{"dp_type": "Project", "free_text": "XBT"}
[{"awards": "2001646 Chereskin, Teresa; 1542902 Chereskin, Teresa", "bounds_geometry": "POLYGON((-68 -54,-66.7 -54,-65.4 -54,-64.1 -54,-62.8 -54,-61.5 -54,-60.2 -54,-58.9 -54,-57.6 -54,-56.3 -54,-55 -54,-55 -55,-55 -56,-55 -57,-55 -58,-55 -59,-55 -60,-55 -61,-55 -62,-55 -63,-55 -64,-56.3 -64,-57.6 -64,-58.9 -64,-60.2 -64,-61.5 -64,-62.8 -64,-64.1 -64,-65.4 -64,-66.7 -64,-68 -64,-68 -63,-68 -62,-68 -61,-68 -60,-68 -59,-68 -58,-68 -57,-68 -56,-68 -55,-68 -54))", "dataset_titles": "Joint Archive for shipboard ADCP data; World Ocean Database", "datasets": [{"dataset_uid": "200355", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "World Ocean Database", "url": "https://www.nodc.noaa.gov/OC5/SELECT/dbsearch/dbsearch.html"}, {"dataset_uid": "200354", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Joint Archive for shipboard ADCP data", "url": "https://uhslc.soest.hawaii.edu/sadcp/"}], "date_created": "Fri, 03 Mar 2023 00:00:00 GMT", "description": "The Antarctic Circumpolar Current (ACC) is the largest current on the planet, flowing west to east around Antarctica, forming a barrier that separates warmer waters to the north from colder waters to the south. Ocean eddies (like atmospheric storms) break through the ACC barrier, transferring heat across the ACC towards Antarctica. When warmer ocean waters intrude onto the Antarctic continental shelves, they contribute to glacial melt and ice shelf retreat. Over the past several decades, the Southern Ocean has warmed and winds have increased due to climate change. Somewhat surprisingly the ACC, though pushed by faster winds, has not accelerated; a faster current would present a stronger barrier to heat transfer. Instead, ocean eddies have increased. These eddies are concentrated at 6-7 \"hot spots\". Drake Passage is one of these hot spots. As the narrowest land gap on the entire circumpolar path of the ACC, Drake Passsage is an ideal monitoring spot. However, it is also one of the windiest and roughest stretches of water on the globe. The only ship that crosses Drake Passage year-round is the USAP supply vessel for Palmer Station, making it a unique platform to monitor the currents and temperature with a minimum of personnel and resources. The Drake Passage time series of upper ocean currents and temperature is now in its 24th year. The upper ocean temperature measurements have found significant warming in Drake Passage. The upper ocean current measurements have confirmed that the ACC has remained steady on average but have also revealed a complicated filamented current structure. Combining temperature and current measurements has provided a better understanding of heat transfer across the ACC by eddies. The time series has also provided valuable ground-truth for satellite measurements and for numerical model predictions looking at the entire ACC. Our studies are focused on examining low-frequency variability - seasonal, interannual, and decadal - in order to provide baselines from which to evaluate and interpret physical and biogeochemical changes occurring in the Southern Ocean. \r\n", "east": -55.0, "geometry": "POINT(-61.5 -59)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "R/V LMG; Drake Passage; WATER TEMPERATURE; Antarctic Circumpolar Current; Heat Flux", "locations": "Drake Passage", "north": -54.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Chereskin, Teresa; Sprintall, Janet", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "NCEI", "repositories": "NCEI", "science_programs": null, "south": -64.0, "title": "High Resolution Underway Air-Sea Observations in Drake Passage for Climate Science", "uid": "p0010409", "west": -68.0}, {"awards": "1341725 Guest, Peter; 1341606 Stammerjohn, Sharon; 1341717 Ackley, Stephen; 1341513 Maksym, Edward; 1543483 Sedwick, Peter", "bounds_geometry": "POLYGON((-180 -55,-177 -55,-174 -55,-171 -55,-168 -55,-165 -55,-162 -55,-159 -55,-156 -55,-153 -55,-150 -55,-150 -57.3,-150 -59.6,-150 -61.9,-150 -64.2,-150 -66.5,-150 -68.8,-150 -71.1,-150 -73.4,-150 -75.7,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -75.7,160 -73.4,160 -71.1,160 -68.8,160 -66.5,160 -64.2,160 -61.9,160 -59.6,160 -57.3,160 -55,162 -55,164 -55,166 -55,168 -55,170 -55,172 -55,174 -55,176 -55,178 -55,-180 -55))", "dataset_titles": "ASPeCt Visual Ice Observations on PIPERS Cruise NBP1704 April-June 2017; Expedition data of NBP1704; Impact of Convective Processes and Sea Ice Formation on the Distribution of Iron in the Ross Sea: Closing the Seasonal Cycle; NBP1704 CTD sensor data; NBP1704 Expedition Data; PIPERS Airborne LiDAR Data; PIPERS Meteorology Rawinsonde Data; PIPERS Meteorology Time Series; PIPERS Noble Gases; Sea Ice Layer Cakes, PIPERS 2017; SUMO unmanned aerial system (UAS) atmospheric data", "datasets": [{"dataset_uid": "601183", "doi": "10.15784/601183", "keywords": "Antarctica; Glaciology; Ice Concentration; Ice Thickness; Ice Type; NBP1704; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Sea Ice; Snow Depth; Snow/ice; Snow/Ice; Visual Observations", "people": "Ackley, Stephen", "repository": "USAP-DC", "science_program": null, "title": "ASPeCt Visual Ice Observations on PIPERS Cruise NBP1704 April-June 2017", "url": "https://www.usap-dc.org/view/dataset/601183"}, {"dataset_uid": "001363", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1704 Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1704"}, {"dataset_uid": "002663", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1704", "url": "https://www.rvdata.us/search/cruise/NBP1704"}, {"dataset_uid": "601609", "doi": "10.15784/601609", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Mass Spectrometer; NBP1704; Noble Gas; Oceans; Ross Sea; R/v Nathaniel B. Palmer", "people": "Loose, Brice", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Noble Gases", "url": "https://www.usap-dc.org/view/dataset/601609"}, {"dataset_uid": "200150", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Impact of Convective Processes and Sea Ice Formation on the Distribution of Iron in the Ross Sea: Closing the Seasonal Cycle", "url": "https://www.bco-dmo.org/project/815403"}, {"dataset_uid": "601184", "doi": "10.15784/601184 ", "keywords": "Air Temperature; Antarctica; Atmosphere; Meteorology; Near-Surface Air Temperatures; PIPERS; Radiation; Sea Ice Temperatures; Temperature; Weather Station Data; Wind Direction; Wind Speed", "people": "Guest, Peter", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Meteorology Time Series", "url": "https://www.usap-dc.org/view/dataset/601184"}, {"dataset_uid": "601185", "doi": "10.15784/601185 ", "keywords": "Air Temperature; Antarctica; Atmosphere; Atmospheric Surface Winds; Meteorology; NBP1704; PIPERS; Pressure; Radiosonde; Rawinsonde; Relative Humidity; Ross Sea; R/v Nathaniel B. Palmer; Wind Direction; Wind Speed", "people": "Guest, Peter", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Meteorology Rawinsonde Data", "url": "https://www.usap-dc.org/view/dataset/601185"}, {"dataset_uid": "601188", "doi": "10.15784/601188", "keywords": "Aerogeophysics; Airborne Laser Altimetry; Antarctica; LIDAR; PIPERS; Ross Sea; Sea Ice", "people": "Bell, Robin; Dhakal, Tejendra; Xie, Hongjie; Bertinato, Christopher; Locke, Caitlin", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Airborne LiDAR Data", "url": "https://www.usap-dc.org/view/dataset/601188"}, {"dataset_uid": "601191", "doi": "10.15784/601191", "keywords": "Air Temperature; Antarctica; Atmosphere; Meteorology; NBP1704; PIPERS; R/v Nathaniel B. Palmer; Southern Ocean; Temperature Profiles; UAV; Unmanned Aircraft", "people": "Cassano, John", "repository": "USAP-DC", "science_program": null, "title": "SUMO unmanned aerial system (UAS) atmospheric data", "url": "https://www.usap-dc.org/view/dataset/601191"}, {"dataset_uid": "601207", "doi": "10.15784/601207", "keywords": "Antarctica; Digital Elevation Model; Glaciology; Ice; Ice Thickness; Ice Thickness Distribution; LIDAR; NBP1704; PIPERS; Ross Sea; R/v Nathaniel B. Palmer; Sea Ice; Snow; Snow Depth; Surface Elevation", "people": "Maksym, Edward; Mei, M. Jeffrey; Jeffrey Mei, M.", "repository": "USAP-DC", "science_program": null, "title": "Sea Ice Layer Cakes, PIPERS 2017", "url": "https://www.usap-dc.org/view/dataset/601207"}, {"dataset_uid": "601422", "doi": "10.15784/601422", "keywords": "Antarctica; CTD; CTD Data; NBP1704; Ocean Profile Data; Ross Sea; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Stammerjohn, Sharon", "repository": "USAP-DC", "science_program": null, "title": "NBP1704 CTD sensor data", "url": "https://www.usap-dc.org/view/dataset/601422"}], "date_created": "Mon, 10 Jun 2019 00:00:00 GMT", "description": "The one place on Earth consistently showing increases in sea ice area, duration, and concentration is the Ross Sea in Antarctica. Satellite imagery shows about half of the Ross Sea increases are associated with changes in the austral fall, when the new sea ice is forming. The most pronounced changes are also located near polynyas, which are areas of open ocean surrounded by sea ice. To understand the processes driving the sea ice increase, and to determine if the increase in sea ice area is also accompanied by a change in ice thickness, this project will conduct an oceanographic cruise to the polynyas of the Ross Sea in April and May, 2017, which is the austral fall. The team will deploy state of the art research tools including unmanned airborne systems (UASs, commonly called drones), autonomous underwater vehicles (AUVs), and remotely operated underwater vehicles (ROVs). Using these tools and others, the team will study atmospheric, oceanic, and sea ice properties and processes concurrently. A change in sea ice production will necessarily change the ocean water below, which may have significant consequences for global ocean circulation patterns, a topic of international importance. All the involved institutions will be training students, and all share the goal of expanding climate literacy in the US, emphasizing the role high latitudes play in the Earth\u0027s dynamic climate.\u003cbr/\u003e\u003cbr/\u003eThe main goal of the project is to improve estimates of sea ice production and water mass transformation in the Ross Sea. The team will fully capture the spatial and temporal changes in air-ice-ocean interactions when they are initiated in the austral fall, and then track the changes into the winter and spring using ice buoys, and airborne mapping with the newly commissioned IcePod instrument system, which is deployed on the US Antarctic Program\u0027s LC-130 fleet. The oceanographic cruise will include stations in and outside of both the Terra Nova Bay and Ross Ice Shelf polynyas. Measurements to be made include air-sea boundary layer fluxes of heat, freshwater, and trace gases, radiation, and meteorology in the air; ice formation processes, ice thickness, snow depth, mass balance, and ice drift within the sea ice zone; and temperature, salinity, and momentum in the ocean below. Following collection of the field data, the team will improve both model parameterizations of air-sea-ice interactions and remote sensing algorithms. Model parameterizations are needed to determine if sea-ice production has increased in crucial areas, and if so, why (e.g., stronger winds or fresher oceans). The remote sensing validation will facilitate change detection over wider areas and verify model predictions over time. Accordingly this project will contribute to the international Southern Ocean Observing System (SOOS) goal of measuring essential climate variables continuously to monitor the state of the ocean and ice cover into the future.", "east": -150.0, "geometry": "POINT(-175 -66.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LIDAR; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "OCEAN MIXED LAYER; TRACE ELEMENTS; CARBON DIOXIDE; ATMOSPHERIC RADIATION; ICE GROWTH/MELT; AMD; BOUNDARY LAYER TEMPERATURE; SULFUR COMPOUNDS; NBP1704; HEAT FLUX; ICE DEPTH/THICKNESS; R/V NBP; USA/NSF; BOUNDARY LAYER WINDS; SNOW DEPTH; VERTICAL PROFILES; METHANE; POLYNYAS; CONDUCTIVITY; SEA ICE; Ross Sea; WATER MASSES; TURBULENCE; USAP-DC; Amd/Us", "locations": "Ross Sea", "north": -55.0, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Ackley, Stephen; Bell, Robin; Weissling, Blake; Nuss, Wendell; Maksym, Edward; Stammerjohn, Sharon; Cassano, John; Guest, Peter; Sedwick, Peter; Xie, Hongjie", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "BCO-DMO; R2R; USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica", "uid": "p0010032", "west": 160.0}, {"awards": "1543380 Shadwick, Elizabeth", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG1704", "datasets": [{"dataset_uid": "002732", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1704", "url": "https://www.rvdata.us/search/cruise/LMG1704"}, {"dataset_uid": "001364", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1704"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "Interest in the reduced alkalinity of high latitude waters under conditions of enhanced CO2 uptake from the atmosphere have been the impetus of numerous recent studies of bio-stressors in the polar marine environment. The project seeks to improve our understanding of the variance of coastal Southern Ocean carbonate species (CO2 system), its diurnal and inter-annual variability, by acquiring autonomous, high frequency observations from an Antarctic coastal mooring(s). \u003cbr/\u003e\u003cbr/\u003eA moored observing system co-located within the existing Palmer LTER array will measure pH, CO2 partial pressure, temperature, salinity and dissolved oxygen with 3-hour frequency in this region of the West Antarctic Peninsula continental shelf. Such observations will help estimate the dominant physical and biological controls on the seasonal variations in the CO2 system in coastal Antarctic waters, including the sign, seasonality and the flux of the net annual air-sea exchange of carbon dioxide. The Palmer LTER site is experiencing rapid ecological change in the West Antarctic Peninsula, a region that is warming at rates faster than any other region of coastal Antarctica.