{"dp_type": "Dataset", "free_text": "ice cores"}
[{"awards": "1745116 Scambos, Ted", "bounds_geometry": ["POLYGON((-73 -70.5,-72.35 -70.5,-71.7 -70.5,-71.05 -70.5,-70.4 -70.5,-69.75 -70.5,-69.1 -70.5,-68.45 -70.5,-67.8 -70.5,-67.15 -70.5,-66.5 -70.5,-66.5 -70.8,-66.5 -71.1,-66.5 -71.4,-66.5 -71.7,-66.5 -72,-66.5 -72.3,-66.5 -72.6,-66.5 -72.9,-66.5 -73.2,-66.5 -73.5,-67.15 -73.5,-67.8 -73.5,-68.45 -73.5,-69.1 -73.5,-69.75 -73.5,-70.4 -73.5,-71.05 -73.5,-71.7 -73.5,-72.35 -73.5,-73 -73.5,-73 -73.2,-73 -72.9,-73 -72.6,-73 -72.3,-73 -72,-73 -71.7,-73 -71.4,-73 -71.1,-73 -70.8,-73 -70.5))"], "date_created": "Mon, 24 Feb 2025 00:00:00 GMT", "description": "Data were collected from two sites, one on the southern Wilkins and another on the southern George VI ice shelves. Both sites were investigated as potential sites of perennial firn aquifers; in the case of the southern Wilkins, an extensive firn aquifer was found (Montgomery et al., 2020). Data sources come from two early-model AMIGOS stations (Scambos et al., 2013), ice cores that were collected by hot-ring coring (Montgomery et al., 2020), and ground-penetrating radar profiles. Thermistor data from several depths within the firn core boreholes, transmitted by the AMIGOS stations, show the progression of the seasonal variations in firn temperature at the sites. Radar data show the depth of the firn aquifer (or, its absence at George VI site), and some drainage effects at a nearby rift at the Wilkins site.", "east": -66.5, "geometry": ["POINT(-69.75 -72)"], "keywords": "AMIGOS; Antarctica; Cryosphere; George VI Ice Shelf; Glaciology; Ground Penetrating Radar; Ice Core Data; Ice Shelf; Wilkins Ice Shelf", "locations": "Wilkins Ice Shelf; Antarctica", "north": -70.5, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Scambos, Ted; Miller, Julie; Miege, Clement; Montgomery, Lynn; Wallin, Bruce", "project_titles": "Antarctic Firn Aquifers: Extent, Characteristics, and Comparison with Greenland Occurrences", "projects": [{"proj_uid": "p0010126", "repository": "USAP-DC", "title": "Antarctic Firn Aquifers: Extent, Characteristics, and Comparison with Greenland Occurrences"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -73.5, "title": "Weather, Firn Core, and Ground-penetrating radar data from southern Wilkins and George VI ice shelves, 2018-2019", "uid": "601905", "west": -73.0}, {"awards": "1744993 Higgins, John", "bounds_geometry": ["POINT(159.356125 -76.732376)"], "date_created": "Wed, 12 Feb 2025 00:00:00 GMT", "description": "Between about 2.8-0.9 Ma, Earth\u2019s climate was characterized by 40 kyr cycles, driven or paced by changes in the tilt of Earth\u2019s spin axis. Much is known about the 40k world from studies of deep-sea sediments, but our understanding of climate change during this period and the transition between the 40kyr glacial cycles from 2.8-0.9 Ma and the 100kyr glacial cycles of the last 0.9 Myr is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of \u003e1 Ma ice discovered in shallow ice cores in the Allan Hills Blue Ice Area (BIA), Antarctica. During the 2015-2016 field season we recovered ice from two nearby drill cores that dates to \u003e 2 million years in age using the 40Ar/38Ar ratio of the trapped gases. Our discovery of ice of this antiquity in two cores demonstrates that there is gas-record quality ice from the 40k world in the Allan Hills BIA. To further characterize the composition of Earth\u2019s atmosphere and Antarctic climate during the 40k world we request support for two field seasons to drill new large-volume (4\u201d or 9\u201d diameter) ice cores at sites where we have previously identified \u003e1 Ma ice and nearby sites where ground penetrating radar has identified bedrock features conducive to the preservation of old ice.", "east": 159.356125, "geometry": ["POINT(159.356125 -76.732376)"], "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciology; Ice Core Data; MOT; Ocean Temperature; Paleoclimate; Xe/Kr", "locations": "Antarctica; Allan Hills", "north": -76.732376, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Higgins, John", "project_titles": "Center for Oldest Ice Exploration; Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "projects": [{"proj_uid": "p0010253", "repository": "USAP-DC", "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area "}, {"proj_uid": "p0010321", "repository": "USAP-DC", "title": "Center for Oldest Ice Exploration"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.732376, "title": "MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903", "uid": "601897", "west": 159.356125}, {"awards": "1744993 Higgins, John", "bounds_geometry": ["POINT(159.3562 -76.73243)"], "date_created": "Wed, 12 Feb 2025 00:00:00 GMT", "description": "Between about 2.8-0.9 Ma, Earth\u2019s climate was characterized by 40 kyr cycles, driven or paced by changes in the tilt of Earth\u2019s spin axis. Much is known about the 40k world from studies of deep-sea sediments, but our understanding of climate change during this period and the transition between the 40kyr glacial cycles from 2.8-0.9 Ma and the 100kyr glacial cycles of the last 0.9 Myr is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of \u003e1 Ma ice discovered in shallow ice cores in the Allan Hills Blue Ice Area (BIA), Antarctica. During the 2015-2016 field season we recovered ice from two nearby drill cores that dates to \u003e 2 million years in age using the 40Ar/38Ar ratio of the trapped gases. Our discovery of ice of this antiquity in two cores demonstrates that there is gas-record quality ice from the 40k world in the Allan Hills BIA. To further characterize the composition of Earth\u2019s atmosphere and Antarctic climate during the 40k world we request support for two field seasons to drill new large-volume (4\u201d or 9\u201d diameter) ice cores at sites where we have previously identified \u003e1 Ma ice and nearby sites where ground penetrating radar has identified bedrock features conducive to the preservation of old ice.\r\n\u003cbr/\u003e", "east": 159.3562, "geometry": ["POINT(159.3562 -76.73243)"], "keywords": "Allan Hills; Antarctica; Ch4; CO2; Cryosphere; Glaciology; Glaciology; Ice Core Data; Ice Core Records", "locations": "Allan Hills; Antarctica", "north": -76.73243, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Higgins, John", "project_titles": "Center for Oldest Ice Exploration; Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "projects": [{"proj_uid": "p0010321", "repository": "USAP-DC", "title": "Center for Oldest Ice Exploration"}, {"proj_uid": "p0010253", "repository": "USAP-DC", "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73243, "title": "CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903", "uid": "601896", "west": 159.3562}, {"awards": "1744993 Higgins, John", "bounds_geometry": null, "date_created": "Tue, 11 Feb 2025 00:00:00 GMT", "description": "Between about 2.8-0.9 Ma, Earth\u2019s climate was characterized by 40 kyr cycles, driven or paced by changes in the tilt of Earth\u2019s spin axis. Much is known about the 40k world from studies of deep-sea sediments, but our understanding of climate change during this period and the transition between the 40kyr glacial cycles from 2.8-0.9 Ma and the 100kyr glacial cycles of the last 0.9 Myr is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of \u003e1 Ma ice discovered in shallow ice cores in the Allan Hills Blue Ice Area (BIA), Antarctica. During the 2015-2016 field season we recovered ice from two nearby drill cores that dates to \u003e 2 million years in age using the 40Ar/38Ar ratio of the trapped gases. Our discovery of ice of this antiquity in two cores demonstrates that there is gas-record quality ice from the 40k world in the Allan Hills BIA. To further characterize the composition of Earth\u2019s atmosphere and Antarctic climate during the 40k world we request support for two field seasons to drill new large-volume (4\u201d or 9\u201d diameter) ice cores at sites where we have previously identified \u003e1 Ma ice and nearby sites where ground penetrating radar has identified bedrock features conducive to the preservation of old ice. ", "east": null, "geometry": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Noble Gas", "locations": "Allan Hills; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Higgins, John", "project_titles": "Center for Oldest Ice Exploration; Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "projects": [{"proj_uid": "p0010321", "repository": "USAP-DC", "title": "Center for Oldest Ice Exploration"}, {"proj_uid": "p0010253", "repository": "USAP-DC", "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": null, "title": "Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903", "uid": "601895", "west": null}, {"awards": "2019719 Brook, Edward; 2149518 Fudge, Tyler", "bounds_geometry": ["POINT(159.36 -76.73)"], "date_created": "Fri, 06 Dec 2024 00:00:00 GMT", "description": "This dataset includes three-dimensional multitrack electrical conductivity measurements (3D ECM) results from measurements in the upper sections of the ALHIC2201 and ALHIC2302 large (241mm) diameter ice cores drilled in the Allan Hills blue ice area (76.73\u00b0S,159.36\u00b0E) in Victoria Land, East Antarctica. The data extends from the surface to 23.0 m depth in ALHIC2201 and from 8.5 m to 46.3 m depth in ALHIC2302. We include the raw 3D ECM data (AC and DC multitrack ECM measurements on perpendicular faces of a quarter-core cut) in CSV format and basic plots of this data. We also provide dip and dip direction estimates of the layering observed in each core section in a CSV table.", "east": 159.36, "geometry": ["POINT(159.36 -76.73)"], "keywords": "Allan Hills; Antarctica; Cryosphere", "locations": "Allan Hills; Antarctica", "north": -76.73, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "persons": "Kirkpatrick, Liam; Carter, Austin; Marks Peterson, Julia; Shackleton, Sarah; Fudge, T. J.", "project_titles": "Center for Oldest Ice Exploration; Collaborative Research: Testing Next Generation Measurement Techniques for Reconstruction of Paleoclimate Archives from Thin or Disturbed Ice Cores Sections", "projects": [{"proj_uid": "p0010365", "repository": "USAP-DC", "title": "Collaborative Research: Testing Next Generation Measurement Techniques for Reconstruction of Paleoclimate Archives from Thin or Disturbed Ice Cores Sections"}, {"proj_uid": "p0010321", "repository": "USAP-DC", "title": "Center for Oldest Ice Exploration"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "COLDEX", "south": -76.73, "title": "ALHIC2201 and ALHIC2302 3D ECM and Layer Orientations", "uid": "601854", "west": 159.36}, {"awards": "1643669 Petrenko, Vasilii", "bounds_geometry": ["POLYGON((112 -66,112.2 -66,112.4 -66,112.6 -66,112.8 -66,113 -66,113.2 -66,113.4 -66,113.6 -66,113.8 -66,114 -66,114 -66.1,114 -66.2,114 -66.3,114 -66.4,114 -66.5,114 -66.6,114 -66.7,114 -66.8,114 -66.9,114 -67,113.8 -67,113.6 -67,113.4 -67,113.2 -67,113 -67,112.8 -67,112.6 -67,112.4 -67,112.2 -67,112 -67,112 -66.9,112 -66.8,112 -66.7,112 -66.6,112 -66.5,112 -66.4,112 -66.3,112 -66.2,112 -66.1,112 -66))"], "date_created": "Thu, 24 Oct 2024 00:00:00 GMT", "description": "This is a data set containing measurements of [14CO] in firn air and ice core samples from Law Dome DE08-OH site, Antarctica. The firn air and ice core samples were collected at Law Dome in December 2018 and January 2019. The [14CO] data represent atmospheric values (with the in situ cosmogenic and procedural components removed). [14CO] measurements were conducted as described in Hmiel et al., 2024 (https://doi.org/10.5194/tc-18-3363-2024). The in situ cosmogenic [14CO] contribution was calculated using parameters and model also described in Hmiel et al. (2024). As [14CO] measurements in ice cores are complex, use of the data in a publication requires contacting Vasilii Petrenko (vasilii.petrenko@rochester.edu) to ensure correct understanding of the data. Depending on nature of use of the data, co-authorship may be appropriate. ", "east": 114.0, "geometry": ["POINT(113 -66.5)"], "keywords": "Antarctica; Carbon-14; Cryosphere; Firn Air; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Law Dome; Snow/ice; Snow/Ice", "locations": "Law Dome; Antarctica", "north": -66.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Petrenko, Vasilii", "project_titles": "Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability", "projects": [{"proj_uid": "p0010341", "repository": "USAP-DC", "title": "Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "Law Dome firn air and ice core 14CO concentration", "uid": "601846", "west": 112.0}, {"awards": "1745078 Brook, Edward J.", "bounds_geometry": null, "date_created": "Tue, 23 Jul 2024 00:00:00 GMT", "description": "This dataset includes ~60-year resolution measurements of the Carbon-13 and Deuterium isotopic Composition of Atmospheric Methane (\u03b413C-CH4 and \u03b4D-CH4, respectively) of gas bubbles from the WAIS Divide Replicate Ice Core. All measurements were made at the University of Bern Ice Core Laboratory (Bern, Switzerland) using a new methane stable isotope analytical system. The data includes depth-adjacent replicate samples (separated by no more than 0.3m of depth). The data are displayed as a function of WAIS Divide Replicate Core depth and were corrected for gravitational and diffusional fractionation that occurs in the firn column according to Buizert et al., 2013. 1-sigma measurement uncertainty is also included and is determined from analytical uncertainty and uncertainties associated with diffusional and gravitational fractionation. Additional funding for this work was provided by the Swiss National Foundation, Awards #200020_172506 and #200020B_200328L.", "east": null, "geometry": null, "keywords": "Abrupt Climate Change; Antarctica; Atmospheric Gases; Biogeochemical Cycles; Carbon Cycle; Cryosphere; Greenhouse Gas; Methane; West Antarctic Ice Sheet Divide", "locations": "West Antarctic Ice Sheet Divide; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Riddell-Young, Benjamin; Lee, James; Schmitt, Jochen; Fischer, Hubertus; Bauska, Thomas; Menking, Andy; Iseli, Rene; Clark, Reid; Brook, Edward J.", "project_titles": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores", "projects": [{"proj_uid": "p0010416", "repository": "USAP-DC", "title": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Carbon-13 and Deuterium isotopic composition of atmospheric methane across Heinrich Stadial 4, and Dansgaard Oesgher Event 8, WAIS Divide Replicate Ice Core, Antarctica", "uid": "601813", "west": null}, {"awards": "1851022 Fudge, Tyler", "bounds_geometry": ["POINT(123.33 -75.09)"], "date_created": "Fri, 22 Dec 2023 00:00:00 GMT", "description": "Volcanic deposition of sulfuric acid in ice cores is important both for understanding past volcanic activity and for synchronizing ice core timescales. Sulfuric acid has a low eutectic point, so it can potentially exist in liquid at grain boundaries and veins, accelerating chemical diffusion. A high effective diffusivity would allow post-depositional diffusion to obscure the climate history and the peak matching among older portions of ice cores. Here, we use records of sulfate from the EPICA Dome C (EDC) ice core to estimate the effective diffusivity of sulfuric acid in ice. We focus on EDC because multiple glacial-interglacial cycles are preserved, allowing analysis for long timescales and deposition in similar climates. We calculate the mean concentration gradient and the width of prominent volcanic events, and analyze the evolution of each with depth/age. We find the effective diffusivities for interglacials and glacial maximums to be 5 \u00b1 3 \u00d7 10-9 m2 a-1, an order of magnitude lower than a previous estimate derived from the Holocene portion of EDC (Barnes et al., 2003). The effective diffusivity may be even smaller if the bias from artificial smoothing from the sampling is accounted for. Effective diffusivity is not obviously affected by the ice temperature until about -10\u00b0C, 3000m depth, which is also where anomalous sulfate peaks begin to be observed (Traversi et al., 2009). Low effective diffusivity suggests that sulfuric acid is not readily diffusing in liquid-like veins in the upper portions of the Antarctic ice sheet and that records may be preserved in deep, old ice if the ice temperature remains well below the pressure melting point.", "east": 123.33, "geometry": ["POINT(123.33 -75.09)"], "keywords": "Antarctica", "locations": "Antarctica", "north": -75.09, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Fudge, T. J.; Severi, Mirko", "project_titles": "Collaborative Research: The Impact of Impurities and Stress State on Polycrystalline Ice Deformation", "projects": [{"proj_uid": "p0010211", "repository": "USAP-DC", "title": "Collaborative Research: The Impact of Impurities and Stress State on Polycrystalline Ice Deformation"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "COLDEX", "south": -75.09, "title": "EPICA Dome C Sulfate Data 7-3190m", "uid": "601759", "west": 123.33}, {"awards": "1745078 Brook, Edward J.", "bounds_geometry": ["POINT(-112.05 -79.28)"], "date_created": "Thu, 05 Oct 2023 00:00:00 GMT", "description": "This dataset includes measurements of atmospheric methane from samples from the NEEM, GISP2 and WAIS Divide ice cores. All measurements were made at the Oregon State University Ice Core and Quaternary Geochemistry Laboratory (Corvallis, OR) using an established analytical system. 433 samples from the NEEM ice core were measured between 1420 and 1560m depths. A measurement uncertainty ranging from 2.8 to 4.2 ppb, depending on the measurement year, was determined from replicate samples. 340 samples from the GISP2 ice core were measured between 1740 and 2060m depths. A measurement uncertainty ranging from 3.1 to 3.4 ppb, depending on the measurement year, was determined from replicate samples. All GISP2 and NEEM data were corrected for excess methane contamination using the established relationship between excess methane and Ca2+ (Lee et al., 2020). Both corrected and uncorrected data are included in the publication. 340 samples from the GISP2 ice core were measured between 1957 and 3081m depths. A measurement uncertainty ranging from 3.1 to 3.4 ppb, depending on the measurement year, was determined from replicate samples. Depths reflect the mid-points of the depth range of each samples, which is typically ~8cm. All replicate measurements are included in the dataset.\r\n\r\nLee, J. E. et al. Excess methane in Greenland ice cores associated with high dust concentrations. Geochimica et cosmochimica acta 270, 409-430 (2020).", "east": -112.05, "geometry": ["POINT(-112.05 -79.28)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Greenland; Ice Core Records; Methane; West Antarctic Ice Sheet", "locations": "West Antarctic Ice Sheet; Antarctica; Greenland", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Riddell-Young, Benjamin; Martin, Kaden; Rosen, Julia; Lee, James; Edwards, Jon S.; Brook, Edward J.", "project_titles": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores", "projects": [{"proj_uid": "p0010416", "repository": "USAP-DC", "title": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.28, "title": "Atmospheric methane across the Last Glacial Maximum and deglaciation from the GISP2, NEEM and WAIS Divide ice cores ", "uid": "601737", "west": -112.05}, {"awards": "1745078 Brook, Edward J.", "bounds_geometry": ["POINT(-112.05 -79.28)"], "date_created": "Mon, 02 Oct 2023 00:00:00 GMT", "description": "This dataset includes estimates of the atmospheric methane relative interpolar difference (rIPD) across the Last Glacial Maximum and Deglaciation. The rIPD was calculated using discrete, high-resolution methane measurements from the WAIS Divide, NEEM and GISP2 ice cores. Two independent IPD records were determined: One using NEEM and WAIS and one using GISP2 and WAIS. The dataset includes rIPD values calculated using both Greenland methane data both corrected and uncorrected for excess methane (Lee et al., 2020). The rIPD was calculated by smoothing each methane record and synchronizing them to the WD2014 gas age scale. 1-sigma rIPD uncertainties are included. This dataset also includes the output of the four-box troposphere model used to interpret the rIPD. For both excess methane-corrected records, the model output and 1-sigma uncertainty is provided for northern extratropical (30N - 90N) and total tropical (30S - 30N) sources in Tg yr-1. For the NEEM-derived rIPD, sections of the rIPD where atmospheric methane changed rapidly were deemed untrustworthy were removed from the dataset.