program": null, "title": "Stable isotopes of Adelie Penguin chick bone collagen", "url": "https://www.usap-dc.org/view/dataset/601913"}, {"dataset_uid": "601509", "doi": "10.15784/601509", "keywords": "Antarctica; Antarctic Fur Seal; Elemental Concentrations; King Penguin; Population Dynamics; South Atlantic Ocean; South Georgia Island; Stable Isotope Analysis; Sub-Antarctic", "people": "Maiti, Kanchan; Polito, Michael; McMahon, Kelton; Kristan, Allyson", "repository": "USAP-DC", "science_program": null, "title": "Radiometric dating, geochemical proxies, and predator biological remains obtained from aquatic sediment cores on South Georgia Island.", "url": "https://www.usap-dc.org/view/dataset/601509"}, {"dataset_uid": "601760", "doi": "10.15784/601760", "keywords": "Adelie Penguin; Amino Acids; Antarctica; Antarctic Peninsula; Ross Sea; Stable Isotope Analysis; Trophic Position", "people": "McCarthy, Matthew; Emslie, Steven D.; Michelson, Chantel; Polito, Michael; Wonder, Michael; Patterson, William; McMahon, Kelton", "repository": "USAP-DC", "science_program": null, "title": "Amino acid nitrogen isotope values of modern and ancient Ad\u00e9lie penguin eggshells from the Ross Sea and Antarctic Peninsula regions", "url": "https://www.usap-dc.org/view/dataset/601760"}, {"dataset_uid": "601364", "doi": "10.15784/601364", "keywords": "Antarctica; Antarctic Peninsula; Arctocephalus Gazella; Carbon; Holocene; Nitrogen; Paleoecology; Penguin; Pygoscelis Spp.; Stable Isotope Analysis; Weddell Sea", "people": "Clucas, Gemma; Polito, Michael; Kalvakaalva, Rohit; Herman, Rachael", "repository": "USAP-DC", "science_program": null, "title": "Radiocarbon dating and stable isotope values of penguin and seal tissues recovered from ornithogenic soils on Platter Island, Danger Islands Archipelago, Antarctic Peninsula in December 2015.", "url": "https://www.usap-dc.org/view/dataset/601364"}, {"dataset_uid": "601263", "doi": "10.15784/601263", "keywords": "Abandoned Colonies; Antarctica; Holocene; Penguin; Ross Sea; Stable Isotope Analysis", "people": "Patterson, William; Emslie, Steven D.; Kristan, Allyson", "repository": "USAP-DC", "science_program": null, "title": "Radioisotope dates and carbon (\u03b413C) and nitrogen (\u03b415N) stable isotope values from modern and mummified Ad\u00e9lie Penguin chick carcasses and tissue from the Ross Sea, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601263"}, {"dataset_uid": "601374", "doi": "10.15784/601374", "keywords": "Adelie Penguin; Antarctica; Cape Irizar; Drygalski Ice Tongue; Ross Sea; Stable Isotopes", "people": "Emslie, Steven D.", "repository": "USAP-DC", "science_program": null, "title": "Ancient Adelie penguin colony revealed by snowmelt at Cape Irizar, Ross Sea, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601374"}, {"dataset_uid": "601382", "doi": "10.15784/601382", "keywords": "25 De Mayo/King George Island; Antarctica; Biota; Delta 13C; Delta 15N; Dietary Shifts; Opportunistic Sampling; Penguin; Pygoscelis Penguins; Stranger Point", "people": "Ciriani, Yanina; Emslie, Steven D.", "repository": "USAP-DC", "science_program": null, "title": "Stable isotope analysis of multiple tissues from chick carcasses of three pygoscelid penguins in Antarctica", "url": "https://www.usap-dc.org/view/dataset/601382"}], "date_created": "Thu, 08 Aug 2019 00:00:00 GMT", "description": "The Antarctic marine ecosystem is highly productive and supports a diverse range of ecologically and commercially important species. A key species in this ecosystem is Antarctic krill, which in addition to being commercially harvested, is the principle prey of a wide range of marine organisms including penguins, seals and whales. The aim of this study is to use penguins and other krill predators as sensitive indicators of past changes in the Antarctic marine food web resulting from climate variability and the historic harvesting of seals and whales by humans. Specifically this study will recover and analyze modern (\u003c20 year old), historic (20-200 year old) and ancient (200-10,000 year old) penguin and other krill predator tissues to track their past diets and population movements relative to shifts in climate and the availability of Antarctic krill. Understanding how krill predators were affected by these factors in the past will allow us to better understand how these predators, the krill they depend on, and the Antarctic marine ecosystem as a whole will respond to current challenges such as global climate change and an expanding commercial fishery for Antarctic krill. The project will further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This project will support the cross-institutional training of undergraduate and graduate students in advanced analytical techniques in the fields of ecology and biogeochemistry. In addition, this project includes educational outreach aimed encouraging participation in science careers by engaging K-12 students in scientific issues related to Antarctica, penguins, marine ecology, biogeochemistry, and global climate change. This research will help place recent ecological changes in the Southern Ocean into a larger historical context by examining decadal and millennial-scale shifts in the diets and population movements of Antarctic krill predators (penguins, seals, and squid) in concert with climate variability and commercial harvesting. This will be achieved by coupling advanced stable and radio isotope techniques, particularly compound-specific stable isotope analysis, with unprecedented access to modern, historical, and well-preserved paleo-archives of Antarctic predator tissues dating throughout the Holocene. This approach will allow the project to empirically test if observed shifts in Antarctic predator bulk tissue stable isotope values over the past millennia were caused by climate-driven shifts at the base of the food web in addition to, or rather than, shifts in predator diets due to a competitive release following the historic harvesting of krill eating whale and seals. In addition, this project will track the large-scale abandonment and reoccupation of penguin colonies around Antarctica in response to changes in climate and sea ice conditions over the past several millennia. These integrated field studies and laboratory analyses will provide new insights into the underlying mechanisms that influenced past shifts in the diets and population movements of charismatic krill predators such as penguins. This will allow for improved projections of the ecosystem consequences of future climate change and anthropogenic harvesting scenarios in the Antarctica that are likely to affect the availability of Antarctic krill.", "east": -40.0, "geometry": "POINT(-120 -69)", "instruments": null, "is_usap_dc": true, "keywords": "ANIMAL ECOLOGY AND BEHAVIOR; South Shetland Islands; Penguin; Stable Isotopes; Polar; Ross Sea; USA/NSF; Weddell Sea; AMD; MARINE ECOSYSTEMS; USAP-DC; Antarctica; PENGUINS; Southern Hemisphere; FIELD INVESTIGATION; Amd/Us; Krill; MACROFOSSILS", "locations": "Southern Hemisphere; Ross Sea; South Shetland Islands; Weddell Sea; Polar; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Polito, Michael; Kelton, McMahon; Patterson, William; McCarthy, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "Figshare; NCBI BioProject; USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators", "uid": "p0010047", "west": 160.0}, {"awards": "1643901 Zhang, Weifeng; 2021245 Li, Yun; 1643735 Li, Yun", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Dynamic fine-scale sea-icescape shapes adult emperor penguin foraging habitat in East Antarctica; Monthly Stratification Climatology (1978-2021) in Antarctic Coastal Polynyas", "datasets": [{"dataset_uid": "601628", "doi": "10.15784/601628", "keywords": "Antarctic; Antarctica; Antarctic Coastal Polynyas; Polynya", "people": "Shunk, Nathan; Li, Yun; Zhang, Weifeng", "repository": "USAP-DC", "science_program": null, "title": "Monthly Stratification Climatology (1978-2021) in Antarctic Coastal Polynyas", "url": "https://www.usap-dc.org/view/dataset/601628"}, {"dataset_uid": "601209", "doi": "10.15784/601209", "keywords": "Animal Behavior Observation; Antarctica; Biota; East Antarctica; GPS; Oceans; Penguin; Southern Ocean", "people": "Bost, Charles-Andr\u00e9; Barbraud, Christophe; Porter-Smith, Rick; Jonsen, Ian; Resinger, Ryan; Pinaud, David; Tamura, Takeshi; Fraser, Alexander; Labrousse, Sara; Ropert-Coudert, Yan; Kirkwood, Roger; Wienecke, Barbara; Sumner, Michael; Jenouvrier, Stephanie; Ji, Rubao", "repository": "USAP-DC", "science_program": null, "title": "Dynamic fine-scale sea-icescape shapes adult emperor penguin foraging habitat in East Antarctica", "url": "https://www.usap-dc.org/view/dataset/601209"}], "date_created": "Wed, 07 Aug 2019 00:00:00 GMT", "description": "During winter, sea-ice coverage along the Antarctic coast is punctuated by numerous polynyas--isolated openings of tens to hundreds of kilometer wide. These coastal polynyas are hotspots of sea ice production and the primary source regions of the bottom water in the global ocean. They also host high levels of biological activities and are the feeding grounds of Emperor penguins and marine mammals. The polynyas are a key component of the Antarctic coastal system and crucial for the survival of penguins and many other species. These features also differ dramatically from each other in timing of formation, duration, phytoplankton growth season, and overall biological productivity. Yet, the underlying reasons for differences among them are largely unknown. This project studies the fundamental biophysical processes at a variety of polynyas, examines the connection between the physical environment and the phytoplankton and penguin ecology, and investigates the mechanisms behind polynya variability. The results of this interdisciplinary study will provide a context for interpretation of field measurements in Antarctic coastal polynyas, set a baseline for future polynya studies, and examine how polynya ecosystems may respond to local and large-scale environmental changes. The project will include educational and outreach activities that convey scientific messages to a broad audience. It aims to increase public awareness of the interconnection between large-scale environmental change and Antarctic coastal systems. The main objectives of this study are to form a comprehensive understanding of the temporal and spatial variability of Antarctic coastal polynyas and the physical controls of polynya ecosystems. The project takes an interdisciplinary approach and seeks to establish a modeling system centered on the Regional Ocean Modeling System. This system links the ice and ocean conditions to the plankton ecology and penguin population. Applications of the modeling system in representative polynyas, in conjunction with analysis of existing observations, will determine the biophysical influences of individual forcing factors. In particular, this study will test a set of hypothesized effects of winds, offshore water intrusion, ice-shelf melting, sea-ice formation, glacier tongues, and ocean stratification on the timing of polynya phytoplankton bloom and the overall polynya biological productivity. The project will also examine how changing polynya state affects penguin breeding success, adult survival, and population growth. The team will conduct idealized sensitivity analysis to explore implications of forcing variability, including local and large-scale environmental change, on Antarctic coastal ecosystems.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Southern Ocean; Animal Behavior; Penguin; FIELD INVESTIGATION; USAP-DC; COASTAL; PENGUINS; SEA ICE; Antarctica; OCEAN MIXED LAYER", "locations": "Southern Ocean; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Zhang, Weifeng; Ji, Rubao; Jenouvrier, Stephanie; Maksym, Edward; Li, Yun", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Polynyas in Coastal Antarctica (PICA): Linking Physical Dynamics to Biological Variability", "uid": "p0010044", "west": -180.0}, {"awards": "1341717 Ackley, Stephen; 1341513 Maksym, Edward; 1543483 Sedwick, Peter; 1341606 Stammerjohn, Sharon; 1341725 Guest, Peter", "bounds_geometry": "POLYGON((-180 -55,-177 -55,-174 -55,-171 -55,-168 -55,-165 -55,-162 -55,-159 -55,-156 -55,-153 -55,-150 -55,-150 -57.3,-150 -59.6,-150 -61.9,-150 -64.2,-150 -66.5,-150 -68.8,-150 -71.1,-150 -73.4,-150 -75.7,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -75.7,160 -73.4,160 -71.1,160 -68.8,160 -66.5,160 -64.2,160 -61.9,160 -59.6,160 -57.3,160 -55,162 -55,164 -55,166 -55,168 -55,170 -55,172 -55,174 -55,176 -55,178 -55,-180 -55))", "dataset_titles": "ASPeCt Visual Ice Observations on PIPERS Cruise NBP1704 April-June 2017; Expedition data of NBP1704; Impact of Convective Processes and Sea Ice Formation on the Distribution of Iron in the Ross Sea: Closing the Seasonal Cycle; NBP1704 CTD sensor data; NBP1704 Expedition Data; PIPERS Airborne LiDAR Data; PIPERS Meteorology Rawinsonde Data; PIPERS Meteorology Time Series; PIPERS Noble Gases; Sea Ice Layer Cakes, PIPERS 2017; SUMO unmanned aerial system (UAS) atmospheric data", "datasets": [{"dataset_uid": "601188", "doi": "10.15784/601188", "keywords": "Aerogeophysics; Airborne Laser Altimetry; Antarctica; LIDAR; PIPERS; Ross Sea; Sea Ice", "people": "Xie, Hongjie; Dhakal, Tejendra; Bertinato, Christopher; Locke, Caitlin; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Airborne LiDAR Data", "url": "https://www.usap-dc.org/view/dataset/601188"}, {"dataset_uid": "001363", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1704 Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1704"}, {"dataset_uid": "002663", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1704", "url": "https://www.rvdata.us/search/cruise/NBP1704"}, {"dataset_uid": "601191", "doi": "10.15784/601191", "keywords": "Air Temperature; Antarctica; Atmosphere; Meteorology; NBP1704; PIPERS; R/v Nathaniel B. Palmer; Southern Ocean; Temperature Profiles; UAV; Unmanned Aircraft", "people": "Cassano, John", "repository": "USAP-DC", "science_program": null, "title": "SUMO unmanned aerial system (UAS) atmospheric data", "url": "https://www.usap-dc.org/view/dataset/601191"}, {"dataset_uid": "601609", "doi": "10.15784/601609", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Mass Spectrometer; NBP1704; Noble Gas; Oceans; Ross Sea; R/v Nathaniel B. Palmer", "people": "Loose, Brice", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Noble Gases", "url": "https://www.usap-dc.org/view/dataset/601609"}, {"dataset_uid": "601183", "doi": "10.15784/601183", "keywords": "Antarctica; Glaciology; Ice Concentration; Ice Thickness; Ice Type; NBP1704; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Sea Ice; Snow Depth; Snow/ice; Snow/Ice; Visual Observations", "people": "Ackley, Stephen", "repository": "USAP-DC", "science_program": null, "title": "ASPeCt Visual Ice Observations on PIPERS Cruise NBP1704 April-June 2017", "url": "https://www.usap-dc.org/view/dataset/601183"}, {"dataset_uid": "601422", "doi": "10.15784/601422", "keywords": "Antarctica; CTD; CTD Data; NBP1704; Ocean Profile Data; Ross Sea; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Stammerjohn, Sharon", "repository": "USAP-DC", "science_program": null, "title": "NBP1704 CTD sensor data", "url": "https://www.usap-dc.org/view/dataset/601422"}, {"dataset_uid": "601184", "doi": "10.15784/601184 ", "keywords": "Air Temperature; Antarctica; Atmosphere; Meteorology; Near-Surface Air Temperatures; PIPERS; Radiation; Sea Ice Temperatures; Temperature; Weather Station Data; Wind Direction; Wind Speed", "people": "Guest, Peter", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Meteorology Time Series", "url": "https://www.usap-dc.org/view/dataset/601184"}, {"dataset_uid": "200150", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Impact of Convective Processes and Sea Ice Formation on the Distribution of Iron in the Ross Sea: Closing the Seasonal Cycle", "url": "https://www.bco-dmo.org/project/815403"}, {"dataset_uid": "601185", "doi": "10.15784/601185 ", "keywords": "Air Temperature; Antarctica; Atmosphere; Atmospheric Surface Winds; Meteorology; NBP1704; PIPERS; Pressure; Radiosonde; Rawinsonde; Relative Humidity; Ross Sea; R/v Nathaniel B. Palmer; Wind Direction; Wind Speed", "people": "Guest, Peter", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Meteorology Rawinsonde Data", "url": "https://www.usap-dc.org/view/dataset/601185"}, {"dataset_uid": "601207", "doi": "10.15784/601207", "keywords": "Antarctica; Digital Elevation Model; Glaciology; Ice; Ice Thickness; Ice Thickness Distribution; LIDAR; NBP1704; PIPERS; Ross Sea; R/v Nathaniel B. Palmer; Sea Ice; Snow; Snow Depth; Surface Elevation", "people": "Mei, M. Jeffrey; Maksym, Edward; Jeffrey Mei, M.", "repository": "USAP-DC", "science_program": null, "title": "Sea Ice Layer Cakes, PIPERS 2017", "url": "https://www.usap-dc.org/view/dataset/601207"}], "date_created": "Mon, 10 Jun 2019 00:00:00 GMT", "description": "Proposal Title: Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica (working title changed from submitted title) Institutions: UT-San Antonio; Columbia University; Naval Postgraduate School; Woods Hole Oceanographic Institute; UC@Boulder The one place on Earth consistently showing increases in sea ice area, duration, and concentration is the Ross Sea in Antarctica. Satellite imagery shows about half of the Ross Sea increases are associated with changes in the austral fall, when the new sea ice is forming. The most pronounced changes are also located near polynyas, which are areas of open ocean surrounded by sea ice. To understand the processes driving the sea ice increase, and to determine if the increase in sea ice area is also accompanied by a change in ice thickness, this project will conduct an oceanographic cruise to the polynyas of the Ross Sea in April and May, 2017, which is the austral fall. The team will deploy state of the art research tools including unmanned airborne systems (UASs, commonly called drones), autonomous underwater vehicles (AUVs), and remotely operated underwater vehicles (ROVs). Using these tools and others, the team will study atmospheric, oceanic, and sea ice properties and processes concurrently. A change in sea ice production will necessarily change the ocean water below, which may have significant consequences for global ocean circulation patterns, a topic of international importance. All the involved institutions will be training students, and all share the goal of expanding climate literacy in the US, emphasizing the role high latitudes play in the Earth\u0027s dynamic climate. The main goal of the project is to improve estimates of sea ice production and water mass transformation in the Ross Sea. The team will fully capture the spatial and temporal changes in air-ice-ocean interactions when they are initiated in the austral fall, and then track the changes into the winter and spring using ice buoys, and airborne mapping with the newly commissioned IcePod instrument system, which is deployed on the US Antarctic Program\u0027s LC-130 fleet. The oceanographic cruise will include stations in and outside of both the Terra Nova Bay and Ross Ice Shelf polynyas. Measurements to be made include air-sea boundary layer fluxes of heat, freshwater, and trace gases, radiation, and meteorology in the air; ice formation processes, ice thickness, snow depth, mass balance, and ice drift within the sea ice zone; and temperature, salinity, and momentum in the ocean below. Following collection of the field data, the team will improve both model parameterizations of air-sea-ice interactions and remote sensing algorithms. Model parameterizations are needed to determine if sea-ice production has increased in crucial areas, and if so, why (e.g., stronger winds or fresher oceans). The remote sensing validation will facilitate change detection over wider areas and verify model predictions over time. Accordingly this project will contribute to the international Southern Ocean Observing System (SOOS) goal of measuring essential climate variables continuously to monitor the state of the ocean and ice cover into the future.", "east": -150.0, "geometry": "POINT(-175 -66.