{"dp_type": "Project", "free_text": "CLIMATE MODELS"}
[{"awards": "2231230 Joughin, Ian", "bounds_geometry": "POLYGON((90 -65,93.5 -65,97 -65,100.5 -65,104 -65,107.5 -65,111 -65,114.5 -65,118 -65,121.5 -65,125 -65,125 -65.2,125 -65.4,125 -65.6,125 -65.8,125 -66,125 -66.2,125 -66.4,125 -66.6,125 -66.8,125 -67,121.5 -67,118 -67,114.5 -67,111 -67,107.5 -67,104 -67,100.5 -67,97 -67,93.5 -67,90 -67,90 -66.8,90 -66.6,90 -66.4,90 -66.2,90 -66,90 -65.8,90 -65.6,90 -65.4,90 -65.2,90 -65))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 29 Feb 2024 00:00:00 GMT", "description": "The snow that falls on Antarctica compresses to ice that flows toward the coast as a large sheet, returning it to the ocean over periods of centuries to millennia. In many places around Antarctica, the ice sheet extends from the land to over the ocean, forming floating ice shelves on the periphery. If this cycle is in balance, the ice sheets help maintain a stable sea level. When the climate cools or warms, however, sea level falls or rises as the ice sheet gains or loses ice. The peripheral ice shelves are important for regulating sea level because they help hold back the flow of ice to the ocean. Warming ocean waters thin ice shelves by melting their undersides, allowing ice to flow faster to the ocean, and raising sea level globally. Thus, an important question is how much sea level will rise in response to warming ocean temperatures over the next century(s) that further thin Antarctica?s ice shelves. Currently, West Antarctica produces the majority of the continent?s contribution to sea level. Albeit with large uncertainty, ice-sheet models indicate that Totten and Denman glaciers in East Antarctica could also produce substantial sea-level rise in the next century(s). This international study will focus on improving understanding of how much these glaciers will contribute to sea level under various warming scenarios. The project will use numerical models constrained by oceanographic and remote sensing observations to determine how Totten and Denman glaciers will respond to increased melting. Remote sensing data will provide updated and improved estimates of the melt rate for each ice shelf. Two float profilers will be deployed from aircraft by British and Australian partners in front of each ice shelf to repeatedly measure the temperature and salinity of the water column, with the results telemetered back via satellite link. The melt and oceanographic data will be used to constrain parameterized transfer functions for ice-shelf cavity melting in response to ocean temperature, improving on current parameterizations based on limited data. These melt functions will be used with ocean temperatures from climate models to force an open-source ice-flow numerical model for each glacier to determine the century-scale response for a variety of scenarios, helping to reduce uncertainty in sea level contributions from this part of Antarctica. Processes other than melt that might further alter the contribution to sea level over the next few centuries will also be examined. On the observational side, the demonstrated deployment of float profilers from a sonobuoy launch tube in polar settings would help raise the technology readiness of operational in-situ monitoring of the rapidly changing polar shelf seas, paving the way for an expansion of observations of ocean hydrographic properties from remote areas that currently are poorly understood. In addition to being of scientific value, reduced uncertainty in sea-level rise projections has strong societal benefit to coastal communities struggling with long-range planning to mitigate the effects of sea-level rise over the coming decades to centuries. Outreach activities by team members will help raise public awareness of Antarctica\u0027s dramatic changes and the resulting consequences. This is a project jointly funded by the National Science Foundation?s Directorate for Geosciences (NSF/GEO) and the National Environment Research Council (NERC) of the United Kingdom (UK) via the NSF/GEO-NERC Lead Agency Agreement. This Agreement allows a single joint US/UK proposal to be submitted and peer-reviewed by the Agency whose investigator has the largest proportion of the budget. Upon successful joint determination of an award recommendation, each Agency funds the proportion of the budget that supports scientists at institutions in their respective countries.", "east": 125.0, "geometry": "POINT(107.5 -66)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; ICE SHEETS", "locations": "Antarctica", "north": -65.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Joughin, Ian; Shapero, Daniel; Smith, Benjamin E", "platforms": null, "repositories": null, "science_programs": null, "south": -67.0, "title": "NSFGEO-NERC: Understanding the Response to Ocean Melting for Two of East Antarctica\u0027s Most Vulnerable Glaciers: Totten and Denman", "uid": "p0010454", "west": 90.0}, {"awards": "0944018 Lazzara, Matthew; 0943952 Cassano, John", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic Automatic Weather Stations", "datasets": [{"dataset_uid": "200375", "doi": "https://doi.org/10.48567/1hn2-nw60", "keywords": null, "people": null, "repository": "Antarctic Meteorological Research and Data Center", "science_program": null, "title": "Antarctic Automatic Weather Stations", "url": "https://amrdcdata.ssec.wisc.edu/dataset?q=0944018+"}], "date_created": "Fri, 20 Oct 2023 00:00:00 GMT", "description": "The Antarctic Automatic Weather Station (AWS) network, first commenced in 1978, is the most extensive meteorological observing system on the Antarctic continent, approaching its 30th year at many of its key sites. Its prime focus as a long term observational record is vital to the measurement of the near surface climatology of the Antarctic atmosphere. AWS units measure air-temperature, pressure, wind speed and direction at a nominal surface height of 3m. Other parameters such as relative humidity and snow accumulation may also be taken. Observational data from the AWS are collected via the DCS Argos system aboard either NOAA or MetOp polar orbiting satellites and thus made available globally, in near real time via the GTS (Global Telecommunications System), to operational and synoptic weather forecasters. The surface observations from the AWS network also are often used to check on satellite and remote sensing observations, and the simulations of Global Climate Models (GCMs). Research instances of its use in this project include continued development of the climatology of the Antarctic atmosphere and surface wind studies of the Ross Ice Shelf. The AWS observations benefit the broader earth system science community, supporting research activities ranging from paleoclimate studies to penguin phenology.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; DATA COLLECTIONS; SURFACE PRESSURE; HUMIDITY; AIR TEMPERATURE; FIELD SITES; LAND-BASED PLATFORMS; SURFACE WINDS; WEATHER STATIONS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Cassano, John", "platforms": "LAND-BASED PLATFORMS; LAND-BASED PLATFORMS \u003e FIELD SITES; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e DATA COLLECTIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e WEATHER STATIONS", "repo": "Antarctic Meteorological Research and Data Center", "repositories": "Antarctic Meteorological Research and Data Center", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Antarctic Automatic Weather Station Program", "uid": "p0010438", "west": -180.0}, {"awards": "2035078 Giometto, Marco; 2034874 Salesky, Scott", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 08 Sep 2023 00:00:00 GMT", "description": "1. A non-technical explanation of the project\u0027s broader significance and importance, that serves as a public justification for NSF funding. This part should be understandable to an educated reader who is not a scientist or engineer.\r\n\r\nKatabatic or drainage winds, carry high-density air from a higher elevation down a slope under the force of gravity. Although katabatic flows are ubiquitous in alpine and polar regions, a surface-layer similarity theory is currently lacking for these flows, undermining the accuracy of numerical weather and climate prediction models. This project is interdisciplinary, and will give graduate and undergraduate students valuable experience interacting with researchers outside their core discipline. Furthermore, this project will broaden participating in science through recruitment of students from under-represented groups at OU and CU through established programs.\r\n\r\nThe Antarctic Ice Sheet drives many processes in the Earth system through its modulation of regional and global atmospheric and oceanic circulations, storage of fresh water, and effects on global albedo and climate. An understanding of the surface mass balance of the ice sheets is critical for predicting future sea level rise and for interpreting ice core records. Yet, the evolution of the ice sheets through snow deposition, erosion, and transport in katabatic winds (which are persistent across much of the Antarctic) remains poorly understood due to the lack of an overarching theoretical framework, scarcity of in situ observational datasets, and a lack of accurate numerical modeling tools. Advances in the fundamental understanding and modeling capabilities of katabatic transport processes are urgently needed in view of the future climatic and snowfall changes that are projected to occur within the Antarctic continent. This project will leverage the expertise of a multidisciplinary team of investigators (with backgrounds spanning cryospheric science, environmental fluid mechanics, and atmospheric science) to address these knowledge gaps.\r\n\r\n\r\n2. A technical description of the project that states the problem to be studied, the goals and scope of the research, and the methods and approaches to be used. In many cases, the technical project description may be a modified version of the project summary submitted with the proposal. \r\n\r\nUsing field observations and direct numerical simulations of katabatic flow, this project is expected--- for the first time---to lead to a surface-layer similarity theory for katabatic flows relating turbulent fluxes to mean vertical gradients. The similarity theory will be used to develop surface boundary conditions for large eddy simulations (LES), enabling the first accurate LES of katabatic flow.\r\n\r\nThe numerical tools that the PIs will develop will allow them to investigate how the partitioning between snow redistribution, transport, and sublimation depends on the environmental parameters typically encountered in Antarctica (e.g. atmospheric stratification, surface sloping angles, and humidity profiles), and to develop simple models to infer snow transport based on satellite remote sensing and regional climate models\r\n\r\nThis award reflects the NSF statutory mission and has been deemed worthy of support through evaluation using the intellectual merit of the Foundation and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "TURBULENCE; ATMOSPHERIC RADIATION; DATA COLLECTIONS; SNOW/ICE; SNOW; FIELD INVESTIGATION; AIR TEMPERATURE; HUMIDITY", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Salesky, Scott; Giometto, Marco; Das, Indrani", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e DATA COLLECTIONS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Snow Transport in Katabatic Winds and Implications for the Antarctic Surface Mass Balance: Observations, Theory, and Numerical Modeling", "uid": "p0010433", "west": null}, {"awards": "2021699 Trusel, Luke", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic ice sheet daily surface melt detection from ASCAT (2007-2022); ASCAT-ERA5 Antarctic Peninsula Daily Surface Meltwater Production (2007-2022); Trusel et al 2022, Geophysical Research Letters: Publication data and code", "datasets": [{"dataset_uid": "200363", "doi": "10.5281/zenodo.6374343", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Trusel et al 2022, Geophysical Research Letters: Publication data and code", "url": "https://zenodo.org/record/6374343"}, {"dataset_uid": "200362", "doi": "10.5281/zenodo.7995543", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "ASCAT-ERA5 Antarctic Peninsula Daily Surface Meltwater Production (2007-2022)", "url": "https://zenodo.org/record/7995543"}, {"dataset_uid": "200364", "doi": "10.5281/zenodo.7995998", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Antarctic ice sheet daily surface melt detection from ASCAT (2007-2022)", "url": "https://zenodo.org/record/7995998"}], "date_created": "Fri, 02 Jun 2023 00:00:00 GMT", "description": "Melting of snow and ice at the surface of the Antarctic ice sheet can lead to the formation of meltwater lakes, an important precursor to ice-shelf collapse and accelerated ice-sheet mass loss. Understanding the present state of Antarctic surface melt provides a baseline to gauge how quickly melt impacts could evolve in the future and to reduce uncertainties in estimates of future sea-level rise. \r\n\r\nThis project used a suite of complimentary measurements from Earth-observing satellites, ground observations, and numerical climate models to enhance understanding of surface melt and lakes, as well as the processes linking these systems. The project supported the scientific training of a postdoctoral associate, a graduate student, and several undergraduate researchers. In addition, the project aimed to promote public scientific literacy and the broadening of quantitative skills for high-school students through the development and implementation of an educational unit in a partnership with an education and outreach expert and two high school teachers.\r\n\r\nWe identified that surface lake drainages on East Antarctica\u2019s Amery Ice Shelf closely correspond to peaks in the daily amplitude of ocean tides. This research indicates that tidal-induced flexure inherent to the ice shelf grounding zone when combined with sufficient surface meltwater volumes can trigger ice shelf surface lake drainages (Trusel et al., 2022). In addition, we developed new estimates of surface melting across the Antarctic ice sheet using satellite and reanalysis data. First, we developed and implemented a pan-Antarctic ice sheet surface melt detection method applied to C-band Advanced Scatterometer (ASCAT) radar backscatter data. These binary melt presence/absence data were then combined with radar backscatter and ERA5 reanalysis outputs to estimate daily rates of surface meltwater production (in mm of water equivalence) across the Antarctic Peninsula region. These data therefore provide a new, observationally based dataset to investigate the intensity and drivers of surface melting in Antarctica\u2019s highest-melt region, and with which to evaluate climate model simulations. This method and an assessment of the resulting data are the subject of a forthcoming manuscript. \r\n\r\n", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "ICE SHEETS; Antarctica; Surface Hydrology", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Trusel, Luke; Moussavi, Mahsa", "platforms": null, "repo": "Zenodo", "repositories": "Zenodo", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Water on the Antarctic Ice Sheet: Quantifying Surface Melt and Mapping Supraglacial Lakes", "uid": "p0010422", "west": -180.0}, {"awards": "2233016 Blanchard-Wrigglesworth, Edward", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 17 Feb 2023 00:00:00 GMT", "description": "In the austral winter of 2021/2022 a drastic decline in Antarctic sea ice extent (SIE) has taken place, and February 2022 marked the lowest SIE on record since consistent satellite sea ice observations began in 1979. Combined with the loss of SIE, the most extreme heat wave ever observed globally (as estimated by temperature anomalies from climatology) took place over East Antarctica in March 2022 as temperatures climbed over +40\u00b0C from climatology, an event that climate models struggle to replicate. Extreme events have an oversized footprint in socioeconomic impacts, but also serve as litmus tests for climate models and their predictive capabilities, and thus our understanding of extreme events and the ability of climate models in simulating such events is of key interest both in a scientific and social context. This project will use novel tools to diagnose the factors that led to the record low Antarctic SIE and heat wave focusing on the impact of winds and ocean temperatures. Currently (June 2022) Antarctic SIE remains at record low levels for the time of year, raising the prospect of a long-lasting period of low SIE, yet annual forecasts of Antarctic sea ice do not yet exist. To address this issue, this project will also create exploratory annual sea ice forecasts for the 2022-2024 period. \r\n\r\nThese extreme events have questioned our current understanding of Antarctic climate variability. Motivated by the timing of these events and our recent development of novel analysis tools, this project will address the following research questions:\r\n(R1) Can local winds account for the observed 2021/2022 sea ice loss, or are remote sea surface temperature (SST) anomalies a necessary ingredient?\r\n(R2) Are sea ice conditions over 2022-2024 likely to remain anomalously low?\r\n(R3) Can a state-of-the-art climate model simulate a heat wave of comparable magnitude to that observed if it follows the observed circulation that led to the heat wave?\r\nThe main approach will be to use a nudging technique with a climate model, in which one or several variables in a climate model are nudged toward observed values. The project authors used this tool to attribute Antarctic sea ice variability and trends over 1979-2018 to winds and SST anomalies. This project will apply this tool to the period 2019-2022 to address R1 and R3 by running two different model experiments over this time period in which the winds over Antarctica and SSTs in the Southern Ocean are nudged toward observed values. In addition, we will diagnose the relevant modes of atmospheric variability over 2019-2022 that are known to influence Antarctic sea ice to gain further insight into the 2022 loss of SIE. To address R2, we plan to extend the model simulations but without nudging, using the model as a forecast model (as its 2022 initial conditions will be taken from the end of the nudged simulations and capture important aspects of the observed state). We expect that if current upper ocean heat content is anomalously high, low SIE conditions may continue over 2022-2024, as happened over 2017-2019 following the previous record low of SIE in 2016/2017. To further address R3, we will compare observations and model simulations using novel atmospheric heat transport calculations developed by the project team. ", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; SURFACE TEMPERATURE", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Blanchard-Wrigglesworth, Edward", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "RAPID: What Caused the Record Warmth and Loss of Antarctic Sea ice in the Austral Summer of 2022, and will Sea Ice Remain Low Over 2022-2024?", "uid": "p0010405", "west": -180.0}, {"awards": "1643431 Bitz, Cecilia", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Analysis code, processed observational data and climate model output required to produce figures for Roach et al (2022); Model output: CICE experiments with varying floe and wave physics described in Roach et al. (2019); Model output from experiments (FSD-M21) described in Cooper et al 2022.; Model output from experiments (IC4M1) described in Cooper et al 2022.; Model output from experiments (IC4M2) described in Cooper et al 2022.; Model output from experiments (IC4M3rad) described in Cooper et al 2022.; Model output from experiments (IC4M4) described in Cooper et al 2022.; Model output from experiments (IC4M5) described in Cooper et al 2022.; Model output from experiments (IC4M7) described in Cooper et al 2022.; Model output: NEMO-CICE with an emergent sea ice floe size distribution described in Roach et al (2018)", "datasets": [{"dataset_uid": "200304", "doi": "10. 5281/zenodo.6214555", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Model output from experiments (IC4M4) described in Cooper et al 2022.", "url": "https://zenodo.org/record/6214555"}, {"dataset_uid": "200303", "doi": "10.5281/zenodo.6214364", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Model output from experiments (IC4M3rad) described in Cooper et al 2022.", "url": "https://zenodo.org/record/6214364"}, {"dataset_uid": "200302", "doi": "10.5281/zenodo.6213793", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Model output from experiments (IC4M2) described in Cooper et al 2022.", "url": "https://zenodo.org/record/6213793"}, {"dataset_uid": "200301", "doi": "10.5281/zenodo.6213441", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Model output from experiments (IC4M1) described in Cooper et al 2022.", "url": "https://zenodo.org/record/6213441"}, {"dataset_uid": "200310", "doi": "10.5281/zenodo.1193930", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Model output: NEMO-CICE with an emergent sea ice floe size distribution described in Roach et al (2018)", "url": "https://zenodo.org/record/1193930"}, {"dataset_uid": "200309", "doi": "10.5281/zenodo.3463580", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Model output: CICE experiments with varying floe and wave physics described in Roach et al. (2019)", "url": "https://zenodo.org/record/3463580"}, {"dataset_uid": "200308", "doi": "10.5281/zenodo.5913959", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Analysis code, processed observational data and climate model output required to produce figures for Roach et al (2022)", "url": "https://zenodo.org/record/5913959"}, {"dataset_uid": "200307", "doi": "10.5281/zenodo.6212232", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Model output from experiments (FSD-M21) described in Cooper et al 2022.", "url": "https://zenodo.org/record/6212232"}, {"dataset_uid": "200306", "doi": "10.5281/zenodo.6212423", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Model output from experiments (IC4M7) described in Cooper et al 2022.", "url": "https://zenodo.org/record/6212423"}, {"dataset_uid": "200305", "doi": "10.5281/zenodo.6214998", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Model output from experiments (IC4M5) described in Cooper et al 2022.", "url": "https://zenodo.org/record/6214998"}], "date_created": "Tue, 19 Jul 2022 00:00:00 GMT", "description": "Sea-ice coverage surrounding Antarctica has expanded during the era of satellite observations, in contrast to rapidly shrinking Arctic sea ice. Most climate models predict Antarctic sea ice loss, rather than growth, indicating that there is much to learn about Antarctic sea ice in terms of its natural variability, processes and interactions affecting annual growth and retreat, and the impact of atmospheric factors such increasing greenhouse gases and stratospheric ozone depletion. This project is designed to improve model simulations of sea ice and examine the role of wind and wave forcing on changes in sea ice around Antarctica.\u003cbr/\u003e\u003cbr/\u003eThis project seeks to explain basic interactions of the coupled atmosphere, ocean, and ice dynamics in the Antarctic climate system, especially in the region near the sea ice edge. The summer evolution of sea ice cover and the near surface heat exchange of atmosphere and ocean depend on the geometric distribution of floes and the open water surrounding them. The distribution of floes has the greatest impact on the sea ice state in the marginal seas, where the distribution itself can vary rapidly. This project would develop and implement a model of sea ice floes in the Los Alamos sea ice model, known as CICE5. This sea ice component would be coupled to the third generation WaveWatch model within the Community Climate System Model Version 2. The coupled model would be used to study sea ice-wave interactions and the role of modeling sea ice floes in the Antarctic. The broader impacts of this project include outreach, support of female scientists, and improvement of the sea-ice codes in widely used climate models.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "ICE FLOES; Southern Ocean; SEA ICE", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Bitz, Cecilia", "platforms": null, "repo": "Zenodo", "repositories": "Zenodo", "science_programs": null, "south": -90.0, "title": "The Role of Wave-sea Ice Floe Interactions in Recent Antarctic Sea Ice Change", "uid": "p0010350", "west": -180.0}, {"awards": "1947646 Shevenell, Amelia; 1947657 Dodd, Justin; 1947558 Leckie, Robert", "bounds_geometry": "POLYGON((-180 -72.5,-177.6 -72.5,-175.2 -72.5,-172.8 -72.5,-170.4 -72.5,-168 -72.5,-165.6 -72.5,-163.2 -72.5,-160.8 -72.5,-158.4 -72.5,-156 -72.5,-156 -73.15,-156 -73.8,-156 -74.45,-156 -75.1,-156 -75.75,-156 -76.4,-156 -77.05,-156 -77.7,-156 -78.35,-156 -79,-158.4 -79,-160.8 -79,-163.2 -79,-165.6 -79,-168 -79,-170.4 -79,-172.8 -79,-175.2 -79,-177.6 -79,180 -79,178.4 -79,176.8 -79,175.2 -79,173.6 -79,172 -79,170.4 -79,168.8 -79,167.2 -79,165.6 -79,164 -79,164 -78.35,164 -77.7,164 -77.05,164 -76.4,164 -75.75,164 -75.1,164 -74.45,164 -73.8,164 -73.15,164 -72.5,165.6 -72.5,167.2 -72.5,168.8 -72.5,170.4 -72.5,172 -72.5,173.6 -72.5,175.2 -72.5,176.8 -72.5,178.4 -72.5,-180 -72.5))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 08 Jun 2022 00:00:00 GMT", "description": "Presently, Antarctica\u0027s glaciers are melting as Earth\u0027s atmosphere and the Southern Ocean warm. Not much is known about how Antarctica\u0027s ice sheets might respond to ongoing and future warming, but such knowledge is important because Antarctica\u0027s ice sheets might raise global sea levels significantly with continued melting. Over time, mud accumulates on the sea floor around Antarctica that is composed of the skeletons and debris of microscopic marine organisms and sediment from the adjacent continent. As this mud is deposited, it creates a record of past environmental and ecological changes, including ocean depth, glacier advance and retreat, ocean temperature, ocean circulation, marine ecosystems, ocean chemistry, and continental weathering. Scientists interested in understanding how Antarctica\u0027s glaciers and ice sheets might respond to ongoing warming can use a variety of physical, biological, and chemical analyses of these mud archives to determine how long ago the mud was deposited and how the ice sheets, oceans, and marine ecosystems responded during intervals in the past when Earth\u0027s climate was warmer. In this project, researchers from the University of South Florida, University of Massachusetts, and Northern Illinois University will reconstruct the depth, ocean temperature, weathering and nutrient input, and marine ecosystems in the central Ross Sea from ~17 to 13 million years ago, when the warm Miocene Climate Optimum transitioned to a cooler interval with more extensive ice sheets. Record will be generated from new sediments recovered during the International Ocean Discovery Program (IODP) Expedition 374 and legacy sequences recovered in the 1970?s during the Deep Sea Drilling Program. Results will be integrated into ice sheet and climate models to improve the accuracy of predictions. ", "east": -156.0, "geometry": "POINT(-176 -75.75)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; LABORATORY; AMD; PALEOCLIMATE RECONSTRUCTIONS; Ross Sea; USAP-DC; USA/NSF", "locations": "Ross Sea", "north": -72.5, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Shevenell, Amelia", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -79.0, "title": "Collaborative Proposal: Miocene Climate Extremes: A Ross Sea Perspective from IODP Expedition 374 and DSDP Leg 28 Marine Sediments", "uid": "p0010335", "west": 164.0}, {"awards": "1643285 Joughin, Ian; 1643174 Padman, Laurence", "bounds_geometry": "POLYGON((-104 -73,-102.2 -73,-100.4 -73,-98.6 -73,-96.8 -73,-95 -73,-93.2 -73,-91.4 -73,-89.6 -73,-87.8 -73,-86 -73,-86 -73.8,-86 -74.6,-86 -75.4,-86 -76.2,-86 -77,-86 -77.8,-86 -78.6,-86 -79.4,-86 -80.2,-86 -81,-87.8 -81,-89.6 -81,-91.4 -81,-93.2 -81,-95 -81,-96.8 -81,-98.6 -81,-100.4 -81,-102.2 -81,-104 -81,-104 -80.2,-104 -79.4,-104 -78.6,-104 -77.8,-104 -77,-104 -76.2,-104 -75.4,-104 -74.6,-104 -73.8,-104 -73))", "dataset_titles": "Beta Version of Plume Model; Data associated with Ice-Shelf Retreat Drives Recent Pine Island Glacier Speedup and Ocean-Induced Melt Volume Directly Paces Ice Loss from Pine Island Glacier; icepack; Pine Island Basin Scale Model", "datasets": [{"dataset_uid": "200313", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Beta Version of Plume Model", "url": "https://github.com/icepack/plumes"}, {"dataset_uid": "200315", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Pine Island Basin Scale Model", "url": "https://github.com/fastice/icesheetModels"}, {"dataset_uid": "200290", "doi": "http://hdl.handle.net/1773/46687", "keywords": null, "people": null, "repository": "Uni. Washington ResearchWorks Archive", "science_program": null, "title": "Data associated with Ice-Shelf Retreat Drives Recent Pine Island Glacier Speedup and Ocean-Induced Melt Volume Directly Paces Ice Loss from Pine Island Glacier", "url": "https://doi.org/10.6069/2MZZ-6B61"}, {"dataset_uid": "200314", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "icepack", "url": "https://github.com/icepack/icepack"}], "date_created": "Fri, 13 May 2022 00:00:00 GMT", "description": "Overview: Several recent studies indicate continuing and increasing ice loss from the Amundsen Sea region of West Antarctica (chiefly Pine Island and Thwaites glaciers). This loss is initiated by thinning of the floating ice shelves by basal melting driven by circulation of relatively warm ocean water under the ice shelves. This thinning triggers ice-dynamics related feedbacks, which leads to loss of ice from the grounded ice sheet. Models suggest that, even though long-term committed ice loss might be governed by ice dynamics, the magnitude of ocean-driven melting at the base of the ice shelves plays a critical role in controlling the rate of ice loss. These conclusions, however, are based on simple parameterized models for melt rate that do not take into account how ocean circulation will change in future as large-scale climate forcing changes, and as the ice shelves thin and retreat through both excess melting and accelerated ice flow. Given that present global climate models struggle to resolve the modern ocean state close to the ice shelves around Antarctica, their projections of future impacts on basal melting and time scale of ice loss have large uncertainties.\r\nThis project is aimed at reducing these uncertainties though two approaches: (i) assessing, for a given ocean state, how the melt rates will change as ice-shelf cavities evolve through melting and grounding-line retreat, and (ii) improving understanding of the sensitivity of melt rates beneath the Pine Island and Thwaites ice shelves to changes in ocean state on the Amundsen Sea continental shelf. These studies will provide more realistic bounds on ice loss and sea level rise, and lay the groundwork for development of future fully-coupled ice sheet-ocean simulations.