{"dp_type": "Project", "free_text": "Ice Streams"}
[{"awards": "2053169 Kingslake, Jonathan", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 15 Sep 2023 00:00:00 GMT", "description": "When ice sheets and glaciers lose ice faster than it accumulates from snowfall, they shrink and contribute to sea-level rise. This has consequences for coastal communities around the globe by, for example, increasing the frequency of damaging storm surges. Sea-level rise is already underway and a major challenge for the geoscience community is improving predictions of how this will evolve. The Antarctic Ice Sheet is the largest potential contributor to sea-level rise and its future is highly uncertain. It loses ice through two main mechanisms: the formation of icebergs and melting at the base of floating ice shelves on its periphery. Ice flows under gravity towards the ocean and the rate of ice flow controls how fast ice sheets and glaciers shrink. In Greenland and Antarctica, ice flow is focused into outlet glaciers and ice streams, which flow much faster than surrounding areas. Moreover, parts of the Greenland Ice Sheet speed up and slow down substantially on hourly to seasonal time scales, particularly where meltwater from the surface reaches the base of the ice. Meltwater reaching the base changes ice flow by altering basal water pressure and consequently the friction exerted on the ice by the rock and sediment beneath. This phenomenon has been observed frequently in Greenland but not in Antarctica. Recent satellite observations suggest this phenomenon also occurs on outlet glaciers in the Antarctic Peninsula. Meltwater reaching the base of the Antarctic Ice Sheet is likely to become more common as air temperature and surface melting are predicted to increase around Antarctica this century. This project aims to confirm the recent satellite observations, establish a baseline against which to compare future changes, and improve understanding of the direct influence of meltwater on Antarctic Ice Sheet dynamics. This is a project jointly funded by the National Science Foundation?s Directorate for Geosciences (NSF/GEO) and the National Environment Research Council (NERC) of the United Kingdom (UK) via the NSF/GEO-NERC Lead Agency Agreement. This Agreement allows a single joint US/UK proposal to be submitted and peer-reviewed by the Agency whose investigator has the largest proportion of the budget. Upon successful joint determination of an award recommendation, each Agency funds the proportion of the budget that supports scientists at institutions in their respective countries.\r\n\r\nThis project will include a field campaign on Flask Glacier, an Antarctic Peninsula outlet glacier, and a continent-wide remote sensing survey. These activities will allow the team to test three hypotheses related to the Antarctic Ice Sheet?s dynamic response to surface meltwater: (1) short-term changes in ice velocity indicated by satellite data result from surface meltwater reaching the bed, (2) this is widespread in Antarctica today, and (3) this results in a measurable increase in mean annual ice discharge. The project is a collaboration between US- and UK-based researchers and will be supported logistically by the British Antarctic Survey. The project aims to provide insights into both the drivers and implications of short-term changes in ice flow velocity caused by surface melting. For example, showing conclusively that meltwater directly influences Antarctic ice dynamics would have significant implications for understanding the response of Antarctica to atmospheric warming, as it did in Greenland when the phenomenon was first detected there twenty years ago. This work will also potentially influence other fields, as surface meltwater reaching the bed of the Antarctic Ice Sheet may affect ice rheology, subglacial hydrology, submarine melting, calving, ocean circulation, and ocean biogeochemistry. The project aims to have broader impacts on science and society by supporting early-career scientists, UK-US collaboration, education and outreach, and adoption of open data science approaches within the glaciological community.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "ICE SHEETS; GLACIER MOTION/ICE SHEET MOTION; Antarctic Peninsula; BASAL SHEAR STRESS", "locations": "Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Kingslake, Jonathan; Sole, Andrew; Livingstone, Stephen; Winter, Kate; Ely, Jeremy", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "NSFGEO-NERC: Investigating the Direct Influence of Meltwater on Antarctic Ice Sheet Dynamics", "uid": "p0010436", "west": null}, {"awards": "1543533 Johnson, Jesse; 1543530 van der Veen, Cornelis", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 19 Oct 2022 00:00:00 GMT", "description": "Van der Veen/1543530\u003cbr/\u003e\u003cbr/\u003eThe objective of this research is to gain better understanding of the West Antarctic ice flow in the transition region from grounded ice to floating ice shelves and investigate the conditions that can initiate and sustain major retreat of these glaciers. Several major Antarctic outlet glaciers and ice streams will be investigated using a suite of observational techniques and modeling tools. Glaciers include Thwaites Glacier, which has become a focal point in the discussion of West Antarctic retreat, Whillans Ice Stream as an example of the archetype ice stream, and Byrd Glacier, a major outlet glacier draining East Antarctica through the Transantarctic Mountains into the Ross Ice Shelf. This study will investigate whether the ongoing changes in these glaciers will lead to long-term mass loss (the onset of ice sheet collapse), or whether these glaciers will quickly stabilize with a new geometry. \u003cbr/\u003e\u003cbr/\u003eTo adequately incorporate the dynamic behavior of outlet glaciers and ice streams requires inclusion of the relevant physical processes, and the development of regional models that employ a numerical grid with a horizontal grid spacing sufficiently refined to capture smaller-scale bed topographic features that may control the flow of these glaciers. This award revisits the issue of stability of marine-terminating glaciers whose grounding line is located on a retrograded bed slope. In particular, an attempt will be made to resolve the question whether observed rapid changes are the result of perturbations at the terminus or grounding line, or whether these changes reflect ice-dynamical forcing over the grounded reaches. High-resolution satellite imagery will be used to investigate ice-flow perturbations on smaller spatial scales than has been done before, to evaluate the importance of localized sites of high basal resistance on grounding-line stability. This collaborative project involves a range of modeling strategies including force-budget analysis, flow-band modeling, Full Stokes modeling for local studies, and using the Ice Sheet System Model developed at JPL for regional modeling. Broader Impacts include training two graduate students in computer simulations and ice sheet modeling algorithms. The work will also expand on a web-based interactive flowline model, so that it includes more realistic grounding line dynamics.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "numerical glacier modeling; MODELS; GLACIERS/ICE SHEETS; ice sheet dynamics; basal sliding; Antarctica; iceberg calving", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "van der Veen, Cornelis; Stearns, Leigh; Paden, John", "platforms": "OTHER \u003e MODELS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Stability and Dynamics of Antarctic Marine Outlet Glaciers", "uid": "p0010387", "west": -180.0}, {"awards": "2205008 Walker, Catherine", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Sun, 07 Aug 2022 00:00:00 GMT", "description": "The majority of mass loss from the Antarctic Ice Sheet, a major contributor to sea level rise, occurs at its margins, where ice meets the ocean. Glaciers and ice streams flow towards the coast and can go afloat over the water, forming ice shelves. Ice shelves make up almost half of the entire Antarctic coastline, and hold back the flow of inland ice in Antarctica continent; thus they are integral to the overall stability of the Antarctic Ice Sheet. Ice shelves lose mass by two main processes: iceberg calving and basal melting. Temporal and spatial fluctuations in both are driven by various processes; a major driver of ice shelf melt is the heat provided by the neighboring Southern Ocean. Ocean heat, in turn, is driven by various aspects of the ice shelf environment. One of the most significant contributors to changes in the ocean\u2019s heat content is the presence of sea ice. This research will focus on the effects of coastal polynyas (areas of open water amidst sea ice), how they modulate the local ocean environment, and how that environment drives ice shelf basal melting. To date, the relationship between polynyas and ice shelf melt has not been characterized on an Antarctic-wide scale. Understanding the feedbacks between polynya size and duration, ocean stratification, and ice shelf melt, and the strength of those feedbacks, will improve the ability to characterize influences on the long-term stability of ice shelves, and in turn, the Antarctic Ice Sheet as a whole. A critical aspect of this study is that it will provide a framework for understanding ice shelf-ocean interaction across a diverse range of geographic settings. This, together with improvements of various models, will help interpret the impacts of future climate change on these systems, as their responses are likely quite variable and, on the whole, different from the large-scale response of the ice sheet. This project will also provide a broader context to better design future observational studies of specific coastal polynya and ice shelf processes.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "United States Of America; ICE EXTENT; GLACIERS/ICE SHEETS", "locations": "United States Of America", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Walker, Catherine; Zhang, Weifeng; Seroussi, Helene", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Investigating the Role of Coastal Polynya Variability in Modulating Antarctic Marine-Terminating Glacier Drawdown", "uid": "p0010364", "west": -180.0}, {"awards": "2114502 Constantino, Renata", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 19 Jul 2022 00:00:00 GMT", "description": "This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).\r\n\r\nAn important part of understanding future climate change is predicting changes in how fast the ice in Antarctica is moving. If ice flows more quickly towards the ocean, it will have a direct impact on sea level rise. One of the things that can influence the ice flow is the type of rock below the ice coverage in Antarctica. Sedimentary basins are large regions where sedimentary rocks accumulated in the past, often under ancient seas. It has been observed that where there are sediments below the ice, the ice can flow faster. This project seeks to understand what is below the ice and how the underlying rock influences the ice flow. Is it hard, crystalline rock? Is it a sedimentary basin? What is the relationship between sediments and ice flow? The answers to these questions will be addressed by using a combination of available data and geophysical methods. Information from well-known rock-types will be used to train the computer to recognize these features by using an application of artificial intelligence known as machine learning, which will help the characterization and identification of unknown sedimentary basins beneath the ice. The results of this project will be disseminated to a broad audience by holding workshops for teacher and students to explain our findings under the ice and to introduce the machine learning technique. Open-source codes used during this project will be made available for use in higher-level classrooms as well as in further studies.\r\n\r\nTo date, no comprehensive distribution of onshore and offshore sedimentary basins over Antarctica has been developed. A combination of large-scale datasets will be used to characterize known basins and identify new sedimentary basins to produce the first continent-wide mapping of sedimentary basins and provide improved basal parametrizations conditions that have the potential to support more realistic ice sheet models. Available geophysical compilations of data and the location of well-known sedimentary basins will be used to apply an ensemble machine learning algorithm. The machine learning algorithm will learn complex relationships by voting among a collection of randomized decision trees. The gravity signal related to sedimentary basins known from other (e.g. seismic) techniques will be evaluated and unknown basins from aerogravity data regression analyses will be proposed by calculating a gravity residual that reflects density inhomogeneities. The gravimetric sedimentary basins identified from the regression analyses will be compared with an independent method of identifying sedimentary distribution, the Werner deconvolution method of estimating depth to magnetic sources. The hypothesis, which is sedimentary basins are correlated to fast ice flow behavior, will be tested by comparing the location of the sedimentary basins with locations of high ice flow by using available ice velocity observations. A relationship between sedimentary basins and ice streams will be defined qualitatively and quantitatively, aiming to evaluate if there are ice streams where no sedimentary basins are reported, or sedimentary basins with no ice streams related. The findings of these project can confirm if the presence of abundant sediments is a pre-requisite for ice streaming. Analyzing previously known sedimentary basins and identifying new ones in Antarctica is central to evaluating the influence of subglacial sediments on the ice sheet flow.\r\n\r\nThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "GRAVITY ANOMALIES; ICE SHEETS; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Constantino, Renata", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Pan-Antarctic Assessment of Sedimentary Basins and the Onset of Streaming Ice Flow from Machine Learning and Aerogravity Regression Analyses", "uid": "p0010351", "west": -180.0}, {"awards": "1643120 Iverson, Neal", "bounds_geometry": null, "dataset_titles": "Ice permeameter experimental parameters and results; Softening of temperate ice by interstitial water", "datasets": [{"dataset_uid": "601460", "doi": "10.15784/601460", "keywords": "Antarctica; Cryosphere; Glaciers/Ice Sheet; Glaciology; Ice Streams; lab experiment; Rheology; Snow/Ice; Water Content", "people": "Iverson, Neal", "repository": "USAP-DC", "science_program": null, "title": "Softening of temperate ice by interstitial water", "url": "https://www.usap-dc.org/view/dataset/601460"}, {"dataset_uid": "601515", "doi": "10.15784/601515", "keywords": "Antarctica; Cryosphere; Glacier Flow; Glacier Hydrology; Glaciological Instruments And Methods; Glaciology; Ice Physics; Ice Streams; Snow/Ice", "people": "Iverson, Neal; Fowler, Jacob", "repository": "USAP-DC", "science_program": null, "title": "Ice permeameter experimental parameters and results", "url": "https://www.usap-dc.org/view/dataset/601515"}], "date_created": "Wed, 23 Jun 2021 00:00:00 GMT", "description": "This award supports a project to study the effect of liquid, intercrystalline water on the flow resistance of ice and the mobility of this water within ice. Water plays a central role in the flow of ice streams. It lubricates their bases and softens their margins, where flow speeds abruptly transition from rapid to slow. Within ice stream margins some ice is \"temperate,\u201d meaning that it is at its pressure-melting temperature with relatively thick water films at grain boundaries that significantly soften the ice. The amount of water in ice depends sensitively on its permeability, values of which are too poorly known to estimate the water contents of ice-stream shear margins or associated ice viscosities.\n \n\nThis award stems from the NSF/GEO-UK NERC lead agency opportunity (NSF 14-118) and is a collaboration between Iowa State University and Oxford University in the United Kingdom. The experimental part of the project is executed at Iowa State University and is the focus herein because it has been supported by NSF. Two sets of experiments are conducted. In one set, a large ring-shear device is used to shear ice in confined compression and at its melting temperature to study the sensitivity of ice viscosity to water content. Ice is sheared at stresses and strain rates comparable to those of ice-stream margins, and water content is varied through twice the range explored in the only previous set of experiments that investigated ice softening by water. The second set of experiments required the design, fabrication, and testing of a laboratory ice permeameter that allows the permeability of temperate ice to be measured. Experiments are conducted to study the dependence of ice permeability on ice grain size and water content--the two dependencies required to model grain-scale water flow through temperate ice.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "GLACIER MOTION/ICE SHEET MOTION; LABORATORY; Magmatic Volatiles; USA/NSF; AMD; Iowa State University; AMD/US; USAP-DC", "locations": "Iowa State University", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Iverson, Neal; Zoet, Lucas", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "NSFGEO-NERC: Collaborative Research: Two-Phase Dynamics of Temperate Ice", "uid": "p0010197", "west": null}, {"awards": "1245871 McCarthy, Christine", "bounds_geometry": null, "dataset_titles": "Dataset for Tidal modulation of ice streams: Effect of periodic sliding velocity on ice friction and healing; Rate-state friction parameters for ice-on-rock oscillation experiments; RSFitOSC", "datasets": [{"dataset_uid": "601497", "doi": "10.15784/601497", "keywords": "Antarctica; Cryosphere", "people": "McCarthy, Christine M.; Savage, Heather; Skarbek, Rob", "repository": "USAP-DC", "science_program": null, "title": "Dataset for Tidal modulation of ice streams: Effect of periodic sliding velocity on ice friction and healing", "url": "https://www.usap-dc.org/view/dataset/601497"}, {"dataset_uid": "200237", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "RSFitOSC", "url": "https://github.com/rmskarbek/RSFitOSC"}, {"dataset_uid": "601467", "doi": "10.15784/601467", "keywords": "Antarctica; Cryosphere", "people": "McCarthy, Christine M.; Savage, Heather; Skarbek, Rob", "repository": "USAP-DC", "science_program": null, "title": "Rate-state friction parameters for ice-on-rock oscillation experiments", "url": "https://www.usap-dc.org/view/dataset/601467"}], "date_created": "Fri, 04 Jun 2021 00:00:00 GMT", "description": "This award supports a project to conduct laboratory experiments with a new, custom-fabricated cryo-friction apparatus to explore ice deformation oscillatory stresses like those experienced by tidewater glaciers in nature. The experimental design will explore the dynamic frictional properties of periodically loaded ice sliding on rock. Although the frictional strength of ice has been studied in the past these studies have all focused on constant rates of loading and sliding. The results of this work will advance understanding of ice stream dynamics by improving constraints on key material and frictional properties and allowing physics-based predictions of the amplitude and phase of glacier strain due to tidally induced stress variations. The intellectual merit of this work is that it will result in a better understanding of dynamic rheological parameters and will provide better predictive tools for dynamic glacier flow. The proposed experiments will provide dynamic material properties of ice and rock deformation at realistic frequencies experienced by Antarctic glaciers. The PIs will measure the full spectrum of material response from elastic to anelastic to viscous. The study will provide better constraints to improve predictive capability for glacier and ice-stream response to external forcing. The broader impacts of the work include providing estimates of material properties that can be used to broaden our understanding of glacier flow and that will ultimately be used for models of sea level rise and ice sheet stability. The ability to predict sea level in the near future is contingent on understanding of the processes responsible for flow of Antarctic ice streams and glaciers. Modulation of glacier flow by ocean tides represents a natural experiment that can be used to improve knowledge of ice and bed properties, and of the way in which these properties depend on time-varying forcings. Presently, the influence of tidal forcing on glacier movement is poorly understood, and knowledge of ice properties under tidal loading conditions is limited. The study will generate results of interest beyond polar science by examining phenomena that are of interest to seismology, glaciology and general materials science. The project will provide valuable research and laboratory experience for two undergraduate interns and will provide experience for the PI (currently a postdoc) in leading a scientific project. The three PIs are early career scientists. This proposal does not require fieldwork in the Antarctic.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; USA/NSF; AMD; AMD/US; Ice Deformation; LABORATORY; BASAL SHEAR STRESS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "McCarthy, Christine M.; Savage, Heather", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "GitHub; USAP-DC", "science_programs": null, "south": null, "title": "Laboratory Study of Ice Deformation under Tidal Loading Conditions with Application to Antarctic Glaciers", "uid": "p0010186", "west": null}, {"awards": "1443525 Schwartz, Susan", "bounds_geometry": "POLYGON((-165 -83.8,-163 -83.8,-161 -83.8,-159 -83.8,-157 -83.8,-155 -83.8,-153 -83.8,-151 -83.8,-149 -83.8,-147 -83.8,-145 -83.8,-145 -83.92,-145 -84.04,-145 -84.16,-145 -84.28,-145 -84.4,-145 -84.52,-145 -84.64,-145 -84.76,-145 -84.88,-145 -85,-147 -85,-149 -85,-151 -85,-153 -85,-155 -85,-157 -85,-159 -85,-161 -85,-163 -85,-165 -85,-165 -84.88,-165 -84.76,-165 -84.64,-165 -84.52,-165 -84.4,-165 -84.28,-165 -84.16,-165 -84.04,-165 -83.92,-165 -83.8))", "dataset_titles": "YD (2012-2017): Whillians Ice Stream Subglacial Access Research Drilling", "datasets": [{"dataset_uid": "200201", "doi": "https://doi.org/10.7914/SN/YD_2012", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "YD (2012-2017): Whillians Ice Stream Subglacial Access Research Drilling", "url": "http://www.fdsn.org/networks/detail/YD_2012/"}], "date_created": "Fri, 12 Feb 2021 00:00:00 GMT", "description": "Ice fracturing plays a crucial role in mechanical processes that influence the contribution of glaciers and ice sheets to the global sea-level rise. Such processes include, among others, ice shelf disintegration, iceberg calving, and fast ice sliding. Over the last century, seismology developed highly sensitive instrumentation and sophisticated data processing techniques to study earthquakes. This interdisciplinary project used seismological research methods to investigate fracturing beneath and within ice on a fast-moving ice stream in West Antarctica that is experiencing rapid sliding and flexure driven by ocean tides. Data were collected from two strategically located clusters of seismometers. One was located in the epicenter zone where tidally triggered rapid sliding events of the ice stream start. The other was placed in the grounding zone, where the ice stream flexes with tides where it goes afloat and becomes an ice shelf.\r\n\r\n Seismometers in the epicenter cluster recorded many thousands of microearthquakes coming from beneath ice during ice stream sliding events. Analyses of these microearthquakes suggest that the geologic materials beneath the ice stream are fracturing. The spatial pattern of fracturing is not random but forms elongated stripes that resemble well-known glacial landforms called megascale glacial lineations. These findings indicate that the frictional resistance to ice sliding may change through time due to these landforms changing as a result of erosion and sedimentation beneath ice. This may have implications for the rate of ice loss from Antarctic ice streams that drain about 90% of all ice discharged into the Southern Ocean. In addition to microearthquakes, the epicenter cluster of seismometers also recorded vibrations (tremors) from beneath the ice stream. These may be caused by the rapid repetition of many microearthquakes coming from the same source.\r\n\r\n The grounding zone cluster of seismometers recorded many thousands of microearthquakes as well. However, they are caused by ice fracturing near the ice stream\u0027s surface rather than at its base. These microearthquakes originate when the grounding zone experiences strong tension caused by ice flexure during dropping ocean tide. This tension causes the opening of near-surface fractures (crevasses) just before the lowest tide, rather than at the lowest tide as expected from elasticity of solids. This unexpected timing of ice fracturing indicates that ice in the grounding zone behaves like a viscoelastic material, i.e., partly like a solid and partly like a fluid. This is an important general finding that will be useful to other scientists who are modeling interactions of ice with ocean water in the Antarctic grounding zones. Overall, the observed pervasive fracturing in the grounding zone, where an ice stream becomes an ice shelf, may make ice shelves potentially vulnerable to catastrophic collapses. It also may weaken ice shelves and make it easier for large icebergs to break off at their fronts.\r\n\r\n In addition to Antarctic research, this award supported education and outreach activities, including presentations and field trips during several summer schools at UCSC for talented and diverse high school students. The students were exposed to glaciological and seismological concepts and performed hands-on scientific exercises. The field trips focused on the marine terrace landscape around Santa Cruz. This landscape resulted from interactions between the uplift of rocks along the San Andreas fault with global-sea level changes caused by the waxing and waning of polar ice sheets in response to Ice Age climate cycles.\r\n\r\n", "east": -145.0, "geometry": "POINT(-155 -84.4)", "instruments": null, "is_usap_dc": true, "keywords": "Whillans Ice Stream; GLACIERS/ICE SHEETS; FIELD INVESTIGATION", "locations": "Whillans Ice Stream", "north": -83.8, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Tulaczyk, Slawek; Schwartz, Susan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "IRIS", "repositories": "IRIS", "science_programs": "WISSARD", "south": -85.0, "title": "High Resolution Heterogeneity at the Base of Whillans Ice Stream and its Control on Ice Dynamics", "uid": "p0010159", "west": -165.0}, {"awards": "1842021 Campbell, Seth", "bounds_geometry": "POLYGON((-168 -82,-162.3 -82,-156.6 -82,-150.9 -82,-145.2 -82,-139.5 -82,-133.8 -82,-128.1 -82,-122.4 -82,-116.7 -82,-111 -82,-111 -82.5,-111 -83,-111 -83.5,-111 -84,-111 -84.5,-111 -85,-111 -85.5,-111 -86,-111 -86.5,-111 -87,-116.7 -87,-122.4 -87,-128.1 -87,-133.8 -87,-139.5 -87,-145.2 -87,-150.9 -87,-156.6 -87,-162.3 -87,-168 -87,-168 -86.5,-168 -86,-168 -85.5,-168 -85,-168 -84.5,-168 -84,-168 -83.5,-168 -83,-168 -82.5,-168 -82))", "dataset_titles": "2017 GPR Observations of the Whillans and Mercer Ice Streams; Whillans and Mercer Shear Margin Ice Flow simulation in ISSM", "datasets": [{"dataset_uid": "601403", "doi": "10.15784/601403", "keywords": "Antarctica; Crevasses; Cryosphere; Glaciology; GPR; GPS; Ice Sheet Flow Model; Ice Shelf Dynamics; Snow/Ice; Whillans Ice Stream", "people": "Kaluzienski, Lynn", "repository": "USAP-DC", "science_program": null, "title": "2017 GPR Observations of the Whillans and Mercer Ice Streams", "url": "https://www.usap-dc.org/view/dataset/601403"}, {"dataset_uid": "601404", "doi": "10.15784/601404", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Sheet Flow Model; Ice Shelf Dynamics; Mercer Ice Stream; Model Data; Snow/Ice; Whillans Ice Stream", "people": "Kaluzienski, Lynn", "repository": "USAP-DC", "science_program": null, "title": "Whillans and Mercer Shear Margin Ice Flow simulation in ISSM", "url": "https://www.usap-dc.org/view/dataset/601404"}], "date_created": "Mon, 14 Dec 2020 00:00:00 GMT", "description": "The Siple Coast in West Antarctica has undergone significant glacier changes over the last millenium. Several ice streams--rapidly moving streams of ice bordered by slow-moving ice--exist in this region that feeds into the Ross Ice Shelf. A long-term slowdown of Whillans Ice Stream appears to be occurring, and this is affecting the zone between the Whillans and Mercer Ice Streams. However, the consistency of this slowdown and resulting changes to the shear margin between the two ice streams are unknown. Shear zone stability represents a potentially critical control on mass balance of ice sheets, especially in regions of fast ice flow where basal shear stress is minimal. This project is therefore focused on understanding the spatial and temporal change of ice flow kinematics, shear margin structure, and shear margin location between Whillans and Mercer Ice Streams. A collateral benefit of and driver for this as a RAPID project is to test a method for assessing where crevassing will develop in this zone of steep velocity gradients. Such a method may benefit not only near-term field-project planning in the 2018-19 field season, but also planning for future fieldwork and traverses.\u003cbr/\u003e\u003cbr/\u003eThe team will use velocity estimates derived from available remote sensing datasets to determine transient velocity patterns and shifts in the shear-zone location over the last 20 years. This velocity time series will be incorporated into a large-scale ice-sheet model to estimate ice-sheet susceptibility to changing boundary conditions over the next century based on likely regional ice-flux scenarios. This approach is an extension of recent work conducted by the team that shows promise for predicting areas of changing high strain rates indicative of an active glacier shear margin. The ultimate objectives are to characterize the flow field of merging ice streams over time and investigate lateral boundary migration. This will provide a better understanding of shear-margin control on ice-shelf and up-glacier stability.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -111.0, "geometry": "POINT(-139.5 -84.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Whillans Ice Stream; USAP-DC; USA/NSF; GLACIER MOTION/ICE SHEET MOTION; AMD/US; MODELS; AMD", "locations": "Whillans Ice Stream", "north": -82.0, "nsf_funding_programs": "Polar Special Initiatives; Antarctic Glaciology", "paleo_time": null, "persons": "Campbell, Seth; Koons, Peter", "platforms": "OTHER \u003e MODELS \u003e MODELS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.0, "title": "RAPID Proposal: Constraining kinematics of the Whillans/Mercer Ice Stream Confluence", "uid": "p0010145", "west": -168.0}, {"awards": "1542885 Dunham, Eric", "bounds_geometry": null, "dataset_titles": "Earthquake Sequence Dynamics at the Interface Between an Elastic Layer and Underlying Half-Space in Antiplane Shear", "datasets": [{"dataset_uid": "601320", "doi": "10.15784/601320", "keywords": "Antarctica; Computer Model; Cryosphere; Glaciology; Model Data; Shear Stress; Solid Earth; Whillans Ice Stream", "people": "Abrahams, Lauren", "repository": "USAP-DC", "science_program": null, "title": "Earthquake Sequence Dynamics at the Interface Between an Elastic Layer and Underlying Half-Space in Antiplane Shear", "url": "https://www.usap-dc.org/view/dataset/601320"}], "date_created": "Fri, 09 Oct 2020 00:00:00 GMT", "description": "This project investigates a rapidly moving section of the West Antarctic Ice Sheet known as the Whillans Ice Stream. Ice streams and outlet glaciers are the major pathways for ice discharge from ice sheets into the ocean. Consequently, understanding ice stream dynamics, specifically the processes controlling the frictional resistance of ice sliding on sediments at its base, is essential for predictive modeling of how Earth\u0027s ice sheets will respond to a changing climate. Rather than flowing smoothly, Whillans Ice Stream advances in stick-slip cycles: brief periods of rapid sliding, equivalent to magnitude 7 earthquakes, alternating with much longer periods of repose. The PIs will perform simulations of these stick-slip cycles using computer codes originally developed for modeling tectonic earthquakes. By matching observed ice motions, the PIs will constrain the range of frictional processes acting at the base of the ice stream. An additional focus of the project is on brittle fracture processes in ice, expressed through seismic waves radiated by faulting and/or crevassing episodes that accompany the large-scale sliding events. An understanding of ice fracture provides a basis for assessing the susceptibility of ice shelves to rifting and catastrophic disintegration. Project results will be incorporated into outreach activities (from elementary school to community college events) as well as a polar science class for the California State Summer School for Mathematics and Science (COSMOS) program for high school students.\u003cbr/\u003e\u003cbr/\u003eSimulations of the stick-slip cycle will employ 3D dynamic rupture models that simultaneously solve for the seismic wavefield and rupture process, consistent with elastodynamic material response and friction laws on the ice stream bed. Stresses and frictional properties will be varied to achieve consistency with surface GPS and broadband seismic data as well as borehole seismograms from the WISSARD project. The results will be interpreted using laboratory till friction experiments, which link velocity-weakening/strengthening behavior to temperature and water content, and to related experiments quantifying basal drag from ice flow over rough beds. The source mechanism of seismicity accompanying the slip events (shear faulting versus crevassing) will be determined using 3D waveform modeling in conjunction with mechanical models of the seismic source processes. This proposal does not require fieldwork in the Antarctic.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "SEISMIC PROFILE; AMD; AMD/US; Antarctica; GROUND-BASED OBSERVATIONS; USA/NSF; USAP-DC", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Dunham, Eric", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Characterizing Brittle Failure and Fracture Propagation in Fast Ice Sliding with Dynamic Rupture Models based on Whillans Ice Stream Seismic/Geodetic Data", "uid": "p0010138", "west": null}, {"awards": "1724670 Williams, Trevor", "bounds_geometry": "POLYGON((-70 -60,-65 -60,-60 -60,-55 -60,-50 -60,-45 -60,-40 -60,-35 -60,-30 -60,-25 -60,-20 -60,-20 -62.5,-20 -65,-20 -67.5,-20 -70,-20 -72.5,-20 -75,-20 -77.5,-20 -80,-20 -82.5,-20 -85,-25 -85,-30 -85,-35 -85,-40 -85,-45 -85,-50 -85,-55 -85,-60 -85,-65 -85,-70 -85,-70 -82.5,-70 -80,-70 -77.5,-70 -75,-70 -72.5,-70 -70,-70 -67.5,-70 -65,-70 -62.5,-70 -60))", "dataset_titles": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "datasets": [{"dataset_uid": "601378", "doi": "10.15784/601378", "keywords": "40Ar/39Ar thermochronology; Antarctica; Argon; Chemistry:Sediment; Cryosphere; Detrital Minerals; Glaciers/Ice Sheet; Marine Sediments; Mass Spectrometer; Provenance; R/V Polarstern; Sediment Core Data; Subglacial Till; Till; Weddell Sea", "people": "Williams, Trevor", "repository": "USAP-DC", "science_program": null, "title": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "url": "https://www.usap-dc.org/view/dataset/601378"}, {"dataset_uid": "601377", "doi": "10.15784/601377", "keywords": "40Ar/39Ar thermochronology; Antarctica; Argon; Chemistry:Sediment; Cryosphere; Detrital Minerals; Glaciers/Ice Sheet; Marine Sediments; Mass Spectrometer; Provenance; R/V Polarstern; Sediment Core Data; Subglacial Till; Till; Weddell Sea", "people": "Williams, Trevor", "repository": "USAP-DC", "science_program": null, "title": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "url": "https://www.usap-dc.org/view/dataset/601377"}, {"dataset_uid": "601379", "doi": "10.15784/601379", "keywords": "40Ar/39Ar thermochronology; Antarctica; Argon; Chemistry:Sediment; Cryosphere; Detrital Minerals; Glaciers/Ice Sheet; Marine Geoscience; Mass Spectrometer; Provenance; R/V Polarstern; Sediment Core Data; Subglacial Till; Till; Weddell Sea", "people": "Williams, Trevor", "repository": "USAP-DC", "science_program": null, "title": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "url": "https://www.usap-dc.org/view/dataset/601379"}], "date_created": "Thu, 10 Sep 2020 00:00:00 GMT", "description": "Abstract for the general public:\u003cbr/\u003e\u003cbr/\u003eThe margins of the Antarctic ice sheet have advanced and retreated repeatedly over the past few million years. Melting ice from the last retreat, from 19,000 to 9,000 years ago, raised sea levels by 8 meters or more, but the extents of previous retreats are less well known. The main goal of this project is to understand how Antarctic ice retreats: fast or slow, stepped or steady, and which parts of the ice sheet are most prone to retreat. Antarctica loses ice by two main processes: melting of the underside of floating ice shelves and calving of icebergs. Icebergs themselves are ephemeral, but they carry mineral grains and rock fragments that have been scoured from Antarctic bedrock. As the icebergs drift and melt, this \u0027iceberg-rafted debris\u0027 falls to the sea-bed and is steadily buried in marine sediments to form a record of iceberg activity and ice sheet retreat. The investigators will read this record of iceberg-rafted debris to find when and where Antarctic ice destabilized in the past. This information can help to predict how Antarctic ice will behave in a warming climate. \u003cbr/\u003e\u003cbr/\u003eThe study area is the Weddell Sea embayment, in the Atlantic sector of Antarctica. Principal sources of icebergs are the nearby Antarctic Peninsula and Weddell Sea embayment, where ice streams drain about a quarter of Antarctic ice. The provenance of the iceberg-rafted debris (IRD), and the icebergs that carried it, will be found by matching the geochemical fingerprint (such as characteristic argon isotope ages) of individual mineral grains in the IRD to that of the corresponding source area. In more detail, the project will: \u003cbr/\u003e\u003cbr/\u003e1. Define the geochemical fingerprints of the source areas of the glacially-eroded material using samples from each major ice stream entering the Weddell Sea. Existing data indicates that the hinterland of the Weddell embayment is made up of geochemically distinguishable source areas, making it possible to apply geochemical provenance techniques to determine the origin of Antarctica icebergs. Few samples of onshore tills are available from this area, so this project includes fieldwork to collect till samples to characterize detritus supplied by the Recovery and Foundation ice streams. \u003cbr/\u003e\u003cbr/\u003e2. Document the stratigraphic changes in provenance of iceberg-rafted debris (IRD) and glacially-eroded material in two deep water sediment cores in the NW Weddell Sea. Icebergs calved from ice streams in the embayment are carried by the Weddell Gyre and deposit IRD as they pass over the core sites. The provenance information identifies which groups of ice streams were actively eroding and exporting detritus to the ocean (via iceberg rafting and bottom currents), and the stratigraphy of the cores shows the relative sequence of ice stream activity through time. A further dimension is added by determining the time lag between fine sediment erosion and deposition, using a new method of uranium-series isotope measurements in fine grained material. \u003cbr/\u003e\u003cbr/\u003eTechnical abstract:\u003cbr/\u003e\u003cbr/\u003e The behavior of the Antarctic ice sheets and ice streams is a critical topic for climate change and future sea level rise. The goal of this proposal is to constrain ice sheet response to changing climate in the Weddell Sea during the three most recent glacial terminations, as analogues for potential future warming. The project will also examine possible contributions to Meltwater Pulse 1A, and test the relative stability of the ice streams draining East and West Antarctica. Much of the West Antarctic ice may have melted during the Eemian (130 to 114 Ka), so it may be an analogue for predicting future ice drawdown over the coming centuries. \u003cbr/\u003e\u003cbr/\u003eGeochemical provenance fingerprinting of glacially eroded detritus provides a novel way to reconstruct the location and relative timing of glacial retreat during these terminations in the Weddell Sea embayment. The two major objectives of the project are to: \u003cbr/\u003e\u003cbr/\u003e1. Define the provenance source areas by characterizing Ar, U-Pb, and Nd isotopic signatures, and heavy mineral and Fe-Ti oxide compositions of detrital minerals from each major ice stream entering the Weddell Sea, using onshore tills and existing sediment cores from the Ronne and Filchner Ice Shelves. Pilot data demonstrate that detritus originating from the east and west sides of the Weddell Sea embayment can be clearly distinguished, and published data indicates that the hinterland of the embayment is made up of geochemically distinguishable source areas. Few samples of onshore tills are available from this area, so this project includes fieldwork to collect till to characterize detritus supplied by the Recovery and Foundation ice streams. \u003cbr/\u003e\u003cbr/\u003e2. Document the stratigraphic changes in provenance of iceberg-rafted debris (IRD) and glacially-eroded material in two deep water sediment cores in the NW Weddell Sea. Icebergs calved from ice streams in the embayment are carried by the Weddell Gyre and deposit IRD as they pass over the core sites. The provenance information will identify which ice streams were actively eroding and exporting detritus to the ocean (via iceberg rafting and bottom currents). The stratigraphy of the cores will show the relative sequence of ice stream activity through time. A further time dimension is added by determining the time lag between fine sediment erosion and deposition, using U-series comminution ages.", "east": -20.0, "geometry": "POINT(-45 -72.