[{"awards": "0958658 Bell, Robin; 1444690 Bell, Robin", "bounds_geometry": null, "dataset_titles": "Deep ICE (DICE) Radar Dataset from Ross Ice Shelf (ROSETTA-Ice); Shallow Ice Radar (SIR) Dataset from Ross Ice Shelf (ROSETTA-Ice)", "datasets": [{"dataset_uid": "601789", "doi": null, "keywords": "Airborne Radar; Antarctica; Cryosphere; Ice Thickness; Remote Sensing; Ross Ice Shelf", "people": "Bertinato, Christopher; Wilner, Joel; Frearson, Nicholas; Cordero, Isabel; Millstein, Joanna; Dhakal, Tejendra; Dong, LingLing; Das, Indrani; Spergel, Julian; Chu, Winnie; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "Deep ICE (DICE) Radar Dataset from Ross Ice Shelf (ROSETTA-Ice)", "url": "https://www.usap-dc.org/view/dataset/601789"}, {"dataset_uid": "601794", "doi": null, "keywords": "Antarctica; Cryosphere; Remote Sensing; Ross Ice Shelf", "people": "Dhakal, Tejendra; Cordero, Isabel; Frearson, Nicholas; Bertinato, Christopher; Chu, Winnie; Keeshin, Skye; Wearing, Martin; Spergel, Julian; Packard, Sarah; Dong, LingLing; Das, Indrani; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "Shallow Ice Radar (SIR) Dataset from Ross Ice Shelf (ROSETTA-Ice)", "url": "https://www.usap-dc.org/view/dataset/601794"}], "date_created": "Fri, 17 May 2024 00:00:00 GMT", "description": "The Lamont-Doherty Earth Observatory of Columbia University was awarded a multi-year grant (May 1, 2010- April 30, 2015) to develop an ice imaging system, or \"IcePod,\" for use in measuring the surface and subsurface topography of ice sheets. IcePod will enable research on the effects of global climate change on ice sheets and the effects of sub-glacial water on potential sea-level rise. IcePod sensors are contained in a Common Science Support Pod and operated on NYANG LC-130 aircraft during routine and targeted missions over Greenland and Antarctica. The IcePod instrument package consists of ice-penetrating radar, infrared and visible cameras, laser altimeter, inertial measurement unit, GPS receiver and data acquisition system. IcePod will also enable other instruments to be used in the modular Common Science Support Pod, and will become a shared community research facility providing data to the science community. Funding will support activities in both Greenland and Antarctica needed to commission IcePod, to develop a data reduction flow and data delivery system for IcePod data, and to engineer a UPS to provide IcePod with clean, reliable power for system operation. \u003cbr/\u003e\u003cbr/\u003eEvidence from satellites has documented that the amount of ice in both the earth\u0027s polar regions is decreasing as global temperatures increase. Understanding how this change is occurring and building an understanding of how fast these continent-sized pieces of ice will change in the future, is critical as society develops plans for adapting to changing coastlines. To measure change and understand the processes driving these changes requires the capacity to image the polat ice sheets and oceans from long-range aircraft. This award supplemented the original MRI-R2 program that developed innovative airborne imagery technology called IcePod. IcePod can be mounted on any LC-130, the aircraft used in the polar regions, for the major logistical support. The IcePod system was developed by engineers and scientists at Columbia University, working in close collaboration with the New York Air National Guard, who operate the ski-equipped LC-130 aircraft for the National Science Foundation in Antarctica and Greenland. The IcePod instrumentation package presently consists of: a scanning laser for precise measurements of the ice surface, visible and infrared imaging cameras to document the ice surface structure and temperature, ice-penetrating radar to recover the ice thickness and constrain the distribution of water at the ice sheet bed, and shallow-ice radar to measure snow accumulation. A magnetometer system is mounted inside the pod to recover information on the solid earth structure. Positioning of the IcePod during flights and the measurements are provided by precision GPS satellite data and inertial technology. A gravimeter, using its own rack, is also employed in conjunction with the IcePod sensor suite. The final commissioning of the system occurred in November - December 2014 in Antarctica as stipulated in the award. The IcePod was successfully operated in full polar conditions with a series of flights from McMurdo Station over the Ross Ice Shelf, the Ross Sea, the Dry Valleys, the Transantarctic Mountains and to South Pole. Protocol was also developed for data handling, robust data reduction, workflow and quality control and archiving of data. \u003cbr/\u003e\u003cbr/\u003eThe system is now available to the polar community for novel imaging applications.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Greenland; C-130; Remote Sensing; RADAR; GLACIERS/ICE SHEETS; Antarctica", "locations": "Antarctica; Greenland", "north": null, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Instrumentation and Support; Antarctic Integrated System Science; Antarctic Earth Sciences; Antarctic Astrophysics and Geospace Sciences", "paleo_time": null, "persons": "Bell, Robin; Frearson, Nicholas; Zappa, Christopher; Studinger, Michael S.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e C-130", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Development of an Ice Imaging System for Monitoring Changing Ice Sheets Mounted on the NYANG LC-130", "uid": "p0010462", "west": null}, {"awards": "2023355 Schmandt, Brandon", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "A seismic catalog for the southernmost continent", "datasets": [{"dataset_uid": "601805", "doi": "10.15784/601805", "keywords": "Antarctica; Cryosphere; Earthquakes; Icequakes; Volcanic Events", "people": "Pena Castro, Andres", "repository": "USAP-DC", "science_program": null, "title": "A seismic catalog for the southernmost continent", "url": "https://www.usap-dc.org/view/dataset/601805"}], "date_created": "Tue, 20 Feb 2024 00:00:00 GMT", "description": "Part 1: Nontechnical\u003cbr/\u003e \u003cbr/\u003eUnlike other locations on the globe Antarctica is not known for having large earthquakes and the remote nature and harsh conditions make it difficult to install and maintain seismometers for earthquake detection. Some researchers believe the lack of large earthquakes is due to the continent being surrounded by inactive tectonic margins. However, in the last two decades, scientists have discovered that more earthquakes occur in the interior of the continent than previously observed. This suggests that there are many earthquakes missing from historic earthquake catalogs. This study aims to find the missing earthquakes using novel earthquake detection and location techniques from seismic data collected from temporary and permanent seismic stations in Antarctica over the last 25 years. Locating these earthquakes will help understand if and where earthquakes are located in Antarctica and will help in planning future seismic deployments. As part of the project broader impacts, a field expedition with the Girls on Rock program will be conducted to teach high school age girls, and especially those from underrepresented backgrounds, data visualization techniques using scientific data. \u003cbr/\u003e \u003cbr/\u003ePart 2: Technical\u003cbr/\u003e \u003cbr/\u003eThe spatial distribution of seismicity and the number of moderate magnitude earthquakes in Antarctica is not well-defined. The current catalog of earthquakes may be biased by uneven and sparse seismograph distribution on the continent. We will mine existing broadband seismic data from both permanent and temporary deployments to lower the earthquake detection threshold across Interior Antarctica, with a focus on tectonic earthquakes. The hypothesis is that Interior Antarctica has abundant moderate magnitude earthquakes, previously undetected. These earthquakes are likely collocated with major tectonic features such as the Transantarctic Mountains, the suspected Vostok collision zone, the West Antarctic Rift System, the crustal compositional boundary between East and West Antarctica, and the Cretaceous East Antarctic Rift. Previous seismic deployments have recorded earthquakes in the Antarctic interior, suggesting there are many earthquakes missing from the current catalog. We propose to use novel earthquake location techniques designed for automated detection and location using 25 years of continuous data archived at IRIS from PASSCAL experiments and permanent stations. The approach will use STA/LTA detectors on the first arrival P-wave to 90 degrees distance, Reverse Time Imaging to locate events, and beamforming at dense arrays strategically located on cratons for enhanced detection and location. The combination of detection and location techniques used in this work has not been used on teleseismic body waves, although similar methods have worked well for surface wave studies. If successful the project would provide an excellent training dataset for future scrutiny of newly discovered Antarctic seismicity with machine learning approaches and/or new targeted data collection. We plan to collaborate with Girls on Rock, a local and international organization committed to building a culturally diverse community in science, art, and wilderness exploration, in a summer field expedition and integrating computer coding into post-field scientific projects.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Seismic Events; Icequakes; TECTONICS; Earthquakes", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Polar Special Initiatives", "paleo_time": null, "persons": "Schmandt, Brandon", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "EAGER: Lowering the detection threshold of Antarctic seismicity to reveal undiscovered intraplate deformation", "uid": "p0010450", "west": -180.0}, {"awards": "1841844 Steig, Eric; 1841879 Aydin, Murat; 1841858 Twickler, Mark", "bounds_geometry": "POINT(-105 -86)", "dataset_titles": null, "datasets": null, "date_created": "Mon, 06 Feb 2023 00:00:00 GMT", "description": "The goal of this project is to drill and recover an ice core from Hercules Dome, Antarctica. The geographic setting of Hercules Dome makes it well-situated to investigate changes in the size of the West Antarctic ice sheet over long time periods. The base of the West Antarctic ice sheet lies below sea level, which makes this part of Antarctica vulnerable to melting from the relatively warm deep water of the Southern Ocean. An important research question is whether the West Antarctic Ice Sheet collapsed during Earth\u0027s last prolonged warm period, about 125,000 years ago, when the ocean was warmer and sea level was several meters higher than today. Evidence for or against such a collapse will be recorded in the chemistry and physical properties of the ice. The Hercules Dome ice core will be obtained over three to four field seasons in Antarctica using efficient drilling technology. This grant includes support for project management, pre-drilling science community engagement, ice-core recovery, and education and outreach activities. \u003cbr/\u003e\u003cbr/\u003eHercules Dome is located at the edge of the East Antarctic ice sheet, south of the Transantarctic Mountains at 86 degrees South, 105 degrees West. Glaciological conditions at Hercules Dome are simple, with well-defined layering to the bed, optimal for the recovery of a deep ice core reaching to the last interglacial period at depths between 1600 and 2800 meters. An ice core from Hercules Dome will provide a research opportunity for ice-core analysts and others to make progress on a number of science priorities, including the environmental conditions of the last interglacial period, the history of gases and aerosols, and the magnitude and timing of changes in temperature and snow accumulation over the last 150,000 years. Together with the network of ice cores obtained by U.S. and international researchers over the last few decades, results from Hercules Dome will yield improved estimates of the boundary conditions necessary for the implementation and validation of ice-sheet models critical to the projection of future Antarctic ice-sheet change and sea level.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -105.0, "geometry": "POINT(-105 -86)", "instruments": null, "is_usap_dc": true, "keywords": "ICE SHEETS; Hercules Dome; FIELD SURVEYS; AIR TEMPERATURE; SNOW/ICE CHEMISTRY; GLACIER ELEVATION/ICE SHEET ELEVATION; PALEOCLIMATE RECONSTRUCTIONS", "locations": "Hercules Dome", "north": -86.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Steig, Eric J.; Fudge, T. J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": "Hercules Dome Ice Core", "south": -86.0, "title": "Collaborative Research: An Ice Core from Hercules Dome, East Antarctica", "uid": "p0010401", "west": -105.0}, {"awards": "1542756 Koutnik, Michelle", "bounds_geometry": "POLYGON((-180 -77,-179.5 -77,-179 -77,-178.5 -77,-178 -77,-177.5 -77,-177 -77,-176.5 -77,-176 -77,-175.5 -77,-175 -77,-175 -77.9,-175 -78.8,-175 -79.7,-175 -80.6,-175 -81.5,-175 -82.4,-175 -83.3,-175 -84.2,-175 -85.1,-175 -86,-175.5 -86,-176 -86,-176.5 -86,-177 -86,-177.5 -86,-178 -86,-178.5 -86,-179 -86,-179.5 -86,180 -86,177.5 -86,175 -86,172.5 -86,170 -86,167.5 -86,165 -86,162.5 -86,160 -86,157.5 -86,155 -86,155 -85.1,155 -84.2,155 -83.3,155 -82.4,155 -81.5,155 -80.6,155 -79.7,155 -78.8,155 -77.9,155 -77,157.5 -77,160 -77,162.5 -77,165 -77,167.5 -77,170 -77,172.5 -77,175 -77,177.5 -77,-180 -77))", "dataset_titles": "Beardmore Glacier model in \u0027icepack\u0027", "datasets": [{"dataset_uid": "200339", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Beardmore Glacier model in \u0027icepack\u0027", "url": "https://github.com/danshapero/beardmore"}], "date_created": "Mon, 12 Dec 2022 00:00:00 GMT", "description": "In this project we investigated glaciers that drain ice from the East Antarctic Ice Sheet through the Transantarctic Mountains into the present-day Ross Ice Shelf. The outlet glaciers that flow through the Transantarctic Mountains have thinned significantly over the past 15,000 years, especially as they retreated from Last Glacial Maximum highstands to their present-day grounding lines. At certain locations and for certain glaciers, rocks or bedrock have been sampled to provide constraints on the timing of when ice retreated from these locations. In the locations where geochronological data are available we can use these data as direct constraints on ice-flow models that simulate ice elevation change over time. The intellectual merit of this work is using ice-flow models to spatially and temporally extrapolate between these limited geochronological data points, which enables new understanding of glacier evolution. \r\n\r\nThe mountainous topography in this region is complex, and there are limited measurements of the topography beneath the ice of the Transantarctic outlet glaciers. Since the topography of the glacier bed is an important control on ice flow and is a necessary boundary condition in models we developed a new gridded bed product at Beardmore Glacier, the one location where sufficient data were available, and we compared this to continent-scale gridded bed products. We found that for this glacier, the BedMachine v1 product was reasonably similar to the Beardmore Glacier bed topography measurements; our limited evaluation suggests that the BedMachine product may be sufficient at other Transantarctic outlets where bed measurements are not available, but that other compilations of bed topography data that do not include information about ice flow directions do not provide reliable results. Using these data and available geochronological constraints we investigated Beardmore Glacier evolution since the Last Glacial Maximum using simplified (flowline) models of ice flow.\r\n\r\nIn addition to flowline modeling at Beardmore Glacier, we developed a flow-model setup using the open-source \u0027icepack\u0027 model that uses the shallow stream equations and resolves flow in both the x and y directions. The key value added over flowline (or parameterized flowband) models is that this can capture converging and diverging ice flow, variable side wall and bottom drag, and other geometric complexities. In these simulations we can evaluate the past accumulation, ice influx, and ice outflux to compare controls on deglaciation to data constraints on the chronology of deglaciation.\r\n\r\nWe also used a flowline model to investigate the Darwin-Hatherton Glacier System. Exposure ages and radiocarbon ages of glacial deposits at four locations alongside Hatherton and Darwin glaciers record several hundred meters of late Pleistocene to early Holocene thickening relative to present. Deglaciation was relatively complex at this site, and we also found that Byrd glacier likely contributed ice to the catchment of the Darwin-Hatherton glacier system during the last glacial maximum, and that subsequent convergent flow from Byrd and Mulock glaciers during deglaciation complicated the response of the Darwin-Hatherton system. These new insights can be used on their own to better understand local deglaciation, and can also be used to evaluate regional or continent-scale model calculations.\r\n\r\nSeparately, we investigated the general response of outlet glaciers to different sources of climate forcing. We found that outlet glaciers have a characteristically different response over time to surface-mass-balance forcing applied over the interior than to oceanic forcing applied at the grounding line. Our models demonstrated that ocean forcing first engages the fast, local response and then the slow adjustment of interior ice, whereas surface-mass-balance forcing is dominated by the slow interior adjustment. These insights contributed to our general understanding of how outlet glaciers may have evolved over time.\r\n\r\nOur new model investigations provide a framework that can be applied at other Transantarctic outlet glaciers where geochronological data are available. In particular, our \u0027icepack\u0027 setup is an archived and documented resource for the community. These tools are available for future investigations, including additional investigations at Beardmore Glacier and at other Transantarctic Mountain outlet glaciers. Scientific broader impacts include that this contributes to our understanding of the past behavior of East Antarctic ice, which provides an important constraint on the future evolution of Antarctica. Our team has engaged in public outreach and has engaged students in this research. Two graduate students led in aspects of this work, and have since gone on to research positions after their PhD.", "east": -175.0, "geometry": "POINT(170 -81.5)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS; Transantarctic Mountains; GLACIER THICKNESS/ICE SHEET THICKNESS", "locations": "Transantarctic Mountains", "north": -77.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Koutnik, Michelle; Smith, Ben; Conway, Howard; Shapero, Daniel", "platforms": null, "repo": "GitHub", "repositories": "GitHub", "science_programs": null, "south": -86.0, "title": "Holocene Deglaciation of the Western Ross Embayment: Constraints from East Antarctic Outlet Glaciers", "uid": "p0010398", "west": 155.0}, {"awards": "1543530 van der Veen, Cornelis; 1543533 Johnson, Jesse", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 19 Oct 2022 00:00:00 GMT", "description": "Van der Veen/1543530\u003cbr/\u003e\u003cbr/\u003eThe objective of this research is to gain better understanding of the West Antarctic ice flow in the transition region from grounded ice to floating ice shelves and investigate the conditions that can initiate and sustain major retreat of these glaciers. Several major Antarctic outlet glaciers and ice streams will be investigated using a suite of observational techniques and modeling tools. Glaciers include Thwaites Glacier, which has become a focal point in the discussion of West Antarctic retreat, Whillans Ice Stream as an example of the archetype ice stream, and Byrd Glacier, a major outlet glacier draining East Antarctica through the Transantarctic Mountains into the Ross Ice Shelf. This study will investigate whether the ongoing changes in these glaciers will lead to long-term mass loss (the onset of ice sheet collapse), or whether these glaciers will quickly stabilize with a new geometry. \u003cbr/\u003e\u003cbr/\u003eTo adequately incorporate the dynamic behavior of outlet glaciers and ice streams requires inclusion of the relevant physical processes, and the development of regional models that employ a numerical grid with a horizontal grid spacing sufficiently refined to capture smaller-scale bed topographic features that may control the flow of these glaciers. This award revisits the issue of stability of marine-terminating glaciers whose grounding line is located on a retrograded bed slope. In particular, an attempt will be made to resolve the question whether observed rapid changes are the result of perturbations at the terminus or grounding line, or whether these changes reflect ice-dynamical forcing over the grounded reaches. High-resolution satellite imagery will be used to investigate ice-flow perturbations on smaller spatial scales than has been done before, to evaluate the importance of localized sites of high basal resistance on grounding-line stability. This collaborative project involves a range of modeling strategies including force-budget analysis, flow-band modeling, Full Stokes modeling for local studies, and using the Ice Sheet System Model developed at JPL for regional modeling. Broader Impacts include training two graduate students in computer simulations and ice sheet modeling algorithms. The work will also expand on a web-based interactive flowline model, so that it includes more realistic grounding line dynamics.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Ice Sheet Dynamics; MODELS; Iceberg Calving; GLACIERS/ICE SHEETS; Numerical Glacier Modeling; Basal Sliding; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "van der Veen, Cornelis; Stearns, Leigh; Paden, John", "platforms": "OTHER \u003e MODELS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Stability and Dynamics of Antarctic Marine Outlet Glaciers", "uid": "p0010387", "west": -180.0}, {"awards": "1842542 Morgan, Daniel", "bounds_geometry": "POLYGON((160 -77,160.4 -77,160.8 -77,161.2 -77,161.6 -77,162 -77,162.4 -77,162.8 -77,163.2 -77,163.6 -77,164 -77,164 -77.1,164 -77.2,164 -77.3,164 -77.4,164 -77.5,164 -77.6,164 -77.7,164 -77.8,164 -77.9,164 -78,163.6 -78,163.2 -78,162.8 -78,162.4 -78,162 -78,161.6 -78,161.2 -78,160.8 -78,160.4 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 09 Aug 2022 00:00:00 GMT", "description": "The goal of this study is to identify and distinguish different source areas of glacial sediment in the McMurdo Dry Valleys, Antarctica to determine past glacial flow direction. Understanding ice flow is critical for determining how the Antarctic Ice Sheets have behaved in the past. Such insight is fundamental for allowing scientists to predict how the Antarctic Ice Sheets will evolve and, in turn, forecast how much and how fast sea level may rise. The project study site, the McMurdo Dry Valleys, contain a tremendous record of glacial deposits on land that extends back at least 14 million years. Chemistry of the rocks within the glacial deposits hold clues to the sources of ice that deposited the material. The chemical analyses of the glacial deposits will allow mapping of the former extent of glaciations providing a better understand of ice flow history. The mapping of the largest ice sheet expansion of the past 14 million years in the McMurdo Dry Valleys is of broad interest to the global climate change community. Undergraduate students comprise the majority of the field teams and will be responsible for sample preparation and analysis in the laboratory. \u003cbr/\u003e\u003cbr/\u003eThis project utilizes new geochemical techniques to test hypotheses about the source, extent, and flow patterns of the glacier ice that deposited glacial tills in the McMurdo Dry Valleys, Antarctica (MDV). The MDV contain an unparalleled terrestrial archive of glacial deposits, which record multiple sources of ice that deposited them. These include the northeast flowing ice that overrode the Transantarctic Mountains, the eastward expansion of the East Antarctic Ice Sheet, the westward extension of the Ross Ice Shelf representing an expansion of the West Antarctic Ice Sheet, and the growth of local alpine glaciers. The glacial tills and drifts in the Antarctic are typically isolated in patches or disjointed outcrop patterns making it difficult to correlate tills and determine their source. This project will undertake a systematic study of the tills in the McMurdo Dry Valleys to determine their provenance with a variety of geochemical techniques including major and minor element analyses with X-ray fluorescence, heavy mineral composition, soil salt concentration, and determining the uranium-lead (U-Pb) ages of zircon sands contained in these tills. The primary tool will be the age distribution of the population of detrital zircon in a glacial drift because it reflects the source of the tills and provides a unique geochemical \"fingerprint\" used to distinguish source areas while correlating units across different sites. A deliverable from this project will be a community available library of zircon fingerprints for mapped glacial tills from archived samples at the Polar Rock Repository and the systematic collection of samples in the MDV.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 164.0, "geometry": "POINT(162 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIATION; Dry Valleys", "locations": "Dry Valleys", "north": -77.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Morgan, Daniel", "platforms": null, "repositories": null, "science_programs": null, "south": -78.0, "title": "Unlocking the Glacial History of the McMurdo Dry Valleys, Antarctica by Fingerprinting Glacial Tills with Detrital Zircon U-Pb Age Populations", "uid": "p0010368", "west": 160.0}, {"awards": "1543367 Shubin, Neil", "bounds_geometry": "POLYGON((158.3 -77.5,158.54000000000002 -77.5,158.78 -77.5,159.02 -77.5,159.26 -77.5,159.5 -77.5,159.74 -77.5,159.98 -77.5,160.22 -77.5,160.45999999999998 -77.5,160.7 -77.5,160.7 -77.605,160.7 -77.71,160.7 -77.815,160.7 -77.92,160.7 -78.025,160.7 -78.13,160.7 -78.235,160.7 -78.34,160.7 -78.445,160.7 -78.55,160.45999999999998 -78.55,160.22 -78.55,159.98 -78.55,159.74 -78.55,159.5 -78.55,159.26 -78.55,159.02 -78.55,158.78 -78.55,158.54000000000002 -78.55,158.3 -78.55,158.3 -78.445,158.3 -78.34,158.3 -78.235,158.3 -78.13,158.3 -78.025,158.3 -77.92,158.3 -77.815,158.3 -77.71,158.3 -77.605,158.3 -77.5))", "dataset_titles": "Vertebrate Fossils from the Aztec Siltstone (Mid-Late Devonian); Vertebrate Fossils from the Aztec Siltstone (Mid-Late Devonian) 2 (2018-2019)", "datasets": [{"dataset_uid": "601584", "doi": "10.15784/601584", "keywords": "Acanthodii; Antarctica; Chondrichthyes; Early Vertebrates; Osteolepiformes; Paleontology; Placodermi; Transantarctic Mountains; Vertebrate Evolution", "people": "Daeschler, Ted", "repository": "USAP-DC", "science_program": null, "title": "Vertebrate Fossils from the Aztec Siltstone (Mid-Late Devonian) 2 (2018-2019)", "url": "https://www.usap-dc.org/view/dataset/601584"}, {"dataset_uid": "601580", "doi": "10.15784/601580", "keywords": "Acanthodii; Antarctica; Chondrichthyes; Early Vertebrates; Osteolepiformes; Paleontology; Placodermi; Transantarctic Mountains; Vertebrate Evolution", "people": "Daeschler, Ted", "repository": "USAP-DC", "science_program": null, "title": "Vertebrate Fossils from the Aztec Siltstone (Mid-Late Devonian)", "url": "https://www.usap-dc.org/view/dataset/601580"}], "date_created": "Fri, 17 Jun 2022 00:00:00 GMT", "description": "This research will provide new insights into the relationships and history of sharks, fish and limbed animals. Understanding these relationships forms the backbone for both basic and applied science because fish often serve as models of human traits and diseases. Some of the main lines of evidence for these relationships come from fossils in rocks over 380 million years old that were originally deposited as ancient rivers and streams. Because rocks of this type and age are abundantly exposed along a number of the dry valleys and mountains of Antarctica, the investigation of these areas holds exceptional promise for discoveries that can have a broad impact. The fieldwork will involve geological mapping and assessment of the rocks with detailed reconnaissance for the fossils that they may hold. Fossil discoveries form the backbone for public communication of the methods and results of scientific research-- these studies will be used as vehicles for training of students at multiple levels as well as communication of science to the broader non-science citizen base.\u003cbr/\u003e\u003cbr/\u003eThe discovery, description, and analysis of Middle to Late Devonian (390-355 Million years ago) vertebrates and depositional environments provide important data on the emergence of novel anatomical structures, faunas, and habitats during a critical interval in the history of life and earth. Biological innovation during this time includes the early evolution of freshwater fish, the origins of major groups of vertebrates (e.g., sharks, lobe and ray-finned fish, tetrapods), and the expansion and elaboration of non-marine ecosystems. Accordingly, expanding our knowledge of vertebrate diversity during the Middle and Late Devonian will provide new evidence on the relationships of the major groups of vertebrates, the assembly of novelties that ultimately enabled tetrapods to invade land, the origin and early evolution of sharks and their relatives, and the assembly and expansion of non-marine ecosystems generally. The Aztec Siltstone of Antarctica Middle-Late Devonian; Givetian-Frasnian Stages) has exceptional potential to produce new paleontological evidence of these events and to illuminate the temporal, ecological, and geographic context in which they occurred. It is essentially fossiliferous throughout its known exposure range, something that is rare for Middle-Late Devonian non-marine rocks anywhere in the world. In addition, fine-grained meandering stream deposits are abundantly exposed in the Aztec Siltstone and are recognized as an important locus for the discovery of well-preserved Devonian fish, including stem tetrapods and their relatives. Given the exceedingly fossiliferous nature of the Aztec Siltstone, the large number of taxa known only from partial material, and the amount of promising exposure yet to be worked, a dedicated reconnaissance, collection, and research effort is designed to recover important new fossil material and embed it in a stratigraphic and sedimentological context. The first major objective of this study is the recovery, preparation, and description of Middle-Late Devonian fossil taxa. Ensuing investigation of the phylogenetic affinities, taphonomic occurrence, and stratigraphic position of fossil assemblages will allow both local and global comparisons of biotic diversity. These analyses will inform: 1) higher level phylogenetic hypotheses of jawed vertebrates, 2) biostratigraphic and biogeographic analysis of the distribution of the Middle-Late Devonian fish, and 3) paleobiological investigation of the elaboration of terrestrial and freshwater habitats. The broader impacts are derived from the utility of paleontology and Antarctic expeditionary science as educational tools with powerful narratives. Specific goals include affiliations with local urban secondary schools (using established relationships for broadening participation) and collegiate and graduate training. Wider dissemination of knowledge to the general public is a direct product of ongoing interactions with national and international media (print, television, internet).", "east": 160.7, "geometry": "POINT(159.5 -78.025)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; AMD; FIELD INVESTIGATION; Transantarctic Mountains; USA/NSF; MACROFOSSILS; Fossils; USAP-DC", "locations": "Transantarctic Mountains", "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e PALEOZOIC \u003e DEVONIAN", "persons": "Shubin, Neil; Daeschler, Edward B", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.55, "title": "Middle-Late Devonian Vertebrates of Antarctica", "uid": "p0010340", "west": 158.3}, {"awards": "2049332 Chu, Wing Yin", "bounds_geometry": "POLYGON((-180 -75,-175 -75,-170 -75,-165 -75,-160 -75,-155 -75,-150 -75,-145 -75,-140 -75,-135 -75,-130 -75,-130 -76.1,-130 -77.2,-130 -78.3,-130 -79.4,-130 -80.5,-130 -81.6,-130 -82.7,-130 -83.8,-130 -84.9,-130 -86,-135 -86,-140 -86,-145 -86,-150 -86,-155 -86,-160 -86,-165 -86,-170 -86,-175 -86,180 -86,177.5 -86,175 -86,172.5 -86,170 -86,167.5 -86,165 -86,162.5 -86,160 -86,157.5 -86,155 -86,155 -84.9,155 -83.8,155 -82.7,155 -81.6,155 -80.5,155 -79.4,155 -78.3,155 -77.2,155 -76.1,155 -75,157.5 -75,160 -75,162.5 -75,165 -75,167.5 -75,170 -75,172.5 -75,175 -75,177.5 -75,-180 -75))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 15 Sep 2021 00:00:00 GMT", "description": "Ice shelves play a critical role in restricting the seaward flow of grounded ice by providing buttressing at their bases and sides. Processes that affect the long-term stability of ice shelves can therefore impact the future contribution of the Antarctic Ice Sheet to global sea-level rise. Ross Ice Shelf is the largest ice shelf on Earth, and it buttresses massive areas of West and East Antarctica. Previous studies of modern ice velocity indicate that Ross Ice Shelf\u2019s mass loss is roughly balanced by its mass gain. However, more recent remote sensing observations extended further back in time reveal the ice shelf is likely not in steady-state, including possible long-term thinning since the late 90s. Therefore, to accurately interpret modern days ice shelf changes, long-term observations are critical to evaluate how these short-term variations fit into the historical context of ice shelf variability. This project examines over four decades (1971 \u2013 2017) of historical and modern airborne radar sounding observations of the Ross Ice Shelf to investigate ice-shelf changes on the decadal timescales. The researchers will process, calibrate, and analyze radar data collected during the 1971-79 SPRI/NSF/TUD campaign and compare them against modern observations from both the 2011-17 NASA Operation IceBridge/NSF CReSIS and the 2015-17 ROSETTA-Ice surveys. They will estimate basal melt rates by examining changes in ice-shelf thickness. They will determine other important basal melt metrics, including ice shelf roughness, englacial temperature, and marine ice formation. This project will support the education of a Ph.D. student from each of the institutions. This project will also support the training of undergraduate and high school researchers more generally in the field of radioglaciology and Antarctic sciences.", "east": -130.0, "geometry": "POINT(-167.5 -80.5)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; Antarctic Ice Sheet; GLACIER THICKNESS/ICE SHEET THICKNESS; USAP-DC; AMD; Transantarctic Mountains; Amd/Us; Siple Coast; GLACIER TOPOGRAPHY/ICE SHEET TOPOGRAPHY; FIELD SURVEYS; USA/NSF; Ross Ice Shelf", "locations": "Ross Ice Shelf; Antarctic Ice Sheet; Siple Coast; Transantarctic Mountains", "north": -75.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Chu, Winnie; Siegfried, Matt; Schroeder, Dustin", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -86.0, "title": "Collaborative Research: Investigating Four Decades of Ross Ice Shelf Subsurface Change with Historical and Modern Radar Sounding Data", "uid": "p0010265", "west": 155.0}, {"awards": "1644171 Blackburn, Terrence", "bounds_geometry": "POLYGON((162 -77.5,162.2 -77.5,162.4 -77.5,162.6 -77.5,162.8 -77.5,163 -77.5,163.2 -77.5,163.4 -77.5,163.6 -77.5,163.8 -77.5,164 -77.5,164 -77.525,164 -77.55,164 -77.575,164 -77.6,164 -77.625,164 -77.65,164 -77.675,164 -77.7,164 -77.725,164 -77.75,163.8 -77.75,163.6 -77.75,163.4 -77.75,163.2 -77.75,163 -77.75,162.8 -77.75,162.6 -77.75,162.4 -77.75,162.2 -77.75,162 -77.75,162 -77.725,162 -77.7,162 -77.675,162 -77.65,162 -77.625,162 -77.6,162 -77.575,162 -77.55,162 -77.525,162 -77.5))", "dataset_titles": "Isotopic ratios for subglacial precipitates from East Antarctica; U-Th isotopes and major elements in sediments from Taylor Valley, Antarctica", "datasets": [{"dataset_uid": "200240", "doi": "10.26022/IEDA/111548 ", "keywords": null, "people": null, "repository": "EarthChem", "science_program": null, "title": "Isotopic ratios for subglacial precipitates from East Antarctica", "url": "https://doi.org/10.26022/IEDA/111548"}, {"dataset_uid": "601806", "doi": "10.15784/601806", "keywords": "Antarctica; Cryosphere; Erosion; Isotope Data; Major Elements; Soil; Taylor Glacier; Taylor Valley", "people": "Piccione, Gavin; Tulaczyk, Slawek; Blackburn, Terrence; Edwards, Graham", "repository": "USAP-DC", "science_program": null, "title": "U-Th isotopes and major elements in sediments from Taylor Valley, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601806"}], "date_created": "Fri, 13 Aug 2021 00:00:00 GMT", "description": "The primary scientific goal of the proposed project is to test whether Taylor Valley, Antarctica has experienced glacial incision in the last ~1 million years in spite of cold climate conditions. One of the Dry Valleys of the Transantarctic Mountains, Taylor Valley exhibits over 2000 m of relief from sub sea-level troughs to high polar peaks. The Dry Valleys are characterized by low mean annual temperatures, paucity of precipitation and erosion that has allowed fragile glacial landforms, now subaerially exposed at high elevations, to be preserved for as long as 15 Ma. Two end member models can explain the timing of glacial incision and the observation that Quaternary advances of Taylor Glacier have left deposits at lower valley elevations with each advance. In the first scenario, all Valley relief is generated prior to 15 Ma when non-polar climates enabled warm-based glaciers to incise and widen fluvial channels more so than peaks. In this case, Quaternary drift deposits record advances of cold-based glaciers of decreasing ice volume. Limited glacial erosion and silt generation results in drift deposits composed primarily of recycled sediments. In the second scenario, selective erosion of the valley floor continues to deepen Taylor Valley over the last 2 Ma while high elevation peaks remain uneroded in polar conditions. The \u2018bathtub rings\u2019 of Quaternary drifts reaching a progressively lower elevation through time could be due to the lowering of the valley floor by subglacial erosion and with it, production of silt which is now incorporated into these drifts. While either scenario would result in the present day topography, they differ in the implied evolution of regional glacial ice volume over time and the timing of both valley relief production and generation of fine-grained particles. Here we propose to distinguish between these two models, by placing time constrains on fine particle production using U-series comminution dating. This new geochronologic tool exploits the loss of 234U due to alpha-recoil. The deficiency in 234U only becomes detectable in particles with a sufficiently high surface-area-to-volume ratio which can incur appreciable 234U loss (\u003c50 \uf0ecm). The timing of comminution and particle size controls the magnitude of 234U loss, up to 10% in silt-sized particles comminuted over 1.5 million years ago. And while this geochronologic tool is in its infancy, the scientific goal of this proposal can be achieved by resolving between ancient and recently comminuted fine particles, a binary question that our preliminary modeling and measured data show is readily resolved.", "east": 164.0, "geometry": "POINT(163 -77.625)", "instruments": null, "is_usap_dc": true, "keywords": "ICE SHEETS; Taylor Valley", "locations": "Taylor Valley", "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Blackburn, Terrence; Tulaczyk, Slawek", "platforms": null, "repo": "EarthChem", "repositories": "EarthChem; USAP-DC", "science_programs": null, "south": -77.75, "title": "U-Series Comminution Age Constraints on Taylor Valley Erosion", "uid": "p0010243", "west": 162.0}, {"awards": "1445205 Putkonen, Jaakko", "bounds_geometry": "POLYGON((157.6 -83.2,157.62 -83.2,157.64 -83.2,157.66 -83.2,157.68 -83.2,157.7 -83.2,157.72 -83.2,157.74 -83.2,157.76 -83.2,157.78 -83.2,157.8 -83.2,157.8 -83.21,157.8 -83.22,157.8 -83.23,157.8 -83.24,157.8 -83.25,157.8 -83.26,157.8 -83.27,157.8 -83.28,157.8 -83.29,157.8 -83.3,157.78 -83.3,157.76 -83.3,157.74 -83.3,157.72 -83.3,157.7 -83.3,157.68 -83.3,157.66 -83.3,157.64 -83.3,157.62 -83.3,157.6 -83.3,157.6 -83.29,157.6 -83.28,157.6 -83.27,157.6 -83.26,157.6 -83.25,157.6 -83.24,157.6 -83.23,157.6 -83.22,157.6 -83.21,157.6 -83.2))", "dataset_titles": "Cosmogenic-Nuclide data at ICE-D; Old Ice, Ong Valley, Transantarctic Mountains", "datasets": [{"dataset_uid": "601665", "doi": "10.15784/601665", "keywords": "Antarctica; Buried Ice; Cosmogenic Isotopes; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Old Ice; Ong Valley", "people": "Bergelin, Marie; Putkonen, Jaakko", "repository": "USAP-DC", "science_program": null, "title": "Old Ice, Ong Valley, Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/601665"}, {"dataset_uid": "200295", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic-Nuclide data at ICE-D", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Fri, 16 Jul 2021 00:00:00 GMT", "description": "Finding the oldest ice on Earth can tell us about the climate and life forms in the distant past\r\n\r\nRecently we discovered a mile wide and hundreds of feet thick ice body in Antarctica that is buried under just a few feet of dirt. Thus far our analyses of the dirt suggest that the ice is over million years old. Generally, glacial ice contains tiny bubbles and dirt that was deposited and locked in the ice by the ancient snowfall and today still holds small samples of the atmospheric gases and everything else that was carried by the winds in the past. Such samples may include the amount of greenhouse gases, plant pollen, microbes, and mineral dust. Therefore the glaciers are like archives where we can access and study the Earth\u2019s history with samples that are unavailable anywhere else. Ice survives poorly on Earth\u2019s surface and therefore currently only few ice samples are known that are approximately million years old. Our site has a high potential to harbor perhaps the oldest ice on Earth. However, first we need to sample and date the ice. Our research will also help us understand how these pockets of buried ice can survive such unusually long periods of time. Such understanding will help us study the landforms and history of not only Antarctica but also the Mars where similar dirt covered glaciers are found today.\r\n\r\nWe propose to collect regolith samples through the approximately 1 m thick cover and to core the buried ice in Ong Valley down to 10 m depth to determine the cosmogenic nuclide concentrations both in the regolith and in the embedded mineral matter suspended in the ice. The systematics of the target cosmogenic nuclides (10Be, 26Al, and 21Ne) such as half-lives, isotope production rates, production pathways, and related attenuation lengths allow us to uniquely determine the age of the ice and the rate the ice is sublimating. Our existing samples and analyses reveal accumulation of mineral matter at the base of surficial debris layer and the surface erosion of this debris by eolian processes. The intellectual merit of the proposed activity: Our main objective is to unequivocally determine the age and sublimation rate of two buried massive ice bodies in time scale of thousands to millions of years. The slow sublimation is a fundamentally Antarctic process, and may have altered most of the currently ice-free areas throughout the continent. Similar large, debris covered ice bodies have been recently discovered in Mars as well. Our results may transform the understanding of the longevity of the buried ice bodies and potentially reveal the oldest ice ever found in the interior of the Antarctica. If proven old and slowly sublimating, this buried ice can potentially yield direct information about the atmospheric chemistry, ancient life forms, and geology of greater antiquity than the currently available and sampled ice bodies. The broader impacts resulting from the proposed activity: The results will be relevant to researchers in glaciology, paleoclimatology, planetary geology, and biology. Several students will participate in the project and do field work in Antarctica, work in lab, attend meetings, attend outreach activities, and produce videos. A graduate student will prepare his/her thesis on a topic closely related to the objectives of the proposed research. The results of the research will be published in scientific meetings and publications.\r\n", "east": 157.8, "geometry": "POINT(157.7 -83.25)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; USA/NSF; FIELD SURVEYS; Transantarctic Mountains; GLACIERS/ICE SHEETS; AMD; Amd/Us", "locations": "Transantarctic Mountains", "north": -83.2, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "putkonen, jaakko; Balco, Gregory; Morgan, Daniel", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "ICE-D; USAP-DC", "science_programs": null, "south": -83.3, "title": "Collaborative Research: Long Term Sublimation/Preservation of Two Separate, Buried Glacier Ice Masses, Ong Valley, Southern Transantarctic Mountains", "uid": "p0010231", "west": 157.6}, {"awards": "1443556 Thomson, Stuart; 1443342 Licht, Kathy", "bounds_geometry": null, "dataset_titles": "Apatite (U-Th)/He and TREE Data Central Transantarctic Mountains", "datasets": [{"dataset_uid": "601462", "doi": "10.15784/601462", "keywords": "Antarctica; Beardmore Glacier; Erosion; Landscape Evolution; Shackleton Glacier; Transantarctic Mountains; (U-Th)/He", "people": "He, John; Thomson, Stuart; Reiners, Peter; Hemming, Sidney R.; Licht, Kathy", "repository": "USAP-DC", "science_program": null, "title": "Apatite (U-Th)/He and TREE Data Central Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/601462"}], "date_created": "Wed, 09 Jun 2021 00:00:00 GMT", "description": "Antarctica is almost entirely covered by ice, in places over two miles thick. This ice hides a landscape that is less well known than the surface of Mars and represents one of Earth\u0027s last unexplored frontiers. Ice-penetrating radar images provide a remote glimpse of this landscape including ice-buried mountains larger than the European Alps and huge fjords twice as deep as the Grand Canyon. The goal of this project is to collect sediment samples derived from these landscapes to determine when and under what conditions these features formed. Specifically, the project seeks to understand the landscape in the context of the history and dynamics of the overlying ice sheet and past mountain-building episodes. This project accomplishes this goal by analyzing sand collected during previous sea-floor drilling expeditions off the coast of Antarctica. This sand was supplied from the continent interior by ancient rivers when it was ice-free over 34 million year ago, and later by glaciers. The project will also study bedrock samples from rare ice-free parts of the Transantarctic Mountains. The primary activity is to apply multiple advanced dating techniques to single mineral grains contained within this sand and rock. Different methods and minerals yield different dates that provide insight into how Antarctica?s landscape has eroded over the many tens of millions of years during which sand was deposited offshore. The dating techniques that are being developed and enhanced for this study have broad application in many branches of geoscience research and industry. The project makes cost-effective use of pre-existing sample collections housed at NSF facilities including the US Polar Rock Repository, the Gulf Coast Core Repository, and the Antarctic Marine Geology Research Facility. The project will contribute to the STEM training of two graduate and two undergraduate students, and includes collaboration among four US universities as well as international collaboration between the US and France. The project also supports outreach in the form of a two-week open workshop giving ten students the opportunity to visit the University of Arizona to conduct STEM-based analytical work and training on Antarctic-based projects. Results from both the project and workshop will be disseminated through presentations at professional meetings, peer-reviewed publications, and through public outreach and media.\r\n\r\n\r\nThe main objective of this project is to reconstruct a chronology of East Antarctic subglacial landscape evolution to understand the tectonic and climatic forcing behind landscape modification, and how it has influenced past ice sheet inception and dynamics. Our approach focuses on acquiring a record of the cooling and erosion history contained in East Antarctic-derived detrital mineral grains and clasts in offshore sediments deposited both before and after the onset of Antarctic glaciation. Samples will be taken from existing drill core and marine sediment core material from offshore Wilkes Land (100\u00b0E-160\u00b0E) and the Ross Sea. Multiple geo- and thermo-chronometers will be employed to reconstruct source region cooling history including U-Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar. This offshore record will be augmented and tested by applying the same methods to onshore bedrock samples in the Transantarctic Mountains obtained from the US Polar Rock Repository and through fieldwork. The onshore work will additionally address the debated incision history of the large glacial troughs that cut the range, now occupied by glaciers draining the East Antarctic Ice Sheet. This includes collection of samples from several age-elevation transects, apatite 4He/3He thermochronometry, and Pecube thermo-kinematic modeling. Acquiring an extensive geo- and thermo-chronologic database will also provide valuable new information on the poorly known ice-hidden geology and tectonics of subglacial East Antarctica that has implications for improving supercontinent reconstructions and understanding continental break-up.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "LABORATORY; LANDSCAPE; AGE DETERMINATIONS; FIELD INVESTIGATION; GLACIAL PROCESSES; Transantarctic Mountains; USA/NSF; Thermochronology; Amd/Us; USAP-DC; TRACE ELEMENTS; Provenance Analysis; AMD; LANDFORMS; GLACIAL LANDFORMS", "locations": "Transantarctic Mountains", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Thomson, Stuart; Reiners, Peter; Licht, Kathy", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: East Antarctic Glacial Landscape Evolution (EAGLE): A Study using Combined Thermochronology, Geochronology and Provenance Analysis", "uid": "p0010188", "west": null}, {"awards": "2048351 Lindow, Julia", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 26 Feb 2021 00:00:00 GMT", "description": "Measurements of in-situ produced cosmogenic nuclides in Antarctic surficial rock samples provide unique time scales for glacial and landscape evolution processes. However, due to analytical challenges, pyroxene-bearing and widely distributed lithologies like the Ferrar dolerite of the Transantarctic Mountains, are underutilized. This proposal aims to changes this and to improve the cosmogenic nuclide methodologies for stable isotopes (21Ne and 3He) and radioactive nuclides (10Be) in pyroxenes. Proposed methodological improvements will be directly applicable to erosion rates and deposition ages of important glacial deposits, such as the controversial Sirius Group tills, and also to younger glacial features. Bennett Platform is the focus of this study because it is one of the southern-most Sirius Group outcrops along the Transantarctic Mountains, where cosmogenic ages are sparse.\r\n\r\nPreliminary measurements demonstrate large discrepancies between 3He and 21Ne age determinations in Sirius Group pyroxenes. One possible explanation is composition dependence of the 21Ne production rates. Coupled measurements of 3He, 21Ne, and 10Be in well-characterized pyroxene mineral separates from Ferrar dolerite will be used to better constrain the production rates, major element and trace element dependencies, the assumptions of the method, and ultimately advance the application of cosmogenic nuclides to mafic Antarctic lithologies.\r\n\r\nThe main goals of this study are to improve measurement protocols for 10Be in pyroxene, and the determination of the composition dependence of 21Ne production rates by measuring mineral compositions (by electron microprobe), and nuclide concentrations in mineral pairs from young lava flows. Further aims are the validation of the nucleogenic contributions and the effects of helium diffusive loss through measurements of 3He/21Ne production ratios, combined with measurements of shielded samples of the Ferrar dolerite. Combined measurements of 3He, 21Ne and 10Be in pyroxenes have rarely been published for individual samples in Antarctica. The new and unique measurements of this study will advance the applicability of in-situ produced cosmogenic nuclides to both young and ancient Antarctic surfaces. The study will be performed using existing samples: no field work is requested.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; AMD; FIELD INVESTIGATION; LABORATORY; Transantarctic Mountains; USAP-DC; GLACIAL LANDFORMS; Amd/Us", "locations": "Transantarctic Mountains", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Lindow, Julia; Kurz, Mark D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "New Cosmogenic 21Ne and 10Be Measurements in the Transantarctic Mountains", "uid": "p0010163", "west": null}, {"awards": "0838757 Balco, Gregory; 0838968 Putkonen, Jaakko", "bounds_geometry": "POLYGON((-158.00085 -83.2093,-157.945063 -83.2093,-157.889276 -83.2093,-157.833489 -83.2093,-157.777702 -83.2093,-157.721915 -83.2093,-157.666128 -83.2093,-157.610341 -83.2093,-157.554554 -83.2093,-157.498767 -83.2093,-157.44298 -83.2093,-157.44298 -83.50197,-157.44298 -83.79464,-157.44298 -84.08731,-157.44298 -84.37998,-157.44298 -84.67265,-157.44298 -84.96532,-157.44298 -85.25799,-157.44298 -85.55066,-157.44298 -85.84333,-157.44298 -86.136,-157.498767 -86.136,-157.554554 -86.136,-157.610341 -86.136,-157.666128 -86.136,-157.721915 -86.136,-157.777702 -86.136,-157.833489 -86.136,-157.889276 -86.136,-157.945063 -86.136,-158.00085 -86.136,-158.00085 -85.84333,-158.00085 -85.55066,-158.00085 -85.25799,-158.00085 -84.96532,-158.00085 -84.67265,-158.00085 -84.37998,-158.00085 -84.08731,-158.00085 -83.79464,-158.00085 -83.50197,-158.00085 -83.2093))", "dataset_titles": "Interface to observational data and geologic age information calculated therefrom; Web page with links to files containing cosmogenic noble gas concentrations and related analytical data", "datasets": [{"dataset_uid": "200198", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Web page with links to files containing cosmogenic noble gas concentrations and related analytical data", "url": "http://noblegas.berkeley.edu/~balcs/ongvalley/"}, {"dataset_uid": "200197", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Interface to observational data and geologic age information calculated therefrom", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Sun, 20 Dec 2020 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The proposed project will investigate the coldest and driest parts of the Transantarctic Mountains (Ong Valley at Nimrod Glacier and Moraine Canyon at Amundsen Glacier) where the lack of running water and biological activity in the modern environment is thought to have preserved the landscape, essentially unchanged, for millions of years. Contrary to this common belief, it is hypothesized that the landscape does evolve, perhaps as fast as many surfaces in the Dry Valleys area where both loose soil and bedrock surfaces have been degrading at a rate of about 1-2 m/Myrs for the past several million years. The research team will rely on analysis of the both stable and radioactive cosmogenic isotopes that accumulate in near surface soil and bedrock. Collectively these measurements allow comparison of the long term landscape evolution to current processes and environmental drivers such as wind speed. The results of this work will improve understanding of the evolution of the Earth\u0027s surface and directly aid in evaluating imagery of Martian geomorphology. Continued reliance on students provides a broader impact to this proposed research and firmly grounds this effort in its educational mission.", "east": -157.44298, "geometry": "POINT(-157.721915 -84.67265)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; NOT APPLICABLE; Antarctica", "locations": "Antarctica", "north": -83.2093, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Balco, Gregory; Putkonen, Jaakko; Morgan, Daniel", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "PI website", "repositories": "ICE-D; PI website", "science_programs": null, "south": -86.136, "title": "Collaborative Research: Systematic Analysis of Landscape Evolution and Surface Ages in Transantarctic Mountains", "uid": "p0010152", "west": -158.00085}, {"awards": "1443321 Bromley, Gordon; 1443329 Balco, Gregory", "bounds_geometry": "POLYGON((-180 -85.40705,-179.659078 -85.40705,-179.318156 -85.40705,-178.977234 -85.40705,-178.636312 -85.40705,-178.29539 -85.40705,-177.954468 -85.40705,-177.613546 -85.40705,-177.272624 -85.40705,-176.931702 -85.40705,-176.59078 -85.40705,-176.59078 -85.422615,-176.59078 -85.43818,-176.59078 -85.453745,-176.59078 -85.46931,-176.59078 -85.484875,-176.59078 -85.50044,-176.59078 -85.516005,-176.59078 -85.53157,-176.59078 -85.547135,-176.59078 -85.5627,-176.931702 -85.5627,-177.272624 -85.5627,-177.613546 -85.5627,-177.954468 -85.5627,-178.29539 -85.5627,-178.636312 -85.5627,-178.977234 -85.5627,-179.318156 -85.5627,-179.659078 -85.5627,180 -85.5627,179.277561 -85.5627,178.555122 -85.5627,177.832683 -85.5627,177.110244 -85.5627,176.387805 -85.5627,175.665366 -85.5627,174.942927 -85.5627,174.220488 -85.5627,173.498049 -85.5627,172.77561 -85.5627,172.77561 -85.547135,172.77561 -85.53157,172.77561 -85.516005,172.77561 -85.50044,172.77561 -85.484875,172.77561 -85.46931,172.77561 -85.453745,172.77561 -85.43818,172.77561 -85.422615,172.77561 -85.40705,173.498049 -85.40705,174.220488 -85.40705,174.942927 -85.40705,175.665366 -85.40705,176.387805 -85.40705,177.110244 -85.40705,177.832683 -85.40705,178.555122 -85.40705,179.277561 -85.40705,-180 -85.40705))", "dataset_titles": "Interface for viewing observational data related to exposure ages measurements and calculated geologic ages derived therefrom", "datasets": [{"dataset_uid": "200199", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Interface for viewing observational data related to exposure ages measurements and calculated geologic ages derived therefrom", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Sun, 20 Dec 2020 00:00:00 GMT", "description": "This investigation will reconstruct past behavior of the East Antarctic Ice Sheet during periods of warmer-than-present climate, such as the Pliocene, in order to better project the likely response of Earth\u0027s largest ice sheet to anthropogenic warming. Containing the equivalent of ~55 m sea-level rise, the future evolution of the East Antarctic Ice Sheet has clear societal ramifications on a global scale as temperatures continue to rise. Therefore, determining ice-sheet sensitivity to climate on the scale predicted for the next two centuries is a matter of increasing urgency, particularly in light of evidence suggesting the East Antarctic Ice Sheet is more dynamic than previously thought. This research will provide a terrestrial geologic record of long-term ice-sheet behavior from sites immediately adjacent the East Antarctic Ice Sheet in the Transantarctic Mountains, with which the project will help ascertain how the ice sheet responded to past warm periods. The project will focus primarily on the Pliocene warm period, 5 to 3 million years ago, as this represents the closest analogue to 21st Century climate conditions.