\r\nIntellectual Merit: Rather than pursue a strategy of using fully coupled models, this project adopts a simpler semi-coupled approach to understand the sensitivity of ice-shelf melting to future forcing. Specifically, the project focuses on using regional ocean circulation models to understand current and future patterns of melting in ice-shelf cavities. The project\u2019s preliminary stage will focus on developing high-resolution ice-shelf cavity-circulation models driven by modern observed regional ocean state and validated with current patterns of melt inferred from satellite observations. Next, an ice-flow model will be used to estimate the future grounding line at various stages of retreat. Using these results, an iterative process with the ocean-circulation and ice-flow models will be applied to determine melt rates at each stage of grounding line retreat. These results will help assess whether more physically constrained melt-rate estimates substantially alter the hypothesis that unstable collapse of the Amundsen Sea sector of West Antarctica is underway. Further, by multiple simulations with modified open-ocean boundary conditions, this study will provide a better understanding of the sensitivity of melt to future changes in regional forcing. For example, what is the sensitivity of melt to changes in Circumpolar Deep Water temperature and to changes in the thermocline height driven be changes in wind forcing? Finally, several semi-coupled ice-ocean simulations will be used to investigate the influence of the ocean-circulation driven distribution of melt over the next several decades. These simulations will provide a much-improved understanding of the linkages between far-field ocean forcing, cavity circulation and melting, and ice-sheet response.\r\nBroader Impacts: Planning within the current large range of uncertainty in future sea level change leads to high social and economic costs for governments and businesses worldwide. Thus, our project to reduce sea-level rise uncertainty has strong societal as well as scientific interest. The findings and methods will be applicable to ice shelf cavities in other parts of Antarctica and northern Greenland, and will set the stage for future studies with fully coupled models as computational resources improve. This interdisciplinary work combines expertise of glaciologists and oceanographers, and will contribute to the education of new researchers in this field, with participation of graduate students and postdocs. Through several outreach activities, team members will help make the public aware of the dramatic changes occurring in Antarctica along with the likely consequences.\r\n\r\nThis proposal does not require fieldwork in the Antarctic.\r\n", "east": -86.0, "geometry": "POINT(-95 -77)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIER MOTION/ICE SHEET MOTION; USA/NSF; ICE SHEETS; AMD; USAP-DC; MODELS; Amd/Us; Pine Island Glacier", "locations": "Pine Island Glacier", "north": -73.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Joughin, Ian; Dutrieux, Pierre; Padman, Laurence; Springer, Scott", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "GitHub", "repositories": "GitHub; Uni. Washington ResearchWorks Archive", "science_programs": null, "south": -81.0, "title": "Collaborative Research: Modeling ice-ocean interaction for the rapidly evolving ice shelf cavities of Pine Island and Thwaites glaciers, Antarctica ", "uid": "p0010318", "west": -104.0}, {"awards": "2148517 Hancock, Cathrine", "bounds_geometry": "POLYGON((-60 -55,-51 -55,-42 -55,-33 -55,-24 -55,-15 -55,-6 -55,3 -55,12 -55,21 -55,30 -55,30 -57,30 -59,30 -61,30 -63,30 -65,30 -67,30 -69,30 -71,30 -73,30 -75,21 -75,12 -75,3 -75,-6 -75,-15 -75,-24 -75,-33 -75,-42 -75,-51 -75,-60 -75,-60 -73,-60 -71,-60 -69,-60 -67,-60 -65,-60 -63,-60 -61,-60 -59,-60 -57,-60 -55))", "dataset_titles": "Trajectories for APEX floats 9223 and 9224 from acoustic tracking using artoa4argo, Mar 2022-Feb 2023; Under ice trajectories for RAFOS enabled profiling floats in the Weddell Gyre", "datasets": [{"dataset_uid": "601852", "doi": "10.15784/601852", "keywords": "Antarctica; Continental Slope; Cryosphere; Eddy; Float Trajectory; HAFOS; Weddell Sea", "people": "Boebel, Olaf; Hancock, Cathrine", "repository": "USAP-DC", "science_program": null, "title": "Trajectories for APEX floats 9223 and 9224 from acoustic tracking using artoa4argo, Mar 2022-Feb 2023", "url": "https://www.usap-dc.org/view/dataset/601852"}, {"dataset_uid": "601652", "doi": "10.15784/601652", "keywords": "Antarctica; ANTXXIV/3; Argo Float; Artoa4argo; GPS Data; RAFOS; US Argo Program; Weddell Sea", "people": "Hancock, Cathrine", "repository": "USAP-DC", "science_program": null, "title": "Under ice trajectories for RAFOS enabled profiling floats in the Weddell Gyre", "url": "https://www.usap-dc.org/view/dataset/601652"}], "date_created": "Fri, 25 Mar 2022 00:00:00 GMT", "description": "The Weddell Gyre is one of the major components of the Southern Ocean circulation system, linking heat and carbon fluxes in the Antarctic Circumpolar Current to the continental margins. Water masses entering the Weddell Gyre are modified as they move in a great circular route around the gyre margin and change through processes involving air-sea-cryosphere interactions as well as through ocean eddies that mix properties across the gyre boundaries. Some of the denser water masses exit the gyre through pathways along the northern boundary, and ultimately ventilate the global deep ocean as Antarctic Bottom Water. While in-situ and satellite observations, as well as computer modeling efforts, provide estimates of the large-scale average flow within the gyre, details of the smaller-scale, or \"mesoscale\" eddy flow remain elusive. The proposed research will quantify mixing due to mesoscale eddies within the Weddell Gyre, as well as the transport of incoming deep water from the northeast, thought to be a result of transient eddies. Since the Weddell Gyre produces source water for about 40% of Antarctic Bottom Water formation, understanding the dynamics in this region helps to identify causes of documented changes in global bottom waters. This in turn, will give insight into how climate change is affecting global oceans, through modification of dense polar waters and Antarctic Bottom Water characteristics.\r\n\r\nThis project aims to track 153 RAFOS-enabled Argo floats in the ice-covered regions of the Weddell Gyre. The resultant tracks along with all available Argo and earlier float data will be used to calculate Eulerian and Lagrangian means and eddy statistics for the Weddell Gyre. The study will link RAFOS tracks with Argo profiles under ice, allowing one to characterize the importance of eddies in water column modification at critical ice-edge boundaries and leads. With RAFOS tracks near the northeastern limit of the gyre, the project will investigate the eddy-driven processes of incoming Circumpolar Deep Water, to understand better the mechanisms and volume fluxes involved. Previous work shows that a large fraction of the mean circulation in the southern and western limits of the gyre, where it contacts the Antarctic continent, occurs in a narrow boundary layer above the slope. The research here will integrate this flow structure into a complete interior and boundary layer mean circulation synthesis. The findings and products from the proposed work will improve the positioning of Argo profiles in the polar regions, which would allow for more accurate climatological maps and derived quantities. Estimates of meso-scale mixing may serve as a foundation for the development of new parameterization schemes employed in climate models, as well as local and global ocean circulation models in polar regions.", "east": 30.0, "geometry": "POINT(-15 -65)", "instruments": null, "is_usap_dc": true, "keywords": "OCEAN CURRENTS; WATER MASSES; BUOYS; USA/NSF; Weddell Sea; AMD; USAP-DC; Amd/Us", "locations": "Weddell Sea", "north": -55.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Hancock, Cathrine; Speer, Kevin", "platforms": "WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED \u003e BUOYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.0, "title": "Weddell Gyre Mean Circulation and Eddy Statistics from Floats", "uid": "p0010310", "west": -60.0}, {"awards": "2149500 Chambers, Don", "bounds_geometry": "POLYGON((-180 -30,-144 -30,-108 -30,-72 -30,-36 -30,0 -30,36 -30,72 -30,108 -30,144 -30,180 -30,180 -36,180 -42,180 -48,180 -54,180 -60,180 -66,180 -72,180 -78,180 -84,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84,-180 -78,-180 -72,-180 -66,-180 -60,-180 -54,-180 -48,-180 -42,-180 -36,-180 -30))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 14 Mar 2022 00:00:00 GMT", "description": "The Southern Ocean accounts for ~40% of the total ocean uptake of anthropogenic CO2 despite covering only 20% of the global ocean surface, and is particularly rich in long-lived eddies. These eddies, or large ocean whirlpools which can be observed from space, can alter air-sea fluxes of CO2 in ways that are not yet fully understood. New observations from autonomous platforms measuring ocean carbon content suggest that there is significant heterogeneity in ocean carbon fluxes which can be linked to these dynamic eddy features. Due to computational and time limitations, ocean eddies are not explicitly represented in most climate models, limiting our ability to understand the role eddies play in the ocean carbon cycle. This work will explore the impact of eddies on ocean carbon content and air-sea CO2 fluxes in the Southern Ocean using both model- and observation-based strategies and the findings will improve our understanding of the ocean\u2019s role in the carbon cycle and in global climate. While this work will primarily be focused on the Southern Ocean, the results will be globally applicable. The researchers will also broaden interest in physical and chemical oceanography among middle school-age girls in the University of South Florida\u2019s Oceanography Camp for Girls by augmenting existing lessons with computational methods in oceanography. \r\n\r\nThis project aims to quantify the impacts of mesoscale eddy processes on ocean carbon content and air-sea carbon dioxide (CO2) fluxes in the Southern Ocean. For the modeling component, the investigators will explore relationships between eddies, ocean carbon content, and air-sea CO2 fluxes within the 1/6-degree resolution Biogeochemical Southern Ocean State Estimate (B-SOSE). They investigators will produce high-resolution composites of the carbon content and physical structure within both cyclonic and anticyclonic eddies by region, quantify the influence of these eddies on the overall simulated air-sea CO2 flux, and diagnose the physical mechanisms driving this influence. For the observational component, the investigators will match eddies observed via satellite altimetry to ocean carbon observations and characterize observed relationships between eddies and ocean carbon content with a focus on Southern Ocean winter observations where light limits biological processes, allowing isolation of the contribution of physical processes. This work will also provide motivation for higher resolution and better eddy parameterizations in climate models, more mesoscale biogeochemical observations, and integration of satellite SSH data into efforts to map air-sea fluxes of CO2. Each summer, the PI delivers a lab lesson at the University of South Florida Oceanography Camp for Girls (OCG), recognized by NSF as a \u201cModel STEM Program for Women and Girls\u201d focused on broadening participation by placing emphasis on recruiting a diverse group of young women. As part of this project, the existing interactive Jupyter Notebook-based Python coding Lab lesson will be augmented with a B-SOSE-themed modeling component, which will broaden interest in physical and chemical oceanography and data science, and expose campers to computational methods in oceanography.\r\n", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; Southern Ocean; PH; BIOGEOCHEMICAL CYCLES; AMD; OCEAN CHEMISTRY; OCEAN MIXED LAYER; USA/NSF; NITROGEN; OCEAN CURRENTS; SALINITY/DENSITY; USAP-DC; OCEAN TEMPERATURE; MODELS; CHLOROPHYLL; DISSOLVED GASES; NUTRIENTS", "locations": "Southern Ocean", "north": -30.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Williams, Nancy; Chambers, Don; Tamsitt, Veronica", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Diagnosing the Role of Ocean Eddies in Carbon Cycling from a High-resolution Data Assimilating Ocean Biogeochemical Model", "uid": "p0010309", "west": -180.0}, {"awards": "2149501 Mazloff, Matthew", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 04 Mar 2022 00:00:00 GMT", "description": "This project aims to quantify the impacts of mesoscale eddy processes on ocean carbon content and air-sea carbon dioxide (CO2) fluxes in the Southern Ocean. For the modeling component, the investigators will explore relationships between eddies, ocean carbon content, and air-sea CO2 fluxes within the 1/6-degree resolution Biogeochemical Southern Ocean State Estimate (B-SOSE). They investigators will produce high-resolution composites of the carbon content and physical structure within both cyclonic and anticyclonic eddies by region, quantify the influence of these eddies on the overall simulated air-sea CO2 flux, and diagnose the physical mechanisms driving this influence. For the observational component, the investigators will match eddies observed via satellite altimetry to ocean carbon observations and characterize observed relationships between eddies and ocean carbon content with a focus on Southern Ocean winter observations where light limits biological processes, allowing isolation of the contribution of physical processes. This work will also provide motivation for higher resolution and better eddy parameterizations in climate models, more mesoscale biogeochemical observations, and integration of satellite SSH data into efforts to map air-sea fluxes of CO2. Each summer, the PI delivers a lab lesson at the University of South Florida Oceanography Camp for Girls (OCG), recognized by NSF as a \u201cModel STEM Program for Women and Girls\u201d focused on broadening participation by placing emphasis on recruiting a diverse group of young women. As part of this project, the existing interactive Jupyter Notebook-based Python coding Lab lesson will be augmented with a B-SOSE-themed modeling component, which will broaden interest in physical and chemical oceanography and data science, and expose campers to computational methods in oceanography.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Southern Ocean; AMD; USA/NSF; USAP-DC; MODELS; BIOGEOCHEMICAL CYCLES; Amd/Us", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Mazloff, Matthew", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Diagnosing the role of ocean eddies in carbon cycling from a high- resolution data assimilating ocean biogeochemical model", "uid": "p0010304", "west": -180.0}, {"awards": "2136939 Cervone, Guido; 2136940 Newman, Dava; 2136938 Tedesco, Marco", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Surface melt-related multi-source remote-sensing and climate model data over Helheim Glacier, Greenland for segmentation and machine learning applications; Surface melt-related multi-source remote-sensing and climate model data over Larsen C Ice Shelf, Antarctica for segmentation and machine learning applications", "datasets": [{"dataset_uid": "601842", "doi": "10.15784/601842", "keywords": "Antarctica; Climate Modeling; Cryosphere; Downscaling; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Larsen C Ice Shelf; Machine Learning; MAR; Remote Sensing; Sea Level Rise; Snow/ice; Snow/Ice; Surface Melt", "people": "L\u00fctjens, Bj\u00f6rn; Tedesco, Marco; Alexander, Patrick; Cervone, Guido; Fettweis, Xavier; Antwerpen, Raphael", "repository": "USAP-DC", "science_program": null, "title": "Surface melt-related multi-source remote-sensing and climate model data over Larsen C Ice Shelf, Antarctica for segmentation and machine learning applications", "url": "https://www.usap-dc.org/view/dataset/601842"}, {"dataset_uid": "601841", "doi": "10.15784/601841", "keywords": "Antarctica; Climate Modeling; Cryosphere; Downscaling; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland; Ice Sheet; Machine Learning; MAR; Remote Sensing; Sea Level Rise; Snow/ice; Snow/Ice; Surface Melt", "people": "Fettweis, Xavier; L\u00fctjens, Bj\u00f6rn; Tedesco, Marco; Alexander, Patrick; Cervone, Guido; Antwerpen, Raphael", "repository": "USAP-DC", "science_program": null, "title": "Surface melt-related multi-source remote-sensing and climate model data over Helheim Glacier, Greenland for segmentation and machine learning applications", "url": "https://www.usap-dc.org/view/dataset/601841"}], "date_created": "Mon, 08 Nov 2021 00:00:00 GMT", "description": "Surface melting and the evolution of the surface hydrological system on Antarctica ice shelves modulate the ice sheet mass balance. Despite its importance, limitations still exist that preclude the scientific community from mapping the spatio-temporal evolution of the surface hydrological system at the required resolutions to make the necessary leap forward to address the current and future evolution of ice shelves in Antarctica (Kingslake et al., 2019). Differently from Greenland, surface melting in Antarctica does not exhibit a dependency from elevation, with most of it occurring over ice shelves, at the sea level and where little elevation gradients exist. Therefore, statistical downscaling techniques using digital elevation models - as in the case of Greenland or other mountain regions - cannot be used. Machine learning (ML) tools can help in this regard. In this project, we address this issue and propose a novel method to map the spatio-temporal evolution of surface meltwater in Antarctica on a daily basis at high spatial (30 - 100 m) resolution using a combination of remote sensing, numerical modeling and machine learning. The final product of this project will consist of daily maps of surface meltwater at resolutions of the order of 100 m for the period 2000 - 2021 that will satisfy the following constraints: a) to be physically consistent with the model prediction and with the underlying governing dynamics for the melt processes; b) to capture the temporal dynamics of the model predictions, which include the temporal sequence of a set of past time steps which lead to the target prediction time, but could also include model predictions valid for a set of future time steps; c) to reconcile the higher spatial resolution of the input satellite measurements with the lower spatial resolution of the numerical model; d) to be consistent with previously generated surface melt products, so that temporal time series can be analyzed; e) to provide a measure of uncertainty to help with testing and validation.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "MODELS; Amd/Us; AMD; USA/NSF; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; USAP-DC; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Polar Cyberinfrastructure; Polar Cyberinfrastructure; Polar Cyberinfrastructure", "paleo_time": null, "persons": "Tedesco, Marco", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning", "uid": "p0010277", "west": -180.0}, {"awards": "2139002 Huth, Alexander", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Simulations of ice-shelf rifting on Larsen C Ice Shelf", "datasets": [{"dataset_uid": "601718", "doi": "10.15784/601718", "keywords": "Antarctica; Glaciology; Iceberg; Ice Shelf Dynamics; Larsen C Ice Shelf; Model Data; Modeling", "people": "Huth, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Simulations of ice-shelf rifting on Larsen C Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/601718"}], "date_created": "Fri, 05 Nov 2021 00:00:00 GMT", "description": "Icebergs influence climate by controlling how freshwater from ice sheets is distributed into the ocean, where roughly half of ice sheet mass loss is attributed to iceberg calving in the current climate. The freshwater deposited by icebergs as they drift and melt can affect ocean circulation, sea-ice formation, and biological primary productivity. Furthermore, calving of icebergs from ice shelves, the floating extensions of ice sheets, can influence ice sheet evolution and sea-level rise by reducing the resistive stresses provided by ice shelves on the seaward flow of upstream grounded ice. The majority of mass calved from ice shelves occurs in the form of tabular icebergs, which are typically hundreds of meters thick and on the order of tens to hundreds of kilometers in length and width. Tabular calving occurs when full-thickness ice shelf fractures known as rifts propagate to the edges of the ice shelf. These calving events are infrequent, often with decades between events on an individual ice shelf. Changes in tabular calving behavior, i.e., the size and frequency of calving events, can strongly influence climate and ice sheet evolution. However, tabular calving behavior, and how it responds to changes in climate, is neither well understood nor accurately represented in climate models.\r\n\r\nIn this project, a tabular calving parameterization for climate models will be developed. The parameterization will be derived according to data generated from a series of realistic and idealized century-scale tabular calving simulations, which will be performed with a novel ice flow and damage framework that can be applied at the scale of individual ice sheet-ice shelf systems: the CD-MPM-SSA (Continuum Damage Material Point Method for Shelfy-Stream Approximation). During these simulations, the geometry of the ice shelf, mechanical/rheological properties of the ice, and climate forcings such as ocean temperature will be varied to determine the rifting and calving response. The calving parameterization derived from these experiments will be implemented in a Geophysical Fluid Dynamics Laboratory (GFDL) climate model, where it will be coupled with a bonded-particle iceberg model. Then, experiments will be run to study the feedback between changes in iceberg calving behavior and climate. Success of this project will improve our understanding and representation of the ice mass budget, ice sheet evolution, and ocean freshwater fluxes, and will improve projections of climate change and sea-level rise.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; ICEBERGS; AMD; Antarctic Ice Sheet; USA/NSF; GLACIERS/ICE SHEETS; Amd/Us; MODELS", "locations": "Antarctic Ice Sheet", "north": -60.0, "nsf_funding_programs": "Post Doc/Travel", "paleo_time": null, "persons": "Huth, Alex", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "OPP-PRF Calving, Icebergs, and Climate", "uid": "p0010276", "west": -180.0}, {"awards": "2103032 Schmittner, Andreas", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 09 Sep 2021 00:00:00 GMT", "description": "The Antarctic ice sheet is an important component of Earth\u2019s climate system, as it interacts with the atmosphere, the surrounding Southern Ocean, and the underlaying solid Earth. It is also the largest potential contributor to future sea level rise and a major uncertainty in climate projections. Climate change may trigger instabilities, which may lead to fast and irreversible collapse of parts of the ice sheet. However, very little is known about how interactions between the Antarctic ice sheet and the rest of the climate system affect its behavior, climate, and sea level, partly because most climate models currently do not have fully-interactive ice sheet components. This project investigates Antarctic ice-ocean interactions of the last 20,000 years. A novel numerical climate model will be constructed that includes an interactive Antarctic ice sheet, improving computational infrastructure for research. The model code will be made freely available to the public on a code-sharing site. Paleoclimate data will be synthesized and compared with simulations of the model. The model-data comparison will address three scientific hypotheses regarding past changes in deep ocean circulation, ice sheet, carbon, and sea level. The project will contribute to a better understanding of ice-ocean interactions and past climate variability.\r\n\r\nThis project will test suggestions that ice-ocean interactions have been important for setting deep ocean circulation and carbon storage during the Last Glacial Maximum and subsequent deglaciation. The new model will consist of three existing and well-tested components: (1) an isotope-enabled climate-carbon cycle model of intermediate complexity, (2) a model of the combined Antarctic ice sheet, solid Earth and sea level, and (3) an iceberg model. The coupling will include ocean temperature effects on basal melting of ice shelves, freshwater fluxes from the ice sheet to the ocean, and calving, transport and melting of icebergs. Once constructed and optimized, the model will be applied to simulate the Last Glacial Maximum and subsequent deglaciation. Differences between model versions with full, partial or no coupling will be used to investigate the effects of ice-ocean interactions on the Meridional Overturning Circulation, deep ocean carbon storage and ice sheet fluctuations. Paleoclimate data synthesis will include temperature, carbon and nitrogen isotopes, radiocarbon ages, protactinium-thorium ratios, neodymium isotopes, carbonate ion, dissolved oxygen, relative sea level and terrestrial cosmogenic ages into one multi-proxy database with a consistent updated chronology. The project will support an early-career scientist, one graduate student, undergraduate students, and new and ongoing national and international collaborations. Outreach activities in collaboration with a local science museum will benefit rural communities in Oregon by improving their climate literacy.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "ICE CORE RECORDS; Amd/Us; USA/NSF; OCEAN TEMPERATURE; GLACIERS/ICE SHEETS; BIOGEOCHEMICAL CYCLES; MODELS; AMD; United States Of America; OCEAN CURRENTS; ICEBERGS; PALEOCLIMATE RECONSTRUCTIONS", "locations": "United States Of America", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Schmittner, Andreas; Haight, Andrew ; Clark, Peter", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Investigating Antarctic Ice Sheet-Ocean-Carbon Cycle Interactions During the Last Deglaciation", "uid": "p0010256", "west": -180.0}, {"awards": "1744965 Diao, Minghui; 1744946 Gettelman, Andrew", "bounds_geometry": "POINT(166.7 -77.8)", "dataset_titles": "AWARE_Campaign_Data; Diao, M. (2020). VCSEL 1 Hz Water Vapor Data Version 1.0 for NSF SOCRATES Campaign; Diao, M. (2020). VCSEL 25 Hz Water Vapor Data Version 1.0 for NSF SOCRATES Campaign", "datasets": [{"dataset_uid": "200224", "doi": "10.26023/KFSD-Y8DQ-YC0D", "keywords": null, "people": null, "repository": "UCAR", "science_program": null, "title": "Diao, M. (2020). VCSEL 1 Hz Water Vapor Data Version 1.0 for NSF SOCRATES Campaign", "url": "https://data.eol.ucar.edu/dataset/552.051"}, {"dataset_uid": "200225", "doi": "10.26023/V925-2H41-SD0F", "keywords": null, "people": null, "repository": "UCAR", "science_program": null, "title": "Diao, M. (2020). VCSEL 25 Hz Water Vapor Data Version 1.0 for NSF SOCRATES Campaign", "url": "https://data.eol.ucar.edu/dataset/290779"}, {"dataset_uid": "200223", "doi": "10.17632/x6n4r3yxb2.1", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "AWARE_Campaign_Data", "url": "http://dx.doi.org/10.17632/x6n4r3yxb2.1"}], "date_created": "Mon, 28 Jun 2021 00:00:00 GMT", "description": "Ice supersaturation plays a key role in cloud formation and evolution, and it determines the partitioning among ice, liquid and vapor phases. Over the Southern Ocean and Antarctica, the transition between mixed-phase and ice clouds significantly impacts the radiative effects of clouds. Remote regions such as the Antarctica and Southern Ocean historically have been under-sampled by in-situ observations, especially by airborne observations. Even though more attention has been given to the cloud microphysical properties over these regions, the distribution and characteristics of ice supersaturation and its role in the current and future climate have not been fully investigated at the higher latitudes in the Southern Hemisphere. One of the main objectives of this study is to analyze observations from three recent major field campaigns sponsored by NSF and DOE, which provide intensive in-situ, airborne measurements over the Southern Ocean and ground-based observations at McMurdo station in Antarctica.\r\n\r\nThis project will analyze aircraft-based and ground-based observations over the Southern Ocean and Antarctica, and compare the observations with the Community Earth System Model Version 2 (CESM2) simulations. The focus will be on the observations of ice supersaturation and the relative humidity distribution in mixed-phase and ice clouds, as well as their relationship with cloud micro- and macrophysical properties. Observations will be compared to CESM2 simulations to elucidate model biases. Surface radiation and the precipitation budget at the McMurdo station will be quantified and compared against the CESM2 simulations to improve the fidelity of the representation of Antarctic climate (and climate prediction over Antarctica). Results from our research will be released to the community for improving the understanding of cloud radiative effects and the mass transport of water in the high southern latitudes. Comparisons between the simulations and observations will provide valuable information for improving the next generation CESM model. Two education/outreach projects will be carried out by PI Diao at San Jose State University (SJSU), including a unique undergraduate student research project with hands-on laboratory work on an airborne instrument, and an outreach program that uses social media to broadcast news on polar research to the public.", "east": 166.7, "geometry": "POINT(166.7 -77.8)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; CLIMATE MODELS; USA/NSF; SNOW; Amd/Us; USAP-DC; Chile; ATMOSPHERIC WATER VAPOR; ATMOSPHERIC TEMPERATURE; Antarctica; Southern Ocean; AMD", "locations": "Antarctica; Southern Ocean; Chile", "north": -77.8, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Diao, Minghui; Gettelman, Andrew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e MODELS \u003e CLIMATE MODELS", "repo": "UCAR", "repositories": "Publication; UCAR", "science_programs": null, "south": -77.8, "title": "Collaborative Research: Ice Supersaturation over the Southern Ocean and Antarctica, and its Role in Climate", "uid": "p0010209", "west": 166.7}, {"awards": "1744970 Shevenell, Amelia", "bounds_geometry": "POLYGON((120 -66,120.1 -66,120.2 -66,120.3 -66,120.4 -66,120.5 -66,120.6 -66,120.7 -66,120.8 -66,120.9 -66,121 -66,121 -66.1,121 -66.2,121 -66.3,121 -66.4,121 -66.5,121 -66.6,121 -66.7,121 -66.8,121 -66.9,121 -67,120.9 -67,120.8 -67,120.7 -67,120.6 -67,120.5 -67,120.4 -67,120.3 -67,120.2 -67,120.1 -67,120 -67,120 -66.9,120 -66.8,120 -66.7,120 -66.6,120 -66.5,120 -66.4,120 -66.3,120 -66.2,120 -66.1,120 -66))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 22 Jun 2021 00:00:00 GMT", "description": "At present, Antarctica\u2019s glaciers are melting as the Southern Ocean warms. While glacial retreat in West Antarctica is linked to ocean warming, less is known about the response of East Antarctica\u2019s glaciers. Totten Glacier, located on the Sabrina Coast, East Antarctica is presently retreating. Totten\u2019s retreat is important because it is associated with warm ocean waters and because the glacier drains part of the East Antarctic Ice Sheet that contains enough ice to raise global sea levels ~3.5 meters. Mud accumulating on the seafloor around Antarctica is composed of sediment from the adjacent continent, as well as the skeletons and debris from microscopic marine organisms. As mud accumulates, so does a record of past environmental changes, including ocean temperatures and the advance and retreat of glaciers. Scientists use a variety of physical and chemical analyses to determine how long ago this mud was deposited, the temperature of the ocean at that location through time, and the relative location of glacial ice. In this project, researchers from the University of South Florida will refine and test new geochemical thermometers to better understand the influence of ocean temperatures on East Antarctic glacier extent over the last ~16,000 years. Results will be integrated into ice sheet and climate models to improve the accuracy of predictions.", "east": 121.0, "geometry": "POINT(120.5 -66.5)", "instruments": null, "is_usap_dc": true, "keywords": "SEDIMENTS; FIELD INVESTIGATION; USA/NSF; USAP-DC; PALEOCLIMATE RECONSTRUCTIONS; Sabrina Coast; AMD; Amd/Us", "locations": "Sabrina Coast", "north": -66.