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "TERRIGENOUS SEDIMENTS; AMD/US; Subglacial Till; USAP-DC; ICEBERGS; AMD; USA/NSF; ISOTOPES; AGE DETERMINATIONS; Argon; Provenance; Till; R/V POLARSTERN; FIELD INVESTIGATION; SEDIMENT CHEMISTRY; Weddell Sea; Antarctica; LABORATORY", "locations": "Weddell Sea; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Williams, Trevor; Hemming, Sidney R.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V POLARSTERN; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Collaborative Research: Deglacial Ice Dynamics in the Weddell Sea Embayment using Sediment Provenance", "uid": "p0010128", "west": -70.0}, {"awards": "1543441 Fricker, Helen; 1543405 Leventer, Amy; 1543453 Lyons, W. Berry; 1543396 Christner, Brent; 1543537 Priscu, John; 1543347 Rosenheim, Brad", "bounds_geometry": "POLYGON((-163.611 -84.33543,-162.200034 -84.33543,-160.789068 -84.33543,-159.378102 -84.33543,-157.967136 -84.33543,-156.55617 -84.33543,-155.145204 -84.33543,-153.734238 -84.33543,-152.323272 -84.33543,-150.912306 -84.33543,-149.50134 -84.33543,-149.50134 -84.3659157,-149.50134 -84.3964014,-149.50134 -84.4268871,-149.50134 -84.4573728,-149.50134 -84.4878585,-149.50134 -84.5183442,-149.50134 -84.5488299,-149.50134 -84.5793156,-149.50134 -84.6098013,-149.50134 -84.640287,-150.912306 -84.640287,-152.323272 -84.640287,-153.734238 -84.640287,-155.145204 -84.640287,-156.55617 -84.640287,-157.967136 -84.640287,-159.378102 -84.640287,-160.789068 -84.640287,-162.200034 -84.640287,-163.611 -84.640287,-163.611 -84.6098013,-163.611 -84.5793156,-163.611 -84.5488299,-163.611 -84.5183442,-163.611 -84.4878585,-163.611 -84.4573728,-163.611 -84.4268871,-163.611 -84.3964014,-163.611 -84.3659157,-163.611 -84.33543))", "dataset_titles": "Antarctica - PI Continuous - GZ01-WIS_GroundingZone_01 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - GZ13-WIS_GroundingZone_13 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA02-WIS_LAKES_02 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA06-WIS_LAKES_06 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA07-WIS_LAKES_07 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA09-WIS_LAKES_09 P.S. - GPS/GNSS Observations Dataset; Bistatic Radar Sounding of Whillans Ice Stream, Antarctica and Store Glacier, Greenland; CTD data from Mercer Subglacial Lake and access borehole; Discrete bulk sediment properties data from Mercer Subglacial Lake; Isotopic data from Whillans Ice Stream grounding zone, West Antarctica; Mercer Subglacial Lake radiocarbon and stable isotope data ; Mercer Subglacial Lake (SLM) microbial composition: 16S rRNA genes (Sequence Read Archive; BioProject: PRJNA790995); Mercer Subglacial Lake (SLM) noble gas and isotopic data; Mercer Subglacial Lake water column viral metagenomic sequencing; Salsa sediment cores; Sediment porewater properties data from Mercer Subglacial Lake; Water column biogeochemical data from Mercer Subglacial Lake", "datasets": [{"dataset_uid": "200246", "doi": "", "keywords": null, "people": null, "repository": "OSU-MGR", "science_program": null, "title": "Salsa sediment cores", "url": "https://osu-mgr.org"}, {"dataset_uid": "601498", "doi": "10.15784/601498", "keywords": "Antarctica; Cryosphere; Mercer Subglacial Lake; Noble Gas", "people": "Gardner, Christopher B.; Lyons, W. Berry", "repository": "USAP-DC", "science_program": null, "title": "Mercer Subglacial Lake (SLM) noble gas and isotopic data", "url": "https://www.usap-dc.org/view/dataset/601498"}, {"dataset_uid": "601472", "doi": "10.15784/601472", "keywords": "Antarctica; Bistatic Radar; Cryosphere; Glaciers/Ice Sheet; Glaciology; GPS Data; Greenland; Lake Whillans; Radar; Store Glacier; Whillans Ice Stream; WISSARD", "people": "MacKie, Emma; Christoffersen, Poul; Dawson, Eliza; Schroeder, Dustin; Bienert, Nicole; Peters, Sean; Siegfried, Matthew", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Bistatic Radar Sounding of Whillans Ice Stream, Antarctica and Store Glacier, Greenland", "url": "https://www.usap-dc.org/view/dataset/601472"}, {"dataset_uid": "200217", "doi": "10.7283/3JMY-Y504", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA09-WIS_LAKES_09 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/3JMY-Y504"}, {"dataset_uid": "200216", "doi": "10.7283/F8NH-CV04", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA07-WIS_LAKES_07 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/F8NH-CV04"}, {"dataset_uid": "200215", "doi": "10.7283/C503-KS23", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA06-WIS_LAKES_06 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/C503-KS23"}, {"dataset_uid": "200214", "doi": "10.7283/YW8Z-TK03", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA02-WIS_LAKES_02 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/YW8Z-TK03"}, {"dataset_uid": "200213", "doi": "10.7283/F7BB-JH05", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - GZ13-WIS_GroundingZone_13 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/F7BB-JH05"}, {"dataset_uid": "200212", "doi": "10.7283/PT0Q-JB95", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - GZ01-WIS_GroundingZone_01 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/PT0Q-JB95"}, {"dataset_uid": "601360", "doi": "10.15784/601360", "keywords": "Antarctica; Cryosphere; Radiocarbon; Sediment; Whillans Ice Stream", "people": "Venturelli, Ryan A", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Isotopic data from Whillans Ice Stream grounding zone, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/601360"}, {"dataset_uid": "601672", "doi": "10.15784/601672", "keywords": "Antarctica; Cryosphere; isotopes; Mercer Subglacial Lake; Radiocarbon; Subglacial lakes", "people": "Venturelli, Ryan; Rosenheim, Brad", "repository": "USAP-DC", "science_program": null, "title": "Mercer Subglacial Lake radiocarbon and stable isotope data ", "url": "https://www.usap-dc.org/view/dataset/601672"}, {"dataset_uid": "601664", "doi": "10.15784/601664", "keywords": "Antarctica; Cryosphere; gases; geochemistry; Glacier; Glaciology; Mercer Subglacial Lake; Methane; SALSA; Sediment Core; West Antarctic Ice Sheet", "people": "Michaud, Alexander; Dore, John; Science Team, SALSA; Steigmeyer, August; Tranter, Martyn; Skidmore, Mark", "repository": "USAP-DC", "science_program": null, "title": "Sediment porewater properties data from Mercer Subglacial Lake", "url": "https://www.usap-dc.org/view/dataset/601664"}, {"dataset_uid": "200342", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Mercer Subglacial Lake water column viral metagenomic sequencing", "url": "https://www.ncbi.nlm.nih.gov/biosample/32811410"}, {"dataset_uid": "200282", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Mercer Subglacial Lake (SLM) microbial composition: 16S rRNA genes (Sequence Read Archive; BioProject: PRJNA790995)", "url": "https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA790995"}, {"dataset_uid": "601663", "doi": "10.15784/601663", "keywords": "Antarctica; Carbon; Cell Counts; Cryosphere; geochemistry; Glacier; Glaciers/Ice Sheet; Mercer Subglacial Lake; Microbes; Nutrients; SALSA; Stable Isotopes; Trace Elements; West Antarctic Ice Sheet", "people": "Barker, Joel; Dore, John; Skidmore, Mark; Hawkings, Jon; Steigmeyer, August; Science Team, SALSA; Priscu, John; Tranter, Martyn; Li, Wei", "repository": "USAP-DC", "science_program": null, "title": "Water column biogeochemical data from Mercer Subglacial Lake", "url": "https://www.usap-dc.org/view/dataset/601663"}, {"dataset_uid": "601661", "doi": "10.15784/601661", "keywords": "Antarctica; Carbon; Cryosphere; Glacier; Glaciers/Ice Sheet; Iron; Mercer Subglacial Lake; Mineralogy; Particle Size; physical properties; SALSA; Sediment Core; sulfur; West Antarctic Ice Sheet", "people": "Hawkings, Jon; Science Team, SALSA; Venturelli, Ryan A; Tranter, Martyn; Skidmore, Mark; Michaud, Alexander; Campbell, Timothy; Dore, John", "repository": "USAP-DC", "science_program": null, "title": "Discrete bulk sediment properties data from Mercer Subglacial Lake", "url": "https://www.usap-dc.org/view/dataset/601661"}, {"dataset_uid": "601657", "doi": "10.15784/601657", "keywords": "Antarctica; Conductivity; Cryosphere; CTD; Depth; Glaciers/Ice Sheet; Glaciology; Hot Water Drill; Mercer Subglacial Lake; physical properties; SALSA; subglacial lake; Temperature", "people": "Priscu, John; Dore, John; Leventer, Amy; Rosenheim, Brad", "repository": "USAP-DC", "science_program": null, "title": "CTD data from Mercer Subglacial Lake and access borehole", "url": "https://www.usap-dc.org/view/dataset/601657"}], "date_created": "Thu, 16 Jul 2020 00:00:00 GMT", "description": "The Antarctic subglacial environment remains one of the least explored regions on Earth. This project will examine the physical and biological characteristics of Subglacial Lake Mercer, a lake that lies 1200m beneath the West Antarctic Ice Sheet. This study will address key questions relating to the stability of the ice sheet, the subglacial hydrological system, and the deep-cold subglacial biosphere. The education and outreach component aims to widely disseminate results to the scientific community and to the general public through short films, a blog, and a website.\u003cbr/\u003e\u003cbr/\u003eSubglacial Lake Mercer is one of the larger hydrologically active lakes in the southern basin of the Whillans Ice Plain, West Antarctica. It receives about 25 percent of its water from East Antarctica with the remainder originating from West Antarctica, is influenced by drain/fill cycles in a lake immediately upstream (Subglacial Lake Conway), and lies about 100 km upstream of the present grounding line of the Ross Ice Shelf. This site will yield information on the history of the Whillans and Mercer Ice Streams, and on grounding line migration. The integrated study will include direct sampling of basal ice, water, and sediment from the lake in concert with surface geophysical surveys over a three-year period to define the hydrological connectivity among lakes on the Whillans Ice Plain and their flow paths to the sea. The geophysical surveys will furnish information on subglacial hydrology, aid the site selection for hot-water drilling, and provide spatial context for interpreting findings. The hot-water-drilled boreholes will be used to collect basal ice samples, provide access for direct measurement of subglacial physical, chemical, and biological conditions in the water column and sediments, and to explore the subglacial water cavities using a remotely operated vehicle equipped with sensors, cameras, and sampling equipment. Data collected from this study will address the overarching hypothesis \\\"Contemporary biodiversity and carbon cycling in hydrologically-active subglacial environments associated with the Mercer and Whillans ice streams are regulated by the mineralization and cycling of relict marine organic matter and through interactions among ice, rock, water, and sediments\\\". The project will be undertaken by a collaborative team of scientists, with expertise in microbiology, biogeochemistry, hydrology, geophysics, glaciology, marine geology, paleoceanography, and science communication.", "east": -149.50134, "geometry": "POINT(-156.55617 -84.4878585)", "instruments": null, "is_usap_dc": true, "keywords": "SEDIMENTS; Antarctica; ISOTOPES; USAP-DC; VIRUSES; PALEOCLIMATE RECONSTRUCTIONS; BACTERIA/ARCHAEA; LABORATORY; Radiocarbon; Whillans Ice Stream; AMD; SALSA; ECOSYSTEM FUNCTIONS; RADIOCARBON; FIELD INVESTIGATION; AMD/US; ICE MOTION; subglacial lake; Mercer Ice Stream; USA/NSF; GLACIERS/ICE SHEETS", "locations": "Antarctica; Mercer Ice Stream; Whillans Ice Stream", "north": -84.33543, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Instrumentation and Support; Antarctic Integrated System Science", "paleo_time": null, "persons": "Rosenheim, Brad; Fricker, Helen; Priscu, John; Leventer, Amy; Dore, John; Lyons, W. Berry; Christner, Brent", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "OSU-MGR", "repositories": "GenBank; NCBI GenBank; OSU-MGR; UNAVCO; USAP-DC", "science_programs": null, "south": -84.640287, "title": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments", "uid": "p0010119", "west": -163.611}, {"awards": "9615281 Luyendyk, Bruce; 9615282 Siddoway, Christine", "bounds_geometry": "POLYGON((-170 -76,-166.5 -76,-163 -76,-159.5 -76,-156 -76,-152.5 -76,-149 -76,-145.5 -76,-142 -76,-138.5 -76,-135 -76,-135 -76.8,-135 -77.6,-135 -78.4,-135 -79.2,-135 -80,-135 -80.8,-135 -81.6,-135 -82.4,-135 -83.2,-135 -84,-138.5 -84,-142 -84,-145.5 -84,-149 -84,-152.5 -84,-156 -84,-159.5 -84,-163 -84,-166.5 -84,-170 -84,-170 -83.2,-170 -82.4,-170 -81.6,-170 -80.8,-170 -80,-170 -79.2,-170 -78.4,-170 -77.6,-170 -76.8,-170 -76))", "dataset_titles": "SOAR-WMB Airborne gravity data", "datasets": [{"dataset_uid": "601294", "doi": "10.15784/601294", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Cryosphere; Free Air Gravity; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Ross Sea; Solid Earth", "people": "Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-WMB Airborne gravity data", "url": "https://www.usap-dc.org/view/dataset/601294"}], "date_created": "Fri, 24 Apr 2020 00:00:00 GMT", "description": "This award supports a collaborative project that combines air and ground geological-geophysical investigations to understand the tectonic and geological development of the boundary between the Ross Sea Rift and the Marie Byrd Land (MBL) volcanic province. The project will determine the Cenozoic tectonic history of the region and whether Neogene structures that localized outlet glacier flow developed within the context of Cenozoic rifting on the eastern Ross Embayment margin, or within the volcanic province in MBL. The geological structure at the boundary between the Ross Embayment and western MBL may be a result of: 1) Cenozoic extension on the eastern shoulder of the Ross Sea rift; 2) uplift and crustal extension related to Neogene mantle plume activity in western MBL; or a combination of the two. Faulting and volcanism, mountain uplift, and glacier downcutting appear to now be active in western MBL, where generally East-to-West-flowing outlet glaciers incise Paleozoic and Mesozoic bedrock, and deglaciated summits indicate a previous North-South glacial flow direction. This study requires data collection using SOAR (Support Office for Aerogeophysical Research, a facility supported by Office of Polar Programs which utilizes high precision differential GPS to support a laser altimeter, ice-penetrating radar, a towed proton magnetometer, and a Bell BGM-3 gravimeter). This survey requires data for 37,000 square kilometers using 5.3 kilometer line spacing with 15.6 kilometer tie lines, and 86,000 square kilometers using a grid of 10.6 by 10.6 kilometer spacing. Data will be acquired over several key features in the region including, among other, the eastern edge of the Ross Sea rift, over ice stream OEO, the transition from the Edward VII Peninsula plateau to the Ford Ranges, the continuation to the east of a gravity high known from previous reconnaissance mapping over the Fosdick Metamorphic Complex, an d the extent of the high-amplitude magnetic anomalies (volcanic centers?) detected southeast of the northern Ford Ranges by other investigators. SOAR products will include glaciology data useful for studying driving stresses, glacial flow and mass balance in the West Antarctic Ice Sheet (WAIS). The ground program is centered on the southern Ford Ranges. Geologic field mapping will focus on small scale brittle structures for regional kinematic interpretation, on glaciated surfaces and deposits, and on datable volcanic rocks for geochronologic control. The relative significance of fault and joint sets, the timing relationships between them, and the probable context of their formation will also be determined. Exposure ages will be determined for erosion surfaces and moraines. Interpretation of potential field data will be aided by on ground sampling for magnetic properties and density as well as ground based gravity measurements. Oriented samples will be taken for paleomagnetic studies. Combined airborne and ground investigations will obtain basic data for describing the geology and structure at the eastern boundary of the Ross Embayment both in outcrop and ice covered areas, and may be used to distinguish between Ross Sea rift- related structural activity from uplift and faulting on the perimeter of the MBL dome and volcanic province. Outcrop geology and structure will be extrapolated with the aerogeophysical data to infer the geology that resides beneath the WAIS. The new knowledge of Neogene tectonics in western MBL will contribute to a comprehensive model for the Cenozoic Ross rift and to understanding of the extent of plume activity in MBL. Both are important for determining the influence of Neogene tectonics on the ice streams and WAIS.", "east": -135.0, "geometry": "POINT(-152.5 -80)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e LGS", "is_usap_dc": true, "keywords": "GRAVITY; USAP-DC; Ross Sea; TECTONICS; Marie Byrd Land", "locations": "Ross Sea; Marie Byrd Land", "north": -76.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Luyendyk, Bruce P.; Siddoway, Christine", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.0, "title": "Air-Ground Study of Tectonics at the Boundary Between the Eastern Ross Embayment and Western Marie Byrd Land, Antarctica: Basement Geology and Structure", "uid": "p0010096", "west": -170.0}, {"awards": "9319854 Bell, Robin; 9319877 Finn, Carol; 9319369 Blankenship, Donald", "bounds_geometry": "POLYGON((-155 -77.5,-150 -77.5,-145 -77.5,-140 -77.5,-135 -77.5,-130 -77.5,-125 -77.5,-120 -77.5,-115 -77.5,-110 -77.5,-105 -77.5,-105 -78.2,-105 -78.9,-105 -79.6,-105 -80.3,-105 -81,-105 -81.7,-105 -82.4,-105 -83.1,-105 -83.8,-105 -84.5,-110 -84.5,-115 -84.5,-120 -84.5,-125 -84.5,-130 -84.5,-135 -84.5,-140 -84.5,-145 -84.5,-150 -84.5,-155 -84.5,-155 -83.8,-155 -83.1,-155 -82.4,-155 -81.7,-155 -81,-155 -80.3,-155 -79.6,-155 -78.9,-155 -78.2,-155 -77.5))", "dataset_titles": "SOAR-BSB Airborne gravity data for the CASERTZ/WAIS project; SOAR-IRE airborne gravity data for the CASERTZ/WAIS project; SOAR-TKD airborne gravity data for the CASERTZ/WAIS project; SOAR-WAZ Airborne gravity data for the CASERTZ/WAIS project", "datasets": [{"dataset_uid": "601289", "doi": "10.15784/601289", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Cryosphere; Free Air Gravity; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Solid Earth; WAIS", "people": "Arko, Robert A.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-TKD airborne gravity data for the CASERTZ/WAIS project", "url": "https://www.usap-dc.org/view/dataset/601289"}, {"dataset_uid": "601291", "doi": "10.15784/601291", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Cryosphere; Free Air Gravity; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Solid Earth; WAIS", "people": "Arko, Robert A.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-WAZ Airborne gravity data for the CASERTZ/WAIS project", "url": "https://www.usap-dc.org/view/dataset/601291"}, {"dataset_uid": "601288", "doi": "10.15784/601288", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Cryosphere; Free Air Gravity; Geology/Geophysics - Other; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Solid Earth; WAIS", "people": "Arko, Robert A.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-BSB Airborne gravity data for the CASERTZ/WAIS project", "url": "https://www.usap-dc.org/view/dataset/601288"}, {"dataset_uid": "601290", "doi": "10.15784/601290", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Cryosphere; Free Air Gravity; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Solid Earth; WAIS", "people": "Arko, Robert A.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-IRE airborne gravity data for the CASERTZ/WAIS project", "url": "https://www.usap-dc.org/view/dataset/601290"}], "date_created": "Fri, 24 Apr 2020 00:00:00 GMT", "description": "This award supports a project to conduct an integrated geophysical survey over a large portion of the West Antarctic Ice Sheet (WAIS) toward an understanding of the dynamic behavior of the ice sheet and the nature of the lithosphere beneath the ice sheet. West Antarctica is characterized by two kinds of the Earth s most dynamic systems, a continental rift (the West Antarctic Rift System) and a marine based ice sheet (the WAIS). Active continental rift systems, caused by divergent plate motions, result in thinned continental crust. Associated with the thin crust are fault-bounded sedimentary basins, active volcanism, and elevated heat flow. Marine ice sheets are characterized by rapidly moving streams of ice, penetrating and draining a slowly moving ice reservoir. Evidence left by past marine ice sheets indicates that they may have a strongly non- linear response to long-term climate change which results in massive and rapid discharges of ice. Understanding the evolution of the ice stream system and its interaction with the interior ice is the key to understanding this non-linear response. Subglacial geology and ice dynamics are generally studied in isolation, but evidence is mounting that the behavior of the West Antarctic ice streams may be closely linked to the nature of the underlying West Antarctic rift system. The fast moving ice streams appear to glide on a lubricating layer of water-saturated till. This till requires easily eroded sediment and a source of water, both of which may be controlled by the geology of the rift system; the sediments from the fault-bounded basins and the water from the elevated heat flux associated with active lithospheric extension. This project represents an interdisciplinary aerogeophysical study to characterize the lithosphere of the West Antarctic rift system beneath critical regions of the WAIS. The objective is to determine the effects of the rift architect ure, as manifested by the distribution of sedimentary basins and volcanic constructs, on the ice stream system. The research tool is a unique geophysical aircraft with laser altimetry, ice penetrating radar, aerogravity, and aeromagnetic systems integrated with a high precision kinematic GPS navigation system. It is capable of imaging both the surface and bed of the ice sheet while simultaneously measuring the gravity and magnetic signature of the subglacial lithosphere. Work to be done under this award will build on work already completed in the southern sector of central West Antarctica and it will focus on the region of the Byrd Subglacial Basin and Ice Stream D. The ice sheet in these regions is completely covered by satellite imagery and so this project will be integrated with remote sensing studies of the ice stream. The changing dynamics of Ice Stream D, as with other West Antarctic ice streams, seem to be correlated with changes in the morphological provinces of the underlying rift system. The experimental targets proceed from the divide of the interior ice, downstream through the onset of streaming to the trunk of Ice Stream D. This study will be coordinated with surface glaciological investigations of Ice Stream D and will be used to guide cooperative over-snow seismic investigations of the central West Antarctic rift system. The data will also be used to select a site for future deep ice coring along the crest of the WAIS. These data represent baseline data for long term global change monitoring work and represent crucial boundary conditions for ice sheet modeling efforts.", "east": -105.0, "geometry": "POINT(-130 -81)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": true, "keywords": "USAP-DC; MAGNETIC FIELD; GRAVITY FIELD; Antarctica; GLACIERS/ICE SHEETS; Marie Byrd Land; Airborne Gravity", "locations": "Marie Byrd Land; Antarctica", "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Bell, Robin; Blankenship, Donald D.; Finn, C. A.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.5, "title": "Collaborative Research: Lithospheric Controls on the Behavior of the West Antarctic Ice Sheet: Corridor Aerogeophysics of Eastern Ross Transect Zone", "uid": "p0010094", "west": -155.0}, {"awards": "1443497 Siddoway, Christine; 1443534 Bell, Robin; 1443677 Padman, Laurence; 1443498 Fricker, Helen", "bounds_geometry": "POLYGON((-180 -77,-177 -77,-174 -77,-171 -77,-168 -77,-165 -77,-162 -77,-159 -77,-156 -77,-153 -77,-150 -77,-150 -77.9,-150 -78.8,-150 -79.7,-150 -80.6,-150 -81.5,-150 -82.4,-150 -83.3,-150 -84.2,-150 -85.1,-150 -86,-153 -86,-156 -86,-159 -86,-162 -86,-165 -86,-168 -86,-171 -86,-174 -86,-177 -86,180 -86,178.1 -86,176.2 -86,174.3 -86,172.4 -86,170.5 -86,168.6 -86,166.7 -86,164.8 -86,162.9 -86,161 -86,161 -85.1,161 -84.2,161 -83.3,161 -82.4,161 -81.5,161 -80.6,161 -79.7,161 -78.8,161 -77.9,161 -77,162.9 -77,164.8 -77,166.7 -77,168.6 -77,170.5 -77,172.4 -77,174.3 -77,176.2 -77,178.1 -77,-180 -77))", "dataset_titles": "Basal Melt, Ice thickness and structure of the Ross Ice Shelf using airborne radar data; CATS2008: Circum-Antarctic Tidal Simulation version 2008; ROSETTA-Ice data page; Ross Sea ocean model simulation used to support ROSETTA-Ice ", "datasets": [{"dataset_uid": "601242", "doi": "10.15784/601242", "keywords": "Antarctica; Cryosphere; Glaciers/Ice Sheet; Glaciology; Ice Penetrating Radar; ice-shelf basal melting; Radar Echo Sounder; Radar Echo Sounding; Snow/Ice", "people": "Padman, Laurence; Das, Indrani; Cordero, Isabel; Siegfried, Matt; Mosbeux, Cyrille; Frearson, Nicholas; Tinto, Kirsty; Dhakal, Tejendra; Siddoway, Christine; Hulbe, Christina; Fricker, Helen; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "Basal Melt, Ice thickness and structure of the Ross Ice Shelf using airborne radar data", "url": "https://www.usap-dc.org/view/dataset/601242"}, {"dataset_uid": "601255", "doi": "10.15784/601255", "keywords": "Antarctica; Basal melt; Cryosphere; Ice Shelf; Model Output; Ocean Circulation Model; Ross Ice Shelf; Ross Sea", "people": "Padman, Laurence; Howard, Susan L.; Springer, Scott", "repository": "USAP-DC", "science_program": null, "title": "Ross Sea ocean model simulation used to support ROSETTA-Ice ", "url": "https://www.usap-dc.org/view/dataset/601255"}, {"dataset_uid": "601235", "doi": "10.15784/601235", "keywords": "Antarctica; Cryosphere; Inverse Modeling; Model Data; Ocean Currents; Sea Surface; Tide Model; Tides", "people": "Erofeeva, Svetlana; Padman, Laurence; Howard, Susan L.", "repository": "USAP-DC", "science_program": null, "title": "CATS2008: Circum-Antarctic Tidal Simulation version 2008", "url": "https://www.usap-dc.org/view/dataset/601235"}, {"dataset_uid": "200100", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "ROSETTA-Ice data page", "url": "http://wonder.ldeo.columbia.edu/data/ROSETTA-Ice/"}], "date_created": "Wed, 03 Jul 2019 00:00:00 GMT", "description": "The Ross Ice Shelf is the largest existing ice shelf in Antarctica, and is currently stabilizing significant portions of the land ice atop the Antarctic continent. An ice shelf begins where the land ice goes afloat on the ocean, and as such, the Ross Ice Shelf interacts with the ocean and seafloor below, and the land ice behind. Currently, the Ross Ice Shelf slows down, or buttresses, the fast flowing ice streams of the West Antarctic Ice Sheet (WAIS), a marine-based ice sheet, which if melted, would raise global sea level by 3-4 meters. The Ross Ice Shelf average ice thickness is approximately 350 meters, and it covers approximately 487,000 square kilometers, an area slightly larger than the state of California. The Ross Ice Shelf has disappeared during prior interglacial periods, suggesting in the future it may disappear again. Understanding the dynamics, stability and future of the West Antarctic Ice Sheet therefore requires in-depth knowledge of the Ross Ice Shelf. The ROSETTA-ICE project brings together scientists from 4 US institutions and from the Institute of Geological and Nuclear Sciences Limited, known as GNS Science, New Zealand. The ROSETTA-ICE data on the ice shelf, the water beneath the ice shelf, and the underlying rocks, will allow better predictions of how the Ross Ice Shelf will respond to changing climate, and therefore how the WAIS will behave in the future. The interdisciplinary ROSETTA-ICE team will train undergraduate and high school students in cutting edge research techniques, and will also work to educate the public via a series of vignettes integrating ROSETTA-ICE science with the scientific and human history of Antarctic research.\u003cbr/\u003e\u003cbr/\u003eThe ROSETTA-ICE survey will acquire gravity and magnetics data to determine the water depth beneath the ice shelf. Radar, LIDAR and imagery systems will be used to map the Ross Ice Shelf thickness and fine structure, crevasses, channels, debris, surface accumulation and distribution of marine ice. The high resolution aerogeophysical data over the Ross Ice Shelf region in Antarctica will be acquired using the IcePod sensor suite mounted externally on an LC-130 aircraft operating from McMurdo Station, Antarctica. Field activities will include ~36 flights on LC-130 aircraft over two field seasons in Antarctica. The IcePod instrument suite leverages the unique experience of the New York Air National Guard operating in Antarctica for NSF scientific research as well as infrastructure and logistics. The project will answer questions about the stability of the Ross Ice Shelf in future climate, and the geotectonic evolution of the Ross Ice Shelf Region, a key component of the West Antarctic Rift system. The comprehensive benchmark data sets acquired will enable broad, interdisciplinary analyses and modeling, which will also be performed as part of the project. ROSETTA-ICE will illuminate Ross ice sheet-ice shelf-ocean dynamics as the system nears a critical juncture but still is intact. Through interacting with an online data visualization tool, and comparing the ROSETTA-ICE data and results from earlier studies, we will engage students and young investigators, equipping them with new capabilities for the study of critical earth systems that influence global climate.", "east": 161.0, "geometry": "POINT(-174.5 -81.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LIDAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e PROTON MAGNETOMETER", "is_usap_dc": true, "keywords": "Airborne Radar; LIDAR; Ross Ice Shelf; SALINITY; SALINITY/DENSITY; CONDUCTIVITY; ICE DEPTH/THICKNESS; Tidal Models; Airborn Gravity; GRAVITY ANOMALIES; Ross Sea; Antarctica; BATHYMETRY; C-130; MAGNETIC ANOMALIES; USAP-DC", "locations": "Ross Sea; Antarctica; Ross Ice Shelf", "north": -77.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Bell, Robin; Frearson, Nicholas; Das, Indrani; Fricker, Helen; Padman, Laurence; Springer, Scott; Siddoway, Christine; Tinto, Kirsty", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e C-130", "repo": "USAP-DC", "repositories": "PI website; USAP-DC", "science_programs": null, "south": -86.0, "title": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)", "uid": "p0010035", "west": -150.0}, {"awards": "1443552 Paul Winberry, J.; 1443356 Conway, Howard", "bounds_geometry": "POLYGON((-175 -82.7,-173.9 -82.7,-172.8 -82.7,-171.7 -82.7,-170.6 -82.7,-169.5 -82.7,-168.4 -82.7,-167.3 -82.7,-166.2 -82.7,-165.1 -82.7,-164 -82.7,-164 -82.77,-164 -82.84,-164 -82.91,-164 -82.98,-164 -83.05,-164 -83.12,-164 -83.19,-164 -83.26,-164 -83.33,-164 -83.4,-165.1 -83.4,-166.2 -83.4,-167.3 -83.4,-168.4 -83.4,-169.5 -83.4,-170.6 -83.4,-171.7 -83.4,-172.8 -83.4,-173.9 -83.4,-175 -83.4,-175 -83.33,-175 -83.26,-175 -83.19,-175 -83.12,-175 -83.05,-175 -82.98,-175 -82.91,-175 -82.84,-175 -82.77,-175 -82.7))", "dataset_titles": "2015_Antarctica_Ground; Geophysical data from Crary Ice Rise, Ross Sea Embayment", "datasets": [{"dataset_uid": "601181", "doi": "10.15784/601181", "keywords": "Antarctica; Bed Elevation; Crary Ice Rise; Cryosphere; Glaciers/Ice Sheet; Glaciology; GPR; Ground Penetrating Radar; Ice Penetrating Radar; Ice Sheet Elevation; Ice Shelf; Ice Thickness; Internal Stratigraphy; Radar; Ross Ice Shelf; Snow/Ice; Surface Elevation", "people": "Koutnik, Michelle; Paden, John; Conway, Howard; Winberry, Paul", "repository": "USAP-DC", "science_program": null, "title": "Geophysical data from Crary Ice Rise, Ross Sea Embayment", "url": "https://www.usap-dc.org/view/dataset/601181"}, {"dataset_uid": "200177", "doi": "", "keywords": null, "people": null, "repository": "CReSIS/ku.edu", "science_program": null, "title": "2015_Antarctica_Ground", "url": "https://data.cresis.ku.edu/data/accum/2015_Antarctica_Ground/"}], "date_created": "Mon, 06 May 2019 00:00:00 GMT", "description": "Recent observations and model results suggest that collapse of the Amundsen Sea sector of West Antarctica may already be underway. However, the timeline of collapse and the effects of ongoing climatic and oceanographic changes are key unanswered questions. Complete disintegration of the ice sheet would raise global sea level by more than 3 m, which would have significant societal impacts. Improved understanding of the controls on ice-sheet evolution is needed to make better predictions of ice-sheet behavior. Results from numerical models show that buttressing from surrounding ice shelves and/or from small-scale grounded ice rises should act to slow the retreat and discharge of ice from the interior ice sheet. However, there are very few field observations with which to develop and validate models. Field observations conducted in the early 1980s on Crary Ice Rise in the Ross Sea Embayment are a notable exception. This project will revisit Crary Ice Rise with new tools to make a suite of measurements designed to address questions about how the ice rise affects ice discharge from the Ross Sea sector of West Antarctica. The team will include a graduate and undergraduate student, and will participate in a range of outreach activities.\u003cbr/\u003e\u003cbr/\u003eNew tools including radar, seismic, and GPS instruments will be used to conduct targeted geophysical measurements both on Crary Ice Rise and across its grounding line. The project will use these new measurements, together with available ancillary data to inform a numerical model of grounding line dynamics. The model and measurements will be used to address the (1) How has the ice rise evolved over timescales ranging from: the past few decades; the past millennia after freeze-on; and through the deglaciation? (2) What history of ice dynamics is preserved in the radar-detected internal stratigraphy? (3) What dynamical effect does the presence/absence of the ice rise have on discharge of the Ross Ice Streams today? (4) How is it contributing to the slow-down of the proximal Whillans and Mercer ice streams? (5) What dynamical response will the ice rise have under future environmental change?", "east": -164.0, "geometry": "POINT(-169.5 -83.05)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": true, "keywords": "AMD/US; FIELD SURVEYS; Antarctica; USA/NSF; AMD; USAP-DC; Radar; GLACIERS/ICE SHEETS", "locations": "Antarctica", "north": -82.7, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard; Koutnik, Michelle; Winberry, Paul", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "CReSIS/ku.edu; USAP-DC", "science_programs": null, "south": -83.4, "title": "Collaborative Research: Grounding Line Dynamics: Crary Ice Rise Revisited", "uid": "p0010026", "west": -175.0}, {"awards": "1141866 Conway, Howard; 1141889 Winberry, J. Paul", "bounds_geometry": null, "dataset_titles": "Beardmore Glacier High-Frequency Impulse Radar Data; Geophysical measurements Beardmore Glacier, Antarctica; Project code ZF for passive seismic and 17-030 for active source", "datasets": [{"dataset_uid": "601121", "doi": "10.15784/601121", "keywords": "Antarctica; Cryosphere; Glaciers/Ice Sheet; Glaciology; Ice Thickness; Radar", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Geophysical measurements Beardmore Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601121"}, {"dataset_uid": "000210", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Project code ZF for passive seismic and 17-030 for active source", "url": "https://ds.iris.edu/mda/17-030"}, {"dataset_uid": "601713", "doi": "10.15784/601713", "keywords": "Antarctica; Beardmore Glacier; Cryosphere; Cryosphere; Glaciers/Ice Sheet; Glaciology; Ground Penetrating Radar; Ice Penetrating Radar; Snow/Ice", "people": "Hoffman, Andrew; Conway, Howard; Christianson, Knut", "repository": "USAP-DC", "science_program": null, "title": "Beardmore Glacier High-Frequency Impulse Radar Data", "url": "https://www.usap-dc.org/view/dataset/601713"}], "date_created": "Sun, 09 Sep 2018 00:00:00 GMT", "description": "Conway/1141866\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to conduct a suite of experiments to study spatial and temporal variations of basal conditions beneath Beardmore Glacier, an East Antarctic outlet glacier that discharges into the Ross Sea Embayment. The intellectual merit of the project is that it should help verify whether or not global warming will play a much larger role in the future mass balance of ice sheets than previously considered. Recent observations of rapid changes in discharge of fast-flowing outlet glaciers and ice streams suggest that dynamical responses to warming could affect that ice sheets of Greenland and Antarctica. Assessment of possible consequences of these responses is hampered by the lack of information about the basal boundary conditions. The leading hypothesis is that variations in basal conditions exert strong control on the discharge of outlet glaciers. Airborne and surface-based radar measurements of Beardmore Glacier will be made to map the ice thickness and geometry of the sub-glacial trough and active and passive seismic experiments, together with ground-based radar and GPS measurements will be made to map spatial and temporal variations of conditions at the ice-bed interface. The observational data will be used to constrain dynamic models of glacier flow. The models will be used to address the primary controls on the dynamics of Antarctic outlet glaciers, the conditions at the bed, their spatial and temporal variation, and how such variability might affect the sliding and flow of these glaciers. The work will also explore whether or not these outlet glaciers could draw down the interior of East Antarctica, and if so, how fast. The study will take three years including two field seasons to complete and results from the work will be disseminated through public and professional meetings and journal publications. All data and metadata will be made available through the NSIDC web portal. The broader impacts of the work are that it will help elucidate the fundamental physics of outlet glacier dynamics which is needed to improve predictions of the response of ice sheets to changing environmental conditions. The project will also provide support for early career investigators and will provide training and support for one graduate and two undergraduate students. All collaborators are currently involved in scientific outreach and graduate student education and they are committed to fostering diversity.