{"dp_type": "Dataset", "free_text": "Sediments"}
[{"awards": "2031442 Learman, Deric", "bounds_geometry": null, "date_created": "Thu, 08 Sep 2022 00:00:00 GMT", "description": "Shelf sediment samples were collected around the Antarctic Peninsular with the mega corer in 2020 (Nov. to Dec.). The sample locations and water depths are recorded in this dataset. These samples were used to collect data on organic matter (total organic carbon, total nitrogen, delta 13C (organic), delta 15N, and C to N ratios). Nutrient data (nitrate, nitrite, sulfate, and ammonia) and grain size analysis were collected on a subsample set (10). ", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Grain Size; Grain Size Analysis; Marine Geoscience; Marine Sediments; Organic Matter Geochemistry; Sediment Core Data; Shelf Sediments; Weddell Sea", "locations": "Antarctic Peninsula; Weddell Sea; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Learman, Deric", "project_titles": "RAPID: Meta-genomic and Transcriptomic Investigation of Complex Organic Matter Degradation in Antarctic Benthic Sediments", "projects": [{"proj_uid": "p0010235", "repository": "USAP-DC", "title": "RAPID: Meta-genomic and Transcriptomic Investigation of Complex Organic Matter Degradation in Antarctic Benthic Sediments"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Physical and geochemical data from shelf sediments near the Antartic Pennisula", "uid": "601607", "west": null}, {"awards": "1743643 Passchier, Sandra", "bounds_geometry": ["POINT(-42.933 -61.849)"], "date_created": "Wed, 22 Jun 2022 00:00:00 GMT", "description": "This dataset contains measurements of major and trace elements on 190 samples of Eocene-Oligocene sediment from Ocean Drilling Program Site 696 drilled in 650 m water depth on the South Orkney Microcontinent. The composition of detrital, biogenic and authigenic sediment components was assessed via whole rock geochemistry of sediment samples. Instrument analysis was completed at Montclair State University.", "east": -42.933, "geometry": ["POINT(-42.933 -61.849)"], "keywords": "Antarctica; Cryosphere; Glaciation; IODP 650; IODP 696; Paleoceanography; Provenance; Sediment Core Data; Weathering; Weddell Sea", "locations": "Weddell Sea; Antarctica", "north": -61.849, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Passchier, Sandra; Hojnacki, Victoria; Li, Xiaona; States, Abbey; Lepp, Allison", "project_titles": "Timing and Spatial Distribution of Antarctic Ice Sheet Growth and Sea-ice Formation across the Eocene-Oligocene Transition", "projects": [{"proj_uid": "p0010101", "repository": "USAP-DC", "title": "Timing and Spatial Distribution of Antarctic Ice Sheet Growth and Sea-ice Formation across the Eocene-Oligocene Transition"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -61.849, "title": "Major and trace element analyses of Eocene-Oligocene marine sediments from ODP Site 696, South Orkney Microcontinent", "uid": "601582", "west": -42.933}, {"awards": "1743643 Passchier, Sandra", "bounds_geometry": ["POINT(-42.933 -61.849)"], "date_created": "Tue, 21 Jun 2022 00:00:00 GMT", "description": "This dataset contains measurements of terrigenous particle-size distributions on Eocene-Oligocene sediment from Ocean Drilling Program Site 696 drilled in 650 m water depth on the South Orkney Microcontinent. Carbonate and organic matter were removed through addition of 10mL aliquots of 30% H2O2, 2mL aliquots of 10% HCl to ~50-100mL suspension on a hot plate. Diatoms were generally either absent or present in trace amounts in the Eocene-Oligocene interval and were not removed. Dispersion was through heating with sodium pyrophosphate. Samples were measured on a Malvern Mastersizer 2000 with a Hydro 2000MU (A) accessory, using a Refractive Index of 1.6 (Illite) and an absorption coefficient of 0.9. Results are in (vol. %) per size class, with diameter range equivalent to the diameter of spheres with the same volume as measured particles.", "east": -42.933, "geometry": ["POINT(-42.933 -61.849)"], "keywords": "Antarctica; Cryosphere; Glaciation; IODP 696; Marine Geoscience; Marine Sediments; Paleoceanography; Sediment Core Data; Weddell Sea", "locations": "Weddell Sea; Antarctica", "north": -61.849, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Passchier, Sandra; Lepp, Allison; Horowitz Castaldo, Josie; Light, Jennifer", "project_titles": "Timing and Spatial Distribution of Antarctic Ice Sheet Growth and Sea-ice Formation across the Eocene-Oligocene Transition", "projects": [{"proj_uid": "p0010101", "repository": "USAP-DC", "title": "Timing and Spatial Distribution of Antarctic Ice Sheet Growth and Sea-ice Formation across the Eocene-Oligocene Transition"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -61.849, "title": "Particle-size distributions of Eocene-Oligocene sediment from ODP Site 696, South Orkney Microcontinent", "uid": "601581", "west": -42.933}, {"awards": "1341432 Brzezinski, Mark", "bounds_geometry": ["POLYGON((-175 -54,-174 -54,-173 -54,-172 -54,-171 -54,-170 -54,-169 -54,-168 -54,-167 -54,-166 -54,-165 -54,-165 -55.3,-165 -56.6,-165 -57.9,-165 -59.2,-165 -60.5,-165 -61.8,-165 -63.1,-165 -64.4,-165 -65.7,-165 -67,-166 -67,-167 -67,-168 -67,-169 -67,-170 -67,-171 -67,-172 -67,-173 -67,-174 -67,-175 -67,-175 -65.7,-175 -64.4,-175 -63.1,-175 -61.8,-175 -60.5,-175 -59.2,-175 -57.9,-175 -56.6,-175 -55.3,-175 -54))"], "date_created": "Mon, 16 May 2022 00:00:00 GMT", "description": "This dataset contains data for stable isotopes of silicon in pore water, interstitial water, sediments and CTD profiles.", "east": -165.0, "geometry": ["POINT(-170 -60.5)"], "keywords": "Antarctica; Biogenic Silica; Chemistry:Sediment; Cryosphere; Lithogenic Silica; Marine Geoscience; NBP1702; Pore Water Biogeochemistry; Sediments; Silicon Cycle; Silicon Stable Isotope; Southern Ocean", "locations": "Southern Ocean; Antarctica", "north": -54.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Closset, Ivia; Jones, Janice L.; Brzezinski, Mark", "project_titles": "Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump", "projects": [{"proj_uid": "p0010083", "repository": "USAP-DC", "title": "Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "Silicon concentration and isotopic composition measurements in seawater profiles, pore waters, interstitial waters and sediments from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean", "uid": "601562", "west": -175.0}, {"awards": "1744871 Robinson, Rebecca", "bounds_geometry": ["POINT(-64.207 -64.86)"], "date_created": "Tue, 22 Mar 2022 00:00:00 GMT", "description": "This dataset includes measurements of opal (wt %), total organic carbon (mg C/g dry sediment), total nitrogen (mg N/g dry sediment), bulk nitrogen isotopic composition (d15Nbulk), and diatom-bound nitrogen isotopic composition (d15Ndb) from 36 samples from ODP sediment core 1098B-5H-7 on the western Antarctic Peninsula. The sediments were deposited during a period of deglaciation about 12.5-12.3 ka.", "east": -64.207, "geometry": ["POINT(-64.207 -64.86)"], "keywords": "Antarctica; Antarctic Peninsula; Cryosphere", "locations": "Antarctic Peninsula; Antarctica", "north": -64.86, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Dove, Isabel", "project_titles": "The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information?", "projects": [{"proj_uid": "p0010234", "repository": "USAP-DC", "title": "The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information?"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.86, "title": "Sediment chemistry of ODP Site 1098", "uid": "601541", "west": -64.207}, {"awards": "1341464 Robinson, Rebecca", "bounds_geometry": ["POLYGON((-170.4 -60.8,-170.36 -60.8,-170.32 -60.8,-170.28 -60.8,-170.24 -60.8,-170.2 -60.8,-170.16 -60.8,-170.12 -60.8,-170.08 -60.8,-170.04 -60.8,-170 -60.8,-170 -61.34,-170 -61.88,-170 -62.42,-170 -62.96,-170 -63.5,-170 -64.04,-170 -64.58,-170 -65.12,-170 -65.66,-170 -66.2,-170.04 -66.2,-170.08 -66.2,-170.12 -66.2,-170.16 -66.2,-170.2 -66.2,-170.24 -66.2,-170.28 -66.2,-170.32 -66.2,-170.36 -66.2,-170.4 -66.2,-170.4 -65.66,-170.4 -65.12,-170.4 -64.58,-170.4 -64.04,-170.4 -63.5,-170.4 -62.96,-170.4 -62.42,-170.4 -61.88,-170.4 -61.34,-170.4 -60.8))"], "date_created": "Mon, 14 Feb 2022 00:00:00 GMT", "description": "Tracking variations in the surface ocean supply and demand of nitrate, a key marine nutrient, can help constrain the contribution of biological production in driving past climate shifts. The nitrogen isotopic composition (as \u03b415N) of organic matter in marine sediments is a proxy for surface ocean nitrate supply and demand over time but it may be subject to alteration during sinking and burial. The isotopic composition of nitrogen contained in the shells, or frustules, of diatoms (\u03b415NDB) is protected and is therefore a potentially more robust tracer of nitrate use in the past. Here we show that \u03b415NDB in Southern Ocean community cultures does not depend on species composition. We found the \u03b5DB (= biomass \u03b415N - \u03b415NDB) of the community growouts was -4.8 \u00b1 0.8\u2030, more than 10\u2030 different from previous monospecific growouts, but statistically indistinguishable from previous Southern Ocean and North Pacific surface ocean observations. The two community growouts, seeded with populations from 66\u00b0 and 61\u00b0S, had distinct community compositions but indistinguishable \u03b5DB, suggesting species composition does not primarily set \u03b415NDB values in the Southern Ocean. Our results demonstrate that under nitrate-replete conditions, \u03b415NDB values of frustules sinking from the surface ocean robustly track surface ocean nitrate \u03b415N values and therefore nitrate supply and demand. ", "east": -170.0, "geometry": ["POINT(-170.2 -63.5)"], "keywords": "Antarctica; Cryosphere; Nitrogen Isotopes; Oceans; Paleoproxies; Southern Ocean", "locations": "Southern Ocean; Antarctica", "north": -60.8, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Jones, Colin; Robinson, Rebecca; Brzezinski, Mark; Riesselman, Christina; Closset, Ivia; Kelly, Roger; Robinson, Rebecca ", "project_titles": "Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump", "projects": [{"proj_uid": "p0010083", "repository": "USAP-DC", "title": "Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -66.2, "title": "Surface Southern Ocean community growouts to evaluate the diatom bound N isotope proxy", "uid": "601522", "west": -170.4}, {"awards": "1738942 Wellner, Julia", "bounds_geometry": ["POLYGON((-107.38 -74.64,-107.065 -74.64,-106.75 -74.64,-106.435 -74.64,-106.12 -74.64,-105.805 -74.64,-105.49 -74.64,-105.175 -74.64,-104.86 -74.64,-104.545 -74.64,-104.23 -74.64,-104.23 -74.683,-104.23 -74.726,-104.23 -74.769,-104.23 -74.812,-104.23 -74.855,-104.23 -74.898,-104.23 -74.941,-104.23 -74.984,-104.23 -75.027,-104.23 -75.07,-104.545 -75.07,-104.86 -75.07,-105.175 -75.07,-105.49 -75.07,-105.805 -75.07,-106.12 -75.07,-106.435 -75.07,-106.75 -75.07,-107.065 -75.07,-107.38 -75.07,-107.38 -75.027,-107.38 -74.984,-107.38 -74.941,-107.38 -74.898,-107.38 -74.855,-107.38 -74.812,-107.38 -74.769,-107.38 -74.726,-107.38 -74.683,-107.38 -74.64))"], "date_created": "Thu, 27 Jan 2022 00:00:00 GMT", "description": "This dataset contains measurements from grain-size, x-ray fluorescence (XRF), and physical properties (including magnetic susceptibility, water content, and shear strength) analyses of five sediment cores collected offshore Thwaites Glacier during cruises NBP19-02 (cores KC04, KC08, and KC23) and NBP20-02 (cores KC33 and KC67). We estimate the cores, which are between 213.5 and 297.5 cm in length, reflect deposition during the last ~10 kyr, consistent with published constraints of deglaciation of this region. Data are organized in Microsoft Excel spreadsheets and core locations are provided in a PDF.", "east": -104.23, "geometry": ["POINT(-105.805 -74.855)"], "keywords": "Antarctica; Chemistry:Sediment; Cryosphere; Glaciomarine Sediment; Grain Size; Magnetic Susceptibility; Marine Geoscience; Marine Sediments; NBP1902; NBP2002; Physical Properties; R/V Nathaniel B. Palmer; Sediment Core Data; Thwaites Glacier; Trace Elements; XRF", "locations": "Thwaites Glacier; Antarctica", "north": -74.64, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Lepp, Allison", "project_titles": "NSF-NERC: THwaites Offshore Research (THOR)", "projects": [{"proj_uid": "p0010062", "repository": "USAP-DC", "title": "NSF-NERC: THwaites Offshore Research (THOR)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -75.07, "title": "Physical and geochemical data from five sediment cores collected offshore Thwaites Glacier", "uid": "601514", "west": -107.38}, {"awards": "0440775 Jacobs, Stanley", "bounds_geometry": ["POLYGON((-180 -71.12,-172.34 -71.12,-164.68 -71.12,-157.02 -71.12,-149.36 -71.12,-141.7 -71.12,-134.04 -71.12,-126.38 -71.12,-118.72 -71.12,-111.06 -71.12,-103.4 -71.12,-103.4 -71.833,-103.4 -72.546,-103.4 -73.259,-103.4 -73.972,-103.4 -74.685,-103.4 -75.398,-103.4 -76.111,-103.4 -76.824,-103.4 -77.537,-103.4 -78.25,-111.06 -78.25,-118.72 -78.25,-126.38 -78.25,-134.04 -78.25,-141.7 -78.25,-149.36 -78.25,-157.02 -78.25,-164.68 -78.25,-172.34 -78.25,180 -78.25,178.657 -78.25,177.314 -78.25,175.971 -78.25,174.628 -78.25,173.285 -78.25,171.942 -78.25,170.599 -78.25,169.256 -78.25,167.913 -78.25,166.57 -78.25,166.57 -77.537,166.57 -76.824,166.57 -76.111,166.57 -75.398,166.57 -74.685,166.57 -73.972,166.57 -73.259,166.57 -72.546,166.57 -71.833,166.57 -71.12,167.913 -71.12,169.256 -71.12,170.599 -71.12,171.942 -71.12,173.285 -71.12,174.628 -71.12,175.971 -71.12,177.314 -71.12,178.657 -71.12,-180 -71.12))"], "date_created": "Fri, 17 Sep 2021 00:00:00 GMT", "description": "This dataset contains images and field description of Smith-McIntyre sediment grab samples from Expedition NBP0702 between the Ross Sea and the Amundsen Sea. ", "east": -103.4, "geometry": ["POINT(-148.415 -74.685)"], "keywords": "Amundsen Sea; Antarctica; Cryosphere; Marine Geoscience; Marine Sediments; NBP0702; Photographs; R/V Nathaniel B. Palmer; Seafloor Sampling; Sediment Description; Smith-McIntyre Grab", "locations": "Amundsen Sea; Amundsen Sea; Antarctica", "north": -71.12, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Leventer, Amy; Jacobs, Stanley", "project_titles": "The Amundsen Continental Shelf and the Antarctic Ice Sheet", "projects": [{"proj_uid": "p0000836", "repository": "USAP-DC", "title": "The Amundsen Continental Shelf and the Antarctic Ice Sheet"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.25, "title": "NBP0702 surface sediment sample information and images", "uid": "601473", "west": 166.57}, {"awards": "1724670 Williams, Trevor", "bounds_geometry": ["POLYGON((-65 -74,-61 -74,-57 -74,-53 -74,-49 -74,-45 -74,-41 -74,-37 -74,-33 -74,-29 -74,-25 -74,-25 -74.6,-25 -75.2,-25 -75.8,-25 -76.4,-25 -77,-25 -77.6,-25 -78.2,-25 -78.8,-25 -79.4,-25 -80,-29 -80,-33 -80,-37 -80,-41 -80,-45 -80,-49 -80,-53 -80,-57 -80,-61 -80,-65 -80,-65 -79.4,-65 -78.8,-65 -78.2,-65 -77.6,-65 -77,-65 -76.4,-65 -75.8,-65 -75.2,-65 -74.6,-65 -74))"], "date_created": "Mon, 05 Oct 2020 00:00:00 GMT", "description": "This dataset contains 40Ar/39Ar measurements on detrital mineral grains from subglacial till and proximal glacimarine sediment from nine sediment cores along the front of the Filchner and Ronne Ice Shelves. ", "east": -25.0, "geometry": ["POINT(-45 -77)"], "keywords": "40Ar/39Ar thermochronology; Antarctica; Argon; Chemistry:Sediment; Cryosphere; Detrital Minerals; Glaciers/Ice Sheet; Marine Sediments; Mass Spectrometer; Provenance; R/V Polarstern; Sediment Core Data; Subglacial Till; Till; Weddell Sea", "locations": "Weddell Sea; Antarctica", "north": -74.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Williams, Trevor", "project_titles": "Collaborative Research: Deglacial Ice Dynamics in the Weddell Sea Embayment using Sediment Provenance", "projects": [{"proj_uid": "p0010128", "repository": "USAP-DC", "title": "Collaborative Research: Deglacial Ice Dynamics in the Weddell Sea Embayment using Sediment Provenance"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "uid": "601378", "west": -65.0}, {"awards": "1724670 Williams, Trevor", "bounds_geometry": ["POLYGON((-50 -62,-49 -62,-48 -62,-47 -62,-46 -62,-45 -62,-44 -62,-43 -62,-42 -62,-41 -62,-40 -62,-40 -62.3,-40 -62.6,-40 -62.9,-40 -63.2,-40 -63.5,-40 -63.8,-40 -64.1,-40 -64.4,-40 -64.7,-40 -65,-41 -65,-42 -65,-43 -65,-44 -65,-45 -65,-46 -65,-47 -65,-48 -65,-49 -65,-50 -65,-50 -64.7,-50 -64.4,-50 -64.1,-50 -63.8,-50 -63.5,-50 -63.2,-50 -62.9,-50 -62.6,-50 -62.3,-50 -62))"], "date_created": "Mon, 05 Oct 2020 00:00:00 GMT", "description": "This dataset contains 40Ar/39Ar measurements on detrital mineral grains from ice-rafted detritus from sediment core PS1575-1 in the NW Weddell Sea. The depositional age of the sediments is approx. 0 to 300 ka. ", "east": -40.0, "geometry": ["POINT(-45 -63.5)"], "keywords": "40Ar/39Ar thermochronology; Antarctica; Argon; Chemistry:Sediment; Cryosphere; Detrital Minerals; Glaciers/Ice Sheet; Marine Geoscience; Mass Spectrometer; Provenance; R/V Polarstern; Sediment Core Data; Subglacial Till; Till; Weddell Sea", "locations": "Weddell Sea; Antarctica", "north": -62.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Williams, Trevor", "project_titles": "Collaborative Research: Deglacial Ice Dynamics in the Weddell Sea Embayment using Sediment Provenance", "projects": [{"proj_uid": "p0010128", "repository": "USAP-DC", "title": "Collaborative Research: Deglacial Ice Dynamics in the Weddell Sea Embayment using Sediment Provenance"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "uid": "601379", "west": -50.0}, {"awards": "1724670 Williams, Trevor", "bounds_geometry": ["POLYGON((-70 -80,-65 -80,-60 -80,-55 -80,-50 -80,-45 -80,-40 -80,-35 -80,-30 -80,-25 -80,-20 -80,-20 -80.6,-20 -81.2,-20 -81.8,-20 -82.4,-20 -83,-20 -83.6,-20 -84.2,-20 -84.8,-20 -85.4,-20 -86,-25 -86,-30 -86,-35 -86,-40 -86,-45 -86,-50 -86,-55 -86,-60 -86,-65 -86,-70 -86,-70 -85.4,-70 -84.8,-70 -84.2,-70 -83.6,-70 -83,-70 -82.4,-70 -81.8,-70 -81.2,-70 -80.6,-70 -80))"], "date_created": "Mon, 05 Oct 2020 00:00:00 GMT", "description": "This dataset contains 40Ar/39Ar measurements on detrital mineral grains from till in modern moraines at the edges of the Institute, Foundation, Academy, Recovery, and the Slessor glaciers / ice streams.", "east": -20.0, "geometry": ["POINT(-45 -83)"], "keywords": "40Ar/39Ar thermochronology; Antarctica; Argon; Chemistry:Sediment; Cryosphere; Detrital Minerals; Glaciers/Ice Sheet; Marine Sediments; Mass Spectrometer; Provenance; R/V Polarstern; Sediment Core Data; Subglacial Till; Till; Weddell Sea", "locations": "Weddell Sea; Antarctica", "north": -80.