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Shevenell, Amelia", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -67.0, "title": "Deglacial to Recent Paleoceanography of the Sabrina Coast, East Antarctica: A Multi-proxy Study of Ice-ocean Interactions at the Outlet of the Aurora Subglacial Basin", "uid": "p0010194", "west": 120.0}, {"awards": "1744755 Ito, Takamitsu", "bounds_geometry": "POLYGON((-80 -45,-75 -45,-70 -45,-65 -45,-60 -45,-55 -45,-50 -45,-45 -45,-40 -45,-35 -45,-30 -45,-30 -47.5,-30 -50,-30 -52.5,-30 -55,-30 -57.5,-30 -60,-30 -62.5,-30 -65,-30 -67.5,-30 -70,-35 -70,-40 -70,-45 -70,-50 -70,-55 -70,-60 -70,-65 -70,-70 -70,-75 -70,-80 -70,-80 -67.5,-80 -65,-80 -62.5,-80 -60,-80 -57.5,-80 -55,-80 -52.5,-80 -50,-80 -47.5,-80 -45))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 23 Mar 2021 00:00:00 GMT", "description": "Current generation of coupled climate models, that are used to make climate projections, lack the resolution to adequately resolve ocean mesoscale (10 - 100km) processes, exhibiting significant biases in the ocean carbon uptake. Mesoscale processes include many features including jets, fronts and eddies that are crucial for bio-physical interactions, air-sea CO2 exchange and the supply of iron to the surface ocean. This modeling project will support the eddy resolving regional simulations to understand the mechanisms that drives bio-physical interaction and air-sea exchange of carbon dioxide. ", "east": -30.0, "geometry": "POINT(-55 -57.5)", "instruments": null, "is_usap_dc": true, "keywords": "COMPUTERS; OCEAN CHEMISTRY; Drake Passage; AMD; USA/NSF; USAP-DC; Air-Sea Carbon Transfer; Amd/Us", "locations": "Drake Passage", "north": -45.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Ito, Takamitsu", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS", "repositories": null, "science_programs": null, "south": -70.0, "title": "A mechanistic study of bio-physical interaction and air-sea carbon transfer in the Southern Ocean", "uid": "p0010166", "west": -80.0}, {"awards": "1842059 Huber, Matthew; 1842176 Bizimis, Michael; 1842115 Jahn, Alexandra; 1842049 Kim, Sora", "bounds_geometry": "POLYGON((-56.693516 -64.209061,-56.6823452 -64.209061,-56.6711744 -64.209061,-56.6600036 -64.209061,-56.6488328 -64.209061,-56.637662 -64.209061,-56.6264912 -64.209061,-56.6153204 -64.209061,-56.6041496 -64.209061,-56.5929788 -64.209061,-56.581808 -64.209061,-56.581808 -64.2143344,-56.581808 -64.2196078,-56.581808 -64.2248812,-56.581808 -64.2301546,-56.581808 -64.235428,-56.581808 -64.2407014,-56.581808 -64.2459748,-56.581808 -64.2512482,-56.581808 -64.2565216,-56.581808 -64.261795,-56.5929788 -64.261795,-56.6041496 -64.261795,-56.6153204 -64.261795,-56.6264912 -64.261795,-56.637662 -64.261795,-56.6488328 -64.261795,-56.6600036 -64.261795,-56.6711744 -64.261795,-56.6823452 -64.261795,-56.693516 -64.261795,-56.693516 -64.2565216,-56.693516 -64.2512482,-56.693516 -64.2459748,-56.693516 -64.2407014,-56.693516 -64.235428,-56.693516 -64.2301546,-56.693516 -64.2248812,-56.693516 -64.2196078,-56.693516 -64.2143344,-56.693516 -64.209061))", "dataset_titles": "Data from: Probing the ecology and climate of the Eocene Southern Ocean with sand tiger sharks Striatolamia macrota", "datasets": [{"dataset_uid": "200183", "doi": "https://doi.org/10.6071/M34T1Z", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Data from: Probing the ecology and climate of the Eocene Southern Ocean with sand tiger sharks Striatolamia macrota", "url": "https://datadryad.org/stash/dataset/doi:10.6071/M34T1Z"}], "date_created": "Tue, 15 Dec 2020 00:00:00 GMT", "description": "The Earth\u0027s climate has changed through time and during the Eocene Epoch (56 to 34 million years ago) there was a transition from \u0027greenhouse\u0027 to \u0027icehouse\u0027 conditions. During the Eocene, a shift to cooler temperatures at high latitudes resulted in the inception of polar glaciation. This in turn affected the environment for living organisms. This project looks to uncover the interaction between biological, oceanographic, and climate systems for the Eocene in Antarctica using chemical analysis of fossil shark teeth collected during past expeditions. The combination of paleontological and geochemical analyses will provide insight to the past ecology and ocean conditions; climate models will be applied to test the role of tectonics, greenhouse gas concentration and ocean circulation on environmental change during this time period. The study contributes to understanding the interaction of increased atmospheric carbon dioxide and ocean circulation. This project also seeks to improve diversity, equity, and inclusion within the geosciences workforce with efforts targeted to undergraduate, graduate, postdoctoral, and early career faculty.\u003cbr/\u003e\u003cbr/\u003eThe research goal is to elucidate the processes leading from the Eocene greenhouse to Oligocene icehouse conditions. Previous explanations for this climate shift centers on Antarctica, where tectonic configurations influenced oceanic gateways, ocean circulation reduced heat transport, and/or greenhouse gas declines prompted glaciation. The team will reconstruct watermass, current, and climate fluctuations proximal to the Antarctic Peninsula using geochemical indicators (oxygen and neodymium isotope composition) from fossil shark teeth collected from Seymour Island. The approach builds on previous shark paleontological studies, incorporates geochemical analyses for environmental reconstruction (i.e., temperature gradients and ocean circulation), and tests hypotheses on Earth System dynamics using novel global climate model simulations with geochemical tracers. This project will advance global climate modeling capabilities with experiments that consider Eocene tectonic configuration within isotope-enabled climate model simulations. A comparison of geochemical results from Eocene climate simulations and empirical records of shark teeth will reveal processes and mechanisms central to the Eocene Antarctic climatic shift.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -56.581808, "geometry": "POINT(-56.637662 -64.235428)", "instruments": null, "is_usap_dc": true, "keywords": "FISH; USA/NSF; OXYGEN ISOTOPE ANALYSIS; WATER MASSES; Amd/Us; AMD; USAP-DC; OXYGEN ISOTOPES; LABORATORY; Seymour Island; Sharks; Striatolamia Macrota", "locations": "Seymour Island", "north": -64.209061, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Integrated System Science", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e PALEOGENE \u003e EOCENE", "persons": "Kim, Sora; Scher, Howard; Huber, Matthew; Jahn, Alexandra", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "Dryad", "repositories": "Dryad", "science_programs": null, "south": -64.261795, "title": "Collaborative Research: Integrating Eocene Shark Paleoecology and Climate Modeling to reveal Southern Ocean Circulation and Antarctic Glaciation", "uid": "p0010146", "west": -56.693516}, {"awards": "1935907 Balco, Gregory; 1935945 Tremblay, Marissa; 1935755 Lamp, Jennifer", "bounds_geometry": "POLYGON((160 -77.25,160.4 -77.25,160.8 -77.25,161.2 -77.25,161.6 -77.25,162 -77.25,162.4 -77.25,162.8 -77.25,163.2 -77.25,163.6 -77.25,164 -77.25,164 -77.325,164 -77.4,164 -77.475,164 -77.55,164 -77.625,164 -77.7,164 -77.775,164 -77.85,164 -77.925,164 -78,163.6 -78,163.2 -78,162.8 -78,162.4 -78,162 -78,161.6 -78,161.2 -78,160.8 -78,160.4 -78,160 -78,160 -77.925,160 -77.85,160 -77.775,160 -77.7,160 -77.625,160 -77.55,160 -77.475,160 -77.4,160 -77.325,160 -77.25))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 25 Aug 2020 00:00:00 GMT", "description": "Part I: Nontechnical\r\nScientists study the Earth\u0027s past climate in order to understand how the climate will respond to ongoing global change in the future. One of the best analogs for future climate might the period that occurred approximately 3 million years ago, during an interval known as the mid-Pliocene Warm Period. During this period, the concentration of carbon dioxide in the atmosphere was similar to today\u0027s and sea level was 15 or more meters higher, due primarily to warming and consequent ice sheet melting in polar regions. However, the temperatures in polar regions during the mid-Pliocene Warm Period are not well determined, in part because we do not have records like ice cores that extend this far back in time. This project will provide constraints on surface temperatures in Antarctica during the mid-Pliocene Warm Period using a new type of climate proxy, known as cosmogenic noble gas paleothermometry. This project focuses on an area of Antarctica called the McMurdo Dry Valleys. In this area, climate models suggest that temperatures were more than 10 \u00baC warmer during the mid-Pliocene than they are today, but indirect geologic observations suggest that temperatures may have been similar to today. The McMurdo Dry Valleys are also a place where rocks have been exposed to Earth surface conditions for several million years, and where this new climate proxy can be readily applied. The team will reconstruct temperatures in the McMurdo Dry Valleys during the mid-Pliocene Warm Period in order to resolve the discrepancy between models and indirect geologic observations and provide much-needed constraints on the sensitivity of Antarctic ice sheets to warming temperatures. The temperature reconstructions generated in this project will have scientific impact in multiple disciplines, including climate science, glaciology, geomorphology, and planetary science. In addition, the project will (1) broaden the participation of underrepresented groups by supporting two early-career female principal investigators, (2) build STEM talent through the education and training of a graduate student, (3) enhance infrastructure for research via publication of a publicly-accessible, open-source code library, and (4) be broadly disseminated via social media, blog posts, publications, and conference presentations. \r\n\r\nPart II: Technical Description\r\nThe mid-Pliocene Warm Period (3\u20133.3 million years ago) is the most recent interval of the geologic past when atmospheric CO2 concentrations exceeded 400 ppm, and is widely considered an analog for how Earths climate system will respond to current global change. Climate models predict polar amplification the occurrence of larger changes in temperatures at high latitudes than the global average due to a radiative forcing both during the mid-Pliocene Warm Period and due to current climate warming. However, the predicted magnitude of polar amplification is highly uncertain in both cases. The magnitude of polar amplification has important implications for the sensitivity of ice sheets to warming and the contribution of ice sheet melting to sea level change. Proxy-based constraints on polar surface air temperatures during the mid-Pliocene Warm Period are sparse to non-existent. In Antarctica, there is only indirect evidence for the magnitude of warming during this time. This project will provide constraints on surface temperatures in the McMurdo Dry Valleys of Antarctica during the mid-Pliocene Warm Period using a newly developed technique called cosmogenic noble gas (CNG) paleothermometry. CNG paleothermometry utilizes the diffusive behavior of cosmogenic 3He in quartz to quantify the temperatures rocks experience while exposed to cosmic-ray particles within a few meters of the Earths surface. The very low erosion rates and subzero temperatures characterizing the McMurdo Dry Valleys make this region uniquely suited for the application of CNG paleothermometry for addressing the question: what temperatures characterized the McMurdo Dry Valleys during the mid-Pliocene Warm Period? To address this question, the team will collect bedrock samples at several locations in the McMurdo Dry Valleys where erosion rates are known to be low enough that cosmic ray exposure extends into the mid-Pliocene or earlier. They will pair cosmogenic 3He measurements, which will record the thermal histories of our samples, with measurements of cosmogenic 10Be, 26Al, and 21Ne, which record samples exposure and erosion histories. We will also make in situ measurements of rock and air temperatures at sample sites in order to quantify the effect of radiative heating and develop a statistical relationship between rock and air temperatures, as well as conduct diffusion experiments to quantify the kinetics of 3He diffusion specific to each sample. This suite of observations will be used to model permissible thermal histories and place constraints on temperatures during the mid-Pliocene Warm Period interval of cosmic-ray exposure.", "east": 164.0, "geometry": "POINT(162 -77.625)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; AMD; LABORATORY; USA/NSF; Amd/Us; ISOTOPES; Dry Valleys; AIR TEMPERATURE RECONSTRUCTION; GEOCHEMISTRY; USAP-DC", "locations": "Dry Valleys", "north": -77.25, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Tremblay, Marissa; Granger, Darryl; Balco, Gregory; Lamp, Jennifer", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -78.0, "title": "Collaborative \r\nResearch: Reconstructing Temperatures during the Mid-Pliocene Warm \r\nPeriod in the McMurdo Dry Valleys with Cosmogenic Noble Gases", "uid": "p0010123", "west": 160.0}, {"awards": "1235094 Thurnherr, Andreas", "bounds_geometry": "POLYGON((-19 -19,-18.2 -19,-17.4 -19,-16.6 -19,-15.8 -19,-15 -19,-14.2 -19,-13.4 -19,-12.6 -19,-11.8 -19,-11 -19,-11 -19.4,-11 -19.8,-11 -20.2,-11 -20.6,-11 -21,-11 -21.4,-11 -21.8,-11 -22.2,-11 -22.6,-11 -23,-11.8 -23,-12.6 -23,-13.4 -23,-14.2 -23,-15 -23,-15.8 -23,-16.6 -23,-17.4 -23,-18.2 -23,-19 -23,-19 -22.6,-19 -22.2,-19 -21.8,-19 -21.4,-19 -21,-19 -20.6,-19 -20.2,-19 -19.8,-19 -19.4,-19 -19))", "dataset_titles": "Expedition Data; NBP1406 Expedition data; NBP1508 Expedition data; Processed Current Measurement Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508; Processed Current Measurement, Pressure and Temperature Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508 (2015); Processed Current Measurement, Pressure, Salinity and Temperature Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508", "datasets": [{"dataset_uid": "601354", "doi": "10.15784/601354", "keywords": "Current Measurements; LADCP; Mid-Ocean Ridge; NBP1508; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; South Atlantic Ocean", "people": "Thurnherr, Andreas", "repository": "USAP-DC", "science_program": null, "title": "Processed Current Measurement Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508", "url": "https://www.usap-dc.org/view/dataset/601354"}, {"dataset_uid": "200153", "doi": "10.7284/903009", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1406 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1406"}, {"dataset_uid": "001408", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1406"}, {"dataset_uid": "601352", "doi": null, "keywords": "CTD; Mid-Ocean Ridge; Mooring; NBP1508; Oceans; Physical Oceanography; Pressure; R/v Nathaniel B. Palmer; Salinity; South Atlantic Ocean; Temperature", "people": "Thurnherr, Andreas", "repository": "USAP-DC", "science_program": null, "title": "Processed Current Measurement, Pressure, Salinity and Temperature Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508", "url": "https://www.usap-dc.org/view/dataset/601352"}, {"dataset_uid": "601353", "doi": null, "keywords": "CTD; CTD Data; Current Measurements; Current Meter; Mid-Ocean Ridge; Mooring; NBP1508; Oceans; Physical Oceanography; Pressure; R/v Nathaniel B. Palmer; Salinity; South Atlantic Ocean; Temperature", "people": "Thurnherr, Andreas", "repository": "USAP-DC", "science_program": null, "title": "Processed Current Measurement, Pressure and Temperature Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508 (2015)", "url": "https://www.usap-dc.org/view/dataset/601353"}, {"dataset_uid": "200154", "doi": "10.7284/906708", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1508 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1508"}], "date_created": "Thu, 02 Jul 2020 00:00:00 GMT", "description": "Overview: In order to close the global overturning circulation, high-density deep- and bottom waters produced at high latitudes must be made less dense and upwell to shallower depths. Available observations from the subtropical South Atlantic indicate that the bulk of the mixing in the deep ocean there takes place over the topographically rough Mid-Atlantic Ridge, in particular in the quasi-regularly spaced \"fracture zone canyons\" corrugating the ridge flanks. There, dense water is advected toward the ridge crest (i.e. upwelled) by persistent along-valley currents that flow down the unidirectional density gradients, which are maintained by strong turbulence (diapycnal mixing). Most of the data on which these inferences are based were collected during the Brazil Basin Tracer Release Experiment (BBTRE) along a single ridge-flank canyon in the western South Atlantic near 22S where previous analyses have shown that both tidal mixing and overflow processes are important. Therefore, it is likely that both processes must be considered in order to understand and parameterize the effects of turbulence and mixing in the canyons corrugating the flanks of all slow-spreading ridges, which make up large fractions of the sea floor, in particular in the Atlantic, Indian and Southern Oceans. The primary aim of this follow-on project is to improve our understanding of the dynamics over the corrugated flanks of slow-spreading mid-ocean ridges. Due to the coarse sampling resolution and choice of station locations it is not possible to answer important questions, such as the relative importance of tidal and sill mixing, from the BBTRE data. Therefore, high-resolution surveys of hydrography, three-dimensional flow, turbulence and mixing will be carried out in two neighboring canyons and over the intervening topographic spur in the BBTRE region to determine the relative contributions of tidal and sill-related mixing. Furthermore, profiling moorings deployed on two nearby sill regions will be used to derive time series of spatially integrated mixing related buoyancy fluxes and to investigate the strong but unexplained sub-inertial variability of the along-canyon flow recorded previously. Additionally, three small moorings will be deployed in saddles between the two canyons to investigate inter-canyon exchange. The data analysis will include available data from previous experiments, including a set of tracer profiles that has not been analyzed before. Intellectual Merit: The corrugated flanks of slow-spreading ridges cover large areas of the sea floor of several major ocean basins. Therefore, understanding the dynamics in the ~100 km of ridge-flank canyons and its effects on the buoyancy and upwelling budget of the abyssal ocean is of global significance. In addition to determining the relative importance of tidal mixing and cross-sill flows in two canyons, the temporal variability of turbulence and mixing from tidal to yearly time scales will be investigated to gain insights into the forcing of the along-canyon flows, the exchange between neighboring canyons, and the eventual fate of the canyon waters. Broader Impacts: It is anticipated that insights gained during this project will improve our understanding of abyssal mixing in many different regions with similar bottom topography and provide the basis for better parameterizations of the effects of turbulence and mixing in large-scale circulation and climate models that cannot resolve these small-scale processes. As part of the project, a graduate student and a post-doctoral researcher will be trained in all aspects of observational physical oceanography, from data acquisition to interpretation. ", "east": -11.0, "geometry": "POINT(-15 -21)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "OCEAN CURRENTS; South Atlantic Ocean; R/V NBP; WATER MASSES", "locations": "South Atlantic Ocean", "north": -19.0, "nsf_funding_programs": null, "paleo_time": null, "persons": "Thurnherr, Andreas", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -23.0, "title": "Collaborative Research: Flow, Turbulence and Mixing in Mid-Ocean Ridge Fracture Zone Canyons", "uid": "p0010114", "west": -19.0}, {"awards": "1341496 Girton, James", "bounds_geometry": "POLYGON((-142 -66,-135.3 -66,-128.6 -66,-121.9 -66,-115.2 -66,-108.5 -66,-101.8 -66,-95.1 -66,-88.4 -66,-81.7 -66,-75 -66,-75 -66.8,-75 -67.6,-75 -68.4,-75 -69.2,-75 -70,-75 -70.8,-75 -71.6,-75 -72.4,-75 -73.2,-75 -74,-81.7 -74,-88.4 -74,-95.1 -74,-101.8 -74,-108.5 -74,-115.2 -74,-121.9 -74,-128.6 -74,-135.3 -74,-142 -74,-142 -73.2,-142 -72.4,-142 -71.6,-142 -70.8,-142 -70,-142 -69.2,-142 -68.4,-142 -67.6,-142 -66.8,-142 -66))", "dataset_titles": "Bottom Photographs from the Antarctic Peninsula acquired during R/V Laurence M. Gould expedition LMG1703; Expedition Data; Expedition data of NBP1701", "datasets": [{"dataset_uid": "001369", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1701"}, {"dataset_uid": "601302", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Benthic Images; Benthos; Biota; LMG1708; Oceans; Photo; Photo/video; Photo/Video; R/v Laurence M. Gould; Ship; Yoyo Camera", "people": "Girton, James", "repository": "USAP-DC", "science_program": null, "title": "Bottom Photographs from the Antarctic Peninsula acquired during R/V Laurence M. Gould expedition LMG1703", "url": "https://www.usap-dc.org/view/dataset/601302"}, {"dataset_uid": "002661", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1701", "url": "https://www.rvdata.us/search/cruise/NBP1701"}], "date_created": "Tue, 10 Dec 2019 00:00:00 GMT", "description": "Current oceanographic interest in the interaction of relatively warm water of the Southern Ocean Circumpolar Deep Water (CDW) as it moves southward to the frigid waters of the Antarctic continental shelves is based on the potential importance of heat transport from the global ocean to the base of continental ice shelves. This is needed to understand the longer term mass balance of the continent, the stability of the vast Antarctic ice sheets and the rate at which sea-level will rise in a warming world. Improved observational knowledge of the mechanisms of how warming CDW moves across the Antarctic Circumpolar Current (ACC) is needed. Understanding this dynamical transport, believed to take place through the eddy flux of time-varying mesoscale circulation features, will improve coupled ocean-atmospheric climate models. The development of the next generation of coupled ocean-ice-climate models help us understand future changes in atmospheric heat fluxes, glacial and sea-ice balance, and changes in the Antarctic ecosystems. A recurring obstacle to our understanding is the lack of data in this distant region. In this project, a total of 10 subsurface profiling EM-APEX floats adapted to operate under sea ice were launched in 12 missions (and 2 recoveries) from 4 cruises of opportunity to the Amundsen Sea sector of the Antarctic continental margin during Austral summer. The floats were launched south of the Polar Front and measured shear, turbulence, temperature, and salinity to 2000m depth for 1-2 year missions while drifting with the CDW layer between profiles.", "east": -75.0, "geometry": "POINT(-108.5 -70)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERA", "is_usap_dc": true, "keywords": "OCEAN TEMPERATURE; R/V NBP; USAP-DC; ICE DEPTH/THICKNESS; HEAT FLUX; OCEAN CURRENTS; SALINITY/DENSITY; LMG1703; Bellingshausen Sea; Yoyo Camera; WATER MASSES; R/V LMG; NBP1701", "locations": "Bellingshausen Sea", "north": -66.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Girton, James; Rynearson, Tatiana", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -74.0, "title": "Collaborative Research: Pathways of Circumpolar Deep Water to West Antarctica from Profiling Float and Satellite Measurements", "uid": "p0010074", "west": -142.0}, {"awards": "1543031 Ivany, Linda", "bounds_geometry": null, "dataset_titles": "NetCDF outputs from middle Eocene climate simulation using the GENESIS global circulation model ; Organic carbon isotope data from serially sampled Eocene driftwood from the La Meseta Fm., Seymour ; Oxygen isotope data from serially sampled Eocene bivalves from the La Meseta Fm., Seymour Island, Antarctica ", "datasets": [{"dataset_uid": "601173", "doi": "10.15784/601173 ", "keywords": "Antarctica; Carbon Isotopes; Driftwood; Eocene; Geochemistry; Geochronology; Isotope Data; La Meseta Formation; Mass Spectrometer; Mass Spectrometry; Organic Carbon Isotopes; Seasonality; Seymour Island; Wood", "people": "Judd, Emily", "repository": "USAP-DC", "science_program": null, "title": "Organic carbon isotope data from serially sampled Eocene driftwood from the La Meseta Fm., Seymour ", "url": "https://www.usap-dc.org/view/dataset/601173"}, {"dataset_uid": "601174", "doi": "10.15784/601174", "keywords": "Antarctica; Biota; Bivalves; Cucullaea; Eocene; Glaciers/ice Sheet; Glaciers/Ice Sheet; Isotope Data; La Meseta Formation; Mass Spectrometer; Mass Spectrometry; Oxygen Isotope; Paleotemperature; Retrotapes; Seasonality; Seymour Island", "people": "Judd, Emily", "repository": "USAP-DC", "science_program": null, "title": "Oxygen isotope data from serially sampled Eocene bivalves from the La Meseta Fm., Seymour Island, Antarctica ", "url": "https://www.usap-dc.org/view/dataset/601174"}, {"dataset_uid": "601175", "doi": "10.15784/601175 ", "keywords": "Antarctica; Atmosphere; Climate Model; Computer Model; Eocene; Genesis; Global Circulation Model; Modeling; Model Output; Seasonality; Temperature", "people": "Judd, Emily", "repository": "USAP-DC", "science_program": null, "title": "NetCDF outputs from middle Eocene climate simulation using the GENESIS global circulation model ", "url": "https://www.usap-dc.org/view/dataset/601175"}], "date_created": "Tue, 23 Apr 2019 00:00:00 GMT", "description": "In order to understand what environmental conditions might look like for future generations, we need to turn to archives of past times when the world was indeed warmer, before anyone was around to commit them to collective memory. The geologic record of Earth\u0027s past offers a glimpse of what could be in store for the future. Research by Ivany and her team looks to Antarctica during a time of past global warmth to see how seasonality of temperature and rainfall in coastal settings are likely to change in the future. They will use the chemistry of fossils (a natural archive of these variables) to test a provocative hypothesis about near-monsoonal conditions in the high latitudes when the oceans are warm. If true, we can expect high-latitude shipping lanes to become more hazardous and fragile marine ecosystems adapted to constant cold temperatures to suffer. With growing information about how human activities are likely to affect the planet in the future, we will be able to make more informed decisions about policies today. This research involves an international team of scholars, including several women scientists, training of graduate students, and a public museum exhibit to educate children about how we study Earth\u0027s ancient climate and what we can learn from it.\u003cbr/\u003e\u003cbr/\u003eAntarctica is key to an understanding how Earth?s climate system works under conditions of elevated CO2. The poles are the most sensitive regions on the planet to climate change, and the equator-to-pole temperature gradient and the degree to which high-latitude warming is amplified are important components for climate models to capture. Accurate proxy data with good age control are therefore critical for testing numerical models and establishing global patterns. The La Meseta Formation on Seymour Island is the only documented marine section from the globally warm Eocene Epoch exposed in outcrop on the continent; hence its climate record is integral to studies of warming. Early data suggest the potential for strongly seasonal precipitation and runoff in coastal settings. This collaboration among paleontologists, geochemists, and climate modelers will test this using seasonally resolved del-18O data from fossil shallow marine bivalves to track the evolution of seasonality through the section, in combination with independent proxies for the composition of summer precipitation (leaf wax del-D) and local seawater (clumped isotopes). The impact of the anticipated salinity stratification on regional climate will be evaluated in the context of numerical climate model simulations. In addition to providing greater clarity on high-latitude conditions during this time of high CO2, the combination of proxy and model results will provide insights about how Eocene warmth may have been maintained and how subsequent cooling came about. As well, a new approach to the analysis of shell carbonates for 87Sr/86Sr will allow refinements in age control so as to allow correlation of this important section with other regions to clarify global climate gradients. The project outlined here will develop new and detailed paleoclimate records from existing samples using well-tuned as well as newer proxies applied here in novel ways. Seasonal extremes are climate parameters generally inaccessible to most studies but critical to an understanding of climate change; these are possible to resolve in this well-preserved, accretionary-macrofossil-bearing section. This is an integrated study that links marine and terrestrial climate records for a key region of the planet across the most significant climate transition in the Cenozoic.", "east": -56.0, "geometry": "POINT(-56.5 -64.25)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "PALEOCLIMATE RECONSTRUCTIONS; USAP-DC; ISOTOPES; NOT APPLICABLE; MACROFOSSILS; Antarctica", "locations": "Antarctica", "north": -64.