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC; Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard; Winberry, Paul", "platforms": "Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "IRIS; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: East Antarctic Outlet Glacier Dynamics", "uid": "p0000437", "west": null}, {"awards": "0944021 Brook, Edward; 0943466 Hawley, Robert; 0944307 Conway, Howard", "bounds_geometry": "POLYGON((-163 -79,-162.8 -79,-162.6 -79,-162.4 -79,-162.2 -79,-162 -79,-161.8 -79,-161.6 -79,-161.4 -79,-161.2 -79,-161 -79,-161 -79.05,-161 -79.1,-161 -79.15,-161 -79.2,-161 -79.25,-161 -79.3,-161 -79.35,-161 -79.4,-161 -79.45,-161 -79.5,-161.2 -79.5,-161.4 -79.5,-161.6 -79.5,-161.8 -79.5,-162 -79.5,-162.2 -79.5,-162.4 -79.5,-162.6 -79.5,-162.8 -79.5,-163 -79.5,-163 -79.45,-163 -79.4,-163 -79.35,-163 -79.3,-163 -79.25,-163 -79.2,-163 -79.15,-163 -79.1,-163 -79.05,-163 -79))", "dataset_titles": "Roosevelt Island Borehole Firn temperatures; Roosevelt Island Borehole Optical Televiewer logs; Roosevelt Island Ice Core Time Scale and Associated Data; Roosevelt Island: Radar and GPS", "datasets": [{"dataset_uid": "601085", "doi": "10.15784/601085", "keywords": "Antarctica; Borehole; Cryosphere; Firn; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Records; ice fabric; Optical Images; Roosevelt Island; Snow/Ice; Temperature", "people": "Clemens-Sewall, David; Giese, Alexandra; Hawley, Robert L.", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Borehole Firn temperatures", "url": "https://www.usap-dc.org/view/dataset/601085"}, {"dataset_uid": "601359", "doi": "10.15784/601359", "keywords": "Antarctica; CO2; Cryosphere; Ice Core; Roosevelt Island", "people": "Lee, James; Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Ice Core Time Scale and Associated Data", "url": "https://www.usap-dc.org/view/dataset/601359"}, {"dataset_uid": "601070", "doi": "10.15784/601070", "keywords": "Antarctica; Cryosphere; Glaciers/Ice Sheet; Glaciology; GPR; GPS Data; Ice Velocity; Navigation; Radar; Roosevelt Island; Ross Sea", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island: Radar and GPS", "url": "https://www.usap-dc.org/view/dataset/601070"}, {"dataset_uid": "601086", "doi": "10.15784/601086", "keywords": "Antarctica; Cryosphere; Glaciers/Ice Sheet; Glaciology; Roosevelt Island; Snow/Ice", "people": "Clemens-Sewall, David; Hawley, Robert L.", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Borehole Optical Televiewer logs", "url": "https://www.usap-dc.org/view/dataset/601086"}], "date_created": "Fri, 16 Feb 2018 00:00:00 GMT", "description": "This award supports a project to use the Roosevelt Island ice core as a glaciological dipstick for the eastern Ross Sea. Recent attention has focused on the eastern Ross Embayment, where there are no geological constraints on ice thickness changes, due to the lack of protruding rock \"dipsticks\" where the ice sheet can leave datable records of high stands. Recent work has shown how dated ice cores can be used as dipsticks to derive ice-thickness histories. Partners from New Zealand and Denmark will extract an ice core from Roosevelt Island during the 2010-2011 and 2011-12 austral summers. Their science objective is to contribute to understanding of climate variability over the past 40kyr. The science goal of this project is not the climate record, but rather the history of deglaciation in the Ross Sea. The new history from the eastern Ross Sea will be combined with the glacial histories from the central Ross Sea (Siple Dome and Byrd) and existing and emerging histories from geologic and marine records along the western Ross Sea margin and will allow investigators to establish an updated, self-consistent model of the configuration and thickness of ice in the Ross Embayment during the LGM, and the timing of deglaciation. Results from this work will provide ground truth for new-generation ice-sheet models that incorporate ice streams and fast-flow dynamics. Realistic ice-sheet models are needed not only for predicting the response to future possible environments, but also for investigating past behaviors of ice sheets. This research contributes to the primary goals of the West Antarctic Ice Sheet Initiative as well as the IPY focus on ice-sheet history and dynamics. It also contributes to understanding spatial and temporal patterns of climate change and climate dynamics over the past 40kyr, one of the primary goals of the International Partnerships in Ice Core Sciences (IPICS). The project will help to develop the next generation of scientists and will contribute to the education and training of two Ph.D. students. All participants will benefit from the international collaboration, which will expose them to different field and laboratory techniques and benefit future collaborative work. All participants are involved in scientific outreach and undergraduate education, and are committed to fostering diversity. Outreach will be accomplished through regularly scheduled community and K-12 outreach events, talks and popular writing by the PIs, as well as through University press offices.", "east": -161.0, "geometry": "POINT(-162 -79.25)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "AMD; FIELD INVESTIGATION; AMD/US; Deglaciation; USAP-DC; USA/NSF; NOT APPLICABLE; Ice Core; Not provided; Ross Sea Embayment", "locations": null, "north": -79.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard; Brook, Edward J.; Hawley, Robert L.", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.5, "title": "Collaborative Research: Deglaciation of the Ross Sea Embayment - constraints from Roosevelt Island", "uid": "p0000272", "west": -163.0}, {"awards": "0838735 Nitsche, Frank O.", "bounds_geometry": "POLYGON((-140 -68,-136 -68,-132 -68,-128 -68,-124 -68,-120 -68,-116 -68,-112 -68,-108 -68,-104 -68,-100 -68,-100 -68.75,-100 -69.5,-100 -70.25,-100 -71,-100 -71.75,-100 -72.5,-100 -73.25,-100 -74,-100 -74.75,-100 -75.5,-104 -75.5,-108 -75.5,-112 -75.5,-116 -75.5,-120 -75.5,-124 -75.5,-128 -75.5,-132 -75.5,-136 -75.5,-140 -75.5,-140 -74.75,-140 -74,-140 -73.25,-140 -72.5,-140 -71.75,-140 -71,-140 -70.25,-140 -69.5,-140 -68.75,-140 -68))", "dataset_titles": "Bathymetry compilation of Pine Island Bay, Amundsen Sea, Antarctica; OSO0910 Expedition Data", "datasets": [{"dataset_uid": "000225", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Bathymetry compilation of Pine Island Bay, Amundsen Sea, Antarctica", "url": "http://dx.doi.org/10.1594/IEDA/320080"}, {"dataset_uid": "000525", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "OSO0910 Expedition Data", "url": "https://www.marine-geo.org/tools/search/entry.php?id=OSO0910"}], "date_created": "Fri, 26 Jan 2018 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The West Antarctic Ice Sheet is believed to be vulnerable to climate change as it is grounded below sea level, is drained by rapidly flowing ice streams and is fringed by floating ice shelves subject to melting by incursions of relatively warm Antarctic circumpolar water. Currently, the most rapidly thinning glaciers in Antarctica occur in the Amundsen and Bellingshausen Sea sectors. This study seeks to place the present day observations into a longer-term geological context over a broad scale by high-resolution swath bathymetric mapping of continental shelf sea floor features that indicate past ice presence and behavior. Gaps in existing survey coverage of glacial lineations and troughs indicating ice flow direction and paleo-grounding zone wedges over the Ross, Amundsen and Bellingshausen Sea sectors are targeted. The surveys will be conducted as part of the 2010 Icebreaker Oden science opportunity and will take advantage of the vessel?s state-of-the-art swath mapping system.\u003cbr/\u003e\u003cbr/\u003eBroader impacts:\u003cbr/\u003eThis activity will supplement and complement more focused regional studies by US, Swedish, UK, French, Japanese and Polish collaborators also sailing on the Oden. The PI will compile bathymetric data to be acquired by the Oden and other ships in the region over the duration of the project into the existing bathymetric data base. The compiled data set will be made publically available through the NSF founded Antarctic Multibeam Bathymetry and Geophysical Data Synthesis (AMBS) site. It will also be integrated into the GEBCO International Bathymetric Chart of the Southern Ocean (IBCSO) and so significantly improve the basis for ship navigation in the Pacific sector of the Southern Ocean. Undergraduate students will be involved in the research under supervision of the PI via the Lamont summer internship program. The PI is a young investigator and this will be his first NSF grant as a PI.", "east": -100.0, "geometry": "POINT(-120 -71.75)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES", "is_usap_dc": true, "keywords": "BATHYMETRY; SHIPS; Southern Ocean; Antarctica; Polar; GLACIERS/ICE SHEETS; R/V NBP", "locations": "Polar; Southern Ocean; Antarctica", "north": -68.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Nitsche, Frank O.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "MGDS", "repositories": "MGDS", "science_programs": null, "south": -75.5, "title": "Ice sheet Dynamics and Processes along the West Antarctic Continental Shelf", "uid": "p0010001", "west": -140.0}, {"awards": "1245879 Nitsche, Frank O.", "bounds_geometry": null, "dataset_titles": "NBP1503 data collected during field expedition", "datasets": [{"dataset_uid": "000193", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1503 data collected during field expedition", "url": "https://www.rvdata.us/search/cruise/NBP1503"}, {"dataset_uid": "200001", "doi": "10.7284/901478", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1503 data collected during field expedition", "url": "https://www.rvdata.us/search/cruise/NBP1503"}], "date_created": "Sun, 30 Jul 2017 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThis project will determine the potential vulnerability of key ice streams to incursions of warmer ocean water onto the continental shelf and if this mechanism could already explain any of the observed thinning of the ice sheet. It will provide important constrains on ice dynamic of the investigated section of the EAIS, and thus will be critical for future ice sheet models and provide mechanisms for EAIS contributions to past sea level high-stand. The PI proposes to investigate four key ice stream systems on the continental shelf between ~90\u00c2\u00b0E and 160\u00c2\u00b0E. They will use multibeam bathymetry to identify if and where cross-shelf troughs exist to help determine whether these troughs could provide potential pathways for warmer ocean water. Furthermore, detailed analysis of morphological features of these troughs could provide information on past ice dynamic, maximum extent, and flow direction of related paleo ice streams. The PIs will also conduct water column measurements along these troughs and on the continental slope to determine whether warmer ocean water could enter the shelf in the near future, or if such water has already entered any troughs, and thus might be causing the observed thinning of some ice streams.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis project includes the participation and support of undergraduate and graduate students in field work and data analysis. The possible involvement of a PolarTREC teacher and the Earth2Class teachers program will reach out to K-12 students.", "east": 134.6, "geometry": "POINT(125.05 -64.5)", "instruments": null, "is_usap_dc": true, "keywords": "WATER TEMPERATURE; Polar; SALINITY; Antarctica; Southern Ocean; R/V NBP; BATHYMETRY", "locations": "Polar; Antarctica; Southern Ocean", "north": -63.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Nitsche, Frank O.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -66.0, "title": "Vulnerability of East Antarctic Ice Streams to warm Ocean Water Incursions", "uid": "p0000394", "west": 115.5}, {"awards": "0944794 Winberry, J. Paul; 0944671 Wiens, Douglas", "bounds_geometry": "POLYGON((-163 -83.7,-161.9 -83.7,-160.8 -83.7,-159.7 -83.7,-158.6 -83.7,-157.5 -83.7,-156.4 -83.7,-155.3 -83.7,-154.2 -83.7,-153.1 -83.7,-152 -83.7,-152 -83.8,-152 -83.9,-152 -84,-152 -84.1,-152 -84.2,-152 -84.3,-152 -84.4,-152 -84.5,-152 -84.6,-152 -84.7,-153.1 -84.7,-154.2 -84.7,-155.3 -84.7,-156.4 -84.7,-157.5 -84.7,-158.6 -84.7,-159.7 -84.7,-160.8 -84.7,-161.9 -84.7,-163 -84.7,-163 -84.6,-163 -84.5,-163 -84.4,-163 -84.3,-163 -84.2,-163 -84.1,-163 -84,-163 -83.9,-163 -83.8,-163 -83.7))", "dataset_titles": "Geophysical Study of Ice Stream Stick Slip; Whillans Ice Stream Stick-slip", "datasets": [{"dataset_uid": "000169", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Geophysical Study of Ice Stream Stick Slip", "url": "http://ds.iris.edu/mda/2C/?timewindow=2010-2011"}, {"dataset_uid": "609632", "doi": "10.7265/N5PC309V", "keywords": "Antarctica; Cryosphere; Glaciers/Ice Sheet; Glaciology; GPS; Whillans Ice Stream", "people": "Alley, Richard; Anandakrishnan, Sridhar; Winberry, Paul; Wiens, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Whillans Ice Stream Stick-slip", "url": "https://www.usap-dc.org/view/dataset/609632"}], "date_created": "Wed, 16 Nov 2016 00:00:00 GMT", "description": "This award supports a three-year study of the ongoing deceleration and stick-slip motion of Whillans Ice Stream (WIS), West Antarctica. Understanding the dynamic behavior of ice streams is essential for predicting the future of the West Antarctic Ice Sheet (WAIS). Despite being one of the best-studied ice streams in Antarctica, the surprising flow characteristics of WIS continue to demand interdisciplinary research. Recent estimates indicate that the WIS may stagnate within 50 years, resulting in a significant change to the mass balance of the Siple Coast sector of West Antarctica. The reasons for the ongoing stagnation are not well known, and are possibly linked (causally or coincidentally) to the stick-slip behavior. Our recent work on WIS stick-slip motion suggest that all slip events nucleate from a common location on the ice stream, suggesting that a relatively small (approximately 10 km in diameter) region of the exerts fundamental control over the flow of this large ice stream (100s of km long and 100 kilometers wide). We hypothesize that this is a region of increased bed strength and our measurements will address that hypothesis. We will deploy a series of GPS receivers and seismometers on the ice stream to accurately locate the nucleation region so that a comprehensive ground based geophysical survey can be conducted to determine the physical properties of bed at the nucleation point. The ground geophysical program will consist of reflection seismic and ice-penetrating radar studies that will better constrain the properties of both the hypothesized higher-friction nucleation zone and the surrounding regions. Slip events also generate seismic energy that can be recorded 100s of km away from the ice stream, thus, the GPS and seismometer deployment will also aid us in relating seismic waveforms directly with the rapid motion that occurs during slip events. The increased ability to relate rupture processes with seismic emissions will allow us to use archived seismic records to explore changes in the behavior of WIS during the later half of the 20th century. Broader impacts of this study include improved knowledge ice sheet dynamics, which remain a poorly constrained component of the climate system, thus, limiting our ability to predict the Earth\u0027s response to climate change. The scientific work includes the education of two graduate students and continued training of one post-doctoral scholar, thus helping to train the next generation of polar scientists. We will expose the broader public to polar science through interactions with the media and by take advantaging of programs to include K-12 educators in our field work.", "east": -152.0, "geometry": "POINT(-157.5 -84.2)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "West Antarctic Ice Sheet; Geodetic; GROUND-BASED OBSERVATIONS; Not provided; GEODETIC GPS DATA; Seismic; AGDC-project", "locations": "West Antarctic Ice Sheet", "north": -83.7, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Winberry, Paul; Anandakrishnan, Sridhar; Alley, Richard; Wiens, Douglas", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided", "repo": "IRIS", "repositories": "IRIS; USAP-DC", "science_programs": null, "south": -84.7, "title": "Collaborative Research: Geophysical Study of Ice Stream Stick-slip Dynamics", "uid": "p0000053", "west": -163.0}, {"awards": "1043481 Creyts, Timothy", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 17 Jun 2016 00:00:00 GMT", "description": "1043481/Creyts\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to develop models of subglacial hydrology in order to understand dynamics of water movement, lake drainage, and how drainage affects ice slip over deformable till with the goal of understanding present and future behavior of fast flowing regions of Antarctica. Drainage of subglacial water falls into two broad categories: distributed and channelized. In distributed systems, water is forced out along the ice?bed interface. Conversely, in channelized systems water is drawn toward a few major arteries. Observations of lake filling and draining sup- port changes in subglacial water flow and suggest a switch from a low to high discharge state or vice versa. Filling or draining can move the subglacial system from one type of drainage morphology to the other. A switch of drainage type will affect slip along the ice-bed interface because distributed morphologies tend to cause enhanced sliding whereas channelized morphologies tend to cause enhanced coupling of the ice-bed interface. Conditions beneath fast flowing ice streams of West Antarctica are ideal for switching between subglacial drainage morphologies. Fast flowing ice in West Antarctica commonly rests on sub- glacial tills and is coincident, in some areas, with observed subglacial lake filling and draining. The goal of the work is to develop the next generation of spatially distributed hydraulic models that capture lake filling and draining phenomena and investigate the effects on subglacial till. Models will be theoretical, process-based descriptions of water drainage and till failure along fast flowing ice streams. Models will be based on balance of mass, momentum, and energy. Building on previous studies, we will incorporate two dimensional movement of water to investigate distributed basal hydrology, distributed basal hydrology coupled to channels, and couple these models with till deformation. These models will provide a framework for determining how lake draining and filling affects ice discharge by providing a constraints on ice?bed coupling. The intellectual merit of the work is that it will advance knowledge about drainage of water subglacially beneath Antarctica and how water affects ice motion. Our modeling provides a unique opportunity to understand the role subglacial hydrology plays in the dynamics of key outlet glaciers and ice streams. The broader impacts of the work include training for one postdoctoral scientist and training for a summer student in simple laboratory techniques for analog experiments. In addition, the proposal dovetails into an existing polar education and outreach plan by including a component of physical, numerical, and scale models in programs developed for high school and middle school classroom visits, teacher workshops and community events. Additionally, because knowledge of glacial hydrology is increasing rapidly, we will convene a workshop on observations and models of subglacial hydrology to facilitate transfer of knowledge and ideas.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Creyts, Timothy; Bell, Robin", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -90.0, "title": "Subglacial drainage and slip modeling in Antarctica: relating lakes to ice discharge", "uid": "p0000345", "west": -180.0}, {"awards": "1039982 Anandakrishnan, Sridhar", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Seismological Data at IRIS (full data link not provided)", "datasets": [{"dataset_uid": "000170", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Seismological Data at IRIS (full data link not provided)", "url": "http://ds.iris.edu/"}], "date_created": "Mon, 23 Nov 2015 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eKnowledge of englacial and subglacial conditions are critical for ice sheet models and predictions of sea-level change. Some of the critical variables that are poorly known but essential for improving flow models and predictions of sea-level change are: basal roughness, subglacial sedimentary and hydrologic conditions, and the temporal and spatial variability of the ice sheet flow field. Seismic reflection and refraction imaging and dense arrays of continuously operating GPS receivers can determine these parameters. The PIs propose to develop a network of wirelessly interconnected geophysical sensors (geoPebble) that will allow glaciologists to carry out these experiments simultaneously. This sensor web will provide a new way of imaging the ice sheet that is not possible with current instruments. With this sensor web, the PIs will extend the range of existing instruments from 2D to 3D, from low resolution to high resolution, but more importantly, all the geophysical measurements will be conducted synchronously. By the end of the proposal period the PIs will produce a network of 150-200 geoPebbles that will be available for NSF-sponsored glaciology research projects. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eImproved knowledge of the flow law of ice, the sliding of glaciers and ice streams, and paleoclimate history will contribute to assessments of the potential for abrupt ice-sheet mass change, with consequent sea-level effects and significant societal impacts. This improved modeling ability will be a direct consequence of better knowledge of the physical properties of ice sheets, which this project will facilitate. The development effort will be integrated with the undergraduate education program via the capstone design classes in EE and the senior thesis requirement in Geoscience. The PIs will also form a cohort of first-year and sophomore students who will work in their labs from the beginning of the project to develop specifications through the commissioning of the network.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anandakrishnan, Sridhar; Bilen, Sven; Urbina, Julio", "platforms": "Not provided", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": -90.0, "title": "MRI: Development of a Wirelessly-Connected Network of Seismometers and GPS Instruments for Polar and Geophysical Research", "uid": "p0000405", "west": -180.0}, {"awards": "0934534 Sergienko, Olga", "bounds_geometry": "POLYGON((-106 -70,-105.4 -70,-104.8 -70,-104.2 -70,-103.6 -70,-103 -70,-102.4 -70,-101.8 -70,-101.2 -70,-100.6 -70,-100 -70,-100 -70.6,-100 -71.2,-100 -71.8,-100 -72.4,-100 -73,-100 -73.6,-100 -74.2,-100 -74.8,-100 -75.4,-100 -76,-100.6 -76,-101.2 -76,-101.8 -76,-102.4 -76,-103 -76,-103.6 -76,-104.2 -76,-104.8 -76,-105.4 -76,-106 -76,-106 -75.4,-106 -74.8,-106 -74.2,-106 -73.6,-106 -73,-106 -72.4,-106 -71.8,-106 -71.2,-106 -70.6,-106 -70))", "dataset_titles": "Inverted Basal Shear Stress of Antarctic and Greenland Ice Streams and Glaciers", "datasets": [{"dataset_uid": "609626", "doi": "10.7265/N5XS5SBW", "keywords": "Antarctica; Arctic; Bindschadler Ice Stream; Cryosphere; Glaciers/Ice Sheet; Glaciology; Greenland; Lambert Ice Stream; MacAyeal Ice Stream; Pine Island Glacier; Thwaites Glacier", "people": "Sergienko, Olga", "repository": "USAP-DC", "science_program": null, "title": "Inverted Basal Shear Stress of Antarctic and Greenland Ice Streams and Glaciers", "url": "https://www.usap-dc.org/view/dataset/609626"}], "date_created": "Thu, 06 Feb 2014 00:00:00 GMT", "description": "Funds are provided to enable applications of powerful mathematical concepts and computational tools for rigorous sensitivity analysis, pseudo-spectra and generalized stability theory, and advanced state estimation in the context of large-scale ice sheet modeling. At the center of the proposal is the generation and application of adjoint model (ADM) and tangent linear model (TLM) components of the new Community Ice Sheet Model (CISM). The goal will be achieved through rigorous use of automatic differentiation (AD) to ensure synchronicity between the ongoing model development and improvement in terms of better representation of higher-order stress terms (which account for crucial fast flow regimes) of the nonlinear forward model (NLM) code and the derivative codes. The adjoint enables extremely efficient computation of gradients of scalar-valued functions in very high-dimensional control spaces. A hierarchy of applications is envisioned: (1) sensitivity calculations in support of the Intergovernmental Panel on Climate Change (IPCC) in order to determine to which control variables the polar ice sheet volumes are most sensitive; based on adjoint sensitivity maps, to establish quantitative estimates of ice sheet volume changes for relevant forcing scenarios; and to assess how sensitivities change when including higher-order stress terms; (2) coupling of the ADM and TLM to calculate pseudo-spectra or singular vectors (SV?s) of relevant ice sheet norms; SV?s provide perturbation patterns which lead to non-normal growth, optimally amplifying norm kernels over finite times; among the many applications of SV?s are optimal initialization of ensembles to assess uncertainties; SV?s are calculated through matrix-free iterative solution of a generalized eigenvalue problem via Lanczos or Arnoldi implicit restart algorithms; (3) a long-term goal is the development of an ice sheet state estimation system based on the adjoint or Lagrange Multiplier Method (LMM) in order to synthesize, in a formal manner, the increasing number and heterogeneous types of observations with a three-dimensional, state-of-the-art ice sheet model; an important requirement is that the adjoint incorporate new schemes that are being developed for CISM to capture crucial, but as yet unrepresented physical processes.", "east": -100.0, "geometry": "POINT(-103 -73)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e VISUAL OBSERVATIONS", "is_usap_dc": true, "keywords": "Not provided; AGDC-project; AGDC; inverse model; GROUND-BASED OBSERVATIONS; Basal Shear Stress", "locations": null, "north": -70.0, "nsf_funding_programs": "Arctic Natural Sciences", "paleo_time": null, "persons": "Sergienko, Olga", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.0, "title": "COLLABORATIVE RESEARCH: Enabling ice sheet sensitivity and stability analysis with a large-scale higher-order ice sheet model\u0027s adjoint to support sea level change assessment", "uid": "p0000048", "west": -106.0}, {"awards": "0838811 Sergienko, Olga", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -87,180 -84,180 -81,180 -78,180 -75,180 -72,180 -69,180 -66,180 -63,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,-180 -60))", "dataset_titles": "Interaction of Ice Stream Flow with Heterogeneous Beds", "datasets": [{"dataset_uid": "609583", "doi": "10.7265/N53R0QS6", "keywords": "Antarctica; Cryosphere; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; Ice Thickness; Ice Velocity", "people": "Sergienko, Olga", "repository": "USAP-DC", "science_program": null, "title": "Interaction of Ice Stream Flow with Heterogeneous Beds", "url": "https://www.usap-dc.org/view/dataset/609583"}], "date_created": "Tue, 27 Aug 2013 00:00:00 GMT", "description": "Sergienko/0838811 \u003cbr/\u003e\u003cbr/\u003eThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to conduct a modeling study of the ice stream ? sub-glacial water system. A suite of numerical models of various dimensionality and complexity will be constructed in a sequential, hierarchical fashion to formulate and test hypotheses regarding how sub-glacial lakes form under ice streams, determine the effect of sub-glacial lakes on ice-stream flow and mass balance, and to determine feedback effects whereby the ice stream ? sub-glacial water system can elicit both stable and unstable responses to environmental perturbations. This research will address one of the only observationally verified fast-time-scale processes apparent within the Antarctic Ice Stream system. The intellectual merit of the project is that understanding the origins and consequences of near-grounding-line sub-glacial lakes is a priority in glaciological research designed to predict short-term variations in Antarctica?s near-term future mass balance. The broader impacts of the proposed work are that it will contribute to better understanding of a system that has important societal relevance through contribution to sea level rise. Participation of a graduate student in the project will provide the student?s training and education in application of the numerical modeling in geosciences.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "subglacial and supraglacial water depth; AGDC-project; Not provided; Ice Streams; direct numerical simulation; Bed and Surface elevation deviatoric stresses", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Sergienko, Olga; Hulbe, Christina", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Model Investigation of Ice Stream/Subglacial Lake Systems", "uid": "p0000045", "west": 180.0}, {"awards": "0636883 Bell, Robin", "bounds_geometry": "POLYGON((20 -75,23 -75,26 -75,29 -75,32 -75,35 -75,38 -75,41 -75,44 -75,47 -75,50 -75,50 -76.5,50 -78,50 -79.5,50 -81,50 -82.5,50 -84,50 -85.5,50 -87,50 -88.5,50 -90,47 -90,44 -90,41 -90,38 -90,35 -90,32 -90,29 -90,26 -90,23 -90,20 -90,20 -88.5,20 -87,20 -85.5,20 -84,20 -82.5,20 -81,20 -79.5,20 -78,20 -76.5,20 -75))", "dataset_titles": "Data portal at Lamont for airborne data", "datasets": [{"dataset_uid": "000111", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Data portal at Lamont for airborne data", "url": "http://wonder.ldeo.columbia.edu/wordpress/"}], "date_created": "Tue, 02 Apr 2013 00:00:00 GMT", "description": "Bell/0636883\u003cbr/\u003e\u003cbr/\u003eThis award support a project to study the role that subglacial water plays in the overall stability of major ice sheets. An estimated 22,000 km3 of water is currently stored within Antarctica\u0027s subglacial lakes. Movement of this water occurs through a complex and largely inferred drainage system in both East and West Antarctica. Geomorphic evidence for the catastrophic drainage of subglacial lakes documents repeated events. These major flood events appear to have drained the largest subglacial lakes situated in the relatively stable interior of the East Antarctic ice sheet. Emerging evidence suggests there is a close connection between significant subglacial lakes and the onset of the Recovery Ice Stream one of the largest in East Antarctica. Our preliminary analysis of the Recovery Lakes region, East Antarctica suggests a direct linkage between lakes and streaming ice flow, specifically the 800 km long Recovery Ice Stream and its tributaries. Located just upslope of the Recovery Ice Stream, the Recovery Lakes Region is composed of 3 well-defined lakes and a fourth, ambiguous, \u0027lake-like\u0027 feature. While other large lakes have a localized impact on ice surface slope, the Recovery Lakes Region lakes are coincident with an abrupt regional change in the ice sheet surface slope. Satellite imagery demonstrates that the downslope margin of this lake area contains distinct flow strips and crevasses: both indicative of increasing ice velocities. The discovery of a series of large lakes coincident with the onset of rapid ice flow in East Antarctica clearly links subglacial lakes and ice sheet dynamics for the first time. The evidence linking the onset of streaming in the Recovery Drainage Ice Stream to the series of large subglacial lakes raises the fundamental question: How can subglacial lakes trigger the onset of ice streaming? We advance two possible mechanisms: (i) Subglacial lakes can produce accelerated ice flow through the drainage of lake water beneath the ice sheet downslope of the lakes. (ii) Subglacial lakes can produce accelerated ice flow accelerated ice flow by modifying the basal thermal gradient via basal accretion over the lakes so when the ice sheet regrounds basal melting dominates. To evaluate the contribution of lake water and the changing basal thermal gradient, we propose an integrated program incorporating satellite imagery analysis, a series of reconnaissance aerogeophysical profiles over the Recovery Lake Region and the installation of continuous GPS sites over the Recovery Lakes. This analysis and new data will enable us (1) to produce a velocity field over the Recovery Lakes Region, (2) to map the ice thickness changes over the lakes due to acceleration triggered thinning, basal melting and freezing, (3) determine the depth and possible the tectonic origin of the Recovery Lakes and (4) determine the stability of these lakes over time. These basic data sets will enable us to advance our understanding of how subglacial lakes trigger the onset of streaming. The intellectual merit of this project is that it will be the first systematic analysis of ice streams triggering the onset of ice streams. This work has profound implications for the modeling of ice sheet behavior in the future, the geologic record of abrupt climate changes and the longevity of subglacial lakes. The broader impacts of the project are programs that will reach students of all ages through undergraduates involved in the research, formal presentations in teacher education programs and ongoing public outreach efforts at major science museums. Subglacial Antarctic lake environments are emerging as a premier, major frontier for exploration during the IPY 2007-2009.", "east": 50.0, "geometry": "POINT(35 -82.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e AEM; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IMAGING RADAR SYSTEMS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e LIDAR ALTIMETERS", "is_usap_dc": false, "keywords": "DHC-6; ice stream stability; flood event; aerogeophysical; Basal freezing; onset; Ice Stream; Ice Thickness; Subglacial lakes; Antarctica; velocity; basal melting; drainage", "locations": "Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bell, Robin; Studinger, Michael S.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": -90.0, "title": "Subglacial Lakes and the Onset of Ice Streaming: Recovery Lakes", "uid": "p0000702", "west": 20.0}, {"awards": "0814241 Dupont, Todd", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 21 Mar 2012 00:00:00 GMT", "description": "This award supports a three-year modeling effort to understand the dynamics surrounding ice-air surface slope reversals on ice streams and ice shelves, with implications for the creation and stability of subglacial lakes. Local reversal of the ice-air surface slope may lead, through a reversal of the hydraulic gradient, to the trapping of basal and surface water, producing subglacial and supraglacial lakes, respectively. In the case of subglacial lakes, once such a sizable reservoir of pressurized water is created the potential exists for drainage, in the form of large outburst floods or as smaller, but sustained, periods of increased subglacial water flow. The research seeks to extend some initial work that has been done to include time-dependence and a wider array of parameters and geometries. The methods will involve the use of a suite of models, all of which will include longitudinal deviatoric and basal-shear stresses, with some also taking account of lateral drag and internal vertical shear. The intellectual merit of the proposed activity includes an improved understanding of the processes and parameters involved in the formation of surface-slope reversals in ice-stream/ice-shelf systems, as well as insight into the stability of subglacial lakes formed as a consequence of slope reversals. The broader impacts resulting from this activity include the provision of tools to study the dynamics of ice-stream/ice-shelf systems, an improved understanding of the physics behind outburst floods, and insights into the coupling of ice streams with their subglacial water systems. The research will support the studies of a beginning postdoctoral researcher. Results of the research will be incorporated into courses and public outreach serving anywhere from hundreds to thousands of people per year.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "LABORATORY", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Alley, Richard; Dupont, Todd K.