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Williams, Trevor", "project_titles": "Collaborative Research: Deglacial Ice Dynamics in the Weddell Sea Embayment using Sediment Provenance", "projects": [{"proj_uid": "p0010128", "repository": "USAP-DC", "title": "Collaborative Research: Deglacial Ice Dynamics in the Weddell Sea Embayment using Sediment Provenance"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.0, "title": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "uid": "601377", "west": -70.0}, {"awards": null, "bounds_geometry": ["POINT(-163.61187 -84.33543)"], "date_created": "Wed, 15 Jul 2020 00:00:00 GMT", "description": "This dataset contains total organic carbon (%TOC) and carbon isotopic data (\u03b4\u00b9\u00b3C, \u0394\u00b9\u2074C) from sediments retrieved from the Whillans Ice Stream grounding zone during the 2015 Antarctic field season. All %TOC and sediment preparations were done at the University of South Florida. Radiocarbon measurements were done at the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) laboratory. ", "east": -163.61187, "geometry": ["POINT(-163.61187 -84.33543)"], "keywords": "Antarctica; Cryosphere; Radiocarbon; Sediment; Whillans Ice Stream", "locations": "Whillans Ice Stream; Antarctica", "north": -84.33543, "nsf_funding_programs": null, "persons": "Venturelli, Ryan A", "project_titles": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments", "projects": [{"proj_uid": "p0010119", "repository": "USAP-DC", "title": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WISSARD", "south": -84.33543, "title": "Isotopic data from Whillans Ice Stream grounding zone, West Antarctica", "uid": "601360", "west": -163.61187}, {"awards": "1341669 DeMaster, David; 0732711 Smith, Craig", "bounds_geometry": ["POLYGON((-61 -64,-60.5 -64,-60 -64,-59.5 -64,-59 -64,-58.5 -64,-58 -64,-57.5 -64,-57 -64,-56.5 -64,-56 -64,-56 -64.1,-56 -64.2,-56 -64.3,-56 -64.4,-56 -64.5,-56 -64.6,-56 -64.7,-56 -64.8,-56 -64.9,-56 -65,-56.5 -65,-57 -65,-57.5 -65,-58 -65,-58.5 -65,-59 -65,-59.5 -65,-60 -65,-60.5 -65,-61 -65,-61 -64.9,-61 -64.8,-61 -64.7,-61 -64.6,-61 -64.5,-61 -64.4,-61 -64.3,-61 -64.2,-61 -64.1,-61 -64))"], "date_created": "Fri, 19 Jun 2020 00:00:00 GMT", "description": "This file contains Pb-210 data from bulk sediments beneath the collapsed Larsen A Ice Shelf and C-14 data from the organic fraction of the same samples.", "east": -56.0, "geometry": ["POINT(-58.5 -64.5)"], "keywords": "Antarctica; Carbon-14; Cryosphere; Larsen Ice Shelf; Lead-210; Marine Sediments; Radioisotope Analysis", "locations": "Larsen Ice Shelf; Antarctica", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Earth Sciences", "persons": "DeMaster, David; Taylor, Richard", "project_titles": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans; Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change", "projects": [{"proj_uid": "p0000101", "repository": "USAP-DC", "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans"}, {"proj_uid": "p0000382", "repository": "USAP-DC", "title": "Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LARISSA", "south": -65.0, "title": "Radioisotope data (C-14 and Pb-210) from bulk sediments, Larsen A Ice Shelf", "uid": "601336", "west": -61.0}, {"awards": "1341669 DeMaster, David; 0636773 DeMaster, David", "bounds_geometry": ["POLYGON((-71 -64,-70.4 -64,-69.8 -64,-69.2 -64,-68.6 -64,-68 -64,-67.4 -64,-66.8 -64,-66.2 -64,-65.6 -64,-65 -64,-65 -64.7,-65 -65.4,-65 -66.1,-65 -66.8,-65 -67.5,-65 -68.2,-65 -68.9,-65 -69.6,-65 -70.3,-65 -71,-65.6 -71,-66.2 -71,-66.8 -71,-67.4 -71,-68 -71,-68.6 -71,-69.2 -71,-69.8 -71,-70.4 -71,-71 -71,-71 -70.3,-71 -69.6,-71 -68.9,-71 -68.2,-71 -67.5,-71 -66.8,-71 -66.1,-71 -65.4,-71 -64.7,-71 -64))"], "date_created": "Mon, 11 May 2020 00:00:00 GMT", "description": "This data set is used to describe a new technique for assessing labile organic carbon (LOC) abundances and mean residence times in marine sediments. Radiocarbon is used to determine abundances of labile organic carbon and then a diagenetic organic carbon model, coupled with sediment biotrubation coefficients, is used to assess LOC mean residence times. ", "east": -65.0, "geometry": ["POINT(-68 -67.5)"], "keywords": "Antarctica; Antarctic Peninsula; Biology; Biosphere; Bioturbation Coefficients; Diagenesis; Labile Organic Carbon (LOC); LOC Mean Residence Times; Marguerite Bay; Oceans; Organic Carbon Degradation Rates; Sediment Core", "locations": "Antarctic Peninsula; Marguerite Bay; Antarctica", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Earth Sciences", "persons": "DeMaster, David; Taylor, Richard; Smith, Craig; Isla, Enrique; Thomas, Carrie", "project_titles": "Collaborative Research: Benthic Faunal Feeding Dynamics on the Antarctic Shelf and the Effects of Global Climate Change on Bentho-Pelagic Coupling; Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change", "projects": [{"proj_uid": "p0000552", "repository": "USAP-DC", "title": "Collaborative Research: Benthic Faunal Feeding Dynamics on the Antarctic Shelf and the Effects of Global Climate Change on Bentho-Pelagic Coupling"}, {"proj_uid": "p0000382", "repository": "USAP-DC", "title": "Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -71.0, "title": "Labile Organic Carbon distributions on the West Antarctic Peninsula Shelf", "uid": "601319", "west": -71.0}, {"awards": "0732711 Smith, Craig; 1341669 DeMaster, David", "bounds_geometry": ["POLYGON((-61 -62,-60.4 -62,-59.8 -62,-59.2 -62,-58.6 -62,-58 -62,-57.4 -62,-56.8 -62,-56.2 -62,-55.6 -62,-55 -62,-55 -62.34,-55 -62.68,-55 -63.02,-55 -63.36,-55 -63.7,-55 -64.04,-55 -64.38,-55 -64.72,-55 -65.06,-55 -65.4,-55.6 -65.4,-56.2 -65.4,-56.8 -65.4,-57.4 -65.4,-58 -65.4,-58.6 -65.4,-59.2 -65.4,-59.8 -65.4,-60.4 -65.4,-61 -65.4,-61 -65.06,-61 -64.72,-61 -64.38,-61 -64.04,-61 -63.7,-61 -63.36,-61 -63.02,-61 -62.68,-61 -62.34,-61 -62))"], "date_created": "Fri, 01 May 2020 00:00:00 GMT", "description": "Species Abundance Data from the Larsen Ice Shelf Ice acquired during R/V Nathaniel B. Palmer expedition NBP1203. Data were acquired as part of the project(s): Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems (LARISSA); and Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change.", "east": -55.0, "geometry": ["POINT(-58 -63.7)"], "keywords": "Antarctica; Antarctic Peninsula; Biology; Biosphere; Box Corer; Cryosphere; LARISSA; Larsen Ice Shelf; Macrofauna; Megafauna; NBP1203; Oceans; R/V Nathaniel B. Palmer; Seafloor Sampling; Species Abundance", "locations": "Larsen Ice Shelf; Antarctic Peninsula; Antarctica", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Earth Sciences", "persons": "Smith, Craig", "project_titles": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems.; Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change", "projects": [{"proj_uid": "p0000382", "repository": "USAP-DC", "title": "Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change"}, {"proj_uid": "p0010135", "repository": "USAP-DC", "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LARISSA", "south": -65.4, "title": "Species Abundance Data from the Larsen Ice Shelf Ice acquired during R/V Nathaniel B. Palmer expedition NBP1203", "uid": "601304", "west": -61.0}, {"awards": "1443680 Smith, Craig", "bounds_geometry": ["POLYGON((-66 -64,-65.6 -64,-65.2 -64,-64.8 -64,-64.4 -64,-64 -64,-63.6 -64,-63.2 -64,-62.8 -64,-62.4 -64,-62 -64,-62 -64.1,-62 -64.2,-62 -64.3,-62 -64.4,-62 -64.5,-62 -64.6,-62 -64.7,-62 -64.8,-62 -64.9,-62 -65,-62.4 -65,-62.8 -65,-63.2 -65,-63.6 -65,-64 -65,-64.4 -65,-64.8 -65,-65.2 -65,-65.6 -65,-66 -65,-66 -64.9,-66 -64.8,-66 -64.7,-66 -64.6,-66 -64.5,-66 -64.4,-66 -64.3,-66 -64.2,-66 -64.1,-66 -64))"], "date_created": "Tue, 31 Dec 2019 00:00:00 GMT", "description": "Sediment macrofaunal data collected by megacore (10-cm diameter sample tubes) along a down-fjord transect from inner Andvord Bay out onto the open continental shelf on the West Antarctic Peninsula. Sediment core samples from 0 - 10 cm depths were fixed in 4% formaldehyde, sieved on a 300 micron seive, and sorted with a dissecting microscope. ", "east": -62.0, "geometry": ["POINT(-64 -64.5)"], "keywords": "Abundance; Andvord Bay; Antarctica; Antarctic Peninsula; Biology; Biosphere; Cryosphere; Fjord; LMG1510; Marine Sediments; Oceans; Polychaete; Polychaete Family Richness; R/V Laurence M. Gould; Sediment Core Data; Sediment Macrofauna", "locations": "Antarctic Peninsula; Andvord Bay; Antarctica", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Smith, Craig", "project_titles": "Collaborative Research: Fjord Ecosystem Structure and Function on the West Antarctic Peninsula - Hotspots of Productivity and Biodiversity? (FjordEco)", "projects": [{"proj_uid": "p0010010", "repository": "USAP-DC", "title": "Collaborative Research: Fjord Ecosystem Structure and Function on the West Antarctic Peninsula - Hotspots of Productivity and Biodiversity? (FjordEco)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "FjordEco", "south": -65.0, "title": "Sediment macrofaunal abundance and family richness from inner Andvord Bay to the open continental shelf", "uid": "601236", "west": -66.0}, {"awards": "0732625 Leventer, Amy; 9714371 Leventer, Amy", "bounds_geometry": ["POLYGON((-64 -63,-63.1 -63,-62.2 -63,-61.3 -63,-60.4 -63,-59.5 -63,-58.6 -63,-57.7 -63,-56.8 -63,-55.9 -63,-55 -63,-55 -63.4,-55 -63.8,-55 -64.2,-55 -64.6,-55 -65,-55 -65.4,-55 -65.8,-55 -66.2,-55 -66.6,-55 -67,-55.9 -67,-56.8 -67,-57.7 -67,-58.6 -67,-59.5 -67,-60.4 -67,-61.3 -67,-62.2 -67,-63.1 -67,-64 -67,-64 -66.6,-64 -66.2,-64 -65.8,-64 -65.4,-64 -65,-64 -64.6,-64 -64.2,-64 -63.8,-64 -63.4,-64 -63))"], "date_created": "Mon, 16 Sep 2019 00:00:00 GMT", "description": "Diatom data from eastern side of Antarctic Peninsula:\r\n\r\nThis file includes quantitative diatom data for surface samples collected on numerous cruises to the eastern side of the Antarctic Peninsula, including NBP0003, NBP0107, LMG0502, NBP0603, and NBP1203. Samples were collected using a variety of tools including Smith-McIntyre Grab, Kasten Core and Jumbo Kasten Core. These data were generated by Amy Leventer (aleventer@colgate.edu) and undergraduate students at Colgate University. All questions regarding the specifics of these data should be directed to Amy Leventer. \r\n\r\nQuantitative diatom slides were prepared according to the settling technique of Scherer (1995). Cover slips were adhered to the slides using Norland Optical Adhesive #61. Slides were observed under Olympus CX31, BX50 and BX60, and Zeiss Primo Star light microscopes, using a 100X oil immersion objective for a total magnification of 1000X. A minimum of 400 valves or 10 transects was counted for each slide, depending on the absolute diatom abundance. Valves were only counted if \u003e50% complete. Diatoms were identified to species level when possible (Crosta et al., 2005; Armand et al., 2005; Cefarelli et al., 2010).\r\n\r\nArmand, L.K., X. Crosta, O. Romero, J. J. Pichon (2005), The biogeography of major diatom taxa in Southern Ocean sediments: 1. Sea ice related species, Paleogeography, Paleoclimatology, Paleoecology, 223, 93-126. \r\n\r\nCefarelli, A.O., M. E. Ferrario, G. O. Almandoz, A. G. Atencio, R. Akselman, M. Vernet (2010), Diversity of the diatom genus Fragilariopsis in the Argentine Sea and Antarctic waters: morphology, distribution and abundance, Polar Biology, 33(2), 1463-1484. \r\n\r\nCrosta, X., O. Romero, L. K. Armand, J. Pichon (2005), The biogeography of major diatom taxa in Southern Ocean sediments: 2. Open ocean related species, Palaeogeography, Palaeoclimatology, Palaeoecology, 223, 66-92. \r\n\r\nScherer, R. P., A new method for the determination of absolute abundance of diatoms and other silt-sized sedimentary particles, J. Paleolimnol., 12, 171\u2013178, 1995.\r\n", "east": -55.0, "geometry": ["POINT(-59.5 -65)"], "keywords": "Antarctica; Antarctic Peninsula; Benthos; Biology; Cryosphere; Diatom; Geology/Geophysics - Other; LMG0502; Marine Geoscience; Marine Sediments; Microscope; NBP0003; NBP0107; NBP0603; NBP1203; R/V Nathaniel B. Palmer; Surface Sediment", "locations": "Antarctic Peninsula; Antarctica", "north": -63.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences", "persons": "Leventer, Amy", "project_titles": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans", "projects": [{"proj_uid": "p0000101", "repository": "USAP-DC", "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LARISSA", "south": -67.0, "title": "Easten Antarctic Peninsula Surface Sediment Diatom Data", "uid": "601211", "west": -64.0}, {"awards": "1246357 Bart, Philip", "bounds_geometry": ["POLYGON((-171 -75.8,-170.5 -75.8,-170 -75.8,-169.5 -75.8,-169 -75.8,-168.5 -75.8,-168 -75.8,-167.5 -75.8,-167 -75.8,-166.5 -75.8,-166 -75.8,-166 -75.99,-166 -76.18,-166 -76.37,-166 -76.56,-166 -76.75,-166 -76.94,-166 -77.13,-166 -77.32,-166 -77.51,-166 -77.7,-166.5 -77.7,-167 -77.7,-167.5 -77.7,-168 -77.7,-168.5 -77.7,-169 -77.7,-169.5 -77.7,-170 -77.7,-170.5 -77.7,-171 -77.7,-171 -77.51,-171 -77.32,-171 -77.13,-171 -76.94,-171 -76.75,-171 -76.56,-171 -76.37,-171 -76.18,-171 -75.99,-171 -75.8))"], "date_created": "Mon, 03 Jun 2019 00:00:00 GMT", "description": "Still and video benthic images collected during expedition NBP1502 in the Ross Sea using a YoYo camera system.", "east": -166.0, "geometry": ["POINT(-168.5 -76.75)"], "keywords": "Antarctica; Benthic; Benthic Images; Benthos; Bentic Fauna; Camera Tow; Cryosphere; Marine Geoscience; Marine Sediments; NBP1502; Photographs; Photo/Video; Ross Sea; R/V Nathaniel B. Palmer; Southern Ocean; YoYo Camera", "locations": "Ross Sea; Southern Ocean; Antarctica", "north": -75.8, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Bart, Philip", "project_titles": "Timing and Duration of the LGM and Post-LGM Grounding Events in Whales Deep Paleo Ice Stream, Eastern Ross Sea Middle Continental Shelf", "projects": [{"proj_uid": "p0000877", "repository": "USAP-DC", "title": "Timing and Duration of the LGM and Post-LGM Grounding Events in Whales Deep Paleo Ice Stream, Eastern Ross Sea Middle Continental Shelf"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.7, "title": "NBP1502 YoYo camera benthic images from Ross Sea", "uid": "601182", "west": -171.0}, {"awards": "1758224 Salvatore, Mark", "bounds_geometry": ["POLYGON((-180 -83,-177 -83,-174 -83,-171 -83,-168 -83,-165 -83,-162 -83,-159 -83,-156 -83,-153 -83,-150 -83,-150 -83.5,-150 -84,-150 -84.5,-150 -85,-150 -85.5,-150 -86,-150 -86.5,-150 -87,-150 -87.5,-150 -88,-153 -88,-156 -88,-159 -88,-162 -88,-165 -88,-168 -88,-171 -88,-174 -88,-177 -88,180 -88,177 -88,174 -88,171 -88,168 -88,165 -88,162 -88,159 -88,156 -88,153 -88,150 -88,150 -87.5,150 -87,150 -86.5,150 -86,150 -85.5,150 -85,150 -84.5,150 -84,150 -83.5,150 -83,153 -83,156 -83,159 -83,162 -83,165 -83,168 -83,171 -83,174 -83,177 -83,-180 -83))"], "date_created": "Fri, 15 Mar 2019 00:00:00 GMT", "description": "This data set contains reflectance spectra (350 - 2500 nm) of a range of rocks and sediments from the Central Transantarctic Mountains. Data were acquired using an Analytical Spectral Devices (ASD) FieldSpec4 high-resolution spectrometer under illumination with a high-output halogen bulb, with illumination and observation angles fixed at 0 and 30 degrees off-nadir, respectively. Data were acquired for the purposes of validation and \u0027ground truthing\u0027 of orbital multispectral data.", "east": -150.0, "geometry": ["POINT(180 -85.5)"], "keywords": "Antarctica; Cryosphere; Glaciers/Ice Sheet; Remote Sensing; Rocks; Solid Earth; Spectroscopy; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica", "north": -83.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Salvatore, Mark", "project_titles": "EAGER: Surface Variability and Spectral Analyses of the Central Transantarctic Mountains, Antarctica", "projects": [{"proj_uid": "p0010020", "repository": "USAP-DC", "title": "EAGER: Surface Variability and Spectral Analyses of the Central Transantarctic Mountains, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -88.0, "title": "Laboratory Hyperspectral Reflectance Data of Central Transantarctic Mountain Rocks and Sediments", "uid": "601163", "west": 150.0}, {"awards": "1048343 Warny, Sophie", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Fri, 01 Feb 2019 00:00:00 GMT", "description": "Thanks to grant # U.S. National Science Foundation ANT-1048343, our group was selected to study about 700 of the recently-acquired sediment samples in Antarctica, covering ~9 regions and geological time frames ranging from the Paleocene to today. The samples were processed for palynological analyses and the slides are curated at the LSU CENEX center.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cryosphere; Glaciology; Marine Geoscience; Marine Sediments; Microscope; Microscopy; Paleoclimate; pollen; Pollen", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Warny, Sophie", "project_titles": "CAREER: Deciphering Antarctic Climate Variability during the Temperate/Polar Transition and Improving Climate Change Literacy in Louisiana through a Companion Outreach Program", "projects": [{"proj_uid": "p0000311", "repository": "USAP-DC", "title": "CAREER: Deciphering Antarctic Climate Variability during the Temperate/Polar Transition and Improving Climate Change Literacy in Louisiana through a Companion Outreach Program"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Palynological samples", "uid": "601151", "west": -180.0}, {"awards": "1341729 Kirschvink, Joseph", "bounds_geometry": ["POLYGON((-58.9 -63.5,-58.63 -63.5,-58.36 -63.5,-58.09 -63.5,-57.82 -63.5,-57.55 -63.5,-57.28 -63.5,-57.01 -63.5,-56.74 -63.5,-56.47 -63.5,-56.2 -63.5,-56.2 -63.62,-56.2 -63.74,-56.2 -63.86,-56.2 -63.98,-56.2 -64.1,-56.2 -64.22,-56.2 -64.34,-56.2 -64.46,-56.2 -64.58,-56.2 -64.7,-56.47 -64.7,-56.74 -64.7,-57.01 -64.7,-57.28 -64.7,-57.55 -64.7,-57.82 -64.7,-58.09 -64.7,-58.36 -64.7,-58.63 -64.7,-58.9 -64.7,-58.9 -64.58,-58.9 -64.46,-58.9 -64.34,-58.9 -64.22,-58.9 -64.1,-58.9 -63.98,-58.9 -63.86,-58.9 -63.74,-58.9 -63.62,-58.9 -63.5))"], "date_created": "Fri, 27 Apr 2018 00:00:00 GMT", "description": "", "east": -56.2, "geometry": ["POINT(-57.55 -64.1)"], "keywords": "Antarctica; Cryosphere; Geochronology; Geology/Geophysics - Other; Glaciology; James Ross Basin; Marine Geoscience; Marine Sediments", "locations": "James Ross Basin; Antarctica", "north": -63.5, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Skinner, Steven; Kirschvink, Joseph", "project_titles": "Paleomagnetism and Magnetostratigraphy of the James Ross Basin, Antarctica", "projects": [{"proj_uid": "p0000276", "repository": "USAP-DC", "title": "Paleomagnetism and Magnetostratigraphy of the James Ross Basin, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.7, "title": "2016 Paleomagnetic samples from the James Ross Basin, Antarctica", "uid": "601094", "west": -58.9}, {"awards": "1246353 Anderson, John", "bounds_geometry": ["POLYGON((-180 -74.37,-178.85 -74.37,-177.7 -74.37,-176.55 -74.37,-175.4 -74.37,-174.25 -74.37,-173.1 -74.37,-171.95 -74.37,-170.8 -74.37,-169.65 -74.37,-168.5 -74.37,-168.5 -74.747,-168.5 -75.124,-168.5 -75.501,-168.5 -75.878,-168.5 -76.255,-168.5 -76.632,-168.5 -77.009,-168.5 -77.386,-168.5 -77.763,-168.5 -78.14,-169.65 -78.14,-170.8 -78.14,-171.95 -78.14,-173.1 -78.14,-174.25 -78.14,-175.4 -78.14,-176.55 -78.14,-177.7 -78.14,-178.85 -78.14,180 -78.14,178.48 -78.14,176.96 -78.14,175.44 -78.14,173.92 -78.14,172.4 -78.14,170.88 -78.14,169.36 -78.14,167.84 -78.14,166.32 -78.14,164.8 -78.14,164.8 -77.763,164.8 -77.386,164.8 -77.009,164.8 -76.632,164.8 -76.255,164.8 -75.878,164.8 -75.501,164.8 -75.124,164.8 -74.747,164.8 -74.37,166.32 -74.37,167.84 -74.37,169.36 -74.37,170.88 -74.37,172.4 -74.37,173.92 -74.37,175.44 -74.37,176.96 -74.37,178.48 -74.37,-180 -74.37))"], "date_created": "Mon, 05 Feb 2018 00:00:00 GMT", "description": "Dataset includes details of cores collected as part of cruise NBP1502A, a list of radiocarbon-dated samples and samples to be radiocarbon-dated, and grain-size data from select NBP1502A cores.", "east": -168.5, "geometry": ["POINT(178.15 -76.255)"], "keywords": "Antarctica; Chemistry:Sediment; Cryosphere; Geochronology; Marine Geoscience; Marine Sediments; NBP1502; R/V Nathaniel B. Palmer; Sediment Core", "locations": "Antarctica", "north": -74.37, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Simkins, Lauren; Anderson, John; Prothro, Lindsay", "project_titles": "Evidence for Paleo Ice Stream Collapse in the Western Ross Sea since the Last Glacial Maximum.", "projects": [{"proj_uid": "p0000395", "repository": "USAP-DC", "title": "Evidence for Paleo Ice Stream Collapse in the Western Ross Sea since the Last Glacial Maximum."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.14, "title": "NBP1502A Cruise Core Data", "uid": "601083", "west": 164.8}, {"awards": "1341669 DeMaster, David", "bounds_geometry": ["POLYGON((-70 -62,-68.8 -62,-67.6 -62,-66.4 -62,-65.2 -62,-64 -62,-62.8 -62,-61.6 -62,-60.4 -62,-59.2 -62,-58 -62,-58 -62.6,-58 -63.2,-58 -63.8,-58 -64.4,-58 -65,-58 -65.6,-58 -66.2,-58 -66.8,-58 -67.4,-58 -68,-59.2 -68,-60.4 -68,-61.6 -68,-62.8 -68,-64 -68,-65.2 -68,-66.4 -68,-67.6 -68,-68.8 -68,-70 -68,-70 -67.4,-70 -66.8,-70 -66.2,-70 -65.6,-70 -65,-70 -64.4,-70 -63.8,-70 -63.2,-70 -62.6,-70 -62))"], "date_created": "Sat, 03 Feb 2018 00:00:00 GMT", "description": "This file has C-14 data from the organic matter fraction of Antarctic marine sediments, collected from the collapsed Larsen Ice Shelf and the West Antarctic Peninsula", "east": -58.0, "geometry": ["POINT(-64 -65)"], "keywords": null, "locations": null, "north": -62.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "DeMaster, David", "project_titles": "Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change", "projects": [{"proj_uid": "p0000382", "repository": "USAP-DC", "title": "Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LARISSA", "south": -68.0, "title": "DeMaster Compiled Larsen Ice Shelf and the West Antarctic Peninsula C14 Data", "uid": "601082", "west": -70.0}, {"awards": "0732917 McCormick, Michael", "bounds_geometry": ["POLYGON((299.4 -63.1,299.92 -63.1,300.44 -63.1,300.96 -63.1,301.48 -63.1,302 -63.1,302.52 -63.1,303.04 -63.1,303.56 -63.1,304.08 -63.1,304.6 -63.1,304.6 -63.29,304.6 -63.48,304.6 -63.67,304.6 -63.86,304.6 -64.05,304.6 -64.24,304.6 -64.43,304.6 -64.62,304.6 -64.81,304.6 -65,304.08 -65,303.56 -65,303.04 -65,302.52 -65,302 -65,301.48 -65,300.96 -65,300.44 -65,299.92 -65,299.4 -65,299.4 -64.81,299.4 -64.62,299.4 -64.43,299.4 -64.24,299.4 -64.05,299.4 -63.86,299.4 -63.67,299.4 -63.48,299.4 -63.29,299.4 -63.1))"], "date_created": "Sun, 17 Dec 2017 00:00:00 GMT", "description": "Ice-shelf loss along the east coast of the Antarctic Peninsula over recent decades has brought new sources of carbon and energy to the marine benthos likely affecting sediment geochemistry and microbial community composition. To better understand the long-term effects of ice-shelf loss on benthic microbial communities, we conducted a five-station survey along a 160 km transect following the historic path of retreat of the Larsen A ice shelf. All microbial community sequence data is publicly available through the Metagenomics Analysis Server at Argonne National Laboratory (MG-RAST). The project title is \"Impact of ice-shelf loss on geochemical profiles and microbial community composition in marine sediments of the Larsen A embayment, Antarctic Peninsula\". A key word search using terms from this title at the MG-RAST portal (http://metagenomics.anl.gov/) will return the complete sample list. This submitted dataset summarizes the measured environmental parameters for these same samples (lat., long., water depth, sediment depth, pH, alkalinity, dissolved oxygen, silicate, phosphate, nitrate, nitrite, and ammonium).", "east": 304.6, "geometry": ["POINT(-58 -64.05)"], "keywords": "Antarctica; Antarctic Peninsula; Chemistry:Ice; Cryosphere; Geochemistry; Glaciers/Ice Sheet; Glaciology; Ice Core Records; LARISSA; Microbiology", "locations": "Antarctic Peninsula; Antarctica", "north": -63.1, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "McCormick, Michael", "project_titles": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems.", "projects": [{"proj_uid": "p0010135", "repository": "USAP-DC", "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "LARISSA: Impact of ice-shelf loss on geochemical profiles and microbial community composition in marine sediments of the Larsen A embayment, Antarctic Peninsula", "uid": "601073", "west": 299.4}, {"awards": "1246378 Shevenell, Amelia", "bounds_geometry": ["POLYGON((-65.32 -64.15,-65.309 -64.15,-65.298 -64.15,-65.287 -64.15,-65.276 -64.15,-65.265 -64.15,-65.254 -64.15,-65.243 -64.15,-65.232 -64.15,-65.221 -64.15,-65.21 -64.15,-65.21 -64.186,-65.21 -64.222,-65.21 -64.258,-65.21 -64.294,-65.21 -64.33,-65.21 -64.366,-65.21 -64.402,-65.21 -64.438,-65.21 -64.474,-65.21 -64.51,-65.221 -64.51,-65.232 -64.51,-65.243 -64.51,-65.254 -64.51,-65.265 -64.51,-65.276 -64.51,-65.287 -64.51,-65.298 -64.51,-65.309 -64.51,-65.32 -64.51,-65.32 -64.474,-65.32 -64.438,-65.32 -64.402,-65.32 -64.366,-65.32 -64.33,-65.32 -64.294,-65.32 -64.258,-65.32 -64.222,-65.32 -64.186,-65.32 -64.15))"], "date_created": "Wed, 25 Oct 2017 00:00:00 GMT", "description": "These are unpublished stable isotope data from a series of sediment cores collected during LMG12-11 and LMG13-11 down the axis of Anvers Trough. These records span the LMG to recent.", "east": -65.21, "geometry": ["POINT(-65.265 -64.33)"], "keywords": "Antarctica; Antarctic Peninsula; Anvers Trough; Chemistry:Sediment; Cryosphere; Foraminifera; Geochemistry; Isotope; LMG1211; LMG1311; Marine Sediments; Oceans; Paleoclimate; Sample/Collection Description; Southern Ocean", "locations": "Antarctic Peninsula; Anvers Trough; Southern Ocean; Antarctica", "north": -64.15, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Shevenell, Amelia", "project_titles": "Late Quaternary Evolution of the Lambert Glacier/Amery Ice Shelf System, Prydz Bay, Antarctica", "projects": [{"proj_uid": "p0000381", "repository": "USAP-DC", "title": "Late Quaternary Evolution of the Lambert Glacier/Amery Ice Shelf System, Prydz Bay, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.51, "title": "Anvers Trough Foraminifer Stable Isotope data", "uid": "601064", "west": -65.32}, {"awards": "1430550 Domack, Eugene", "bounds_geometry": ["POLYGON((120 -66,120.1 -66,120.2 -66,120.3 -66,120.4 -66,120.5 -66,120.6 -66,120.7 -66,120.8 -66,120.9 -66,121 -66,121 -66.4,121 -66.8,121 -67.2,121 -67.6,121 -68,121 -68.4,121 -68.8,121 -69.2,121 -69.6,121 -70,120.9 -70,120.8 -70,120.7 -70,120.6 -70,120.5 -70,120.4 -70,120.3 -70,120.2 -70,120.1 -70,120 -70,120 -69.6,120 -69.2,120 -68.8,120 -68.4,120 -68,120 -67.6,120 -67.2,120 -66.8,120 -66.4,120 -66))"], "date_created": "Fri, 18 Aug 2017 00:00:00 GMT", "description": "Pollen assemblage data for Paleocene to early to middle Eocene sediments collected on Totten continental shelf, East Antarctica. ", "east": 121.0, "geometry": ["POINT(120.5 -68)"], "keywords": "Antarctica; Biology; Biosphere; Cryosphere; Marine Sediments; NBP1402; Oceans; Paleoclimate; Pollen; Sabrina Coast; Sediment Core; Southern Ocean; Totten Glacier", "locations": "Sabrina Coast; Totten Glacier; Southern Ocean; Antarctica", "north": -66.