\r\n\r\nLee, J. E. et al. Excess methane in Greenland ice cores associated with high dust concentrations. Geochimica et cosmochimica acta 270, 409-430 (2020).", "east": -112.05, "geometry": ["POINT(-112.05 -79.28)"], "keywords": "Antarctica; Greenland; Methane; Paleoclimate; West Antarctic Ice Sheet", "locations": "Greenland; West Antarctic Ice Sheet; Antarctica", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Riddell-Young, Benjamin; Rosen, Julia; Buizert, Christo; Martin, Kaden; Lee, James; Edwards, Jon S.; M\u00fchl, Michaela; Schmitt, Jochen; Fischer, Hubertus; Blunier, Thomas; Brook, Edward J.", "project_titles": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores", "projects": [{"proj_uid": "p0010416", "repository": "USAP-DC", "title": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.28, "title": "Atmospheric methane interpolar difference and four-box troposphere model output across the Last Glacial Maximum and Deglaciation", "uid": "601736", "west": -112.05}, {"awards": "1744993 Higgins, John", "bounds_geometry": ["POLYGON((159.17 -76.67,159.195 -76.67,159.22 -76.67,159.24499999999998 -76.67,159.26999999999998 -76.67,159.295 -76.67,159.32 -76.67,159.345 -76.67,159.36999999999998 -76.67,159.39499999999998 -76.67,159.42 -76.67,159.42 -76.676,159.42 -76.682,159.42 -76.688,159.42 -76.694,159.42 -76.7,159.42 -76.706,159.42 -76.712,159.42 -76.718,159.42 -76.724,159.42 -76.73,159.39499999999998 -76.73,159.36999999999998 -76.73,159.345 -76.73,159.32 -76.73,159.295 -76.73,159.26999999999998 -76.73,159.24499999999998 -76.73,159.22 -76.73,159.195 -76.73,159.17 -76.73,159.17 -76.724,159.17 -76.718,159.17 -76.712,159.17 -76.706,159.17 -76.7,159.17 -76.694,159.17 -76.688,159.17 -76.682,159.17 -76.676,159.17 -76.67))"], "date_created": "Fri, 16 Jun 2023 00:00:00 GMT", "description": "Unpublished field report describing drilling, sampling, and temperature profiles for shallow ice cores and boreholes at Allan Hills in 2022-2023 field season", "east": 159.42, "geometry": ["POINT(159.295 -76.7)"], "keywords": "Allan Hills; Antarctica; Ice Core", "locations": "Allan Hills; Antarctica", "north": -76.67, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Shackleton, Sarah; Brook, Edward J.", "project_titles": "Center for Oldest Ice Exploration; Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "projects": [{"proj_uid": "p0010253", "repository": "USAP-DC", "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area "}, {"proj_uid": "p0010321", "repository": "USAP-DC", "title": "Center for Oldest Ice Exploration"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73, "title": "Allan Hills 2022-23 Shallow Ice Core Field Report", "uid": "601696", "west": 159.17}, {"awards": "1643716 Buizert, Christo", "bounds_geometry": ["POLYGON((-180 -67,-144 -67,-108 -67,-72 -67,-36 -67,0 -67,36 -67,72 -67,108 -67,144 -67,180 -67,180 -69.3,180 -71.6,180 -73.9,180 -76.2,180 -78.5,180 -80.8,180 -83.1,180 -85.4,180 -87.7,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.7,-180 -85.4,-180 -83.1,-180 -80.8,-180 -78.5,-180 -76.2,-180 -73.9,-180 -71.6,-180 -69.3,-180 -67))"], "date_created": "Mon, 22 May 2023 00:00:00 GMT", "description": "We have reconstructed the atmospheric N2O mole fraction and its isotopic composition by combining data from ice cores, firn air, and atmospheric samples. The mole fraction reconstruction extends back to 1000 CE using ice cores, firn air, and atmospheric sampling; and the isotopic reconstruction extends back to 1900 CE using only firn air data. We have incorporated both newly measured and previously published data. We present new data for the mole fraction, d15Nbulk, d18O, and d15NSP values from the Styx (East Antarctica) firn air, and mole fraction from the North Greenland Eemian Ice drilling Project (NEEM) firn air. We have used published records from the Styx and NEEM ice cores, direct atmospheric measurements from the NOAA global sampling network, and firn air data, giving a total of 11 sites for N2O mole fraction, 12 sites for d15Nbulk, 11 sites for d18O, and 8 sites for d15NSP values.\r\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctic; Antarctica; Anthropogenic Emission; Atmosphere; Greenhouse Gas; Greenland; Ice Core Data; Nitrification And Denitrification Processes; Nitrous Oxide; Site-Specific 15N Isotopomer; Styx Glacier", "locations": "Antarctic; Greenland; Antarctica; Styx Glacier", "north": -67.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Ghosh, Sambit; Toyoda, Sakae ; Buizert, Christo ; Langenfelds, Ray L ; Yoshida, Naohiro ; Joong Kim, Seong; Ahn, Jinho ; Etheridge, David", "project_titles": "Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability", "projects": [{"proj_uid": "p0010341", "repository": "USAP-DC", "title": "Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Concentration and isotopic composition of atmospheric N2O over the last century", "uid": "601693", "west": -180.0}, {"awards": "1644094 Caffee, Marc; 1644128 Welten, Kees", "bounds_geometry": ["POINT(-112.05 -79.28)"], "date_created": "Sat, 20 May 2023 00:00:00 GMT", "description": "This dataset contains a continuous depth profile of 10Be measured in ice core samples from the WAIS Divide Core between 2850 and 3240 m depth.", "east": -112.05, "geometry": ["POINT(-112.05 -79.28)"], "keywords": "10Be; Antarctica; Beryllium; Cosmogenic Radionuclides; Ice Core Data; WAIS Divide", "locations": "WAIS Divide; Antarctica", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "persons": "Welten, Kees; Caffee, Marc; Woodruff, Thomas", "project_titles": "Synchronizing the WAIS Divide and Greenland Ice Cores from 30-65 ka BP using high-resolution 10Be measurements", "projects": [{"proj_uid": "p0010280", "repository": "USAP-DC", "title": "Synchronizing the WAIS Divide and Greenland Ice Cores from 30-65 ka BP using high-resolution 10Be measurements"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.28, "title": "WAIS Divide Core 10Be data, 2850-3240 m", "uid": "601692", "west": -112.05}, {"awards": "1745078 Brook, Edward J.", "bounds_geometry": ["POINT(-112.086 -79.468)"], "date_created": "Wed, 26 Apr 2023 00:00:00 GMT", "description": "This dataset includes ~60-year resolution measurements of the Carbon-13 isotopic Composition of Atmospheric Methane (\u03b413C-CH4) of gas bubbles from the WAIS Divide Ice Core. All measurements were made at the Oregon State University Ice Core and Quaternary Geochemistry Laboratory (Corvallis, OR) using a new methane stable isotope analytical system. The data includes depth-adjacent replicate samples (separated by no more than 0.3m of depth) and is split up into two sheets for the two different intervals measured (Heinrich Stadial 1 and Heinrich Stadial 5 / Dansgaard Oeschger Event 12). The data are displayed as a function of WAIS Divide depth and were corrected for gravitational and diffusional fractionation that occurs in the firn column according to Buizert et al., 2013. 1-sigma measurement uncertainty is also included and is determined from analytical uncertainty and uncertainties associated with diffusional and gravitational fractionation.\r\n\r\nThe manuscript presenting and analyzing these data is in preparation for publication as of April 2023. ", "east": -112.086, "geometry": ["POINT(-112.086 -79.468)"], "keywords": "Antarctica; Methane; West Antarctic Ice Sheet", "locations": "West Antarctic Ice Sheet; Antarctica", "north": -79.468, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Riddell-Young, Benjamin", "project_titles": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores", "projects": [{"proj_uid": "p0010416", "repository": "USAP-DC", "title": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.468, "title": "Carbon-13 isotopic composition of atmospheric methane across Heinrich Stadials 1 and 5, and Dansgaard Oesgher Event 12, WAIS Divide Ice Core, Antarctica", "uid": "601683", "west": -112.086}, {"awards": "1445205 Putkonen, Jaakko", "bounds_geometry": ["POLYGON((157.45 -83.14,157.45299999999997 -83.14,157.456 -83.14,157.459 -83.14,157.462 -83.14,157.46499999999997 -83.14,157.468 -83.14,157.471 -83.14,157.474 -83.14,157.47699999999998 -83.14,157.48 -83.14,157.48 -83.141,157.48 -83.142,157.48 -83.143,157.48 -83.144,157.48 -83.14500000000001,157.48 -83.146,157.48 -83.147,157.48 -83.14800000000001,157.48 -83.149,157.48 -83.15,157.47699999999998 -83.15,157.474 -83.15,157.471 -83.15,157.468 -83.15,157.46499999999997 -83.15,157.462 -83.15,157.459 -83.15,157.456 -83.15,157.45299999999997 -83.15,157.45 -83.15,157.45 -83.149,157.45 -83.14800000000001,157.45 -83.147,157.45 -83.146,157.45 -83.14500000000001,157.45 -83.144,157.45 -83.143,157.45 -83.142,157.45 -83.141,157.45 -83.14))"], "date_created": "Thu, 09 Feb 2023 00:00:00 GMT", "description": "These data include the measurements and analyses done on a ~10 meter long ice cores drilled in Ong Valley buried ice site. Further descriptions can be found in the related paper listed below.", "east": 157.48, "geometry": ["POINT(157.46499999999997 -83.14500000000001)"], "keywords": "Antarctica; Buried Ice; Cosmogenic Isotopes; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Old Ice; Ong Valley", "locations": "Antarctica; Ong Valley", "north": -83.14, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Putkonen, Jaakko; Bergelin, Marie", "project_titles": "Collaborative Research: Long Term Sublimation/Preservation of Two Separate, Buried Glacier Ice Masses, Ong Valley, Southern Transantarctic Mountains", "projects": [{"proj_uid": "p0010231", "repository": "USAP-DC", "title": "Collaborative Research: Long Term Sublimation/Preservation of Two Separate, Buried Glacier Ice Masses, Ong Valley, Southern Transantarctic Mountains"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -83.15, "title": "Old Ice, Ong Valley, Transantarctic Mountains", "uid": "601665", "west": 157.45}, {"awards": "1807522 Jones, Tyler; 1043092 Steig, Eric", "bounds_geometry": ["POINT(-112.085 -79.467)"], "date_created": "Thu, 01 Sep 2022 00:00:00 GMT", "description": "We analyzed a continuous record of water-isotope ratios from the West Antarctic Ice Sheet (WAIS) Divide ice core to reveal summer and winter temperature changes through the last 11,000 years. ", "east": -112.085, "geometry": ["POINT(-112.085 -79.467)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Seasonality; Seasonal Temperatures; Temperature; Water Isotopes; West Antarctic Ice Sheet", "locations": "Antarctica; West Antarctic Ice Sheet", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "persons": "Jones, Tyler R.", "project_titles": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core; Collaborative Research: Targeted resampling of deep polar ice cores using information theory", "projects": [{"proj_uid": "p0010100", "repository": "USAP-DC", "title": "Collaborative Research: Targeted resampling of deep polar ice cores using information theory"}, {"proj_uid": "p0000078", "repository": "USAP-DC", "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Seasonal temperatures in West Antarctica during the Holocene ", "uid": "601603", "west": -112.085}, {"awards": "1443263 Higgins, John", "bounds_geometry": ["POINT(159.35507 -76.73286)"], "date_created": "Tue, 02 Nov 2021 00:00:00 GMT", "description": "This file includes the d15N, O2/N2 ratio, Ar/N2 ratio, and d18O of O2 (d18Oatm) in Allan Hills ice cores (ALHIC1502 and ALHIC1503). This dataset replaces an earlier version of the elemental and isotopic composition in Allan Hills ice cores (DOI: 10.15784/601204) by adding new data from 60 depths in ALHIC1502 core (26.26 m to 175.74 m). ", "east": 159.35507, "geometry": ["POINT(159.35507 -76.73286)"], "keywords": "Allan Hills; Antarctica; Argon; Ice; Ice Core Data; Ice Core Gas Records; Isotope; Mass Spectrometry; Nitrogen; Oxygen", "locations": "Allan Hills; Antarctica", "north": -76.73286, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Yan, Yuzhen; Bender, Michael; Higgins, John", "project_titles": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "projects": [{"proj_uid": "p0000760", "repository": "USAP-DC", "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73286, "title": "Elemental and isotopic composition of nitrogen, oxygen, and argon in Allan Hills ice cores", "uid": "601483", "west": 159.35507}, {"awards": null, "bounds_geometry": ["POLYGON((-57.7 -64.2,-46.44 -64.2,-35.18 -64.2,-23.92 -64.2,-12.66 -64.2,-1.4 -64.2,9.86 -64.2,21.12 -64.2,32.38 -64.2,43.64 -64.2,54.9 -64.2,54.9 -65.99,54.9 -67.78,54.9 -69.57,54.9 -71.36,54.9 -73.15,54.9 -74.94,54.9 -76.73,54.9 -78.52,54.9 -80.31,54.9 -82.1,43.64 -82.1,32.38 -82.1,21.12 -82.1,9.86 -82.1,-1.4 -82.1,-12.66 -82.1,-23.92 -82.1,-35.18 -82.1,-46.44 -82.1,-57.7 -82.1,-57.7 -80.31,-57.7 -78.52,-57.7 -76.73,-57.7 -74.94,-57.7 -73.15,-57.7 -71.36,-57.7 -69.57,-57.7 -67.78,-57.7 -65.99,-57.7 -64.2))"], "date_created": "Fri, 16 Jul 2021 00:00:00 GMT", "description": "This dataset includes:\r\n1) rBC concentration and flux for 6 Antarctic ice core sites (JRI_2008, JRI_D98, NUS08_7, NUS07_7, B53, and B40). \r\n2) FLEXPART backward-model emission sensitivities for 4 Antarctic ice core sites (JRI, B40, B53, NUS07_7). \r\n3) FLEXPART forward-model deposition for simulated biomass burning emissions from New Zealand.\r\n4) Tie points to constrain flow model used to develop JRI_2008 chronology.", "east": 54.9, "geometry": ["POINT(-1.4 -73.15)"], "keywords": "Antarctica; Antarctic Peninsula; Biomass Burning; Black Carbon; Dronning Maud Land; East Antarctic Plateau; Ice Core", "locations": "Antarctic Peninsula; Dronning Maud Land; East Antarctic Plateau; Antarctica", "north": -64.2, "nsf_funding_programs": null, "persons": "McConnell, Joseph; Chellman, Nathan", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -82.1, "title": "Common-era black carbon deposition and atmospheric modeling for 6 Antarctic ice cores", "uid": "601464", "west": -57.7}, {"awards": "1043167 White, James", "bounds_geometry": ["POINT(-112.1115 -79.481)"], "date_created": "Mon, 27 Jul 2020 00:00:00 GMT", "description": "The original water stable isotope data for the WAIS Divide Deep Ice Core was generated under the University of Colorado INSTAAR Stable Isotope Lab (NSF Award# 1443328). This data set contains high-resolution dD and d18O data for the West Antarctic Ice Sheet (WAIS) Divide Ice core. Drilling was initiated in 2006 and completed in 2011, and subsequent analyses on the ice were performed at the University of Colorado INSTAAR Stable Isotope Lab using Continuous Flow Analysis (CFA), completed in 2015 and described in Jones et al. (2017). The targeted resampling of the WAIS Divide Ice core (1035.4 to 1368.2 m) was completed in 2019 (NSF OPP - Antarctic Glaciology 1807522) to replace data analyzed on an older generation Laser Absorption Spectroscopy instrument. The resampling interval was identified using information theory (Garland and Jones et al. 2018). \r\n", "east": -112.1115, "geometry": ["POINT(-112.1115 -79.481)"], "keywords": "Antarctica; Delta 18O; Isotope; WAIS Divide; WAIS Divide Ice Core; West Antarctic Ice Sheet", "locations": "WAIS Divide; West Antarctic Ice Sheet; Antarctica", "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology", "persons": "Jones, Tyler R.; Morris, Valerie; Garland, Joshua; Vaughn, Bruce; White, James", "project_titles": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "projects": [{"proj_uid": "p0000078", "repository": "USAP-DC", "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Resampling of Deep Polar Ice Cores using Information Theory", "uid": "601365", "west": -112.1115}, {"awards": "0636953 Saltzman, Eric; 1043780 Aydin, Murat; 0839122 Saltzman, Eric", "bounds_geometry": null, "date_created": "Wed, 15 Jul 2020 00:00:00 GMT", "description": "This is a data set of ice core carbonyl sulfide data. Carbonyl sulfide was analyzed in air extracted from the Taylor Dome M3C1 ice core at 106 discrete depths as indicated in the data file. This data set includes all COS data presented in a prior data set from the same ice core (/doi.org/10.7265/N5S75D8P) that were analyzed from 2008 through 2010. This data set includes additional data from the same ice core that were analyzed at a later date in 2014. The two sets of measurements are presented as one data set as the same extraction and analytical methods were used for both sets of analyses. Refer to the references associated with the data set for details on the methods. ", "east": null, "geometry": null, "keywords": "Antarctica; Carbonyl Sulfide; Trace Gases", "locations": "Antarctica; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "persons": "Aydin, Murat; Saltzman, Eric", "project_titles": "Carbonyl Sulfide Measurements in the Deep West Antarctic Ice Sheet Divide Ice Core; Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core; Methyl Chloride, Methyl Bromide, and Carbonyl Sulfide in Deep Antarctic Ice Cores", "projects": [{"proj_uid": "p0000273", "repository": "USAP-DC", "title": "Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core"}, {"proj_uid": "p0000042", "repository": "USAP-DC", "title": "Methyl Chloride, Methyl Bromide, and Carbonyl Sulfide in Deep Antarctic Ice Cores"}, {"proj_uid": "p0000055", "repository": "USAP-DC", "title": "Carbonyl Sulfide Measurements in the Deep West Antarctic Ice Sheet Divide Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core", "uid": "601361", "west": null}, {"awards": "0440602 Saltzman, Eric; 0338359 Saltzman, Eric", "bounds_geometry": null, "date_created": "Fri, 10 Jul 2020 00:00:00 GMT", "description": "This is a data set of ice core carbonyl sulfide data. Carbonyl sulfide was analyzed in air extracted from the SPRESSO ice core at 106 discrete depths as indicated in the data file. SPRESSO is a shallow, dry-drilled ice core from the South Pole. ", "east": null, "geometry": null, "keywords": "Antarctica; Atmospheric Gases; Gas Measurement; Ice Core; Ice Core Gas Records; Trace Gases", "locations": "Antarctica; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "persons": "Aydin, Murat; Saltzman, Eric", "project_titles": "Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site; Methyl chloride and methyl bromide in Antarctic ice cores", "projects": [{"proj_uid": "p0000032", "repository": "USAP-DC", "title": "Methyl chloride and methyl bromide in Antarctic ice cores"}, {"proj_uid": "p0000368", "repository": "USAP-DC", "title": "Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - SPRESSO Ice Core", "uid": "601357", "west": null}, {"awards": "1807522 Jones, Tyler", "bounds_geometry": ["POINT(-112.1115 -79.481)"], "date_created": "Tue, 26 May 2020 00:00:00 GMT", "description": "The original water stable isotope data for the WAIS Divide Deep Ice Core was generated under the University of Colorado INSTAAR Stable Isotope Lab (NSF Award# 1443328). This data set contains high-resolution dD and d18O data for the West Antarctic Ice Sheet (WAIS) Divide Ice core. Drilling was initiated in 2006 and completed in 2011, and subsequent analyses on the ice were performed at the University of Colorado INSTAAR Stable Isotope Lab using Continuous Flow Analysis (CFA). The targeted resampling of the WAIS Divide Ice core (1035.4 - 1368.2m) occurred for this grant (NSF OPP - Antarctic Glaciology 1807522) to replace data analyzed on an older generation Laser Absorption Spectroscopy instrument. The resampling interval was identified using information theory.", "east": -112.1115, "geometry": ["POINT(-112.1115 -79.481)"], "keywords": "Antarctica; Delta 18O; Delta Deuterium; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Snow/ice; Snow/Ice; WAIS Divide Ice Core; Water Isotopes; West Antarctic Ice Sheet", "locations": "Antarctica; West Antarctic Ice Sheet", "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Morris, Valerie; Jones, Tyler R.; Vaughn, Bruce; White, James", "project_titles": "Collaborative Research: Targeted resampling of deep polar ice cores using information theory", "projects": [{"proj_uid": "p0010100", "repository": "USAP-DC", "title": "Collaborative Research: Targeted resampling of deep polar ice cores using information theory"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Mid-Holocene high-resolution water isotope time series for the WAIS Divide ice core", "uid": "601326", "west": -112.1115}, {"awards": "1245659 Petrenko, Vasilii", "bounds_geometry": ["POINT(161.71353 -77.75855)"], "date_created": "Fri, 28 Feb 2020 00:00:00 GMT", "description": "This data set contains measurements of 14CH4 and 14CO in ice cores from Taylor Glacier, Antarctica. This includes measurements in ice from the last deglaciation (18 - 8 kyr), for the purposes of paleoatmospheric 14CH4 reconstruction. The data set also includes measurements in older ice (50 - 70 kyr) from a deep ice core, made for the purposes of studying in situ cosmogenic 14C production in ice. All data are in excel format.", "east": 161.71353, "geometry": ["POINT(161.71353 -77.75855)"], "keywords": "Antarctica; Carbon-14; Cosmogenic; Ice Core; Methane", "locations": "Antarctica", "north": -77.75855, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Petrenko, Vasilii; Dyonisius, Michael", "project_titles": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "projects": [{"proj_uid": "p0000283", "repository": "USAP-DC", "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": -77.75855, "title": "Measurements of 14CH4 and 14CO in ice from Taylor Glacier: Last Deglaciation and Deep Core Results", "uid": "601260", "west": 161.71353}, {"awards": "1443263 Higgins, John", "bounds_geometry": ["POINT(159.35507 -76.73286)"], "date_created": "Wed, 14 Aug 2019 00:00:00 GMT", "description": "This file includes the concentration methane (CH4) in Allan Hills ice cores (ALHIC1502 and ALHIC1503).", "east": 159.35507, "geometry": ["POINT(159.35507 -76.73286)"], "keywords": "Allan Hills; Allan Hills Project; Antarctica; Chemistry:ice; Chemistry:Ice; Gas Chromatography; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenhouse Gas; Ice; Ice Core Data; Ice Core Gas Records; Methane; Snow/ice; Snow/Ice", "locations": "Allan Hills; Antarctica", "north": -76.73286, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Yan, Yuzhen; Bender, Michael; Brook, Edward J.; Higgins, John", "project_titles": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "projects": [{"proj_uid": "p0000760", "repository": "USAP-DC", "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73286, "title": "Methane concentration in Allan Hills ice cores", "uid": "601203", "west": 159.35507}, {"awards": "1443263 Higgins, John", "bounds_geometry": ["POINT(159.35507 -76.73286)"], "date_created": "Wed, 14 Aug 2019 00:00:00 GMT", "description": "This file includes the concentration of carbon dioxide (CO2) and methane (CH4) and the stable carbon isotope composition of CO2 in Allan Hills ice cores (ALHIC1502 and ALHIC1503).", "east": 159.35507, "geometry": ["POINT(159.35507 -76.73286)"], "keywords": "Allan Hills; Allan Hills Project; Antarctica; Carbon Dioxide; Carbon Isotopes; Chemistry:ice; Chemistry:Ice; CO2; Gas Chromatography; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Gas Records; Ice Core Records; Mass Spectrometer; Mass Spectrometry; Methane; Snow/ice; Snow/Ice", "locations": "Antarctica; Allan Hills", "north": -76.73286, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Yan, Yuzhen; Bender, Michael; Brook, Edward J.; Higgins, John", "project_titles": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "projects": [{"proj_uid": "p0000760", "repository": "USAP-DC", "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73286, "title": "Carbon dioxide concentration and its stable carbon isotope composition in Allan Hills