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Modeling the Dynamics of Surface-slope Reversals and their Role in the Formation and Stability of Subglacial Lakes", "uid": "p0000665", "west": null}, {"awards": "0636818 Stone, John", "bounds_geometry": "POLYGON((-157 -85,-156 -85,-155 -85,-154 -85,-153 -85,-152 -85,-151 -85,-150 -85,-149 -85,-148 -85,-147 -85,-147 -85.3,-147 -85.6,-147 -85.9,-147 -86.2,-147 -86.5,-147 -86.8,-147 -87.1,-147 -87.4,-147 -87.7,-147 -88,-148 -88,-149 -88,-150 -88,-151 -88,-152 -88,-153 -88,-154 -88,-155 -88,-156 -88,-157 -88,-157 -87.7,-157 -87.4,-157 -87.1,-157 -86.8,-157 -86.5,-157 -86.2,-157 -85.9,-157 -85.6,-157 -85.3,-157 -85))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 05 Aug 2011 00:00:00 GMT", "description": "Hall/0636687\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to investigate late Pleistocene and Holocene changes in Scott Glacier, a key outlet glacier that flows directly into the Ross Sea just west of the present-day West Antarctic Ice Sheet (WAIS) grounding line. The overarching goals are to understand changes in WAIS configuration in the Ross Sea sector at and since the last glacial maximum (LGM) and to determine whether Holocene retreat observed in the Ross Embayment has ended or if it is still ongoing. To address these goals, moraine and drift sequences associated with Scott Glacier will be mapped and dated and ice thickness, surface velocity and surface mass balance will be measured to constrain an ice-flow model of the glacier. This model will be used to help interpret the dated geologic sequences. The intellectual merit of the project relates to gaining a better understanding of the West Antarctic Ice Sheet and how changing activity of fast-flowing outlet glaciers and ice streams exerts strong control on the mass balance of the ice sheet. Previous work suggests that grounding-line retreat in the Ross Sea continued into the late Holocene and left open the possibility of ongoing deglaciation as part of a long-term trend. Results from Reedy Glacier, an outlet glacier just behind the grounding line, suggest that retreat may have slowed substantially over the past 2000 years and perhaps even stopped. By coupling the work on Scott Glacier with recent data from Reedy Glacier, the grounding-line position will be bracketed and it should be possible to establish whether the retreat has truly ended or if it is ongoing. The broader impacts of the work relate to the societal relevance of an improved understanding of the West Antarctic ice sheet to establish how it will respond to current and possible future environmental changes. The work addresses this key goal of the West Antarctic Ice Sheet Initiative, as well as the International Polar Year focus on ice sheet history and dynamics. The work will develop future scientists through the education and training of one undergraduate and two Ph.D. students, interaction with K-12 students through classroom visits, web-based \u0027expedition\u0027 journals, letters from the field, and discussions with teachers. Results from this project will be posted with previous exposure dating results from Antarctica, on the University of Washington Cosmogenic Nuclide Lab website, which also provides information about chemical procedures and calculation methods to other scientists working with cosmogenic nuclides.", "east": -147.0, "geometry": "POINT(-152 -86.5)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": -85.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Stone, John; Conway, Howard", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -88.0, "title": "Collaborative Research:Grounding-line Retreat in the Southern Ross Sea - Constraints from Scott Glacier", "uid": "p0000149", "west": -157.0}, {"awards": "0636719 Joughin, Ian; 0636970 Tulaczyk, Slawek", "bounds_geometry": null, "dataset_titles": "Antarctic Active Subglacial Lake Inventory from ICESat Altimetry", "datasets": [{"dataset_uid": "601439", "doi": "10.15784/601439", "keywords": "Altimetry; Antarctica; Cryosphere; Glaciers/Ice Sheet; Glaciology; ICESat; Laser Altimetry; Subglacial lakes", "people": "Joughin, Ian; Tulaczyk, Slawek; Fricker, Helen; Smith, Ben", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Active Subglacial Lake Inventory from ICESat Altimetry", "url": "https://www.usap-dc.org/view/dataset/601439"}], "date_created": "Wed, 27 Jul 2011 00:00:00 GMT", "description": "Tulaczyk/0636970\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to study elevation change anomalies (henceforth ECAs), which are oval-shaped, 5-to-10 km areas observed in remote sensing images in several locations within the Ross Sea sector of the West Antarctic Ice Sheet (WAIS). Within these anomalies, surface elevation changes at rates of up to ~1 to ~2 cm per day, significantly faster than in surrounding regions. These anomalies are thought to result from filling and draining of multi-kilometer-scale subglacial water pockets. The intellectual merit of this project is that these ECA\u0027s represent an unprecedented window into the elusive world of water drainage dynamics beneath the modern Antarctic ice sheet. Although subglacial water fluxes are small compared to normal terrestrial conditions, they play an important role in controlling fast ice streaming and, potentially, stability of the ice sheet. The dearth of observational constraints on sub-ice sheet water dynamics represents one of the most important limitations on progress in quantitative modeling of ice streams and ice sheets. Such models are necessary to assess future ice sheet mass balance and to reconstruct the response of ice sheets to past climate changes. The dynamic sub-ice sheet water transport indicated by the ECAs may have also implications for studies of subglacial lakes and other subglacial environments, which may harbor life adapted to such extreme conditions. The broader impacts of this project are that it will provide advanced training opportunities to one postdoctoral fellow (UW), two female doctoral students (UCSC), who will enhance diversity in polar sciences, and at least three undergraduate students (UCSC). Project output will be relevant to broad scientific and societal interests, such as the future global sea level changes and the response of Polar Regions to climate changes. Douglas Fox, a freelance science journalist, is interested in joining the first field season to write feature articles to popular science magazines and promote the exposure of this project, and Antarctic Science in general, to mass media.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e GLAS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e GLAS", "is_usap_dc": false, "keywords": "ICESAT; Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Smith, Ben; Joughin, Ian; Tulaczyk, Slawek; SMITH, BENJAMIN", "platforms": "SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e ICE, CLOUD AND LAND ELEVATION SATELLITE (ICESAT) \u003e ICESAT; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Elevation Change Anomalies in West Antarctica and Dynamics of Subglacial Water Transport Beneath Ice Streams and their Tributaries", "uid": "p0000115", "west": null}, {"awards": "0538015 Hulbe, Christina; 0538120 Catania, Ginny", "bounds_geometry": "POLYGON((154.71 -82.78,154.79000000000002 -82.78,154.87 -82.78,154.95 -82.78,155.03 -82.78,155.11 -82.78,155.19 -82.78,155.26999999999998 -82.78,155.35 -82.78,155.43 -82.78,155.51 -82.78,155.51 -82.788,155.51 -82.796,155.51 -82.804,155.51 -82.812,155.51 -82.82,155.51 -82.828,155.51 -82.836,155.51 -82.844,155.51 -82.852,155.51 -82.86,155.43 -82.86,155.35 -82.86,155.26999999999998 -82.86,155.19 -82.86,155.11 -82.86,155.03 -82.86,154.95 -82.86,154.87 -82.86,154.79000000000002 -82.86,154.71 -82.86,154.71 -82.852,154.71 -82.844,154.71 -82.836,154.71 -82.828,154.71 -82.82,154.71 -82.812,154.71 -82.804,154.71 -82.796,154.71 -82.788,154.71 -82.78))", "dataset_titles": "Grounding Line Strain Grid Surveys, Kamb Ice Stream, Antarctica; Ice-Penetrating Radar Data Across Siple Coast Grounding Lines", "datasets": [{"dataset_uid": "609474", "doi": "10.7265/N5M043BH", "keywords": "Antarctica; Cryosphere; Glaciers/Ice Sheet; Grounding Line; Ground Penetrating Radar; Radar; Siple Coast", "people": "Hulbe, Christina; Catania, Ginny", "repository": "USAP-DC", "science_program": null, "title": "Ice-Penetrating Radar Data Across Siple Coast Grounding Lines", "url": "https://www.usap-dc.org/view/dataset/609474"}, {"dataset_uid": "609494", "doi": "10.7265/N5Z899C6", "keywords": "Antarctica; Cryosphere; Geodesy; Geology/Geophysics - Other; Glaciers/Ice Sheet; Glaciology; GPS; Grounding Line; Kamb Ice Stream; Strain", "people": "Hulbe, Christina", "repository": "USAP-DC", "science_program": null, "title": "Grounding Line Strain Grid Surveys, Kamb Ice Stream, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609494"}], "date_created": "Sat, 02 Jul 2011 00:00:00 GMT", "description": "0538120\u003cbr/\u003eCatania\u003cbr/\u003eThis award supports a project to identify and map ice surface and internal features that chronicle the sequence of events leading to the shut-down of Kamb ice stream. In particular, the project will study past grounding line migration and the relationship between that process and ice stream shutdown. The intellectual merits of the project include the fact that an understanding of such processes has important implications for our ability to accurately predict mass balance changes in this region. Currently, one of the five major West Antarctic ice streams, Kamb, is quiescent, and another, Whillans, is slowing in its downstream reaches. The Kamb shutdown appears to have begun at its downstream end but beyond that simple observation, it is not possible, yet, to draw meaningful comparisons between the two adjacent streams. We do not know if current events on Whillans Ice Stream are similar to what transpired during the Kamb shut-down. The work proposed here intends to bridge that gap. It is expected that this effort will yield useful insights into the influence of grounding line dynamics on ice stream flow. The work will involve a combination of field investigations using radio-echo sounding and GPS combined with computational efforts involving the interpretation of ice-surface features such as relict flow traces and crevasses. The broader impacts of the project will be in addressing a global environmental problem with critical societal implications, training the next generation of scientists and engineers to serve the nation, and encouraging women to pursue scientific or engineering careers. Participants from both institutions are involved in a range of public outreach activities.", "east": 155.51, "geometry": "POINT(155.11 -82.82)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": true, "keywords": "Not provided; Ice Sheet Elevation; MODELS; Ice Sheet Thickness; West Antarctic Ice Sheet; Kamb Ice Stream; Antarctic Ice Sheet; ice stream motion; Ice Sheet; Antarctica; Siple Dome; Grounding Line; FIELD INVESTIGATION; GPS; FIELD SURVEYS; West Antarctica; Ice Stream; West Antarctic ice stream; Radar", "locations": "Antarctica; Kamb Ice Stream; Antarctic Ice Sheet; West Antarctica; West Antarctic Ice Sheet; Siple Dome", "north": -82.78, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Hulbe, Christina; Catania, Ginny", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e MODELS \u003e MODELS; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.86, "title": "Collaborative Research: Grounding Line Forensics: The History of Grounding Line Retreat in the Kamb Ice Stream Outlet Region", "uid": "p0000019", "west": 154.71}, {"awards": "0424589 Gogineni, S. Prasad", "bounds_geometry": "POLYGON((-137 -74,-132.1 -74,-127.2 -74,-122.3 -74,-117.4 -74,-112.5 -74,-107.6 -74,-102.7 -74,-97.8 -74,-92.9 -74,-88 -74,-88 -74.65,-88 -75.3,-88 -75.95,-88 -76.6,-88 -77.25,-88 -77.9,-88 -78.55,-88 -79.2,-88 -79.85,-88 -80.5,-92.9 -80.5,-97.8 -80.5,-102.7 -80.5,-107.6 -80.5,-112.5 -80.5,-117.4 -80.5,-122.3 -80.5,-127.2 -80.5,-132.1 -80.5,-137 -80.5,-137 -79.85,-137 -79.2,-137 -78.55,-137 -77.9,-137 -77.25,-137 -76.6,-137 -75.95,-137 -75.3,-137 -74.65,-137 -74))", "dataset_titles": "Airborne radar profiles of the Whillans, Bindschadler, and Kamb Ice Streams; Archive of data; Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau; Ku-band Radar Echograms; Radar Depth Sounder Echograms and Ice Thickness; Snow Radar Echograms", "datasets": [{"dataset_uid": "600384", "doi": "10.15784/600384", "keywords": "Airborne Radar; Antarctica; Basler; Cryosphere; Glaciers/Ice Sheet; Kamb Ice Stream; Radar; Siple Coast; Whillans Ice Stream", "people": "Hale, Richard; Paden, John", "repository": "USAP-DC", "science_program": null, "title": "Airborne radar profiles of the Whillans, Bindschadler, and Kamb Ice Streams", "url": "https://www.usap-dc.org/view/dataset/600384"}, {"dataset_uid": "601411", "doi": "10.15784/601411", "keywords": "Antarctica; Cryosphere; East Antarctic Plateau; Glaciers/Ice Sheet; Glaciology; ICECAP; Ice Penetrating Radar; Ice Penetrating Radar Data; Internal Reflecting Horizons", "people": "Nitsche, Frank O.; Cavitte, Marie G. P; Young, Duncan A.; Mulvaney, Robert; Ritz, Catherine; Greenbaum, Jamin; Ng, Gregory; Kempf, Scott D.; Quartini, Enrica; Muldoon, Gail R.; Paden, John; Frezzotti, Massimo; Roberts, Jason; Tozer, Carly; Schroeder, Dustin; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau", "url": "https://www.usap-dc.org/view/dataset/601411"}, {"dataset_uid": "601049", "doi": "10.15784/601049", "keywords": "Airborne Radar; Antarctica; Cryosphere; Glaciers/Ice Sheet; Glaciology; Navigation; Radar; Snow", "people": "Li, Jilu; Allen, Chris; Gogineni, Prasad; Paden, John; Rodriguez, Fernando; Leuschen, Carl", "repository": "USAP-DC", "science_program": null, "title": "Snow Radar Echograms", "url": "https://www.usap-dc.org/view/dataset/601049"}, {"dataset_uid": "002497", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Archive of data", "url": "https://www.cresis.ku.edu/data/accumulation"}, {"dataset_uid": "601047", "doi": "10.15784/601047", "keywords": "Airborne Radar; Antarctica; Cryosphere; Glaciers/Ice Sheet; Glaciology; MCoRDS; Navigation; Radar", "people": "Rodriguez, Fernando; Li, Jilu; Allen, Chris; Gogineni, Prasad; Leuschen, Carl; Paden, John", "repository": "USAP-DC", "science_program": null, "title": "Radar Depth Sounder Echograms and Ice Thickness", "url": "https://www.usap-dc.org/view/dataset/601047"}, {"dataset_uid": "601048", "doi": "10.15784/601048", "keywords": "Airborne Radar; Antarctica; Cryosphere; Glaciers/Ice Sheet; Glaciology; Ku-Band; Navigation; Radar", "people": "Gogineni, Prasad; Rodriguez, Fernando; Li, Jilu; Leuschen, Carl; Allen, Chris; Paden, John", "repository": "USAP-DC", "science_program": null, "title": "Ku-band Radar Echograms", "url": "https://www.usap-dc.org/view/dataset/601048"}], "date_created": "Wed, 01 Jun 2011 00:00:00 GMT", "description": "This award is for the continuation of the Center for Remote Sensing of Ice Sheets (CReSIS), an NSF Science and Technology Center (STC) established in June 2005 to study present and probable future contributions of the Greenland and Antarctic ice sheets to sea-level rise. The Center?s vision is to understand and predict the role of polar ice sheets in sea level change. In particular, the Center?s mission is to develop technologies, to conduct field investigations, to compile data to understand why many outlet glaciers and ice streams are changing rapidly, and to develop models that explain and predict ice sheet response to climate change. The Center?s mission is also to educate and train a diverse population of graduate and undergraduate students in Center-related disciplines and to encourage K-12 students to pursue careers in science, technology, engineering and mathematics (STEM-fields). The long-term goals are to perform a four-dimensional characterization (space and time) of rapidly changing ice-sheet regions, develop diagnostic and predictive ice-sheet models, and contribute to future assessments of sea level change in a warming climate. In the first five years, significant progress was made in developing, testing and optimizing innovative sensors and platforms and completing a major aircraft campaign, which included sounding the channel under Jakobshavn Isbr\u00e6. In the second five years, research will focus on the interpretation of integrated data from a suite of sensors to understand the physical processes causing changes and the subsequent development and validation of models. Information about CReSIS can be found at http://www.cresis.ku.edu.\u003cbr/\u003e\u003cbr/\u003eThe intellectual merits of the STC are the multidisciplinary research it enables its faculty, staff and students to pursue, as well as the broad education and training opportunities it provides to students at all levels. During the first phase, the Center provided scientists and engineers with a collaborative research environment and the opportunity to interact, enabling the development of high-sensitivity radars integrated with several airborne platforms and innovative seismic instruments. Also, the Center successfully collected data on ice thickness and bed conditions, key variables in the study of ice dynamics and the development of models, for three major fast-flowing glaciers in Greenland. During the second phase, the Center will collect additional data over targeted sites in areas undergoing rapid changes; process, analyze and interpret collected data; and develop advanced process-oriented and ice sheet models to predict future behavior. The Center will continue to provide a rich environment for multidisciplinary education and mentoring for undergraduate students, graduate students, and postdoctoral fellows, as well as for conducting K-12 education and public outreach. The broader impacts of the Center stem from addressing a global environmental problem with critical societal implications, providing a forum for citizens and policymakers to become informed about climate change issues, training the next generation of scientists and engineers to serve the nation, encouraging underrepresented students to pursue careers in STEM-related fields, and transferring new technologies to industry. Students involved in the Center find an intellectually stimulating atmosphere where collaboration between disciplines is the norm and exposure to a wide variety of methodologies and scientific issues enriches their educational experience. The next generation of researchers should reflect the diversity of our society; the Center will therefore continue its work with ECSU to conduct outreach and educational programs that attract minority students to careers in science and technology. The Center has also established a new partnership with ADMI that supports faculty and student exchanges at the national level and provides expanded opportunities for students and faculty to be involved in Center-related research and education activities. These, and other collaborations, will provide broader opportunities to encourage underrepresented students to pursue STEM careers. \u003cbr/\u003e\u003cbr/\u003eAs lead institution, The University of Kansas (KU) provides overall direction and management, as well as expertise in radar and remote sensing, Uninhabited Aerial Vehicles (UAVs), and modeling and interpretation of data. Five partner institutions and a DOE laboratory play critical roles in the STC. The Pennsylvania State University (PSU) continues to participate in technology development for seismic measurements, field activities, and modeling. The Center of Excellence in Remote Sensing, Education and Research (CERSER) at Elizabeth City State University (ECSU) contributes its expertise to analyzing satellite data and generating high-level data products. ECSU also brings to the Center their extensive experience in mentoring and educating traditionally under-represented students. ADMI, the Association of Computer and Information Science/Engineering Departments at Minority Institutions, expands the program?s reach to underrepresented groups at the national level. Indiana University (IU) provides world-class expertise in CI and high-performance computing to address challenges in data management, processing, distribution and archival, as well as high-performance modeling requirements. The University of Washington (UW) provides expertise in satellite observations of ice sheets and process-oriented interpretation and model development. Los Alamos National Laboratory (LANL) contributes in the area of ice sheet modeling. All partner institutions are actively involved in the analysis and interpretation of observational and numerical data sets.", "east": -88.0, "geometry": "POINT(-112.5 -77.25)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": true, "keywords": "Remote Sensing; Not provided; Pine Island; velocity; DHC-6; Antarctic; Thwaites Region; Antarctica; ice sheets; Mass Balance; Accumulation; InSAR", "locations": "Antarctica; Antarctic", "north": -74.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Braaten, David; Joughin, Ian; Steig, Eric J.; Das, Sarah; Paden, John; Gogineni, Prasad", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6; Not provided", "repo": "USAP-DC", "repositories": "Project website; USAP-DC", "science_programs": null, "south": -80.5, "title": "Center for Remote Sensing of Ice Sheets (CReSIS)", "uid": "p0000102", "west": -137.0}, {"awards": "9814692 Kellogg, Thomas", "bounds_geometry": "POLYGON((-179.99342 -58.74225,-143.994734 -58.74225,-107.996048 -58.74225,-71.997362 -58.74225,-35.998676 -58.74225,0.000010000000003 -58.74225,35.998696 -58.74225,71.997382 -58.74225,107.996068 -58.74225,143.994754 -58.74225,179.99344 -58.74225,179.99344 -60.716231,179.99344 -62.690212,179.99344 -64.664193,179.99344 -66.638174,179.99344 -68.612155,179.99344 -70.586136,179.99344 -72.560117,179.99344 -74.534098,179.99344 -76.508079,179.99344 -78.48206,143.994754 -78.48206,107.996068 -78.48206,71.997382 -78.48206,35.998696 -78.48206,0.000010000000003 -78.48206,-35.998676 -78.48206,-71.997362 -78.48206,-107.996048 -78.48206,-143.994734 -78.48206,-179.99342 -78.48206,-179.99342 -76.508079,-179.99342 -74.534098,-179.99342 -72.560117,-179.99342 -70.586136,-179.99342 -68.612155,-179.99342 -66.638174,-179.99342 -64.664193,-179.99342 -62.690212,-179.99342 -60.716231,-179.99342 -58.74225))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001992", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0001"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a marine geological investigation of the Amundsen Sea region toward a better understanding of the deglaciation history of the West Antarctic Ice Sheet (WAIS). The WAIS may be inherently unstable because it is the last marine-based ice sheet in the world. Unlike other embayments in West Antarctica, major ice streams draining into the Amundsen Sea from the interior of the WAIS lack buttressing ice shelves. Mass balance data for the distal portions of these ice streams (Pine Island and Thwaites glaciers) appear to be in balance or may be becoming negative. Because both ice streams have beds that slope downward toward the center of the ice sheet, grounding-line recession resulting from either continued thinning or sea-level rise could trigger irreversible grounding-line retreat, leading to ice-sheet disintegration and consequent global sea-level rise. The limited marine geological and geophysical data available from the Amundsen Sea suggest that grounded ice or an ice shelf occupied the inner Amundsen Sea embayment until perhaps as recently as 1000 to 2000 years ago, and this ice may have retreated rapidly in historic time.\u003cbr/\u003e\u003cbr/\u003eThis project, a study of the marine geology and geophysics of the Amundsen Sea continental shelf from 100 degrees W to 130 degrees W, is designed to address the Amundsen Sea part of WAIS Science Plan Priority Goal H2: \"What is the deglaciation history in the eastern Ross, the Bellingshausen and Amundsen Seas?\" This project will examine bathymetric data of the Amundsen Sea continental shelf to determine the positions of former ice-steam channels, and to aid in choosing sites for sediment coring. Single-channel seismic reflection studies will be conducted in order to determine sediment-thickness patterns, to aid in choice of coring sites, and to locate and identify morphologic features indicative of former grounded ice (e.g., moraines, scours, flutes, striations, till wedges and deltas, etc.). Coring will be concentrated along former ice flow-lines. Core samples will be analyzed in the laboratory for sedimentology, to determine whether of not basal tills are present (indicating former grounded ice and its former extent), and for calcareous and siliceous microfossils. The chronology of grounding-line and ice-shelf retreat from a presumed Last Glacial Maximum position near the shelf break will be established using accelerator mass spectrometry (AMS) carbon-14 dates of acid-insoluble particulate organic carbon.\u003cbr/\u003e\u003cbr/\u003eThis project will share ship time in the Amundsen Sea with a physical oceanographic project. Marine geologic data and samples collected will be integrated with findings of other investigators toward developing a comprehensive interpretation of the history of the WAIS.", "east": 179.99344, "geometry": "POINT(0.000010000000003 -68.612155)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -58.74225, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kellogg, Thomas; Jacobs, Stanley", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -78.48206, "title": "Glacial History of the Amundsen Sea Shelf", "uid": "p0000620", "west": -179.99342}, {"awards": "9527876 Anderson, John", "bounds_geometry": "POLYGON((-179.9996 -70.29238,-143.99968 -70.29238,-107.99976 -70.29238,-71.99984 -70.29238,-35.99992 -70.29238,0 -70.29238,35.99992 -70.29238,71.99984 -70.29238,107.99976 -70.29238,143.99968 -70.29238,179.9996 -70.29238,179.9996 -71.048723,179.9996 -71.805066,179.9996 -72.561409,179.9996 -73.317752,179.9996 -74.074095,179.9996 -74.830438,179.9996 -75.586781,179.9996 -76.343124,179.9996 -77.099467,179.9996 -77.85581,143.99968 -77.85581,107.99976 -77.85581,71.99984 -77.85581,35.99992 -77.85581,0 -77.85581,-35.99992 -77.85581,-71.99984 -77.85581,-107.99976 -77.85581,-143.99968 -77.85581,-179.9996 -77.85581,-179.9996 -77.099467,-179.9996 -76.343124,-179.9996 -75.586781,-179.9996 -74.830438,-179.9996 -74.074095,-179.9996 -73.317752,-179.9996 -72.561409,-179.9996 -71.805066,-179.9996 -71.048723,-179.9996 -70.29238))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002125", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9801"}, {"dataset_uid": "002067", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9902"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Anderson OPP 9527876 Abstract This award supports continuation of a long term investigation of the continental shelf sediments that is aimed at examining the configuration of the West Antarctic Ice Sheet during the last glacial maximum, the events and mechanisms involved in its retreat, and the timing of retreat. The project involves: 1) characterizing variations in the ice sheet grounding zone in a latitudinal transect extending from Ross Sea to Bransfield Basin, 2) reconstructing conditions at the ice/bed interface prior to and after ice sheet retreat, and 3) radiometrically dating ice sheet retreat along this transect. Detailed sea floor imagery (multibeam and deep-tow side-scan sonar), high resolution seismic reflection profiles, and sediment cores will be used to map and characterize prior grounding zones. Of particular concern are features that indicate the amount and organization (channelization) of basal meltwater and the extent of bed deformation that occurred in different ice streams. The timing of ice sheet retreat provides information about the link between Northern and Southern hemisphere ice expansion, and the role of eustasy in ice sheet decoupling. This research should lead to better predictive models to determine which ice streams are most unstable and likely, therefore, to serve as Oweak linksO in the long term behavior of West Antarctic Ice Sheet.", "east": 179.9996, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -70.29238, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.85581, "title": "Mechanism and Timing of West Antarctic Ice Sheet Retreat at the End of the Last Glacial Maximum", "uid": "p0000624", "west": -179.9996}, {"awards": "0440670 Hulbe, Christina; 0440636 Fahnestock, Mark", "bounds_geometry": "POLYGON((-180 -70,-175 -70,-170 -70,-165 -70,-160 -70,-155 -70,-150 -70,-145 -70,-140 -70,-135 -70,-130 -70,-130 -71.6,-130 -73.2,-130 -74.8,-130 -76.4,-130 -78,-130 -79.6,-130 -81.2,-130 -82.8,-130 -84.4,-130 -86,-135 -86,-140 -86,-145 -86,-150 -86,-155 -86,-160 -86,-165 -86,-170 -86,-175 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -84.4,180 -82.8,180 -81.2,180 -79.6,180 -78,180 -76.4,180 -74.8,180 -73.2,180 -71.6,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,-180 -70))", "dataset_titles": "MOA-derived Structural Feature Map of the Ronne Ice Shelf; MOA-derived Structural Feature Map of the Ross Ice Shelf; Using Fracture Patterns and Ice Thickness to Study the History and Dynamics of Grounding Line Migration and Shutdown of Kamb and Whillans Ice Streams", "datasets": [{"dataset_uid": "609497", "doi": "10.7265/N5PR7SXR", "keywords": "Antarctica; Cryosphere; Glaciers/Ice Sheet; Glaciology; MOA; MODIS; Ronne Ice Shelf", "people": "Ledoux, Christine; Hulbe, Christina", "repository": "USAP-DC", "science_program": null, "title": "MOA-derived Structural Feature Map of the Ronne Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/609497"}, {"dataset_uid": "601432", "doi": "10.15784/601432", "keywords": "Antarctica; Cryosphere", "people": "Ledoux, Christine; Forbes, Martin; Hulbe, Christina", "repository": "USAP-DC", "science_program": null, "title": "MOA-derived Structural Feature Map of the Ross Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/601432"}, {"dataset_uid": "600024", "doi": "", "keywords": null, "people": "Fahnestock, Mark", "repository": "USAP-DC", "science_program": null, "title": "Using Fracture Patterns and Ice Thickness to Study the History and Dynamics of Grounding Line Migration and Shutdown of Kamb and Whillans Ice Streams", "url": "https://www.usap-dc.org/view/dataset/600024"}], "date_created": "Thu, 25 Sep 2008 00:00:00 GMT", "description": "This award supports a three year project to develop the tools required to interpret complex patterns of flow features on the Ross Ice Shelf, which record the discharge history the ice streams flowing east off of the West Antarctic Ice Sheet. This work builds on previous research that used flow features visible in satellite image mosaics and numerical models of ice shelf flow to detect changes in grounding zone dynamics and redirection of ice stream outlets over hundreds of years. Recently observed changes on Whillans Ice Stream fit within this framework. The pattern of redirection is driven by the influence of rapid downstream thinning on the basal thermal gradient in the ice and associated \"sticky spot\" (ice rise) formation. In pursuing this work, the investigators recognized other records of discharge variation on the shelf that can be used to build a more complete history and understanding of ice-stream discharge variability. The intellectual merit of the proposed work lies in the fact that these records, including fracture patterns and spatial variation in ice thickness, when understood in the proper context, will yield quantitative information about the timing and dynamics of ice stream slowdowns, grounding line retreat, and the relative history of discharge between the ice streams. New tools will help further constrain this history. The laser altimeter on NASA\u0027s IceSAT has improved our knowledge of the surface elevation of Antarctic ice. IceSAT surface elevations provide a high-resolution map of ice-shelf thickness that, along with provenance maps from ice-shelf image mosaics, will be used to estimate the volumes of ice involved in past ice-stream discharge events (slowdowns, redirections, and so on). This project will develop new numerical models for fracture propagation; these will allow past variations in ice-shelf stress state to be investigated. Together, the dynamic and volume-flux histories will provide a powerful set of observations for understanding past variations in ice stream discharge and the underlying physical processes. The broader impacts of this project center on how it contributes to the ability to estimate West Antarctic contributions to global sea level rise and to answer outstanding questions about the causes of millennial and longer-scale evolution of ice streams. This work will provide a history of the most complex record of ice discharge known. In addition to the incorporation of this research into graduate student advising and normal teaching duties, the investigators are involved in other avenues of civic engagement and education. Outreach to high school students and the community at large is promoted on an annual basis by the investigators at both institutions. New outreach projects at Portland State University are developed with the assistance of researchers with expertise in student learning and achievement in science and mathematics. The collaborative research team includes two glaciologists with experience in the pairing of high resolution satellite imagery and a variety of ice-flow models and a geologist whose focus is the mechanics of rock deformation.", "east": -130.0, "geometry": "POINT(-155 -78)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e MODIS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e MODIS", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; Fracture Patterns; Ross Ice Shelf; West Antarctic Ice Sheet; satellite image mosaics; Not provided; Antarctica; fracture propagation; ice stream motion; ICESat; Numerical models; TERRA; flow features; Ice Sheet; LABORATORY; basal thermal gradient; West Antarctica; Ice Streams; SATELLITES; Ice Motion; Grounding Line; Whillans Ice Stream; Whillans Ice Streams; ice stream outlets; Ice Thickness; ice rise; Kamb Ice Stream; Antarctic Ice Sheet; Kamb Ice Streams; Grounding Line Migration; ICESAT; ice-stream discharge", "locations": "Kamb Ice Stream; Whillans Ice Stream; Antarctica; Ross Ice Shelf; West Antarctic Ice Sheet; Antarctic Ice Sheet; West Antarctica", "north": -70.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Hulbe, Christina; Ledoux, Christine; Fahnestock, Mark", "platforms": "Not provided; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e ICE, CLOUD AND LAND ELEVATION SATELLITE (ICESAT) \u003e ICESAT; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e TERRA; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.0, "title": "Collaborative Research: Using Fracture Patterns and Ice Thickness to Study the History and Dynamics of Grounding Line Migration and Shutdown of Kamb and Whillans Ice Streams", "uid": "p0000096", "west": 180.0}, {"awards": "9725882 Raymond, Charles", "bounds_geometry": "POLYGON((-141.6722 -80.1678,-141.34195 -80.1678,-141.0117 -80.1678,-140.68145 -80.1678,-140.3512 -80.1678,-140.02095 -80.1678,-139.6907 -80.1678,-139.36045 -80.1678,-139.0302 -80.1678,-138.69995 -80.1678,-138.3697 -80.1678,-138.3697 -80.4863,-138.3697 -80.8048,-138.3697 -81.1233,-138.3697 -81.4418,-138.3697 -81.7603,-138.3697 -82.0788,-138.3697 -82.3973,-138.3697 -82.7158,-138.3697 -83.0343,-138.3697 -83.3528,-138.69995 -83.3528,-139.0302 -83.3528,-139.36045 -83.3528,-139.6907 -83.3528,-140.02095 -83.3528,-140.3512 -83.3528,-140.68145 -83.3528,-141.0117 -83.3528,-141.34195 -83.3528,-141.6722 -83.3528,-141.6722 -83.0343,-141.6722 -82.7158,-141.6722 -82.3973,-141.6722 -82.0788,-141.6722 -81.7603,-141.6722 -81.4418,-141.6722 -81.1233,-141.6722 -80.8048,-141.6722 -80.4863,-141.6722 -80.1678))", "dataset_titles": "Radar Investigations of Antarctic Ice Stream Margins, Siple Dome, 1998", "datasets": [{"dataset_uid": "609303", "doi": "10.7265/N52B8VZP", "keywords": "Antarctica; Cryosphere; Glaciers/Ice Sheet; Glaciology; Ground Penetrating Radar; Radar; Siple Dome", "people": "Raymond, Charles; Nereson, Nadine A.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Radar Investigations of Antarctic Ice Stream Margins, Siple Dome, 1998", "url": "https://www.usap-dc.org/view/dataset/609303"}], "date_created": "Fri, 06 Jul 2007 00:00:00 GMT", "description": "9725882 Raymond This award is for support for a program of surface-based radio echo sounding to examine the geometry of the internal layering and the presence or absence of thawed zones outside the margins of active Ice Streams B and E and across the flow band feeding Ice Stream D. Melting in the marginal shear zone and/or on the bed outside an ice stream relates to the amount of support of the ice stream from the sides compared to the bed and the conditions that limit expansion of its width. Radar observations will be extended over the crest of adjacent inter-ice-stream ridges (B/C and D/E) and areas next to the flow band in the onset of D. The purpose is to examine internal layering indicative of the histories of these areas adjacent to ice streams and to determine whether ice streams have expanded into these presently stable areas in the past. These goals concerning the physical controls and history of ice stream width relate to how the discharge of ice streams has changed in the past and could change in the future to affect sea level.", "east": -138.3697, "geometry": "POINT(-140.02095 -81.7603)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS", "is_usap_dc": true, "keywords": "Ice Stream; Antarctica; Bed Geometry; GROUND-BASED OBSERVATIONS; Internal layering; MacAyeal Ice Stream; Internal Layer Geometry; Siple Dome; Shabtaie Ridge; Not provided; Engelhardt Ridge; Ice Stream Margins; Radar; Whillans Ice Stream; GPS; Bed Reflectivity; Surface Geometry", "locations": "Antarctica; Engelhardt Ridge; MacAyeal Ice Stream; Shabtaie Ridge; Siple Dome; Whillans Ice Stream", "north": -80.1678, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Raymond, Charles; Nereson, Nadine A.", "platforms": "Not provided; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -83.3528, "title": "Internal Stratigraphy and Basal Conditions at the Margins ofActive Ice Streams of the Siple Coast, Antarctica", "uid": "p0000626", "west": -141.6722}, {"awards": "0229629 Anandakrishnan, Sridhar", "bounds_geometry": "POLYGON((-165 -82,-161.5 -82,-158 -82,-154.5 -82,-151 -82,-147.5 -82,-144 -82,-140.5 -82,-137 -82,-133.5 -82,-130 -82,-130 -82.2,-130 -82.4,-130 -82.6,-130 -82.8,-130 -83,-130 -83.2,-130 -83.4,-130 -83.6,-130 -83.8,-130 -84,-133.5 -84,-137 -84,-140.5 -84,-144 -84,-147.5 -84,-151 -84,-154.5 -84,-158 -84,-161.5 -84,-165 -84,-165 -83.8,-165 -83.6,-165 -83.4,-165 -83.2,-165 -83,-165 -82.8,-165 -82.6,-165 -82.4,-165 -82.2,-165 -82))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 14 Jun 2007 00:00:00 GMT", "description": "This award supports a project to investigate the new-found, startling sensitivity of two major West Antarctic ice streams to tidal oscillations to learn the extent and character of the effect and its ramifications for future ice-stream behavior. Ice streams D, C and Whillans (B) all show strong but distinct tidal signals. The ice plain of Whillans is usually stopped outright, forward motion being limited to two brief periods each day, at high tide and on the falling tide. Motion events propagate across the ice plain at seismic wave velocities. Near the mouth of D, tides cause a diurnal variation of about 50% in ice-stream speed that propagates upglacier more slowly than on Whillans, and seismic data show that C experiences even slower upglacier propagation of tidal signals. Tidal influences are observed more than 100 km upglacier on C, more than 40 km upglacier on D, and may be responsible for fluctuations in basal water pressure reported 400 km upstream on Whillans, nearly the full length of the ice stream. During the first year, the spatial extent of this behavior will be measured on Whillans Ice Stream and ice stream D by five coordinated seismic and GPS instrument packages at 100-km spacing on each ice stream. These packages will be deployed by Twin Otter at sites selected by review of satellite imagery and will operate autonomously through a combination of solar and battery power for two lunar cycles to study the sensitivity of the ice stream motion to spring and neap tides. Additionally, existing data sets will be examined further for clues to the mechanisms involved, and preliminary models will be developed to reconcile the seemingly contrasting behaviors observed on the ice streams. The second and third field seasons will examine in greater detail the tidal behavior of Whillans (year 2) and D (year 3). Work will especially focus on detailed study of at least one source area for events on Whillans, assuming that source areas inferred from preliminary data remain active. Vertical motions have not yet been detected, but differential GPS will increase our detection sensitivity. Seismic instrumentation will greatly increase temporal resolution and the ability to measure the propagation speed and any spatial heterogeneity. Modeling will be refined as more is learned from the field experiments. The project should yield numerous broader impacts. The improved knowledge of ice-stream behavior from this study will contribute to assessment of the potential for rapid ice-sheet change affecting global sea level with societal consequences. Results will be disseminated through scientific publication and talks at professional meetings, as well as contacts with the press, university classes taught by the PIs, visits to schools and community groups, and other activities. Two graduate students will be educated through the project.", "east": -130.0, "geometry": "POINT(-147.5 -83)", "instruments": null, "is_usap_dc": false, "keywords": "Vertical motions; Tidal Motion; Ice Streams; Seismic; West Antarctic; ice stream motion; Modeling; Not provided; global sea level", "locations": null, "north": -82.