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Shevenell, Amelia; Smith, Catherine; Domack, Eugene Walter", "project_titles": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics", "projects": [{"proj_uid": "p0000008", "repository": "USAP-DC", "title": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "NBP14-02 JPC-54 and JPC-55 Pollen Assemblage data", "uid": "601046", "west": 120.0}, {"awards": "1430550 Domack, Eugene", "bounds_geometry": ["POLYGON((120 -66,120.1 -66,120.2 -66,120.3 -66,120.4 -66,120.5 -66,120.6 -66,120.7 -66,120.8 -66,120.9 -66,121 -66,121 -66.4,121 -66.8,121 -67.2,121 -67.6,121 -68,121 -68.4,121 -68.8,121 -69.2,121 -69.6,121 -70,120.9 -70,120.8 -70,120.7 -70,120.6 -70,120.5 -70,120.4 -70,120.3 -70,120.2 -70,120.1 -70,120 -70,120 -69.6,120 -69.2,120 -68.8,120 -68.4,120 -68,120 -67.6,120 -67.2,120 -66.8,120 -66.4,120 -66))"], "date_created": "Fri, 18 Aug 2017 00:00:00 GMT", "description": "Bulk sediment carbon and nitrogen data data for Paleocene sediments collected on Totten continental shelf, East Antarctica. ", "east": 121.0, "geometry": ["POINT(120.5 -68)"], "keywords": "Antarctica; Carbon; Chemistry:Sediment; Cryosphere; Geochemistry; Marine Sediments; NBP1402; Nitrogen; Oceans; Sabrina Coast; Sediment Core; Southern Ocean; Totten Glacier", "locations": "Sabrina Coast; Totten Glacier; Southern Ocean; Antarctica", "north": -66.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Smith, Catherine; Shevenell, Amelia; Domack, Eugene Walter", "project_titles": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics", "projects": [{"proj_uid": "p0000008", "repository": "USAP-DC", "title": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "NBP14-02 JPC-55 Bulk Sediment Carbon and Nitrogen data", "uid": "601044", "west": 120.0}, {"awards": "1143836 Leventer, Amy", "bounds_geometry": ["POLYGON((120 -66,120.1 -66,120.2 -66,120.3 -66,120.4 -66,120.5 -66,120.6 -66,120.7 -66,120.8 -66,120.9 -66,121 -66,121 -66.4,121 -66.8,121 -67.2,121 -67.6,121 -68,121 -68.4,121 -68.8,121 -69.2,121 -69.6,121 -70,120.9 -70,120.8 -70,120.7 -70,120.6 -70,120.5 -70,120.4 -70,120.3 -70,120.2 -70,120.1 -70,120 -70,120 -69.6,120 -69.2,120 -68.8,120 -68.4,120 -68,120 -67.6,120 -67.2,120 -66.8,120 -66.4,120 -66))"], "date_created": "Fri, 18 Aug 2017 00:00:00 GMT", "description": "Foraminifer assemblage data for Paleocene sediments collected on Totten continental shelf, East Antarctica.", "east": 121.0, "geometry": ["POINT(120.5 -68)"], "keywords": "Antarctica; Biology; Biosphere; Continental Margin; Cryosphere; Foraminifera; NBP1402; Oceans; Paleoclimate; Sabrina Coast; Sample/Collection Description; Southern Ocean; Totten Glacier", "locations": "Sabrina Coast; Totten Glacier; Southern Ocean; Antarctica", "north": -66.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Shevenell, Amelia; Leventer, Amy", "project_titles": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics", "projects": [{"proj_uid": "p0000008", "repository": "USAP-DC", "title": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "NBP14-02 JPC-55 foraminifer assemblage data", "uid": "601042", "west": 120.0}, {"awards": "0839059 Powell, Ross", "bounds_geometry": ["POLYGON((-168.7 -82.3,-168.69 -82.3,-168.68 -82.3,-168.67 -82.3,-168.66 -82.3,-168.65 -82.3,-168.64 -82.3,-168.63 -82.3,-168.62 -82.3,-168.61 -82.3,-168.6 -82.3,-168.6 -82.31,-168.6 -82.32,-168.6 -82.33,-168.6 -82.34,-168.6 -82.35,-168.6 -82.36,-168.6 -82.37,-168.6 -82.38,-168.6 -82.39,-168.6 -82.4,-168.61 -82.4,-168.62 -82.4,-168.63 -82.4,-168.64 -82.4,-168.65 -82.4,-168.66 -82.4,-168.67 -82.4,-168.68 -82.4,-168.69 -82.4,-168.7 -82.4,-168.7 -82.39,-168.7 -82.38,-168.7 -82.37,-168.7 -82.36,-168.7 -82.35,-168.7 -82.34,-168.7 -82.33,-168.7 -82.32,-168.7 -82.31,-168.7 -82.3))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "The LISSARD project (Lake and Ice Stream Subglacial Access Research Drilling) is one of three research components of the WISSARD integrative initiative (Whillans Ice Stream Subglacial Access Research Drilling) that is being funded by the Antarctic Integrated System Science Program of NSF\u0027s Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The LISSARD component of WISSARD focuses on the role of active subglacial lakes in determining how fast the West Antarctic ice sheet loses mass to the global ocean and influences global sea level changes. The importance of Antarctic subglacial lakes has only been recently recognized, and the lakes have been identified as high priority targets for scientific investigations because of their unknown contributions to ice sheet stability under future global warming scenarios. LISSARD has several primary science goals: A) To provide an observational basis for improving treatments of subglacial hydrological and mechanical processes in models of ice sheet mass balance and stability; B) To reconstruct the past history of ice stream stability by analyzing archives of past basal water and ice flow variability contained in subglacial sediments, porewater, lake water, and basal accreted ice; C) To provide background understanding of subglacial lake environments to benefit RAGES and GBASE (the other two components of the WISSARD project); and D) To synthesize data and concepts developed as part of this project to determine whether subglacial lakes play an important role in (de)stabilizing Antarctic ice sheets. We propose an unprecedented synthesis of approaches to studying ice sheet processes, including: (1) satellite remote sensing, (2) surface geophysics, (3) borehole observations and measurements and, (4) basal and subglacial sampling.\nThe latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations.\nSocietal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars.", "east": -168.6, "geometry": ["POINT(-168.65 -82.35)"], "keywords": "Antarctica; Biology; Biosphere; Cryosphere; Diatom; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Lake Whillans; Paleoclimate; Ross Sea; Southern Ocean; Subglacial lakes; WISSARD", "locations": "Lake Whillans; Ross Sea; Southern Ocean; Antarctica", "north": -82.3, "nsf_funding_programs": null, "persons": "Powell, Ross", "project_titles": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)", "projects": [{"proj_uid": "p0000105", "repository": "USAP-DC", "title": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.4, "title": "Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats in W Antarctica - Lake and Ice Stream Subglacial Access Research Drilling (LISSARD)", "uid": "600154", "west": -168.7}, {"awards": "0839031 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(161.71965 -77.76165)"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award supports a project to develop a precise gas-based chronology for an archive of large-volume samples of the ancient atmosphere, which would enable ultra-trace gas measurements that are currently precluded by sample size limitations of ice cores. The intellectual merit of the proposed work is that it will provide a critical test of the \u0027clathrate hypothesis\u0027 that methane clathrates contributed to the two abrupt atmospheric methane concentration increases during the last deglaciation 15 and 11 kyr ago. This approach employs large volumes of ice (\u003e1 ton) to measure carbon-14 on past atmospheric methane across the abrupt events. Carbon-14 is an ideal discriminator of fossil sources of methane to the atmosphere, because most methane sources (e.g., wetlands, termites, biomass burning) are rich in carbon-14, whereas clathrates and other fossil sources are devoid of carbon-14. The proposed work is a logical extension to Taylor Glacier, Antarctica, of an approach pioneered at the margin of the Greenland ice sheet over the past 7 years. The Greenland work found higher-than-expected carbon-14 values, likely due in part to contaminants stemming from the high impurity content of Greenland ice and the interaction of the ice with sediments from the glacier bed. The data also pointed to the possibility of a previously unknown process, in-situ cosmogenic production of carbon-14 methane (radiomethane) in the ice matrix. Antarctic ice in Taylor Glacier is orders of magnitude cleaner than the ice at the Greenland site, and is much colder and less stratigraphically disturbed, offering the potential for a clear resolution of this puzzle and a definitive test of the cosmogenic radiomethane hypothesis. Even if cosmogenic radiomethane in ice is found, it still may be possible to reconstruct atmospheric radiomethane with a correction enabled by a detailed understanding of the process, which will be sought by co-measuring carbon-14 in carbon monoxide and carbon dioxide. The broader impacts of the proposed work are that the clathrate test may shed light on the stability of the clathrate reservoir and its potential for climate feedbacks under human-induced warming. Development of Taylor Glacier as a \u0027horizontal ice core\u0027 would provide a community resource for other researchers. Education of one postdoc, one graduate student, and one undergraduate, would add to human resources. This award has field work in Antarctica.", "east": 161.71965, "geometry": ["POINT(161.71965 -77.76165)"], "keywords": "Antarctica; Cosmogenic; Cryosphere; Geochemistry; Ice Core Records; Paleoclimate; Radiocarbon; Taylor Glacier; Transantarctic Mountains", "locations": "Taylor Glacier; Transantarctic Mountains; Antarctica", "north": -77.76165, "nsf_funding_programs": null, "persons": "Severinghaus, Jeffrey P.", "project_titles": "Collaborative Research: A \"Horizontal Ice Core\" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica", "projects": [{"proj_uid": "p0000099", "repository": "USAP-DC", "title": "Collaborative Research: A \"Horizontal Ice Core\" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.76165, "title": "Measurements of in situ cosmogenic 14C from Taylor Glacier, Antarctica", "uid": "600165", "west": 161.71965}, {"awards": "0839107 Powell, Ross", "bounds_geometry": ["POLYGON((-163.7 -84,-163.68 -84,-163.66 -84,-163.64 -84,-163.62 -84,-163.6 -84,-163.58 -84,-163.56 -84,-163.54 -84,-163.52 -84,-163.5 -84,-163.5 -84.05,-163.5 -84.1,-163.5 -84.15,-163.5 -84.2,-163.5 -84.25,-163.5 -84.3,-163.5 -84.35,-163.5 -84.4,-163.5 -84.45,-163.5 -84.5,-163.52 -84.5,-163.54 -84.5,-163.56 -84.5,-163.58 -84.5,-163.6 -84.5,-163.62 -84.5,-163.64 -84.5,-163.66 -84.5,-163.68 -84.5,-163.7 -84.5,-163.7 -84.45,-163.7 -84.4,-163.7 -84.35,-163.7 -84.3,-163.7 -84.25,-163.7 -84.2,-163.7 -84.15,-163.7 -84.1,-163.7 -84.05,-163.7 -84))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "The RAGES project (Robotic Access to Grounding zones for Exploration and Science) is one of three research components of the WISSARD (Whillans Ice Stream Subglacial Access Research Drilling) integrative initiative that is being funded by the Antarctic Integrated System Science Program of NSF\u0027s Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The RAGES component of WISSARD concentrates on the stability of ice stream grounding zones (GZ), the area where the ice, ocean waters and glacial and sea floor sediment interact. Based on our present limited data and modeling efforts, GZs can be perturbed by (i) internal ice stream dynamics, (ii) filling/draining cycles of subglacial lakes, (iii) increased melting by warming ocean waters, and/or (iv) rates of subglacial sediment (till) supply to the GZ. GZs are seen as high priority targets to investigate due to their unknown contributions to ice sheet stability under future global warming scenarios. The three main science goals for RAGES are to assess: (a) West Antarctic Ice Sheet (WAIS) stability relative to the magnitudes of the four main variables listed above; (b) the degree to which grounding-zone sedimentary systems house important records of past WAIS dynamics; and (c) the importance of microbial activity and subglacial geochemical weathering in supplying nutrients to the WAIS grounding zone, the Ross Ice Shelf (RIS) cavity, and the highly productive Southern Ocean that may ultimately influence global biogeochemical cycles. The RAGES field sampling plan integrates surface geophysical surveys with borehole and subglacial sampling and measurements. The boreholes provide: (1) samples of subglacial water, sediments, and basal ice for biological, geochemical, glaciological, sedimentological, and micropaleontological analyses; (2) measures of subglacial and sub-ice-shelf cavity physical and chemical conditions and their spatial variability; and (3) data on sediment types, state and change of the subglacial water discharge, oceanography, and basal ice at the grounding line and within the nearby sub-ice-shelf cavity. Unique tools to be deployed include a multisensor Sub-Ice ROVer (Remotely Operated Vehicle) and long-term, sub-ice oceanographic moorings.\nThe latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations.\nSocietal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. The RAGES project represents a significant advance in polar technology by incorporating the use of complex new instrumentation like the Sub-Ice ROVer and subglacial ocean/lake mooring systems. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars.", "east": -163.5, "geometry": ["POINT(-163.6 -84.25)"], "keywords": "Antarctica; Cryosphere; Glaciology; Oceans; Southern Ocean; WISSARD", "locations": "Southern Ocean; Antarctica", "north": -84.0, "nsf_funding_programs": null, "persons": "Powell, Ross", "project_titles": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)", "projects": [{"proj_uid": "p0000105", "repository": "USAP-DC", "title": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.5, "title": "Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats - Robotic Access to Grounding-zones for Exploration and Science (RAGES)", "uid": "600155", "west": -163.7}, {"awards": "1303896 Kirschvink, Joseph", "bounds_geometry": ["POLYGON((-57 -63,-56.9 -63,-56.8 -63,-56.7 -63,-56.6 -63,-56.5 -63,-56.4 -63,-56.3 -63,-56.2 -63,-56.1 -63,-56 -63,-56 -63.2,-56 -63.4,-56 -63.6,-56 -63.8,-56 -64,-56 -64.2,-56 -64.4,-56 -64.6,-56 -64.8,-56 -65,-56.1 -65,-56.2 -65,-56.3 -65,-56.4 -65,-56.5 -65,-56.6 -65,-56.7 -65,-56.8 -65,-56.9 -65,-57 -65,-57 -64.8,-57 -64.6,-57 -64.4,-57 -64.2,-57 -64,-57 -63.8,-57 -63.6,-57 -63.4,-57 -63.2,-57 -63))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "The PI will collect samples to extend the magneto-stratigraphic record of late Cretaceous sediments of the James Ross Basin, Antarctica. RAPID support will allow him to take advantage of an invitation from the Instituto Antartico Argentino (IAA) to participate on an excursion to James Ross Island in the Antarctic Peninsula. The PI hopes to collect samples that will refine the position of several geomagnetic reversals between the end of the Cretaceous long normal Chron and the lower portion of Chron 31R. The Brandy Bay locality targeted by this expedition is the best place in the basin for calibrating the biostratigraphic position of the top of the Cretaceous Long Normal Chron, which is one of the most reliable correlation horizons in the entire Geological Time Scale.\n\nThe top of the Cretaceous long normal Chron is not properly correlated to southern hemisphere biostratigraphy. Locating this event will be a major addition to understanding geological time. This expedition will provide opportunities for an undergraduate student. This project is based on a productive collaboration with an Argentine scientist.", "east": -56.0, "geometry": ["POINT(-56.5 -64)"], "keywords": "Antarctica; Cryosphere; GPS; James Ross Basin; Sample/Collection Description; Solid Earth", "locations": "James Ross Basin; Antarctica", "north": -63.0, "nsf_funding_programs": null, "persons": "Kirschvink, Joseph", "project_titles": "Magnetostratigraphy of Cretaceous Sediments in the James Ross Island Basin, Antarctica", "projects": [{"proj_uid": "p0000419", "repository": "USAP-DC", "title": "Magnetostratigraphy of Cretaceous Sediments in the James Ross Island Basin, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Magnetostratigraphy of Cretaceous Sediments in the James Ross Island Basin, Antarctica", "uid": "600136", "west": -57.0}, {"awards": "1043690 Scherer, Reed", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: Diatom abundance in sediment cores is typically used as a proxy for paleo primary productivity. This record is complicated by variable preservation, with most loss occurring in the water column via dissolution and zooplankton grazing. This study will investigate preservational biases via a series of controlled experiments to create proxies of original productivity based on morphological changes associated with diatom dissolution and fracture. The PIs will utilize fresh diatoms from culture. Specific objectives include: (1) Linking changes in diatom morphology to availability of dissolved silica and other physical and chemical parameters; (2) Documenting the dissolution process under controlled conditions; (3) Assessment of changes in morphology and diatom surface roughness with increased dissolution; (4) Documenting the physical effects of grazing and fecal pellet formation on diatom fragmentation and dissolution; and (5) Analyzing the impact of diatom dissolution on silica and carbon export. These objectives will be achieved by growing Southern Ocean diatom species in the laboratory under differing physical and chemical conditions; controlled serial dissolution experiments on cultured diatoms; analysis of the dissolution process by imaging frustules under scanning electron microscopy (SEM) and with micro-analysis of surface texture by atomic force microscopy (AFM); making the cultures available to krill and other live zooplankton crustaceans in order to analyze the specific effects of grazing and pelletization on diatom morphology; and comparing experimental results with natural plankton, sediment trap material, and selected Holocene, Pleistocene and Pliocene sediment core material.\nBroader impacts: This work will contribute to understanding of the use of diatom abundance as an indicator of paleoproductivity. The proposed experiments are multi-disciplinary in nature. Importantly, the project was designed, and the proposal largely written, by a Ph.D. candidate. The research proposed here will lead to peer-reviewed publications and provide a base for future studies over the course of an extremely promising scientific career. The project will also support an undergraduate research student at NIU. The PI is heavily involved in science outreach, including classroom visits, museum events and webinars related to evolution and climate change, and is active with NSF-funded outreach activities linked to the ANDRILL and WISSARD programs. He will continue these efforts with this project.