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V LMG; LMG1704", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Shadwick, Elizabeth; Shadwick, Elizabeth", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Resolving CO2 System Seasonality in the West Antarctic Peninsula with Autonomous Observations", "uid": "p0000875", "west": null}, {"awards": "1245703 Manahan, Donal", "bounds_geometry": "POLYGON((-68.0574 -52.7267,-67.39775 -52.7267,-66.7381 -52.7267,-66.07845 -52.7267,-65.4188 -52.7267,-64.75915 -52.7267,-64.0995 -52.7267,-63.43985 -52.7267,-62.7802 -52.7267,-62.12055 -52.7267,-61.4609 -52.7267,-61.4609 -53.95849,-61.4609 -55.19028,-61.4609 -56.42207,-61.4609 -57.65386,-61.4609 -58.88565,-61.4609 -60.11744,-61.4609 -61.34923,-61.4609 -62.58102,-61.4609 -63.81281,-61.4609 -65.0446,-62.12055 -65.0446,-62.7802 -65.0446,-63.43985 -65.0446,-64.0995 -65.0446,-64.75915 -65.0446,-65.4188 -65.0446,-66.07845 -65.0446,-66.7381 -65.0446,-67.39775 -65.0446,-68.0574 -65.0446,-68.0574 -63.81281,-68.0574 -62.58102,-68.0574 -61.34923,-68.0574 -60.11744,-68.0574 -58.88565,-68.0574 -57.65386,-68.0574 -56.42207,-68.0574 -55.19028,-68.0574 -53.95849,-68.0574 -52.7267))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001372", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1606"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "This project will support two training courses that will introduce early-career scientists from a wide range of disciplinary backgrounds to key issues in polar science, and especially to provide the opportunity to gain hands-on experience in Antarctic field activities. Antarctica is an ideal location to study a wide variety of questions in biology. However, few students and early-career scientists have the opportunity to work on-site in Antarctica unless they are directly associated with a senior scientist who has a funded Antarctic project. The project will further the NSF goal of training new generations of scientists by providing hands-on training in Antarctica during one course at Palmer Station in 2016 and another at McMurdo Station in 2018. This represents a continuation of nine previous courses at McMurdo Station which have a proven record of introducing participants to Antarctic science under realistic field conditions, providing opportunities to understand and appreciate the complexities and logistical challenges of undertaking science in Antarctica, enhancing the professional careers of the participants, and increasing international collaborations for early-career scientists.\u003cbr/\u003e\u003cbr/\u003eThe proposed training courses will be open to Ph.D. students and post-doctoral scientists who have interests in the study of Antarctic marine organisms to help prepare them for success in developing their own independent research programs in polar regions. Long-standing and recent questions in evolution and ecology of Antarctic organisms will be examined with 1) field collections, 2) physiological experiments on whole organisms, 3) studies of isolated cells and tissues, 4) experiments on macromolecular processes (e.g., enzymes), and 5) molecular biological analyses.", "east": -61.4609, "geometry": "POINT(-64.75915 -58.88565)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V LMG; LMG1606", "locations": null, "north": -52.7267, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Manahan, Donal", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.0446, "title": "Collaborative Research: Biological Adaptations to Environmental Change in Antarctica - An Advanced Training Program for Early Career Scientists", "uid": "p0000392", "west": -68.0574}, {"awards": "1043454 Kooyman, Gerald", "bounds_geometry": "POLYGON((-172.642 -72.55,-170.9074 -72.55,-169.1728 -72.55,-167.4382 -72.55,-165.7036 -72.55,-163.969 -72.55,-162.2344 -72.55,-160.4998 -72.55,-158.7652 -72.55,-157.0306 -72.55,-155.296 -72.55,-155.296 -73.0743,-155.296 -73.5986,-155.296 -74.1229,-155.296 -74.6472,-155.296 -75.1715,-155.296 -75.6958,-155.296 -76.2201,-155.296 -76.7444,-155.296 -77.2687,-155.296 -77.793,-157.0306 -77.793,-158.7652 -77.793,-160.4998 -77.793,-162.2344 -77.793,-163.969 -77.793,-165.7036 -77.793,-167.4382 -77.793,-169.1728 -77.793,-170.9074 -77.793,-172.642 -77.793,-172.642 -77.2687,-172.642 -76.7444,-172.642 -76.2201,-172.642 -75.6958,-172.642 -75.1715,-172.642 -74.6472,-172.642 -74.1229,-172.642 -73.5986,-172.642 -73.0743,-172.642 -72.55))", "dataset_titles": "NBP1302 data; Pre and Post Molt Biology of Emperor Penguins - Oden Trans - Ross / Amundsen Sea Cruise", "datasets": [{"dataset_uid": "600149", "doi": "10.15784/600149", "keywords": "Amundsen Sea; Biota; Oceans; Penguin; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Kooyman, Gerald", "repository": "USAP-DC", "science_program": null, "title": "Pre and Post Molt Biology of Emperor Penguins - Oden Trans - Ross / Amundsen Sea Cruise", "url": "https://www.usap-dc.org/view/dataset/600149"}, {"dataset_uid": "000179", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1302 data", "url": "https://www.rvdata.us/search/cruise/NBP1302"}], "date_created": "Sat, 12 Dec 2015 00:00:00 GMT", "description": "The emperor penguin dives deeper and longer, fasts longer, and endures the harshest weather conditions of all diving birds. It spends about four and half months per annum deep in Antarctic pack ice away from shore and stations, and thus is largely unavailable for study. This time includes preparation for the molt, and travel to the colony to breed, a time period in which great swings in body weight occur. This study will fill an important gap in what we know about the biology of the annual cycle of the emperor by examining the molt-post molt period. The P.I. proposes to traverse the Amundsen and Bellingshausen seas on the Oden, to locate and tag emperor penguins during the molt season. The objectives are to (1) Place satellite tags on 20 adult post molt birds to determine their route, rate of travel, and diving behavior as they return back to their breeding colonies, (2) Obtain an index of body condition, (3) Collect guano to determine the type of food consumed by emperor penguins in the region, (4) Conduct shipboard surveys to sight and plot the location and abundance of adult and juvenile birds on the ship\u0027s track. The PI hypothesizes that bird dives will be shallow during the initial post-molt phase, and that food will consist primarily of krill; that there will be differential dispersal of birds from the Ross Sea vs. Marie Byrd Land, with Ross Sea birds traveling farther; and that the greatest adult mortality occurs during the molt and early post molt period. Broader impacts include training of a post doc, a graduate student, and an aquarium volunteer. The P.I. also will present findings through a website, through public lectures, and in collaboration with the Birch aquarium.", "east": -155.296, "geometry": "POINT(-163.969 -75.1715)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "R/V NBP; Not provided", "locations": null, "north": -72.55, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Kooyman, Gerald", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -77.793, "title": "Pre and post molt biology of emperor penguins - Oden trans - Ross / Amundsen Sea cruise", "uid": "p0000325", "west": -172.642}, {"awards": "0632282 Jacobs, Stanley", "bounds_geometry": "POLYGON((-129.6 -54.2,-124.44 -54.2,-119.28 -54.2,-114.12 -54.2,-108.96 -54.2,-103.8 -54.2,-98.64 -54.2,-93.48 -54.2,-88.32 -54.2,-83.16 -54.2,-78 -54.2,-78 -56.29,-78 -58.38,-78 -60.47,-78 -62.56,-78 -64.65,-78 -66.74,-78 -68.83,-78 -70.92,-78 -73.01,-78 -75.1,-83.16 -75.1,-88.32 -75.1,-93.48 -75.1,-98.64 -75.1,-103.8 -75.1,-108.96 -75.1,-114.12 -75.1,-119.28 -75.1,-124.44 -75.1,-129.6 -75.1,-129.6 -73.01,-129.6 -70.92,-129.6 -68.83,-129.6 -66.74,-129.6 -64.65,-129.6 -62.56,-129.6 -60.47,-129.6 -58.38,-129.6 -56.29,-129.6 -54.2))", "dataset_titles": "Amundsen Sea Continental Shelf Mooring Data (2006-2007); Calibrated Hydrographic Data acquired with a LADCP from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901; NBP07-09 cruise data; NBP07-09 processed CTD data; NBP09-01 cruise data; NBP09-01 processed CTD data; Processed Temperature, Salinity, and Current Measurement Data from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901", "datasets": [{"dataset_uid": "000129", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP09-01 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP0901"}, {"dataset_uid": "601809", "doi": "10.15784/601809", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Mooring; Ocean Currents; Pressure; Salinity; Temperature", "people": "Jacobs, Stanley; Giulivi, Claudia F.", "repository": "USAP-DC", "science_program": null, "title": "Amundsen Sea Continental Shelf Mooring Data (2006-2007)", "url": "https://www.usap-dc.org/view/dataset/601809"}, {"dataset_uid": "000127", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP07-09 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP0709"}, {"dataset_uid": "601349", "doi": null, "keywords": "Amundsen Sea; Antarctica; Current Measurements; LADCP; NBP0901; Oceans; Physical Oceanography; Pine Island Bay; R/v Nathaniel B. Palmer; Southern Ocean", "people": "Thurnherr, Andreas", "repository": "USAP-DC", "science_program": null, "title": "Calibrated Hydrographic Data acquired with a LADCP from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901", "url": "https://www.usap-dc.org/view/dataset/601349"}, {"dataset_uid": "000130", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "NBP09-01 processed CTD data", "url": "http://accession.nodc.noaa.gov/0071179"}, {"dataset_uid": "000128", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "NBP07-09 processed CTD data", "url": "http://accession.nodc.noaa.gov/0120761"}, {"dataset_uid": "601350", "doi": null, "keywords": "Amundsen Sea; Antarctic; Antarctica; CTD; CTD Data; Current Measurements; NBP0901; Oceans; Physical Oceanography; Pine Island Bay; Pine Island Glacier; R/v Nathaniel B. Palmer; Salinity; Southern Ocean; Temperature", "people": "Huber, Bruce; Jacobs, Stanley", "repository": "USAP-DC", "science_program": null, "title": "Processed Temperature, Salinity, and Current Measurement Data from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901", "url": "https://www.usap-dc.org/view/dataset/601350"}], "date_created": "Fri, 25 Sep 2015 00:00:00 GMT", "description": "The Office of Polar Programs, Antarctic Science Division, Ocean \u0026 Climate Systems Program has made this award to support a multidisciplinary effort to study the upwelling of relatively warm deep water onto the Amundsen Sea continental shelf and how it relates to atmospheric forcing and bottom bathymetry and how the warm waters interact with both glacial and sea ice. This study constitutes a contribution of a coordinated research effort in the region known as the Amundsen Sea Embayment Project or ASEP. Previous work by the PI and others has shown that the West Antarctic Ice Sheet has been found to be melting faster, perhaps by orders of magnitude, than ice sheets elsewhere around Antarctica, excluding those on the Peninsula. Submarine channels that incise the continental shelf are thought to provide fairly direct access of relatively warm circum polar deep water to the cavity under the floating extension of the ice shelf. Interactions with sea ice en route can modify the upwelled waters. The proposed investigations build on previous efforts by the PI and colleagues to use hydrographic measurements to put quantitative bounds on the rate of glacial ice melt by relatively warm seawater. \u003cbr/\u003eThe region can be quite difficult to access due to sea ice conditions and previous hydrographic measurements have been restricted to the austral