\u003cbr/\u003e\u003cbr/\u003eThe proposed research will investigate glacial deposits corresponding to the East Antarctic Ice Sheet in the central Transantarctic Mountains in order to expand the geologic record of past ice-sheet behavior. The overarching research objectives are to improve understanding of the East Antarctic Ice Sheet\u0027s configuration during periods of warmer-than-present climate, such as the Pliocene warm period, and to determine whether the ice sheet underwent significant volume changes or remained relatively stable in response to warming. To address these goals, the investigation will map and date glacial deposits preserved at mountain sites immediately adjacent the ice sheet. Specifically, we will: (i) employ multiple cosmogenic nuclides (10Be, 26Al, 21Ne) to establish more fully ice-thickness histories for the upper Shackleton and Beardmore Glaciers, where they exit the ice sheet; (ii) use this record to identify periods during which the East Antarctic Ice Sheet was at least as extensive as today; and (iii) use these data to assess long-term ice-sheet variability in East Antarctica, with particular emphasis on Pliocene warm episodes. This research will require Antarctic fieldwork, glacial-geologic mapping, and cosmogenic surface-exposure dating.", "east": -176.59078, "geometry": "POINT(178.092415 -85.484875)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; Transantarctic Mountains; GLACIERS/ICE SHEETS; AMD; GLACIER THICKNESS/ICE SHEET THICKNESS; GLACIER ELEVATION/ICE SHEET ELEVATION; NOT APPLICABLE; Antarctica", "locations": "Antarctica; Transantarctic Mountains", "north": -85.40705, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Balco, Gregory; Bromley, Gorden; BROMLEY, GORDON", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "ICE-D", "repositories": "ICE-D", "science_programs": null, "south": -85.5627, "title": "Collaborative Research: Potential Direct Geologic Constraint of Ice Sheet Thickness in the Central Transantarctic Mountains during the Pliocene Warm Period", "uid": "p0010153", "west": 172.77561}, {"awards": "1341736 Adams, Byron", "bounds_geometry": null, "dataset_titles": "Dataset DS-TAMS: Genetic diversity of Collembola from the Transantarctic Mountains; GenBank accession numbers MN619477 to MN619610; Meteoric 10Be data of soils from the Shackleton Glacier region; Shackleton Glacier region soil water-soluble geochemical data; Shackleton Glacier region water-soluble salt isotopes; Soil invertebrate surveys from the Shackleton Glacier region of Antarctica during the 2017-2018 austral summer", "datasets": [{"dataset_uid": "200174", "doi": "10.5883/DS-TAMS", "keywords": null, "people": null, "repository": "Barcode of Life Datasystems (BOLD)", "science_program": null, "title": "Dataset DS-TAMS: Genetic diversity of Collembola from the Transantarctic Mountains", "url": "http://dx.doi.org/10.5883/DS-TAMS"}, {"dataset_uid": "200258", "doi": "doi:10.6073/pasta/7959821e5f6f8d56d94bb6a26873b3ae", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "Soil invertebrate surveys from the Shackleton Glacier region of Antarctica during the 2017-2018 austral summer", "url": "https://doi.org/10.6073/pasta/7959821e5f6f8d56d94bb6a26873b3ae"}, {"dataset_uid": "601421", "doi": "10.15784/601421", "keywords": "Antarctica; Be-10; Beryllium-10; Cosmogenic Radionuclides; Geochemistry; Geomorphology; Shackleton Glacier; Surface Exposure Dates", "people": "Diaz, Melisa A.", "repository": "USAP-DC", "science_program": null, "title": "Meteoric 10Be data of soils from the Shackleton Glacier region", "url": "https://www.usap-dc.org/view/dataset/601421"}, {"dataset_uid": "601419", "doi": "10.15784/601419", "keywords": "Antarctica; Geochemistry; Nitrate; Shackleton Glacier; Stable Isotopes; Sulfate; Transantarctic Mountains", "people": "Lyons, W. Berry; Diaz, Melisa A.; Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "Shackleton Glacier region water-soluble salt isotopes", "url": "https://www.usap-dc.org/view/dataset/601419"}, {"dataset_uid": "200175", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "GenBank accession numbers MN619477 to MN619610", "url": "https://www.ncbi.nlm.nih.gov/nuccore/MN619477"}, {"dataset_uid": "601418", "doi": "10.15784/601418", "keywords": "Antarctica; Geochemistry; Shackleton Glacier", "people": "Lyons, W. Berry; Diaz, Melisa A.; Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "Shackleton Glacier region soil water-soluble geochemical data", "url": "https://www.usap-dc.org/view/dataset/601418"}], "date_created": "Mon, 02 Nov 2020 00:00:00 GMT", "description": "The project will characterize the functional, taxonomic, biotic and abiotic drivers of soil ecosystems in the Trans Antarctic Mountains (one of the most remote and harsh terrestrial landscapes on the planet). The work will utilize new high-throughput DNA and RNA sequencing technologies to identify members of the microbial communities and determine if the microbial community structures are independent of local environmental heterogeneities. In addition the project will determine if microbial diversity and function are correlated with time since the last glacial maximum (LGM). The expected results will greatly contribute to our knowledge regarding rates of microbial succession and help define the some of the limits to life and life-maintaining processes on Earth.\u003cbr/\u003e\u003cbr/\u003eThe project will analyze genomes and RNA derived from these genomes to describe the relationships between biodiversity and ecosystem functioning from soils above and below LGM elevations and to correlate these with the environmental drivers associated with their development during the last ~18,000 years. The team will identify the taxonomic diversity and the functional genetic composition within a broad suite of soil biota and examine their patterns of assembly and distribution within the framework of their geological legacies. The project will mentor participants from undergraduate students to postdoctoral researchers and prepare them to effectively engage in research to meet their career aspirations. The project will contribute to ongoing public education efforts through relationships with K-12 teachers and administrators- to include University-Public School partnerships. Less formal activities include public lecture series and weblogs aimed at providing information on Antarctic polar desert ecosystems to the general public. Targeted classrooms near each PI\u0027s institution will participate in online, real-time discussions about current topics in Antarctic ecosystems research.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; LABORATORY; AMD; Amd/Us; USA/NSF; TERRESTRIAL ECOSYSTEMS; Transantarctic Mountains; USAP-DC", "locations": "Transantarctic Mountains", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Earth Sciences", "paleo_time": null, "persons": "Adams, Byron; Fierer, Noah; Wall, Diana; Diaz, Melisa A.; Gardner, Christopher B.; Lyons, W. Berry", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "Barcode of Life Datasystems (BOLD)", "repositories": "Barcode of Life Datasystems (BOLD); EDI; NCBI GenBank; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: The Role of Glacial History on the Structure and Functioning of Ecological Communities in the Shackleton Glacier Region of the Transantarctic Mountains", "uid": "p0010140", "west": null}, {"awards": "1643798 Emry, Erica; 1643873 Hansen, Samantha", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "GEOSCOPE Network; IU: Global Seismograph Network; Shear Wave Velocity of the Antarctic Upper Mantle from Full Waveform Inversion and Long Period Ambient Seismic Noise; XP (2000-2004): A Broadband Seismic Investigation of Deep Continental Structure Across the East-West Antarctic Boundary ; YT (2007-2023): IPY POLENET-Antarctica: Investigating links between geodynamics and ice sheets; ZJ (2012-2015): Transantarctic Mountains Northern Network ; ZM (2007-2013): A Broadband Seismic Experiment to Image the Lithosphere beneath the Gamburtsev Mountains, East Antarctica", "datasets": [{"dataset_uid": "200173", "doi": "10.7914/SN/ZJ_2012", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "ZJ (2012-2015): Transantarctic Mountains Northern Network ", "url": "http://www.fdsn.org/networks/detail/ZJ_2012/"}, {"dataset_uid": "200170", "doi": "10.7914/SN/XP_2000", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "XP (2000-2004): A Broadband Seismic Investigation of Deep Continental Structure Across the East-West Antarctic Boundary ", "url": "http://www.fdsn.org/networks/detail/XP_2000/"}, {"dataset_uid": "200168", "doi": "10.18715/GEOSCOPE.G", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "GEOSCOPE Network", "url": "http://geoscope.ipgp.fr/networks/detail/G/"}, {"dataset_uid": "200171", "doi": "10.7914/SN/YT_2007", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "YT (2007-2023): IPY POLENET-Antarctica: Investigating links between geodynamics and ice sheets", "url": "http://www.fdsn.org/networks/detail/YT_2007/"}, {"dataset_uid": "601744", "doi": "10.15784/601744", "keywords": "Ambient Seismic Noise; Antarctica; Full-Waveform Inversion; Seismic Tomography; Shear Wave Velocity; Solid Earth", "people": "Emry, Erica", "repository": "USAP-DC", "science_program": null, "title": "Shear Wave Velocity of the Antarctic Upper Mantle from Full Waveform Inversion and Long Period Ambient Seismic Noise", "url": "https://www.usap-dc.org/view/dataset/601744"}, {"dataset_uid": "200169", "doi": "10.7914/SN/IU", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IU: Global Seismograph Network", "url": "http://www.fdsn.org/networks/detail/IU/"}, {"dataset_uid": "200172", "doi": "10.7914/SN/ZM_2007", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": " ZM (2007-2013): A Broadband Seismic Experiment to Image the Lithosphere beneath the Gamburtsev Mountains, East Antarctica", "url": "http://www.fdsn.org/networks/detail/ZM_2007/"}], "date_created": "Thu, 15 Oct 2020 00:00:00 GMT", "description": "Our project is focused on better resolving the three-dimensional Antarctic mantle structure to further understanding of continental tectonics. To accomplish this, we are utilizing a full-waveform tomographic inversion technique that incorporates long-period ambient noise data and which has been shown to more accurately resolve structure than traditional tomographic approaches. The new models have been developed using the Alabama supercomputer facilities in conjunction with software developed at The University of Rhode Island. Our new tomographic results highlight the lithospheric structure beneath the Wilkes and Aurora Subglacial Basins in East Antarctica, where previous rifting episodes and mid-lithospheric discontinuities are being explored. In West Antarctica, the work is elucidating the easternmost extent of the West Antarctic Rift System as well as rifted structure and possible compositional variations within the Weddell Sea. We are also highlighting regions of Antarctica where tomographic resolution is still lacking and where future deployments are needed to improve resolution.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "SEISMIC SURFACE WAVES; USA/NSF; USAP-DC; SEISMOLOGICAL STATIONS; Amd/Us; AMD; POLNET; TECTONICS; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Emry, Erica; Hansen, Samantha", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS", "repo": "IRIS", "repositories": "IRIS; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Imaging Seismic Heterogeneity within the Antarctic Mantle with Full Waveform Ambient Noise Tomography", "uid": "p0010139", "west": -180.0}, {"awards": "1643551 Hansen, Samantha", "bounds_geometry": null, "dataset_titles": "Investigating Ultra-low Velocity Zones (ULVZs) using an Antarctic Dataset", "datasets": [{"dataset_uid": "601265", "doi": "10.15784/601265", "keywords": "Antarctica; Core-Mantle Boundary; ScP; Southern Hemisphere; Ultra-Low Velocity Zones", "people": "Carson, Sarah; Garnero, Edward; Yu, Shule; Hansen, Samantha; Rost, Sebastian", "repository": "USAP-DC", "science_program": null, "title": "Investigating Ultra-low Velocity Zones (ULVZs) using an Antarctic Dataset", "url": "https://www.usap-dc.org/view/dataset/601265"}], "date_created": "Fri, 09 Oct 2020 00:00:00 GMT", "description": "Non-Technical Project Description\u003cbr/\u003e\u003cbr/\u003eThis research will study Ultralow Velocity Zones (ULVZs), located in Earth\u0027s interior on top of the boundary between the Earth\u0027s solid mantle and its fluid outer core. The ULVZs are so named because seismic waves passing through the Earth slow down dramatically when they encounter these zones. While ULVZs are thought to be related to melting processes, there is growing controversy regarding their origin and the role they play in the thermal and chemical evolution of our planet. The ULVZs may include the largest magma chambers in Earth\u0027s interior. Currently, researchers have only searched 40% of Earth\u0027s core-mantle boundary for the ULVZs and this project would use existing seismic data to map an unexplored area under Antarctica and interpret the nature of the ULVZs. This project will support two graduate students and create opportunities for undergraduate involvement. Project results will be published in scientific journals, presented at science fairs, and communicated through the researchers\u0027 websites. The research team will also take part in the NSF-sponsored PolarTREC (Teachers and Researchers Exploring and Collaborating) program to communicate the science to students and the broader community. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eTechnical Project Description\u003cbr/\u003e\u003cbr/\u003eThe National Research Council has highlighted high-resolution imaging of core-mantle boundary (CMB) structure as a high-priority, emerging research opportunity in the Earth Sciences since anomalies along the CMB likely play a critical role in the thermal and chemical evolution of our planet. Of particular interest are ultralow velocity zones (ULVZs), thin laterally-varying boundary layers associated with dramatic seismic velocity decreases and increases in density that are seen just above the CMB. Many questions exist regarding the origin of ULVZs, but incomplete seismic sampling of the lowermost mantle has limited our ability to map global ULVZ structure in detail. Using recently collected data from the Transantarctic Mountains Northern Network (TAMNNET) in Antarctica, this project will use core-reflected seismic phases (ScP, PcP, and ScS) to investigate ULVZ presence/absence along previously unexplored sections of the CMB. The data sampling includes the southern boundary of the Pacific Large Low Shear Velocity Province (LLSVP), a dominant feature in global shear wave tomography models, and will allow the researchers to examine a possible connection between ULVZs and LLSVPs. The main objectives of the project are to: 1) use TAMNNET data to document ULVZ presence/absence in previously unexplored regions of the lowermost mantle with array-based approaches; 2) model the data with 1- and 2.5-D wave propagation tools to obtain ULVZ properties and to assess trade-offs among the models; 3) use high quality events to augment the densely-spaced TAMNNET data with that from the more geographically-distributed, open-access Antarctic stations to increase CMB coverage with single-station analyses; and 4) explore the implications of ULVZ solution models for origin, present-day dynamics, and evolution, including their connection to other deep mantle structures, like LLSVPs.\u003cbr/\u003e\u003cbr/\u003eThe project aims to provide new constraints on ULVZs, including their potential connection to LLSVPs, and thus relates to other seismic and geodynamic investigations focused on processes within the Earth?s interior. This project will promote a new research collaboration between The University of Alabama (UA) and Arizona State University (ASU), each of which brings specific strengths to the initiative.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; Antarctica; SEISMIC PROFILE; NOT APPLICABLE", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Hansen, Samantha", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Antarctic Seismic Investigations of ULVZ Structure", "uid": "p0010136", "west": null}, {"awards": "1341500 Ryberg, Patricia", "bounds_geometry": null, "dataset_titles": "Images of Fossil Plants of Antarctica", "datasets": [{"dataset_uid": "601066", "doi": "10.15784/601066", "keywords": "Antarctica; Biota; Fossil; Sample/collection Description; Sample/Collection Description; Transantarctic Mountains", "people": "Ryberg, Patricia", "repository": "USAP-DC", "science_program": null, "title": "Images of Fossil Plants of Antarctica", "url": "https://www.usap-dc.org/view/dataset/601066"}], "date_created": "Fri, 09 Oct 2020 00:00:00 GMT", "description": "This project will involve examination of Glossopteridales, fossil plants from Upper Permian deposits, in samples from the central Transantarctic Mountains and Southern Victoria Land, Antarctica. The glossopterids are an important fossil group because they are possible ancestors to the flowering plants. Permian sedimentary rocks (295-270 Ma before present) are important because they record a time of rapid biotic change, as the Late Paleozoic Age ended and the Mesozoic greenhouse environment began. The proposed research will rely entirely on specimens collected during recent field excursions to the central Transantarctic Mountains (CTM; 2010?2011) and southern Victoria Land (SVL; 2012?2013). Only a few of the specimens have been studied, but already have yielded anatomically well-preserved glossopterids with a complete pollen cone, which has never been found before. Additionally, several seed-bearing structures, which have never before been observed in Antarctica, have been found in both CTM and SVL. The project will allow comparison of whole-plant fossil glossopterids from the CTM with other paleo-latitudes, and will document the floral diversity within and between two depositional basins (CTM \u0026 SVL) during a time of global change, with the overall goal of linking environmental changes with fossil morphology. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThe Broader Impacts of this project will include mentoring undergraduates in research projects, at an institution with a substantial minority enrollment. Public outreach will focus on involving middle/high school students through the ?Expanding Your Horizons? programs in Kansas and Missouri, as well as interactive presentations at schools in the Kansas City Area. The lead PI is an early-career scientist at an institution that serves minorities.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; AMD; PLANTS; Victoria Land Basin; Transantarctic Mountains; Amd/Us; USA/NSF; Fossils; SEDIMENTS; FIELD INVESTIGATION; USAP-DC", "locations": "Antarctica; Transantarctic Mountains; Victoria Land Basin", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Ryberg, Patricia", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "RUI: Antarctic Paleobotany: Permian Floral Characteristics in a Sedimentary Setting", "uid": "p0010134", "west": null}, {"awards": "1443433 Licht, Kathy; 1443213 Kaplan, Michael", "bounds_geometry": "POLYGON((159 -83.8,159.5 -83.8,160 -83.8,160.5 -83.8,161 -83.8,161.5 -83.8,162 -83.8,162.5 -83.8,163 -83.8,163.5 -83.8,164 -83.8,164 -83.87,164 -83.94,164 -84.01,164 -84.08,164 -84.15,164 -84.22,164 -84.29,164 -84.36,164 -84.43,164 -84.5,163.5 -84.5,163 -84.5,162.5 -84.5,162 -84.5,161.5 -84.5,161 -84.5,160.5 -84.5,160 -84.5,159.5 -84.5,159 -84.5,159 -84.43,159 -84.36,159 -84.29,159 -84.22,159 -84.15,159 -84.08,159 -84.01,159 -83.94,159 -83.87,159 -83.8))", "dataset_titles": "10Be and 26Al cosmogenic nuclide surface exposure data; 3He input data", "datasets": [{"dataset_uid": "601375", "doi": "10.15784/601375", "keywords": "Antarctica; Cosmogenic Dating; Transantarctic Mountains", "people": "Schaefer, Joerg; Kaplan, Michael; Winckler, Gisela", "repository": "USAP-DC", "science_program": null, "title": "10Be and 26Al cosmogenic nuclide surface exposure data", "url": "https://www.usap-dc.org/view/dataset/601375"}, {"dataset_uid": "601376", "doi": "10.15784/601376", "keywords": "Antarctica; Transantarctic Mountains", "people": "Winckler, Gisela; Schaefer, Joerg; Kaplan, Michael", "repository": "USAP-DC", "science_program": null, "title": "3He input data", "url": "https://www.usap-dc.org/view/dataset/601376"}], "date_created": "Tue, 29 Sep 2020 00:00:00 GMT", "description": "Sediments deposited by the Antarctic ice sheet are an archive of its history with time and help geologists to determine how the remote interior of the ice sheet has changed over the past several hundred thousand years. This project will focus on the formation and dynamics of moraines (accumulations of dirt and rocks that are incorporated in the glacier surface or have been pushed along by the glacier as it moves) near the blue ice area of Mt. Achernar in the central Transantarctic Mountains in Antarctica.. The study will improve basic understanding of the formation of these moraines. Fieldwork at the site will focus on imaging the internal structure of the moraine to determine the processes by which it, and others like it, form over time. Additional analyses will include measurements of ice flow and collection of rock samples to determine the timing of debris deposition and the changes in the sources of sediments from deep within the Antarctic continent. The project will provide both graduate and undergraduate students training in paleoclimate studies, geology, and numerical modeling approaches. The broader impacts of the proposed work include hands on training in the Earth Sciences for graduate and undergraduate students, collaboration with colleagues in New Zealand and Sweden to provide an international research experience for students from the US, and three educational modules to be delivered by student researchers regarding Antarctica\u0027s role in global environments. The research is societally relevant and multidisciplinary and the topics are ideal for sharing with the public. All research findings will be made publicly available to others via timely publication in high-impact, peer-reviewed journals and all data will be submitted to the National Snow and Ice Data Center, and excess samples will be provided to the U.S. Polar Rock Repository.\u003cbr/\u003e\u003cbr/\u003eDirect observations of ice sheet history from the margins of Antarctica\u0027s polar plateau are essential for testing numerical ice sheet models, and the laterally extensive, blue-ice moraines of the Mt. Achernar Moraine complex in the central Transantarctic Mountains contain a unique and nearly untapped direct, quasi-continuous record of ice sheet change over multiple glacial cycles. The project objectives include improved understanding of processes and rates of blue ice moraine formation, as well as identifying the topographic, glaciological, and climatic controls on their evolution. Data to be collected with fieldwork in Antarctica include: imaging of internal ice structure with ground-penetrating radar, measurement of ice flow velocity and direction with a global positioning system (GPS) array, analysis of debris concentration and composition in glacier ice, state-of-the-art cosmogenic multi-nuclide analyses to determine exposure ages of moraine debris, mapping of trimlines and provenance analysis. Numerical model simulations, constrained by field data, will be used to evaluate the factors influencing changes in glacier flow that potentially impact the accumulation of the moraine debris. All together, the new data and modeling efforts will improve conceptual models of blue ice moraine formation, and thereby make them a more valuable proxy for developing a better understanding of the history of the ice sheet.", "east": 164.0, "geometry": "POINT(161.5 -84.15)", "instruments": null, "is_usap_dc": true, "keywords": "SEDIMENTS; GLACIAL PROCESSES; Mt. Achernar; ABLATION ZONES/ACCUMULATION ZONES; GLACIER ELEVATION/ICE SHEET ELEVATION; Antarctica; Antarctic Ice Sheet; Transantarctic Mountains; GLACIATION; USAP-DC; ICE MOTION; AMD; LABORATORY; Amd/Us", "locations": "Transantarctic Mountains; Antarctic Ice Sheet; Mt. Achernar; Antarctica", "north": -83.8, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Kaplan, Michael; Schaefer, Joerg; Winckler, Gisela; Licht, Kathy", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.5, "title": "Collaborative Research: Multidisciplinary Analysis of Antarctic Blue Ice Moraine Formation and their Potential as Climate Archives over Multiple Glacial Cycles", "uid": "p0010131", "west": 159.0}, {"awards": "1341658 Mukhopadhyay, Sujoy", "bounds_geometry": "POLYGON((-116.45 -84.786,-116.443 -84.786,-116.436 -84.786,-116.429 -84.786,-116.422 -84.786,-116.415 -84.786,-116.408 -84.786,-116.401 -84.786,-116.394 -84.786,-116.387 -84.786,-116.38 -84.786,-116.38 -84.7864,-116.38 -84.7868,-116.38 -84.7872,-116.38 -84.7876,-116.38 -84.788,-116.38 -84.7884,-116.38 -84.7888,-116.38 -84.7892,-116.38 -84.7896,-116.38 -84.79,-116.387 -84.79,-116.394 -84.79,-116.401 -84.79,-116.408 -84.79,-116.415 -84.79,-116.422 -84.79,-116.429 -84.79,-116.436 -84.79,-116.443 -84.79,-116.45 -84.79,-116.45 -84.7896,-116.45 -84.7892,-116.45 -84.7888,-116.45 -84.7884,-116.45 -84.788,-116.45 -84.7876,-116.45 -84.7872,-116.45 -84.7868,-116.45 -84.7864,-116.45 -84.786))", "dataset_titles": "Ohio Range Subglacial rock core cosmogenic nuclide data", "datasets": [{"dataset_uid": "601351", "doi": "10.15784/601351", "keywords": "Aluminum-26; Antarctica; Beryllium-10; Cosmogenic Dating; Cosmogenic Radionuclides; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Fluctuations; Ohio Range; Rocks", "people": "Mukhopadhyay, Sujoy", "repository": "USAP-DC", "science_program": null, "title": "Ohio Range Subglacial rock core cosmogenic nuclide data", "url": "https://www.usap-dc.org/view/dataset/601351"}], "date_created": "Sun, 28 Jun 2020 00:00:00 GMT", "description": "Modeling fluctuations in the extent of the West Antarctic Ice Sheet (WAIS) over time is a principal goal of the glaciological community. These models will provide a critical basis for predictions of future sea level change, and therefore this work great societal relevance. The mid-Pliocene time interval is of particular interest, as it is the most recent period in which global temperatures were warmer and atmospheric CO2 concentrations may have been higher than current levels. However, observational constraints on fluctuations in the WAIS older than the last glacial maximum are rare.\r\nTo test model predictions,sub-glacial rock cores were obtained from the Ohio Range along the Transantarctic Mountains near the present-day WAIS divide using a Winkie drill. Rock cores were recovered from 10 to ~30 m under the present-day ice levels. At the Ohio Range, the glacial to interglacial variations in ice sheet levels is ~120 meters. So 30 meters represent a significant fraction of the variation over the course of an ice age.\r\nHigh concentrations of the cosmic ray produced isotopes were detected in the rock cores, indicating extensive periods of ice-free exposure to cosmic irradiation during the last 2 million years. Modeling of the data suggest that bedrock surfaces at the Ohio Range that are currently covered by 30 meters of ice experienced more exposure than ice cover, especially in the Pleistocene. An ice sheet model prediction for the Ohio Range subglacial sample sites however, significantly underestimates exposure in the last 2 million years, and over-predicts ice cover in the Pleistocene. To adjust for the higher amounts of exposure we observe in our samples, the ice sheet model simulations require more frequent and/or longer-lasting WAIS ice drawdowns. This has important implications for future sea-level change as the model maybe under-predicting the magnitude of sea-level contributions from WAIS during the ice-age cycles. Improving the accuracy of the ice sheet models through model-data comparison should remain a prime objective in the face of a warming planet as understanding WAIS behavior is going to be key for predicting and planning for the effects of sea-level change. The project helped support and train a graduate student in climate research related to Antarctica, cosmogenic nuclide analyses and led to a Master\u2019s Thesis. The project also provide partial support to a postdoctoral scholar obtaining cosmogenic neon measurements and for training and mentoring the graduate student\u0027s cosmogenic neon measurements and interpretation. The project results were communicated to the scientific community at conferences and through seminars. The broader community was engaged through the University of California Davis\u0027s Picnic Day celebration, an annual open house that attracts over 70,000 people to the campus, and through classroom visit at a local elementary school.", "east": -116.38, "geometry": "POINT(-116.415 -84.788)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ROCK CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e AMS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Ice Sheet Fluctuations; ALUMINUM-26 ANALYSIS; BERYLLIUM-10 ANALYSIS; Cosmogenic Radionuclides; USAP-DC; FIELD INVESTIGATION; AMD; Ohio Range; GLACIER THICKNESS/ICE SHEET THICKNESS; ICE SHEETS; LABORATORY", "locations": "Ohio Range", "north": -84.786, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Mukhopadhyay, Sujoy", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.79, "title": "Constraining Plio-Pleistocene West Antarctic Ice Sheet Behavior from the Ohio Range and Scott Glacier", "uid": "p0010113", "west": -116.45}, {"awards": "1443576 Panter, Kurt", "bounds_geometry": "POLYGON((-154.1 -86.9,-154.03 -86.9,-153.96 -86.9,-153.89 -86.9,-153.82 -86.9,-153.75 -86.9,-153.68 -86.9,-153.61 -86.9,-153.54 -86.9,-153.47 -86.9,-153.4 -86.9,-153.4 -86.92,-153.4 -86.94,-153.4 -86.96,-153.4 -86.98,-153.4 -87,-153.4 -87.02,-153.4 -87.04,-153.4 -87.06,-153.4 -87.08,-153.4 -87.1,-153.47 -87.1,-153.54 -87.1,-153.61 -87.1,-153.68 -87.1,-153.75 -87.1,-153.82 -87.1,-153.89 -87.1,-153.96 -87.1,-154.03 -87.1,-154.1 -87.1,-154.1 -87.08,-154.1 -87.06,-154.1 -87.04,-154.1 -87.02,-154.1 -87,-154.1 -86.98,-154.1 -86.96,-154.1 -86.94,-154.1 -86.92,-154.1 -86.9))", "dataset_titles": "Volcanological and Petrological measurements on Mt. Early and Sheridan Bluff volcanoes, upper Scott Glacier, Antarctica ", "datasets": [{"dataset_uid": "601331", "doi": "10.15784/601331", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochronology; Glacial Volcanism; Magma Differentiation; Major Elements; Mantle Melting; Solid Earth; Trace Elements; Transantarctic Mountains", "people": "Panter, Kurt", "repository": "USAP-DC", "science_program": null, "title": "Volcanological and Petrological measurements on Mt. Early and Sheridan Bluff volcanoes, upper Scott Glacier, Antarctica ", "url": "https://www.usap-dc.org/view/dataset/601331"}], "date_created": "Fri, 05 Jun 2020 00:00:00 GMT", "description": "Predictions of future sea level rise require better understanding of the changing dynamics of the Greenland and Antarctic ice sheets. One way to better understand the past history of the ice sheets is to obtain records from inland ice for past geological periods, particularly in Antarctica, the world\u0027s largest remaining ice sheet. Such records are exceedingly rare, and can be acquired at volcanic outcrops in the La Gorce Mountains of the central Transantarctic Mountains. Volcanoes now exposed within the La Gorce Mountains erupted beneath the East Antarctic ice sheet and the data collected will record how thick the ice sheet was in the past. In addition, information will be used to determine the thermal conditions at the base of the ice sheet, which impacts ice sheet stability. The project will also investigate the origin of volcanic activity in Antarctica and links to the West Antarctic Rift System (WARS). The WARS is a broad area of extended (i.e. stretched) continental crust, similar to that found in East Africa, and volcanism is wide spread and long-lived (65 million years to currently active) and despite more than 50 years of research, the fundamental cause of volcanism and rifting in Antarctica is still vigorously debated. The results of this award therefore also potentially impact the study of oceanic volcanism in the entire southwestern Pacific region (e.g., New Zealand and Australia), where volcanic fields of similar composition and age have been linked by common magma sources and processes. The field program includes a graduate student who will work on the collection, analysis, and interpretation of petrological data as part of his/her Masters project. The experience and specialized analytical training being offered will improve the quality of the student\u0027s research and optimize their opportunities for their future. The proposed work fosters faculty and student national and international collaboration, including working with multi-user facilities that provide advanced technological mentoring of science students. Results will be broadly disseminated in peer-reviewed journals, public presentations at science meetings, and in outreach activities. Petrologic and geochemical data will be disseminated to be the community through the Polar Rock Repository. The study of subglacially erupted volcanic rocks has been developed to the extent that it is now the most powerful proxy methodology for establishing precise \u0027snapshots\u0027 of ice sheets, including multiple critical ice parameters. Such data should include measurements of ice thickness, surface elevation and stability, which will be used to verify, or reject, published semi-empirical models relating ice dynamics to sea level changes. In addition to establishing whether East Antarctic ice was present during the formation of the volcanoes, data will be used to derive the coeval ice thicknesses, surface elevations and basal thermal regime(s) in concert with a precise new geochronology using the 40Ar/39Ar dating method. Inferences from measurement of standard geochemical characteristics (major, trace elements and Sr, Nd, Pb, O isotopes) will be used to investigate a possible relationship between the volcanoes and the recently discovered subglacial ridge under the East Antarctic ice, which may be a rift flank uplift. The ridge has never been sampled, is undated and its significance is uncertain. The data will provide important new information about the deep Earth and geodynamic processes beneath this mostly ice covered and poorly understood sector of the Antarctic continent.", "east": -153.4, "geometry": "POINT(-153.75 -87)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; Mantle Melting; Magma Differentiation; Geochronology; Glacial Volcanism; GEOCHEMISTRY; Major Elements; ISOTOPES; Trace Elements; Transantarctic Mountains; LABORATORY; LAVA COMPOSITION/TEXTURE; USAP-DC; LAND RECORDS", "locations": "Transantarctic Mountains", "north": -86.9, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Panter, Kurt", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.1, "title": "Investigating Early Miocene Sub-ice Volcanoes in Antarctica for Improved Modeling and understanding of a Large Magmatic Province", "uid": "p0010105", "west": -154.1}, {"awards": "9615832 Blankenship, Donald; 9615704 Bell, Robin", "bounds_geometry": "POLYGON((-180 -74,-176 -74,-172 -74,-168 -74,-164 -74,-160 -74,-156 -74,-152 -74,-148 -74,-144 -74,-140 -74,-140 -75.6,-140 -77.2,-140 -78.8,-140 -80.4,-140 -82,-140 -83.6,-140 -85.2,-140 -86.8,-140 -88.4,-140 -90,-144 -90,-148 -90,-152 -90,-156 -90,-160 -90,-164 -90,-168 -90,-172 -90,-176 -90,180 -90,174 -90,168 -90,162 -90,156 -90,150 -90,144 -90,138 -90,132 -90,126 -90,120 -90,120 -88.4,120 -86.8,120 -85.2,120 -83.6,120 -82,120 -80.4,120 -78.8,120 -77.2,120 -75.6,120 -74,126 -74,132 -74,138 -74,144 -74,150 -74,156 -74,162 -74,168 -74,174 -74,-180 -74))", "dataset_titles": "SOAR-PPT Airborne gravity data; SOAR-WLK Airborne gravity data", "datasets": [{"dataset_uid": "601292", "doi": "10.15784/601292", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Potential Field; Solid Earth; Transantarctic Mountains", "people": "Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-PPT Airborne gravity data", "url": "https://www.usap-dc.org/view/dataset/601292"}, {"dataset_uid": "601293", "doi": "10.15784/601293", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Potential Field; Solid Earth; Transantarctic Mountains", "people": "Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-WLK Airborne gravity data", "url": "https://www.usap-dc.org/view/dataset/601293"}], "date_created": "Fri, 24 Apr 2020 00:00:00 GMT", "description": "Continental extension produces a great variety of structures from the linear narrow rifts of the East African Rift to the diffuse extension of the Basin and Range Province of the Western U.S. Rift shoulder uplift varies dramatically between rift flanks. The cause of variable rift width and crustal thinning is fairly well explained by variable initial heat flow and crustal thickness. Mechanical stretching of the lithosphere has been linked to rift shoulder uplift but the cause of variable rift flank uplift remains poorly understood. The Transantarctic Mountains (TAM) are an extreme example of rift flank uplift, extending over 3500 km across Antarctica and reaching elevations up to 4500 m and thus constitute a unique feature of EarthOs crust. The range was formed in the extensional environment associated with the Mesozoic and Cenozoic breakup of Gondwanaland. Geological and geophysical work has shown that the TAM developed along the long-lived lithospheric boundary between East and West Antarctica reactivated by a complex history of extensional and translational microplate motions. The TAM are not uniform along strike. Along the OWilkes FrontO, the northern segment of the rift extends from North Victoria Land to Byrd Glacier. The Wilkes Front architecture consists of (1) thin, extended crust forming the Victoria Land Basin in the Ross Sea, (2) the TAM rift shoulder, and (3) a long-wavelength down- ward forming the Wilkes Basin. Contrasting structures are mapped along the OPensacola/PoleO Front, the southern segment of the rift extending from the Nimrod Glacier to the Pensacola Mountains. Along this southern section no rift basin has been mapped to date and the down-ward along the East Antarctic, or ObacksideO, edge of the mountains is less pronounced. A flexural model linking the extension in the Ross Sea to the formation of both the mountains and the Wilkes Basin has been considered as a me chanism for uplift of the entire mountain range. The variability in fundamental architecture along the TAM indicates that neither a single event nor a sequence of identical events produced the rift flank uplift. The observation of variable architecture suggests complex mechanisms and possibly a fundamental limitation in maximum sustainable rift flank elevation. The motivation for studying the TAM is to try to understand the geodynamics of this extreme elevation rift flank. Are the geodynamics of the area unique, or does the history of glaciation and related erosion contribute to the extreme uplift? With the existing data sets it is difficult to confidently constrain the geological architecture across representative sections of the TAM. Any effort to refine geodynamic mechanisms requires this basic understanding of the TAM architecture. The goal of this project is to (1) constrain the architecture of the rift system as well as the distribution and structure of sedimentary basins, glacial erosion and mafic igneous rocks surrounding the rift flank by acquiring three long wavelength geophysical transects with integrated gravity, magnetics, ice- penetrating radar, and ice surface measurements, (2) quantify the contribution of various geodynamic mechanisms to understand the geological conditions which can lead to extreme rift flank uplift, and (3) use the improved understanding of architecture and geophysical data to test geodynamic models in order to improve our understanding both of the TAM geodynamics and the general problem of the geodynamics of rift flank uplift worldwide. This project will allow development of a generalized framework for understanding the development of rift flank uplift as well as address the question of the specific geodynamic evolution of the TAM.", "east": -140.0, "geometry": "POINT(170 -82)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": true, "keywords": "USAP-DC; Transantarctic Mountains; GRAVITY FIELD; TECTONICS", "locations": "Transantarctic Mountains", "north": -74.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Bell, Robin; Buck, W. Roger; Blankenship, Donald D.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Contrasting Architecture and Dynamics of the Transantarctic Mountains", "uid": "p0010095", "west": 120.0}, {"awards": "1443296 Cottle, John", "bounds_geometry": "POLYGON((-180 -76.85314,-179.4383642 -76.85314,-178.8767284 -76.85314,-178.3150926 -76.85314,-177.7534568 -76.85314,-177.191821 -76.85314,-176.6301852 -76.85314,-176.0685494 -76.85314,-175.5069136 -76.85314,-174.9452778 -76.85314,-174.383642 -76.85314,-174.383642 -77.658865,-174.383642 -78.46459,-174.383642 -79.270315,-174.383642 -80.07604,-174.383642 -80.881765,-174.383642 -81.68749,-174.383642 -82.493215,-174.383642 -83.29894,-174.383642 -84.104665,-174.383642 -84.91039,-174.9452778 -84.91039,-175.5069136 -84.91039,-176.0685494 -84.91039,-176.6301852 -84.91039,-177.191821 -84.91039,-177.7534568 -84.91039,-178.3150926 -84.91039,-178.8767284 -84.91039,-179.4383642 -84.91039,180 -84.91039,177.4459565 -84.91039,174.891913 -84.91039,172.3378695 -84.91039,169.783826 -84.91039,167.2297825 -84.91039,164.675739 -84.91039,162.1216955 -84.91039,159.567652 -84.91039,157.0136085 -84.91039,154.459565 -84.91039,154.459565 -84.104665,154.459565 -83.29894,154.459565 -82.493215,154.459565 -81.68749,154.459565 -80.881765,154.459565 -80.07604,154.459565 -79.270315,154.459565 -78.46459,154.459565 -77.658865,154.459565 -76.85314,157.0136085 -76.85314,159.567652 -76.85314,162.1216955 -76.85314,164.675739 -76.85314,167.2297825 -76.85314,169.783826 -76.85314,172.3378695 -76.85314,174.891913 -76.85314,177.4459565 -76.85314,-180 -76.85314))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 02 Dec 2019 00:00:00 GMT", "description": "Subduction takes place at convergent plate boundaries and involves sinking of one tectonic plate underneath another. Although this process is a key aspect of plate tectonics that shapes the planet over geologic time, and is a primary cause of earthquakes, it is not known what causes subduction to cease, and what effect it has on the deepest portions of the crust and the upper part of the mantle. By studying the age and composition of igneous rocks emplaced at the very end of the subduction cycle, this project seeks to understand what causes subduction to cease, and how this changes the composition and structure of the crust and upper mantle. Because this process occurs deep within the earth, the project will focus on rocks in the root of an ancient subduction zone, now exposed in the Transantarctic Mountains of Antarctica. In addition, Antarctica remains relatively poorly understood, and this project will contribute directly to increasing our understanding of the geologic history of this region. The project will focus on training graduate and undergraduate students - incorporating hands-on experience with an array of state-of-the-art analytical instrumentation. Students will also gain a range of more general skills including Geographic Information Systems (GIS), written and oral communication, and data management - strengths that are highly relevant to careers both in the academic and Geosciences industry. Each summer, high school students will be incorporated into aspects of the laboratory-based research through the UCSB research mentorship program. The PI and graduate students will engage the general public through a purpose-built iPhone App and multimedia website. Activities will include live phone and video conversations from the field between elementary school students and members of the team in Antarctica. \u003cbr/\u003e\u003cbr/\u003eThe mechanisms by which the deep crustal delaminates or \"founders\" and is returned to the mantle remains a fundamental problem in earth science. Specifically, little is known about the temporal and spatial scales over which this process occurs or the mechanisms that trigger such catastrophic events. Igneous rocks highly enriched in potassium, called lamprophyres, are often emplaced during, and immediately after, termination of subduction and therefore potentially provide direct insight into foundering. These enigmatic rocks are important because they represent near-primary mantle melt compositions and therefore their age, geochemistry and petrologic evolution reveal key information on both the composition of the upper mantle and its thermal state. Of equal importance, they reveal how these key parameters vary through both space and time. By evaluating lamprophyres along a subduction zone margin it is possible to extract: 1) local-scale information, such as the timing and duration of melting and the role of igneous crystallization processes in generation of isotopic heterogeneities; 2) along-strike variations in mantle source composition, temperature, and depth of melting 3) the plate-scale forces that control foundering and termination of subduction. This project will study a suite of lamprophyres along the axis of the Transantarctic Mountains, emplaced during the latest stages of the Neoproterozoic - Ordovician Ross orogeny, Antarctica (roughly 505 to 470 million years before present). High-precision geochronology (age determinations) will be combined with geochemical measurements on the rocks and minerals to understand the mechanisms and timing of deep crustal foundering/delamination.", "east": -174.383642, "geometry": "POINT(170.0379615 -80.881765)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "AGE DETERMINATIONS; ISOTOPES; PLATE TECTONICS; Antarctica; USAP-DC; NOT APPLICABLE", "locations": "Antarctica", "north": -76.85314, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Cottle, John", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repositories": null, "science_programs": null, "south": -84.91039, "title": "Petrologic Constraints on Subduction Termination From Lamprophyres, Ross Orogen, Antarctica", "uid": "p0010071", "west": 154.459565}, {"awards": "1443346 Stone, John; 1443248 Hall, Brenda", "bounds_geometry": "POLYGON((-174 -84.2,-172.4 -84.2,-170.8 -84.2,-169.2 -84.2,-167.6 -84.2,-166 -84.2,-164.4 -84.2,-162.8 -84.2,-161.2 -84.2,-159.6 -84.2,-158 -84.2,-158 -84.36,-158 -84.52,-158 -84.68,-158 -84.84,-158 -85,-158 -85.16,-158 -85.32,-158 -85.48,-158 -85.64,-158 -85.8,-159.6 -85.8,-161.2 -85.8,-162.8 -85.8,-164.4 -85.8,-166 -85.8,-167.6 -85.8,-169.2 -85.8,-170.8 -85.8,-172.4 -85.8,-174 -85.8,-174 -85.64,-174 -85.48,-174 -85.32,-174 -85.16,-174 -85,-174 -84.84,-174 -84.68,-174 -84.52,-174 -84.36,-174 -84.2))", "dataset_titles": "Cosmogenic nuclide data from glacial deposits along the Liv Glacier coast; Ice-D Antarctic Cosmogenic Nuclide database - site DUNCAN; Ice-D Antarctic Cosmogenic Nuclide database - site MAASON; Liv and Amundsen Glacier Radiocarbon Data", "datasets": [{"dataset_uid": "601208", "doi": "10.15784/601208", "keywords": "Antarctica; Carbon; Glaciology; Holocene; Radiocarbon; Ross Embayment; Ross Sea; Transantarctic Mountains", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Liv and Amundsen Glacier Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601208"}, {"dataset_uid": "601226", "doi": "10.15784/601226", "keywords": "Antarctica; Be-10; Beryllium-10; Cosmogenic; Cosmogenic Dating; Cosmogenic Radionuclides; Deglaciation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Liv Glacier; Rocks; Ross Ice Sheet; Surface Exposure Dates; Transantarctic Mountains", "people": "Stone, John", "repository": "USAP-DC", "science_program": null, "title": "Cosmogenic nuclide data from glacial deposits along the Liv Glacier coast", "url": "https://www.usap-dc.org/view/dataset/601226"}, {"dataset_uid": "200088", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Ice-D Antarctic Cosmogenic Nuclide database - site DUNCAN", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "200087", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Ice-D Antarctic Cosmogenic Nuclide database - site MAASON", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Thu, 05 Sep 2019 00:00:00 GMT", "description": "The response of the Antarctic Ice Sheet to future climatic changes is recognized as the greatest uncertainty in projections of future sea level. An understanding of past ice fluctuations affords insight into ice-sheet response to climate and sea-level change and thus is critical for improving sea-level predictions. This project will examine deglaciation of the southern Ross Sea over the past few thousand years to document oscillations in Antarctic ice volume during a period of relatively stable climate and sea level. We will help quantify changes in ice volume, improve understanding of the ice dynamics responsible, and examine the implications for future sea-level change. The project will train future scientists through participation of graduate students, as well as undergraduates who will develop research projects in our laboratories.\u003cbr/\u003e\u003cbr/\u003ePrevious research indicates rapid Ross Sea deglaciation as far south as Beardmore Glacier early in the Holocene epoch (which began approximately 11,700 years before present), followed by more gradual recession. However, deglaciation in the later half of the Holocene remains poorly constrained, with no chronological control on grounding-line migration between Beardmore and Scott Glaciers. Thus, we do not know if mid-Holocene recession drove the grounding line rapidly back to its present position at Scott Glacier, or if the ice sheet withdrew gradually in the absence of significant climate forcing or eustatic sea level change. The latter possibility raises concerns for future stability of the Ross Sea grounding line. To address this question, we will map and date glacial deposits on coastal mountains that constrain the thinning history of Liv and Amundsen Glaciers. By extending our chronology down to the level of floating ice at the mouths of these glaciers, we will date their thinning history from glacial maximum to present, as well as migration of the Ross Sea grounding line southwards along the Transantarctic Mountains. High-resolution dating will come from Beryllium-10 surface-exposure ages of erratics collected along elevation transects, as well as Carbon-14 dates of algae within shorelines from former ice-dammed ponds. Sites have been chosen specifically to allow close comparison of these two dating methods, which will afford constraints on Antarctic Beryllium-10 production rates.", "east": -158.0, "geometry": "POINT(-166 -85)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; NOT APPLICABLE; Antarctica; ICE SHEETS; USAP-DC", "locations": "Antarctica", "north": -84.2, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Hall, Brenda; Stone, John", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "ICE-D; USAP-DC", "science_programs": null, "south": -85.8, "title": "Collaborative Research: High-resolution Reconstruction of Holocene Deglaciation in the Southern Ross Embayment", "uid": "p0010053", "west": -174.0}, {"awards": "1758224 Salvatore, Mark", "bounds_geometry": "POLYGON((-180 -83,-178 -83,-176 -83,-174 -83,-172 -83,-170 -83,-168 -83,-166 -83,-164 -83,-162 -83,-160 -83,-160 -83.4,-160 -83.8,-160 -84.2,-160 -84.6,-160 -85,-160 -85.4,-160 -85.8,-160 -86.2,-160 -86.6,-160 -87,-162 -87,-164 -87,-166 -87,-168 -87,-170 -87,-172 -87,-174 -87,-176 -87,-178 -87,180 -87,178 -87,176 -87,174 -87,172 -87,170 -87,168 -87,166 -87,164 -87,162 -87,160 -87,160 -86.6,160 -86.2,160 -85.8,160 -85.4,160 -85,160 -84.6,160 -84.2,160 -83.8,160 -83.4,160 -83,162 -83,164 -83,166 -83,168 -83,170 -83,172 -83,174 -83,176 -83,178 -83,-180 -83))", "dataset_titles": "Laboratory Hyperspectral Reflectance Data of Central Transantarctic Mountain Rocks and Sediments; Orbital imagery used for SpecMap project", "datasets": [{"dataset_uid": "002735", "doi": null, "keywords": null, "people": null, "repository": "PGC", "science_program": null, "title": "Orbital imagery used for SpecMap project", "url": "https://www.pgc.umn.edu/projects/specmap/"}, {"dataset_uid": "601163", "doi": "10.15784/601163", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Remote Sensing; Rocks; Solid Earth; Spectroscopy; Transantarctic Mountains", "people": "Salvatore, Mark", "repository": "USAP-DC", "science_program": null, "title": "Laboratory Hyperspectral Reflectance Data of Central Transantarctic Mountain Rocks and Sediments", "url": "https://www.usap-dc.org/view/dataset/601163"}], "date_created": "Thu, 14 Mar 2019 00:00:00 GMT", "description": "Intellectual Merit:\u003cbr/\u003eIce free rock outcrops in the Transantarctic Mountains provide the only accessible windows into the interior of the ice covered Antarctic continent; they are extremely remote and difficult to study. This region also hosts the highest latitude ice-free valley systems on the planet. Based on two interdisciplinary workshops, the Transantarctic region near the Shackleton Glacier has been identified as a high priority site for further studies, with a field camp proposed for the 2015-2016 Antarctic field season. The geology of this region has been studied since the heroic era of Antarctic exploration, in the early 1900s, but geologic mapping has not been updated in more than forty years, and existing maps are at poor resolution (typically 1:250,000).\u003cbr/\u003e\u003cbr/\u003eThis project would utilize the WorldView-2 multispectral orbital dataset to supplement original geologic mapping efforts near the proposed 2015-2016 Shackleton Glacier camp. The WorldView-2 satellite is the only multispectral orbiting sensor capable of imaging the entirety of the Transantarctic Mountains, and all necessary data are currently available to the Polar Geospatial Center. High-latitude atmospheric correction of multispectral data for geologic investigations has only recently been tested, but has never been applied to WorldView-2 data, and never for observations of this type. Therefore, this research will require technique refinements and methodological developements to accomplish the goals. Atmospheric correction refinements and spectral validation will be made possible by laboratory spectroscopic measurements of rock samples currently stored at the U.S. Polar Rock Repository, at the Ohio State University. This project will result in spectral unit identification and boundary mapping at a factor of four higher resolution (1:62,500) than previous geologic mapping efforts, and more detailed investigations (1:5,123) are possible at resolutions more than a factor of forty-eight improved over previous geologic maps. Validated spectral mapping at these improved resolutions will allow for detailed lithologic, and potentially biologic, mapping using existing satellite imagery. This will greatly enhance planning capabilities, thus maximizing the efficiency of the scientific research and support logistics associated with the Shackleton Glacier deep field camp.\u003cbr/\u003e\u003cbr/\u003eBroader impacts:\u003cbr/\u003eThe proposed work will have multiple impacts on the broader scientific community. First, the refinement of existing atmospheric correction methodologies, and the development of new spectral mapping techniques, may substantially improve our ability to remotely investigate geologic surfaces throughout Antarctica. The ability to validate this orbital dataset will be of use to both current and future geologic, environmental, and biologic studies, potentially across the entire continent. The project will yield a specific spectral mapping product (at a scale of 1:62,500) to the scientific community by a targeted date of 01 March 2014, in order to support proposals submitted to the National Science Foundation for the proposed 2015/2016 Shackleton Glacier camp. High-resolution spectral mapping products (up to a maximum resolution of 2 meters per pixel) will also be generated for regions of particular scientific interest. The use of community based resources, such as Polar Geospatial Center (PGC) imagery and U.S. Polar Rock Repository rock samples, will generate new synergistic and collaborative research possibilities within the Antarctic research community. In addition, the lead PI (Salvatore) is an early career scientist who is active in both Antarctic and planetary remote sensing. There are overlaps in the calibration, correction, and validation of remote spectral datasets for Antarctic and planetary applications which can lead to benefits and insights to an early career PI, as well as the two communities.", "east": -160.0, "geometry": "POINT(180 -85)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; Antarctica; GEOCHEMISTRY; LANDSCAPE; REFLECTED INFRARED; USAP-DC", "locations": "Antarctica", "north": -83.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Salvatore, Mark", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "PGC", "repositories": "PGC; USAP-DC", "science_programs": null, "south": -87.0, "title": "EAGER: Surface Variability and Spectral Analyses of the Central Transantarctic Mountains, Antarctica", "uid": "p0010020", "west": 160.0}, {"awards": "1341612 Bowser, Samuel", "bounds_geometry": null, "dataset_titles": "Aerial survey of Explorers Cove shoreline, late January 2005; Astrammina rara genome sequencing and assembly; Astrammina triangularis genome sequencing and assembly; Crithionina delacai mitochondrial genome sequence and assembly; Scanning electron micrographs: Influence of heavy metal (Pb, Cd) exposure on shell morphogenesis in Astrammina rara, a giant agglutinated Antarctic foraminiferan protist", "datasets": [{"dataset_uid": "200090", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Astrammina rara genome sequencing and assembly", "url": "https://dataview.ncbi.nlm.nih.gov/object/PRJNA521081?reviewer=25e190ih1svottjkrrpfa7huoe"}, {"dataset_uid": "601138", "doi": "10.15784/601138", "keywords": "Antarctica; Biota; Foraminifera; Heavy Metal Toxicity; Scanning Electron Microscop; Scanning Electron Microscope (SEM) Images; Scanning Electron Microscopy; Transantarctic Mountains", "people": "Andreas, Amanda; Bowser, Samuel", "repository": "USAP-DC", "science_program": null, "title": "Scanning electron micrographs: Influence of heavy metal (Pb, Cd) exposure on shell morphogenesis in Astrammina rara, a giant agglutinated Antarctic foraminiferan protist", "url": "https://www.usap-dc.org/view/dataset/601138"}, {"dataset_uid": "601229", "doi": "10.15784/601229", "keywords": "Aerial Imagery; Antarctica; Camera; Delta; Freshwater; Helicopter; Moat; Shoreline Survey; Small Ponds; Snow Melt; Tide Pools", "people": "Alexander, Steve; Bowser, Samuel", "repository": "USAP-DC", "science_program": null, "title": "Aerial survey of Explorers Cove shoreline, late January 2005", "url": "https://www.usap-dc.org/view/dataset/601229"}, {"dataset_uid": "200091", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Crithionina delacai mitochondrial genome sequence and assembly", "url": "https://dataview.ncbi.nlm.nih.gov/object/PRJNA592714?reviewer=ivse8455h3gfaiilg4nqle0vm1"}, {"dataset_uid": "200089", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Astrammina triangularis genome sequencing and assembly", "url": "https://dataview.ncbi.nlm.nih.gov/object/PRJNA521279?reviewer=g418tpq02sif2g6do94dpmmjdv"}], "date_created": "Thu, 29 Nov 2018 00:00:00 GMT", "description": "Agglutinated foraminifera (forams for short) are early-evolving, single-celled organisms. These \"living fossils\" construct protective shells using sediment grains held together by adhesive substances that they secrete. During shell construction, agglutinated forams display amazing properties of selection - for example, some species build their shells of clear quartz grains, while other species use only grains of a specific size. Understanding how these single cells assemble complex structures may contribute to nanotechnology by enabling people to use forams as \"cellular machines\" to aid in the construction of nano-devices. This project will analyze the genomes of at least six key foram species, and then \"mine\" these genomes for technologically useful products and processes. The project will focus initially on the adhesive materials forams secrete, which may have wide application in biomedicine and biotechnology. Furthermore, the work will further develop a molecular toolkit which could open up new avenues of research on the physiology, ecology, and population dynamics of this important group of Antarctic organisms. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. Educational experiences related to the \"thrill of scientific exploration and discovery\" for students and the general public will be provided through freely-available short films and a traveling art/science exhibition. The project will also provide hands-on research opportunities for undergraduate students.\u003cbr/\u003e\u003cbr/\u003eExplorers Cove, situated on the western shore of McMurdo Sound, harbors a unique population of foraminiferan taxa at depths accessible by scuba diving that otherwise are primarily found in the deep sea. The project will use next-generation DNA sequencing and microdissection methods to obtain and analyze nuclear and mitochondrial genomes from crown members of two species each from three distinct, early-evolving foraminiferal groups. It will also use next generation sequencing methods to characterize the in-situ prokaryotic assemblages (microbiomes) of one of these groups and compare them to reference sediment microbiomes. The phyogenomic studies of the targeted Antarctic genera will help fill significant gaps in our current understanding of early foram evolution. Furthermore, comparative genomic analyses of these six species are expected to yield a better understanding of the physiology of single-chambered agglutinated forams, especially the bioadhesive proteins and regulatory factors involved in shell composition and morphogenesis. Additionally, the molecular basis of cold adaptation in forams will be examined, particularly with respect to key proteins.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; NOT APPLICABLE", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bowser, Samuel", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "NCBI GenBank", "repositories": "NCBI GenBank; USAP-DC", "science_programs": null, "south": null, "title": "Assembling and Mining the Genomes of Giant Antarctic Foraminifera", "uid": "p0000004", "west": null}, {"awards": "1443306 Mayewski, Paul; 1443263 Higgins, John", "bounds_geometry": null, "dataset_titles": "Carbon dioxide concentration and its stable carbon isotope composition in Allan Hills ice cores; Elemental and isotopic composition of heavy noble gases in Allan Hills ice cores; Elemental and isotopic composition of nitrogen, oxygen, and argon in Allan Hills ice cores; Greenhouse gas composition in the Allan Hills S27 ice core; Methane concentration in Allan Hills ice cores; Stable isotope composition of the trapped air in the Allan Hills S27 ice core; Stable water isotope data for the AH-1502 ice core drilled at the Allan Hills Blue ice area; Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills Blue ice area; Stable water isotope data for the surface samples collected at the Allan Hills Blue ice area", "datasets": [{"dataset_uid": "601130", "doi": "10.15784/601130", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; Delta 18O; Delta Deuterium; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Gas Records; Ice Core Records; Oxygen; Snow/ice; Snow/Ice; Stable Water Isotopes; Transantarctic Mountains", "people": "Yan, Yuzhen; Mayewski, Paul A.; Kurbatov, Andrei V.; Introne, Douglas", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable water isotope data for the surface samples collected at the Allan Hills Blue ice area", "url": "https://www.usap-dc.org/view/dataset/601130"}, {"dataset_uid": "601425", "doi": "10.15784/601425", "keywords": "Allan Hills; Antarctica; Blue Ice; Carbon Dioxide; Ice Core; Methane", "people": "Brook, Edward J.; Yan, Yuzhen", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Greenhouse gas composition in the Allan Hills S27 ice core", "url": "https://www.usap-dc.org/view/dataset/601425"}, {"dataset_uid": "601483", "doi": "10.15784/601483", "keywords": "Allan Hills; Antarctica; Argon; Ice; Ice Core Data; Ice Core Gas Records; Isotope; Mass Spectrometry; Nitrogen; Oxygen", "people": "Yan, Yuzhen; Bender, Michael; Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Elemental and isotopic composition of nitrogen, oxygen, and argon in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601483"}, {"dataset_uid": "601203", "doi": "10.15784/601203", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Chemistry:ice; Chemistry:Ice; Gas Chromatography; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenhouse Gas; Ice; Ice Core Data; Ice Core Gas Records; Methane; Snow/ice; Snow/Ice", "people": "Brook, Edward J.; Bender, Michael; Higgins, John; Yan, Yuzhen", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Methane concentration in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601203"}, {"dataset_uid": "601202", "doi": "10.15784/601202", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Carbon Dioxide; Carbon Isotopes; Chemistry:ice; Chemistry:Ice; CO2; Gas Chromatography; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Gas Records; Ice Core Records; Mass Spectrometer; Mass Spectrometry; Methane; Snow/ice; Snow/Ice", "people": "Higgins, John; Yan, Yuzhen; Bender, Michael; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Carbon dioxide concentration and its stable carbon isotope composition in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601202"}, {"dataset_uid": "601201", "doi": "10.15784/601201", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Argon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Data; Ice Core Gas Records; Krypton; Mass Spectrometer; Noble Gas; Snow/ice; Snow/Ice; Xenon", "people": "Higgins, John; Yan, Yuzhen; Bender, Michael; Severinghaus, Jeffrey P.; Ng, Jessica", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Elemental and isotopic composition of heavy noble gases in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601201"}, {"dataset_uid": "601512", "doi": "10.15784/601512", "keywords": "Allan Hills; Antarctica; Blue Ice; Ice Core; Ice Core Gas Records; Isotope; Nitrogen; Oxygen", "people": "Yan, Yuzhen; Higgins, John; Bender, Michael", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable isotope composition of the trapped air in the Allan Hills S27 ice core", "url": "https://www.usap-dc.org/view/dataset/601512"}, {"dataset_uid": "601128", "doi": "10.15784/601128", "keywords": "Allan Hills; Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope Record; Mass Spectrometry; Stable Water Isotopes", "people": "Mayewski, Paul A.; Kurbatov, Andrei V.; Introne, Douglas; Yan, Yuzhen", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills Blue ice area", "url": "https://www.usap-dc.org/view/dataset/601128"}, {"dataset_uid": "601129", "doi": "10.15784/601129", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Blue Ice; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Isotope Data; Oxygen; Snow/ice; Snow/Ice; Stable Water Isotopes; Transantarctic Mountains", "people": "Yan, Yuzhen; Mayewski, Paul A.; Kurbatov, Andrei V.; Introne, Douglas", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable water isotope data for the AH-1502 ice core drilled at the Allan Hills Blue ice area", "url": "https://www.usap-dc.org/view/dataset/601129"}], "date_created": "Thu, 18 Oct 2018 00:00:00 GMT", "description": "Bubbles of ancient air trapped in ice cores permit the direct reconstruction of atmospheric composition and allow us to link greenhouse gases and global climate over the last 800,000 years. Previous field expeditions to the Allan Hills blue ice area, Antarctica, have recovered ice cores that date to one million years, the oldest ice cores yet recovered from Antarctica. These records have revealed that interglacial CO2 concentrations decreased by 800,000 years ago and that, in the warmer world 1 million years ago, CO2 and Antarctic temperature were linked as during the last 800,000 years. This project will return to the Allan Hills blue ice area to recover additional ice cores that date to 1 million years or older. The climate records developed from the drilled ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Our results will help answer questions about issues associated with anthropogenic change. These include the relationship between temperature change and the mass balance of Antarctic ice; precipitation and aridity variations associated with radiatively forced climate change; and the climate significance of sea ice extent. The project will entrain two graduate students and a postdoctoral scholar, and will conduct outreach including workshops to engage teachers in carbon science and ice cores.\u003cbr/\u003e\u003cbr/\u003eBetween about 2.8-0.9 million years ago, Earth\u0027s climate was characterized by 40,000-year cycles, driven or paced by changes in the tilt of Earth\u0027s spin axis. Much is known about the \"40,000-year\" world from studies of deep-sea sediments, but our understanding of climate change during this period is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of ancient ice from the Main Ice Field, Allan Hills, Antarctica. During previous field seasons we recovered ice extending, discontinuously, from 0.1-1.0 million years old. Ice was dated by measuring the 40Ar/38Ar (Argon) ratio of the trapped gases. Our discovery of million year-old ice demonstrates that there is gas-record-quality ice from the 40,000-year world in the Allan Hills Main Ice Field. We have identified two different sites, each overlying bedrock at ~ 200 m depth, that are attractive targets for coring ice dating to 1 million years and older. This project aims to core the ice at these two sites, re-occupy a previous site with million year-old ice and drill it down to the bedrock, and generate 10-20 short (~10-meter) cores in areas where our previous work and terrestrial meteorite ages suggest ancient surface ice. We plan to date the ice using the 40Ar/38Ar ages of trapped Argon. We also plan to characterize the continuity of our cores by measuring the deuterium and oxygen isotope ratios in the ice, methane, ratios of Oxygen and Argon to Nitrogen in trapped gas, the Nitrogen-15 isotope (d15N) of Nitrogen, and the Oxygen-18 isotope (d18O) of Oxygen. As the ice may be stratigraphically disturbed, these measurements will provide diagnostic properties for assessing the continuity of the ice-core records. Successful retrieval of ice older than one million years will provide the opportunity for follow-up work to measure the CO2 concentration and other properties within the ice to inform on the temperature history of the Allan Hills region, dust sources and source-area aridity, moisture sources, densification conditions, global average ocean temperature, and greenhouse gas concentrations. We will analyze the data in the context of leading hypotheses of the 40,000-year world and the Mid-Pleistocene Transition to the 100,000-year world. We expect to advance understanding of climate dynamics during these periods.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Amd/Us; AMD; Allan Hills; USA/NSF; FIELD INVESTIGATION; USAP-DC; Ice Core; LABORATORY", "locations": "Allan Hills", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Mayewski, Paul A.; Kurbatov, Andrei V.; Higgins, John; Bender, Michael", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": null, "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "uid": "p0000760", "west": null}, {"awards": "1246170 Hall, Brenda; 1246110 Stone, John", "bounds_geometry": "POLYGON((154 -79.75,154.7 -79.75,155.4 -79.75,156.1 -79.75,156.8 -79.75,157.5 -79.75,158.2 -79.75,158.9 -79.75,159.6 -79.75,160.3 -79.75,161 -79.75,161 -79.8,161 -79.85,161 -79.9,161 -79.95,161 -80,161 -80.05,161 -80.1,161 -80.15,161 -80.2,161 -80.25,160.3 -80.25,159.6 -80.25,158.9 -80.25,158.2 -80.25,157.5 -80.25,156.8 -80.25,156.1 -80.25,155.4 -80.25,154.7 -80.25,154 -80.25,154 -80.2,154 -80.15,154 -80.1,154 -80.05,154 -80,154 -79.95,154 -79.9,154 -79.85,154 -79.8,154 -79.75))", "dataset_titles": "Darwin and Hatherton Glaciers; Hatherton Glacier Radiocarbon Data", "datasets": [{"dataset_uid": "601063", "doi": "10.15784/601063", "keywords": "Antarctica; Geochronology; Hatherton Glacier; Radiocarbon; Sample/collection Description; Sample/Collection Description; Transantarctic Mountains", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Hatherton Glacier Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601063"}, {"dataset_uid": "200038", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Darwin and Hatherton Glaciers", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Mon, 23 Oct 2017 00:00:00 GMT", "description": "This award supports a project to reconstruct past ice-surface elevations from detailed glacial mapping and dating of moraines (using 14C dates of algae from former ice-marginal ponds and 10Be surface exposure ages) in the region of the Darwin-Hatherton Glaciers in Antarctica in order to try and resolve very different interpretations that currently exist about the glacial history in the region. The results will be integrated with existing climate and geophysical data into a flow-line model to gain insight into glacier response to climate and ice-dynamics perturbations during the Late Glacial Maximum (LGM) in Antarctica. The work will contribute to a better understanding of both LGM ice thickness and whether or not there is any evidence that Antarctica contributed to Meltwater Pulse (MWP)-1A a very controversial topic in Antarctic glacial geology. The intellectual merit of the work relates to the fact that reconstructing past fluctuations of the Antarctic Ice Sheet (AIS) is critical for understanding the sensitivity of ice volume to sea-level and climatic change. Constraints on past behavior help put ongoing changes into context and provide a basis for predicting future sea-level rise. Broader impacts include the support of two graduate and two undergraduate students, as well as a female early-career investigator. Graduate students will be involved in all stages of the project from planning and field mapping to geochronological analyses, interpretation, synthesis and reporting. Two undergraduates will work on lab-based research from the project. The project also will include visits to K-12 classrooms to talk about glaciers and climate change, correspondence with teachers and students from the field, and web-based outreach. This award has field work in Antarctica.", "east": 161.0, "geometry": "POINT(157.5 -80)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; FIELD INVESTIGATION; Antarctica", "locations": "Antarctica", "north": -79.75, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Hall, Brenda; Stone, John; Conway, Howard", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "ICE-D; USAP-DC", "science_programs": null, "south": -80.25, "title": "Collaborative Research: Assessing the Antarctic Contribution to Sea-level Changes during the Last Deglaciation: Constraints from Darwin Glacier", "uid": "p0000304", "west": 154.0}, {"awards": "1341712 Hallet, Bernard", "bounds_geometry": "POLYGON((160.9 -76.7,161.08 -76.7,161.26 -76.7,161.44 -76.7,161.62 -76.7,161.8 -76.7,161.98 -76.7,162.16 -76.7,162.34 -76.7,162.52 -76.7,162.7 -76.7,162.7 -76.79,162.7 -76.88,162.7 -76.97,162.7 -77.06,162.7 -77.15,162.7 -77.24,162.7 -77.33,162.7 -77.42,162.7 -77.51,162.7 -77.6,162.52 -77.6,162.34 -77.6,162.16 -77.6,161.98 -77.6,161.8 -77.6,161.62 -77.6,161.44 -77.6,161.26 -77.6,161.08 -77.6,160.9 -77.6,160.9 -77.51,160.9 -77.42,160.9 -77.33,160.9 -77.24,160.9 -77.15,160.9 -77.06,160.9 -76.97,160.9 -76.88,160.9 -76.79,160.9 -76.7))", "dataset_titles": "Long-term rock abrasion study in the Dry Valleys", "datasets": [{"dataset_uid": "601060", "doi": "10.15784/601060", "keywords": "Antarctica; Dry Valleys; Geology/Geophysics - Other; Rocks", "people": "Sletten, Ronald S.; Hallet, Bernard; Malin, Michael", "repository": "USAP-DC", "science_program": null, "title": "Long-term rock abrasion study in the Dry Valleys", "url": "https://www.usap-dc.org/view/dataset/601060"}], "date_created": "Fri, 13 Oct 2017 00:00:00 GMT", "description": "Many of the natural processes that modify the landscape inhabited by humans occur over very long timescales, making them difficult to observe. Exceptions include rare catastrophic events such as earthquakes, volcanic eruptions, and floods that occur on short timescales. Many significant processes that affect the land and landscape that we inhabit operate on time scales imperceptible to humans. One of these processes is wind transport of sand, with related impacts to exposed rock surfaces and man-made objects, including buildings, windshields, solar panels and wind-farm turbine blades. The goal of this project is to gain an understanding of wind erosion processes over long timescales, in the Antarctic Dry Valleys, a cold desert environment where there were no competing processes (such as rain and vegetation) that might mask the effects. The main objective is recovery of rock samples that were deployed in 1983/1984 at 11 locations in the Antarctic Dry Valleys, along with measurements on the rock samples and characterization of the sites. In the late 1980s and early 1990s some of these samples were returned and indicated more time was needed to accumulate information about the timescales and impacts of the wind erosion processes. This project will allow collection of the remaining samples from this experiment after 30 to 31 years of exposure. The field work will be carried out during the 2014/15 Austral summer. The results will allow direct measurement of the abrasion rate and hence the volumes and timescales of sand transport; this will conclude the longest direct examination of such processes ever conducted. Appropriate scaling of the results may be applied to buildings, vegetation (crops), and other aspects of human presence in sandy and windy locations, in order to better determine the impact of these processes and possible mitigation of the impacts. The project is a collaborative effort between a small business, Malin Space Science Systems (MSSS), and the University of Washington (UW). MSSS will highlight this Antarctic research on its web site, by developing thematic presentations describing our research and providing a broad range of visual materials. The public will be engaged through daily updates on a website and through links to material prepared for viewing in Google Earth. UW students will be involved in the laboratory work and in the interpretation of the results.\u003cbr\u003eTechnical Description of Project:\u003cbr\u003eThe goal of this project is to study the role of wind abrasion by entrained particles in the evolution of the McMurdo Dry Valleys in the Transantarctic Mountains. During the 1983 to 1984 field seasons, over 5000 rock targets were installed at five heights facing the 4 cardinal directions at 10 locations (with an additional site containing fewer targets) to study rates of physical weathering due primarily to eolian abrasion. In addition, rock cubes and cylinders were deployed at each site to examine effects of chemical weathering. The initial examination of samples returned after 1, 5, and 10 years of exposure, showed average contemporary abrasion rates consistent with those determined by cosmogenic isotope studies, but further stress that \"average\" should not be interpreted as meaning \"uniform.\" The samples will be characterized using mass measurements wtih 0.01 mg precision balances, digital microphotography to compare the evolution of their surface features and textures, SEM imaging to examine the micro textures of abraded rock surfaces, and optical microscopy of thin sections of a few samples to examine the consequences of particle impacts extending below the abraded surfaces. As much as 60-80% of the abrasion measured in samples from 1984-1994 appears to have occurred during a few brief hours in 1984. This is consistent with theoretical models that suggest abrasion scales as the 5th power of wind velocity. The field work will allow return of multiple samples after three decades of exposure, which will provide a statistical sampling (beyond what is acquired by studying a single sample), and will yield the mass loss data in light of complementary environmental and sand kinetic energy flux data from other sources (e.g. LTER meteorology stations). This study promises to improve insights into one of the principal active geomorphic process in the Dry Valleys, an important cold desert environment, and the solid empirical database will provide general constraints on eolian abrasion under natural conditions.", "east": 162.7, "geometry": "POINT(161.8 -77.15)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.7, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Hallet, Bernard; Sletten, Ronald S.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.6, "title": "Collaborative Proposal: Decades-long Experiment on Wind-Driven Rock Abrasion in the Ice-Free Valleys, Antarctica", "uid": "p0000074", "west": 160.9}, {"awards": "1148982 Hansen, Samantha", "bounds_geometry": "POLYGON((153.327 -73.032547,154.5063012 -73.032547,155.6856024 -73.032547,156.8649036 -73.032547,158.0442048 -73.032547,159.223506 -73.032547,160.4028072 -73.032547,161.5821084 -73.032547,162.7614096 -73.032547,163.9407108 -73.032547,165.120012 -73.032547,165.120012 -73.3530275,165.120012 -73.673508,165.120012 -73.9939885,165.120012 -74.314469,165.120012 -74.6349495,165.120012 -74.95543,165.120012 -75.2759105,165.120012 -75.596391,165.120012 -75.9168715,165.120012 -76.237352,163.9407108 -76.237352,162.7614096 -76.237352,161.5821084 -76.237352,160.4028072 -76.237352,159.223506 -76.237352,158.0442048 -76.237352,156.8649036 -76.237352,155.6856024 -76.237352,154.5063012 -76.237352,153.327 -76.237352,153.327 -75.9168715,153.327 -75.596391,153.327 -75.2759105,153.327 -74.95543,153.327 -74.6349495,153.327 -74.314469,153.327 -73.9939885,153.327 -73.673508,153.327 -73.3530275,153.327 -73.032547))", "dataset_titles": "Crustal Structure beneath the Northern Transantarctic Mountains and Wilkes Subglacial Basin: Implications for Tectonic Origins; Shear Wave Splitting Analysis and Seismic Anisotropy beneath the Northern Transantarctic Mountains; Upper Mantle Seismic Structure beneath the Northern Transantarctic Mountains from Regional P- and S-wave Tomography; Upper Mantle Shear Wave Velocity Structure beneath the Northern Transantarctic Mountains", "datasets": [{"dataset_uid": "601194", "doi": "10.15784/601194", "keywords": "Antarctica; Transantarctic Mountains", "people": "Hansen, Samantha", "repository": "USAP-DC", "science_program": null, "title": "Crustal Structure beneath the Northern Transantarctic Mountains and Wilkes Subglacial Basin: Implications for Tectonic Origins", "url": "https://www.usap-dc.org/view/dataset/601194"}, {"dataset_uid": "601018", "doi": "10.15784/601018", "keywords": "Antarctica; Geology/Geophysics - Other; Model; Seismology; Solid Earth; Tomography; Transantarctic Mountains", "people": "Hansen, Samantha", "repository": "USAP-DC", "science_program": null, "title": "Upper Mantle Shear Wave Velocity Structure beneath the Northern Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/601018"}, {"dataset_uid": "601019", "doi": "10.15784/601019", "keywords": "Antarctica; Geology/Geophysics - Other; GPS; Sample/collection Description; Sample/Collection Description; Seismology; Shearwave Spitting; Solid Earth; Transantarctic Mountains", "people": "Hansen, Samantha", "repository": "USAP-DC", "science_program": null, "title": "Shear Wave Splitting Analysis and Seismic Anisotropy beneath the Northern Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/601019"}, {"dataset_uid": "601017", "doi": "10.15784/601017", "keywords": "Antarctica; Geology/Geophysics - Other; Model; Seismology; Solid Earth; Tomography; Transantarctic Mountains", "people": "Hansen, Samantha", "repository": "USAP-DC", "science_program": null, "title": "Upper Mantle Seismic Structure beneath the Northern Transantarctic Mountains from Regional P- and S-wave Tomography", "url": "https://www.usap-dc.org/view/dataset/601017"}], "date_created": "Sun, 04 Jun 2017 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eTo understand Antarctica\u0027s geodynamic development, origin of the Transantarctic Mountains (TAMs) and the Wilkes Subglacial Basin (WSB) must be determined. Current constraints on the crustal thickness and seismic velocity structure beneath the TAMs and the WSB are limited, leading to uncertainties over competing geologic models that have been suggested to explain their formation. The PI proposes to broaden the investigation of this region with a new seismic deployment, the Transantarctic Mountains Northern Network (TAMNNET), a 15-station array across the northern TAMs and the WSB that will fill a major gap in seismic coverage. Data from TAMNNET will be combined with that from other previous and ongoing seismic initiatives and will be analyzed using proven modeling techniques to generate a detailed image of the seismic structure beneath the TAMs and the WSB. These data will be used to test three fundamental hypotheses: the TAMs are underlain by thickened crust, the WSB is characterized by thin crust and thick sedimentary layers, and slow seismic velocities are prevalent along strike beneath the TAMs. Results from the proposed study will provide new information about the nature and formation of the Antarctic continent and will help to advance our understanding of important global processes, such as mountain building and basin formation. The proposed research also has important implications for other fields of Antarctic science. Constraints on the origin of the TAMs uplift are critical for climate and ice sheet models, and new information acquired about variations in the thermal and lithospheric structure beneath the TAMs and the WSB will be used to estimate critical ice sheet boundary conditions. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis project incorporates three educational strategies to promote the integration of teaching and research. Graduate students will be trained in Antarctic tectonics and seismic processing through hands-on fieldwork and data analysis techniques. Through NSF\u0027s PolarTREC program, the PI will work with K-12 educators. The PI will develop a three-week summer field program for recent high school graduates and early-career undergraduate students from Minority-Serving Institutions in Alabama. Teaching materials and participant experiences will be shared with individuals outside the program via a course website. Following the summer program, participants who were particularly engaged will be offered internship opportunities to analyze TAMNNET data. In successive years, the students could assist with fieldwork and could be recruited into the graduate program under the PI\u0027s supervision. Ultimately, this program would not only serve to educate undergraduates but would also generate a pipeline of underrepresented students into the geosciences.", "east": 165.120012, "geometry": "POINT(159.223506 -74.6349495)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": -73.032547, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Hansen, Samantha", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.237352, "title": "CAREER: Deciphering the Tectonic History of the Transantarctic Mountains and the Wilkes Subglacial Basin", "uid": "p0000300", "west": 153.327}, {"awards": "1246379 Smith, Nathan; 1244253 Hammer, William", "bounds_geometry": "POLYGON((160 -85,160.6 -85,161.2 -85,161.8 -85,162.4 -85,163 -85,163.6 -85,164.2 -85,164.8 -85,165.4 -85,166 -85,166 -85.2,166 -85.4,166 -85.6,166 -85.8,166 -86,166 -86.2,166 -86.4,166 -86.6,166 -86.8,166 -87,165.4 -87,164.8 -87,164.2 -87,163.6 -87,163 -87,162.4 -87,161.8 -87,161.2 -87,160.6 -87,160 -87,160 -86.8,160 -86.6,160 -86.4,160 -86.2,160 -86,160 -85.8,160 -85.6,160 -85.4,160 -85.2,160 -85))", "dataset_titles": "Continued Research on the Jurassic Vertebrate Fauna from the Beardmore Glacier Region of Antarctica; Vertebrate fossils from the Hanson Formation at Mt. Kirkpatrick, in the Beardmore Glacier region of Antarctica", "datasets": [{"dataset_uid": "601016", "doi": "10.15784/601016", "keywords": "Antarctica; Beardmore Glacier; Biota; Fossil; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains", "people": "Smith, Nathan", "repository": "USAP-DC", "science_program": null, "title": "Vertebrate fossils from the Hanson Formation at Mt. Kirkpatrick, in the Beardmore Glacier region of Antarctica", "url": "https://www.usap-dc.org/view/dataset/601016"}, {"dataset_uid": "600173", "doi": "10.15784/600173", "keywords": "Antarctica; Beardmore Glacier; Biota; Dinosaurs; Fossil; Transantarctic Mountains", "people": "Hammer, William R.", "repository": "USAP-DC", "science_program": null, "title": "Continued Research on the Jurassic Vertebrate Fauna from the Beardmore Glacier Region of Antarctica", "url": "https://www.usap-dc.org/view/dataset/600173"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThis proposal requests support for research on Early Jurassic vertebrate fauna of the Beardmore Glacier region of Antarctica. The project will support preparation and systematic and paleobiological research on four Antarctic dinosaurs, including two new species, collected in the Central Transantarctic Mountains. With the new material Cryolophosaurus will become one of the most complete Early Jurassic theropods known, and thus has the potential to become a keystone taxon for resolving the debated early evolutionary history of theropod dinosaurs, the group that gave rise to birds. Two new dinosaur specimens include a nearly complete articulated skeleton of a juvenile sauropodomorph, and the articulated hip region of another small individual. Both appear to be new taxa. The dinosaurs from the Hanson Formation represent some of the highest paleolatitude vertebrates known from the Jurassic. The PIs will generate CT datasets for Cryolophosaurus and the more complete new sauropodomorph species to mine for phylogenetic trait information, and to investigate their comparative neuroanatomy and feeding behavior. Histological datasets will be generated from multiple skeletal elements for all four Mt. Kirkpatrick taxa to understand patterns of growth in different clades of polar dinosaurs and compare them to relatives from lower paleolatitudes. This paleohistological study of a relatively diverse sample of sauropodomorph taxa from Antarctica may contribute to determining whether and how these dinosaurs responded to contemporary climatic extremes.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThe PIs have established a successful undergraduate training program as part of previous research. Summer interns from Augustana are trained at the Field Museum in specimen preparation, curation, molding/casting, and histological sampling. They also participate in existing Field Museum REU programs, including a course on phylogenetic systematics. Four undergraduate internships and student research projects will be supported through this proposal. The PIs will develop a traveling exhibit on Antarctic Mesozoic paleontology that they estimate will be seen by 2.5 million people over the five-year tour.", "east": 166.0, "geometry": "POINT(163 -86)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -85.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Smith, Nathan; Makovicky, Peter", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.0, "title": "Collaborative Research: Continued Research on the Jurassic Vertebrate Fauna from the Beardmore Glacier Region of Antarctica", "uid": "p0000083", "west": 160.0}, {"awards": "0947821 Ashworth, Allan", "bounds_geometry": "POLYGON((-180 -85.095235,-145.3719418 -85.095235,-110.7438836 -85.095235,-76.1158254 -85.095235,-41.4877672 -85.095235,-6.859709 -85.095235,27.7683492 -85.095235,62.3964074 -85.095235,97.0244656 -85.095235,131.6525238 -85.095235,166.280582 -85.095235,166.280582 -85.0996451,166.280582 -85.1040552,166.280582 -85.1084653,166.280582 -85.1128754,166.280582 -85.1172855,166.280582 -85.1216956,166.280582 -85.1261057,166.280582 -85.1305158,166.280582 -85.1349259,166.280582 -85.139336,131.6525238 -85.139336,97.0244656 -85.139336,62.3964074 -85.139336,27.7683492 -85.139336,-6.859709 -85.139336,-41.4877672 -85.139336,-76.1158254 -85.139336,-110.7438836 -85.139336,-145.3719418 -85.139336,180 -85.139336,178.6280582 -85.139336,177.2561164 -85.139336,175.8841746 -85.139336,174.5122328 -85.139336,173.140291 -85.139336,171.7683492 -85.139336,170.3964074 -85.139336,169.0244656 -85.139336,167.6525238 -85.139336,166.280582 -85.139336,166.280582 -85.1349259,166.280582 -85.1305158,166.280582 -85.1261057,166.280582 -85.1216956,166.280582 -85.1172855,166.280582 -85.1128754,166.280582 -85.1084653,166.280582 -85.1040552,166.280582 -85.0996451,166.280582 -85.095235,167.6525238 -85.095235,169.0244656 -85.095235,170.3964074 -85.095235,171.7683492 -85.095235,173.140291 -85.095235,174.5122328 -85.095235,175.8841746 -85.095235,177.2561164 -85.095235,178.6280582 -85.095235,-180 -85.095235))", "dataset_titles": "Neogene Paleoecology of the Beardmore Glacier Region", "datasets": [{"dataset_uid": "600387", "doi": "10.15784/600387", "keywords": "Antarctica; Beardmore Glacier; Biota; Fossil; GPS; Oliver Bluffs; Paleoclimate; Sample/collection Description; Sample/Collection Description; Seeds; Solid Earth; Transantarctic Mountains", "people": "Ashworth, Allan", "repository": "USAP-DC", "science_program": null, "title": "Neogene Paleoecology of the Beardmore Glacier Region", "url": "https://www.usap-dc.org/view/dataset/600387"}], "date_created": "Thu, 12 Jan 2017 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe primary goal of this project is to sample two beds in the Meyer Desert Formation, which are known to be especially fossiliferous containing plants, insects, other arthropods, freshwater mollusks, and fish. There is a possibility that the teeth and bones of a small marsupial could also be found. Previous studies have demonstrated that these horizons contain unique fossil assemblages that provide information used to reconstruct paleoenvironments and paleoclimate. The fossils represent organisms previously not found in Antarctica and consequently their study will lead to the development of new hypotheses concerning southern hemisphere biogeography. The new discoveries will also increase knowledge of paleoenvironments and paleoclimates as well as biogeographic relationships of the biota of the southern hemisphere. For some organisms, such as Nothofagus (Southern Beech) or the trechine groundbeetle, fossils would confirm that Antarctica was inhabited as part of Gondwana. For other fossils, such as the cyclorrhaphan fly or freshwater mollusks not expected to have inhabited Antarctica, the discoveries will require a reassessment of phylogenetic interpretations and a reinvestigation of the role of Antarctica in the evolutionary history of those organisms. The new fossil-based knowledge will require integration with interpretations from cladistics and molecular genetics to develop more comprehensive phylogenetic hypotheses for a range of organisms.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThe discovery of fossils in Antarctica and implications for climate change has proven to be popular with the media. This attention will help disseminate the results of this study. Before the field season, the PI will work with local media and with area schools to set up field interviews and web casts from Antarctica. The project will also involve the training of a graduate student in the field and in the follow up studies of the fossils in the laboratory.", "east": 166.280582, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -85.095235, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Ashworth, Allan", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.139336, "title": "Neogene Paleoecology of the Beardmore Glacier Region", "uid": "p0000424", "west": 166.280582}, {"awards": "1043554 Willenbring, Jane", "bounds_geometry": "POINT(161.5 -77.5)", "dataset_titles": "Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins", "datasets": [{"dataset_uid": "600379", "doi": "10.15784/600379", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Cosmogenic Radionuclides; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Isotope; Sample/collection Description; Sample/Collection Description; Transantarctic Mountains", "people": "Willenbring, Jane", "repository": "USAP-DC", "science_program": null, "title": "Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins", "url": "https://www.usap-dc.org/view/dataset/600379"}], "date_created": "Wed, 09 Nov 2016 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe PIs propose to address the question of whether ice surface melting zones developed at high elevations during warm climatic phases in the Transantarctic Mountains. Evidence from sediment cores drilled by the ANDRILL program indicates that open water in the Ross Sea could have been a source of warmth during Pliocene and Pleistocene. The question is whether marine warmth penetrated inland to the ice sheet margins. The glacial record may be ill suited to answer this question, as cold-based glaciers may respond too slowly to register brief warmth. Questions also surround possible orbital controls on regional climate and ice sheet margins. Northern Hemisphere insolation at obliquity and precession timescales is thought to control Antarctic climate through oceanic or atmospheric connections, but new thinking suggests that the duration of Southern Hemisphere summer may be more important. The PIs propose to use high elevation alluvial deposits in the Transantarctic Mountains as a proxy for inland warmth. These relatively young fans, channels, and debris flow levees stand out as visible evidence for the presence of melt water in an otherwise ancient, frozen landscape. Based on initial analyses of an alluvial fan in the Olympus Range, these deposits are sensitive recorders of rare melt events that occur at orbital timescales. For their study they will 1) map alluvial deposits using aerial photography, satellite imagery and GPS assisted field surveys to establish water sources and to quantify parameters effecting melt water production, 2) date stratigraphic sequences within these deposits using OSL, cosmogenic nuclide, and interbedded volcanic ash chronologies, 3) use paired nuclide analyses to estimate exposure and burial times, and rates of deposition and erosion, and 4) use micro and regional scale climate modeling to estimate paleoenvironmental conditions associated with melt events.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis study will produce a record of inland melting from sites adjacent to ice sheet margins to help determine controls on regional climate along margins of the East Antarctic Ice Sheet to aid ice sheet and sea level modeling studies. The proposal will support several graduate and undergraduates. A PhD student will be supported on existing funding. The PIs will work with multiple K 12 schools to conduct interviews and webcasts from Antarctica and they will make follow up visits to classrooms after the field season is complete.", "east": 161.5, "geometry": "POINT(161.5 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Willenbring, Jane", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.5, "title": "Collaborative Research: Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins", "uid": "p0000429", "west": 161.5}, {"awards": "0944282 Hasiotis, Stephen", "bounds_geometry": "POINT(175 -86)", "dataset_titles": "Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica", "datasets": [{"dataset_uid": "600156", "doi": "10.15784/600156", "keywords": "Antarctica; Beardmore Glacier; Biota; Fossil; Paleoclimate; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains", "people": "Hasiotis, Stephen", "repository": "USAP-DC", "science_program": null, "title": "Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600156"}], "date_created": "Fri, 03 Jun 2016 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThis proposal will study the diversity, abundance, and tiering patterns of ichnofossils in continental and marine deposits of the Beacon Supergroup in the Beardmore Glacier Area (BGA). The PIs will focus on continental strata that contain a variety of ichnofossils and paleosols. Ichnofossils will be evaluated for their architectural and surficial morphologies, and will be compared to modern and ancient traces to interpret the tracemaker behavior and paleoenvironmental setting. Distribution of ichnofossils within these units may indicate the effect of lateral variability of pedogenesis, the magnitude and frequency of depositional events, and the amount of moisture within the sediment, as well as the effects of climate change. The paleoclimatic significance of ichnofossils will be determined by comparing the burrow size, occurrence, tiering, and pedogenic significance of ichnofossils in measured sections of stratigraphic units deposited during global warming and cooling episodes. Comparisons will be made between BGA formations to stratigraphically equivalent rocks deposited at low paleolatitudes with previously determined paleoclimatic settings. The objectives of this project are to address two major questions: what differences existed in ichnodiversity, abundance, and tiering in marine and continental deposits between high- and low-paleolatitudes, and was there a dearth of habitat usage in continental deposits during the late Paleozoic and Mesozoic, particularly in fluvial and lacustrine environments compared to the habitat usage in the marine realm at that time? \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis study will enhance the ability to interpret paleoenvironments to the subenvironmental scale, understand the evolution of soil biota and ecosystems at high paleolatitudes, determine the role of organisms in soil formation at high paleolatitudes, explore the effects of climate change on the body size and diversity of organisms in the soil communities, and develop new tools to interpret paleoclimate in high latitudes. There is a strong education component associated with this proposal.", "east": 175.0, "geometry": "POINT(175 -86)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -86.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Hasiotis, Stephen", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.0, "title": "Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica", "uid": "p0000423", "west": 175.0}, {"awards": "0838936 Brook, Edward J.; 0839031 Severinghaus, Jeffrey", "bounds_geometry": "POINT(161.75 -77.75)", "dataset_titles": "Measurements of 14C-methane for the Younger Dryas - Preboreal Transition from Taylor Glacier, Antarctica; Measurements of in situ cosmogenic 14C from Taylor Glacier, Antarctica; Taylor Glacier chemistry data and Taylor Dome TD2015 time scale; Taylor Glacier CO2 record; Taylor Glacier Gas Isotope Data", "datasets": [{"dataset_uid": "600165", "doi": "10.15784/600165", "keywords": "Antarctica; Cosmogenic; Geochemistry; Ice Core Records; Paleoclimate; Radiocarbon; Taylor Glacier; Transantarctic Mountains", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Measurements of in situ cosmogenic 14C from Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600165"}, {"dataset_uid": "601033", "doi": "10.15784/601033", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciology; Ice Core Records; Isotope; Solid Earth; Taylor Glacier; Transantarctic Mountains", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Taylor Glacier Gas Isotope Data", "url": "https://www.usap-dc.org/view/dataset/601033"}, {"dataset_uid": "601103", "doi": "10.15784/601103", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Horizontal Ice Core; Ice Core Records; Taylor Dome; Taylor Dome Ice Core", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Taylor Glacier chemistry data and Taylor Dome TD2015 time scale", "url": "https://www.usap-dc.org/view/dataset/601103"}, {"dataset_uid": "601029", "doi": "10.15784/601029", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Critical Zone; Geochemistry; Methane; Paleoclimate; Sample/collection Description; Sample/Collection Description; Solid Earth; Taylor Glacier; Transantarctic Mountains; Younger Dryas", "people": "Severinghaus, Jeffrey P.; Petrenko, Vasilii", "repository": "USAP-DC", "science_program": null, "title": "Measurements of 14C-methane for the Younger Dryas - Preboreal Transition from Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601029"}, {"dataset_uid": "000158", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Taylor Glacier CO2 record", "url": "ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/taylor/taylor2016d13co2.txt"}], "date_created": "Tue, 29 Mar 2016 00:00:00 GMT", "description": "Severinghaus/0839031 \u003cbr/\u003e\u003cbr/\u003eThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to develop a precise gas-based chronology for an archive of large-volume samples of the ancient atmosphere, which would enable ultra-trace gas measurements that are currently precluded by sample size limitations of ice cores. The intellectual merit of the proposed work is that it will provide a critical test of the \"clathrate hypothesis\" that methane clathrates contributed to the two abrupt atmospheric methane concentration increases during the last deglaciation 15 and 11 kyr ago. This approach employs large volumes of ice (\u003e1 ton) to measure carbon-14 on past atmospheric methane across the abrupt events. Carbon-14 is an ideal discriminator of fossil sources of methane to the atmosphere, because most methane sources (e.g., wetlands, termites, biomass burning) are rich in carbon-14, whereas clathrates and other fossil sources are devoid of carbon-14. The proposed work is a logical extension to Taylor Glacier, Antarctica, of an approach pioneered at the margin of the Greenland ice sheet over the past 7 years. The Greenland work found higher-than-expected carbon-14 values, likely due in part to contaminants stemming from the high impurity content of Greenland ice and the interaction of the ice with sediments from the glacier bed. The data also pointed to the possibility of a previously unknown process, in-situ cosmogenic production of carbon-14 methane (radiomethane) in the ice matrix. Antarctic ice in Taylor Glacier is orders of magnitude cleaner than the ice at the Greenland site, and is much colder and less stratigraphically disturbed, offering the potential for a clear resolution of this puzzle and a definitive test of the cosmogenic radiomethane hypothesis. Even if cosmogenic radiomethane in ice is found, it still may be possible to reconstruct atmospheric radiomethane with a correction enabled by a detailed understanding of the process, which will be sought by co-measuring carbon-14 in carbon monoxide and carbon dioxide. The broader impacts of the proposed work are that the clathrate test may shed light on the stability of the clathrate reservoir and its potential for climate feedbacks under human-induced warming. Development of Taylor Glacier as a \"horizontal ice core\" would provide a community resource for other researchers. Education of one postdoc, one graduate student, and one undergraduate, would add to human resources. This award has field work in Antarctica.", "east": 161.75, "geometry": "POINT(161.75 -77.75)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; Not provided; USAP-DC", "locations": null, "north": -77.75, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Brook, Edward J.; Severinghaus, Jeffrey P.", "platforms": "Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "NCEI; USAP-DC", "science_programs": null, "south": -77.75, "title": "Collaborative Research: A \"Horizontal Ice Core\" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica", "uid": "p0000099", "west": 161.75}, {"awards": "1043152 Cottle, John", "bounds_geometry": "POINT(162.66667 -78.16667)", "dataset_titles": "EarthChem Library #925.", "datasets": [{"dataset_uid": "000167", "doi": "", "keywords": null, "people": null, "repository": "EarthChem", "science_program": null, "title": "EarthChem Library #925.", "url": "http://www.earthchem.org/library/browse/view?id=925"}], "date_created": "Tue, 01 Mar 2016 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eMagmas generated during subduction of oceanic lithosphere beneath active continental margins typically have a calc-alkaline chemistry. However, igneous rocks with signatures usually associated with anorogenic magmatism are increasingly being found with calc-alkaline rocks in subduction zones. These enigmatic rocks provide insight into a variety of magmatic and structural processes that are fundamental to subduction zone dynamics but processes that lead to their petrogenesis remain a matter of debate. This project will investigate the Koettlitz Glacier Alkaline Province (KGAP) in the Transantarctic Mountains, which is a section through a Na-alkaline province bounded to the north and south by calc-alkaline magmatism. This province potentially contains key information on the thermo-mechanical processes leading to generation of Na-alkaline rocks in subduction systems. The PI will examine structures that bound the KGAP as well as intrusives and metasedimentary rocks contained within it to determine the tectonomagmatic history in the framework of two end-member hypotheses: the KGAP represents a crustal-scale extensional or transtensional domain in a subduction setting; or the KGAP formed in response to ridge subduction. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis study will train three graduate and three undergraduate students incorporating hands-on experience with state of the art instrumentation. Each summer, four high school students will be incorporated into various aspects of the laboratory-based research through the UCSB research mentorship program. This project will stimulate refinement of in-situ LA-ICPMS methods and development of collaborative linkages with Antarctic geologists at GNS Science in New Zealand. Results will be disseminated via papers and presentations at international conferences.", "east": 162.66667, "geometry": "POINT(162.66667 -78.16667)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -78.16667, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Cottle, John", "platforms": "Not provided", "repo": "EarthChem", "repositories": "EarthChem", "science_programs": null, "south": -78.16667, "title": "Exploring the Significance of Na-Alkaline Magmatism in Subduction Systems, a Case Study From the Ross Orogen, Antarctica", "uid": "p0000331", "west": 162.66667}, {"awards": "1146399 Sidor, Christian", "bounds_geometry": "POLYGON((162.41 -84.27,163.409 -84.27,164.408 -84.27,165.407 -84.27,166.406 -84.27,167.405 -84.27,168.404 -84.27,169.403 -84.27,170.402 -84.27,171.401 -84.27,172.4 -84.27,172.4 -84.353,172.4 -84.436,172.4 -84.519,172.4 -84.602,172.4 -84.685,172.4 -84.768,172.4 -84.851,172.4 -84.934,172.4 -85.017,172.4 -85.1,171.401 -85.1,170.402 -85.1,169.403 -85.1,168.404 -85.1,167.405 -85.1,166.406 -85.1,165.407 -85.1,164.408 -85.1,163.409 -85.1,162.41 -85.1,162.41 -85.017,162.41 -84.934,162.41 -84.851,162.41 -84.768,162.41 -84.685,162.41 -84.602,162.41 -84.519,162.41 -84.436,162.41 -84.353,162.41 -84.27))", "dataset_titles": "Preparation of Vertebrate Fossils from the Triassic of Antarctica", "datasets": [{"dataset_uid": "600144", "doi": "10.15784/600144", "keywords": "Antarctica; Biota; Fossil; Paleoclimate; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains; Triassic", "people": "Sidor, Christian", "repository": "USAP-DC", "science_program": null, "title": "Preparation of Vertebrate Fossils from the Triassic of Antarctica", "url": "https://www.usap-dc.org/view/dataset/600144"}], "date_created": "Tue, 27 Oct 2015 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe PI requests support for preparation of a large collection of vertebrate fossils recently recovered from the Central Transantarctic Mountains (CTAM) of Antarctica. These fossils will be used to place early Mesozoic Antarctic dinosaurs and other vertebrates into a global evolutionary, biogeographic, and faunal context; assess the degree of endemism in Triassic vertebrate faunas of Antarctica; constrain temporal relationships of the Triassic Antarctic vertebrate faunas; and refine the stratigraphic context for the Triassic Antarctic vertebrate assemblages to establish a paleoenvironmental framework. The lower and middle Triassic fossils offer a rare window on life in terrestrial environments at high-latitudes immediately after the Permian mass extinction. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThe PI will use their fossils to educate the public about the geologic, climatic, and biologic history of Antarctica by visiting local schools. They will create and publish at least two new videos to the Burke Museum blog that relate the graduate student?s experience of fieldwork in Antarctica. They will also update the Antarctica section on the UWBM \"Explore Your World\" website with images and findings from their field season.", "east": 172.4, "geometry": "POINT(167.405 -84.685)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -84.27, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Sidor, Christian", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.1, "title": "Preparation of Vertebrate Fossils from the Triassic of Antarctica", "uid": "p0000418", "west": 162.41}, {"awards": "1245659 Petrenko, Vasilii; 1245821 Brook, Edward J.; 1246148 Severinghaus, Jeffrey", "bounds_geometry": "POINT(162.167 -77.733)", "dataset_titles": "Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores; Last Interglacial Mean Ocean Temperature; Mean Ocean Temperature in Marine Isotope Stage 4; Measurements of 14CH4 and 14CO in ice from Taylor Glacier: Last Deglaciation; N2O Concentration and Isotope Data for 74-59 ka from Taylor Glacier, Antarctica; Taylor Glacier CO2 Isotope Data 74-59 kyr; Taylor Glacier Noble Gases - Younger Dryas; The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "datasets": [{"dataset_uid": "601398", "doi": "10.15784/601398", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Gas Records; Ice Core Records; Marine Isotope Stage 4; MIS 4; Nitrous Oxide; Pleistocene; Taylor Dome Ice Core; Taylor Glacier", "people": "Brook, Edward J.; Petrenko, Vasilii; Severinghaus, Jeffrey P.; Dyonisius, Michael; Schilt, Adrian; Menking, James; Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "N2O Concentration and Isotope Data for 74-59 ka from Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601398"}, {"dataset_uid": "600163", "doi": "10.15784/600163", "keywords": "Antarctica; Atmosphere; Geochemistry; Ice Core Records; Isotope; Paleoclimate; Taylor Glacier; Transantarctic Mountains", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "url": "https://www.usap-dc.org/view/dataset/600163"}, {"dataset_uid": "601260", "doi": "10.15784/601260", "keywords": "Antarctica; Carbon-14; Cosmogenic; Ice Core; Methane", "people": "Petrenko, Vasilii; Dyonisius, Michael", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Measurements of 14CH4 and 14CO in ice from Taylor Glacier: Last Deglaciation", "url": "https://www.usap-dc.org/view/dataset/601260"}, {"dataset_uid": "601218", "doi": "10.15784/601218", "keywords": "Antarctica; Carbon-14; Carbon Dioxide; Chemistry:ice; Chemistry:Ice; CO2; Dome C Ice Core; Epica; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Isotope Data; Last Interglacial; Mass Spectrometer; Mass Spectrometry; Methane; Oxygen; Oxygen Isotope; Paleotemperature; Pleistocene; Snow/ice; Snow/Ice; Taylor Dome Ice Core; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Last Interglacial Mean Ocean Temperature", "url": "https://www.usap-dc.org/view/dataset/601218"}, {"dataset_uid": "601218", "doi": "10.15784/601218", "keywords": "Antarctica; Carbon-14; Carbon Dioxide; Chemistry:ice; Chemistry:Ice; CO2; Dome C Ice Core; Epica; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Isotope Data; Last Interglacial; Mass Spectrometer; Mass Spectrometry; Methane; Oxygen; Oxygen Isotope; Paleotemperature; Pleistocene; Snow/ice; Snow/Ice; Taylor Dome Ice Core; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Last Interglacial Mean Ocean Temperature", "url": "https://www.usap-dc.org/view/dataset/601218"}, {"dataset_uid": "601198", "doi": "10.15784/601198", "keywords": "Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; CO2; Dust; Gas; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Mass Spectrometer; Methane; Nitrogen Isotopes; Oxygen Isotope; Paleoclimate; Snow/ice; Snow/Ice; Taylor Dome; Taylor Dome Ice Core", "people": "Bauska, Thomas; Shackleton, Sarah; Menking, James; Barker, Stephen; Brook, Edward J.; Marcott, Shaun; Severinghaus, Jeffrey P.; Baggenstos, Daniel; Dyonisius, Michael; Rhodes, Rachel; McConnell, Joseph; Petrenko, Vasilii", "repository": "USAP-DC", "science_program": null, "title": "Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/601198"}, {"dataset_uid": "601415", "doi": "10.15784/601415", "keywords": "Antarctica; Glaciology; Ice Core Data; Ice Core Records; Paleoclimate; Paleotemperature; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Mean Ocean Temperature in Marine Isotope Stage 4", "url": "https://www.usap-dc.org/view/dataset/601415"}, {"dataset_uid": "601176", "doi": "10.15784/601176", "keywords": "Antarctica; CO2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Methane; Noble Gas; Noble Gas Isotopes; Snow/ice; Snow/Ice; Taylor Glacier; Younger Dryas", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Taylor Glacier Noble Gases - Younger Dryas", "url": "https://www.usap-dc.org/view/dataset/601176"}, {"dataset_uid": "601600", "doi": "10.15784/601600", "keywords": "Antarctica; Taylor Glacier", "people": "Dyonisius, Michael; Brook, Edward J.; Buffen, Aron; Bauska, Thomas; Shackleton, Sarah; Menking, James; Severinghaus, Jeffrey P.; Barker, Stephen; Petrenko, Vasilii; Menking, Andy", "repository": "USAP-DC", "science_program": null, "title": "Taylor Glacier CO2 Isotope Data 74-59 kyr", "url": "https://www.usap-dc.org/view/dataset/601600"}], "date_created": "Mon, 13 Jul 2015 00:00:00 GMT", "description": "This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, \u0026#948;18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, \u0026#948;13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of \u0026#948;13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica.", "east": 162.167, "geometry": "POINT(162.167 -77.733)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Not provided; USAP-DC; FIELD INVESTIGATION; Stratigraphy; FIELD SURVEYS; Antarctica; Paleoenvironment; Methane; Ice Core; Carbon Dioxide; FIXED OBSERVATION STATIONS; Stable Isotopes; Ablation Zone; Taylor Glacier; Nitrous Oxide; USA/NSF; LABORATORY; AMD; Cosmogenic; Amd/Us", "locations": "Taylor Glacier; Antarctica", "north": -77.733, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Petrenko, Vasilii; Brook, Edward J.; Severinghaus, Jeffrey P.; PETRENKO, VASILLI", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": -77.733, "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "uid": "p0000283", "west": 162.167}, {"awards": "0229314 Stone, John", "bounds_geometry": null, "dataset_titles": "Reedy Glacier Exposure Ages, Antarctica", "datasets": [{"dataset_uid": "609601", "doi": "10.7265/N5MG7MF1", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Cosmogenic; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Reedy Glacier; Sample/collection Description; Sample/Collection Description", "people": "Stone, John", "repository": "USAP-DC", "science_program": null, "title": "Reedy Glacier Exposure Ages, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609601"}], "date_created": "Mon, 30 Mar 2015 00:00:00 GMT", "description": "The stability of the marine West Antarctic Ice Sheet (WAIS) remains an important, unresolved problem for predicting future sea level change. Recent studies indicate that the mass balance of the ice sheet today may be negative or positive. The apparent differences may stem in part from short-term fluctuations in flow. By comparison, geologic observations provide evidence of behavior over much longer time scales. Recent work involving glacial-geologic mapping, dating and ice-penetrating radar surveys suggests that deglaciation of both the Ross Sea Embayment and coastal Marie Byrd Land continued into the late Holocene, and leaves open the possibility of ongoing deglaciation and grounding-line retreat. However, previous work in the Ross Sea Embayment was based on data from just three locations that are all far to the north of the present grounding line. Additional data from farther south in the Ross Sea Embayment are needed to investigate whether recession has ended, or if the rate and pattern of deglaciation inferred from our previous study still apply to the present grounding line. This award provides support to reconstruct the evolution of Reedy Glacier, in the southern Transantarctic Mountains, since the Last Glacial Maximum (LGM). Because Reedy Glacier emerges from the mountains above the grounding line, its surface slope and elevation should record changes in thickness of grounded ice in the Ross Sea up to the present day. The deglaciation chronology of Reedy Glacier therefore can indicate whether Holocene retreat of the WAIS ended thousands of years ago, or is still continuing at present. This integrated glaciologic, glacial-geologic, and cosmogenic-isotope exposure- dating project will reconstruct past levels of Reedy Glacier. Over two field seasons, moraines will be mapped, dated and correlated at sites along the length of the glacier. Radar and GPS measurements will be made to supplement existing ice thickness and velocity data, which are needed as input for a model of glacier dynamics. The model will be used to relate geologic measurements to the grounding-line position downstream. Ultimately, the mapping, dating and ice-modeling components of the study will be integrated into a reconstruction that defines changes in ice thickness in the southern Ross Sea since the LGM, and relates these changes to the history of grounding-line retreat. This work directly addresses key goals of the West Antarctic Ice Sheet Initiative, which are to understand the dynamics, recent history and possible future behavior of the West Antarctic Ice Sheet.