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Biology; Biosphere; Diatom; Marine Sediments; Oceans; Sediment Core; Southern Ocean", "locations": "Antarctica; Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Haji-Sheikh, Michael; Scherer, Reed Paul", "project_titles": "Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export", "projects": [{"proj_uid": "p0000360", "repository": "USAP-DC", "title": "Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export", "uid": "600127", "west": -180.0}, {"awards": "0944489 Williams, Trevor", "bounds_geometry": ["POLYGON((-55 -58,-33.2 -58,-11.4 -58,10.4 -58,32.2 -58,54 -58,75.8 -58,97.6 -58,119.4 -58,141.2 -58,163 -58,163 -60,163 -62,163 -64,163 -66,163 -68,163 -70,163 -72,163 -74,163 -76,163 -78,141.2 -78,119.4 -78,97.6 -78,75.8 -78,54 -78,32.2 -78,10.4 -78,-11.4 -78,-33.2 -78,-55 -78,-55 -76,-55 -74,-55 -72,-55 -70,-55 -68,-55 -66,-55 -64,-55 -62,-55 -60,-55 -58))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to study the stability and dynamics of the East Antarctic ice sheet during the Pliocene in the area of the Wilkes and Aurora subglacial basins. Models indicate the ice sheet is most sensitive to warming in these low-lying areas. This study is important as there is very little direct evidence about which parts of the East Antarctic ice sheet became unstable under warm conditions. In a pilot study the PIs have shown that the isotopic geochemical signature of downcore ice-rafted debris (IRD) can be linked to continental source areas indicating which parts of the ice sheet reached the coast and calved IRD-bearing icebergs. Their initial results suggest rapid iceberg discharge from the Wilkes Land and Adelie Land coastal areas at times in the late Miocene and early Pliocene. In this study the PIs will analyze IRD from IODP sediment cores collected on the continental rise off East Antarctica. By analyzing 40Ar/39Ar ages of hornblende IRD grains, U-Pb ages of zircons, and Sm-Nd isotopes of the fine fraction of several IRD-rich layers for each core, they will be able to fingerprint continental source areas that indicate ice extent and dynamics on East Antarctica. The PIs will also carry out detailed studies across a few of these layers to characterize the anatomy of the ice-rafting event and better understand the mechanism of ice destabilization. Broader impacts: The data collected will be important for scientists in a broad variety of fields. The project will involve one undergraduate student and one summer intern at LDEO, and a graduate student at Imperial College London. The project will expose to cutting edge methodologies as well as an international research team. Data from the project will be deposited in the online databases (SedDB) and all results and methods will be made available to the scientific community through publications in peer-reviewed journals and attendance at international conferences\n", "east": 163.0, "geometry": ["POINT(54 -68)"], "keywords": "Cryosphere; Geochronology; George V Land; IODP U1356; IODP U1361; Marine Sediments; ODP1165; Prydz Bay; Solid Earth; Southern Ocean; Wilkes Land", "locations": "George V Land; Prydz Bay; Wilkes Land; Southern Ocean", "north": -58.0, "nsf_funding_programs": null, "persons": "Williams, Trevor; Hemming, Sidney R.", "project_titles": "History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris", "projects": [{"proj_uid": "p0000353", "repository": "USAP-DC", "title": "History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris", "uid": "600116", "west": -55.0}, {"awards": "0838722 Reiners, Peter", "bounds_geometry": ["POLYGON((61.9 -67.28,63.218 -67.28,64.536 -67.28,65.854 -67.28,67.172 -67.28,68.49 -67.28,69.808 -67.28,71.126 -67.28,72.444 -67.28,73.762 -67.28,75.08 -67.28,75.08 -67.922,75.08 -68.564,75.08 -69.206,75.08 -69.848,75.08 -70.49,75.08 -71.132,75.08 -71.774,75.08 -72.416,75.08 -73.058,75.08 -73.7,73.762 -73.7,72.444 -73.7,71.126 -73.7,69.808 -73.7,68.49 -73.7,67.172 -73.7,65.854 -73.7,64.536 -73.7,63.218 -73.7,61.9 -73.7,61.9 -73.058,61.9 -72.416,61.9 -71.774,61.9 -71.132,61.9 -70.49,61.9 -69.848,61.9 -69.206,61.9 -68.564,61.9 -67.922,61.9 -67.28))"], "date_created": "Sun, 01 Jan 2012 00:00:00 GMT", "description": "Much of the inventory of East Antarctic bedrock geochronology, as well as a record of its erosional history, is preserved in Cenozoic sediments around its margin. This project is to use these sediments to understand their sub-ice provenance and the erosional history of the shield by measuring ages of multiple geo- and thermochronometers on single detrital crystals and on multiple crystals in detrital clasts (U/Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar). The combination of multi-chronometer ages in single grains and clasts provides a powerful fingerprint of bedrock sources, allowing us to trace provenance in Eocene fluvial sandstones through Quaternary diamicts around the margin. Multiple thermochronometric (cooling) ages in the same grains and clasts also allows us to interpret the timing and rates of erosion from these bedrock sources. Delineating a distribution of bedrock age units, their sediment transport connections, and their erosional histories over the Cenozoic, will in turn allow us to test tectonic models bearing on: (1) the origin of the Gamburtsev Subglacial Mountains, (2) fluvial and topographic evolution, and (3) the history of glacial growth and erosion.\n", "east": 75.08, "geometry": ["POINT(68.49 -70.49)"], "keywords": "Antarctica; Fission Track Thermochronology; Gamburtsev Mountains; Geochronology; Marine Sediments; NBP0101; ODP1166; ODP739; Prydz Bay; Solid Earth; Southern Ocean", "locations": "Gamburtsev Mountains; Prydz Bay; Antarctica; Southern Ocean", "north": -67.28, "nsf_funding_programs": null, "persons": "Gehrels, George; Reiners, Peter; Thomson, Stuart", "project_titles": "Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology", "projects": [{"proj_uid": "p0000506", "repository": "USAP-DC", "title": "Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -73.7, "title": "Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology", "uid": "600093", "west": 61.9}, {"awards": "0838729 Hemming, Sidney", "bounds_geometry": ["POLYGON((-67.2 -58,-43.98 -58,-20.76 -58,2.46 -58,25.68 -58,48.9 -58,72.12 -58,95.34 -58,118.56 -58,141.78 -58,165 -58,165 -59.2,165 -60.4,165 -61.6,165 -62.8,165 -64,165 -65.2,165 -66.4,165 -67.6,165 -68.8,165 -70,141.78 -70,118.56 -70,95.34 -70,72.12 -70,48.9 -70,25.68 -70,2.46 -70,-20.76 -70,-43.98 -70,-67.2 -70,-67.2 -68.8,-67.2 -67.6,-67.2 -66.4,-67.2 -65.2,-67.2 -64,-67.2 -62.8,-67.2 -61.6,-67.2 -60.4,-67.2 -59.2,-67.2 -58))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "Much of the inventory of East Antarctic bedrock geochronology, as well as a record of its erosional history, is preserved in Cenozoic sediments around its margin. This project is to use these sediments to understand their sub-ice provenance and the erosional history of the shield by measuring ages of multiple geo- and thermochronometers on single detrital crystals and on multiple crystals in detrital clasts (U/Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar). The combination of multi-chronometer ages in single grains and clasts provides a powerful fingerprint of bedrock sources, allowing us to trace provenance in Eocene fluvial sandstones through Quaternary diamicts around the margin. Multiple thermochronometric (cooling) ages in the same grains and clasts also allows us to interpret the timing and rates of erosion from these bedrock sources. Delineating a distribution of bedrock age units, their sediment transport connections, and their erosional histories over the Cenozoic, will in turn allow us to test tectonic models bearing on: (1) the origin of the Gamburtsev Subglacial Mountains, (2) fluvial and topographic evolution, and (3) the history of glacial growth and erosion.", "east": 165.0, "geometry": ["POINT(48.9 -64)"], "keywords": "Antarctica; Fission Track Thermochronology; Gamburtsev Mountains; Geochronology; Marine Sediments; Solid Earth; Southern Ocean", "locations": "Gamburtsev Mountains; Antarctica; Southern Ocean", "north": -58.0, "nsf_funding_programs": null, "persons": "Hemming, Sidney R.", "project_titles": "Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology", "projects": [{"proj_uid": "p0000506", "repository": "USAP-DC", "title": "Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology", "uid": "600094", "west": -67.2}, {"awards": "0902957 Robinson, Laura", "bounds_geometry": ["POLYGON((-70.5 -54.5,-66.95 -54.5,-63.4 -54.5,-59.85 -54.5,-56.3 -54.5,-52.75 -54.5,-49.2 -54.5,-45.65 -54.5,-42.1 -54.5,-38.55 -54.5,-35 -54.5,-35 -55.2,-35 -55.9,-35 -56.6,-35 -57.3,-35 -58,-35 -58.7,-35 -59.4,-35 -60.1,-35 -60.8,-35 -61.5,-38.55 -61.5,-42.1 -61.5,-45.65 -61.5,-49.2 -61.5,-52.75 -61.5,-56.3 -61.5,-59.85 -61.5,-63.4 -61.5,-66.95 -61.5,-70.5 -61.5,-70.5 -60.8,-70.5 -60.1,-70.5 -59.4,-70.5 -58.7,-70.5 -58,-70.5 -57.3,-70.5 -56.6,-70.5 -55.9,-70.5 -55.2,-70.5 -54.5))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "The proposal seeks funds to continue a follow-up analytical work of deep-sea corals collected in the Drake Passage during a research cruise. The project\u0027s goal is paleo-climate research looking to constrain the depth structure and time evolution of the radiocarbon content of the Southern Ocean during the glacial and deglaciation. Radiocarbon is a versatile tracer of past climate; its radioactive decay provides an internal clock with which to assess the rates of processes, and it can be used to trace the movement of carbon through the Earth\u0027s system. It enters the ocean through air-sea gas exchange, so processes that limits this will, therefore, reduce the radiocarbon content of both surface and deep waters. The Southern Ocean is a critical location for exchange of heat and carbon between the deep-ocean and atmospheric reservoirs, and the deep waters formed there fill large volumes of the global deep and intermediate oceans. As strong currents tend to scour away sediments, carbonate preservation is limited, and radiocarbon reservoir ages are poorly constrained, many traditional paleoceanographic techniques become impractical. It is proposed to alleviate these difficulties analyzing the chemical composition of deep-sea coral skeletons. Their aragonitic skeletons can be precisely dated using U-series decay, and when coupled with radiocarbon analyses will allow to calculate the C14/C12 ratio of the past water column.", "east": -35.0, "geometry": ["POINT(-52.75 -58)"], "keywords": "Biology; Biosphere; Corals; Drake Passage; Geochronology; NBP0805; Oceans; Paleoclimate; Radiocarbon; Southern Ocean", "locations": "Drake Passage; Southern Ocean", "north": -54.5, "nsf_funding_programs": null, "persons": "Robinson, Laura", "project_titles": "LGM and Deglacial Radiocarbon from U-series Dated Drake Passage Deep-sea Corals", "projects": [{"proj_uid": "p0000519", "repository": "USAP-DC", "title": "LGM and Deglacial Radiocarbon from U-series Dated Drake Passage Deep-sea Corals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -61.5, "title": "LGM and Deglacial Radiocarbon from U-series Dated Drake Passage Deep-sea Corals", "uid": "600111", "west": -70.5}, {"awards": "0842639 Soreghan, Gerilyn", "bounds_geometry": ["POLYGON((-163.12865 -77.41693,-163.06062 -77.41693,-162.99259 -77.41693,-162.92456 -77.41693,-162.85653 -77.41693,-162.7885 -77.41693,-162.72047 -77.41693,-162.65244 -77.41693,-162.58441 -77.41693,-162.51638 -77.41693,-162.44835 -77.41693,-162.44835 -77.445495,-162.44835 -77.47406,-162.44835 -77.502625,-162.44835 -77.53119,-162.44835 -77.559755,-162.44835 -77.58832,-162.44835 -77.616885,-162.44835 -77.64545,-162.44835 -77.674015,-162.44835 -77.70258,-162.51638 -77.70258,-162.58441 -77.70258,-162.65244 -77.70258,-162.72047 -77.70258,-162.7885 -77.70258,-162.85653 -77.70258,-162.92456 -77.70258,-162.99259 -77.70258,-163.06062 -77.70258,-163.12865 -77.70258,-163.12865 -77.674015,-163.12865 -77.64545,-163.12865 -77.616885,-163.12865 -77.58832,-163.12865 -77.559755,-163.12865 -77.53119,-163.12865 -77.502625,-163.12865 -77.47406,-163.12865 -77.445495,-163.12865 -77.41693))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "The proposed research seeks to test the hypothesis that chemical and physical weathering in proximal alluvial systems will show systematic and measurable variations between glacial and nonglacial systems. To accomplish this, the investigation will attempt to quantify the natural variation of chemical and physical weathering in granitoid-sourced proximal alluvial sediments in end-member glacial and nonglacial systems, when other, \u0027non-climatic\u0027 factors (e.g. provenance, drainage basin area and relief, sample grain size, sediment facies) are controlled. If chemical weathering in the proposed hot-humid, hot-arid, hot semi-arid nonglacial systems and the cool-wet, cold semi-arid, and cold-arid glacial systems show systematic variations, then chemical indices may be used to help differentiate paleoclimatic conditions. Continued reliance on students provides a broader impact of this proposed research and firmly grounds this effort in its educational mission.", "east": -162.44835, "geometry": ["POINT(-162.7885 -77.559755)"], "keywords": "Antarctica; Chemistry:Fluid; Chemistry:Rock; Chemistry:Sediment; Critical Zone; Cryosphere; Geochemistry; Glaciers/Ice Sheet", "locations": "Antarctica", "north": -77.41693, "nsf_funding_programs": null, "persons": "Soreghan, Gerilyn; Elwood Madden, Megan", "project_titles": "Development of Quantitative Weathering Indicators in Proximal Alluvial Sediments to Assess Glacial Activity in the Rock Record", "projects": [{"proj_uid": "p0000518", "repository": "USAP-DC", "title": "Development of Quantitative Weathering Indicators in Proximal Alluvial Sediments to Assess Glacial Activity in the Rock Record"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.70258, "title": "Development of Quantitative Weathering Indicators in Proximal Alluvial Sediments to Assess Glacial Activity in the Rock Record", "uid": "600110", "west": -163.12865}, {"awards": "0538580 Hemming, Sidney", "bounds_geometry": ["POLYGON((60 -60,72 -60,84 -60,96 -60,108 -60,120 -60,132 -60,144 -60,156 -60,168 -60,180 -60,180 -61,180 -62,180 -63,180 -64,180 -65,180 -66,180 -67,180 -68,180 -69,180 -70,168 -70,156 -70,144 -70,132 -70,120 -70,108 -70,96 -70,84 -70,72 -70,60 -70,60 -69,60 -68,60 -67,60 -66,60 -65,60 -64,60 -63,60 -62,60 -61,60 -60))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "This project studies sediment from the ocean floor to understand Antarctica\u0027s geologic history. Glacially eroded from the Antarctic continent, these sediments may offer insight into the 99% Antarctica covered by ice. The work\u0027s central focus is determining crust formation ages and thermal histories for three key areas of East Antarctica--Prydz Bay, eastern Weddell Sea, and Wilkes Land--through a combination of petrography, bulk sediment geochemistry and radiogenic isotopes, as well as isotope chronology of individual mineral grains. One specific objective is characterizing the composition of the Gamburtsev Mountains through studies of Eocene fluvial sediments from Prydz Bay. In addition to furthering our understanding of the hidden terrains of Antarctica, these terrigenous sediments will also serve as a natural laboratory to evaluate the effects of continental weathering on the Hf/Nd isotope systematics of seawater. An important broader impact of the project is providing exciting research projects for graduate and postdoctoral students using state of the art techniques in geochemistry.", "east": 180.0, "geometry": ["POINT(120 -65)"], "keywords": "Antarctica; Chemistry:Sediment; Geochemistry; Geochronology; isotope data; Marine Sediments; Oceans; Prydz Bay; Solid Earth; Southern Ocean; Weddell Sea; Wilkes Land", "locations": "Weddell Sea; Prydz Bay; Wilkes Land; Southern Ocean; Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "van de Flierdt, Tina; Goldstein, Steven L.; Hemming, Sidney R.", "project_titles": "Antarctica\u0027s Geological History Reflected in Sedimentary Radiogenic Isotopes", "projects": [{"proj_uid": "p0000524", "repository": "USAP-DC", "title": "Antarctica\u0027s Geological History Reflected in Sedimentary Radiogenic Isotopes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Antarctica\u0027s Geological History Reflected in Sedimentary Radiogenic Isotopes", "uid": "600056", "west": 60.0}, {"awards": "0338163 Leventer, Amy", "bounds_geometry": ["POLYGON((-70.90391 -52.35262,-68.130917 -52.35262,-65.357924 -52.35262,-62.584931 -52.35262,-59.811938 -52.35262,-57.038945 -52.35262,-54.265952 -52.35262,-51.492959 -52.35262,-48.719966 -52.35262,-45.946973 -52.35262,-43.17398 -52.35262,-43.17398 -53.75776,-43.17398 -55.1629,-43.17398 -56.56804,-43.17398 -57.97318,-43.17398 -59.37832,-43.17398 -60.78346,-43.17398 -62.1886,-43.17398 -63.59374,-43.17398 -64.99888,-43.17398 -66.40402,-45.946973 -66.40402,-48.719966 -66.40402,-51.492959 -66.40402,-54.265952 -66.40402,-57.038945 -66.40402,-59.811938 -66.40402,-62.584931 -66.40402,-65.357924 -66.40402,-68.130917 -66.40402,-70.90391 -66.40402,-70.90391 -64.99888,-70.90391 -63.59374,-70.90391 -62.1886,-70.90391 -60.78346,-70.90391 -59.37832,-70.90391 -57.97318,-70.90391 -56.56804,-70.90391 -55.1629,-70.90391 -53.75776,-70.90391 -52.35262))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "The NSF-supported research icebreaker Nathaniel B. Palmer operates year-round in support of the U.S. Antarctic Program, carrying out global change studies in biological, chemical, physical, and oceanographic disciplines. \n This data set consists of underway data from leg NBP0603 on the R/V Nathaniel B. Palmer. This leg started at Punta Arenas, Chile and ended at Punta Arenas, Chile.", "east": -43.17398, "geometry": ["POINT(-57.038945 -59.37832)"], "keywords": "ADCP Acoustic Doppler Current Profiler; Antarctic Peninsula; Biology; Biosphere; Diatom; Electromagnetic data; Flask Glacier; Foehn Winds; Larsen Ice Shelf; Marine Sediments; NBP0603; Oceans; Physical Ice Properties; R/V Nathaniel B. Palmer; Scar Inlet; Southern Ocean", "locations": "Larsen Ice Shelf; Antarctic Peninsula; Scar Inlet; Flask Glacier; Southern Ocean", "north": -52.35262, "nsf_funding_programs": null, "persons": "Domack, Eugene Walter", "project_titles": "Collaborative Research: Paleohistory of the Larsen Ice Shelf System: Phase II", "projects": [{"proj_uid": "p0000215", "repository": "USAP-DC", "title": "Collaborative Research: Paleohistory of the Larsen Ice Shelf System: Phase II"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -66.40402, "title": "R/V Nathaniel B. Palmer NBP0603 - Paleohistory of the Larsen Ice Shelf System", "uid": "600027", "west": -70.90391}, {"awards": "0228842 Grew, Edward", "bounds_geometry": ["POLYGON((76 -69.3,76.05 -69.3,76.1 -69.3,76.15 -69.3,76.2 -69.3,76.25 -69.3,76.3 -69.3,76.35 -69.3,76.4 -69.3,76.45 -69.3,76.5 -69.3,76.5 -69.32,76.5 -69.34,76.5 -69.36,76.5 -69.38,76.5 -69.4,76.5 -69.42,76.5 -69.44,76.5 -69.46,76.5 -69.48,76.5 -69.5,76.45 -69.5,76.4 -69.5,76.35 -69.5,76.3 -69.5,76.25 -69.5,76.2 -69.5,76.15 -69.5,76.1 -69.5,76.05 -69.5,76 -69.5,76 -69.48,76 -69.46,76 -69.44,76 -69.42,76 -69.4,76 -69.38,76 -69.36,76 -69.34,76 -69.32,76 -69.3))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the role and fate of Boron in high-grade metamorphic rocks of the Larsemann Hills region of Antarctica. Trace elements provide valuable information on the changes sedimentary rocks undergo as temperature and pressure increase during burial. One such element, boron, is particularly sensitive to increasing temperature because of its affinity for aqueous fluids, which are lost as rocks are buried. Boron contents of unmetamorphosed pelitic sediments range from 20 to over 200 parts per million, but rarely exceed 5 parts per million in rocks subjected to conditions of the middle and lower crust, that is, temperatures of 700 degrees C or more in the granulite-facies, which is characterized by very low water activities at pressures of 5 to 10 kbar (18-35 km burial). Devolatization reactions with loss of aqueous fluid and partial melting with removal of melt have been cited as primary causes for boron depletion under granulite-facies conditions. Despite the pervasiveness of both these processes, rocks rich in boron are locally found in the granulite-facies, that is, there are mechanisms for retaining boron during the metamorphic process. The Larsemann Hills, Prydz Bay, Antarctica, are a prime example. More than 20 lenses and layered bodies containing four borosilicate mineral species crop out over a 50 square kilometer area, which thus would be well suited for research on boron-rich granulite-facies metamorphic rocks. While most investigators have focused on the causes for loss of boron, this work will investigate how boron is retained during high-grade metamorphism. Field observations and mapping in the Larsemann Hills, chemical analyses of minerals and their host rocks, and microprobe age dating will be used to identify possible precursors and deduce how the precursor materials recrystallized into borosilicate rocks under granulite-facies conditions. \n\nThe working hypothesis is that high initial boron content facilitates retention of boron during metamorphism because above a certain threshold boron content, a mechanism \u0027kicks in\u0027 that facilitates retention of boron in metamorphosed rocks. For example, in a rock with large amounts of the borosilicate tourmaline, such as stratabound tourmalinite, the breakdown of tourmaline to melt could result in the formation of prismatine and grandidierite, two borosilicates found in the Larsemann Hills. This situation is rarely observed in rocks with modest boron content, in which breakdown of tourmaline releases boron into partial melts, which in turn remove boron when they leave the system. Stratabound tourmalinite is associated with manganese-rich quartzite, phosphorus-rich rocks and sulfide concentrations that could be diagnostic for recognizing a tourmalinite protolith in a highly metamorphosed complex where sedimentary features have been destroyed by deformation. Because partial melting plays an important role in the fate of boron during metamorphism, our field and laboratory research will focus on the relationship between the borosilicate units, granite pegmatites and other granitic intrusives. The results of our study will provide information on cycling of boron at deeper levels in the Earth\u0027s crust and on possible sources of boron for granites originating from deep-seated rocks. An undergraduate student will participate in the electron microprobe age-dating of monazite and xenotime as part of a senior project, thereby integrating the proposed research into the educational mission of the University of Maine. In response to a proposal for fieldwork, the Australian Antarctic Division, which maintains Davis station near the Larsemann Hills, has indicated that they will support the Antarctic fieldwork.", "east": 76.5, "geometry": ["POINT(76.25 -69.4)"], "keywords": "Antarctica; Chemistry:Rock; Geochemistry; Geochronology; Solid Earth", "locations": "Antarctica", "north": -69.3, "nsf_funding_programs": null, "persons": "Grew, Edward", "project_titles": "Boron in Antarctic granulite-facies rocks: under what conditions is boron retained in the middle crust?", "projects": [{"proj_uid": "p0000431", "repository": "USAP-DC", "title": "Boron in Antarctic granulite-facies rocks: under what conditions is boron retained in the middle crust?"