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LIDAR; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "OCEAN MIXED LAYER; TRACE ELEMENTS; CARBON DIOXIDE; ATMOSPHERIC RADIATION; ICE GROWTH/MELT; AMD; BOUNDARY LAYER TEMPERATURE; SULFUR COMPOUNDS; NBP1704; HEAT FLUX; ICE DEPTH/THICKNESS; R/V NBP; USA/NSF; BOUNDARY LAYER WINDS; SNOW DEPTH; VERTICAL PROFILES; METHANE; POLYNYAS; CONDUCTIVITY; SEA ICE; Ross Sea; WATER MASSES; TURBULENCE; USAP-DC; Amd/Us", "locations": "Ross Sea", "north": -55.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Instrumentation and Support; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Ackley, Stephen; Bell, Robin; Weissling, Blake; Nuss, Wendell; Maksym, Edward; Stammerjohn, Sharon; Cassano, John; Guest, Peter; Sedwick, Peter; Xie, Hongjie", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "BCO-DMO; R2R; USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica", "uid": "p0010032", "west": 160.0}, {"awards": "9725024 Jacobs, Stanley", "bounds_geometry": "POLYGON((140 -65,141 -65,142 -65,143 -65,144 -65,145 -65,146 -65,147 -65,148 -65,149 -65,150 -65,150 -65.3,150 -65.6,150 -65.9,150 -66.2,150 -66.5,150 -66.8,150 -67.1,150 -67.4,150 -67.7,150 -68,149 -68,148 -68,147 -68,146 -68,145 -68,144 -68,143 -68,142 -68,141 -68,140 -68,140 -67.7,140 -67.4,140 -67.1,140 -66.8,140 -66.5,140 -66.2,140 -65.9,140 -65.6,140 -65.3,140 -65))", "dataset_titles": "Expedition Data; R/V Nathaniel B. Palmer NBP0008 - Expedition Data; \r\nSummer Oceanographic Measurements near the Mertz Polynya NBP0008", "datasets": [{"dataset_uid": "001885", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0008"}, {"dataset_uid": "200023", "doi": "10.7284/905461", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "R/V Nathaniel B. Palmer NBP0008 - Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0008"}, {"dataset_uid": "200022", "doi": "10.15784/601161 ", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "\r\nSummer Oceanographic Measurements near the Mertz Polynya NBP0008", "url": "https://www.usap-dc.org/view/dataset/601161"}], "date_created": "Mon, 11 Mar 2019 00:00:00 GMT", "description": "This project will study the dynamics of Circumpolar Deep Water intruding on the continental shelf of the West Antarctic coast, and the effect of this intrusion on the production of cold, dense bottom water, and melting at the base of floating glaciers and ice tongues. It will concentrate on the Amundsen Sea shelf, specifically in the region of the Pine Island Glacier, the Thwaites Glacier, and the Getz Ice Shelf. Circumpolar Deep Water (CDW) is a relatively warm water mass (warmer than +1.0 deg Celsius) which is normally confined to the outer edge of the continental shelf by an oceanic front separating this water mass from colder and saltier shelf waters. In the Amundsen Sea however, the deeper parts of the continental shelf are filled with nearly undiluted CDW, which is mixed upward, delivering significant amounts of heat to the base of the floating glacier tongues and the ice shelf. The melt rate beneath the Pine Island Glacier averages ten meters of ice per year with local annual rates reaching twenty meters. By comparison, melt rates beneath the Ross Ice Shelf are typically twenty to forty centimeters of ice per year. In addition, both the Pine Island and the Thwaites Glacier are extremely fast-moving, and have a significant effect on the regional ice mass balance of West Antarctica. This project therefore has an important connection to antarctic glaciology, particularly in assessing the combined effect of global change on the antarctic environment. The particular objectives of the project are (1) to delineate the frontal structure on the continental shelf sufficiently to define quantitatively the major routes of CDW inflow, meltwater outflow, and the westward evolution of CDW influence; (2) to use the obtained data set to validate a three-dimensional model of sub-ice ocean circulation that is currently under construction, and (3) to refine the estiamtes of in situ melting on the mass balance of the antarctic ice sheet. The observational program will be carried out from the research vessel Nathaniel B. Palmer in February and March, 1999.", "east": 150.0, "geometry": "POINT(145 -66.5)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC; Southern Ocean; WATER MASSES; Antarctica", "locations": "Southern Ocean; Antarctica", "north": -65.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jacobs, Stanley; Visbeck, Martin", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -68.0, "title": "Circumpolar Deep Water and the West Antarctic Ice Sheet", "uid": "p0010019", "west": 140.0}, {"awards": "1341440 Jin, Meibing; 1341558 Ji, Rubao; 1341547 Stroeve, Julienne", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic MIZ, Pack Ice and Polynya Maps from Passive Microwave Satellite Data; Ice-ocean-ecosystem model output; Sea ice chlorophyll concentrations in Antarctic coastal polynyas and seasonal ice zones", "datasets": [{"dataset_uid": "601136", "doi": "10.15784/601136", "keywords": "Antarctica; Biota; Model Data; Oceans; Southern Ocean", "people": "Jin, Meibing", "repository": "USAP-DC", "science_program": null, "title": "Ice-ocean-ecosystem model output", "url": "https://www.usap-dc.org/view/dataset/601136"}, {"dataset_uid": "601219", "doi": "10.15784/601219", "keywords": "Antarctica; Biota; Chlorophyll; Chlorophyll Concentration; Oceans; Polynya; Sea Ice Concentration; Seasonal Ice Zone; Southern Ocean", "people": "Ji, Rubao", "repository": "USAP-DC", "science_program": null, "title": "Sea ice chlorophyll concentrations in Antarctic coastal polynyas and seasonal ice zones", "url": "https://www.usap-dc.org/view/dataset/601219"}, {"dataset_uid": "601115", "doi": "10.15784/601115", "keywords": "Antarctica; Pack Ice; Polynya; Sea Ice; Southern Ocean", "people": "Stroeve, Julienne", "repository": "USAP-DC", "science_program": null, "title": "Antarctic MIZ, Pack Ice and Polynya Maps from Passive Microwave Satellite Data", "url": "https://www.usap-dc.org/view/dataset/601115"}], "date_created": "Tue, 20 Nov 2018 00:00:00 GMT", "description": "The aim of study is to understand how climate-related changes in snow and ice affect predator populations in the Antarctic, using the Ad\u00e9lie penguin as a focal species due to its long history as a Southern Ocean \u0027sentinel\u0027 species and the number of long-term research programs monitoring its abundance, distribution, and breeding biology. Understanding the environmental factors that control predator population dynamics is critically important for projecting the state of populations under future climate change scenarios, and for designing better conservation strategies for the Antarctic ecosystem. For the first time, datasets from a network of observational sites for the Ad\u00e9lie penguin across the entire Antarctic will be combined and analyzed, with a focus on linkages among the ice environment, primary production, and the population responses of Ad\u00e9lie penguins. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. The results of this project can be used to illustrate intuitively to the general public the complex interactions between ice, ocean, pelagic food web and top predators. This project also offers an excellent platform to demonstrate the process of climate-change science - how scientists simulate climate change scenarios and interpret model results. This project supports the training of undergraduate and graduate students in the fields of polar oceanography, plankton and seabird ecology, coupled physical-biological modeling and mathematical ecology. The results will be broadly disseminated to the general oceanographic research community through scientific workshops, conferences and peer-reviewed journal articles, and to undergraduate and graduate education communities, K-12 schools and organizations, and the interested public through web-based servers using existing infrastructure at the investigators\u0027 institutions. The key question to be addressed in this project is how climate impacts the timing of periodic biological events (phenology) and how interannual variation in this periodic forcing influences the abundance of penguins in the Antarctic. The focus will be on the timing of ice algae and phytoplankton blooms because the high seasonality of sea ice and associated pulsed primary productivity are major drivers of the Antarctic food web. This study will also examine the responses of Ad\u00e9lie penguins to changes in sea ice dynamics and ice algae-phytoplankton phenology. Ad\u00e9lie penguins, like many other Antarctic seabirds, are long-lived, upper trophic-level predators that integrate the effects of sea ice on the food web at regional scales, and thus serve as a reliable biological indicator of environmental changes. The proposed approach is designed to accommodate the limits of measuring and modeling the intermediate trophic levels between phytoplankton and penguins (e.g., zooplankton and fish) at the pan-Antarctic scale, which are important but latent variables in the Southern Ocean food web. Through the use of remotely sensed and in situ data, along with state of the art statistical approaches (e.g. wavelet analysis) and numerical modeling, this highly interdisciplinary study will advance our understanding of polar ecosystems and improve the projection of future climate change scenarios.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; MARINE ECOSYSTEMS; NOT APPLICABLE; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Jin, Meibing; Stroeve, Julienne; Ji, Rubao", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Phytoplankton Phenology in the Antarctic: Drivers, Patterns, and Implications for the Adelie Penguin", "uid": "p0000001", "west": -180.0}, {"awards": "1043657 Cassano, John", "bounds_geometry": "POLYGON((163 -74.5,163.9 -74.5,164.8 -74.5,165.7 -74.5,166.6 -74.5,167.5 -74.5,168.4 -74.5,169.3 -74.5,170.2 -74.5,171.1 -74.5,172 -74.5,172 -74.9,172 -75.3,172 -75.7,172 -76.1,172 -76.5,172 -76.9,172 -77.3,172 -77.7,172 -78.1,172 -78.5,171.1 -78.5,170.2 -78.5,169.3 -78.5,168.4 -78.5,167.5 -78.5,166.6 -78.5,165.7 -78.5,164.8 -78.5,163.9 -78.5,163 -78.5,163 -78.1,163 -77.7,163 -77.3,163 -76.9,163 -76.5,163 -76.1,163 -75.7,163 -75.3,163 -74.9,163 -74.5))", "dataset_titles": "Ocean-Ice-Atmosphere Interactions in the Terra Nova Bay Polynya, Antarctica", "datasets": [{"dataset_uid": "600125", "doi": "10.15784/600125", "keywords": "Antarctica; Atmosphere; Meteorology; Navigation; Oceans; Southern Ocean; Unmanned Aircraft", "people": "Cassano, John; Palo, Scott", "repository": "USAP-DC", "science_program": null, "title": "Ocean-Ice-Atmosphere Interactions in the Terra Nova Bay Polynya, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600125"}], "date_created": "Thu, 22 Oct 2015 00:00:00 GMT", "description": "Antarctic coastal polynas are, at the same time, sea-ice free sites and \u0027sea-ice factories\u0027. They are open water surface locations where water mass transformation and densification occurs, and where atmospheric exchanges with the deep ocean circulation are established. Various models of the formation and persistence of these productive and diverse ocean ecosystems are hampered by the relative lack of in situ meteorological and physical oceanographic observations, especially during the inhospitable conditions of their formation and activity during the polar night. Characterization of the lower atmosphere properties, air-sea surface heat fluxes and corresponding ocean hydrographic profiles of Antarctic polynyas, especially during strong wind events, is sought for a more detailed understanding of the role of polynyas in the production of latent-heat type sea ice and the formation, through sea ice brine rejection, of dense ocean bottom waters A key technological innovation in this work continues to be the use of instrumented unmanned aircraft systems (UAS), to enable the persistent and safe observation of the interaction of light and strong katabatic wind fields, and mesocale cyclones in the Terra Nova Bay (Victoria Land, Antarctica) polynya waters during late winter and early summer time frames.", "east": 172.0, "geometry": "POINT(167.5 -76.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -74.5, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Cassano, John; Palo, Scott", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.5, "title": "Collaborative Research: Ocean-Ice-Atmosphere Interactions in the Terra Nova Bay Polynya, Antarctica", "uid": "p0000417", "west": 163.0}, {"awards": "0944165 McGillicuddy, Dennis; 0944254 Smith, Walker", "bounds_geometry": "POLYGON((168 -65,168.2 -65,168.4 -65,168.6 -65,168.8 -65,169 -65,169.2 -65,169.4 -65,169.6 -65,169.8 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,169.8 -65,169.6 -65,169.4 -65,169.2 -65,169 -65,168.8 -65,168.6 -65,168.4 -65,168.2 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65))", "dataset_titles": "Data from expdition NBP1201; Expedition Data; Project data: Processes Regulating Iron Supply at the Mesoscale - Ross Sea", "datasets": [{"dataset_uid": "001442", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1201"}, {"dataset_uid": "000155", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Project data: Processes Regulating Iron Supply at the Mesoscale - Ross Sea", "url": "http://www.bco-dmo.org/project/2155"}, {"dataset_uid": "000156", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Data from expdition NBP1201", "url": "http://www.bco-dmo.org/deployment/506350"}], "date_created": "Wed, 08 Jul 2015 00:00:00 GMT", "description": "The Ross Sea continental shelf is one of the most productive areas in the Southern Ocean, and may comprise a significant, but unaccounted for, oceanic CO2 sink, largely driven by phytoplankton production. The processes that control the magnitude of primary production in this region are not well understood, but data suggest that iron limitation is a factor. Field observations and model simulations indicate four potential sources of dissolved iron to surface waters of the Ross Sea: (1) circumpolar deep water intruding from the shelf edge; (2) sediments on shallow banks and nearshore areas; (3) melting sea ice around the perimeter of the polynya; and (4) glacial meltwater from the Ross Ice Shelf. The principal investigators hypothesize that hydrodynamic transport via mesoscale currents, fronts, and eddies facilitate the supply of dissolved iron from these four sources to the surface waters of the Ross Sea polynya. These hypotheses will be tested through a combination of in situ observations and numerical modeling, complemented by satellite remote sensing. In situ observations will be obtained during a month-long cruise in the austral summer. The field data will be incorporated into model simulations, which allow quantification of the relative contributions of the various hypothesized iron supply mechanisms, and assessment of their impact on primary production. The research will provide new insights and a mechanistic understanding of the complex oceanographic phenomena that regulate iron supply, primary production, and biogeochemical cycling. The research will thus form the basis for predictions about how this system may change in a warming climate. The broader impacts include training of graduate and undergraduate students, international collaboration, and partnership with several ongoing outreach programs that address scientific research in the Southern Ocean. The research also will contribute to the goals of the international research programs ICED (Integrated Climate and Ecosystem Dynamics) and GEOTRACES (Biogeochemical cycling and trace elements in the marine environment).", "east": 170.0, "geometry": "POINT(169 -65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "R/V NBP; Not provided", "locations": null, "north": -65.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Walker; McGillicuddy, Dennis", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "BCO-DMO; R2R", "science_programs": null, "south": -65.0, "title": "Collaborative Research: Impact of Mesoscale Processes on Iron Supply and Phytoplankton Dynamics in the Ross Sea", "uid": "p0000330", "west": 168.0}, {"awards": "0944727 Arrigo, Kevin", "bounds_geometry": "POLYGON((-118.3 -71.6,-117.57 -71.6,-116.84 -71.6,-116.11 -71.6,-115.38 -71.6,-114.65 -71.6,-113.92 -71.6,-113.19 -71.6,-112.46 -71.6,-111.73 -71.6,-111 -71.6,-111 -71.86,-111 -72.12,-111 -72.38,-111 -72.64,-111 -72.9,-111 -73.16,-111 -73.42,-111 -73.68,-111 -73.94,-111 -74.2,-111.73 -74.2,-112.46 -74.2,-113.19 -74.2,-113.92 -74.2,-114.65 -74.2,-115.38 -74.2,-116.11 -74.2,-116.84 -74.2,-117.57 -74.2,-118.3 -74.2,-118.3 -73.94,-118.3 -73.68,-118.3 -73.42,-118.3 -73.16,-118.3 -72.9,-118.3 -72.64,-118.3 -72.38,-118.3 -72.12,-118.3 -71.86,-118.3 -71.6))", "dataset_titles": "Dataset: Chlorophyll a", "datasets": [{"dataset_uid": "000172", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Dataset: Chlorophyll a", "url": "http://www.bco-dmo.org/dataset/546372"}], "date_created": "Fri, 30 Jan 2015 00:00:00 GMT", "description": "ASPIRE is an NSF-funded project that will examine the ecology of the Amundsen Sea during the Austral summer of 2010. ASPIRE includes an international team of trace metal and carbon chemists, phytoplankton physiologists, microbial and zooplankton ecologists, and physical oceanographers, that will investigate why and how the Amundsen Sea Polynya is so much more productive than other polynyas and whether interannual variability can provide insight to climate-sensitive mechanisms driving carbon fluxes. This project will compliment the existing ASPIRE effort by using 1) experimental manipulations to understand photoacclimation of the dominant phytoplankton taxa under conditions of varying light and trace metal abundance, 2) nutrient addition bioassays to determine the importance of trace metal versus nitrogen limitation of phytoplankton growth, and 3) a numerical ecosystem model to understand the importance of differences in mixing regime, flow field, and Fe sources in controlling phytoplankton bloom dynamics and community composition in this unusually productive polynya system. The research strategy will integrate satellite remote sensing, field-based experimental manipulations, and numerical modeling. Outreach and education include participation in Stanford\u0027s Summer Program for Professional Development for Science Teachers, Stanford\u0027s School of Earth Sciences high school internship program, and development of curriculum for local science training centers, including the Chabot Space and Science Center. Undergraduate participation and training will include support for both graduate students and undergraduate assistants.", "east": -111.0, "geometry": "POINT(-114.65 -72.9)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -71.6, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Arrigo, Kevin", "platforms": "Not provided", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": -74.2, "title": "ASPIRE: Amundsen Sea Polynya International Research Expedition", "uid": "p0000348", "west": -118.3}, {"awards": "0739464 Cassano, John", "bounds_geometry": "POLYGON((160 -74.5,161.5 -74.5,163 -74.5,164.5 -74.5,166 -74.5,167.5 -74.5,169 -74.5,170.5 -74.5,172 -74.5,173.5 -74.5,175 -74.5,175 -74.9,175 -75.3,175 -75.7,175 -76.1,175 -76.5,175 -76.9,175 -77.3,175 -77.7,175 -78.1,175 -78.5,173.5 -78.5,172 -78.5,170.5 -78.5,169 -78.5,167.5 -78.5,166 -78.5,164.5 -78.5,163 -78.5,161.5 -78.5,160 -78.5,160 -78.1,160 -77.7,160 -77.3,160 -76.9,160 -76.5,160 -76.1,160 -75.7,160 -75.3,160 -74.9,160 -74.5))", "dataset_titles": "Atmosphere-Ocean-Ice Interaction in a Coastal Polynya", "datasets": [{"dataset_uid": "600075", "doi": "10.15784/600075", "keywords": "Antarctica; Atmosphere; Meteorology; Navigation; Oceans; Ross Sea; Sea Ice; Southern Ocean; Terra Nova Bay; UAV", "people": "Cassano, John; Maslanik, Jim", "repository": "USAP-DC", "science_program": null, "title": "Atmosphere-Ocean-Ice Interaction in a Coastal Polynya", "url": "https://www.usap-dc.org/view/dataset/600075"}], "date_created": "Thu, 13 Sep 2012 00:00:00 GMT", "description": "Antarctic polynyas are the ice free zones often persisting in continental sea ice. Characterization of the lower atmosphere properties, air-sea surface heat fluxes and corresponding ocean depth profiles of Antarctic polynyas, especially during strong wind events, is needed for a more detailed understanding of the role of polynya in the production of latent-heat type sea ice and the formation, through brine rejection, of dense ocean bottom waters. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: A key technological innovation, the use of instrumented uninhabited aircraft systems (UAS), will be employed to enable the persistent and safe observation of the interaction of light and strong katabatic wind fields with the Terra Nova Bay (Victoria Land, Antarctica) polynya waters during late winter and early summer time frames. The use of UAS observational platforms on the continent to date has to date been modest, but demonstration of their versatility and effectiveness in surveying and observing mode is a welcome development. The projects use of UAS platforms by University of Colorado and LDEO (Columbia) researchers is both high risk, and potentially transformative for the systematic data measurement tasks that many Antarctic science applications increasingly require.", "east": 175.0, "geometry": "POINT(167.5 -76.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -74.5, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Cassano, John; Maslanik, Jim", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.5, "title": "Collaborative Research: Atmosphere-Ocean-Ice Interaction in a Coastal Polynya", "uid": "p0000678", "west": 160.0}, {"awards": "0836144 Yager, Patricia; 0836061 Dennett, Mark; 0836112 Smith, Walker", "bounds_geometry": "POLYGON((100 -69,107 -69,114 -69,121 -69,128 -69,135 -69,142 -69,149 -69,156 -69,163 -69,170 -69,170 -70,170 -71,170 -72,170 -73,170 -74,170 -75,170 -76,170 -77,170 -78,170 -79,163 -79,156 -79,149 -79,142 -79,135 -79,128 -79,121 -79,114 -79,107 -79,100 -79,100 -78,100 -77,100 -76,100 -75,100 -74,100 -73,100 -72,100 -71,100 -70,100 -69))", "dataset_titles": "Amundsen Sea Polynya International Research Expedition (ASPIRE) data; Controls on Climate-Active Gases by Amundsen Sea Ice Biota", "datasets": [{"dataset_uid": "600092", "doi": "10.15784/600092", "keywords": "Amundsen Sea; Antarctica; Chemistry:fluid; Chemistry:Fluid; CTD Data; Oceans; Oden; Oden2008; Sea Ice; Sea Surface; Southern Ocean", "people": "Smith, Walker", "repository": "USAP-DC", "science_program": null, "title": "Controls on Climate-Active Gases by Amundsen Sea Ice Biota", "url": "https://www.usap-dc.org/view/dataset/600092"}, {"dataset_uid": "000146", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Amundsen Sea Polynya International Research Expedition (ASPIRE) data", "url": "https://www.bco-dmo.org/project/2132"}, {"dataset_uid": "600091", "doi": "10.15784/600091", "keywords": "Amundsen Sea; Antarctica; Biota; Oceans; Oden; Oden2008; Plankton; Sea Ice; Southern Ocean", "people": "Dennett, Mark", "repository": "USAP-DC", "science_program": null, "title": "Controls on Climate-Active Gases by Amundsen Sea Ice Biota", "url": "https://www.usap-dc.org/view/dataset/600091"}], "date_created": "Sun, 24 Apr 2011 00:00:00 GMT", "description": "Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher.", "east": 170.0, "geometry": "POINT(135 -74)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -69.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Walker; Yager, Patricia; Dennett, Mark", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "BCO-DMO; USAP-DC", "science_programs": null, "south": -79.0, "title": "Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota", "uid": "p0000137", "west": 100.0}, {"awards": "0839069 Yager, Patricia", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP1005", "datasets": [{"dataset_uid": "002654", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1005", "url": "https://www.rvdata.us/search/cruise/NBP1005"}], "date_created": "Thu, 03 Mar 2011 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThe Amundsen Sea Polynya is areally the most productive Antarctic polynya, exhibits higher chlorophyll levels during peak bloom and greater interannual variability than the better-studied Ross Sea Polynya ecosystem. Polynyas may be the key to understanding the future of polar regions as their extent is expected to increase with anthropogenic warming. The project will examine 1) sources of iron to the Amundsen Sea Polynya as a function of climate forcing, 2) phytoplankton community structure in relation to iron supply and mixed-layer depths, 3) the efficiency of the biological pump of carbon to depth and 4) the net flux of carbon as a function of climate and micronutrient forcing. The research also will compare results for the Amundsen Sea to existing data synthesis and modeling efforts for the Palmer LTER and Ross Sea. The project will 1) build close scientific collaborations between US and Swedish researchers; 2) investigate climate change implications with broad societal relevance; 3) train new researchers; 4) encourage participation in research science by underrepresented groups, and 5) involve broad dissemination of results via scientific literature and public outreach, including close interactions with NSF-supported PolarTrec and COSEE K-12 teachers.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Yager, Patricia", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative research aboard Icebreaker Oden: ASPIRE (Amundsen Sea Polynya International Research Expedition)", "uid": "p0000844", "west": null}, {"awards": "0542111 Lonsdale, Darcy; 0542456 Caron, David", "bounds_geometry": "POLYGON((-179.9999 -43.5663,-143.99993 -43.5663,-107.99996 -43.5663,-71.99999 -43.5663,-36.00002 -43.5663,-0.000050000000016 -43.5663,35.99992 -43.5663,71.99989 -43.5663,107.99986 -43.5663,143.99983 -43.5663,179.9998 -43.5663,179.9998 -46.99537,179.9998 -50.42444,179.9998 -53.85351,179.9998 -57.28258,179.9998 -60.71165,179.9998 -64.14072,179.9998 -67.56979,179.9998 -70.99886,179.9998 -74.42793,179.9998 -77.857,143.99983 -77.857,107.99986 -77.857,71.99989 -77.857,35.99992 -77.857,-0.000049999999987 -77.857,-36.00002 -77.857,-71.99999 -77.857,-107.99996 -77.857,-143.99993 -77.857,-179.9999 -77.857,-179.9999 -74.42793,-179.9999 -70.99886,-179.9999 -67.56979,-179.9999 -64.14072,-179.9999 -60.71165,-179.9999 -57.28258,-179.9999 -53.85351,-179.9999 -50.42444,-179.9999 -46.99537,-179.9999 -43.5663))", "dataset_titles": "Do Crustacean Zooplankton Play a Pivotal Role in Structuring Heterotrophic Plankton Communities in the Ross Sea?; Expedition Data; NBP0802 data; Processed CurrentMeter Data from the Ross Sea near Antarctica acquired during the Nathaniel B. Palmer expedition NBP0801", "datasets": [{"dataset_uid": "001517", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0801"}, {"dataset_uid": "000122", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0802 data", "url": "https://www.rvdata.us/search/cruise/NBP0802"}, {"dataset_uid": "601344", "doi": null, "keywords": "Antarctica; Cape Adare; Mooring; NBP0801; Physical Oceanography; Ross Sea; R/v Nathaniel B. Palmer; Salinity; Southern Ocean; Temperature", "people": "Gordon, Arnold; Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Processed CurrentMeter Data from the Ross Sea near Antarctica acquired during the Nathaniel B. Palmer expedition NBP0801", "url": "https://www.usap-dc.org/view/dataset/601344"}, {"dataset_uid": "600059", "doi": "10.15784/600059", "keywords": "Antarctica; Biota; Crustacea; Oceans; Phytoplankton; Ross Sea; Southern Ocean", "people": "Lonsdale, Darcy", "repository": "USAP-DC", "science_program": null, "title": "Do Crustacean Zooplankton Play a Pivotal Role in Structuring Heterotrophic Plankton Communities in the Ross Sea?", "url": "https://www.usap-dc.org/view/dataset/600059"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Recent studies of marine ecosystems show conflicting evidence for trophic cascades, and in particular the relative strength of the crustacean zooplankton-phytoplankton link. The Ross Sea is a natural laboratory for investigating this apparent conflict. It is a site of seasonally high abundances of phytoplankton, characterized by regions of distinct phytoplankton taxa; the southcentral polynya is strongly dominated by the colony-forming prymnesiophyte Phaeocystis antarctica, while coastal regions of this sea are typically dominated by diatoms or flagellate species. Recent studies indicate that, while the south-central polynya exhibits a massive phytoplankton bloom, the poor food quality of P. antarctica for many crustacean zooplankton prevents direct utilization of much of this phytoplankton bloom. Rather, evidence suggests that indirect utilization of this production may be the primary mechanism by which carbon and energy become available to those higher trophic levels. Specifically, we hypothesize that nano and microzooplankton constitute an important food source for crustacean zooplankton (largely copepods and juvenile euphausiids) during the summer period in the Ross Sea where the phytoplankton assemblage is dominated by the prymnesiophyte. In turn, we also hypothesize that predation by copepods (and other Crustacea) controls and structures the species composition of these protistan assemblages. We will occupy stations in the south-central Ross Sea Polynya (RSP) and Terra Nova Bay (TNB) during austral summer to test these hypotheses. We hypothesize that the diatom species that dominate the phytoplankton assemblage in TNB constitute a direct source of nutrition to herbivorous/omnivorous zooplankton (relative to the situation in the south-central RSP). That is, the contribution of heterotrophic protists to crustacean diets will be reduced in TNB. Our research will address fundamental gaps in our knowledge of food web structure and trophic cascades, and provide better understanding of the flow of carbon and energy within the biological community of this perennially cold sea. The PIs will play active roles in public education (K-12) via curriculum development (on Antarctic biology) and teacher trainer activities in the Centers for Ocean Science Education Excellence (COSEE-West), an innovative, NSF-funded program centered at USC and UCLA.", "east": 179.9998, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": true, "keywords": "R/V NBP", "locations": null, "north": -43.5663, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Lonsdale, Darcy; Caron, Bruce", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -77.857, "title": "Collaborative Research: Do Crustacean Zooplankton Play a Pivotal Role in Structuring Heterotrophic Plankton Communities in the Ross Sea?", "uid": "p0000520", "west": -179.9999}, {"awards": "9909374 Fairbanks, Richard", "bounds_geometry": "POLYGON((140.21983 -45.80239,141.197867 -45.80239,142.175904 -45.80239,143.153941 -45.80239,144.131978 -45.80239,145.110015 -45.80239,146.088052 -45.80239,147.066089 -45.80239,148.044126 -45.80239,149.022163 -45.80239,150.0002 -45.80239,150.0002 -47.983436,150.0002 -50.164482,150.0002 -52.345528,150.0002 -54.526574,150.0002 -56.70762,150.0002 -58.888666,150.0002 -61.069712,150.0002 -63.250758,150.0002 -65.431804,150.0002 -67.61285,149.022163 -67.61285,148.044126 -67.61285,147.066089 -67.61285,146.088052 -67.61285,145.110015 -67.61285,144.131978 -67.61285,143.153941 -67.61285,142.175904 -67.61285,141.197867 -67.61285,140.21983 -67.61285,140.21983 -65.431804,140.21983 -63.250758,140.21983 -61.069712,140.21983 -58.888666,140.21983 -56.70762,140.21983 -54.526574,140.21983 -52.345528,140.21983 -50.164482,140.21983 -47.983436,140.21983 -45.80239))", "dataset_titles": "Expedition Data; Summer Oceanographic Measurements near the Mertz Polynya NBP0008", "datasets": [{"dataset_uid": "601161", "doi": "10.15784/601161 ", "keywords": "Antarctica; CTD; CTD Data; Mertz Polynya; NBP0008; Oceans; Oxygen; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Southern Ocean; Temperature", "people": "Mortlock, R. A.; Smethie, William M; Jacobs, Stanley; Mele, Phil", "repository": "USAP-DC", "science_program": null, "title": "Summer Oceanographic Measurements near the Mertz Polynya NBP0008", "url": "https://www.usap-dc.org/view/dataset/601161"}, {"dataset_uid": "001885", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0008"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9909374 Fairbanks This study will investigate how the formation of dense water masses on the antarctic continental shelves is affected by the periodic flushing by relatively warm circumpolar deep water, and whether the intrusion of warm water cna enhance the rate of formation of dense antarctic water. The study involves the observation of water mass modification processes on the continental shelf off the Adelie Coast in East Antarctica, near a quasi-permanent area of open water in the vicinity of the Mertz and Ninnis Glacier tongues - the so-called Mertz polynya. Antarctic coastal polynyas, formed by strong offshore winds, are often referred to as major sea ice and salt \"factories\" because the newly formed ice is blown seaward, allowing more ice to be formed along the coast, and because the freezing process increases the salinity of the continental shelf water. The thin ice, or even open water, implies significant heat losses from the ocean to the atmosphere, which also increases the density of the shelf water. The shelf water sinks, fills any depressions in the bottom, and is gravitationally driven down the continental slope. An additional process is identified for this study and is expected to be at work in this area: the intrusion of relatively warm water onto the continental shelf, overriding the shelf water and essentially shutting down the densification processes. The study will make use of the RVIB Nathaniel B. Palmer to obtain a closely spaced array of hydrographic stations over the continental shelf and slope along the George V Coast in the austral summer. The dat obtained here will complement a similar winter study by the Australian National Antarctic Program. ***", "east": 150.0002, "geometry": "POINT(145.110015 -56.70762)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -45.80239, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Fairbanks, Richard; Jacobs, Stanley", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -67.61285, "title": "Shelf and Bottom Water Formation Near East Antarctic Polynyas and Glaciers", "uid": "p0000612", "west": 140.21983}, {"awards": "0337159 McPhee, Miles", "bounds_geometry": "POLYGON((-64.71659 -53.00174,-57.631677 -53.00174,-50.546764 -53.00174,-43.461851 -53.00174,-36.376938 -53.00174,-29.292025 -53.00174,-22.207112 -53.00174,-15.122199 -53.00174,-8.037286 -53.00174,-0.952373 -53.00174,6.13254 -53.00174,6.13254 -54.292069,6.13254 -55.582398,6.13254 -56.872727,6.13254 -58.163056,6.13254 -59.453385,6.13254 -60.743714,6.13254 -62.034043,6.13254 -63.324372,6.13254 -64.614701,6.13254 -65.90503,-0.952373 -65.90503,-8.037286 -65.90503,-15.122199 -65.90503,-22.207112 -65.90503,-29.292025 -65.90503,-36.376938 -65.90503,-43.461851 -65.90503,-50.546764 -65.90503,-57.631677 -65.90503,-64.71659 -65.90503,-64.71659 -64.614701,-64.71659 -63.324372,-64.71659 -62.034043,-64.71659 -60.743714,-64.71659 -59.453385,-64.71659 -58.163056,-64.71659 -56.872727,-64.71659 -55.582398,-64.71659 -54.292069,-64.71659 -53.00174))", "dataset_titles": "Expedition Data; Processed ADCP Sonar and CTD Data from the Maud Rise acquired during the Nathaniel B. Palmer expedition NBP0506", "datasets": [{"dataset_uid": "601342", "doi": null, "keywords": "ADCP Acoustic Doppler Current Profiler; Antarctica; CTD; Maud Rise; NBP0506; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Southern Ocean; Temperature; Turbulance; Weddell Sea", "people": "McPhee, Miles G.", "repository": "USAP-DC", "science_program": null, "title": "Processed ADCP Sonar and CTD Data from the Maud Rise acquired during the Nathaniel B. Palmer expedition NBP0506", "url": "https://www.usap-dc.org/view/dataset/601342"}, {"dataset_uid": "001590", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0506"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project is an investigation into one mechanism by which deep ocean convection can evolve from stable initial conditions, to the extent that it becomes well enough established to bring warm water to the surface and melt an existing ice cover in late, or possibly even mid-winter. The specific study will investigate how the non-linear dependence of seawater density on temperature and salinity (the equation of state) can enhance vertical convection under typical antarctic conditions. When layers of seawater with similar densities but strong contrasts in temperature and salinity interact, there are a number of possible non-linear instabilities that can convert existing potential energy to turbulent energy. In the Weddell Sea, a cold surface mixed layer is often separated from the underlying warm, more saline water by a thin, weak pycnocline, making the water column particularly susceptible to an instability associated with thermobaricity (the pressure dependence of the thermal expansion coefficient). The project is a collaboration between New York University, Earth and Space Research, the University of Washington, the Naval Postgraduate School, and McPhee Research Company.\u003cbr/\u003eThe work has strong practical applications in contributing to the explanation for the existence of the Weddell Polynya, a 300,000 square kilometer area of open water within the seasonal sea ice of the Weddell Sea, from approximately 1975 to 1979. It has not recurred since, although indications of much smaller and less persistent areas of open water do occur in the vicinity of the Maud Rise seamount. \u003cbr/\u003e The experimental component will be carried out on board the RVIB Nathaniel B. Palmer between July and September, 2005.", "east": 6.13254, "geometry": "POINT(-29.292025 -59.453385)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -53.00174, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "McPhee, Miles G.