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Ivany, Linda; Lu, Zunli; Junium, Christopher; Samson, Scott", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.5, "title": "Seasonality, Summer Cooling, and Calibrating the Approach of the Icehouse in Late Eocene Antarctica", "uid": "p0010025", "west": -57.0}, {"awards": "1245899 Kowalewski, Douglas", "bounds_geometry": "POLYGON((-180 -70,-174 -70,-168 -70,-162 -70,-156 -70,-150 -70,-144 -70,-138 -70,-132 -70,-126 -70,-120 -70,-120 -71.5,-120 -73,-120 -74.5,-120 -76,-120 -77.5,-120 -79,-120 -80.5,-120 -82,-120 -83.5,-120 -85,-126 -85,-132 -85,-138 -85,-144 -85,-150 -85,-156 -85,-162 -85,-168 -85,-174 -85,180 -85,178 -85,176 -85,174 -85,172 -85,170 -85,168 -85,166 -85,164 -85,162 -85,160 -85,160 -83.5,160 -82,160 -80.5,160 -79,160 -77.5,160 -76,160 -74.5,160 -73,160 -71.5,160 -70,162 -70,164 -70,166 -70,168 -70,170 -70,172 -70,174 -70,176 -70,178 -70,-180 -70))", "dataset_titles": "Region Climate Model Output Plio-Pleistocene", "datasets": [{"dataset_uid": "601080", "doi": "10.15784/601080", "keywords": "Antarctica; Climate Model; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; McMurdo; Paleoclimate; Ross Sea", "people": "Kowalewski, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Region Climate Model Output Plio-Pleistocene", "url": "https://www.usap-dc.org/view/dataset/601080"}], "date_created": "Tue, 16 Jan 2018 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe PIs propose to complement the ANDRILL marine record with a terrestrial project that will provide chronological control for past fluctuations of the West Antarctic Ice Sheet (WAIS) and alpine glaciers in McMurdo Sound. The project will develop high-resolution maps of drifts deposited from grounded marine-based ice and alpine glaciers on islands and peninsulas in McMurdo Sound. In addition, the PIs will acquire multi-clast/multi-nuclide cosmogenic analyses of these mapped drift sheets and alpine moraines and use regional climate modeling to shed light on the range of possible environmental conditions in the McMurdo region during periods of grounded ice expansion and recession. The PIs will make use of geological records for ice sheet and alpine glacier fluctuations preserved on the flanks of Mount Discovery, Black Island, and Brown Peninsula. Drifts deposited from grounded, marine-based ice will yield spatial constraints for former advances and retreats of the WAIS. Moraines from alpine glaciers, hypothesized to be of interglacial origin, could yield a first-order record of hydrologic change in the region. Synthesizing the field data, the team proposes to improve the resolution of existing regional-scale climate models for the Ross Embayment. The overall approach and anticipated results will provide the first steps towards linking the marine and terrestrial records in this critical sector of Antarctica.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eResults from the proposed work will be integrated with outreach programs at Boston University, Columbia University, and Worcester State University. The team will actively collaborate with the American Museum of Natural History to feature this project prominently in museum outreach. The team will also include a PolarTREC teacher as a member of the research team. The geomorphological results will be presented in 3D at Boston University?s Antarctic Digital Image Analyses Lab. The research will form the basis of a PhD dissertation at Boston University.", "east": -120.0, "geometry": "POINT(-160 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -70.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kowalewski, Douglas", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Collaborative Research: West Antarctic Ice Sheet stability, Alpine Glaciation, and Climate Variability: a Terrestrial Perspective from Cosmogenic-nuclide Dating in McMurdo Sound", "uid": "p0000391", "west": 160.0}, {"awards": "1425989 Sarmiento, Jorge", "bounds_geometry": "POLYGON((-180 -52.6153,-168.67689 -52.6153,-157.35378 -52.6153,-146.03067 -52.6153,-134.70756 -52.6153,-123.38445 -52.6153,-112.06134 -52.6153,-100.73823 -52.6153,-89.41512 -52.6153,-78.09201 -52.6153,-66.7689 -52.6153,-66.7689 -55.18958,-66.7689 -57.76386,-66.7689 -60.33814,-66.7689 -62.91242,-66.7689 -65.4867,-66.7689 -68.06098,-66.7689 -70.63526,-66.7689 -73.20954,-66.7689 -75.78382,-66.7689 -78.3581,-78.09201 -78.3581,-89.41512 -78.3581,-100.73823 -78.3581,-112.06134 -78.3581,-123.38445 -78.3581,-134.70756 -78.3581,-146.03067 -78.3581,-157.35378 -78.3581,-168.67689 -78.3581,180 -78.3581,178.62318 -78.3581,177.24636 -78.3581,175.86954 -78.3581,174.49272 -78.3581,173.1159 -78.3581,171.73908 -78.3581,170.36226 -78.3581,168.98544 -78.3581,167.60862 -78.3581,166.2318 -78.3581,166.2318 -75.78382,166.2318 -73.20954,166.2318 -70.63526,166.2318 -68.06098,166.2318 -65.4867,166.2318 -62.91242,166.2318 -60.33814,166.2318 -57.76386,166.2318 -55.18958,166.2318 -52.6153,167.60862 -52.6153,168.98544 -52.6153,170.36226 -52.6153,171.73908 -52.6153,173.1159 -52.6153,174.49272 -52.6153,175.86954 -52.6153,177.24636 -52.6153,178.62318 -52.6153,-180 -52.6153))", "dataset_titles": "Biogeochemical profiling float data from the Southern Ocean Carbon and Climate Observation and Modeling (SOCCOM) program.UCSD Research Data Collections DOI:10.6075/J09021PC; Expedition Data; Model output NOAA GFDL CM2_6 Cant Hant storage", "datasets": [{"dataset_uid": "001369", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1701"}, {"dataset_uid": "000208", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Biogeochemical profiling float data from the Southern Ocean Carbon and Climate Observation and Modeling (SOCCOM) program.UCSD Research Data Collections DOI:10.6075/J09021PC", "url": "http://library.ucsd.edu/dc/object/bb66239018"}, {"dataset_uid": "601144", "doi": "10.15784/601144", "keywords": "Antarctica; Anthropogenic Heat; Atmosphere; Carbon Storage; Climate Change; Eddy; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Heat Budget; Modeling; Model Output; Oceans; Paleoclimate; Snow/ice; Snow/Ice; Southern Ocean", "people": "Chen, Haidi", "repository": "USAP-DC", "science_program": null, "title": "Model output NOAA GFDL CM2_6 Cant Hant storage", "url": "https://www.usap-dc.org/view/dataset/601144"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project seeks to drive a transformative shift in our understanding of the crucial role of the Southern Ocean in taking up anthropogenic carbon and heat, and resupplying nutrients from the abyss to the surface. An observational program will generate vast amounts of new biogeochemical data that will provide a greatly improved view of the dynamics and ecosystem responses of the Southern Ocean. A modeling component will apply these observations to enhancing understanding of the current ocean, reducing uncertainty in projections of future carbon and nutrient cycles and climate.\u003cbr/\u003e\u003cbr/\u003eBecause it serves as the primary gateway through which the intermediate, deep, and bottom waters of the ocean interact with the surface layers and thus the atmosphere, the Southern Ocean has a profound influence on the oceanic uptake of anthropogenic carbon and heat as well as nutrient resupply from the abyss to the surface. Yet it is the least observed and understood region of the world ocean. The oceanographic community is on the cusp of two major advances that have the potential to transform understanding of the Southern Ocean. The first is the development of new biogeochemical sensors mounted on autonomous profiling floats that allow sampling of ocean biogeochemistry and acidification in 3-dimensional space with a temporal resolution of five to ten days. The SOCCOM float program proposed will increase the average number of biogeochemical profiles measured per month in the Southern Ocean by ~10-30x. The second is that the climate modeling community now has the computational resources and physical understanding to develop fully coupled climate models that can represent crucial mesoscale processes in the Southern Ocean, as well as corresponding models that assimilate observations to produce a state estimate. Together with the observations, this new generation of models provides the tools to vastly improve understanding of Southern Ocean processes and the ability to quantitatively assess uptake of anthropogenic carbon and heat, as well as nutrient resupply, both today and into the future.\u003cbr/\u003e\u003cbr/\u003eIn order to take advantage of the above technological and modeling breakthroughs, SOCCOM will implement the following research programs:\u003cbr/\u003e* Theme 1: Observations. Scripps Institution of Oceanography will lead a field program to expand the number of Southern Ocean autonomous profiling floats and equip them with sensors to measure pH, nitrate, and oxygen. The University of Washington and Monterey Bay Aquarium Research Institute will design, build, and oversee deployment of the floats. Scripps will also develop a mesoscale eddying Southern Ocean state estimate that assimilates physical and biogeochemical data into the MIT ocean general circulation model.\u003cbr/\u003e* Theme 2: Modeling. University of Arizona and Princeton University, together with NOAA\u0027s Geophysical Fluid Dynamics Laboratory (GFDL), will use SOCCOM observations to develop data/model assessment metrics and next-generation model analysis and evaluation, with the goal of improving process level understanding and reducing the uncertainty in projections of our future climate.\u003cbr/\u003e\u003cbr/\u003eLed by Climate Central, an independent, non-profit journalism and research organization that promotes understanding of climate science, SOCCOM will collaborate with educators and media professionals to inform policymakers and the public about the challenges of climate change and its impacts on marine life in the context of the Southern Ocean. In addition, the integrated team of SOCCOM scientists and educators will:\u003cbr/\u003e* communicate data and results of the SOCCOM efforts quickly to the public through established data networks, publications, broadcast media, and a public portal;\u003cbr/\u003e* train a new generation of diverse ocean scientists, including undergraduate students, graduate students, and postdoctoral fellows versed in field techniques, data calibration, modeling, and communication of research to non-scientists;\u003cbr/\u003e* transfer new sensor technology and related software to autonomous instrument providers and manufacturers to ensure that they become widely useable.", "east": -66.7689, "geometry": "POINT(-130.26855 -65.4867)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "USAP-DC; R/V NBP; NBP1701; CLIMATE MODELS", "locations": null, "north": -52.6153, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Sarmiento, Jorge; Rynearson, Tatiana", "platforms": "OTHER \u003e MODELS \u003e CLIMATE MODELS; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "PI website; R2R; USAP-DC", "science_programs": null, "south": -78.3581, "title": "Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM)", "uid": "p0000197", "west": 166.2318}, {"awards": "0944348 Taylor, Kendrick; 0944266 Twickler, Mark", "bounds_geometry": "POINT(-112.1115 -79.481)", "dataset_titles": "Summary of Results from the WAIS Divide Ice Core Project; WAIS Divide WDC06A Core Quality Versus Depth", "datasets": [{"dataset_uid": "601030", "doi": "10.15784/601030", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide Ice Core", "people": "Twickler, Mark; Taylor, Kendrick C.; Souney, Joseph Jr.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide WDC06A Core Quality Versus Depth", "url": "https://www.usap-dc.org/view/dataset/601030"}, {"dataset_uid": "601021", "doi": "10.15784/601021", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide Ice Core", "people": "Taylor, Kendrick C.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Summary of Results from the WAIS Divide Ice Core Project", "url": "https://www.usap-dc.org/view/dataset/601021"}], "date_created": "Fri, 09 Jun 2017 00:00:00 GMT", "description": "Taylor/0944348\u003cbr/\u003e\u003cbr/\u003eThis award supports renewal of funding of the WAIS Divide Science Coordination Office (SCO). The Science Coordination Office (SCO) was established to represent the research community and facilitates the project by working with support organizations responsible for logistics, drilling, and core curation. During the last five years, 26 projects have been individually funded to work on this effort and 1,511 m of the total 3,470 m of ice at the site has been collected. This proposal seeks funding to continue the SCO and related field operations needed to complete the WAIS Divide ice core project. Tasks for the SCO during the second five years include planning and oversight of logistics, drilling, and core curation; coordinating research activities in the field; assisting in curation of the core in the field; allocating samples to individual projects; coordinating the sampling effort; collecting, archiving, and distributing data and other information about the project; hosting an annual science meeting; and facilitating collaborative efforts among the research groups. The intellectual merit of the WAIS Divide project is to better predict how human-caused increases in greenhouse gases will alter climate requires an improved understanding of how previous natural changes in greenhouse gases influenced climate in the past. Information on previous climate changes is used to validate the physics and results of climate models that are used to predict future climate. Antarctic ice cores are the only source of samples of the paleo-atmosphere that can be used to determine previous concentrations of carbon dioxide. Ice cores also contain records of other components of the climate system such as the paleo air and ocean temperature, atmospheric loading of aerosols, and indicators of atmospheric transport. The WAIS Divide ice core project has been designed to obtain the best possible record of greenhouse gases during the last glacial cycle (last ~100,000 years). The site was selected because it has the best balance of high annual snowfall (23 cm of ice equivalent/year), low dust Antarctic ice that does not compromise the carbon dioxide record, and favorable glaciology. The main science objectives of the project are to investigate climate forcing by greenhouse gases, initiation of climate changes, stability of the West Antarctic Ice Sheet, and cryobiology in the ice core. The project has numerous broader impacts. An established provider of educational material (Teachers? Domain) will develop and distribute web-based resources related to the project and climate change for use in K?12 classrooms. These resources will consist of video and interactive graphics that explain how and why ice cores are collected, and what they tell us about future climate change. Members of the national media will be included in the field team and the SCO will assist in presenting information to the general public. Video of the project will be collected and made available for general use. Finally, an opportunity will be created for cryosphere students and early career scientists to participate in field activities and core analysis. An ice core archive will be available for future projects and scientific discoveries from the project can be used by policy makers to make informed decisions.", "east": -112.1115, "geometry": "POINT(-112.1115 -79.481)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Mark, Twickler; Taylor, Kendrick C.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Collaborative Research: Climate, Ice Dynamics and Biology using a Deep Ice Core from the West Antarctic Ice Sheet Ice Divide", "uid": "p0000080", "west": -112.1115}, {"awards": "1043649 Hock, Regine", "bounds_geometry": null, "dataset_titles": "King George and Livingston Islands: Velocities and Digital Elevation Model", "datasets": [{"dataset_uid": "609667", "doi": "10.7265/N5R49NR1", "keywords": "Antarctica; Antarctic Peninsula; Digital Elevation Model; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness; Ice Velocity", "people": "Osmanoglu, Batuhan; Hock, Regine", "repository": "USAP-DC", "science_program": null, "title": "King George and Livingston Islands: Velocities and Digital Elevation Model", "url": "https://www.usap-dc.org/view/dataset/609667"}], "date_created": "Wed, 17 Feb 2016 00:00:00 GMT", "description": "1043649/Braun\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to determine the current mass balance of selected glaciers of the Western Antarctic Peninsula (WAP) and adjacent islands, including King George Island and Livingston Island. A major goal is to discriminate the climatic and dynamic components of the current mass budget. The dynamic component will be assessed using a flux gate approach. Glacier velocity fields will be derived by offset tracking on repeat SAR satellite imagery, and ice thicknesses across grounding lines or near terminus will be approximated from a new methods based on mass continuity. The surface mass balance will be computed from a spatially distributed temperature-index mass-balance model forced by temperature and precipitation data from regional climate models. Our results will provide improved mass budget estimates of Western Antarctic Peninsula glaciers and a more thorough understanding of the ratio between the climatic and dynamic components. The techniques to be developed will be applicable to other glaciers in the region allowing regional scale mass budgets to be derived. The broader impacts of this work are that glacier wastage is currently the most important contributor to global sea level rise and the Antarctic Peninsula has been identified as one of the largest single contributors. Future sea-level rise has major societal, economic and ecological implications. The activity will foster new partnerships through collaboration with European and South American colleagues. The project will form the base of of a postdoctoral research fellowship. It will also provide training of undergraduate and graduate students through inclusion of data and results in course curriculums.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e PALSAR", "is_usap_dc": true, "keywords": "ALOS; Digital Elevation Model", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Integrated System Science", "paleo_time": null, "persons": "Hock, Regine; Osmanoglu, Batuhan", "platforms": "SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e ADVANCED LAND OBSERVING SATELLITE (ALOS) \u003e ALOS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Contribution of Western Antarctic Peninsula glaciers to sea level rise: Separation of the dynamic and climatic components", "uid": "p0000054", "west": null}, {"awards": "0944653 Forster, Richard", "bounds_geometry": "POLYGON((-119.4 -78.1,-118.46000000000001 -78.1,-117.52000000000001 -78.1,-116.58 -78.1,-115.64 -78.1,-114.7 -78.1,-113.76 -78.1,-112.82000000000001 -78.1,-111.88 -78.1,-110.94 -78.1,-110 -78.1,-110 -78.28999999999999,-110 -78.47999999999999,-110 -78.67,-110 -78.86,-110 -79.05,-110 -79.24,-110 -79.42999999999999,-110 -79.62,-110 -79.81,-110 -80,-110.94 -80,-111.88 -80,-112.82000000000001 -80,-113.76 -80,-114.7 -80,-115.64 -80,-116.58 -80,-117.52000000000001 -80,-118.46000000000001 -80,-119.4 -80,-119.4 -79.81,-119.4 -79.62,-119.4 -79.42999999999999,-119.4 -79.24,-119.4 -79.05,-119.4 -78.86,-119.4 -78.67,-119.4 -78.47999999999999,-119.4 -78.28999999999999,-119.4 -78.1))", "dataset_titles": "Annual Satellite Era Accumulation Patterns Over WAIS Divide: A Study Using Shallow Ice Cores, Near-Surface Radars and Satellites", "datasets": [{"dataset_uid": "600146", "doi": "10.15784/600146", "keywords": "Airborne Radar; Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar; WAIS Divide; WAIS Divide Ice Core", "people": "Forster, Richard", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Annual Satellite Era Accumulation Patterns Over WAIS Divide: A Study Using Shallow Ice Cores, Near-Surface Radars and Satellites", "url": "https://www.usap-dc.org/view/dataset/600146"}], "date_created": "Fri, 20 Nov 2015 00:00:00 GMT", "description": "This award supports a project to broaden the knowledge of annual accumulation patterns over the West Antarctic Ice Sheet by processing existing near-surface radar data taken on the US ITASE traverse in 2000 and by gathering and validating new ultra/super-high-frequency (UHF) radar images of near surface layers (to depths of ~15 m), expanding abilities to monitor recent annual accumulation patterns from point source ice cores to radar lines. Shallow (15 m) ice cores will be collected in conjunction with UHF radar images to confirm that radar echoed returns correspond with annual layers, and/or sub-annual density changes in the near-surface snow, as determined from ice core stable isotopes. This project will additionally improve accumulation monitoring from space-borne instruments by comparing the spatial-radar-derived-annual accumulation time series to the passive microwave time series dating back over 3 decades and covering most of Antarctica. The intellectual merit of this project is that mapping the spatial and temporal variations in accumulation rates over the Antarctic ice sheet is essential for understanding ice sheet responses to climate forcing. Antarctic precipitation rate is projected to increase up to 20% in the coming century from the predicted warming. Accumulation is a key component for determining ice sheet mass balance and, hence, sea level rise, yet our ability to measure annual accumulation variability over the past 5 decades (satellite era) is mostly limited to point-source ice cores. Developing a radar and ice core derived annual accumulation dataset will provide validation data for space-born remote sensing algorithms, climate models and, additionally, establish accumulation trends. The broader impacts of the project are that it will advance discovery and understanding within the climatology, glaciology and remote sensing communities by verifying the use of UHF radars to monitor annual layers as determined by visual, chemical and isotopic analysis from corresponding shallow ice cores and will provide a dataset of annual to near-annual accumulation measurements over the past ~5 decades across WAIS divide from existing radar data and proposed radar data. By determining if temporal changes in the passive microwave signal are correlated with temporal changes in accumulation will help assess the utility of passive microwave remote sensing to monitor accumulation rates over ice sheets for future decades. The project will promote teaching, training and learning, and increase representation of underrepresented groups by becoming involved in the NASA History of Winter project and Thermochron Mission and by providing K-12 teachers with training to monitor snow accumulation and temperature here in the US, linking polar research to the student?s backyard. The project will train both undergraduate and graduate students in polar research and will encouraging young investigators to become involved in careers in science. In particular, two REU students will participate in original research projects as part of this larger project, from development of a hypothesis to presentation and publication of the results. The support of a new, young woman scientist will help to increase gender diversity in polar research.", "east": -110.0, "geometry": "POINT(-114.7 -79.05)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -78.1, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Forster, Richard", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -80.0, "title": "Collaborative Research: Annual satellite era accumulation patterns over WAIS Divide: A study using shallow ice cores, near-surface radars and satellites", "uid": "p0000079", "west": -119.4}, {"awards": "1043522 Brook, Edward J.; 1043421 Severinghaus, Jeffrey", "bounds_geometry": "POINT(-112.09 -79.47)", "dataset_titles": "WAIS Divide Replicate Core Methane Isotopic Data Set", "datasets": [{"dataset_uid": "601059", "doi": "10.15784/601059", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Replicate Core Methane Isotopic Data Set", "url": "https://www.usap-dc.org/view/dataset/601059"}], "date_created": "Mon, 13 Jul 2015 00:00:00 GMT", "description": "1043421/Severinghaus\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to obtain samples of ice in selected intervals for replication and verification of the validity and spatial representativeness of key results in the WAIS Divide ice core, and to obtain additional ice samples in areas of intense scientific interest where demand is high. The US Ice Core Working Group recommended in 2003 that NSF pursue the means to take replicate samples, termed \"replicate coring\". This recommendation was part of an agreement to reduce the diameter of the (then) new drilling system (the DISC drill) core to 12.2 cm to lighten logistics burdens, and the science community accepted the reduction in ice sample with the understanding that replicate coring would be able to provide extra sample volume in key intervals. The WAIS Divide effort would particularly benefit from replicate coring, because of the unique quality of the expected gas record and the large samples needed for gases and gas isotopes; thus this proposal to employ replicate coring at WAIS Divide. In addition, scientific demand for ice samples has been, and will continue to be, very unevenly distributed, with the ice core archive being completely depleted in depth intervals of high scientific interest (abrupt climate changes, volcanic sulfate horizons, meteor impact horizons, for example). The broader impacts of the proposed research may include identification of leads and lags between Greenland, tropical, and Antarctic climate change, enabling critical tests of hypotheses for the mechanism of abrupt climate change. Improved understanding of volcanic impacts on atmospheric chemistry and climate may also emerge. This understanding may ultimately help improve climate models and prediction of the Earth System feedback response to ongoing human perturbation in coming centuries. Outreach and public education about climate change are integral components of the PIs\u0027 activities and the proposed work will enhance these efforts. Broader impacts also include education and training of 2 postdoctoral scholars and 1 graduate student, and invaluable field experience for the graduate and undergraduate students who will likely make up the core processing team at WAIS Divide.", "east": -112.09, "geometry": "POINT(-112.09 -79.47)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": false, "keywords": "Ice Core Gas Records; Firn Air Isotopes; LABORATORY; FIELD SURVEYS; Mass Spectrometry; Not provided; FIELD INVESTIGATION; Ice Core; WAIS Divide", "locations": "WAIS Divide", "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.47, "title": "Collaborative Research: Replicate Coring at WAIS Divide to Obtain Additional Samples at Events of High Scientific Interest", "uid": "p0000751", "west": -112.09}, {"awards": "0944764 Brook, Edward J.", "bounds_geometry": null, "dataset_titles": "Abrupt Change in Atmospheric CO2 During the Last Ice Age; High-resolution Atmospheric CO2 during 7.4-9.0 ka", "datasets": [{"dataset_uid": "609539", "doi": "10.7265/N5F47M23", "keywords": "Antarctica; Arctic; Byrd; Chemistry:fluid; Chemistry:Fluid; CO2; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome Ice Core; Taylor Dome; Taylor Dome Ice Core", "people": "Ahn, Jinho; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Byrd Ice Core", "title": "Abrupt Change in Atmospheric CO2 During the Last Ice Age", "url": "https://www.usap-dc.org/view/dataset/609539"}, {"dataset_uid": "609527", "doi": "10.7265/N5QF8QT5", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; South Pole; WAISCORES", "people": "Brook, Edward J.; Ahn, Jinho", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "High-resolution Atmospheric CO2 during 7.4-9.0 ka", "url": "https://www.usap-dc.org/view/dataset/609527"}, {"dataset_uid": "609539", "doi": "10.7265/N5F47M23", "keywords": "Antarctica; Arctic; Byrd; Chemistry:fluid; Chemistry:Fluid; CO2; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome Ice Core; Taylor Dome; Taylor Dome Ice Core", "people": "Ahn, Jinho; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Abrupt Change in Atmospheric CO2 During the Last Ice Age", "url": "https://www.usap-dc.org/view/dataset/609539"}, {"dataset_uid": "609539", "doi": "10.7265/N5F47M23", "keywords": "Antarctica; Arctic; Byrd; Chemistry:fluid; Chemistry:Fluid; CO2; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome Ice Core; Taylor Dome; Taylor Dome Ice Core", "people": "Brook, Edward J.; Ahn, Jinho", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Abrupt Change in Atmospheric CO2 During the Last Ice Age", "url": "https://www.usap-dc.org/view/dataset/609539"}], "date_created": "Thu, 08 Aug 2013 00:00:00 GMT", "description": "This award supports a project to create new, unprecedented high-resolution atmospheric carbon dioxide (CO2) records spanning intervals of abrupt climate changes during the last glacial period and the early Holocene. The proposed work will utilize high-precision methods on existing ice cores from high accumulation sites such as Siple Dome and Byrd Station, Antarctica and will improve our understanding of how fast CO2 can change naturally, how its variations are linked with climate, and, combined with a coupled climate-carbon cycle model, will clarify the role of terrestrial and oceanic processes during past abrupt changes of climate and CO2. The intellectual merit of this work is that CO2 is the most important anthropogenic greenhouse gas and understanding its past variations, its sources and sinks, and how they are linked to climate change is a major goal of the climate research community. This project will produce high quality data on centennial to multi-decadal time scales. Such high-resolution work has not been conducted before because of insufficient analytical precision, slow experimental procedures in previous studies, or lack of available samples. The proposed research will complement future high-resolution studies from WAIS Divide ice cores and will provide ice core CO2 records for the target age intervals, which are in the zone of clathrate formation in the WAIS ice cores. Clathrate hydrate is a phase composed of air and ice. CO2 analyses have historically been less precise in clathrate ice than in ?bubbly ice? such as the Siple Dome ice core that will be analyzed in the proposed project. High quality, high-resolution results from specific intervals in Siple Dome that we propose to analyze will provide important data for verifying the WAIS Divide record. The broader impacts of the work are that current models show a large uncertainty of future climate-carbon cycle interactions. The results of this proposed work will be used for testing coupled carbon cycle-climate models and may contribute to reducing this uncertainty. The project will contribute to the training of several undergraduate students and a full-time technician. Both will learn analytical techniques and the basic science involved. Minorities and female students will be highly encouraged to participate in this project. Outreach efforts will include participation in news media interviews, at a local festival celebrating art, science and technology, and giving seminar presentations in the US and foreign countries. The OSU ice core laboratory has begun a collaboration with a regional science museum and is developing ideas to build an exhibition booth to make public be aware of climate change and ice core research. All data will be archived at the National Snow and Ice Data Center and at other similar archives per the OPP data policy.