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -69.5, "title": "Boron in Antarctic granulite-facies rocks: under what conditions is boron retained in the middle crust?", "uid": "600030", "west": 76.0}, {"awards": "0125098 Emslie, Steven", "bounds_geometry": ["POLYGON((-50 -60,-29 -60,-8 -60,13 -60,34 -60,55 -60,76 -60,97 -60,118 -60,139 -60,160 -60,160 -63,160 -66,160 -69,160 -72,160 -75,160 -78,160 -81,160 -84,160 -87,160 -90,139 -90,118 -90,97 -90,76 -90,55 -90,34 -90,13 -90,-8 -90,-29 -90,-50 -90,-50 -87,-50 -84,-50 -81,-50 -78,-50 -75,-50 -72,-50 -69,-50 -66,-50 -63,-50 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project will build on previous studies to investigate the occupation history and diet of Adelie penguins (Pygoscelis adeliae) in the Ross Sea region, Antarctica, with excavations of abandoned and active penguin colonies. Numerous active and abandoned colonies exist on the Victoria Land coast, from Cape Adare to Marble Point will be sampled. Some of these sites have been radiocarbon-dated and indicate a long occupation history for Adelie penguins extending to 13,000 years before present (B. P.). The material recovered from excavations, as demonstrated from previous investigations, will include penguin bones, tissue, and eggshell fragments as well as abundant remains of prey (fish bones, otoliths, squid beaks) preserved in ornithogenic (formed from bird guano) soils. These organic remains will be quantified and subjected to radiocarbon analyses to obtain a colonization history of penguins in this region. Identification of prey remains in the sediments will allow assessment of penguin diet. \n\nOther data (ancient DNA) from these sites will be analyzed through collaboration with New Zealand scientists. Past climatic conditions will be interpreted from published ice-core and marine-sediment records. These data will be used to test the hypothesis that Adelie penguins respond to climate change, past and present, in a predictable manner. In addition, the hypothesis that Adelie penguins alter their diet in accordance with climate, sea-ice conditions, and other marine environmental variables along a latitudinal gradient will be tested. Graduate and undergraduate students will be involved in this project and a project Web site will be developed to report results and maintain educational interaction between the PI and students at local middle and high schools in Wilmington, NC.", "east": 160.0, "geometry": ["POINT(55 -75)"], "keywords": "Antarctica; Biology; Biosphere; Geochronology; Oceans; Paleoclimate; Penguin; Radiocarbon; Ross Sea; Southern Ocean", "locations": "Ross Sea; Antarctica; Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Emslie, Steven", "project_titles": "Occupation History and Diet of Adelie Penguins in the Ross Sea Region", "projects": [{"proj_uid": "p0000220", "repository": "USAP-DC", "title": "Occupation History and Diet of Adelie Penguins in the Ross Sea Region"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Occupation History and Diet of Adelie Penguins in the Ross Sea Region", "uid": "600028", "west": -50.0}, {"awards": "0538195 Marone, Chris", "bounds_geometry": null, "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This award supports a project to conduct laboratory experiments and numerical modeling to determine the constitutive properties of subglacial till under dynamic stressing and to test the hypothesis that granular properties of till are sufficient, when coupled elastically to a large ice stream, to reproduce the field observations of triggered slip and subglacial seismicity. Testing will be carried out in a servo-controlled biaxial shear device under controlled temperature and stress conditions, which will allow both sliding and microstructural processes to be studied in detail. The main focus of the work will be on laboratory measurements. In addition, we will construct continuum models to evaluate whether our results can predict complex ice sheet motions and observed characteristics of subglacial seismicity. In terms of broader impacts, the proposed work will encourage interactions between the rock-mechanics and glaciology communities and will bring together members of different scientific backgrounds and vocabularies, but similar problems and data. The project will train undergraduate and graduate students at Penn State University and the scientists involved plan to give presentations to grade school classes, scout groups, and at community open houses. Results will be presented at professional meetings and will be published in a timely manner. The work will result in a better understanding of glacial motion and the physics of earthquake slip, which is essential for understanding ice sheet dynamics and earthquake hazard.", "east": null, "geometry": null, "keywords": "Antarctica; Cryosphere; Glacial Till; Glaciers/Ice Sheet; lab experiment; Marine Sediments; Physical Properties; Solid Earth", "locations": "Antarctica", "north": null, "nsf_funding_programs": null, "persons": "Marone, Chris; Anandakrishnan, Sridhar", "project_titles": "Laboratory Study of Stick-Slip Behavior and Deformation Mechanics of Subglacial Till", "projects": [{"proj_uid": "p0000554", "repository": "USAP-DC", "title": "Laboratory Study of Stick-Slip Behavior and Deformation Mechanics of Subglacial Till"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Laboratory Study of Stick-Slip Behavior and Deformation Mechanics of Subglacial Till", "uid": "600054", "west": null}, {"awards": "0739496 Miller, Molly", "bounds_geometry": ["POLYGON((163.41667 -77.33333,163.46667 -77.33333,163.51667 -77.33333,163.56667 -77.33333,163.61667 -77.33333,163.66667 -77.33333,163.71667 -77.33333,163.76667 -77.33333,163.81667 -77.33333,163.86667 -77.33333,163.91667 -77.33333,163.91667 -77.369997,163.91667 -77.406664,163.91667 -77.443331,163.91667 -77.479998,163.91667 -77.516665,163.91667 -77.553332,163.91667 -77.589999,163.91667 -77.626666,163.91667 -77.663333,163.91667 -77.7,163.86667 -77.7,163.81667 -77.7,163.76667 -77.7,163.71667 -77.7,163.66667 -77.7,163.61667 -77.7,163.56667 -77.7,163.51667 -77.7,163.46667 -77.7,163.41667 -77.7,163.41667 -77.663333,163.41667 -77.626666,163.41667 -77.589999,163.41667 -77.553332,163.41667 -77.516665,163.41667 -77.479998,163.41667 -77.443331,163.41667 -77.406664,163.41667 -77.369997,163.41667 -77.33333))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project answers a simple question: why are there so few fossils in sediment cores from Antarctica\u0027s continental shelf? Antarctica\u0027s benthos are as biologically rich as those of the tropics. Shell-secreting organisms should have left a trail throughout geologic time, but have not. This trail is particularly important because these organisms record regional climate in ways that are critical to interpreting the global climate record. This study uses field experiments and targeted observations of modern benthic systems to examine the biases inflicted by fossil preservation. By examining a spectrum of ice-affected habitats, this project provides paleoenvironmental insights into carbonate preservation, sedimentation rates, and burial processes; and will provide new approaches to reconstructing the Cenozoic history of Antarctica. Broader impacts include graduate and undergraduate research and education, development of undergraduate curricula to link art and science, K12 outreach, public outreach via the web, and societal relevance through improved understanding of records of global climate change.", "east": 163.91667, "geometry": ["POINT(163.66667 -77.516665)"], "keywords": "Biology; Biosphere; Geochronology; Marine Sediments; Oceans; Southern Ocean", "locations": "Southern Ocean", "north": -77.33333, "nsf_funding_programs": null, "persons": "Furbish, David; Miller, Molly", "project_titles": "Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores", "projects": [{"proj_uid": "p0000203", "repository": "USAP-DC", "title": "Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.7, "title": "Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores", "uid": "600076", "west": 163.41667}, {"awards": "0739693 Ashworth, Allan", "bounds_geometry": ["POLYGON((160 -77,160.2 -77,160.4 -77,160.6 -77,160.8 -77,161 -77,161.2 -77,161.4 -77,161.6 -77,161.8 -77,162 -77,162 -77.1,162 -77.2,162 -77.3,162 -77.4,162 -77.5,162 -77.6,162 -77.7,162 -77.8,162 -77.9,162 -78,161.8 -78,161.6 -78,161.4 -78,161.2 -78,161 -78,160.8 -78,160.6 -78,160.4 -78,160.2 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project studies the last vestiges of life in Antarctica from exceptionally well-preserved fossils of tundra life--mosses, diatoms, ostracods, Nothofagus leaves, wood, and insect remains recently discovered in ancient lake sediments from the McMurdo Dry Valleys. The area will be studied by an interdisciplinary team to elucidate information about climate and biogeography. These deposits offer unique and direct information about the characteristics of Antarctica during a key period in its history, the time when it was freezing. This information is critical for correlation with indirect proxies, such as though obtained from drill cores, for climate and state of the ice sheet. The results will also help understand the origin and migration of similar organisms found in South America, India and Australia. In terms of broader impacts, this project supports an early career researcher, undergraduate and graduate student research, various forms of outreach to K12 students, and extensive international collaboration. The work also has societal relevance in that the outcomes will offer direct constraints on Antarctica\u0027s ice sheet during a time with atmospheric CO2 contents similar to those of the earth in the coming centuries, and thus may help predictive models of sea level rise.", "east": 162.0, "geometry": ["POINT(161 -77.5)"], "keywords": "Antarctica; Geochronology; Geology/Geophysics - Other; GPS; Solid Earth", "locations": "Antarctica", "north": -77.0, "nsf_funding_programs": null, "persons": "Ashworth, Allan; Lewis, Adam", "project_titles": "Collaborative Research: Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains", "projects": [{"proj_uid": "p0000188", "repository": "USAP-DC", "title": "Collaborative Research: Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains", "uid": "600081", "west": 160.0}, {"awards": "0817163 Reiners, Peter", "bounds_geometry": ["POLYGON((72 -66,72.3 -66,72.6 -66,72.9 -66,73.2 -66,73.5 -66,73.8 -66,74.1 -66,74.4 -66,74.7 -66,75 -66,75 -66.3,75 -66.6,75 -66.9,75 -67.2,75 -67.5,75 -67.8,75 -68.1,75 -68.4,75 -68.7,75 -69,74.7 -69,74.4 -69,74.1 -69,73.8 -69,73.5 -69,73.2 -69,72.9 -69,72.6 -69,72.3 -69,72 -69,72 -68.7,72 -68.4,72 -68.1,72 -67.8,72 -67.5,72 -67.2,72 -66.9,72 -66.6,72 -66.3,72 -66))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This Small Grant for Exploratory Research investigates the origin and evolution of the Gamburtsev subglacial mountains (GSM). These mountains are considered the nucleation point for Antarctica\u0027s largest ice sheets; however, being of indeterminate age, they may postdate ice sheet formation. As well, their formation could reflect tectonic events during the breakup of Gondwana. The project studies GSM-derived detrital zircon and apatite crystals from Prydz Bay obtained by the Ocean Drilling Program. Analytical work includes triple-dating thermochronometry by U/Pb, fission track, and (U/Th)/He methods. The combined technique offers insight into both high and low temperature processes, and is potentially sensitive to both the orogenic events and the subsequent cooling and exhumation due to erosion. In terms of broader impacts, this project supports research for a postdoctoral fellow.", "east": 75.0, "geometry": ["POINT(73.5 -67.5)"], "keywords": "Antarctica; Gamburtsev Mountains; Geochronology; Marine Sediments; NBP0101; ODP1166; Prydz Bay; Solid Earth; Southern Ocean", "locations": "Gamburtsev Mountains; Prydz Bay; Antarctica; Southern Ocean", "north": -66.0, "nsf_funding_programs": null, "persons": "Gehrels, George; Reiners, Peter", "project_titles": "Collaborative Research: SGER: Triple-dating (Pb-FT-He) of Antarctic Detritus and the Origin of the Gamburtsev Mountains", "projects": [{"proj_uid": "p0000210", "repository": "USAP-DC", "title": "Collaborative Research: SGER: Triple-dating (Pb-FT-He) of Antarctic Detritus and the Origin of the Gamburtsev Mountains"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -69.0, "title": "Triple-dating (Pb-FT-He) of Antarctic Detritus and the Origin of the Gamburtsev Mountains", "uid": "600090", "west": 72.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Physical and geochemical data from shelf sediments near the Antartic Pennisula
|
2031442 |
2022-09-08 | Learman, Deric |
RAPID: Meta-genomic and Transcriptomic Investigation of Complex Organic Matter Degradation in Antarctic Benthic Sediments |
Shelf sediment samples were collected around the Antarctic Peninsular with the mega corer in 2020 (Nov. to Dec.). The sample locations and water depths are recorded in this dataset. These samples were used to collect data on organic matter (total organic carbon, total nitrogen, delta 13C (organic), delta 15N, and C to N ratios). Nutrient data (nitrate, nitrite, sulfate, and ammonia) and grain size analysis were collected on a subsample set (10). | [] | [] | false | false |
Major and trace element analyses of Eocene-Oligocene marine sediments from ODP Site 696, South Orkney Microcontinent
|
1743643 |
2022-06-22 | Passchier, Sandra; Hojnacki, Victoria; Li, Xiaona; States, Abbey; Lepp, Allison |
Timing and Spatial Distribution of Antarctic Ice Sheet Growth and Sea-ice Formation across the Eocene-Oligocene Transition |
This dataset contains measurements of major and trace elements on 190 samples of Eocene-Oligocene sediment from Ocean Drilling Program Site 696 drilled in 650 m water depth on the South Orkney Microcontinent. The composition of detrital, biogenic and authigenic sediment components was assessed via whole rock geochemistry of sediment samples. Instrument analysis was completed at Montclair State University. | ["POINT(-42.933 -61.849)"] | ["POINT(-42.933 -61.849)"] | false | false |
Particle-size distributions of Eocene-Oligocene sediment from ODP Site 696, South Orkney Microcontinent
|
1743643 |
2022-06-21 | Passchier, Sandra; Lepp, Allison; Horowitz Castaldo, Josie; Light, Jennifer |
Timing and Spatial Distribution of Antarctic Ice Sheet Growth and Sea-ice Formation across the Eocene-Oligocene Transition |
This dataset contains measurements of terrigenous particle-size distributions on Eocene-Oligocene sediment from Ocean Drilling Program Site 696 drilled in 650 m water depth on the South Orkney Microcontinent. Carbonate and organic matter were removed through addition of 10mL aliquots of 30% H2O2, 2mL aliquots of 10% HCl to ~50-100mL suspension on a hot plate. Diatoms were generally either absent or present in trace amounts in the Eocene-Oligocene interval and were not removed. Dispersion was through heating with sodium pyrophosphate. Samples were measured on a Malvern Mastersizer 2000 with a Hydro 2000MU (A) accessory, using a Refractive Index of 1.6 (Illite) and an absorption coefficient of 0.9. Results are in (vol. %) per size class, with diameter range equivalent to the diameter of spheres with the same volume as measured particles. | ["POINT(-42.933 -61.849)"] | ["POINT(-42.933 -61.849)"] | false | false |
Silicon concentration and isotopic composition measurements in seawater profiles, pore waters, interstitial waters and sediments from 67°S to 55°S latitude in the Pacific Sector of the Southern Ocean
|
1341432 |
2022-05-16 | Closset, Ivia; Jones, Janice L.; Brzezinski, Mark |
Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump |
This dataset contains data for stable isotopes of silicon in pore water, interstitial water, sediments and CTD profiles. | ["POLYGON((-175 -54,-174 -54,-173 -54,-172 -54,-171 -54,-170 -54,-169 -54,-168 -54,-167 -54,-166 -54,-165 -54,-165 -55.3,-165 -56.6,-165 -57.9,-165 -59.2,-165 -60.5,-165 -61.8,-165 -63.1,-165 -64.4,-165 -65.7,-165 -67,-166 -67,-167 -67,-168 -67,-169 -67,-170 -67,-171 -67,-172 -67,-173 -67,-174 -67,-175 -67,-175 -65.7,-175 -64.4,-175 -63.1,-175 -61.8,-175 -60.5,-175 -59.2,-175 -57.9,-175 -56.6,-175 -55.3,-175 -54))"] | ["POINT(-170 -60.5)"] | false | false |
Sediment chemistry of ODP Site 1098
|
1744871 |
2022-03-22 | Dove, Isabel |
The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information? |
This dataset includes measurements of opal (wt %), total organic carbon (mg C/g dry sediment), total nitrogen (mg N/g dry sediment), bulk nitrogen isotopic composition (d15Nbulk), and diatom-bound nitrogen isotopic composition (d15Ndb) from 36 samples from ODP sediment core 1098B-5H-7 on the western Antarctic Peninsula. The sediments were deposited during a period of deglaciation about 12.5-12.3 ka. | ["POINT(-64.207 -64.86)"] | ["POINT(-64.207 -64.86)"] | false | false |
Surface Southern Ocean community growouts to evaluate the diatom bound N isotope proxy
|
1341464 |
2022-02-14 | Jones, Colin; Robinson, Rebecca; Brzezinski, Mark; Riesselman, Christina; Closset, Ivia; Kelly, Roger; Robinson, Rebecca |
Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump |
Tracking variations in the surface ocean supply and demand of nitrate, a key marine nutrient, can help constrain the contribution of biological production in driving past climate shifts. The nitrogen isotopic composition (as δ15N) of organic matter in marine sediments is a proxy for surface ocean nitrate supply and demand over time but it may be subject to alteration during sinking and burial. The isotopic composition of nitrogen contained in the shells, or frustules, of diatoms (δ15NDB) is protected and is therefore a potentially more robust tracer of nitrate use in the past. Here we show that δ15NDB in Southern Ocean community cultures does not depend on species composition. We found the εDB (= biomass δ15N - δ15NDB) of the community growouts was -4.8 ± 0.8‰, more than 10‰ different from previous monospecific growouts, but statistically indistinguishable from previous Southern Ocean and North Pacific surface ocean observations. The two community growouts, seeded with populations from 66° and 61°S, had distinct community compositions but indistinguishable εDB, suggesting species composition does not primarily set δ15NDB values in the Southern Ocean. Our results demonstrate that under nitrate-replete conditions, δ15NDB values of frustules sinking from the surface ocean robustly track surface ocean nitrate δ15N values and therefore nitrate supply and demand. | ["POLYGON((-170.4 -60.8,-170.36 -60.8,-170.32 -60.8,-170.28 -60.8,-170.24 -60.8,-170.2 -60.8,-170.16 -60.8,-170.12 -60.8,-170.08 -60.8,-170.04 -60.8,-170 -60.8,-170 -61.34,-170 -61.88,-170 -62.42,-170 -62.96,-170 -63.5,-170 -64.04,-170 -64.58,-170 -65.12,-170 -65.66,-170 -66.2,-170.04 -66.2,-170.08 -66.2,-170.12 -66.2,-170.16 -66.2,-170.2 -66.2,-170.24 -66.2,-170.28 -66.2,-170.32 -66.2,-170.36 -66.2,-170.4 -66.2,-170.4 -65.66,-170.4 -65.12,-170.4 -64.58,-170.4 -64.04,-170.4 -63.5,-170.4 -62.96,-170.4 -62.42,-170.4 -61.88,-170.4 -61.34,-170.4 -60.8))"] | ["POINT(-170.2 -63.5)"] | false | false |
Physical and geochemical data from five sediment cores collected offshore Thwaites Glacier
|
1738942 |
2022-01-27 | Lepp, Allison |
NSF-NERC: THwaites Offshore Research (THOR) |