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Anandakrishnan, Sridhar; Alley, Richard; Voigt, Donald E.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -84.0, "title": "Collaborative Research: Tidal Modulation of Ice Stream Flow", "uid": "p0000075", "west": -165.0}, {"awards": "0229490 Conway, Howard", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 30 Apr 2007 00:00:00 GMT", "description": "This award supports a project to improve understanding of post-glacial retreat and thinning of the Siple Coast region. Research has shown how age-depth relationships from ice cores can be extrapolated over wide areas by tracking continuous radar layers. By comparing radar-derived timescales with one from a model of ice- flow, glacial conditions over regional scales were inferred. High-resolution radar profiles have been collected across most of the inter-stream ridges in the Siple Coast region, and an age- depth relationship has been established from the Siple Dome ice core. Application of the techniques used by others is problematic because the ice streams that surround Siple Dome have disrupted the continuity of the internal layers. A specific goal of this project is to search for other less direct ways to match radar layers between unconnected profiles. The correspondence between radar reflections and measurements of electrical conductivity and volcanic sulfates along the Siple Dome core will be investigated. The strategy is to search for distinctive patterns in the echoes that will facilitate layer matching. Preliminary results are encouraging: at least four distinct echoes at Siple Dome can be matched to spikes in the conductivity profile and the signature of one (at 210m depth, which is ~1,800 yrs BP) closely resembles that of a layer at ~200m on Ridge BC. Matching layers (and hence timescales) across the ice streams will allow reconstruction of spatial patterns of past flow, thinning and accumulation rate in the Siple Coast region, which is needed to predict future possible changes of the West Antarctic Ice Sheet. Data necessary for the proposed work are already available; additional fieldwork in Antarctica is not required. The project will take two years to complete and will provide core education for a doctoral student in Earth and Space Sciences, with an emphasis on radioglaciology.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard; Sylvester, John; Winebrenner, Dale", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Investigation of the Glacial History of the Siple Coast Using Radar-Detected Internal Layers and the Ice Core from Siple Dome", "uid": "p0000723", "west": null}, {"awards": "0229292 Cressie, Noel", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 28 Feb 2007 00:00:00 GMT", "description": "Ice streams are believed to play a major role in determining the response of their parent ice sheet to climate change, and in determining global sea level by serving as regulators on the fresh water stored in the ice sheets. Ice streams are characterized by rapid, laterally confined flow which makes them uniquely identifiable within the body of the more slowly and more homogeneously flowing ice sheet. But while these characteristics enable the identification of ice streams, the processes which control ice-stream motion and evolution, and differences among ice streams in the polar regions, are only partially understood. Understanding the relative importance of lateral and basal drags, as well as the role of gradients in longitudinal stress, is essential for developing models for future evolution of the polar ice\u003cbr/\u003esheets. In this project, physical statistical models will be used to explore the processes that control ice-stream flow, and to compare these processes between seemingly different ice-stream systems. In particular, Whillans Ice Stream draining into the Ross Ice Shelf, will be compared with Recovery and RAMP glaciers draining into the Ronne-Filchner Ice Shelf, and the Northeast Ice Stream in Greenland. Geophysical models lie at the core of the approach, but are embellished by modeling various components of variability statistically. One important component comes from the uncertainty in observations on basal elevation, surface elevation, and surface velocity. In this project new observational data collected using remote-sensing techniques will be used. The various components, some of which are spatial, are combined hierarchically using Bayesian statistical methodology. All these components will be combined mathematically into a physical statistical model that yields the posterior distribution for basal, longitudinal, and lateral stress fields, and velocity fields, conditional on the data. Inference based on this distribution will be carried out via Markov chain Monte Carlo techniques, to obtain estimates of these unknown fields along with uncertainty measures associated with them.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Surface Elevation; Stress Field; Basal Elevation; DHC-6", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Cressie, Noel; Jezek, Kenneth; Berliner, L.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6", "repositories": null, "science_programs": null, "south": null, "title": "Dynamics of Ice Streams: A Physical Statistical Approach", "uid": "p0000711", "west": null}, {"awards": "9814816 Blankenship, Donald", "bounds_geometry": "POLYGON((-129 -80.5,-128.4 -80.5,-127.8 -80.5,-127.2 -80.5,-126.6 -80.5,-126 -80.5,-125.4 -80.5,-124.8 -80.5,-124.2 -80.5,-123.6 -80.5,-123 -80.5,-123 -80.55,-123 -80.6,-123 -80.65,-123 -80.7,-123 -80.75,-123 -80.8,-123 -80.85,-123 -80.9,-123 -80.95,-123 -81,-123.6 -81,-124.2 -81,-124.8 -81,-125.4 -81,-126 -81,-126.6 -81,-127.2 -81,-127.8 -81,-128.4 -81,-129 -81,-129 -80.95,-129 -80.9,-129 -80.85,-129 -80.8,-129 -80.75,-129 -80.7,-129 -80.65,-129 -80.6,-129 -80.55,-129 -80.5))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 13 Feb 2007 00:00:00 GMT", "description": "9814816\u003cbr/\u003eBlankenship\u003cbr/\u003e\u003cbr/\u003eThis award supports a four year project to develop of better understanding the ice streams of the Ross Sea Embayment (A--F) which drain the interior West Antarctic Ice Sheet (WAIS) by rapidly moving vast quantities of ice to the calving front of the Ross Ice Shelf. The project will examine the role of these ice streams as buffers between the interior ice and the floating ice shelves. The reasons for their fast flow, the factors controlling their current grounding-line-, margin-, and head-positions are crucial to any attempt at modeling the WAIS system and predicting the future of the ice sheet. For the Antarctic ice streams of the Siple Coast, the transition from no-sliding (or all internal deformation) to motion dominated by sliding is defined as the \"onset-region\". To fully understand (and adequately model) the WAIS, this onset region must be better understood. The lateral margins of the ice streams are also a transition that need better explanation. Hypotheses on controls of the location of the onset region range from the \"purely-glaciologic\" to the \"purely-geologic. Thus, to model the ice sheet accurately, the basal boundary conditions (roughness, wetness, till properties) and a good subglacial geologic map, showing the distribution, thickness, and properties of the sedimentary basins, are required. These parameters can be estimated from seismic, radar, and other geophysical methods. The transition region of ice stream D will be studied in detail with this coupled geophysical experiment. In addition, selected other locations on ice streams C \u0026 D will be made, to compare and contrast conditions with the main site on ice stream D. Site-selection for the main camp will be based on existing radar, GPS, and satellite data as well as input from the modeling community.", "east": -123.0, "geometry": "POINT(-126 -80.75)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": -80.5, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Blankenship, Donald D.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -81.0, "title": "Collaborative Research: Characterizing the Onset of Ice Stream Flow: A Ground Geophysical Field Program", "uid": "p0000603", "west": -129.0}, {"awards": "0086997 Truffer, Martin", "bounds_geometry": null, "dataset_titles": "Margin Migration Rates and Dynamics: Siple Coast Ice Streams", "datasets": [{"dataset_uid": "609263", "doi": "10.7265/N50K26HH", "keywords": "Antarctica; Cryosphere; Glaciers/Ice Sheet; Glaciology; Siple Coast", "people": "Echelmeyer, Keith A.; Truffer, Martin", "repository": "USAP-DC", "science_program": null, "title": "Margin Migration Rates and Dynamics: Siple Coast Ice Streams", "url": "https://www.usap-dc.org/view/dataset/609263"}], "date_created": "Thu, 17 Mar 2005 00:00:00 GMT", "description": "0086997\u003cbr/\u003eTruffer\u003cbr/\u003e\u003cbr/\u003eThis award supports a two year project to investigate the dynamics of the marginal zone of the Siple Coast ice streams using existing velocity and temperature profiles. The flow and stress fields will be modeled using finite element methods and a thermo-mechanical model will be used to investigate the coupling of the flow and temperature fields. Direct comparison of these models with the observed velocity profiles will lead to estimates of the structure of the margins and the softening of the marginal ice. The distribution of basal and marginal shear stress will be investigated, leading to an estimate of the relative roles of the bed and the margins in the overall force balance of the ice streams.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e SURVEYING TOOLS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e THEODOLITE", "is_usap_dc": true, "keywords": "NSIDC; GROUND-BASED OBSERVATIONS; Siple Dome; Ice Stream; Ice Motion; USAP-DC; AGDC; Ice Velocity", "locations": "Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Truffer, Martin; Echelmeyer, Keith A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Margin Migration Rates and Margin Dynamics of the Siple Coast Ice Streams", "uid": "p0000144", "west": null}, {"awards": "0087390 Grunow, Anne", "bounds_geometry": "POLYGON((-170 -79,-164 -79,-158 -79,-152 -79,-146 -79,-140 -79,-134 -79,-128 -79,-122 -79,-116 -79,-110 -79,-110 -79.5,-110 -80,-110 -80.5,-110 -81,-110 -81.5,-110 -82,-110 -82.5,-110 -83,-110 -83.5,-110 -84,-116 -84,-122 -84,-128 -84,-134 -84,-140 -84,-146 -84,-152 -84,-158 -84,-164 -84,-170 -84,-170 -83.5,-170 -83,-170 -82.5,-170 -82,-170 -81.5,-170 -81,-170 -80.5,-170 -80,-170 -79.5,-170 -79))", "dataset_titles": "Polar Rock Repository; Rock Magnetic Clast data are at this website", "datasets": [{"dataset_uid": "001970", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Rock Magnetic Clast data are at this website", "url": "http://bprc.osu.edu/"}, {"dataset_uid": "200243", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Polar Rock Repository", "url": "https://prr.osu.edu/"}], "date_created": "Mon, 23 Aug 2004 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research project between the University of California-Santa Cruz, the University of Texas-Austin, and the Ohio State University to investigate sediment samples recovered from the base of the West Antarctic Ice Sheet (WAIS). West Antarctica is a remote polar region but its dynamic ice sheet, complicated tectonic history, and the sedimentary record of Cenozoic glaciation make it of particular interest to glaciologists and geologists. Glaciologists are concerned with the possibility of significant near-future changes in mass balance of the WAIS that may contribute to the ongoing global sea level rise. Geologists are investigating in West Antarctica the fundamental process of continental extension and are constructing models of a polar marine depositional system using this region as the prime modern example. The subglacial part of West Antarctica has escaped direct geological investigations and all that is known about subglacial geology comes from geophysical remote sensing. Recent acquisitions of new, high-quality geophysical data have led to generation of several enticing models. For instance, subglacial presence of high-magnitude, short-wavelength magnetic anomalies has prompted the proposition that there may be voluminous (\u003e1 million cubic km), Late Cenozoic flood basalts beneath the ice sheet. Another important model suggests that the patterns of fast ice streaming (~100 meters/year) and slow ice motion (~1-10 meters/year) observed within the WAIS are controlled by subglacial distribution of sedimentary basins and resistant bedrock. These new geophysics-based models should be tested with direct observations because they are of such great importance to our understanding of the West Antarctic tectonic history and to our ability to predict the future behavior of the WAIS.\u003cbr/\u003e\u003cbr/\u003eThis research is designed as a pilot study to provide new geologic data, which may help to test the recent models inferred from geophysical observations. The new constraints on subglacial geology and on its interactions with the WAIS will be obtained through petrological and geochemical analyses of basal and subglacial sediments collected previously from seven localities. This investigation will take place in the context of testing the following three hypotheses: (A) the provenance of bedrock clasts in the glacial sediment samples is primarily from West Antarctica, (B) some clasts and muds from the West Antarctic subglacial sediments have been derived by erosion of the (inferred) subglacial Late Cenozoic flood basalts, and (C) the sediments underlying the West Antarctic ice streams were generated by glacial erosion of preglacial sedimentary basins but the sediments recovered from beneath the slow-moving parts of the WAIS were produced through erosion of resistant bedrock.\u003cbr/\u003e\u003cbr/\u003eThe individual hypotheses will be tested by collecting data on: (A) petrology, geochemistry and age of granitoid clasts, (B) petrology, geochemistry and age of basaltic clasts combined with mud geochemistry, and (C) clay mineralogy/paragenesis combined with textural maturity of sand and silt grains. The results of these tests will help evaluate the interesting possibility that subglacial geology may have first-order control on the patterns of fast ice flow within the WAIS. The new data will also help to determine whether the subglacial portion of West Antarctica is a Late Cenozoic flood basalt province. By combining glaciological and geological aspects of West Antarctic research the proposed collaborative project will add to the ongoing U.S. effort to create a multidisciplinary understanding of this polar region.", "east": -110.0, "geometry": "POINT(-140 -81.5)", "instruments": null, "is_usap_dc": false, "keywords": "Till; Clasts; subglacial; magnetic properties; rock magnetics; FIELD INVESTIGATION; West Antarctic Ice Sheet", "locations": "West Antarctic Ice Sheet", "north": -79.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Grunow, Anne; Vogel, Stefan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "PI website", "repositories": "PI website; PRR", "science_programs": null, "south": -84.0, "title": "Collaborative Research: Relationship Between Subglacial Geology and Glacial Processes in West Antarctica: Petrological and Geochemical Analyses of Subglacial and Basal Sediments", "uid": "p0000740", "west": -170.0}, {"awards": "8919147 Elliot, David", "bounds_geometry": null, "dataset_titles": "Ice Thickness and Surface Elevation, Southeastern Ross Embayment, West Antarctica", "datasets": [{"dataset_uid": "609099", "doi": "10.7265/N5WW7FKC", "keywords": "Antarctica; Bathymetry/Topography; Cryosphere; Glaciers/Ice Sheet; Glaciology; Ross Embayment; West Antarctica", "people": "Morse, David L.; Studinger, Michael S.; Brozena, J. M.; Behrendt, J. C.; Hodge, S. M.; Bell, Robin; Peters, M. E.; Kempf, Scott D.; Blankenship, Donald D.; Finn, C. A.", "repository": "USAP-DC", "science_program": null, "title": "Ice Thickness and Surface Elevation, Southeastern Ross Embayment, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609099"}], "date_created": "Wed, 17 Mar 2004 00:00:00 GMT", "description": "This award will support a combined airborne radar and aeromagnetic survey of two 220 x 330 km regions between the Transantarctica Mountains and Marie Byrd Land during the 1990-91 and 1991-92 field seasons. These efforts will address significant problems identified in the Ross Transect Zone (RTZ) by the National Academy of Sciences (1986) report \"Antarctic Solid Earth Sciences Research,\" and by the report to NSF \"A Plan for a United States Program to Study the Structure and Evolution of the Antarctic Lithosphere (SEAL).\" The surveys will be flown using the NSF/TUD radar and an areomagnetics system mounted in a light aircraft. The grid spacing will be 5 km and navigation will be by radiopositioning. In addition to maps of subglacial topography and magnetic intensity, attempts will be made to reconstruct the position of subglacial diffractors in three dimensions. This reconstruction should give new information about the distribution of escarpments and therefore the tectonic relationships within the region, especially when combined with the magnetic results. These experiments will be conducted by the Byrd Polar Research Center of the Ohio State University and the Water Resources and Geological Divisions of the U.S. Geological Survey.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": true, "keywords": "Subglacial Topography; DEMs Antarctica-project; Ice Streams; Airborne Laser Altimeters; Ross Embayment; West Antarctica; Surface Morphology; DEMs-project; SOAR \u003e Support Office for Aerogeophysical Research; Airborne Laser Altimetry; Aerogeophysics; Ice Sheet Thickness; Airborne Radar Sounding; Ice Thickness; West Antarctic Ice Sheet; Ice Surface Elevation; Casertz", "locations": "Ross Embayment; West Antarctica; West Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Elliot, David; Bell, Robin; Blankenship, Donald D.; Brozena, J. M.; Finn, C. A.; Hodge, S. M.; Kempf, Scott D.; Behrendt, J. C.; Morse, David L.; Peters, M. E.; Studinger, Michael S.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Corridor Aerogeophysics of the Southeastern Ross Transect Zone (CASERTZ), Antarctica", "uid": "p0000056", "west": null}, {"awards": "9420648 Waddington, Edwin", "bounds_geometry": null, "dataset_titles": "Siple Dome Ice Core Age-Depth Scales", "datasets": [{"dataset_uid": "609130", "doi": "10.7265/N5T151KD", "keywords": "Antarctica; Cryosphere; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Nereson, Nadine A.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Ice Core Age-Depth Scales", "url": "https://www.usap-dc.org/view/dataset/609130"}], "date_created": "Tue, 09 Sep 2003 00:00:00 GMT", "description": "This award is for support for a three year program to investigate the response of ice domes, such as Siple Dome in West Antarctica, to changing boundary conditions, for example as arising from fluctuations in thickness or position of bounding ice streams. A range of models will be used, from simple one-dimensional analytical models to coupled dynamic-thermodynamic flow models, to investigate the response of the ice dome to boundary forcing, and the record that boundary forcing can leave in the ice core record. Using radar, temperature, and ice core data from the currently funded field programs on Siple Dome, and ice flux and thickness values from the map view model as boundary conditions, a flow line across Siple Dome will be studied and possible ranges of time scales, the likely origin of ice near the bed, and the basal temperature conditions that exist now and existed in the past will be determined.The response of internal stratigraphy patterns to climate and dynamic forcing effects will be investigated and observed internal layers from ice cores will be used to infer the forcing history.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Ice Sheet; Snow; Not provided; Stratigraphy; Siple Coast; Antarctica; Ice Core; Siple Dome; Glaciology; Density; NSIDC; Siple; WAISCORES; shallow core; GROUND STATIONS; GROUND-BASED OBSERVATIONS", "locations": "Antarctica; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Nereson, Nadine A.; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Ice Modelling Study of Siple Dome: WAIS Ice Dynamics, WAISCORES Paleoclimate and Ice Stream/Ice Dome Interactions", "uid": "p0000058", "west": null}, {"awards": "0096302 Tulaczyk, Slawek", "bounds_geometry": "POLYGON((-180 -62.83,-144 -62.83,-108 -62.83,-72 -62.83,-36 -62.83,0 -62.83,36 -62.83,72 -62.83,108 -62.83,144 -62.83,180 -62.83,180 -65.547,180 -68.264,180 -70.981,180 -73.698,180 -76.415,180 -79.132,180 -81.849,180 -84.566,180 -87.283,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.283,-180 -84.566,-180 -81.849,-180 -79.132,-180 -76.415,-180 -73.698,-180 -70.981,-180 -68.264,-180 -65.547,-180 -62.83))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 06 May 2003 00:00:00 GMT", "description": "Not Available", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided; basal temperature gradient; till strength; centerline ice stream velocity; Surface Elevation; till void ratio", "locations": null, "north": -62.83, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "MacAyeal, Douglas; Tulaczyk, Slawek", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -90.0, "title": "Control of Ice-Till Interactions on Evolution and Stability of Ice Streams and Ice Sheets", "uid": "p0000743", "west": -180.0}, {"awards": "9318121 Anandakrishnan, Sridhar", "bounds_geometry": null, "dataset_titles": "Ice Velocity Data from Ice Stream C, West Antarctica", "datasets": [{"dataset_uid": "609106", "doi": "10.7265/N5CZ3539", "keywords": "Antarctica; Cryosphere; Geodesy; Geology/Geophysics - Other; Glaciers/Ice Sheet; Glaciology; GPS; WAIS", "people": "Anandakrishnan, Sridhar", "repository": "USAP-DC", "science_program": null, "title": "Ice Velocity Data from Ice Stream C, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609106"}], "date_created": "Sat, 01 Dec 2001 00:00:00 GMT", "description": "9318121 Anandakrishnan This award is for support for a three year project to test the hypothesis that a controlling parameter of fast ice-stream flow is the hydrologic state of discrete zones of high friction (\"sticky spots\") at the bed of the ice streams. Previous work has discovered an enormous difference in basal microearthquake activity between fast-flowing ice stream B and ice stream C, which stopped flowing within the last 200 years. It is hypothesized that the basal water system is lubricating the sticky spots under the fast ice stream and thus inhibiting microearthquake activity, and at the same time permitting fast ice flow. This experiment is intended to collect a continuous record of wide-bandwidth microearthquake data from a variety of sites, on the ice streams, in the transition zone, and on the inland ice. ***", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS", "is_usap_dc": true, "keywords": "Glaciology; Ice Streams; USAP-DC; ice velocities; Velocity Measurements; GROUND-BASED OBSERVATIONS; Global Positioning Systems; ice sheets; West Antarctic Ice Sheet; Ice Stream C Velocities; Antarctica", "locations": "Antarctica; West Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Anandakrishnan, Sridhar", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Microearthquake Monitoring of Ice Stream C, West Antarctica: A Sensor for Sticky Spots", "uid": "p0000161", "west": null}, {"awards": "9316338 Jacobel, Robert", "bounds_geometry": null, "dataset_titles": "Siple Dome Glaciology and Ice Stream History 1994, 1996", "datasets": [{"dataset_uid": "609085", "doi": "10.7265/N5Z31WJQ", "keywords": "Antarctica; Cryosphere; Geology/Geophysics - Other; Glaciers/Ice Sheet; Glaciology; Sample/Collection Description; Siple Dome; Siple Dome Ice Core", "people": "Jacobel, Robert", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Glaciology and Ice Stream History 1994, 1996", "url": "https://www.usap-dc.org/view/dataset/609085"}], "date_created": "Fri, 01 Jan 1999 00:00:00 GMT", "description": "9316338 Jacobel This award is for support for a program of glaciological studies of Siple Dome and its surroundings between Ice Streams C and D. The purpose of the work is to characterize the dynamic environment and ice stratigraphy to aid in the assessment of Siple Dome as a potential deep ice core site, and to determine whether the configuration of ice stream flow in the region was different in the past than now. The work involves measurements of the configuration and continuity of internal layers in the ice, using radar echo sounding and determination of velocity field, based on standard GPS surveying. The goals of the work are relevant to understanding the dynamics of the West Antarctic Ice Sheet (WAIS), its past history and its potential future behavior, including possible effects on global sea level. This work is a collaborative project between the University of Washington, the University of Colorado and St. Olaf College. ***", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": true, "keywords": "AGDC-project; Siple Dome; Antarctic; Glaciology; NSIDC; Radar; AGDC; Ice Streams; Jacobel; GROUND-BASED OBSERVATIONS", "locations": "Antarctic; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Jacobel, Robert", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Siple Dome Glaciology and Ice Stream History", "uid": "p0000190", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NSFGEO-NERC: Investigating the Direct Influence of Meltwater on Antarctic Ice Sheet Dynamics
|
2053169 |
2023-09-15 | Kingslake, Jonathan; Sole, Andrew; Livingstone, Stephen; Winter, Kate; Ely, Jeremy | No dataset link provided | When ice sheets and glaciers lose ice faster than it accumulates from snowfall, they shrink and contribute to sea-level rise. This has consequences for coastal communities around the globe by, for example, increasing the frequency of damaging storm surges. Sea-level rise is already underway and a major challenge for the geoscience community is improving predictions of how this will evolve. The Antarctic Ice Sheet is the largest potential contributor to sea-level rise and its future is highly uncertain. It loses ice through two main mechanisms: the formation of icebergs and melting at the base of floating ice shelves on its periphery. Ice flows under gravity towards the ocean and the rate of ice flow controls how fast ice sheets and glaciers shrink. In Greenland and Antarctica, ice flow is focused into outlet glaciers and ice streams, which flow much faster than surrounding areas. Moreover, parts of the Greenland Ice Sheet speed up and slow down substantially on hourly to seasonal time scales, particularly where meltwater from the surface reaches the base of the ice. Meltwater reaching the base changes ice flow by altering basal water pressure and consequently the friction exerted on the ice by the rock and sediment beneath. This phenomenon has been observed frequently in Greenland but not in Antarctica. Recent satellite observations suggest this phenomenon also occurs on outlet glaciers in the Antarctic Peninsula. Meltwater reaching the base of the Antarctic Ice Sheet is likely to become more common as air temperature and surface melting are predicted to increase around Antarctica this century. This project aims to confirm the recent satellite observations, establish a baseline against which to compare future changes, and improve understanding of the direct influence of meltwater on Antarctic Ice Sheet dynamics. This is a project jointly funded by the National Science Foundation?s Directorate for Geosciences (NSF/GEO) and the National Environment Research Council (NERC) of the United Kingdom (UK) via the NSF/GEO-NERC Lead Agency Agreement. This Agreement allows a single joint US/UK proposal to be submitted and peer-reviewed by the Agency whose investigator has the largest proportion of the budget. Upon successful joint determination of an award recommendation, each Agency funds the proportion of the budget that supports scientists at institutions in their respective countries. This project will include a field campaign on Flask Glacier, an Antarctic Peninsula outlet glacier, and a continent-wide remote sensing survey. These activities will allow the team to test three hypotheses related to the Antarctic Ice Sheet?s dynamic response to surface meltwater: (1) short-term changes in ice velocity indicated by satellite data result from surface meltwater reaching the bed, (2) this is widespread in Antarctica today, and (3) this results in a measurable increase in mean annual ice discharge. The project is a collaboration between US- and UK-based researchers and will be supported logistically by the British Antarctic Survey. The project aims to provide insights into both the drivers and implications of short-term changes in ice flow velocity caused by surface melting. For example, showing conclusively that meltwater directly influences Antarctic ice dynamics would have significant implications for understanding the response of Antarctica to atmospheric warming, as it did in Greenland when the phenomenon was first detected there twenty years ago. This work will also potentially influence other fields, as surface meltwater reaching the bed of the Antarctic Ice Sheet may affect ice rheology, subglacial hydrology, submarine melting, calving, ocean circulation, and ocean biogeochemistry. The project aims to have broader impacts on science and society by supporting early-career scientists, UK-US collaboration, education and outreach, and adoption of open data science approaches within the glaciological community. | None | None | false | false | |||||||
Collaborative Research: Stability and Dynamics of Antarctic Marine Outlet Glaciers
|
1543533 1543530 |
2022-10-19 | van der Veen, Cornelis; Stearns, Leigh; Paden, John | No dataset link provided | Van der Veen/1543530<br/><br/>The objective of this research is to gain better understanding of the West Antarctic ice flow in the transition region from grounded ice to floating ice shelves and investigate the conditions that can initiate and sustain major retreat of these glaciers. Several major Antarctic outlet glaciers and ice streams will be investigated using a suite of observational techniques and modeling tools. Glaciers include Thwaites Glacier, which has become a focal point in the discussion of West Antarctic retreat, Whillans Ice Stream as an example of the archetype ice stream, and Byrd Glacier, a major outlet glacier draining East Antarctica through the Transantarctic Mountains into the Ross Ice Shelf. This study will investigate whether the ongoing changes in these glaciers will lead to long-term mass loss (the onset of ice sheet collapse), or whether these glaciers will quickly stabilize with a new geometry. <br/><br/>To adequately incorporate the dynamic behavior of outlet glaciers and ice streams requires inclusion of the relevant physical processes, and the development of regional models that employ a numerical grid with a horizontal grid spacing sufficiently refined to capture smaller-scale bed topographic features that may control the flow of these glaciers. This award revisits the issue of stability of marine-terminating glaciers whose grounding line is located on a retrograded bed slope. In particular, an attempt will be made to resolve the question whether observed rapid changes are the result of perturbations at the terminus or grounding line, or whether these changes reflect ice-dynamical forcing over the grounded reaches. High-resolution satellite imagery will be used to investigate ice-flow perturbations on smaller spatial scales than has been done before, to evaluate the importance of localized sites of high basal resistance on grounding-line stability. This collaborative project involves a range of modeling strategies including force-budget analysis, flow-band modeling, Full Stokes modeling for local studies, and using the Ice Sheet System Model developed at JPL for regional modeling. Broader Impacts include training two graduate students in computer simulations and ice sheet modeling algorithms. The work will also expand on a web-based interactive flowline model, so that it includes more realistic grounding line dynamics. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||
Collaborative Research: Investigating the Role of Coastal Polynya Variability in Modulating Antarctic Marine-Terminating Glacier Drawdown
|
2205008 |
2022-08-07 | Walker, Catherine; Zhang, Weifeng; Seroussi, Helene | No dataset link provided | The majority of mass loss from the Antarctic Ice Sheet, a major contributor to sea level rise, occurs at its margins, where ice meets the ocean. Glaciers and ice streams flow towards the coast and can go afloat over the water, forming ice shelves. Ice shelves make up almost half of the entire Antarctic coastline, and hold back the flow of inland ice in Antarctica continent; thus they are integral to the overall stability of the Antarctic Ice Sheet. Ice shelves lose mass by two main processes: iceberg calving and basal melting. Temporal and spatial fluctuations in both are driven by various processes; a major driver of ice shelf melt is the heat provided by the neighboring Southern Ocean. Ocean heat, in turn, is driven by various aspects of the ice shelf environment. One of the most significant contributors to changes in the ocean’s heat content is the presence of sea ice. This research will focus on the effects of coastal polynyas (areas of open water amidst sea ice), how they modulate the local ocean environment, and how that environment drives ice shelf basal melting. To date, the relationship between polynyas and ice shelf melt has not been characterized on an Antarctic-wide scale. Understanding the feedbacks between polynya size and duration, ocean stratification, and ice shelf melt, and the strength of those feedbacks, will improve the ability to characterize influences on the long-term stability of ice shelves, and in turn, the Antarctic Ice Sheet as a whole. A critical aspect of this study is that it will provide a framework for understanding ice shelf-ocean interaction across a diverse range of geographic settings. This, together with improvements of various models, will help interpret the impacts of future climate change on these systems, as their responses are likely quite variable and, on the whole, different from the large-scale response of the ice sheet. This project will also provide a broader context to better design future observational studies of specific coastal polynya and ice shelf processes. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||
Pan-Antarctic Assessment of Sedimentary Basins and the Onset of Streaming Ice Flow from Machine Learning and Aerogravity Regression Analyses
|
2114502 |
2022-07-19 | Constantino, Renata | No dataset link provided | This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). An important part of understanding future climate change is predicting changes in how fast the ice in Antarctica is moving. If ice flows more quickly towards the ocean, it will have a direct impact on sea level rise. One of the things that can influence the ice flow is the type of rock below the ice coverage in Antarctica. Sedimentary basins are large regions where sedimentary rocks accumulated in the past, often under ancient seas. It has been observed that where there are sediments below the ice, the ice can flow faster. This project seeks to understand what is below the ice and how the underlying rock influences the ice flow. Is it hard, crystalline rock? Is it a sedimentary basin? What is the relationship between sediments and ice flow? The answers to these questions will be addressed by using a combination of available data and geophysical methods. Information from well-known rock-types will be used to train the computer to recognize these features by using an application of artificial intelligence known as machine learning, which will help the characterization and identification of unknown sedimentary basins beneath the ice. The results of this project will be disseminated to a broad audience by holding workshops for teacher and students to explain our findings under the ice and to introduce the machine learning technique. Open-source codes used during this project will be made available for use in higher-level classrooms as well as in further studies. To date, no comprehensive distribution of onshore and offshore sedimentary basins over Antarctica has been developed. A combination of large-scale datasets will be used to characterize known basins and identify new sedimentary basins to produce the first continent-wide mapping of sedimentary basins and provide improved basal parametrizations conditions that have the potential to support more realistic ice sheet models. Available geophysical compilations of data and the location of well-known sedimentary basins will be used to apply an ensemble machine learning algorithm. The machine learning algorithm will learn complex relationships by voting among a collection of randomized decision trees. The gravity signal related to sedimentary basins known from other (e.g. seismic) techniques will be evaluated and unknown basins from aerogravity data regression analyses will be proposed by calculating a gravity residual that reflects density inhomogeneities. The gravimetric sedimentary basins identified from the regression analyses will be compared with an independent method of identifying sedimentary distribution, the Werner deconvolution method of estimating depth to magnetic sources. The hypothesis, which is sedimentary basins are correlated to fast ice flow behavior, will be tested by comparing the location of the sedimentary basins with locations of high ice flow by using available ice velocity observations. A relationship between sedimentary basins and ice streams will be defined qualitatively and quantitatively, aiming to evaluate if there are ice streams where no sedimentary basins are reported, or sedimentary basins with no ice streams related. The findings of these project can confirm if the presence of abundant sediments is a pre-requisite for ice streaming. Analyzing previously known sedimentary basins and identifying new ones in Antarctica is central to evaluating the influence of subglacial sediments on the ice sheet flow. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||