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -65.90503, "title": "Collaborative Research: The Maud Rise Nonlinear Equation of State Study (MaudNESS)", "uid": "p0000579", "west": -64.71659}, {"awards": "9725024 Jacobs, Stanley", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0001; Expedition data of NBP0008; Summer Oceanographic Measurements near the Mertz Polynya NBP0008", "datasets": [{"dataset_uid": "001885", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0008"}, {"dataset_uid": "002598", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0001", "url": "https://www.rvdata.us/search/cruise/NBP0001"}, {"dataset_uid": "002599", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0008", "url": "https://www.rvdata.us/search/cruise/NBP0008"}, {"dataset_uid": "601161", "doi": "10.15784/601161 ", "keywords": "Antarctica; CTD; CTD Data; Mertz Polynya; NBP0008; Oceans; Oxygen; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Southern Ocean; Temperature", "people": "Mortlock, R. A.; Smethie, William M; Jacobs, Stanley; Mele, Phil", "repository": "USAP-DC", "science_program": null, "title": "Summer Oceanographic Measurements near the Mertz Polynya NBP0008", "url": "https://www.usap-dc.org/view/dataset/601161"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "*** 9725024 Jacobs This project will study the dynamics of Circumpolar Deep Water intruding on the continental shelf of the West Antarctic coast, and the effect of this intrusion on the production of cold, dense bottom water, and melting at the base of floating glaciers and ice tongues. It will concentrate on the Amundsen Sea shelf, specifically in the region of the Pine Island Glacier, the Thwaites Glacier, and the Getz Ice Shelf. Circumpolar Deep Water (CDW) is a relatively warm water mass (warmer than +1.0 deg Celsius) which is normally confined to the outer edge of the continental shelf by an oceanic front separating this water mass from colder and saltier shelf waters. In the Amundsen Sea however, the deeper parts of the continental shelf are filled with nearly undiluted CDW, which is mixed upward, delivering significant amounts of heat to the base of the floating glacier tongues and the ice shelf. The melt rate beneath the Pine Island Glacier averages ten meters of ice per year with local annual rates reaching twenty meters. By comparison, melt rates beneath the Ross Ice Shelf are typically twenty to forty centimeters of ice per year. In addition, both the Pine Island and the Thwaites Glacier are extremely fast-moving, and have a significant effect on the regional ice mass balance of West Antarctica. This project therefore has an important connection to antarctic glaciology, particularly in assessing the combined effect of global change on the antarctic environment. The particular objectives of the project are (1) to delineate the frontal structure on the continental shelf sufficiently to define quantitatively the major routes of CDW inflow, meltwater outflow, and the westward evolution of CDW influence; (2) to use the obtained data set to validate a three-dimensional model of sub-ice ocean circulation that is currently under construction, and (3) to refine the estiamtes of in situ melting on the mass balance of the antarctic ice sheet. The observational program will be carried out from the research vessel Nathaniel B. Palmer in February and March, 1999. ***", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jacobs, Stanley", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "Circumpolar Deep Water and the West Antarctic Ice Sheet", "uid": "p0000815", "west": null}, {"awards": "0440775 Jacobs, Stanley", "bounds_geometry": null, "dataset_titles": "Amundsen Sea Continental Shelf Mooring Data (2006-2007); Expedition data of NBP0702; NBP0702 surface sediment sample information and images", "datasets": [{"dataset_uid": "002645", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0702", "url": "https://www.rvdata.us/search/cruise/NBP0702"}, {"dataset_uid": "601473", "doi": "10.15784/601473", "keywords": "Amundsen Sea; Antarctica; Marine Geoscience; Marine Sediments; NBP0702; Photo; R/v Nathaniel B. Palmer; Seafloor Sampling; Sediment Description; Smith-Mcintyre Grab", "people": "Leventer, Amy; Jacobs, Stanley", "repository": "USAP-DC", "science_program": null, "title": "NBP0702 surface sediment sample information and images", "url": "https://www.usap-dc.org/view/dataset/601473"}, {"dataset_uid": "601809", "doi": "10.15784/601809", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Mooring; Ocean Currents; Pressure; Salinity; Temperature", "people": "Giulivi, Claudia F.; Jacobs, Stanley", "repository": "USAP-DC", "science_program": null, "title": "Amundsen Sea Continental Shelf Mooring Data (2006-2007)", "url": "https://www.usap-dc.org/view/dataset/601809"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This collaborative study between Columbia University and the Southampton Oceanography Centre will investigate the dynamics of warm water intrusions under antarctic floating ice shelves. The study will focus on the Amundsen Sea and Pine Island Glacier, and will document how this water gains access to the continental shelf, transports heat into the ice shelf cavities via deep, glacially-scoured troughs, and rises beneath the ice to drive basal melting. The resulting seawater-meltwater mixtures upwell near the ice fronts, contributing to the formation of atypical coastal polynyas with strong geochemical signatures. Multidecadal freshening downstream is consistent with thinning ice shelves, which may be triggering changes inland, increasing the flow of grounded ice into the sea. This work will be carried out in combination with parallel modeling, remote sensing and data based projects, in an effort to narrow uncertainties about the response of West Antarctic Ice Sheet to climate change. Using state-of-the-art facilities and instruments, this work will enhance knowledge of water mass production and modification, and the understanding of interactions between the ocean circulation, sea floor and ice shelves. The data and findings will be reported to publicly accessible archives and submitted for publication in the scientific literature. The information obtained should prove invaluable for the development and validation of general circulation models, needed to predict the future role of the Antarctic Ice Sheet in sea level change.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "AMD; Amd/Us; R/V NBP; NSF/USA; Amundsen Sea; USAP-DC", "locations": "Amundsen Sea", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jacobs, Stanley", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "The Amundsen Continental Shelf and the Antarctic Ice Sheet", "uid": "p0000836", "west": null}, {"awards": "0742057 Gallager, Scott", "bounds_geometry": "POLYGON((-168.291 -64.846,-165.018 -64.846,-161.745 -64.846,-158.472 -64.846,-155.199 -64.846,-151.926 -64.846,-148.653 -64.846,-145.38 -64.846,-142.107 -64.846,-138.834 -64.846,-135.561 -64.846,-135.561 -66.0269,-135.561 -67.2078,-135.561 -68.3887,-135.561 -69.5696,-135.561 -70.7505,-135.561 -71.9314,-135.561 -73.1123,-135.561 -74.2932,-135.561 -75.4741,-135.561 -76.655,-138.834 -76.655,-142.107 -76.655,-145.38 -76.655,-148.653 -76.655,-151.926 -76.655,-155.199 -76.655,-158.472 -76.655,-161.745 -76.655,-165.018 -76.655,-168.291 -76.655,-168.291 -75.4741,-168.291 -74.2932,-168.291 -73.1123,-168.291 -71.9314,-168.291 -70.7505,-168.291 -69.5696,-168.291 -68.3887,-168.291 -67.2078,-168.291 -66.0269,-168.291 -64.846))", "dataset_titles": "SGER: Primary and Secondary Production and Carbon Flux Through the Microbial Community Along the Western Antarctic Marginal Ice Zone on the Oden Southern Ocean 2007 Expeditions", "datasets": [{"dataset_uid": "600086", "doi": "10.15784/600086", "keywords": "Amundsen Sea; Biota; Microbiology; Navigation; Oceans; Oden; OSO2007; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Dennett, Mark; Gallager, Scott", "repository": "USAP-DC", "science_program": null, "title": "SGER: Primary and Secondary Production and Carbon Flux Through the Microbial Community Along the Western Antarctic Marginal Ice Zone on the Oden Southern Ocean 2007 Expeditions", "url": "https://www.usap-dc.org/view/dataset/600086"}], "date_created": "Mon, 16 Mar 2009 00:00:00 GMT", "description": "Abstract\u003cbr/\u003e\u003cbr/\u003eThe research will continue and extend the study in the Southern Ocean that was initiated during the Oden Southern Ocean 2006 expedition in collaboration with Swedish scientist Mellissa Chierici. We will quantify carbon flux through the food web in the marginal ice zone (MIZ) by measuring size fractionated primary and secondary production, grazing and carbon flux through nanoplankton (2-20 um), microplankton (20-200um), and mesoplankton (200-2000 um). Community structure, species abundance and size specific grazing rates will be quantified using a variety of techniques both underway and at ice stations along the MIZ. The proposed cruise track extends across the Drake Passage to the Western Antarctic Peninsula (WAP) with three station transects along a gradient from the open ocean through the marginal ice zone (MIZ) in the Bellinghausen and Amundsen Seas and into the Ross Sea Polynya. Ice stations along each transect will provide material to characterize production associated with annual ice. Underway measurements of primary and secondary production (chlorophyll, CDOM, microplankton, and mesoplankton) and hydrography (temperature, salinity, pH, DO, turbidity) will establish a baseline for future cruises and as support for other projects such as biogeochemical studies on carbon dioxide drawdown and trace metal work on primary production. The outcome of these measurements will be a description of nano to mesoplankton standing stocks, community structure, and carbon flux along the MIZ in the Bellinghausen and Amundsen Seas and the Ross Sea Polynya.", "east": -135.561, "geometry": "POINT(-151.926 -70.7505)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -64.846, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Gallager, Scott; Dennett, Mark", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.655, "title": "SGER: Primary and Secondary Production and Carbon Flux Through the Microbial Community Along the Western Antarctic Marginal Ice Zone on the Oden Southern Ocean 2007 Expeditions", "uid": "p0000563", "west": -168.291}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Collaborative Research: Using Multiple Stable Isotopes to Investigate Middle to Late Holocene Ecological Responses by Adelie Penguins in the Ross Sea
|
2135695 2135696 |
2022-10-28 | Lane, Chad S; Polito, Michael |
|
The Adélie penguin (Pygoscelis adeliae) is the most abundant penguin in Antarctica, though its populations are currently facing threats from climate change, loss of sea ice habitat and food supplies. In the Ross Sea region, the cold, dry environment has allowed preservation of Adélie penguin bones, feathers, eggshell and even mummified remains, at active and abandoned colonies that date from before the Last Glacial Maximum (more than 45,000 years ago) to the present. A warming period at 4,000-2,000 years ago, known as the penguin ‘optimum’, reduced sea ice extent and allowed this species to access and reproduce in the southern Ross Sea. This coastline likely will be reoccupied in the future as marine conditions change with current warming trends. This project will investigate ecological responses in diet and foraging behavior of the Adélie penguin using well-preserved bones and other tissues that date from before, during and after the penguin ‘optimum’. The Principal investigators will collect and analyze bones, feathers and eggshells from colonies in the Ross Sea to determine changes in population size and feeding locations over millennia. Most of these colonies are associated with highly productive areas of open water surrounded by sea ice. Current warming trends are causing relatively rapid ecological responses by this species and some of the largest colonies in the Ross Sea are likely to be abandoned in the next 50 years from rising sea level. The recently established Ross Sea Marine Protected Area aims to protect Adélie penguins and their foraging grounds in this region from human impacts and knowledge on how this species has responded to climate change in the past will support this goal. This project benefits NSF’s mission to expand fundamental knowledge of Antarctic systems, biota, and processes. In association with their research program, the Principal Investigators will create undergraduate opportunities for research-driven coursework, will design K-12 curriculum and assess the effectiveness of these activities. Two graduate students will be supported by this project to update and refine the curricula working with K-12 teachers. There is also training and partial support included for one doctorate, two master and eight undergraduate students. General public will be reached through social media and YouTube channel productions. A suite of three stable isotopes (carbon, nitrogen, and sulfur) will be analyzed in Adelie penguin bones and feathers from active and abandoned colonies to assess ecological shifts through time. Stable isotope analyses of carbon and nitrogen (δ13C and δ15N) are commonly used to investigate animal migration, foraging locations and diet, especially in marine species that can travel over great distances. Sulfur (δ34S) is not as commonly used but is increasingly being applied to refine and corroborate data obtained from carbon and nitrogen analyses. Collagen is one of the best tissues for these analyses as it is abundant in bone, preserves well, and can be easily extracted for analysis. Using these three isotopes from collagen, ancient and modern penguin colonies will be investigated in the southern, central and northern Ross Sea to determine changes in populations and foraging locations over millennia. Most of these colonies are associated with one of three polynyas in the Ross Sea. This study will be the first of its kind to apply multiple stable isotope analyses to investigate a living species of seabird over millennia in a region where it still exists today. Results from this project will also inform management on best practices for Adelie penguin conservation affected by climate change. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70.8,-180 -71.6,-180 -72.4,-180 -73.2,-180 -74,-180 -74.8,-180 -75.6,-180 -76.4,-180 -77.2,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -77.2,160 -76.4,160 -75.6,160 -74.8,160 -74,160 -73.2,160 -72.4,160 -71.6,160 -70.8,160 -70,162 -70,164 -70,166 -70,168 -70,170 -70,172 -70,174 -70,176 -70,178 -70,-180 -70)) | POINT(170 -74) | false | false | |||||||||
Collaborative Research: Climate, Changing Abundance and Species Interactions of Marine Birds and Mammals at South Georgia in Winter
|
2011285 2011454 |
2022-10-06 | Veit, Richard; Manne, Lisa; Santora, Jarrod |
|
Part I: Non-technical description: Ocean warming in the western Antarctic Peninsula and Scotia Sea in winter is among the highest worldwide. This project will quantify the impact of the climate warming on seabirds. The study area is in South Georgia in the South Atlantic with the largest and most diverse seabird colonies in the world. Detecting and understanding how physics and biology interact to bring positive or negative population changes to seabirds has long challenged scientists. The team in this project hypothesizes that 1) Cold water seabird species decline while warm water species increase due to ocean warming observed in the last 30 years; 2) All species decrease with ocean warming, affecting how they interact with each other and in doing so, decreasing their chances of survival; and 3) Species profiles can be predicted using multiple environmental variables and models. To collect present-day data to compare with observations done in 1985, 1991 and 1993, 2 cruises are planned in the austral winter; the personnel will include the three Principal Investigators, all experienced with sampling of seabirds, plankton and oceanography, with 2 graduate and 5 undergraduate students. Models will be developed based on the cruise data and the environmental change experienced in the last 30 years. The research will improve our understanding of seabird and marine mammal winter ecology, and how they interact with the environment. This project benefits NSF's goals to expand the fundamental knowledge of Antarctic systems, biota, and processes. The project will provide an exceptional opportunity to teach polar field skills to undergraduates by bringing 5 students to engage in the research cruises. To further increase polar literacy training and educational impacts, broader impacts include the production of an educational documentary that will be coupled to field surveys to assess public perceptions about climate change. Part II: Technical description: Ocean warming in the western Antarctic Peninsula and Scotia Sea in winter is among the highest worldwide. Based on previous work, the Principal Investigators in this project want to test the hypothesis that warming would have decreased seabird abundance and species associations in the South Georgia region of the South Atlantic. A main premise of this proposal is that because of marine environmental change, the structure of the seabird communities has also changed, and potentially in a manner that has diminished the mutually beneficial dynamics of positive interactions, with subsequent consequences to fitness and population trends. The study is structured by 3 main objectives: 1) identify changes in krill, bird and mammal abundance that have occurred from previous sampling off both ends of South Georgia during winter in 1985, 1991 and 1993, 2) identify pairings of species that benefit each other in searching for prey, and quantify how such relationships have changed since 1985, and 3) make predictions about how these changes in species pairing might continue given predicted future changes in climate. The novelty of the approach is the conceptual model that inter-species associations inform birds of food availability and that the associations decrease if bird abundance decreases, thus warming could decrease overall population fitness. These studies will be essential to establish if behavioral patterns in seabird modulate their response to climate change. The project will provide exceptional educational opportunity to undergraduates by bringing 5 students to participate on the cruises. To further increase polar literacy training and educational impacts, broader impacts include the production of an educational documentary that will be coupled to field surveys to assess public perceptions about climate change. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-39 -53,-38.6 -53,-38.2 -53,-37.8 -53,-37.4 -53,-37 -53,-36.6 -53,-36.2 -53,-35.8 -53,-35.4 -53,-35 -53,-35 -53.2,-35 -53.4,-35 -53.6,-35 -53.8,-35 -54,-35 -54.2,-35 -54.4,-35 -54.6,-35 -54.8,-35 -55,-35.4 -55,-35.8 -55,-36.2 -55,-36.6 -55,-37 -55,-37.4 -55,-37.8 -55,-38.2 -55,-38.6 -55,-39 -55,-39 -54.8,-39 -54.6,-39 -54.4,-39 -54.2,-39 -54,-39 -53.8,-39 -53.6,-39 -53.4,-39 -53.2,-39 -53)) | POINT(-37 -54) | false | false | |||||||||
Measuring Dissolved Gases to Reveal the Processes that Drive the Solubility Pump and Determine Gas Concentration in Antarctic Bottom Water
|
1744562 |
2022-09-14 | Loose, Brice |
|
Near the Antarctic coast, polynyas are open-water regions where extreme heat loss in winter causes seawater to become cold, salty, and dense enough to sink into the deep sea. The formation of this dense water has regional and global importance because it influences the ocean current system. Polynya processes are also tied to the amount of sea ice formed, ocean heat lost to atmosphere, and atmospheric CO2 absorbed by the Southern Ocean. Unfortunately, the ocean-atmosphere interactions that influence the deep ocean water properties are difficult to observe directly during the Antarctic winter. This project will combine field measurements and laboratory experiments to investigate whether differences in the concentration of noble gasses (helium, neon, argon, xenon, and krypton) dissolved in ocean waters can be linked to environmental conditions at the time of their formation. If so, noble gas concentrations could provide insight into the mechanisms controlling shelf and bottom-water properties, and be used to reconstruct past climate conditions. Project results will contribute to the Southern Ocean Observing System (SOOS) theme of The Future and Consequences of Carbon Uptake in the Southern Ocean. The project will also train undergraduate and graduate students in environmental monitoring, and earth and ocean sciences methods. Understanding the causal links between Antarctic coastal processes and changes in the deep ocean system requires study of winter polynya processes. The winter period of intense ocean heat loss and sea ice production impacts two important Antarctic water masses: High-Salinity Shelf Water (HSSW), and Antarctic Bottom Water (AABW), which then influence the strength of the ocean solubility pump and meridional overturning circulation. To better characterize how sea ice cover, ocean-atmosphere exchange, brine rejection, and glacial melt influence the physical properties of AABW and HSSW, this project will analyze samples and data collected from two Ross Sea polynyas during the 2017 PIPERS winter cruise. Gas concentrations will be measured in seawater samples collected by a CTD rosette, from an underwater mass-spectrometer, and from a benchtop Membrane Inlet Mass Spectrometer. Noble gas concentrations will reveal the ocean-atmosphere (dis)equilibrium that exists at the time that surface water is transformed into HSSW and AABW, and provide a fingerprint of past conditions. In addition, nitrogen (N2), oxygen (O2), argon, and CO2 concentration will be used to determine the net metabolic balance, and to evaluate the efficacy of N2 as an alternative to O2 as glacial meltwater tracer. Laboratory experiments will determine the gas partitioning ratios during sea ice formation. Findings will be synthesized with PIPERS and related projects, and so provide an integrated view of the role of the wintertime Antarctic coastal system on deep water composition. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -71,-179.9 -71,-179.8 -71,-179.7 -71,-179.6 -71,-179.5 -71,-179.4 -71,-179.3 -71,-179.2 -71,-179.1 -71,-179 -71,-179 -71.7,-179 -72.4,-179 -73.1,-179 -73.8,-179 -74.5,-179 -75.2,-179 -75.9,-179 -76.6,-179 -77.3,-179 -78,-179.1 -78,-179.2 -78,-179.3 -78,-179.4 -78,-179.5 -78,-179.6 -78,-179.7 -78,-179.8 -78,-179.9 -78,180 -78,177.5 -78,175 -78,172.5 -78,170 -78,167.5 -78,165 -78,162.5 -78,160 -78,157.5 -78,155 -78,155 -77.3,155 -76.6,155 -75.9,155 -75.2,155 -74.5,155 -73.8,155 -73.1,155 -72.4,155 -71.7,155 -71,157.5 -71,160 -71,162.5 -71,165 -71,167.5 -71,170 -71,172.5 -71,175 -71,177.5 -71,-180 -71)) | POINT(168 -74.5) | false | false | |||||||||