ice cores", "uid": "601202", "west": 159.35507}, {"awards": "1443263 Higgins, John", "bounds_geometry": ["POINT(159.35507 -76.73286)"], "date_created": "Wed, 14 Aug 2019 00:00:00 GMT", "description": "This file includes argon isotope composition and xenon-to-krypton ratios measured in Allan Hills ice cores.", "east": 159.35507, "geometry": ["POINT(159.35507 -76.73286)"], "keywords": "Allan Hills; Allan Hills Project; Antarctica; Argon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Data; Ice Core Gas Records; Krypton; Mass Spectrometer; Noble Gas; Snow/ice; Snow/Ice; Xenon", "locations": "Allan Hills; Antarctica", "north": -76.73286, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Yan, Yuzhen; Bender, Michael; Higgins, John; Ng, Jessica; Severinghaus, Jeffrey P.", "project_titles": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "projects": [{"proj_uid": "p0000760", "repository": "USAP-DC", "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73286, "title": "Elemental and isotopic composition of heavy noble gases in Allan Hills ice cores", "uid": "601201", "west": 159.35507}, {"awards": "1245659 Petrenko, Vasilii; 1245821 Brook, Edward J.; 1246148 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(162.167 -77.733)"], "date_created": "Mon, 12 Aug 2019 00:00:00 GMT", "description": "New ice cores retrieved from the Taylor Glacier (Antarctica) blue ice area contain ice and air spanning the Marine Isotope Stage (MIS) 5-4 transition, a period of global cooling and ice sheet expansion. We determine chronologies for the ice and air bubbles in the new ice cores by visually matching variations in gas- and ice- phase tracers to preexisting ice core records. The chronologies reveal an ice age-gas age difference (\u0394age) approaching 10 ka during MIS 4, implying very low snow accumulation in the Taylor Glacier accumulation zone. A revised chronology for the analagous section of the Taylor Dome ice core (84 to 55 ka), located to the south of the Taylor Glacier accumulation zone, shows that \u0394age did not exceed 3 ka. The difference in \u0394age between the two records during MIS 4 is similar in magnitude but opposite in direction to what is observed at the Last Glacial Maximum. This relationship implies that a spatial gradient in snow accumulation existed across the Taylor Dome region during MIS 4 that was oriented in the opposite direction of the accumulation gradient during the Last Glacial Maximum.", "east": 162.167, "geometry": ["POINT(162.167 -77.733)"], "keywords": "Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; CO2; Dust; Gas; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Mass Spectrometer; Methane; Nitrogen Isotopes; Oxygen Isotope; Paleoclimate; Snow/ice; Snow/Ice; Taylor Dome; Taylor Dome Ice Core", "locations": "Antarctica; Taylor Dome", "north": -77.733, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "persons": "Menking, James; Brook, Edward J.; Marcott, Shaun; Barker, Stephen; Shackleton, Sarah; Dyonisius, Michael; Petrenko, Vasilii; McConnell, Joseph; Rhodes, Rachel; Bauska, Thomas; Baggenstos, Daniel; Severinghaus, Jeffrey P.", "project_titles": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "projects": [{"proj_uid": "p0000283", "repository": "USAP-DC", "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.733, "title": "Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores", "uid": "601198", "west": 162.167}, {"awards": "1543229 Severinghaus, Jeffrey", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Fri, 02 Aug 2019 00:00:00 GMT", "description": "This data comprises a survey of Recent ice from multiple sites in Antarctica using shallow ice cores to examine noble gas values in ice that nominally has the same Mean Ocean Temperature as today. The goal is to elucidate fractionation that occurs in the firn before air is trapped in bubbles in the ice, by making the assumption that the atmosphere noble gas content has not changed since this air was trappped. The ages of the air samples are typically early Industrial Revolution or late Holocene.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Krypton; Noble Gas; Xenon", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.; Shackleton, Sarah", "project_titles": "Collaborative research: Kr-86 as a proxy for barometric pressure variability and movement of the SH westerlies during the last\r\ndeglaciation", "projects": [{"proj_uid": "p0010037", "repository": "USAP-DC", "title": "Collaborative research: Kr-86 as a proxy for barometric pressure variability and movement of the SH westerlies during the last\r\ndeglaciation"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Noble Gas Data from recent ice in Antarctica for 86Kr problem", "uid": "601195", "west": -180.0}, {"awards": "0538657 Severinghaus, Jeffrey", "bounds_geometry": ["POLYGON((-113 -79,-112.8 -79,-112.6 -79,-112.4 -79,-112.2 -79,-112 -79,-111.8 -79,-111.6 -79,-111.4 -79,-111.2 -79,-111 -79,-111 -79.1,-111 -79.2,-111 -79.3,-111 -79.4,-111 -79.5,-111 -79.6,-111 -79.7,-111 -79.8,-111 -79.9,-111 -80,-111.2 -80,-111.4 -80,-111.6 -80,-111.8 -80,-112 -80,-112.2 -80,-112.4 -80,-112.6 -80,-112.8 -80,-113 -80,-113 -79.9,-113 -79.8,-113 -79.7,-113 -79.6,-113 -79.5,-113 -79.4,-113 -79.3,-113 -79.2,-113 -79.1,-113 -79))"], "date_created": "Fri, 18 Aug 2017 00:00:00 GMT", "description": "This data set contains measurements of d18Oatm (d18O of O2), d15N, dAr/N2, and dO2/N2 in gas bubbles from the WAIS Divide ice core. The time resolution is variable throughout the record but is ~100 years on average (from 65 ka to present). All measurements were made in the Noble Gas Isotope Laboratory at Scripps Institution of Oceanography (La Jolla, CA). The data set includes all replicate measurements as well as replicate-mean values and a calculation of measurement precision (pooled standard deviation). The second sheet of this data set includes fitted d18Oatm curves for the past 50 ka from both the WAIS Divide and Siple Dome Antarctic ice cores, both on the WD2014 timescale (Buizert et al., 2015). The second sheet also includes calculations of the time derivative of d18Oatm and d e LAND in both ice cores individual as well as in a composite record. Details of the entire data set and all relevant methods are provided in Seltzer et al., 2017.", "east": -111.0, "geometry": ["POINT(-112 -79.5)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Gas; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; WAIS Divide Ice Core", "locations": "Antarctica", "north": -79.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Seltzer, Alan; Severinghaus, Jeffrey P.", "project_titles": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate", "projects": [{"proj_uid": "p0000036", "repository": "USAP-DC", "title": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -80.0, "title": "WAIS Divide d18Oatm and Siple Dome/WAIS Divide composite and individual delta epsilon LAND", "uid": "601041", "west": -113.0}, {"awards": "1142007 Kurbatov, Andrei", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 03 Aug 2017 00:00:00 GMT", "description": "This dataset contains ice core tephra geochemical data from 5 temporal intervals in the RICE, WDC-06A, SPRESSO, and SPICE ice cores. The temporal intervals included are 1991 C.E., 1963 C.E., 1815 C.E., 1809 C.E., and 1257 C.E. These intervals are often analyzed for volcanic sulfate by ice core scientists. The volcanic events associated with these intervals caused global weather and climate phenomena and are often used by climate modelers as well to understand volcanic sulfate loading on the climate.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Intracontinental Magmatism; IntraContinental Magmatism; Tephra", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Kurbatov, Andrei V.", "project_titles": "Collaborative Research: Developing an Antarctic Tephra Database for Interdisciplinary Paleoclimate Research (AntT)", "projects": [{"proj_uid": "p0000328", "repository": "USAP-DC", "title": "Collaborative Research: Developing an Antarctic Tephra Database for Interdisciplinary Paleoclimate Research (AntT)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Antarctic Ice Core Tephra Analysis", "uid": "601038", "west": -180.0}, {"awards": "0839093 McConnell, Joseph", "bounds_geometry": ["POLYGON((161.41425 -77.73489,161.486884 -77.73489,161.559518 -77.73489,161.632152 -77.73489,161.704786 -77.73489,161.77742 -77.73489,161.850054 -77.73489,161.922688 -77.73489,161.995322 -77.73489,162.067956 -77.73489,162.14059 -77.73489,162.14059 -77.747868,162.14059 -77.760846,162.14059 -77.773824,162.14059 -77.786802,162.14059 -77.79978,162.14059 -77.812758,162.14059 -77.825736,162.14059 -77.838714,162.14059 -77.851692,162.14059 -77.86467,162.067956 -77.86467,161.995322 -77.86467,161.922688 -77.86467,161.850054 -77.86467,161.77742 -77.86467,161.704786 -77.86467,161.632152 -77.86467,161.559518 -77.86467,161.486884 -77.86467,161.41425 -77.86467,161.41425 -77.851692,161.41425 -77.838714,161.41425 -77.825736,161.41425 -77.812758,161.41425 -77.79978,161.41425 -77.786802,161.41425 -77.773824,161.41425 -77.760846,161.41425 -77.747868,161.41425 -77.73489))"], "date_created": "Mon, 19 Jun 2017 00:00:00 GMT", "description": "Black carbon (BC) and other biomass-burning (BB) aerosols are critical components of climate forcing but quantification, predictive climate modeling, and policy decisions have been hampered by limited understanding of the climate drivers of BB and by the lack of long-term records. Prior modeling studies suggested that increased Northern Hemisphere anthropogenic BC emissions increased recent temperatures and regional precipitation, including a northward shift in the Inter-Tropical Convergence Zone (ITCZ). Two Antarctic ice cores were analyzed for BC and the longest record shows that the highest BC deposition during the Holocene occurred ~8-6k years before present in a period of relatively high austral burning season and low growing season insolation. Atmospheric transport modeling suggests South America (SA) as the dominant source of modern Antarctic BC and, consistent with the ice-core record, climate model experiments using mid-Holocene and preindustrial insolation simulate comparable increases in carbon loss due to fires in SA during the mid-Holocene. SA climate proxies document a northward shifted ITCZ and weakened SA Summer Monsoon (SASM) during this period, with associated impacts on hydroclimate and burning. A second Antarctic ice core spanning the last 2.5k years documents similar linkages between hydroclimate and BC, with the lowest deposition during the Little Ice Age characterized by a southerly shifted ITCZ and strengthened SASM. These new results indicate that insolation-driven changes in SA hydroclimate and BB, likely linked to the position of the ITCZ, modulated Antarctic BC deposition during most of the Holocene and suggests connections and feedbacks between future BC emissions and hydroclimate.", "east": 162.14059, "geometry": ["POINT(161.77742 -77.79978)"], "keywords": "Antarctica; Atmosphere; Black Carbon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -77.73489, "nsf_funding_programs": null, "persons": "McConnell, Joseph; Arienzo, Monica", "project_titles": "Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core", "projects": [{"proj_uid": "p0000273", "repository": "USAP-DC", "title": "Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -77.86467, "title": "Holocene Black Carbon in Antarctica", "uid": "601034", "west": 161.41425}, {"awards": "1341360 Steig, Eric", "bounds_geometry": ["POINT(106 -77.5)", "POINT(-112.08 -79.46)"], "date_created": "Mon, 05 Jun 2017 00:00:00 GMT", "description": "Seasonal 17O Isotope Data from Lake Vostok and WAIS Divide Snow Pits", "east": 106.0, "geometry": ["POINT(106 -77.5)", "POINT(-112.08 -79.46)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Lake Vostok; Snow Pit; WAIS Divide Ice Core", "locations": "Antarctica; Lake Vostok", "north": -77.5, "nsf_funding_programs": null, "persons": "Steig, Eric J.; Schoenemann, Spruce", "project_titles": "Development of a Laser Spectroscopy System for Analysis of 17Oexcess on Ice Cores", "projects": [{"proj_uid": "p0000316", "repository": "USAP-DC", "title": "Development of a Laser Spectroscopy System for Analysis of 17Oexcess on Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.46, "title": "Seasonal 17O Isotope Data from Lake Vostok and WAIS Divide Snow Pits", "uid": "601031", "west": -112.08}, {"awards": "0944197 Waddington, Edwin", "bounds_geometry": ["POINT(-112.1115 -79.481)"], "date_created": "Tue, 28 Mar 2017 00:00:00 GMT", "description": "The West Antarctic Ice Sheet Divide (WAIS Divide, WD) ice core is a newly drilled, high-accumulation deep ice core that provides Antarctic climate records of the past ~68 ka at unprecedented temporal resolution. The upper 2850 m (back to 31.2 ka BP) have been dated using annual-layer counting. Here we present a chronology for the deep part of the core (67.8-31.2 ka BP), which is based on stratigraphic matching to annual-layer-counted Greenland ice cores using globally well-mixed atmospheric methane. We calculate the WD gas age-ice age difference (Delta age) using a combination of firn densification modeling, ice-flow modeling, and a data set of d15N-N2, a proxy for past firn column thickness. The largest Delta age at WD occurs during the Last Glacial Maximum, and is 525 +/- 120 years. Internally consistent solutions can be found only when assuming little to no influence of impurity content on densification rates, contrary to a recently proposed hypothesis. We synchronize the WD chronology to a linearly scaled version of the layer-counted Greenland Ice Core Chronology (GICC05), which brings the age of Dansgaard-Oeschger (DO) events into agreement with the U/Th absolutely dated Hulu Cave speleothem record. The small Delta age at WD provides valuable opportunities to investigate the timing of atmospheric greenhouse gas variations relative to Antarctic climate, as well as the interhemispheric phasing of the \\\"bipolar seesaw\\\".\n\nWe present the WD2014 chronology for the upper part (0-2850 m; 31.2 ka BP) of the West Antarctic Ice Sheet (WAIS) Divide (WD) ice core. The chronology is based on counting of annual layers observed in the chemical, dust and electrical conductivity records. These layers are caused by seasonal changes in the source, transport, and deposition of aerosols. The measurements were interpreted manually and with the aid of two automated methods. We validated the chronology by comparing to two high-accuracy, absolutely dated chronologies. For the Holocene, the cosmogenic isotope records of 10Be from WAIS Divide and 14C for IntCal13 demonstrated that WD2014 was consistently accurate to better than 0.5% of the age. For the glacial period, comparisons to the Hulu Cave chronology demonstrated that WD2014 had an accuracy of better than 1% of the age at three abrupt climate change events between 27 and 31ka. WD2014 has consistently younger ages than Greenland ice core chronologies during most of the Holocene. For the Younger Dryas-Preboreal transition (11.595 ka; 24 years younger) and the Bolling-Allerod Warming (14.621 ka; 7 years younger), WD2014 ages are within the combined uncertainties of the timescales. Given its high accuracy, WD2014 can become a reference chronology for the Southern Hemisphere, with synchronization to other chronologies feasible using high-quality proxies of volcanism, solar activity, atmospheric mineral dust, and atmospheric methane concentrations.", "east": -112.1115, "geometry": ["POINT(-112.1115 -79.481)"], "keywords": "Antarctica; Depth-Age-Model; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.481, "nsf_funding_programs": null, "persons": "Fudge, T. J.", "project_titles": "Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core", "projects": [{"proj_uid": "p0000026", "repository": "USAP-DC", "title": "Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "WD2014: Timescale for WAIS Divide Core 2006 A (WDC-06A)", "uid": "601015", "west": -112.1115}, {"awards": "0838849 Bender, Michael", "bounds_geometry": ["POLYGON((159.02 -76.67,159.057 -76.67,159.094 -76.67,159.131 -76.67,159.168 -76.67,159.205 -76.67,159.242 -76.67,159.279 -76.67,159.316 -76.67,159.353 -76.67,159.39 -76.67,159.39 -76.687,159.39 -76.704,159.39 -76.721,159.39 -76.738,159.39 -76.755,159.39 -76.772,159.39 -76.789,159.39 -76.806,159.39 -76.823,159.39 -76.84,159.353 -76.84,159.316 -76.84,159.279 -76.84,159.242 -76.84,159.205 -76.84,159.168 -76.84,159.131 -76.84,159.094 -76.84,159.057 -76.84,159.02 -76.84,159.02 -76.823,159.02 -76.806,159.02 -76.789,159.02 -76.772,159.02 -76.755,159.02 -76.738,159.02 -76.721,159.02 -76.704,159.02 -76.687,159.02 -76.67))"], "date_created": "Mon, 27 Mar 2017 00:00:00 GMT", "description": "Measurements of Ar isotopes (40Ar/38Ar/36Ar) and other gas species (18O/16O of O2, 15N/14N of N2, O2/N2 and Ar/N2 ratios) from ice cores drilled in the Allan Hills Blue Ice Area", "east": 159.39, "geometry": ["POINT(159.205 -76.755)"], "keywords": "Allan Hills; Antarctica; Argon; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope", "locations": "Allan Hills; Antarctica", "north": -76.67, "nsf_funding_programs": null, "persons": "Higgins, John", "project_titles": "Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core", "projects": [{"proj_uid": "p0000148", "repository": "USAP-DC", "title": "Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.84, "title": "Gas measurement from Higgins et al., 2015 - PNAS", "uid": "601014", "west": 159.02}, {"awards": "1043167 White, James", "bounds_geometry": ["POINT(-112.08 -79.47)"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public.", "east": -112.08, "geometry": ["POINT(-112.08 -79.47)"], "keywords": "Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; Snow Accumulation; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.47, "nsf_funding_programs": null, "persons": "White, James; Morris, Valerie; Vaughn, Bruce; Jones, Tyler R.", "project_titles": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "projects": [{"proj_uid": "p0000078", "repository": "USAP-DC", "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "uid": "600169", "west": -112.08}, {"awards": "0839031 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(161.71965 -77.76165)"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award supports a project to develop a precise gas-based chronology for an archive of large-volume samples of the ancient atmosphere, which would enable ultra-trace gas measurements that are currently precluded by sample size limitations of ice cores. The intellectual merit of the proposed work is that it will provide a critical test of the \u0027clathrate hypothesis\u0027 that methane clathrates contributed to the two abrupt atmospheric methane concentration increases during the last deglaciation 15 and 11 kyr ago. This approach employs large volumes of ice (\u003e1 ton) to measure carbon-14 on past atmospheric methane across the abrupt events. Carbon-14 is an ideal discriminator of fossil sources of methane to the atmosphere, because most methane sources (e.g., wetlands, termites, biomass burning) are rich in carbon-14, whereas clathrates and other fossil sources are devoid of carbon-14. The proposed work is a logical extension to Taylor Glacier, Antarctica, of an approach pioneered at the margin of the Greenland ice sheet over the past 7 years. The Greenland work found higher-than-expected carbon-14 values, likely due in part to contaminants stemming from the high impurity content of Greenland ice and the interaction of the ice with sediments from the glacier bed. The data also pointed to the possibility of a previously unknown process, in-situ cosmogenic production of carbon-14 methane (radiomethane) in the ice matrix. Antarctic ice in Taylor Glacier is orders of magnitude cleaner than the ice at the Greenland site, and is much colder and less stratigraphically disturbed, offering the potential for a clear resolution of this puzzle and a definitive test of the cosmogenic radiomethane hypothesis. Even if cosmogenic radiomethane in ice is found, it still may be possible to reconstruct atmospheric radiomethane with a correction enabled by a detailed understanding of the process, which will be sought by co-measuring carbon-14 in carbon monoxide and carbon dioxide. The broader impacts of the proposed work are that the clathrate test may shed light on the stability of the clathrate reservoir and its potential for climate feedbacks under human-induced warming. Development of Taylor Glacier as a \u0027horizontal ice core\u0027 would provide a community resource for other researchers. Education of one postdoc, one graduate student, and one undergraduate, would add to human resources. This award has field work in Antarctica.", "east": 161.71965, "geometry": ["POINT(161.71965 -77.76165)"], "keywords": "Antarctica; Cosmogenic; Geochemistry; Ice Core Records; Paleoclimate; Radiocarbon; Taylor Glacier; Transantarctic Mountains", "locations": "Antarctica; Transantarctic Mountains; Taylor Glacier", "north": -77.76165, "nsf_funding_programs": null, "persons": "Severinghaus, Jeffrey P.", "project_titles": "Collaborative Research: A \"Horizontal Ice Core\" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica", "projects": [{"proj_uid": "p0000099", "repository": "USAP-DC", "title": "Collaborative Research: A \"Horizontal Ice Core\" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.76165, "title": "Measurements of in situ cosmogenic 14C from Taylor Glacier, Antarctica", "uid": "600165", "west": 161.71965}, {"awards": "1043145 Obbard, Rachel", "bounds_geometry": ["POLYGON((164.1005 -77.1188,164.36443 -77.1188,164.62836 -77.1188,164.89229 -77.1188,165.15622 -77.1188,165.42015 -77.1188,165.68408 -77.1188,165.94801 -77.1188,166.21194 -77.1188,166.47587 -77.1188,166.7398 -77.1188,166.7398 -77.19337,166.7398 -77.26794,166.7398 -77.34251,166.7398 -77.41708,166.7398 -77.49165,166.7398 -77.56622,166.7398 -77.64079,166.7398 -77.71536,166.7398 -77.78993,166.7398 -77.8645,166.47587 -77.8645,166.21194 -77.8645,165.94801 -77.8645,165.68408 -77.8645,165.42015 -77.8645,165.15622 -77.8645,164.89229 -77.8645,164.62836 -77.8645,164.36443 -77.8645,164.1005 -77.8645,164.1005 -77.78993,164.1005 -77.71536,164.1005 -77.64079,164.1005 -77.56622,164.1005 -77.49165,164.1005 -77.41708,164.1005 -77.34251,164.1005 -77.26794,164.1005 -77.19337,164.1005 -77.1188))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "A range of chemical and microphysical pathways in polar latitudes, including spring time (tropospheric) ozone depletion, oxidative pathways for mercury, and cloud condensation nuclei (CCN) production leading to changes in the cloud cover and attendant surface energy budgets, have been invoked as being dependent upon the emission of halogen gases formed in sea-ice.