NSFGEO-NERC: Collaborative Research: Two-Phase Dynamics of Temperate Ice
|
1643120 |
2021-06-23 | Iverson, Neal; Zoet, Lucas |
|
This award supports a project to study the effect of liquid, intercrystalline water on the flow resistance of ice and the mobility of this water within ice. Water plays a central role in the flow of ice streams. It lubricates their bases and softens their margins, where flow speeds abruptly transition from rapid to slow. Within ice stream margins some ice is "temperate,” meaning that it is at its pressure-melting temperature with relatively thick water films at grain boundaries that significantly soften the ice. The amount of water in ice depends sensitively on its permeability, values of which are too poorly known to estimate the water contents of ice-stream shear margins or associated ice viscosities. This award stems from the NSF/GEO-UK NERC lead agency opportunity (NSF 14-118) and is a collaboration between Iowa State University and Oxford University in the United Kingdom. The experimental part of the project is executed at Iowa State University and is the focus herein because it has been supported by NSF. Two sets of experiments are conducted. In one set, a large ring-shear device is used to shear ice in confined compression and at its melting temperature to study the sensitivity of ice viscosity to water content. Ice is sheared at stresses and strain rates comparable to those of ice-stream margins, and water content is varied through twice the range explored in the only previous set of experiments that investigated ice softening by water. The second set of experiments required the design, fabrication, and testing of a laboratory ice permeameter that allows the permeability of temperate ice to be measured. Experiments are conducted to study the dependence of ice permeability on ice grain size and water content--the two dependencies required to model grain-scale water flow through temperate ice. | None | None | false | false | |||||||
Laboratory Study of Ice Deformation under Tidal Loading Conditions with Application to Antarctic Glaciers
|
1245871 |
2021-06-04 | McCarthy, Christine M.; Savage, Heather | This award supports a project to conduct laboratory experiments with a new, custom-fabricated cryo-friction apparatus to explore ice deformation oscillatory stresses like those experienced by tidewater glaciers in nature. The experimental design will explore the dynamic frictional properties of periodically loaded ice sliding on rock. Although the frictional strength of ice has been studied in the past these studies have all focused on constant rates of loading and sliding. The results of this work will advance understanding of ice stream dynamics by improving constraints on key material and frictional properties and allowing physics-based predictions of the amplitude and phase of glacier strain due to tidally induced stress variations. The intellectual merit of this work is that it will result in a better understanding of dynamic rheological parameters and will provide better predictive tools for dynamic glacier flow. The proposed experiments will provide dynamic material properties of ice and rock deformation at realistic frequencies experienced by Antarctic glaciers. The PIs will measure the full spectrum of material response from elastic to anelastic to viscous. The study will provide better constraints to improve predictive capability for glacier and ice-stream response to external forcing. The broader impacts of the work include providing estimates of material properties that can be used to broaden our understanding of glacier flow and that will ultimately be used for models of sea level rise and ice sheet stability. The ability to predict sea level in the near future is contingent on understanding of the processes responsible for flow of Antarctic ice streams and glaciers. Modulation of glacier flow by ocean tides represents a natural experiment that can be used to improve knowledge of ice and bed properties, and of the way in which these properties depend on time-varying forcings. Presently, the influence of tidal forcing on glacier movement is poorly understood, and knowledge of ice properties under tidal loading conditions is limited. The study will generate results of interest beyond polar science by examining phenomena that are of interest to seismology, glaciology and general materials science. The project will provide valuable research and laboratory experience for two undergraduate interns and will provide experience for the PI (currently a postdoc) in leading a scientific project. The three PIs are early career scientists. This proposal does not require fieldwork in the Antarctic. | None | None | false | false | ||||||||
High Resolution Heterogeneity at the Base of Whillans Ice Stream and its Control on Ice Dynamics
|
1443525 |
2021-02-12 | Tulaczyk, Slawek; Schwartz, Susan |
|
Ice fracturing plays a crucial role in mechanical processes that influence the contribution of glaciers and ice sheets to the global sea-level rise. Such processes include, among others, ice shelf disintegration, iceberg calving, and fast ice sliding. Over the last century, seismology developed highly sensitive instrumentation and sophisticated data processing techniques to study earthquakes. This interdisciplinary project used seismological research methods to investigate fracturing beneath and within ice on a fast-moving ice stream in West Antarctica that is experiencing rapid sliding and flexure driven by ocean tides. Data were collected from two strategically located clusters of seismometers. One was located in the epicenter zone where tidally triggered rapid sliding events of the ice stream start. The other was placed in the grounding zone, where the ice stream flexes with tides where it goes afloat and becomes an ice shelf. Seismometers in the epicenter cluster recorded many thousands of microearthquakes coming from beneath ice during ice stream sliding events. Analyses of these microearthquakes suggest that the geologic materials beneath the ice stream are fracturing. The spatial pattern of fracturing is not random but forms elongated stripes that resemble well-known glacial landforms called megascale glacial lineations. These findings indicate that the frictional resistance to ice sliding may change through time due to these landforms changing as a result of erosion and sedimentation beneath ice. This may have implications for the rate of ice loss from Antarctic ice streams that drain about 90% of all ice discharged into the Southern Ocean. In addition to microearthquakes, the epicenter cluster of seismometers also recorded vibrations (tremors) from beneath the ice stream. These may be caused by the rapid repetition of many microearthquakes coming from the same source. The grounding zone cluster of seismometers recorded many thousands of microearthquakes as well. However, they are caused by ice fracturing near the ice stream's surface rather than at its base. These microearthquakes originate when the grounding zone experiences strong tension caused by ice flexure during dropping ocean tide. This tension causes the opening of near-surface fractures (crevasses) just before the lowest tide, rather than at the lowest tide as expected from elasticity of solids. This unexpected timing of ice fracturing indicates that ice in the grounding zone behaves like a viscoelastic material, i.e., partly like a solid and partly like a fluid. This is an important general finding that will be useful to other scientists who are modeling interactions of ice with ocean water in the Antarctic grounding zones. Overall, the observed pervasive fracturing in the grounding zone, where an ice stream becomes an ice shelf, may make ice shelves potentially vulnerable to catastrophic collapses. It also may weaken ice shelves and make it easier for large icebergs to break off at their fronts. In addition to Antarctic research, this award supported education and outreach activities, including presentations and field trips during several summer schools at UCSC for talented and diverse high school students. The students were exposed to glaciological and seismological concepts and performed hands-on scientific exercises. The field trips focused on the marine terrace landscape around Santa Cruz. This landscape resulted from interactions between the uplift of rocks along the San Andreas fault with global-sea level changes caused by the waxing and waning of polar ice sheets in response to Ice Age climate cycles. | POLYGON((-165 -83.8,-163 -83.8,-161 -83.8,-159 -83.8,-157 -83.8,-155 -83.8,-153 -83.8,-151 -83.8,-149 -83.8,-147 -83.8,-145 -83.8,-145 -83.92,-145 -84.04,-145 -84.16,-145 -84.28,-145 -84.4,-145 -84.52,-145 -84.64,-145 -84.76,-145 -84.88,-145 -85,-147 -85,-149 -85,-151 -85,-153 -85,-155 -85,-157 -85,-159 -85,-161 -85,-163 -85,-165 -85,-165 -84.88,-165 -84.76,-165 -84.64,-165 -84.52,-165 -84.4,-165 -84.28,-165 -84.16,-165 -84.04,-165 -83.92,-165 -83.8)) | POINT(-155 -84.4) | false | false | |||||||
RAPID Proposal: Constraining kinematics of the Whillans/Mercer Ice Stream Confluence
|
1842021 |
2020-12-14 | Campbell, Seth; Koons, Peter |
|
The Siple Coast in West Antarctica has undergone significant glacier changes over the last millenium. Several ice streams--rapidly moving streams of ice bordered by slow-moving ice--exist in this region that feeds into the Ross Ice Shelf. A long-term slowdown of Whillans Ice Stream appears to be occurring, and this is affecting the zone between the Whillans and Mercer Ice Streams. However, the consistency of this slowdown and resulting changes to the shear margin between the two ice streams are unknown. Shear zone stability represents a potentially critical control on mass balance of ice sheets, especially in regions of fast ice flow where basal shear stress is minimal. This project is therefore focused on understanding the spatial and temporal change of ice flow kinematics, shear margin structure, and shear margin location between Whillans and Mercer Ice Streams. A collateral benefit of and driver for this as a RAPID project is to test a method for assessing where crevassing will develop in this zone of steep velocity gradients. Such a method may benefit not only near-term field-project planning in the 2018-19 field season, but also planning for future fieldwork and traverses.<br/><br/>The team will use velocity estimates derived from available remote sensing datasets to determine transient velocity patterns and shifts in the shear-zone location over the last 20 years. This velocity time series will be incorporated into a large-scale ice-sheet model to estimate ice-sheet susceptibility to changing boundary conditions over the next century based on likely regional ice-flux scenarios. This approach is an extension of recent work conducted by the team that shows promise for predicting areas of changing high strain rates indicative of an active glacier shear margin. The ultimate objectives are to characterize the flow field of merging ice streams over time and investigate lateral boundary migration. This will provide a better understanding of shear-margin control on ice-shelf and up-glacier stability.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-168 -82,-162.3 -82,-156.6 -82,-150.9 -82,-145.2 -82,-139.5 -82,-133.8 -82,-128.1 -82,-122.4 -82,-116.7 -82,-111 -82,-111 -82.5,-111 -83,-111 -83.5,-111 -84,-111 -84.5,-111 -85,-111 -85.5,-111 -86,-111 -86.5,-111 -87,-116.7 -87,-122.4 -87,-128.1 -87,-133.8 -87,-139.5 -87,-145.2 -87,-150.9 -87,-156.6 -87,-162.3 -87,-168 -87,-168 -86.5,-168 -86,-168 -85.5,-168 -85,-168 -84.5,-168 -84,-168 -83.5,-168 -83,-168 -82.5,-168 -82)) | POINT(-139.5 -84.5) | false | false | |||||||
Collaborative Research: Characterizing Brittle Failure and Fracture Propagation in Fast Ice Sliding with Dynamic Rupture Models based on Whillans Ice Stream Seismic/Geodetic Data
|
1542885 |
2020-10-09 | Dunham, Eric |
|
This project investigates a rapidly moving section of the West Antarctic Ice Sheet known as the Whillans Ice Stream. Ice streams and outlet glaciers are the major pathways for ice discharge from ice sheets into the ocean. Consequently, understanding ice stream dynamics, specifically the processes controlling the frictional resistance of ice sliding on sediments at its base, is essential for predictive modeling of how Earth's ice sheets will respond to a changing climate. Rather than flowing smoothly, Whillans Ice Stream advances in stick-slip cycles: brief periods of rapid sliding, equivalent to magnitude 7 earthquakes, alternating with much longer periods of repose. The PIs will perform simulations of these stick-slip cycles using computer codes originally developed for modeling tectonic earthquakes. By matching observed ice motions, the PIs will constrain the range of frictional processes acting at the base of the ice stream. An additional focus of the project is on brittle fracture processes in ice, expressed through seismic waves radiated by faulting and/or crevassing episodes that accompany the large-scale sliding events. An understanding of ice fracture provides a basis for assessing the susceptibility of ice shelves to rifting and catastrophic disintegration. Project results will be incorporated into outreach activities (from elementary school to community college events) as well as a polar science class for the California State Summer School for Mathematics and Science (COSMOS) program for high school students.<br/><br/>Simulations of the stick-slip cycle will employ 3D dynamic rupture models that simultaneously solve for the seismic wavefield and rupture process, consistent with elastodynamic material response and friction laws on the ice stream bed. Stresses and frictional properties will be varied to achieve consistency with surface GPS and broadband seismic data as well as borehole seismograms from the WISSARD project. The results will be interpreted using laboratory till friction experiments, which link velocity-weakening/strengthening behavior to temperature and water content, and to related experiments quantifying basal drag from ice flow over rough beds. The source mechanism of seismicity accompanying the slip events (shear faulting versus crevassing) will be determined using 3D waveform modeling in conjunction with mechanical models of the seismic source processes. This proposal does not require fieldwork in the Antarctic. | None | None | false | false | |||||||
Collaborative Research: Deglacial Ice Dynamics in the Weddell Sea Embayment using Sediment Provenance
|
1724670 |
2020-09-10 | Williams, Trevor; Hemming, Sidney R. | Abstract for the general public:<br/><br/>The margins of the Antarctic ice sheet have advanced and retreated repeatedly over the past few million years. Melting ice from the last retreat, from 19,000 to 9,000 years ago, raised sea levels by 8 meters or more, but the extents of previous retreats are less well known. The main goal of this project is to understand how Antarctic ice retreats: fast or slow, stepped or steady, and which parts of the ice sheet are most prone to retreat. Antarctica loses ice by two main processes: melting of the underside of floating ice shelves and calving of icebergs. Icebergs themselves are ephemeral, but they carry mineral grains and rock fragments that have been scoured from Antarctic bedrock. As the icebergs drift and melt, this 'iceberg-rafted debris' falls to the sea-bed and is steadily buried in marine sediments to form a record of iceberg activity and ice sheet retreat. The investigators will read this record of iceberg-rafted debris to find when and where Antarctic ice destabilized in the past. This information can help to predict how Antarctic ice will behave in a warming climate. <br/><br/>The study area is the Weddell Sea embayment, in the Atlantic sector of Antarctica. Principal sources of icebergs are the nearby Antarctic Peninsula and Weddell Sea embayment, where ice streams drain about a quarter of Antarctic ice. The provenance of the iceberg-rafted debris (IRD), and the icebergs that carried it, will be found by matching the geochemical fingerprint (such as characteristic argon isotope ages) of individual mineral grains in the IRD to that of the corresponding source area. In more detail, the project will: <br/><br/>1. Define the geochemical fingerprints of the source areas of the glacially-eroded material using samples from each major ice stream entering the Weddell Sea. Existing data indicates that the hinterland of the Weddell embayment is made up of geochemically distinguishable source areas, making it possible to apply geochemical provenance techniques to determine the origin of Antarctica icebergs. Few samples of onshore tills are available from this area, so this project includes fieldwork to collect till samples to characterize detritus supplied by the Recovery and Foundation ice streams. <br/><br/>2. Document the stratigraphic changes in provenance of iceberg-rafted debris (IRD) and glacially-eroded material in two deep water sediment cores in the NW Weddell Sea. Icebergs calved from ice streams in the embayment are carried by the Weddell Gyre and deposit IRD as they pass over the core sites. The provenance information identifies which groups of ice streams were actively eroding and exporting detritus to the ocean (via iceberg rafting and bottom currents), and the stratigraphy of the cores shows the relative sequence of ice stream activity through time. A further dimension is added by determining the time lag between fine sediment erosion and deposition, using a new method of uranium-series isotope measurements in fine grained material. <br/><br/>Technical abstract:<br/><br/> The behavior of the Antarctic ice sheets and ice streams is a critical topic for climate change and future sea level rise. The goal of this proposal is to constrain ice sheet response to changing climate in the Weddell Sea during the three most recent glacial terminations, as analogues for potential future warming. The project will also examine possible contributions to Meltwater Pulse 1A, and test the relative stability of the ice streams draining East and West Antarctica. Much of the West Antarctic ice may have melted during the Eemian (130 to 114 Ka), so it may be an analogue for predicting future ice drawdown over the coming centuries. <br/><br/>Geochemical provenance fingerprinting of glacially eroded detritus provides a novel way to reconstruct the location and relative timing of glacial retreat during these terminations in the Weddell Sea embayment. The two major objectives of the project are to: <br/><br/>1. Define the provenance source areas by characterizing Ar, U-Pb, and Nd isotopic signatures, and heavy mineral and Fe-Ti oxide compositions of detrital minerals from each major ice stream entering the Weddell Sea, using onshore tills and existing sediment cores from the Ronne and Filchner Ice Shelves. Pilot data demonstrate that detritus originating from the east and west sides of the Weddell Sea embayment can be clearly distinguished, and published data indicates that the hinterland of the embayment is made up of geochemically distinguishable source areas. Few samples of onshore tills are available from this area, so this project includes fieldwork to collect till to characterize detritus supplied by the Recovery and Foundation ice streams. <br/><br/>2. Document the stratigraphic changes in provenance of iceberg-rafted debris (IRD) and glacially-eroded material in two deep water sediment cores in the NW Weddell Sea. Icebergs calved from ice streams in the embayment are carried by the Weddell Gyre and deposit IRD as they pass over the core sites. The provenance information will identify which ice streams were actively eroding and exporting detritus to the ocean (via iceberg rafting and bottom currents). The stratigraphy of the cores will show the relative sequence of ice stream activity through time. A further time dimension is added by determining the time lag between fine sediment erosion and deposition, using U-series comminution ages. | POLYGON((-70 -60,-65 -60,-60 -60,-55 -60,-50 -60,-45 -60,-40 -60,-35 -60,-30 -60,-25 -60,-20 -60,-20 -62.5,-20 -65,-20 -67.5,-20 -70,-20 -72.5,-20 -75,-20 -77.5,-20 -80,-20 -82.5,-20 -85,-25 -85,-30 -85,-35 -85,-40 -85,-45 -85,-50 -85,-55 -85,-60 -85,-65 -85,-70 -85,-70 -82.5,-70 -80,-70 -77.5,-70 -75,-70 -72.5,-70 -70,-70 -67.5,-70 -65,-70 -62.5,-70 -60)) | POINT(-45 -72.5) | false | false | ||||||||
Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments
|
1543441 1543405 1543453 1543396 1543537 1543347 |
2020-07-16 | Rosenheim, Brad; Fricker, Helen; Priscu, John; Leventer, Amy; Dore, John; Lyons, W. Berry; Christner, Brent | The Antarctic subglacial environment remains one of the least explored regions on Earth. This project will examine the physical and biological characteristics of Subglacial Lake Mercer, a lake that lies 1200m beneath the West Antarctic Ice Sheet. This study will address key questions relating to the stability of the ice sheet, the subglacial hydrological system, and the deep-cold subglacial biosphere. The education and outreach component aims to widely disseminate results to the scientific community and to the general public through short films, a blog, and a website.<br/><br/>Subglacial Lake Mercer is one of the larger hydrologically active lakes in the southern basin of the Whillans Ice Plain, West Antarctica. It receives about 25 percent of its water from East Antarctica with the remainder originating from West Antarctica, is influenced by drain/fill cycles in a lake immediately upstream (Subglacial Lake Conway), and lies about 100 km upstream of the present grounding line of the Ross Ice Shelf. This site will yield information on the history of the Whillans and Mercer Ice Streams, and on grounding line migration. The integrated study will include direct sampling of basal ice, water, and sediment from the lake in concert with surface geophysical surveys over a three-year period to define the hydrological connectivity among lakes on the Whillans Ice Plain and their flow paths to the sea. The geophysical surveys will furnish information on subglacial hydrology, aid the site selection for hot-water drilling, and provide spatial context for interpreting findings. The hot-water-drilled boreholes will be used to collect basal ice samples, provide access for direct measurement of subglacial physical, chemical, and biological conditions in the water column and sediments, and to explore the subglacial water cavities using a remotely operated vehicle equipped with sensors, cameras, and sampling equipment. Data collected from this study will address the overarching hypothesis \"Contemporary biodiversity and carbon cycling in hydrologically-active subglacial environments associated with the Mercer and Whillans ice streams are regulated by the mineralization and cycling of relict marine organic matter and through interactions among ice, rock, water, and sediments\". The project will be undertaken by a collaborative team of scientists, with expertise in microbiology, biogeochemistry, hydrology, geophysics, glaciology, marine geology, paleoceanography, and science communication. | POLYGON((-163.611 -84.33543,-162.200034 -84.33543,-160.789068 -84.33543,-159.378102 -84.33543,-157.967136 -84.33543,-156.55617 -84.33543,-155.145204 -84.33543,-153.734238 -84.33543,-152.323272 -84.33543,-150.912306 -84.33543,-149.50134 -84.33543,-149.50134 -84.3659157,-149.50134 -84.3964014,-149.50134 -84.4268871,-149.50134 -84.4573728,-149.50134 -84.4878585,-149.50134 -84.5183442,-149.50134 -84.5488299,-149.50134 -84.5793156,-149.50134 -84.6098013,-149.50134 -84.640287,-150.912306 -84.640287,-152.323272 -84.640287,-153.734238 -84.640287,-155.145204 -84.640287,-156.55617 -84.640287,-157.967136 -84.640287,-159.378102 -84.640287,-160.789068 -84.640287,-162.200034 -84.640287,-163.611 -84.640287,-163.611 -84.6098013,-163.611 -84.5793156,-163.611 -84.5488299,-163.611 -84.5183442,-163.611 -84.4878585,-163.611 -84.4573728,-163.611 -84.4268871,-163.611 -84.3964014,-163.611 -84.3659157,-163.611 -84.33543)) | POINT(-156.55617 -84.4878585) | false | false | ||||||||
Air-Ground Study of Tectonics at the Boundary Between the Eastern Ross Embayment and Western Marie Byrd Land, Antarctica: Basement Geology and Structure
|
9615281 9615282 |
2020-04-24 | Luyendyk, Bruce P.; Siddoway, Christine |
|
This award supports a collaborative project that combines air and ground geological-geophysical investigations to understand the tectonic and geological development of the boundary between the Ross Sea Rift and the Marie Byrd Land (MBL) volcanic province. The project will determine the Cenozoic tectonic history of the region and whether Neogene structures that localized outlet glacier flow developed within the context of Cenozoic rifting on the eastern Ross Embayment margin, or within the volcanic province in MBL. The geological structure at the boundary between the Ross Embayment and western MBL may be a result of: 1) Cenozoic extension on the eastern shoulder of the Ross Sea rift; 2) uplift and crustal extension related to Neogene mantle plume activity in western MBL; or a combination of the two. Faulting and volcanism, mountain uplift, and glacier downcutting appear to now be active in western MBL, where generally East-to-West-flowing outlet glaciers incise Paleozoic and Mesozoic bedrock, and deglaciated summits indicate a previous North-South glacial flow direction. This study requires data collection using SOAR (Support Office for Aerogeophysical Research, a facility supported by Office of Polar Programs which utilizes high precision differential GPS to support a laser altimeter, ice-penetrating radar, a towed proton magnetometer, and a Bell BGM-3 gravimeter). This survey requires data for 37,000 square kilometers using 5.3 kilometer line spacing with 15.6 kilometer tie lines, and 86,000 square kilometers using a grid of 10.6 by 10.6 kilometer spacing. Data will be acquired over several key features in the region including, among other, the eastern edge of the Ross Sea rift, over ice stream OEO, the transition from the Edward VII Peninsula plateau to the Ford Ranges, the continuation to the east of a gravity high known from previous reconnaissance mapping over the Fosdick Metamorphic Complex, an d the extent of the high-amplitude magnetic anomalies (volcanic centers?) detected southeast of the northern Ford Ranges by other investigators. SOAR products will include glaciology data useful for studying driving stresses, glacial flow and mass balance in the West Antarctic Ice Sheet (WAIS). The ground program is centered on the southern Ford Ranges. Geologic field mapping will focus on small scale brittle structures for regional kinematic interpretation, on glaciated surfaces and deposits, and on datable volcanic rocks for geochronologic control. The relative significance of fault and joint sets, the timing relationships between them, and the probable context of their formation will also be determined. Exposure ages will be determined for erosion surfaces and moraines. Interpretation of potential field data will be aided by on ground sampling for magnetic properties and density as well as ground based gravity measurements. Oriented samples will be taken for paleomagnetic studies. Combined airborne and ground investigations will obtain basic data for describing the geology and structure at the eastern boundary of the Ross Embayment both in outcrop and ice covered areas, and may be used to distinguish between Ross Sea rift- related structural activity from uplift and faulting on the perimeter of the MBL dome and volcanic province. Outcrop geology and structure will be extrapolated with the aerogeophysical data to infer the geology that resides beneath the WAIS. The new knowledge of Neogene tectonics in western MBL will contribute to a comprehensive model for the Cenozoic Ross rift and to understanding of the extent of plume activity in MBL. Both are important for determining the influence of Neogene tectonics on the ice streams and WAIS. | POLYGON((-170 -76,-166.5 -76,-163 -76,-159.5 -76,-156 -76,-152.5 -76,-149 -76,-145.5 -76,-142 -76,-138.5 -76,-135 -76,-135 -76.8,-135 -77.6,-135 -78.4,-135 -79.2,-135 -80,-135 -80.8,-135 -81.6,-135 -82.4,-135 -83.2,-135 -84,-138.5 -84,-142 -84,-145.5 -84,-149 -84,-152.5 -84,-156 -84,-159.5 -84,-163 -84,-166.5 -84,-170 -84,-170 -83.2,-170 -82.4,-170 -81.6,-170 -80.8,-170 -80,-170 -79.2,-170 -78.4,-170 -77.6,-170 -76.8,-170 -76)) | POINT(-152.5 -80) | false | false | |||||||
Collaborative Research: Lithospheric Controls on the Behavior of the West Antarctic Ice Sheet: Corridor Aerogeophysics of Eastern Ross Transect Zone
|
9319854 9319877 9319369 |
2020-04-24 | Bell, Robin; Blankenship, Donald D.; Finn, C. A. | This award supports a project to conduct an integrated geophysical survey over a large portion of the West Antarctic Ice Sheet (WAIS) toward an understanding of the dynamic behavior of the ice sheet and the nature of the lithosphere beneath the ice sheet. West Antarctica is characterized by two kinds of the Earth s most dynamic systems, a continental rift (the West Antarctic Rift System) and a marine based ice sheet (the WAIS). Active continental rift systems, caused by divergent plate motions, result in thinned continental crust. Associated with the thin crust are fault-bounded sedimentary basins, active volcanism, and elevated heat flow. Marine ice sheets are characterized by rapidly moving streams of ice, penetrating and draining a slowly moving ice reservoir. Evidence left by past marine ice sheets indicates that they may have a strongly non- linear response to long-term climate change which results in massive and rapid discharges of ice. Understanding the evolution of the ice stream system and its interaction with the interior ice is the key to understanding this non-linear response. Subglacial geology and ice dynamics are generally studied in isolation, but evidence is mounting that the behavior of the West Antarctic ice streams may be closely linked to the nature of the underlying West Antarctic rift system. The fast moving ice streams appear to glide on a lubricating layer of water-saturated till. This till requires easily eroded sediment and a source of water, both of which may be controlled by the geology of the rift system; the sediments from the fault-bounded basins and the water from the elevated heat flux associated with active lithospheric extension. This project represents an interdisciplinary aerogeophysical study to characterize the lithosphere of the West Antarctic rift system beneath critical regions of the WAIS. The objective is to determine the effects of the rift architect ure, as manifested by the distribution of sedimentary basins and volcanic constructs, on the ice stream system. The research tool is a unique geophysical aircraft with laser altimetry, ice penetrating radar, aerogravity, and aeromagnetic systems integrated with a high precision kinematic GPS navigation system. It is capable of imaging both the surface and bed of the ice sheet while simultaneously measuring the gravity and magnetic signature of the subglacial lithosphere. Work to be done under this award will build on work already completed in the southern sector of central West Antarctica and it will focus on the region of the Byrd Subglacial Basin and Ice Stream D. The ice sheet in these regions is completely covered by satellite imagery and so this project will be integrated with remote sensing studies of the ice stream. The changing dynamics of Ice Stream D, as with other West Antarctic ice streams, seem to be correlated with changes in the morphological provinces of the underlying rift system. The experimental targets proceed from the divide of the interior ice, downstream through the onset of streaming to the trunk of Ice Stream D. This study will be coordinated with surface glaciological investigations of Ice Stream D and will be used to guide cooperative over-snow seismic investigations of the central West Antarctic rift system. The data will also be used to select a site for future deep ice coring along the crest of the WAIS. These data represent baseline data for long term global change monitoring work and represent crucial boundary conditions for ice sheet modeling efforts. | POLYGON((-155 -77.5,-150 -77.5,-145 -77.5,-140 -77.5,-135 -77.5,-130 -77.5,-125 -77.5,-120 -77.5,-115 -77.5,-110 -77.5,-105 -77.5,-105 -78.2,-105 -78.9,-105 -79.6,-105 -80.3,-105 -81,-105 -81.7,-105 -82.4,-105 -83.1,-105 -83.8,-105 -84.5,-110 -84.5,-115 -84.5,-120 -84.5,-125 -84.5,-130 -84.5,-135 -84.5,-140 -84.5,-145 -84.5,-150 -84.5,-155 -84.5,-155 -83.8,-155 -83.1,-155 -82.4,-155 -81.7,-155 -81,-155 -80.3,-155 -79.6,-155 -78.9,-155 -78.2,-155 -77.5)) | POINT(-130 -81) | false | false | ||||||||
Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)
|
1443497 1443534 1443677 1443498 |
2019-07-03 | Bell, Robin; Frearson, Nicholas; Das, Indrani; Fricker, Helen; Padman, Laurence; Springer, Scott; Siddoway, Christine; Tinto, Kirsty | The Ross Ice Shelf is the largest existing ice shelf in Antarctica, and is currently stabilizing significant portions of the land ice atop the Antarctic continent. An ice shelf begins where the land ice goes afloat on the ocean, and as such, the Ross Ice Shelf interacts with the ocean and seafloor below, and the land ice behind. Currently, the Ross Ice Shelf slows down, or buttresses, the fast flowing ice streams of the West Antarctic Ice Sheet (WAIS), a marine-based ice sheet, which if melted, would raise global sea level by 3-4 meters. The Ross Ice Shelf average ice thickness is approximately 350 meters, and it covers approximately 487,000 square kilometers, an area slightly larger than the state of California. The Ross Ice Shelf has disappeared during prior interglacial periods, suggesting in the future it may disappear again. Understanding the dynamics, stability and future of the West Antarctic Ice Sheet therefore requires in-depth knowledge of the Ross Ice Shelf. The ROSETTA-ICE project brings together scientists from 4 US institutions and from the Institute of Geological and Nuclear Sciences Limited, known as GNS Science, New Zealand. The ROSETTA-ICE data on the ice shelf, the water beneath the ice shelf, and the underlying rocks, will allow better predictions of how the Ross Ice Shelf will respond to changing climate, and therefore how the WAIS will behave in the future. The interdisciplinary ROSETTA-ICE team will train undergraduate and high school students in cutting edge research techniques, and will also work to educate the public via a series of vignettes integrating ROSETTA-ICE science with the scientific and human history of Antarctic research.<br/><br/>The ROSETTA-ICE survey will acquire gravity and magnetics data to determine the water depth beneath the ice shelf. Radar, LIDAR and imagery systems will be used to map the Ross Ice Shelf thickness and fine structure, crevasses, channels, debris, surface accumulation and distribution of marine ice. The high resolution aerogeophysical data over the Ross Ice Shelf region in Antarctica will be acquired using the IcePod sensor suite mounted externally on an LC-130 aircraft operating from McMurdo Station, Antarctica. Field activities will include ~36 flights on LC-130 aircraft over two field seasons in Antarctica. The IcePod instrument suite leverages the unique experience of the New York Air National Guard operating in Antarctica for NSF scientific research as well as infrastructure and logistics. The project will answer questions about the stability of the Ross Ice Shelf in future climate, and the geotectonic evolution of the Ross Ice Shelf Region, a key component of the West Antarctic Rift system. The comprehensive benchmark data sets acquired will enable broad, interdisciplinary analyses and modeling, which will also be performed as part of the project. ROSETTA-ICE will illuminate Ross ice sheet-ice shelf-ocean dynamics as the system nears a critical juncture but still is intact. Through interacting with an online data visualization tool, and comparing the ROSETTA-ICE data and results from earlier studies, we will engage students and young investigators, equipping them with new capabilities for the study of critical earth systems that influence global climate. | POLYGON((-180 -77,-177 -77,-174 -77,-171 -77,-168 -77,-165 -77,-162 -77,-159 -77,-156 -77,-153 -77,-150 -77,-150 -77.9,-150 -78.8,-150 -79.7,-150 -80.6,-150 -81.5,-150 -82.4,-150 -83.3,-150 -84.2,-150 -85.1,-150 -86,-153 -86,-156 -86,-159 -86,-162 -86,-165 -86,-168 -86,-171 -86,-174 -86,-177 -86,180 -86,178.1 -86,176.2 -86,174.3 -86,172.4 -86,170.5 -86,168.6 -86,166.7 -86,164.8 -86,162.9 -86,161 -86,161 -85.1,161 -84.2,161 -83.3,161 -82.4,161 -81.5,161 -80.6,161 -79.7,161 -78.8,161 -77.9,161 -77,162.9 -77,164.8 -77,166.7 -77,168.6 -77,170.5 -77,172.4 -77,174.3 -77,176.2 -77,178.1 -77,-180 -77)) | POINT(-174.5 -81.5) | false | false | ||||||||
Collaborative Research: Grounding Line Dynamics: Crary Ice Rise Revisited
|
1443552 1443356 |
2019-05-06 | Conway, Howard; Koutnik, Michelle; Winberry, Paul |
|
Recent observations and model results suggest that collapse of the Amundsen Sea sector of West Antarctica may already be underway. However, the timeline of collapse and the effects of ongoing climatic and oceanographic changes are key unanswered questions. Complete disintegration of the ice sheet would raise global sea level by more than 3 m, which would have significant societal impacts. Improved understanding of the controls on ice-sheet evolution is needed to make better predictions of ice-sheet behavior. Results from numerical models show that buttressing from surrounding ice shelves and/or from small-scale grounded ice rises should act to slow the retreat and discharge of ice from the interior ice sheet. However, there are very few field observations with which to develop and validate models. Field observations conducted in the early 1980s on Crary Ice Rise in the Ross Sea Embayment are a notable exception. This project will revisit Crary Ice Rise with new tools to make a suite of measurements designed to address questions about how the ice rise affects ice discharge from the Ross Sea sector of West Antarctica. The team will include a graduate and undergraduate student, and will participate in a range of outreach activities.<br/><br/>New tools including radar, seismic, and GPS instruments will be used to conduct targeted geophysical measurements both on Crary Ice Rise and across its grounding line. The project will use these new measurements, together with available ancillary data to inform a numerical model of grounding line dynamics. The model and measurements will be used to address the (1) How has the ice rise evolved over timescales ranging from: the past few decades; the past millennia after freeze-on; and through the deglaciation? (2) What history of ice dynamics is preserved in the radar-detected internal stratigraphy? (3) What dynamical effect does the presence/absence of the ice rise have on discharge of the Ross Ice Streams today? (4) How is it contributing to the slow-down of the proximal Whillans and Mercer ice streams? (5) What dynamical response will the ice rise have under future environmental change? | POLYGON((-175 -82.7,-173.9 -82.7,-172.8 -82.7,-171.7 -82.7,-170.6 -82.7,-169.5 -82.7,-168.4 -82.7,-167.3 -82.7,-166.2 -82.7,-165.1 -82.7,-164 -82.7,-164 -82.77,-164 -82.84,-164 -82.91,-164 -82.98,-164 -83.05,-164 -83.12,-164 -83.19,-164 -83.26,-164 -83.33,-164 -83.4,-165.1 -83.4,-166.2 -83.4,-167.3 -83.4,-168.4 -83.4,-169.5 -83.4,-170.6 -83.4,-171.7 -83.4,-172.8 -83.4,-173.9 -83.4,-175 -83.4,-175 -83.33,-175 -83.26,-175 -83.19,-175 -83.12,-175 -83.05,-175 -82.98,-175 -82.91,-175 -82.84,-175 -82.77,-175 -82.7)) | POINT(-169.5 -83.05) | false | false | |||||||