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e CO2 ANALYZERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "GROUND-BASED OBSERVATIONS; CO2 Concentrations; Ice Core Gas Age; CO2 Uncertainty; LABORATORY; Ice Core Depth; Not provided; CH4 Concentrations", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "NOT APPLICABLE; NOT APPLICABLE", "persons": "Ahn, Jinho; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Atmospheric CO2 and Abrupt Climate Change", "uid": "p0000179", "west": null}, {"awards": "1142963 Warren, Stephen; 0739779 Warren, Stephen", "bounds_geometry": "POLYGON((157 -76,158.1 -76,159.2 -76,160.3 -76,161.4 -76,162.5 -76,163.6 -76,164.7 -76,165.8 -76,166.9 -76,168 -76,168 -76.2,168 -76.4,168 -76.6,168 -76.8,168 -77,168 -77.2,168 -77.4,168 -77.6,168 -77.8,168 -78,166.9 -78,165.8 -78,164.7 -78,163.6 -78,162.5 -78,161.4 -78,160.3 -78,159.2 -78,158.1 -78,157 -78,157 -77.8,157 -77.6,157 -77.4,157 -77.2,157 -77,157 -76.8,157 -76.6,157 -76.4,157 -76.2,157 -76))", "dataset_titles": "Ice on the Oceans of Snowball Earth Project Data", "datasets": [{"dataset_uid": "000183", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Ice on the Oceans of Snowball Earth Project Data", "url": "https://digital.lib.washington.edu/researchworks/handle/1773/37320"}], "date_created": "Wed, 10 Jul 2013 00:00:00 GMT", "description": "The climatic changes of late Precambrian time, 600-800 million years ago, included episodes of extreme glaciation, during which ice may have covered nearly the entire ocean for several million years, according to the Snowball Earth hypothesis. These episodes would hold an important place in Earth?s evolutionary history; they could have encouraged biodiversity by trapping life forms in small isolated ice-free areas, or they could have caused massive extinctions that cleared the path for new life forms to fill empty niches. What caused the Earth to become iced over, and what later caused the ice to melt? Scientific investigation of these questions will result in greater understanding of the climatic changes that the Earth can experience, and will enable better predictions of future climate. This project involves Antarctic field observations as well as laboratory studies and computer modeling.\u003cbr/\u003e\u003cbr/\u003eThe aim of this project is not to prove or disprove the Snowball Earth hypothesis but rather to quantify processes that are important for simulating snowball events in climate models. The principal goal is to identify the types of ice that would have been present on the frozen ocean, and to determine how much sunlight they would reflect back to space. Reflection of sunlight by bright surfaces of snow and ice is what would maintain the cold climate at low latitudes. The melting of the ocean required buildup of greenhouse gases, but it was probably aided by deposition of desert dust and volcanic ash darkening the snow and ice. With so much ice on the Earth?s surface, even small differences in the amount of light that the ice absorbed or reflected could cause significant changes in climate. The properties of the ice would also determine where, and in what circumstances, photosynthetic life could have survived. Some kinds of ice that are rare on the modern Earth may have been pivotal in allowing the tropical ocean to freeze. The ocean surfaces would have included some ice types that now exist only in Antarctica: bare cold sea ice with precipitated salts, and \"blue ice\" areas of the Transantarctic Mountains that were exposed by sublimation and have not experienced melting. Field expeditions were mounted to examine these ice types, and the data analysis is underway. A third ice type, sea ice with a salt crust, is being studied in a freezer laboratory. Modeling will show how sunlight would interact with ice containing light-absorbing dust and volcanic ash. Aside from its reflection of sunlight, ice on the Snowball ocean would have been thick enough to flow under its own weight, invading all parts of the ocean. Yet evidence for the survival of photosynthetic life indicates that some regions of liquid water were maintained at the ocean surface. One possible refuge for photosynthetic organisms is a bay at the far end of a nearly enclosed tropical sea, formed by continental rifting and surrounded by desert, such as the modern Red Sea. A model of glacier flow is being developed to determine the dimensions of the channel, connecting the sea to the ocean, necessary to prevent invasion by the flowing ice yet maintain a water supply to replenish evaporation.", "east": 168.0, "geometry": "POINT(162.5 -77)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Warren, Stephen; Light, Bonnie; Campbell, Adam; Carns, Regina; Dadic, Ruzica; Mullen, Peter; Brandt, Richard; Waddington, Edwin D.", "platforms": "Not provided", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": -78.0, "title": "Ocean Surfaces on Snowball Earth", "uid": "p0000402", "west": 157.0}, {"awards": "0839053 Ackley, Stephen", "bounds_geometry": "POLYGON((-180 -67.05,-170.9866 -67.05,-161.9732 -67.05,-152.9598 -67.05,-143.9464 -67.05,-134.933 -67.05,-125.9196 -67.05,-116.9062 -67.05,-107.8928 -67.05,-98.8794 -67.05,-89.866 -67.05,-89.866 -68.1033,-89.866 -69.1566,-89.866 -70.2099,-89.866 -71.2632,-89.866 -72.3165,-89.866 -73.3698,-89.866 -74.4231,-89.866 -75.4764,-89.866 -76.5297,-89.866 -77.583,-98.8794 -77.583,-107.8928 -77.583,-116.9062 -77.583,-125.9196 -77.583,-134.933 -77.583,-143.9464 -77.583,-152.9598 -77.583,-161.9732 -77.583,-170.9866 -77.583,180 -77.583,178.57 -77.583,177.14 -77.583,175.71 -77.583,174.28 -77.583,172.85 -77.583,171.42 -77.583,169.99 -77.583,168.56 -77.583,167.13 -77.583,165.7 -77.583,165.7 -76.5297,165.7 -75.4764,165.7 -74.4231,165.7 -73.3698,165.7 -72.3165,165.7 -71.2632,165.7 -70.2099,165.7 -69.1566,165.7 -68.1033,165.7 -67.05,167.13 -67.05,168.56 -67.05,169.99 -67.05,171.42 -67.05,172.85 -67.05,174.28 -67.05,175.71 -67.05,177.14 -67.05,178.57 -67.05,-180 -67.05))", "dataset_titles": "The Sea Ice System in Antarctic Summer, Oden Southern Ocean Expedition (OSO 2010-11)", "datasets": [{"dataset_uid": "600106", "doi": "10.15784/600106", "keywords": "Ice Core Records; Oceans; Oden; OSO1011; Sea Ice; Sea Ice Salinity; Sea Ice Thickness; Southern Ocean", "people": "Ackley, Stephen", "repository": "USAP-DC", "science_program": null, "title": "The Sea Ice System in Antarctic Summer, Oden Southern Ocean Expedition (OSO 2010-11)", "url": "https://www.usap-dc.org/view/dataset/600106"}], "date_created": "Fri, 03 May 2013 00:00:00 GMT", "description": "Several aspect of the seasonal melting and reformation cycle of Antarctic sea ice appear to be divergent from those occurring in the Arctic. This is most clearly demonstrated by the dramatic diminishing extent and thinning of the Arctic sea ice, to be contrasted to the changes in Antarctic sea-ice extent, which recently (decadaly) shows small increases. Current climate models do not resolve this discrepancy which likely results from both a lack of relevant observational sea-ice data in the Antarctic, along with inadequacies in the physical parameterization of sea-ice properties in climate models.\u003cbr/\u003e\u003cbr/\u003eResearchers will take advantage of the cruise track of the I/B Oden during transit through the Antarctic sea-ice zones in the region of the Bellingshausen, Amundsen and Ross (BAR) seas on a cruise to McMurdo Station. Because of its remoteness and inaccessibility, the BAR region is of considerable scientific interest as being one of the last under described and perhaps unexploited marine ecosystems left on the planet .\u003cbr/\u003e\u003cbr/\u003eA series of on station and underway observations of sea ice properties will be undertaken, thematically linked to broader questions of summer ice survival and baseline physical properties (e.g. estimates of heat and salt fluxes). In situ spatiotemporal variability of sea-ice cover extent, thickness and snow cover depths will be observed.", "east": 165.7, "geometry": "POINT(-142.083 -72.3165)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -67.05, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Ackley, Stephen", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.583, "title": "The Sea Ice System in Antarctic Summer, Oden Southern Ocean Expedition (OSO 2010-11)", "uid": "p0000676", "west": -89.866}, {"awards": "0739766 Brook, Edward J.", "bounds_geometry": "POINT(-112.08 -79.47)", "dataset_titles": "WAIS Divide Ice Core CO2", "datasets": [{"dataset_uid": "609651", "doi": "10.7265/N5DV1GTZ", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Marcott, Shaun; Brook, Edward J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core CO2", "url": "https://www.usap-dc.org/view/dataset/609651"}], "date_created": "Wed, 30 May 2012 00:00:00 GMT", "description": "Brook 0739766\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to create a 25,000-year high-resolution record of atmospheric CO2 from the WAIS Divide ice core. The site has high ice accumulation rate, relatively cold temperatures, and annual layering that should be preserved back to 40,000 years, all prerequisite for preserving a high quality, well-dated CO2 record. The new record will be used to examine relationships between Antarctic climate, Northern Hemisphere climate, and atmospheric CO2 on glacial-interglacial to centennial time scales, at unprecedented temporal resolution. The intellectual merit of the proposed work is simply that CO2 is the most important greenhouse gas that humans directly impact, and understanding the sources, sinks, and controls of atmospheric CO2 is a major goal for the global scientific community. Accurate chronology and detailed records are primary requirements for developing and testing models that explain and predict CO2 variability. The proposed work has several broader impacts. It contributes to the training of a post-doctoral researcher, who will transfer to a research faculty position during the award period and who will participate in graduate teaching and guest lecture in undergraduate courses. An undergraduate researcher will gain valuable lab training and conduct independent research. Bringing the results of\u003cbr/\u003ethe proposed work to the classroom will enrich courses taught by the PI. Outreach efforts will expose pre-college students to ice core research. The proposed work will enhance the laboratory facilities for ice core research at OSU, insuring that the capability for CO2 measurements exists for future projects. All data will be archived at the National Snow and Ice Data Center and other similar archives, per OPP policy. Highly significant results will be disseminated to the news media through OSU?s very effective News and Communications group. Carbon dioxide is the most important greenhouse gas that humans are directly changing. Understanding how CO2 and climate are linked on all time scales is necessary for predicting the future behavior of the carbon cycle and climate system, primarily to insure that the appropriate processes are represented in carbon cycle/climate models. Part of the proposed work emphasizes the relationship of CO2 and abrupt climate change. Understanding how future abrupt change might impact the carbon cycle is an important issue for society.", "east": -112.08, "geometry": "POINT(-112.08 -79.47)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Carbon Dioxide; FIELD INVESTIGATION; CO2; Wais Divide-project; Ice Core; Antarctica; Climate; Gas Chromatography; Antarctic Ice Core; LABORATORY", "locations": "Antarctica", "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Marcott, Shaun; Ahn, Jinho; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Atmospheric Carbon Dioxide and Climate Change: The WAIS Divide Ice Core Record", "uid": "p0000044", "west": -112.08}, {"awards": "0636898 Winckler, Gisela", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 30 Nov 2011 00:00:00 GMT", "description": "Winckler/0636898\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to study dust sources in Antarctic ice cores. Atmospheric aerosols play an important role both in global biogeochemical cycles as well as in the climate system of the Earth. Records extracted from Antarctic ice cores inform us that dust deposition from the atmosphere to the ice sheet was 15-20 times greater during glacial periods than during interglacials, which raises the possibility that dust may be a key player in climate change on glacial-interglacial timescales. By characterizing potential source areas from South America, South Africa, and Australia as well as fresh glacial flour from Patagonia, the project will determine if the interglacial dust was mobilized from a distinct geographical region (e.g., Australia) or from a more heavily weathered source region in South America. The intellectual merit of the project is that it will contribute to reconstructing climate-related changes in the rate of dust deposition, and in the provenance of the dust, it will provide critical constraints on hydrology and vegetation in the source regions, as well as on the nature of the atmospheric circulation transporting dust to the archive location. In a recent pilot study it was found that there is a dramatic glacial to Holocene change in the 4He/Ca ratio in the dust extracted from ice from Dronning Maud Land, Antarctica, indicating a shift in the source of dust transported to Antarctica. The broader impacts of the project are that Helium isotopes and calcium measurements provide a wealth of information that can then be turned into critical input for dust-climate models. Improved models, which are able to accurately reconstruct paleo dust distribution, will help us to predict changes in dust in response to future climate variability. This information will contribute to an improvement of our integrated understanding of the Earth\u0027s climate system and, in turn, will better inform policy makers of those processes and conditions most susceptible to perturbation by climate change, thereby leading to more meaningful climate-change policy. The project will support a graduate student in the dual masters Earth and Environmental Science Journalism program. The lead-PI manages the rock noble gas laboratory at Lamont. Her leadership role in this facility impacts the training of undergraduate and graduate students as well as visiting scientists.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": false, "keywords": "Deposition; LABORATORY; Dust; Climate; Not provided; Climate Change; Helium Isotopes; FIELD INVESTIGATION; Biogeochemical Cycles", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Winckler, Gisela", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Tracing Glacial-interglacial Changes in the Dust Source to Antarctica using Helium Isotopes", "uid": "p0000265", "west": null}, {"awards": "9220848 Bartek, Louis", "bounds_geometry": "POLYGON((-179.9996 -52.35472,-143.99968 -52.35472,-107.99976 -52.35472,-71.99984 -52.35472,-35.99992 -52.35472,0 -52.35472,35.99992 -52.35472,71.99984 -52.35472,107.99976 -52.35472,143.99968 -52.35472,179.9996 -52.35472,179.9996 -54.916322,179.9996 -57.477924,179.9996 -60.039526,179.9996 -62.601128,179.9996 -65.16273,179.9996 -67.724332,179.9996 -70.285934,179.9996 -72.847536,179.9996 -75.409138,179.9996 -77.97074,143.99968 -77.97074,107.99976 -77.97074,71.99984 -77.97074,35.99992 -77.97074,0 -77.97074,-35.99992 -77.97074,-71.99984 -77.97074,-107.99976 -77.97074,-143.99968 -77.97074,-179.9996 -77.97074,-179.9996 -75.409138,-179.9996 -72.847536,-179.9996 -70.285934,-179.9996 -67.724332,-179.9996 -65.16273,-179.9996 -62.601128,-179.9996 -60.039526,-179.9996 -57.477924,-179.9996 -54.916322,-179.9996 -52.35472))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002265", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9307"}, {"dataset_uid": "002245", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9407"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award supports an integrated seismic, sedimentologic, and paleontologic investigation of glacio-marine stratigraphy of the Ross Sea continental shelf. The purpose of this work is to acquire seismic images and sediment cores of the glacial sediments toward a better understanding of the Cenozoic history of glaciation in the Ross Sea region. This investigation will utilize high resolution seismic profiling data to locate regions where the Pleistocene glacial till is thin or perhaps absent. Piston coring at these locations, if the till is penetrated, will provide sedimentary records of Cenozoic depositional environments and could provide important clues to fluctuations of the Antarctic Ice Sheets. The seismic profiling will provide a direct record of the grounding history of the Ross Ice Shelf during the Pleistocene and it will also allow first order correlations of Cenozoic sedimentary units that are represented by sediments recovered in the piston cores. This work will provide important proxy records of the history of both the West Antarctic Ice Sheet and the East Antarctic Ice Sheet and this, in turn, will provide important constraints to climate models.", "east": 179.9996, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.35472, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bartek, Louis", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.97074, "title": "Integrated Biostratigraphy and High Resolution Seismic Stratigraphy of the Ross Sea: Implications for Cenozoic Eustatic and Climatic Change", "uid": "p0000643", "west": -179.9996}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NSFGEO-NERC: Understanding the Response to Ocean Melting for Two of East Antarctica's Most Vulnerable Glaciers: Totten and Denman
|
2231230 |
2024-02-29 | Joughin, Ian; Shapero, Daniel; Smith, Benjamin E | No dataset link provided | The snow that falls on Antarctica compresses to ice that flows toward the coast as a large sheet, returning it to the ocean over periods of centuries to millennia. In many places around Antarctica, the ice sheet extends from the land to over the ocean, forming floating ice shelves on the periphery. If this cycle is in balance, the ice sheets help maintain a stable sea level. When the climate cools or warms, however, sea level falls or rises as the ice sheet gains or loses ice. The peripheral ice shelves are important for regulating sea level because they help hold back the flow of ice to the ocean. Warming ocean waters thin ice shelves by melting their undersides, allowing ice to flow faster to the ocean, and raising sea level globally. Thus, an important question is how much sea level will rise in response to warming ocean temperatures over the next century(s) that further thin Antarctica?s ice shelves. Currently, West Antarctica produces the majority of the continent?s contribution to sea level. Albeit with large uncertainty, ice-sheet models indicate that Totten and Denman glaciers in East Antarctica could also produce substantial sea-level rise in the next century(s). This international study will focus on improving understanding of how much these glaciers will contribute to sea level under various warming scenarios. The project will use numerical models constrained by oceanographic and remote sensing observations to determine how Totten and Denman glaciers will respond to increased melting. Remote sensing data will provide updated and improved estimates of the melt rate for each ice shelf. Two float profilers will be deployed from aircraft by British and Australian partners in front of each ice shelf to repeatedly measure the temperature and salinity of the water column, with the results telemetered back via satellite link. The melt and oceanographic data will be used to constrain parameterized transfer functions for ice-shelf cavity melting in response to ocean temperature, improving on current parameterizations based on limited data. These melt functions will be used with ocean temperatures from climate models to force an open-source ice-flow numerical model for each glacier to determine the century-scale response for a variety of scenarios, helping to reduce uncertainty in sea level contributions from this part of Antarctica. Processes other than melt that might further alter the contribution to sea level over the next few centuries will also be examined. On the observational side, the demonstrated deployment of float profilers from a sonobuoy launch tube in polar settings would help raise the technology readiness of operational in-situ monitoring of the rapidly changing polar shelf seas, paving the way for an expansion of observations of ocean hydrographic properties from remote areas that currently are poorly understood. In addition to being of scientific value, reduced uncertainty in sea-level rise projections has strong societal benefit to coastal communities struggling with long-range planning to mitigate the effects of sea-level rise over the coming decades to centuries. Outreach activities by team members will help raise public awareness of Antarctica's dramatic changes and the resulting consequences. This is a project jointly funded by the National Science Foundation?s Directorate for Geosciences (NSF/GEO) and the National Environment Research Council (NERC) of the United Kingdom (UK) via the NSF/GEO-NERC Lead Agency Agreement. This Agreement allows a single joint US/UK proposal to be submitted and peer-reviewed by the Agency whose investigator has the largest proportion of the budget. Upon successful joint determination of an award recommendation, each Agency funds the proportion of the budget that supports scientists at institutions in their respective countries. | POLYGON((90 -65,93.5 -65,97 -65,100.5 -65,104 -65,107.5 -65,111 -65,114.5 -65,118 -65,121.5 -65,125 -65,125 -65.2,125 -65.4,125 -65.6,125 -65.8,125 -66,125 -66.2,125 -66.4,125 -66.6,125 -66.8,125 -67,121.5 -67,118 -67,114.5 -67,111 -67,107.5 -67,104 -67,100.5 -67,97 -67,93.5 -67,90 -67,90 -66.8,90 -66.6,90 -66.4,90 -66.2,90 -66,90 -65.8,90 -65.6,90 -65.4,90 -65.2,90 -65)) | POINT(107.5 -66) | false | false | |||||||||
Collaborative Research: Antarctic Automatic Weather Station Program
|
0944018 0943952 |
2023-10-20 | Lazzara, Matthew; Cassano, John |
|
The Antarctic Automatic Weather Station (AWS) network, first commenced in 1978, is the most extensive meteorological observing system on the Antarctic continent, approaching its 30th year at many of its key sites. Its prime focus as a long term observational record is vital to the measurement of the near surface climatology of the Antarctic atmosphere. AWS units measure air-temperature, pressure, wind speed and direction at a nominal surface height of 3m. Other parameters such as relative humidity and snow accumulation may also be taken. Observational data from the AWS are collected via the DCS Argos system aboard either NOAA or MetOp polar orbiting satellites and thus made available globally, in near real time via the GTS (Global Telecommunications System), to operational and synoptic weather forecasters. The surface observations from the AWS network also are often used to check on satellite and remote sensing observations, and the simulations of Global Climate Models (GCMs). Research instances of its use in this project include continued development of the climatology of the Antarctic atmosphere and surface wind studies of the Ross Ice Shelf. The AWS observations benefit the broader earth system science community, supporting research activities ranging from paleoclimate studies to penguin phenology. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||
Collaborative Research: Snow Transport in Katabatic Winds and Implications for the Antarctic Surface Mass Balance: Observations, Theory, and Numerical Modeling
|
2035078 2034874 |
2023-09-08 | Salesky, Scott; Giometto, Marco; Das, Indrani | No dataset link provided | 1. A non-technical explanation of the project's broader significance and importance, that serves as a public justification for NSF funding. This part should be understandable to an educated reader who is not a scientist or engineer. Katabatic or drainage winds, carry high-density air from a higher elevation down a slope under the force of gravity. Although katabatic flows are ubiquitous in alpine and polar regions, a surface-layer similarity theory is currently lacking for these flows, undermining the accuracy of numerical weather and climate prediction models. This project is interdisciplinary, and will give graduate and undergraduate students valuable experience interacting with researchers outside their core discipline. Furthermore, this project will broaden participating in science through recruitment of students from under-represented groups at OU and CU through established programs. The Antarctic Ice Sheet drives many processes in the Earth system through its modulation of regional and global atmospheric and oceanic circulations, storage of fresh water, and effects on global albedo and climate. An understanding of the surface mass balance of the ice sheets is critical for predicting future sea level rise and for interpreting ice core records. Yet, the evolution of the ice sheets through snow deposition, erosion, and transport in katabatic winds (which are persistent across much of the Antarctic) remains poorly understood due to the lack of an overarching theoretical framework, scarcity of in situ observational datasets, and a lack of accurate numerical modeling tools. Advances in the fundamental understanding and modeling capabilities of katabatic transport processes are urgently needed in view of the future climatic and snowfall changes that are projected to occur within the Antarctic continent. This project will leverage the expertise of a multidisciplinary team of investigators (with backgrounds spanning cryospheric science, environmental fluid mechanics, and atmospheric science) to address these knowledge gaps. 2. A technical description of the project that states the problem to be studied, the goals and scope of the research, and the methods and approaches to be used. In many cases, the technical project description may be a modified version of the project summary submitted with the proposal. Using field observations and direct numerical simulations of katabatic flow, this project is expected--- for the first time---to lead to a surface-layer similarity theory for katabatic flows relating turbulent fluxes to mean vertical gradients. The similarity theory will be used to develop surface boundary conditions for large eddy simulations (LES), enabling the first accurate LES of katabatic flow. The numerical tools that the PIs will develop will allow them to investigate how the partitioning between snow redistribution, transport, and sublimation depends on the environmental parameters typically encountered in Antarctica (e.g. atmospheric stratification, surface sloping angles, and humidity profiles), and to develop simple models to infer snow transport based on satellite remote sensing and regional climate models This award reflects the NSF statutory mission and has been deemed worthy of support through evaluation using the intellectual merit of the Foundation and broader impacts review criteria. | None | None | false | false | |||||||||
Collaborative Research: Water on the Antarctic Ice Sheet: Quantifying Surface Melt and Mapping Supraglacial Lakes
|
2021699 |
2023-06-02 | Trusel, Luke; Moussavi, Mahsa | Melting of snow and ice at the surface of the Antarctic ice sheet can lead to the formation of meltwater lakes, an important precursor to ice-shelf collapse and accelerated ice-sheet mass loss. Understanding the present state of Antarctic surface melt provides a baseline to gauge how quickly melt impacts could evolve in the future and to reduce uncertainties in estimates of future sea-level rise. This project used a suite of complimentary measurements from Earth-observing satellites, ground observations, and numerical climate models to enhance understanding of surface melt and lakes, as well as the processes linking these systems. The project supported the scientific training of a postdoctoral associate, a graduate student, and several undergraduate researchers. In addition, the project aimed to promote public scientific literacy and the broadening of quantitative skills for high-school students through the development and implementation of an educational unit in a partnership with an education and outreach expert and two high school teachers. We identified that surface lake drainages on East Antarctica’s Amery Ice Shelf closely correspond to peaks in the daily amplitude of ocean tides. This research indicates that tidal-induced flexure inherent to the ice shelf grounding zone when combined with sufficient surface meltwater volumes can trigger ice shelf surface lake drainages (Trusel et al., 2022). In addition, we developed new estimates of surface melting across the Antarctic ice sheet using satellite and reanalysis data. First, we developed and implemented a pan-Antarctic ice sheet surface melt detection method applied to C-band Advanced Scatterometer (ASCAT) radar backscatter data. These binary melt presence/absence data were then combined with radar backscatter and ERA5 reanalysis outputs to estimate daily rates of surface meltwater production (in mm of water equivalence) across the Antarctic Peninsula region. These data therefore provide a new, observationally based dataset to investigate the intensity and drivers of surface melting in Antarctica’s highest-melt region, and with which to evaluate climate model simulations. This method and an assessment of the resulting data are the subject of a forthcoming manuscript. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||||||
RAPID: What Caused the Record Warmth and Loss of Antarctic Sea ice in the Austral Summer of 2022, and will Sea Ice Remain Low Over 2022-2024?