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "Surface Exposure Dates; FIELD SURVEYS; Aluminum-26; Erosion; Rock Samples; Beryllium-10; Exposure Age", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Stone, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Late Quaternary History of Reedy Glacier", "uid": "p0000029", "west": null}, {"awards": "0944556 Barrett, John", "bounds_geometry": "POLYGON((160.6015 -76.9089,161.7382 -76.9089,162.8749 -76.9089,164.0116 -76.9089,165.1483 -76.9089,166.285 -76.9089,167.4217 -76.9089,168.5584 -76.9089,169.6951 -76.9089,170.8318 -76.9089,171.9685 -76.9089,171.9685 -77.73527,171.9685 -78.56164,171.9685 -79.38801,171.9685 -80.21438,171.9685 -81.04075,171.9685 -81.86712,171.9685 -82.69349,171.9685 -83.51986,171.9685 -84.34623,171.9685 -85.1726,170.8318 -85.1726,169.6951 -85.1726,168.5584 -85.1726,167.4217 -85.1726,166.285 -85.1726,165.1483 -85.1726,164.0116 -85.1726,162.8749 -85.1726,161.7382 -85.1726,160.6015 -85.1726,160.6015 -84.34623,160.6015 -83.51986,160.6015 -82.69349,160.6015 -81.86712,160.6015 -81.04075,160.6015 -80.21438,160.6015 -79.38801,160.6015 -78.56164,160.6015 -77.73527,160.6015 -76.9089))", "dataset_titles": "Ecosphere (Supplement), Ecological Society of America.", "datasets": [{"dataset_uid": "002538", "doi": "", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Ecosphere (Supplement), Ecological Society of America.", "url": "http://www.esapubs.org/archive/ecos/C004/014/suppl-1.php"}], "date_created": "Fri, 13 Feb 2015 00:00:00 GMT", "description": "Advances in molecular techniques have expanded our understanding of soil microbial communities, and raised important questions about regional and global patterns in microbial diversity. The proposed research will investigate the composition and activity of microbial communities across a range of geochemical and hydrologic soil conditions, and over local to regional scales in the Transantarctic Mountains, in order to assess controls over microbial biogeography. The research targets two areas in the Transantarctic mountains, the McMurdo Dry Valleys, and the Beardmore Glacier region further south, the latter representing an underexplored and inarguably more extreme soil environment. The research project will adopt an integrated approach, using molecular techniques and in situ assessment of biological activity in a quantitative biogeographical framework, with the goal of distinguishing fine versus broad scale controls over microbial community structure. The research is essential to determining the basic trophic status of extreme microbial food webs, and their sensitivity to climate change. The investigators will engage secondary and post-secondary educators through first person outreach as well as web-based communications and exercises. Two postdoctoral scientists will be trained in an interdisciplinary and international setting.", "east": 171.9685, "geometry": "POINT(166.285 -81.04075)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.9089, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Barrett, John", "platforms": "Not provided", "repo": "Publication", "repositories": "Publication", "science_programs": null, "south": -85.1726, "title": "Collaborative Research: Controls over the Spatial Distribution and Activity of Microbial Communities in Antarctic Soils", "uid": "p0000350", "west": 160.6015}, {"awards": "0944645 Goodge, John", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 11 Feb 2015 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eBecause of extensive ice cover and sparse remote-sensing data, the geology of the Precambrian East Antarctic Shield (EAS) remains largely unexplored with information limited to coastal outcrops from the African, Indian and Australian sectors. The East Antarctic lithosphere is globally important: as one of the largest coherent Precambrian shields, including rocks as old as ~3.8 Ga, it played an important role in global crustal growth; it is a key piece in assembly of the Rodinia and Gondwana supercontinents; it is the substrate to Earth?s major ice cap, including numerous sub-glacial lakes, and influences its thermal state and mechanical stability; and its geotectonic association with formerly adjacent continental blocks in South Africa, India and Australia suggest that it might harbor important mineral resources. This project will increase understanding of the age and composition of the western EAS lithosphere underlying and adjacent to the Transantarctic Mountains (TAM) using U-Pb ages, and Hf- and O-isotope analysis of zircon in early Paleozoic granitoids and Pleistocene glacial tills. TAM granites of the early Paleozoic Ross Orogen represent an areally extensive continental-margin arc suite that can provide direct information about the EAS crust from which it melted and/or through which it passed. Large rock clasts of igneous and metamorphic lithologies entrained in glacial tills at the head of major outlet glaciers traversing the TAM provide eroded samples of the proximal EAS basement. Zircons in these materials will provide data about age and inheritance (U-Pb), crustal vs. mantle origin (O isotopes), and crustal sources and evolution (Hf isotopes). Integrated along a significant part of the TAM, these data will help define broader crustal provinces that can be correlated with geophysical data and used to test models of crustal assembly. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis project will provide a research opportunity for undergraduate and graduate students. Undergraduates will be involved as Research Assistants in sample preparation, imaging, and analytical procedures, and conducting their own independent research. The two main elements of this project will form the basis of MS thesis projects for two graduate students at UMD. Through this project they will gain a good understanding of petrology, isotope geochemistry, and analytical methods. The broader scientific impacts of this work are that it will help develop a better understanding of the origin and evolution of East Antarctic lithosphere underlying and adjacent to the TAM, which will be of value to the broader earth science and glaciological community. Furthermore, knowledge of East Antarctic geology is of continuing interest to the general public because of strong curiosity about past supercontinents, what?s under the ice, and the impact of global warming on ice-sheet stability.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Transantarctic Mountains; Not provided", "locations": "Transantarctic Mountains", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Goodge, John", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Age and Composition of the East Antarctic Shield by Isotopic Analysis of Granite and Glacial Till", "uid": "p0000258", "west": null}, {"awards": "0838970 Foreman, Christine", "bounds_geometry": "POINT(161.667 -77.117)", "dataset_titles": "The Biogeochemical Evolution of Dissolved Organic Matter in a Fluvial System on the Cotton Glacier, Antarctica", "datasets": [{"dataset_uid": "600104", "doi": "10.15784/600104", "keywords": "Antarctica; Biota; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Microbiology", "people": "Foreman, Christine", "repository": "USAP-DC", "science_program": null, "title": "The Biogeochemical Evolution of Dissolved Organic Matter in a Fluvial System on the Cotton Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600104"}], "date_created": "Fri, 10 Oct 2014 00:00:00 GMT", "description": "Dissolved organic matter (DOM) comprises a significant pool of Earth\u0027s organic carbon that dwarfs the amount present in living aquatic organisms. The properties and reactivity of DOM are not well defined, and the evolution of autochthonous DOM from its precursor materials in freshwater has not been observed. Recent sampling of a supraglacial stream formed on the Cotton Glacier in the Transantarctic Mountains revealed DOM that more closely resembles an assemblage of recognizable precursor organic compounds, based upon its UV-VIS and fluorescence spectra. It is suggested that the DOM from this water evolved over time to resemble materials present in marine and many inland surface waters. The transient nature of the system i.e., it reforms seasonally, also prevents any accumulation of the refractory DOM present in most surface waters. Thus, the Cotton Glacier provides us with a unique environment to study the formation of DOM from precursor materials. An interdisciplinary team will study the biogeochemistry of this progenitor DOM and how microbes modify it. By focusing on the chemical composition of the DOM as it shifts from precursor material to the more humified fractions, the investigators will relate this transition to bioavailability, enzymatic activity, community composition and microbial growth efficiency. This project will support education at all levels, K-12, high school, undergraduate, graduate and post-doc and will increase participation by under-represented groups in science. Towards these goals, the investigators have established relationships with girls\u0027 schools and Native American programs. Additional outreach will be carried out in coordination with PolarTREC, PolarPalooza, and if possible, an Antarctic Artist and Writer.", "east": 161.667, "geometry": "POINT(161.667 -77.117)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.117, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Foreman, Christine", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.117, "title": "Collaborative Research: The Biogeochemical Evolution of Dissolved Organic Matter in a Fluvial System on the Cotton Glacier, Antarctica", "uid": "p0000458", "west": 161.667}, {"awards": "0943935 Isbell, John; 0943934 Taylor, Edith", "bounds_geometry": null, "dataset_titles": "Portal to search geologic sample collections, Polar Rock Repository, Byrd Polar Research Center, The Ohio State University; Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "datasets": [{"dataset_uid": "001402", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "url": "http://biodiversity.ku.edu/paleobotany/collections/collections-search"}, {"dataset_uid": "001377", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Portal to search geologic sample collections, Polar Rock Repository, Byrd Polar Research Center, The Ohio State University", "url": "http://research.bpcrc.osu.edu/rr/"}, {"dataset_uid": "002567", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "url": "http://biodiversity.ku.edu/paleobotany/collections/collections-search"}], "date_created": "Tue, 23 Sep 2014 00:00:00 GMT", "description": "Intellectual Merit:\u003cbr/\u003eThe focus of this proposal is to collect fossil plants and palynomorphs from Permian-Triassic (P-T) rocks of the central Transantarctic Mountains (CTM), together with detailed data on sedimentologic and paleoecologic depositional environments. Fossil plants are important climate proxies that offer a unique window into the past, and the CTM fossils are an important source of data on the ways that plants responded to a strongly seasonal, polar light regime during a time of global change. The proposed project uses paleobotanical expertise, integrated with detailed sedimentology and stratigraphy, to reconstruct Permian-Triassic plant communities and their paleoenvironments. This interdisciplinary approach could uncover details of Antarctica?s complex late Paleozoic and Mesozoic environmental and climatic history which included: 1) deglaciation, 2) development and evolution of a post-glacial landscape and biota, 3) environmental and biotic change associated with the end-Permian mass extinction, 4) environmental recovery in the earliest Triassic, 5) strong, possible runaway Triassic greenhouse, and 6) widespread orogenesis and development of a foreland basin system. The PIs will collect compression floras both quantitatively and qualitatively to obtain biodiversity and abundance data. Since silicified wood is also present, the PIs will analyze tree rings and growth in a warm, high-latitude environment for which there is no modern analogue. Fossil plants from the CTM can provide biological and environmental information to: 1) interpret paleoclimate when Gondwana moved from icehouse to greenhouse conditions; 2) trace floral evolution across the P-T boundary; 3) reconstruct Antarctic plant life; 4) further understanding of plant adaptations to high latitudes. The Intellectual Merit of the research includes: 1) tracing floral evolution after the retreat of glaciers; 2) examining floral composition and diversity across the PTB; and 3) obtaining data on the recovery of these ecosystems in the Early Triassic, as well as changes in floral cover and diversity in the Early-Middle Triassic. Antarctica is the only place on Earth that includes extensive outcrops of terrestrial rocks, combined with widespread and well-preserved plant fossils, which spans this crucial time period.\u003cbr/\u003e\u003cbr/\u003eBroader impacts:\u003cbr/\u003eThe broader impacts include public outreach; teaching, and mentoring of women and underrepresented students; mentoring graduate student, postdoctoral, and new faculty women; development of an inquiry-based workshop on Antarctic paleoclimate with the Division of Education, KU Natural History Museum; continuing support of workshops for middle school girls in science via the Expanding Your Horizons Program, Emporia State University, and the TRIO program, KU; exploring Antarctic geosciences through video/computer links from McMurdo Station and satellite phone conferences from the field with K-12 science classes in Wisconsin and Kansas, and through participation in the NSF Research Experiences for Teachers program at the University of Wisconsin.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "FIELD SURVEYS; LABORATORY; Transanatarctic Basin; Paleobotany; Fossil Plants; FIELD INVESTIGATION; Sedimentology; Late Paleozoic Ice Age; Not provided; Central Transantarctic Mountains; Beardmore Glacier", "locations": "Transanatarctic Basin; Central Transantarctic Mountains; Beardmore Glacier", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Instrumentation and Support", "paleo_time": "PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN; PHANEROZOIC \u003e MESOZOIC \u003e TRIASSIC; PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN; PHANEROZOIC \u003e MESOZOIC \u003e TRIASSIC", "persons": "Isbell, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "PI website", "repositories": "PI website; PRR", "science_programs": null, "south": null, "title": "Collaborative Research: Antarctic Ecosystems across the Permian-Triassic Boundary: Integrating Paleobotany, Sedimentology, and Paleoecology", "uid": "p0000372", "west": null}, {"awards": "1043700 Harry, Dennis", "bounds_geometry": "POLYGON((-180 -70,-176.5 -70,-173 -70,-169.5 -70,-166 -70,-162.5 -70,-159 -70,-155.5 -70,-152 -70,-148.5 -70,-145 -70,-145 -71,-145 -72,-145 -73,-145 -74,-145 -75,-145 -76,-145 -77,-145 -78,-145 -79,-145 -80,-148.5 -80,-152 -80,-155.5 -80,-159 -80,-162.5 -80,-166 -80,-169.5 -80,-173 -80,-176.5 -80,180 -80,177.5 -80,175 -80,172.5 -80,170 -80,167.5 -80,165 -80,162.5 -80,160 -80,157.5 -80,155 -80,155 -79,155 -78,155 -77,155 -76,155 -75,155 -74,155 -73,155 -72,155 -71,155 -70,157.5 -70,160 -70,162.5 -70,165 -70,167.5 -70,170 -70,172.5 -70,175 -70,177.5 -70,-180 -70))", "dataset_titles": "Geodynamic Models of Subsidence and Lithospheric Flexure at the ANDRILL Drill Sites: Implications for Cenozoic Tectonics and Ice Sheet History; Ross Sea post-middle Miocene seismic interpretation", "datasets": [{"dataset_uid": "601227", "doi": "10.15784/601227", "keywords": "Andrill; Antarctica; Marine Geoscience; Ross Sea; Seismic Interpretation; Seismic Reflection; Stratigraphy; Subsidence; Victoria Land Basin", "people": "Harry, Dennis L.", "repository": "USAP-DC", "science_program": "ANDRILL", "title": "Ross Sea post-middle Miocene seismic interpretation", "url": "https://www.usap-dc.org/view/dataset/601227"}, {"dataset_uid": "600128", "doi": "10.15784/600128", "keywords": "Andrill; Antarctica; Continental Rift; Geology/Geophysics - Other; Lithosphere; Model; Ross Sea; Solid Earth; Tectonic; Transantarctic Mountains", "people": "Harry, Dennis L.", "repository": "USAP-DC", "science_program": "ANDRILL", "title": "Geodynamic Models of Subsidence and Lithospheric Flexure at the ANDRILL Drill Sites: Implications for Cenozoic Tectonics and Ice Sheet History", "url": "https://www.usap-dc.org/view/dataset/600128"}], "date_created": "Sun, 31 Aug 2014 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThis research will place the subsidence history of the southern Victoria Land Basin into a quantitative geodynamic context and will assess the influence of flexure associated with late Neogene volcanic loading of the crust by the Erebus Volcanic Group. This will be done by extending geodynamic models of extension in the West Antarctic Rift System to include extensional hiatuses hypothesized to have occurred during the Late Paleogene and Miocene, and by developing a new geodynamic model of volcanic loading and associated lithosphere flexure. Finite element and finite difference modeling methods will be used. In the first phase of the project, a series of extensional geodynamic models will be developed to examine the effect that proposed extensional hiatuses have on the style of extension, with emphasis placed on developing a process based understanding of the change in rift style from diffuse during the Late Cretaceous to more focused during the Cenozoic. The models will test the hypotheses that extensional hiatuses led to the change in rifting style, and will place constraints on the timing and duration of the hiatuses. The second phase of the project will use the thermal and rheological properties of the previous models to constrain the flexural rigidity of the lithosphere in order to model the flexural response to volcanic loading to test the hypotheses that flexural subsidence contributed to cyclic changes between grounded and floating ice at the ANDRILL AND-1A site, complicating interpretations of the climatic record from this core, and that flexure contributes to the stress orientation at the AND-2B site, which is inconsistent with the expected regional extensional stress orientation.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThe project will train an undergraduate student and an M.S. student. Outreach activities include a planned series of talks at regional high schools, junior colleges, and 4-year colleges that have geology programs.", "east": -145.0, "geometry": "POINT(-175 -75)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; MARINE GEOPHYSICS; Antarctica; NOT APPLICABLE", "locations": "Antarctica", "north": -70.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Harry, Dennis L.", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ANDRILL", "south": -80.0, "title": "Geodynamic Models of Subsidence and Lithospheric Flexure at the ANDRILL Drill Sites: Implications for Cenozoic Tectonics and Ice Sheet History", "uid": "p0000467", "west": 155.0}, {"awards": "1354231 Kowalewski, Douglas", "bounds_geometry": "POLYGON((-180 -70,-174 -70,-168 -70,-162 -70,-156 -70,-150 -70,-144 -70,-138 -70,-132 -70,-126 -70,-120 -70,-120 -71.5,-120 -73,-120 -74.5,-120 -76,-120 -77.5,-120 -79,-120 -80.5,-120 -82,-120 -83.5,-120 -85,-126 -85,-132 -85,-138 -85,-144 -85,-150 -85,-156 -85,-162 -85,-168 -85,-174 -85,180 -85,178 -85,176 -85,174 -85,172 -85,170 -85,168 -85,166 -85,164 -85,162 -85,160 -85,160 -83.5,160 -82,160 -80.5,160 -79,160 -77.5,160 -76,160 -74.5,160 -73,160 -71.5,160 -70,162 -70,164 -70,166 -70,168 -70,170 -70,172 -70,174 -70,176 -70,178 -70,-180 -70))", "dataset_titles": "Validating contrasting terrestrial climate-sensitive Pliocene deposits through high resolution modeling of paleo-environments in the Transantarctic Mountains", "datasets": [{"dataset_uid": "600140", "doi": "10.15784/600140", "keywords": "Antarctica; Atmosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Model Data; Paleoclimate; Transantarctic Mountains", "people": "Kowalewski, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Validating contrasting terrestrial climate-sensitive Pliocene deposits through high resolution modeling of paleo-environments in the Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/600140"}], "date_created": "Thu, 28 Aug 2014 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eNeogene sediment records recovered by ANDRILL suggest multiple events of open water conditions and elevated sea surface temperatures at times when terrestrial data from the McMurdo Dry Valleys indicate hyper arid, cold, desert conditions. Interpretation of the ANDRILL data suggests the West Antarctic Ice Sheet is highly sensitive to changes in Pliocene sea surface temperatures and this conclusion has been supported by recent Global Circulation Model results for the early to mid Pliocene. The PIs propose to model paleo-ice configurations and warm orbits associated with a WAIS collapse to assess potential climate change in East Antarctica. During such episodes of polar warmth they propose to answer: What is the limit of ablation along the East Antarctic Ice Sheet?; Are relict landforms in the Dry Valleys susceptible to modification from increase in maximum summertime temperatures?; and Is there sufficient increase in minimum wintertime temperatures to sustain a tundra environment in the Dry Valleys? Integration of depositional records and model outputs have the potential to test the performance of numerical models currently under development as part of ANDRILL; reconcile inconsistencies between marine and terrestrial paleoclimate records in high Southern Latitudes; and improve understanding of Antarctic climate and ice volume sensitivity to forcing for both the East Antarctic and West Antarctic Ice Sheets. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eResults from this study have the potential to be used widely by the research community. Outreach to local elementary schools from other funded efforts will continue and be extended to homeschooled students. A Post Doc will be supported as part of this award.", "east": -120.0, "geometry": "POINT(-160 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -70.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kowalewski, Douglas", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Validating contrasting terrestrial climate-sensitive Pliocene deposits through high resolution modeling of paleo-environments in the Transantarctic Mountains", "uid": "p0000463", "west": 160.0}, {"awards": "0944475 Kaplan, Michael", "bounds_geometry": "POLYGON((-149.7 -84.1,-118.61 -84.1,-87.52 -84.1,-56.43 -84.1,-25.34 -84.1,5.75 -84.1,36.84 -84.1,67.93 -84.1,99.02 -84.1,130.11 -84.1,161.2 -84.1,161.2 -84.43,161.2 -84.76,161.2 -85.09,161.2 -85.42,161.2 -85.75,161.2 -86.08,161.2 -86.41,161.2 -86.74,161.2 -87.07,161.2 -87.4,130.11 -87.4,99.02 -87.4,67.93 -87.4,36.84 -87.4,5.75 -87.4,-25.34 -87.4,-56.43 -87.4,-87.52 -87.4,-118.61 -87.4,-149.7 -87.4,-149.7 -87.07,-149.7 -86.74,-149.7 -86.41,-149.7 -86.08,-149.7 -85.75,-149.7 -85.42,-149.7 -85.09,-149.7 -84.76,-149.7 -84.43,-149.7 -84.1))", "dataset_titles": "Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "datasets": [{"dataset_uid": "600115", "doi": "10.15784/600115", "keywords": "Antarctica; Cosmogenic Dating; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains", "people": "Kaplan, Michael", "repository": "USAP-DC", "science_program": null, "title": "Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "url": "https://www.usap-dc.org/view/dataset/600115"}], "date_created": "Thu, 17 Jul 2014 00:00:00 GMT", "description": "The proposed work will investigate changes in the compositional variation of glacial tills over time across two concentric sequences of Pleistocene moraines located adjacent to the heads of East Antarctic outlet glaciers in the Transantarctic Mountains (TAM). The chronologic framework for this work will be generated from cosmogenic exposure ages of boulders on prominent morainal ridges. The PIs hypothesize that variations in till composition may indicate a change in ice flow direction or a change in the composition of the original source area, while ages of the moraines provide a long-term terrestrial perspective on ice sheet dynamics. Both results are vital for modeling experiments that aim to reconstruct the East Antarctic Ice Sheet and assess its role in the global climate system and its potential impact on global sea level rise. The variation of till compositions through time also allows for a more accurate interpretation of sediment cores from the Ross Sea and the Southern Ocean. Additionally, till exposures at the head of some East Antarctic outlet glaciers have been shown to contain subglacial material derived from East Antarctic bedrock, providing a window through the ice to view East Antarctica?s inaccessible bedrock. Till samples will be collected from two well-preserved sequences of moraine crests at Mt. Howe (head of Scott Glacier) and Mt. Achernar (between Beardmore and Nimrod Glaciers). Each size fraction in glacial till provides potentially valuable information, and the PIs will measure the petrography of the clast and sand fractions, quantitative X-ray diffraction on the crushed \u003c2mm fraction, elemental abundance of the silt/clay fraction, and U/Pb of detrital zircons in the sand fraction. Data collection will rely on established methods previously used in this region and the PIs will also explore new methods to assess their efficacy. On the same moraines crests sampled for provenance studies, the PIs will sample for cosmogenic surface exposure analyses to provide a chronologic framework at the sites for provenance changes through time. \u003cbr/\u003e\u003cbr/\u003eBroader Impact \u003cbr/\u003eThe proposed research involves graduate and undergraduate training in a diverse array of laboratory methods. Students and PIs will be make presentations to community and campus groups, as well as conduct interviews with local news outlets. The proposed work also establishes a new, potentially long-term, collaboration between scientists at IUPUI and LDEO and brings a new PI (Kaplan) into the field of Antarctic Earth Sciences.", "east": 161.2, "geometry": "POINT(5.75 -85.75)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION", "locations": null, "north": -84.1, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kaplan, Michael", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.4, "title": "Collaborative Research: Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "uid": "p0000459", "west": -149.7}, {"awards": "0944532 Isbell, John; 0944662 Elliot, David", "bounds_geometry": "POLYGON((158.9 -83,159.583 -83,160.266 -83,160.949 -83,161.632 -83,162.315 -83,162.998 -83,163.681 -83,164.364 -83,165.047 -83,165.73 -83,165.73 -83.21,165.73 -83.42,165.73 -83.63,165.73 -83.84,165.73 -84.05,165.73 -84.26,165.73 -84.47,165.73 -84.68,165.73 -84.89,165.73 -85.1,165.047 -85.1,164.364 -85.1,163.681 -85.1,162.998 -85.1,162.315 -85.1,161.632 -85.1,160.949 -85.1,160.266 -85.1,159.583 -85.1,158.9 -85.1,158.9 -84.89,158.9 -84.68,158.9 -84.47,158.9 -84.26,158.9 -84.05,158.9 -83.84,158.9 -83.63,158.9 -83.42,158.9 -83.21,158.9 -83))", "dataset_titles": "Rock Samples (full data link not provided)", "datasets": [{"dataset_uid": "000171", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Rock Samples (full data link not provided)", "url": "http://bprc.osu.edu/rr/"}], "date_created": "Thu, 05 Dec 2013 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe goal of this project is to address relationships between foreland basins and their tectonic settings by combining detrital zircon isotope characteristics and sedimentological data. To accomplish this goal the PIs will develop a detailed geochronology and analyze Hf- and O-isotopes of detrital zircons in sandstones of the Devonian Taylor Group and the Permian-Triassic Victoria Group. These data will allow them to better determine provenance and basin fill, and to understand the nature of the now ice covered source regions in East and West Antarctica. The PIs will document possible unexposed/unknown crustal terrains in West Antarctica, investigate sub-glacial terrains of East Antarctica that were exposed to erosion during Devonian to Triassic time, and determine the evolving provenance and tectonic history of the Devonian to Triassic Gondwana basins in the central Transantarctic Mountains. Detrital zircon data will be interpreted in the context of fluvial dispersal/drainage patterns, sandstone petrology, and sequence stratigraphy. This interpretation will identify source terrains and evolving sediment provenances. Paleocurrent analysis and sequence stratigraphy will determine the timing and nature of changing tectonic conditions associated with development of the depositional basins and document the tectonic history of the Antarctic sector of Gondwana. Results from this study will answer questions about the Panthalassan margin of Gondwana, the Antarctic craton, and the Beacon depositional basin and their respective roles in global tectonics and the geologic and biotic history of Antarctica. The Beacon basin and adjacent uplands played an important role in the development and demise of Gondwanan glaciation through modification of polar climates, development of peat-forming mires, colonization of the landscape by plants, and were a migration route for Mesozoic vertebrates into Antarctica. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis proposal includes support for two graduate students who will participate in the fieldwork, and also support for other students to participate in laboratory studies. Results of the research will be incorporated in classroom teaching at the undergraduate and graduate levels and will help train the next generation of field geologists. Interactions with K-12 science classes will be achieved by video/computer conferencing and satellite phone connections from Antarctica. Another outreach effort is the developing cooperation between the Byrd Polar Research Center and the Center of Science and Industry in Columbus.", "east": 165.73, "geometry": "POINT(162.315 -84.05)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e XRF", "is_usap_dc": true, "keywords": "Not provided; LABORATORY", "locations": null, "north": -83.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Elliot, David; Isbell, John", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "PRR", "repositories": "PRR", "science_programs": null, "south": -85.1, "title": "Collaborative Research:Application of Detrital Zircon Isotope Characteristics and Sandstone Analysis of Beacon Strata to the Tectonic Evolution of the Antarctic Sector of Gondwana", "uid": "p0000312", "west": 158.9}, {"awards": "0838615 Hall, Brenda", "bounds_geometry": "POLYGON((-177.13 -84.55,-177.074 -84.55,-177.018 -84.55,-176.962 -84.55,-176.906 -84.55,-176.85 -84.55,-176.794 -84.55,-176.738 -84.55,-176.682 -84.55,-176.626 -84.55,-176.57 -84.55,-176.57 -84.615,-176.57 -84.68,-176.57 -84.745,-176.57 -84.81,-176.57 -84.875,-176.57 -84.94,-176.57 -85.005,-176.57 -85.07,-176.57 -85.135,-176.57 -85.2,-176.626 -85.2,-176.682 -85.2,-176.738 -85.2,-176.794 -85.2,-176.85 -85.2,-176.906 -85.2,-176.962 -85.2,-177.018 -85.2,-177.074 -85.2,-177.13 -85.2,-177.13 -85.135,-177.13 -85.07,-177.13 -85.005,-177.13 -84.94,-177.13 -84.875,-177.13 -84.81,-177.13 -84.745,-177.13 -84.68,-177.13 -84.615,-177.13 -84.55))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 05 Sep 2013 00:00:00 GMT", "description": "Stone/0838818 \u003cbr/\u003e\u003cbr/\u003eThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). \u003cbr/\u003e\u003cbr/\u003eThis award supports a project to study the former thickness and retreat history of Shackleton and Beardmore Glaciers which flow through the Transantarctic Mountains (TAMs) into the southern Ross Sea. Lateral moraine deposits along the lower reaches of these major outlet glaciers will be mapped and dated and the results will help to date the LGM and constrain the thickness of ice where it left the Transantarctic Mountains and flowed into the Ross Sea. The intellectual merit of the project is that the results will allow scientists to distinguish between models of ice retreat, which have important implications for former ice configuration and dynamics, and to constrain the contribution from Ross Sea deglaciation to global sea level through the late Holocene. In addition, this will make a significant contribution to a better understanding of the magnitude and timing of postglacial sea-level change and the potential contribution of Antarctica to sea-level rise in future. The broader impacts of the project are that the work will help quantify changes in grounded ice volume since the LGM, improve understanding of the ice dynamics responsible, and examine their implications for future sea level change. The project will train future scientists through participation of two graduate students and undergraduates who will develop self-contained research projects. As in previous Antarctic projects, there will be interaction with K-12 students through classroom visits, web-based expedition journals, letters from the field, and discussions with teachers and will allow the project to be shared with a wide audience. This award has field work in Antarctica.", "east": -176.57, "geometry": "POINT(-176.85 -84.875)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": -84.55, "nsf_funding_programs": "Antarctic Instrumentation and Support", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Hall, Brenda", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -85.2, "title": "Collaborative Research: Constraints on the last Ross Ice Sheet from Glacial Deposits in the Southern Transantarctic Mountains", "uid": "p0000094", "west": -177.13}, {"awards": "0739779 Warren, Stephen; 1142963 Warren, Stephen", "bounds_geometry": "POLYGON((157 -76,158.1 -76,159.2 -76,160.3 -76,161.4 -76,162.5 -76,163.6 -76,164.7 -76,165.8 -76,166.9 -76,168 -76,168 -76.2,168 -76.4,168 -76.6,168 -76.8,168 -77,168 -77.2,168 -77.4,168 -77.6,168 -77.8,168 -78,166.9 -78,165.8 -78,164.7 -78,163.6 -78,162.5 -78,161.4 -78,160.3 -78,159.2 -78,158.1 -78,157 -78,157 -77.8,157 -77.6,157 -77.4,157 -77.2,157 -77,157 -76.8,157 -76.6,157 -76.4,157 -76.2,157 -76))", "dataset_titles": "Ice on the Oceans of Snowball Earth Project Data", "datasets": [{"dataset_uid": "000183", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Ice on the Oceans of Snowball Earth Project Data", "url": "https://digital.lib.washington.edu/researchworks/handle/1773/37320"}], "date_created": "Wed, 10 Jul 2013 00:00:00 GMT", "description": "The climatic changes of late Precambrian time, 600-800 million years ago, included episodes of extreme glaciation, during which ice may have covered nearly the entire ocean for several million years, according to the Snowball Earth hypothesis. These episodes would hold an important place in Earth?s evolutionary history; they could have encouraged biodiversity by trapping life forms in small isolated ice-free areas, or they could have caused massive extinctions that cleared the path for new life forms to fill empty niches. What caused the Earth to become iced over, and what later caused the ice to melt? Scientific investigation of these questions will result in greater understanding of the climatic changes that the Earth can experience, and will enable better predictions of future climate. This project involves Antarctic field observations as well as laboratory studies and computer modeling.\u003cbr/\u003e\u003cbr/\u003eThe aim of this project is not to prove or disprove the Snowball Earth hypothesis but rather to quantify processes that are important for simulating snowball events in climate models. The principal goal is to identify the types of ice that would have been present on the frozen ocean, and to determine how much sunlight they would reflect back to space. Reflection of sunlight by bright surfaces of snow and ice is what would maintain the cold climate at low latitudes. The melting of the ocean required buildup of greenhouse gases, but it was probably aided by deposition of desert dust and volcanic ash darkening the snow and ice. With so much ice on the Earth?s surface, even small differences in the amount of light that the ice absorbed or reflected could cause significant changes in climate. The properties of the ice would also determine where, and in what circumstances, photosynthetic life could have survived. Some kinds of ice that are rare on the modern Earth may have been pivotal in allowing the tropical ocean to freeze. The ocean surfaces would have included some ice types that now exist only in Antarctica: bare cold sea ice with precipitated salts, and \"blue ice\" areas of the Transantarctic Mountains that were exposed by sublimation and have not experienced melting. Field expeditions were mounted to examine these ice types, and the data analysis is underway. A third ice type, sea ice with a salt crust, is being studied in a freezer laboratory. Modeling will show how sunlight would interact with ice containing light-absorbing dust and volcanic ash. Aside from its reflection of sunlight, ice on the Snowball ocean would have been thick enough to flow under its own weight, invading all parts of the ocean. Yet evidence for the survival of photosynthetic life indicates that some regions of liquid water were maintained at the ocean surface. One possible refuge for photosynthetic organisms is a bay at the far end of a nearly enclosed tropical sea, formed by continental rifting and surrounded by desert, such as the modern Red Sea. A model of glacier flow is being developed to determine the dimensions of the channel, connecting the sea to the ocean, necessary to prevent invasion by the flowing ice yet maintain a water supply to replenish evaporation.", "east": 168.0, "geometry": "POINT(162.5 -77)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Warren, Stephen; Light, Bonnie; Campbell, Adam; Carns, Regina; Dadic, Ruzica; Mullen, Peter; Brandt, Richard; Waddington, Edwin D.", "platforms": "Not provided", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": -78.0, "title": "Ocean Surfaces on Snowball Earth", "uid": "p0000402", "west": 157.0}, {"awards": "1039365 Rimmer, Susan", "bounds_geometry": null, "dataset_titles": "The Permian-Triassic Transition in Antarctica: Evaluating the Rates and Variability of Carbon Isotope Fluctuations in Terrestrial Organic Matter", "datasets": [{"dataset_uid": "600121", "doi": "10.15784/600121", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Solid Earth; Transantarctic Mountains", "people": "Rimmer, Susan", "repository": "USAP-DC", "science_program": null, "title": "The Permian-Triassic Transition in Antarctica: Evaluating the Rates and Variability of Carbon Isotope Fluctuations in Terrestrial Organic Matter", "url": "https://www.usap-dc.org/view/dataset/600121"}], "date_created": "Wed, 30 Jan 2013 00:00:00 GMT", "description": "This project studies the Permian-Triassic extinction event as recorded in sedimentary rocks from the Transantarctic Mountains of Antarctica. Two hundred and fifty million years ago most life on Earth was wiped out in a geologic instant. The cause is a subject of great debate. Researchers have identified a unique stratigraphic section near Shackleton glacier laid down during the extinction event. Organic matter from these deposits will be analyzed by density gradient centrifugation (DGC), which will offer detailed information on the carbon isotope composition. The age of these layers will be precisely dated by U/Pb-zircon-dating of intercalated volcanics. Combined, these results will offer detailed constraints on the timing and duration of carbon isotope excursions during the extinction, and offer insight into the coupling of marine and terrestrial carbon cycles. \u003cbr/\u003eThe broader impacts of this project include graduate and undergraduate student research, K12 outreach and teacher involvement, and societal relevance of the results, since the P/T extinction may have been caused by phenomena such as methane release, which could accompany global warming.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Rimmer, Susan", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: The Permian -Triassic Transition in Antarctica: Evaluating the Rates and Variability of Carbon Isotope Fluctuatios in Terrestrial Organic Matter", "uid": "p0000507", "west": null}, {"awards": "0739781 Blythe, Ann", "bounds_geometry": "POLYGON((155.77667 -79.793335,156.208836 -79.793335,156.641002 -79.793335,157.073168 -79.793335,157.505334 -79.793335,157.9375 -79.793335,158.369666 -79.793335,158.801832 -79.793335,159.233998 -79.793335,159.666164 -79.793335,160.09833 -79.793335,160.09833 -79.8578345,160.09833 -79.922334,160.09833 -79.9868335,160.09833 -80.051333,160.09833 -80.1158325,160.09833 -80.180332,160.09833 -80.2448315,160.09833 -80.309331,160.09833 -80.3738305,160.09833 -80.43833,159.666164 -80.43833,159.233998 -80.43833,158.801832 -80.43833,158.369666 -80.43833,157.9375 -80.43833,157.505334 -80.43833,157.073168 -80.43833,156.641002 -80.43833,156.208836 -80.43833,155.77667 -80.43833,155.77667 -80.3738305,155.77667 -80.309331,155.77667 -80.2448315,155.77667 -80.180332,155.77667 -80.1158325,155.77667 -80.051333,155.77667 -79.9868335,155.77667 -79.922334,155.77667 -79.8578345,155.77667 -79.793335))", "dataset_titles": "Thermochronologic and modelling test for a Mesozoic West Antarctic Plateau", "datasets": [{"dataset_uid": "600082", "doi": "10.15784/600082", "keywords": "Antarctica; Fission Track Thermochronology; Geochemistry; Solid Earth; Transantarctic Mountains", "people": "Huerta, Audrey D.; Blythe, Ann Elizabeth", "repository": "USAP-DC", "science_program": null, "title": "Thermochronologic and modelling test for a Mesozoic West Antarctic Plateau", "url": "https://www.usap-dc.org/view/dataset/600082"}], "date_created": "Fri, 07 Dec 2012 00:00:00 GMT", "description": "This project studies formation of the TransAntarctic Mountains (TAM) through numerical modeling based on cooling histories of apatite mineral grains. The TAM are the highest and longest rift-related mountain range in the world. Various models for their uplift have been proposed, the most provocative of which is that they are not uplifted, but instead are the eroded remnant of a plateau. This project evaluates that hypothesis by collecting apatites from around Byrd Glacier for fission track thermochronology. Results will be combined with a kinematic and thermal model to determine the TAM?s structural evolution. The plateau model, if correct, implies that the Byrd Glacier originated not as a glacier-carved valley through the TAM, but as a river system flowing in the opposite direction. Given that the Byrd Glacier is a key drainage for the East Antarctic ice sheet, this result has important implications for ice sheet models and interpretation of both regional geology and sediment records.\u003cbr/\u003e\u003cbr/\u003eThe main broader impacts are undergraduate research and a new collaboration between a primarily undergraduate and a research institution. Students will be involved in the field program, sample analyses, and numerical modeling.", "east": 160.09833, "geometry": "POINT(157.9375 -80.1158325)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.793335, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Blythe, Ann Elizabeth; Huerta, Audrey D.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.43833, "title": "Collaborative Research: Thermochronologic and modelling test for a Mesozoic West Antarctic Plateau", "uid": "p0000677", "west": 155.77667}, {"awards": "0838914 Wannamaker, Philip", "bounds_geometry": "POLYGON((141.01732 -82.13,144.910279 -82.13,148.803238 -82.13,152.696197 -82.13,156.589156 -82.13,160.482115 -82.13,164.375074 -82.13,168.268033 -82.13,172.160992 -82.13,176.053951 -82.13,179.94691 -82.13,179.94691 -82.351835,179.94691 -82.57367,179.94691 -82.795505,179.94691 -83.01734,179.94691 -83.239175,179.94691 -83.46101,179.94691 -83.682845,179.94691 -83.90468,179.94691 -84.126515,179.94691 -84.34835,176.053951 -84.34835,172.160992 -84.34835,168.268033 -84.34835,164.375074 -84.34835,160.482115 -84.34835,156.589156 -84.34835,152.696197 -84.34835,148.803238 -84.34835,144.910279 -84.34835,141.01732 -84.34835,141.01732 -84.126515,141.01732 -83.90468,141.01732 -83.682845,141.01732 -83.46101,141.01732 -83.239175,141.01732 -83.01734,141.01732 -82.795505,141.01732 -82.57367,141.01732 -82.351835,141.01732 -82.13))", "dataset_titles": "Agglutinated Foraminifera, genome sequencing data; Rift Mechanisms and Thermal Regime of the Lithosphere across Beardmore Glacier Region, Central Transantarctic Mountains, from Magnetotelluric Measurements", "datasets": [{"dataset_uid": "600102", "doi": "10.15784/600102", "keywords": "Antarctica; Magnetotelluric; Potential Field; Solid Earth; Transantarctic Mountains", "people": "Wannamaker, Philip", "repository": "USAP-DC", "science_program": null, "title": "Rift Mechanisms and Thermal Regime of the Lithosphere across Beardmore Glacier Region, Central Transantarctic Mountains, from Magnetotelluric Measurements", "url": "https://www.usap-dc.org/view/dataset/600102"}, {"dataset_uid": "000211", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Agglutinated Foraminifera, genome sequencing data", "url": "http://www.ncbi.nlm.nih.gov/sites/myncbi/collections/public/1vwfrm7rJme2hrzl6smGVhpk-/"}], "date_created": "Mon, 12 Nov 2012 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The investigators will examine competing hypotheses for the mechanism of extension and creation of the Transantarctic Mountains, and evolution of the thermal regimes of rifted West Antarctica and stable East Antarctica using magnetotelluric (MT) profiles. Surrounded almost entirely by ocean ridges, Antarctica is a special tectonic situation because of the need to make accommodation space for rifting in the Transantarctic region. In the MT method, temporal variations in the Earth\u0027s natural electromagnetic field are used as source fields to probe the electrical resistivity structure in the depth range of 1 to 200 km, or more. Geophysical methods, such as MT, are appropriate in Antarctica because of the predominance of thick ice cover over most of the Continent and the difficult operating environment. The proposed effort will consist of approximately 50 sites over a distance approaching 500 km with a 10 km average spacing, oriented normal to the Transantarctic Mountains (TAM), in the Beardmore glacier area. High quality MT soundings will be collected over thick ice sheets using a custom electrode preamp design, updated from previous Antarctic projects. Data acquisition will take place over two field seasons. The primary goals are three-fold: to establish the location of the deeper tectonic transition between East and West Antarctica that may be offset from the physiographic transition at the surface, using deep resistivity structure distinguish between modes of extensional upwelling and magmatism that may be vertically non-uniform, depth and magnitude of quasi-layered deep crustal low resistivity, particularly below West Antarctica, will be used to estimate crustal heat flux into the ice sheet base.", "east": 179.94691, "geometry": "POINT(160.482115 -83.239175)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -82.13, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Bowser, Samuel; Wannamaker, Philip", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "NCBI GenBank; USAP-DC", "science_programs": null, "south": -84.34835, "title": "Rift Mechanisms and Thermal Regime of the Lithosphere across Beardmore Glacier Region, Central Transantarctic Mountains, from Magnetotelluric Measurements", "uid": "p0000247", "west": 141.01732}, {"awards": "0733025 Blankenship, Donald", "bounds_geometry": "POLYGON((95 -65,103.5 -65,112 -65,120.5 -65,129 -65,137.5 -65,146 -65,154.5 -65,163 -65,171.5 -65,180 -65,180 -66.7,180 -68.4,180 -70.1,180 -71.8,180 -73.5,180 -75.2,180 -76.9,180 -78.6,180 -80.3,180 -82,171.5 -82,163 -82,154.5 -82,146 -82,137.5 -82,129 -82,120.5 -82,112 -82,103.5 -82,95 -82,95 -80.3,95 -78.6,95 -76.9,95 -75.2,95 -73.5,95 -71.8,95 -70.1,95 -68.4,95 -66.7,95 -65))", "dataset_titles": "Gravity anomaly data; Gravity raw data; ICECAP Basal Interface Specularity Content Profiles: IPY and OIB; ICECAP flight reports; ICECAP ice thickness data over the Darwin and Hatherton Glaciers, Transantarctic Mountains, Antarctica; ICECAP radargrams (HiCARS 1); ICECAP radargrams (HiCARS 2); Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau; Ice thickness and bed reflectivity data (HiCARS 1); Ice thickness and bed reflectivity data (HiCARS 2); Laser altimetry raw data; Laser surface elevation data; Magnetic anomaly data; Magnetic raw data", "datasets": [{"dataset_uid": "200120", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Laser surface elevation data", "url": "https://nsidc.org/data/ilutp2"}, {"dataset_uid": "200121", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "ICECAP flight reports", "url": "https://nsidc.org/data/ifltrpt"}, {"dataset_uid": "200113", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Ice thickness and bed reflectivity data (HiCARS 1)", "url": "https://nsidc.org/data/IR1HI2/versions/1"}, {"dataset_uid": "200112", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "ICECAP radargrams (HiCARS 2)", "url": "https://nsidc.org/data/IR2HI1B/versions/1"}, {"dataset_uid": "200111", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "ICECAP radargrams (HiCARS 1)", "url": "https://nsidc.org/data/IR1HI1B/versions/1"}, {"dataset_uid": "601605", "doi": "10.15784/601605", "keywords": "Airborne Radar; Antarctica; Basler; Darwin Glacier; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hatherton Glacier; Hicars; ICECAP; Ice Penetrating Radar; Ice Thickness; Transantarctic Mountains", "people": "Young, Duncan A.; Gillespie, Mette; Blankenship, Donald D.; Siegert, Martin; Holt, John W.; Greenbaum, Jamin; Schroeder, Dustin", "repository": "USAP-DC", "science_program": null, "title": "ICECAP ice thickness data over the Darwin and Hatherton Glaciers, Transantarctic Mountains, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601605"}, {"dataset_uid": "200114", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Ice thickness and bed reflectivity data (HiCARS 2)", "url": "https://nsidc.org/data/IR2HI2/versions/1"}, {"dataset_uid": "200119", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Laser altimetry raw data", "url": "https://nsidc.org/data/ilutp1b"}, {"dataset_uid": "200118", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Gravity anomaly data", "url": "https://nsidc.org/data/igbgm2/"}, {"dataset_uid": "200117", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Gravity raw data", "url": "https://nsidc.org/data/igbgm1b/"}, {"dataset_uid": "601411", "doi": "10.15784/601411", "keywords": "Antarctica; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; ICECAP; Ice Penetrating Radar; Internal Reflecting Horizons", "people": "Ritz, Catherine; Frezzotti, Massimo; Mulvaney, Robert; Young, Duncan A.; Cavitte, Marie G. P; Quartini, Enrica; Muldoon, Gail R.; Paden, John; Blankenship, Donald D.; Tozer, Carly; Kempf, Scott D.; Roberts, Jason; Schroeder, Dustin; Ng, Gregory; Greenbaum, Jamin", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau", "url": "https://www.usap-dc.org/view/dataset/601411"}, {"dataset_uid": "200116", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Magnetic anomaly data", "url": "https://nsidc.org/data/imgeo2"}, {"dataset_uid": "601371", "doi": "10.15784/601371", "keywords": "Antarctica; East Antarctica; ICECAP; Ice Penetrating Radar; Radar Echo Sounder; Radar Echo Sounding; Subglacial Hydrology", "people": "Young, Duncan A.; Schroeder, Dustin; Greenbaum, Jamin; van Ommen, Tas; Siegert, Martin; Roberts, Jason; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "url": "https://www.usap-dc.org/view/dataset/601371"}, {"dataset_uid": "200115", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Magnetic raw data", "url": "https://nsidc.org/data/imgeo1b"}], "date_created": "Tue, 04 Sep 2012 00:00:00 GMT", "description": "This project is an aerogeophysical survey to explore unknown terrain in East Antarctica to answer questions of climate change and earth science. The methods include ice-penetrating radar, gravity, and magnetic measurements. The project?s main goal is to investigate the stability and migration of ice divides that guide flow of the East Antarctic ice sheet, the world?s largest. The project also maps ice accumulation over the last interglacial, identifies subglacial lakes, and characterizes the catchment basins of the very largest glacial basins, including Wilkes and Aurora. The outcomes contribute to ice sheet models relevant to understanding sea level rise in a warming world. The work will also help understand the regional geology. Buried beneath miles-thick ice, East Antarctica is virtually uncharacterized, but is considered a keystone for tectonic reconstructions and other geologic questions. The region also hosts subglacial lakes, whose geologic histories are unknown. \u003cbr/\u003e\u003cbr/\u003eThe broader impacts are extensive, and include societal relevance for understanding sea level rise, outreach in various forms, and education at the K12 through postdoctoral levels. The project contributes to the International Polar Year (2007-2009) by addressing key IPY themes on frontiers in polar exploration and climate change. It also includes extensive international collaboration with the United Kingdom, Australia, France and other nations; and offers explicit opportunities for early career scientists.", "east": 180.0, "geometry": "POINT(137.5 -73.5)", "instruments": null, "is_usap_dc": false, "keywords": "DOME C; Aurora Subglacial Basin; BT-67; East Antarctica; Wilkes Land; Totten Glacier; ICE SHEETS; Byrd Glacier; Wilkes Subglacial Basin", "locations": "East Antarctica; DOME C; Byrd Glacier; Totten Glacier; Aurora Subglacial Basin; Wilkes Subglacial Basin; Wilkes Land", "north": -65.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Integrated System Science", "paleo_time": null, "persons": "Siegert, Martin; Roberts, Jason; Van Ommen, Tas; Warner, Roland; Richter, Thomas; Greenbaum, Jamin; Holt, John W.; Young, Duncan A.; Blankenship, Donald D.