Collaborative Research: US GEOTRACES GP17-ANT: Dissolved concentrations, isotopes, and colloids of the bioactive trace metals
|
2123333 2123354 2123491 |
2022-09-08 | Conway, Timothy; Fitzsimmons, Jessica; John, Seth | No dataset link provided | The goal of the international GEOTRACES program is to understand the distributions of trace chemical elements and their isotopes (TEIs) in the oceans. Many trace metals such as iron are essential for life and thus considered nutrients for phytoplankton growth, with trace metal cycling being especially important for influencing carbon cycling in the iron-limited Southern Ocean, where episodic supply of iron from a range of different external sources is important. The primary goal of this project is to measure the dissolved concentrations, size partitioning, and dissolved isotope signature of Fe on a transect of water-column stations throughout the Amundsen Sea and surrounding region of the Antarctic Margin, as part of the GP17-ANT Expedition. The secondary goal of this project is to analyze the concentrations and size partitioning of the trace metals manganese, zinc, copper, cadmium, nickel, and lead in all water-column samples, measure the isotope ratios of zinc, cadmium, nickel, and copper in a subset of water column samples, and measure the Fe isotopic signature of aerosols, porewaters, and particles. Observations from this project will be incorporated into regional and global biogeochemistry models to assess TEI cycling within the Amundsen Sea and implications for the wider Southern Ocean. This project spans three institutions, four graduate students, undergraduate students, and will provide ultrafiltered samples and data to other PIs as service. The US GEOTRACES GP17 ANT expedition, planned for austral summer 2023/2024 aims to determine the distribution and cycling of trace elements and their isotopes in the Amundsen Sea Sector (100-135°W) of the Antarctic Margin. The cruise will follow the Amundsen Sea ‘conveyor belt’ by sampling waters coming from the Antarctic Circumpolar Current onto the continental shelf, including near the Dotson and Pine Island ice shelves, the productive Amundsen Sea Polynya (ASP), and outflowing waters. Episodic addition of dissolved Fe and other TEIs from dust, ice-shelves, melting ice, and sediments drive seasonal primary productivity and carbon export over the Antarctic shelf and offshore into Southern Ocean. Seasonal coastal polynyas such as the highly productive ASP thus act as key levers on global carbon cycling. However, field observations of TEIs in such regions remain scarce, and biogeochemical cycling processes are poorly captured in models of ocean biogeochemistry. The investigators will use their combined analytical toolbox, in collaboration with the diagnostic chemical tracers and regional models of other funded groups to address four main objectives: 1) What is the relative importance of different sources in supplying Fe and other TEIs to the ASP? 2) What is the physiochemical speciation of this Fe, and its potential for transport? 3) How do biological uptake, scavenging and regeneration in the ASP influence TEI distributions, stoichiometry, and nutrient limitation? 4) What is the flux and signature of TEIs transported offshore to the ACC and Southern Ocean? This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-135 -66,-131.5 -66,-128 -66,-124.5 -66,-121 -66,-117.5 -66,-114 -66,-110.5 -66,-107 -66,-103.5 -66,-100 -66,-100 -67,-100 -68,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-103.5 -76,-107 -76,-110.5 -76,-114 -76,-117.5 -76,-121 -76,-124.5 -76,-128 -76,-131.5 -76,-135 -76,-135 -75,-135 -74,-135 -73,-135 -72,-135 -71,-135 -70,-135 -69,-135 -68,-135 -67,-135 -66)) | POINT(-117.5 -71) | false | false | |||||||||
Collaborative Research: Investigating the Role of Coastal Polynya Variability in Modulating Antarctic Marine-Terminating Glacier Drawdown
|
2205008 |
2022-08-07 | Walker, Catherine; Zhang, Weifeng; Seroussi, Helene | No dataset link provided | Most of the mass loss from the Antarctic Ice Sheet, a major contributor to sea level rise, occurs at its margins, where ice meets the ocean. Glaciers and ice streams flow towards the coast and can go afloat over the water, forming ice shelves. Ice shelves make up almost half of the entire Antarctic coastline, and hold back the flow of inland ice in Antarctica continent; thus they are integral to the overall stability of the Antarctic Ice Sheet. Ice shelves lose mass by two main processes: iceberg calving and basal melting. Temporal and spatial fluctuations in both are driven by various processes; a major driver of ice shelf melt is the heat provided by the neighboring Southern Ocean. Ocean heat, in turn, is driven by various aspects of the ice shelf environment. One of the most significant contributors to changes in the ocean’s heat content is the presence of sea ice. This research will focus on the effects of coastal polynyas (areas of open water amidst sea ice), how they modulate the local ocean environment, and how that environment drives ice shelf basal melting. To date, the relationship between polynyas and ice shelf melt has not been characterized on an Antarctic-wide scale. Understanding the feedbacks between polynya size and duration, ocean stratification, and ice shelf melt, and the strength of those feedbacks, will improve the ability to characterize influences on the long-term stability of ice shelves, and in turn, the Antarctic Ice Sheet as a whole. A critical aspect of this study is that it will provide a framework for understanding ice shelf-ocean interaction across a diverse range of geographic settings. This, together with improvements of various models, will help interpret the impacts of future climate change on these systems, as their responses are likely quite variable and, overall, different from the large-scale response of the ice sheet. This project will also provide a broader context to better design future observational studies of specific coastal polynya and ice shelf processes. This study focuses on four main hypotheses: 1) Variations of coastal polynya extent are correlated with those of the ice shelf melt rates, and this correlation varies around Antarctica; 2) Polynya extent modulates a feedback between ice shelf melt and accretion regimes through stratification of local waters; 3) Polynya extent together with seafloor bathymetry regulate the volume of warm offshore waters that reach ice margins; and 4) The strength of the feedback between polynya and glacier ice varies with geographic setting and influences the long-term stability of the glacial system. Observational data, including ice-penetrating radar, radar and laser altimetry, and in situ hydrographic data, and derived data sets from the Southern Ocean State Estimate (SOSE) project and BedMachine Antarctica, will be used in conjunction with ocean (MIT global circulation model, MITgcm) and ice sheet (Ice sheet and Sea-level System Model, ISSM) models to reveal underlying dynamics. The joint analysis of the observational data enables an investigation of polynya, ocean, and ice shelf signals and their interplay over time across a range of settings. The results of this data analysis also provide inputs and validation data for the modeling tasks, which will allow for characterization of the feedbacks in our observations. The coupled modeling will enable us to examine the interaction between polynya circulation and ice shelves in different dynamical regimes and to understand ice and ocean feedback over time. Diagnosing and interpreting the pan-Antarctic spatial variability of the polynya-ice shelf interaction are the main objectives of this research and separates this study from other projects targeted at the interactive processes in specific regions. As such, this research focuses on seven preliminary target sites around the Antarctic coast to establish a framework for interpreting coupled ice shelf-ocean variability across a diverse range of geographic settings. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||
NSFGEO-NERC: Collaborative Research "P2P: Predators to Plankton -Biophysical Controls in Antarctic Polynyas"
|
2040048 2040199 2040571 |
2021-10-25 | Ainley, David; Santora, Jarrod; Varsani, Arvind; Smith, Walker; Ballard, Grant; Schmidt, Annie |
|
NSFGEO-NERC Collaborative Research: P2P: Predators to Plankton – Biophysical controls in Antarctic polynyas Part I: Non-technical description: The Ross Sea, a globally important ecological hotspot, hosts 25% to 45% of the world populations of Adélie and Emperor penguins, South Polar skuas, Antarctic petrels, and Weddell seals. It is also one of the few marine protected areas within the Southern Ocean, designed to protect the workings of its ecosystem. To achieve conservation requires participation in an international research and monitoring program, and more importantly integration of what is known about penguin as predators and the biological oceanography of their habitat. The project will acquire data on these species’ role within the local food web through assessing of Adélie penguin feeding grounds and food choices, while multi-sensor ocean gliders autonomously quantify prey abundance and distribution as well as ocean properties, including phytoplankton, at the base of the food web. Additionally, satellite imagery will quantify sea ice and whales, known penguin competitors, within the penguins’ foraging area. Experienced and young researchers will be involved in this project, as will a public outreach program that reaches more than 200 school groups per field season, and with an excess of one million visits to a website on penguin ecology. Lessons about ecosystem change, and how it is measured, i.e. the STEM fields, will be emphasized. Results will be distributed to the world scientific and management communities. Part II: Technical description: This project, in collaboration with the United Kingdom (UK) National Environmental Research Council (NERC), assesses food web structure in the southwestern Ross Sea, a major portion of the recently established Ross Sea Region Marine Protected Area that has been designed to protect the region’s food web structure, dynamics and function. The in-depth, integrated ecological information collected in this study will contribute to the management of this system. The southwestern Ross Sea, especially the marginal ice zone of the Ross Sea Polynya (RSP), supports global populations of iconic and indicator species: 25% of Emperor penguins, 30% of Adélie penguins, 50% of South Polar skuas, and 45% of Weddell seals. However, while individually well researched, the role of these members as predators has been poorly integrated into understanding of Ross Sea food web dynamics and biogeochemistry. Information from multi-sensor ocean gliders, high-resolution satellite imagery, diet analysis and biologging of penguins, when integrated, will facilitate understanding of the ‘preyscape’ within the intensively investigated biogeochemistry of the RSP. UK collaborators will provide state-of-the-art glider technology, glider programming, ballasting, and operation and expertise to evaluate the oceanographic conditions of the study area. Several young scientists will be involved, as well as an existing outreach program already developed that reaches annually more than 200 K-12 school groups and has more than one million website visits per month. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((164 -74,165.6 -74,167.2 -74,168.8 -74,170.4 -74,172 -74,173.6 -74,175.2 -74,176.8 -74,178.4 -74,180 -74,180 -74.4,180 -74.8,180 -75.2,180 -75.6,180 -76,180 -76.4,180 -76.8,180 -77.2,180 -77.6,180 -78,178.4 -78,176.8 -78,175.2 -78,173.6 -78,172 -78,170.4 -78,168.8 -78,167.2 -78,165.6 -78,164 -78,164 -77.6,164 -77.2,164 -76.8,164 -76.4,164 -76,164 -75.6,164 -75.2,164 -74.8,164 -74.4,164 -74)) | POINT(172 -76) | false | false | |||||||||
NSFGEO-NERC: Collaborative Research: Accelerating Thwaites Ecosystem Impacts for the Southern Ocean (ARTEMIS)
|
1941304 1941483 1941292 1941308 1941327 |
2021-08-20 | Yager, Patricia; Medeiros, Patricia; Sherrell, Robert; St-Laurent, Pierre; Fitzsimmons, Jessica; Stammerjohn, Sharon | Part I: Non-technical summary: The Amundsen Sea is adjacent to the West Antarctic Ice Sheet (WAIS) and hosts the most productive coastal ecosystem in all of Antarctica, with vibrant green waters visible from space and an atmospheric carbon dioxide uptake rate ten times higher than the Southern Ocean average. The region is also an area highly impacted by climate change and glacier ice loss. Upwelling of warm deep water is causing melt under the ice sheet, which is contributing to sea level rise and added nutrient inputs to the region. This is a project that is jointly funded by the National Science Foundation’s Directorate of Geosciences (NSF/GEO) and the National Environment Research Council (NERC) of the United Kingdom (UK) via the NSF/GEO-NERC Lead Agency Agreement. This Agreement allows a single joint US/UK proposal to be submitted and peer-reviewed by the Agency whose investigator has the largest proportion of the budget. Upon successful joint determination of an award, each Agency funds the proportion of the budget and the investigators associated with its own country. In this collaboration, the US team will undertake biogeochemical sampling alongside a UK-funded physical oceanographic program to evaluate the contribution of micronutrients such as iron from glacial meltwater to ecosystem productivity and carbon cycling. Measurements will be incorporated into computer simulations to examine ecosystem responses to further glacial melting. Results will help predict future impacts on the region and determine whether the climate sensitivity of the Amundsen Sea ecosystem represents the front line of processes generalizable to the greater Antarctic. This study is aligned with the large International Thwaites Glacier Collaboration (ITGC) and will make data available to the full scientific community. The program will provide training for undergraduate, graduate, post-doctoral, and early-career scientists in both science and communication. The team will also develop out-of-school science experiences for middle and high schoolers related to climate change and Antarctica. Part II: Technical summary: The Amundsen Sea hosts the most productive polynya in all of Antarctica, with atmospheric carbon dioxide uptake rates ten times higher than the Southern Ocean average. The region is vulnerable to climate change, experiencing rapid losses in sea ice, a changing icescape and some of the fastest melting glaciers flowing from the West Antarctic Ice Sheet, a process being studied by the International Thwaites Glacier Collaboration. The biogeochemical composition of the outflow from the glaciers surrounding the Amundsen Sea is largely unstudied. In collaboration with a UK-funded physical oceanographic program, ARTEMIS is using shipboard sampling for trace metals, carbonate system, nutrients, organic matter, and microorganisms, with biogeochemical sensors on autonomous vehicles to gather data needed to understand the impact of the melting ice sheet on both the coastal ecosystem and the regional carbon cycle. These measurements, along with access to the advanced physical oceanographic measurements will allow this team to 1) bridge the gap between biogeochemistry and physics by adding estimates of fluxes and transport of limiting micronutrients; 2) provide biogeochemical context to broaden understanding of the global significance of ocean-ice shelf interactions; 3) determine processes and scales of variability in micronutrient supply that drive the ten-fold increase in carbon dioxide uptake, and 4) identify small-scale processes key to iron and carbon cycling using optimized field sampling. Observations will be integrated into an ocean model to enhance predictive capabilities of regional ocean function. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-120 -71,-118 -71,-116 -71,-114 -71,-112 -71,-110 -71,-108 -71,-106 -71,-104 -71,-102 -71,-100 -71,-100 -71.4,-100 -71.8,-100 -72.2,-100 -72.6,-100 -73,-100 -73.4,-100 -73.8,-100 -74.2,-100 -74.6,-100 -75,-102 -75,-104 -75,-106 -75,-108 -75,-110 -75,-112 -75,-114 -75,-116 -75,-118 -75,-120 -75,-120 -74.6,-120 -74.2,-120 -73.8,-120 -73.4,-120 -73,-120 -72.6,-120 -72.2,-120 -71.8,-120 -71.4,-120 -71)) | POINT(-110 -73) | false | false | ||||||||||
Collaborative Research: Elucidating Environmental Controls of Productivity in Polynas and the Western Antarctic Peninsula
|
1643652 1643618 |
2021-04-29 | van Dijken, Gert; Arrigo, Kevin; Dinniman, Michael; Hofmann, Eileen |
|
Coastal waters surrounding Antarctica represent some of the most biologically rich and most untouched ecosystems on Earth. In large part, this biological richness is concentrated within the numerous openings that riddle the expansive sea ice (these openings are known as polynyas) near the Antarctic continent. These polynyas represent regions of enhanced production known as hot-spots and support the highest animal densities in the Southern Ocean. Many of them are also located adjacent to floating extensions of the vast Antarctic Ice Sheet and receive a substantial amount of meltwater runoff each year during the summer. However, little is known about the specific processes that make these ecosystems so biologically productive. Of the 46 Antarctic coastal polynyas that are presently known, only a handful have been investigated in detail. This project will develop ecosystem models for the Ross Sea polynya, Amundsen polynya, and Pine Island polynya; three of the most productive Antarctic coastal polynyas. The primary goal is to use these models to better understand the fundamental physical, chemical, and biological interacting processes and differences in these processes that make these systems so biologically productive yet different in some respects (e.g. size and productivity) during the present day settings. Modeling efforts will also be extended to potentially assess how these ecosystems may have functioned in the past and how they might change in the future under different physical and chemical and climatic settings. The project will advance the education of underrepresented minorities through Stanford?s Summer Undergraduate Research in Geoscience and Engineering (SURGE) Program. SURGE will provide undergraduates the opportunity to gain mentored research experiences at Stanford University in engineering and the geosciences. Old Dominion University also will utilize an outreach programs for local public and private schools as well as an ongoing program supporting the Boy Scout Oceanography merit badge program to create outreach and education impacts. Polynyas (areas of open water surrounded by sea ice) are disproportionately productive regions of polar ecosystems, yet controls on their high rates of production are not well understood. This project will provide quantitative assessments of the physical and chemical processes that control phytoplankton abundance and productivity within polynyas, how these differ for different polynyas, and how polynyas may change in the future. Of particular interest are the interactions among processes within the polynyas and the summertime melting of nearby ice sheets, including the Thwaites and Pine Island glaciers. In this proposed study, we will develop a set of comprehensive, high resolution coupled physical-biological models and implement these for three major, but diverse, Antarctic polynyas. These polynyas, the Ross Sea polynya, the Amundsen polynya, and Pine Island polynya, account for >50% of the total Antarctic polynya production. The research questions to be addressed are: 1) What environmental factors exert the greatest control of primary production in polynyas around Antarctica? 2) What are the controlling physics that leads to the heterogeneity of dissolved iron (dFe) supply to the euphotic zone in polynyas around the Antarctic continental shelf? What effect does this have on local rates of primary production? 3) What are the likely changes in the supply of dFe to the euphotic zone in the next several decades due to climate-induced changes in the physics (winds, sea-ice, ice shelf basal melt, cross-shelf exchange, stratification and vertical mixing) and how will this affect primary productivity around the continent? The Ross Sea, Amundsen, and Pine Island polynyas are some of the best-sampled polynyas in Antarctica, facilitating model parameterization and validation. Furthermore, these polynyas differ widely in their size, location, sea ice dynamics, relationship to melting ice shelves, and distance from the continental shelf break, making them ideal case studies. For comparison, the western Antarctic Peninsula (wAP), a productive continental shelf where polynyas are a relatively minor contributor to biological production, will also be modeled. Investigating specific processes within different types Antarctic coastal waters will provide a better understand of how these important biological oases function and how they might change under different environmental conditions. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||
Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean
|
1542962 |
2020-09-25 | Anderson, Robert; Fleisher, Martin; Pavia, Frank | Scientists established more than 30 years ago that the climate-related variability of carbon dioxide levels in the atmosphere over Earth's ice-age cycles was regulated by the ocean. Hypotheses to explain how the ocean regulates atmospheric carbon dioxide have long been debated, but they have proven to be difficult to test. Work proposed here will test one leading hypothesis, specifically that the ocean experienced greater density stratification during the ice ages. That is, with greater stratification during the ice ages and slower replacement of deep water by cold dense water formed near the poles, the deep ocean would have held more carbon dioxide, which is produced by biological respiration of the organic carbon that constantly rains to the abyss in the form of dead organisms and organic debris that sink from the sunlit surface ocean. To test this hypothesis, the degree of ocean stratification during the last ice age and the rate of deep-water replacement will be constrained by comparing the radiocarbon ages of organisms that grew in the surface ocean and at the sea floor within a critical region around Antarctica, where most of the replacement of deep waters occurs. Completing this work will contribute toward improved models of future climate change. Climate scientists rely on models to estimate the amount of fossil fuel carbon dioxide that will be absorbed by the ocean in the future. Currently the ocean absorbs about 25% of the carbon dioxide produced by burning fossil fuels. Most of this carbon is absorbed in the Southern Ocean (the region around Antarctica). How this will change in the future is poorly known. Models have difficulty representing physical conditions in the Southern Ocean accurately, thereby adding substantial uncertainty to projections of future ocean uptake of carbon dioxide. Results of the proposed study will provide a benchmark to test the ability of models to simulate ocean processes under climate conditions distinctly different from those that occur today, ultimately leading to improvement of the models and to more reliable projections of future absorption of carbon dioxide by the ocean. The proposed work will add a research component to an existing scientific expedition to the Southern Ocean, in the region between the Ross Sea and New Zealand, that will collect sediment cores at three to five locations down the northern flank of the Pacific-Antarctic Ridge at approximately 170°W. The goal is to collect sediments at each location deposited since early in the peak of the last ice age. This region is unusual in the Southern Ocean in that sediments deposited during the last ice age contain foraminifera, tiny organisms with calcium carbonate shells, in much greater abundance than in other regions of the Southern Ocean. Foraminifera are widely used as an archive of several geochemical tracers of past ocean conditions. In the proposed work the radiocarbon age of foraminifera that inhabited the surface ocean will be compared with the age of contemporary specimens that grew on the seabed. The difference in age between surface and deep-swelling organisms will be used to discriminate between two proposed mechanisms of deep water renewal during the ice age: formation in coastal polynyas around the edge of Antarctica, much as occurs today, versus formation by open-ocean convection in deep-water regions far from the continent. If the latter mechanism prevails, then it is expected that surface and deep-dwelling foraminifera will exhibit similar radiocarbon ages. In the case of dominance of deep-water formation in coastal polynyas, one expects to find very different radiocarbon ages in the two populations of foraminifera. In the extreme case of greater ocean stratification during the last ice age, one even expects the surface dwellers to appear to be older than contemporary bottom dwellers because the targeted core sites lie directly under the region where the oldest deep waters return to the surface following their long circuitous transit through the deep ocean. The primary objective of the proposed work is to reconstruct the water mass age structure of the Southern Ocean during the last ice age, which, in turn, is a primary factor that controls the amount of carbon dioxide stored in the deep sea. In addition, the presence of foraminifera in the cores to be recovered provides a valuable resource for many other paleoceanographic applications, such as: 1) the application of nitrogen isotopes to constrain the level of nutrient utilization in the Southern Ocean and, thus, the efficiency of the ocean?s biological pump, 2) the application of neodymium isotopes to constrain the transport history of deep water masses, 3) the application of boron isotopes and boron/calcium ratios to constrain the pH and inorganic carbon system parameters of ice-age seawater, and 4) the exploitation of metal/calcium ratios in foraminifera to reconstruct the temperature (Mg/Ca) and nutrient content (Cd/Ca) of deep waters during the last ice age at a location near their source near Antarcitca. | POLYGON((-171 -57,-170.8 -57,-170.6 -57,-170.4 -57,-170.2 -57,-170 -57,-169.8 -57,-169.6 -57,-169.4 -57,-169.2 -57,-169 -57,-169 -57.72,-169 -58.44,-169 -59.16,-169 -59.88,-169 -60.6,-169 -61.32,-169 -62.04,-169 -62.76,-169 -63.48,-169 -64.2,-169.2 -64.2,-169.4 -64.2,-169.6 -64.2,-169.8 -64.2,-170 -64.2,-170.2 -64.2,-170.4 -64.2,-170.6 -64.2,-170.8 -64.2,-171 -64.2,-171 -63.48,-171 -62.76,-171 -62.04,-171 -61.32,-171 -60.6,-171 -59.88,-171 -59.16,-171 -58.44,-171 -57.72,-171 -57)) | POINT(-170 -60.6) | false | false | ||||||||||
Impact of Convective Processes and Sea Ice Formation on the Distribution of Iron in the Ross Sea: Closing the Seasonal Cycle
|
1543483 |
2020-06-22 | Sedwick, Peter |
|
The waters of the Ross Sea continental shelf are among the most productive in the Southern Ocean, and may comprise a significant regional oceanic sink for atmospheric carbon dioxide. In this region, primary production can be limited by the supply of dissolved iron to surface waters during the growing season. Water-column observations, sampling and measurements are to be carried out in the late autumn-early winter time frame on the Ross Sea continental shelf and coastal polynyas (Terra Nova Bay and Ross Ice Shelf polynyas), in order to better understand what drives the biogeochemical redistribution of micronutrient iron species during the onset of convective mixing and sea-ice formation at this time of year, thereby setting conditions for primary production during the following spring. The spectacular field setting and remote, hostile conditions that accompany the proposed field study present exciting possibilities for STEM education and training. At the K-12 level, the project seeks to support the development of educational outreach materials targeting elementary and middle school students, pre-service science teachers, and in-service science teachers. | POLYGON((-180 -66,-179.5 -66,-179 -66,-178.5 -66,-178 -66,-177.5 -66,-177 -66,-176.5 -66,-176 -66,-175.5 -66,-175 -66,-175 -67.2,-175 -68.4,-175 -69.6,-175 -70.8,-175 -72,-175 -73.2,-175 -74.4,-175 -75.6,-175 -76.8,-175 -78,-175.5 -78,-176 -78,-176.5 -78,-177 -78,-177.5 -78,-178 -78,-178.5 -78,-179 -78,-179.5 -78,180 -78,178.5 -78,177 -78,175.5 -78,174 -78,172.5 -78,171 -78,169.5 -78,168 -78,166.5 -78,165 -78,165 -76.8,165 -75.6,165 -74.4,165 -73.2,165 -72,165 -70.8,165 -69.6,165 -68.4,165 -67.2,165 -66,166.5 -66,168 -66,169.5 -66,171 -66,172.5 -66,174 -66,175.5 -66,177 -66,178.5 -66,-180 -66)) | POINT(175 -72) | false | false | |||||||||
Using Bio-acoustics on an Autonomous Surveying Platform for the Examination of Phytoplankton-zooplankton and Fish Interactions in the Western Ross Sea
|
1743035 |
2020-02-27 | Saba, Grace | The Ross Sea is the one of the most productive regions in Antarctica and supports large populations of several key species in the Ross Sea food web, including copepods, crystal krill (Euphausia crystallorophias), and Antarctic silverfish (Pleuragramma antarcticum). Copepods and crystal krill dominate the diets of Antarctic silverfish, the dominant fish species in the high Antarctic zone, and silverfish are a major link between lower (copepods, krill) and higher (fishes, marine mammals, flighted birds, Adélie and Emperor penguins) trophic levels. Despite the significance of these key species, there is limited understanding of copepod, krill, and silverfish mesoscale distribution, spatial structure of age/maturity classes, and their interactions with physical drivers within the Ross Sea. Autonomous underwater profiling gliders are a developing technology that offers the potential for providing high spatial, temporal, and depth resolution data on regional scales. The project will test the capability of a multi-frequency echo sounder integrated into a Slocum Webb glider with the aim of providing the first glider-based acoustic assessment of simultaneous distributions of three trophic levels in the Ross Sea. Complementary glider sensors measuring physical, chemical, and biological parameters will provide mesoscale and sub-mesoscale hydrographic information from which phytoplankton-zooplankton-fish interactions and the relationships between these organisms and physics drivers (sea ice, circulation features) will be investigated. The approach proposed here, glider acoustics, is relatively new and has the potential to be transformational for investigating food webs and the Ross Sea ecosystem. Researchers will modify and integrate an Acoustic Zooplankton and Fish Profiler (AZFP) multi-frequency echo sounder into a Slocum Webb G2 glider with the capability to differentiate between krill and other types of zooplankton, including copepods, and different sizes of krill and silverfish. The AZFP will be complemented with the existing glider sensors including a CTD, a WET Labs BB2FL ECO puck configured for simultaneous chlorophyll fluorescence (phytoplankton biomass) and optical backscatter measurements, and an Aanderaa Optode for measuring dissolved oxygen. The new sensor suite will be tested during a four-week glider deployment, where it will conduct acoustic surveys to map distribution and abundance of multiple zooplankton taxa and silverfish during the austral summer along the Terra Nova Bay polynya ice shelf and in adjacent continental shelf waters. The relationships between phytoplankton-zooplankton-fish distributions and the physical drivers of zooplankton and silverfish species and size distributions will be investigated. Coordinated ship-based acoustic sampling and net tows/trawls will be conducted multiple times during the glider deployment to validate glider acoustic-based species, size, and abundance measurements. Open accessible, automated data produced during this project will be made available through RUCOOL (Rutgers University Center for Ocean Observing Leadership) and THREDDS (Thematic Real-time Environmental Data Distribution System). The production of consistent, vertically-resolved, high resolution glider-based acoustic measurements will define a successful outcome of this project that should help in identifying the challenges in their use as a potentially cost-effective, automated examination of food webs in the Antarctic. | POLYGON((164 -72.2,165 -72.2,166 -72.2,167 -72.2,168 -72.2,169 -72.2,170 -72.2,171 -72.2,172 -72.2,173 -72.2,174 -72.2,174 -72.74,174 -73.28,174 -73.82,174 -74.36,174 -74.9,174 -75.44,174 -75.98,174 -76.52,174 -77.06,174 -77.6,173 -77.6,172 -77.6,171 -77.6,170 -77.6,169 -77.6,168 -77.6,167 -77.6,166 -77.6,165 -77.6,164 -77.6,164 -77.06,164 -76.52,164 -75.98,164 -75.44,164 -74.9,164 -74.36,164 -73.82,164 -73.28,164 -72.74,164 -72.2)) | POINT(169 -74.9) | false | false | ||||||||||
Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators
|
1443424 1443386 1443585 1826712 |
2019-08-08 | Polito, Michael; Kelton, McMahon; Patterson, William; McCarthy, Matthew | The Antarctic marine ecosystem is highly productive and supports a diverse range of ecologically and commercially important species. A key species in this ecosystem is Antarctic krill, which in addition to being commercially harvested, is the principle prey of a wide range of marine organisms including penguins, seals and whales. The aim of this study is to use penguins and other krill predators as sensitive indicators of past changes in the Antarctic marine food web resulting from climate variability and the historic harvesting of seals and whales by humans. Specifically this study will recover and analyze modern (<20 year old), historic (20-200 year old) and ancient (200-10,000 year old) penguin and other krill predator tissues to track their past diets and population movements relative to shifts in climate and the availability of Antarctic krill. Understanding how krill predators were affected by these factors in the past will allow us to better understand how these predators, the krill they depend on, and the Antarctic marine ecosystem as a whole will respond to current challenges such as global climate change and an expanding commercial fishery for Antarctic krill. The project will further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This project will support the cross-institutional training of undergraduate and graduate students in advanced analytical techniques in the fields of ecology and biogeochemistry. In addition, this project includes educational outreach aimed encouraging participation in science careers by engaging K-12 students in scientific issues related to Antarctica, penguins, marine ecology, biogeochemistry, and global climate change. This research will help place recent ecological changes in the Southern Ocean into a larger historical context by examining decadal and millennial-scale shifts in the diets and population movements of Antarctic krill predators (penguins, seals, and squid) in concert with climate variability and commercial harvesting. This will be achieved by coupling advanced stable and radio isotope techniques, particularly compound-specific stable isotope analysis, with unprecedented access to modern, historical, and well-preserved paleo-archives of Antarctic predator tissues dating throughout the Holocene. This approach will allow the project to empirically test if observed shifts in Antarctic predator bulk tissue stable isotope values over the past millennia were caused by climate-driven shifts at the base of the food web in addition to, or rather than, shifts in predator diets due to a competitive release following the historic harvesting of krill eating whale and seals. In addition, this project will track the large-scale abandonment and reoccupation of penguin colonies around Antarctica in response to changes in climate and sea ice conditions over the past several millennia. These integrated field studies and laboratory analyses will provide new insights into the underlying mechanisms that influenced past shifts in the diets and population movements of charismatic krill predators such as penguins. This will allow for improved projections of the ecosystem consequences of future climate change and anthropogenic harvesting scenarios in the Antarctica that are likely to affect the availability of Antarctic krill. | POLYGON((-180 -60,-166 -60,-152 -60,-138 -60,-124 -60,-110 -60,-96 -60,-82 -60,-68 -60,-54 -60,-40 -60,-40 -61.8,-40 -63.6,-40 -65.4,-40 -67.2,-40 -69,-40 -70.8,-40 -72.6,-40 -74.4,-40 -76.2,-40 -78,-54 -78,-68 -78,-82 -78,-96 -78,-110 -78,-124 -78,-138 -78,-152 -78,-166 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -76.2,160 -74.4,160 -72.6,160 -70.8,160 -69,160 -67.2,160 -65.4,160 -63.6,160 -61.8,160 -60,162 -60,164 -60,166 -60,168 -60,170 -60,172 -60,174 -60,176 -60,178 -60,-180 -60)) | POINT(-120 -69) | false | false | ||||||||||
Collaborative Research: Polynyas in Coastal Antarctica (PICA): Linking Physical Dynamics to Biological Variability
|
1643901 2021245 1643735 |
2019-08-07 | Zhang, Weifeng; Ji, Rubao; Jenouvrier, Stephanie; Maksym, Edward; Li, Yun |
|
During winter, sea-ice coverage along the Antarctic coast is punctuated by numerous polynyas--isolated openings of tens to hundreds of kilometer wide. These coastal polynyas are hotspots of sea ice production and the primary source regions of the bottom water in the global ocean. They also host high levels of biological activities and are the feeding grounds of Emperor penguins and marine mammals. The polynyas are a key component of the Antarctic coastal system and crucial for the survival of penguins and many other species. These features also differ dramatically from each other in timing of formation, duration, phytoplankton growth season, and overall biological productivity. Yet, the underlying reasons for differences among them are largely unknown. This project studies the fundamental biophysical processes at a variety of polynyas, examines the connection between the physical environment and the phytoplankton and penguin ecology, and investigates the mechanisms behind polynya variability. The results of this interdisciplinary study will provide a context for interpretation of field measurements in Antarctic coastal polynyas, set a baseline for future polynya studies, and examine how polynya ecosystems may respond to local and large-scale environmental changes. The project will include educational and outreach activities that convey scientific messages to a broad audience. It aims to increase public awareness of the interconnection between large-scale environmental change and Antarctic coastal systems. The main objectives of this study are to form a comprehensive understanding of the temporal and spatial variability of Antarctic coastal polynyas and the physical controls of polynya ecosystems. The project takes an interdisciplinary approach and seeks to establish a modeling system centered on the Regional Ocean Modeling System. This system links the ice and ocean conditions to the plankton ecology and penguin population. Applications of the modeling system in representative polynyas, in conjunction with analysis of existing observations, will determine the biophysical influences of individual forcing factors. In particular, this study will test a set of hypothesized effects of winds, offshore water intrusion, ice-shelf melting, sea-ice formation, glacier tongues, and ocean stratification on the timing of polynya phytoplankton bloom and the overall polynya biological productivity. The project will also examine how changing polynya state affects penguin breeding success, adult survival, and population growth. The team will conduct idealized sensitivity analysis to explore implications of forcing variability, including local and large-scale environmental change, on Antarctic coastal ecosystems. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||
Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica
|
1341717 1341513 1543483 1341606 1341725 |