summer time frame. In this project it was proposed to obtain the first austral spring hydrographic data via CTD casts and XBT drops (September-October 2007) as part of a separately funded cruise (PI Steve Ackley) the primary focus of which is sea-ice conditions to be studied while the RV Nathanial B Palmer (RV NBP) drifts in the ice pack. This includes opportunistic sampling for pCO2 and TCO2. A dedicated cruise in austral summer 2009 will follow this opportunity. The principal objectives of the dedicated field program are to deploy a set of moorings with which to characterize temporal variability in warm water intrusions onto the shelf and to conduct repeat hydrographic surveying and swath mapping in targeted areas, ice conditions permitting. Automatic weather stations are to be deployed in concert with the program, sea-ice observations will be undertaken from the vessel and the marine cavity beneath the Pine Island may be explored pending availability of the British autonomous underwater vehicle Autosub 3. These combined ocean-sea ice-atmosphere observations are aimed at a range of model validations. A well-defined plan for making data available as well as archiving in a timely fashion should facilitate a variety of modeling efforts and so extend the value of the spatially limited observations. \u003cbr/\u003eBroader impacts: This project is relevant to an International Polar Year research emphasis on ice sheet dynamics focusing in particular on the seaward ocean-ice sheet interactions. Such interactions must be clarified for understanding the potential for sea level rise by melt of the West Antarctic ice Sheet. The project entails substantive international partnerships (British Antarctic Survey and Alfred Wegner Institute) and complements other Amundsen Sea Embayment Project proposals covering other elements of ice sheet dynamics. The proposal includes partial support for 2 graduate students and 2 post docs. Participants from the Antarctic Artists and Writers program are to take part in the cruise and so aid in outreach. In addition, the project is to be represented in the Lamont-Doherty annual open house.", "east": -78.0, "geometry": "POINT(-103.8 -64.65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": true, "keywords": "Not provided; R/V NBP", "locations": null, "north": -54.2, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jacobs, Stanley; Hellmer, Hartmut; Jenkins, Adrian", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "NCEI; R2R; USAP-DC", "science_programs": null, "south": -75.1, "title": "Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise - IPY/ASEP", "uid": "p0000332", "west": -129.6}, {"awards": "1142097 Bochdansky, Alexander; 1142065 DiTullio, Giacomo; 1142044 Dunbar, Robert; 1142117 Hansell, Dennis", "bounds_geometry": "POLYGON((165 -52,166 -52,167 -52,168 -52,169 -52,170 -52,171 -52,172 -52,173 -52,174 -52,175 -52,175 -54.65,175 -57.3,175 -59.95,175 -62.6,175 -65.25,175 -67.9,175 -70.55,175 -73.2,175 -75.85,175 -78.5,174 -78.5,173 -78.5,172 -78.5,171 -78.5,170 -78.5,169 -78.5,168 -78.5,167 -78.5,166 -78.5,165 -78.5,165 -75.85,165 -73.2,165 -70.55,165 -67.9,165 -65.25,165 -62.6,165 -59.95,165 -57.3,165 -54.650000000000006,165 -52))", "dataset_titles": "Carbon chemistry from CTD; Deployment: NBP1302; NBP1302 data; Video Particle Profiler (VPP) and Digital Inline Holographic Microscopy (DIHM) data from cruise NBP1302", "datasets": [{"dataset_uid": "000221", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Deployment: NBP1302", "url": "http://www.bco-dmo.org/deployment/547873"}, {"dataset_uid": "000220", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Carbon chemistry from CTD", "url": "http://www.bco-dmo.org/dataset/658394"}, {"dataset_uid": "000179", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1302 data", "url": "https://www.rvdata.us/search/cruise/NBP1302"}, {"dataset_uid": "600388", "doi": "10.15784/600388", "keywords": "Antarctica; Biota; Holographic Microscopy; Oceans; Photo/video; Photo/Video; Phytoplankton; Ross Sea; Sample/collection Description; Sample/Collection Description; Southern Ocean; Video Particle Profiler", "people": "Bochdansky, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Video Particle Profiler (VPP) and Digital Inline Holographic Microscopy (DIHM) data from cruise NBP1302", "url": "https://www.usap-dc.org/view/dataset/600388"}], "date_created": "Wed, 26 Aug 2015 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eSinking particles are a major element of the biological pump and they are commonly assigned to two fates: mineralization in the water column and accumulation at the seafloor. However, there is another fate of export hidden within the vertical decline of carbon, the transformation of sinking organic matter to fine suspended and/or dissolved organic fractions. This process has been suggested but has rarely been observed or quantified. As a result, it is presumed that the solubilized fraction is largely mineralized over short time scales. However, global ocean surveys of dissolved organic carbon are demonstrating a significant water column accumulation of organic matter under high productivity environments. This proposal will investigate the transformation of organic particles from sinking to solubilized phases of the export flux in the Ross Sea. The Ross Sea experiences high export particle production, low dissolved organic carbon export with overturning circulation, and the area has a predictable succession of production and export events. In addition, the basin is shallow (\u003c 000 m) so the products the PIs will target are relatively concentrated. To address the proposed hypothesis, the PIs will use both well-established and novel biochemical and optical measures of export production and its fate. The outcomes of this work will help researchers close the carbon budget in the Ross Sea.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis research will support graduate and undergraduate students and will provide undergraduates and pre-college students with field-based research experience. Scientifically, this research will increase understanding of carbon sinks in the Ross Sea and will help develop new tools for identifying, quantifying, and tracking that carbon. The PIs will interface with K-12 students through daily reports from the field and through educational modules developed by several of the PIs in collaboration with science education specialists and college students. A K-12 educator will be included on the research cruises. Outreach will be through COSEE Florida and the Maritime Center in Norfolk, VA.", "east": 175.0, "geometry": "POINT(170 -65.25)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e DIHM; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "Not provided; NBP1302; Phaeocystis; R/V NBP", "locations": null, "north": -52.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Bochdansky, Alexander; Dunbar, Robert; DiTullio, Giacomo; Ditullio, Giacomo; Harry, Dennis L.; HANSELL, DENNIS", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "BCO-DMO", "repositories": "BCO-DMO; R2R; USAP-DC", "science_programs": null, "south": -78.5, "title": "Collaborative research: TRacing the fate of Algal Carbon Export in the Ross Sea (TRACERS)", "uid": "p0000307", "west": 165.0}, {"awards": "0944254 Smith, Walker; 0944165 McGillicuddy, Dennis", "bounds_geometry": "POLYGON((168 -65,168.2 -65,168.4 -65,168.6 -65,168.8 -65,169 -65,169.2 -65,169.4 -65,169.6 -65,169.8 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,169.8 -65,169.6 -65,169.4 -65,169.2 -65,169 -65,168.8 -65,168.6 -65,168.4 -65,168.2 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65))", "dataset_titles": "Data from expdition NBP1201; Expedition Data; Project data: Processes Regulating Iron Supply at the Mesoscale - Ross Sea", "datasets": [{"dataset_uid": "001442", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1201"}, {"dataset_uid": "000156", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Data from expdition NBP1201", "url": "http://www.bco-dmo.org/deployment/506350"}, {"dataset_uid": "000155", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Project data: Processes Regulating Iron Supply at the Mesoscale - Ross Sea", "url": "http://www.bco-dmo.org/project/2155"}], "date_created": "Wed, 08 Jul 2015 00:00:00 GMT", "description": "The Ross Sea continental shelf is one of the most productive areas in the Southern Ocean, and may comprise a significant, but unaccounted for, oceanic CO2 sink, largely driven by phytoplankton production. The processes that control the magnitude of primary production in this region are not well understood, but data suggest that iron limitation is a factor. Field observations and model simulations indicate four potential sources of dissolved iron to surface waters of the Ross Sea: (1) circumpolar deep water intruding from the shelf edge; (2) sediments on shallow banks and nearshore areas; (3) melting sea ice around the perimeter of the polynya; and (4) glacial meltwater from the Ross Ice Shelf. The principal investigators hypothesize that hydrodynamic transport via mesoscale currents, fronts, and eddies facilitate the supply of dissolved iron from these four sources to the surface waters of the Ross Sea polynya. These hypotheses will be tested through a combination of in situ observations and numerical modeling, complemented by satellite remote sensing. In situ observations will be obtained during a month-long cruise in the austral summer. The field data will be incorporated into model simulations, which allow quantification of the relative contributions of the various hypothesized iron supply mechanisms, and assessment of their impact on primary production. The research will provide new insights and a mechanistic understanding of the complex oceanographic phenomena that regulate iron supply, primary production, and biogeochemical cycling. The research will thus form the basis for predictions about how this system may change in a warming climate. The broader impacts include training of graduate and undergraduate students, international collaboration, and partnership with several ongoing outreach programs that address scientific research in the Southern Ocean. The research also will contribute to the goals of the international research programs ICED (Integrated Climate and Ecosystem Dynamics) and GEOTRACES (Biogeochemical cycling and trace elements in the marine environment).", "east": 170.0, "geometry": "POINT(169 -65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "R/V NBP; Not provided", "locations": null, "north": -65.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Walker; McGillicuddy, Dennis", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "BCO-DMO; R2R", "science_programs": null, "south": -65.0, "title": "Collaborative Research: Impact of Mesoscale Processes on Iron Supply and Phytoplankton Dynamics in the Ross Sea", "uid": "p0000330", "west": 168.0}, {"awards": "1044982 Bucklin, Ann", "bounds_geometry": "POLYGON((-69.3804 -52.760597,-67.79698 -52.760597,-66.21356 -52.760597,-64.63014 -52.760597,-63.04672 -52.760597,-61.4633 -52.760597,-59.87988 -52.760597,-58.29646 -52.760597,-56.71304 -52.760597,-55.12962 -52.760597,-53.5462 -52.760597,-53.5462 -53.9928073,-53.5462 -55.2250176,-53.5462 -56.4572279,-53.5462 -57.6894382,-53.5462 -58.9216485,-53.5462 -60.1538588,-53.5462 -61.3860691,-53.5462 -62.6182794,-53.5462 -63.8504897,-53.5462 -65.0827,-55.12962 -65.0827,-56.71304 -65.0827,-58.29646 -65.0827,-59.87988 -65.0827,-61.4633 -65.0827,-63.04672 -65.0827,-64.63014 -65.0827,-66.21356 -65.0827,-67.79698 -65.0827,-69.3804 -65.0827,-69.3804 -63.8504897,-69.3804 -62.6182794,-69.3804 -61.3860691,-69.3804 -60.1538588,-69.3804 -58.9216485,-69.3804 -57.6894382,-69.3804 -56.4572279,-69.3804 -55.2250176,-69.3804 -53.9928073,-69.3804 -52.760597))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001445", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1110"}], "date_created": "Wed, 17 Jun 2015 00:00:00 GMT", "description": "The proposed research targets the molecular genetics of salps, an increasingly important member of the zooplankton in Antarctic waters who\u0027s dominance appears to be related to climate warming and sea ice loss. Specifically the research will examine genome-wide patterns of gene expression, target gene expression levels, and patterns of population genetic diversity and structure underlying the complex life history and population dynamics of S. thompsoni. The P.I.s hypothesize that (1) deep analysis of the Salpa thompsoni transcriptome will reveal significant associations among selected set of differentially expressed genes and critical life history stages and events (e.g., ontogenetic maturation, sexual reproduction, senescence) of the salp; and 2) the species will show variable levels of clonal diversity and significant genetic differentiation among populations in different regions of the Southern