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e BT-67", "repo": "NSIDC", "repositories": "NSIDC; USAP-DC", "science_programs": null, "south": -82.0, "title": "IPY Research: Investigating the Cryospheric Evolution of the Central Antarctic Plate (ICECAP)", "uid": "p0000719", "west": 95.0}, {"awards": "9527571 Whillans, Ian", "bounds_geometry": "POLYGON((158.25 -76.66667,158.325 -76.66667,158.4 -76.66667,158.475 -76.66667,158.55 -76.66667,158.625 -76.66667,158.7 -76.66667,158.775 -76.66667,158.85 -76.66667,158.925 -76.66667,159 -76.66667,159 -76.683336,159 -76.700002,159 -76.716668,159 -76.733334,159 -76.75,159 -76.766666,159 -76.783332,159 -76.799998,159 -76.816664,159 -76.83333,158.925 -76.83333,158.85 -76.83333,158.775 -76.83333,158.7 -76.83333,158.625 -76.83333,158.55 -76.83333,158.475 -76.83333,158.4 -76.83333,158.325 -76.83333,158.25 -76.83333,158.25 -76.816664,158.25 -76.799998,158.25 -76.783332,158.25 -76.766666,158.25 -76.75,158.25 -76.733334,158.25 -76.716668,158.25 -76.700002,158.25 -76.683336,158.25 -76.66667))", "dataset_titles": "GPS Ice Flow Measurements, Allan Hills, Antarctica", "datasets": [{"dataset_uid": "609507", "doi": "10.7265/N5NS0RSX", "keywords": "Allan Hills; Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ice Flow Velocity", "people": "Spaulding, Nicole; Hamilton, Gordon S.; Kurbatov, Andrei V.; Spikes, Vandy Blue", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "GPS Ice Flow Measurements, Allan Hills, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609507"}], "date_created": "Tue, 20 Dec 2011 00:00:00 GMT", "description": "Whillans, Wilson, Goad OPP 9527571 Abstract This award supports a project to initiate Global Positioning System (GPS) measurements for rock motions in South Victoria Land and vicinity. The results will be used to test some of the leading models for ice-sheet change and tectonism, in particular, whether the continent is rebounding due to reduced ice load from East or West Antarctica and whether there is tectonic motion due to Terror Rift or uplift of the Transantarctic Mountains. A modest program to measure ice motion will be conducted as well. The motive is to test models for ice flow in the Allan Hills meteorite concentration region and to determine whether small glaciers in the Dry Valleys are thickening or thinning. Monuments will be set into rock and ice and GPS receivers used to determine their locations. Repeats in later years will determine motion. Field activities will involve close cooperation with the USGS.", "east": 159.0, "geometry": "POINT(158.625 -76.75)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; LABORATORY; Not provided; Ice Movement; GPS Data; Vertical Motions; GPS; FIELD INVESTIGATION", "locations": null, "north": -76.66667, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Whillans, Ian; Spaulding, Nicole; Hamilton, Gordon S.; Spikes, Vandy Blue; Kurbatov, Andrei V.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.83333, "title": "GPS Measurements of Rock and Ice Motions in South Victoria Land", "uid": "p0000523", "west": 158.25}, {"awards": "0840979 Adams, Byron; 0840705 Wall, Diana", "bounds_geometry": "POLYGON((165.35155 -83.71592,166.143133 -83.71592,166.934716 -83.71592,167.726299 -83.71592,168.517882 -83.71592,169.309465 -83.71592,170.101048 -83.71592,170.892631 -83.71592,171.684214 -83.71592,172.475797 -83.71592,173.26738 -83.71592,173.26738 -83.894053,173.26738 -84.072186,173.26738 -84.250319,173.26738 -84.428452,173.26738 -84.606585,173.26738 -84.784718,173.26738 -84.962851,173.26738 -85.140984,173.26738 -85.319117,173.26738 -85.49725,172.475797 -85.49725,171.684214 -85.49725,170.892631 -85.49725,170.101048 -85.49725,169.309465 -85.49725,168.517882 -85.49725,167.726299 -85.49725,166.934716 -85.49725,166.143133 -85.49725,165.35155 -85.49725,165.35155 -85.319117,165.35155 -85.140984,165.35155 -84.962851,165.35155 -84.784718,165.35155 -84.606585,165.35155 -84.428452,165.35155 -84.250319,165.35155 -84.072186,165.35155 -83.894053,165.35155 -83.71592))", "dataset_titles": "Genetic Sequences: JN819273 tardsubmission.sqn 354_18S6 JN819274 tardsubmission.sqn 354_ITS JN819275 tardsubmission.sqn 553_18S5_and_18S6 JN819276 tardsubmission.sqn 556_18S6; McMurdo Dry Valleys Long-Term Ecological Research", "datasets": [{"dataset_uid": "000157", "doi": "", "keywords": null, "people": null, "repository": "LTER", "science_program": null, "title": "McMurdo Dry Valleys Long-Term Ecological Research", "url": "http://www.mcmlter.org/"}, {"dataset_uid": "000217", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Genetic Sequences: JN819273 tardsubmission.sqn 354_18S6 JN819274 tardsubmission.sqn 354_ITS JN819275 tardsubmission.sqn 553_18S5_and_18S6 JN819276 tardsubmission.sqn 556_18S6", "url": "http://www.ncbi.nlm.nih.gov/genbank/"}], "date_created": "Mon, 03 Oct 2011 00:00:00 GMT", "description": "Ice sheet models of the Last Glacial Maximum, and previous glaciation events in the Miocene, suggest that current low altitude, ice-free surfaces in Antarctica were completely covered with ice. If so, the terrestrial biota of Antarctica today would result from recolonization events after each glacial maximum. However, there is emerging evidence that much of the terrestrial Antarctic biota are of ancient origin and have somehow survived these glaciation events. The Transantarctic Mountains TRANsition Zone (TAM-TRANZ) plays a pivotal role in understanding the evolution and biogeographic history of today\u0027s Antarctic terrestrial biota, primarily because it contains numerous inland areas that could have served as refugia during glacial maxima. Due to its remote location, the TAM-TRANZ has not been systematically surveyed for animal biodiversity. Although an exhaustive survey of the region requires a multi-discipline, multi-year and multi-region effort, the research herein combines ecological, evolutionary and geophysical expertise to conduct an exploratory investigation of the extreme southern limits of biotic communities. The project will examine the historical geophysical requirements for the colonization and maintenance of functional ecosystems by multicellular organisms, and the feasibility and desirability to implement more systematic biogeographic studies in the future. Broader impacts include graduate and undergraduate student ownership of important subprojects that will provide research, presentation and publication opportunities. The investigators also will contribute to ongoing public education efforts through relationships with K-12 teachers and administrators in the public school districts where the project personnel reside. Finally, the project is leveraged by opportunistic collaboration with scientists associated with Antarctica New Zealand.", "east": 173.26738, "geometry": "POINT(169.309465 -84.606585)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -83.71592, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Adams, Byron; Wall, Diana", "platforms": "Not provided", "repo": "LTER", "repositories": "LTER; NCBI GenBank", "science_programs": "LTER", "south": -85.49725, "title": "Collaborative Research: Limits and Drivers of Metazoan Distributions in the Transantarctic Mountains", "uid": "p0000517", "west": 165.35155}, {"awards": "0126279 Lawver, Lawrence; 0125624 Wilson, Terry", "bounds_geometry": "POLYGON((163.69456 -75.04911,164.525266 -75.04911,165.355972 -75.04911,166.186678 -75.04911,167.017384 -75.04911,167.84809 -75.04911,168.678796 -75.04911,169.509502 -75.04911,170.340208 -75.04911,171.170914 -75.04911,172.00162 -75.04911,172.00162 -75.3293,172.00162 -75.60949,172.00162 -75.88968,172.00162 -76.16987,172.00162 -76.45006,172.00162 -76.73025,172.00162 -77.01044,172.00162 -77.29063,172.00162 -77.57082,172.00162 -77.85101,171.170914 -77.85101,170.340208 -77.85101,169.509502 -77.85101,168.678796 -77.85101,167.84809 -77.85101,167.017384 -77.85101,166.186678 -77.85101,165.355972 -77.85101,164.525266 -77.85101,163.69456 -77.85101,163.69456 -77.57082,163.69456 -77.29063,163.69456 -77.01044,163.69456 -76.73025,163.69456 -76.45006,163.69456 -76.16987,163.69456 -75.88968,163.69456 -75.60949,163.69456 -75.3293,163.69456 -75.04911))", "dataset_titles": "Expedition Data; NBP0401 data", "datasets": [{"dataset_uid": "000106", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0401 data", "url": "https://www.rvdata.us/search/cruise/NBP0401"}, {"dataset_uid": "001664", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0401"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a study to investigate the tectonic development of the southwestern Ross Sea region. Displacements between East and West Antarctica have long been proposed based on global plate circuits, apparent hot spot motions, interpretations of seafloor magnetic anomalies, paleomagnetism, and on geologic grounds. Such motions require plate boundaries crossing Antarctica, yet these boundaries have never been explicitly defined. This project will attempt to delineate the late Cenozoic - active boundary between East and West Antarctica along the Terror Rift in the western Ross Sea, where young structures have been identified, continuity between active extension and intracontinental structures can be established, and where accessibility via ship will allow new key data sets to be acquired. We will use multi-source marine and airborne geophysical data to map the fault patterns and volcanic structure along the eastern margin of the Terror Rift. The orientations of volcanic fissures and seamount alignments on the seafloor will be mapped using multibeam bathymetry. The volcanic alignments will show the regional extension or shear directions across the Terror Rift and the orientations of associated crustal stresses. Swath bathymetry and single channel seismic data will be used to document neotectonic fault patterns and the eastern limit of recent faulting. Delineation of neotectonic fault patterns will demonstrate whether the eastern margin of the Terror Rift forms a continuous boundary and whether the rift itself can be linked with postulated strike-slip faults in the northwestern Ross Sea. Seafloor findings from this project will be combined with fault kinematic and stress field determinations from the surrounding volcanic islands and the Transantarctic Mountains. The integrated results will test the propositions that the eastern boundary of the Terror Rift forms the limit of the major, late Cenozoic -active structures through the Ross Sea and that Terror Rift kinematics involve dextral transtension linked to the right-lateral strike-slip faulting to the north. These results will help constrain the kinematic and dynamic links between the West Antarctic rift system and Southern Ocean structures and any related motions between East and West Antarctica. In the first year, a collaborative structural analysis of existing multichannel and single channel seismic profiles and aeromagnetic data over the Terror Rift will be conducted. The location of volcanic vents or fissures and any fault scarps on the sea floor will be identified and a preliminary interpretation of the age and kinematics of deformation in the Terror Rift will be produced. Late in the second year, a one-month cruise on RVIB N.B. Palmer will carry out multibeam bathymetric and sidescan sonar mapping of selected portions of the seafloor of Terror Rift. Gravity, magnetics, seismic reflection and Bathy2000 3.5 kHz sub-bottom profile data will also be collected across the rift. In the third year, we will use these multisource data to map the orientations and forms of volcanic bodies and the extent and geometry of neotectonic faulting associated with the Terror Rift. The project will: 1) complete a map of neotectonic faults and volcanic structures in the Terror Rift; 2) interpret the structural pattern to derive the motions and stresses associated with development of the rift; 3) compare Terror Rift structures with faults and lineaments mapped in the Transantarctic Mountains to improve age constraints on the structures; and 4) integrate the late Cenozoic structural interpretations from the western Ross Sea with Southern Ocean plate boundary kinematics.", "east": 172.00162, "geometry": "POINT(167.84809 -76.45006)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": true, "keywords": "R/V NBP", "locations": null, "north": -75.04911, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Wilson, Terry", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.85101, "title": "Collaborative Research: Neotectonic Structure of Terror Rift, Western Ross Sea", "uid": "p0000111", "west": 163.69456}, {"awards": "0230285 Wilson, Terry", "bounds_geometry": "POLYGON((152.833 -75.317,154.4897 -75.317,156.1464 -75.317,157.8031 -75.317,159.4598 -75.317,161.1165 -75.317,162.7732 -75.317,164.4299 -75.317,166.0866 -75.317,167.7433 -75.317,169.4 -75.317,169.4 -75.9186,169.4 -76.5202,169.4 -77.1218,169.4 -77.7234,169.4 -78.325,169.4 -78.9266,169.4 -79.5282,169.4 -80.1298,169.4 -80.7314,169.4 -81.333,167.7433 -81.333,166.0866 -81.333,164.4299 -81.333,162.7732 -81.333,161.1165 -81.333,159.4598 -81.333,157.8031 -81.333,156.1464 -81.333,154.4897 -81.333,152.833 -81.333,152.833 -80.7314,152.833 -80.1298,152.833 -79.5282,152.833 -78.9266,152.833 -78.325,152.833 -77.7234,152.833 -77.1218,152.833 -76.5202,152.833 -75.9186,152.833 -75.317))", "dataset_titles": null, "datasets": null, "date_created": "Sat, 12 Dec 2009 00:00:00 GMT", "description": "OPP-0230285/OPP-0230356\u003cbr/\u003ePIs: Wilson, Terry J./Hothem, Larry D.\u003cbr/\u003e\u003cbr/\u003eThis award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to conduct GPS measurements of bedrock crustal motions in an extended Transantarctic Mountains Deformation network (TAMDEF) to document neotectonic displacements due to tectonic deformation within the West Antarctic rift and/or to mass change of the Antarctic ice sheets. Horizontal displacements related to active neotectonic rifting, strike-slip translations, and volcanism will be tightly constrained by monitoring the combined TAMDEF and Italian VLNDEF networks of bedrock GPS stations along the Transantarctic Mountains and on offshore islands in the Ross Sea. Glacio-isostatic adjustments due to deglaciation since the Last Glacial Maximum and to modern mass change of the ice sheets will be modeled from GPS-derived crustal motions together with new information from other programs on the configurations, thicknesses, deglaciation history and modern mass balance of the ice sheets. Tectonic and rheological information from ongoing structural and seismic investigations in the Victoria Land region will also be integrated in the modeling. The integrative and iterative modeling will yield a holistic interpretation of neotectonics and ice sheet history that will help us to discriminate tectonic crustal displacements from viscoelastic/elastic glacio-isostatic motions. These results will provide key information to interpret broad, continental-scale crustal motion patterns detected by sparse, regionally distributed GPS continuous trackers and by spaceborne instruments. This study will contribute to international programs focused on Antarctic neotectonic and global change issues.\u003cbr/\u003e\u003cbr/\u003eStrategies to meet these science objectives include repeat surveys of key sites in the existing TAMDEF network, extension of the array of TAMDEF sites southward about 250 km along the Transantarctic Mountains, linked measurements with the VLNDEF network, and integration of quasi-continuous trackers within the campaign network. By extending the array of bedrock sites southward, these measurements will cross gradients in predicted vertical motion due to viscoelastic rebound. The southward extension will also allow determination of the southern limit of the active Terror Rift and will provide a better baseline for constraints on any ongoing tectonic displacements across the West Antarctic rift system as a whole that might be possible using GPS data collected by the West Antarctic GPS Network. This project will also investigate unique aspects of GPS geodesy in Antarctica to determine how the error spectrum compares to mid-latitude regions and to identify the optimum measurement and data processing schemes for Antarctic conditions. The geodetic research will improve position accuracies within our network and will also yield general recommendations for deformation monitoring networks in polar regions.\u003cbr/\u003e\u003cbr/\u003eAn education and outreach program is planned and will be targeted at non-science-major undergraduate students taking Earth System Science at Ohio State University. The objective will be to illuminate the research process for nonscientists. This effort will educate students on the process of science and inform them about Antarctica and how it relates to global science issues.", "east": 169.4, "geometry": "POINT(161.1165 -78.325)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "GPS", "locations": null, "north": -75.317, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Wilson, Terry", "platforms": "SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repositories": null, "science_programs": null, "south": -81.333, "title": "Collaborative Research: Transantarctic Mountains Deformation Network: GPS Measurements of Neotectonic Motion in the Antarctic Interior", "uid": "p0000574", "west": 152.833}, {"awards": "0440711 Marchant, David", "bounds_geometry": "POLYGON((160 -76.5,160.45 -76.5,160.9 -76.5,161.35 -76.5,161.8 -76.5,162.25 -76.5,162.7 -76.5,163.15 -76.5,163.6 -76.5,164.05 -76.5,164.5 -76.5,164.5 -76.7,164.5 -76.9,164.5 -77.1,164.5 -77.3,164.5 -77.5,164.5 -77.7,164.5 -77.9,164.5 -78.1,164.5 -78.3,164.5 -78.5,164.05 -78.5,163.6 -78.5,163.15 -78.5,162.7 -78.5,162.25 -78.5,161.8 -78.5,161.35 -78.5,160.9 -78.5,160.45 -78.5,160 -78.5,160 -78.3,160 -78.1,160 -77.9,160 -77.7,160 -77.5,160 -77.3,160 -77.1,160 -76.9,160 -76.7,160 -76.5))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 01 Jul 2009 00:00:00 GMT", "description": "This project studies ancient lake deposits from the western Dry Valleys of Antarctica. These deposits are particularly exciting because they preserve flora and fauna over seven million years in age that represent the last vestiges of ecosystems that dominated this area before formation of the modern East Antarctic ice sheet. Their unique nature offers a chance to bridge modern and ancient ecology. Formed along the margin of ancient alpine glaciers, these deposits contain layers of silt, clay, and volcanic ash; as well as freeze-dried remnants of mosses, insects, and diatoms. Geological and biological analyses provide a view of the ecological and environmental conditions during mid-to-late Miocene--seven to seventeen million years ago--which spans the critical period when the East Antarctic ice sheet transitioned to its present stable form. The results place the modern lakes of the Dry Valleys into a long-term evolutionary framework, and allow for correlation and dating comparisons with other fossil-rich deposits from the Transantarctic Mountains. Chemical fingerprinting and dating of volcanic glass shards will also help date fossil- and ash-bearing horizons in nearby marine cores, such as those to be collected under the ANDRILL program. \u003cbr/\u003e\u003cbr/\u003eThe broader impacts are education at the postdoctoral, graduate, and undergraduate levels; and collaboration between a research institution and primarily undergraduate institution. The work also improves our understanding of global climate change during a critical period in the Earth\u0027s history.", "east": 164.5, "geometry": "POINT(162.25 -77.5)", "instruments": null, "is_usap_dc": false, "keywords": "Paleoclimate; Not provided; Lacustrine; Tundra; Middle Miocene; McMurdo Dry Valleys; Vegetation; Fossil; Antarctica", "locations": "Antarctica; McMurdo Dry Valleys", "north": -76.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Marchant, David", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -78.5, "title": "Collaborative Research: Deducing Late Neogene Antarctic Climate from Fossil-Rich Lacustrine Sediments in the Dry Valleys", "uid": "p0000186", "west": 160.0}, {"awards": "0739700 Marchant, David; 0739693 Ashworth, Allan", "bounds_geometry": "POLYGON((160 -77,160.2 -77,160.4 -77,160.6 -77,160.8 -77,161 -77,161.2 -77,161.4 -77,161.6 -77,161.8 -77,162 -77,162 -77.1,162 -77.2,162 -77.3,162 -77.4,162 -77.5,162 -77.6,162 -77.7,162 -77.8,162 -77.9,162 -78,161.8 -78,161.6 -78,161.4 -78,161.2 -78,161 -78,160.8 -78,160.6 -78,160.4 -78,160.2 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77))", "dataset_titles": "Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains", "datasets": [{"dataset_uid": "600081", "doi": "10.15784/600081", "keywords": "Antarctica; Geochronology; Geology/Geophysics - Other; GPS; Solid Earth", "people": "Ashworth, Allan; Lewis, Adam", "repository": "USAP-DC", "science_program": null, "title": "Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/600081"}], "date_created": "Mon, 22 Jun 2009 00:00:00 GMT", "description": "This project studies the last vestiges of life in Antarctica from exceptionally well-preserved fossils of tundra life--mosses, diatoms, ostracods, Nothofagus leaves, wood, and insect remains recently discovered in ancient lake sediments from the McMurdo Dry Valleys. The area will be studied by an interdisciplinary team to elucidate information about climate and biogeography. These deposits offer unique and direct information about the characteristics of Antarctica during a key period in its history, the time when it was freezing. This information is critical for correlation with indirect proxies, such as though obtained from drill cores, for climate and state of the ice sheet. The results will also help understand the origin and migration of similar organisms found in South America, India and Australia.\u003cbr/\u003e\u003cbr/\u003eIn terms of broader impacts, this project supports an early career researcher, undergraduate and graduate student research, various forms of outreach to K12 students, and extensive international collaboration. The work also has societal relevance in that the outcomes will offer direct constraints on Antarctica\u0027s ice sheet during a time with atmospheric CO2 contents similar to those of the earth in the coming centuries, and thus may help predictive models of sea level rise.", "east": 162.0, "geometry": "POINT(161 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided; Antarctica; Vegetation; Paleoclimate; Middle Miocene; Tundra; Bu/es Data Repository; McMurdo Dry Valleys; Lacustrine; Fossil", "locations": "Antarctica; McMurdo Dry Valleys", "north": -77.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Ashworth, Allan; Lewis, Adam", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains", "uid": "p0000188", "west": 160.0}, {"awards": "9911617 Blankenship, Donald; 9319379 Blankenship, Donald", "bounds_geometry": null, "dataset_titles": "Antarctic Aerogeophysics Data; Antarctic Subglacial Lake Classification Inventory; RBG - Robb Glacier Survey; SOAR-Lake Vostok Survey airborne radar data; SOAR-Lake Vostok Survey bed elevation data; SOAR-Lake Vostok Survey Gravity data; SOAR-Lake Vostok Survey ice thickness data; SOAR-Lake Vostok survey magnetic anomaly data; SOAR-Lake Vostok Survey surface elevation data", "datasets": [{"dataset_uid": "609240", "doi": "", "keywords": "Airborne Radar; Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Navigation; Potential Field; SOAR; Solid Earth", "people": "Blankenship, Donald D.; Morse, David L.; Holt, John W.; Dalziel, Ian W.", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Aerogeophysics Data", "url": "https://www.usap-dc.org/view/dataset/609240"}, {"dataset_uid": "601300", "doi": "10.1594/IEDA/306568", "keywords": "Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Lake Vostok; Navigation; Radar; SOAR; Subglacial Lakes", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey airborne radar data", "url": "https://www.usap-dc.org/view/dataset/601300"}, {"dataset_uid": "609336", "doi": "10.7265/N5CN71VX", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Subglacial Lake", "people": "Holt, John W.; Blankenship, Donald D.; Carter, Sasha P.", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Subglacial Lake Classification Inventory", "url": "https://www.usap-dc.org/view/dataset/609336"}, {"dataset_uid": "601295", "doi": "10.1594/IEDA/306563", "keywords": "Airborne Gravity; Airplane; Antarctica; East Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Lake Vostok; Potential Field; Solid Earth", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey Gravity data", "url": "https://www.usap-dc.org/view/dataset/601295"}, {"dataset_uid": "601299", "doi": "10.1594/IEDA/306565", "keywords": "Airborne Laser Altimeters; Airborne Laser Altimetry; Airborne Radar; Airplane; Antarctica; Bed Elevation; Bedrock Elevation; Digital Elevation Model; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Lake Vostok; Radar; Radar Echo Sounder; SOAR", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey bed elevation data", "url": "https://www.usap-dc.org/view/dataset/601299"}, {"dataset_uid": "601298", "doi": "10.1594/IEDA/306566", "keywords": "Airborne Altimetry; Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Ice Sheet Elevation; Ice Surface; Lake Vostok; Radar Echo Sounder; SOAR; Surface Elevation", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey surface elevation data", "url": "https://www.usap-dc.org/view/dataset/601298"}, {"dataset_uid": "601296", "doi": " 10.1594/IEDA/306564", "keywords": "Airborne Magnetic; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Lake Vostok; Magnetic; Magnetic Anomaly; Magnetometer; Potential Field; SOAR; Solid Earth", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok survey magnetic anomaly data", "url": "https://www.usap-dc.org/view/dataset/601296"}, {"dataset_uid": "601297", "doi": "10.1594/IEDA/306567", "keywords": "Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Sheet; Ice Stratigraphy; Ice Thickness; Ice Thickness Distribution; Lake Vostok; Radar; Radar Altimetry; Radar Echo Sounder; SOAR; Subglacial Lake", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey ice thickness data", "url": "https://www.usap-dc.org/view/dataset/601297"}, {"dataset_uid": "601604", "doi": "10.15784/601604", "keywords": "Airborne Radar; Antarctica; Bed Elevation; Geophysics; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Surface Elevation; Ice Thickness; Robb Glacier; Transantarctic Mountains", "people": "Bell, Robin; Blankenship, Donald D.; Young, Duncan A.; Buck, W. Roger", "repository": "USAP-DC", "science_program": null, "title": "RBG - Robb Glacier Survey", "url": "https://www.usap-dc.org/view/dataset/601604"}], "date_created": "Fri, 06 Feb 2009 00:00:00 GMT", "description": "9911617\u003cbr/\u003eBlankenship\u003cbr/\u003e\u003cbr/\u003eThis award, provided jointly by the Antarctic Geology and Geophysics Program, the Antarctic Glaciology Program, and the Polar Research Support Section of the Office of Polar Programs, provides funds for continuation of the Support Office for Aerogeophysical Research (SOAR). From July 1994 to July 2000, SOAR served as a facility to accomplish aerogeophysical research in Antarctica under an agreement between the University of Texas at Austin and the National Science Foundation\u0027s Office of Polar Programs (NSF/OPP). SOAR operated and maintained an aerogeophysical instrument package that consists of an ice-penetrating radar sounder, a laser altimeter, a gravimeter and a magnetometer that are tightly integrated with each other as well as with the aircraft\u0027s avionics and power packages. An array of aircraft and ground-based GPS receivers supported kinematic differential positioning using carrier-phase observations. SOAR activities included: developing aerogeophysical research projects with NSF/OPP investigators; upgrading of the aerogeophysical instrumentation package to accommodate new science projects and advances in technology; fielding this instrument package to accomplish SOAR-developed projects; and management, reduction, and analysis of the acquired aerogeophysical data. In pursuit of 9 NSF-OPP funded aerogeophysical research projects (involving 14 investigators from 9 institutions), SOAR carried out six field campaigns over a six-year period and accomplished approximately 200,000 line kilometers of aerogeophysical surveying over both East and West Antarctica in 377 flights.\u003cbr/\u003e\u003cbr/\u003eThis award supports SOAR to undertake a one year and 8 month program of aerogeophysical activities that are consistent with continuing U.S. support for geophysical research in Antarctica. \u003cbr/\u003e- SOAR will conduct an aerogeophysical campaign during the 200/01 austral summer to accomplish surveys for two SOAR-developed projects: \"Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Studies\" (Co-PI\u0027s Bell and Studinger, LDEO); and \"Collaborative Research: Seismic Investigation of the Deep Continental Structure Across the East-West Antarctic Boundary\" (Co-PI\u0027s Weins, Washington U. and Anandakrishnan, U. Alabama). After configuration and testing of the survey aircraft in McMurdo, SOAR will conduct survey flights from an NSF-supported base adjacent to the Russian Station above Lake Vostok and briefly occupy one or two remote bases on the East Antarctic ice sheet.\u003cbr/\u003e- SOAR will reduce these aerogeophysical data and produce profiles and maps of surface elevation, bed elevation, gravity and magnetic field intensity. These results will be provided to the respective project investigators within nine months of conclusion of field activities. We will also submit a technical manuscript that describes these results to a refereed scientific journal and distribute these results to appropriate national geophysical data centers within approximately 24 months of completion of field activities.\u003cbr/\u003e- SOAR will standardize all previously reduced SOAR data products and transfer them to the appropriate national geophysical data centers by the end of this grant.\u003cbr/\u003e- SOAR will convene a workshop to establish a community consensus for future U.S. Antarctic aerogeophysical research. This workshop will be co-convened by Ian Dalziel and Richard Alley and will take place during the spring of 2001.\u003cbr/\u003e- SOAR will upgrade the existing SOAR in-field quality control procedures to serve as a web-based interface for efficient browsing of many low-level SOAR data streams.\u003cbr/\u003e- SOAR will repair and/or refurbish equipment that was used during the 2000/01 field campaign.\u003cbr/\u003e\u003cbr/\u003eSupport for SOAR is essential for accomplishing major geophysical investigations in Antarctica. Following data interpretation by the science teams, these data will provide valuable insights to the structure and evolution of the Antarctic continent.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IMAGING RADAR SYSTEMS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LIDAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e PROTON MAGNETOMETER", "is_usap_dc": true, "keywords": "Ice Sheet; Ice Sheet Elevation; Surface Winds; Snow Temperature; Atmospheric Pressure; Antarctic; West Antarctic Ice Sheet; Surface Temperature Measurements; FIELD INVESTIGATION; Surface Wind Speed Measurements; Subglacial Topography; Atmospheric Humidity Measurements; Not provided; Aerogeophysics; FIELD SURVEYS; GROUND STATIONS; Antarctica; SOAR; Snow Temperature Measurements; West Antarctica; Antarctic Ice Sheet; East Antarctic Plateau", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; West Antarctica; West Antarctic Ice Sheet; East Antarctic Plateau", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Carter, Sasha P.; Holt, John W.; Blankenship, Donald D.; Morse, David L.; Dalziel, Ian W.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR)", "uid": "p0000125", "west": null}, {"awards": "0440304 Jacobel, Robert", "bounds_geometry": null, "dataset_titles": "U.S. International Trans Antarctic Scientific Expedition web pages", "datasets": [{"dataset_uid": "000108", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "U.S. International Trans Antarctic Scientific Expedition web pages", "url": "http://www2.umaine.edu/USITASE/index.html"}], "date_created": "Tue, 13 Jan 2009 00:00:00 GMT", "description": "This award supports a project to perform ice radar studies of bedrock topography and internal layers along the second US ITASE traverse corridor extending from Taylor Dome to South Pole on the inland side of the Transantarctic Mountains. The radar will provide information immediately available in the field on ice thickness and internal layer structure to help in the selection of core sites as the traverse proceeds. These data will also be useful in locating additional radar and surface studies to characterize the drainage divides between major outlet glaciers flowing through the mountains and possible changes in them through time. Information from the radar on bed roughness and basal reflectivity, together with images of internal layer deformation will enable us to study changes in the character of ice flow as tributaries merge to trunk flow and velocities increase. Areas where wind scour and sublimation have brought old ice close to the surface will be investigated. Based on our results from the first ITASE traverse, it is also likely that there will be findings of opportunity, phenomena we have not anticipated that are revealed by the radar as the result of a discovery-based traverse. The interdisciplinary science goals of US ITASE are designed to accommodate a variety of interactive research programs and data collected are available to a broad scientific community. US ITASE also supports an extensive program of public outreach and the education and training of future scientists will be central to all activities of this proposal. St. Olaf College is an undergraduate liberal arts institution that emphasizes student participation in scientific research. This award supports two undergraduate students as well as a research associate and a graduate student who will be part of the US ITASE field team.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": false, "keywords": "US ITASE; Stratigraphy; Radar; Antarctica; FIELD SURVEYS; Us Itase Ii; Bed Topography; Not provided; Internal Layers; FIELD INVESTIGATION; Taylor Dome; Transantarctic Mountains; West Antarctica; Traverse", "locations": "Antarctica; West Antarctica; Transantarctic Mountains; Taylor Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Jacobel, Robert", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "Project website", "repositories": "Project website", "science_programs": null, "south": null, "title": "Radar Studies of Internal Stratigraphy and Bed Topography along the US ITASE-II Traverse", "uid": "p0000116", "west": null}, {"awards": "9980452 Harvey, Ralph", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 20 Mar 2008 00:00:00 GMT", "description": "9980452\u003cbr/\u003eHarvey\u003cbr/\u003e\u003cbr/\u003eThis award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for continuation of the Antarctic Search for Meteorites (ANSMET). Since 1976, ANSMET has recovered more than 10,000 meteorite specimens from locations along the Transantarctic Mountains. This award supports continued recovery of Antarctic meteorites during six successive austral summer field seasons, starting with the 2000-2001 season and ending with the 2005-2006 season. Under this project, systematic searches for meteorite specimens will take place at previously discovered stranding surfaces, and reconnaissance work will be conducted to discover and explore the extent of new areas with meteorite concentrations. ANSMET recovery teams will deploy by air to locations in the deep field for periods of 5-7 weeks. While at the meteorite stranding surface, field team members will search the ice visually, traversing on foot or on snowmobile. Specimens will be collected under the most sterile conditions practical and samples will remain frozen until returned to the Johnson Space Center (JSC) in Houston, Texas. At the JSC, initial characterization and sample distribution to all interested researchers takes place under the auspices of an interagency agreement between NSF, NASA, and the Smithsonian Institution.\u003cbr/\u003e\u003cbr/\u003eThe impact of ANSMET has been substantial and this will continue under this award. The meteorites recovered by ANSMET are the best and most reliable source of new, non-microscopic extraterrestrial material, providing essential \"ground-truth\" concerning the materials that make up the asteroids, planets and other bodies of our solar system. The system for their characterization and distribution is unparalleled and their subsequent study has fundamentally changed our understanding of the solar system. ANSMET meteorites have helped researchers explore the conditions that were present in the nebula from which our solar system was born 4.556 billion years ago and provided samples of asteroids, ranging from primitive bodies unchanged since the formation of the solar system to complex, geologically active miniature planets. ANSMET samples proved, against the conventional wisdom, that some meteorites actually represent planetary materials, delivered to us from the Moon and Mars, completely changing our view of the geology of those bodies. ANSMET meteorites have even generated a new kind of inquiry into one of the most fundamental scientific questions possible; the question of biological activity in the universe as a whole. Over the past twenty years, ANSMET meteorites have economically provided a continuous and readily available supply of extraterrestrial materials for research, and should continue to do so in the future.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": false, "keywords": "FIELD SURVEYS; FIELD INVESTIGATION", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Harvey, Ralph", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": null, "title": "The Antarctic Search for Meteorites", "uid": "p0000118", "west": null}, {"awards": "0229698 Hammer, William", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 07 Aug 2007 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate Triassic and Jurassic dinosaurs and other vertebrates from the central Transantarctic Mountains of Antarctica. A field program to search for Upper Triassic to Jurassic age fossil vertebrates in the Beardmore Glacier region will be carried out in the 2003-04 austral summer. Initially, field efforts will concentrate on the Hanson Formation that has produced the only Jurassic dinosaur fauna from Antarctica. Further excavation of the Hanson dinosaur locality on Mt. Kirkpatrick will occur, followed by an extensive search of other exposures of the Hanson, Falla and Upper Fremouw Formations in the Beardmore area. A field party of six persons will allow two smaller groups to work independently at different sites. This group will operate for 3-4 weeks out of a small helicopter camp located in the Beardmore area. In addition to collecting new specimens an interpretation of the depositional settings for each of the vertebrate sites will be made. The second and third years of this project will be dedicated to preparation and study of the vertebrates. Antarctic vertebrates provide a unique opportunity to study the evolutionary and biogeographic significance of high latitude Mesozoic faunas and this project should result in significant advances in knowledge in this field.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e MESOZOIC", "persons": "Hammer, William R.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Vertebrate Paleontology of the Triassic to Jurassic Sedimentary Sequence in the Beardmore Glacier Area, Antarctica", "uid": "p0000366", "west": null}, {"awards": "9615398 Encarnacion, John", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 11 Jul 2007 00:00:00 GMT", "description": "Encarnaci_n OPP 9615398 Abstract Basement rocks of the Transantarctic Mountains are believed to record a change in the paleo-Pacific margin of Gondwana from a rifted passive margin to a tectonically active margin (Ross orogen). Recent hypothesis suggest that the passive margin phase resulted from Neoproterozoic rifting of Laurentia from Antarctica (\"SWEAT\" hypothesis). The succeeding active margin phase (Ross orogeny) was one of several tectonic events (\"Pan African\" events) that resulted from plate convergence/transpression that was probably a consequence of the assembly of components of the Gondwana supercontinent. Although these basement units provide one of the keys for understanding the break up and assembly of these major continental masses, few precise ages are available to address the following important issues: (1) Is there any pre-rift high-grade cratonal basement exposed along the Transantarctic Mountains, and what is/are its precise age? Is this age compatible with a Laurentia connection? (2) What is the age of potential rift/passive margin sediments (Beardmore Group) along the Queen Maud Mountains sector of the orogen? (3) What is the relative and absolute timing of magmatism and contractional deformation of supracrustal units in the orogen? Was deformation diachronous and thus possibly related to transpressional tectonics, or did it occur in a discrete pulse that is more compatible with a collision? How does contraction of the orogen fit in with emplacement of voluminous plutonic and volcanic rocks? The answers to these questions are central to understanding the kinematic evolution of this major orogenic belt and its role in Neoproterozoic-Early Paleozoic continental reconstructions and plate kinematics. Hence, this award supports funding for precise U-Pb dating, using zircon, monazite, baddeleyite, and/or titanite from a variety of magmatic rocks in the Queen Ma ud Mountains, which can address the foregoing problems. In addition to the issues above, precise dating of volcanics that are interbedded with carbonates containing probable Middle Cambrian fauna could potentially provide a calibration point for the Middle Cambrian, which will fill a gap in the absolute time scale for the early Paleozoic.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Encarnacion, John", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Constraints on the Tectonomagmatic Evolution of the Pacific Margin of Gondwana from U-Pb Geochronology of Magmatic Rocks in the Transantarctic Basement", "uid": "p0000277", "west": null}, {"awards": "9909436 Farley, Kenneth", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 11 Jul 2007 00:00:00 GMT", "description": "9909436 \u003cbr/\u003eFarley\u003cbr/\u003e\u003cbr/\u003eThis award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports an investigation of the uplift history of the Dry Valleys segment of the Transantarctic Mountains. The overall goal is to further constrain the exhumation history of the Transantarctic Mountains by using the newly developed apatite (U-Th)/He dating method on samples collected in vertical profiles. This approach, combined with existing apatite fission track information will constrain the rate and patterns of exhumation across the Transantarctic Mountains since their inception as a rift-flank uplift in the early Cenozoic.\u003cbr/\u003e\u003cbr/\u003eThis project will complement other projects and build on previous interpretations of the exhumation and tectonic history determined using apatite fission track thermochronology. It will bridge the gap between information on erosion rates determined from fission track thermochronology and from cosmogenic surface exposure dating and integrate the exhumation history of the mountains with their landscape evolution. As such, the results from this project will address an outstanding problem in Antarctic science; namely the stability of the East Antarctic Ice Sheet, and the timing of the transition from a \"warm\" dynamic ice sheet to a cold polar ice sheet. Highly relevant to this issue is the landscape evolution of the Transantarctic Mountains because many diverse lines of evidence for the rate of landscape evolution have been used to argue for a dynamic ice sheet up until either the Pliocene (the \"dynamic\" ice sheet model) or the middle Miocene (the \"stable\" ice sheet model). Understanding the past stability or dynamic fluctuations of the East Antarctic ice sheet with respect to the climate record is, of course, important for understanding how the present ice sheet may respond to global warming.\u003cbr/\u003e\u003cbr/\u003eThe specific objective of this project is to determine apatite (U-Th)/He age versus elevation trends for a number of vertical profiles from locations within the Transantarctic Mountain front and across the structural grain of the range. Fission track data already exist for all of these profiles, with apatite fission track ages ranging from 150-30 Ma. The greater precision of the (U-Th)/He technique and the fact it records information at lower temperatures (closure temperature of ~70 degrees Celsius; limits of 40-85 degrees Celsius for the He partial retention zone) will allow examination of the exhumation history of the TAM in more detail from ca 130 Ma to ~20 Ma. Another facet is to examine areas where Cretaceous exhumation is recorded and areas where the fission track profiles indicate periods of thermal and tectonic stability and minimal erosion throughout the Cretaceous. The variation of timing of the onset of more rapid exhumation accompanying uplift and formation of the Transantarctic Mountains in the early Cenozoic will also be examined.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Farley, Kenneth", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Exhumation of the Transantarctic Mountains: Constraints from (U-Th)/He Dating of Apatites", "uid": "p0000281", "west": null}, {"awards": "0126146 Miller, Molly", "bounds_geometry": "POINT(171 -83.75)", "dataset_titles": null, "datasets": null, "date_created": "Wed, 20 Jun 2007 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a study to investigate paleoenvironmental conditions during the late Paleozoic and Mesozoic in central interior Antarctica. The 4 km thick sequence of sedimentary rocks, known as the Beacon Supergroup, in the Beardmore Glacier area records 90 million years of Permian through Jurassic history of this high-paleolatitude sector of Gondwana. It accumulated in a foreland basin with a rate of subsidence approximately equal to the rate of deposition. The deposits have yielded diverse vertebrate fossils, in situ fossil forests, and exceptionally well preserved plant fossils. They give a unique glimpse of glacial, lake, and stream/river environments and ecosystems and preserve an unparalleled record of the depositional, paleoclimatic, and tectonic history of the area. The excellent work done to date provides a solid base of information on which to build understanding of conditions and processes.\u003cbr/\u003e\u003cbr/\u003eThis project is a collaborative study of this stratigraphic section that will integrate sedimentologic, paleontologic, and ichnologic observations to answer focused questions, including: (1) What are the stratigraphic architecture and alluvial facies of Upper Permian to Jurassic rocks in the Beardmore area?; (2) In what tectonostratigraphic setting were these rocks deposited?; (3) Did vertebrates inhabit the cold, near-polar, Permian floodplains, as indicated by vertebrate burrows, and can these burrows be used to identify, for the first time, the presence of small early mammals in Mesozoic deposits?; and (4) How did bottom-dwelling animals in lakes and streams use substrate ecospace, how did ecospace use at these high paleolatitudes differ from ecospace use in equivalent environments at low paleolatitudes, and what does burrow distribution reveal about seasonality of river flow and thus about paleoclimate? Answers to these questions will (1) clarify the paleoclimatic, basinal, and tectonic history of this part of Gondwana, (2) elucidate the colonization of near-polar ecosystems by vertebrates, (3) provide new information on the environmental and paleolatitudinal distributions of early mammals, and (4) allow semi-quantitative assessment of the activity and abundance of bottom-dwelling animals in different freshwater environments at high and low latitudes. In summary, this project will contribute significantly to an understanding of paleobiology and paleoecology at a high latitude floodplain setting during a time in Earth history when the climate was much different than today.", "east": 171.0, "geometry": "POINT(171 -83.75)", "instruments": null, "is_usap_dc": false, "keywords": "Beardmore Glacier; FIELD SURVEYS; Paleoclimate; Permian; Paleontology; FIELD INVESTIGATION; Sedimentologic; Ichnologic; Stratigraphic; Gondwana", "locations": "Beardmore Glacier", "north": -83.75, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e MESOZOIC \u003e JURASSIC; PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN; PHANEROZOIC \u003e MESOZOIC \u003e TRIASSIC", "persons": "Miller, Molly", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -83.75, "title": "Collaborative Research: Late Paleozoic-Mesozoic Fauna, Environment, Climate and Basinal History: Beardmore Glacier Area, Transantarctic Mountains", "uid": "p0000736", "west": 171.0}, {"awards": "0408475 Harry, Dennis", "bounds_geometry": "POINT(-175 -85)", "dataset_titles": null, "datasets": null, "date_created": "Tue, 06 Mar 2007 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to apply numerical modeling to constrain the uplift and exhumation history of the Transantarctic Mountains. The Transantarctic Mountains (TAM) are an anomalously high (\u003e4500 m) and relatively broad (up to 200 km) rift-flank uplift demarcating the boundary between East and West Antarctica. Dynamics of the East Antarctic ice-sheet and the climate are affected by the mountain range, and an understanding of the uplift history of the mountain range is critical to understanding these processes. This project will constrain the uplift and denudation history of the Transantarctic Mountains based on thermo-mechanical modeling held faithful to thermochronological, geological, and geophysical data. The research will be the primary responsibility of post-doctoral researcher Audrey Huerta, working in collaboration with Dennis Harry, 1 undergraduate student, and 1 graduate student.\u003cbr/\u003e\u003cbr/\u003eThermochronologic evidence of episodic Cretaceous through Cenozoic rapid cooling within the TAM indicates distinct periods of uplift and exhumation. However, a more detailed interpretation of the uplift history is difficult without an understanding of the evolving thermal structure and topography of the TAM prior to and during uplift. These aspects of the mountain range can best be constrained by an understanding of the evolving regional tectonic setting. Proximity of the TAM to the West Antarctic Rift System (WARS) suggests a link between uplift of the TAM and extension within the WARS.\u003cbr/\u003e\u003cbr/\u003eThe project will integrate two techniques: lithospheric-scale geodynamic modeling and crustal-scale thermal modeling. The lithospheric-scale deformational and thermal evolution of TAM will be modeled by a finite element model designed to track the thermal and deformational response of the Antarctic lithosphere to a protracted extensional environment. Previous investigators have linked the high elevation and broad width of the TAM to a deep level of necking in which mantle thinning is offset from the location of crustal extension. In this study, a three-dimensional dynamic model will be used to track the uplift and thermal evolution of the TAM in a setting in which necking is at a deep level, and in which extension within the crust and extension within the mantle are offset. Velocity boundary conditions applied to the edges of the model will vary through time to simulate the extensional and transtensional evolution of the WARS. Because the model is dynamic, the thermal structure, strength, and strain field, evolve naturally in response to these initial and boundary conditions.\u003cbr/\u003e\u003cbr/\u003eDynamic models are uniquely suited to understanding lithospheric deformational and thermal evolution, however kinematic models are best suited for addressing the detailed thermal and exhumation history of crustal uplifts. Thus, a 2-dimensional kinematic-thermal model will be designed to simulate the uplift history of the TAM and the resulting erosional, topographic, and thermal evolution. Uplift will be modeled as normal-fault movement on a set of discrete fault planes with uplift rate varying through time. Erosion will be modeled as a diffusive process in which erosion rates can be varied through time (simulating climate changes), and vary spatially as a linear function of gradient and distance from the drainage divide. Synthetic time-temperature (t-T) histories will be calculated to compare model results to thermochronologic data.", "east": -175.0, "geometry": "POINT(-175 -85)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": -85.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC; PHANEROZOIC \u003e MESOZOIC \u003e CRETACEOUS; PHANEROZOIC \u003e CENOZOIC \u003e PALEOGENE", "persons": "Huerta, Audrey D.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -85.0, "title": "Uplift and Exhumation of the Transantarctic Mountains and Relation to Rifting in West Antarctica", "uid": "p0000728", "west": -175.0}, {"awards": "0229917 Becker, Luann", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 24 Jan 2007 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports an interdisciplinary study of fluvial sediments in Antarctica for evidence of what caused the greatest of all mass extinctions in the history of life at the Permian-Triassic boundary. This boundary was, until recently, difficult to locate and thought to be unequivocally disconformable in Antarctica. New studies, particularly of carbon isotopic chemostratigraphy and of paleosols and root traces as paleoecosystem indicators, together with improved fossil plant, reptile and pollen biostratigraphy, now suggest that the precise location of the boundary might be identified and have led to local discovery of iridium anomalies, shocked quartz, and fullerenes with extraterrestrial noble gases. These anomalies are associated with a distinctive claystone breccia bed, similar to strata known in South Africa and Australia, and taken as evidence of deforestation. There is already much evidence from Antarctica and elsewhere that the mass extinction on land was abrupt and synchronous with extinction in the ocean. The problem now is what led to such death and destruction. Carbon isotopic values are so low in these and other Permian-Triassic boundary sections that there was likely to have been some role for catastrophic destabilization of methane clathrates. Getting the modeled amount of methane out of likely reservoirs would require such catastrophic events as bolide impact, flood-basalt eruption or continental-shelf collapse, which have all independently been implicated in the mass extinction and for which there is independent evidence. Teasing apart these various hypotheses requires careful re-examination of beds that appear to represent the Permian-Triassic boundary, and search for more informative sequences, as was the case for the Cretaceous-Tertiary boundary. This collaborative research on geochemistry and petrography of boundary beds and paleosols (by Retallack), on carbon isotopic variation through the boundary interval (by Jahren), and on fullerenes, iridium and helium (by Becker) is designed to test these ideas about the Permian-Triassic boundary in Antarctica and to shed light on processes which contributed to this largest of mass extinctions on Earth. Fieldwork for this research will be conducted in the central Transantarctic Mountains and in Southern Victoria Land with an initial objective of examining the stratigraphic sequences for continuity across the boundary. Stratigraphic continuity is a critical element that must exist for the work to be successful. If fieldwork indicates sufficiently continuous sections, the full analytical program will follow fieldwork.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e PROBES; SOLAR/SPACE OBSERVING INSTRUMENTS \u003e PARTICLE DETECTORS \u003e SEM", "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Becker, Luann", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Permian-Triassic Mass Extinction in Antarctica", "uid": "p0000718", "west": null}, {"awards": "0196441 Hamilton, Gordon", "bounds_geometry": null, "dataset_titles": "The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.; US ITASE International Trans-Antarctic Scientific Expedition", "datasets": [{"dataset_uid": "000109", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "US ITASE International Trans-Antarctic Scientific Expedition", "url": "http://www2.umaine.edu/USITASE/"}, {"dataset_uid": "000586", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.", "url": "https://nsidc.org/data/agdc"}], "date_created": "Thu, 30 Mar 2006 00:00:00 GMT", "description": "Not Available", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": false, "keywords": "Transantarctic Mountains; Not provided; US ITASE; Snow Accumulation; Mass Balance; Transantarctic; Outlet Glaciers; Antarctica; FIELD INVESTIGATION; FIELD SURVEYS", "locations": "Antarctica; Transantarctic Mountains", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hamilton, Gordon S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "Project website", "repositories": "NSIDC; Project website", "science_programs": null, "south": null, "title": "Mass Balance and Accumulation Rate Along US ITASE Routes", "uid": "p0000727", "west": null}, {"awards": "0232042 Finn, Carol", "bounds_geometry": "POLYGON((139.27539 -82.35733,142.369695 -82.35733,145.464 -82.35733,148.558305 -82.35733,151.65261 -82.35733,154.746915 -82.35733,157.84122 -82.35733,160.935525 -82.35733,164.02983 -82.35733,167.124135 -82.35733,170.21844 -82.35733,170.21844 -82.516831,170.21844 -82.676332,170.21844 -82.835833,170.21844 -82.995334,170.21844 -83.154835,170.21844 -83.314336,170.21844 -83.473837,170.21844 -83.633338,170.21844 -83.792839,170.21844 -83.95234,167.124135 -83.95234,164.02983 -83.95234,160.935525 -83.95234,157.84122 -83.95234,154.746915 -83.95234,151.65261 -83.95234,148.558305 -83.95234,145.464 -83.95234,142.369695 -83.95234,139.27539 -83.95234,139.27539 -83.792839,139.27539 -83.633338,139.27539 -83.473837,139.27539 -83.314336,139.27539 -83.154835,139.27539 -82.995334,139.27539 -82.835833,139.27539 -82.676332,139.27539 -82.516831,139.27539 -82.35733))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 16 Aug 2005 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the Transantarctic Mountains and an adjacent region of East Antarctica. The East Antarctic shield is one of Earth\u0027s oldest and largest cratonic assemblies, with a long-lived Archean to early Paleozoic history. Long-standing interest in the geologic evolution of this shield has been rekindled over the past decade by tectonic models linking East Antarctica with other Precambrian crustal elements in the Rodinia and Gondwanaland supercontinents. It is postulated that the Pacific margin of East Antarctica was rifted from Laurentia during late Neoproterozoic breakup of Rodinia, and it then developed as an active plate boundary during subsequent amalgamation of Gondwanaland in the earliest Paleozoic. If true, the East Antarctic shield played a key role in supercontinent transformation at a time of global changes in plate configuration, terrestrial surficial process, sea level, and marine geochemistry and biota. A better understanding of the geological evolution of the East Antarctic shield is therefore critical for studying Precambrian crustal evolution in general, as well as resource distribution, biosphere evolution, and glacial and climate history during later periods of Earth history. Because of nearly complete coverage by the polar ice cap, however, Antarctica remains the single most geologically unexplored continent. Exposures of cratonic basement are largely limited to coastal outcrops in George V Land and Terre Adelie (Australian sector), the Prince Charles Mountains and Enderby Land (Indian sector), and Queen Maud Land (African sector), where the geology is reasonably well-known. By contrast, little is known about the composition and structure of the shield interior. Given the extensive ice cover, collection of airborne geophysical data is the most cost-effective method to characterize broad areas of sub-ice basement and expand our knowledge of the East Antarctic shield interior. \u003cbr/\u003e\u003cbr/\u003eThis project will conduct an airborne magnetic survey (coupled with ground-based gravity measurements) across an important window into the shield where it is exposed in the Nimrod Glacier area of the central Transantarctic Mountains. Specific goals are to:\u003cbr/\u003e1. Characterize the magnetic and gravity signature of East Antarctic crustal basement exposed at the Ross margin (Nimrod Group),\u003cbr/\u003e2. Extend the magnetic data westward along a corridor across the polar ice cap in order to image the crust in ice-covered areas,\u003cbr/\u003e3. Obtain magnetic data over the Ross Orogen in order to image the ice-covered boundary between basement and supracrustal rocks, allowing us to better constrain the geometry of fundamental Ross structures, and\u003cbr/\u003e4. Use the shape, trends, wavelengths, and amplitudes of magnetic anomalies to define magnetic domains in the shield, common building blocks for continent-scale studies of Precambrian geologic structure and evolution.