\nThe prospects for climate warming induced reductions in sea ice extent causing alteration of these incompletely known surface-atmospheric feedbacks and interactions requires confirmation of mechanistic details in both laboratory studies and field campaigns. One such mechanistic question is how bromine (BrO and Br) enriched snow migrates or is formed through processes in sea-ice, prior to its subsequent mobilization as an aerosol fraction into the atmosphere by strong winds. Once aloft, it may react with ozone and other atmospheric species. Dartmouth researchers will collect snow from the surface of sea ice, from freely blowing snow and in sea-ice cores from Cape Byrd, Ross Sea. A range of spectroscopic, microanalytic and and microstructural approaches will be subsequently used to determine the Br distribution gradients through sea-ice, in order to shed light on how sea-ice first forms and then releases bromine species into the polar atmospheric boundary layer.", "east": 166.7398, "geometry": ["POINT(165.42015 -77.49165)"], "keywords": "Atmosphere; Chemistry:ice; Chemistry:Ice; Critical Zone; Crystals; Glaciology; Oceans; Photo/video; Photo/Video; Ross Sea; Sea Ice; Sea Surface; Snow; Southern Ocean", "locations": "Southern Ocean; Sea Surface; Ross Sea", "north": -77.1188, "nsf_funding_programs": null, "persons": "Obbard, Rachel", "project_titles": "Bromide in Snow in the Sea Ice Zone", "projects": [{"proj_uid": "p0000414", "repository": "USAP-DC", "title": "Bromide in Snow in the Sea Ice Zone"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.8645, "title": "Bromide in Snow in the Sea Ice Zone", "uid": "600158", "west": 164.1005}, {"awards": "0230316 White, James", "bounds_geometry": ["POINT(-134.43 -74.04)"], "date_created": "Tue, 24 Nov 2015 00:00:00 GMT", "description": "This data set consists of water isotope ratios from the Mt. Moulton ice-trench record, as well as data from the Taylor Dome, EPICA Dome C, Talos Dome, Vostok, and EPICA Dronning Maud Land ice cores.", "east": -134.43, "geometry": ["POINT(-134.43 -74.04)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Lake Vostok; Mount Moulton; Paleoclimate; Talos Dome; Taylor Dome", "locations": "Lake Vostok; Epica Dome C; Talos Dome; Antarctica; Taylor Dome; Mount Moulton", "north": -74.04, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Steig, Eric J.; White, James; Popp, Trevor", "project_titles": "Collaborative Research: Refining a 500-kry Climate Record From the Moulton Blue Ice Field in West Antarctica", "projects": [{"proj_uid": "p0000755", "repository": "USAP-DC", "title": "Collaborative Research: Refining a 500-kry Climate Record From the Moulton Blue Ice Field in West Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -74.04, "title": "Mount Moulton Isotopes and Other Ice Core Data", "uid": "609640", "west": -134.43}, {"awards": "0944653 Forster, Richard", "bounds_geometry": ["POLYGON((-119.4 -78.1,-118.46 -78.1,-117.52 -78.1,-116.58 -78.1,-115.64 -78.1,-114.7 -78.1,-113.76 -78.1,-112.82 -78.1,-111.88 -78.1,-110.94 -78.1,-110 -78.1,-110 -78.29,-110 -78.48,-110 -78.67,-110 -78.86,-110 -79.05,-110 -79.24,-110 -79.43,-110 -79.62,-110 -79.81,-110 -80,-110.94 -80,-111.88 -80,-112.82 -80,-113.76 -80,-114.7 -80,-115.64 -80,-116.58 -80,-117.52 -80,-118.46 -80,-119.4 -80,-119.4 -79.81,-119.4 -79.62,-119.4 -79.43,-119.4 -79.24,-119.4 -79.05,-119.4 -78.86,-119.4 -78.67,-119.4 -78.48,-119.4 -78.29,-119.4 -78.1))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "This award supports a project to broaden the knowledge of annual accumulation patterns over the West Antarctic Ice Sheet by processing existing near-surface radar data taken on the US ITASE traverse in 2000 and by gathering and validating new ultra/super-high-frequency (UHF) radar images of near surface layers (to depths of ~15 m), expanding abilities to monitor recent annual accumulation patterns from point source ice cores to radar lines. Shallow (15 m) ice cores will be collected in conjunction with UHF radar images to confirm that radar echoed returns correspond with annual layers, and/or sub-annual density changes in the near-surface snow, as determined from ice core stable isotopes. This project will additionally improve accumulation monitoring from space-borne instruments by comparing the spatial-radar-derived-annual accumulation time series to the passive microwave time series dating back over 3 decades and covering most of Antarctica. The intellectual merit of this project is that mapping the spatial and temporal variations in accumulation rates over the Antarctic ice sheet is essential for understanding ice sheet responses to climate forcing. Antarctic precipitation rate is projected to increase up to 20% in the coming century from the predicted warming. Accumulation is a key component for determining ice sheet mass balance and, hence, sea level rise, yet our ability to measure annual accumulation variability over the past 5 decades (satellite era) is mostly limited to point-source ice cores. Developing a radar and ice core derived annual accumulation dataset will provide validation data for space-born remote sensing algorithms, climate models and, additionally, establish accumulation trends. The broader impacts of the project are that it will advance discovery and understanding within the climatology, glaciology and remote sensing communities by verifying the use of UHF radars to monitor annual layers as determined by visual, chemical and isotopic analysis from corresponding shallow ice cores and will provide a dataset of annual to near-annual accumulation measurements over the past ~5 decades across WAIS divide from existing radar data and proposed radar data. By determining if temporal changes in the passive microwave signal are correlated with temporal changes in accumulation will help assess the utility of passive microwave remote sensing to monitor accumulation rates over ice sheets for future decades. The project will promote teaching, training and learning, and increase representation of underrepresented groups by becoming involved in the NASA History of Winter project and Thermochron Mission and by providing K-12 teachers with training to monitor snow accumulation and temperature here in the US, linking polar research to the student\u0027s backyard. The project will train both undergraduate and graduate students in polar research and will encouraging young investigators to become involved in careers in science. In particular, two REU students will participate in original research projects as part of this larger project, from development of a hypothesis to presentation and publication of the results. The support of a new, young woman scientist will help to increase gender diversity in polar research.\n", "east": -110.0, "geometry": ["POINT(-114.7 -79.05)"], "keywords": "Airborne Radar; Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -78.1, "nsf_funding_programs": null, "persons": "Forster, Richard", "project_titles": "Collaborative Research: Annual satellite era accumulation patterns over WAIS Divide: A study using shallow ice cores, near-surface radars and satellites", "projects": [{"proj_uid": "p0000079", "repository": "USAP-DC", "title": "Collaborative Research: Annual satellite era accumulation patterns over WAIS Divide: A study using shallow ice cores, near-surface radars and satellites"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -80.0, "title": "Annual Satellite Era Accumulation Patterns Over WAIS Divide: A Study Using Shallow Ice Cores, Near-Surface Radars and Satellites", "uid": "600146", "west": -119.4}, {"awards": "1141936 Foreman, Christine", "bounds_geometry": ["POINT(112.086 79.468)"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "This award supports a detailed, molecular level characterization of dissolved organic carbon and microbes in Antarctic ice cores. Using the most modern biological (genomic), geochemical techniques, and advanced chemical instrumentation researchers will 1) optimize protocols for collecting, extracting and amplifying DNA from deep ice cores suitable for use in next generation pyrosequencing; 2) determine the microbial diversity within the ice core; and 3) obtain and analyze detailed molecular characterizations of the carbon in the ice by ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS). With this pilot study investigators will be able to quantify the amount of material (microbial biomass and carbon) required to perform these characterizations, which is needed to inform future ice coring projects. The ultimate goal will be to develop protocols that maximize the yield, while minimizing the amount of ice required. The broader impacts include education and outreach at both the local and national levels. As a faculty mentor with the American Indian Research Opportunities and BRIDGES programs at Montana State University, Foreman will serve as a mentor to a Native American student in the lab during the summer months. Susan Kelly is an Education and Outreach Coordinator with a MS degree in Geology and over 10 years of experience in science outreach. She will coordinate efforts for comprehensive educational collaboration with the Hardin School District on the Crow Indian Reservation in South-central Montana.\n", "east": 112.086, "geometry": ["POINT(112.086 79.468)"], "keywords": "Antarctica; Biota; Genetic Sequences; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": 79.468, "nsf_funding_programs": null, "persons": "Foreman, Christine", "project_titles": "Molecular Level Characterization of Dissolved Organic Carbon and Microbial Diversity in the WAIS Divide Replicate Core", "projects": [{"proj_uid": "p0000342", "repository": "USAP-DC", "title": "Molecular Level Characterization of Dissolved Organic Carbon and Microbial Diversity in the WAIS Divide Replicate Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": 79.468, "title": "Molecular Level Characterization of Dissolved Organic Carbon and Microbial Diversity in the WAIS Divide Replicate Core", "uid": "600133", "west": 112.086}, {"awards": "0636731 Bender, Michael", "bounds_geometry": ["POINT(160.35 -77.87)"], "date_created": "Wed, 26 Nov 2014 00:00:00 GMT", "description": "These data describe the analyses of the elemental and isotopic composition of O2, N2, and Ar and total air content made on the trapped air from three shallow ice cores (\u003c34m depth) collected during the 2009 field campaign to Mullins Valley of the Dry Valleys, Antarctica.", "east": 160.35, "geometry": ["POINT(160.35 -77.87)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Dry Valleys; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; Radar Interferometer", "locations": "Dry Valleys; Antarctica", "north": -77.87, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Bender, Michael; Yau, Audrey M.", "project_titles": "Collaborative Research: Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica", "projects": [{"proj_uid": "p0000039", "repository": "USAP-DC", "title": "Collaborative Research: Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.87, "title": "Measurements of Trapped Air from Mullins Valley, Dry Valleys, Antarctica", "uid": "609597", "west": 160.35}, {"awards": "0636953 Saltzman, Eric", "bounds_geometry": ["POINT(158.43 -77.48)"], "date_created": "Wed, 10 Sep 2014 00:00:00 GMT", "description": "This data set includes methyl chloride (CH\u003csub\u003e3\u003c/sub\u003eCI) measurements made on air extracted from 62 samples from the Taylor Dome M3C1 ice core in East Antarctica. CH\u003csub\u003e3\u003c/sub\u003eCI was measured in air from the Taylor Dome ice core to reconstruct an atmospheric record for the Holocene (11-0 kyr B.P.) and part of the last glacial period (50-30 kyr B.P.).", "east": 158.43, "geometry": ["POINT(158.43 -77.48)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Taylor Dome; Taylor Dome Ice Core", "locations": "Antarctica; Taylor Dome", "north": -77.48, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Saltzman, Eric; Aydin, Murat", "project_titles": "Methyl Chloride, Methyl Bromide, and Carbonyl Sulfide in Deep Antarctic Ice Cores", "projects": [{"proj_uid": "p0000042", "repository": "USAP-DC", "title": "Methyl Chloride, Methyl Bromide, and Carbonyl Sulfide in Deep Antarctic Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": -77.48, "title": "Methyl Chloride Measurements in the Taylor Dome M3C1 Ice Core", "uid": "609600", "west": 158.43}, {"awards": "0636953 Saltzman, Eric", "bounds_geometry": ["POINT(157.4 -77.44)"], "date_created": "Wed, 10 Sep 2014 00:00:00 GMT", "description": "The data set includes methyl bromide (CH3Br) measurements made on air extracted from 70 samples from the Taylor Dome M3C1 ice core. CH3Br was measured in air from the Taylor Dome ice core to reconstruct an atmospheric record for the Holocene (11-0 kyr B.P.) and part of the last glacial period (50-30 kyr B.P.).", "east": 157.4, "geometry": ["POINT(157.4 -77.44)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Taylor Dome; Taylor Dome Ice Core", "locations": "Antarctica; Taylor Dome", "north": -77.44, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Saltzman, Eric; Aydin, Murat", "project_titles": "Methyl Chloride, Methyl Bromide, and Carbonyl Sulfide in Deep Antarctic Ice Cores", "projects": [{"proj_uid": "p0000042", "repository": "USAP-DC", "title": "Methyl Chloride, Methyl Bromide, and Carbonyl Sulfide in Deep Antarctic Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": -77.44, "title": "Methyl Bromide Measurements in the Taylor Dome M3C1 Ice Core", "uid": "609598", "west": 157.4}, {"awards": "0944584 Sowers, Todd; 0538538 Sowers, Todd; 0538578 Brook, Edward J.", "bounds_geometry": ["POINT(-112.0865 -79.4676)", "POINT(-38.5 72.6)"], "date_created": "Fri, 31 Jan 2014 00:00:00 GMT", "description": "This data set measures methane concentrations in ancient air trapped in the West Antarctic Ice Sheet (WAIS) Divide and Greenland Ice Sheet Project (GISP2) ice cores; presenting two, high-resolution ice core methane records of the past 2500 years, one from each pole. These measurements were used to reconstruct the methane Inter-Polar Difference (IPD) during the late Holocene. Also included are model results of methane emissions that were presented in the manuscript describing this data set.", "east": -38.5, "geometry": ["POINT(-112.0865 -79.4676)", "POINT(-38.5 72.6)"], "keywords": "Antarctica; Arctic; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "locations": "Arctic; WAIS Divide; Antarctica", "north": 72.6, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Mitchell, Logan E", "project_titles": "Collaborative Research: Constructing an Ultra-high Resolution Atmospheric Methane Record for the Last 140,000 Years from WAIS Divide Core.", "projects": [{"proj_uid": "p0000025", "repository": "USAP-DC", "title": "Collaborative Research: Constructing an Ultra-high Resolution Atmospheric Methane Record for the Last 140,000 Years from WAIS Divide Core."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.4676, "title": "Late Holocene Methane Concentrations from WAIS Divide and GISP2", "uid": "609586", "west": -112.0865}, {"awards": "0538553 Cole-Dai, Jihong", "bounds_geometry": ["POINT(-112 -79.5)"], "date_created": "Wed, 08 Jan 2014 00:00:00 GMT", "description": "This data set contains major ion concentrations from the chemical analysis of two WAIS Divide ice cores (WDC05Q, 0-114 m; WDC06A, 0-129 m). The analytical technique is Mettler-based Continuous Flow Analysis with online Ion Chromatography detection (CFA-IC). Depth resolution is approximately 2 cm per sample or per measurement.", "east": -112.0, "geometry": ["POINT(-112 -79.5)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ion Chromatograph; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.5, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Cole-Dai, Jihong", "project_titles": "Major Ion Chemistry of WAIS Divide Ice Core", "projects": [{"proj_uid": "p0000035", "repository": "USAP-DC", "title": "Major Ion Chemistry of WAIS Divide Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.5, "title": "Major Ion Concentrations in WDC05Q and WDC06A Ice Cores (WAIS Divide)", "uid": "609544", "west": -112.0}, {"awards": "0838849 Bender, Michael", "bounds_geometry": ["POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "This award supports a project to generate an absolute timescale for the Allan Hills Blue Ice Area (BIA), and then to reconstruct details of past climate changes and greenhouse gas concentrations for certain time periods back to 2.5 Ma. Ice ages will be determined by applying emerging methods for absolute and relative dating of trapped air bubbles (based on Argon-40/Argon-38, delta-18O of O2, and the O2/N2 ratio). To demonstrate the potential of the Allan Hills BIAs as a paleoclimate archive trenches and ice cores will be collected for age intervals corresponding to 110-140 ka, 1 Ma, and 2.5 Ma. During the proposed two field seasons a total of 6x100 m and additional 15 m cores will be combined with trenching. The intellectual merit of the proposed activity is that the results of this work will extend the landmark work of EPICA and other deep ice coring efforts, which give records dating back to 0.8 Ma, and will complement work planned by IPICS to drill a continuous Antarctic ice core extending to 1.5 Ma. The results will help to advance understanding of major climate regimes and transitions that took place between 0-2.5 Ma, including the 40 kyr world and the mid-Pleistocene climate transition. A major long-term scientific goal is to provide a transformative approach to the collection of paleoclimate records by establishing an \u0027International Climate Park\u0027 in the Allan Hills BIA that would enable sampling of large quantities of known age ice as old as 2.5 Ma, by any interested American or foreign investigator. The broader impacts resulting from the proposed activity include training students who are well versed in advanced field, laboratory and numerical modeling methods combining geochemistry, glaciology, and paleoclimatology. We will include material relevant to our proposed research in our ongoing efforts in local education and in our outreach efforts for media. The University of Maine already has cyberinfrastructure, using state of the art web-based technology, which can provide a wide community of scientists with fast access to the results of our research. The work will contribute to the broad array of climate change studies that is informing worldwide understanding of natural and anthropogenic forced climate change, and the options for responding. This award has field work in Antarctica.\n", "east": 159.41667, "geometry": ["POINT(159.29167 -76.7)"], "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Ice Core Records; Paleoclimate; Solid Earth", "locations": "Allan Hills; Antarctica", "north": -76.66667, "nsf_funding_programs": null, "persons": "Bender, Michael", "project_titles": "Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "projects": [{"proj_uid": "p0000046", "repository": "USAP-DC", "title": "Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73333, "title": "Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "uid": "600099", "west": 159.16667}, {"awards": "0337933 Cole-Dai, Jihong", "bounds_geometry": ["POINT(0 -90)"], "date_created": "Tue, 19 Nov 2013 00:00:00 GMT", "description": "A 180 m ice core drilled at South Pole in 2004/2005 was analyzed for concentrations of major ions at a depth resolution of approximately 2 cm. Measured ions are chloride, nitrate, sulfate, sodium, potassium, magnesium and calcium. The bottom of the core has been dated to 1830 years before 2004.", "east": 0.0, "geometry": ["POINT(0 -90)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ion Chromatograph; South Pole", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Cole-Dai, Jihong", "project_titles": "Collaborative Research: Investigating Atmospheric Chemistry and Dynamics through Oxygen and Sulfur Isotopes in Volcanic Sulfate from South Pole Ice Cores", "projects": [{"proj_uid": "p0000031", "repository": "USAP-DC", "title": "Collaborative Research: Investigating Atmospheric Chemistry and Dynamics through Oxygen and Sulfur Isotopes in Volcanic Sulfate from South Pole Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Major Ion Concentrations in 2004 South Pole Ice Core", "uid": "609542", "west": 0.0}, {"awards": "9725057 Mayewski, Paul; 0837883 Mayewski, Paul", "bounds_geometry": ["POLYGON((-76.1 -77.68,-53.253 -77.68,-30.406 -77.68,-7.559 -77.68,15.288 -77.68,38.135 -77.68,60.982 -77.68,83.829 -77.68,106.676 -77.68,129.523 -77.68,152.37 -77.68,152.37 -78.912,152.37 -80.144,152.37 -81.376,152.37 -82.608,152.37 -83.84,152.37 -85.072,152.37 -86.304,152.37 -87.536,152.37 -88.768,152.37 -90,129.523 -90,106.676 -90,83.829 -90,60.982 -90,38.135 -90,15.288 -90,-7.559 -90,-30.406 -90,-53.253 -90,-76.1 -90,-76.1 -88.768,-76.1 -87.536,-76.1 -86.304,-76.1 -85.072,-76.1 -83.84,-76.1 -82.608,-76.1 -81.376,-76.1 -80.144,-76.1 -78.912,-76.1 -77.68))"], "date_created": "Thu, 11 Jul 2013 00:00:00 GMT", "description": "This data set contains sub-annually resolved ice core chemistry data from various sites on the Antarctic Ice Sheet during the US International Trans-Antarctic Scientific Expedition (US ITASE) deployments. Researchers conducted experiments approximately every 30 - 300 km looking for clues representing climatic conditions over the past 200-1000+ years. Ice cores obtained for the glaciochemical component of the US ITASE research were analyzed for soluble major ion content and in some cases trace elements. Extreme events, such as volcanic eruptions, provide absolute age horizons within each core that are easily identified in chemical profiles. Our chemical analysis is also useful for quantifying anthropogenic impact, biogeochemical cycling, and for reconstructing past atmospheric circulation patterns.", "east": 152.37, "geometry": ["POINT(38.135 -83.84)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; ITASE; Paleoclimate; Solid Earth; WAIS", "locations": "WAIS; Antarctica", "north": -77.68, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Dixon, Daniel A.; Mayewski, Paul A.", "project_titles": "Science Management for the United States Component of the International Trans-Antarctic Expedition", "projects": [{"proj_uid": "p0000221", "repository": "USAP-DC", "title": "Science Management for the United States Component of the International Trans-Antarctic Expedition"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "US International Trans-Antarctic Scientific Expedition (US ITASE) Glaciochemical Data", "uid": "609273", "west": -76.1}, {"awards": "0837988 Steig, Eric", "bounds_geometry": ["POLYGON((-180 -65,-144 -65,-108 -65,-72 -65,-36 -65,0 -65,36 -65,72 -65,108 -65,144 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.5,-180 -85,-180 -82.5,-180 -80,-180 -77.5,-180 -75,-180 -72.5,-180 -70,-180 -67.5,-180 -65))"], "date_created": "Wed, 13 Mar 2013 00:00:00 GMT", "description": "This data set includes ice core water isotope data from Antarctic ice cores covering the last 200 to 2000 years.