Collaborative Research: East Antarctic Outlet Glacier Dynamics
|
1141866 1141889 |
2018-09-09 | Conway, Howard; Winberry, Paul |
|
Conway/1141866<br/><br/>This award supports a project to conduct a suite of experiments to study spatial and temporal variations of basal conditions beneath Beardmore Glacier, an East Antarctic outlet glacier that discharges into the Ross Sea Embayment. The intellectual merit of the project is that it should help verify whether or not global warming will play a much larger role in the future mass balance of ice sheets than previously considered. Recent observations of rapid changes in discharge of fast-flowing outlet glaciers and ice streams suggest that dynamical responses to warming could affect that ice sheets of Greenland and Antarctica. Assessment of possible consequences of these responses is hampered by the lack of information about the basal boundary conditions. The leading hypothesis is that variations in basal conditions exert strong control on the discharge of outlet glaciers. Airborne and surface-based radar measurements of Beardmore Glacier will be made to map the ice thickness and geometry of the sub-glacial trough and active and passive seismic experiments, together with ground-based radar and GPS measurements will be made to map spatial and temporal variations of conditions at the ice-bed interface. The observational data will be used to constrain dynamic models of glacier flow. The models will be used to address the primary controls on the dynamics of Antarctic outlet glaciers, the conditions at the bed, their spatial and temporal variation, and how such variability might affect the sliding and flow of these glaciers. The work will also explore whether or not these outlet glaciers could draw down the interior of East Antarctica, and if so, how fast. The study will take three years including two field seasons to complete and results from the work will be disseminated through public and professional meetings and journal publications. All data and metadata will be made available through the NSIDC web portal. The broader impacts of the work are that it will help elucidate the fundamental physics of outlet glacier dynamics which is needed to improve predictions of the response of ice sheets to changing environmental conditions. The project will also provide support for early career investigators and will provide training and support for one graduate and two undergraduate students. All collaborators are currently involved in scientific outreach and graduate student education and they are committed to fostering diversity. | None | None | false | false | |||||||
Collaborative Research: Deglaciation of the Ross Sea Embayment - constraints from Roosevelt Island
|
0944021 0943466 0944307 |
2018-02-16 | Conway, Howard; Brook, Edward J.; Hawley, Robert L. | This award supports a project to use the Roosevelt Island ice core as a glaciological dipstick for the eastern Ross Sea. Recent attention has focused on the eastern Ross Embayment, where there are no geological constraints on ice thickness changes, due to the lack of protruding rock "dipsticks" where the ice sheet can leave datable records of high stands. Recent work has shown how dated ice cores can be used as dipsticks to derive ice-thickness histories. Partners from New Zealand and Denmark will extract an ice core from Roosevelt Island during the 2010-2011 and 2011-12 austral summers. Their science objective is to contribute to understanding of climate variability over the past 40kyr. The science goal of this project is not the climate record, but rather the history of deglaciation in the Ross Sea. The new history from the eastern Ross Sea will be combined with the glacial histories from the central Ross Sea (Siple Dome and Byrd) and existing and emerging histories from geologic and marine records along the western Ross Sea margin and will allow investigators to establish an updated, self-consistent model of the configuration and thickness of ice in the Ross Embayment during the LGM, and the timing of deglaciation. Results from this work will provide ground truth for new-generation ice-sheet models that incorporate ice streams and fast-flow dynamics. Realistic ice-sheet models are needed not only for predicting the response to future possible environments, but also for investigating past behaviors of ice sheets. This research contributes to the primary goals of the West Antarctic Ice Sheet Initiative as well as the IPY focus on ice-sheet history and dynamics. It also contributes to understanding spatial and temporal patterns of climate change and climate dynamics over the past 40kyr, one of the primary goals of the International Partnerships in Ice Core Sciences (IPICS). The project will help to develop the next generation of scientists and will contribute to the education and training of two Ph.D. students. All participants will benefit from the international collaboration, which will expose them to different field and laboratory techniques and benefit future collaborative work. All participants are involved in scientific outreach and undergraduate education, and are committed to fostering diversity. Outreach will be accomplished through regularly scheduled community and K-12 outreach events, talks and popular writing by the PIs, as well as through University press offices. | POLYGON((-163 -79,-162.8 -79,-162.6 -79,-162.4 -79,-162.2 -79,-162 -79,-161.8 -79,-161.6 -79,-161.4 -79,-161.2 -79,-161 -79,-161 -79.05,-161 -79.1,-161 -79.15,-161 -79.2,-161 -79.25,-161 -79.3,-161 -79.35,-161 -79.4,-161 -79.45,-161 -79.5,-161.2 -79.5,-161.4 -79.5,-161.6 -79.5,-161.8 -79.5,-162 -79.5,-162.2 -79.5,-162.4 -79.5,-162.6 -79.5,-162.8 -79.5,-163 -79.5,-163 -79.45,-163 -79.4,-163 -79.35,-163 -79.3,-163 -79.25,-163 -79.2,-163 -79.15,-163 -79.1,-163 -79.05,-163 -79)) | POINT(-162 -79.25) | false | false | ||||||||
Ice sheet Dynamics and Processes along the West Antarctic Continental Shelf
|
0838735 |
2018-01-26 | Nitsche, Frank O. |
|
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The West Antarctic Ice Sheet is believed to be vulnerable to climate change as it is grounded below sea level, is drained by rapidly flowing ice streams and is fringed by floating ice shelves subject to melting by incursions of relatively warm Antarctic circumpolar water. Currently, the most rapidly thinning glaciers in Antarctica occur in the Amundsen and Bellingshausen Sea sectors. This study seeks to place the present day observations into a longer-term geological context over a broad scale by high-resolution swath bathymetric mapping of continental shelf sea floor features that indicate past ice presence and behavior. Gaps in existing survey coverage of glacial lineations and troughs indicating ice flow direction and paleo-grounding zone wedges over the Ross, Amundsen and Bellingshausen Sea sectors are targeted. The surveys will be conducted as part of the 2010 Icebreaker Oden science opportunity and will take advantage of the vessel?s state-of-the-art swath mapping system.<br/><br/>Broader impacts:<br/>This activity will supplement and complement more focused regional studies by US, Swedish, UK, French, Japanese and Polish collaborators also sailing on the Oden. The PI will compile bathymetric data to be acquired by the Oden and other ships in the region over the duration of the project into the existing bathymetric data base. The compiled data set will be made publically available through the NSF founded Antarctic Multibeam Bathymetry and Geophysical Data Synthesis (AMBS) site. It will also be integrated into the GEBCO International Bathymetric Chart of the Southern Ocean (IBCSO) and so significantly improve the basis for ship navigation in the Pacific sector of the Southern Ocean. Undergraduate students will be involved in the research under supervision of the PI via the Lamont summer internship program. The PI is a young investigator and this will be his first NSF grant as a PI. | POLYGON((-140 -68,-136 -68,-132 -68,-128 -68,-124 -68,-120 -68,-116 -68,-112 -68,-108 -68,-104 -68,-100 -68,-100 -68.75,-100 -69.5,-100 -70.25,-100 -71,-100 -71.75,-100 -72.5,-100 -73.25,-100 -74,-100 -74.75,-100 -75.5,-104 -75.5,-108 -75.5,-112 -75.5,-116 -75.5,-120 -75.5,-124 -75.5,-128 -75.5,-132 -75.5,-136 -75.5,-140 -75.5,-140 -74.75,-140 -74,-140 -73.25,-140 -72.5,-140 -71.75,-140 -71,-140 -70.25,-140 -69.5,-140 -68.75,-140 -68)) | POINT(-120 -71.75) | false | false | |||||||
Vulnerability of East Antarctic Ice Streams to warm Ocean Water Incursions
|
1245879 |
2017-07-30 | Nitsche, Frank O. |
|
Intellectual Merit: <br/>This project will determine the potential vulnerability of key ice streams to incursions of warmer ocean water onto the continental shelf and if this mechanism could already explain any of the observed thinning of the ice sheet. It will provide important constrains on ice dynamic of the investigated section of the EAIS, and thus will be critical for future ice sheet models and provide mechanisms for EAIS contributions to past sea level high-stand. The PI proposes to investigate four key ice stream systems on the continental shelf between ~90°E and 160°E. They will use multibeam bathymetry to identify if and where cross-shelf troughs exist to help determine whether these troughs could provide potential pathways for warmer ocean water. Furthermore, detailed analysis of morphological features of these troughs could provide information on past ice dynamic, maximum extent, and flow direction of related paleo ice streams. The PIs will also conduct water column measurements along these troughs and on the continental slope to determine whether warmer ocean water could enter the shelf in the near future, or if such water has already entered any troughs, and thus might be causing the observed thinning of some ice streams.<br/><br/>Broader impacts: <br/>This project includes the participation and support of undergraduate and graduate students in field work and data analysis. The possible involvement of a PolarTREC teacher and the Earth2Class teachers program will reach out to K-12 students. | None | POINT(125.05 -64.5) | false | false | |||||||
Collaborative Research: Geophysical Study of Ice Stream Stick-slip Dynamics
|
0944794 0944671 |
2016-11-16 | Winberry, Paul; Anandakrishnan, Sridhar; Alley, Richard; Wiens, Douglas |
|
This award supports a three-year study of the ongoing deceleration and stick-slip motion of Whillans Ice Stream (WIS), West Antarctica. Understanding the dynamic behavior of ice streams is essential for predicting the future of the West Antarctic Ice Sheet (WAIS). Despite being one of the best-studied ice streams in Antarctica, the surprising flow characteristics of WIS continue to demand interdisciplinary research. Recent estimates indicate that the WIS may stagnate within 50 years, resulting in a significant change to the mass balance of the Siple Coast sector of West Antarctica. The reasons for the ongoing stagnation are not well known, and are possibly linked (causally or coincidentally) to the stick-slip behavior. Our recent work on WIS stick-slip motion suggest that all slip events nucleate from a common location on the ice stream, suggesting that a relatively small (approximately 10 km in diameter) region of the exerts fundamental control over the flow of this large ice stream (100s of km long and 100 kilometers wide). We hypothesize that this is a region of increased bed strength and our measurements will address that hypothesis. We will deploy a series of GPS receivers and seismometers on the ice stream to accurately locate the nucleation region so that a comprehensive ground based geophysical survey can be conducted to determine the physical properties of bed at the nucleation point. The ground geophysical program will consist of reflection seismic and ice-penetrating radar studies that will better constrain the properties of both the hypothesized higher-friction nucleation zone and the surrounding regions. Slip events also generate seismic energy that can be recorded 100s of km away from the ice stream, thus, the GPS and seismometer deployment will also aid us in relating seismic waveforms directly with the rapid motion that occurs during slip events. The increased ability to relate rupture processes with seismic emissions will allow us to use archived seismic records to explore changes in the behavior of WIS during the later half of the 20th century. Broader impacts of this study include improved knowledge ice sheet dynamics, which remain a poorly constrained component of the climate system, thus, limiting our ability to predict the Earth's response to climate change. The scientific work includes the education of two graduate students and continued training of one post-doctoral scholar, thus helping to train the next generation of polar scientists. We will expose the broader public to polar science through interactions with the media and by take advantaging of programs to include K-12 educators in our field work. | POLYGON((-163 -83.7,-161.9 -83.7,-160.8 -83.7,-159.7 -83.7,-158.6 -83.7,-157.5 -83.7,-156.4 -83.7,-155.3 -83.7,-154.2 -83.7,-153.1 -83.7,-152 -83.7,-152 -83.8,-152 -83.9,-152 -84,-152 -84.1,-152 -84.2,-152 -84.3,-152 -84.4,-152 -84.5,-152 -84.6,-152 -84.7,-153.1 -84.7,-154.2 -84.7,-155.3 -84.7,-156.4 -84.7,-157.5 -84.7,-158.6 -84.7,-159.7 -84.7,-160.8 -84.7,-161.9 -84.7,-163 -84.7,-163 -84.6,-163 -84.5,-163 -84.4,-163 -84.3,-163 -84.2,-163 -84.1,-163 -84,-163 -83.9,-163 -83.8,-163 -83.7)) | POINT(-157.5 -84.2) | false | false | |||||||
Subglacial drainage and slip modeling in Antarctica: relating lakes to ice discharge
|
1043481 |
2016-06-17 | Creyts, Timothy; Bell, Robin | No dataset link provided | 1043481/Creyts<br/><br/>This award supports a project to develop models of subglacial hydrology in order to understand dynamics of water movement, lake drainage, and how drainage affects ice slip over deformable till with the goal of understanding present and future behavior of fast flowing regions of Antarctica. Drainage of subglacial water falls into two broad categories: distributed and channelized. In distributed systems, water is forced out along the ice?bed interface. Conversely, in channelized systems water is drawn toward a few major arteries. Observations of lake filling and draining sup- port changes in subglacial water flow and suggest a switch from a low to high discharge state or vice versa. Filling or draining can move the subglacial system from one type of drainage morphology to the other. A switch of drainage type will affect slip along the ice-bed interface because distributed morphologies tend to cause enhanced sliding whereas channelized morphologies tend to cause enhanced coupling of the ice-bed interface. Conditions beneath fast flowing ice streams of West Antarctica are ideal for switching between subglacial drainage morphologies. Fast flowing ice in West Antarctica commonly rests on sub- glacial tills and is coincident, in some areas, with observed subglacial lake filling and draining. The goal of the work is to develop the next generation of spatially distributed hydraulic models that capture lake filling and draining phenomena and investigate the effects on subglacial till. Models will be theoretical, process-based descriptions of water drainage and till failure along fast flowing ice streams. Models will be based on balance of mass, momentum, and energy. Building on previous studies, we will incorporate two dimensional movement of water to investigate distributed basal hydrology, distributed basal hydrology coupled to channels, and couple these models with till deformation. These models will provide a framework for determining how lake draining and filling affects ice discharge by providing a constraints on ice?bed coupling. The intellectual merit of the work is that it will advance knowledge about drainage of water subglacially beneath Antarctica and how water affects ice motion. Our modeling provides a unique opportunity to understand the role subglacial hydrology plays in the dynamics of key outlet glaciers and ice streams. The broader impacts of the work include training for one postdoctoral scientist and training for a summer student in simple laboratory techniques for analog experiments. In addition, the proposal dovetails into an existing polar education and outreach plan by including a component of physical, numerical, and scale models in programs developed for high school and middle school classroom visits, teacher workshops and community events. Additionally, because knowledge of glacial hydrology is increasing rapidly, we will convene a workshop on observations and models of subglacial hydrology to facilitate transfer of knowledge and ideas. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||
MRI: Development of a Wirelessly-Connected Network of Seismometers and GPS Instruments for Polar and Geophysical Research
|
1039982 |
2015-11-23 | Anandakrishnan, Sridhar; Bilen, Sven; Urbina, Julio |
|
Intellectual Merit: <br/>Knowledge of englacial and subglacial conditions are critical for ice sheet models and predictions of sea-level change. Some of the critical variables that are poorly known but essential for improving flow models and predictions of sea-level change are: basal roughness, subglacial sedimentary and hydrologic conditions, and the temporal and spatial variability of the ice sheet flow field. Seismic reflection and refraction imaging and dense arrays of continuously operating GPS receivers can determine these parameters. The PIs propose to develop a network of wirelessly interconnected geophysical sensors (geoPebble) that will allow glaciologists to carry out these experiments simultaneously. This sensor web will provide a new way of imaging the ice sheet that is not possible with current instruments. With this sensor web, the PIs will extend the range of existing instruments from 2D to 3D, from low resolution to high resolution, but more importantly, all the geophysical measurements will be conducted synchronously. By the end of the proposal period the PIs will produce a network of 150-200 geoPebbles that will be available for NSF-sponsored glaciology research projects. <br/><br/>Broader impacts: <br/>Improved knowledge of the flow law of ice, the sliding of glaciers and ice streams, and paleoclimate history will contribute to assessments of the potential for abrupt ice-sheet mass change, with consequent sea-level effects and significant societal impacts. This improved modeling ability will be a direct consequence of better knowledge of the physical properties of ice sheets, which this project will facilitate. The development effort will be integrated with the undergraduate education program via the capstone design classes in EE and the senior thesis requirement in Geoscience. The PIs will also form a cohort of first-year and sophomore students who will work in their labs from the beginning of the project to develop specifications through the commissioning of the network. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||
COLLABORATIVE RESEARCH: Enabling ice sheet sensitivity and stability analysis with a large-scale higher-order ice sheet model's adjoint to support sea level change assessment
|
0934534 |
2014-02-06 | Sergienko, Olga |
|
Funds are provided to enable applications of powerful mathematical concepts and computational tools for rigorous sensitivity analysis, pseudo-spectra and generalized stability theory, and advanced state estimation in the context of large-scale ice sheet modeling. At the center of the proposal is the generation and application of adjoint model (ADM) and tangent linear model (TLM) components of the new Community Ice Sheet Model (CISM). The goal will be achieved through rigorous use of automatic differentiation (AD) to ensure synchronicity between the ongoing model development and improvement in terms of better representation of higher-order stress terms (which account for crucial fast flow regimes) of the nonlinear forward model (NLM) code and the derivative codes. The adjoint enables extremely efficient computation of gradients of scalar-valued functions in very high-dimensional control spaces. A hierarchy of applications is envisioned: (1) sensitivity calculations in support of the Intergovernmental Panel on Climate Change (IPCC) in order to determine to which control variables the polar ice sheet volumes are most sensitive; based on adjoint sensitivity maps, to establish quantitative estimates of ice sheet volume changes for relevant forcing scenarios; and to assess how sensitivities change when including higher-order stress terms; (2) coupling of the ADM and TLM to calculate pseudo-spectra or singular vectors (SV?s) of relevant ice sheet norms; SV?s provide perturbation patterns which lead to non-normal growth, optimally amplifying norm kernels over finite times; among the many applications of SV?s are optimal initialization of ensembles to assess uncertainties; SV?s are calculated through matrix-free iterative solution of a generalized eigenvalue problem via Lanczos or Arnoldi implicit restart algorithms; (3) a long-term goal is the development of an ice sheet state estimation system based on the adjoint or Lagrange Multiplier Method (LMM) in order to synthesize, in a formal manner, the increasing number and heterogeneous types of observations with a three-dimensional, state-of-the-art ice sheet model; an important requirement is that the adjoint incorporate new schemes that are being developed for CISM to capture crucial, but as yet unrepresented physical processes. | POLYGON((-106 -70,-105.4 -70,-104.8 -70,-104.2 -70,-103.6 -70,-103 -70,-102.4 -70,-101.8 -70,-101.2 -70,-100.6 -70,-100 -70,-100 -70.6,-100 -71.2,-100 -71.8,-100 -72.4,-100 -73,-100 -73.6,-100 -74.2,-100 -74.8,-100 -75.4,-100 -76,-100.6 -76,-101.2 -76,-101.8 -76,-102.4 -76,-103 -76,-103.6 -76,-104.2 -76,-104.8 -76,-105.4 -76,-106 -76,-106 -75.4,-106 -74.8,-106 -74.2,-106 -73.6,-106 -73,-106 -72.4,-106 -71.8,-106 -71.2,-106 -70.6,-106 -70)) | POINT(-103 -73) | false | false | |||||||
Model Investigation of Ice Stream/Subglacial Lake Systems
|
0838811 |
2013-08-27 | Sergienko, Olga; Hulbe, Christina |
|
Sergienko/0838811 <br/><br/>This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>This award supports a project to conduct a modeling study of the ice stream ? sub-glacial water system. A suite of numerical models of various dimensionality and complexity will be constructed in a sequential, hierarchical fashion to formulate and test hypotheses regarding how sub-glacial lakes form under ice streams, determine the effect of sub-glacial lakes on ice-stream flow and mass balance, and to determine feedback effects whereby the ice stream ? sub-glacial water system can elicit both stable and unstable responses to environmental perturbations. This research will address one of the only observationally verified fast-time-scale processes apparent within the Antarctic Ice Stream system. The intellectual merit of the project is that understanding the origins and consequences of near-grounding-line sub-glacial lakes is a priority in glaciological research designed to predict short-term variations in Antarctica?s near-term future mass balance. The broader impacts of the proposed work are that it will contribute to better understanding of a system that has important societal relevance through contribution to sea level rise. Participation of a graduate student in the project will provide the student?s training and education in application of the numerical modeling in geosciences. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -87,180 -84,180 -81,180 -78,180 -75,180 -72,180 -69,180 -66,180 -63,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,-180 -60)) | POINT(0 -89.999) | false | false | |||||||
Subglacial Lakes and the Onset of Ice Streaming: Recovery Lakes
|
0636883 |
2013-04-02 | Bell, Robin; Studinger, Michael S. |
|
Bell/0636883<br/><br/>This award support a project to study the role that subglacial water plays in the overall stability of major ice sheets. An estimated 22,000 km3 of water is currently stored within Antarctica's subglacial lakes. Movement of this water occurs through a complex and largely inferred drainage system in both East and West Antarctica. Geomorphic evidence for the catastrophic drainage of subglacial lakes documents repeated events. These major flood events appear to have drained the largest subglacial lakes situated in the relatively stable interior of the East Antarctic ice sheet. Emerging evidence suggests there is a close connection between significant subglacial lakes and the onset of the Recovery Ice Stream one of the largest in East Antarctica. Our preliminary analysis of the Recovery Lakes region, East Antarctica suggests a direct linkage between lakes and streaming ice flow, specifically the 800 km long Recovery Ice Stream and its tributaries. Located just upslope of the Recovery Ice Stream, the Recovery Lakes Region is composed of 3 well-defined lakes and a fourth, ambiguous, 'lake-like' feature. While other large lakes have a localized impact on ice surface slope, the Recovery Lakes Region lakes are coincident with an abrupt regional change in the ice sheet surface slope. Satellite imagery demonstrates that the downslope margin of this lake area contains distinct flow strips and crevasses: both indicative of increasing ice velocities. The discovery of a series of large lakes coincident with the onset of rapid ice flow in East Antarctica clearly links subglacial lakes and ice sheet dynamics for the first time. The evidence linking the onset of streaming in the Recovery Drainage Ice Stream to the series of large subglacial lakes raises the fundamental question: How can subglacial lakes trigger the onset of ice streaming? We advance two possible mechanisms: (i) Subglacial lakes can produce accelerated ice flow through the drainage of lake water beneath the ice sheet downslope of the lakes. (ii) Subglacial lakes can produce accelerated ice flow accelerated ice flow by modifying the basal thermal gradient via basal accretion over the lakes so when the ice sheet regrounds basal melting dominates. To evaluate the contribution of lake water and the changing basal thermal gradient, we propose an integrated program incorporating satellite imagery analysis, a series of reconnaissance aerogeophysical profiles over the Recovery Lake Region and the installation of continuous GPS sites over the Recovery Lakes. This analysis and new data will enable us (1) to produce a velocity field over the Recovery Lakes Region, (2) to map the ice thickness changes over the lakes due to acceleration triggered thinning, basal melting and freezing, (3) determine the depth and possible the tectonic origin of the Recovery Lakes and (4) determine the stability of these lakes over time. These basic data sets will enable us to advance our understanding of how subglacial lakes trigger the onset of streaming. The intellectual merit of this project is that it will be the first systematic analysis of ice streams triggering the onset of ice streams. This work has profound implications for the modeling of ice sheet behavior in the future, the geologic record of abrupt climate changes and the longevity of subglacial lakes. The broader impacts of the project are programs that will reach students of all ages through undergraduates involved in the research, formal presentations in teacher education programs and ongoing public outreach efforts at major science museums. Subglacial Antarctic lake environments are emerging as a premier, major frontier for exploration during the IPY 2007-2009. | POLYGON((20 -75,23 -75,26 -75,29 -75,32 -75,35 -75,38 -75,41 -75,44 -75,47 -75,50 -75,50 -76.5,50 -78,50 -79.5,50 -81,50 -82.5,50 -84,50 -85.5,50 -87,50 -88.5,50 -90,47 -90,44 -90,41 -90,38 -90,35 -90,32 -90,29 -90,26 -90,23 -90,20 -90,20 -88.5,20 -87,20 -85.5,20 -84,20 -82.5,20 -81,20 -79.5,20 -78,20 -76.5,20 -75)) | POINT(35 -82.5) | false | false | |||||||
Modeling the Dynamics of Surface-slope Reversals and their Role in the Formation and Stability of Subglacial Lakes
|
0814241 |
2012-03-21 | Alley, Richard; Dupont, Todd K. | No dataset link provided | This award supports a three-year modeling effort to understand the dynamics surrounding ice-air surface slope reversals on ice streams and ice shelves, with implications for the creation and stability of subglacial lakes. Local reversal of the ice-air surface slope may lead, through a reversal of the hydraulic gradient, to the trapping of basal and surface water, producing subglacial and supraglacial lakes, respectively. In the case of subglacial lakes, once such a sizable reservoir of pressurized water is created the potential exists for drainage, in the form of large outburst floods or as smaller, but sustained, periods of increased subglacial water flow. The research seeks to extend some initial work that has been done to include time-dependence and a wider array of parameters and geometries. The methods will involve the use of a suite of models, all of which will include longitudinal deviatoric and basal-shear stresses, with some also taking account of lateral drag and internal vertical shear. The intellectual merit of the proposed activity includes an improved understanding of the processes and parameters involved in the formation of surface-slope reversals in ice-stream/ice-shelf systems, as well as insight into the stability of subglacial lakes formed as a consequence of slope reversals. The broader impacts resulting from this activity include the provision of tools to study the dynamics of ice-stream/ice-shelf systems, an improved understanding of the physics behind outburst floods, and insights into the coupling of ice streams with their subglacial water systems. The research will support the studies of a beginning postdoctoral researcher. Results of the research will be incorporated into courses and public outreach serving anywhere from hundreds to thousands of people per year. | None | None | false | false | |||||||
Collaborative Research:Grounding-line Retreat in the Southern Ross Sea - Constraints from Scott Glacier
|
0636818 |
2011-08-05 | Stone, John; Conway, Howard | No dataset link provided | Hall/0636687<br/><br/>This award supports a project to investigate late Pleistocene and Holocene changes in Scott Glacier, a key outlet glacier that flows directly into the Ross Sea just west of the present-day West Antarctic Ice Sheet (WAIS) grounding line. The overarching goals are to understand changes in WAIS configuration in the Ross Sea sector at and since the last glacial maximum (LGM) and to determine whether Holocene retreat observed in the Ross Embayment has ended or if it is still ongoing. To address these goals, moraine and drift sequences associated with Scott Glacier will be mapped and dated and ice thickness, surface velocity and surface mass balance will be measured to constrain an ice-flow model of the glacier. This model will be used to help interpret the dated geologic sequences. The intellectual merit of the project relates to gaining a better understanding of the West Antarctic Ice Sheet and how changing activity of fast-flowing outlet glaciers and ice streams exerts strong control on the mass balance of the ice sheet. Previous work suggests that grounding-line retreat in the Ross Sea continued into the late Holocene and left open the possibility of ongoing deglaciation as part of a long-term trend. Results from Reedy Glacier, an outlet glacier just behind the grounding line, suggest that retreat may have slowed substantially over the past 2000 years and perhaps even stopped. By coupling the work on Scott Glacier with recent data from Reedy Glacier, the grounding-line position will be bracketed and it should be possible to establish whether the retreat has truly ended or if it is ongoing. The broader impacts of the work relate to the societal relevance of an improved understanding of the West Antarctic ice sheet to establish how it will respond to current and possible future environmental changes. The work addresses this key goal of the West Antarctic Ice Sheet Initiative, as well as the International Polar Year focus on ice sheet history and dynamics. The work will develop future scientists through the education and training of one undergraduate and two Ph.D. students, interaction with K-12 students through classroom visits, web-based 'expedition' journals, letters from the field, and discussions with teachers. Results from this project will be posted with previous exposure dating results from Antarctica, on the University of Washington Cosmogenic Nuclide Lab website, which also provides information about chemical procedures and calculation methods to other scientists working with cosmogenic nuclides. | POLYGON((-157 -85,-156 -85,-155 -85,-154 -85,-153 -85,-152 -85,-151 -85,-150 -85,-149 -85,-148 -85,-147 -85,-147 -85.3,-147 -85.6,-147 -85.9,-147 -86.2,-147 -86.5,-147 -86.8,-147 -87.1,-147 -87.4,-147 -87.7,-147 -88,-148 -88,-149 -88,-150 -88,-151 -88,-152 -88,-153 -88,-154 -88,-155 -88,-156 -88,-157 -88,-157 -87.7,-157 -87.4,-157 -87.1,-157 -86.8,-157 -86.5,-157 -86.2,-157 -85.9,-157 -85.6,-157 -85.3,-157 -85)) | POINT(-152 -86.5) | false | false | |||||||
Collaborative Research: Elevation Change Anomalies in West Antarctica and Dynamics of Subglacial Water Transport Beneath Ice Streams and their Tributaries
|
0636719 0636970 |
2011-07-27 | Smith, Ben; Joughin, Ian; Tulaczyk, Slawek; SMITH, BENJAMIN |
|
Tulaczyk/0636970<br/><br/>This award supports a project to study elevation change anomalies (henceforth ECAs), which are oval-shaped, 5-to-10 km areas observed in remote sensing images in several locations within the Ross Sea sector of the West Antarctic Ice Sheet (WAIS). Within these anomalies, surface elevation changes at rates of up to ~1 to ~2 cm per day, significantly faster than in surrounding regions. These anomalies are thought to result from filling and draining of multi-kilometer-scale subglacial water pockets. The intellectual merit of this project is that these ECA's represent an unprecedented window into the elusive world of water drainage dynamics beneath the modern Antarctic ice sheet. Although subglacial water fluxes are small compared to normal terrestrial conditions, they play an important role in controlling fast ice streaming and, potentially, stability of the ice sheet. The dearth of observational constraints on sub-ice sheet water dynamics represents one of the most important limitations on progress in quantitative modeling of ice streams and ice sheets. Such models are necessary to assess future ice sheet mass balance and to reconstruct the response of ice sheets to past climate changes. The dynamic sub-ice sheet water transport indicated by the ECAs may have also implications for studies of subglacial lakes and other subglacial environments, which may harbor life adapted to such extreme conditions. The broader impacts of this project are that it will provide advanced training opportunities to one postdoctoral fellow (UW), two female doctoral students (UCSC), who will enhance diversity in polar sciences, and at least three undergraduate students (UCSC). Project output will be relevant to broad scientific and societal interests, such as the future global sea level changes and the response of Polar Regions to climate changes. Douglas Fox, a freelance science journalist, is interested in joining the first field season to write feature articles to popular science magazines and promote the exposure of this project, and Antarctic Science in general, to mass media. | None | None | false | false | |||||||
Collaborative Research: Grounding Line Forensics: The History of Grounding Line Retreat in the Kamb Ice Stream Outlet Region
|
0538015 0538120 |
2011-07-02 | Hulbe, Christina; Catania, Ginny |
|
0538120<br/>Catania<br/>This award supports a project to identify and map ice surface and internal features that chronicle the sequence of events leading to the shut-down of Kamb ice stream. In particular, the project will study past grounding line migration and the relationship between that process and ice stream shutdown. The intellectual merits of the project include the fact that an understanding of such processes has important implications for our ability to accurately predict mass balance changes in this region. Currently, one of the five major West Antarctic ice streams, Kamb, is quiescent, and another, Whillans, is slowing in its downstream reaches. The Kamb shutdown appears to have begun at its downstream end but beyond that simple observation, it is not possible, yet, to draw meaningful comparisons between the two adjacent streams. We do not know if current events on Whillans Ice Stream are similar to what transpired during the Kamb shut-down. The work proposed here intends to bridge that gap. It is expected that this effort will yield useful insights into the influence of grounding line dynamics on ice stream flow. The work will involve a combination of field investigations using radio-echo sounding and GPS combined with computational efforts involving the interpretation of ice-surface features such as relict flow traces and crevasses. The broader impacts of the project will be in addressing a global environmental problem with critical societal implications, training the next generation of scientists and engineers to serve the nation, and encouraging women to pursue scientific or engineering careers. Participants from both institutions are involved in a range of public outreach activities. | POLYGON((154.71 -82.78,154.79000000000002 -82.78,154.87 -82.78,154.95 -82.78,155.03 -82.78,155.11 -82.78,155.19 -82.78,155.26999999999998 -82.78,155.35 -82.78,155.43 -82.78,155.51 -82.78,155.51 -82.788,155.51 -82.796,155.51 -82.804,155.51 -82.812,155.51 -82.82,155.51 -82.828,155.51 -82.836,155.51 -82.844,155.51 -82.852,155.51 -82.86,155.43 -82.86,155.35 -82.86,155.26999999999998 -82.86,155.19 -82.86,155.11 -82.86,155.03 -82.86,154.95 -82.86,154.87 -82.86,154.79000000000002 -82.86,154.71 -82.86,154.71 -82.852,154.71 -82.844,154.71 -82.836,154.71 -82.828,154.71 -82.82,154.71 -82.812,154.71 -82.804,154.71 -82.796,154.71 -82.788,154.71 -82.78)) | POINT(155.11 -82.82) | false | false | |||||||
Center for Remote Sensing of Ice Sheets (CReSIS)
|
0424589 |