|
2233016 |
2023-02-17 | Blanchard-Wrigglesworth, Edward | No dataset link provided | In the austral winter of 2021/2022 a drastic decline in Antarctic sea ice extent (SIE) has taken place, and February 2022 marked the lowest SIE on record since consistent satellite sea ice observations began in 1979. Combined with the loss of SIE, the most extreme heat wave ever observed globally (as estimated by temperature anomalies from climatology) took place over East Antarctica in March 2022 as temperatures climbed over +40°C from climatology, an event that climate models struggle to replicate. Extreme events have an oversized footprint in socioeconomic impacts, but also serve as litmus tests for climate models and their predictive capabilities, and thus our understanding of extreme events and the ability of climate models in simulating such events is of key interest both in a scientific and social context. This project will use novel tools to diagnose the factors that led to the record low Antarctic SIE and heat wave focusing on the impact of winds and ocean temperatures. Currently (June 2022) Antarctic SIE remains at record low levels for the time of year, raising the prospect of a long-lasting period of low SIE, yet annual forecasts of Antarctic sea ice do not yet exist. To address this issue, this project will also create exploratory annual sea ice forecasts for the 2022-2024 period. These extreme events have questioned our current understanding of Antarctic climate variability. Motivated by the timing of these events and our recent development of novel analysis tools, this project will address the following research questions: (R1) Can local winds account for the observed 2021/2022 sea ice loss, or are remote sea surface temperature (SST) anomalies a necessary ingredient? (R2) Are sea ice conditions over 2022-2024 likely to remain anomalously low? (R3) Can a state-of-the-art climate model simulate a heat wave of comparable magnitude to that observed if it follows the observed circulation that led to the heat wave? The main approach will be to use a nudging technique with a climate model, in which one or several variables in a climate model are nudged toward observed values. The project authors used this tool to attribute Antarctic sea ice variability and trends over 1979-2018 to winds and SST anomalies. This project will apply this tool to the period 2019-2022 to address R1 and R3 by running two different model experiments over this time period in which the winds over Antarctica and SSTs in the Southern Ocean are nudged toward observed values. In addition, we will diagnose the relevant modes of atmospheric variability over 2019-2022 that are known to influence Antarctic sea ice to gain further insight into the 2022 loss of SIE. To address R2, we plan to extend the model simulations but without nudging, using the model as a forecast model (as its 2022 initial conditions will be taken from the end of the nudged simulations and capture important aspects of the observed state). We expect that if current upper ocean heat content is anomalously high, low SIE conditions may continue over 2022-2024, as happened over 2017-2019 following the previous record low of SIE in 2016/2017. To further address R3, we will compare observations and model simulations using novel atmospheric heat transport calculations developed by the project team. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||
The Role of Wave-sea Ice Floe Interactions in Recent Antarctic Sea Ice Change
|
1643431 |
2022-07-19 | Bitz, Cecilia | Sea-ice coverage surrounding Antarctica has expanded during the era of satellite observations, in contrast to rapidly shrinking Arctic sea ice. Most climate models predict Antarctic sea ice loss, rather than growth, indicating that there is much to learn about Antarctic sea ice in terms of its natural variability, processes and interactions affecting annual growth and retreat, and the impact of atmospheric factors such increasing greenhouse gases and stratospheric ozone depletion. This project is designed to improve model simulations of sea ice and examine the role of wind and wave forcing on changes in sea ice around Antarctica.<br/><br/>This project seeks to explain basic interactions of the coupled atmosphere, ocean, and ice dynamics in the Antarctic climate system, especially in the region near the sea ice edge. The summer evolution of sea ice cover and the near surface heat exchange of atmosphere and ocean depend on the geometric distribution of floes and the open water surrounding them. The distribution of floes has the greatest impact on the sea ice state in the marginal seas, where the distribution itself can vary rapidly. This project would develop and implement a model of sea ice floes in the Los Alamos sea ice model, known as CICE5. This sea ice component would be coupled to the third generation WaveWatch model within the Community Climate System Model Version 2. The coupled model would be used to study sea ice-wave interactions and the role of modeling sea ice floes in the Antarctic. The broader impacts of this project include outreach, support of female scientists, and improvement of the sea-ice codes in widely used climate models. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||||||
Collaborative Proposal: Miocene Climate Extremes: A Ross Sea Perspective from IODP Expedition 374 and DSDP Leg 28 Marine Sediments
|
1947646 1947657 1947558 |
2022-06-08 | Shevenell, Amelia | No dataset link provided | Presently, Antarctica's glaciers are melting as Earth's atmosphere and the Southern Ocean warm. Not much is known about how Antarctica's ice sheets might respond to ongoing and future warming, but such knowledge is important because Antarctica's ice sheets might raise global sea levels significantly with continued melting. Over time, mud accumulates on the sea floor around Antarctica that is composed of the skeletons and debris of microscopic marine organisms and sediment from the adjacent continent. As this mud is deposited, it creates a record of past environmental and ecological changes, including ocean depth, glacier advance and retreat, ocean temperature, ocean circulation, marine ecosystems, ocean chemistry, and continental weathering. Scientists interested in understanding how Antarctica's glaciers and ice sheets might respond to ongoing warming can use a variety of physical, biological, and chemical analyses of these mud archives to determine how long ago the mud was deposited and how the ice sheets, oceans, and marine ecosystems responded during intervals in the past when Earth's climate was warmer. In this project, researchers from the University of South Florida, University of Massachusetts, and Northern Illinois University will reconstruct the depth, ocean temperature, weathering and nutrient input, and marine ecosystems in the central Ross Sea from ~17 to 13 million years ago, when the warm Miocene Climate Optimum transitioned to a cooler interval with more extensive ice sheets. Record will be generated from new sediments recovered during the International Ocean Discovery Program (IODP) Expedition 374 and legacy sequences recovered in the 1970?s during the Deep Sea Drilling Program. Results will be integrated into ice sheet and climate models to improve the accuracy of predictions. | POLYGON((-180 -72.5,-177.6 -72.5,-175.2 -72.5,-172.8 -72.5,-170.4 -72.5,-168 -72.5,-165.6 -72.5,-163.2 -72.5,-160.8 -72.5,-158.4 -72.5,-156 -72.5,-156 -73.15,-156 -73.8,-156 -74.45,-156 -75.1,-156 -75.75,-156 -76.4,-156 -77.05,-156 -77.7,-156 -78.35,-156 -79,-158.4 -79,-160.8 -79,-163.2 -79,-165.6 -79,-168 -79,-170.4 -79,-172.8 -79,-175.2 -79,-177.6 -79,180 -79,178.4 -79,176.8 -79,175.2 -79,173.6 -79,172 -79,170.4 -79,168.8 -79,167.2 -79,165.6 -79,164 -79,164 -78.35,164 -77.7,164 -77.05,164 -76.4,164 -75.75,164 -75.1,164 -74.45,164 -73.8,164 -73.15,164 -72.5,165.6 -72.5,167.2 -72.5,168.8 -72.5,170.4 -72.5,172 -72.5,173.6 -72.5,175.2 -72.5,176.8 -72.5,178.4 -72.5,-180 -72.5)) | POINT(-176 -75.75) | false | false | |||||||||
Collaborative Research: Modeling ice-ocean interaction for the rapidly evolving ice shelf cavities of Pine Island and Thwaites glaciers, Antarctica
|
1643285 1643174 |
2022-05-13 | Joughin, Ian; Dutrieux, Pierre; Padman, Laurence; Springer, Scott |
|
Overview: Several recent studies indicate continuing and increasing ice loss from the Amundsen Sea region of West Antarctica (chiefly Pine Island and Thwaites glaciers). This loss is initiated by thinning of the floating ice shelves by basal melting driven by circulation of relatively warm ocean water under the ice shelves. This thinning triggers ice-dynamics related feedbacks, which leads to loss of ice from the grounded ice sheet. Models suggest that, even though long-term committed ice loss might be governed by ice dynamics, the magnitude of ocean-driven melting at the base of the ice shelves plays a critical role in controlling the rate of ice loss. These conclusions, however, are based on simple parameterized models for melt rate that do not take into account how ocean circulation will change in future as large-scale climate forcing changes, and as the ice shelves thin and retreat through both excess melting and accelerated ice flow. Given that present global climate models struggle to resolve the modern ocean state close to the ice shelves around Antarctica, their projections of future impacts on basal melting and time scale of ice loss have large uncertainties. This project is aimed at reducing these uncertainties though two approaches: (i) assessing, for a given ocean state, how the melt rates will change as ice-shelf cavities evolve through melting and grounding-line retreat, and (ii) improving understanding of the sensitivity of melt rates beneath the Pine Island and Thwaites ice shelves to changes in ocean state on the Amundsen Sea continental shelf. These studies will provide more realistic bounds on ice loss and sea level rise, and lay the groundwork for development of future fully-coupled ice sheet-ocean simulations. Intellectual Merit: Rather than pursue a strategy of using fully coupled models, this project adopts a simpler semi-coupled approach to understand the sensitivity of ice-shelf melting to future forcing. Specifically, the project focuses on using regional ocean circulation models to understand current and future patterns of melting in ice-shelf cavities. The project’s preliminary stage will focus on developing high-resolution ice-shelf cavity-circulation models driven by modern observed regional ocean state and validated with current patterns of melt inferred from satellite observations. Next, an ice-flow model will be used to estimate the future grounding line at various stages of retreat. Using these results, an iterative process with the ocean-circulation and ice-flow models will be applied to determine melt rates at each stage of grounding line retreat. These results will help assess whether more physically constrained melt-rate estimates substantially alter the hypothesis that unstable collapse of the Amundsen Sea sector of West Antarctica is underway. Further, by multiple simulations with modified open-ocean boundary conditions, this study will provide a better understanding of the sensitivity of melt to future changes in regional forcing. For example, what is the sensitivity of melt to changes in Circumpolar Deep Water temperature and to changes in the thermocline height driven be changes in wind forcing? Finally, several semi-coupled ice-ocean simulations will be used to investigate the influence of the ocean-circulation driven distribution of melt over the next several decades. These simulations will provide a much-improved understanding of the linkages between far-field ocean forcing, cavity circulation and melting, and ice-sheet response. Broader Impacts: Planning within the current large range of uncertainty in future sea level change leads to high social and economic costs for governments and businesses worldwide. Thus, our project to reduce sea-level rise uncertainty has strong societal as well as scientific interest. The findings and methods will be applicable to ice shelf cavities in other parts of Antarctica and northern Greenland, and will set the stage for future studies with fully coupled models as computational resources improve. This interdisciplinary work combines expertise of glaciologists and oceanographers, and will contribute to the education of new researchers in this field, with participation of graduate students and postdocs. Through several outreach activities, team members will help make the public aware of the dramatic changes occurring in Antarctica along with the likely consequences. This proposal does not require fieldwork in the Antarctic. | POLYGON((-104 -73,-102.2 -73,-100.4 -73,-98.6 -73,-96.8 -73,-95 -73,-93.2 -73,-91.4 -73,-89.6 -73,-87.8 -73,-86 -73,-86 -73.8,-86 -74.6,-86 -75.4,-86 -76.2,-86 -77,-86 -77.8,-86 -78.6,-86 -79.4,-86 -80.2,-86 -81,-87.8 -81,-89.6 -81,-91.4 -81,-93.2 -81,-95 -81,-96.8 -81,-98.6 -81,-100.4 -81,-102.2 -81,-104 -81,-104 -80.2,-104 -79.4,-104 -78.6,-104 -77.8,-104 -77,-104 -76.2,-104 -75.4,-104 -74.6,-104 -73.8,-104 -73)) | POINT(-95 -77) | false | false | |||||||||
Weddell Gyre Mean Circulation and Eddy Statistics from Floats
|
2148517 |
2022-03-25 | Hancock, Cathrine; Speer, Kevin |
|
The Weddell Gyre is one of the major components of the Southern Ocean circulation system, linking heat and carbon fluxes in the Antarctic Circumpolar Current to the continental margins. Water masses entering the Weddell Gyre are modified as they move in a great circular route around the gyre margin and change through processes involving air-sea-cryosphere interactions as well as through ocean eddies that mix properties across the gyre boundaries. Some of the denser water masses exit the gyre through pathways along the northern boundary, and ultimately ventilate the global deep ocean as Antarctic Bottom Water. While in-situ and satellite observations, as well as computer modeling efforts, provide estimates of the large-scale average flow within the gyre, details of the smaller-scale, or "mesoscale" eddy flow remain elusive. The proposed research will quantify mixing due to mesoscale eddies within the Weddell Gyre, as well as the transport of incoming deep water from the northeast, thought to be a result of transient eddies. Since the Weddell Gyre produces source water for about 40% of Antarctic Bottom Water formation, understanding the dynamics in this region helps to identify causes of documented changes in global bottom waters. This in turn, will give insight into how climate change is affecting global oceans, through modification of dense polar waters and Antarctic Bottom Water characteristics. This project aims to track 153 RAFOS-enabled Argo floats in the ice-covered regions of the Weddell Gyre. The resultant tracks along with all available Argo and earlier float data will be used to calculate Eulerian and Lagrangian means and eddy statistics for the Weddell Gyre. The study will link RAFOS tracks with Argo profiles under ice, allowing one to characterize the importance of eddies in water column modification at critical ice-edge boundaries and leads. With RAFOS tracks near the northeastern limit of the gyre, the project will investigate the eddy-driven processes of incoming Circumpolar Deep Water, to understand better the mechanisms and volume fluxes involved. Previous work shows that a large fraction of the mean circulation in the southern and western limits of the gyre, where it contacts the Antarctic continent, occurs in a narrow boundary layer above the slope. The research here will integrate this flow structure into a complete interior and boundary layer mean circulation synthesis. The findings and products from the proposed work will improve the positioning of Argo profiles in the polar regions, which would allow for more accurate climatological maps and derived quantities. Estimates of meso-scale mixing may serve as a foundation for the development of new parameterization schemes employed in climate models, as well as local and global ocean circulation models in polar regions. | POLYGON((-60 -55,-51 -55,-42 -55,-33 -55,-24 -55,-15 -55,-6 -55,3 -55,12 -55,21 -55,30 -55,30 -57,30 -59,30 -61,30 -63,30 -65,30 -67,30 -69,30 -71,30 -73,30 -75,21 -75,12 -75,3 -75,-6 -75,-15 -75,-24 -75,-33 -75,-42 -75,-51 -75,-60 -75,-60 -73,-60 -71,-60 -69,-60 -67,-60 -65,-60 -63,-60 -61,-60 -59,-60 -57,-60 -55)) | POINT(-15 -65) | false | false | |||||||||
Collaborative Research: Diagnosing the Role of Ocean Eddies in Carbon Cycling from a High-resolution Data Assimilating Ocean Biogeochemical Model
|
2149500 |
2022-03-14 | Williams, Nancy; Chambers, Don; Tamsitt, Veronica | No dataset link provided | The Southern Ocean accounts for ~40% of the total ocean uptake of anthropogenic CO2 despite covering only 20% of the global ocean surface, and is particularly rich in long-lived eddies. These eddies, or large ocean whirlpools which can be observed from space, can alter air-sea fluxes of CO2 in ways that are not yet fully understood. New observations from autonomous platforms measuring ocean carbon content suggest that there is significant heterogeneity in ocean carbon fluxes which can be linked to these dynamic eddy features. Due to computational and time limitations, ocean eddies are not explicitly represented in most climate models, limiting our ability to understand the role eddies play in the ocean carbon cycle. This work will explore the impact of eddies on ocean carbon content and air-sea CO2 fluxes in the Southern Ocean using both model- and observation-based strategies and the findings will improve our understanding of the ocean’s role in the carbon cycle and in global climate. While this work will primarily be focused on the Southern Ocean, the results will be globally applicable. The researchers will also broaden interest in physical and chemical oceanography among middle school-age girls in the University of South Florida’s Oceanography Camp for Girls by augmenting existing lessons with computational methods in oceanography. This project aims to quantify the impacts of mesoscale eddy processes on ocean carbon content and air-sea carbon dioxide (CO2) fluxes in the Southern Ocean. For the modeling component, the investigators will explore relationships between eddies, ocean carbon content, and air-sea CO2 fluxes within the 1/6-degree resolution Biogeochemical Southern Ocean State Estimate (B-SOSE). They investigators will produce high-resolution composites of the carbon content and physical structure within both cyclonic and anticyclonic eddies by region, quantify the influence of these eddies on the overall simulated air-sea CO2 flux, and diagnose the physical mechanisms driving this influence. For the observational component, the investigators will match eddies observed via satellite altimetry to ocean carbon observations and characterize observed relationships between eddies and ocean carbon content with a focus on Southern Ocean winter observations where light limits biological processes, allowing isolation of the contribution of physical processes. This work will also provide motivation for higher resolution and better eddy parameterizations in climate models, more mesoscale biogeochemical observations, and integration of satellite SSH data into efforts to map air-sea fluxes of CO2. Each summer, the PI delivers a lab lesson at the University of South Florida Oceanography Camp for Girls (OCG), recognized by NSF as a “Model STEM Program for Women and Girls” focused on broadening participation by placing emphasis on recruiting a diverse group of young women. As part of this project, the existing interactive Jupyter Notebook-based Python coding Lab lesson will be augmented with a B-SOSE-themed modeling component, which will broaden interest in physical and chemical oceanography and data science, and expose campers to computational methods in oceanography. | POLYGON((-180 -30,-144 -30,-108 -30,-72 -30,-36 -30,0 -30,36 -30,72 -30,108 -30,144 -30,180 -30,180 -36,180 -42,180 -48,180 -54,180 -60,180 -66,180 -72,180 -78,180 -84,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84,-180 -78,-180 -72,-180 -66,-180 -60,-180 -54,-180 -48,-180 -42,-180 -36,-180 -30)) | POINT(0 -89.999) | false | false | |||||||||
Collaborative Research: Diagnosing the role of ocean eddies in carbon cycling from a high- resolution data assimilating ocean biogeochemical model
|
2149501 |
2022-03-04 | Mazloff, Matthew | No dataset link provided | This project aims to quantify the impacts of mesoscale eddy processes on ocean carbon content and air-sea carbon dioxide (CO2) fluxes in the Southern Ocean. For the modeling component, the investigators will explore relationships between eddies, ocean carbon content, and air-sea CO2 fluxes within the 1/6-degree resolution Biogeochemical Southern Ocean State Estimate (B-SOSE). They investigators will produce high-resolution composites of the carbon content and physical structure within both cyclonic and anticyclonic eddies by region, quantify the influence of these eddies on the overall simulated air-sea CO2 flux, and diagnose the physical mechanisms driving this influence. For the observational component, the investigators will match eddies observed via satellite altimetry to ocean carbon observations and characterize observed relationships between eddies and ocean carbon content with a focus on Southern Ocean winter observations where light limits biological processes, allowing isolation of the contribution of physical processes. This work will also provide motivation for higher resolution and better eddy parameterizations in climate models, more mesoscale biogeochemical observations, and integration of satellite SSH data into efforts to map air-sea fluxes of CO2. Each summer, the PI delivers a lab lesson at the University of South Florida Oceanography Camp for Girls (OCG), recognized by NSF as a “Model STEM Program for Women and Girls” focused on broadening participation by placing emphasis on recruiting a diverse group of young women. As part of this project, the existing interactive Jupyter Notebook-based Python coding Lab lesson will be augmented with a B-SOSE-themed modeling component, which will broaden interest in physical and chemical oceanography and data science, and expose campers to computational methods in oceanography. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||
Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning
|
2136939 2136940 2136938 |
2021-11-08 | Tedesco, Marco | Surface melting and the evolution of the surface hydrological system on Antarctica ice shelves modulate the ice sheet mass balance. Despite its importance, limitations still exist that preclude the scientific community from mapping the spatio-temporal evolution of the surface hydrological system at the required resolutions to make the necessary leap forward to address the current and future evolution of ice shelves in Antarctica (Kingslake et al., 2019). Differently from Greenland, surface melting in Antarctica does not exhibit a dependency from elevation, with most of it occurring over ice shelves, at the sea level and where little elevation gradients exist. Therefore, statistical downscaling techniques using digital elevation models - as in the case of Greenland or other mountain regions - cannot be used. Machine learning (ML) tools can help in this regard. In this project, we address this issue and propose a novel method to map the spatio-temporal evolution of surface meltwater in Antarctica on a daily basis at high spatial (30 - 100 m) resolution using a combination of remote sensing, numerical modeling and machine learning. The final product of this project will consist of daily maps of surface meltwater at resolutions of the order of 100 m for the period 2000 - 2021 that will satisfy the following constraints: a) to be physically consistent with the model prediction and with the underlying governing dynamics for the melt processes; b) to capture the temporal dynamics of the model predictions, which include the temporal sequence of a set of past time steps which lead to the target prediction time, but could also include model predictions valid for a set of future time steps; c) to reconcile the higher spatial resolution of the input satellite measurements with the lower spatial resolution of the numerical model; d) to be consistent with previously generated surface melt products, so that temporal time series can be analyzed; e) to provide a measure of uncertainty to help with testing and validation. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||||||
OPP-PRF Calving, Icebergs, and Climate
|
2139002 |
2021-11-05 | Huth, Alex |
|
Icebergs influence climate by controlling how freshwater from ice sheets is distributed into the ocean, where roughly half of ice sheet mass loss is attributed to iceberg calving in the current climate. The freshwater deposited by icebergs as they drift and melt can affect ocean circulation, sea-ice formation, and biological primary productivity. Furthermore, calving of icebergs from ice shelves, the floating extensions of ice sheets, can influence ice sheet evolution and sea-level rise by reducing the resistive stresses provided by ice shelves on the seaward flow of upstream grounded ice. The majority of mass calved from ice shelves occurs in the form of tabular icebergs, which are typically hundreds of meters thick and on the order of tens to hundreds of kilometers in length and width. Tabular calving occurs when full-thickness ice shelf fractures known as rifts propagate to the edges of the ice shelf. These calving events are infrequent, often with decades between events on an individual ice shelf. Changes in tabular calving behavior, i.e., the size and frequency of calving events, can strongly influence climate and ice sheet evolution. However, tabular calving behavior, and how it responds to changes in climate, is neither well understood nor accurately represented in climate models. In this project, a tabular calving parameterization for climate models will be developed. The parameterization will be derived according to data generated from a series of realistic and idealized century-scale tabular calving simulations, which will be performed with a novel ice flow and damage framework that can be applied at the scale of individual ice sheet-ice shelf systems: the CD-MPM-SSA (Continuum Damage Material Point Method for Shelfy-Stream Approximation). During these simulations, the geometry of the ice shelf, mechanical/rheological properties of the ice, and climate forcings such as ocean temperature will be varied to determine the rifting and calving response. The calving parameterization derived from these experiments will be implemented in a Geophysical Fluid Dynamics Laboratory (GFDL) climate model, where it will be coupled with a bonded-particle iceberg model. Then, experiments will be run to study the feedback between changes in iceberg calving behavior and climate. Success of this project will improve our understanding and representation of the ice mass budget, ice sheet evolution, and ocean freshwater fluxes, and will improve projections of climate change and sea-level rise. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||
Investigating Antarctic Ice Sheet-Ocean-Carbon Cycle Interactions During the Last Deglaciation
|
2103032 |
2021-09-09 | Schmittner, Andreas; Haight, Andrew ; Clark, Peter | No dataset link provided | The Antarctic ice sheet is an important component of Earth’s climate system, as it interacts with the atmosphere, the surrounding Southern Ocean, and the underlaying solid Earth. It is also the largest potential contributor to future sea level rise and a major uncertainty in climate projections. Climate change may trigger instabilities, which may lead to fast and irreversible collapse of parts of the ice sheet. However, very little is known about how interactions between the Antarctic ice sheet and the rest of the climate system affect its behavior, climate, and sea level, partly because most climate models currently do not have fully-interactive ice sheet components. This project investigates Antarctic ice-ocean interactions of the last 20,000 years. A novel numerical climate model will be constructed that includes an interactive Antarctic ice sheet, improving computational infrastructure for research. The model code will be made freely available to the public on a code-sharing site. Paleoclimate data will be synthesized and compared with simulations of the model. The model-data comparison will address three scientific hypotheses regarding past changes in deep ocean circulation, ice sheet, carbon, and sea level. The project will contribute to a better understanding of ice-ocean interactions and past climate variability. This project will test suggestions that ice-ocean interactions have been important for setting deep ocean circulation and carbon storage during the Last Glacial Maximum and subsequent deglaciation. The new model will consist of three existing and well-tested components: (1) an isotope-enabled climate-carbon cycle model of intermediate complexity, (2) a model of the combined Antarctic ice sheet, solid Earth and sea level, and (3) an iceberg model. The coupling will include ocean temperature effects on basal melting of ice shelves, freshwater fluxes from the ice sheet to the ocean, and calving, transport and melting of icebergs. Once constructed and optimized, the model will be applied to simulate the Last Glacial Maximum and subsequent deglaciation. Differences between model versions with full, partial or no coupling will be used to investigate the effects of ice-ocean interactions on the Meridional Overturning Circulation, deep ocean carbon storage and ice sheet fluctuations. Paleoclimate data synthesis will include temperature, carbon and nitrogen isotopes, radiocarbon ages, protactinium-thorium ratios, neodymium isotopes, carbonate ion, dissolved oxygen, relative sea level and terrestrial cosmogenic ages into one multi-proxy database with a consistent updated chronology. The project will support an early-career scientist, one graduate student, undergraduate students, and new and ongoing national and international collaborations. Outreach activities in collaboration with a local science museum will benefit rural communities in Oregon by improving their climate literacy. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||
Collaborative Research: Ice Supersaturation over the Southern Ocean and Antarctica, and its Role in Climate
|
1744965 1744946 |