This dataset contains measurements from grain-size, x-ray fluorescence (XRF), and physical properties (including magnetic susceptibility, water content, and shear strength) analyses of five sediment cores collected offshore Thwaites Glacier during cruises NBP19-02 (cores KC04, KC08, and KC23) and NBP20-02 (cores KC33 and KC67). We estimate the cores, which are between 213.5 and 297.5 cm in length, reflect deposition during the last ~10 kyr, consistent with published constraints of deglaciation of this region. Data are organized in Microsoft Excel spreadsheets and core locations are provided in a PDF. | ["POLYGON((-107.38 -74.64,-107.065 -74.64,-106.75 -74.64,-106.435 -74.64,-106.12 -74.64,-105.805 -74.64,-105.49 -74.64,-105.175 -74.64,-104.86 -74.64,-104.545 -74.64,-104.23 -74.64,-104.23 -74.683,-104.23 -74.726,-104.23 -74.769,-104.23 -74.812,-104.23 -74.855,-104.23 -74.898,-104.23 -74.941,-104.23 -74.984,-104.23 -75.027,-104.23 -75.07,-104.545 -75.07,-104.86 -75.07,-105.175 -75.07,-105.49 -75.07,-105.805 -75.07,-106.12 -75.07,-106.435 -75.07,-106.75 -75.07,-107.065 -75.07,-107.38 -75.07,-107.38 -75.027,-107.38 -74.984,-107.38 -74.941,-107.38 -74.898,-107.38 -74.855,-107.38 -74.812,-107.38 -74.769,-107.38 -74.726,-107.38 -74.683,-107.38 -74.64))"] | ["POINT(-105.805 -74.855)"] | false | false |
NBP0702 surface sediment sample information and images
|
0440775 |
2021-09-17 | Leventer, Amy; Jacobs, Stanley |
The Amundsen Continental Shelf and the Antarctic Ice Sheet |
This dataset contains images and field description of Smith-McIntyre sediment grab samples from Expedition NBP0702 between the Ross Sea and the Amundsen Sea. | ["POLYGON((-180 -71.12,-172.34 -71.12,-164.68 -71.12,-157.02 -71.12,-149.36 -71.12,-141.7 -71.12,-134.04 -71.12,-126.38 -71.12,-118.72 -71.12,-111.06 -71.12,-103.4 -71.12,-103.4 -71.833,-103.4 -72.546,-103.4 -73.259,-103.4 -73.972,-103.4 -74.685,-103.4 -75.398,-103.4 -76.111,-103.4 -76.824,-103.4 -77.537,-103.4 -78.25,-111.06 -78.25,-118.72 -78.25,-126.38 -78.25,-134.04 -78.25,-141.7 -78.25,-149.36 -78.25,-157.02 -78.25,-164.68 -78.25,-172.34 -78.25,180 -78.25,178.657 -78.25,177.314 -78.25,175.971 -78.25,174.628 -78.25,173.285 -78.25,171.942 -78.25,170.599 -78.25,169.256 -78.25,167.913 -78.25,166.57 -78.25,166.57 -77.537,166.57 -76.824,166.57 -76.111,166.57 -75.398,166.57 -74.685,166.57 -73.972,166.57 -73.259,166.57 -72.546,166.57 -71.833,166.57 -71.12,167.913 -71.12,169.256 -71.12,170.599 -71.12,171.942 -71.12,173.285 -71.12,174.628 -71.12,175.971 -71.12,177.314 -71.12,178.657 -71.12,-180 -71.12))"] | ["POINT(-148.415 -74.685)"] | false | false |
Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment
|
1724670 |
2020-10-05 | Williams, Trevor |
Collaborative Research: Deglacial Ice Dynamics in the Weddell Sea Embayment using Sediment Provenance |
This dataset contains 40Ar/39Ar measurements on detrital mineral grains from subglacial till and proximal glacimarine sediment from nine sediment cores along the front of the Filchner and Ronne Ice Shelves. | ["POLYGON((-65 -74,-61 -74,-57 -74,-53 -74,-49 -74,-45 -74,-41 -74,-37 -74,-33 -74,-29 -74,-25 -74,-25 -74.6,-25 -75.2,-25 -75.8,-25 -76.4,-25 -77,-25 -77.6,-25 -78.2,-25 -78.8,-25 -79.4,-25 -80,-29 -80,-33 -80,-37 -80,-41 -80,-45 -80,-49 -80,-53 -80,-57 -80,-61 -80,-65 -80,-65 -79.4,-65 -78.8,-65 -78.2,-65 -77.6,-65 -77,-65 -76.4,-65 -75.8,-65 -75.2,-65 -74.6,-65 -74))"] | ["POINT(-45 -77)"] | false | false |
Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment
|
1724670 |
2020-10-05 | Williams, Trevor |
Collaborative Research: Deglacial Ice Dynamics in the Weddell Sea Embayment using Sediment Provenance |
This dataset contains 40Ar/39Ar measurements on detrital mineral grains from ice-rafted detritus from sediment core PS1575-1 in the NW Weddell Sea. The depositional age of the sediments is approx. 0 to 300 ka. | ["POLYGON((-50 -62,-49 -62,-48 -62,-47 -62,-46 -62,-45 -62,-44 -62,-43 -62,-42 -62,-41 -62,-40 -62,-40 -62.3,-40 -62.6,-40 -62.9,-40 -63.2,-40 -63.5,-40 -63.8,-40 -64.1,-40 -64.4,-40 -64.7,-40 -65,-41 -65,-42 -65,-43 -65,-44 -65,-45 -65,-46 -65,-47 -65,-48 -65,-49 -65,-50 -65,-50 -64.7,-50 -64.4,-50 -64.1,-50 -63.8,-50 -63.5,-50 -63.2,-50 -62.9,-50 -62.6,-50 -62.3,-50 -62))"] | ["POINT(-45 -63.5)"] | false | false |
Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment
|
1724670 |
2020-10-05 | Williams, Trevor |
Collaborative Research: Deglacial Ice Dynamics in the Weddell Sea Embayment using Sediment Provenance |
This dataset contains 40Ar/39Ar measurements on detrital mineral grains from till in modern moraines at the edges of the Institute, Foundation, Academy, Recovery, and the Slessor glaciers / ice streams. | ["POLYGON((-70 -80,-65 -80,-60 -80,-55 -80,-50 -80,-45 -80,-40 -80,-35 -80,-30 -80,-25 -80,-20 -80,-20 -80.6,-20 -81.2,-20 -81.8,-20 -82.4,-20 -83,-20 -83.6,-20 -84.2,-20 -84.8,-20 -85.4,-20 -86,-25 -86,-30 -86,-35 -86,-40 -86,-45 -86,-50 -86,-55 -86,-60 -86,-65 -86,-70 -86,-70 -85.4,-70 -84.8,-70 -84.2,-70 -83.6,-70 -83,-70 -82.4,-70 -81.8,-70 -81.2,-70 -80.6,-70 -80))"] | ["POINT(-45 -83)"] | false | false |
Isotopic data from Whillans Ice Stream grounding zone, West Antarctica
|
None | 2020-07-15 | Venturelli, Ryan A |
Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments |
This dataset contains total organic carbon (%TOC) and carbon isotopic data (δ¹³C, Δ¹⁴C) from sediments retrieved from the Whillans Ice Stream grounding zone during the 2015 Antarctic field season. All %TOC and sediment preparations were done at the University of South Florida. Radiocarbon measurements were done at the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) laboratory. | ["POINT(-163.61187 -84.33543)"] | ["POINT(-163.61187 -84.33543)"] | false | false |
Radioisotope data (C-14 and Pb-210) from bulk sediments, Larsen A Ice Shelf
|
1341669 0732711 |
2020-06-19 | DeMaster, David; Taylor, Richard |
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change |
This file contains Pb-210 data from bulk sediments beneath the collapsed Larsen A Ice Shelf and C-14 data from the organic fraction of the same samples. | ["POLYGON((-61 -64,-60.5 -64,-60 -64,-59.5 -64,-59 -64,-58.5 -64,-58 -64,-57.5 -64,-57 -64,-56.5 -64,-56 -64,-56 -64.1,-56 -64.2,-56 -64.3,-56 -64.4,-56 -64.5,-56 -64.6,-56 -64.7,-56 -64.8,-56 -64.9,-56 -65,-56.5 -65,-57 -65,-57.5 -65,-58 -65,-58.5 -65,-59 -65,-59.5 -65,-60 -65,-60.5 -65,-61 -65,-61 -64.9,-61 -64.8,-61 -64.7,-61 -64.6,-61 -64.5,-61 -64.4,-61 -64.3,-61 -64.2,-61 -64.1,-61 -64))"] | ["POINT(-58.5 -64.5)"] | false | false |
Labile Organic Carbon distributions on the West Antarctic Peninsula Shelf
|
1341669 0636773 |
2020-05-11 | DeMaster, David; Taylor, Richard; Smith, Craig; Isla, Enrique; Thomas, Carrie |
Collaborative Research: Benthic Faunal Feeding Dynamics on the Antarctic Shelf and the Effects of Global Climate Change on Bentho-Pelagic Coupling Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change |
This data set is used to describe a new technique for assessing labile organic carbon (LOC) abundances and mean residence times in marine sediments. Radiocarbon is used to determine abundances of labile organic carbon and then a diagenetic organic carbon model, coupled with sediment biotrubation coefficients, is used to assess LOC mean residence times. | ["POLYGON((-71 -64,-70.4 -64,-69.8 -64,-69.2 -64,-68.6 -64,-68 -64,-67.4 -64,-66.8 -64,-66.2 -64,-65.6 -64,-65 -64,-65 -64.7,-65 -65.4,-65 -66.1,-65 -66.8,-65 -67.5,-65 -68.2,-65 -68.9,-65 -69.6,-65 -70.3,-65 -71,-65.6 -71,-66.2 -71,-66.8 -71,-67.4 -71,-68 -71,-68.6 -71,-69.2 -71,-69.8 -71,-70.4 -71,-71 -71,-71 -70.3,-71 -69.6,-71 -68.9,-71 -68.2,-71 -67.5,-71 -66.8,-71 -66.1,-71 -65.4,-71 -64.7,-71 -64))"] | ["POINT(-68 -67.5)"] | false | false |
Species Abundance Data from the Larsen Ice Shelf Ice acquired during R/V Nathaniel B. Palmer expedition NBP1203
|
0732711 1341669 |
2020-05-01 | Smith, Craig |
Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems. |
Species Abundance Data from the Larsen Ice Shelf Ice acquired during R/V Nathaniel B. Palmer expedition NBP1203. Data were acquired as part of the project(s): Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems (LARISSA); and Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change. | ["POLYGON((-61 -62,-60.4 -62,-59.8 -62,-59.2 -62,-58.6 -62,-58 -62,-57.4 -62,-56.8 -62,-56.2 -62,-55.6 -62,-55 -62,-55 -62.34,-55 -62.68,-55 -63.02,-55 -63.36,-55 -63.7,-55 -64.04,-55 -64.38,-55 -64.72,-55 -65.06,-55 -65.4,-55.6 -65.4,-56.2 -65.4,-56.8 -65.4,-57.4 -65.4,-58 -65.4,-58.6 -65.4,-59.2 -65.4,-59.8 -65.4,-60.4 -65.4,-61 -65.4,-61 -65.06,-61 -64.72,-61 -64.38,-61 -64.04,-61 -63.7,-61 -63.36,-61 -63.02,-61 -62.68,-61 -62.34,-61 -62))"] | ["POINT(-58 -63.7)"] | false | false |
Sediment macrofaunal abundance and family richness from inner Andvord Bay to the open continental shelf
|
1443680 |
2019-12-31 | Smith, Craig |
Collaborative Research: Fjord Ecosystem Structure and Function on the West Antarctic Peninsula - Hotspots of Productivity and Biodiversity? (FjordEco) |
Sediment macrofaunal data collected by megacore (10-cm diameter sample tubes) along a down-fjord transect from inner Andvord Bay out onto the open continental shelf on the West Antarctic Peninsula. Sediment core samples from 0 - 10 cm depths were fixed in 4% formaldehyde, sieved on a 300 micron seive, and sorted with a dissecting microscope. | ["POLYGON((-66 -64,-65.6 -64,-65.2 -64,-64.8 -64,-64.4 -64,-64 -64,-63.6 -64,-63.2 -64,-62.8 -64,-62.4 -64,-62 -64,-62 -64.1,-62 -64.2,-62 -64.3,-62 -64.4,-62 -64.5,-62 -64.6,-62 -64.7,-62 -64.8,-62 -64.9,-62 -65,-62.4 -65,-62.8 -65,-63.2 -65,-63.6 -65,-64 -65,-64.4 -65,-64.8 -65,-65.2 -65,-65.6 -65,-66 -65,-66 -64.9,-66 -64.8,-66 -64.7,-66 -64.6,-66 -64.5,-66 -64.4,-66 -64.3,-66 -64.2,-66 -64.1,-66 -64))"] | ["POINT(-64 -64.5)"] | false | false |
Easten Antarctic Peninsula Surface Sediment Diatom Data
|
0732625 9714371 |
2019-09-16 | Leventer, Amy |
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans |
Diatom data from eastern side of Antarctic Peninsula: This file includes quantitative diatom data for surface samples collected on numerous cruises to the eastern side of the Antarctic Peninsula, including NBP0003, NBP0107, LMG0502, NBP0603, and NBP1203. Samples were collected using a variety of tools including Smith-McIntyre Grab, Kasten Core and Jumbo Kasten Core. These data were generated by Amy Leventer (aleventer@colgate.edu) and undergraduate students at Colgate University. All questions regarding the specifics of these data should be directed to Amy Leventer. Quantitative diatom slides were prepared according to the settling technique of Scherer (1995). Cover slips were adhered to the slides using Norland Optical Adhesive #61. Slides were observed under Olympus CX31, BX50 and BX60, and Zeiss Primo Star light microscopes, using a 100X oil immersion objective for a total magnification of 1000X. A minimum of 400 valves or 10 transects was counted for each slide, depending on the absolute diatom abundance. Valves were only counted if >50% complete. Diatoms were identified to species level when possible (Crosta et al., 2005; Armand et al., 2005; Cefarelli et al., 2010). Armand, L.K., X. Crosta, O. Romero, J. J. Pichon (2005), The biogeography of major diatom taxa in Southern Ocean sediments: 1. Sea ice related species, Paleogeography, Paleoclimatology, Paleoecology, 223, 93-126. Cefarelli, A.O., M. E. Ferrario, G. O. Almandoz, A. G. Atencio, R. Akselman, M. Vernet (2010), Diversity of the diatom genus Fragilariopsis in the Argentine Sea and Antarctic waters: morphology, distribution and abundance, Polar Biology, 33(2), 1463-1484. Crosta, X., O. Romero, L. K. Armand, J. Pichon (2005), The biogeography of major diatom taxa in Southern Ocean sediments: 2. Open ocean related species, Palaeogeography, Palaeoclimatology, Palaeoecology, 223, 66-92. Scherer, R. P., A new method for the determination of absolute abundance of diatoms and other silt-sized sedimentary particles, J. Paleolimnol., 12, 171–178, 1995. | ["POLYGON((-64 -63,-63.1 -63,-62.2 -63,-61.3 -63,-60.4 -63,-59.5 -63,-58.6 -63,-57.7 -63,-56.8 -63,-55.9 -63,-55 -63,-55 -63.4,-55 -63.8,-55 -64.2,-55 -64.6,-55 -65,-55 -65.4,-55 -65.8,-55 -66.2,-55 -66.6,-55 -67,-55.9 -67,-56.8 -67,-57.7 -67,-58.6 -67,-59.5 -67,-60.4 -67,-61.3 -67,-62.2 -67,-63.1 -67,-64 -67,-64 -66.6,-64 -66.2,-64 -65.8,-64 -65.4,-64 -65,-64 -64.6,-64 -64.2,-64 -63.8,-64 -63.4,-64 -63))"] | ["POINT(-59.5 -65)"] | false | false |
NBP1502 YoYo camera benthic images from Ross Sea
|
1246357 |
2019-06-03 | Bart, Philip |
Timing and Duration of the LGM and Post-LGM Grounding Events in Whales Deep Paleo Ice Stream, Eastern Ross Sea Middle Continental Shelf |
Still and video benthic images collected during expedition NBP1502 in the Ross Sea using a YoYo camera system. | ["POLYGON((-171 -75.8,-170.5 -75.8,-170 -75.8,-169.5 -75.8,-169 -75.8,-168.5 -75.8,-168 -75.8,-167.5 -75.8,-167 -75.8,-166.5 -75.8,-166 -75.8,-166 -75.99,-166 -76.18,-166 -76.37,-166 -76.56,-166 -76.75,-166 -76.94,-166 -77.13,-166 -77.32,-166 -77.51,-166 -77.7,-166.5 -77.7,-167 -77.7,-167.5 -77.7,-168 -77.7,-168.5 -77.7,-169 -77.7,-169.5 -77.7,-170 -77.7,-170.5 -77.7,-171 -77.7,-171 -77.51,-171 -77.32,-171 -77.13,-171 -76.94,-171 -76.75,-171 -76.56,-171 -76.37,-171 -76.18,-171 -75.99,-171 -75.8))"] | ["POINT(-168.5 -76.75)"] | false | false |
Laboratory Hyperspectral Reflectance Data of Central Transantarctic Mountain Rocks and Sediments
|
1758224 |
2019-03-15 | Salvatore, Mark |
EAGER: Surface Variability and Spectral Analyses of the Central Transantarctic Mountains, Antarctica |
This data set contains reflectance spectra (350 - 2500 nm) of a range of rocks and sediments from the Central Transantarctic Mountains. Data were acquired using an Analytical Spectral Devices (ASD) FieldSpec4 high-resolution spectrometer under illumination with a high-output halogen bulb, with illumination and observation angles fixed at 0 and 30 degrees off-nadir, respectively. Data were acquired for the purposes of validation and 'ground truthing' of orbital multispectral data. | ["POLYGON((-180 -83,-177 -83,-174 -83,-171 -83,-168 -83,-165 -83,-162 -83,-159 -83,-156 -83,-153 -83,-150 -83,-150 -83.5,-150 -84,-150 -84.5,-150 -85,-150 -85.5,-150 -86,-150 -86.5,-150 -87,-150 -87.5,-150 -88,-153 -88,-156 -88,-159 -88,-162 -88,-165 -88,-168 -88,-171 -88,-174 -88,-177 -88,180 -88,177 -88,174 -88,171 -88,168 -88,165 -88,162 -88,159 -88,156 -88,153 -88,150 -88,150 -87.5,150 -87,150 -86.5,150 -86,150 -85.5,150 -85,150 -84.5,150 -84,150 -83.5,150 -83,153 -83,156 -83,159 -83,162 -83,165 -83,168 -83,171 -83,174 -83,177 -83,-180 -83))"] | ["POINT(180 -85.5)"] | false | false |
Palynological samples
|
1048343 |
2019-02-01 | Warny, Sophie |
CAREER: Deciphering Antarctic Climate Variability during the Temperate/Polar Transition and Improving Climate Change Literacy in Louisiana through a Companion Outreach Program |
Thanks to grant # U.S. National Science Foundation ANT-1048343, our group was selected to study about 700 of the recently-acquired sediment samples in Antarctica, covering ~9 regions and geological time frames ranging from the Paleocene to today. The samples were processed for palynological analyses and the slides are curated at the LSU CENEX center. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
2016 Paleomagnetic samples from the James Ross Basin, Antarctica
|
1341729 |
2018-04-27 | Skinner, Steven; Kirschvink, Joseph |
Paleomagnetism and Magnetostratigraphy of the James Ross Basin, Antarctica |
["POLYGON((-58.9 -63.5,-58.63 -63.5,-58.36 -63.5,-58.09 -63.5,-57.82 -63.5,-57.55 -63.5,-57.28 -63.5,-57.01 -63.5,-56.74 -63.5,-56.47 -63.5,-56.2 -63.5,-56.2 -63.62,-56.2 -63.74,-56.2 -63.86,-56.2 -63.98,-56.2 -64.1,-56.2 -64.22,-56.2 -64.34,-56.2 -64.46,-56.2 -64.58,-56.2 -64.7,-56.47 -64.7,-56.74 -64.7,-57.01 -64.7,-57.28 -64.7,-57.55 -64.7,-57.82 -64.7,-58.09 -64.7,-58.36 -64.7,-58.63 -64.7,-58.9 -64.7,-58.9 -64.58,-58.9 -64.46,-58.9 -64.34,-58.9 -64.22,-58.9 -64.1,-58.9 -63.98,-58.9 -63.86,-58.9 -63.74,-58.9 -63.62,-58.9 -63.5))"] | ["POINT(-57.55 -64.1)"] | false | false | |
NBP1502A Cruise Core Data
|
1246353 |
2018-02-05 | Simkins, Lauren; Anderson, John; Prothro, Lindsay |
Evidence for Paleo Ice Stream Collapse in the Western Ross Sea since the Last Glacial Maximum. |
Dataset includes details of cores collected as part of cruise NBP1502A, a list of radiocarbon-dated samples and samples to be radiocarbon-dated, and grain-size data from select NBP1502A cores. | ["POLYGON((-180 -74.37,-178.85 -74.37,-177.7 -74.37,-176.55 -74.37,-175.4 -74.37,-174.25 -74.37,-173.1 -74.37,-171.95 -74.37,-170.8 -74.37,-169.65 -74.37,-168.5 -74.37,-168.5 -74.747,-168.5 -75.124,-168.5 -75.501,-168.5 -75.878,-168.5 -76.255,-168.5 -76.632,-168.5 -77.009,-168.5 -77.386,-168.5 -77.763,-168.5 -78.14,-169.65 -78.14,-170.8 -78.14,-171.95 -78.14,-173.1 -78.14,-174.25 -78.14,-175.4 -78.14,-176.55 -78.14,-177.7 -78.14,-178.85 -78.14,180 -78.14,178.48 -78.14,176.96 -78.14,175.44 -78.14,173.92 -78.14,172.4 -78.14,170.88 -78.14,169.36 -78.14,167.84 -78.14,166.32 -78.14,164.8 -78.14,164.8 -77.763,164.8 -77.386,164.8 -77.009,164.8 -76.632,164.8 -76.255,164.8 -75.878,164.8 -75.501,164.8 -75.124,164.8 -74.747,164.8 -74.37,166.32 -74.37,167.84 -74.37,169.36 -74.37,170.88 -74.37,172.4 -74.37,173.92 -74.37,175.44 -74.37,176.96 -74.37,178.48 -74.37,-180 -74.37))"] | ["POINT(178.15 -76.255)"] | false | false |
DeMaster Compiled Larsen Ice Shelf and the West Antarctic Peninsula C14 Data
|
1341669 |
2018-02-03 | DeMaster, David |
Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change |
This file has C-14 data from the organic matter fraction of Antarctic marine sediments, collected from the collapsed Larsen Ice Shelf and the West Antarctic Peninsula | ["POLYGON((-70 -62,-68.8 -62,-67.6 -62,-66.4 -62,-65.2 -62,-64 -62,-62.8 -62,-61.6 -62,-60.4 -62,-59.2 -62,-58 -62,-58 -62.6,-58 -63.2,-58 -63.8,-58 -64.4,-58 -65,-58 -65.6,-58 -66.2,-58 -66.8,-58 -67.4,-58 -68,-59.2 -68,-60.4 -68,-61.6 -68,-62.8 -68,-64 -68,-65.2 -68,-66.4 -68,-67.6 -68,-68.8 -68,-70 -68,-70 -67.4,-70 -66.8,-70 -66.2,-70 -65.6,-70 -65,-70 -64.4,-70 -63.8,-70 -63.2,-70 -62.6,-70 -62))"] | ["POINT(-64 -65)"] | false | false |
LARISSA: Impact of ice-shelf loss on geochemical profiles and microbial community composition in marine sediments of the Larsen A embayment, Antarctic Peninsula
|
0732917 |
2017-12-17 | McCormick, Michael |
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems. |
Ice-shelf loss along the east coast of the Antarctic Peninsula over recent decades has brought new sources of carbon and energy to the marine benthos likely affecting sediment geochemistry and microbial community composition. To better understand the long-term effects of ice-shelf loss on benthic microbial communities, we conducted a five-station survey along a 160 km transect following the historic path of retreat of the Larsen A ice shelf. All microbial community sequence data is publicly available through the Metagenomics Analysis Server at Argonne National Laboratory (MG-RAST). The project title is "Impact of ice-shelf loss on geochemical profiles and microbial community composition in marine sediments of the Larsen A embayment, Antarctic Peninsula". A key word search using terms from this title at the MG-RAST portal (http://metagenomics.anl.gov/) will return the complete sample list. This submitted dataset summarizes the measured environmental parameters for these same samples (lat., long., water depth, sediment depth, pH, alkalinity, dissolved oxygen, silicate, phosphate, nitrate, nitrite, and ammonium). | ["POLYGON((299.4 -63.1,299.92 -63.1,300.44 -63.1,300.96 -63.1,301.48 -63.1,302 -63.1,302.52 -63.1,303.04 -63.1,303.56 -63.1,304.08 -63.1,304.6 -63.1,304.6 -63.29,304.6 -63.48,304.6 -63.67,304.6 -63.86,304.6 -64.05,304.6 -64.24,304.6 -64.43,304.6 -64.62,304.6 -64.81,304.6 -65,304.08 -65,303.56 -65,303.04 -65,302.52 -65,302 -65,301.48 -65,300.96 -65,300.44 -65,299.92 -65,299.4 -65,299.4 -64.81,299.4 -64.62,299.4 -64.43,299.4 -64.24,299.4 -64.05,299.4 -63.86,299.4 -63.67,299.4 -63.48,299.4 -63.29,299.4 -63.1))"] | ["POINT(-58 -64.05)"] | false | false |
Anvers Trough Foraminifer Stable Isotope data
|
1246378 |
2017-10-25 | Shevenell, Amelia |
Late Quaternary Evolution of the Lambert Glacier/Amery Ice Shelf System, Prydz Bay, Antarctica |
These are unpublished stable isotope data from a series of sediment cores collected during LMG12-11 and LMG13-11 down the axis of Anvers Trough. These records span the LMG to recent. | ["POLYGON((-65.32 -64.15,-65.309 -64.15,-65.298 -64.15,-65.287 -64.15,-65.276 -64.15,-65.265 -64.15,-65.254 -64.15,-65.243 -64.15,-65.232 -64.15,-65.221 -64.15,-65.21 -64.15,-65.21 -64.186,-65.21 -64.222,-65.21 -64.258,-65.21 -64.294,-65.21 -64.33,-65.21 -64.366,-65.21 -64.402,-65.21 -64.438,-65.21 -64.474,-65.21 -64.51,-65.221 -64.51,-65.232 -64.51,-65.243 -64.51,-65.254 -64.51,-65.265 -64.51,-65.276 -64.51,-65.287 -64.51,-65.298 -64.51,-65.309 -64.51,-65.32 -64.51,-65.32 -64.474,-65.32 -64.438,-65.32 -64.402,-65.32 -64.366,-65.32 -64.33,-65.32 -64.294,-65.32 -64.258,-65.32 -64.222,-65.32 -64.186,-65.32 -64.15))"] | ["POINT(-65.265 -64.33)"] | false | false |
NBP14-02 JPC-54 and JPC-55 Pollen Assemblage data
|
1430550 |
2017-08-18 | Shevenell, Amelia; Smith, Catherine; Domack, Eugene Walter |
Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics |
Pollen assemblage data for Paleocene to early to middle Eocene sediments collected on Totten continental shelf, East Antarctica. | ["POLYGON((120 -66,120.1 -66,120.2 -66,120.3 -66,120.4 -66,120.5 -66,120.6 -66,120.7 -66,120.8 -66,120.9 -66,121 -66,121 -66.4,121 -66.8,121 -67.2,121 -67.6,121 -68,121 -68.4,121 -68.8,121 -69.2,121 -69.6,121 -70,120.9 -70,120.8 -70,120.7 -70,120.6 -70,120.5 -70,120.4 -70,120.3 -70,120.2 -70,120.1 -70,120 -70,120 -69.6,120 -69.2,120 -68.8,120 -68.4,120 -68,120 -67.6,120 -67.2,120 -66.8,120 -66.4,120 -66))"] | ["POINT(120.5 -68)"] | false | false |
NBP14-02 JPC-55 Bulk Sediment Carbon and Nitrogen data
|
1430550 |
2017-08-18 | Smith, Catherine; Shevenell, Amelia; Domack, Eugene Walter |
Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics |
Bulk sediment carbon and nitrogen data data for Paleocene sediments collected on Totten continental shelf, East Antarctica. | ["POLYGON((120 -66,120.1 -66,120.2 -66,120.3 -66,120.4 -66,120.5 -66,120.6 -66,120.7 -66,120.8 -66,120.9 -66,121 -66,121 -66.4,121 -66.8,121 -67.2,121 -67.6,121 -68,121 -68.4,121 -68.8,121 -69.2,121 -69.6,121 -70,120.9 -70,120.8 -70,120.7 -70,120.6 -70,120.5 -70,120.4 -70,120.3 -70,120.2 -70,120.1 -70,120 -70,120 -69.6,120 -69.2,120 -68.8,120 -68.4,120 -68,120 -67.6,120 -67.2,120 -66.8,120 -66.4,120 -66))"] | ["POINT(120.5 -68)"] | false | false |
NBP14-02 JPC-55 foraminifer assemblage data
|
1143836 |
2017-08-18 | Shevenell, Amelia; Leventer, Amy |
Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics |
Foraminifer assemblage data for Paleocene sediments collected on Totten continental shelf, East Antarctica. | ["POLYGON((120 -66,120.1 -66,120.2 -66,120.3 -66,120.4 -66,120.5 -66,120.6 -66,120.7 -66,120.8 -66,120.9 -66,121 -66,121 -66.4,121 -66.8,121 -67.2,121 -67.6,121 -68,121 -68.4,121 -68.8,121 -69.2,121 -69.6,121 -70,120.9 -70,120.8 -70,120.7 -70,120.6 -70,120.5 -70,120.4 -70,120.3 -70,120.2 -70,120.1 -70,120 -70,120 -69.6,120 -69.2,120 -68.8,120 -68.4,120 -68,120 -67.6,120 -67.2,120 -66.8,120 -66.4,120 -66))"] | ["POINT(120.5 -68)"] | false | false |
Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats in W Antarctica - Lake and Ice Stream Subglacial Access Research Drilling (LISSARD)
|
0839059 |
2016-01-01 | Powell, Ross |
Collaborative Research: Integrative Study of Marine Ice Sheet Stability & Subglacial Life Habitats in W Antarctica - Lake & Ice Stream Subglacial Access Research Drilling (LISSARD) |
The LISSARD project (Lake and Ice Stream Subglacial Access Research Drilling) is one of three research components of the WISSARD integrative initiative (Whillans Ice Stream Subglacial Access Research Drilling) that is being funded by the Antarctic Integrated System Science Program of NSF's Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The LISSARD component of WISSARD focuses on the role of active subglacial lakes in determining how fast the West Antarctic ice sheet loses mass to the global ocean and influences global sea level changes. The importance of Antarctic subglacial lakes has only been recently recognized, and the lakes have been identified as high priority targets for scientific investigations because of their unknown contributions to ice sheet stability under future global warming scenarios. LISSARD has several primary science goals: A) To provide an observational basis for improving treatments of subglacial hydrological and mechanical processes in models of ice sheet mass balance and stability; B) To reconstruct the past history of ice stream stability by analyzing archives of past basal water and ice flow variability contained in subglacial sediments, porewater, lake water, and basal accreted ice; C) To provide background understanding of subglacial lake environments to benefit RAGES and GBASE (the other two components of the WISSARD project); and D) To synthesize data and concepts developed as part of this project to determine whether subglacial lakes play an important role in (de)stabilizing Antarctic ice sheets. We propose an unprecedented synthesis of approaches to studying ice sheet processes, including: (1) satellite remote sensing, (2) surface geophysics, (3) borehole observations and measurements and, (4) basal and subglacial sampling. The latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations. Societal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars. | ["POLYGON((-168.7 -82.3,-168.69 -82.3,-168.68 -82.3,-168.67 -82.3,-168.66 -82.3,-168.65 -82.3,-168.64 -82.3,-168.63 -82.3,-168.62 -82.3,-168.61 -82.3,-168.6 -82.3,-168.6 -82.31,-168.6 -82.32,-168.6 -82.33,-168.6 -82.34,-168.6 -82.35,-168.6 -82.36,-168.6 -82.37,-168.6 -82.38,-168.6 -82.39,-168.6 -82.4,-168.61 -82.4,-168.62 -82.4,-168.63 -82.4,-168.64 -82.4,-168.65 -82.4,-168.66 -82.4,-168.67 -82.4,-168.68 -82.4,-168.69 -82.4,-168.7 -82.4,-168.7 -82.39,-168.7 -82.38,-168.7 -82.37,-168.7 -82.36,-168.7 -82.35,-168.7 -82.34,-168.7 -82.33,-168.7 -82.32,-168.7 -82.31,-168.7 -82.3))"] | ["POINT(-168.65 -82.35)"] | false | false |
Measurements of in situ cosmogenic 14C from Taylor Glacier, Antarctica
|
0839031 |
2016-01-01 | Severinghaus, Jeffrey P. |
Collaborative Research: A "Horizontal Ice Core" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica |
This award supports a project to develop a precise gas-based chronology for an archive of large-volume samples of the ancient atmosphere, which would enable ultra-trace gas measurements that are currently precluded by sample size limitations of ice cores. The intellectual merit of the proposed work is that it will provide a critical test of the 'clathrate hypothesis' that methane clathrates contributed to the two abrupt atmospheric methane concentration increases during the last deglaciation 15 and 11 kyr ago. This approach employs large volumes of ice (>1 ton) to measure carbon-14 on past atmospheric methane across the abrupt events. Carbon-14 is an ideal discriminator of fossil sources of methane to the atmosphere, because most methane sources (e.g., wetlands, termites, biomass burning) are rich in carbon-14, whereas clathrates and other fossil sources are devoid of carbon-14. The proposed work is a logical extension to Taylor Glacier, Antarctica, of an approach pioneered at the margin of the Greenland ice sheet over the past 7 years. The Greenland work found higher-than-expected carbon-14 values, likely due in part to contaminants stemming from the high impurity content of Greenland ice and the interaction of the ice with sediments from the glacier bed. The data also pointed to the possibility of a previously unknown process, in-situ cosmogenic production of carbon-14 methane (radiomethane) in the ice matrix. Antarctic ice in Taylor Glacier is orders of magnitude cleaner than the ice at the Greenland site, and is much colder and less stratigraphically disturbed, offering the potential for a clear resolution of this puzzle and a definitive test of the cosmogenic radiomethane hypothesis. Even if cosmogenic radiomethane in ice is found, it still may be possible to reconstruct atmospheric radiomethane with a correction enabled by a detailed understanding of the process, which will be sought by co-measuring carbon-14 in carbon monoxide and carbon dioxide. The broader impacts of the proposed work are that the clathrate test may shed light on the stability of the clathrate reservoir and its potential for climate feedbacks under human-induced warming. Development of Taylor Glacier as a 'horizontal ice core' would provide a community resource for other researchers. Education of one postdoc, one graduate student, and one undergraduate, would add to human resources. This award has field work in Antarctica. | ["POINT(161.71965 -77.76165)"] | ["POINT(161.71965 -77.76165)"] | false | false |
Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats - Robotic Access to Grounding-zones for Exploration and Science (RAGES)
|
0839107 |
2016-01-01 | Powell, Ross |
Collaborative Research: Integrative Study of Marine Ice Sheet Stability & Subglacial Life Habitats in W Antarctica - Lake & Ice Stream Subglacial Access Research Drilling (LISSARD) |
The RAGES project (Robotic Access to Grounding zones for Exploration and Science) is one of three research components of the WISSARD (Whillans Ice Stream Subglacial Access Research Drilling) integrative initiative that is being funded by the Antarctic Integrated System Science Program of NSF's Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The RAGES component of WISSARD concentrates on the stability of ice stream grounding zones (GZ), the area where the ice, ocean waters and glacial and sea floor sediment interact. Based on our present limited data and modeling efforts, GZs can be perturbed by (i) internal ice stream dynamics, (ii) filling/draining cycles of subglacial lakes, (iii) increased melting by warming ocean waters, and/or (iv) rates of subglacial sediment (till) supply to the GZ. GZs are seen as high priority targets to investigate due to their unknown contributions to ice sheet stability under future global warming scenarios. The three main science goals for RAGES are to assess: (a) West Antarctic Ice Sheet (WAIS) stability relative to the magnitudes of the four main variables listed above; (b) the degree to which grounding-zone sedimentary systems house important records of past WAIS dynamics; and (c) the importance of microbial activity and subglacial geochemical weathering in supplying nutrients to the WAIS grounding zone, the Ross Ice Shelf (RIS) cavity, and the highly productive Southern Ocean that may ultimately influence global biogeochemical cycles. The RAGES field sampling plan integrates surface geophysical surveys with borehole and subglacial sampling and measurements. The boreholes provide: (1) samples of subglacial water, sediments, and basal ice for biological, geochemical, glaciological, sedimentological, and micropaleontological analyses; (2) measures of subglacial and sub-ice-shelf cavity physical and chemical conditions and their spatial variability; and (3) data on sediment types, state and change of the subglacial water discharge, oceanography, and basal ice at the grounding line and within the nearby sub-ice-shelf cavity. Unique tools to be deployed include a multisensor Sub-Ice ROVer (Remotely Operated Vehicle) and long-term, sub-ice oceanographic moorings. The latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations. Societal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. The RAGES project represents a significant advance in polar technology by incorporating the use of complex new instrumentation like the Sub-Ice ROVer and subglacial ocean/lake mooring systems. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars. | ["POLYGON((-163.7 -84,-163.68 -84,-163.66 -84,-163.64 -84,-163.62 -84,-163.6 -84,-163.58 -84,-163.56 -84,-163.54 -84,-163.52 -84,-163.5 -84,-163.5 -84.05,-163.5 -84.1,-163.5 -84.15,-163.5 -84.2,-163.5 -84.25,-163.5 -84.3,-163.5 -84.35,-163.5 -84.4,-163.5 -84.45,-163.5 -84.5,-163.52 -84.5,-163.54 -84.5,-163.56 -84.5,-163.58 -84.5,-163.6 -84.5,-163.62 -84.5,-163.64 -84.5,-163.66 -84.5,-163.68 -84.5,-163.7 -84.5,-163.7 -84.45,-163.7 -84.4,-163.7 -84.35,-163.7 -84.3,-163.7 -84.25,-163.7 -84.2,-163.7 -84.15,-163.7 -84.1,-163.7 -84.05,-163.7 -84))"] | ["POINT(-163.6 -84.25)"] | false | false |
Magnetostratigraphy of Cretaceous Sediments in the James Ross Island Basin, Antarctica
|
1303896 |
2015-01-01 | Kirschvink, Joseph |
Magnetostratigraphy of Cretaceous Sediments in the James Ross Island Basin, Antarctica |
The PI will collect samples to extend the magneto-stratigraphic record of late Cretaceous sediments of the James Ross Basin, Antarctica. RAPID support will allow him to take advantage of an invitation from the Instituto Antartico Argentino (IAA) to participate on an excursion to James Ross Island in the Antarctic Peninsula. The PI hopes to collect samples that will refine the position of several geomagnetic reversals between the end of the Cretaceous long normal Chron and the lower portion of Chron 31R. The Brandy Bay locality targeted by this expedition is the best place in the basin for calibrating the biostratigraphic position of the top of the Cretaceous Long Normal Chron, which is one of the most reliable correlation horizons in the entire Geological Time Scale. The top of the Cretaceous long normal Chron is not properly correlated to southern hemisphere biostratigraphy. Locating this event will be a major addition to understanding geological time. This expedition will provide opportunities for an undergraduate student. This project is based on a productive collaboration with an Argentine scientist. | ["POLYGON((-57 -63,-56.9 -63,-56.8 -63,-56.7 -63,-56.6 -63,-56.5 -63,-56.4 -63,-56.3 -63,-56.2 -63,-56.1 -63,-56 -63,-56 -63.2,-56 -63.4,-56 -63.6,-56 -63.8,-56 -64,-56 -64.2,-56 -64.4,-56 -64.6,-56 -64.8,-56 -65,-56.1 -65,-56.2 -65,-56.3 -65,-56.4 -65,-56.5 -65,-56.6 -65,-56.7 -65,-56.8 -65,-56.9 -65,-57 -65,-57 -64.8,-57 -64.6,-57 -64.4,-57 -64.2,-57 -64,-57 -63.8,-57 -63.6,-57 -63.4,-57 -63.2,-57 -63))"] | ["POINT(-56.5 -64)"] | false | false |
Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export
|
1043690 |
2014-01-01 | Haji-Sheikh, Michael; Scherer, Reed Paul |
Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export |
Intellectual Merit: Diatom abundance in sediment cores is typically used as a proxy for paleo primary productivity. This record is complicated by variable preservation, with most loss occurring in the water column via dissolution and zooplankton grazing. This study will investigate preservational biases via a series of controlled experiments to create proxies of original productivity based on morphological changes associated with diatom dissolution and fracture. The PIs will utilize fresh diatoms from culture. Specific objectives include: (1) Linking changes in diatom morphology to availability of dissolved silica and other physical and chemical parameters; (2) Documenting the dissolution process under controlled conditions; (3) Assessment of changes in morphology and diatom surface roughness with increased dissolution; (4) Documenting the physical effects of grazing and fecal pellet formation on diatom fragmentation and dissolution; and (5) Analyzing the impact of diatom dissolution on silica and carbon export. These objectives will be achieved by growing Southern Ocean diatom species in the laboratory under differing physical and chemical conditions; controlled serial dissolution experiments on cultured diatoms; analysis of the dissolution process by imaging frustules under scanning electron microscopy (SEM) and with micro-analysis of surface texture by atomic force microscopy (AFM); making the cultures available to krill and other live zooplankton crustaceans in order to analyze the specific effects of grazing and pelletization on diatom morphology; and comparing experimental results with natural plankton, sediment trap material, and selected Holocene, Pleistocene and Pliocene sediment core material. Broader impacts: This work will contribute to understanding of the use of diatom abundance as an indicator of paleoproductivity. The proposed experiments are multi-disciplinary in nature. Importantly, the project was designed, and the proposal largely written, by a Ph.D. candidate. The research proposed here will lead to peer-reviewed publications and provide a base for future studies over the course of an extremely promising scientific career. The project will also support an undergraduate research student at NIU. The PI is heavily involved in science outreach, including classroom visits, museum events and webinars related to evolution and climate change, and is active with NSF-funded outreach activities linked to the ANDRILL and WISSARD programs. He will continue these efforts with this project. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris
|
0944489 |
2014-01-01 | Williams, Trevor; Hemming, Sidney R. |
History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris |
Intellectual Merit: The PIs propose to study the stability and dynamics of the East Antarctic ice sheet during the Pliocene in the area of the Wilkes and Aurora subglacial basins. Models indicate the ice sheet is most sensitive to warming in these low-lying areas. This study is important as there is very little direct evidence about which parts of the East Antarctic ice sheet became unstable under warm conditions. In a pilot study the PIs have shown that the isotopic geochemical signature of downcore ice-rafted debris (IRD) can be linked to continental source areas indicating which parts of the ice sheet reached the coast and calved IRD-bearing icebergs. Their initial results suggest rapid iceberg discharge from the Wilkes Land and Adelie Land coastal areas at times in the late Miocene and early Pliocene. In this study the PIs will analyze IRD from IODP sediment cores collected on the continental rise off East Antarctica. By analyzing 40Ar/39Ar ages of hornblende IRD grains, U-Pb ages of zircons, and Sm-Nd isotopes of the fine fraction of several IRD-rich layers for each core, they will be able to fingerprint continental source areas that indicate ice extent and dynamics on East Antarctica. The PIs will also carry out detailed studies across a few of these layers to characterize the anatomy of the ice-rafting event and better understand the mechanism of ice destabilization. Broader impacts: The data collected will be important for scientists in a broad variety of fields. The project will involve one undergraduate student and one summer intern at LDEO, and a graduate student at Imperial College London. The project will expose to cutting edge methodologies as well as an international research team. Data from the project will be deposited in the online databases (SedDB) and all results and methods will be made available to the scientific community through publications in peer-reviewed journals and attendance at international conferences | ["POLYGON((-55 -58,-33.2 -58,-11.4 -58,10.4 -58,32.2 -58,54 -58,75.8 -58,97.6 -58,119.4 -58,141.2 -58,163 -58,163 -60,163 -62,163 -64,163 -66,163 -68,163 -70,163 -72,163 -74,163 -76,163 -78,141.2 -78,119.4 -78,97.6 -78,75.8 -78,54 -78,32.2 -78,10.4 -78,-11.4 -78,-33.2 -78,-55 -78,-55 -76,-55 -74,-55 -72,-55 -70,-55 -68,-55 -66,-55 -64,-55 -62,-55 -60,-55 -58))"] | ["POINT(54 -68)"] | false | false |
Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology
|
0838722 |
2012-01-01 | Gehrels, George; Reiners, Peter; Thomson, Stuart |
Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology |
Much of the inventory of East Antarctic bedrock geochronology, as well as a record of its erosional history, is preserved in Cenozoic sediments around its margin. This project is to use these sediments to understand their sub-ice provenance and the erosional history of the shield by measuring ages of multiple geo- and thermochronometers on single detrital crystals and on multiple crystals in detrital clasts (U/Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar). The combination of multi-chronometer ages in single grains and clasts provides a powerful fingerprint of bedrock sources, allowing us to trace provenance in Eocene fluvial sandstones through Quaternary diamicts around the margin. Multiple thermochronometric (cooling) ages in the same grains and clasts also allows us to interpret the timing and rates of erosion from these bedrock sources. Delineating a distribution of bedrock age units, their sediment transport connections, and their erosional histories over the Cenozoic, will in turn allow us to test tectonic models bearing on: (1) the origin of the Gamburtsev Subglacial Mountains, (2) fluvial and topographic evolution, and (3) the history of glacial growth and erosion. | ["POLYGON((61.9 -67.28,63.218 -67.28,64.536 -67.28,65.854 -67.28,67.172 -67.28,68.49 -67.28,69.808 -67.28,71.126 -67.28,72.444 -67.28,73.762 -67.28,75.08 -67.28,75.08 -67.922,75.08 -68.564,75.08 -69.206,75.08 -69.848,75.08 -70.49,75.08 -71.132,75.08 -71.774,75.08 -72.416,75.08 -73.058,75.08 -73.7,73.762 -73.7,72.444 -73.7,71.126 -73.7,69.808 -73.7,68.49 -73.7,67.172 -73.7,65.854 -73.7,64.536 -73.7,63.218 -73.7,61.9 -73.7,61.9 -73.058,61.9 -72.416,61.9 -71.774,61.9 -71.132,61.9 -70.49,61.9 -69.848,61.9 -69.206,61.9 -68.564,61.9 -67.922,61.9 -67.28))"] | ["POINT(68.49 -70.49)"] | false | false |
Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology
|
0838729 |
2011-01-01 | Hemming, Sidney R. |
Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology |
Much of the inventory of East Antarctic bedrock geochronology, as well as a record of its erosional history, is preserved in Cenozoic sediments around its margin. This project is to use these sediments to understand their sub-ice provenance and the erosional history of the shield by measuring ages of multiple geo- and thermochronometers on single detrital crystals and on multiple crystals in detrital clasts (U/Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar). The combination of multi-chronometer ages in single grains and clasts provides a powerful fingerprint of bedrock sources, allowing us to trace provenance in Eocene fluvial sandstones through Quaternary diamicts around the margin. Multiple thermochronometric (cooling) ages in the same grains and clasts also allows us to interpret the timing and rates of erosion from these bedrock sources. Delineating a distribution of bedrock age units, their sediment transport connections, and their erosional histories over the Cenozoic, will in turn allow us to test tectonic models bearing on: (1) the origin of the Gamburtsev Subglacial Mountains, (2) fluvial and topographic evolution, and (3) the history of glacial growth and erosion. | ["POLYGON((-67.2 -58,-43.98 -58,-20.76 -58,2.46 -58,25.68 -58,48.9 -58,72.12 -58,95.34 -58,118.56 -58,141.78 -58,165 -58,165 -59.2,165 -60.4,165 -61.6,165 -62.8,165 -64,165 -65.2,165 -66.4,165 -67.6,165 -68.8,165 -70,141.78 -70,118.56 -70,95.34 -70,72.12 -70,48.9 -70,25.68 -70,2.46 -70,-20.76 -70,-43.98 -70,-67.2 -70,-67.2 -68.8,-67.2 -67.6,-67.2 -66.4,-67.2 -65.2,-67.2 -64,-67.2 -62.8,-67.2 -61.6,-67.2 -60.4,-67.2 -59.2,-67.2 -58))"] | ["POINT(48.9 -64)"] | false | false |
LGM and Deglacial Radiocarbon from U-series Dated Drake Passage Deep-sea Corals
|
0902957 |
2011-01-01 | Robinson, Laura |
LGM and Deglacial Radiocarbon from U-series Dated Drake Passage Deep-sea Corals |