\u003cbr/\u003e\u003cbr/\u003eHigh-resolution airborne magnetic data will be collected along a transect extending from exposed rocks of the Nimrod Group across the adjacent polar ice cap. The Nimrod Group represents the only bona fide Archean-Proterozoic shield basement exposed for over 2500 km of the Pacific margin of Antarctica. This survey will characterize the geologically well-known shield terrain in this sector using geophysical methods for the first time. This baseline over the exposed shield will allow for better interpretation of geophysical patterns in other ice-covered regions and can be used to target future investigations. In collaboration with colleagues from the BGR (Germany), a tightly-spaced, \"draped\" helicopter magnetic survey will be flown during the 2003-04 austral summer, to be complemented by ground measurements of gravity over the exposed basement. Data reduction, interpretation and geological correlation will be completed in the second year. This project will enhance the education of students, the advancement of under-represented groups, the research instrumentation of the U.S. Antarctic Program, partnerships between the federal government and institutions of higher education, and cooperation between national research programs. It will benefit society through the creation of new basic knowledge about the Antarctic continent, which in turn may help with applied research in other fields such as the glacial history of Antarctica.", "east": 170.21844, "geometry": "POINT(154.746915 -83.154835)", "instruments": "SOLAR/SPACE OBSERVING INSTRUMENTS \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e MAM", "is_usap_dc": false, "keywords": "Central Transantarctic Mountains; Aeromagnetic Data; HELICOPTER; DHC-6; Not provided", "locations": "Central Transantarctic Mountains", "north": -82.35733, "nsf_funding_programs": null, "paleo_time": null, "persons": "Finn, C. A.; FINN, CAROL", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6; AIR-BASED PLATFORMS \u003e ROTORCRAFT/HELICOPTER \u003e HELICOPTER; Not provided", "repositories": null, "science_programs": null, "south": -83.95234, "title": "Collaborative Research: Geophysical Mapping of the East Antarctic Shield Adjacent to the Transantarctic Mountains", "uid": "p0000249", "west": 139.27539}, {"awards": "8411018 Frisic, David", "bounds_geometry": null, "dataset_titles": "Dominion Range Ice Core Beta Profiles, Chemistry, and Density Data; Newall Glacier Ice Core and Snow Pit Beta Profiles, Chemistry, and Stratigraphy; Newall Glacier Snow Pit and Ice Core, 1987 to 1989", "datasets": [{"dataset_uid": "609248", "doi": "", "keywords": "Antarctica; Beta Profiles; Chemistry:ice; Chemistry:Ice; Density; Dominion Range; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Physical Properties", "people": "Mayewski, Paul A.; Grootes, Pieter; Watson, M. Scott; Meese, Deb; Gow, Tony; Saltzman, Eric; Sowers, Todd A.", "repository": "USAP-DC", "science_program": null, "title": "Dominion Range Ice Core Beta Profiles, Chemistry, and Density Data", "url": "https://www.usap-dc.org/view/dataset/609248"}, {"dataset_uid": "609088", "doi": "10.7265/N5JM27JP", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Newall Glacier; Paleoclimate; Snow/ice; Snow/Ice", "people": "Whitlow, Sallie; Mayewski, Paul A.", "repository": "USAP-DC", "science_program": null, "title": "Newall Glacier Snow Pit and Ice Core, 1987 to 1989", "url": "https://www.usap-dc.org/view/dataset/609088"}, {"dataset_uid": "609249", "doi": "", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Newall Glacier; Paleoclimate; Physical Properties; Snow/ice; Snow/Ice; Statigraphy", "people": "Welch, Kathy A.; Mayewski, Paul A.", "repository": "USAP-DC", "science_program": null, "title": "Newall Glacier Ice Core and Snow Pit Beta Profiles, Chemistry, and Stratigraphy", "url": "https://www.usap-dc.org/view/dataset/609249"}], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "Not available", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "GROUND STATIONS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Frisic, David; Meese, Deb; Gow, Tony; Saltzman, Eric; Mayewski, Paul A.; Sowers, Todd A.; Welch, Kathy A.; Grootes, Pieter; Watson, M. Scott; Grootes, Peiter", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Characterization of Climatic Events for the Last 2 x 103y through the Retrieval of Ice Cores from the Transantarctic Mountains, Antarctica", "uid": "p0000169", "west": null}, {"awards": "9615167 Dunbar, Nelia; 9527373 Dunbar, Nelia", "bounds_geometry": null, "dataset_titles": "Blue Ice Tephra II - Brimstone Peak; Blue Ice Tephra II - Mt. DeWitt; Tephra in Siple and Taylor Dome Ice Cores; Volcanic Records in the Siple and Taylor Dome Ice Cores", "datasets": [{"dataset_uid": "609126", "doi": "10.7265/N5FQ9TJG", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome Ice Core; Taylor Dome Ice Core; Tephra; WAIS; WAISCORES", "people": "Zielinski, Gregory; Dunbar, Nelia", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Volcanic Records in the Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609126"}, {"dataset_uid": "609126", "doi": "10.7265/N5FQ9TJG", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome Ice Core; Taylor Dome Ice Core; Tephra; WAIS; WAISCORES", "people": "Dunbar, Nelia; Zielinski, Gregory", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Volcanic Records in the Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609126"}, {"dataset_uid": "609110", "doi": "10.7265/N50P0WXF", "keywords": "Antarctica; Backscattered Electron Images; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Siple Dome Ice Core; Taylor Dome Ice Core; WAIS", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Tephra in Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609110"}, {"dataset_uid": "609115", "doi": "10.7265/N5GQ6VPV", "keywords": "Antarctica; Blue Ice; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Mount Dewitt; Petrography; Tephra", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": null, "title": "Blue Ice Tephra II - Mt. DeWitt", "url": "https://www.usap-dc.org/view/dataset/609115"}, {"dataset_uid": "609114", "doi": "10.7265/N5MG7MDK", "keywords": "Antarctica; Blue Ice; Brimstone Peak; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Petrography; Tephra", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": null, "title": "Blue Ice Tephra II - Brimstone Peak", "url": "https://www.usap-dc.org/view/dataset/609114"}, {"dataset_uid": "609110", "doi": "10.7265/N50P0WXF", "keywords": "Antarctica; Backscattered Electron Images; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Siple Dome Ice Core; Taylor Dome Ice Core; WAIS", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Tephra in Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609110"}], "date_created": "Sat, 01 Jun 2002 00:00:00 GMT", "description": "Dunbar/Kyle OPP 9527373 Zielinski OPP 9527824 Abstract The Antarctic ice sheets are ideal places to preserve a record the volcanic ash (tephra) layers and chemical aerosol signatures of volcanic eruptions. This record, which is present both in areas of bare blue ice, as well as in deep ice cores, consists of a combination of local eruptions, as well as eruptions from more distant volcanic sources from which glassy shards can be chemically fingerprinted and related to a source volcano. Field work carried out during the 1994/1995 Antarctic field season in the Allan Hills area of Antarctica, and subsequent microbeam chemical analysis and 40Ar/39Ar dating has shown that tephra layers in deep Antarctic ice preserve a coherent, systematic stratigraphy, and can be successfully mapped, dated, chemically fingerprinted and tied to source volcanoes. The combination of chemical fingerprinting of glass shards, and chemical analysis of volcanic aerosols associated with ash layers will allow establishment of a high-resolution chronology of local and distant volcanism that can help understand patterns of significant explosive volcanisms and atmospheric loading and climactic effects associated with volcanic eruptions. Correlation of individual tephra layers, or sets of layers, in blue ice areas, which have been identified in many places the Transantarctic Mountains, will allow the geometry of ice flow in these areas to be better understood and will provide a useful basis for interpreting ice core records.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES", "is_usap_dc": true, "keywords": "USAP-DC; Siple Coast; Sulfur Dioxide; Siple Dome; Taylor Dome; Chlorine; WAISCORES; Ice Core; Tephra; Geochemistry; Volcanic Deposits; GROUND STATIONS; Brimstone Peak; GROUND-BASED OBSERVATIONS; Magnesium Oxide; Glaciology; Mount Dewitt; Silicon Dioxide; Glass Shards; Ice Sheet; Siple; Nickel Oxide; Potassium Dioxide; Not provided; Manganese Oxide; Volcanic; Snow; Nitrogen; Iron Oxide; Titanium Dioxide; Stratigraphy; Antarctica", "locations": "Antarctica; Siple; Siple Coast; Siple Dome; Taylor Dome; Brimstone Peak; Mount Dewitt", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Dunbar, Nelia; Zielinski, Gregory", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": null, "title": "Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region", "uid": "p0000065", "west": null}, {"awards": "9222121 Dalziel, Ian", "bounds_geometry": null, "dataset_titles": "Concentration and Isotopic Composition of O2 and N2 in Trapped Gases of the Vostok Ice Core", "datasets": [{"dataset_uid": "609107", "doi": "10.7265/N5862DCW", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciology; Ice Core Records; Lake Vostok; Paleoclimate; UPLC-Q-TOF; Vostok Ice Core", "people": "Bender, Michael", "repository": "USAP-DC", "science_program": null, "title": "Concentration and Isotopic Composition of O2 and N2 in Trapped Gases of the Vostok Ice Core", "url": "https://www.usap-dc.org/view/dataset/609107"}], "date_created": "Tue, 01 Jan 2002 00:00:00 GMT", "description": "This award supports an in situ and short traverse seismic reflection/refraction and magnetotelluric experiment in West Antarctica. This collaborative experiment involves four awards at four institutions. The four-fold purpose is 1) to investigate part of the Byrd Subglacial Basin, 2) to test techniques for this work that could be done in a long traverse, 3) to determine the viability of the magnetotelluric method on a thick (electrically resistive) ice sheet, and 4) to evaluate the relative merits of refraction with wide reflection versus reflection with narrow refraction seismic studies in imaging the lithosphere. The geophysical techniques that will be employed are capable of imaging the ice sheet, the continental lithosphere, and the upper mantle, as well as determining physical properties of parts of the lithosphere and mantle. Investigations of outcrop geology over the last thirty years in West Antarctica and the Transantarctic Mountains have lead to recent interpretations that the crust is made up of many different lithospheric blocks. Seismic reflection work is the only way to image the crust in detail and the refraction work is the only way to determine physical properties of the layers and blocks defined by the reflection work. The magnetotelluric work is scientifically risky because it may not yield useful information when used over the electrically resistive ice sheet; however, if it works it has the potential to image molten rock in the crust and upper mantle. In a continental rift region such as West Antarctica, the presence of melt in the lithosphere is likely and, if documented, has very important ramifications to ice sheet dynamics. Research work supported by this award is expected to provide constraints to models of a range of crustal processes from models of ice sheet dynamics to tectonic and kinematic models of lithospheric thinning and rifting.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Isotope; Vostok; USAP-DC; Antarctica; Trapped Gases; Ice Core; Glaciology; Nitrogen; GROUND STATIONS", "locations": "Antarctica; Vostok", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bender, Michael; Dalziel, Ian W.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Seismic Traverse of the Byrd Subglacial Basin-Field Test", "uid": "p0000150", "west": null}, {"awards": "9527329 Kyle, Philip", "bounds_geometry": "POLYGON((-180 -65,-175.5 -65,-171 -65,-166.5 -65,-162 -65,-157.5 -65,-153 -65,-148.5 -65,-144 -65,-139.5 -65,-135 -65,-135 -66.5,-135 -68,-135 -69.5,-135 -71,-135 -72.5,-135 -74,-135 -75.5,-135 -77,-135 -78.5,-135 -80,-139.5 -80,-144 -80,-148.5 -80,-153 -80,-157.5 -80,-162 -80,-166.5 -80,-171 -80,-175.5 -80,180 -80,177 -80,174 -80,171 -80,168 -80,165 -80,162 -80,159 -80,156 -80,153 -80,150 -80,150 -78.5,150 -77,150 -75.5,150 -74,150 -72.5,150 -71,150 -69.5,150 -68,150 -66.5,150 -65,153 -65,156 -65,159 -65,162 -65,165 -65,168 -65,171 -65,174 -65,177 -65,-180 -65))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 01 Jan 1970 00:00:00 GMT", "description": "Kyle OPP 9527329 Abstract The Cape Roberts Project is an international drilling project to obtain a series of cores from the sedimentary strata beneath the sea floor off Cape Roberts in the Ross Sea. The project is a joint venture by scientists from the national Antarctic programs of Germany, Italy, New Zealand, the United Kingdom., Australia, and the United States. Drilling will continuously core a composite section of sediments over 1500 m thick which is expected to represent parts of the time period between 30 and more than 100 million years ago. The principle objectives of this component of the project will be to examine the record of igneous material in the drill core and provide high precision 40Ar/39Ar dates from tephra (volcanic ash) layers, disseminated ash, feldspars and epiclastic volcanic detrital grains to constrain depositional age and provenance of the sediments in the cores. This project will contribute to general geologic logging of the core and will characterize any igneous material using electron microprobe, x-ray fluorescence (XRF) and instrumental neutron activation analysis (INAA) analyses. The presence of alkalic volcanic detritus from the Cenozoic McMurdo Volcanics will constrain the initiation of this phase of volcanism and improve our understanding of the relationship between volcanism and tectonism. The influx of sediments eroded from Jurassic Kirkpatrick Basalts and Ferrar Dolerites will be used to time the unroofing and rates of uplift of the Transantarctic Mountains. Geochemical analyses of core samples will examine the geochemistry and provenance of the sediments.", "east": -135.0, "geometry": "POINT(-172.5 -72.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ROCK CORERS", "is_usap_dc": false, "keywords": "Radiometric Dating; Radiometric Ages; Argon-Argon Dates; Geochronology; 40Ar/39Ar; Tephra; Geochemistry; Cape Roberts Project; Geology; Not provided", "locations": null, "north": -65.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kyle, Philip; Krissek, Lawrence", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -80.0, "title": "The Cape Roberts Project: Volcanic Record, Geochemistry and 40Ar/39Ar Chronology", "uid": "p0000050", "west": 150.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
The Results Map and the Results Table
The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
As the map is panned or zoomed, the highlighted rows in the table will update.
If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page.
The bounds for the project(s)/dataset(s) selected will be displayed in red.
The selected result(s) will be highlighted in red and brought to the top of the table.
The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds
and highlight the centroid on the Results Map.
Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other
search criteria already selected.
After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
Clicking Clear in the map will clear any drawn polygon.
Clicking Search in the map, or Search on the form will have the same effect.
The returned results will be any projects/datasets with bounds that intersect the polygon.
Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
The Lamont-Doherty Earth Observatory of Columbia University was awarded a multi-year grant (May 1, 2010- April 30, 2015) to develop an ice imaging system, or "IcePod," for use in measuring the surface and subsurface topography of ice sheets. IcePod will enable research on the effects of global climate change on ice sheets and the effects of sub-glacial water on potential sea-level rise. IcePod sensors are contained in a Common Science Support Pod and operated on NYANG LC-130 aircraft during routine and targeted missions over Greenland and Antarctica. The IcePod instrument package consists of ice-penetrating radar, infrared and visible cameras, laser altimeter, inertial measurement unit, GPS receiver and data acquisition system. IcePod will also enable other instruments to be used in the modular Common Science Support Pod, and will become a shared community research facility providing data to the science community. Funding will support activities in both Greenland and Antarctica needed to commission IcePod, to develop a data reduction flow and data delivery system for IcePod data, and to engineer a UPS to provide IcePod with clean, reliable power for system operation. <br/><br/>Evidence from satellites has documented that the amount of ice in both the earth's polar regions is decreasing as global temperatures increase. Understanding how this change is occurring and building an understanding of how fast these continent-sized pieces of ice will change in the future, is critical as society develops plans for adapting to changing coastlines. To measure change and understand the processes driving these changes requires the capacity to image the polat ice sheets and oceans from long-range aircraft. This award supplemented the original MRI-R2 program that developed innovative airborne imagery technology called IcePod. IcePod can be mounted on any LC-130, the aircraft used in the polar regions, for the major logistical support. The IcePod system was developed by engineers and scientists at Columbia University, working in close collaboration with the New York Air National Guard, who operate the ski-equipped LC-130 aircraft for the National Science Foundation in Antarctica and Greenland. The IcePod instrumentation package presently consists of: a scanning laser for precise measurements of the ice surface, visible and infrared imaging cameras to document the ice surface structure and temperature, ice-penetrating radar to recover the ice thickness and constrain the distribution of water at the ice sheet bed, and shallow-ice radar to measure snow accumulation. A magnetometer system is mounted inside the pod to recover information on the solid earth structure. Positioning of the IcePod during flights and the measurements are provided by precision GPS satellite data and inertial technology. A gravimeter, using its own rack, is also employed in conjunction with the IcePod sensor suite. The final commissioning of the system occurred in November - December 2014 in Antarctica as stipulated in the award. The IcePod was successfully operated in full polar conditions with a series of flights from McMurdo Station over the Ross Ice Shelf, the Ross Sea, the Dry Valleys, the Transantarctic Mountains and to South Pole. Protocol was also developed for data handling, robust data reduction, workflow and quality control and archiving of data. <br/><br/>The system is now available to the polar community for novel imaging applications.
Part 1: Nontechnical<br/> <br/>Unlike other locations on the globe Antarctica is not known for having large earthquakes and the remote nature and harsh conditions make it difficult to install and maintain seismometers for earthquake detection. Some researchers believe the lack of large earthquakes is due to the continent being surrounded by inactive tectonic margins. However, in the last two decades, scientists have discovered that more earthquakes occur in the interior of the continent than previously observed. This suggests that there are many earthquakes missing from historic earthquake catalogs. This study aims to find the missing earthquakes using novel earthquake detection and location techniques from seismic data collected from temporary and permanent seismic stations in Antarctica over the last 25 years. Locating these earthquakes will help understand if and where earthquakes are located in Antarctica and will help in planning future seismic deployments. As part of the project broader impacts, a field expedition with the Girls on Rock program will be conducted to teach high school age girls, and especially those from underrepresented backgrounds, data visualization techniques using scientific data. <br/> <br/>Part 2: Technical<br/> <br/>The spatial distribution of seismicity and the number of moderate magnitude earthquakes in Antarctica is not well-defined. The current catalog of earthquakes may be biased by uneven and sparse seismograph distribution on the continent. We will mine existing broadband seismic data from both permanent and temporary deployments to lower the earthquake detection threshold across Interior Antarctica, with a focus on tectonic earthquakes. The hypothesis is that Interior Antarctica has abundant moderate magnitude earthquakes, previously undetected. These earthquakes are likely collocated with major tectonic features such as the Transantarctic Mountains, the suspected Vostok collision zone, the West Antarctic Rift System, the crustal compositional boundary between East and West Antarctica, and the Cretaceous East Antarctic Rift. Previous seismic deployments have recorded earthquakes in the Antarctic interior, suggesting there are many earthquakes missing from the current catalog. We propose to use novel earthquake location techniques designed for automated detection and location using 25 years of continuous data archived at IRIS from PASSCAL experiments and permanent stations. The approach will use STA/LTA detectors on the first arrival P-wave to 90 degrees distance, Reverse Time Imaging to locate events, and beamforming at dense arrays strategically located on cratons for enhanced detection and location. The combination of detection and location techniques used in this work has not been used on teleseismic body waves, although similar methods have worked well for surface wave studies. If successful the project would provide an excellent training dataset for future scrutiny of newly discovered Antarctic seismicity with machine learning approaches and/or new targeted data collection. We plan to collaborate with Girls on Rock, a local and international organization committed to building a culturally diverse community in science, art, and wilderness exploration, in a summer field expedition and integrating computer coding into post-field scientific projects.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The goal of this project is to drill and recover an ice core from Hercules Dome, Antarctica. The geographic setting of Hercules Dome makes it well-situated to investigate changes in the size of the West Antarctic ice sheet over long time periods. The base of the West Antarctic ice sheet lies below sea level, which makes this part of Antarctica vulnerable to melting from the relatively warm deep water of the Southern Ocean. An important research question is whether the West Antarctic Ice Sheet collapsed during Earth's last prolonged warm period, about 125,000 years ago, when the ocean was warmer and sea level was several meters higher than today. Evidence for or against such a collapse will be recorded in the chemistry and physical properties of the ice. The Hercules Dome ice core will be obtained over three to four field seasons in Antarctica using efficient drilling technology. This grant includes support for project management, pre-drilling science community engagement, ice-core recovery, and education and outreach activities. <br/><br/>Hercules Dome is located at the edge of the East Antarctic ice sheet, south of the Transantarctic Mountains at 86 degrees South, 105 degrees West. Glaciological conditions at Hercules Dome are simple, with well-defined layering to the bed, optimal for the recovery of a deep ice core reaching to the last interglacial period at depths between 1600 and 2800 meters. An ice core from Hercules Dome will provide a research opportunity for ice-core analysts and others to make progress on a number of science priorities, including the environmental conditions of the last interglacial period, the history of gases and aerosols, and the magnitude and timing of changes in temperature and snow accumulation over the last 150,000 years. Together with the network of ice cores obtained by U.S. and international researchers over the last few decades, results from Hercules Dome will yield improved estimates of the boundary conditions necessary for the implementation and validation of ice-sheet models critical to the projection of future Antarctic ice-sheet change and sea level.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
In this project we investigated glaciers that drain ice from the East Antarctic Ice Sheet through the Transantarctic Mountains into the present-day Ross Ice Shelf. The outlet glaciers that flow through the Transantarctic Mountains have thinned significantly over the past 15,000 years, especially as they retreated from Last Glacial Maximum highstands to their present-day grounding lines. At certain locations and for certain glaciers, rocks or bedrock have been sampled to provide constraints on the timing of when ice retreated from these locations. In the locations where geochronological data are available we can use these data as direct constraints on ice-flow models that simulate ice elevation change over time. The intellectual merit of this work is using ice-flow models to spatially and temporally extrapolate between these limited geochronological data points, which enables new understanding of glacier evolution.
The mountainous topography in this region is complex, and there are limited measurements of the topography beneath the ice of the Transantarctic outlet glaciers. Since the topography of the glacier bed is an important control on ice flow and is a necessary boundary condition in models we developed a new gridded bed product at Beardmore Glacier, the one location where sufficient data were available, and we compared this to continent-scale gridded bed products. We found that for this glacier, the BedMachine v1 product was reasonably similar to the Beardmore Glacier bed topography measurements; our limited evaluation suggests that the BedMachine product may be sufficient at other Transantarctic outlets where bed measurements are not available, but that other compilations of bed topography data that do not include information about ice flow directions do not provide reliable results. Using these data and available geochronological constraints we investigated Beardmore Glacier evolution since the Last Glacial Maximum using simplified (flowline) models of ice flow.
In addition to flowline modeling at Beardmore Glacier, we developed a flow-model setup using the open-source 'icepack' model that uses the shallow stream equations and resolves flow in both the x and y directions. The key value added over flowline (or parameterized flowband) models is that this can capture converging and diverging ice flow, variable side wall and bottom drag, and other geometric complexities. In these simulations we can evaluate the past accumulation, ice influx, and ice outflux to compare controls on deglaciation to data constraints on the chronology of deglaciation.
We also used a flowline model to investigate the Darwin-Hatherton Glacier System. Exposure ages and radiocarbon ages of glacial deposits at four locations alongside Hatherton and Darwin glaciers record several hundred meters of late Pleistocene to early Holocene thickening relative to present. Deglaciation was relatively complex at this site, and we also found that Byrd glacier likely contributed ice to the catchment of the Darwin-Hatherton glacier system during the last glacial maximum, and that subsequent convergent flow from Byrd and Mulock glaciers during deglaciation complicated the response of the Darwin-Hatherton system. These new insights can be used on their own to better understand local deglaciation, and can also be used to evaluate regional or continent-scale model calculations.
Separately, we investigated the general response of outlet glaciers to different sources of climate forcing. We found that outlet glaciers have a characteristically different response over time to surface-mass-balance forcing applied over the interior than to oceanic forcing applied at the grounding line. Our models demonstrated that ocean forcing first engages the fast, local response and then the slow adjustment of interior ice, whereas surface-mass-balance forcing is dominated by the slow interior adjustment. These insights contributed to our general understanding of how outlet glaciers may have evolved over time.
Our new model investigations provide a framework that can be applied at other Transantarctic outlet glaciers where geochronological data are available. In particular, our 'icepack' setup is an archived and documented resource for the community. These tools are available for future investigations, including additional investigations at Beardmore Glacier and at other Transantarctic Mountain outlet glaciers. Scientific broader impacts include that this contributes to our understanding of the past behavior of East Antarctic ice, which provides an important constraint on the future evolution of Antarctica. Our team has engaged in public outreach and has engaged students in this research. Two graduate students led in aspects of this work, and have since gone on to research positions after their PhD.
van der Veen, Cornelis; Stearns, Leigh; Paden, John
No dataset link provided
Van der Veen/1543530<br/><br/>The objective of this research is to gain better understanding of the West Antarctic ice flow in the transition region from grounded ice to floating ice shelves and investigate the conditions that can initiate and sustain major retreat of these glaciers. Several major Antarctic outlet glaciers and ice streams will be investigated using a suite of observational techniques and modeling tools. Glaciers include Thwaites Glacier, which has become a focal point in the discussion of West Antarctic retreat, Whillans Ice Stream as an example of the archetype ice stream, and Byrd Glacier, a major outlet glacier draining East Antarctica through the Transantarctic Mountains into the Ross Ice Shelf. This study will investigate whether the ongoing changes in these glaciers will lead to long-term mass loss (the onset of ice sheet collapse), or whether these glaciers will quickly stabilize with a new geometry. <br/><br/>To adequately incorporate the dynamic behavior of outlet glaciers and ice streams requires inclusion of the relevant physical processes, and the development of regional models that employ a numerical grid with a horizontal grid spacing sufficiently refined to capture smaller-scale bed topographic features that may control the flow of these glaciers. This award revisits the issue of stability of marine-terminating glaciers whose grounding line is located on a retrograded bed slope. In particular, an attempt will be made to resolve the question whether observed rapid changes are the result of perturbations at the terminus or grounding line, or whether these changes reflect ice-dynamical forcing over the grounded reaches. High-resolution satellite imagery will be used to investigate ice-flow perturbations on smaller spatial scales than has been done before, to evaluate the importance of localized sites of high basal resistance on grounding-line stability. This collaborative project involves a range of modeling strategies including force-budget analysis, flow-band modeling, Full Stokes modeling for local studies, and using the Ice Sheet System Model developed at JPL for regional modeling. Broader Impacts include training two graduate students in computer simulations and ice sheet modeling algorithms. The work will also expand on a web-based interactive flowline model, so that it includes more realistic grounding line dynamics.
The goal of this study is to identify and distinguish different source areas of glacial sediment in the McMurdo Dry Valleys, Antarctica to determine past glacial flow direction. Understanding ice flow is critical for determining how the Antarctic Ice Sheets have behaved in the past. Such insight is fundamental for allowing scientists to predict how the Antarctic Ice Sheets will evolve and, in turn, forecast how much and how fast sea level may rise. The project study site, the McMurdo Dry Valleys, contain a tremendous record of glacial deposits on land that extends back at least 14 million years. Chemistry of the rocks within the glacial deposits hold clues to the sources of ice that deposited the material. The chemical analyses of the glacial deposits will allow mapping of the former extent of glaciations providing a better understand of ice flow history. The mapping of the largest ice sheet expansion of the past 14 million years in the McMurdo Dry Valleys is of broad interest to the global climate change community. Undergraduate students comprise the majority of the field teams and will be responsible for sample preparation and analysis in the laboratory. <br/><br/>This project utilizes new geochemical techniques to test hypotheses about the source, extent, and flow patterns of the glacier ice that deposited glacial tills in the McMurdo Dry Valleys, Antarctica (MDV). The MDV contain an unparalleled terrestrial archive of glacial deposits, which record multiple sources of ice that deposited them. These include the northeast flowing ice that overrode the Transantarctic Mountains, the eastward expansion of the East Antarctic Ice Sheet, the westward extension of the Ross Ice Shelf representing an expansion of the West Antarctic Ice Sheet, and the growth of local alpine glaciers. The glacial tills and drifts in the Antarctic are typically isolated in patches or disjointed outcrop patterns making it difficult to correlate tills and determine their source. This project will undertake a systematic study of the tills in the McMurdo Dry Valleys to determine their provenance with a variety of geochemical techniques including major and minor element analyses with X-ray fluorescence, heavy mineral composition, soil salt concentration, and determining the uranium-lead (U-Pb) ages of zircon sands contained in these tills. The primary tool will be the age distribution of the population of detrital zircon in a glacial drift because it reflects the source of the tills and provides a unique geochemical "fingerprint" used to distinguish source areas while correlating units across different sites. A deliverable from this project will be a community available library of zircon fingerprints for mapped glacial tills from archived samples at the Polar Rock Repository and the systematic collection of samples in the MDV.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This research will provide new insights into the relationships and history of sharks, fish and limbed animals. Understanding these relationships forms the backbone for both basic and applied science because fish often serve as models of human traits and diseases. Some of the main lines of evidence for these relationships come from fossils in rocks over 380 million years old that were originally deposited as ancient rivers and streams. Because rocks of this type and age are abundantly exposed along a number of the dry valleys and mountains of Antarctica, the investigation of these areas holds exceptional promise for discoveries that can have a broad impact. The fieldwork will involve geological mapping and assessment of the rocks with detailed reconnaissance for the fossils that they may hold. Fossil discoveries form the backbone for public communication of the methods and results of scientific research-- these studies will be used as vehicles for training of students at multiple levels as well as communication of science to the broader non-science citizen base.<br/><br/>The discovery, description, and analysis of Middle to Late Devonian (390-355 Million years ago) vertebrates and depositional environments provide important data on the emergence of novel anatomical structures, faunas, and habitats during a critical interval in the history of life and earth. Biological innovation during this time includes the early evolution of freshwater fish, the origins of major groups of vertebrates (e.g., sharks, lobe and ray-finned fish, tetrapods), and the expansion and elaboration of non-marine ecosystems. Accordingly, expanding our knowledge of vertebrate diversity during the Middle and Late Devonian will provide new evidence on the relationships of the major groups of vertebrates, the assembly of novelties that ultimately enabled tetrapods to invade land, the origin and early evolution of sharks and their relatives, and the assembly and expansion of non-marine ecosystems generally. The Aztec Siltstone of Antarctica Middle-Late Devonian; Givetian-Frasnian Stages) has exceptional potential to produce new paleontological evidence of these events and to illuminate the temporal, ecological, and geographic context in which they occurred. It is essentially fossiliferous throughout its known exposure range, something that is rare for Middle-Late Devonian non-marine rocks anywhere in the world. In addition, fine-grained meandering stream deposits are abundantly exposed in the Aztec Siltstone and are recognized as an important locus for the discovery of well-preserved Devonian fish, including stem tetrapods and their relatives. Given the exceedingly fossiliferous nature of the Aztec Siltstone, the large number of taxa known only from partial material, and the amount of promising exposure yet to be worked, a dedicated reconnaissance, collection, and research effort is designed to recover important new fossil material and embed it in a stratigraphic and sedimentological context. The first major objective of this study is the recovery, preparation, and description of Middle-Late Devonian fossil taxa. Ensuing investigation of the phylogenetic affinities, taphonomic occurrence, and stratigraphic position of fossil assemblages will allow both local and global comparisons of biotic diversity. These analyses will inform: 1) higher level phylogenetic hypotheses of jawed vertebrates, 2) biostratigraphic and biogeographic analysis of the distribution of the Middle-Late Devonian fish, and 3) paleobiological investigation of the elaboration of terrestrial and freshwater habitats. The broader impacts are derived from the utility of paleontology and Antarctic expeditionary science as educational tools with powerful narratives. Specific goals include affiliations with local urban secondary schools (using established relationships for broadening participation) and collegiate and graduate training. Wider dissemination of knowledge to the general public is a direct product of ongoing interactions with national and international media (print, television, internet).
Ice shelves play a critical role in restricting the seaward flow of grounded ice by providing buttressing at their bases and sides. Processes that affect the long-term stability of ice shelves can therefore impact the future contribution of the Antarctic Ice Sheet to global sea-level rise. Ross Ice Shelf is the largest ice shelf on Earth, and it buttresses massive areas of West and East Antarctica. Previous studies of modern ice velocity indicate that Ross Ice Shelf’s mass loss is roughly balanced by its mass gain. However, more recent remote sensing observations extended further back in time reveal the ice shelf is likely not in steady-state, including possible long-term thinning since the late 90s. Therefore, to accurately interpret modern days ice shelf changes, long-term observations are critical to evaluate how these short-term variations fit into the historical context of ice shelf variability. This project examines over four decades (1971 – 2017) of historical and modern airborne radar sounding observations of the Ross Ice Shelf to investigate ice-shelf changes on the decadal timescales. The researchers will process, calibrate, and analyze radar data collected during the 1971-79 SPRI/NSF/TUD campaign and compare them against modern observations from both the 2011-17 NASA Operation IceBridge/NSF CReSIS and the 2015-17 ROSETTA-Ice surveys. They will estimate basal melt rates by examining changes in ice-shelf thickness. They will determine other important basal melt metrics, including ice shelf roughness, englacial temperature, and marine ice formation. This project will support the education of a Ph.D. student from each of the institutions. This project will also support the training of undergraduate and high school researchers more generally in the field of radioglaciology and Antarctic sciences.
The primary scientific goal of the proposed project is to test whether Taylor Valley, Antarctica has experienced glacial incision in the last ~1 million years in spite of cold climate conditions. One of the Dry Valleys of the Transantarctic Mountains, Taylor Valley exhibits over 2000 m of relief from sub sea-level troughs to high polar peaks. The Dry Valleys are characterized by low mean annual temperatures, paucity of precipitation and erosion that has allowed fragile glacial landforms, now subaerially exposed at high elevations, to be preserved for as long as 15 Ma. Two end member models can explain the timing of glacial incision and the observation that Quaternary advances of Taylor Glacier have left deposits at lower valley elevations with each advance. In the first scenario, all Valley relief is generated prior to 15 Ma when non-polar climates enabled warm-based glaciers to incise and widen fluvial channels more so than peaks. In this case, Quaternary drift deposits record advances of cold-based glaciers of decreasing ice volume. Limited glacial erosion and silt generation results in drift deposits composed primarily of recycled sediments. In the second scenario, selective erosion of the valley floor continues to deepen Taylor Valley over the last 2 Ma while high elevation peaks remain uneroded in polar conditions. The ‘bathtub rings’ of Quaternary drifts reaching a progressively lower elevation through time could be due to the lowering of the valley floor by subglacial erosion and with it, production of silt which is now incorporated into these drifts. While either scenario would result in the present day topography, they differ in the implied evolution of regional glacial ice volume over time and the timing of both valley relief production and generation of fine-grained particles. Here we propose to distinguish between these two models, by placing time constrains on fine particle production using U-series comminution dating. This new geochronologic tool exploits the loss of 234U due to alpha-recoil. The deficiency in 234U only becomes detectable in particles with a sufficiently high surface-area-to-volume ratio which can incur appreciable 234U loss (<50 m). The timing of comminution and particle size controls the magnitude of 234U loss, up to 10% in silt-sized particles comminuted over 1.5 million years ago. And while this geochronologic tool is in its infancy, the scientific goal of this proposal can be achieved by resolving between ancient and recently comminuted fine particles, a binary question that our preliminary modeling and measured data show is readily resolved.
Finding the oldest ice on Earth can tell us about the climate and life forms in the distant past
Recently we discovered a mile wide and hundreds of feet thick ice body in Antarctica that is buried under just a few feet of dirt. Thus far our analyses of the dirt suggest that the ice is over million years old. Generally, glacial ice contains tiny bubbles and dirt that was deposited and locked in the ice by the ancient snowfall and today still holds small samples of the atmospheric gases and everything else that was carried by the winds in the past. Such samples may include the amount of greenhouse gases, plant pollen, microbes, and mineral dust. Therefore the glaciers are like archives where we can access and study the Earth’s history with samples that are unavailable anywhere else. Ice survives poorly on Earth’s surface and therefore currently only few ice samples are known that are approximately million years old. Our site has a high potential to harbor perhaps the oldest ice on Earth. However, first we need to sample and date the ice. Our research will also help us understand how these pockets of buried ice can survive such unusually long periods of time. Such understanding will help us study the landforms and history of not only Antarctica but also the Mars where similar dirt covered glaciers are found today.
We propose to collect regolith samples through the approximately 1 m thick cover and to core the buried ice in Ong Valley down to 10 m depth to determine the cosmogenic nuclide concentrations both in the regolith and in the embedded mineral matter suspended in the ice. The systematics of the target cosmogenic nuclides (10Be, 26Al, and 21Ne) such as half-lives, isotope production rates, production pathways, and related attenuation lengths allow us to uniquely determine the age of the ice and the rate the ice is sublimating. Our existing samples and analyses reveal accumulation of mineral matter at the base of surficial debris layer and the surface erosion of this debris by eolian processes. The intellectual merit of the proposed activity: Our main objective is to unequivocally determine the age and sublimation rate of two buried massive ice bodies in time scale of thousands to millions of years. The slow sublimation is a fundamentally Antarctic process, and may have altered most of the currently ice-free areas throughout the continent. Similar large, debris covered ice bodies have been recently discovered in Mars as well. Our results may transform the understanding of the longevity of the buried ice bodies and potentially reveal the oldest ice ever found in the interior of the Antarctica. If proven old and slowly sublimating, this buried ice can potentially yield direct information about the atmospheric chemistry, ancient life forms, and geology of greater antiquity than the currently available and sampled ice bodies. The broader impacts resulting from the proposed activity: The results will be relevant to researchers in glaciology, paleoclimatology, planetary geology, and biology. Several students will participate in the project and do field work in Antarctica, work in lab, attend meetings, attend outreach activities, and produce videos. A graduate student will prepare his/her thesis on a topic closely related to the objectives of the proposed research. The results of the research will be published in scientific meetings and publications.
Antarctica is almost entirely covered by ice, in places over two miles thick. This ice hides a landscape that is less well known than the surface of Mars and represents one of Earth's last unexplored frontiers. Ice-penetrating radar images provide a remote glimpse of this landscape including ice-buried mountains larger than the European Alps and huge fjords twice as deep as the Grand Canyon. The goal of this project is to collect sediment samples derived from these landscapes to determine when and under what conditions these features formed. Specifically, the project seeks to understand the landscape in the context of the history and dynamics of the overlying ice sheet and past mountain-building episodes. This project accomplishes this goal by analyzing sand collected during previous sea-floor drilling expeditions off the coast of Antarctica. This sand was supplied from the continent interior by ancient rivers when it was ice-free over 34 million year ago, and later by glaciers. The project will also study bedrock samples from rare ice-free parts of the Transantarctic Mountains. The primary activity is to apply multiple advanced dating techniques to single mineral grains contained within this sand and rock. Different methods and minerals yield different dates that provide insight into how Antarctica?s landscape has eroded over the many tens of millions of years during which sand was deposited offshore. The dating techniques that are being developed and enhanced for this study have broad application in many branches of geoscience research and industry. The project makes cost-effective use of pre-existing sample collections housed at NSF facilities including the US Polar Rock Repository, the Gulf Coast Core Repository, and the Antarctic Marine Geology Research Facility. The project will contribute to the STEM training of two graduate and two undergraduate students, and includes collaboration among four US universities as well as international collaboration between the US and France. The project also supports outreach in the form of a two-week open workshop giving ten students the opportunity to visit the University of Arizona to conduct STEM-based analytical work and training on Antarctic-based projects. Results from both the project and workshop will be disseminated through presentations at professional meetings, peer-reviewed publications, and through public outreach and media.
The main objective of this project is to reconstruct a chronology of East Antarctic subglacial landscape evolution to understand the tectonic and climatic forcing behind landscape modification, and how it has influenced past ice sheet inception and dynamics. Our approach focuses on acquiring a record of the cooling and erosion history contained in East Antarctic-derived detrital mineral grains and clasts in offshore sediments deposited both before and after the onset of Antarctic glaciation. Samples will be taken from existing drill core and marine sediment core material from offshore Wilkes Land (100°E-160°E) and the Ross Sea. Multiple geo- and thermo-chronometers will be employed to reconstruct source region cooling history including U-Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar. This offshore record will be augmented and tested by applying the same methods to onshore bedrock samples in the Transantarctic Mountains obtained from the US Polar Rock Repository and through fieldwork. The onshore work will additionally address the debated incision history of the large glacial troughs that cut the range, now occupied by glaciers draining the East Antarctic Ice Sheet. This includes collection of samples from several age-elevation transects, apatite 4He/3He thermochronometry, and Pecube thermo-kinematic modeling. Acquiring an extensive geo- and thermo-chronologic database will also provide valuable new information on the poorly known ice-hidden geology and tectonics of subglacial East Antarctica that has implications for improving supercontinent reconstructions and understanding continental break-up.
Measurements of in-situ produced cosmogenic nuclides in Antarctic surficial rock samples provide unique time scales for glacial and landscape evolution processes. However, due to analytical challenges, pyroxene-bearing and widely distributed lithologies like the Ferrar dolerite of the Transantarctic Mountains, are underutilized. This proposal aims to changes this and to improve the cosmogenic nuclide methodologies for stable isotopes (21Ne and 3He) and radioactive nuclides (10Be) in pyroxenes. Proposed methodological improvements will be directly applicable to erosion rates and deposition ages of important glacial deposits, such as the controversial Sirius Group tills, and also to younger glacial features. Bennett Platform is the focus of this study because it is one of the southern-most Sirius Group outcrops along the Transantarctic Mountains, where cosmogenic ages are sparse.
Preliminary measurements demonstrate large discrepancies between 3He and 21Ne age determinations in Sirius Group pyroxenes. One possible explanation is composition dependence of the 21Ne production rates. Coupled measurements of 3He, 21Ne, and 10Be in well-characterized pyroxene mineral separates from Ferrar dolerite will be used to better constrain the production rates, major element and trace element dependencies, the assumptions of the method, and ultimately advance the application of cosmogenic nuclides to mafic Antarctic lithologies.
The main goals of this study are to improve measurement protocols for 10Be in pyroxene, and the determination of the composition dependence of 21Ne production rates by measuring mineral compositions (by electron microprobe), and nuclide concentrations in mineral pairs from young lava flows. Further aims are the validation of the nucleogenic contributions and the effects of helium diffusive loss through measurements of 3He/21Ne production ratios, combined with measurements of shielded samples of the Ferrar dolerite. Combined measurements of 3He, 21Ne and 10Be in pyroxenes have rarely been published for individual samples in Antarctica. The new and unique measurements of this study will advance the applicability of in-situ produced cosmogenic nuclides to both young and ancient Antarctic surfaces. The study will be performed using existing samples: no field work is requested.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The proposed project will investigate the coldest and driest parts of the Transantarctic Mountains (Ong Valley at Nimrod Glacier and Moraine Canyon at Amundsen Glacier) where the lack of running water and biological activity in the modern environment is thought to have preserved the landscape, essentially unchanged, for millions of years. Contrary to this common belief, it is hypothesized that the landscape does evolve, perhaps as fast as many surfaces in the Dry Valleys area where both loose soil and bedrock surfaces have been degrading at a rate of about 1-2 m/Myrs for the past several million years. The research team will rely on analysis of the both stable and radioactive cosmogenic isotopes that accumulate in near surface soil and bedrock. Collectively these measurements allow comparison of the long term landscape evolution to current processes and environmental drivers such as wind speed. The results of this work will improve understanding of the evolution of the Earth's surface and directly aid in evaluating imagery of Martian geomorphology. Continued reliance on students provides a broader impact to this proposed research and firmly grounds this effort in its educational mission.
This investigation will reconstruct past behavior of the East Antarctic Ice Sheet during periods of warmer-than-present climate, such as the Pliocene, in order to better project the likely response of Earth's largest ice sheet to anthropogenic warming. Containing the equivalent of ~55 m sea-level rise, the future evolution of the East Antarctic Ice Sheet has clear societal ramifications on a global scale as temperatures continue to rise. Therefore, determining ice-sheet sensitivity to climate on the scale predicted for the next two centuries is a matter of increasing urgency, particularly in light of evidence suggesting the East Antarctic Ice Sheet is more dynamic than previously thought. This research will provide a terrestrial geologic record of long-term ice-sheet behavior from sites immediately adjacent the East Antarctic Ice Sheet in the Transantarctic Mountains, with which the project will help ascertain how the ice sheet responded to past warm periods. The project will focus primarily on the Pliocene warm period, 5 to 3 million years ago, as this represents the closest analogue to 21st Century climate conditions.<br/><br/>The proposed research will investigate glacial deposits corresponding to the East Antarctic Ice Sheet in the central Transantarctic Mountains in order to expand the geologic record of past ice-sheet behavior. The overarching research objectives are to improve understanding of the East Antarctic Ice Sheet's configuration during periods of warmer-than-present climate, such as the Pliocene warm period, and to determine whether the ice sheet underwent significant volume changes or remained relatively stable in response to warming. To address these goals, the investigation will map and date glacial deposits preserved at mountain sites immediately adjacent the ice sheet. Specifically, we will: (i) employ multiple cosmogenic nuclides (10Be, 26Al, 21Ne) to establish more fully ice-thickness histories for the upper Shackleton and Beardmore Glaciers, where they exit the ice sheet; (ii) use this record to identify periods during which the East Antarctic Ice Sheet was at least as extensive as today; and (iii) use these data to assess long-term ice-sheet variability in East Antarctica, with particular emphasis on Pliocene warm episodes. This research will require Antarctic fieldwork, glacial-geologic mapping, and cosmogenic surface-exposure dating.
The project will characterize the functional, taxonomic, biotic and abiotic drivers of soil ecosystems in the Trans Antarctic Mountains (one of the most remote and harsh terrestrial landscapes on the planet). The work will utilize new high-throughput DNA and RNA sequencing technologies to identify members of the microbial communities and determine if the microbial community structures are independent of local environmental heterogeneities. In addition the project will determine if microbial diversity and function are correlated with time since the last glacial maximum (LGM). The expected results will greatly contribute to our knowledge regarding rates of microbial succession and help define the some of the limits to life and life-maintaining processes on Earth.<br/><br/>The project will analyze genomes and RNA derived from these genomes to describe the relationships between biodiversity and ecosystem functioning from soils above and below LGM elevations and to correlate these with the environmental drivers associated with their development during the last ~18,000 years. The team will identify the taxonomic diversity and the functional genetic composition within a broad suite of soil biota and examine their patterns of assembly and distribution within the framework of their geological legacies. The project will mentor participants from undergraduate students to postdoctoral researchers and prepare them to effectively engage in research to meet their career aspirations. The project will contribute to ongoing public education efforts through relationships with K-12 teachers and administrators- to include University-Public School partnerships. Less formal activities include public lecture series and weblogs aimed at providing information on Antarctic polar desert ecosystems to the general public. Targeted classrooms near each PI's institution will participate in online, real-time discussions about current topics in Antarctic ecosystems research.