Ocean. Broader impacts include training of two graduate students; inclusion of undergraduates in research, and in a formal training workshop; development of a summer workshop for high school teachers in collaboration with Connecticut Sea Grant; and public outreach via postings on the Census of Marine Zooplankton homepage.", "east": -53.5462, "geometry": "POINT(-61.4633 -58.9216485)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "PLANKTON; Antarctic Peninsula; R/V LMG", "locations": "Antarctic Peninsula", "north": -52.760597, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bucklin, Ann", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.0827, "title": "Population ecology of Salpa thompsoni based on molecular indicators", "uid": "p0000508", "west": -69.3804}, {"awards": "1141890 Huber, Bruce", "bounds_geometry": "POLYGON((-62.176502 -57.913998,-61.4764715 -57.913998,-60.776441 -57.913998,-60.0764105 -57.913998,-59.37638 -57.913998,-58.6763495 -57.913998,-57.976319 -57.913998,-57.2762885 -57.913998,-56.576258 -57.913998,-55.8762275 -57.913998,-55.176197 -57.913998,-55.176197 -58.6469082,-55.176197 -59.3798184,-55.176197 -60.1127286,-55.176197 -60.8456388,-55.176197 -61.578549,-55.176197 -62.3114592,-55.176197 -63.0443694,-55.176197 -63.7772796,-55.176197 -64.5101898,-55.176197 -65.2431,-55.8762275 -65.2431,-56.576258 -65.2431,-57.2762885 -65.2431,-57.976319 -65.2431,-58.6763495 -65.2431,-59.37638 -65.2431,-60.0764105 -65.2431,-60.776441 -65.2431,-61.4764715 -65.2431,-62.176502 -65.2431,-62.176502 -64.5101898,-62.176502 -63.7772796,-62.176502 -63.0443694,-62.176502 -62.3114592,-62.176502 -61.578549,-62.176502 -60.8456388,-62.176502 -60.1127286,-62.176502 -59.3798184,-62.176502 -58.6469082,-62.176502 -57.913998))", "dataset_titles": "Expedition Data of NBP1203; Processed CTD Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203; Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203", "datasets": [{"dataset_uid": "601347", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Current Measurements; LADCP; LARISSA; Larsen Ice Shelf; NBP1203; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer", "people": "Huber, Bruce; Gordon, Arnold", "repository": "USAP-DC", "science_program": null, "title": "Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203", "url": "https://www.usap-dc.org/view/dataset/601347"}, {"dataset_uid": "001438", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP1203", "url": "https://www.rvdata.us/search/cruise/NBP1203"}, {"dataset_uid": "601348", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; CTD; CTD Data; LARISSA; Larsen Ice Shelf; NBP1203; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Gordon, Arnold; Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Processed CTD Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203", "url": "https://www.usap-dc.org/view/dataset/601348"}], "date_created": "Wed, 17 Jun 2015 00:00:00 GMT", "description": "Time series data, from ocean moorings, on key aspects of evolving ocean properties are of considerable importance in assessing the condition of the ocean system. They are needed, for example, their understand how the oceans are warming, and how they continue to uptake greenhouse gases such as CO2. \u003cbr/\u003e\u003cbr/\u003eThe Cape Adare Long Term Mooring (CALM) program goal was to observe the bottom water export from the Ross Sea to the deep ocean. To accomplish this two instrumented moorings were set on the continental slope off Cape Adare (western Ross Sea, Antarctica), positioned to capture the export of Antarctic Bottom Water (AABW), some of the coldest and densest water found in the global ocean. Data records for the moorings spans over some four years in this very remote part of the ocean. The CALM analysis will address some specific objectives:\u003cbr/\u003e? Characterize the temperature, salinity and current variability associated with the Ross Sea AABW export.\u003cbr/\u003e? Examine the linkages between observed variability to regional tides, atmosphere and sea ice forcing.\u003cbr/\u003e? Relate the Ross Sea AABW export fluctuations to the larger scale climate system dynamics, such as ENSO and SAM, and to AABW formation along other margins of Antarctica, e.g. the Weddell Sea", "east": -55.176197, "geometry": "POINT(-58.6763495 -61.578549)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -57.913998, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Huber, Bruce; Vernet, Maria", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -65.2431, "title": "Cape Adare Long Term Moorings (CALM): Analysis Phase", "uid": "p0000495", "west": -62.176502}, {"awards": "1142107 Durbin, Edward", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP1304", "datasets": [{"dataset_uid": "002660", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1304", "url": "https://www.rvdata.us/search/cruise/NBP1304"}], "date_created": "Fri, 07 Feb 2014 00:00:00 GMT", "description": "Krill, Euphausia superba, is a keystone species in the Antarctic ecosystem and provides the trophic link between microscopic plankton and charismatic megafauna such as penguins and whales. Recent evidence suggests krill may not be exclusively planktonivorous, which introduces the potential of new pathways of carbon flux through krill based ecosystems. A change in our view of krill from one of being herbivores to omnivores opens up several questions.\u003cbr/\u003e\u003cbr/\u003eClimate induced change in the extent, thickness and duration of overlying sea ice coverage is expected to change the prey fields available to krill, and to have subsequent effects on the suite of predators supported by krill. The nature of this benthic prey?krill link, which may be crucial in those parts of the seasonal cycle other than the well studied spring bloom, is yet to be determined. DNA techniques will be used to identify and quantify the prey organisms. \u003cbr/\u003e\u003cbr/\u003eThis project will measure the in situ feeding ecology and behavior of krill and, ultimately, the success of this key species. An overall goal is\u003cbr/\u003eto investigate seasonal changes in Euphausia superba in-situ feeding and swimming behavior in the Wilhelmina Bay region of the Western Antarctic Peninsula (WAP) area, known to be a region of changing climate. Understanding the biological impacts of climate change is important to societal and economic goals. The project scientists will additionally team with a marine and environmental reporting group to design presentations for an annual journalist meeting.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Durbin, Edward", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Seasonal Trophic Roles of Euphausia Superba (STRES)", "uid": "p0000848", "west": null}, {"awards": "1043745 Halanych, Kenneth", "bounds_geometry": null, "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "000439", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1312"}, {"dataset_uid": "001427", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1210"}], "date_created": "Fri, 07 Feb 2014 00:00:00 GMT", "description": "The research will explore the genetics, diversity, and biogeography of Antarctic marine benthic invertebrates, seeking to overturn the widely accepted suggestion that benthic fauna do not constitute a large, panmictic population. The investigators will sample adults and larvae from undersampled regions of West Antarctica that, combined with existing samples, will provide significant coverage of the western hemisphere of the Southern Ocean. The objectives are: 1) To assess the degree of genetic connectivity (or isolation) of benthic invertebrate species in the Western Antarctic using high-resolution genetic markers. 2) To begin exploring planktonic larvae spatial and bathymetric distributions for benthic shelf invertebrates in the Bellinghausen, Amundsen and Ross Seas. 3) To continue to develop a Marine Antarctic Genetic Inventory (MAGI) that relates larval and adult forms via DNA barcoding. Broader impacts include traditional forms of training (postdocs, graduate studentships, undergraduate research experiences) and lectures to K-12 groups.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e PROFILERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES", "is_usap_dc": false, "keywords": "R/V LMG; R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Halanych, Kenneth", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Genetic connectivity and biogeographic patterns of Antarctic benthic invertebrates", "uid": "p0000263", "west": null}, {"awards": "0944042 Warren, Joseph", "bounds_geometry": "POLYGON((-70 -59,-68 -59,-66 -59,-64 -59,-62 -59,-60 -59,-58 -59,-56 -59,-54 -59,-52 -59,-50 -59,-50 -59.7,-50 -60.4,-50 -61.1,-50 -61.8,-50 -62.5,-50 -63.2,-50 -63.9,-50 -64.6,-50 -65.3,-50 -66,-52 -66,-54 -66,-56 -66,-58 -66,-60 -66,-62 -66,-64 -66,-66 -66,-68 -66,-70 -66,-70 -65.3,-70 -64.6,-70 -63.9,-70 -63.2,-70 -62.5,-70 -61.8,-70 -61.1,-70 -60.4,-70 -59.7,-70 -59))", "dataset_titles": "Data from expdition LMG1010; Expedition Data; Expedition data of LMG1010; Expedition data of LMG1110", "datasets": [{"dataset_uid": "002723", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1010", "url": "https://www.rvdata.us/search/cruise/LMG1010"}, {"dataset_uid": "001445", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1110"}, {"dataset_uid": "000153", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Data from expdition LMG1010", "url": "https://www.rvdata.us/search/cruise/LMG1010"}, {"dataset_uid": "002671", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1110", "url": "https://www.rvdata.us/search/cruise/LMG1110"}], "date_created": "Tue, 03 Dec 2013 00:00:00 GMT", "description": "The importance of gelatinous zooplankton in marine systems worldwide is increasing. In Southern Ocean, increasing salp densities could have a detrimental effect on higher predators, including penguins, fur seals, and baleen whales. The proposed research is a methods-develoment project that will improve the capability to indirectly assess abundances and distributions of salps in the Southern Ocean through acoustic surveys. Hydrographic, net tow, and acoustic backscatter data will be collected in the waters surrounding the South Shetland Islands and the Antarctic peninsula, where both krill and salps are found and compete for food. Shipboard experimental manipulations and measurements will lead to improved techniques for assessment of salp biomass acoustically. Experiments will focus on material properties (density and sound speed), size and shape of salps, as well as how these physical properties will vary with the salp\u0027s environment, feeding rate, and reproductive status. In the field, volume backscattering data from an acoustic echosounder will be collected at the same locations as the net tows to enable comparison of net and acoustic estimates of salp abundance. A physics-based scattering model for salps will be developed and validated, to determine if multiple acoustic frequencies can be used to discriminate between scattering associated with krill swarms and that from salp blooms. During the same period as the Antarctic field work, a parallel outreach and education study will be undertaken in Long Island, New York examining local gelatinous zooplankton. This study will enable project participants to learn and practice research procedures and methods before traveling to Antarctica; provide a comparison time-series that will be used for educational purposes; and include many more students and teachers in the research project than would be able to participate in the Antarctic field component.", "east": -50.0, "geometry": "POINT(-60 -62.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "R/V LMG; Not provided", "locations": null, "north": -59.