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; WAIS Divide", "locations": "WAIS Divide; Antarctica", "north": -65.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Steig, Eric J.", "project_titles": "Collaborative Research: Antarctic Climate Reconstruction Utilizing the US ITASE Ice Core Array (2009- 2012)", "projects": [{"proj_uid": "p0000180", "repository": "USAP-DC", "title": "Collaborative Research: Antarctic Climate Reconstruction Utilizing the US ITASE Ice Core Array (2009- 2012)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "West Antarctica Ice Core and Climate Model Data", "uid": "609536", "west": -180.0}, {"awards": "0738975 Baker, Ian", "bounds_geometry": ["POINT(-148.82 -81.66)"], "date_created": "Mon, 26 Nov 2012 00:00:00 GMT", "description": "This data set characterizes the microstructure in ice cores, in particular the microstructural locations of impurities, grain orientations, and strain gradients. The fabric of polycrystalline ice is typically described using only the c-axis orientation, but this is insufficient for a full description of grain orientations in this hexagonal material. Thus, both the a-axis and c-axis are used in this data set showing pole figures for five depths of the Siple Dome (SDMA) core between 640 m and 790 m and misorientation angle distribution for the same grains.", "east": -148.82, "geometry": ["POINT(-148.82 -81.66)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Sample/collection Description; Sample/Collection Description; Siple Dome; Siple Dome Ice Core; South Pole; WAISCORES", "locations": "Siple Dome; Antarctica; South Pole", "north": -81.66, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Baker, Ian; Obbard, Rachel; Sieg, Katherine", "project_titles": "Advanced Microstructural Characterization of Polar Ice Cores", "projects": [{"proj_uid": "p0000178", "repository": "USAP-DC", "title": "Advanced Microstructural Characterization of Polar Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.66, "title": "Siple Dome A (SDMA) Grain Orientation 640 - 790 Meters", "uid": "609526", "west": -148.82}, {"awards": "0538416 McConnell, Joseph", "bounds_geometry": ["POLYGON((-54.9 -73.7,-49.57 -73.7,-44.24 -73.7,-38.91 -73.7,-33.58 -73.7,-28.25 -73.7,-22.92 -73.7,-17.59 -73.7,-12.26 -73.7,-6.93 -73.7,-1.6 -73.7,-1.6 -74.61,-1.6 -75.52,-1.6 -76.43,-1.6 -77.34,-1.6 -78.25,-1.6 -79.16,-1.6 -80.07,-1.6 -80.98,-1.6 -81.89,-1.6 -82.8,-6.93 -82.8,-12.26 -82.8,-17.59 -82.8,-22.92 -82.8,-28.25 -82.8,-33.58 -82.8,-38.91 -82.8,-44.24 -82.8,-49.57 -82.8,-54.9 -82.8,-54.9 -81.89,-54.9 -80.98,-54.9 -80.07,-54.9 -79.16,-54.9 -78.25,-54.9 -77.34,-54.9 -76.43,-54.9 -75.52,-54.9 -74.61,-54.9 -73.7))"], "date_created": "Wed, 08 Aug 2012 00:00:00 GMT", "description": "This data set consists of sodium (Na) and magnesium (Mg) concentrations versus depth in seven ice cores that were obtained by the Norwegian-U.S. Scientific Traverse of East Antarctica during the International Polar Year (IPY) 2007-2009. Additional glaciochemical analyses and a final depth-age scale will be added as these data become available.\n\nData are available via FTP.", "east": -1.6, "geometry": ["POINT(-28.25 -78.25)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; East Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records", "locations": "Antarctica; East Antarctica", "north": -73.7, "nsf_funding_programs": "Antarctic Glaciology", "persons": "McConnell, Joseph", "project_titles": "Collaborative Research: Norwegian-United States IPY Scientific Traverse: Climate Variability and Glaciology in East Antarctica", "projects": [{"proj_uid": "p0000095", "repository": "USAP-DC", "title": "Collaborative Research: Norwegian-United States IPY Scientific Traverse: Climate Variability and Glaciology in East Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.8, "title": "Ice Core Chemistry from the Norwegian-U.S. Scientific Traverse of East Antarctica, IPY 2007-2009", "uid": "609520", "west": -54.9}, {"awards": "9980379 Baker, Ian; 0440523 Baker, Ian", "bounds_geometry": ["POINT(-119.516667 -80.016667)", "POINT(-38.466667 72.583333)", "POINT(106.8 -72.466667)"], "date_created": "Mon, 15 Feb 2010 00:00:00 GMT", "description": "This data set contains measurements of impurities and ions in three polar ice cores: the Vostok 5G ice core and the Byrd ice core from Antarctica, and the Greenland Ice Sheet Project 2 (GISP2) D core. Parameters include sample depth, grain size, ion concentration, and ice core impurity information. Measurements were made using Ion Chromatography (IC), optical microscopy, and Scanning Electron Microscope-Energy Dispersive Spectroscopy (SEM/EDS). \n\nData are available via FTP in Microsoft Excel (.xls)and Microsoft Word (.doc) formats.", "east": 106.8, "geometry": ["POINT(-119.516667 -80.016667)", "POINT(-38.466667 72.583333)", "POINT(106.8 -72.466667)"], "keywords": "Antarctica; Arctic; Byrd Glacier; Byrd Ice Core; Chemistry:ice; Chemistry:Ice; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Lake Vostok; Paleoclimate; Vostok Ice Core", "locations": "Lake Vostok; Byrd Glacier; Antarctica; Arctic", "north": 72.583333, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Baker, Ian; Obbard, Rachel", "project_titles": "The Physical Properties of the US ITASE Firn and Ice Cores from South Pole to Taylor Dome", "projects": [{"proj_uid": "p0000289", "repository": "USAP-DC", "title": "The Physical Properties of the US ITASE Firn and Ice Cores from South Pole to Taylor Dome"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.016667, "title": "Microstructural Location and Composition of Impurities in Polar Ice Cores", "uid": "609436", "west": -119.516667}, {"awards": "0520523 Brook, Edward J.", "bounds_geometry": ["POINT(-148.81 -81.65)", "POINT(-38.466667 73.583333)"], "date_created": "Wed, 09 Dec 2009 00:00:00 GMT", "description": "This data set contains methane measurements made in trapped air in the Holocene sections of two ice cores: the Siple Dome ice core in Antarctica, and the Greenland Ice Sheet Project 2 (GISP2) ice core in Greenland. The measurements were made at Oregon State University between 2007 and 2009. Measurements were made relative to the NOAA04 methane concentration scale using a working standard internally calibrated to NOAA certified air standards. Concentrations are corrected for gravitational fractionation and solubility effects in the melt-refreeze extraction. Data are available via FTP in Microsoft Excel (.xls) format.", "east": -38.466667, "geometry": ["POINT(-148.81 -81.65)", "POINT(-38.466667 73.583333)"], "keywords": "Antarctica; Arctic; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "locations": "Antarctica; Siple Dome; Arctic", "north": 73.583333, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Brook, Edward J.", "project_titles": "Collaborative Research: New insights into the Holocene methane budget from dual isotope systematics and a high resolution record of the interpolar gradient", "projects": [{"proj_uid": "p0000131", "repository": "USAP-DC", "title": "Collaborative Research: New insights into the Holocene methane budget from dual isotope systematics and a high resolution record of the interpolar gradient"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.65, "title": "Methane Measurements from the GISP2 and Siple Dome Ice Cores", "uid": "609440", "west": -148.81}, {"awards": "0440414 Steig, Eric; 0196105 Steig, Eric", "bounds_geometry": ["POLYGON((-130 -65,-125.8 -65,-121.6 -65,-117.4 -65,-113.2 -65,-109 -65,-104.8 -65,-100.6 -65,-96.4 -65,-92.2 -65,-88 -65,-88 -67.5,-88 -70,-88 -72.5,-88 -75,-88 -77.5,-88 -80,-88 -82.5,-88 -85,-88 -87.5,-88 -90,-92.2 -90,-96.4 -90,-100.6 -90,-104.8 -90,-109 -90,-113.2 -90,-117.4 -90,-121.6 -90,-125.8 -90,-130 -90,-130 -87.5,-130 -85,-130 -82.5,-130 -80,-130 -77.5,-130 -75,-130 -72.5,-130 -70,-130 -67.5,-130 -65))"], "date_created": "Thu, 01 Oct 2009 00:00:00 GMT", "description": "This data set includes stable isotope measurements from snow pits, firn, and ice cores collected by the the US component of the International Trans-Antarctic Scientific Expedition ( ITASE). The ITASE program aims to collect and interpret a continental-wide array of environmental parameters assembled through the coordinated efforts of scientists from several nations.\n\nThese data were collected between 1999 and 2007. The data have been compiled into single files for each sampling site, though in some cases a file contains data from more than one ice core or snow pit. Each file in the data set includes deuterium/hydrogen (\u0026#948;D) and/or 18-oxygen/16-oxygen (\u0026#948;18O) ratios, depths, and in some cases ice age or other information. Further details regarding the data are provided in each data file. Data are available via FTP in ASCII text format (.txt). Data were collected during five Antarctic field seasons from 1999 to 2007. Data from 1999 to 2002 are currently available. Data from 2003 to 2007 will be added in the future.", "east": -88.0, "geometry": ["POINT(-109 -77.5)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; ITASE; Paleoclimate; WAIS", "locations": "Antarctica; WAIS", "north": -65.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Steig, Eric J.", "project_titles": "Stable Isotope Studies at West Antarctic ITASE Sites", "projects": [{"proj_uid": "p0000013", "repository": "USAP-DC", "title": "Stable Isotope Studies at West Antarctic ITASE Sites"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "US ITASE Stable Isotope Data, Antarctica", "uid": "609425", "west": -130.0}, {"awards": "0440975 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(-119.533333 -80.016667)"], "date_created": "Fri, 17 Jul 2009 00:00:00 GMT", "description": "This data set consists of Gas-isotopic data from the Siple Dome and and Greenland Ice Sheet Project 2 (GISP2) ice cores covering roughly the last 100,000 years (100 ka), consisting of d15N (15N/14N) of N2, d18O (18O/16O) of O2, dO2/N2, and dAr/N2. Derived parameters include d18Oatm, d15N, dO2/N2, and dAr/N2. \n\nData are available via FTP as ASCII text files (.txt) and Microsoft Excel files (.xls).", "east": -119.533333, "geometry": ["POINT(-119.533333 -80.016667)"], "keywords": "Antarctica; Arctic; Atmosphere; Byrd Glacier; Byrd Ice Core; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; Siple Dome; Siple Dome Ice Core", "locations": "Antarctica; Arctic; Siple Dome; Byrd Glacier", "north": -80.016667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.", "project_titles": "Nitrogen and oxygen gas isotopes in the Siple Dome and Byrd ice cores", "projects": [{"proj_uid": "p0000450", "repository": "USAP-DC", "title": "Nitrogen and oxygen gas isotopes in the Siple Dome and Byrd ice cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -80.016667, "title": "Nitrogen and Oxygen Gas Isotopes in the Siple Dome and Byrd Ice Cores, Antarctica", "uid": "609407", "west": -119.533333}, {"awards": "0228052 Kreutz, Karl", "bounds_geometry": ["POLYGON((161.04 -77.3,161.239 -77.3,161.438 -77.3,161.637 -77.3,161.836 -77.3,162.035 -77.3,162.234 -77.3,162.433 -77.3,162.632 -77.3,162.831 -77.3,163.03 -77.3,163.03 -77.378,163.03 -77.456,163.03 -77.534,163.03 -77.612,163.03 -77.69,163.03 -77.768,163.03 -77.846,163.03 -77.924,163.03 -78.002,163.03 -78.08,162.831 -78.08,162.632 -78.08,162.433 -78.08,162.234 -78.08,162.035 -78.08,161.836 -78.08,161.637 -78.08,161.438 -78.08,161.239 -78.08,161.04 -78.08,161.04 -78.002,161.04 -77.924,161.04 -77.846,161.04 -77.768,161.04 -77.69,161.04 -77.612,161.04 -77.534,161.04 -77.456,161.04 -77.378,161.04 -77.3))"], "date_created": "Wed, 01 Jul 2009 00:00:00 GMT", "description": "This data set includes high-resolution ice core records from the Dry Valleys region of Antarctica, and provides interpretations of interannual to decadal-scale climate variability during the last 2000 years (late Holocene). Intermediate-length ice cores (100 to 200 meters) were drilled at four sites along transects in the Taylor and Wright valleys, and analyzed for stable isotopes and major ions. The data set includes high-resolution ice core data for each study site. It also includes mass balance, borehole temperature, and snowpit data for each site, and Global Positioning System (GPS) velocity data for some of the sites. Snow pit data from three additional sites in the same region is also available. Data are available via FTP, in Microsoft Excel (.xls), ASCII text (.txt), and Microsoft Word (.doc) file formats.", "east": 163.03, "geometry": ["POINT(162.035 -77.69)"], "keywords": "Antarctica; Borehole Temperature; Chemistry:ice; Chemistry:Ice; Dry Valleys; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Mass Balance; Paleoclimate; Physical Properties", "locations": "Dry Valleys; Antarctica", "north": -77.3, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Kreutz, Karl; Mayewski, Paul A.", "project_titles": "Dry Valleys Late Holocene Climate Variability", "projects": [{"proj_uid": "p0000155", "repository": "USAP-DC", "title": "Dry Valleys Late Holocene Climate Variability"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.08, "title": "Late Holocene Climate Variability, Dry Valleys, Antarctica", "uid": "609399", "west": 161.04}, {"awards": "0440414 Steig, Eric", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This award supports a project to obtain stable isotope profiles from shallow (\u003c100 m) ice cores from East Antarctica, to add to the growing database of environmental proxy data collected under the auspices of the \"ITASE\" (International TransAntarctic Scientific Expedition) program. In Antarctica, the instrumental record of climate is particularly short (~40 years except in a few isolated locations on the coast), and ice core proxy data are the only means available for extending this record into the past. The use of stable isotopes of water (18-O/16-O and D/H ratios) from ice cores as proxies for temperature is well established for both very short (i.e. seasonal) and long timescales (centuries, millennia). Using multivariate regression methods and shallow ice cores from West Antarctica, a reconstruction of Antarctic climate over the last ~150 years has been developed which suggests the continent has been warming, on average, at a rate of ~0.2 K/century. Further improving these reconstructions is the chief motivation for further extending the US ITASE project. Ten to fifteen shallow (~100 m) from Victoria Land, East Antarctica will be obtained and analyzed. The core will be collected along a traverse route beginning at Taylor Dome and ending at the South Pole. Age-depth relationships for the cores will be determined through a combination of stable isotopes, visual stratigraphy and seasonal chemical signatures and marker horizons. Reconstructions of Antarctic climate obtained from these cores will be incorporated into the global network of paleoclimate information, which has been important in science, policy and educational contexts. The project will include graduate student and postdoctoral training and field experience.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Atmosphere; Climate; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; ITASE; Meteorology; Paleoclimate; Satellite Remote Sensing; Weather Station Data", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Steig, Eric J.", "project_titles": "Stable Isotope Studies at East Antarctic US ITASE Sites", "projects": [{"proj_uid": "p0000202", "repository": "USAP-DC", "title": "Stable Isotope Studies at East Antarctic US ITASE Sites"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "Stable Isotope Studies at East Antarctic US ITASE Sites", "uid": "600042", "west": -180.0}, {"awards": "0538683 Lal, Devendra", "bounds_geometry": ["POINT(-180 -90)"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "The principal aim of this research is to determine the precise manner in which solar activity has varied in the past 1000 years. During this period, four periods of very low solar activity have been identified: Wolf (1305-1345 AD), Spoerer (1418-1540 AD), Maunder (1645-1715), and one period of high solar activity (1100-1250 A.D.) have been deduced based on available historical records of sunspot numbers and aurora. Our proposal aims to study the solar activity during the past 1000 years in detail using a new method, based on studies of polar ice, as developed earlier (Earth and Planetary Science Letters, 234, 335-349, 2005). The method is based on the fact that greater solar activity leads to production of greater magnetic fields in the heliosphere, which reduces the primary cosmic ray flux in the near Earth environment, and vice-versa. Consequently if one can measure the primary cosmic ray flux in the near Earth space, it becomes a direct measure of the solar activity. Lal et al. (Earth and Planetary Science Letters, 234, 335-349, 2005) concluded that the best way of measuring the primary cosmic ray flux would be to measure the concentration of cosmogenic in-situ produced 14C in polar ice sheets, which was discovered by Lal et al. (Nature 346, 350-352, 1990). Following this idea Lal et al. (op. cit.) measured cosmogenic in-situ produced in 19 samples from the GISP 2 core covering time range of 375-31,250 yrs B.P. Their studies showed that there were two periods of very low solar activity in this time bracket (during 8500-9500 B.P and 27,000-32,000 B.P.), and one high solar activity period during 12,000-16,000 yrs B.P. In order to provide an independent check on the veracity of the new method, we decided to apply it to the historical period, \u003c 1000 yrs B.P. The inferred Solar activities based on the study of cosmogenic in-situ produced 14C in South Pole ice samples clearly establish that there was a period of high Solar activity during 1100-1250 A.D., and a period of very low solar activity during 1416-1534 A.D, designated as the Spoerer Minimum. These results however do not confirm the proposed dates for the Dalton and the Maunder Minimum periods, predicted to be 1795-1825 A.D. and 1654-1714 A.D. respectively. Instead, our studies show that there was a long duration period of low solar activity during 1750-1860 A.D. These results make it quite clear that we should carry out more studies to fully establish the temporal behavior of the Solar activity in the past 1000 yrs.", "east": -180.0, "geometry": ["POINT(-180 -90)"], "keywords": "Antarctica; Carbon-14; Cosmos; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Solar Activity; South Pole", "locations": "South Pole; Antarctica", "north": -90.0, "nsf_funding_programs": null, "persons": "Lal, Devendra", "project_titles": "Solar Activity during the Last Millennium, Estimated from Cosmogenic in-situ 14C in South Pole and GISP2 Ice Cores", "projects": [{"proj_uid": "p0000555", "repository": "USAP-DC", "title": "Solar Activity during the Last Millennium, Estimated from Cosmogenic in-situ 14C in South Pole and GISP2 Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Solar activity during the last millennium, estimated from cosmogenic in-situ C14 in South Pole and GISP2 ice cores", "uid": "600058", "west": -180.0}, {"awards": "0126057 Brook, Edward J.", "bounds_geometry": ["POINT(-38.466667 72.5833333)"], "date_created": "Tue, 16 Dec 2008 00:00:00 GMT", "description": "Ice Core Interplanetary Dust Helium Isotope Data Helium isotope data from Ice Cores at GISP2 (Greenland) and Vostok (Antarctica) as a proxy for extraterrestrial dust flux.\n", "east": -38.466667, "geometry": ["POINT(-38.466667 72.5833333)"], "keywords": "Antarctica; Arctic; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Lake Vostok; Paleoclimate; Vostok Ice Core", "locations": "Antarctica; Arctic; Lake Vostok", "north": 72.5833333, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Brook, Edward J.; Kurz, Mark D.", "project_titles": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change", "projects": [{"proj_uid": "p0000034", "repository": "USAP-DC", "title": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": 72.5833333, "title": "GISP2 (D Core) Helium Isotopes from Interplanetary Dust", "uid": "609361", "west": -38.466667}, {"awards": "0126057 Brook, Edward J.", "bounds_geometry": ["POINT(-38.466667 72.5833333)"], "date_created": "Tue, 16 Dec 2008 00:00:00 GMT", "description": "This ice core data is archived at the World Data Center for Paleoclimatology and is available through the Ice Core Data Gateway. The data includes methane data from the Greenland Ice Sheet Project 2 (GISP2). GISP2 is an ice core project that drilled through the Greenland ice sheet and 1.55 meters into bedrock. The ice core is 3053.44 meters in depth, the deepest ice core recovered in the world at the time. The ice core was completed in 1993 after five years of drilling.