2021-06-28 | Diao, Minghui; Gettelman, Andrew | Ice supersaturation plays a key role in cloud formation and evolution, and it determines the partitioning among ice, liquid and vapor phases. Over the Southern Ocean and Antarctica, the transition between mixed-phase and ice clouds significantly impacts the radiative effects of clouds. Remote regions such as the Antarctica and Southern Ocean historically have been under-sampled by in-situ observations, especially by airborne observations. Even though more attention has been given to the cloud microphysical properties over these regions, the distribution and characteristics of ice supersaturation and its role in the current and future climate have not been fully investigated at the higher latitudes in the Southern Hemisphere. One of the main objectives of this study is to analyze observations from three recent major field campaigns sponsored by NSF and DOE, which provide intensive in-situ, airborne measurements over the Southern Ocean and ground-based observations at McMurdo station in Antarctica. This project will analyze aircraft-based and ground-based observations over the Southern Ocean and Antarctica, and compare the observations with the Community Earth System Model Version 2 (CESM2) simulations. The focus will be on the observations of ice supersaturation and the relative humidity distribution in mixed-phase and ice clouds, as well as their relationship with cloud micro- and macrophysical properties. Observations will be compared to CESM2 simulations to elucidate model biases. Surface radiation and the precipitation budget at the McMurdo station will be quantified and compared against the CESM2 simulations to improve the fidelity of the representation of Antarctic climate (and climate prediction over Antarctica). Results from our research will be released to the community for improving the understanding of cloud radiative effects and the mass transport of water in the high southern latitudes. Comparisons between the simulations and observations will provide valuable information for improving the next generation CESM model. Two education/outreach projects will be carried out by PI Diao at San Jose State University (SJSU), including a unique undergraduate student research project with hands-on laboratory work on an airborne instrument, and an outreach program that uses social media to broadcast news on polar research to the public. | POINT(166.7 -77.8) | POINT(166.7 -77.8) | false | false | ||||||||||
Deglacial to Recent Paleoceanography of the Sabrina Coast, East Antarctica: A Multi-proxy Study of Ice-ocean Interactions at the Outlet of the Aurora Subglacial Basin
|
1744970 |
2021-06-22 | Shevenell, Amelia | No dataset link provided | At present, Antarctica’s glaciers are melting as the Southern Ocean warms. While glacial retreat in West Antarctica is linked to ocean warming, less is known about the response of East Antarctica’s glaciers. Totten Glacier, located on the Sabrina Coast, East Antarctica is presently retreating. Totten’s retreat is important because it is associated with warm ocean waters and because the glacier drains part of the East Antarctic Ice Sheet that contains enough ice to raise global sea levels ~3.5 meters. Mud accumulating on the seafloor around Antarctica is composed of sediment from the adjacent continent, as well as the skeletons and debris from microscopic marine organisms. As mud accumulates, so does a record of past environmental changes, including ocean temperatures and the advance and retreat of glaciers. Scientists use a variety of physical and chemical analyses to determine how long ago this mud was deposited, the temperature of the ocean at that location through time, and the relative location of glacial ice. In this project, researchers from the University of South Florida will refine and test new geochemical thermometers to better understand the influence of ocean temperatures on East Antarctic glacier extent over the last ~16,000 years. Results will be integrated into ice sheet and climate models to improve the accuracy of predictions. | POLYGON((120 -66,120.1 -66,120.2 -66,120.3 -66,120.4 -66,120.5 -66,120.6 -66,120.7 -66,120.8 -66,120.9 -66,121 -66,121 -66.1,121 -66.2,121 -66.3,121 -66.4,121 -66.5,121 -66.6,121 -66.7,121 -66.8,121 -66.9,121 -67,120.9 -67,120.8 -67,120.7 -67,120.6 -67,120.5 -67,120.4 -67,120.3 -67,120.2 -67,120.1 -67,120 -67,120 -66.9,120 -66.8,120 -66.7,120 -66.6,120 -66.5,120 -66.4,120 -66.3,120 -66.2,120 -66.1,120 -66)) | POINT(120.5 -66.5) | false | false | |||||||||
A mechanistic study of bio-physical interaction and air-sea carbon transfer in the Southern Ocean
|
1744755 |
2021-03-23 | Ito, Takamitsu | No dataset link provided | Current generation of coupled climate models, that are used to make climate projections, lack the resolution to adequately resolve ocean mesoscale (10 - 100km) processes, exhibiting significant biases in the ocean carbon uptake. Mesoscale processes include many features including jets, fronts and eddies that are crucial for bio-physical interactions, air-sea CO2 exchange and the supply of iron to the surface ocean. This modeling project will support the eddy resolving regional simulations to understand the mechanisms that drives bio-physical interaction and air-sea exchange of carbon dioxide. | POLYGON((-80 -45,-75 -45,-70 -45,-65 -45,-60 -45,-55 -45,-50 -45,-45 -45,-40 -45,-35 -45,-30 -45,-30 -47.5,-30 -50,-30 -52.5,-30 -55,-30 -57.5,-30 -60,-30 -62.5,-30 -65,-30 -67.5,-30 -70,-35 -70,-40 -70,-45 -70,-50 -70,-55 -70,-60 -70,-65 -70,-70 -70,-75 -70,-80 -70,-80 -67.5,-80 -65,-80 -62.5,-80 -60,-80 -57.5,-80 -55,-80 -52.5,-80 -50,-80 -47.5,-80 -45)) | POINT(-55 -57.5) | false | false | |||||||||
Collaborative Research: Integrating Eocene Shark Paleoecology and Climate Modeling to reveal Southern Ocean Circulation and Antarctic Glaciation
|
1842059 1842176 1842115 1842049 |
2020-12-15 | Kim, Sora; Scher, Howard; Huber, Matthew; Jahn, Alexandra |
|
The Earth's climate has changed through time and during the Eocene Epoch (56 to 34 million years ago) there was a transition from 'greenhouse' to 'icehouse' conditions. During the Eocene, a shift to cooler temperatures at high latitudes resulted in the inception of polar glaciation. This in turn affected the environment for living organisms. This project looks to uncover the interaction between biological, oceanographic, and climate systems for the Eocene in Antarctica using chemical analysis of fossil shark teeth collected during past expeditions. The combination of paleontological and geochemical analyses will provide insight to the past ecology and ocean conditions; climate models will be applied to test the role of tectonics, greenhouse gas concentration and ocean circulation on environmental change during this time period. The study contributes to understanding the interaction of increased atmospheric carbon dioxide and ocean circulation. This project also seeks to improve diversity, equity, and inclusion within the geosciences workforce with efforts targeted to undergraduate, graduate, postdoctoral, and early career faculty.<br/><br/>The research goal is to elucidate the processes leading from the Eocene greenhouse to Oligocene icehouse conditions. Previous explanations for this climate shift centers on Antarctica, where tectonic configurations influenced oceanic gateways, ocean circulation reduced heat transport, and/or greenhouse gas declines prompted glaciation. The team will reconstruct watermass, current, and climate fluctuations proximal to the Antarctic Peninsula using geochemical indicators (oxygen and neodymium isotope composition) from fossil shark teeth collected from Seymour Island. The approach builds on previous shark paleontological studies, incorporates geochemical analyses for environmental reconstruction (i.e., temperature gradients and ocean circulation), and tests hypotheses on Earth System dynamics using novel global climate model simulations with geochemical tracers. This project will advance global climate modeling capabilities with experiments that consider Eocene tectonic configuration within isotope-enabled climate model simulations. A comparison of geochemical results from Eocene climate simulations and empirical records of shark teeth will reveal processes and mechanisms central to the Eocene Antarctic climatic shift.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-56.693516 -64.209061,-56.6823452 -64.209061,-56.6711744 -64.209061,-56.6600036 -64.209061,-56.6488328 -64.209061,-56.637662 -64.209061,-56.6264912 -64.209061,-56.6153204 -64.209061,-56.6041496 -64.209061,-56.5929788 -64.209061,-56.581808 -64.209061,-56.581808 -64.2143344,-56.581808 -64.2196078,-56.581808 -64.2248812,-56.581808 -64.2301546,-56.581808 -64.235428,-56.581808 -64.2407014,-56.581808 -64.2459748,-56.581808 -64.2512482,-56.581808 -64.2565216,-56.581808 -64.261795,-56.5929788 -64.261795,-56.6041496 -64.261795,-56.6153204 -64.261795,-56.6264912 -64.261795,-56.637662 -64.261795,-56.6488328 -64.261795,-56.6600036 -64.261795,-56.6711744 -64.261795,-56.6823452 -64.261795,-56.693516 -64.261795,-56.693516 -64.2565216,-56.693516 -64.2512482,-56.693516 -64.2459748,-56.693516 -64.2407014,-56.693516 -64.235428,-56.693516 -64.2301546,-56.693516 -64.2248812,-56.693516 -64.2196078,-56.693516 -64.2143344,-56.693516 -64.209061)) | POINT(-56.637662 -64.235428) | false | false | |||||||||
Collaborative
Research: Reconstructing Temperatures during the Mid-Pliocene Warm
Period in the McMurdo Dry Valleys with Cosmogenic Noble Gases
|
1935907 1935945 1935755 |
2020-08-25 | Tremblay, Marissa; Granger, Darryl; Balco, Gregory; Lamp, Jennifer | No dataset link provided | Part I: Nontechnical Scientists study the Earth's past climate in order to understand how the climate will respond to ongoing global change in the future. One of the best analogs for future climate might the period that occurred approximately 3 million years ago, during an interval known as the mid-Pliocene Warm Period. During this period, the concentration of carbon dioxide in the atmosphere was similar to today's and sea level was 15 or more meters higher, due primarily to warming and consequent ice sheet melting in polar regions. However, the temperatures in polar regions during the mid-Pliocene Warm Period are not well determined, in part because we do not have records like ice cores that extend this far back in time. This project will provide constraints on surface temperatures in Antarctica during the mid-Pliocene Warm Period using a new type of climate proxy, known as cosmogenic noble gas paleothermometry. This project focuses on an area of Antarctica called the McMurdo Dry Valleys. In this area, climate models suggest that temperatures were more than 10 ºC warmer during the mid-Pliocene than they are today, but indirect geologic observations suggest that temperatures may have been similar to today. The McMurdo Dry Valleys are also a place where rocks have been exposed to Earth surface conditions for several million years, and where this new climate proxy can be readily applied. The team will reconstruct temperatures in the McMurdo Dry Valleys during the mid-Pliocene Warm Period in order to resolve the discrepancy between models and indirect geologic observations and provide much-needed constraints on the sensitivity of Antarctic ice sheets to warming temperatures. The temperature reconstructions generated in this project will have scientific impact in multiple disciplines, including climate science, glaciology, geomorphology, and planetary science. In addition, the project will (1) broaden the participation of underrepresented groups by supporting two early-career female principal investigators, (2) build STEM talent through the education and training of a graduate student, (3) enhance infrastructure for research via publication of a publicly-accessible, open-source code library, and (4) be broadly disseminated via social media, blog posts, publications, and conference presentations. Part II: Technical Description The mid-Pliocene Warm Period (3–3.3 million years ago) is the most recent interval of the geologic past when atmospheric CO2 concentrations exceeded 400 ppm, and is widely considered an analog for how Earths climate system will respond to current global change. Climate models predict polar amplification the occurrence of larger changes in temperatures at high latitudes than the global average due to a radiative forcing both during the mid-Pliocene Warm Period and due to current climate warming. However, the predicted magnitude of polar amplification is highly uncertain in both cases. The magnitude of polar amplification has important implications for the sensitivity of ice sheets to warming and the contribution of ice sheet melting to sea level change. Proxy-based constraints on polar surface air temperatures during the mid-Pliocene Warm Period are sparse to non-existent. In Antarctica, there is only indirect evidence for the magnitude of warming during this time. This project will provide constraints on surface temperatures in the McMurdo Dry Valleys of Antarctica during the mid-Pliocene Warm Period using a newly developed technique called cosmogenic noble gas (CNG) paleothermometry. CNG paleothermometry utilizes the diffusive behavior of cosmogenic 3He in quartz to quantify the temperatures rocks experience while exposed to cosmic-ray particles within a few meters of the Earths surface. The very low erosion rates and subzero temperatures characterizing the McMurdo Dry Valleys make this region uniquely suited for the application of CNG paleothermometry for addressing the question: what temperatures characterized the McMurdo Dry Valleys during the mid-Pliocene Warm Period? To address this question, the team will collect bedrock samples at several locations in the McMurdo Dry Valleys where erosion rates are known to be low enough that cosmic ray exposure extends into the mid-Pliocene or earlier. They will pair cosmogenic 3He measurements, which will record the thermal histories of our samples, with measurements of cosmogenic 10Be, 26Al, and 21Ne, which record samples exposure and erosion histories. We will also make in situ measurements of rock and air temperatures at sample sites in order to quantify the effect of radiative heating and develop a statistical relationship between rock and air temperatures, as well as conduct diffusion experiments to quantify the kinetics of 3He diffusion specific to each sample. This suite of observations will be used to model permissible thermal histories and place constraints on temperatures during the mid-Pliocene Warm Period interval of cosmic-ray exposure. | POLYGON((160 -77.25,160.4 -77.25,160.8 -77.25,161.2 -77.25,161.6 -77.25,162 -77.25,162.4 -77.25,162.8 -77.25,163.2 -77.25,163.6 -77.25,164 -77.25,164 -77.325,164 -77.4,164 -77.475,164 -77.55,164 -77.625,164 -77.7,164 -77.775,164 -77.85,164 -77.925,164 -78,163.6 -78,163.2 -78,162.8 -78,162.4 -78,162 -78,161.6 -78,161.2 -78,160.8 -78,160.4 -78,160 -78,160 -77.925,160 -77.85,160 -77.775,160 -77.7,160 -77.625,160 -77.55,160 -77.475,160 -77.4,160 -77.325,160 -77.25)) | POINT(162 -77.625) | false | false | |||||||||
Collaborative Research: Flow, Turbulence and Mixing in Mid-Ocean Ridge Fracture Zone Canyons
|
1235094 |
2020-07-02 | Thurnherr, Andreas | Overview: In order to close the global overturning circulation, high-density deep- and bottom waters produced at high latitudes must be made less dense and upwell to shallower depths. Available observations from the subtropical South Atlantic indicate that the bulk of the mixing in the deep ocean there takes place over the topographically rough Mid-Atlantic Ridge, in particular in the quasi-regularly spaced "fracture zone canyons" corrugating the ridge flanks. There, dense water is advected toward the ridge crest (i.e. upwelled) by persistent along-valley currents that flow down the unidirectional density gradients, which are maintained by strong turbulence (diapycnal mixing). Most of the data on which these inferences are based were collected during the Brazil Basin Tracer Release Experiment (BBTRE) along a single ridge-flank canyon in the western South Atlantic near 22S where previous analyses have shown that both tidal mixing and overflow processes are important. Therefore, it is likely that both processes must be considered in order to understand and parameterize the effects of turbulence and mixing in the canyons corrugating the flanks of all slow-spreading ridges, which make up large fractions of the sea floor, in particular in the Atlantic, Indian and Southern Oceans. The primary aim of this follow-on project is to improve our understanding of the dynamics over the corrugated flanks of slow-spreading mid-ocean ridges. Due to the coarse sampling resolution and choice of station locations it is not possible to answer important questions, such as the relative importance of tidal and sill mixing, from the BBTRE data. Therefore, high-resolution surveys of hydrography, three-dimensional flow, turbulence and mixing will be carried out in two neighboring canyons and over the intervening topographic spur in the BBTRE region to determine the relative contributions of tidal and sill-related mixing. Furthermore, profiling moorings deployed on two nearby sill regions will be used to derive time series of spatially integrated mixing related buoyancy fluxes and to investigate the strong but unexplained sub-inertial variability of the along-canyon flow recorded previously. Additionally, three small moorings will be deployed in saddles between the two canyons to investigate inter-canyon exchange. The data analysis will include available data from previous experiments, including a set of tracer profiles that has not been analyzed before. Intellectual Merit: The corrugated flanks of slow-spreading ridges cover large areas of the sea floor of several major ocean basins. Therefore, understanding the dynamics in the ~100 km of ridge-flank canyons and its effects on the buoyancy and upwelling budget of the abyssal ocean is of global significance. In addition to determining the relative importance of tidal mixing and cross-sill flows in two canyons, the temporal variability of turbulence and mixing from tidal to yearly time scales will be investigated to gain insights into the forcing of the along-canyon flows, the exchange between neighboring canyons, and the eventual fate of the canyon waters. Broader Impacts: It is anticipated that insights gained during this project will improve our understanding of abyssal mixing in many different regions with similar bottom topography and provide the basis for better parameterizations of the effects of turbulence and mixing in large-scale circulation and climate models that cannot resolve these small-scale processes. As part of the project, a graduate student and a post-doctoral researcher will be trained in all aspects of observational physical oceanography, from data acquisition to interpretation. | POLYGON((-19 -19,-18.2 -19,-17.4 -19,-16.6 -19,-15.8 -19,-15 -19,-14.2 -19,-13.4 -19,-12.6 -19,-11.8 -19,-11 -19,-11 -19.4,-11 -19.8,-11 -20.2,-11 -20.6,-11 -21,-11 -21.4,-11 -21.8,-11 -22.2,-11 -22.6,-11 -23,-11.8 -23,-12.6 -23,-13.4 -23,-14.2 -23,-15 -23,-15.8 -23,-16.6 -23,-17.4 -23,-18.2 -23,-19 -23,-19 -22.6,-19 -22.2,-19 -21.8,-19 -21.4,-19 -21,-19 -20.6,-19 -20.2,-19 -19.8,-19 -19.4,-19 -19)) | POINT(-15 -21) | false | false | ||||||||||
Collaborative Research: Pathways of Circumpolar Deep Water to West Antarctica from Profiling Float and Satellite Measurements
|
1341496 |
2019-12-10 | Girton, James; Rynearson, Tatiana |
|
Current oceanographic interest in the interaction of relatively warm water of the Southern Ocean Circumpolar Deep Water (CDW) as it moves southward to the frigid waters of the Antarctic continental shelves is based on the potential importance of heat transport from the global ocean to the base of continental ice shelves. This is needed to understand the longer term mass balance of the continent, the stability of the vast Antarctic ice sheets and the rate at which sea-level will rise in a warming world. Improved observational knowledge of the mechanisms of how warming CDW moves across the Antarctic Circumpolar Current (ACC) is needed. Understanding this dynamical transport, believed to take place through the eddy flux of time-varying mesoscale circulation features, will improve coupled ocean-atmospheric climate models. The development of the next generation of coupled ocean-ice-climate models help us understand future changes in atmospheric heat fluxes, glacial and sea-ice balance, and changes in the Antarctic ecosystems. A recurring obstacle to our understanding is the lack of data in this distant region. In this project, a total of 10 subsurface profiling EM-APEX floats adapted to operate under sea ice were launched in 12 missions (and 2 recoveries) from 4 cruises of opportunity to the Amundsen Sea sector of the Antarctic continental margin during Austral summer. The floats were launched south of the Polar Front and measured shear, turbulence, temperature, and salinity to 2000m depth for 1-2 year missions while drifting with the CDW layer between profiles. | POLYGON((-142 -66,-135.3 -66,-128.6 -66,-121.9 -66,-115.2 -66,-108.5 -66,-101.8 -66,-95.1 -66,-88.4 -66,-81.7 -66,-75 -66,-75 -66.8,-75 -67.6,-75 -68.4,-75 -69.2,-75 -70,-75 -70.8,-75 -71.6,-75 -72.4,-75 -73.2,-75 -74,-81.7 -74,-88.4 -74,-95.1 -74,-101.8 -74,-108.5 -74,-115.2 -74,-121.9 -74,-128.6 -74,-135.3 -74,-142 -74,-142 -73.2,-142 -72.4,-142 -71.6,-142 -70.8,-142 -70,-142 -69.2,-142 -68.4,-142 -67.6,-142 -66.8,-142 -66)) | POINT(-108.5 -70) | false | false | |||||||||
Seasonality, Summer Cooling, and Calibrating the Approach of the Icehouse in Late Eocene Antarctica
|
1543031 |
2019-04-23 | Ivany, Linda; Lu, Zunli; Junium, Christopher; Samson, Scott | In order to understand what environmental conditions might look like for future generations, we need to turn to archives of past times when the world was indeed warmer, before anyone was around to commit them to collective memory. The geologic record of Earth's past offers a glimpse of what could be in store for the future. Research by Ivany and her team looks to Antarctica during a time of past global warmth to see how seasonality of temperature and rainfall in coastal settings are likely to change in the future. They will use the chemistry of fossils (a natural archive of these variables) to test a provocative hypothesis about near-monsoonal conditions in the high latitudes when the oceans are warm. If true, we can expect high-latitude shipping lanes to become more hazardous and fragile marine ecosystems adapted to constant cold temperatures to suffer. With growing information about how human activities are likely to affect the planet in the future, we will be able to make more informed decisions about policies today. This research involves an international team of scholars, including several women scientists, training of graduate students, and a public museum exhibit to educate children about how we study Earth's ancient climate and what we can learn from it.<br/><br/>Antarctica is key to an understanding how Earth?s climate system works under conditions of elevated CO2. The poles are the most sensitive regions on the planet to climate change, and the equator-to-pole temperature gradient and the degree to which high-latitude warming is amplified are important components for climate models to capture. Accurate proxy data with good age control are therefore critical for testing numerical models and establishing global patterns. The La Meseta Formation on Seymour Island is the only documented marine section from the globally warm Eocene Epoch exposed in outcrop on the continent; hence its climate record is integral to studies of warming. Early data suggest the potential for strongly seasonal precipitation and runoff in coastal settings. This collaboration among paleontologists, geochemists, and climate modelers will test this using seasonally resolved del-18O data from fossil shallow marine bivalves to track the evolution of seasonality through the section, in combination with independent proxies for the composition of summer precipitation (leaf wax del-D) and local seawater (clumped isotopes). The impact of the anticipated salinity stratification on regional climate will be evaluated in the context of numerical climate model simulations. In addition to providing greater clarity on high-latitude conditions during this time of high CO2, the combination of proxy and model results will provide insights about how Eocene warmth may have been maintained and how subsequent cooling came about. As well, a new approach to the analysis of shell carbonates for 87Sr/86Sr will allow refinements in age control so as to allow correlation of this important section with other regions to clarify global climate gradients. The project outlined here will develop new and detailed paleoclimate records from existing samples using well-tuned as well as newer proxies applied here in novel ways. Seasonal extremes are climate parameters generally inaccessible to most studies but critical to an understanding of climate change; these are possible to resolve in this well-preserved, accretionary-macrofossil-bearing section. This is an integrated study that links marine and terrestrial climate records for a key region of the planet across the most significant climate transition in the Cenozoic. | None | POINT(-56.5 -64.25) | false | false | ||||||||||
Collaborative Research: West Antarctic Ice Sheet stability, Alpine Glaciation, and Climate Variability: a Terrestrial Perspective from Cosmogenic-nuclide Dating in McMurdo Sound
|
1245899 |
2018-01-16 | Kowalewski, Douglas |
|
Intellectual Merit: <br/>The PIs propose to complement the ANDRILL marine record with a terrestrial project that will provide chronological control for past fluctuations of the West Antarctic Ice Sheet (WAIS) and alpine glaciers in McMurdo Sound. The project will develop high-resolution maps of drifts deposited from grounded marine-based ice and alpine glaciers on islands and peninsulas in McMurdo Sound. In addition, the PIs will acquire multi-clast/multi-nuclide cosmogenic analyses of these mapped drift sheets and alpine moraines and use regional climate modeling to shed light on the range of possible environmental conditions in the McMurdo region during periods of grounded ice expansion and recession. The PIs will make use of geological records for ice sheet and alpine glacier fluctuations preserved on the flanks of Mount Discovery, Black Island, and Brown Peninsula. Drifts deposited from grounded, marine-based ice will yield spatial constraints for former advances and retreats of the WAIS. Moraines from alpine glaciers, hypothesized to be of interglacial origin, could yield a first-order record of hydrologic change in the region. Synthesizing the field data, the team proposes to improve the resolution of existing regional-scale climate models for the Ross Embayment. The overall approach and anticipated results will provide the first steps towards linking the marine and terrestrial records in this critical sector of Antarctica.<br/><br/>Broader impacts: <br/>Results from the proposed work will be integrated with outreach programs at Boston University, Columbia University, and Worcester State University. The team will actively collaborate with the American Museum of Natural History to feature this project prominently in museum outreach. The team will also include a PolarTREC teacher as a member of the research team. The geomorphological results will be presented in 3D at Boston University?s Antarctic Digital Image Analyses Lab. The research will form the basis of a PhD dissertation at Boston University. | POLYGON((-180 -70,-174 -70,-168 -70,-162 -70,-156 -70,-150 -70,-144 -70,-138 -70,-132 -70,-126 -70,-120 -70,-120 -71.5,-120 -73,-120 -74.5,-120 -76,-120 -77.5,-120 -79,-120 -80.5,-120 -82,-120 -83.5,-120 -85,-126 -85,-132 -85,-138 -85,-144 -85,-150 -85,-156 -85,-162 -85,-168 -85,-174 -85,180 -85,178 -85,176 -85,174 -85,172 -85,170 -85,168 -85,166 -85,164 -85,162 -85,160 -85,160 -83.5,160 -82,160 -80.5,160 -79,160 -77.5,160 -76,160 -74.5,160 -73,160 -71.5,160 -70,162 -70,164 -70,166 -70,168 -70,170 -70,172 -70,174 -70,176 -70,178 -70,-180 -70)) | POINT(-160 -77.5) | false | false | |||||||||
Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM)
|
1425989 |
2017-12-29 | Sarmiento, Jorge; Rynearson, Tatiana | Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project seeks to drive a transformative shift in our understanding of the crucial role of the Southern Ocean in taking up anthropogenic carbon and heat, and resupplying nutrients from the abyss to the surface. An observational program will generate vast amounts of new biogeochemical data that will provide a greatly improved view of the dynamics and ecosystem responses of the Southern Ocean. A modeling component will apply these observations to enhancing understanding of the current ocean, reducing uncertainty in projections of future carbon and nutrient cycles and climate.<br/><br/>Because it serves as the primary gateway through which the intermediate, deep, and bottom waters of the ocean interact with the surface layers and thus the atmosphere, the Southern Ocean has a profound influence on the oceanic uptake of anthropogenic carbon and heat as well as nutrient resupply from the abyss to the surface. Yet it is the least observed and understood region of the world ocean. The oceanographic community is on the cusp of two major advances that have the potential to transform understanding of the Southern Ocean. The first is the development of new biogeochemical sensors mounted on autonomous profiling floats that allow sampling of ocean biogeochemistry and acidification in 3-dimensional space with a temporal resolution of five to ten days. The SOCCOM float program proposed will increase the average number of biogeochemical profiles measured per month in the Southern Ocean by ~10-30x. The second is that the climate modeling community now has the computational resources and physical understanding to develop fully coupled climate models that can represent crucial mesoscale processes in the Southern Ocean, as well as corresponding models that assimilate observations to produce a state estimate. Together with the observations, this new generation of models provides the tools to vastly improve understanding of Southern Ocean processes and the ability to quantitatively assess uptake of anthropogenic carbon and heat, as well as nutrient resupply, both today and into the future.<br/><br/>In order to take advantage of the above technological and modeling breakthroughs, SOCCOM will implement the following research programs:<br/>* Theme 1: Observations. Scripps Institution of Oceanography will lead a field program to expand the number of Southern Ocean autonomous profiling floats and equip them with sensors to measure pH, nitrate, and oxygen. The University of Washington and Monterey Bay Aquarium Research Institute will design, build, and oversee deployment of the floats. Scripps will also develop a mesoscale eddying Southern Ocean state estimate that assimilates physical and biogeochemical data into the MIT ocean general circulation model.<br/>* Theme 2: Modeling. University of Arizona and Princeton University, together with NOAA's Geophysical Fluid Dynamics Laboratory (GFDL), will use SOCCOM observations to develop data/model assessment metrics and next-generation model analysis and evaluation, with the goal of improving process level understanding and reducing the uncertainty in projections of our future climate.<br/><br/>Led by Climate Central, an independent, non-profit journalism and research organization that promotes understanding of climate science, SOCCOM will collaborate with educators and media professionals to inform policymakers and the public about the challenges of climate change and its impacts on marine life in the context of the Southern Ocean. In addition, the integrated team of SOCCOM scientists and educators will:<br/>* communicate data and results of the SOCCOM efforts quickly to the public through established data networks, publications, broadcast media, and a public portal;<br/>* train a new generation of diverse ocean scientists, including undergraduate students, graduate students, and postdoctoral fellows versed in field techniques, data calibration, modeling, and communication of research to non-scientists;<br/>* transfer new sensor technology and related software to autonomous instrument providers and manufacturers to ensure that they become widely useable. | POLYGON((-180 -52.6153,-168.67689 -52.6153,-157.35378 -52.6153,-146.03067 -52.6153,-134.70756 -52.6153,-123.38445 -52.6153,-112.06134 -52.6153,-100.73823 -52.6153,-89.41512 -52.6153,-78.09201 -52.6153,-66.7689 -52.6153,-66.7689 -55.18958,-66.7689 -57.76386,-66.7689 -60.33814,-66.7689 -62.91242,-66.7689 -65.4867,-66.7689 -68.06098,-66.7689 -70.63526,-66.7689 -73.20954,-66.7689 -75.78382,-66.7689 -78.3581,-78.09201 -78.3581,-89.41512 -78.3581,-100.73823 -78.3581,-112.06134 -78.3581,-123.38445 -78.3581,-134.70756 -78.3581,-146.03067 -78.3581,-157.35378 -78.3581,-168.67689 -78.3581,180 -78.3581,178.62318 -78.3581,177.24636 -78.3581,175.86954 -78.3581,174.49272 -78.3581,173.1159 -78.3581,171.73908 -78.3581,170.36226 -78.3581,168.98544 -78.3581,167.60862 -78.3581,166.2318 -78.3581,166.2318 -75.78382,166.2318 -73.20954,166.2318 -70.63526,166.2318 -68.06098,166.2318 -65.4867,166.2318 -62.91242,166.2318 -60.33814,166.2318 -57.76386,166.2318 -55.18958,166.2318 -52.6153,167.60862 -52.6153,168.98544 -52.6153,170.36226 -52.6153,171.73908 -52.6153,173.1159 -52.6153,174.49272 -52.6153,175.86954 -52.6153,177.24636 -52.6153,178.62318 -52.6153,-180 -52.6153)) | POINT(-130.26855 -65.4867) | false | false | ||||||||||