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Warren, Joseph", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -66.0, "title": "Acoustic Assessment of Southern Ocean Salps and Their Ecosystem Impact", "uid": "p0000481", "west": -70.0}, {"awards": "1043749 Rouse, Gregory", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP1105", "datasets": [{"dataset_uid": "002659", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1105", "url": "https://www.rvdata.us/search/cruise/NBP1105"}], "date_created": "Mon, 24 Jun 2013 00:00:00 GMT", "description": "The west Antarctic Peninsula is warming rapidly, and continuing changes in the thermal regime will likely result in severe consequences for marine fauna, including potential extinction of strongly adapted stenotherms, and invasions from neighboring faunas. Initial impacts of climate change may result in changes in connectivity among populations of the same species. These changes may will be undetectable by direct observation, but may be assessed via genetic connectivity, i.e. differences in allele or haplotype frequencies among populations can be used to infer levels of gene flow. The proposed research will explore the role that the Scotia Arc plays in connecting populations from South America to Antarctica, a corridor identified as a likely entry route for invaders into Antarctica. It also will examine the way in which cryptic species may confound our knowledge of broad-scale distributions, and in doing so, make contributions towards understanding biodiversity and testing the paradigm of circumpolarity in Antarctica. The principal investigator will to collect multi-locus genetic data across \u0027species\u0027 from a broad suite of benthic marine invertebrate phyla, from multiple locations, in order to address hypotheses regarding speciation and connectivity, to estimate demographic population changes, and to identify the underlying processes that drive observed phylogeographic patterns. Comparative phylogeography is a particularly valuable approach because it enables the identification of long-term barriers and refugia common to groups of species and is consequently highly relevant to conservation planning. Moreover, this work will form a valuable baseline for detecting future changes in connectivity. The results of the research will be disseminated through peer-reviewed publications and presentations at conferences. In addition, the project will support the interdisciplinary training of a female graduate student, two undergraduate students, and host additional summer students through the STARS program at SIO, which helps minority students prepare for graduate school. This project will integrate research and education through conducting an interdisciplinary workshop that brings together Earth Science and Biology high school teachers. This workshop aims to assist teachers derive their own curricula uniting plate tectonics, ocean history and evolution, supporting a new high school earth sciences program. Information generated by this project will also directly feed into international efforts to design a series of Marine Protected Areas (MPAs) in Antarctica.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Rouse, Gregory", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Using molecular data to test connectivity and the circumpolar paradigm for Antarctic marine invertebrates", "uid": "p0000847", "west": null}, {"awards": "0823101 Ducklow, Hugh", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG1301", "datasets": [{"dataset_uid": "002731", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1301", "url": "https://www.rvdata.us/search/cruise/LMG1301"}, {"dataset_uid": "001425", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1301"}], "date_created": "Mon, 24 Jun 2013 00:00:00 GMT", "description": "Since 1990, Palmer LTER (PAL) research has been guided by the hypothesis that variability in the polar marine ecosystem is mechanistically coupled to changes in the annual advance, retreat and spatial extent of sea ice. Since that time, the hypothesis has been modified to incorporate climate migration, i.e. the displacement of a cold, dry polar climate by a warm, moist climate regime in the northern component of the PAL region, producing fundamental changes in food web structure and elemental cycling. The observed northern changes are affecting all trophic levels and elemental cycling, and the primary mechanism of change involves match-mismatch dynamics. The proposed research builds on previous findings, with a new emphasis on process studies and modeling to elucidate the mechanistic links between teleconnections, climate change, physical oceanographic forcing and ecosystem dynamics. The proposed research will examine the hypothesis that regional warming and sea ice decline associated with historical and on-going climate migration in the northern part of the study area have altered key phenological relationships, leading to changes in species distributions, increasing trophic mismatches and changes in habitat, food availability, ecosystem dynamics and biogeochemical cycling. Through targeted process studies linked to numerical model simulations, the research also will test the hypothesis that deep cross-shelf canyons characterizing the core study region are focal areas for ecosystem processes that result in predictable, elevated food resources for top-predators. The effort includes the addition of 3 new PIs: a zooplankton ecologist with expertise in biogeochemical fluxes, a phytoplankton ecologist focusing on bio-optics and autonomous observations using gliders, and a numerical simulation modeler specializing in coupled global models of ocean circulation, plankton ecology and biogeochemical cycles. The program will add trace metal sampling and analysis, moored physical oceanographic sensors, a moored sediment trap in the south, drifting sediment traps and stable carbon (del 13C) and nitrogen (del 15N) isotope analyses. Missions lasting up to 45 days using gliders deployed before, during and after summer cruises will, along with moorings and satellite remote sensing of sea ice, ocean color, sea surface temperatures and wind fields, greatly extend the observational program in space and time. \u003cbr/\u003e\u003cbr/\u003eSince its inception, PAL has been a leader in Information Management to enable knowledge-building within and beyond the Antarctic, oceanographic and LTER communities. PAL has designed and deployed a new information infrastructure with a relational database architecture to facilitate data distribution and sharing. The Education and Outreach program capitalizes on the public\u0027s fascination with Antarctica to promote scientific literacy from kindergarten students to adult citizens concerned with climate change and environmental sustainability. Through communicating results to the public and working with scientific assessment bodies (e.g., IPCC) and Antarctic Treaty parties to protect Earth\u0027s last frontier, PAL researchers contribute to the national scientific agenda and the greater public benefit.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e PROFILERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Ducklow, Hugh", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": "LTER", "south": null, "title": "Palmer, Antarctica Long Term Ecological Research Project", "uid": "p0000874", "west": null}, {"awards": "0741510 Yuan, Xiaojun", "bounds_geometry": "POLYGON((-180 -69,-172 -69,-164 -69,-156 -69,-148 -69,-140 -69,-132 -69,-124 -69,-116 -69,-108 -69,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-100 -77,-100 -78,-100 -79,-108 -79,-116 -79,-124 -79,-132 -79,-140 -79,-148 -79,-156 -79,-164 -79,-172 -79,180 -79,178.5 -79,177 -79,175.5 -79,174 -79,172.5 -79,171 -79,169.5 -79,168 -79,166.5 -79,165 -79,165 -78,165 -77,165 -76,165 -75,165 -74,165 -73,165 -72,165 -71,165 -70,165 -69,166.5 -69,168 -69,169.5 -69,171 -69,172.5 -69,174 -69,175.5 -69,177 -69,178.5 -69,-180 -69))", "dataset_titles": "Temperature and salinity measurements collected using XBT, XCTD from the Oden and other platforms in the Southern Oceans from 2003-2008 (NODC Accession 0053045)", "datasets": [{"dataset_uid": "000214", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Temperature and salinity measurements collected using XBT, XCTD from the Oden and other platforms in the Southern Oceans from 2003-2008 (NODC Accession 0053045)", "url": "https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0053045"}], "date_created": "Sat, 20 Feb 2010 00:00:00 GMT", "description": "Abstract\u003cbr/\u003e\u003cbr/\u003eThe project goal is to investigate the ocean-atmosphere-ice (OAI) interactions in the Amundsen and Ross Seas during the austral summer of 2007-08 using hydrographic measurements (CTD and XBT) in conjunction with (1) ship-based observations and satellite-derived estimates of sea ice concentration, and (2) ship-based observations and re-analyses of meteorological variables. The major scientific objectives are as follows: (1) to examine upper ocean characteristics along three transects in the Amundsen Sea and two transects in the Ross Sea within the context of ice-atmosphere variability over the preceding winter-spring season and as compared to other years where data are available; (2) to determine if there is additional evidence of increased upwelling of warm Circumpolar Deep Water onto the shelf in the Amundsen Sea and/or increased freshening in the Ross Sea as has been inferred by previous, but limited, ocean surveys in these regions; and (3) to examine the spatial variability in ocean thermal structure along the ship\u0027s track (outside the transects) to provide greater regional context and to compare with ocean XBT data collected during Oden 2006-07. A repeated temperature survey between the Amundsen and Ross Sea is particularly invaluable, given that this sector is the regional center of the high latitude OAI response to ENSO, thus providing opportunity for examining and linking regional oceanic temporal variability to global climate variability. The research will improve our understanding of the high latitude OAI response to climate change, and provide the physical context for the observed biology and geochemistry (investigated by our colleagues. Our results will be made widely available through research publications and internet-available databases, and through the strong public outreach efforts of Lamont-Doherty Earth Observatory. The outreach efforts will help increase awareness and understanding of anthropogenic climate change, melting ice, and ecosystem alteration in the highly sensitive Antarctic.", "east": -100.0, "geometry": "POINT(-147.5 -74)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -69.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Yuan, Xiaojun; Stammerjohn, Sharon", "platforms": "Not provided", "repo": "NCEI", "repositories": "NCEI", "science_programs": null, "south": -79.0, "title": "SGER: Science-of-Opportunity Aboard Icebreaker Oden: Ocean-Atmosphere-Ice Interactions and Changes", "uid": "p0000562", "west": 165.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
High Resolution Underway Air-Sea Observations in Drake Passage for Climate Science
|
2001646 1542902 |
2023-03-03 | Chereskin, Teresa; Sprintall, Janet |
|
The Antarctic Circumpolar Current (ACC) is the largest current on the planet, flowing west to east around Antarctica, forming a barrier that separates warmer waters to the north from colder waters to the south. Ocean eddies (like atmospheric storms) break through the ACC barrier, transferring heat across the ACC towards Antarctica. When warmer ocean waters intrude onto the Antarctic continental shelves, they contribute to glacial melt and ice shelf retreat. Over the past several decades, the Southern Ocean has warmed and winds have increased due to climate change. Somewhat surprisingly the ACC, though pushed by faster winds, has not accelerated; a faster current would present a stronger barrier to heat transfer. Instead, ocean eddies have increased. These eddies are concentrated at 6-7 "hot spots". Drake Passage is one of these hot spots. As the narrowest land gap on the entire circumpolar path of the ACC, Drake Passsage is an ideal monitoring spot. However, it is also one of the windiest and roughest stretches of water on the globe. The only ship that crosses Drake Passage year-round is the USAP supply vessel for Palmer Station, making it a unique platform to monitor the currents and temperature with a minimum of personnel and resources. The Drake Passage time series of upper ocean currents and temperature is now in its 24th year. The upper ocean temperature measurements have found significant warming in Drake Passage. The upper ocean current measurements have confirmed that the ACC has remained steady on average but have also revealed a complicated filamented current structure. Combining temperature and current measurements has provided a better understanding of heat transfer across the ACC by eddies. The time series has also provided valuable ground-truth for satellite measurements and for numerical model predictions looking at the entire ACC. Our studies are focused on examining low-frequency variability - seasonal, interannual, and decadal - in order to provide baselines from which to evaluate and interpret physical and biogeochemical changes occurring in the Southern Ocean. | POLYGON((-68 -54,-66.7 -54,-65.4 -54,-64.1 -54,-62.8 -54,-61.5 -54,-60.2 -54,-58.9 -54,-57.6 -54,-56.3 -54,-55 -54,-55 -55,-55 -56,-55 -57,-55 -58,-55 -59,-55 -60,-55 -61,-55 -62,-55 -63,-55 -64,-56.3 -64,-57.6 -64,-58.9 -64,-60.2 -64,-61.5 -64,-62.8 -64,-64.1 -64,-65.4 -64,-66.7 -64,-68 -64,-68 -63,-68 -62,-68 -61,-68 -60,-68 -59,-68 -58,-68 -57,-68 -56,-68 -55,-68 -54)) | POINT(-61.5 -59) | false | false | |||||||||
Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica
|
1341725 1341606 1341717 1341513 1543483 |