\n\nMethane concentrations were determined by GC-FID using standards calibrated by NOAA CMDL. \t\t\t\t\t\nThe gas age time scales and analytical techniques are described in further detail in the publication.", "east": -38.466667, "geometry": ["POINT(-38.466667 72.5833333)"], "keywords": "Antarctica; Arctic; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Methane; Paleoclimate; Taylor Dome", "locations": "Antarctica; Arctic; Taylor Dome", "north": 72.5833333, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Brook, Edward J.", "project_titles": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change", "projects": [{"proj_uid": "p0000034", "repository": "USAP-DC", "title": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": 72.5833333, "title": "GISP2 (D Core) Methane Concentration Data", "uid": "609360", "west": -38.466667}, {"awards": "0636953 Saltzman, Eric", "bounds_geometry": ["POINT(-148.82 -81.66)"], "date_created": "Wed, 22 Oct 2008 00:00:00 GMT", "description": "This data set is an analysis of methyl chloride concentration measured in air extracted from ice core samples from the Siple Dome A deep core in West Antarctica. In total, forty six (46) ice samples, approximately 10-15 cm in length, were analyzed in this study. Data are available in Microsoft Excel format and are available via FTP.", "east": -148.82, "geometry": ["POINT(-148.82 -81.66)"], "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "locations": "Antarctica; Siple Dome", "north": -81.66, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Saltzman, Eric; Aydin, Murat; Williams, Margaret", "project_titles": "Methyl Chloride, Methyl Bromide, and Carbonyl Sulfide in Deep Antarctic Ice Cores", "projects": [{"proj_uid": "p0000042", "repository": "USAP-DC", "title": "Methyl Chloride, Methyl Bromide, and Carbonyl Sulfide in Deep Antarctic Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.66, "title": "Methyl Chloride Measurements from the Siple Dome A Deep Core, Antarctica", "uid": "609356", "west": -148.82}, {"awards": "0536870 Rogers, Scott", "bounds_geometry": ["POINT(106.8 -72.4667)"], "date_created": "Tue, 01 Jan 2008 00:00:00 GMT", "description": "The large subglacial Lake Vostok in Antarctica is unique ecological site with a novel microbial biota. The temperatures, pressures and lack of light all select for organisms that may not exist anywhere else on Earth. The accretion ice (lake water frozen to the bottom of the lower surface of the glacier) has preserved microbial samples from each region of Lake Vostok as the glacier passes over and into the lake. Thus, without contaminating the lake with microorganisms from the surface, microbes originating from the lake can be collected, transported to the laboratory and studied. Two of the deepest ice cores sections in this project are part of the international allocation. \n\nThe will be shared between four researchers (Sergey Bulat from Russia, Jean-Robert Petit and Daniel Prieur from France, Scott Rogers from USA). The United States team will study, isolate, and characterize bacteria, fungi, and viruses that have been sampled from the lake through the process of ice accretion to the lower surface of 3500+m thick glacier overriding the lake. The project will involve a suite of methods, including molecular, morphological, and cultural. This includes observation and description by fluorescence, light, and electron microscopy, isolation on thirteen separate cultural media, polymerase chain reaction amplification, DNA sequencing, and phylogenetic analyses. Eleven accretion ice core sections, as well as two glacial ice core sections. As well as two glacial ice core sections will be studied. The accretion ice core sections, as well as two glacial ice core sections will be studied. The accretion ice core sections represent all of the major regions of the lake that have been sampled by the accretion process in the vicinity of the Vostok 5G ice core. The broader impacts of the work relate to the impact the results will have on the filed. These long=isolated lakes, deep below the Antarctic ice sheet may contain novel uniquely adapted organisms. Glacial ice contains an enormous diversity of entrapped microbes, some of which may be metabolically active in the ice. The microbes from Lake Vostok are of special interest, since they are adapted to cold, dark, and high pressure. Thus, their enzyme systems and biochemical pathways may be significantly different from those in the microbes that are the subject of current studies. As such, these organisms may form compounds that may have useful applications. Also, study of the accretion ice, and eventually the water, from Lake Vostok will provide a basis for the study of other subglacial lakes. Additionally, study of the microbes in the accretion ice will be useful to those planning to study analogous systems on ice-covered planets and moons.", "east": 106.8, "geometry": ["POINT(106.8 -72.4667)"], "keywords": "Antarctica; Biota; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hydrothermal Vent; Lake Vostok; Microbes; Subglacial Lake", "locations": "Lake Vostok; Antarctica", "north": -72.4667, "nsf_funding_programs": null, "persons": "Rogers, Scott O.", "project_titles": "Comprehensive Biological Study of Vostok Accretion Ice", "projects": [{"proj_uid": "p0000566", "repository": "USAP-DC", "title": "Comprehensive Biological Study of Vostok Accretion Ice"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -72.4667, "title": "Comprehensive Biological Study of Vostok Accretion Ice", "uid": "600052", "west": 106.8}, {"awards": "0338359 Saltzman, Eric", "bounds_geometry": ["POINT(-144.39 -89.93)"], "date_created": "Sat, 10 Nov 2007 00:00:00 GMT", "description": "This data set is an analysis of methyl chloride (CH3Cl) and methyl bromide (CH3Br) in Antarctic ice core samples. Investigators reported mixing ratios of methyl chloride gas extracted from samples taken from the South Pole Remote Earth Science and Seismological Observatory (SPRESSO) core, drilled as part of the International Trans Antarctic Science Expedition (ITASE). This data covers an age range of 2159 - 140 years before present (Y.B.P.) where the year 2000 was used as present. Investigators analyzed trace gases in ice core samples from Siple Dome, West Antarctica (dry-drilled C core and deep, fluid-drilled A core) and from South Pole, Antarctica (300 m dry drilled SPRESSO core). Data are available in Microsoft Excel format and are available via FTP.", "east": -144.39, "geometry": ["POINT(-144.39 -89.93)"], "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; ITASE; Paleoclimate; Siple Dome Ice Core; South Pole; SPRESSO; SPRESSO Ice Core", "locations": "South Pole; Antarctica", "north": -89.93, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Saltzman, Eric; Aydin, Murat; Williams, Margaret; Tatum, Cheryl", "project_titles": "Methyl chloride and methyl bromide in Antarctic ice cores", "projects": [{"proj_uid": "p0000032", "repository": "USAP-DC", "title": "Methyl chloride and methyl bromide in Antarctic ice cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -89.93, "title": "Antarctic Ice Cores: Methyl Chloride and Methyl Bromide", "uid": "609313", "west": -144.39}, {"awards": "0338359 Saltzman, Eric", "bounds_geometry": ["POINT(-148.81 -81.65)"], "date_created": "Wed, 16 Nov 2005 00:00:00 GMT", "description": "This data set is part of the WAISCORES (West Antarctic Ice Sheet cores) project, research funded by the National Science Foundation (NSF) and designed to improve understanding of how the West Antarctic ice sheet influences climate and sea level change. WAISCORES investigators acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. These data provide researchers with a record of natural climatic variability and anthropogenic influence on biogeochemical cycles. Because ice cores contain an archive of preindustrial air, a baseline can be established, and the extent of human impact on the climate can be ascertained. \n\nThis data set includes mixing ratios of carbonyl sulfide (COS), methyl chloride (CH3Cl), and methyl bromide (CH3Br). Data samples were retrieved from the Siple C ice core, which was drilled at 81.65\u00b0 S, 148.81\u00b0 W in December 1995. The core site sits 620 m above sea level near the edge of the Ross Ice Shelf where there is a mean annual temperature of -25.4 \u00b0C.\n\nData are available via FTP.", "east": -148.81, "geometry": ["POINT(-148.81 -81.65)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "locations": "Antarctica; Siple Dome", "north": -81.65, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Saltzman, Eric; Aydin, Murat", "project_titles": "Methyl chloride and methyl bromide in Antarctic ice cores", "projects": [{"proj_uid": "p0000032", "repository": "USAP-DC", "title": "Methyl chloride and methyl bromide in Antarctic ice cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.65, "title": "Analysis of Siple Dome Ice Core: Carbonyl Sulfide (COS), Methyl Chloride (CH3Cl), and Methyl Bromide (CH3Br)", "uid": "609279", "west": -148.81}, {"awards": "9316564 Mayewski, Paul", "bounds_geometry": ["POINT(-118.045 -79.461)", "POINT(-119.562 -80.014)", "POINT(-116.333 -78.733)"], "date_created": "Mon, 09 May 2005 00:00:00 GMT", "description": "The Ross Ice Drainage System (RIDS) project provides a high-resolution record of atmospheric chemical deposition taken from several ice cores and snow pits located at sites within or immediately adjacent to the Ross Ice Drainage System. Three sites were visited during a 1995 traverse in inland West Antarctica. The traverse was 158 km, trending 26\u00b0 from Byrd Surface Camp. The core from site A (78\u00b044\u0027S, 116\u00b020\u0027W) is 148 m deep, the core from site B (79\u00b027.66\u0027S, 118\u00b002.68\u0027W) is 60 m deep, and the core from site C (80\u00b000.85\u0027S, 119\u00b033.73\u0027W) is 60 m deep. Glaciochemical analysis focuses on the major ions deposited from the antarctic atmosphere, including Na (sodium), NH4 (ammonium), K (potassium), Mg (magnesium), Ca (calcium), Cl (chloride), NO3 (nitrate), and SO4 (sulfate). Chemical analysis also includes methanesulfonic acid (MSA) and nssSO4 (non-sea salt sulfate). The data are available by FTP in ASCII text format and Excel files.", "east": -116.333, "geometry": ["POINT(-118.045 -79.461)", "POINT(-119.562 -80.014)", "POINT(-116.333 -78.733)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; Snow Pit", "locations": "Antarctica", "north": -78.733, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Mayewski, Paul A.; Kreutz, Karl; Twickler, Mark; Whitlow, Sallie; Meeker, Loren D.", "project_titles": "Ross Ice Drainage System (RIDS) Late Holocene Climate Variability", "projects": [{"proj_uid": "p0000145", "repository": "USAP-DC", "title": "Ross Ice Drainage System (RIDS) Late Holocene Climate Variability"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.014, "title": "Ross Ice Drainage System (RIDS) Glaciochemical Analysis", "uid": "609266", "west": -119.562}, {"awards": "0126057 Brook, Edward J.", "bounds_geometry": null, "date_created": "Fri, 27 Aug 2004 00:00:00 GMT", "description": "This data set compares global atmospheric concentration of methane from ice cores taken on the ice sheets of Antarctica and Greenland. The data come from multiple ice cores on each continent, including Greenland Ice Core Project (GRIP) and Greenland Ice Sheet Project (GISP) ice cores and the Byrd and Vostok cores from Antarctica. (The orignal dataset is located at ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/greenland/summit/grip/synchronization/)", "east": null, "geometry": null, "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Vostok Ice Core", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Blunier, Thomas; Stauffer, Bernhard; Chappellaz, Jerome; Brook, Edward J.", "project_titles": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change", "projects": [{"proj_uid": "p0000034", "repository": "USAP-DC", "title": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Antarctic and Greenland Climate Change Comparison", "uid": "609253", "west": null}, {"awards": "9725918 Brook, Edward J.; 9714687 Brook, Edward J.", "bounds_geometry": ["POINT(-119.516667 -80.016667)"], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This data set consists of microparticle and chemistry data from Byrd Ice Core, the first ice core to reach bedrock in Antarctica. The core was drilled with a cable-suspended electromechanical rotary drill at Byrd Station, Antarctica. The vertical thickness of the ice was 2164 meters and more than 99 percent of the core was recovered. Cores were sought for investigations of the physical properties of the ice sheet, the nature of the ice-rock contact, and the composition of the underlying bedrock.", "east": -119.516667, "geometry": ["POINT(-119.516667 -80.016667)"], "keywords": "Antarctica; Byrd; Byrd Ice Core; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate", "locations": "Antarctica", "north": -80.016667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Blunier, Thomas; Fluckiger, Jacqueline; Thompson, Lonnie G.; Brook, Edward J.", "project_titles": "Collaborative Research: Studies of Trapped Gases in Firn and Ice from Antarctic Deep Ice Cores", "projects": [{"proj_uid": "p0000168", "repository": "USAP-DC", "title": "Collaborative Research: Studies of Trapped Gases in Firn and Ice from Antarctic Deep Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Byrd Ice Core", "south": -80.016667, "title": "Byrd Ice Core Microparticle and Chemistry Data", "uid": "609247", "west": -119.516667}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POINT(112.833333 -66.65)"], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This data set includes CO2 and CH4 records derived from three ice cores obtained at Law Dome, East Antarctica, from 1987 to 1993. Law Dome is a medium size, approximately circular, (200 km dia., 1390 m high) ice sheet situated at the edge of the main East Antarctic ice sheet. The data in this set include cores drilled between 1987 and 1993 to a depth of 1199.6.", "east": 112.833333, "geometry": ["POINT(112.833333 -66.65)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Law Dome; Paleoclimate", "locations": "Law Dome; Antarctica", "north": -66.65, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Barnola, J. M.; Etheridge, David; Morgan, Vin", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -66.65, "title": "Law Dome Ice Cores Chemistry Data", "uid": "609245", "west": 112.833333}, {"awards": "8613786 Mayewski, Paul; 8411018 Frisic, David", "bounds_geometry": ["POINT(162.5 -77.61667)"], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This data set includes beta profiles, chemistry, stratigraphy data, and density and temperature profiles collected from snow pits and two ice cores on the Newall Glacier. Snow pit and ice core data were collected between 1987 and 1989. Ice Core A was 175 meters long and core B was 150 meters long.", "east": 162.5, "geometry": ["POINT(162.5 -77.61667)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Newall Glacier; Paleoclimate; Physical Properties; Snow/ice; Snow/Ice; Statigraphy", "locations": "Newall Glacier; Antarctica", "north": -77.61667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Welch, Kathy A.; Mayewski, Paul A.", "project_titles": "Characterization of Climatic Events for the Last 2 x 103y through the Retrieval of Ice Cores from the Transantarctic Mountains, Antarctica", "projects": [{"proj_uid": "p0000169", "repository": "USAP-DC", "title": "Characterization of Climatic Events for the Last 2 x 103y through the Retrieval of Ice Cores from the Transantarctic Mountains, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.61667, "title": "Newall Glacier Ice Core and Snow Pit Beta Profiles, Chemistry, and Stratigraphy", "uid": "609249", "west": 162.5}, {"awards": "9615292 Wahlen, Martin", "bounds_geometry": ["POINT(158 -77.6666667)"], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This data set includes chemistry, ion, and istotope data from Taylor Dome, part of the East Antarctic ice sheet. Deep drilling at Taylor Dome successfully reached bedrock at a depth of 554 meters during the 1993-1994 austral summer. The Taylor Dome ice core is only the second core (after Vostok) to provide a stratigraphically undisturbed record through the entire last glacial cycle (the last 130,000 years or more).", "east": 158.0, "geometry": ["POINT(158 -77.6666667)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "locations": "Taylor Dome; Antarctica", "north": -77.6666667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Smith, Jesse; Sowers, Todd A.; Brook, Edward J.; Mayewski, Paul A.; Steig, Eric J.; Indermuhle, A.", "project_titles": "Carbon Dioxide and Carbon Isotopes in the Taylor Dome and Vostok Ice Cores", "projects": [{"proj_uid": "p0000153", "repository": "USAP-DC", "title": "Carbon Dioxide and Carbon Isotopes in the Taylor Dome and Vostok Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": -77.6666667, "title": "Taylor Dome Ice Core Chemistry, Ion, and Isotope Data", "uid": "609246", "west": 158.0}, {"awards": "8613786 Mayewski, Paul; 8411018 Frisic, David", "bounds_geometry": ["POINT(166.16667 -85.25)"], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This data set includes beta profiles, chemistry, and density data obtained from Dominion Range ice cores. The Dominion Range is on the East Antarctic Ice Sheet. The chemistry data consists of the composition of oxygen-isotopes and trapped gasses. Other information includes ice thickness, mean annual net accumulation, and crystal size. The core samples were collected in the austral summer of 1984-85. \n", "east": 166.16667, "geometry": ["POINT(166.16667 -85.25)"], "keywords": "Antarctica; Beta Profiles; Chemistry:ice; Chemistry:Ice; Density; Dominion Range; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Physical Properties", "locations": "Dominion Range; Antarctica", "north": -85.25, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Sowers, Todd A.; Saltzman, Eric; Watson, M. Scott; Grootes, Pieter; Mayewski, Paul A.; Meese, Deb; Gow, Tony", "project_titles": "Characterization of Climatic Events for the Last 2 x 103y through the Retrieval of Ice Cores from the Transantarctic Mountains, Antarctica", "projects": [{"proj_uid": "p0000169", "repository": "USAP-DC", "title": "Characterization of Climatic Events for the Last 2 x 103y through the Retrieval of Ice Cores from the Transantarctic Mountains, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.25, "title": "Dominion Range Ice Core Beta Profiles, Chemistry, and Density Data", "uid": "609248", "west": 166.16667}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POINT(123.332196 -75.09978)"], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This data set is a collection of analyses done on the the European Project for Ice Coring in Antarctica (EPICA)Dome C ice cores. The data include deuterium and other chemistry, insoluble dust, ice grain radius, dielectric profiling, electrical conductivity, and timescales.\n\nEPICA has completed one core in the Dome Concordia region (Core EDC96, started in 1996, 788 m length). Drilling is ongoing on a second core EDC99 (started in 1999, reached a depth of 3200 m during the 2002/2003 field season. The ice at this depth is estimated to be about 700,000 years old.)", "east": 123.332196, "geometry": ["POINT(123.332196 -75.09978)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Dome C Ice Core; Epica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Physical Properties", "locations": "Antarctica", "north": -75.09978, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Wolff, Eric W.; Monnin, Eric; Fluckiger, Jacqueline", "project_titles": null, "projects": null, "repositories": null, "science_programs": "Dome C Ice Core", "south": -75.09978, "title": "European Project for Ice Coring in Antarctica (EPICA) Dome C Ice Core Data", "uid": "609244", "west": 123.332196}, {"awards": "0087151 Cole-Dai, Jihong", "bounds_geometry": ["POINT(0 -90)"], "date_created": "Fri, 09 Apr 2004 00:00:00 GMT", "description": "This data set contains concentrations of soluble chemical species (ions) within a 120 m ice core retrieved at the South Pole station in 2001. The ice core was dated with annual resolution using annual layer counting. Investigators measured chemical species, ions, and volcanic deposits found in the cores. The analysis was conducted at South Dakota State University between 2001 and 2003. Data are available in Microsoft Excel or ASCII text format via FTP from NSIDC.", "east": 0.0, "geometry": ["POINT(0 -90)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Solid Earth; South Pole", "locations": "South Pole; Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Cole-Dai, Jihong", "project_titles": "A Sulfate-based Volcanic Record from South Pole Ice Cores", "projects": [{"proj_uid": "p0000167", "repository": "USAP-DC", "title": "A Sulfate-based Volcanic Record from South Pole Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Sulfate-Based Volcanic Record from South Pole Ice Core", "uid": "609215", "west": 0.0}, {"awards": "9980691 Wahlen, Martin", "bounds_geometry": ["POINT(-148.82 -81.66)"], "date_created": "Thu, 11 Dec 2003 00:00:00 GMT", "description": "These data are CO2 concentrations of the air occulded in Siple Dome ice core, Antarctica. The study was conducted between January 2001 and March 2003 on a deep ice core from Siple Dome Core A, located at 81.66 S, 148.82 W.", "east": -148.82, "geometry": ["POINT(-148.82 -81.66)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; CO2; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "locations": "Siple Dome; Antarctica", "north": -81.66, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Ahn, Jinho; Wahlen, Martin; Deck, Bruce", "project_titles": "CO2 and Delta 13CO2 in Antarctic Ice Cores", "projects": [{"proj_uid": "p0000166", "repository": "USAP-DC", "title": "CO2 and Delta 13CO2 in Antarctic Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.66, "title": "Atmospheric CO2 Trapped in the Ice Core from Siple Dome, Antarctica", "uid": "609202", "west": -148.82}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POLYGON((-120 -80,-118.5 -80,-117 -80,-115.5 -80,-114 -80,-112.5 -80,-111 -80,-109.5 -80,-108 -80,-106.5 -80,-105 -80,-105 -80.5,-105 -81,-105 -81.5,-105 -82,-105 -82.5,-105 -83,-105 -83.5,-105 -84,-105 -84.5,-105 -85,-106.5 -85,-108 -85,-109.5 -85,-111 -85,-112.5 -85,-114 -85,-115.5 -85,-117 -85,-118.5 -85,-120 -85,-120 -84.5,-120 -84,-120 -83.5,-120 -83,-120 -82.5,-120 -82,-120 -81.5,-120 -81,-120 -80.5,-120 -80))"], "date_created": "Thu, 16 Oct 2003 00:00:00 GMT", "description": "Glaciochemical and accumulation rate records developed from four ice cores in central West Antarctica are used to reconstruct former atmospheric circulation patterns in this region for the last 40 years with extended records (150-250 years) at two sites. The sites lie on a 200 km traverse from 82 degrees 22 minutes south, 119 degrees 17 minutes west to 81 degrees 22 minutes south, 107 degrees 17 minutes west, gaining elevation from 950 to 1930 m. The glaciochemical records represent the major ionic species present in Antarctic snow: sodium, potassium, magnesium, calcium, chloride, nitrate, and sulfate.", "east": -105.0, "geometry": ["POINT(-112.5 -82.5)"], "keywords": "Accumulation Rate; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; West Antarctica", "locations": "West Antarctica; Antarctica", "north": -80.