2019-06-10 | Ackley, Stephen; Bell, Robin; Weissling, Blake; Nuss, Wendell; Maksym, Edward; Stammerjohn, Sharon; Cassano, John; Guest, Peter; Sedwick, Peter; Xie, Hongjie | Proposal Title: Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica (working title changed from submitted title) Institutions: UT-San Antonio; Columbia University; Naval Postgraduate School; Woods Hole Oceanographic Institute; UC@Boulder The one place on Earth consistently showing increases in sea ice area, duration, and concentration is the Ross Sea in Antarctica. Satellite imagery shows about half of the Ross Sea increases are associated with changes in the austral fall, when the new sea ice is forming. The most pronounced changes are also located near polynyas, which are areas of open ocean surrounded by sea ice. To understand the processes driving the sea ice increase, and to determine if the increase in sea ice area is also accompanied by a change in ice thickness, this project will conduct an oceanographic cruise to the polynyas of the Ross Sea in April and May, 2017, which is the austral fall. The team will deploy state of the art research tools including unmanned airborne systems (UASs, commonly called drones), autonomous underwater vehicles (AUVs), and remotely operated underwater vehicles (ROVs). Using these tools and others, the team will study atmospheric, oceanic, and sea ice properties and processes concurrently. A change in sea ice production will necessarily change the ocean water below, which may have significant consequences for global ocean circulation patterns, a topic of international importance. All the involved institutions will be training students, and all share the goal of expanding climate literacy in the US, emphasizing the role high latitudes play in the Earth's dynamic climate. The main goal of the project is to improve estimates of sea ice production and water mass transformation in the Ross Sea. The team will fully capture the spatial and temporal changes in air-ice-ocean interactions when they are initiated in the austral fall, and then track the changes into the winter and spring using ice buoys, and airborne mapping with the newly commissioned IcePod instrument system, which is deployed on the US Antarctic Program's LC-130 fleet. The oceanographic cruise will include stations in and outside of both the Terra Nova Bay and Ross Ice Shelf polynyas. Measurements to be made include air-sea boundary layer fluxes of heat, freshwater, and trace gases, radiation, and meteorology in the air; ice formation processes, ice thickness, snow depth, mass balance, and ice drift within the sea ice zone; and temperature, salinity, and momentum in the ocean below. Following collection of the field data, the team will improve both model parameterizations of air-sea-ice interactions and remote sensing algorithms. Model parameterizations are needed to determine if sea-ice production has increased in crucial areas, and if so, why (e.g., stronger winds or fresher oceans). The remote sensing validation will facilitate change detection over wider areas and verify model predictions over time. Accordingly this project will contribute to the international Southern Ocean Observing System (SOOS) goal of measuring essential climate variables continuously to monitor the state of the ocean and ice cover into the future. | POLYGON((-180 -55,-177 -55,-174 -55,-171 -55,-168 -55,-165 -55,-162 -55,-159 -55,-156 -55,-153 -55,-150 -55,-150 -57.3,-150 -59.6,-150 -61.9,-150 -64.2,-150 -66.5,-150 -68.8,-150 -71.1,-150 -73.4,-150 -75.7,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -75.7,160 -73.4,160 -71.1,160 -68.8,160 -66.5,160 -64.2,160 -61.9,160 -59.6,160 -57.3,160 -55,162 -55,164 -55,166 -55,168 -55,170 -55,172 -55,174 -55,176 -55,178 -55,-180 -55)) | POINT(-175 -66.5) | false | false | ||||||||||
Circumpolar Deep Water and the West Antarctic Ice Sheet
|
9725024 |
2019-03-11 | Jacobs, Stanley; Visbeck, Martin |
|
This project will study the dynamics of Circumpolar Deep Water intruding on the continental shelf of the West Antarctic coast, and the effect of this intrusion on the production of cold, dense bottom water, and melting at the base of floating glaciers and ice tongues. It will concentrate on the Amundsen Sea shelf, specifically in the region of the Pine Island Glacier, the Thwaites Glacier, and the Getz Ice Shelf. Circumpolar Deep Water (CDW) is a relatively warm water mass (warmer than +1.0 deg Celsius) which is normally confined to the outer edge of the continental shelf by an oceanic front separating this water mass from colder and saltier shelf waters. In the Amundsen Sea however, the deeper parts of the continental shelf are filled with nearly undiluted CDW, which is mixed upward, delivering significant amounts of heat to the base of the floating glacier tongues and the ice shelf. The melt rate beneath the Pine Island Glacier averages ten meters of ice per year with local annual rates reaching twenty meters. By comparison, melt rates beneath the Ross Ice Shelf are typically twenty to forty centimeters of ice per year. In addition, both the Pine Island and the Thwaites Glacier are extremely fast-moving, and have a significant effect on the regional ice mass balance of West Antarctica. This project therefore has an important connection to antarctic glaciology, particularly in assessing the combined effect of global change on the antarctic environment. The particular objectives of the project are (1) to delineate the frontal structure on the continental shelf sufficiently to define quantitatively the major routes of CDW inflow, meltwater outflow, and the westward evolution of CDW influence; (2) to use the obtained data set to validate a three-dimensional model of sub-ice ocean circulation that is currently under construction, and (3) to refine the estiamtes of in situ melting on the mass balance of the antarctic ice sheet. The observational program will be carried out from the research vessel Nathaniel B. Palmer in February and March, 1999. | POLYGON((140 -65,141 -65,142 -65,143 -65,144 -65,145 -65,146 -65,147 -65,148 -65,149 -65,150 -65,150 -65.3,150 -65.6,150 -65.9,150 -66.2,150 -66.5,150 -66.8,150 -67.1,150 -67.4,150 -67.7,150 -68,149 -68,148 -68,147 -68,146 -68,145 -68,144 -68,143 -68,142 -68,141 -68,140 -68,140 -67.7,140 -67.4,140 -67.1,140 -66.8,140 -66.5,140 -66.2,140 -65.9,140 -65.6,140 -65.3,140 -65)) | POINT(145 -66.5) | false | false | |||||||||
Collaborative Research: Phytoplankton Phenology in the Antarctic: Drivers, Patterns, and Implications for the Adelie Penguin
|
1341440 1341558 1341547 |
2018-11-20 | Jin, Meibing; Stroeve, Julienne; Ji, Rubao | The aim of study is to understand how climate-related changes in snow and ice affect predator populations in the Antarctic, using the Adélie penguin as a focal species due to its long history as a Southern Ocean 'sentinel' species and the number of long-term research programs monitoring its abundance, distribution, and breeding biology. Understanding the environmental factors that control predator population dynamics is critically important for projecting the state of populations under future climate change scenarios, and for designing better conservation strategies for the Antarctic ecosystem. For the first time, datasets from a network of observational sites for the Adélie penguin across the entire Antarctic will be combined and analyzed, with a focus on linkages among the ice environment, primary production, and the population responses of Adélie penguins. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. The results of this project can be used to illustrate intuitively to the general public the complex interactions between ice, ocean, pelagic food web and top predators. This project also offers an excellent platform to demonstrate the process of climate-change science - how scientists simulate climate change scenarios and interpret model results. This project supports the training of undergraduate and graduate students in the fields of polar oceanography, plankton and seabird ecology, coupled physical-biological modeling and mathematical ecology. The results will be broadly disseminated to the general oceanographic research community through scientific workshops, conferences and peer-reviewed journal articles, and to undergraduate and graduate education communities, K-12 schools and organizations, and the interested public through web-based servers using existing infrastructure at the investigators' institutions. The key question to be addressed in this project is how climate impacts the timing of periodic biological events (phenology) and how interannual variation in this periodic forcing influences the abundance of penguins in the Antarctic. The focus will be on the timing of ice algae and phytoplankton blooms because the high seasonality of sea ice and associated pulsed primary productivity are major drivers of the Antarctic food web. This study will also examine the responses of Adélie penguins to changes in sea ice dynamics and ice algae-phytoplankton phenology. Adélie penguins, like many other Antarctic seabirds, are long-lived, upper trophic-level predators that integrate the effects of sea ice on the food web at regional scales, and thus serve as a reliable biological indicator of environmental changes. The proposed approach is designed to accommodate the limits of measuring and modeling the intermediate trophic levels between phytoplankton and penguins (e.g., zooplankton and fish) at the pan-Antarctic scale, which are important but latent variables in the Southern Ocean food web. Through the use of remotely sensed and in situ data, along with state of the art statistical approaches (e.g. wavelet analysis) and numerical modeling, this highly interdisciplinary study will advance our understanding of polar ecosystems and improve the projection of future climate change scenarios. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||||||
Collaborative Research: Ocean-Ice-Atmosphere Interactions in the Terra Nova Bay Polynya, Antarctica
|
1043657 |
2015-10-22 | Cassano, John; Palo, Scott |
|
Antarctic coastal polynas are, at the same time, sea-ice free sites and 'sea-ice factories'. They are open water surface locations where water mass transformation and densification occurs, and where atmospheric exchanges with the deep ocean circulation are established. Various models of the formation and persistence of these productive and diverse ocean ecosystems are hampered by the relative lack of in situ meteorological and physical oceanographic observations, especially during the inhospitable conditions of their formation and activity during the polar night. Characterization of the lower atmosphere properties, air-sea surface heat fluxes and corresponding ocean hydrographic profiles of Antarctic polynyas, especially during strong wind events, is sought for a more detailed understanding of the role of polynyas in the production of latent-heat type sea ice and the formation, through sea ice brine rejection, of dense ocean bottom waters A key technological innovation in this work continues to be the use of instrumented unmanned aircraft systems (UAS), to enable the persistent and safe observation of the interaction of light and strong katabatic wind fields, and mesocale cyclones in the Terra Nova Bay (Victoria Land, Antarctica) polynya waters during late winter and early summer time frames. | POLYGON((163 -74.5,163.9 -74.5,164.8 -74.5,165.7 -74.5,166.6 -74.5,167.5 -74.5,168.4 -74.5,169.3 -74.5,170.2 -74.5,171.1 -74.5,172 -74.5,172 -74.9,172 -75.3,172 -75.7,172 -76.1,172 -76.5,172 -76.9,172 -77.3,172 -77.7,172 -78.1,172 -78.5,171.1 -78.5,170.2 -78.5,169.3 -78.5,168.4 -78.5,167.5 -78.5,166.6 -78.5,165.7 -78.5,164.8 -78.5,163.9 -78.5,163 -78.5,163 -78.1,163 -77.7,163 -77.3,163 -76.9,163 -76.5,163 -76.1,163 -75.7,163 -75.3,163 -74.9,163 -74.5)) | POINT(167.5 -76.5) | false | false | |||||||||
Collaborative Research: Impact of Mesoscale Processes on Iron Supply and Phytoplankton Dynamics in the Ross Sea
|
0944165 0944254 |
2015-07-08 | Smith, Walker; McGillicuddy, Dennis |
|
The Ross Sea continental shelf is one of the most productive areas in the Southern Ocean, and may comprise a significant, but unaccounted for, oceanic CO2 sink, largely driven by phytoplankton production. The processes that control the magnitude of primary production in this region are not well understood, but data suggest that iron limitation is a factor. Field observations and model simulations indicate four potential sources of dissolved iron to surface waters of the Ross Sea: (1) circumpolar deep water intruding from the shelf edge; (2) sediments on shallow banks and nearshore areas; (3) melting sea ice around the perimeter of the polynya; and (4) glacial meltwater from the Ross Ice Shelf. The principal investigators hypothesize that hydrodynamic transport via mesoscale currents, fronts, and eddies facilitate the supply of dissolved iron from these four sources to the surface waters of the Ross Sea polynya. These hypotheses will be tested through a combination of in situ observations and numerical modeling, complemented by satellite remote sensing. In situ observations will be obtained during a month-long cruise in the austral summer. The field data will be incorporated into model simulations, which allow quantification of the relative contributions of the various hypothesized iron supply mechanisms, and assessment of their impact on primary production. The research will provide new insights and a mechanistic understanding of the complex oceanographic phenomena that regulate iron supply, primary production, and biogeochemical cycling. The research will thus form the basis for predictions about how this system may change in a warming climate. The broader impacts include training of graduate and undergraduate students, international collaboration, and partnership with several ongoing outreach programs that address scientific research in the Southern Ocean. The research also will contribute to the goals of the international research programs ICED (Integrated Climate and Ecosystem Dynamics) and GEOTRACES (Biogeochemical cycling and trace elements in the marine environment). | POLYGON((168 -65,168.2 -65,168.4 -65,168.6 -65,168.8 -65,169 -65,169.2 -65,169.4 -65,169.6 -65,169.8 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,169.8 -65,169.6 -65,169.4 -65,169.2 -65,169 -65,168.8 -65,168.6 -65,168.4 -65,168.2 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65)) | POINT(169 -65) | false | false | |||||||||
ASPIRE: Amundsen Sea Polynya International Research Expedition
|
0944727 |
2015-01-30 | Arrigo, Kevin |
|
ASPIRE is an NSF-funded project that will examine the ecology of the Amundsen Sea during the Austral summer of 2010. ASPIRE includes an international team of trace metal and carbon chemists, phytoplankton physiologists, microbial and zooplankton ecologists, and physical oceanographers, that will investigate why and how the Amundsen Sea Polynya is so much more productive than other polynyas and whether interannual variability can provide insight to climate-sensitive mechanisms driving carbon fluxes. This project will compliment the existing ASPIRE effort by using 1) experimental manipulations to understand photoacclimation of the dominant phytoplankton taxa under conditions of varying light and trace metal abundance, 2) nutrient addition bioassays to determine the importance of trace metal versus nitrogen limitation of phytoplankton growth, and 3) a numerical ecosystem model to understand the importance of differences in mixing regime, flow field, and Fe sources in controlling phytoplankton bloom dynamics and community composition in this unusually productive polynya system. The research strategy will integrate satellite remote sensing, field-based experimental manipulations, and numerical modeling. Outreach and education include participation in Stanford's Summer Program for Professional Development for Science Teachers, Stanford's School of Earth Sciences high school internship program, and development of curriculum for local science training centers, including the Chabot Space and Science Center. Undergraduate participation and training will include support for both graduate students and undergraduate assistants. | POLYGON((-118.3 -71.6,-117.57 -71.6,-116.84 -71.6,-116.11 -71.6,-115.38 -71.6,-114.65 -71.6,-113.92 -71.6,-113.19 -71.6,-112.46 -71.6,-111.73 -71.6,-111 -71.6,-111 -71.86,-111 -72.12,-111 -72.38,-111 -72.64,-111 -72.9,-111 -73.16,-111 -73.42,-111 -73.68,-111 -73.94,-111 -74.2,-111.73 -74.2,-112.46 -74.2,-113.19 -74.2,-113.92 -74.2,-114.65 -74.2,-115.38 -74.2,-116.11 -74.2,-116.84 -74.2,-117.57 -74.2,-118.3 -74.2,-118.3 -73.94,-118.3 -73.68,-118.3 -73.42,-118.3 -73.16,-118.3 -72.9,-118.3 -72.64,-118.3 -72.38,-118.3 -72.12,-118.3 -71.86,-118.3 -71.6)) | POINT(-114.65 -72.9) | false | false | |||||||||
Collaborative Research: Atmosphere-Ocean-Ice Interaction in a Coastal Polynya
|
0739464 |
2012-09-13 | Cassano, John; Maslanik, Jim |
|
Antarctic polynyas are the ice free zones often persisting in continental sea ice. Characterization of the lower atmosphere properties, air-sea surface heat fluxes and corresponding ocean depth profiles of Antarctic polynyas, especially during strong wind events, is needed for a more detailed understanding of the role of polynya in the production of latent-heat type sea ice and the formation, through brine rejection, of dense ocean bottom waters. <br/><br/>Broader impacts: A key technological innovation, the use of instrumented uninhabited aircraft systems (UAS), will be employed to enable the persistent and safe observation of the interaction of light and strong katabatic wind fields with the Terra Nova Bay (Victoria Land, Antarctica) polynya waters during late winter and early summer time frames. The use of UAS observational platforms on the continent to date has to date been modest, but demonstration of their versatility and effectiveness in surveying and observing mode is a welcome development. The projects use of UAS platforms by University of Colorado and LDEO (Columbia) researchers is both high risk, and potentially transformative for the systematic data measurement tasks that many Antarctic science applications increasingly require. | POLYGON((160 -74.5,161.5 -74.5,163 -74.5,164.5 -74.5,166 -74.5,167.5 -74.5,169 -74.5,170.5 -74.5,172 -74.5,173.5 -74.5,175 -74.5,175 -74.9,175 -75.3,175 -75.7,175 -76.1,175 -76.5,175 -76.9,175 -77.3,175 -77.7,175 -78.1,175 -78.5,173.5 -78.5,172 -78.5,170.5 -78.5,169 -78.5,167.5 -78.5,166 -78.5,164.5 -78.5,163 -78.5,161.5 -78.5,160 -78.5,160 -78.1,160 -77.7,160 -77.3,160 -76.9,160 -76.5,160 -76.1,160 -75.7,160 -75.3,160 -74.9,160 -74.5)) | POINT(167.5 -76.5) | false | false | |||||||||
Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota
|
0836144 0836061 0836112 |
2011-04-24 | Smith, Walker; Yager, Patricia; Dennett, Mark | Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher. | POLYGON((100 -69,107 -69,114 -69,121 -69,128 -69,135 -69,142 -69,149 -69,156 -69,163 -69,170 -69,170 -70,170 -71,170 -72,170 -73,170 -74,170 -75,170 -76,170 -77,170 -78,170 -79,163 -79,156 -79,149 -79,142 -79,135 -79,128 -79,121 -79,114 -79,107 -79,100 -79,100 -78,100 -77,100 -76,100 -75,100 -74,100 -73,100 -72,100 -71,100 -70,100 -69)) | POINT(135 -74) | false | false | ||||||||||
Collaborative research aboard Icebreaker Oden: ASPIRE (Amundsen Sea Polynya International Research Expedition)
|
0839069 |
2011-03-03 | Yager, Patricia |
|
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>The Amundsen Sea Polynya is areally the most productive Antarctic polynya, exhibits higher chlorophyll levels during peak bloom and greater interannual variability than the better-studied Ross Sea Polynya ecosystem. Polynyas may be the key to understanding the future of polar regions as their extent is expected to increase with anthropogenic warming. The project will examine 1) sources of iron to the Amundsen Sea Polynya as a function of climate forcing, 2) phytoplankton community structure in relation to iron supply and mixed-layer depths, 3) the efficiency of the biological pump of carbon to depth and 4) the net flux of carbon as a function of climate and micronutrient forcing. The research also will compare results for the Amundsen Sea to existing data synthesis and modeling efforts for the Palmer LTER and Ross Sea. The project will 1) build close scientific collaborations between US and Swedish researchers; 2) investigate climate change implications with broad societal relevance; 3) train new researchers; 4) encourage participation in research science by underrepresented groups, and 5) involve broad dissemination of results via scientific literature and public outreach, including close interactions with NSF-supported PolarTrec and COSEE K-12 teachers. | None | None | false | false | |||||||||
Collaborative Research: Do Crustacean Zooplankton Play a Pivotal Role in Structuring Heterotrophic Plankton Communities in the Ross Sea?