2019-06-10 | Ackley, Stephen; Bell, Robin; Weissling, Blake; Nuss, Wendell; Maksym, Edward; Stammerjohn, Sharon; Cassano, John; Guest, Peter; Sedwick, Peter; Xie, Hongjie | The one place on Earth consistently showing increases in sea ice area, duration, and concentration is the Ross Sea in Antarctica. Satellite imagery shows about half of the Ross Sea increases are associated with changes in the austral fall, when the new sea ice is forming. The most pronounced changes are also located near polynyas, which are areas of open ocean surrounded by sea ice. To understand the processes driving the sea ice increase, and to determine if the increase in sea ice area is also accompanied by a change in ice thickness, this project will conduct an oceanographic cruise to the polynyas of the Ross Sea in April and May, 2017, which is the austral fall. The team will deploy state of the art research tools including unmanned airborne systems (UASs, commonly called drones), autonomous underwater vehicles (AUVs), and remotely operated underwater vehicles (ROVs). Using these tools and others, the team will study atmospheric, oceanic, and sea ice properties and processes concurrently. A change in sea ice production will necessarily change the ocean water below, which may have significant consequences for global ocean circulation patterns, a topic of international importance. All the involved institutions will be training students, and all share the goal of expanding climate literacy in the US, emphasizing the role high latitudes play in the Earth's dynamic climate.<br/><br/>The main goal of the project is to improve estimates of sea ice production and water mass transformation in the Ross Sea. The team will fully capture the spatial and temporal changes in air-ice-ocean interactions when they are initiated in the austral fall, and then track the changes into the winter and spring using ice buoys, and airborne mapping with the newly commissioned IcePod instrument system, which is deployed on the US Antarctic Program's LC-130 fleet. The oceanographic cruise will include stations in and outside of both the Terra Nova Bay and Ross Ice Shelf polynyas. Measurements to be made include air-sea boundary layer fluxes of heat, freshwater, and trace gases, radiation, and meteorology in the air; ice formation processes, ice thickness, snow depth, mass balance, and ice drift within the sea ice zone; and temperature, salinity, and momentum in the ocean below. Following collection of the field data, the team will improve both model parameterizations of air-sea-ice interactions and remote sensing algorithms. Model parameterizations are needed to determine if sea-ice production has increased in crucial areas, and if so, why (e.g., stronger winds or fresher oceans). The remote sensing validation will facilitate change detection over wider areas and verify model predictions over time. Accordingly this project will contribute to the international Southern Ocean Observing System (SOOS) goal of measuring essential climate variables continuously to monitor the state of the ocean and ice cover into the future. | POLYGON((-180 -55,-177 -55,-174 -55,-171 -55,-168 -55,-165 -55,-162 -55,-159 -55,-156 -55,-153 -55,-150 -55,-150 -57.3,-150 -59.6,-150 -61.9,-150 -64.2,-150 -66.5,-150 -68.8,-150 -71.1,-150 -73.4,-150 -75.7,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -75.7,160 -73.4,160 -71.1,160 -68.8,160 -66.5,160 -64.2,160 -61.9,160 -59.6,160 -57.3,160 -55,162 -55,164 -55,166 -55,168 -55,170 -55,172 -55,174 -55,176 -55,178 -55,-180 -55)) | POINT(-175 -66.5) | false | false | ||||||||||
Resolving CO2 System Seasonality in the West Antarctic Peninsula with Autonomous Observations
|
1543380 |
2017-12-29 | Shadwick, Elizabeth; Shadwick, Elizabeth |
|
Interest in the reduced alkalinity of high latitude waters under conditions of enhanced CO2 uptake from the atmosphere have been the impetus of numerous recent studies of bio-stressors in the polar marine environment. The project seeks to improve our understanding of the variance of coastal Southern Ocean carbonate species (CO2 system), its diurnal and inter-annual variability, by acquiring autonomous, high frequency observations from an Antarctic coastal mooring(s). <br/><br/>A moored observing system co-located within the existing Palmer LTER array will measure pH, CO2 partial pressure, temperature, salinity and dissolved oxygen with 3-hour frequency in this region of the West Antarctic Peninsula continental shelf. Such observations will help estimate the dominant physical and biological controls on the seasonal variations in the CO2 system in coastal Antarctic waters, including the sign, seasonality and the flux of the net annual air-sea exchange of carbon dioxide. The Palmer LTER site is experiencing rapid ecological change in the West Antarctic Peninsula, a region that is warming at rates faster than any other region of coastal Antarctica. | None | None | false | false | |||||||||
Collaborative Research: Biological Adaptations to Environmental Change in Antarctica - An Advanced Training Program for Early Career Scientists
|
1245703 |
2017-12-29 | Manahan, Donal |
|
This project will support two training courses that will introduce early-career scientists from a wide range of disciplinary backgrounds to key issues in polar science, and especially to provide the opportunity to gain hands-on experience in Antarctic field activities. Antarctica is an ideal location to study a wide variety of questions in biology. However, few students and early-career scientists have the opportunity to work on-site in Antarctica unless they are directly associated with a senior scientist who has a funded Antarctic project. The project will further the NSF goal of training new generations of scientists by providing hands-on training in Antarctica during one course at Palmer Station in 2016 and another at McMurdo Station in 2018. This represents a continuation of nine previous courses at McMurdo Station which have a proven record of introducing participants to Antarctic science under realistic field conditions, providing opportunities to understand and appreciate the complexities and logistical challenges of undertaking science in Antarctica, enhancing the professional careers of the participants, and increasing international collaborations for early-career scientists.<br/><br/>The proposed training courses will be open to Ph.D. students and post-doctoral scientists who have interests in the study of Antarctic marine organisms to help prepare them for success in developing their own independent research programs in polar regions. Long-standing and recent questions in evolution and ecology of Antarctic organisms will be examined with 1) field collections, 2) physiological experiments on whole organisms, 3) studies of isolated cells and tissues, 4) experiments on macromolecular processes (e.g., enzymes), and 5) molecular biological analyses. | POLYGON((-68.0574 -52.7267,-67.39775 -52.7267,-66.7381 -52.7267,-66.07845 -52.7267,-65.4188 -52.7267,-64.75915 -52.7267,-64.0995 -52.7267,-63.43985 -52.7267,-62.7802 -52.7267,-62.12055 -52.7267,-61.4609 -52.7267,-61.4609 -53.95849,-61.4609 -55.19028,-61.4609 -56.42207,-61.4609 -57.65386,-61.4609 -58.88565,-61.4609 -60.11744,-61.4609 -61.34923,-61.4609 -62.58102,-61.4609 -63.81281,-61.4609 -65.0446,-62.12055 -65.0446,-62.7802 -65.0446,-63.43985 -65.0446,-64.0995 -65.0446,-64.75915 -65.0446,-65.4188 -65.0446,-66.07845 -65.0446,-66.7381 -65.0446,-67.39775 -65.0446,-68.0574 -65.0446,-68.0574 -63.81281,-68.0574 -62.58102,-68.0574 -61.34923,-68.0574 -60.11744,-68.0574 -58.88565,-68.0574 -57.65386,-68.0574 -56.42207,-68.0574 -55.19028,-68.0574 -53.95849,-68.0574 -52.7267)) | POINT(-64.75915 -58.88565) | false | false | |||||||||
Pre and post molt biology of emperor penguins - Oden trans - Ross / Amundsen Sea cruise
|
1043454 |
2015-12-12 | Kooyman, Gerald |
|
The emperor penguin dives deeper and longer, fasts longer, and endures the harshest weather conditions of all diving birds. It spends about four and half months per annum deep in Antarctic pack ice away from shore and stations, and thus is largely unavailable for study. This time includes preparation for the molt, and travel to the colony to breed, a time period in which great swings in body weight occur. This study will fill an important gap in what we know about the biology of the annual cycle of the emperor by examining the molt-post molt period. The P.I. proposes to traverse the Amundsen and Bellingshausen seas on the Oden, to locate and tag emperor penguins during the molt season. The objectives are to (1) Place satellite tags on 20 adult post molt birds to determine their route, rate of travel, and diving behavior as they return back to their breeding colonies, (2) Obtain an index of body condition, (3) Collect guano to determine the type of food consumed by emperor penguins in the region, (4) Conduct shipboard surveys to sight and plot the location and abundance of adult and juvenile birds on the ship's track. The PI hypothesizes that bird dives will be shallow during the initial post-molt phase, and that food will consist primarily of krill; that there will be differential dispersal of birds from the Ross Sea vs. Marie Byrd Land, with Ross Sea birds traveling farther; and that the greatest adult mortality occurs during the molt and early post molt period. Broader impacts include training of a post doc, a graduate student, and an aquarium volunteer. The P.I. also will present findings through a website, through public lectures, and in collaboration with the Birch aquarium. | POLYGON((-172.642 -72.55,-170.9074 -72.55,-169.1728 -72.55,-167.4382 -72.55,-165.7036 -72.55,-163.969 -72.55,-162.2344 -72.55,-160.4998 -72.55,-158.7652 -72.55,-157.0306 -72.55,-155.296 -72.55,-155.296 -73.0743,-155.296 -73.5986,-155.296 -74.1229,-155.296 -74.6472,-155.296 -75.1715,-155.296 -75.6958,-155.296 -76.2201,-155.296 -76.7444,-155.296 -77.2687,-155.296 -77.793,-157.0306 -77.793,-158.7652 -77.793,-160.4998 -77.793,-162.2344 -77.793,-163.969 -77.793,-165.7036 -77.793,-167.4382 -77.793,-169.1728 -77.793,-170.9074 -77.793,-172.642 -77.793,-172.642 -77.2687,-172.642 -76.7444,-172.642 -76.2201,-172.642 -75.6958,-172.642 -75.1715,-172.642 -74.6472,-172.642 -74.1229,-172.642 -73.5986,-172.642 -73.0743,-172.642 -72.55)) | POINT(-163.969 -75.1715) | false | false | |||||||||
Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise - IPY/ASEP
|
0632282 |
2015-09-25 | Jacobs, Stanley; Hellmer, Hartmut; Jenkins, Adrian | The Office of Polar Programs, Antarctic Science Division, Ocean & Climate Systems Program has made this award to support a multidisciplinary effort to study the upwelling of relatively warm deep water onto the Amundsen Sea continental shelf and how it relates to atmospheric forcing and bottom bathymetry and how the warm waters interact with both glacial and sea ice. This study constitutes a contribution of a coordinated research effort in the region known as the Amundsen Sea Embayment Project or ASEP. Previous work by the PI and others has shown that the West Antarctic Ice Sheet has been found to be melting faster, perhaps by orders of magnitude, than ice sheets elsewhere around Antarctica, excluding those on the Peninsula. Submarine channels that incise the continental shelf are thought to provide fairly direct access of relatively warm circum polar deep water to the cavity under the floating extension of the ice shelf. Interactions with sea ice en route can modify the upwelled waters. The proposed investigations build on previous efforts by the PI and colleagues to use hydrographic measurements to put quantitative bounds on the rate of glacial ice melt by relatively warm seawater. <br/>The region can be quite difficult to access due to sea ice conditions and previous hydrographic measurements have been restricted to the austral summer time frame. In this project it was proposed to obtain the first austral spring hydrographic data via CTD casts and XBT drops (September-October 2007) as part of a separately funded cruise (PI Steve Ackley) the primary focus of which is sea-ice conditions to be studied while the RV Nathanial B Palmer (RV NBP) drifts in the ice pack. This includes opportunistic sampling for pCO2 and TCO2. A dedicated cruise in austral summer 2009 will follow this opportunity. The principal objectives of the dedicated field program are to deploy a set of moorings with which to characterize temporal variability in warm water intrusions onto the shelf and to conduct repeat hydrographic surveying and swath mapping in targeted areas, ice conditions permitting. Automatic weather stations are to be deployed in concert with the program, sea-ice observations will be undertaken from the vessel and the marine cavity beneath the Pine Island may be explored pending availability of the British autonomous underwater vehicle Autosub 3. These combined ocean-sea ice-atmosphere observations are aimed at a range of model validations. A well-defined plan for making data available as well as archiving in a timely fashion should facilitate a variety of modeling efforts and so extend the value of the spatially limited observations. <br/>Broader impacts: This project is relevant to an International Polar Year research emphasis on ice sheet dynamics focusing in particular on the seaward ocean-ice sheet interactions. Such interactions must be clarified for understanding the potential for sea level rise by melt of the West Antarctic ice Sheet. The project entails substantive international partnerships (British Antarctic Survey and Alfred Wegner Institute) and complements other Amundsen Sea Embayment Project proposals covering other elements of ice sheet dynamics. The proposal includes partial support for 2 graduate students and 2 post docs. Participants from the Antarctic Artists and Writers program are to take part in the cruise and so aid in outreach. In addition, the project is to be represented in the Lamont-Doherty annual open house. | POLYGON((-129.6 -54.2,-124.44 -54.2,-119.28 -54.2,-114.12 -54.2,-108.96 -54.2,-103.8 -54.2,-98.64 -54.2,-93.48 -54.2,-88.32 -54.2,-83.16 -54.2,-78 -54.2,-78 -56.29,-78 -58.38,-78 -60.47,-78 -62.56,-78 -64.65,-78 -66.74,-78 -68.83,-78 -70.92,-78 -73.01,-78 -75.1,-83.16 -75.1,-88.32 -75.1,-93.48 -75.1,-98.64 -75.1,-103.8 -75.1,-108.96 -75.1,-114.12 -75.1,-119.28 -75.1,-124.44 -75.1,-129.6 -75.1,-129.6 -73.01,-129.6 -70.92,-129.6 -68.83,-129.6 -66.74,-129.6 -64.65,-129.6 -62.56,-129.6 -60.47,-129.6 -58.38,-129.6 -56.29,-129.6 -54.2)) | POINT(-103.8 -64.65) | false | false | ||||||||||