Our project is focused on better resolving the three-dimensional Antarctic mantle structure to further understanding of continental tectonics. To accomplish this, we are utilizing a full-waveform tomographic inversion technique that incorporates long-period ambient noise data and which has been shown to more accurately resolve structure than traditional tomographic approaches. The new models have been developed using the Alabama supercomputer facilities in conjunction with software developed at The University of Rhode Island. Our new tomographic results highlight the lithospheric structure beneath the Wilkes and Aurora Subglacial Basins in East Antarctica, where previous rifting episodes and mid-lithospheric discontinuities are being explored. In West Antarctica, the work is elucidating the easternmost extent of the West Antarctic Rift System as well as rifted structure and possible compositional variations within the Weddell Sea. We are also highlighting regions of Antarctica where tomographic resolution is still lacking and where future deployments are needed to improve resolution.
Non-Technical Project Description<br/><br/>This research will study Ultralow Velocity Zones (ULVZs), located in Earth's interior on top of the boundary between the Earth's solid mantle and its fluid outer core. The ULVZs are so named because seismic waves passing through the Earth slow down dramatically when they encounter these zones. While ULVZs are thought to be related to melting processes, there is growing controversy regarding their origin and the role they play in the thermal and chemical evolution of our planet. The ULVZs may include the largest magma chambers in Earth's interior. Currently, researchers have only searched 40% of Earth's core-mantle boundary for the ULVZs and this project would use existing seismic data to map an unexplored area under Antarctica and interpret the nature of the ULVZs. This project will support two graduate students and create opportunities for undergraduate involvement. Project results will be published in scientific journals, presented at science fairs, and communicated through the researchers' websites. The research team will also take part in the NSF-sponsored PolarTREC (Teachers and Researchers Exploring and Collaborating) program to communicate the science to students and the broader community. <br/><br/><br/>Technical Project Description<br/><br/>The National Research Council has highlighted high-resolution imaging of core-mantle boundary (CMB) structure as a high-priority, emerging research opportunity in the Earth Sciences since anomalies along the CMB likely play a critical role in the thermal and chemical evolution of our planet. Of particular interest are ultralow velocity zones (ULVZs), thin laterally-varying boundary layers associated with dramatic seismic velocity decreases and increases in density that are seen just above the CMB. Many questions exist regarding the origin of ULVZs, but incomplete seismic sampling of the lowermost mantle has limited our ability to map global ULVZ structure in detail. Using recently collected data from the Transantarctic Mountains Northern Network (TAMNNET) in Antarctica, this project will use core-reflected seismic phases (ScP, PcP, and ScS) to investigate ULVZ presence/absence along previously unexplored sections of the CMB. The data sampling includes the southern boundary of the Pacific Large Low Shear Velocity Province (LLSVP), a dominant feature in global shear wave tomography models, and will allow the researchers to examine a possible connection between ULVZs and LLSVPs. The main objectives of the project are to: 1) use TAMNNET data to document ULVZ presence/absence in previously unexplored regions of the lowermost mantle with array-based approaches; 2) model the data with 1- and 2.5-D wave propagation tools to obtain ULVZ properties and to assess trade-offs among the models; 3) use high quality events to augment the densely-spaced TAMNNET data with that from the more geographically-distributed, open-access Antarctic stations to increase CMB coverage with single-station analyses; and 4) explore the implications of ULVZ solution models for origin, present-day dynamics, and evolution, including their connection to other deep mantle structures, like LLSVPs.<br/><br/>The project aims to provide new constraints on ULVZs, including their potential connection to LLSVPs, and thus relates to other seismic and geodynamic investigations focused on processes within the Earth?s interior. This project will promote a new research collaboration between The University of Alabama (UA) and Arizona State University (ASU), each of which brings specific strengths to the initiative.
This project will involve examination of Glossopteridales, fossil plants from Upper Permian deposits, in samples from the central Transantarctic Mountains and Southern Victoria Land, Antarctica. The glossopterids are an important fossil group because they are possible ancestors to the flowering plants. Permian sedimentary rocks (295-270 Ma before present) are important because they record a time of rapid biotic change, as the Late Paleozoic Age ended and the Mesozoic greenhouse environment began. The proposed research will rely entirely on specimens collected during recent field excursions to the central Transantarctic Mountains (CTM; 2010?2011) and southern Victoria Land (SVL; 2012?2013). Only a few of the specimens have been studied, but already have yielded anatomically well-preserved glossopterids with a complete pollen cone, which has never been found before. Additionally, several seed-bearing structures, which have never before been observed in Antarctica, have been found in both CTM and SVL. The project will allow comparison of whole-plant fossil glossopterids from the CTM with other paleo-latitudes, and will document the floral diversity within and between two depositional basins (CTM & SVL) during a time of global change, with the overall goal of linking environmental changes with fossil morphology. <br/><br/>Broader impacts: <br/>The Broader Impacts of this project will include mentoring undergraduates in research projects, at an institution with a substantial minority enrollment. Public outreach will focus on involving middle/high school students through the ?Expanding Your Horizons? programs in Kansas and Missouri, as well as interactive presentations at schools in the Kansas City Area. The lead PI is an early-career scientist at an institution that serves minorities.
Sediments deposited by the Antarctic ice sheet are an archive of its history with time and help geologists to determine how the remote interior of the ice sheet has changed over the past several hundred thousand years. This project will focus on the formation and dynamics of moraines (accumulations of dirt and rocks that are incorporated in the glacier surface or have been pushed along by the glacier as it moves) near the blue ice area of Mt. Achernar in the central Transantarctic Mountains in Antarctica.. The study will improve basic understanding of the formation of these moraines. Fieldwork at the site will focus on imaging the internal structure of the moraine to determine the processes by which it, and others like it, form over time. Additional analyses will include measurements of ice flow and collection of rock samples to determine the timing of debris deposition and the changes in the sources of sediments from deep within the Antarctic continent. The project will provide both graduate and undergraduate students training in paleoclimate studies, geology, and numerical modeling approaches. The broader impacts of the proposed work include hands on training in the Earth Sciences for graduate and undergraduate students, collaboration with colleagues in New Zealand and Sweden to provide an international research experience for students from the US, and three educational modules to be delivered by student researchers regarding Antarctica's role in global environments. The research is societally relevant and multidisciplinary and the topics are ideal for sharing with the public. All research findings will be made publicly available to others via timely publication in high-impact, peer-reviewed journals and all data will be submitted to the National Snow and Ice Data Center, and excess samples will be provided to the U.S. Polar Rock Repository.<br/><br/>Direct observations of ice sheet history from the margins of Antarctica's polar plateau are essential for testing numerical ice sheet models, and the laterally extensive, blue-ice moraines of the Mt. Achernar Moraine complex in the central Transantarctic Mountains contain a unique and nearly untapped direct, quasi-continuous record of ice sheet change over multiple glacial cycles. The project objectives include improved understanding of processes and rates of blue ice moraine formation, as well as identifying the topographic, glaciological, and climatic controls on their evolution. Data to be collected with fieldwork in Antarctica include: imaging of internal ice structure with ground-penetrating radar, measurement of ice flow velocity and direction with a global positioning system (GPS) array, analysis of debris concentration and composition in glacier ice, state-of-the-art cosmogenic multi-nuclide analyses to determine exposure ages of moraine debris, mapping of trimlines and provenance analysis. Numerical model simulations, constrained by field data, will be used to evaluate the factors influencing changes in glacier flow that potentially impact the accumulation of the moraine debris. All together, the new data and modeling efforts will improve conceptual models of blue ice moraine formation, and thereby make them a more valuable proxy for developing a better understanding of the history of the ice sheet.
Modeling fluctuations in the extent of the West Antarctic Ice Sheet (WAIS) over time is a principal goal of the glaciological community. These models will provide a critical basis for predictions of future sea level change, and therefore this work great societal relevance. The mid-Pliocene time interval is of particular interest, as it is the most recent period in which global temperatures were warmer and atmospheric CO2 concentrations may have been higher than current levels. However, observational constraints on fluctuations in the WAIS older than the last glacial maximum are rare.
To test model predictions,sub-glacial rock cores were obtained from the Ohio Range along the Transantarctic Mountains near the present-day WAIS divide using a Winkie drill. Rock cores were recovered from 10 to ~30 m under the present-day ice levels. At the Ohio Range, the glacial to interglacial variations in ice sheet levels is ~120 meters. So 30 meters represent a significant fraction of the variation over the course of an ice age.
High concentrations of the cosmic ray produced isotopes were detected in the rock cores, indicating extensive periods of ice-free exposure to cosmic irradiation during the last 2 million years. Modeling of the data suggest that bedrock surfaces at the Ohio Range that are currently covered by 30 meters of ice experienced more exposure than ice cover, especially in the Pleistocene. An ice sheet model prediction for the Ohio Range subglacial sample sites however, significantly underestimates exposure in the last 2 million years, and over-predicts ice cover in the Pleistocene. To adjust for the higher amounts of exposure we observe in our samples, the ice sheet model simulations require more frequent and/or longer-lasting WAIS ice drawdowns. This has important implications for future sea-level change as the model maybe under-predicting the magnitude of sea-level contributions from WAIS during the ice-age cycles. Improving the accuracy of the ice sheet models through model-data comparison should remain a prime objective in the face of a warming planet as understanding WAIS behavior is going to be key for predicting and planning for the effects of sea-level change. The project helped support and train a graduate student in climate research related to Antarctica, cosmogenic nuclide analyses and led to a Master’s Thesis. The project also provide partial support to a postdoctoral scholar obtaining cosmogenic neon measurements and for training and mentoring the graduate student's cosmogenic neon measurements and interpretation. The project results were communicated to the scientific community at conferences and through seminars. The broader community was engaged through the University of California Davis's Picnic Day celebration, an annual open house that attracts over 70,000 people to the campus, and through classroom visit at a local elementary school.
Predictions of future sea level rise require better understanding of the changing dynamics of the Greenland and Antarctic ice sheets. One way to better understand the past history of the ice sheets is to obtain records from inland ice for past geological periods, particularly in Antarctica, the world's largest remaining ice sheet. Such records are exceedingly rare, and can be acquired at volcanic outcrops in the La Gorce Mountains of the central Transantarctic Mountains. Volcanoes now exposed within the La Gorce Mountains erupted beneath the East Antarctic ice sheet and the data collected will record how thick the ice sheet was in the past. In addition, information will be used to determine the thermal conditions at the base of the ice sheet, which impacts ice sheet stability. The project will also investigate the origin of volcanic activity in Antarctica and links to the West Antarctic Rift System (WARS). The WARS is a broad area of extended (i.e. stretched) continental crust, similar to that found in East Africa, and volcanism is wide spread and long-lived (65 million years to currently active) and despite more than 50 years of research, the fundamental cause of volcanism and rifting in Antarctica is still vigorously debated. The results of this award therefore also potentially impact the study of oceanic volcanism in the entire southwestern Pacific region (e.g., New Zealand and Australia), where volcanic fields of similar composition and age have been linked by common magma sources and processes. The field program includes a graduate student who will work on the collection, analysis, and interpretation of petrological data as part of his/her Masters project. The experience and specialized analytical training being offered will improve the quality of the student's research and optimize their opportunities for their future. The proposed work fosters faculty and student national and international collaboration, including working with multi-user facilities that provide advanced technological mentoring of science students. Results will be broadly disseminated in peer-reviewed journals, public presentations at science meetings, and in outreach activities. Petrologic and geochemical data will be disseminated to be the community through the Polar Rock Repository. The study of subglacially erupted volcanic rocks has been developed to the extent that it is now the most powerful proxy methodology for establishing precise 'snapshots' of ice sheets, including multiple critical ice parameters. Such data should include measurements of ice thickness, surface elevation and stability, which will be used to verify, or reject, published semi-empirical models relating ice dynamics to sea level changes. In addition to establishing whether East Antarctic ice was present during the formation of the volcanoes, data will be used to derive the coeval ice thicknesses, surface elevations and basal thermal regime(s) in concert with a precise new geochronology using the 40Ar/39Ar dating method. Inferences from measurement of standard geochemical characteristics (major, trace elements and Sr, Nd, Pb, O isotopes) will be used to investigate a possible relationship between the volcanoes and the recently discovered subglacial ridge under the East Antarctic ice, which may be a rift flank uplift. The ridge has never been sampled, is undated and its significance is uncertain. The data will provide important new information about the deep Earth and geodynamic processes beneath this mostly ice covered and poorly understood sector of the Antarctic continent.
Continental extension produces a great variety of structures from the linear narrow rifts of the East African Rift to the diffuse extension of the Basin and Range Province of the Western U.S. Rift shoulder uplift varies dramatically between rift flanks. The cause of variable rift width and crustal thinning is fairly well explained by variable initial heat flow and crustal thickness. Mechanical stretching of the lithosphere has been linked to rift shoulder uplift but the cause of variable rift flank uplift remains poorly understood. The Transantarctic Mountains (TAM) are an extreme example of rift flank uplift, extending over 3500 km across Antarctica and reaching elevations up to 4500 m and thus constitute a unique feature of EarthOs crust. The range was formed in the extensional environment associated with the Mesozoic and Cenozoic breakup of Gondwanaland. Geological and geophysical work has shown that the TAM developed along the long-lived lithospheric boundary between East and West Antarctica reactivated by a complex history of extensional and translational microplate motions. The TAM are not uniform along strike. Along the OWilkes FrontO, the northern segment of the rift extends from North Victoria Land to Byrd Glacier. The Wilkes Front architecture consists of (1) thin, extended crust forming the Victoria Land Basin in the Ross Sea, (2) the TAM rift shoulder, and (3) a long-wavelength down- ward forming the Wilkes Basin. Contrasting structures are mapped along the OPensacola/PoleO Front, the southern segment of the rift extending from the Nimrod Glacier to the Pensacola Mountains. Along this southern section no rift basin has been mapped to date and the down-ward along the East Antarctic, or ObacksideO, edge of the mountains is less pronounced. A flexural model linking the extension in the Ross Sea to the formation of both the mountains and the Wilkes Basin has been considered as a me chanism for uplift of the entire mountain range. The variability in fundamental architecture along the TAM indicates that neither a single event nor a sequence of identical events produced the rift flank uplift. The observation of variable architecture suggests complex mechanisms and possibly a fundamental limitation in maximum sustainable rift flank elevation. The motivation for studying the TAM is to try to understand the geodynamics of this extreme elevation rift flank. Are the geodynamics of the area unique, or does the history of glaciation and related erosion contribute to the extreme uplift? With the existing data sets it is difficult to confidently constrain the geological architecture across representative sections of the TAM. Any effort to refine geodynamic mechanisms requires this basic understanding of the TAM architecture. The goal of this project is to (1) constrain the architecture of the rift system as well as the distribution and structure of sedimentary basins, glacial erosion and mafic igneous rocks surrounding the rift flank by acquiring three long wavelength geophysical transects with integrated gravity, magnetics, ice- penetrating radar, and ice surface measurements, (2) quantify the contribution of various geodynamic mechanisms to understand the geological conditions which can lead to extreme rift flank uplift, and (3) use the improved understanding of architecture and geophysical data to test geodynamic models in order to improve our understanding both of the TAM geodynamics and the general problem of the geodynamics of rift flank uplift worldwide. This project will allow development of a generalized framework for understanding the development of rift flank uplift as well as address the question of the specific geodynamic evolution of the TAM.
Subduction takes place at convergent plate boundaries and involves sinking of one tectonic plate underneath another. Although this process is a key aspect of plate tectonics that shapes the planet over geologic time, and is a primary cause of earthquakes, it is not known what causes subduction to cease, and what effect it has on the deepest portions of the crust and the upper part of the mantle. By studying the age and composition of igneous rocks emplaced at the very end of the subduction cycle, this project seeks to understand what causes subduction to cease, and how this changes the composition and structure of the crust and upper mantle. Because this process occurs deep within the earth, the project will focus on rocks in the root of an ancient subduction zone, now exposed in the Transantarctic Mountains of Antarctica. In addition, Antarctica remains relatively poorly understood, and this project will contribute directly to increasing our understanding of the geologic history of this region. The project will focus on training graduate and undergraduate students - incorporating hands-on experience with an array of state-of-the-art analytical instrumentation. Students will also gain a range of more general skills including Geographic Information Systems (GIS), written and oral communication, and data management - strengths that are highly relevant to careers both in the academic and Geosciences industry. Each summer, high school students will be incorporated into aspects of the laboratory-based research through the UCSB research mentorship program. The PI and graduate students will engage the general public through a purpose-built iPhone App and multimedia website. Activities will include live phone and video conversations from the field between elementary school students and members of the team in Antarctica. <br/><br/>The mechanisms by which the deep crustal delaminates or "founders" and is returned to the mantle remains a fundamental problem in earth science. Specifically, little is known about the temporal and spatial scales over which this process occurs or the mechanisms that trigger such catastrophic events. Igneous rocks highly enriched in potassium, called lamprophyres, are often emplaced during, and immediately after, termination of subduction and therefore potentially provide direct insight into foundering. These enigmatic rocks are important because they represent near-primary mantle melt compositions and therefore their age, geochemistry and petrologic evolution reveal key information on both the composition of the upper mantle and its thermal state. Of equal importance, they reveal how these key parameters vary through both space and time. By evaluating lamprophyres along a subduction zone margin it is possible to extract: 1) local-scale information, such as the timing and duration of melting and the role of igneous crystallization processes in generation of isotopic heterogeneities; 2) along-strike variations in mantle source composition, temperature, and depth of melting 3) the plate-scale forces that control foundering and termination of subduction. This project will study a suite of lamprophyres along the axis of the Transantarctic Mountains, emplaced during the latest stages of the Neoproterozoic - Ordovician Ross orogeny, Antarctica (roughly 505 to 470 million years before present). High-precision geochronology (age determinations) will be combined with geochemical measurements on the rocks and minerals to understand the mechanisms and timing of deep crustal foundering/delamination.
The response of the Antarctic Ice Sheet to future climatic changes is recognized as the greatest uncertainty in projections of future sea level. An understanding of past ice fluctuations affords insight into ice-sheet response to climate and sea-level change and thus is critical for improving sea-level predictions. This project will examine deglaciation of the southern Ross Sea over the past few thousand years to document oscillations in Antarctic ice volume during a period of relatively stable climate and sea level. We will help quantify changes in ice volume, improve understanding of the ice dynamics responsible, and examine the implications for future sea-level change. The project will train future scientists through participation of graduate students, as well as undergraduates who will develop research projects in our laboratories.<br/><br/>Previous research indicates rapid Ross Sea deglaciation as far south as Beardmore Glacier early in the Holocene epoch (which began approximately 11,700 years before present), followed by more gradual recession. However, deglaciation in the later half of the Holocene remains poorly constrained, with no chronological control on grounding-line migration between Beardmore and Scott Glaciers. Thus, we do not know if mid-Holocene recession drove the grounding line rapidly back to its present position at Scott Glacier, or if the ice sheet withdrew gradually in the absence of significant climate forcing or eustatic sea level change. The latter possibility raises concerns for future stability of the Ross Sea grounding line. To address this question, we will map and date glacial deposits on coastal mountains that constrain the thinning history of Liv and Amundsen Glaciers. By extending our chronology down to the level of floating ice at the mouths of these glaciers, we will date their thinning history from glacial maximum to present, as well as migration of the Ross Sea grounding line southwards along the Transantarctic Mountains. High-resolution dating will come from Beryllium-10 surface-exposure ages of erratics collected along elevation transects, as well as Carbon-14 dates of algae within shorelines from former ice-dammed ponds. Sites have been chosen specifically to allow close comparison of these two dating methods, which will afford constraints on Antarctic Beryllium-10 production rates.
Intellectual Merit:<br/>Ice free rock outcrops in the Transantarctic Mountains provide the only accessible windows into the interior of the ice covered Antarctic continent; they are extremely remote and difficult to study. This region also hosts the highest latitude ice-free valley systems on the planet. Based on two interdisciplinary workshops, the Transantarctic region near the Shackleton Glacier has been identified as a high priority site for further studies, with a field camp proposed for the 2015-2016 Antarctic field season. The geology of this region has been studied since the heroic era of Antarctic exploration, in the early 1900s, but geologic mapping has not been updated in more than forty years, and existing maps are at poor resolution (typically 1:250,000).<br/><br/>This project would utilize the WorldView-2 multispectral orbital dataset to supplement original geologic mapping efforts near the proposed 2015-2016 Shackleton Glacier camp. The WorldView-2 satellite is the only multispectral orbiting sensor capable of imaging the entirety of the Transantarctic Mountains, and all necessary data are currently available to the Polar Geospatial Center. High-latitude atmospheric correction of multispectral data for geologic investigations has only recently been tested, but has never been applied to WorldView-2 data, and never for observations of this type. Therefore, this research will require technique refinements and methodological developements to accomplish the goals. Atmospheric correction refinements and spectral validation will be made possible by laboratory spectroscopic measurements of rock samples currently stored at the U.S. Polar Rock Repository, at the Ohio State University. This project will result in spectral unit identification and boundary mapping at a factor of four higher resolution (1:62,500) than previous geologic mapping efforts, and more detailed investigations (1:5,123) are possible at resolutions more than a factor of forty-eight improved over previous geologic maps. Validated spectral mapping at these improved resolutions will allow for detailed lithologic, and potentially biologic, mapping using existing satellite imagery. This will greatly enhance planning capabilities, thus maximizing the efficiency of the scientific research and support logistics associated with the Shackleton Glacier deep field camp.<br/><br/>Broader impacts:<br/>The proposed work will have multiple impacts on the broader scientific community. First, the refinement of existing atmospheric correction methodologies, and the development of new spectral mapping techniques, may substantially improve our ability to remotely investigate geologic surfaces throughout Antarctica. The ability to validate this orbital dataset will be of use to both current and future geologic, environmental, and biologic studies, potentially across the entire continent. The project will yield a specific spectral mapping product (at a scale of 1:62,500) to the scientific community by a targeted date of 01 March 2014, in order to support proposals submitted to the National Science Foundation for the proposed 2015/2016 Shackleton Glacier camp. High-resolution spectral mapping products (up to a maximum resolution of 2 meters per pixel) will also be generated for regions of particular scientific interest. The use of community based resources, such as Polar Geospatial Center (PGC) imagery and U.S. Polar Rock Repository rock samples, will generate new synergistic and collaborative research possibilities within the Antarctic research community. In addition, the lead PI (Salvatore) is an early career scientist who is active in both Antarctic and planetary remote sensing. There are overlaps in the calibration, correction, and validation of remote spectral datasets for Antarctic and planetary applications which can lead to benefits and insights to an early career PI, as well as the two communities.
Agglutinated foraminifera (forams for short) are early-evolving, single-celled organisms. These "living fossils" construct protective shells using sediment grains held together by adhesive substances that they secrete. During shell construction, agglutinated forams display amazing properties of selection - for example, some species build their shells of clear quartz grains, while other species use only grains of a specific size. Understanding how these single cells assemble complex structures may contribute to nanotechnology by enabling people to use forams as "cellular machines" to aid in the construction of nano-devices. This project will analyze the genomes of at least six key foram species, and then "mine" these genomes for technologically useful products and processes. The project will focus initially on the adhesive materials forams secrete, which may have wide application in biomedicine and biotechnology. Furthermore, the work will further develop a molecular toolkit which could open up new avenues of research on the physiology, ecology, and population dynamics of this important group of Antarctic organisms. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. Educational experiences related to the "thrill of scientific exploration and discovery" for students and the general public will be provided through freely-available short films and a traveling art/science exhibition. The project will also provide hands-on research opportunities for undergraduate students.<br/><br/>Explorers Cove, situated on the western shore of McMurdo Sound, harbors a unique population of foraminiferan taxa at depths accessible by scuba diving that otherwise are primarily found in the deep sea. The project will use next-generation DNA sequencing and microdissection methods to obtain and analyze nuclear and mitochondrial genomes from crown members of two species each from three distinct, early-evolving foraminiferal groups. It will also use next generation sequencing methods to characterize the in-situ prokaryotic assemblages (microbiomes) of one of these groups and compare them to reference sediment microbiomes. The phyogenomic studies of the targeted Antarctic genera will help fill significant gaps in our current understanding of early foram evolution. Furthermore, comparative genomic analyses of these six species are expected to yield a better understanding of the physiology of single-chambered agglutinated forams, especially the bioadhesive proteins and regulatory factors involved in shell composition and morphogenesis. Additionally, the molecular basis of cold adaptation in forams will be examined, particularly with respect to key proteins.
Bubbles of ancient air trapped in ice cores permit the direct reconstruction of atmospheric composition and allow us to link greenhouse gases and global climate over the last 800,000 years. Previous field expeditions to the Allan Hills blue ice area, Antarctica, have recovered ice cores that date to one million years, the oldest ice cores yet recovered from Antarctica. These records have revealed that interglacial CO2 concentrations decreased by 800,000 years ago and that, in the warmer world 1 million years ago, CO2 and Antarctic temperature were linked as during the last 800,000 years. This project will return to the Allan Hills blue ice area to recover additional ice cores that date to 1 million years or older. The climate records developed from the drilled ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Our results will help answer questions about issues associated with anthropogenic change. These include the relationship between temperature change and the mass balance of Antarctic ice; precipitation and aridity variations associated with radiatively forced climate change; and the climate significance of sea ice extent. The project will entrain two graduate students and a postdoctoral scholar, and will conduct outreach including workshops to engage teachers in carbon science and ice cores.<br/><br/>Between about 2.8-0.9 million years ago, Earth's climate was characterized by 40,000-year cycles, driven or paced by changes in the tilt of Earth's spin axis. Much is known about the "40,000-year" world from studies of deep-sea sediments, but our understanding of climate change during this period is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of ancient ice from the Main Ice Field, Allan Hills, Antarctica. During previous field seasons we recovered ice extending, discontinuously, from 0.1-1.0 million years old. Ice was dated by measuring the 40Ar/38Ar (Argon) ratio of the trapped gases. Our discovery of million year-old ice demonstrates that there is gas-record-quality ice from the 40,000-year world in the Allan Hills Main Ice Field. We have identified two different sites, each overlying bedrock at ~ 200 m depth, that are attractive targets for coring ice dating to 1 million years and older. This project aims to core the ice at these two sites, re-occupy a previous site with million year-old ice and drill it down to the bedrock, and generate 10-20 short (~10-meter) cores in areas where our previous work and terrestrial meteorite ages suggest ancient surface ice. We plan to date the ice using the 40Ar/38Ar ages of trapped Argon. We also plan to characterize the continuity of our cores by measuring the deuterium and oxygen isotope ratios in the ice, methane, ratios of Oxygen and Argon to Nitrogen in trapped gas, the Nitrogen-15 isotope (d15N) of Nitrogen, and the Oxygen-18 isotope (d18O) of Oxygen. As the ice may be stratigraphically disturbed, these measurements will provide diagnostic properties for assessing the continuity of the ice-core records. Successful retrieval of ice older than one million years will provide the opportunity for follow-up work to measure the CO2 concentration and other properties within the ice to inform on the temperature history of the Allan Hills region, dust sources and source-area aridity, moisture sources, densification conditions, global average ocean temperature, and greenhouse gas concentrations. We will analyze the data in the context of leading hypotheses of the 40,000-year world and the Mid-Pleistocene Transition to the 100,000-year world. We expect to advance understanding of climate dynamics during these periods.
This award supports a project to reconstruct past ice-surface elevations from detailed glacial mapping and dating of moraines (using 14C dates of algae from former ice-marginal ponds and 10Be surface exposure ages) in the region of the Darwin-Hatherton Glaciers in Antarctica in order to try and resolve very different interpretations that currently exist about the glacial history in the region. The results will be integrated with existing climate and geophysical data into a flow-line model to gain insight into glacier response to climate and ice-dynamics perturbations during the Late Glacial Maximum (LGM) in Antarctica. The work will contribute to a better understanding of both LGM ice thickness and whether or not there is any evidence that Antarctica contributed to Meltwater Pulse (MWP)-1A a very controversial topic in Antarctic glacial geology. The intellectual merit of the work relates to the fact that reconstructing past fluctuations of the Antarctic Ice Sheet (AIS) is critical for understanding the sensitivity of ice volume to sea-level and climatic change. Constraints on past behavior help put ongoing changes into context and provide a basis for predicting future sea-level rise. Broader impacts include the support of two graduate and two undergraduate students, as well as a female early-career investigator. Graduate students will be involved in all stages of the project from planning and field mapping to geochronological analyses, interpretation, synthesis and reporting. Two undergraduates will work on lab-based research from the project. The project also will include visits to K-12 classrooms to talk about glaciers and climate change, correspondence with teachers and students from the field, and web-based outreach. This award has field work in Antarctica.
Many of the natural processes that modify the landscape inhabited by humans occur over very long timescales, making them difficult to observe. Exceptions include rare catastrophic events such as earthquakes, volcanic eruptions, and floods that occur on short timescales. Many significant processes that affect the land and landscape that we inhabit operate on time scales imperceptible to humans. One of these processes is wind transport of sand, with related impacts to exposed rock surfaces and man-made objects, including buildings, windshields, solar panels and wind-farm turbine blades. The goal of this project is to gain an understanding of wind erosion processes over long timescales, in the Antarctic Dry Valleys, a cold desert environment where there were no competing processes (such as rain and vegetation) that might mask the effects. The main objective is recovery of rock samples that were deployed in 1983/1984 at 11 locations in the Antarctic Dry Valleys, along with measurements on the rock samples and characterization of the sites. In the late 1980s and early 1990s some of these samples were returned and indicated more time was needed to accumulate information about the timescales and impacts of the wind erosion processes. This project will allow collection of the remaining samples from this experiment after 30 to 31 years of exposure. The field work will be carried out during the 2014/15 Austral summer. The results will allow direct measurement of the abrasion rate and hence the volumes and timescales of sand transport; this will conclude the longest direct examination of such processes ever conducted. Appropriate scaling of the results may be applied to buildings, vegetation (crops), and other aspects of human presence in sandy and windy locations, in order to better determine the impact of these processes and possible mitigation of the impacts. The project is a collaborative effort between a small business, Malin Space Science Systems (MSSS), and the University of Washington (UW). MSSS will highlight this Antarctic research on its web site, by developing thematic presentations describing our research and providing a broad range of visual materials. The public will be engaged through daily updates on a website and through links to material prepared for viewing in Google Earth. UW students will be involved in the laboratory work and in the interpretation of the results.<br>Technical Description of Project:<br>The goal of this project is to study the role of wind abrasion by entrained particles in the evolution of the McMurdo Dry Valleys in the Transantarctic Mountains. During the 1983 to 1984 field seasons, over 5000 rock targets were installed at five heights facing the 4 cardinal directions at 10 locations (with an additional site containing fewer targets) to study rates of physical weathering due primarily to eolian abrasion. In addition, rock cubes and cylinders were deployed at each site to examine effects of chemical weathering. The initial examination of samples returned after 1, 5, and 10 years of exposure, showed average contemporary abrasion rates consistent with those determined by cosmogenic isotope studies, but further stress that "average" should not be interpreted as meaning "uniform." The samples will be characterized using mass measurements wtih 0.01 mg precision balances, digital microphotography to compare the evolution of their surface features and textures, SEM imaging to examine the micro textures of abraded rock surfaces, and optical microscopy of thin sections of a few samples to examine the consequences of particle impacts extending below the abraded surfaces. As much as 60-80% of the abrasion measured in samples from 1984-1994 appears to have occurred during a few brief hours in 1984. This is consistent with theoretical models that suggest abrasion scales as the 5th power of wind velocity. The field work will allow return of multiple samples after three decades of exposure, which will provide a statistical sampling (beyond what is acquired by studying a single sample), and will yield the mass loss data in light of complementary environmental and sand kinetic energy flux data from other sources (e.g. LTER meteorology stations). This study promises to improve insights into one of the principal active geomorphic process in the Dry Valleys, an important cold desert environment, and the solid empirical database will provide general constraints on eolian abrasion under natural conditions.
Intellectual Merit: <br/>To understand Antarctica's geodynamic development, origin of the Transantarctic Mountains (TAMs) and the Wilkes Subglacial Basin (WSB) must be determined. Current constraints on the crustal thickness and seismic velocity structure beneath the TAMs and the WSB are limited, leading to uncertainties over competing geologic models that have been suggested to explain their formation. The PI proposes to broaden the investigation of this region with a new seismic deployment, the Transantarctic Mountains Northern Network (TAMNNET), a 15-station array across the northern TAMs and the WSB that will fill a major gap in seismic coverage. Data from TAMNNET will be combined with that from other previous and ongoing seismic initiatives and will be analyzed using proven modeling techniques to generate a detailed image of the seismic structure beneath the TAMs and the WSB. These data will be used to test three fundamental hypotheses: the TAMs are underlain by thickened crust, the WSB is characterized by thin crust and thick sedimentary layers, and slow seismic velocities are prevalent along strike beneath the TAMs. Results from the proposed study will provide new information about the nature and formation of the Antarctic continent and will help to advance our understanding of important global processes, such as mountain building and basin formation. The proposed research also has important implications for other fields of Antarctic science. Constraints on the origin of the TAMs uplift are critical for climate and ice sheet models, and new information acquired about variations in the thermal and lithospheric structure beneath the TAMs and the WSB will be used to estimate critical ice sheet boundary conditions. <br/><br/>Broader impacts: <br/>This project incorporates three educational strategies to promote the integration of teaching and research. Graduate students will be trained in Antarctic tectonics and seismic processing through hands-on fieldwork and data analysis techniques. Through NSF's PolarTREC program, the PI will work with K-12 educators. The PI will develop a three-week summer field program for recent high school graduates and early-career undergraduate students from Minority-Serving Institutions in Alabama. Teaching materials and participant experiences will be shared with individuals outside the program via a course website. Following the summer program, participants who were particularly engaged will be offered internship opportunities to analyze TAMNNET data. In successive years, the students could assist with fieldwork and could be recruited into the graduate program under the PI's supervision. Ultimately, this program would not only serve to educate undergraduates but would also generate a pipeline of underrepresented students into the geosciences.
Intellectual Merit: <br/>This proposal requests support for research on Early Jurassic vertebrate fauna of the Beardmore Glacier region of Antarctica. The project will support preparation and systematic and paleobiological research on four Antarctic dinosaurs, including two new species, collected in the Central Transantarctic Mountains. With the new material Cryolophosaurus will become one of the most complete Early Jurassic theropods known, and thus has the potential to become a keystone taxon for resolving the debated early evolutionary history of theropod dinosaurs, the group that gave rise to birds. Two new dinosaur specimens include a nearly complete articulated skeleton of a juvenile sauropodomorph, and the articulated hip region of another small individual. Both appear to be new taxa. The dinosaurs from the Hanson Formation represent some of the highest paleolatitude vertebrates known from the Jurassic. The PIs will generate CT datasets for Cryolophosaurus and the more complete new sauropodomorph species to mine for phylogenetic trait information, and to investigate their comparative neuroanatomy and feeding behavior. Histological datasets will be generated from multiple skeletal elements for all four Mt. Kirkpatrick taxa to understand patterns of growth in different clades of polar dinosaurs and compare them to relatives from lower paleolatitudes. This paleohistological study of a relatively diverse sample of sauropodomorph taxa from Antarctica may contribute to determining whether and how these dinosaurs responded to contemporary climatic extremes.<br/><br/>Broader impacts: <br/>The PIs have established a successful undergraduate training program as part of previous research. Summer interns from Augustana are trained at the Field Museum in specimen preparation, curation, molding/casting, and histological sampling. They also participate in existing Field Museum REU programs, including a course on phylogenetic systematics. Four undergraduate internships and student research projects will be supported through this proposal. The PIs will develop a traveling exhibit on Antarctic Mesozoic paleontology that they estimate will be seen by 2.5 million people over the five-year tour.
Intellectual Merit: <br/>The primary goal of this project is to sample two beds in the Meyer Desert Formation, which are known to be especially fossiliferous containing plants, insects, other arthropods, freshwater mollusks, and fish. There is a possibility that the teeth and bones of a small marsupial could also be found. Previous studies have demonstrated that these horizons contain unique fossil assemblages that provide information used to reconstruct paleoenvironments and paleoclimate. The fossils represent organisms previously not found in Antarctica and consequently their study will lead to the development of new hypotheses concerning southern hemisphere biogeography. The new discoveries will also increase knowledge of paleoenvironments and paleoclimates as well as biogeographic relationships of the biota of the southern hemisphere. For some organisms, such as Nothofagus (Southern Beech) or the trechine groundbeetle, fossils would confirm that Antarctica was inhabited as part of Gondwana. For other fossils, such as the cyclorrhaphan fly or freshwater mollusks not expected to have inhabited Antarctica, the discoveries will require a reassessment of phylogenetic interpretations and a reinvestigation of the role of Antarctica in the evolutionary history of those organisms. The new fossil-based knowledge will require integration with interpretations from cladistics and molecular genetics to develop more comprehensive phylogenetic hypotheses for a range of organisms.<br/><br/>Broader impacts: <br/>The discovery of fossils in Antarctica and implications for climate change has proven to be popular with the media. This attention will help disseminate the results of this study. Before the field season, the PI will work with local media and with area schools to set up field interviews and web casts from Antarctica. The project will also involve the training of a graduate student in the field and in the follow up studies of the fossils in the laboratory.
Intellectual Merit: <br/>The PIs propose to address the question of whether ice surface melting zones developed at high elevations during warm climatic phases in the Transantarctic Mountains. Evidence from sediment cores drilled by the ANDRILL program indicates that open water in the Ross Sea could have been a source of warmth during Pliocene and Pleistocene. The question is whether marine warmth penetrated inland to the ice sheet margins. The glacial record may be ill suited to answer this question, as cold-based glaciers may respond too slowly to register brief warmth. Questions also surround possible orbital controls on regional climate and ice sheet margins. Northern Hemisphere insolation at obliquity and precession timescales is thought to control Antarctic climate through oceanic or atmospheric connections, but new thinking suggests that the duration of Southern Hemisphere summer may be more important. The PIs propose to use high elevation alluvial deposits in the Transantarctic Mountains as a proxy for inland warmth. These relatively young fans, channels, and debris flow levees stand out as visible evidence for the presence of melt water in an otherwise ancient, frozen landscape. Based on initial analyses of an alluvial fan in the Olympus Range, these deposits are sensitive recorders of rare melt events that occur at orbital timescales. For their study they will 1) map alluvial deposits using aerial photography, satellite imagery and GPS assisted field surveys to establish water sources and to quantify parameters effecting melt water production, 2) date stratigraphic sequences within these deposits using OSL, cosmogenic nuclide, and interbedded volcanic ash chronologies, 3) use paired nuclide analyses to estimate exposure and burial times, and rates of deposition and erosion, and 4) use micro and regional scale climate modeling to estimate paleoenvironmental conditions associated with melt events.<br/><br/>Broader impacts: <br/>This study will produce a record of inland melting from sites adjacent to ice sheet margins to help determine controls on regional climate along margins of the East Antarctic Ice Sheet to aid ice sheet and sea level modeling studies. The proposal will support several graduate and undergraduates. A PhD student will be supported on existing funding. The PIs will work with multiple K 12 schools to conduct interviews and webcasts from Antarctica and they will make follow up visits to classrooms after the field season is complete.
Intellectual Merit: <br/>This proposal will study the diversity, abundance, and tiering patterns of ichnofossils in continental and marine deposits of the Beacon Supergroup in the Beardmore Glacier Area (BGA). The PIs will focus on continental strata that contain a variety of ichnofossils and paleosols. Ichnofossils will be evaluated for their architectural and surficial morphologies, and will be compared to modern and ancient traces to interpret the tracemaker behavior and paleoenvironmental setting. Distribution of ichnofossils within these units may indicate the effect of lateral variability of pedogenesis, the magnitude and frequency of depositional events, and the amount of moisture within the sediment, as well as the effects of climate change. The paleoclimatic significance of ichnofossils will be determined by comparing the burrow size, occurrence, tiering, and pedogenic significance of ichnofossils in measured sections of stratigraphic units deposited during global warming and cooling episodes. Comparisons will be made between BGA formations to stratigraphically equivalent rocks deposited at low paleolatitudes with previously determined paleoclimatic settings. The objectives of this project are to address two major questions: what differences existed in ichnodiversity, abundance, and tiering in marine and continental deposits between high- and low-paleolatitudes, and was there a dearth of habitat usage in continental deposits during the late Paleozoic and Mesozoic, particularly in fluvial and lacustrine environments compared to the habitat usage in the marine realm at that time? <br/><br/>Broader impacts: <br/>This study will enhance the ability to interpret paleoenvironments to the subenvironmental scale, understand the evolution of soil biota and ecosystems at high paleolatitudes, determine the role of organisms in soil formation at high paleolatitudes, explore the effects of climate change on the body size and diversity of organisms in the soil communities, and develop new tools to interpret paleoclimate in high latitudes. There is a strong education component associated with this proposal.
Severinghaus/0839031 <br/><br/>This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>This award supports a project to develop a precise gas-based chronology for an archive of large-volume samples of the ancient atmosphere, which would enable ultra-trace gas measurements that are currently precluded by sample size limitations of ice cores. The intellectual merit of the proposed work is that it will provide a critical test of the "clathrate hypothesis" that methane clathrates contributed to the two abrupt atmospheric methane concentration increases during the last deglaciation 15 and 11 kyr ago. This approach employs large volumes of ice (>1 ton) to measure carbon-14 on past atmospheric methane across the abrupt events. Carbon-14 is an ideal discriminator of fossil sources of methane to the atmosphere, because most methane sources (e.g., wetlands, termites, biomass burning) are rich in carbon-14, whereas clathrates and other fossil sources are devoid of carbon-14. The proposed work is a logical extension to Taylor Glacier, Antarctica, of an approach pioneered at the margin of the Greenland ice sheet over the past 7 years. The Greenland work found higher-than-expected carbon-14 values, likely due in part to contaminants stemming from the high impurity content of Greenland ice and the interaction of the ice with sediments from the glacier bed. The data also pointed to the possibility of a previously unknown process, in-situ cosmogenic production of carbon-14 methane (radiomethane) in the ice matrix. Antarctic ice in Taylor Glacier is orders of magnitude cleaner than the ice at the Greenland site, and is much colder and less stratigraphically disturbed, offering the potential for a clear resolution of this puzzle and a definitive test of the cosmogenic radiomethane hypothesis. Even if cosmogenic radiomethane in ice is found, it still may be possible to reconstruct atmospheric radiomethane with a correction enabled by a detailed understanding of the process, which will be sought by co-measuring carbon-14 in carbon monoxide and carbon dioxide. The broader impacts of the proposed work are that the clathrate test may shed light on the stability of the clathrate reservoir and its potential for climate feedbacks under human-induced warming. Development of Taylor Glacier as a "horizontal ice core" would provide a community resource for other researchers. Education of one postdoc, one graduate student, and one undergraduate, would add to human resources. This award has field work in Antarctica.
Intellectual Merit: <br/>Magmas generated during subduction of oceanic lithosphere beneath active continental margins typically have a calc-alkaline chemistry. However, igneous rocks with signatures usually associated with anorogenic magmatism are increasingly being found with calc-alkaline rocks in subduction zones. These enigmatic rocks provide insight into a variety of magmatic and structural processes that are fundamental to subduction zone dynamics but processes that lead to their petrogenesis remain a matter of debate. This project will investigate the Koettlitz Glacier Alkaline Province (KGAP) in the Transantarctic Mountains, which is a section through a Na-alkaline province bounded to the north and south by calc-alkaline magmatism. This province potentially contains key information on the thermo-mechanical processes leading to generation of Na-alkaline rocks in subduction systems. The PI will examine structures that bound the KGAP as well as intrusives and metasedimentary rocks contained within it to determine the tectonomagmatic history in the framework of two end-member hypotheses: the KGAP represents a crustal-scale extensional or transtensional domain in a subduction setting; or the KGAP formed in response to ridge subduction. <br/><br/>Broader impacts: <br/>This study will train three graduate and three undergraduate students incorporating hands-on experience with state of the art instrumentation. Each summer, four high school students will be incorporated into various aspects of the laboratory-based research through the UCSB research mentorship program. This project will stimulate refinement of in-situ LA-ICPMS methods and development of collaborative linkages with Antarctic geologists at GNS Science in New Zealand. Results will be disseminated via papers and presentations at international conferences.
Intellectual Merit: <br/>The PI requests support for preparation of a large collection of vertebrate fossils recently recovered from the Central Transantarctic Mountains (CTAM) of Antarctica. These fossils will be used to place early Mesozoic Antarctic dinosaurs and other vertebrates into a global evolutionary, biogeographic, and faunal context; assess the degree of endemism in Triassic vertebrate faunas of Antarctica; constrain temporal relationships of the Triassic Antarctic vertebrate faunas; and refine the stratigraphic context for the Triassic Antarctic vertebrate assemblages to establish a paleoenvironmental framework. The lower and middle Triassic fossils offer a rare window on life in terrestrial environments at high-latitudes immediately after the Permian mass extinction. <br/><br/>Broader impacts: <br/>The PI will use their fossils to educate the public about the geologic, climatic, and biologic history of Antarctica by visiting local schools. They will create and publish at least two new videos to the Burke Museum blog that relate the graduate student?s experience of fieldwork in Antarctica. They will also update the Antarctica section on the UWBM "Explore Your World" website with images and findings from their field season.
This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, δ18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, δ13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of δ13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica.
The stability of the marine West Antarctic Ice Sheet (WAIS) remains an important, unresolved problem for predicting future sea level change. Recent studies indicate that the mass balance of the ice sheet today may be negative or positive. The apparent differences may stem in part from short-term fluctuations in flow. By comparison, geologic observations provide evidence of behavior over much longer time scales. Recent work involving glacial-geologic mapping, dating and ice-penetrating radar surveys suggests that deglaciation of both the Ross Sea Embayment and coastal Marie Byrd Land continued into the late Holocene, and leaves open the possibility of ongoing deglaciation and grounding-line retreat. However, previous work in the Ross Sea Embayment was based on data from just three locations that are all far to the north of the present grounding line. Additional data from farther south in the Ross Sea Embayment are needed to investigate whether recession has ended, or if the rate and pattern of deglaciation inferred from our previous study still apply to the present grounding line. This award provides support to reconstruct the evolution of Reedy Glacier, in the southern Transantarctic Mountains, since the Last Glacial Maximum (LGM). Because Reedy Glacier emerges from the mountains above the grounding line, its surface slope and elevation should record changes in thickness of grounded ice in the Ross Sea up to the present day. The deglaciation chronology of Reedy Glacier therefore can indicate whether Holocene retreat of the WAIS ended thousands of years ago, or is still continuing at present. This integrated glaciologic, glacial-geologic, and cosmogenic-isotope exposure- dating project will reconstruct past levels of Reedy Glacier. Over two field seasons, moraines will be mapped, dated and correlated at sites along the length of the glacier. Radar and GPS measurements will be made to supplement existing ice thickness and velocity data, which are needed as input for a model of glacier dynamics. The model will be used to relate geologic measurements to the grounding-line position downstream. Ultimately, the mapping, dating and ice-modeling components of the study will be integrated into a reconstruction that defines changes in ice thickness in the southern Ross Sea since the LGM, and relates these changes to the history of grounding-line retreat. This work directly addresses key goals of the West Antarctic Ice Sheet Initiative, which are to understand the dynamics, recent history and possible future behavior of the West Antarctic Ice Sheet.
Advances in molecular techniques have expanded our understanding of soil microbial communities, and raised important questions about regional and global patterns in microbial diversity. The proposed research will investigate the composition and activity of microbial communities across a range of geochemical and hydrologic soil conditions, and over local to regional scales in the Transantarctic Mountains, in order to assess controls over microbial biogeography. The research targets two areas in the Transantarctic mountains, the McMurdo Dry Valleys, and the Beardmore Glacier region further south, the latter representing an underexplored and inarguably more extreme soil environment. The research project will adopt an integrated approach, using molecular techniques and in situ assessment of biological activity in a quantitative biogeographical framework, with the goal of distinguishing fine versus broad scale controls over microbial community structure. The research is essential to determining the basic trophic status of extreme microbial food webs, and their sensitivity to climate change. The investigators will engage secondary and post-secondary educators through first person outreach as well as web-based communications and exercises. Two postdoctoral scientists will be trained in an interdisciplinary and international setting.
Intellectual Merit: <br/>Because of extensive ice cover and sparse remote-sensing data, the geology of the Precambrian East Antarctic Shield (EAS) remains largely unexplored with information limited to coastal outcrops from the African, Indian and Australian sectors. The East Antarctic lithosphere is globally important: as one of the largest coherent Precambrian shields, including rocks as old as ~3.8 Ga, it played an important role in global crustal growth; it is a key piece in assembly of the Rodinia and Gondwana supercontinents; it is the substrate to Earth?s major ice cap, including numerous sub-glacial lakes, and influences its thermal state and mechanical stability; and its geotectonic association with formerly adjacent continental blocks in South Africa, India and Australia suggest that it might harbor important mineral resources. This project will increase understanding of the age and composition of the western EAS lithosphere underlying and adjacent to the Transantarctic Mountains (TAM) using U-Pb ages, and Hf- and O-isotope analysis of zircon in early Paleozoic granitoids and Pleistocene glacial tills. TAM granites of the early Paleozoic Ross Orogen represent an areally extensive continental-margin arc suite that can provide direct information about the EAS crust from which it melted and/or through which it passed. Large rock clasts of igneous and metamorphic lithologies entrained in glacial tills at the head of major outlet glaciers traversing the TAM provide eroded samples of the proximal EAS basement. Zircons in these materials will provide data about age and inheritance (U-Pb), crustal vs. mantle origin (O isotopes), and crustal sources and evolution (Hf isotopes). Integrated along a significant part of the TAM, these data will help define broader crustal provinces that can be correlated with geophysical data and used to test models of crustal assembly. <br/><br/>Broader impacts: <br/>This project will provide a research opportunity for undergraduate and graduate students. Undergraduates will be involved as Research Assistants in sample preparation, imaging, and analytical procedures, and conducting their own independent research. The two main elements of this project will form the basis of MS thesis projects for two graduate students at UMD. Through this project they will gain a good understanding of petrology, isotope geochemistry, and analytical methods. The broader scientific impacts of this work are that it will help develop a better understanding of the origin and evolution of East Antarctic lithosphere underlying and adjacent to the TAM, which will be of value to the broader earth science and glaciological community. Furthermore, knowledge of East Antarctic geology is of continuing interest to the general public because of strong curiosity about past supercontinents, what?s under the ice, and the impact of global warming on ice-sheet stability.
Dissolved organic matter (DOM) comprises a significant pool of Earth's organic carbon that dwarfs the amount present in living aquatic organisms. The properties and reactivity of DOM are not well defined, and the evolution of autochthonous DOM from its precursor materials in freshwater has not been observed. Recent sampling of a supraglacial stream formed on the Cotton Glacier in the Transantarctic Mountains revealed DOM that more closely resembles an assemblage of recognizable precursor organic compounds, based upon its UV-VIS and fluorescence spectra. It is suggested that the DOM from this water evolved over time to resemble materials present in marine and many inland surface waters. The transient nature of the system i.e., it reforms seasonally, also prevents any accumulation of the refractory DOM present in most surface waters. Thus, the Cotton Glacier provides us with a unique environment to study the formation of DOM from precursor materials. An interdisciplinary team will study the biogeochemistry of this progenitor DOM and how microbes modify it. By focusing on the chemical composition of the DOM as it shifts from precursor material to the more humified fractions, the investigators will relate this transition to bioavailability, enzymatic activity, community composition and microbial growth efficiency. This project will support education at all levels, K-12, high school, undergraduate, graduate and post-doc and will increase participation by under-represented groups in science. Towards these goals, the investigators have established relationships with girls' schools and Native American programs. Additional outreach will be carried out in coordination with PolarTREC, PolarPalooza, and if possible, an Antarctic Artist and Writer.