|
0542111 0542456 |
2010-05-04 | Lonsdale, Darcy; Caron, Bruce | Recent studies of marine ecosystems show conflicting evidence for trophic cascades, and in particular the relative strength of the crustacean zooplankton-phytoplankton link. The Ross Sea is a natural laboratory for investigating this apparent conflict. It is a site of seasonally high abundances of phytoplankton, characterized by regions of distinct phytoplankton taxa; the southcentral polynya is strongly dominated by the colony-forming prymnesiophyte Phaeocystis antarctica, while coastal regions of this sea are typically dominated by diatoms or flagellate species. Recent studies indicate that, while the south-central polynya exhibits a massive phytoplankton bloom, the poor food quality of P. antarctica for many crustacean zooplankton prevents direct utilization of much of this phytoplankton bloom. Rather, evidence suggests that indirect utilization of this production may be the primary mechanism by which carbon and energy become available to those higher trophic levels. Specifically, we hypothesize that nano and microzooplankton constitute an important food source for crustacean zooplankton (largely copepods and juvenile euphausiids) during the summer period in the Ross Sea where the phytoplankton assemblage is dominated by the prymnesiophyte. In turn, we also hypothesize that predation by copepods (and other Crustacea) controls and structures the species composition of these protistan assemblages. We will occupy stations in the south-central Ross Sea Polynya (RSP) and Terra Nova Bay (TNB) during austral summer to test these hypotheses. We hypothesize that the diatom species that dominate the phytoplankton assemblage in TNB constitute a direct source of nutrition to herbivorous/omnivorous zooplankton (relative to the situation in the south-central RSP). That is, the contribution of heterotrophic protists to crustacean diets will be reduced in TNB. Our research will address fundamental gaps in our knowledge of food web structure and trophic cascades, and provide better understanding of the flow of carbon and energy within the biological community of this perennially cold sea. The PIs will play active roles in public education (K-12) via curriculum development (on Antarctic biology) and teacher trainer activities in the Centers for Ocean Science Education Excellence (COSEE-West), an innovative, NSF-funded program centered at USC and UCLA. | POLYGON((-179.9999 -43.5663,-143.99993 -43.5663,-107.99996 -43.5663,-71.99999 -43.5663,-36.00002 -43.5663,-0.000050000000016 -43.5663,35.99992 -43.5663,71.99989 -43.5663,107.99986 -43.5663,143.99983 -43.5663,179.9998 -43.5663,179.9998 -46.99537,179.9998 -50.42444,179.9998 -53.85351,179.9998 -57.28258,179.9998 -60.71165,179.9998 -64.14072,179.9998 -67.56979,179.9998 -70.99886,179.9998 -74.42793,179.9998 -77.857,143.99983 -77.857,107.99986 -77.857,71.99989 -77.857,35.99992 -77.857,-0.000049999999987 -77.857,-36.00002 -77.857,-71.99999 -77.857,-107.99996 -77.857,-143.99993 -77.857,-179.9999 -77.857,-179.9999 -74.42793,-179.9999 -70.99886,-179.9999 -67.56979,-179.9999 -64.14072,-179.9999 -60.71165,-179.9999 -57.28258,-179.9999 -53.85351,-179.9999 -50.42444,-179.9999 -46.99537,-179.9999 -43.5663)) | POINT(0 -89.999) | false | false | ||||||||||
Shelf and Bottom Water Formation Near East Antarctic Polynyas and Glaciers
|
9909374 |
2010-05-04 | Fairbanks, Richard; Jacobs, Stanley |
|
9909374 Fairbanks This study will investigate how the formation of dense water masses on the antarctic continental shelves is affected by the periodic flushing by relatively warm circumpolar deep water, and whether the intrusion of warm water cna enhance the rate of formation of dense antarctic water. The study involves the observation of water mass modification processes on the continental shelf off the Adelie Coast in East Antarctica, near a quasi-permanent area of open water in the vicinity of the Mertz and Ninnis Glacier tongues - the so-called Mertz polynya. Antarctic coastal polynyas, formed by strong offshore winds, are often referred to as major sea ice and salt "factories" because the newly formed ice is blown seaward, allowing more ice to be formed along the coast, and because the freezing process increases the salinity of the continental shelf water. The thin ice, or even open water, implies significant heat losses from the ocean to the atmosphere, which also increases the density of the shelf water. The shelf water sinks, fills any depressions in the bottom, and is gravitationally driven down the continental slope. An additional process is identified for this study and is expected to be at work in this area: the intrusion of relatively warm water onto the continental shelf, overriding the shelf water and essentially shutting down the densification processes. The study will make use of the RVIB Nathaniel B. Palmer to obtain a closely spaced array of hydrographic stations over the continental shelf and slope along the George V Coast in the austral summer. The dat obtained here will complement a similar winter study by the Australian National Antarctic Program. *** | POLYGON((140.21983 -45.80239,141.197867 -45.80239,142.175904 -45.80239,143.153941 -45.80239,144.131978 -45.80239,145.110015 -45.80239,146.088052 -45.80239,147.066089 -45.80239,148.044126 -45.80239,149.022163 -45.80239,150.0002 -45.80239,150.0002 -47.983436,150.0002 -50.164482,150.0002 -52.345528,150.0002 -54.526574,150.0002 -56.70762,150.0002 -58.888666,150.0002 -61.069712,150.0002 -63.250758,150.0002 -65.431804,150.0002 -67.61285,149.022163 -67.61285,148.044126 -67.61285,147.066089 -67.61285,146.088052 -67.61285,145.110015 -67.61285,144.131978 -67.61285,143.153941 -67.61285,142.175904 -67.61285,141.197867 -67.61285,140.21983 -67.61285,140.21983 -65.431804,140.21983 -63.250758,140.21983 -61.069712,140.21983 -58.888666,140.21983 -56.70762,140.21983 -54.526574,140.21983 -52.345528,140.21983 -50.164482,140.21983 -47.983436,140.21983 -45.80239)) | POINT(145.110015 -56.70762) | false | false | |||||||||
Collaborative Research: The Maud Rise Nonlinear Equation of State Study (MaudNESS)
|
0337159 |
2010-05-04 | McPhee, Miles G. |
|
This project is an investigation into one mechanism by which deep ocean convection can evolve from stable initial conditions, to the extent that it becomes well enough established to bring warm water to the surface and melt an existing ice cover in late, or possibly even mid-winter. The specific study will investigate how the non-linear dependence of seawater density on temperature and salinity (the equation of state) can enhance vertical convection under typical antarctic conditions. When layers of seawater with similar densities but strong contrasts in temperature and salinity interact, there are a number of possible non-linear instabilities that can convert existing potential energy to turbulent energy. In the Weddell Sea, a cold surface mixed layer is often separated from the underlying warm, more saline water by a thin, weak pycnocline, making the water column particularly susceptible to an instability associated with thermobaricity (the pressure dependence of the thermal expansion coefficient). The project is a collaboration between New York University, Earth and Space Research, the University of Washington, the Naval Postgraduate School, and McPhee Research Company.<br/>The work has strong practical applications in contributing to the explanation for the existence of the Weddell Polynya, a 300,000 square kilometer area of open water within the seasonal sea ice of the Weddell Sea, from approximately 1975 to 1979. It has not recurred since, although indications of much smaller and less persistent areas of open water do occur in the vicinity of the Maud Rise seamount. <br/> The experimental component will be carried out on board the RVIB Nathaniel B. Palmer between July and September, 2005. | POLYGON((-64.71659 -53.00174,-57.631677 -53.00174,-50.546764 -53.00174,-43.461851 -53.00174,-36.376938 -53.00174,-29.292025 -53.00174,-22.207112 -53.00174,-15.122199 -53.00174,-8.037286 -53.00174,-0.952373 -53.00174,6.13254 -53.00174,6.13254 -54.292069,6.13254 -55.582398,6.13254 -56.872727,6.13254 -58.163056,6.13254 -59.453385,6.13254 -60.743714,6.13254 -62.034043,6.13254 -63.324372,6.13254 -64.614701,6.13254 -65.90503,-0.952373 -65.90503,-8.037286 -65.90503,-15.122199 -65.90503,-22.207112 -65.90503,-29.292025 -65.90503,-36.376938 -65.90503,-43.461851 -65.90503,-50.546764 -65.90503,-57.631677 -65.90503,-64.71659 -65.90503,-64.71659 -64.614701,-64.71659 -63.324372,-64.71659 -62.034043,-64.71659 -60.743714,-64.71659 -59.453385,-64.71659 -58.163056,-64.71659 -56.872727,-64.71659 -55.582398,-64.71659 -54.292069,-64.71659 -53.00174)) | POINT(-29.292025 -59.453385) | false | false | |||||||||
Circumpolar Deep Water and the West Antarctic Ice Sheet
|
9725024 |
2010-05-04 | Jacobs, Stanley |
|
*** 9725024 Jacobs This project will study the dynamics of Circumpolar Deep Water intruding on the continental shelf of the West Antarctic coast, and the effect of this intrusion on the production of cold, dense bottom water, and melting at the base of floating glaciers and ice tongues. It will concentrate on the Amundsen Sea shelf, specifically in the region of the Pine Island Glacier, the Thwaites Glacier, and the Getz Ice Shelf. Circumpolar Deep Water (CDW) is a relatively warm water mass (warmer than +1.0 deg Celsius) which is normally confined to the outer edge of the continental shelf by an oceanic front separating this water mass from colder and saltier shelf waters. In the Amundsen Sea however, the deeper parts of the continental shelf are filled with nearly undiluted CDW, which is mixed upward, delivering significant amounts of heat to the base of the floating glacier tongues and the ice shelf. The melt rate beneath the Pine Island Glacier averages ten meters of ice per year with local annual rates reaching twenty meters. By comparison, melt rates beneath the Ross Ice Shelf are typically twenty to forty centimeters of ice per year. In addition, both the Pine Island and the Thwaites Glacier are extremely fast-moving, and have a significant effect on the regional ice mass balance of West Antarctica. This project therefore has an important connection to antarctic glaciology, particularly in assessing the combined effect of global change on the antarctic environment. The particular objectives of the project are (1) to delineate the frontal structure on the continental shelf sufficiently to define quantitatively the major routes of CDW inflow, meltwater outflow, and the westward evolution of CDW influence; (2) to use the obtained data set to validate a three-dimensional model of sub-ice ocean circulation that is currently under construction, and (3) to refine the estiamtes of in situ melting on the mass balance of the antarctic ice sheet. The observational program will be carried out from the research vessel Nathaniel B. Palmer in February and March, 1999. *** | None | None | false | false | |||||||||
The Amundsen Continental Shelf and the Antarctic Ice Sheet
|
0440775 |
2010-05-04 | Jacobs, Stanley |
|
This collaborative study between Columbia University and the Southampton Oceanography Centre will investigate the dynamics of warm water intrusions under antarctic floating ice shelves. The study will focus on the Amundsen Sea and Pine Island Glacier, and will document how this water gains access to the continental shelf, transports heat into the ice shelf cavities via deep, glacially-scoured troughs, and rises beneath the ice to drive basal melting. The resulting seawater-meltwater mixtures upwell near the ice fronts, contributing to the formation of atypical coastal polynyas with strong geochemical signatures. Multidecadal freshening downstream is consistent with thinning ice shelves, which may be triggering changes inland, increasing the flow of grounded ice into the sea. This work will be carried out in combination with parallel modeling, remote sensing and data based projects, in an effort to narrow uncertainties about the response of West Antarctic Ice Sheet to climate change. Using state-of-the-art facilities and instruments, this work will enhance knowledge of water mass production and modification, and the understanding of interactions between the ocean circulation, sea floor and ice shelves. The data and findings will be reported to publicly accessible archives and submitted for publication in the scientific literature. The information obtained should prove invaluable for the development and validation of general circulation models, needed to predict the future role of the Antarctic Ice Sheet in sea level change. | None | None | false | false | |||||||||
SGER: Primary and Secondary Production and Carbon Flux Through the Microbial Community Along the Western Antarctic Marginal Ice Zone on the Oden Southern Ocean 2007 Expeditions
|
0742057 |
2009-03-16 | Gallager, Scott; Dennett, Mark |
|
Abstract<br/><br/>The research will continue and extend the study in the Southern Ocean that was initiated during the Oden Southern Ocean 2006 expedition in collaboration with Swedish scientist Mellissa Chierici. We will quantify carbon flux through the food web in the marginal ice zone (MIZ) by measuring size fractionated primary and secondary production, grazing and carbon flux through nanoplankton (2-20 um), microplankton (20-200um), and mesoplankton (200-2000 um). Community structure, species abundance and size specific grazing rates will be quantified using a variety of techniques both underway and at ice stations along the MIZ. The proposed cruise track extends across the Drake Passage to the Western Antarctic Peninsula (WAP) with three station transects along a gradient from the open ocean through the marginal ice zone (MIZ) in the Bellinghausen and Amundsen Seas and into the Ross Sea Polynya. Ice stations along each transect will provide material to characterize production associated with annual ice. Underway measurements of primary and secondary production (chlorophyll, CDOM, microplankton, and mesoplankton) and hydrography (temperature, salinity, pH, DO, turbidity) will establish a baseline for future cruises and as support for other projects such as biogeochemical studies on carbon dioxide drawdown and trace metal work on primary production. The outcome of these measurements will be a description of nano to mesoplankton standing stocks, community structure, and carbon flux along the MIZ in the Bellinghausen and Amundsen Seas and the Ross Sea Polynya. | POLYGON((-168.291 -64.846,-165.018 -64.846,-161.745 -64.846,-158.472 -64.846,-155.199 -64.846,-151.926 -64.846,-148.653 -64.846,-145.38 -64.846,-142.107 -64.846,-138.834 -64.846,-135.561 -64.846,-135.561 -66.0269,-135.561 -67.2078,-135.561 -68.3887,-135.561 -69.5696,-135.561 -70.7505,-135.561 -71.9314,-135.561 -73.1123,-135.561 -74.2932,-135.561 -75.4741,-135.561 -76.655,-138.834 -76.655,-142.107 -76.655,-145.38 -76.655,-148.653 -76.655,-151.926 -76.655,-155.199 -76.655,-158.472 -76.655,-161.745 -76.655,-165.018 -76.655,-168.291 -76.655,-168.291 -75.4741,-168.291 -74.2932,-168.291 -73.1123,-168.291 -71.9314,-168.291 -70.7505,-168.291 -69.5696,-168.291 -68.3887,-168.291 -67.2078,-168.291 -66.0269,-168.291 -64.846)) | POINT(-151.926 -70.7505) | false | false |