Collaborative research: TRacing the fate of Algal Carbon Export in the Ross Sea (TRACERS)
|
1142097 1142065 1142044 1142117 |
2015-08-26 | Bochdansky, Alexander; Dunbar, Robert; DiTullio, Giacomo; Ditullio, Giacomo; Harry, Dennis L.; HANSELL, DENNIS |
|
Intellectual Merit: <br/>Sinking particles are a major element of the biological pump and they are commonly assigned to two fates: mineralization in the water column and accumulation at the seafloor. However, there is another fate of export hidden within the vertical decline of carbon, the transformation of sinking organic matter to fine suspended and/or dissolved organic fractions. This process has been suggested but has rarely been observed or quantified. As a result, it is presumed that the solubilized fraction is largely mineralized over short time scales. However, global ocean surveys of dissolved organic carbon are demonstrating a significant water column accumulation of organic matter under high productivity environments. This proposal will investigate the transformation of organic particles from sinking to solubilized phases of the export flux in the Ross Sea. The Ross Sea experiences high export particle production, low dissolved organic carbon export with overturning circulation, and the area has a predictable succession of production and export events. In addition, the basin is shallow (< 000 m) so the products the PIs will target are relatively concentrated. To address the proposed hypothesis, the PIs will use both well-established and novel biochemical and optical measures of export production and its fate. The outcomes of this work will help researchers close the carbon budget in the Ross Sea.<br/><br/>Broader impacts: <br/>This research will support graduate and undergraduate students and will provide undergraduates and pre-college students with field-based research experience. Scientifically, this research will increase understanding of carbon sinks in the Ross Sea and will help develop new tools for identifying, quantifying, and tracking that carbon. The PIs will interface with K-12 students through daily reports from the field and through educational modules developed by several of the PIs in collaboration with science education specialists and college students. A K-12 educator will be included on the research cruises. Outreach will be through COSEE Florida and the Maritime Center in Norfolk, VA. | POLYGON((165 -52,166 -52,167 -52,168 -52,169 -52,170 -52,171 -52,172 -52,173 -52,174 -52,175 -52,175 -54.65,175 -57.3,175 -59.95,175 -62.6,175 -65.25,175 -67.9,175 -70.55,175 -73.2,175 -75.85,175 -78.5,174 -78.5,173 -78.5,172 -78.5,171 -78.5,170 -78.5,169 -78.5,168 -78.5,167 -78.5,166 -78.5,165 -78.5,165 -75.85,165 -73.2,165 -70.55,165 -67.9,165 -65.25,165 -62.6,165 -59.95,165 -57.3,165 -54.650000000000006,165 -52)) | POINT(170 -65.25) | false | false | |||||||||
Collaborative Research: Impact of Mesoscale Processes on Iron Supply and Phytoplankton Dynamics in the Ross Sea
|
0944254 0944165 |
2015-07-08 | Smith, Walker; McGillicuddy, Dennis |
|
The Ross Sea continental shelf is one of the most productive areas in the Southern Ocean, and may comprise a significant, but unaccounted for, oceanic CO2 sink, largely driven by phytoplankton production. The processes that control the magnitude of primary production in this region are not well understood, but data suggest that iron limitation is a factor. Field observations and model simulations indicate four potential sources of dissolved iron to surface waters of the Ross Sea: (1) circumpolar deep water intruding from the shelf edge; (2) sediments on shallow banks and nearshore areas; (3) melting sea ice around the perimeter of the polynya; and (4) glacial meltwater from the Ross Ice Shelf. The principal investigators hypothesize that hydrodynamic transport via mesoscale currents, fronts, and eddies facilitate the supply of dissolved iron from these four sources to the surface waters of the Ross Sea polynya. These hypotheses will be tested through a combination of in situ observations and numerical modeling, complemented by satellite remote sensing. In situ observations will be obtained during a month-long cruise in the austral summer. The field data will be incorporated into model simulations, which allow quantification of the relative contributions of the various hypothesized iron supply mechanisms, and assessment of their impact on primary production. The research will provide new insights and a mechanistic understanding of the complex oceanographic phenomena that regulate iron supply, primary production, and biogeochemical cycling. The research will thus form the basis for predictions about how this system may change in a warming climate. The broader impacts include training of graduate and undergraduate students, international collaboration, and partnership with several ongoing outreach programs that address scientific research in the Southern Ocean. The research also will contribute to the goals of the international research programs ICED (Integrated Climate and Ecosystem Dynamics) and GEOTRACES (Biogeochemical cycling and trace elements in the marine environment). | POLYGON((168 -65,168.2 -65,168.4 -65,168.6 -65,168.8 -65,169 -65,169.2 -65,169.4 -65,169.6 -65,169.8 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,170 -65,169.8 -65,169.6 -65,169.4 -65,169.2 -65,169 -65,168.8 -65,168.6 -65,168.4 -65,168.2 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65,168 -65)) | POINT(169 -65) | false | false | |||||||||
Population ecology of Salpa thompsoni based on molecular indicators
|
1044982 |
2015-06-17 | Bucklin, Ann |
|
The proposed research targets the molecular genetics of salps, an increasingly important member of the zooplankton in Antarctic waters who's dominance appears to be related to climate warming and sea ice loss. Specifically the research will examine genome-wide patterns of gene expression, target gene expression levels, and patterns of population genetic diversity and structure underlying the complex life history and population dynamics of S. thompsoni. The P.I.s hypothesize that (1) deep analysis of the Salpa thompsoni transcriptome will reveal significant associations among selected set of differentially expressed genes and critical life history stages and events (e.g., ontogenetic maturation, sexual reproduction, senescence) of the salp; and 2) the species will show variable levels of clonal diversity and significant genetic differentiation among populations in different regions of the Southern Ocean. Broader impacts include training of two graduate students; inclusion of undergraduates in research, and in a formal training workshop; development of a summer workshop for high school teachers in collaboration with Connecticut Sea Grant; and public outreach via postings on the Census of Marine Zooplankton homepage. | POLYGON((-69.3804 -52.760597,-67.79698 -52.760597,-66.21356 -52.760597,-64.63014 -52.760597,-63.04672 -52.760597,-61.4633 -52.760597,-59.87988 -52.760597,-58.29646 -52.760597,-56.71304 -52.760597,-55.12962 -52.760597,-53.5462 -52.760597,-53.5462 -53.9928073,-53.5462 -55.2250176,-53.5462 -56.4572279,-53.5462 -57.6894382,-53.5462 -58.9216485,-53.5462 -60.1538588,-53.5462 -61.3860691,-53.5462 -62.6182794,-53.5462 -63.8504897,-53.5462 -65.0827,-55.12962 -65.0827,-56.71304 -65.0827,-58.29646 -65.0827,-59.87988 -65.0827,-61.4633 -65.0827,-63.04672 -65.0827,-64.63014 -65.0827,-66.21356 -65.0827,-67.79698 -65.0827,-69.3804 -65.0827,-69.3804 -63.8504897,-69.3804 -62.6182794,-69.3804 -61.3860691,-69.3804 -60.1538588,-69.3804 -58.9216485,-69.3804 -57.6894382,-69.3804 -56.4572279,-69.3804 -55.2250176,-69.3804 -53.9928073,-69.3804 -52.760597)) | POINT(-61.4633 -58.9216485) | false | false | |||||||||
Cape Adare Long Term Moorings (CALM): Analysis Phase
|
1141890 |
2015-06-17 | Huber, Bruce; Vernet, Maria | Time series data, from ocean moorings, on key aspects of evolving ocean properties are of considerable importance in assessing the condition of the ocean system. They are needed, for example, their understand how the oceans are warming, and how they continue to uptake greenhouse gases such as CO2. <br/><br/>The Cape Adare Long Term Mooring (CALM) program goal was to observe the bottom water export from the Ross Sea to the deep ocean. To accomplish this two instrumented moorings were set on the continental slope off Cape Adare (western Ross Sea, Antarctica), positioned to capture the export of Antarctic Bottom Water (AABW), some of the coldest and densest water found in the global ocean. Data records for the moorings spans over some four years in this very remote part of the ocean. The CALM analysis will address some specific objectives:<br/>? Characterize the temperature, salinity and current variability associated with the Ross Sea AABW export.<br/>? Examine the linkages between observed variability to regional tides, atmosphere and sea ice forcing.<br/>? Relate the Ross Sea AABW export fluctuations to the larger scale climate system dynamics, such as ENSO and SAM, and to AABW formation along other margins of Antarctica, e.g. the Weddell Sea | POLYGON((-62.176502 -57.913998,-61.4764715 -57.913998,-60.776441 -57.913998,-60.0764105 -57.913998,-59.37638 -57.913998,-58.6763495 -57.913998,-57.976319 -57.913998,-57.2762885 -57.913998,-56.576258 -57.913998,-55.8762275 -57.913998,-55.176197 -57.913998,-55.176197 -58.6469082,-55.176197 -59.3798184,-55.176197 -60.1127286,-55.176197 -60.8456388,-55.176197 -61.578549,-55.176197 -62.3114592,-55.176197 -63.0443694,-55.176197 -63.7772796,-55.176197 -64.5101898,-55.176197 -65.2431,-55.8762275 -65.2431,-56.576258 -65.2431,-57.2762885 -65.2431,-57.976319 -65.2431,-58.6763495 -65.2431,-59.37638 -65.2431,-60.0764105 -65.2431,-60.776441 -65.2431,-61.4764715 -65.2431,-62.176502 -65.2431,-62.176502 -64.5101898,-62.176502 -63.7772796,-62.176502 -63.0443694,-62.176502 -62.3114592,-62.176502 -61.578549,-62.176502 -60.8456388,-62.176502 -60.1127286,-62.176502 -59.3798184,-62.176502 -58.6469082,-62.176502 -57.913998)) | POINT(-58.6763495 -61.578549) | false | false | ||||||||||
Collaborative Research: Seasonal Trophic Roles of Euphausia Superba (STRES)
|
1142107 |
2014-02-07 | Durbin, Edward |
|
Krill, Euphausia superba, is a keystone species in the Antarctic ecosystem and provides the trophic link between microscopic plankton and charismatic megafauna such as penguins and whales. Recent evidence suggests krill may not be exclusively planktonivorous, which introduces the potential of new pathways of carbon flux through krill based ecosystems. A change in our view of krill from one of being herbivores to omnivores opens up several questions.<br/><br/>Climate induced change in the extent, thickness and duration of overlying sea ice coverage is expected to change the prey fields available to krill, and to have subsequent effects on the suite of predators supported by krill. The nature of this benthic prey?krill link, which may be crucial in those parts of the seasonal cycle other than the well studied spring bloom, is yet to be determined. DNA techniques will be used to identify and quantify the prey organisms. <br/><br/>This project will measure the in situ feeding ecology and behavior of krill and, ultimately, the success of this key species. An overall goal is<br/>to investigate seasonal changes in Euphausia superba in-situ feeding and swimming behavior in the Wilhelmina Bay region of the Western Antarctic Peninsula (WAP) area, known to be a region of changing climate. Understanding the biological impacts of climate change is important to societal and economic goals. The project scientists will additionally team with a marine and environmental reporting group to design presentations for an annual journalist meeting. | None | None | false | false | |||||||||