2011-06-01 | Braaten, David; Joughin, Ian; Steig, Eric J.; Das, Sarah; Paden, John; Gogineni, Prasad | This award is for the continuation of the Center for Remote Sensing of Ice Sheets (CReSIS), an NSF Science and Technology Center (STC) established in June 2005 to study present and probable future contributions of the Greenland and Antarctic ice sheets to sea-level rise. The Center?s vision is to understand and predict the role of polar ice sheets in sea level change. In particular, the Center?s mission is to develop technologies, to conduct field investigations, to compile data to understand why many outlet glaciers and ice streams are changing rapidly, and to develop models that explain and predict ice sheet response to climate change. The Center?s mission is also to educate and train a diverse population of graduate and undergraduate students in Center-related disciplines and to encourage K-12 students to pursue careers in science, technology, engineering and mathematics (STEM-fields). The long-term goals are to perform a four-dimensional characterization (space and time) of rapidly changing ice-sheet regions, develop diagnostic and predictive ice-sheet models, and contribute to future assessments of sea level change in a warming climate. In the first five years, significant progress was made in developing, testing and optimizing innovative sensors and platforms and completing a major aircraft campaign, which included sounding the channel under Jakobshavn Isbræ. In the second five years, research will focus on the interpretation of integrated data from a suite of sensors to understand the physical processes causing changes and the subsequent development and validation of models. Information about CReSIS can be found at http://www.cresis.ku.edu.<br/><br/>The intellectual merits of the STC are the multidisciplinary research it enables its faculty, staff and students to pursue, as well as the broad education and training opportunities it provides to students at all levels. During the first phase, the Center provided scientists and engineers with a collaborative research environment and the opportunity to interact, enabling the development of high-sensitivity radars integrated with several airborne platforms and innovative seismic instruments. Also, the Center successfully collected data on ice thickness and bed conditions, key variables in the study of ice dynamics and the development of models, for three major fast-flowing glaciers in Greenland. During the second phase, the Center will collect additional data over targeted sites in areas undergoing rapid changes; process, analyze and interpret collected data; and develop advanced process-oriented and ice sheet models to predict future behavior. The Center will continue to provide a rich environment for multidisciplinary education and mentoring for undergraduate students, graduate students, and postdoctoral fellows, as well as for conducting K-12 education and public outreach. The broader impacts of the Center stem from addressing a global environmental problem with critical societal implications, providing a forum for citizens and policymakers to become informed about climate change issues, training the next generation of scientists and engineers to serve the nation, encouraging underrepresented students to pursue careers in STEM-related fields, and transferring new technologies to industry. Students involved in the Center find an intellectually stimulating atmosphere where collaboration between disciplines is the norm and exposure to a wide variety of methodologies and scientific issues enriches their educational experience. The next generation of researchers should reflect the diversity of our society; the Center will therefore continue its work with ECSU to conduct outreach and educational programs that attract minority students to careers in science and technology. The Center has also established a new partnership with ADMI that supports faculty and student exchanges at the national level and provides expanded opportunities for students and faculty to be involved in Center-related research and education activities. These, and other collaborations, will provide broader opportunities to encourage underrepresented students to pursue STEM careers. <br/><br/>As lead institution, The University of Kansas (KU) provides overall direction and management, as well as expertise in radar and remote sensing, Uninhabited Aerial Vehicles (UAVs), and modeling and interpretation of data. Five partner institutions and a DOE laboratory play critical roles in the STC. The Pennsylvania State University (PSU) continues to participate in technology development for seismic measurements, field activities, and modeling. The Center of Excellence in Remote Sensing, Education and Research (CERSER) at Elizabeth City State University (ECSU) contributes its expertise to analyzing satellite data and generating high-level data products. ECSU also brings to the Center their extensive experience in mentoring and educating traditionally under-represented students. ADMI, the Association of Computer and Information Science/Engineering Departments at Minority Institutions, expands the program?s reach to underrepresented groups at the national level. Indiana University (IU) provides world-class expertise in CI and high-performance computing to address challenges in data management, processing, distribution and archival, as well as high-performance modeling requirements. The University of Washington (UW) provides expertise in satellite observations of ice sheets and process-oriented interpretation and model development. Los Alamos National Laboratory (LANL) contributes in the area of ice sheet modeling. All partner institutions are actively involved in the analysis and interpretation of observational and numerical data sets. | POLYGON((-137 -74,-132.1 -74,-127.2 -74,-122.3 -74,-117.4 -74,-112.5 -74,-107.6 -74,-102.7 -74,-97.8 -74,-92.9 -74,-88 -74,-88 -74.65,-88 -75.3,-88 -75.95,-88 -76.6,-88 -77.25,-88 -77.9,-88 -78.55,-88 -79.2,-88 -79.85,-88 -80.5,-92.9 -80.5,-97.8 -80.5,-102.7 -80.5,-107.6 -80.5,-112.5 -80.5,-117.4 -80.5,-122.3 -80.5,-127.2 -80.5,-132.1 -80.5,-137 -80.5,-137 -79.85,-137 -79.2,-137 -78.55,-137 -77.9,-137 -77.25,-137 -76.6,-137 -75.95,-137 -75.3,-137 -74.65,-137 -74)) | POINT(-112.5 -77.25) | false | false | ||||||||
Glacial History of the Amundsen Sea Shelf
|
9814692 |
2010-05-04 | Kellogg, Thomas; Jacobs, Stanley |
|
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a marine geological investigation of the Amundsen Sea region toward a better understanding of the deglaciation history of the West Antarctic Ice Sheet (WAIS). The WAIS may be inherently unstable because it is the last marine-based ice sheet in the world. Unlike other embayments in West Antarctica, major ice streams draining into the Amundsen Sea from the interior of the WAIS lack buttressing ice shelves. Mass balance data for the distal portions of these ice streams (Pine Island and Thwaites glaciers) appear to be in balance or may be becoming negative. Because both ice streams have beds that slope downward toward the center of the ice sheet, grounding-line recession resulting from either continued thinning or sea-level rise could trigger irreversible grounding-line retreat, leading to ice-sheet disintegration and consequent global sea-level rise. The limited marine geological and geophysical data available from the Amundsen Sea suggest that grounded ice or an ice shelf occupied the inner Amundsen Sea embayment until perhaps as recently as 1000 to 2000 years ago, and this ice may have retreated rapidly in historic time.<br/><br/>This project, a study of the marine geology and geophysics of the Amundsen Sea continental shelf from 100 degrees W to 130 degrees W, is designed to address the Amundsen Sea part of WAIS Science Plan Priority Goal H2: "What is the deglaciation history in the eastern Ross, the Bellingshausen and Amundsen Seas?" This project will examine bathymetric data of the Amundsen Sea continental shelf to determine the positions of former ice-steam channels, and to aid in choosing sites for sediment coring. Single-channel seismic reflection studies will be conducted in order to determine sediment-thickness patterns, to aid in choice of coring sites, and to locate and identify morphologic features indicative of former grounded ice (e.g., moraines, scours, flutes, striations, till wedges and deltas, etc.). Coring will be concentrated along former ice flow-lines. Core samples will be analyzed in the laboratory for sedimentology, to determine whether of not basal tills are present (indicating former grounded ice and its former extent), and for calcareous and siliceous microfossils. The chronology of grounding-line and ice-shelf retreat from a presumed Last Glacial Maximum position near the shelf break will be established using accelerator mass spectrometry (AMS) carbon-14 dates of acid-insoluble particulate organic carbon.<br/><br/>This project will share ship time in the Amundsen Sea with a physical oceanographic project. Marine geologic data and samples collected will be integrated with findings of other investigators toward developing a comprehensive interpretation of the history of the WAIS. | POLYGON((-179.99342 -58.74225,-143.994734 -58.74225,-107.996048 -58.74225,-71.997362 -58.74225,-35.998676 -58.74225,0.000010000000003 -58.74225,35.998696 -58.74225,71.997382 -58.74225,107.996068 -58.74225,143.994754 -58.74225,179.99344 -58.74225,179.99344 -60.716231,179.99344 -62.690212,179.99344 -64.664193,179.99344 -66.638174,179.99344 -68.612155,179.99344 -70.586136,179.99344 -72.560117,179.99344 -74.534098,179.99344 -76.508079,179.99344 -78.48206,143.994754 -78.48206,107.996068 -78.48206,71.997382 -78.48206,35.998696 -78.48206,0.000010000000003 -78.48206,-35.998676 -78.48206,-71.997362 -78.48206,-107.996048 -78.48206,-143.994734 -78.48206,-179.99342 -78.48206,-179.99342 -76.508079,-179.99342 -74.534098,-179.99342 -72.560117,-179.99342 -70.586136,-179.99342 -68.612155,-179.99342 -66.638174,-179.99342 -64.664193,-179.99342 -62.690212,-179.99342 -60.716231,-179.99342 -58.74225)) | POINT(0.000010000000003 -68.612155) | false | false | |||||||
Mechanism and Timing of West Antarctic Ice Sheet Retreat at the End of the Last Glacial Maximum
|
9527876 |
2010-05-04 | Anderson, John |
|
Anderson OPP 9527876 Abstract This award supports continuation of a long term investigation of the continental shelf sediments that is aimed at examining the configuration of the West Antarctic Ice Sheet during the last glacial maximum, the events and mechanisms involved in its retreat, and the timing of retreat. The project involves: 1) characterizing variations in the ice sheet grounding zone in a latitudinal transect extending from Ross Sea to Bransfield Basin, 2) reconstructing conditions at the ice/bed interface prior to and after ice sheet retreat, and 3) radiometrically dating ice sheet retreat along this transect. Detailed sea floor imagery (multibeam and deep-tow side-scan sonar), high resolution seismic reflection profiles, and sediment cores will be used to map and characterize prior grounding zones. Of particular concern are features that indicate the amount and organization (channelization) of basal meltwater and the extent of bed deformation that occurred in different ice streams. The timing of ice sheet retreat provides information about the link between Northern and Southern hemisphere ice expansion, and the role of eustasy in ice sheet decoupling. This research should lead to better predictive models to determine which ice streams are most unstable and likely, therefore, to serve as Oweak linksO in the long term behavior of West Antarctic Ice Sheet. | POLYGON((-179.9996 -70.29238,-143.99968 -70.29238,-107.99976 -70.29238,-71.99984 -70.29238,-35.99992 -70.29238,0 -70.29238,35.99992 -70.29238,71.99984 -70.29238,107.99976 -70.29238,143.99968 -70.29238,179.9996 -70.29238,179.9996 -71.048723,179.9996 -71.805066,179.9996 -72.561409,179.9996 -73.317752,179.9996 -74.074095,179.9996 -74.830438,179.9996 -75.586781,179.9996 -76.343124,179.9996 -77.099467,179.9996 -77.85581,143.99968 -77.85581,107.99976 -77.85581,71.99984 -77.85581,35.99992 -77.85581,0 -77.85581,-35.99992 -77.85581,-71.99984 -77.85581,-107.99976 -77.85581,-143.99968 -77.85581,-179.9996 -77.85581,-179.9996 -77.099467,-179.9996 -76.343124,-179.9996 -75.586781,-179.9996 -74.830438,-179.9996 -74.074095,-179.9996 -73.317752,-179.9996 -72.561409,-179.9996 -71.805066,-179.9996 -71.048723,-179.9996 -70.29238)) | POINT(0 -89.999) | false | false | |||||||
Collaborative Research: Using Fracture Patterns and Ice Thickness to Study the History and Dynamics of Grounding Line Migration and Shutdown of Kamb and Whillans Ice Streams
|
0440670 0440636 |
2008-09-25 | Hulbe, Christina; Ledoux, Christine; Fahnestock, Mark | This award supports a three year project to develop the tools required to interpret complex patterns of flow features on the Ross Ice Shelf, which record the discharge history the ice streams flowing east off of the West Antarctic Ice Sheet. This work builds on previous research that used flow features visible in satellite image mosaics and numerical models of ice shelf flow to detect changes in grounding zone dynamics and redirection of ice stream outlets over hundreds of years. Recently observed changes on Whillans Ice Stream fit within this framework. The pattern of redirection is driven by the influence of rapid downstream thinning on the basal thermal gradient in the ice and associated "sticky spot" (ice rise) formation. In pursuing this work, the investigators recognized other records of discharge variation on the shelf that can be used to build a more complete history and understanding of ice-stream discharge variability. The intellectual merit of the proposed work lies in the fact that these records, including fracture patterns and spatial variation in ice thickness, when understood in the proper context, will yield quantitative information about the timing and dynamics of ice stream slowdowns, grounding line retreat, and the relative history of discharge between the ice streams. New tools will help further constrain this history. The laser altimeter on NASA's IceSAT has improved our knowledge of the surface elevation of Antarctic ice. IceSAT surface elevations provide a high-resolution map of ice-shelf thickness that, along with provenance maps from ice-shelf image mosaics, will be used to estimate the volumes of ice involved in past ice-stream discharge events (slowdowns, redirections, and so on). This project will develop new numerical models for fracture propagation; these will allow past variations in ice-shelf stress state to be investigated. Together, the dynamic and volume-flux histories will provide a powerful set of observations for understanding past variations in ice stream discharge and the underlying physical processes. The broader impacts of this project center on how it contributes to the ability to estimate West Antarctic contributions to global sea level rise and to answer outstanding questions about the causes of millennial and longer-scale evolution of ice streams. This work will provide a history of the most complex record of ice discharge known. In addition to the incorporation of this research into graduate student advising and normal teaching duties, the investigators are involved in other avenues of civic engagement and education. Outreach to high school students and the community at large is promoted on an annual basis by the investigators at both institutions. New outreach projects at Portland State University are developed with the assistance of researchers with expertise in student learning and achievement in science and mathematics. The collaborative research team includes two glaciologists with experience in the pairing of high resolution satellite imagery and a variety of ice-flow models and a geologist whose focus is the mechanics of rock deformation. | POLYGON((-180 -70,-175 -70,-170 -70,-165 -70,-160 -70,-155 -70,-150 -70,-145 -70,-140 -70,-135 -70,-130 -70,-130 -71.6,-130 -73.2,-130 -74.8,-130 -76.4,-130 -78,-130 -79.6,-130 -81.2,-130 -82.8,-130 -84.4,-130 -86,-135 -86,-140 -86,-145 -86,-150 -86,-155 -86,-160 -86,-165 -86,-170 -86,-175 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -84.4,180 -82.8,180 -81.2,180 -79.6,180 -78,180 -76.4,180 -74.8,180 -73.2,180 -71.6,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,-180 -70)) | POINT(-155 -78) | false | false | ||||||||
Internal Stratigraphy and Basal Conditions at the Margins ofActive Ice Streams of the Siple Coast, Antarctica
|
9725882 |
2007-07-06 | Raymond, Charles; Nereson, Nadine A. |
|
9725882 Raymond This award is for support for a program of surface-based radio echo sounding to examine the geometry of the internal layering and the presence or absence of thawed zones outside the margins of active Ice Streams B and E and across the flow band feeding Ice Stream D. Melting in the marginal shear zone and/or on the bed outside an ice stream relates to the amount of support of the ice stream from the sides compared to the bed and the conditions that limit expansion of its width. Radar observations will be extended over the crest of adjacent inter-ice-stream ridges (B/C and D/E) and areas next to the flow band in the onset of D. The purpose is to examine internal layering indicative of the histories of these areas adjacent to ice streams and to determine whether ice streams have expanded into these presently stable areas in the past. These goals concerning the physical controls and history of ice stream width relate to how the discharge of ice streams has changed in the past and could change in the future to affect sea level. | POLYGON((-141.6722 -80.1678,-141.34195 -80.1678,-141.0117 -80.1678,-140.68145 -80.1678,-140.3512 -80.1678,-140.02095 -80.1678,-139.6907 -80.1678,-139.36045 -80.1678,-139.0302 -80.1678,-138.69995 -80.1678,-138.3697 -80.1678,-138.3697 -80.4863,-138.3697 -80.8048,-138.3697 -81.1233,-138.3697 -81.4418,-138.3697 -81.7603,-138.3697 -82.0788,-138.3697 -82.3973,-138.3697 -82.7158,-138.3697 -83.0343,-138.3697 -83.3528,-138.69995 -83.3528,-139.0302 -83.3528,-139.36045 -83.3528,-139.6907 -83.3528,-140.02095 -83.3528,-140.3512 -83.3528,-140.68145 -83.3528,-141.0117 -83.3528,-141.34195 -83.3528,-141.6722 -83.3528,-141.6722 -83.0343,-141.6722 -82.7158,-141.6722 -82.3973,-141.6722 -82.0788,-141.6722 -81.7603,-141.6722 -81.4418,-141.6722 -81.1233,-141.6722 -80.8048,-141.6722 -80.4863,-141.6722 -80.1678)) | POINT(-140.02095 -81.7603) | false | false | |||||||
Collaborative Research: Tidal Modulation of Ice Stream Flow
|
0229629 |
2007-06-14 | Anandakrishnan, Sridhar; Alley, Richard; Voigt, Donald E. | No dataset link provided | This award supports a project to investigate the new-found, startling sensitivity of two major West Antarctic ice streams to tidal oscillations to learn the extent and character of the effect and its ramifications for future ice-stream behavior. Ice streams D, C and Whillans (B) all show strong but distinct tidal signals. The ice plain of Whillans is usually stopped outright, forward motion being limited to two brief periods each day, at high tide and on the falling tide. Motion events propagate across the ice plain at seismic wave velocities. Near the mouth of D, tides cause a diurnal variation of about 50% in ice-stream speed that propagates upglacier more slowly than on Whillans, and seismic data show that C experiences even slower upglacier propagation of tidal signals. Tidal influences are observed more than 100 km upglacier on C, more than 40 km upglacier on D, and may be responsible for fluctuations in basal water pressure reported 400 km upstream on Whillans, nearly the full length of the ice stream. During the first year, the spatial extent of this behavior will be measured on Whillans Ice Stream and ice stream D by five coordinated seismic and GPS instrument packages at 100-km spacing on each ice stream. These packages will be deployed by Twin Otter at sites selected by review of satellite imagery and will operate autonomously through a combination of solar and battery power for two lunar cycles to study the sensitivity of the ice stream motion to spring and neap tides. Additionally, existing data sets will be examined further for clues to the mechanisms involved, and preliminary models will be developed to reconcile the seemingly contrasting behaviors observed on the ice streams. The second and third field seasons will examine in greater detail the tidal behavior of Whillans (year 2) and D (year 3). Work will especially focus on detailed study of at least one source area for events on Whillans, assuming that source areas inferred from preliminary data remain active. Vertical motions have not yet been detected, but differential GPS will increase our detection sensitivity. Seismic instrumentation will greatly increase temporal resolution and the ability to measure the propagation speed and any spatial heterogeneity. Modeling will be refined as more is learned from the field experiments. The project should yield numerous broader impacts. The improved knowledge of ice-stream behavior from this study will contribute to assessment of the potential for rapid ice-sheet change affecting global sea level with societal consequences. Results will be disseminated through scientific publication and talks at professional meetings, as well as contacts with the press, university classes taught by the PIs, visits to schools and community groups, and other activities. Two graduate students will be educated through the project. | POLYGON((-165 -82,-161.5 -82,-158 -82,-154.5 -82,-151 -82,-147.5 -82,-144 -82,-140.5 -82,-137 -82,-133.5 -82,-130 -82,-130 -82.2,-130 -82.4,-130 -82.6,-130 -82.8,-130 -83,-130 -83.2,-130 -83.4,-130 -83.6,-130 -83.8,-130 -84,-133.5 -84,-137 -84,-140.5 -84,-144 -84,-147.5 -84,-151 -84,-154.5 -84,-158 -84,-161.5 -84,-165 -84,-165 -83.8,-165 -83.6,-165 -83.4,-165 -83.2,-165 -83,-165 -82.8,-165 -82.6,-165 -82.4,-165 -82.2,-165 -82)) | POINT(-147.5 -83) | false | false | |||||||
Investigation of the Glacial History of the Siple Coast Using Radar-Detected Internal Layers and the Ice Core from Siple Dome
|
0229490 |
2007-04-30 | Conway, Howard; Sylvester, John; Winebrenner, Dale | No dataset link provided | This award supports a project to improve understanding of post-glacial retreat and thinning of the Siple Coast region. Research has shown how age-depth relationships from ice cores can be extrapolated over wide areas by tracking continuous radar layers. By comparing radar-derived timescales with one from a model of ice- flow, glacial conditions over regional scales were inferred. High-resolution radar profiles have been collected across most of the inter-stream ridges in the Siple Coast region, and an age- depth relationship has been established from the Siple Dome ice core. Application of the techniques used by others is problematic because the ice streams that surround Siple Dome have disrupted the continuity of the internal layers. A specific goal of this project is to search for other less direct ways to match radar layers between unconnected profiles. The correspondence between radar reflections and measurements of electrical conductivity and volcanic sulfates along the Siple Dome core will be investigated. The strategy is to search for distinctive patterns in the echoes that will facilitate layer matching. Preliminary results are encouraging: at least four distinct echoes at Siple Dome can be matched to spikes in the conductivity profile and the signature of one (at 210m depth, which is ~1,800 yrs BP) closely resembles that of a layer at ~200m on Ridge BC. Matching layers (and hence timescales) across the ice streams will allow reconstruction of spatial patterns of past flow, thinning and accumulation rate in the Siple Coast region, which is needed to predict future possible changes of the West Antarctic Ice Sheet. Data necessary for the proposed work are already available; additional fieldwork in Antarctica is not required. The project will take two years to complete and will provide core education for a doctoral student in Earth and Space Sciences, with an emphasis on radioglaciology. | None | None | false | false | |||||||
Dynamics of Ice Streams: A Physical Statistical Approach
|
0229292 |
2007-02-28 | Cressie, Noel; Jezek, Kenneth; Berliner, L. | No dataset link provided | Ice streams are believed to play a major role in determining the response of their parent ice sheet to climate change, and in determining global sea level by serving as regulators on the fresh water stored in the ice sheets. Ice streams are characterized by rapid, laterally confined flow which makes them uniquely identifiable within the body of the more slowly and more homogeneously flowing ice sheet. But while these characteristics enable the identification of ice streams, the processes which control ice-stream motion and evolution, and differences among ice streams in the polar regions, are only partially understood. Understanding the relative importance of lateral and basal drags, as well as the role of gradients in longitudinal stress, is essential for developing models for future evolution of the polar ice<br/>sheets. In this project, physical statistical models will be used to explore the processes that control ice-stream flow, and to compare these processes between seemingly different ice-stream systems. In particular, Whillans Ice Stream draining into the Ross Ice Shelf, will be compared with Recovery and RAMP glaciers draining into the Ronne-Filchner Ice Shelf, and the Northeast Ice Stream in Greenland. Geophysical models lie at the core of the approach, but are embellished by modeling various components of variability statistically. One important component comes from the uncertainty in observations on basal elevation, surface elevation, and surface velocity. In this project new observational data collected using remote-sensing techniques will be used. The various components, some of which are spatial, are combined hierarchically using Bayesian statistical methodology. All these components will be combined mathematically into a physical statistical model that yields the posterior distribution for basal, longitudinal, and lateral stress fields, and velocity fields, conditional on the data. Inference based on this distribution will be carried out via Markov chain Monte Carlo techniques, to obtain estimates of these unknown fields along with uncertainty measures associated with them. | None | None | false | false | |||||||
Collaborative Research: Characterizing the Onset of Ice Stream Flow: A Ground Geophysical Field Program
|
9814816 |
2007-02-13 | Blankenship, Donald D. | No dataset link provided | 9814816<br/>Blankenship<br/><br/>This award supports a four year project to develop of better understanding the ice streams of the Ross Sea Embayment (A--F) which drain the interior West Antarctic Ice Sheet (WAIS) by rapidly moving vast quantities of ice to the calving front of the Ross Ice Shelf. The project will examine the role of these ice streams as buffers between the interior ice and the floating ice shelves. The reasons for their fast flow, the factors controlling their current grounding-line-, margin-, and head-positions are crucial to any attempt at modeling the WAIS system and predicting the future of the ice sheet. For the Antarctic ice streams of the Siple Coast, the transition from no-sliding (or all internal deformation) to motion dominated by sliding is defined as the "onset-region". To fully understand (and adequately model) the WAIS, this onset region must be better understood. The lateral margins of the ice streams are also a transition that need better explanation. Hypotheses on controls of the location of the onset region range from the "purely-glaciologic" to the "purely-geologic. Thus, to model the ice sheet accurately, the basal boundary conditions (roughness, wetness, till properties) and a good subglacial geologic map, showing the distribution, thickness, and properties of the sedimentary basins, are required. These parameters can be estimated from seismic, radar, and other geophysical methods. The transition region of ice stream D will be studied in detail with this coupled geophysical experiment. In addition, selected other locations on ice streams C & D will be made, to compare and contrast conditions with the main site on ice stream D. Site-selection for the main camp will be based on existing radar, GPS, and satellite data as well as input from the modeling community. | POLYGON((-129 -80.5,-128.4 -80.5,-127.8 -80.5,-127.2 -80.5,-126.6 -80.5,-126 -80.5,-125.4 -80.5,-124.8 -80.5,-124.2 -80.5,-123.6 -80.5,-123 -80.5,-123 -80.55,-123 -80.6,-123 -80.65,-123 -80.7,-123 -80.75,-123 -80.8,-123 -80.85,-123 -80.9,-123 -80.95,-123 -81,-123.6 -81,-124.2 -81,-124.8 -81,-125.4 -81,-126 -81,-126.6 -81,-127.2 -81,-127.8 -81,-128.4 -81,-129 -81,-129 -80.95,-129 -80.9,-129 -80.85,-129 -80.8,-129 -80.75,-129 -80.7,-129 -80.65,-129 -80.6,-129 -80.55,-129 -80.5)) | POINT(-126 -80.75) | false | false | |||||||
Margin Migration Rates and Margin Dynamics of the Siple Coast Ice Streams
|
0086997 |
2005-03-17 | Truffer, Martin; Echelmeyer, Keith A. |
|
0086997<br/>Truffer<br/><br/>This award supports a two year project to investigate the dynamics of the marginal zone of the Siple Coast ice streams using existing velocity and temperature profiles. The flow and stress fields will be modeled using finite element methods and a thermo-mechanical model will be used to investigate the coupling of the flow and temperature fields. Direct comparison of these models with the observed velocity profiles will lead to estimates of the structure of the margins and the softening of the marginal ice. The distribution of basal and marginal shear stress will be investigated, leading to an estimate of the relative roles of the bed and the margins in the overall force balance of the ice streams. | None | None | false | false | |||||||
Collaborative Research: Relationship Between Subglacial Geology and Glacial Processes in West Antarctica: Petrological and Geochemical Analyses of Subglacial and Basal Sediments
|
0087390 |
2004-08-23 | Grunow, Anne; Vogel, Stefan |
|
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research project between the University of California-Santa Cruz, the University of Texas-Austin, and the Ohio State University to investigate sediment samples recovered from the base of the West Antarctic Ice Sheet (WAIS). West Antarctica is a remote polar region but its dynamic ice sheet, complicated tectonic history, and the sedimentary record of Cenozoic glaciation make it of particular interest to glaciologists and geologists. Glaciologists are concerned with the possibility of significant near-future changes in mass balance of the WAIS that may contribute to the ongoing global sea level rise. Geologists are investigating in West Antarctica the fundamental process of continental extension and are constructing models of a polar marine depositional system using this region as the prime modern example. The subglacial part of West Antarctica has escaped direct geological investigations and all that is known about subglacial geology comes from geophysical remote sensing. Recent acquisitions of new, high-quality geophysical data have led to generation of several enticing models. For instance, subglacial presence of high-magnitude, short-wavelength magnetic anomalies has prompted the proposition that there may be voluminous (>1 million cubic km), Late Cenozoic flood basalts beneath the ice sheet. Another important model suggests that the patterns of fast ice streaming (~100 meters/year) and slow ice motion (~1-10 meters/year) observed within the WAIS are controlled by subglacial distribution of sedimentary basins and resistant bedrock. These new geophysics-based models should be tested with direct observations because they are of such great importance to our understanding of the West Antarctic tectonic history and to our ability to predict the future behavior of the WAIS.<br/><br/>This research is designed as a pilot study to provide new geologic data, which may help to test the recent models inferred from geophysical observations. The new constraints on subglacial geology and on its interactions with the WAIS will be obtained through petrological and geochemical analyses of basal and subglacial sediments collected previously from seven localities. This investigation will take place in the context of testing the following three hypotheses: (A) the provenance of bedrock clasts in the glacial sediment samples is primarily from West Antarctica, (B) some clasts and muds from the West Antarctic subglacial sediments have been derived by erosion of the (inferred) subglacial Late Cenozoic flood basalts, and (C) the sediments underlying the West Antarctic ice streams were generated by glacial erosion of preglacial sedimentary basins but the sediments recovered from beneath the slow-moving parts of the WAIS were produced through erosion of resistant bedrock.<br/><br/>The individual hypotheses will be tested by collecting data on: (A) petrology, geochemistry and age of granitoid clasts, (B) petrology, geochemistry and age of basaltic clasts combined with mud geochemistry, and (C) clay mineralogy/paragenesis combined with textural maturity of sand and silt grains. The results of these tests will help evaluate the interesting possibility that subglacial geology may have first-order control on the patterns of fast ice flow within the WAIS. The new data will also help to determine whether the subglacial portion of West Antarctica is a Late Cenozoic flood basalt province. By combining glaciological and geological aspects of West Antarctic research the proposed collaborative project will add to the ongoing U.S. effort to create a multidisciplinary understanding of this polar region. | POLYGON((-170 -79,-164 -79,-158 -79,-152 -79,-146 -79,-140 -79,-134 -79,-128 -79,-122 -79,-116 -79,-110 -79,-110 -79.5,-110 -80,-110 -80.5,-110 -81,-110 -81.5,-110 -82,-110 -82.5,-110 -83,-110 -83.5,-110 -84,-116 -84,-122 -84,-128 -84,-134 -84,-140 -84,-146 -84,-152 -84,-158 -84,-164 -84,-170 -84,-170 -83.5,-170 -83,-170 -82.5,-170 -82,-170 -81.5,-170 -81,-170 -80.5,-170 -80,-170 -79.5,-170 -79)) | POINT(-140 -81.5) | false | false | |||||||
Corridor Aerogeophysics of the Southeastern Ross Transect Zone (CASERTZ), Antarctica
|
8919147 |
2004-03-17 | Elliot, David; Bell, Robin; Blankenship, Donald D.; Brozena, J. M.; Finn, C. A.; Hodge, S. M.; Kempf, Scott D.; Behrendt, J. C.; Morse, David L.; Peters, M. E.; Studinger, Michael S. |
|
This award will support a combined airborne radar and aeromagnetic survey of two 220 x 330 km regions between the Transantarctica Mountains and Marie Byrd Land during the 1990-91 and 1991-92 field seasons. These efforts will address significant problems identified in the Ross Transect Zone (RTZ) by the National Academy of Sciences (1986) report "Antarctic Solid Earth Sciences Research," and by the report to NSF "A Plan for a United States Program to Study the Structure and Evolution of the Antarctic Lithosphere (SEAL)." The surveys will be flown using the NSF/TUD radar and an areomagnetics system mounted in a light aircraft. The grid spacing will be 5 km and navigation will be by radiopositioning. In addition to maps of subglacial topography and magnetic intensity, attempts will be made to reconstruct the position of subglacial diffractors in three dimensions. This reconstruction should give new information about the distribution of escarpments and therefore the tectonic relationships within the region, especially when combined with the magnetic results. These experiments will be conducted by the Byrd Polar Research Center of the Ohio State University and the Water Resources and Geological Divisions of the U.S. Geological Survey. | None | None | false | false | |||||||
Ice Modelling Study of Siple Dome: WAIS Ice Dynamics, WAISCORES Paleoclimate and Ice Stream/Ice Dome Interactions
|
9420648 |
2003-09-09 | Nereson, Nadine A.; Waddington, Edwin D. |
|
This award is for support for a three year program to investigate the response of ice domes, such as Siple Dome in West Antarctica, to changing boundary conditions, for example as arising from fluctuations in thickness or position of bounding ice streams. A range of models will be used, from simple one-dimensional analytical models to coupled dynamic-thermodynamic flow models, to investigate the response of the ice dome to boundary forcing, and the record that boundary forcing can leave in the ice core record. Using radar, temperature, and ice core data from the currently funded field programs on Siple Dome, and ice flux and thickness values from the map view model as boundary conditions, a flow line across Siple Dome will be studied and possible ranges of time scales, the likely origin of ice near the bed, and the basal temperature conditions that exist now and existed in the past will be determined.The response of internal stratigraphy patterns to climate and dynamic forcing effects will be investigated and observed internal layers from ice cores will be used to infer the forcing history. | None | None | false | false | |||||||
Control of Ice-Till Interactions on Evolution and Stability of Ice Streams and Ice Sheets
|
0096302 |
2003-05-06 | MacAyeal, Douglas; Tulaczyk, Slawek | No dataset link provided | Not Available | POLYGON((-180 -62.83,-144 -62.83,-108 -62.83,-72 -62.83,-36 -62.83,0 -62.83,36 -62.83,72 -62.83,108 -62.83,144 -62.83,180 -62.83,180 -65.547,180 -68.264,180 -70.981,180 -73.698,180 -76.415,180 -79.132,180 -81.849,180 -84.566,180 -87.283,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.283,-180 -84.566,-180 -81.849,-180 -79.132,-180 -76.415,-180 -73.698,-180 -70.981,-180 -68.264,-180 -65.547,-180 -62.83)) | POINT(0 -89.999) | false | false | |||||||
Microearthquake Monitoring of Ice Stream C, West Antarctica: A Sensor for Sticky Spots
|
9318121 |
2001-12-01 | Anandakrishnan, Sridhar |
|
9318121 Anandakrishnan This award is for support for a three year project to test the hypothesis that a controlling parameter of fast ice-stream flow is the hydrologic state of discrete zones of high friction ("sticky spots") at the bed of the ice streams. Previous work has discovered an enormous difference in basal microearthquake activity between fast-flowing ice stream B and ice stream C, which stopped flowing within the last 200 years. It is hypothesized that the basal water system is lubricating the sticky spots under the fast ice stream and thus inhibiting microearthquake activity, and at the same time permitting fast ice flow. This experiment is intended to collect a continuous record of wide-bandwidth microearthquake data from a variety of sites, on the ice streams, in the transition zone, and on the inland ice. *** | None | None | false | false | |||||||
Siple Dome Glaciology and Ice Stream History
|
9316338 |
1999-01-01 | Jacobel, Robert |
|
9316338 Jacobel This award is for support for a program of glaciological studies of Siple Dome and its surroundings between Ice Streams C and D. The purpose of the work is to characterize the dynamic environment and ice stratigraphy to aid in the assessment of Siple Dome as a potential deep ice core site, and to determine whether the configuration of ice stream flow in the region was different in the past than now. The work involves measurements of the configuration and continuity of internal layers in the ice, using radar echo sounding and determination of velocity field, based on standard GPS surveying. The goals of the work are relevant to understanding the dynamics of the West Antarctic Ice Sheet (WAIS), its past history and its potential future behavior, including possible effects on global sea level. This work is a collaborative project between the University of Washington, the University of Colorado and St. Olaf College. *** | None | None | false | false |