Intellectual Merit:<br/>The focus of this proposal is to collect fossil plants and palynomorphs from Permian-Triassic (P-T) rocks of the central Transantarctic Mountains (CTM), together with detailed data on sedimentologic and paleoecologic depositional environments. Fossil plants are important climate proxies that offer a unique window into the past, and the CTM fossils are an important source of data on the ways that plants responded to a strongly seasonal, polar light regime during a time of global change. The proposed project uses paleobotanical expertise, integrated with detailed sedimentology and stratigraphy, to reconstruct Permian-Triassic plant communities and their paleoenvironments. This interdisciplinary approach could uncover details of Antarctica?s complex late Paleozoic and Mesozoic environmental and climatic history which included: 1) deglaciation, 2) development and evolution of a post-glacial landscape and biota, 3) environmental and biotic change associated with the end-Permian mass extinction, 4) environmental recovery in the earliest Triassic, 5) strong, possible runaway Triassic greenhouse, and 6) widespread orogenesis and development of a foreland basin system. The PIs will collect compression floras both quantitatively and qualitatively to obtain biodiversity and abundance data. Since silicified wood is also present, the PIs will analyze tree rings and growth in a warm, high-latitude environment for which there is no modern analogue. Fossil plants from the CTM can provide biological and environmental information to: 1) interpret paleoclimate when Gondwana moved from icehouse to greenhouse conditions; 2) trace floral evolution across the P-T boundary; 3) reconstruct Antarctic plant life; 4) further understanding of plant adaptations to high latitudes. The Intellectual Merit of the research includes: 1) tracing floral evolution after the retreat of glaciers; 2) examining floral composition and diversity across the PTB; and 3) obtaining data on the recovery of these ecosystems in the Early Triassic, as well as changes in floral cover and diversity in the Early-Middle Triassic. Antarctica is the only place on Earth that includes extensive outcrops of terrestrial rocks, combined with widespread and well-preserved plant fossils, which spans this crucial time period.<br/><br/>Broader impacts:<br/>The broader impacts include public outreach; teaching, and mentoring of women and underrepresented students; mentoring graduate student, postdoctoral, and new faculty women; development of an inquiry-based workshop on Antarctic paleoclimate with the Division of Education, KU Natural History Museum; continuing support of workshops for middle school girls in science via the Expanding Your Horizons Program, Emporia State University, and the TRIO program, KU; exploring Antarctic geosciences through video/computer links from McMurdo Station and satellite phone conferences from the field with K-12 science classes in Wisconsin and Kansas, and through participation in the NSF Research Experiences for Teachers program at the University of Wisconsin.
Intellectual Merit: <br/>This research will place the subsidence history of the southern Victoria Land Basin into a quantitative geodynamic context and will assess the influence of flexure associated with late Neogene volcanic loading of the crust by the Erebus Volcanic Group. This will be done by extending geodynamic models of extension in the West Antarctic Rift System to include extensional hiatuses hypothesized to have occurred during the Late Paleogene and Miocene, and by developing a new geodynamic model of volcanic loading and associated lithosphere flexure. Finite element and finite difference modeling methods will be used. In the first phase of the project, a series of extensional geodynamic models will be developed to examine the effect that proposed extensional hiatuses have on the style of extension, with emphasis placed on developing a process based understanding of the change in rift style from diffuse during the Late Cretaceous to more focused during the Cenozoic. The models will test the hypotheses that extensional hiatuses led to the change in rifting style, and will place constraints on the timing and duration of the hiatuses. The second phase of the project will use the thermal and rheological properties of the previous models to constrain the flexural rigidity of the lithosphere in order to model the flexural response to volcanic loading to test the hypotheses that flexural subsidence contributed to cyclic changes between grounded and floating ice at the ANDRILL AND-1A site, complicating interpretations of the climatic record from this core, and that flexure contributes to the stress orientation at the AND-2B site, which is inconsistent with the expected regional extensional stress orientation.<br/><br/>Broader impacts: <br/>The project will train an undergraduate student and an M.S. student. Outreach activities include a planned series of talks at regional high schools, junior colleges, and 4-year colleges that have geology programs.
Intellectual Merit: <br/>Neogene sediment records recovered by ANDRILL suggest multiple events of open water conditions and elevated sea surface temperatures at times when terrestrial data from the McMurdo Dry Valleys indicate hyper arid, cold, desert conditions. Interpretation of the ANDRILL data suggests the West Antarctic Ice Sheet is highly sensitive to changes in Pliocene sea surface temperatures and this conclusion has been supported by recent Global Circulation Model results for the early to mid Pliocene. The PIs propose to model paleo-ice configurations and warm orbits associated with a WAIS collapse to assess potential climate change in East Antarctica. During such episodes of polar warmth they propose to answer: What is the limit of ablation along the East Antarctic Ice Sheet?; Are relict landforms in the Dry Valleys susceptible to modification from increase in maximum summertime temperatures?; and Is there sufficient increase in minimum wintertime temperatures to sustain a tundra environment in the Dry Valleys? Integration of depositional records and model outputs have the potential to test the performance of numerical models currently under development as part of ANDRILL; reconcile inconsistencies between marine and terrestrial paleoclimate records in high Southern Latitudes; and improve understanding of Antarctic climate and ice volume sensitivity to forcing for both the East Antarctic and West Antarctic Ice Sheets. <br/><br/>Broader impacts: <br/>Results from this study have the potential to be used widely by the research community. Outreach to local elementary schools from other funded efforts will continue and be extended to homeschooled students. A Post Doc will be supported as part of this award.
The proposed work will investigate changes in the compositional variation of glacial tills over time across two concentric sequences of Pleistocene moraines located adjacent to the heads of East Antarctic outlet glaciers in the Transantarctic Mountains (TAM). The chronologic framework for this work will be generated from cosmogenic exposure ages of boulders on prominent morainal ridges. The PIs hypothesize that variations in till composition may indicate a change in ice flow direction or a change in the composition of the original source area, while ages of the moraines provide a long-term terrestrial perspective on ice sheet dynamics. Both results are vital for modeling experiments that aim to reconstruct the East Antarctic Ice Sheet and assess its role in the global climate system and its potential impact on global sea level rise. The variation of till compositions through time also allows for a more accurate interpretation of sediment cores from the Ross Sea and the Southern Ocean. Additionally, till exposures at the head of some East Antarctic outlet glaciers have been shown to contain subglacial material derived from East Antarctic bedrock, providing a window through the ice to view East Antarctica?s inaccessible bedrock. Till samples will be collected from two well-preserved sequences of moraine crests at Mt. Howe (head of Scott Glacier) and Mt. Achernar (between Beardmore and Nimrod Glaciers). Each size fraction in glacial till provides potentially valuable information, and the PIs will measure the petrography of the clast and sand fractions, quantitative X-ray diffraction on the crushed <2mm fraction, elemental abundance of the silt/clay fraction, and U/Pb of detrital zircons in the sand fraction. Data collection will rely on established methods previously used in this region and the PIs will also explore new methods to assess their efficacy. On the same moraines crests sampled for provenance studies, the PIs will sample for cosmogenic surface exposure analyses to provide a chronologic framework at the sites for provenance changes through time. <br/><br/>Broader Impact <br/>The proposed research involves graduate and undergraduate training in a diverse array of laboratory methods. Students and PIs will be make presentations to community and campus groups, as well as conduct interviews with local news outlets. The proposed work also establishes a new, potentially long-term, collaboration between scientists at IUPUI and LDEO and brings a new PI (Kaplan) into the field of Antarctic Earth Sciences.
Intellectual Merit: <br/>The goal of this project is to address relationships between foreland basins and their tectonic settings by combining detrital zircon isotope characteristics and sedimentological data. To accomplish this goal the PIs will develop a detailed geochronology and analyze Hf- and O-isotopes of detrital zircons in sandstones of the Devonian Taylor Group and the Permian-Triassic Victoria Group. These data will allow them to better determine provenance and basin fill, and to understand the nature of the now ice covered source regions in East and West Antarctica. The PIs will document possible unexposed/unknown crustal terrains in West Antarctica, investigate sub-glacial terrains of East Antarctica that were exposed to erosion during Devonian to Triassic time, and determine the evolving provenance and tectonic history of the Devonian to Triassic Gondwana basins in the central Transantarctic Mountains. Detrital zircon data will be interpreted in the context of fluvial dispersal/drainage patterns, sandstone petrology, and sequence stratigraphy. This interpretation will identify source terrains and evolving sediment provenances. Paleocurrent analysis and sequence stratigraphy will determine the timing and nature of changing tectonic conditions associated with development of the depositional basins and document the tectonic history of the Antarctic sector of Gondwana. Results from this study will answer questions about the Panthalassan margin of Gondwana, the Antarctic craton, and the Beacon depositional basin and their respective roles in global tectonics and the geologic and biotic history of Antarctica. The Beacon basin and adjacent uplands played an important role in the development and demise of Gondwanan glaciation through modification of polar climates, development of peat-forming mires, colonization of the landscape by plants, and were a migration route for Mesozoic vertebrates into Antarctica. <br/><br/>Broader impacts: <br/>This proposal includes support for two graduate students who will participate in the fieldwork, and also support for other students to participate in laboratory studies. Results of the research will be incorporated in classroom teaching at the undergraduate and graduate levels and will help train the next generation of field geologists. Interactions with K-12 science classes will be achieved by video/computer conferencing and satellite phone connections from Antarctica. Another outreach effort is the developing cooperation between the Byrd Polar Research Center and the Center of Science and Industry in Columbus.
Stone/0838818 <br/><br/>This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). <br/><br/>This award supports a project to study the former thickness and retreat history of Shackleton and Beardmore Glaciers which flow through the Transantarctic Mountains (TAMs) into the southern Ross Sea. Lateral moraine deposits along the lower reaches of these major outlet glaciers will be mapped and dated and the results will help to date the LGM and constrain the thickness of ice where it left the Transantarctic Mountains and flowed into the Ross Sea. The intellectual merit of the project is that the results will allow scientists to distinguish between models of ice retreat, which have important implications for former ice configuration and dynamics, and to constrain the contribution from Ross Sea deglaciation to global sea level through the late Holocene. In addition, this will make a significant contribution to a better understanding of the magnitude and timing of postglacial sea-level change and the potential contribution of Antarctica to sea-level rise in future. The broader impacts of the project are that the work will help quantify changes in grounded ice volume since the LGM, improve understanding of the ice dynamics responsible, and examine their implications for future sea level change. The project will train future scientists through participation of two graduate students and undergraduates who will develop self-contained research projects. As in previous Antarctic projects, there will be interaction with K-12 students through classroom visits, web-based expedition journals, letters from the field, and discussions with teachers and will allow the project to be shared with a wide audience. This award has field work in Antarctica.
The climatic changes of late Precambrian time, 600-800 million years ago, included episodes of extreme glaciation, during which ice may have covered nearly the entire ocean for several million years, according to the Snowball Earth hypothesis. These episodes would hold an important place in Earth?s evolutionary history; they could have encouraged biodiversity by trapping life forms in small isolated ice-free areas, or they could have caused massive extinctions that cleared the path for new life forms to fill empty niches. What caused the Earth to become iced over, and what later caused the ice to melt? Scientific investigation of these questions will result in greater understanding of the climatic changes that the Earth can experience, and will enable better predictions of future climate. This project involves Antarctic field observations as well as laboratory studies and computer modeling.<br/><br/>The aim of this project is not to prove or disprove the Snowball Earth hypothesis but rather to quantify processes that are important for simulating snowball events in climate models. The principal goal is to identify the types of ice that would have been present on the frozen ocean, and to determine how much sunlight they would reflect back to space. Reflection of sunlight by bright surfaces of snow and ice is what would maintain the cold climate at low latitudes. The melting of the ocean required buildup of greenhouse gases, but it was probably aided by deposition of desert dust and volcanic ash darkening the snow and ice. With so much ice on the Earth?s surface, even small differences in the amount of light that the ice absorbed or reflected could cause significant changes in climate. The properties of the ice would also determine where, and in what circumstances, photosynthetic life could have survived. Some kinds of ice that are rare on the modern Earth may have been pivotal in allowing the tropical ocean to freeze. The ocean surfaces would have included some ice types that now exist only in Antarctica: bare cold sea ice with precipitated salts, and "blue ice" areas of the Transantarctic Mountains that were exposed by sublimation and have not experienced melting. Field expeditions were mounted to examine these ice types, and the data analysis is underway. A third ice type, sea ice with a salt crust, is being studied in a freezer laboratory. Modeling will show how sunlight would interact with ice containing light-absorbing dust and volcanic ash. Aside from its reflection of sunlight, ice on the Snowball ocean would have been thick enough to flow under its own weight, invading all parts of the ocean. Yet evidence for the survival of photosynthetic life indicates that some regions of liquid water were maintained at the ocean surface. One possible refuge for photosynthetic organisms is a bay at the far end of a nearly enclosed tropical sea, formed by continental rifting and surrounded by desert, such as the modern Red Sea. A model of glacier flow is being developed to determine the dimensions of the channel, connecting the sea to the ocean, necessary to prevent invasion by the flowing ice yet maintain a water supply to replenish evaporation.
This project studies the Permian-Triassic extinction event as recorded in sedimentary rocks from the Transantarctic Mountains of Antarctica. Two hundred and fifty million years ago most life on Earth was wiped out in a geologic instant. The cause is a subject of great debate. Researchers have identified a unique stratigraphic section near Shackleton glacier laid down during the extinction event. Organic matter from these deposits will be analyzed by density gradient centrifugation (DGC), which will offer detailed information on the carbon isotope composition. The age of these layers will be precisely dated by U/Pb-zircon-dating of intercalated volcanics. Combined, these results will offer detailed constraints on the timing and duration of carbon isotope excursions during the extinction, and offer insight into the coupling of marine and terrestrial carbon cycles. <br/>The broader impacts of this project include graduate and undergraduate student research, K12 outreach and teacher involvement, and societal relevance of the results, since the P/T extinction may have been caused by phenomena such as methane release, which could accompany global warming.
This project studies formation of the TransAntarctic Mountains (TAM) through numerical modeling based on cooling histories of apatite mineral grains. The TAM are the highest and longest rift-related mountain range in the world. Various models for their uplift have been proposed, the most provocative of which is that they are not uplifted, but instead are the eroded remnant of a plateau. This project evaluates that hypothesis by collecting apatites from around Byrd Glacier for fission track thermochronology. Results will be combined with a kinematic and thermal model to determine the TAM?s structural evolution. The plateau model, if correct, implies that the Byrd Glacier originated not as a glacier-carved valley through the TAM, but as a river system flowing in the opposite direction. Given that the Byrd Glacier is a key drainage for the East Antarctic ice sheet, this result has important implications for ice sheet models and interpretation of both regional geology and sediment records.<br/><br/>The main broader impacts are undergraduate research and a new collaboration between a primarily undergraduate and a research institution. Students will be involved in the field program, sample analyses, and numerical modeling.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The investigators will examine competing hypotheses for the mechanism of extension and creation of the Transantarctic Mountains, and evolution of the thermal regimes of rifted West Antarctica and stable East Antarctica using magnetotelluric (MT) profiles. Surrounded almost entirely by ocean ridges, Antarctica is a special tectonic situation because of the need to make accommodation space for rifting in the Transantarctic region. In the MT method, temporal variations in the Earth's natural electromagnetic field are used as source fields to probe the electrical resistivity structure in the depth range of 1 to 200 km, or more. Geophysical methods, such as MT, are appropriate in Antarctica because of the predominance of thick ice cover over most of the Continent and the difficult operating environment. The proposed effort will consist of approximately 50 sites over a distance approaching 500 km with a 10 km average spacing, oriented normal to the Transantarctic Mountains (TAM), in the Beardmore glacier area. High quality MT soundings will be collected over thick ice sheets using a custom electrode preamp design, updated from previous Antarctic projects. Data acquisition will take place over two field seasons. The primary goals are three-fold: to establish the location of the deeper tectonic transition between East and West Antarctica that may be offset from the physiographic transition at the surface, using deep resistivity structure distinguish between modes of extensional upwelling and magmatism that may be vertically non-uniform, depth and magnitude of quasi-layered deep crustal low resistivity, particularly below West Antarctica, will be used to estimate crustal heat flux into the ice sheet base.
This project is an aerogeophysical survey to explore unknown terrain in East Antarctica to answer questions of climate change and earth science. The methods include ice-penetrating radar, gravity, and magnetic measurements. The project?s main goal is to investigate the stability and migration of ice divides that guide flow of the East Antarctic ice sheet, the world?s largest. The project also maps ice accumulation over the last interglacial, identifies subglacial lakes, and characterizes the catchment basins of the very largest glacial basins, including Wilkes and Aurora. The outcomes contribute to ice sheet models relevant to understanding sea level rise in a warming world. The work will also help understand the regional geology. Buried beneath miles-thick ice, East Antarctica is virtually uncharacterized, but is considered a keystone for tectonic reconstructions and other geologic questions. The region also hosts subglacial lakes, whose geologic histories are unknown. <br/><br/>The broader impacts are extensive, and include societal relevance for understanding sea level rise, outreach in various forms, and education at the K12 through postdoctoral levels. The project contributes to the International Polar Year (2007-2009) by addressing key IPY themes on frontiers in polar exploration and climate change. It also includes extensive international collaboration with the United Kingdom, Australia, France and other nations; and offers explicit opportunities for early career scientists.
Whillans, Wilson, Goad OPP 9527571 Abstract This award supports a project to initiate Global Positioning System (GPS) measurements for rock motions in South Victoria Land and vicinity. The results will be used to test some of the leading models for ice-sheet change and tectonism, in particular, whether the continent is rebounding due to reduced ice load from East or West Antarctica and whether there is tectonic motion due to Terror Rift or uplift of the Transantarctic Mountains. A modest program to measure ice motion will be conducted as well. The motive is to test models for ice flow in the Allan Hills meteorite concentration region and to determine whether small glaciers in the Dry Valleys are thickening or thinning. Monuments will be set into rock and ice and GPS receivers used to determine their locations. Repeats in later years will determine motion. Field activities will involve close cooperation with the USGS.
Ice sheet models of the Last Glacial Maximum, and previous glaciation events in the Miocene, suggest that current low altitude, ice-free surfaces in Antarctica were completely covered with ice. If so, the terrestrial biota of Antarctica today would result from recolonization events after each glacial maximum. However, there is emerging evidence that much of the terrestrial Antarctic biota are of ancient origin and have somehow survived these glaciation events. The Transantarctic Mountains TRANsition Zone (TAM-TRANZ) plays a pivotal role in understanding the evolution and biogeographic history of today's Antarctic terrestrial biota, primarily because it contains numerous inland areas that could have served as refugia during glacial maxima. Due to its remote location, the TAM-TRANZ has not been systematically surveyed for animal biodiversity. Although an exhaustive survey of the region requires a multi-discipline, multi-year and multi-region effort, the research herein combines ecological, evolutionary and geophysical expertise to conduct an exploratory investigation of the extreme southern limits of biotic communities. The project will examine the historical geophysical requirements for the colonization and maintenance of functional ecosystems by multicellular organisms, and the feasibility and desirability to implement more systematic biogeographic studies in the future. Broader impacts include graduate and undergraduate student ownership of important subprojects that will provide research, presentation and publication opportunities. The investigators also will contribute to ongoing public education efforts through relationships with K-12 teachers and administrators in the public school districts where the project personnel reside. Finally, the project is leveraged by opportunistic collaboration with scientists associated with Antarctica New Zealand.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a study to investigate the tectonic development of the southwestern Ross Sea region. Displacements between East and West Antarctica have long been proposed based on global plate circuits, apparent hot spot motions, interpretations of seafloor magnetic anomalies, paleomagnetism, and on geologic grounds. Such motions require plate boundaries crossing Antarctica, yet these boundaries have never been explicitly defined. This project will attempt to delineate the late Cenozoic - active boundary between East and West Antarctica along the Terror Rift in the western Ross Sea, where young structures have been identified, continuity between active extension and intracontinental structures can be established, and where accessibility via ship will allow new key data sets to be acquired. We will use multi-source marine and airborne geophysical data to map the fault patterns and volcanic structure along the eastern margin of the Terror Rift. The orientations of volcanic fissures and seamount alignments on the seafloor will be mapped using multibeam bathymetry. The volcanic alignments will show the regional extension or shear directions across the Terror Rift and the orientations of associated crustal stresses. Swath bathymetry and single channel seismic data will be used to document neotectonic fault patterns and the eastern limit of recent faulting. Delineation of neotectonic fault patterns will demonstrate whether the eastern margin of the Terror Rift forms a continuous boundary and whether the rift itself can be linked with postulated strike-slip faults in the northwestern Ross Sea. Seafloor findings from this project will be combined with fault kinematic and stress field determinations from the surrounding volcanic islands and the Transantarctic Mountains. The integrated results will test the propositions that the eastern boundary of the Terror Rift forms the limit of the major, late Cenozoic -active structures through the Ross Sea and that Terror Rift kinematics involve dextral transtension linked to the right-lateral strike-slip faulting to the north. These results will help constrain the kinematic and dynamic links between the West Antarctic rift system and Southern Ocean structures and any related motions between East and West Antarctica. In the first year, a collaborative structural analysis of existing multichannel and single channel seismic profiles and aeromagnetic data over the Terror Rift will be conducted. The location of volcanic vents or fissures and any fault scarps on the sea floor will be identified and a preliminary interpretation of the age and kinematics of deformation in the Terror Rift will be produced. Late in the second year, a one-month cruise on RVIB N.B. Palmer will carry out multibeam bathymetric and sidescan sonar mapping of selected portions of the seafloor of Terror Rift. Gravity, magnetics, seismic reflection and Bathy2000 3.5 kHz sub-bottom profile data will also be collected across the rift. In the third year, we will use these multisource data to map the orientations and forms of volcanic bodies and the extent and geometry of neotectonic faulting associated with the Terror Rift. The project will: 1) complete a map of neotectonic faults and volcanic structures in the Terror Rift; 2) interpret the structural pattern to derive the motions and stresses associated with development of the rift; 3) compare Terror Rift structures with faults and lineaments mapped in the Transantarctic Mountains to improve age constraints on the structures; and 4) integrate the late Cenozoic structural interpretations from the western Ross Sea with Southern Ocean plate boundary kinematics.
OPP-0230285/OPP-0230356<br/>PIs: Wilson, Terry J./Hothem, Larry D.<br/><br/>This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to conduct GPS measurements of bedrock crustal motions in an extended Transantarctic Mountains Deformation network (TAMDEF) to document neotectonic displacements due to tectonic deformation within the West Antarctic rift and/or to mass change of the Antarctic ice sheets. Horizontal displacements related to active neotectonic rifting, strike-slip translations, and volcanism will be tightly constrained by monitoring the combined TAMDEF and Italian VLNDEF networks of bedrock GPS stations along the Transantarctic Mountains and on offshore islands in the Ross Sea. Glacio-isostatic adjustments due to deglaciation since the Last Glacial Maximum and to modern mass change of the ice sheets will be modeled from GPS-derived crustal motions together with new information from other programs on the configurations, thicknesses, deglaciation history and modern mass balance of the ice sheets. Tectonic and rheological information from ongoing structural and seismic investigations in the Victoria Land region will also be integrated in the modeling. The integrative and iterative modeling will yield a holistic interpretation of neotectonics and ice sheet history that will help us to discriminate tectonic crustal displacements from viscoelastic/elastic glacio-isostatic motions. These results will provide key information to interpret broad, continental-scale crustal motion patterns detected by sparse, regionally distributed GPS continuous trackers and by spaceborne instruments. This study will contribute to international programs focused on Antarctic neotectonic and global change issues.<br/><br/>Strategies to meet these science objectives include repeat surveys of key sites in the existing TAMDEF network, extension of the array of TAMDEF sites southward about 250 km along the Transantarctic Mountains, linked measurements with the VLNDEF network, and integration of quasi-continuous trackers within the campaign network. By extending the array of bedrock sites southward, these measurements will cross gradients in predicted vertical motion due to viscoelastic rebound. The southward extension will also allow determination of the southern limit of the active Terror Rift and will provide a better baseline for constraints on any ongoing tectonic displacements across the West Antarctic rift system as a whole that might be possible using GPS data collected by the West Antarctic GPS Network. This project will also investigate unique aspects of GPS geodesy in Antarctica to determine how the error spectrum compares to mid-latitude regions and to identify the optimum measurement and data processing schemes for Antarctic conditions. The geodetic research will improve position accuracies within our network and will also yield general recommendations for deformation monitoring networks in polar regions.<br/><br/>An education and outreach program is planned and will be targeted at non-science-major undergraduate students taking Earth System Science at Ohio State University. The objective will be to illuminate the research process for nonscientists. This effort will educate students on the process of science and inform them about Antarctica and how it relates to global science issues.
This project studies ancient lake deposits from the western Dry Valleys of Antarctica. These deposits are particularly exciting because they preserve flora and fauna over seven million years in age that represent the last vestiges of ecosystems that dominated this area before formation of the modern East Antarctic ice sheet. Their unique nature offers a chance to bridge modern and ancient ecology. Formed along the margin of ancient alpine glaciers, these deposits contain layers of silt, clay, and volcanic ash; as well as freeze-dried remnants of mosses, insects, and diatoms. Geological and biological analyses provide a view of the ecological and environmental conditions during mid-to-late Miocene--seven to seventeen million years ago--which spans the critical period when the East Antarctic ice sheet transitioned to its present stable form. The results place the modern lakes of the Dry Valleys into a long-term evolutionary framework, and allow for correlation and dating comparisons with other fossil-rich deposits from the Transantarctic Mountains. Chemical fingerprinting and dating of volcanic glass shards will also help date fossil- and ash-bearing horizons in nearby marine cores, such as those to be collected under the ANDRILL program. <br/><br/>The broader impacts are education at the postdoctoral, graduate, and undergraduate levels; and collaboration between a research institution and primarily undergraduate institution. The work also improves our understanding of global climate change during a critical period in the Earth's history.
This project studies the last vestiges of life in Antarctica from exceptionally well-preserved fossils of tundra life--mosses, diatoms, ostracods, Nothofagus leaves, wood, and insect remains recently discovered in ancient lake sediments from the McMurdo Dry Valleys. The area will be studied by an interdisciplinary team to elucidate information about climate and biogeography. These deposits offer unique and direct information about the characteristics of Antarctica during a key period in its history, the time when it was freezing. This information is critical for correlation with indirect proxies, such as though obtained from drill cores, for climate and state of the ice sheet. The results will also help understand the origin and migration of similar organisms found in South America, India and Australia.<br/><br/>In terms of broader impacts, this project supports an early career researcher, undergraduate and graduate student research, various forms of outreach to K12 students, and extensive international collaboration. The work also has societal relevance in that the outcomes will offer direct constraints on Antarctica's ice sheet during a time with atmospheric CO2 contents similar to those of the earth in the coming centuries, and thus may help predictive models of sea level rise.
9911617<br/>Blankenship<br/><br/>This award, provided jointly by the Antarctic Geology and Geophysics Program, the Antarctic Glaciology Program, and the Polar Research Support Section of the Office of Polar Programs, provides funds for continuation of the Support Office for Aerogeophysical Research (SOAR). From July 1994 to July 2000, SOAR served as a facility to accomplish aerogeophysical research in Antarctica under an agreement between the University of Texas at Austin and the National Science Foundation's Office of Polar Programs (NSF/OPP). SOAR operated and maintained an aerogeophysical instrument package that consists of an ice-penetrating radar sounder, a laser altimeter, a gravimeter and a magnetometer that are tightly integrated with each other as well as with the aircraft's avionics and power packages. An array of aircraft and ground-based GPS receivers supported kinematic differential positioning using carrier-phase observations. SOAR activities included: developing aerogeophysical research projects with NSF/OPP investigators; upgrading of the aerogeophysical instrumentation package to accommodate new science projects and advances in technology; fielding this instrument package to accomplish SOAR-developed projects; and management, reduction, and analysis of the acquired aerogeophysical data. In pursuit of 9 NSF-OPP funded aerogeophysical research projects (involving 14 investigators from 9 institutions), SOAR carried out six field campaigns over a six-year period and accomplished approximately 200,000 line kilometers of aerogeophysical surveying over both East and West Antarctica in 377 flights.<br/><br/>This award supports SOAR to undertake a one year and 8 month program of aerogeophysical activities that are consistent with continuing U.S. support for geophysical research in Antarctica. <br/>- SOAR will conduct an aerogeophysical campaign during the 200/01 austral summer to accomplish surveys for two SOAR-developed projects: "Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Studies" (Co-PI's Bell and Studinger, LDEO); and "Collaborative Research: Seismic Investigation of the Deep Continental Structure Across the East-West Antarctic Boundary" (Co-PI's Weins, Washington U. and Anandakrishnan, U. Alabama). After configuration and testing of the survey aircraft in McMurdo, SOAR will conduct survey flights from an NSF-supported base adjacent to the Russian Station above Lake Vostok and briefly occupy one or two remote bases on the East Antarctic ice sheet.<br/>- SOAR will reduce these aerogeophysical data and produce profiles and maps of surface elevation, bed elevation, gravity and magnetic field intensity. These results will be provided to the respective project investigators within nine months of conclusion of field activities. We will also submit a technical manuscript that describes these results to a refereed scientific journal and distribute these results to appropriate national geophysical data centers within approximately 24 months of completion of field activities.<br/>- SOAR will standardize all previously reduced SOAR data products and transfer them to the appropriate national geophysical data centers by the end of this grant.<br/>- SOAR will convene a workshop to establish a community consensus for future U.S. Antarctic aerogeophysical research. This workshop will be co-convened by Ian Dalziel and Richard Alley and will take place during the spring of 2001.<br/>- SOAR will upgrade the existing SOAR in-field quality control procedures to serve as a web-based interface for efficient browsing of many low-level SOAR data streams.<br/>- SOAR will repair and/or refurbish equipment that was used during the 2000/01 field campaign.<br/><br/>Support for SOAR is essential for accomplishing major geophysical investigations in Antarctica. Following data interpretation by the science teams, these data will provide valuable insights to the structure and evolution of the Antarctic continent.
This award supports a project to perform ice radar studies of bedrock topography and internal layers along the second US ITASE traverse corridor extending from Taylor Dome to South Pole on the inland side of the Transantarctic Mountains. The radar will provide information immediately available in the field on ice thickness and internal layer structure to help in the selection of core sites as the traverse proceeds. These data will also be useful in locating additional radar and surface studies to characterize the drainage divides between major outlet glaciers flowing through the mountains and possible changes in them through time. Information from the radar on bed roughness and basal reflectivity, together with images of internal layer deformation will enable us to study changes in the character of ice flow as tributaries merge to trunk flow and velocities increase. Areas where wind scour and sublimation have brought old ice close to the surface will be investigated. Based on our results from the first ITASE traverse, it is also likely that there will be findings of opportunity, phenomena we have not anticipated that are revealed by the radar as the result of a discovery-based traverse. The interdisciplinary science goals of US ITASE are designed to accommodate a variety of interactive research programs and data collected are available to a broad scientific community. US ITASE also supports an extensive program of public outreach and the education and training of future scientists will be central to all activities of this proposal. St. Olaf College is an undergraduate liberal arts institution that emphasizes student participation in scientific research. This award supports two undergraduate students as well as a research associate and a graduate student who will be part of the US ITASE field team.
9980452<br/>Harvey<br/><br/>This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for continuation of the Antarctic Search for Meteorites (ANSMET). Since 1976, ANSMET has recovered more than 10,000 meteorite specimens from locations along the Transantarctic Mountains. This award supports continued recovery of Antarctic meteorites during six successive austral summer field seasons, starting with the 2000-2001 season and ending with the 2005-2006 season. Under this project, systematic searches for meteorite specimens will take place at previously discovered stranding surfaces, and reconnaissance work will be conducted to discover and explore the extent of new areas with meteorite concentrations. ANSMET recovery teams will deploy by air to locations in the deep field for periods of 5-7 weeks. While at the meteorite stranding surface, field team members will search the ice visually, traversing on foot or on snowmobile. Specimens will be collected under the most sterile conditions practical and samples will remain frozen until returned to the Johnson Space Center (JSC) in Houston, Texas. At the JSC, initial characterization and sample distribution to all interested researchers takes place under the auspices of an interagency agreement between NSF, NASA, and the Smithsonian Institution.<br/><br/>The impact of ANSMET has been substantial and this will continue under this award. The meteorites recovered by ANSMET are the best and most reliable source of new, non-microscopic extraterrestrial material, providing essential "ground-truth" concerning the materials that make up the asteroids, planets and other bodies of our solar system. The system for their characterization and distribution is unparalleled and their subsequent study has fundamentally changed our understanding of the solar system. ANSMET meteorites have helped researchers explore the conditions that were present in the nebula from which our solar system was born 4.556 billion years ago and provided samples of asteroids, ranging from primitive bodies unchanged since the formation of the solar system to complex, geologically active miniature planets. ANSMET samples proved, against the conventional wisdom, that some meteorites actually represent planetary materials, delivered to us from the Moon and Mars, completely changing our view of the geology of those bodies. ANSMET meteorites have even generated a new kind of inquiry into one of the most fundamental scientific questions possible; the question of biological activity in the universe as a whole. Over the past twenty years, ANSMET meteorites have economically provided a continuous and readily available supply of extraterrestrial materials for research, and should continue to do so in the future.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate Triassic and Jurassic dinosaurs and other vertebrates from the central Transantarctic Mountains of Antarctica. A field program to search for Upper Triassic to Jurassic age fossil vertebrates in the Beardmore Glacier region will be carried out in the 2003-04 austral summer. Initially, field efforts will concentrate on the Hanson Formation that has produced the only Jurassic dinosaur fauna from Antarctica. Further excavation of the Hanson dinosaur locality on Mt. Kirkpatrick will occur, followed by an extensive search of other exposures of the Hanson, Falla and Upper Fremouw Formations in the Beardmore area. A field party of six persons will allow two smaller groups to work independently at different sites. This group will operate for 3-4 weeks out of a small helicopter camp located in the Beardmore area. In addition to collecting new specimens an interpretation of the depositional settings for each of the vertebrate sites will be made. The second and third years of this project will be dedicated to preparation and study of the vertebrates. Antarctic vertebrates provide a unique opportunity to study the evolutionary and biogeographic significance of high latitude Mesozoic faunas and this project should result in significant advances in knowledge in this field.
Encarnaci_n OPP 9615398 Abstract Basement rocks of the Transantarctic Mountains are believed to record a change in the paleo-Pacific margin of Gondwana from a rifted passive margin to a tectonically active margin (Ross orogen). Recent hypothesis suggest that the passive margin phase resulted from Neoproterozoic rifting of Laurentia from Antarctica ("SWEAT" hypothesis). The succeeding active margin phase (Ross orogeny) was one of several tectonic events ("Pan African" events) that resulted from plate convergence/transpression that was probably a consequence of the assembly of components of the Gondwana supercontinent. Although these basement units provide one of the keys for understanding the break up and assembly of these major continental masses, few precise ages are available to address the following important issues: (1) Is there any pre-rift high-grade cratonal basement exposed along the Transantarctic Mountains, and what is/are its precise age? Is this age compatible with a Laurentia connection? (2) What is the age of potential rift/passive margin sediments (Beardmore Group) along the Queen Maud Mountains sector of the orogen? (3) What is the relative and absolute timing of magmatism and contractional deformation of supracrustal units in the orogen? Was deformation diachronous and thus possibly related to transpressional tectonics, or did it occur in a discrete pulse that is more compatible with a collision? How does contraction of the orogen fit in with emplacement of voluminous plutonic and volcanic rocks? The answers to these questions are central to understanding the kinematic evolution of this major orogenic belt and its role in Neoproterozoic-Early Paleozoic continental reconstructions and plate kinematics. Hence, this award supports funding for precise U-Pb dating, using zircon, monazite, baddeleyite, and/or titanite from a variety of magmatic rocks in the Queen Ma ud Mountains, which can address the foregoing problems. In addition to the issues above, precise dating of volcanics that are interbedded with carbonates containing probable Middle Cambrian fauna could potentially provide a calibration point for the Middle Cambrian, which will fill a gap in the absolute time scale for the early Paleozoic.
9909436 <br/>Farley<br/><br/>This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports an investigation of the uplift history of the Dry Valleys segment of the Transantarctic Mountains. The overall goal is to further constrain the exhumation history of the Transantarctic Mountains by using the newly developed apatite (U-Th)/He dating method on samples collected in vertical profiles. This approach, combined with existing apatite fission track information will constrain the rate and patterns of exhumation across the Transantarctic Mountains since their inception as a rift-flank uplift in the early Cenozoic.<br/><br/>This project will complement other projects and build on previous interpretations of the exhumation and tectonic history determined using apatite fission track thermochronology. It will bridge the gap between information on erosion rates determined from fission track thermochronology and from cosmogenic surface exposure dating and integrate the exhumation history of the mountains with their landscape evolution. As such, the results from this project will address an outstanding problem in Antarctic science; namely the stability of the East Antarctic Ice Sheet, and the timing of the transition from a "warm" dynamic ice sheet to a cold polar ice sheet. Highly relevant to this issue is the landscape evolution of the Transantarctic Mountains because many diverse lines of evidence for the rate of landscape evolution have been used to argue for a dynamic ice sheet up until either the Pliocene (the "dynamic" ice sheet model) or the middle Miocene (the "stable" ice sheet model). Understanding the past stability or dynamic fluctuations of the East Antarctic ice sheet with respect to the climate record is, of course, important for understanding how the present ice sheet may respond to global warming.<br/><br/>The specific objective of this project is to determine apatite (U-Th)/He age versus elevation trends for a number of vertical profiles from locations within the Transantarctic Mountain front and across the structural grain of the range. Fission track data already exist for all of these profiles, with apatite fission track ages ranging from 150-30 Ma. The greater precision of the (U-Th)/He technique and the fact it records information at lower temperatures (closure temperature of ~70 degrees Celsius; limits of 40-85 degrees Celsius for the He partial retention zone) will allow examination of the exhumation history of the TAM in more detail from ca 130 Ma to ~20 Ma. Another facet is to examine areas where Cretaceous exhumation is recorded and areas where the fission track profiles indicate periods of thermal and tectonic stability and minimal erosion throughout the Cretaceous. The variation of timing of the onset of more rapid exhumation accompanying uplift and formation of the Transantarctic Mountains in the early Cenozoic will also be examined.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a study to investigate paleoenvironmental conditions during the late Paleozoic and Mesozoic in central interior Antarctica. The 4 km thick sequence of sedimentary rocks, known as the Beacon Supergroup, in the Beardmore Glacier area records 90 million years of Permian through Jurassic history of this high-paleolatitude sector of Gondwana. It accumulated in a foreland basin with a rate of subsidence approximately equal to the rate of deposition. The deposits have yielded diverse vertebrate fossils, in situ fossil forests, and exceptionally well preserved plant fossils. They give a unique glimpse of glacial, lake, and stream/river environments and ecosystems and preserve an unparalleled record of the depositional, paleoclimatic, and tectonic history of the area. The excellent work done to date provides a solid base of information on which to build understanding of conditions and processes.<br/><br/>This project is a collaborative study of this stratigraphic section that will integrate sedimentologic, paleontologic, and ichnologic observations to answer focused questions, including: (1) What are the stratigraphic architecture and alluvial facies of Upper Permian to Jurassic rocks in the Beardmore area?; (2) In what tectonostratigraphic setting were these rocks deposited?; (3) Did vertebrates inhabit the cold, near-polar, Permian floodplains, as indicated by vertebrate burrows, and can these burrows be used to identify, for the first time, the presence of small early mammals in Mesozoic deposits?; and (4) How did bottom-dwelling animals in lakes and streams use substrate ecospace, how did ecospace use at these high paleolatitudes differ from ecospace use in equivalent environments at low paleolatitudes, and what does burrow distribution reveal about seasonality of river flow and thus about paleoclimate? Answers to these questions will (1) clarify the paleoclimatic, basinal, and tectonic history of this part of Gondwana, (2) elucidate the colonization of near-polar ecosystems by vertebrates, (3) provide new information on the environmental and paleolatitudinal distributions of early mammals, and (4) allow semi-quantitative assessment of the activity and abundance of bottom-dwelling animals in different freshwater environments at high and low latitudes. In summary, this project will contribute significantly to an understanding of paleobiology and paleoecology at a high latitude floodplain setting during a time in Earth history when the climate was much different than today.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to apply numerical modeling to constrain the uplift and exhumation history of the Transantarctic Mountains. The Transantarctic Mountains (TAM) are an anomalously high (>4500 m) and relatively broad (up to 200 km) rift-flank uplift demarcating the boundary between East and West Antarctica. Dynamics of the East Antarctic ice-sheet and the climate are affected by the mountain range, and an understanding of the uplift history of the mountain range is critical to understanding these processes. This project will constrain the uplift and denudation history of the Transantarctic Mountains based on thermo-mechanical modeling held faithful to thermochronological, geological, and geophysical data. The research will be the primary responsibility of post-doctoral researcher Audrey Huerta, working in collaboration with Dennis Harry, 1 undergraduate student, and 1 graduate student.<br/><br/>Thermochronologic evidence of episodic Cretaceous through Cenozoic rapid cooling within the TAM indicates distinct periods of uplift and exhumation. However, a more detailed interpretation of the uplift history is difficult without an understanding of the evolving thermal structure and topography of the TAM prior to and during uplift. These aspects of the mountain range can best be constrained by an understanding of the evolving regional tectonic setting. Proximity of the TAM to the West Antarctic Rift System (WARS) suggests a link between uplift of the TAM and extension within the WARS.<br/><br/>The project will integrate two techniques: lithospheric-scale geodynamic modeling and crustal-scale thermal modeling. The lithospheric-scale deformational and thermal evolution of TAM will be modeled by a finite element model designed to track the thermal and deformational response of the Antarctic lithosphere to a protracted extensional environment. Previous investigators have linked the high elevation and broad width of the TAM to a deep level of necking in which mantle thinning is offset from the location of crustal extension. In this study, a three-dimensional dynamic model will be used to track the uplift and thermal evolution of the TAM in a setting in which necking is at a deep level, and in which extension within the crust and extension within the mantle are offset. Velocity boundary conditions applied to the edges of the model will vary through time to simulate the extensional and transtensional evolution of the WARS. Because the model is dynamic, the thermal structure, strength, and strain field, evolve naturally in response to these initial and boundary conditions.<br/><br/>Dynamic models are uniquely suited to understanding lithospheric deformational and thermal evolution, however kinematic models are best suited for addressing the detailed thermal and exhumation history of crustal uplifts. Thus, a 2-dimensional kinematic-thermal model will be designed to simulate the uplift history of the TAM and the resulting erosional, topographic, and thermal evolution. Uplift will be modeled as normal-fault movement on a set of discrete fault planes with uplift rate varying through time. Erosion will be modeled as a diffusive process in which erosion rates can be varied through time (simulating climate changes), and vary spatially as a linear function of gradient and distance from the drainage divide. Synthetic time-temperature (t-T) histories will be calculated to compare model results to thermochronologic data.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports an interdisciplinary study of fluvial sediments in Antarctica for evidence of what caused the greatest of all mass extinctions in the history of life at the Permian-Triassic boundary. This boundary was, until recently, difficult to locate and thought to be unequivocally disconformable in Antarctica. New studies, particularly of carbon isotopic chemostratigraphy and of paleosols and root traces as paleoecosystem indicators, together with improved fossil plant, reptile and pollen biostratigraphy, now suggest that the precise location of the boundary might be identified and have led to local discovery of iridium anomalies, shocked quartz, and fullerenes with extraterrestrial noble gases. These anomalies are associated with a distinctive claystone breccia bed, similar to strata known in South Africa and Australia, and taken as evidence of deforestation. There is already much evidence from Antarctica and elsewhere that the mass extinction on land was abrupt and synchronous with extinction in the ocean. The problem now is what led to such death and destruction. Carbon isotopic values are so low in these and other Permian-Triassic boundary sections that there was likely to have been some role for catastrophic destabilization of methane clathrates. Getting the modeled amount of methane out of likely reservoirs would require such catastrophic events as bolide impact, flood-basalt eruption or continental-shelf collapse, which have all independently been implicated in the mass extinction and for which there is independent evidence. Teasing apart these various hypotheses requires careful re-examination of beds that appear to represent the Permian-Triassic boundary, and search for more informative sequences, as was the case for the Cretaceous-Tertiary boundary. This collaborative research on geochemistry and petrography of boundary beds and paleosols (by Retallack), on carbon isotopic variation through the boundary interval (by Jahren), and on fullerenes, iridium and helium (by Becker) is designed to test these ideas about the Permian-Triassic boundary in Antarctica and to shed light on processes which contributed to this largest of mass extinctions on Earth. Fieldwork for this research will be conducted in the central Transantarctic Mountains and in Southern Victoria Land with an initial objective of examining the stratigraphic sequences for continuity across the boundary. Stratigraphic continuity is a critical element that must exist for the work to be successful. If fieldwork indicates sufficiently continuous sections, the full analytical program will follow fieldwork.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the Transantarctic Mountains and an adjacent region of East Antarctica. The East Antarctic shield is one of Earth's oldest and largest cratonic assemblies, with a long-lived Archean to early Paleozoic history. Long-standing interest in the geologic evolution of this shield has been rekindled over the past decade by tectonic models linking East Antarctica with other Precambrian crustal elements in the Rodinia and Gondwanaland supercontinents. It is postulated that the Pacific margin of East Antarctica was rifted from Laurentia during late Neoproterozoic breakup of Rodinia, and it then developed as an active plate boundary during subsequent amalgamation of Gondwanaland in the earliest Paleozoic. If true, the East Antarctic shield played a key role in supercontinent transformation at a time of global changes in plate configuration, terrestrial surficial process, sea level, and marine geochemistry and biota. A better understanding of the geological evolution of the East Antarctic shield is therefore critical for studying Precambrian crustal evolution in general, as well as resource distribution, biosphere evolution, and glacial and climate history during later periods of Earth history. Because of nearly complete coverage by the polar ice cap, however, Antarctica remains the single most geologically unexplored continent. Exposures of cratonic basement are largely limited to coastal outcrops in George V Land and Terre Adelie (Australian sector), the Prince Charles Mountains and Enderby Land (Indian sector), and Queen Maud Land (African sector), where the geology is reasonably well-known. By contrast, little is known about the composition and structure of the shield interior. Given the extensive ice cover, collection of airborne geophysical data is the most cost-effective method to characterize broad areas of sub-ice basement and expand our knowledge of the East Antarctic shield interior. <br/><br/>This project will conduct an airborne magnetic survey (coupled with ground-based gravity measurements) across an important window into the shield where it is exposed in the Nimrod Glacier area of the central Transantarctic Mountains. Specific goals are to:<br/>1. Characterize the magnetic and gravity signature of East Antarctic crustal basement exposed at the Ross margin (Nimrod Group),<br/>2. Extend the magnetic data westward along a corridor across the polar ice cap in order to image the crust in ice-covered areas,<br/>3. Obtain magnetic data over the Ross Orogen in order to image the ice-covered boundary between basement and supracrustal rocks, allowing us to better constrain the geometry of fundamental Ross structures, and<br/>4. Use the shape, trends, wavelengths, and amplitudes of magnetic anomalies to define magnetic domains in the shield, common building blocks for continent-scale studies of Precambrian geologic structure and evolution.<br/><br/>High-resolution airborne magnetic data will be collected along a transect extending from exposed rocks of the Nimrod Group across the adjacent polar ice cap. The Nimrod Group represents the only bona fide Archean-Proterozoic shield basement exposed for over 2500 km of the Pacific margin of Antarctica. This survey will characterize the geologically well-known shield terrain in this sector using geophysical methods for the first time. This baseline over the exposed shield will allow for better interpretation of geophysical patterns in other ice-covered regions and can be used to target future investigations. In collaboration with colleagues from the BGR (Germany), a tightly-spaced, "draped" helicopter magnetic survey will be flown during the 2003-04 austral summer, to be complemented by ground measurements of gravity over the exposed basement. Data reduction, interpretation and geological correlation will be completed in the second year. This project will enhance the education of students, the advancement of under-represented groups, the research instrumentation of the U.S. Antarctic Program, partnerships between the federal government and institutions of higher education, and cooperation between national research programs. It will benefit society through the creation of new basic knowledge about the Antarctic continent, which in turn may help with applied research in other fields such as the glacial history of Antarctica.
Dunbar/Kyle OPP 9527373 Zielinski OPP 9527824 Abstract The Antarctic ice sheets are ideal places to preserve a record the volcanic ash (tephra) layers and chemical aerosol signatures of volcanic eruptions. This record, which is present both in areas of bare blue ice, as well as in deep ice cores, consists of a combination of local eruptions, as well as eruptions from more distant volcanic sources from which glassy shards can be chemically fingerprinted and related to a source volcano. Field work carried out during the 1994/1995 Antarctic field season in the Allan Hills area of Antarctica, and subsequent microbeam chemical analysis and 40Ar/39Ar dating has shown that tephra layers in deep Antarctic ice preserve a coherent, systematic stratigraphy, and can be successfully mapped, dated, chemically fingerprinted and tied to source volcanoes. The combination of chemical fingerprinting of glass shards, and chemical analysis of volcanic aerosols associated with ash layers will allow establishment of a high-resolution chronology of local and distant volcanism that can help understand patterns of significant explosive volcanisms and atmospheric loading and climactic effects associated with volcanic eruptions. Correlation of individual tephra layers, or sets of layers, in blue ice areas, which have been identified in many places the Transantarctic Mountains, will allow the geometry of ice flow in these areas to be better understood and will provide a useful basis for interpreting ice core records.
This award supports an in situ and short traverse seismic reflection/refraction and magnetotelluric experiment in West Antarctica. This collaborative experiment involves four awards at four institutions. The four-fold purpose is 1) to investigate part of the Byrd Subglacial Basin, 2) to test techniques for this work that could be done in a long traverse, 3) to determine the viability of the magnetotelluric method on a thick (electrically resistive) ice sheet, and 4) to evaluate the relative merits of refraction with wide reflection versus reflection with narrow refraction seismic studies in imaging the lithosphere. The geophysical techniques that will be employed are capable of imaging the ice sheet, the continental lithosphere, and the upper mantle, as well as determining physical properties of parts of the lithosphere and mantle. Investigations of outcrop geology over the last thirty years in West Antarctica and the Transantarctic Mountains have lead to recent interpretations that the crust is made up of many different lithospheric blocks. Seismic reflection work is the only way to image the crust in detail and the refraction work is the only way to determine physical properties of the layers and blocks defined by the reflection work. The magnetotelluric work is scientifically risky because it may not yield useful information when used over the electrically resistive ice sheet; however, if it works it has the potential to image molten rock in the crust and upper mantle. In a continental rift region such as West Antarctica, the presence of melt in the lithosphere is likely and, if documented, has very important ramifications to ice sheet dynamics. Research work supported by this award is expected to provide constraints to models of a range of crustal processes from models of ice sheet dynamics to tectonic and kinematic models of lithospheric thinning and rifting.
Kyle OPP 9527329 Abstract The Cape Roberts Project is an international drilling project to obtain a series of cores from the sedimentary strata beneath the sea floor off Cape Roberts in the Ross Sea. The project is a joint venture by scientists from the national Antarctic programs of Germany, Italy, New Zealand, the United Kingdom., Australia, and the United States. Drilling will continuously core a composite section of sediments over 1500 m thick which is expected to represent parts of the time period between 30 and more than 100 million years ago. The principle objectives of this component of the project will be to examine the record of igneous material in the drill core and provide high precision 40Ar/39Ar dates from tephra (volcanic ash) layers, disseminated ash, feldspars and epiclastic volcanic detrital grains to constrain depositional age and provenance of the sediments in the cores. This project will contribute to general geologic logging of the core and will characterize any igneous material using electron microprobe, x-ray fluorescence (XRF) and instrumental neutron activation analysis (INAA) analyses. The presence of alkalic volcanic detritus from the Cenozoic McMurdo Volcanics will constrain the initiation of this phase of volcanism and improve our understanding of the relationship between volcanism and tectonism. The influx of sediments eroded from Jurassic Kirkpatrick Basalts and Ferrar Dolerites will be used to time the unroofing and rates of uplift of the Transantarctic Mountains. Geochemical analyses of core samples will examine the geochemistry and provenance of the sediments.