Collaborative Research: Genetic connectivity and biogeographic patterns of Antarctic benthic invertebrates
|
1043745 |
2014-02-07 | Halanych, Kenneth |
|
The research will explore the genetics, diversity, and biogeography of Antarctic marine benthic invertebrates, seeking to overturn the widely accepted suggestion that benthic fauna do not constitute a large, panmictic population. The investigators will sample adults and larvae from undersampled regions of West Antarctica that, combined with existing samples, will provide significant coverage of the western hemisphere of the Southern Ocean. The objectives are: 1) To assess the degree of genetic connectivity (or isolation) of benthic invertebrate species in the Western Antarctic using high-resolution genetic markers. 2) To begin exploring planktonic larvae spatial and bathymetric distributions for benthic shelf invertebrates in the Bellinghausen, Amundsen and Ross Seas. 3) To continue to develop a Marine Antarctic Genetic Inventory (MAGI) that relates larval and adult forms via DNA barcoding. Broader impacts include traditional forms of training (postdocs, graduate studentships, undergraduate research experiences) and lectures to K-12 groups. | None | None | false | false | |||||||||
Acoustic Assessment of Southern Ocean Salps and Their Ecosystem Impact
|
0944042 |
2013-12-03 | Warren, Joseph |
|
The importance of gelatinous zooplankton in marine systems worldwide is increasing. In Southern Ocean, increasing salp densities could have a detrimental effect on higher predators, including penguins, fur seals, and baleen whales. The proposed research is a methods-develoment project that will improve the capability to indirectly assess abundances and distributions of salps in the Southern Ocean through acoustic surveys. Hydrographic, net tow, and acoustic backscatter data will be collected in the waters surrounding the South Shetland Islands and the Antarctic peninsula, where both krill and salps are found and compete for food. Shipboard experimental manipulations and measurements will lead to improved techniques for assessment of salp biomass acoustically. Experiments will focus on material properties (density and sound speed), size and shape of salps, as well as how these physical properties will vary with the salp's environment, feeding rate, and reproductive status. In the field, volume backscattering data from an acoustic echosounder will be collected at the same locations as the net tows to enable comparison of net and acoustic estimates of salp abundance. A physics-based scattering model for salps will be developed and validated, to determine if multiple acoustic frequencies can be used to discriminate between scattering associated with krill swarms and that from salp blooms. During the same period as the Antarctic field work, a parallel outreach and education study will be undertaken in Long Island, New York examining local gelatinous zooplankton. This study will enable project participants to learn and practice research procedures and methods before traveling to Antarctica; provide a comparison time-series that will be used for educational purposes; and include many more students and teachers in the research project than would be able to participate in the Antarctic field component. | POLYGON((-70 -59,-68 -59,-66 -59,-64 -59,-62 -59,-60 -59,-58 -59,-56 -59,-54 -59,-52 -59,-50 -59,-50 -59.7,-50 -60.4,-50 -61.1,-50 -61.8,-50 -62.5,-50 -63.2,-50 -63.9,-50 -64.6,-50 -65.3,-50 -66,-52 -66,-54 -66,-56 -66,-58 -66,-60 -66,-62 -66,-64 -66,-66 -66,-68 -66,-70 -66,-70 -65.3,-70 -64.6,-70 -63.9,-70 -63.2,-70 -62.5,-70 -61.8,-70 -61.1,-70 -60.4,-70 -59.7,-70 -59)) | POINT(-60 -62.5) | false | false | |||||||||
Using molecular data to test connectivity and the circumpolar paradigm for Antarctic marine invertebrates
|
1043749 |
2013-06-24 | Rouse, Gregory |
|
The west Antarctic Peninsula is warming rapidly, and continuing changes in the thermal regime will likely result in severe consequences for marine fauna, including potential extinction of strongly adapted stenotherms, and invasions from neighboring faunas. Initial impacts of climate change may result in changes in connectivity among populations of the same species. These changes may will be undetectable by direct observation, but may be assessed via genetic connectivity, i.e. differences in allele or haplotype frequencies among populations can be used to infer levels of gene flow. The proposed research will explore the role that the Scotia Arc plays in connecting populations from South America to Antarctica, a corridor identified as a likely entry route for invaders into Antarctica. It also will examine the way in which cryptic species may confound our knowledge of broad-scale distributions, and in doing so, make contributions towards understanding biodiversity and testing the paradigm of circumpolarity in Antarctica. The principal investigator will to collect multi-locus genetic data across 'species' from a broad suite of benthic marine invertebrate phyla, from multiple locations, in order to address hypotheses regarding speciation and connectivity, to estimate demographic population changes, and to identify the underlying processes that drive observed phylogeographic patterns. Comparative phylogeography is a particularly valuable approach because it enables the identification of long-term barriers and refugia common to groups of species and is consequently highly relevant to conservation planning. Moreover, this work will form a valuable baseline for detecting future changes in connectivity. The results of the research will be disseminated through peer-reviewed publications and presentations at conferences. In addition, the project will support the interdisciplinary training of a female graduate student, two undergraduate students, and host additional summer students through the STARS program at SIO, which helps minority students prepare for graduate school. This project will integrate research and education through conducting an interdisciplinary workshop that brings together Earth Science and Biology high school teachers. This workshop aims to assist teachers derive their own curricula uniting plate tectonics, ocean history and evolution, supporting a new high school earth sciences program. Information generated by this project will also directly feed into international efforts to design a series of Marine Protected Areas (MPAs) in Antarctica. | None | None | false | false | |||||||||
Palmer, Antarctica Long Term Ecological Research Project
|
0823101 |
2013-06-24 | Ducklow, Hugh |
|
Since 1990, Palmer LTER (PAL) research has been guided by the hypothesis that variability in the polar marine ecosystem is mechanistically coupled to changes in the annual advance, retreat and spatial extent of sea ice. Since that time, the hypothesis has been modified to incorporate climate migration, i.e. the displacement of a cold, dry polar climate by a warm, moist climate regime in the northern component of the PAL region, producing fundamental changes in food web structure and elemental cycling. The observed northern changes are affecting all trophic levels and elemental cycling, and the primary mechanism of change involves match-mismatch dynamics. The proposed research builds on previous findings, with a new emphasis on process studies and modeling to elucidate the mechanistic links between teleconnections, climate change, physical oceanographic forcing and ecosystem dynamics. The proposed research will examine the hypothesis that regional warming and sea ice decline associated with historical and on-going climate migration in the northern part of the study area have altered key phenological relationships, leading to changes in species distributions, increasing trophic mismatches and changes in habitat, food availability, ecosystem dynamics and biogeochemical cycling. Through targeted process studies linked to numerical model simulations, the research also will test the hypothesis that deep cross-shelf canyons characterizing the core study region are focal areas for ecosystem processes that result in predictable, elevated food resources for top-predators. The effort includes the addition of 3 new PIs: a zooplankton ecologist with expertise in biogeochemical fluxes, a phytoplankton ecologist focusing on bio-optics and autonomous observations using gliders, and a numerical simulation modeler specializing in coupled global models of ocean circulation, plankton ecology and biogeochemical cycles. The program will add trace metal sampling and analysis, moored physical oceanographic sensors, a moored sediment trap in the south, drifting sediment traps and stable carbon (del 13C) and nitrogen (del 15N) isotope analyses. Missions lasting up to 45 days using gliders deployed before, during and after summer cruises will, along with moorings and satellite remote sensing of sea ice, ocean color, sea surface temperatures and wind fields, greatly extend the observational program in space and time. <br/><br/>Since its inception, PAL has been a leader in Information Management to enable knowledge-building within and beyond the Antarctic, oceanographic and LTER communities. PAL has designed and deployed a new information infrastructure with a relational database architecture to facilitate data distribution and sharing. The Education and Outreach program capitalizes on the public's fascination with Antarctica to promote scientific literacy from kindergarten students to adult citizens concerned with climate change and environmental sustainability. Through communicating results to the public and working with scientific assessment bodies (e.g., IPCC) and Antarctic Treaty parties to protect Earth's last frontier, PAL researchers contribute to the national scientific agenda and the greater public benefit. | None | None | false | false | |||||||||
SGER: Science-of-Opportunity Aboard Icebreaker Oden: Ocean-Atmosphere-Ice Interactions and Changes
|
0741510 |
2010-02-20 | Yuan, Xiaojun; Stammerjohn, Sharon |
|
Abstract<br/><br/>The project goal is to investigate the ocean-atmosphere-ice (OAI) interactions in the Amundsen and Ross Seas during the austral summer of 2007-08 using hydrographic measurements (CTD and XBT) in conjunction with (1) ship-based observations and satellite-derived estimates of sea ice concentration, and (2) ship-based observations and re-analyses of meteorological variables. The major scientific objectives are as follows: (1) to examine upper ocean characteristics along three transects in the Amundsen Sea and two transects in the Ross Sea within the context of ice-atmosphere variability over the preceding winter-spring season and as compared to other years where data are available; (2) to determine if there is additional evidence of increased upwelling of warm Circumpolar Deep Water onto the shelf in the Amundsen Sea and/or increased freshening in the Ross Sea as has been inferred by previous, but limited, ocean surveys in these regions; and (3) to examine the spatial variability in ocean thermal structure along the ship's track (outside the transects) to provide greater regional context and to compare with ocean XBT data collected during Oden 2006-07. A repeated temperature survey between the Amundsen and Ross Sea is particularly invaluable, given that this sector is the regional center of the high latitude OAI response to ENSO, thus providing opportunity for examining and linking regional oceanic temporal variability to global climate variability. The research will improve our understanding of the high latitude OAI response to climate change, and provide the physical context for the observed biology and geochemistry (investigated by our colleagues. Our results will be made widely available through research publications and internet-available databases, and through the strong public outreach efforts of Lamont-Doherty Earth Observatory. The outreach efforts will help increase awareness and understanding of anthropogenic climate change, melting ice, and ecosystem alteration in the highly sensitive Antarctic. | POLYGON((-180 -69,-172 -69,-164 -69,-156 -69,-148 -69,-140 -69,-132 -69,-124 -69,-116 -69,-108 -69,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-100 -77,-100 -78,-100 -79,-108 -79,-116 -79,-124 -79,-132 -79,-140 -79,-148 -79,-156 -79,-164 -79,-172 -79,180 -79,178.5 -79,177 -79,175.5 -79,174 -79,172.5 -79,171 -79,169.5 -79,168 -79,166.5 -79,165 -79,165 -78,165 -77,165 -76,165 -75,165 -74,165 -73,165 -72,165 -71,165 -70,165 -69,166.5 -69,168 -69,169.5 -69,171 -69,172.5 -69,174 -69,175.5 -69,177 -69,178.5 -69,-180 -69)) | POINT(-147.5 -74) | false | false |