The proposal seeks funds to continue a follow-up analytical work of deep-sea corals collected in the Drake Passage during a research cruise. The project's goal is paleo-climate research looking to constrain the depth structure and time evolution of the radiocarbon content of the Southern Ocean during the glacial and deglaciation. Radiocarbon is a versatile tracer of past climate; its radioactive decay provides an internal clock with which to assess the rates of processes, and it can be used to trace the movement of carbon through the Earth's system. It enters the ocean through air-sea gas exchange, so processes that limits this will, therefore, reduce the radiocarbon content of both surface and deep waters. The Southern Ocean is a critical location for exchange of heat and carbon between the deep-ocean and atmospheric reservoirs, and the deep waters formed there fill large volumes of the global deep and intermediate oceans. As strong currents tend to scour away sediments, carbonate preservation is limited, and radiocarbon reservoir ages are poorly constrained, many traditional paleoceanographic techniques become impractical. It is proposed to alleviate these difficulties analyzing the chemical composition of deep-sea coral skeletons. Their aragonitic skeletons can be precisely dated using U-series decay, and when coupled with radiocarbon analyses will allow to calculate the C14/C12 ratio of the past water column. | ["POLYGON((-70.5 -54.5,-66.95 -54.5,-63.4 -54.5,-59.85 -54.5,-56.3 -54.5,-52.75 -54.5,-49.2 -54.5,-45.65 -54.5,-42.1 -54.5,-38.55 -54.5,-35 -54.5,-35 -55.2,-35 -55.9,-35 -56.6,-35 -57.3,-35 -58,-35 -58.7,-35 -59.4,-35 -60.1,-35 -60.8,-35 -61.5,-38.55 -61.5,-42.1 -61.5,-45.65 -61.5,-49.2 -61.5,-52.75 -61.5,-56.3 -61.5,-59.85 -61.5,-63.4 -61.5,-66.95 -61.5,-70.5 -61.5,-70.5 -60.8,-70.5 -60.1,-70.5 -59.4,-70.5 -58.7,-70.5 -58,-70.5 -57.3,-70.5 -56.6,-70.5 -55.9,-70.5 -55.2,-70.5 -54.5))"] | ["POINT(-52.75 -58)"] | false | false |
Development of Quantitative Weathering Indicators in Proximal Alluvial Sediments to Assess Glacial Activity in the Rock Record
|
0842639 |
2011-01-01 | Soreghan, Gerilyn; Elwood Madden, Megan |
Development of Quantitative Weathering Indicators in Proximal Alluvial Sediments to Assess Glacial Activity in the Rock Record |
The proposed research seeks to test the hypothesis that chemical and physical weathering in proximal alluvial systems will show systematic and measurable variations between glacial and nonglacial systems. To accomplish this, the investigation will attempt to quantify the natural variation of chemical and physical weathering in granitoid-sourced proximal alluvial sediments in end-member glacial and nonglacial systems, when other, 'non-climatic' factors (e.g. provenance, drainage basin area and relief, sample grain size, sediment facies) are controlled. If chemical weathering in the proposed hot-humid, hot-arid, hot semi-arid nonglacial systems and the cool-wet, cold semi-arid, and cold-arid glacial systems show systematic variations, then chemical indices may be used to help differentiate paleoclimatic conditions. Continued reliance on students provides a broader impact of this proposed research and firmly grounds this effort in its educational mission. | ["POLYGON((-163.12865 -77.41693,-163.06062 -77.41693,-162.99259 -77.41693,-162.92456 -77.41693,-162.85653 -77.41693,-162.7885 -77.41693,-162.72047 -77.41693,-162.65244 -77.41693,-162.58441 -77.41693,-162.51638 -77.41693,-162.44835 -77.41693,-162.44835 -77.445495,-162.44835 -77.47406,-162.44835 -77.502625,-162.44835 -77.53119,-162.44835 -77.559755,-162.44835 -77.58832,-162.44835 -77.616885,-162.44835 -77.64545,-162.44835 -77.674015,-162.44835 -77.70258,-162.51638 -77.70258,-162.58441 -77.70258,-162.65244 -77.70258,-162.72047 -77.70258,-162.7885 -77.70258,-162.85653 -77.70258,-162.92456 -77.70258,-162.99259 -77.70258,-163.06062 -77.70258,-163.12865 -77.70258,-163.12865 -77.674015,-163.12865 -77.64545,-163.12865 -77.616885,-163.12865 -77.58832,-163.12865 -77.559755,-163.12865 -77.53119,-163.12865 -77.502625,-163.12865 -77.47406,-163.12865 -77.445495,-163.12865 -77.41693))"] | ["POINT(-162.7885 -77.559755)"] | false | false |
Antarctica's Geological History Reflected in Sedimentary Radiogenic Isotopes
|
0538580 |
2010-01-01 | van de Flierdt, Tina; Goldstein, Steven L.; Hemming, Sidney R. |
Antarctica's Geological History Reflected in Sedimentary Radiogenic Isotopes |
This project studies sediment from the ocean floor to understand Antarctica's geologic history. Glacially eroded from the Antarctic continent, these sediments may offer insight into the 99% Antarctica covered by ice. The work's central focus is determining crust formation ages and thermal histories for three key areas of East Antarctica--Prydz Bay, eastern Weddell Sea, and Wilkes Land--through a combination of petrography, bulk sediment geochemistry and radiogenic isotopes, as well as isotope chronology of individual mineral grains. One specific objective is characterizing the composition of the Gamburtsev Mountains through studies of Eocene fluvial sediments from Prydz Bay. In addition to furthering our understanding of the hidden terrains of Antarctica, these terrigenous sediments will also serve as a natural laboratory to evaluate the effects of continental weathering on the Hf/Nd isotope systematics of seawater. An important broader impact of the project is providing exciting research projects for graduate and postdoctoral students using state of the art techniques in geochemistry. | ["POLYGON((60 -60,72 -60,84 -60,96 -60,108 -60,120 -60,132 -60,144 -60,156 -60,168 -60,180 -60,180 -61,180 -62,180 -63,180 -64,180 -65,180 -66,180 -67,180 -68,180 -69,180 -70,168 -70,156 -70,144 -70,132 -70,120 -70,108 -70,96 -70,84 -70,72 -70,60 -70,60 -69,60 -68,60 -67,60 -66,60 -65,60 -64,60 -63,60 -62,60 -61,60 -60))"] | ["POINT(120 -65)"] | false | false |
R/V Nathaniel B. Palmer NBP0603 - Paleohistory of the Larsen Ice Shelf System
|
0338163 |
2010-01-01 | Domack, Eugene Walter |
Collaborative Research: Paleohistory of the Larsen Ice Shelf System: Phase II |
The NSF-supported research icebreaker Nathaniel B. Palmer operates year-round in support of the U.S. Antarctic Program, carrying out global change studies in biological, chemical, physical, and oceanographic disciplines. This data set consists of underway data from leg NBP0603 on the R/V Nathaniel B. Palmer. This leg started at Punta Arenas, Chile and ended at Punta Arenas, Chile. | ["POLYGON((-70.90391 -52.35262,-68.130917 -52.35262,-65.357924 -52.35262,-62.584931 -52.35262,-59.811938 -52.35262,-57.038945 -52.35262,-54.265952 -52.35262,-51.492959 -52.35262,-48.719966 -52.35262,-45.946973 -52.35262,-43.17398 -52.35262,-43.17398 -53.75776,-43.17398 -55.1629,-43.17398 -56.56804,-43.17398 -57.97318,-43.17398 -59.37832,-43.17398 -60.78346,-43.17398 -62.1886,-43.17398 -63.59374,-43.17398 -64.99888,-43.17398 -66.40402,-45.946973 -66.40402,-48.719966 -66.40402,-51.492959 -66.40402,-54.265952 -66.40402,-57.038945 -66.40402,-59.811938 -66.40402,-62.584931 -66.40402,-65.357924 -66.40402,-68.130917 -66.40402,-70.90391 -66.40402,-70.90391 -64.99888,-70.90391 -63.59374,-70.90391 -62.1886,-70.90391 -60.78346,-70.90391 -59.37832,-70.90391 -57.97318,-70.90391 -56.56804,-70.90391 -55.1629,-70.90391 -53.75776,-70.90391 -52.35262))"] | ["POINT(-57.038945 -59.37832)"] | false | false |
Boron in Antarctic granulite-facies rocks: under what conditions is boron retained in the middle crust?
|
0228842 |
2009-01-01 | Grew, Edward |
Boron in Antarctic granulite-facies rocks: under what conditions is boron retained in the middle crust? |
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the role and fate of Boron in high-grade metamorphic rocks of the Larsemann Hills region of Antarctica. Trace elements provide valuable information on the changes sedimentary rocks undergo as temperature and pressure increase during burial. One such element, boron, is particularly sensitive to increasing temperature because of its affinity for aqueous fluids, which are lost as rocks are buried. Boron contents of unmetamorphosed pelitic sediments range from 20 to over 200 parts per million, but rarely exceed 5 parts per million in rocks subjected to conditions of the middle and lower crust, that is, temperatures of 700 degrees C or more in the granulite-facies, which is characterized by very low water activities at pressures of 5 to 10 kbar (18-35 km burial). Devolatization reactions with loss of aqueous fluid and partial melting with removal of melt have been cited as primary causes for boron depletion under granulite-facies conditions. Despite the pervasiveness of both these processes, rocks rich in boron are locally found in the granulite-facies, that is, there are mechanisms for retaining boron during the metamorphic process. The Larsemann Hills, Prydz Bay, Antarctica, are a prime example. More than 20 lenses and layered bodies containing four borosilicate mineral species crop out over a 50 square kilometer area, which thus would be well suited for research on boron-rich granulite-facies metamorphic rocks. While most investigators have focused on the causes for loss of boron, this work will investigate how boron is retained during high-grade metamorphism. Field observations and mapping in the Larsemann Hills, chemical analyses of minerals and their host rocks, and microprobe age dating will be used to identify possible precursors and deduce how the precursor materials recrystallized into borosilicate rocks under granulite-facies conditions. The working hypothesis is that high initial boron content facilitates retention of boron during metamorphism because above a certain threshold boron content, a mechanism 'kicks in' that facilitates retention of boron in metamorphosed rocks. For example, in a rock with large amounts of the borosilicate tourmaline, such as stratabound tourmalinite, the breakdown of tourmaline to melt could result in the formation of prismatine and grandidierite, two borosilicates found in the Larsemann Hills. This situation is rarely observed in rocks with modest boron content, in which breakdown of tourmaline releases boron into partial melts, which in turn remove boron when they leave the system. Stratabound tourmalinite is associated with manganese-rich quartzite, phosphorus-rich rocks and sulfide concentrations that could be diagnostic for recognizing a tourmalinite protolith in a highly metamorphosed complex where sedimentary features have been destroyed by deformation. Because partial melting plays an important role in the fate of boron during metamorphism, our field and laboratory research will focus on the relationship between the borosilicate units, granite pegmatites and other granitic intrusives. The results of our study will provide information on cycling of boron at deeper levels in the Earth's crust and on possible sources of boron for granites originating from deep-seated rocks. An undergraduate student will participate in the electron microprobe age-dating of monazite and xenotime as part of a senior project, thereby integrating the proposed research into the educational mission of the University of Maine. In response to a proposal for fieldwork, the Australian Antarctic Division, which maintains Davis station near the Larsemann Hills, has indicated that they will support the Antarctic fieldwork. | ["POLYGON((76 -69.3,76.05 -69.3,76.1 -69.3,76.15 -69.3,76.2 -69.3,76.25 -69.3,76.3 -69.3,76.35 -69.3,76.4 -69.3,76.45 -69.3,76.5 -69.3,76.5 -69.32,76.5 -69.34,76.5 -69.36,76.5 -69.38,76.5 -69.4,76.5 -69.42,76.5 -69.44,76.5 -69.46,76.5 -69.48,76.5 -69.5,76.45 -69.5,76.4 -69.5,76.35 -69.5,76.3 -69.5,76.25 -69.5,76.2 -69.5,76.15 -69.5,76.1 -69.5,76.05 -69.5,76 -69.5,76 -69.48,76 -69.46,76 -69.44,76 -69.42,76 -69.4,76 -69.38,76 -69.36,76 -69.34,76 -69.32,76 -69.3))"] | ["POINT(76.25 -69.4)"] | false | false |
Occupation History and Diet of Adelie Penguins in the Ross Sea Region
|
0125098 |
2009-01-01 | Emslie, Steven |
Occupation History and Diet of Adelie Penguins in the Ross Sea Region |
This project will build on previous studies to investigate the occupation history and diet of Adelie penguins (Pygoscelis adeliae) in the Ross Sea region, Antarctica, with excavations of abandoned and active penguin colonies. Numerous active and abandoned colonies exist on the Victoria Land coast, from Cape Adare to Marble Point will be sampled. Some of these sites have been radiocarbon-dated and indicate a long occupation history for Adelie penguins extending to 13,000 years before present (B. P.). The material recovered from excavations, as demonstrated from previous investigations, will include penguin bones, tissue, and eggshell fragments as well as abundant remains of prey (fish bones, otoliths, squid beaks) preserved in ornithogenic (formed from bird guano) soils. These organic remains will be quantified and subjected to radiocarbon analyses to obtain a colonization history of penguins in this region. Identification of prey remains in the sediments will allow assessment of penguin diet. Other data (ancient DNA) from these sites will be analyzed through collaboration with New Zealand scientists. Past climatic conditions will be interpreted from published ice-core and marine-sediment records. These data will be used to test the hypothesis that Adelie penguins respond to climate change, past and present, in a predictable manner. In addition, the hypothesis that Adelie penguins alter their diet in accordance with climate, sea-ice conditions, and other marine environmental variables along a latitudinal gradient will be tested. Graduate and undergraduate students will be involved in this project and a project Web site will be developed to report results and maintain educational interaction between the PI and students at local middle and high schools in Wilmington, NC. | ["POLYGON((-50 -60,-29 -60,-8 -60,13 -60,34 -60,55 -60,76 -60,97 -60,118 -60,139 -60,160 -60,160 -63,160 -66,160 -69,160 -72,160 -75,160 -78,160 -81,160 -84,160 -87,160 -90,139 -90,118 -90,97 -90,76 -90,55 -90,34 -90,13 -90,-8 -90,-29 -90,-50 -90,-50 -87,-50 -84,-50 -81,-50 -78,-50 -75,-50 -72,-50 -69,-50 -66,-50 -63,-50 -60))"] | ["POINT(55 -75)"] | false | false |
Laboratory Study of Stick-Slip Behavior and Deformation Mechanics of Subglacial Till
|
0538195 |
2009-01-01 | Marone, Chris; Anandakrishnan, Sridhar |
Laboratory Study of Stick-Slip Behavior and Deformation Mechanics of Subglacial Till |
This award supports a project to conduct laboratory experiments and numerical modeling to determine the constitutive properties of subglacial till under dynamic stressing and to test the hypothesis that granular properties of till are sufficient, when coupled elastically to a large ice stream, to reproduce the field observations of triggered slip and subglacial seismicity. Testing will be carried out in a servo-controlled biaxial shear device under controlled temperature and stress conditions, which will allow both sliding and microstructural processes to be studied in detail. The main focus of the work will be on laboratory measurements. In addition, we will construct continuum models to evaluate whether our results can predict complex ice sheet motions and observed characteristics of subglacial seismicity. In terms of broader impacts, the proposed work will encourage interactions between the rock-mechanics and glaciology communities and will bring together members of different scientific backgrounds and vocabularies, but similar problems and data. The project will train undergraduate and graduate students at Penn State University and the scientists involved plan to give presentations to grade school classes, scout groups, and at community open houses. Results will be presented at professional meetings and will be published in a timely manner. The work will result in a better understanding of glacial motion and the physics of earthquake slip, which is essential for understanding ice sheet dynamics and earthquake hazard. | [] | [] | false | false |
Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores
|
0739496 |
2009-01-01 | Furbish, David; Miller, Molly |
Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores |
This project answers a simple question: why are there so few fossils in sediment cores from Antarctica's continental shelf? Antarctica's benthos are as biologically rich as those of the tropics. Shell-secreting organisms should have left a trail throughout geologic time, but have not. This trail is particularly important because these organisms record regional climate in ways that are critical to interpreting the global climate record. This study uses field experiments and targeted observations of modern benthic systems to examine the biases inflicted by fossil preservation. By examining a spectrum of ice-affected habitats, this project provides paleoenvironmental insights into carbonate preservation, sedimentation rates, and burial processes; and will provide new approaches to reconstructing the Cenozoic history of Antarctica. Broader impacts include graduate and undergraduate research and education, development of undergraduate curricula to link art and science, K12 outreach, public outreach via the web, and societal relevance through improved understanding of records of global climate change. | ["POLYGON((163.41667 -77.33333,163.46667 -77.33333,163.51667 -77.33333,163.56667 -77.33333,163.61667 -77.33333,163.66667 -77.33333,163.71667 -77.33333,163.76667 -77.33333,163.81667 -77.33333,163.86667 -77.33333,163.91667 -77.33333,163.91667 -77.369997,163.91667 -77.406664,163.91667 -77.443331,163.91667 -77.479998,163.91667 -77.516665,163.91667 -77.553332,163.91667 -77.589999,163.91667 -77.626666,163.91667 -77.663333,163.91667 -77.7,163.86667 -77.7,163.81667 -77.7,163.76667 -77.7,163.71667 -77.7,163.66667 -77.7,163.61667 -77.7,163.56667 -77.7,163.51667 -77.7,163.46667 -77.7,163.41667 -77.7,163.41667 -77.663333,163.41667 -77.626666,163.41667 -77.589999,163.41667 -77.553332,163.41667 -77.516665,163.41667 -77.479998,163.41667 -77.443331,163.41667 -77.406664,163.41667 -77.369997,163.41667 -77.33333))"] | ["POINT(163.66667 -77.516665)"] | false | false |
Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains
|
0739693 |
2009-01-01 | Ashworth, Allan; Lewis, Adam |
Collaborative Research: Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains |
This project studies the last vestiges of life in Antarctica from exceptionally well-preserved fossils of tundra life--mosses, diatoms, ostracods, Nothofagus leaves, wood, and insect remains recently discovered in ancient lake sediments from the McMurdo Dry Valleys. The area will be studied by an interdisciplinary team to elucidate information about climate and biogeography. These deposits offer unique and direct information about the characteristics of Antarctica during a key period in its history, the time when it was freezing. This information is critical for correlation with indirect proxies, such as though obtained from drill cores, for climate and state of the ice sheet. The results will also help understand the origin and migration of similar organisms found in South America, India and Australia. In terms of broader impacts, this project supports an early career researcher, undergraduate and graduate student research, various forms of outreach to K12 students, and extensive international collaboration. The work also has societal relevance in that the outcomes will offer direct constraints on Antarctica's ice sheet during a time with atmospheric CO2 contents similar to those of the earth in the coming centuries, and thus may help predictive models of sea level rise. | ["POLYGON((160 -77,160.2 -77,160.4 -77,160.6 -77,160.8 -77,161 -77,161.2 -77,161.4 -77,161.6 -77,161.8 -77,162 -77,162 -77.1,162 -77.2,162 -77.3,162 -77.4,162 -77.5,162 -77.6,162 -77.7,162 -77.8,162 -77.9,162 -78,161.8 -78,161.6 -78,161.4 -78,161.2 -78,161 -78,160.8 -78,160.6 -78,160.4 -78,160.2 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77))"] | ["POINT(161 -77.5)"] | false | false |
Triple-dating (Pb-FT-He) of Antarctic Detritus and the Origin of the Gamburtsev Mountains
|
0817163 |
2009-01-01 | Gehrels, George; Reiners, Peter |
Collaborative Research: SGER: Triple-dating (Pb-FT-He) of Antarctic Detritus and the Origin of the Gamburtsev Mountains |
This Small Grant for Exploratory Research investigates the origin and evolution of the Gamburtsev subglacial mountains (GSM). These mountains are considered the nucleation point for Antarctica's largest ice sheets; however, being of indeterminate age, they may postdate ice sheet formation. As well, their formation could reflect tectonic events during the breakup of Gondwana. The project studies GSM-derived detrital zircon and apatite crystals from Prydz Bay obtained by the Ocean Drilling Program. Analytical work includes triple-dating thermochronometry by U/Pb, fission track, and (U/Th)/He methods. The combined technique offers insight into both high and low temperature processes, and is potentially sensitive to both the orogenic events and the subsequent cooling and exhumation due to erosion. In terms of broader impacts, this project supports research for a postdoctoral fellow. | ["POLYGON((72 -66,72.3 -66,72.6 -66,72.9 -66,73.2 -66,73.5 -66,73.8 -66,74.1 -66,74.4 -66,74.7 -66,75 -66,75 -66.3,75 -66.6,75 -66.9,75 -67.2,75 -67.5,75 -67.8,75 -68.1,75 -68.4,75 -68.7,75 -69,74.7 -69,74.4 -69,74.1 -69,73.8 -69,73.5 -69,73.2 -69,72.9 -69,72.6 -69,72.3 -69,72 -69,72 -68.7,72 -68.4,72 -68.1,72 -67.8,72 -67.5,72 -67.2,72 -66.9,72 -66.6,72 -66.3,72 -66))"] | ["POINT(73.5 -67.5)"] | false | false |