Collaborative Research: Climate, Ice Dynamics and Biology using a Deep Ice Core from the West Antarctic Ice Sheet Ice Divide
|
0944348 0944266 |
2017-06-09 | Mark, Twickler; Taylor, Kendrick C. |
|
Taylor/0944348<br/><br/>This award supports renewal of funding of the WAIS Divide Science Coordination Office (SCO). The Science Coordination Office (SCO) was established to represent the research community and facilitates the project by working with support organizations responsible for logistics, drilling, and core curation. During the last five years, 26 projects have been individually funded to work on this effort and 1,511 m of the total 3,470 m of ice at the site has been collected. This proposal seeks funding to continue the SCO and related field operations needed to complete the WAIS Divide ice core project. Tasks for the SCO during the second five years include planning and oversight of logistics, drilling, and core curation; coordinating research activities in the field; assisting in curation of the core in the field; allocating samples to individual projects; coordinating the sampling effort; collecting, archiving, and distributing data and other information about the project; hosting an annual science meeting; and facilitating collaborative efforts among the research groups. The intellectual merit of the WAIS Divide project is to better predict how human-caused increases in greenhouse gases will alter climate requires an improved understanding of how previous natural changes in greenhouse gases influenced climate in the past. Information on previous climate changes is used to validate the physics and results of climate models that are used to predict future climate. Antarctic ice cores are the only source of samples of the paleo-atmosphere that can be used to determine previous concentrations of carbon dioxide. Ice cores also contain records of other components of the climate system such as the paleo air and ocean temperature, atmospheric loading of aerosols, and indicators of atmospheric transport. The WAIS Divide ice core project has been designed to obtain the best possible record of greenhouse gases during the last glacial cycle (last ~100,000 years). The site was selected because it has the best balance of high annual snowfall (23 cm of ice equivalent/year), low dust Antarctic ice that does not compromise the carbon dioxide record, and favorable glaciology. The main science objectives of the project are to investigate climate forcing by greenhouse gases, initiation of climate changes, stability of the West Antarctic Ice Sheet, and cryobiology in the ice core. The project has numerous broader impacts. An established provider of educational material (Teachers? Domain) will develop and distribute web-based resources related to the project and climate change for use in K?12 classrooms. These resources will consist of video and interactive graphics that explain how and why ice cores are collected, and what they tell us about future climate change. Members of the national media will be included in the field team and the SCO will assist in presenting information to the general public. Video of the project will be collected and made available for general use. Finally, an opportunity will be created for cryosphere students and early career scientists to participate in field activities and core analysis. An ice core archive will be available for future projects and scientific discoveries from the project can be used by policy makers to make informed decisions. | POINT(-112.1115 -79.481) | POINT(-112.1115 -79.481) | false | false | |||||||||
Contribution of Western Antarctic Peninsula glaciers to sea level rise: Separation of the dynamic and climatic components
|
1043649 |
2016-02-17 | Hock, Regine; Osmanoglu, Batuhan |
|
1043649/Braun<br/><br/><br/>This award supports a project to determine the current mass balance of selected glaciers of the Western Antarctic Peninsula (WAP) and adjacent islands, including King George Island and Livingston Island. A major goal is to discriminate the climatic and dynamic components of the current mass budget. The dynamic component will be assessed using a flux gate approach. Glacier velocity fields will be derived by offset tracking on repeat SAR satellite imagery, and ice thicknesses across grounding lines or near terminus will be approximated from a new methods based on mass continuity. The surface mass balance will be computed from a spatially distributed temperature-index mass-balance model forced by temperature and precipitation data from regional climate models. Our results will provide improved mass budget estimates of Western Antarctic Peninsula glaciers and a more thorough understanding of the ratio between the climatic and dynamic components. The techniques to be developed will be applicable to other glaciers in the region allowing regional scale mass budgets to be derived. The broader impacts of this work are that glacier wastage is currently the most important contributor to global sea level rise and the Antarctic Peninsula has been identified as one of the largest single contributors. Future sea-level rise has major societal, economic and ecological implications. The activity will foster new partnerships through collaboration with European and South American colleagues. The project will form the base of of a postdoctoral research fellowship. It will also provide training of undergraduate and graduate students through inclusion of data and results in course curriculums. | None | None | false | false | |||||||||
Collaborative Research: Annual satellite era accumulation patterns over WAIS Divide: A study using shallow ice cores, near-surface radars and satellites
|
0944653 |
2015-11-20 | Forster, Richard |
|
This award supports a project to broaden the knowledge of annual accumulation patterns over the West Antarctic Ice Sheet by processing existing near-surface radar data taken on the US ITASE traverse in 2000 and by gathering and validating new ultra/super-high-frequency (UHF) radar images of near surface layers (to depths of ~15 m), expanding abilities to monitor recent annual accumulation patterns from point source ice cores to radar lines. Shallow (15 m) ice cores will be collected in conjunction with UHF radar images to confirm that radar echoed returns correspond with annual layers, and/or sub-annual density changes in the near-surface snow, as determined from ice core stable isotopes. This project will additionally improve accumulation monitoring from space-borne instruments by comparing the spatial-radar-derived-annual accumulation time series to the passive microwave time series dating back over 3 decades and covering most of Antarctica. The intellectual merit of this project is that mapping the spatial and temporal variations in accumulation rates over the Antarctic ice sheet is essential for understanding ice sheet responses to climate forcing. Antarctic precipitation rate is projected to increase up to 20% in the coming century from the predicted warming. Accumulation is a key component for determining ice sheet mass balance and, hence, sea level rise, yet our ability to measure annual accumulation variability over the past 5 decades (satellite era) is mostly limited to point-source ice cores. Developing a radar and ice core derived annual accumulation dataset will provide validation data for space-born remote sensing algorithms, climate models and, additionally, establish accumulation trends. The broader impacts of the project are that it will advance discovery and understanding within the climatology, glaciology and remote sensing communities by verifying the use of UHF radars to monitor annual layers as determined by visual, chemical and isotopic analysis from corresponding shallow ice cores and will provide a dataset of annual to near-annual accumulation measurements over the past ~5 decades across WAIS divide from existing radar data and proposed radar data. By determining if temporal changes in the passive microwave signal are correlated with temporal changes in accumulation will help assess the utility of passive microwave remote sensing to monitor accumulation rates over ice sheets for future decades. The project will promote teaching, training and learning, and increase representation of underrepresented groups by becoming involved in the NASA History of Winter project and Thermochron Mission and by providing K-12 teachers with training to monitor snow accumulation and temperature here in the US, linking polar research to the student?s backyard. The project will train both undergraduate and graduate students in polar research and will encouraging young investigators to become involved in careers in science. In particular, two REU students will participate in original research projects as part of this larger project, from development of a hypothesis to presentation and publication of the results. The support of a new, young woman scientist will help to increase gender diversity in polar research. | POLYGON((-119.4 -78.1,-118.46000000000001 -78.1,-117.52000000000001 -78.1,-116.58 -78.1,-115.64 -78.1,-114.7 -78.1,-113.76 -78.1,-112.82000000000001 -78.1,-111.88 -78.1,-110.94 -78.1,-110 -78.1,-110 -78.28999999999999,-110 -78.47999999999999,-110 -78.67,-110 -78.86,-110 -79.05,-110 -79.24,-110 -79.42999999999999,-110 -79.62,-110 -79.81,-110 -80,-110.94 -80,-111.88 -80,-112.82000000000001 -80,-113.76 -80,-114.7 -80,-115.64 -80,-116.58 -80,-117.52000000000001 -80,-118.46000000000001 -80,-119.4 -80,-119.4 -79.81,-119.4 -79.62,-119.4 -79.42999999999999,-119.4 -79.24,-119.4 -79.05,-119.4 -78.86,-119.4 -78.67,-119.4 -78.47999999999999,-119.4 -78.28999999999999,-119.4 -78.1)) | POINT(-114.7 -79.05) | false | false | |||||||||
Collaborative Research: Replicate Coring at WAIS Divide to Obtain Additional Samples at Events of High Scientific Interest
|
1043522 1043421 |
2015-07-13 | Severinghaus, Jeffrey P.; Brook, Edward J. |
|
1043421/Severinghaus<br/><br/>This award supports a project to obtain samples of ice in selected intervals for replication and verification of the validity and spatial representativeness of key results in the WAIS Divide ice core, and to obtain additional ice samples in areas of intense scientific interest where demand is high. The US Ice Core Working Group recommended in 2003 that NSF pursue the means to take replicate samples, termed "replicate coring". This recommendation was part of an agreement to reduce the diameter of the (then) new drilling system (the DISC drill) core to 12.2 cm to lighten logistics burdens, and the science community accepted the reduction in ice sample with the understanding that replicate coring would be able to provide extra sample volume in key intervals. The WAIS Divide effort would particularly benefit from replicate coring, because of the unique quality of the expected gas record and the large samples needed for gases and gas isotopes; thus this proposal to employ replicate coring at WAIS Divide. In addition, scientific demand for ice samples has been, and will continue to be, very unevenly distributed, with the ice core archive being completely depleted in depth intervals of high scientific interest (abrupt climate changes, volcanic sulfate horizons, meteor impact horizons, for example). The broader impacts of the proposed research may include identification of leads and lags between Greenland, tropical, and Antarctic climate change, enabling critical tests of hypotheses for the mechanism of abrupt climate change. Improved understanding of volcanic impacts on atmospheric chemistry and climate may also emerge. This understanding may ultimately help improve climate models and prediction of the Earth System feedback response to ongoing human perturbation in coming centuries. Outreach and public education about climate change are integral components of the PIs' activities and the proposed work will enhance these efforts. Broader impacts also include education and training of 2 postdoctoral scholars and 1 graduate student, and invaluable field experience for the graduate and undergraduate students who will likely make up the core processing team at WAIS Divide. | POINT(-112.09 -79.47) | POINT(-112.09 -79.47) | false | false | |||||||||
Atmospheric CO2 and Abrupt Climate Change
|
0944764 |
2013-08-08 | Ahn, Jinho; Brook, Edward J. | This award supports a project to create new, unprecedented high-resolution atmospheric carbon dioxide (CO2) records spanning intervals of abrupt climate changes during the last glacial period and the early Holocene. The proposed work will utilize high-precision methods on existing ice cores from high accumulation sites such as Siple Dome and Byrd Station, Antarctica and will improve our understanding of how fast CO2 can change naturally, how its variations are linked with climate, and, combined with a coupled climate-carbon cycle model, will clarify the role of terrestrial and oceanic processes during past abrupt changes of climate and CO2. The intellectual merit of this work is that CO2 is the most important anthropogenic greenhouse gas and understanding its past variations, its sources and sinks, and how they are linked to climate change is a major goal of the climate research community. This project will produce high quality data on centennial to multi-decadal time scales. Such high-resolution work has not been conducted before because of insufficient analytical precision, slow experimental procedures in previous studies, or lack of available samples. The proposed research will complement future high-resolution studies from WAIS Divide ice cores and will provide ice core CO2 records for the target age intervals, which are in the zone of clathrate formation in the WAIS ice cores. Clathrate hydrate is a phase composed of air and ice. CO2 analyses have historically been less precise in clathrate ice than in ?bubbly ice? such as the Siple Dome ice core that will be analyzed in the proposed project. High quality, high-resolution results from specific intervals in Siple Dome that we propose to analyze will provide important data for verifying the WAIS Divide record. The broader impacts of the work are that current models show a large uncertainty of future climate-carbon cycle interactions. The results of this proposed work will be used for testing coupled carbon cycle-climate models and may contribute to reducing this uncertainty. The project will contribute to the training of several undergraduate students and a full-time technician. Both will learn analytical techniques and the basic science involved. Minorities and female students will be highly encouraged to participate in this project. Outreach efforts will include participation in news media interviews, at a local festival celebrating art, science and technology, and giving seminar presentations in the US and foreign countries. The OSU ice core laboratory has begun a collaboration with a regional science museum and is developing ideas to build an exhibition booth to make public be aware of climate change and ice core research. All data will be archived at the National Snow and Ice Data Center and at other similar archives per the OPP data policy. | None | None | false | false | ||||||||||
Ocean Surfaces on Snowball Earth
|
1142963 0739779 |
2013-07-10 | Warren, Stephen; Light, Bonnie; Campbell, Adam; Carns, Regina; Dadic, Ruzica; Mullen, Peter; Brandt, Richard; Waddington, Edwin D. |
|
The climatic changes of late Precambrian time, 600-800 million years ago, included episodes of extreme glaciation, during which ice may have covered nearly the entire ocean for several million years, according to the Snowball Earth hypothesis. These episodes would hold an important place in Earth?s evolutionary history; they could have encouraged biodiversity by trapping life forms in small isolated ice-free areas, or they could have caused massive extinctions that cleared the path for new life forms to fill empty niches. What caused the Earth to become iced over, and what later caused the ice to melt? Scientific investigation of these questions will result in greater understanding of the climatic changes that the Earth can experience, and will enable better predictions of future climate. This project involves Antarctic field observations as well as laboratory studies and computer modeling.<br/><br/>The aim of this project is not to prove or disprove the Snowball Earth hypothesis but rather to quantify processes that are important for simulating snowball events in climate models. The principal goal is to identify the types of ice that would have been present on the frozen ocean, and to determine how much sunlight they would reflect back to space. Reflection of sunlight by bright surfaces of snow and ice is what would maintain the cold climate at low latitudes. The melting of the ocean required buildup of greenhouse gases, but it was probably aided by deposition of desert dust and volcanic ash darkening the snow and ice. With so much ice on the Earth?s surface, even small differences in the amount of light that the ice absorbed or reflected could cause significant changes in climate. The properties of the ice would also determine where, and in what circumstances, photosynthetic life could have survived. Some kinds of ice that are rare on the modern Earth may have been pivotal in allowing the tropical ocean to freeze. The ocean surfaces would have included some ice types that now exist only in Antarctica: bare cold sea ice with precipitated salts, and "blue ice" areas of the Transantarctic Mountains that were exposed by sublimation and have not experienced melting. Field expeditions were mounted to examine these ice types, and the data analysis is underway. A third ice type, sea ice with a salt crust, is being studied in a freezer laboratory. Modeling will show how sunlight would interact with ice containing light-absorbing dust and volcanic ash. Aside from its reflection of sunlight, ice on the Snowball ocean would have been thick enough to flow under its own weight, invading all parts of the ocean. Yet evidence for the survival of photosynthetic life indicates that some regions of liquid water were maintained at the ocean surface. One possible refuge for photosynthetic organisms is a bay at the far end of a nearly enclosed tropical sea, formed by continental rifting and surrounded by desert, such as the modern Red Sea. A model of glacier flow is being developed to determine the dimensions of the channel, connecting the sea to the ocean, necessary to prevent invasion by the flowing ice yet maintain a water supply to replenish evaporation. | POLYGON((157 -76,158.1 -76,159.2 -76,160.3 -76,161.4 -76,162.5 -76,163.6 -76,164.7 -76,165.8 -76,166.9 -76,168 -76,168 -76.2,168 -76.4,168 -76.6,168 -76.8,168 -77,168 -77.2,168 -77.4,168 -77.6,168 -77.8,168 -78,166.9 -78,165.8 -78,164.7 -78,163.6 -78,162.5 -78,161.4 -78,160.3 -78,159.2 -78,158.1 -78,157 -78,157 -77.8,157 -77.6,157 -77.4,157 -77.2,157 -77,157 -76.8,157 -76.6,157 -76.4,157 -76.2,157 -76)) | POINT(162.5 -77) | false | false | |||||||||
The Sea Ice System in Antarctic Summer, Oden Southern Ocean Expedition (OSO 2010-11)
|
0839053 |
2013-05-03 | Ackley, Stephen |
|
Several aspect of the seasonal melting and reformation cycle of Antarctic sea ice appear to be divergent from those occurring in the Arctic. This is most clearly demonstrated by the dramatic diminishing extent and thinning of the Arctic sea ice, to be contrasted to the changes in Antarctic sea-ice extent, which recently (decadaly) shows small increases. Current climate models do not resolve this discrepancy which likely results from both a lack of relevant observational sea-ice data in the Antarctic, along with inadequacies in the physical parameterization of sea-ice properties in climate models.<br/><br/>Researchers will take advantage of the cruise track of the I/B Oden during transit through the Antarctic sea-ice zones in the region of the Bellingshausen, Amundsen and Ross (BAR) seas on a cruise to McMurdo Station. Because of its remoteness and inaccessibility, the BAR region is of considerable scientific interest as being one of the last under described and perhaps unexploited marine ecosystems left on the planet .<br/><br/>A series of on station and underway observations of sea ice properties will be undertaken, thematically linked to broader questions of summer ice survival and baseline physical properties (e.g. estimates of heat and salt fluxes). In situ spatiotemporal variability of sea-ice cover extent, thickness and snow cover depths will be observed. | POLYGON((-180 -67.05,-170.9866 -67.05,-161.9732 -67.05,-152.9598 -67.05,-143.9464 -67.05,-134.933 -67.05,-125.9196 -67.05,-116.9062 -67.05,-107.8928 -67.05,-98.8794 -67.05,-89.866 -67.05,-89.866 -68.1033,-89.866 -69.1566,-89.866 -70.2099,-89.866 -71.2632,-89.866 -72.3165,-89.866 -73.3698,-89.866 -74.4231,-89.866 -75.4764,-89.866 -76.5297,-89.866 -77.583,-98.8794 -77.583,-107.8928 -77.583,-116.9062 -77.583,-125.9196 -77.583,-134.933 -77.583,-143.9464 -77.583,-152.9598 -77.583,-161.9732 -77.583,-170.9866 -77.583,180 -77.583,178.57 -77.583,177.14 -77.583,175.71 -77.583,174.28 -77.583,172.85 -77.583,171.42 -77.583,169.99 -77.583,168.56 -77.583,167.13 -77.583,165.7 -77.583,165.7 -76.5297,165.7 -75.4764,165.7 -74.4231,165.7 -73.3698,165.7 -72.3165,165.7 -71.2632,165.7 -70.2099,165.7 -69.1566,165.7 -68.1033,165.7 -67.05,167.13 -67.05,168.56 -67.05,169.99 -67.05,171.42 -67.05,172.85 -67.05,174.28 -67.05,175.71 -67.05,177.14 -67.05,178.57 -67.05,-180 -67.05)) | POINT(-142.083 -72.3165) | false | false | |||||||||
Atmospheric Carbon Dioxide and Climate Change: The WAIS Divide Ice Core Record
|
0739766 |
2012-05-30 | Marcott, Shaun; Ahn, Jinho; Brook, Edward J. |
|
Brook 0739766<br/><br/>This award supports a project to create a 25,000-year high-resolution record of atmospheric CO2 from the WAIS Divide ice core. The site has high ice accumulation rate, relatively cold temperatures, and annual layering that should be preserved back to 40,000 years, all prerequisite for preserving a high quality, well-dated CO2 record. The new record will be used to examine relationships between Antarctic climate, Northern Hemisphere climate, and atmospheric CO2 on glacial-interglacial to centennial time scales, at unprecedented temporal resolution. The intellectual merit of the proposed work is simply that CO2 is the most important greenhouse gas that humans directly impact, and understanding the sources, sinks, and controls of atmospheric CO2 is a major goal for the global scientific community. Accurate chronology and detailed records are primary requirements for developing and testing models that explain and predict CO2 variability. The proposed work has several broader impacts. It contributes to the training of a post-doctoral researcher, who will transfer to a research faculty position during the award period and who will participate in graduate teaching and guest lecture in undergraduate courses. An undergraduate researcher will gain valuable lab training and conduct independent research. Bringing the results of<br/>the proposed work to the classroom will enrich courses taught by the PI. Outreach efforts will expose pre-college students to ice core research. The proposed work will enhance the laboratory facilities for ice core research at OSU, insuring that the capability for CO2 measurements exists for future projects. All data will be archived at the National Snow and Ice Data Center and other similar archives, per OPP policy. Highly significant results will be disseminated to the news media through OSU?s very effective News and Communications group. Carbon dioxide is the most important greenhouse gas that humans are directly changing. Understanding how CO2 and climate are linked on all time scales is necessary for predicting the future behavior of the carbon cycle and climate system, primarily to insure that the appropriate processes are represented in carbon cycle/climate models. Part of the proposed work emphasizes the relationship of CO2 and abrupt climate change. Understanding how future abrupt change might impact the carbon cycle is an important issue for society. | POINT(-112.08 -79.47) | POINT(-112.08 -79.47) | false | false | |||||||||
Tracing Glacial-interglacial Changes in the Dust Source to Antarctica using Helium Isotopes
|
0636898 |
2011-11-30 | Winckler, Gisela | No dataset link provided | Winckler/0636898<br/><br/>This award supports a project to study dust sources in Antarctic ice cores. Atmospheric aerosols play an important role both in global biogeochemical cycles as well as in the climate system of the Earth. Records extracted from Antarctic ice cores inform us that dust deposition from the atmosphere to the ice sheet was 15-20 times greater during glacial periods than during interglacials, which raises the possibility that dust may be a key player in climate change on glacial-interglacial timescales. By characterizing potential source areas from South America, South Africa, and Australia as well as fresh glacial flour from Patagonia, the project will determine if the interglacial dust was mobilized from a distinct geographical region (e.g., Australia) or from a more heavily weathered source region in South America. The intellectual merit of the project is that it will contribute to reconstructing climate-related changes in the rate of dust deposition, and in the provenance of the dust, it will provide critical constraints on hydrology and vegetation in the source regions, as well as on the nature of the atmospheric circulation transporting dust to the archive location. In a recent pilot study it was found that there is a dramatic glacial to Holocene change in the 4He/Ca ratio in the dust extracted from ice from Dronning Maud Land, Antarctica, indicating a shift in the source of dust transported to Antarctica. The broader impacts of the project are that Helium isotopes and calcium measurements provide a wealth of information that can then be turned into critical input for dust-climate models. Improved models, which are able to accurately reconstruct paleo dust distribution, will help us to predict changes in dust in response to future climate variability. This information will contribute to an improvement of our integrated understanding of the Earth's climate system and, in turn, will better inform policy makers of those processes and conditions most susceptible to perturbation by climate change, thereby leading to more meaningful climate-change policy. The project will support a graduate student in the dual masters Earth and Environmental Science Journalism program. The lead-PI manages the rock noble gas laboratory at Lamont. Her leadership role in this facility impacts the training of undergraduate and graduate students as well as visiting scientists. | None | None | false | false | |||||||||
Integrated Biostratigraphy and High Resolution Seismic Stratigraphy of the Ross Sea: Implications for Cenozoic Eustatic and Climatic Change
|
9220848 |
2010-05-04 | Bartek, Louis |
|
This award supports an integrated seismic, sedimentologic, and paleontologic investigation of glacio-marine stratigraphy of the Ross Sea continental shelf. The purpose of this work is to acquire seismic images and sediment cores of the glacial sediments toward a better understanding of the Cenozoic history of glaciation in the Ross Sea region. This investigation will utilize high resolution seismic profiling data to locate regions where the Pleistocene glacial till is thin or perhaps absent. Piston coring at these locations, if the till is penetrated, will provide sedimentary records of Cenozoic depositional environments and could provide important clues to fluctuations of the Antarctic Ice Sheets. The seismic profiling will provide a direct record of the grounding history of the Ross Ice Shelf during the Pleistocene and it will also allow first order correlations of Cenozoic sedimentary units that are represented by sediments recovered in the piston cores. This work will provide important proxy records of the history of both the West Antarctic Ice Sheet and the East Antarctic Ice Sheet and this, in turn, will provide important constraints to climate models. | POLYGON((-179.9996 -52.35472,-143.99968 -52.35472,-107.99976 -52.35472,-71.99984 -52.35472,-35.99992 -52.35472,0 -52.35472,35.99992 -52.35472,71.99984 -52.35472,107.99976 -52.35472,143.99968 -52.35472,179.9996 -52.35472,179.9996 -54.916322,179.9996 -57.477924,179.9996 -60.039526,179.9996 -62.601128,179.9996 -65.16273,179.9996 -67.724332,179.9996 -70.285934,179.9996 -72.847536,179.9996 -75.409138,179.9996 -77.97074,143.99968 -77.97074,107.99976 -77.97074,71.99984 -77.97074,35.99992 -77.97074,0 -77.97074,-35.99992 -77.97074,-71.99984 -77.97074,-107.99976 -77.97074,-143.99968 -77.97074,-179.9996 -77.97074,-179.9996 -75.409138,-179.9996 -72.847536,-179.9996 -70.285934,-179.9996 -67.724332,-179.9996 -65.16273,-179.9996 -62.601128,-179.9996 -60.039526,-179.9996 -57.477924,-179.9996 -54.916322,-179.9996 -52.35472)) | POINT(0 -89.999) | false | false |