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Reusch, David", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -85.0, "title": "Central West Antarctic Glaciochemistry from Ice Cores", "uid": "609093", "west": -120.0}, {"awards": "9420648 Waddington, Edwin", "bounds_geometry": ["POINT(-149 -81)"], "date_created": "Tue, 09 Sep 2003 00:00:00 GMT", "description": "This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica.\n\nNereson\u0027s \u0027Age Versus Depth\u0027 plot shows the results of the calculations published in her paper on predicted age-depth scales (Nereson, N.A., E.D. Waddington, C.F. Raymond, and H.P. Jacobson. 1996. Predicted Age-Depth Scales for Siple Dome and Inland WAIS Ice Cores in West Antarctica.Geophys. Res. Let., 23(22): 3163-3166.).", "east": -149.0, "geometry": ["POINT(-149 -81)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Siple Dome Ice Core; WAISCORES", "locations": "Siple Dome; Antarctica", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Nereson, Nadine A.", "project_titles": "Ice Modelling Study of Siple Dome: WAIS Ice Dynamics, WAISCORES Paleoclimate and Ice Stream/Ice Dome Interactions", "projects": [{"proj_uid": "p0000058", "repository": "USAP-DC", "title": "Ice Modelling Study of Siple Dome: WAIS Ice Dynamics, WAISCORES Paleoclimate and Ice Stream/Ice Dome Interactions"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.0, "title": "Siple Dome Ice Core Age-Depth Scales", "uid": "609130", "west": -149.0}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POINT(-149 -81)"], "date_created": "Mon, 18 Aug 2003 00:00:00 GMT", "description": "This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica.\n\nThis data set provides measurements of stable isotopes of water and deuterium excess for the Siple Dome ice cores. The shallow cores from Siple Dome were analyzed for isotopes with sub-annual temporal detail.", "east": -149.0, "geometry": ["POINT(-149 -81)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "locations": "Antarctica; Siple Dome", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Steig, Eric J.; White, James", "project_titles": null, "projects": null, "repositories": null, "science_programs": "Siple Dome Ice Core", "south": -81.0, "title": "Siple Dome Highlights: Stable isotopes", "uid": "609134", "west": -149.0}, {"awards": "0512971 Brook, Edward J.", "bounds_geometry": ["POINT(-149 -81)"], "date_created": "Mon, 18 Aug 2003 00:00:00 GMT", "description": "This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica.\n\nBrooks measured methane in approximately 196 samples between 55.6 and 738.5 m (0-20 ka) in the Siple Dome ice core, and then extended the Siple Dome methane record at medium resolution down to about 860m, corresponding to an age of about 45 ka. The team compared the results with data from the Greenland Ice Sheet Project 2 (GISP2) and the Greenland Ice Core Project (GRIP).", "east": -149.0, "geometry": ["POINT(-149 -81)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "locations": "Antarctica; Siple Dome", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Brook, Edward J.", "project_titles": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change", "projects": [{"proj_uid": "p0000034", "repository": "USAP-DC", "title": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.0, "title": "Siple Dome Methane Record", "uid": "609124", "west": -149.0}, {"awards": "0512971 Brook, Edward J.", "bounds_geometry": ["POINT(-38.466667 72.5833333)"], "date_created": "Wed, 14 May 2003 00:00:00 GMT", "description": "The data include methane data from the Greenland Ice Sheet Project 2 (GISP2) B \u0026 D Cores. Gas ages were calculated according to the methods described in Brook et\nal. 1996, and are subject to change. Ice ages were calculated by by\nlinear interpolation from the Meese et al. timescale.\n", "east": -38.466667, "geometry": ["POINT(-38.466667 72.5833333)"], "keywords": "Arctic; Chemistry:fluid; Chemistry:Fluid; Chemistry:ice; Chemistry:Ice; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland; Ice Core Records; Methane; Paleoclimate", "locations": "Greenland; Arctic", "north": 72.5833333, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Brook, Edward J.", "project_titles": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change", "projects": [{"proj_uid": "p0000034", "repository": "USAP-DC", "title": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": 72.5833333, "title": "GISP2 (B and D Core) Methane Concentrations", "uid": "609125", "west": -38.466667}, {"awards": "0126286 McConnell, Joseph", "bounds_geometry": ["POINT(-149 -81)"], "date_created": "Wed, 14 May 2003 00:00:00 GMT", "description": "This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica.\n\nLamorey measured the density of the shallow Siple Dome cores B - I. One-meter sections of the ice core were weighed on a balance beam in the field. The volume was determined by measuring the diameter and length of the core. The data consists of tab-delimited text files of density measurements and a sonic velocity profile, and a .gif format density-versus-depth plot. Data are available via FTP.", "east": -149.0, "geometry": ["POINT(-149 -81)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Siple Dome; Siple Dome Ice Core; WAISCORES", "locations": "Antarctica; Siple Dome", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Lamorey, Gregg W.", "project_titles": "Continuous High Resolution Ice-Core Chemistry using ICP-MS at Siple Dome", "projects": [{"proj_uid": "p0000159", "repository": "USAP-DC", "title": "Continuous High Resolution Ice-Core Chemistry using ICP-MS at Siple Dome"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -81.0, "title": "Siple Shallow Core Density Data", "uid": "609129", "west": -149.0}, {"awards": "9527262 Gow, Anthony", "bounds_geometry": ["POINT(-149 -81)"], "date_created": "Wed, 14 May 2003 00:00:00 GMT", "description": "This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica.\n\nThis data set includes annual layer data for Siple Dome ice cores A, B, and C, based on stratigraphy; thin-section images, and fabric data. The study included the analysis of more than 2500 crystallographic c-axes conducted on 50 thin sections from the main PICO core.", "east": -149.0, "geometry": ["POINT(-149 -81)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Photo/video; Photo/Video; Siple Dome; Siple Dome Ice Core; WAISCORES", "locations": "Siple Dome; Antarctica", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Gow, Tony; Meese, Deb", "project_titles": "Physical and Structural Properties of the Siple Dome Core", "projects": [{"proj_uid": "p0000064", "repository": "USAP-DC", "title": "Physical and Structural Properties of the Siple Dome Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.0, "title": "Physical and Structural Properties of the Siple Dome Ice Cores", "uid": "609128", "west": -149.0}, {"awards": "9615554 Fitzpatrick, Joan", "bounds_geometry": ["POINT(-149 -81)"], "date_created": "Wed, 14 May 2003 00:00:00 GMT", "description": "This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica.\n\nThis data set comprises low-resolution (72 dpi) jpg images of thin sections from the Siple Dome ice core. The images were acquired during the 1997/1998 field season, from both the SDM-A, or main 13.2-cm, core and from the hot water core recovered by Hermann Englehardt. The data set includes both vertical and horizontal thin sections. With one exception, all images were recorded in cross-polarized light. Two examples of archived high-resolution (275 dpi) images are provided for direct comparison of the low- and high-resolution images.", "east": -149.0, "geometry": ["POINT(-149 -81)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Photo/video; Photo/Video; Siple Dome; Siple Dome Ice Core; WAISCORES", "locations": "Antarctica; Siple Dome", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Fitzpatrick, Joan", "project_titles": "Digital Imaging for Ice Core Analysis", "projects": [{"proj_uid": "p0000011", "repository": "USAP-DC", "title": "Digital Imaging for Ice Core Analysis"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.0, "title": "Digital Images of Thin Sections from Siple Dome", "uid": "609127", "west": -149.0}, {"awards": "9527373 Dunbar, Nelia", "bounds_geometry": ["POINT(-149 -81)", "POINT(158.7889 -77.95)"], "date_created": "Wed, 14 May 2003 00:00:00 GMT", "description": "This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica.\n\nThis data set includes backscattered electron images of tephra samples extracted from the Siple and Taylor Dome ice cores, as well as electron microprobe analyses of glass shards in cases where significant, compositionally-consistent glass populations were present. The data set also includes data on the amount of volcanically derived sulfate deposited on the West Antarctic Ice Sheet and recorded in the Siple Dome ice core.", "east": 158.7889, "geometry": ["POINT(-149 -81)", "POINT(158.7889 -77.95)"], "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome Ice Core; Taylor Dome Ice Core; Tephra; WAIS; WAISCORES", "locations": "WAIS; Antarctica", "north": -77.95, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Zielinski, Gregory; Dunbar, Nelia", "project_titles": "Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region", "projects": [{"proj_uid": "p0000065", "repository": "USAP-DC", "title": "Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core; Siple Dome Ice Core", "south": -81.0, "title": "Volcanic Records in the Siple and Taylor Dome Ice Cores", "uid": "609126", "west": -149.0}, {"awards": "9526420 Taylor, Kendrick", "bounds_geometry": ["POINT(-149 -81)"], "date_created": "Thu, 08 May 2003 00:00:00 GMT", "description": "This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica.\n\nTaylor measured the electrical conductivity (ECM) and Complex Conductivity (CC), a measure of the total ions in the ice, in the main Siple Dome ice core. Measurements were taken along the core from a depth of 0 m to 800 m. The project also analyzed shallower cores for ECM and dielectric properties (DEP). (DEP is also a measure of the total ions in the ice, but with lower spatial resolution than the CC.) Albedo measurements where made on the shallow cores and the main core to a depth of 391 m. The data set includes images showing the electrical conductivity of a vertical section of the core.", "east": -149.0, "geometry": ["POINT(-149 -81)"], "keywords": "Antarctica; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Siple Dome; Siple Dome Ice Core; WAISCORES", "locations": "Siple Dome; Antarctica", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Taylor, Kendrick C.", "project_titles": "Electrical and Optical Measurements on the Siple Dome Ice Core", "projects": [{"proj_uid": "p0000163", "repository": "USAP-DC", "title": "Electrical and Optical Measurements on the Siple Dome Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.0, "title": "Siple Dome Cores Electrical Measurement Data", "uid": "609133", "west": -149.0}, {"awards": "9527373 Dunbar, Nelia", "bounds_geometry": ["POLYGON((158.55 -75.86,158.562 -75.86,158.574 -75.86,158.586 -75.86,158.598 -75.86,158.61 -75.86,158.622 -75.86,158.634 -75.86,158.646 -75.86,158.658 -75.86,158.67 -75.86,158.67 -75.864,158.67 -75.868,158.67 -75.872,158.67 -75.876,158.67 -75.88,158.67 -75.884,158.67 -75.888,158.67 -75.892,158.67 -75.896,158.67 -75.9,158.658 -75.9,158.646 -75.9,158.634 -75.9,158.622 -75.9,158.61 -75.9,158.598 -75.9,158.586 -75.9,158.574 -75.9,158.562 -75.9,158.55 -75.9,158.55 -75.896,158.55 -75.892,158.55 -75.888,158.55 -75.884,158.55 -75.88,158.55 -75.876,158.55 -75.872,158.55 -75.868,158.55 -75.864,158.55 -75.86))"], "date_created": "Tue, 18 Feb 2003 00:00:00 GMT", "description": "This data set is the result of a study of volcanic ash and rock fragment (tephra) layers in exposed blue ice areas on Brimstone Peak (75.888S 158.55E) in East Antarctica. Tephra samples were collected between 15 November 1996 and 15 January 1997.\n\nThe Antarctic ice sheets preserve a record of the volcanic ash layers and chemical aerosol signatures of local and distant volcanic eruptions. Correlation of individual tephra layers, or sets of layers, in blue ice areas will allow a better understanding of the geometry of ice flow in these areas. Tephra layers in deep ice cores can also provide unique time-stratigraphic markers in cores that are difficult to date.\n\nData include the following information for each sample site: a general description, electron microprobe analysis, GPS location, neutron activation analysis, and a visual description of the petrography.Data are provided as Excel 97 data files, JPG map files, and GIF-formatted BSE images. Data are available via ftp.", "east": 158.67, "geometry": ["POINT(158.61 -75.88)"], "keywords": "Antarctica; Blue Ice; Brimstone Peak; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Petrography; Tephra", "locations": "Antarctica; Brimstone Peak", "north": -75.86, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Dunbar, Nelia", "project_titles": "Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region", "projects": [{"proj_uid": "p0000065", "repository": "USAP-DC", "title": "Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.9, "title": "Blue Ice Tephra II - Brimstone Peak", "uid": "609114", "west": 158.55}, {"awards": "9527373 Dunbar, Nelia", "bounds_geometry": ["POINT(-159.51 -77.12)"], "date_created": "Sat, 01 Feb 2003 00:00:00 GMT", "description": "This data set is the result of a study of volcanic ash and rock fragment (tephra) layers in exposed blue ice areas on Mt. DeWitt, Antarctica (77.12 deg S, 159.51 deg E). Tephra samples were collected between 15 November 1996 and 15 January 1997.\n\nData include the following information for each sample site: a general description, electron microprobe analysis, GPS location, neutron activation analysis, and a visual description of the petrography. Data are provided as an Excel 97 data file, (this file is also divided into various text files) and TIF images. Data are available via ftp.\n\nAntarctic ice sheets preserve a record of the volcanic ash layers and chemical aerosol signatures of local and distant volcanic eruptions. Correlation of individual tephra layers, or sets of layers, in blue ice areas will allow a better understanding of the geometry of ice flow in these areas. Tephra layers in deep ice cores can also provide unique time-stratigraphic markers in cores that are difficult to date.", "east": -159.51, "geometry": ["POINT(-159.51 -77.12)"], "keywords": "Antarctica; Blue Ice; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Mount Dewitt; Petrography; Tephra", "locations": "Antarctica; Mount Dewitt", "north": -77.12, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Dunbar, Nelia", "project_titles": "Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region", "projects": [{"proj_uid": "p0000065", "repository": "USAP-DC", "title": "Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.12, "title": "Blue Ice Tephra II - Mt. DeWitt", "uid": "609115", "west": -159.51}, {"awards": "9526572 Bales, Roger", "bounds_geometry": ["POINT(-149 -81)"], "date_created": "Thu, 11 Jul 2002 00:00:00 GMT", "description": "This data set is part of the West Antarctic Ice Sheet Cores (WAISCORES) project, an NSF-funded project to understand the influence of the West Antarctic Ice Sheet on climate and sea level change. WAISCORES researchers acquired and analyzed snow pit and core samples from the Siple Dome, in the Siple Coast region, West Antarctica. This data set includes glaciochemical spatial variability data for six Siple Dome snow pits. Samples involved measuring hydrogen peroxide (H\u003csub\u003e2\u003c/sub\u003eO\u003csub\u003e2\u003c/sub\u003e) and formaldehyde (HCHO) in the air, snow, firn, and ice via suppressed ion chromatography. The data can be used to interpret changes in concentrations of these species recorded in ice cores. Data in this collection were obtained during two Antarctic field seasons in 1994 to 1995 and 1996 to 1997. Data are available via FTP in tab-delimited ASCII text (.dat, .txt) file format.", "east": -149.0, "geometry": ["POINT(-149 -81)"], "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Snow/ice; Snow/Ice; WAISCORES", "locations": "Siple Dome; Antarctica", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "McConnell, Joseph; Bales, Roger", "project_titles": "Snow-Atmosphere Transfer Function for Reversibly Deposited Chemical Species in West Antarctica", "projects": [{"proj_uid": "p0000060", "repository": "USAP-DC", "title": "Snow-Atmosphere Transfer Function for Reversibly Deposited Chemical Species in West Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -81.0, "title": "Snow-atmosphere Transfer Function for Reversibly Deposited Chemical Species in West Antarctica", "uid": "609122", "west": -149.0}, {"awards": "0338359 Saltzman, Eric", "bounds_geometry": ["POINT(-149 -81)"], "date_created": "Wed, 10 Jul 2002 00:00:00 GMT", "description": "This data set is part of the West Antarctic Ice Sheet cores (WAISCORES) project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. Siple Dome ice cores were analyzed for methanesulfonate (MSA) and carbonyl sulfide (OCS). The methanesulfonate analysis was done on cores A-E and a hot water core, and the carbonyl sulfide analysis was done on 11 C cores. Methanesulfonate data include the sample identification number, depth, and methanesulfonate parts per billion (ppb) of each sample. Carbonyl sulfide data include the depth, OCS parts per trillion (ppt) of each sample, percent error, and gas age (years). Data are available via FTP in tab-delimited ASCII text (.dat, .txt) file format.", "east": -149.0, "geometry": ["POINT(-149 -81)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Siple Dome; Siple Dome Ice Core; WAISCORES", "locations": "Antarctica; Siple Dome", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Saltzman, Eric; Aydin, Murat", "project_titles": "Methyl chloride and methyl bromide in Antarctic ice cores", "projects": [{"proj_uid": "p0000032", "repository": "USAP-DC", "title": "Methyl chloride and methyl bromide in Antarctic ice cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.0, "title": "Methane and Carbonyl Sulfide Analysis of Siple Dome Ice Core Subsamples", "uid": "609131", "west": -149.0}, {"awards": "9615167 Dunbar, Nelia", "bounds_geometry": ["POINT(-148 -81)", "POINT(158.71 -77.8)"], "date_created": "Sat, 01 Jun 2002 00:00:00 GMT", "description": "This data set consists of electron microprobe geochemical analyses of glass shards sampled from Siple Dome and Taylor Dome ice cores during the 1999-2000 field season. Geochemical data are in tab-delimited ASCII and Excel formats. Backscattered electron images of tephra samples are in TIFF format. Data are available via ftp.", "east": 158.71, "geometry": ["POINT(-148 -81)", "POINT(158.71 -77.8)"], "keywords": "Antarctica; Backscattered Electron Images; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Siple Dome Ice Core; Taylor Dome Ice Core; WAIS", "locations": "Siple Dome; WAIS; Antarctica", "north": -77.8, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Dunbar, Nelia", "project_titles": "Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region", "projects": [{"proj_uid": "p0000065", "repository": "USAP-DC", "title": "Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core; Siple Dome Ice Core", "south": -81.0, "title": "Tephra in Siple and Taylor Dome Ice Cores", "uid": "609110", "west": -148.0}, {"awards": "9615292 Wahlen, Martin", "bounds_geometry": ["POINT(158.71 -77.8)"], "date_created": "Tue, 01 Jan 2002 00:00:00 GMT", "description": "These data describe the concentration and carbon-isotopic composition (d13CO2) of atmospheric CO2 from air trapped in ice between 27,000 and 1,300 years before present from Taylor Dome, Antarctica. Data are used to investigate the causes of the CO2 concentration increase that occurred during the transition between the last glacial maximum (LGM) and the Holocene. Data are in tab-delimited ASCII and Excel formats, and are available via ftp.", "east": 158.71, "geometry": ["POINT(158.71 -77.8)"], "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "locations": "Antarctica; Taylor Dome", "north": -77.8, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Wahlen, Martin", "project_titles": "Carbon Dioxide and Carbon Isotopes in the Taylor Dome and Vostok Ice Cores", "projects": [{"proj_uid": "p0000153", "repository": "USAP-DC", "title": "Carbon Dioxide and Carbon Isotopes in the Taylor Dome and Vostok Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.8, "title": "Carbon-Isotopic Composition of Atmospheric CO2 since the Last Glacial Maximum", "uid": "609108", "west": 158.71}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POINT(-149 -81)"], "date_created": "Tue, 01 Jan 2002 00:00:00 GMT", "description": "The WAISCORES project is part of the National Science Foundation Office of Polar Programs\u0027 West Antarctic Ice Sheet (WAIS) initiative, which is aimed at understanding the influence of the West Antarctic ice sheet on climate and sea level change.\nWAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. These cores allow researchers to distinguish local from regional influences on the climate records recovered from the cores. Drilling for the Siple Dome core began in November 1996 and finished in January 1999. The core site is located between ice streams C and D at approximately 81\u00b0 40\u0027 S and 148\u00b0 49\u0027 W. Preliminary studies indicate that the paleoclimate record preserved in the 1003-meter Siple Dome ice core extends back more than 90 thousand years. Data are available via ftp.\n\nThe following WAISCORES investigators have made contributions to WAISCORES research. NSIDC archives data for many of these investigators: Mary Albert, Richard Alley, Robin Bell, Michael Bender, Robert Bindscadler, Pierre Biscaye, Donald Blankenship, Ed Brook, Nelia Dunbar, Joan Fitzpatrick, Tony Gow, Gregg Lamorey, Paul Mayewski, Joseph McConnell, Deb Meese, Nadine Nereson, Charlie Raymond, Eric Saltzman, Eric Steig, Christopher Shuman, Ken Taylor, Lonnie Thompson, Edwin Waddington, Martin Wahlen, James White, and Gret Zielinksi.\n\nThis landing page has no data files!", "east": -149.0, "geometry": ["POINT(-149 -81)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; WAIS; WAISCORES", "locations": "WAIS; Antarctica", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Lamorey, Gregg W.", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -81.0, "title": "WAISCORES: Deep Ice Coring in West Antarctica", "uid": "609120", "west": -149.0}, {"awards": "9526601 Albert, Mary", "bounds_geometry": ["POINT(-148 -81)"], "date_created": "Sat, 01 Dec 2001 00:00:00 GMT", "description": "This data set includes measurements of snow and firn temperature and permeability collected between November 1998 and June 1999 at Siple Dome. The physical characteristics of snow determine the nature of air-snow exchange processes, which in turn affect chemical records in ice cores. Thus a better understanding of the physical properties of snow will improve interpretation of ice core records of atmospheric composition.\n\nData are available via ftp in both ASCII and Excel formats.", "east": -148.0, "geometry": ["POINT(-148 -81)"], "keywords": "Antarctica; Glaciology; Permeability; Siple Dome; Siple Dome Ice Core; Snow/ice; Snow/Ice; Temperature", "locations": "Siple Dome; Antarctica", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Albert, Mary R.", "project_titles": "Near-Surface Processes Affecting Gas Exchange: West Antarctic Ice Sheet", "projects": [{"proj_uid": "p0000061", "repository": "USAP-DC", "title": "Near-Surface Processes Affecting Gas Exchange: West Antarctic Ice Sheet"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.0, "title": "Snow and Firn Temperature and Permeability Measurements from Siple Dome, Antarctica", "uid": "609100", "west": -148.0}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POINT(162 -77)"], "date_created": "Fri, 01 Jan 1999 00:00:00 GMT", "description": "Snow pit and ice core data from the Newall Glacier (location - 162 30\u0027\nEast, 77 35\u0027 South) were collected during 1987 and 1988. These include\ninformation on chemistry, Beta profiles and stratigraphy. Ice cores\nwere collected during the austral summer of 1988-1989 and contain\ninformation on chemistry, Pb- 210 profiles, density profiles and\ntemperature profiles. Core A was 175 meters long and core B was 150\nmeters long.\n\nThe snow pits were dug and sampled by the Glacier Research Group\n(GRG), using established protocols to prevent contamination. The\nsamples for major ion chemistry remained frozen until melted for\nanalysis in the GRG lab, located at the University of New Hampshire\n(UNH), and all core processing was done by GRG established protocols\nto prevent contamination. Major ions were analyzed using suppressed\nion chromatography.", "east": 162.0, "geometry": ["POINT(162 -77)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Newall Glacier; Paleoclimate; Snow/ice; Snow/Ice", "locations": "Antarctica; Newall Glacier", "north": -77.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Mayewski, Paul A.; Whitlow, Sallie", "project_titles": "Characterization of Climatic Events for the Last 2 x 103y through the Retrieval of Ice Cores from the Transantarctic Mountains, Antarctica", "projects": [{"proj_uid": "p0000169", "repository": "USAP-DC", "title": "Characterization of Climatic Events for the Last 2 x 103y through the Retrieval of Ice Cores from the Transantarctic Mountains, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Newall Glacier Snow Pit and Ice Core, 1987 to 1989", "uid": "609088", "west": 162.0}, {"awards": "9316338 Jacobel, Robert", "bounds_geometry": ["POLYGON((-155 -81,-154 -81,-153 -81,-152 -81,-151 -81,-150 -81,-149 -81,-148 -81,-147 -81,-146 -81,-145 -81,-145 -81.2,-145 -81.4,-145 -81.6,-145 -81.8,-145 -82,-145 -82.2,-145 -82.4,-145 -82.6,-145 -82.8,-145 -83,-146 -83,-147 -83,-148 -83,-149 -83,-150 -83,-151 -83,-152 -83,-153 -83,-154 -83,-155 -83,-155 -82.8,-155 -82.6,-155 -82.4,-155 -82.2,-155 -82,-155 -81.8,-155 -81.6,-155 -81.4,-155 -81.2,-155 -81))"], "date_created": "Fri, 01 Jan 1999 00:00:00 GMT", "description": "The Siple Dome Glaciology and Ice Stream History project was part of Western Divide West Antarctic Ice Cores (WAISCORES), an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica.\n\nThis project supported glaciological studies of Siple Dome and its surroundings between Ice Streams C and D, via two major goals. First, it sought to characterize the dynamic environment and ice stratigraphy of Siple Dome and its surroundings, with the specific mission of assessing Siple Dome as a potential deep core site; and second, to determine whether the configuration of ice stream flow in the region has changed over time. Both goals are relevant to understanding the dynamics of the West Antarctic Ice Sheet (WAIS), its history, and potential future behavior.\n\nThis project was a collaboration between Saint Olaf College, the University of Washington, and the National Snow and Ice Data Center at the University of Colorado. It included studies of satellite imagery and acquisition and analysis of field data from GPS, firn cores and snow pits, and ground-based ice-penetrating radar.\n\nData in this collection were obtained during two Antarctic field seasons in 1994\u201395 and 1996\u201397. The data set is available via FTP as Microsoft Excel Spreadsheet (.xls) and ASCII tab delimited (.txt) files. Related notes are available as a Microsoft Word (.doc) or text (.txt) file. Related images and charts are available as Graphics Interchange Format (.gif) and Joint Photographic Experts Group (.jpg) files.", "east": -145.0, "geometry": ["POINT(-150 -82)"], "keywords": "Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Sample/collection Description; Sample/Collection Description; Siple Dome; Siple Dome Ice Core", "locations": "Siple Dome; Antarctica", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Jacobel, Robert", "project_titles": "Siple Dome Glaciology and Ice Stream History", "projects": [{"proj_uid": "p0000190", "repository": "USAP-DC", "title": "Siple Dome Glaciology and Ice Stream History"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -83.0, "title": "Siple Dome Glaciology and Ice Stream History 1994, 1996", "uid": "609085", "west": -155.0}, {"awards": "9526374 Alley, Richard", "bounds_geometry": ["POINT(-149 -81)"], "date_created": "Wed, 01 Jan 1997 00:00:00 GMT", "description": "This data set is part of the West Antarctic Ice Sheet cores (WAISCORES) project, an NSF-funded project to understand the influence of the West Antarctic Ice Sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica.\n\nThis data set includes melt layers and annual layer data for Siple Dome cores A through J, and upstream core C (UpC). Cores were examined on a light table after the core had been sectioned longitudinally and samples removed for isotopic, chemical, and other analyses, and after the surface had been smoothed using a planer. Major stratigraphic features were noted, such as coarse-grained and fine-grained firn at shallow depths, and coarse-bubbled and fine-bubbled ice at greater depth. Melt layers were identified as bubble-free or nearly-bubble-free zones. Core lengths ranged from 30 to 133 meters.\n\nData in this collection were obtained in the summer of 1997. The data set is available via FTP as ACSII data (.dat), metadata (.meta) and text (.txt) files.", "east": -149.0, "geometry": ["POINT(-149 -81)"], "keywords": "Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Sample/collection Description; Sample/Collection Description; Siple Dome; Siple Dome Ice Core; WAISCORES", "locations": "Siple Dome; Antarctica", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Alley, Richard", "project_titles": "Physical Properties of the Siple Dome Deep Ice Core", "projects": [{"proj_uid": "p0000059", "repository": "USAP-DC", "title": "Physical Properties of the Siple Dome Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.0, "title": "Visible Stratigraphic Dating, Siple Dome and Upstream C Cores", "uid": "609121", "west": -149.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Weather, Firn Core, and Ground-penetrating radar data from southern Wilkins and George VI ice shelves, 2018-2019
|
1745116 |
2025-02-24 | Scambos, Ted; Miller, Julie; Miege, Clement; Montgomery, Lynn; Wallin, Bruce |
Antarctic Firn Aquifers: Extent, Characteristics, and Comparison with Greenland Occurrences |
Data were collected from two sites, one on the southern Wilkins and another on the southern George VI ice shelves. Both sites were investigated as potential sites of perennial firn aquifers; in the case of the southern Wilkins, an extensive firn aquifer was found (Montgomery et al., 2020). Data sources come from two early-model AMIGOS stations (Scambos et al., 2013), ice cores that were collected by hot-ring coring (Montgomery et al., 2020), and ground-penetrating radar profiles. Thermistor data from several depths within the firn core boreholes, transmitted by the AMIGOS stations, show the progression of the seasonal variations in firn temperature at the sites. Radar data show the depth of the firn aquifer (or, its absence at George VI site), and some drainage effects at a nearby rift at the Wilkins site. | ["POLYGON((-73 -70.5,-72.35 -70.5,-71.7 -70.5,-71.05 -70.5,-70.4 -70.5,-69.75 -70.5,-69.1 -70.5,-68.45 -70.5,-67.8 -70.5,-67.15 -70.5,-66.5 -70.5,-66.5 -70.8,-66.5 -71.1,-66.5 -71.4,-66.5 -71.7,-66.5 -72,-66.5 -72.3,-66.5 -72.6,-66.5 -72.9,-66.5 -73.2,-66.5 -73.5,-67.15 -73.5,-67.8 -73.5,-68.45 -73.5,-69.1 -73.5,-69.75 -73.5,-70.4 -73.5,-71.05 -73.5,-71.7 -73.5,-72.35 -73.5,-73 -73.5,-73 -73.2,-73 -72.9,-73 -72.6,-73 -72.3,-73 -72,-73 -71.7,-73 -71.4,-73 -71.1,-73 -70.8,-73 -70.5))"] | ["POINT(-69.75 -72)"] | false | false |
MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903
|
1744993 |
2025-02-12 | Higgins, John |
Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area Center for Oldest Ice Exploration |
Between about 2.8-0.9 Ma, Earth’s climate was characterized by 40 kyr cycles, driven or paced by changes in the tilt of Earth’s spin axis. Much is known about the 40k world from studies of deep-sea sediments, but our understanding of climate change during this period and the transition between the 40kyr glacial cycles from 2.8-0.9 Ma and the 100kyr glacial cycles of the last 0.9 Myr is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of >1 Ma ice discovered in shallow ice cores in the Allan Hills Blue Ice Area (BIA), Antarctica. During the 2015-2016 field season we recovered ice from two nearby drill cores that dates to > 2 million years in age using the 40Ar/38Ar ratio of the trapped gases. Our discovery of ice of this antiquity in two cores demonstrates that there is gas-record quality ice from the 40k world in the Allan Hills BIA. To further characterize the composition of Earth’s atmosphere and Antarctic climate during the 40k world we request support for two field seasons to drill new large-volume (4” or 9” diameter) ice cores at sites where we have previously identified >1 Ma ice and nearby sites where ground penetrating radar has identified bedrock features conducive to the preservation of old ice. | ["POINT(159.356125 -76.732376)"] | ["POINT(159.356125 -76.732376)"] | false | false |
CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903
|
1744993 |
2025-02-12 | Higgins, John |
Center for Oldest Ice Exploration Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area |
Between about 2.8-0.9 Ma, Earth’s climate was characterized by 40 kyr cycles, driven or paced by changes in the tilt of Earth’s spin axis. Much is known about the 40k world from studies of deep-sea sediments, but our understanding of climate change during this period and the transition between the 40kyr glacial cycles from 2.8-0.9 Ma and the 100kyr glacial cycles of the last 0.9 Myr is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of >1 Ma ice discovered in shallow ice cores in the Allan Hills Blue Ice Area (BIA), Antarctica. During the 2015-2016 field season we recovered ice from two nearby drill cores that dates to > 2 million years in age using the 40Ar/38Ar ratio of the trapped gases. Our discovery of ice of this antiquity in two cores demonstrates that there is gas-record quality ice from the 40k world in the Allan Hills BIA. To further characterize the composition of Earth’s atmosphere and Antarctic climate during the 40k world we request support for two field seasons to drill new large-volume (4” or 9” diameter) ice cores at sites where we have previously identified >1 Ma ice and nearby sites where ground penetrating radar has identified bedrock features conducive to the preservation of old ice. <br/> | ["POINT(159.3562 -76.73243)"] | ["POINT(159.3562 -76.73243)"] | false | false |
Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903
|
1744993 |
2025-02-11 | Higgins, John |
Center for Oldest Ice Exploration Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area |
Between about 2.8-0.9 Ma, Earth’s climate was characterized by 40 kyr cycles, driven or paced by changes in the tilt of Earth’s spin axis. Much is known about the 40k world from studies of deep-sea sediments, but our understanding of climate change during this period and the transition between the 40kyr glacial cycles from 2.8-0.9 Ma and the 100kyr glacial cycles of the last 0.9 Myr is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of >1 Ma ice discovered in shallow ice cores in the Allan Hills Blue Ice Area (BIA), Antarctica. During the 2015-2016 field season we recovered ice from two nearby drill cores that dates to > 2 million years in age using the 40Ar/38Ar ratio of the trapped gases. Our discovery of ice of this antiquity in two cores demonstrates that there is gas-record quality ice from the 40k world in the Allan Hills BIA. To further characterize the composition of Earth’s atmosphere and Antarctic climate during the 40k world we request support for two field seasons to drill new large-volume (4” or 9” diameter) ice cores at sites where we have previously identified >1 Ma ice and nearby sites where ground penetrating radar has identified bedrock features conducive to the preservation of old ice. | [] | [] | false | false |
ALHIC2201 and ALHIC2302 3D ECM and Layer Orientations
|
2019719 2149518 |
2024-12-06 | Kirkpatrick, Liam; Carter, Austin; Marks Peterson, Julia; Shackleton, Sarah; Fudge, T. J. |
Collaborative Research: Testing Next Generation Measurement Techniques for Reconstruction of Paleoclimate Archives from Thin or Disturbed Ice Cores Sections Center for Oldest Ice Exploration |
This dataset includes three-dimensional multitrack electrical conductivity measurements (3D ECM) results from measurements in the upper sections of the ALHIC2201 and ALHIC2302 large (241mm) diameter ice cores drilled in the Allan Hills blue ice area (76.73°S,159.36°E) in Victoria Land, East Antarctica. The data extends from the surface to 23.0 m depth in ALHIC2201 and from 8.5 m to 46.3 m depth in ALHIC2302. We include the raw 3D ECM data (AC and DC multitrack ECM measurements on perpendicular faces of a quarter-core cut) in CSV format and basic plots of this data. We also provide dip and dip direction estimates of the layering observed in each core section in a CSV table. | ["POINT(159.36 -76.73)"] | ["POINT(159.36 -76.73)"] | false | false |
Law Dome firn air and ice core 14CO concentration
|
1643669 |
2024-10-24 | Petrenko, Vasilii |
Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability |
This is a data set containing measurements of [14CO] in firn air and ice core samples from Law Dome DE08-OH site, Antarctica. The firn air and ice core samples were collected at Law Dome in December 2018 and January 2019. The [14CO] data represent atmospheric values (with the in situ cosmogenic and procedural components removed). [14CO] measurements were conducted as described in Hmiel et al., 2024 (https://doi.org/10.5194/tc-18-3363-2024). The in situ cosmogenic [14CO] contribution was calculated using parameters and model also described in Hmiel et al. (2024). As [14CO] measurements in ice cores are complex, use of the data in a publication requires contacting Vasilii Petrenko (vasilii.petrenko@rochester.edu) to ensure correct understanding of the data. Depending on nature of use of the data, co-authorship may be appropriate. | ["POLYGON((112 -66,112.2 -66,112.4 -66,112.6 -66,112.8 -66,113 -66,113.2 -66,113.4 -66,113.6 -66,113.8 -66,114 -66,114 -66.1,114 -66.2,114 -66.3,114 -66.4,114 -66.5,114 -66.6,114 -66.7,114 -66.8,114 -66.9,114 -67,113.8 -67,113.6 -67,113.4 -67,113.2 -67,113 -67,112.8 -67,112.6 -67,112.4 -67,112.2 -67,112 -67,112 -66.9,112 -66.8,112 -66.7,112 -66.6,112 -66.5,112 -66.4,112 -66.3,112 -66.2,112 -66.1,112 -66))"] | ["POINT(113 -66.5)"] | false | false |
Carbon-13 and Deuterium isotopic composition of atmospheric methane across Heinrich Stadial 4, and Dansgaard Oesgher Event 8, WAIS Divide Replicate Ice Core, Antarctica
|
1745078 |
2024-07-23 | Riddell-Young, Benjamin; Lee, James; Schmitt, Jochen; Fischer, Hubertus; Bauska, Thomas; Menking, Andy; Iseli, Rene; Clark, Reid; Brook, Edward J. |
Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores |
This dataset includes ~60-year resolution measurements of the Carbon-13 and Deuterium isotopic Composition of Atmospheric Methane (δ13C-CH4 and δD-CH4, respectively) of gas bubbles from the WAIS Divide Replicate Ice Core. All measurements were made at the University of Bern Ice Core Laboratory (Bern, Switzerland) using a new methane stable isotope analytical system. The data includes depth-adjacent replicate samples (separated by no more than 0.3m of depth). The data are displayed as a function of WAIS Divide Replicate Core depth and were corrected for gravitational and diffusional fractionation that occurs in the firn column according to Buizert et al., 2013. 1-sigma measurement uncertainty is also included and is determined from analytical uncertainty and uncertainties associated with diffusional and gravitational fractionation. Additional funding for this work was provided by the Swiss National Foundation, Awards #200020_172506 and #200020B_200328L. | [] | [] | false | false |
EPICA Dome C Sulfate Data 7-3190m
|
1851022 |
2023-12-22 | Fudge, T. J.; Severi, Mirko |
Collaborative Research: The Impact of Impurities and Stress State on Polycrystalline Ice Deformation |
Volcanic deposition of sulfuric acid in ice cores is important both for understanding past volcanic activity and for synchronizing ice core timescales. Sulfuric acid has a low eutectic point, so it can potentially exist in liquid at grain boundaries and veins, accelerating chemical diffusion. A high effective diffusivity would allow post-depositional diffusion to obscure the climate history and the peak matching among older portions of ice cores. Here, we use records of sulfate from the EPICA Dome C (EDC) ice core to estimate the effective diffusivity of sulfuric acid in ice. We focus on EDC because multiple glacial-interglacial cycles are preserved, allowing analysis for long timescales and deposition in similar climates. We calculate the mean concentration gradient and the width of prominent volcanic events, and analyze the evolution of each with depth/age. We find the effective diffusivities for interglacials and glacial maximums to be 5 ± 3 × 10-9 m2 a-1, an order of magnitude lower than a previous estimate derived from the Holocene portion of EDC (Barnes et al., 2003). The effective diffusivity may be even smaller if the bias from artificial smoothing from the sampling is accounted for. Effective diffusivity is not obviously affected by the ice temperature until about -10°C, 3000m depth, which is also where anomalous sulfate peaks begin to be observed (Traversi et al., 2009). Low effective diffusivity suggests that sulfuric acid is not readily diffusing in liquid-like veins in the upper portions of the Antarctic ice sheet and that records may be preserved in deep, old ice if the ice temperature remains well below the pressure melting point. | ["POINT(123.33 -75.09)"] | ["POINT(123.33 -75.09)"] | false | false |
Atmospheric methane across the Last Glacial Maximum and deglaciation from the GISP2, NEEM and WAIS Divide ice cores
|
1745078 |
2023-10-05 | Riddell-Young, Benjamin; Martin, Kaden; Rosen, Julia; Lee, James; Edwards, Jon S.; Brook, Edward J. |
Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores |
This dataset includes measurements of atmospheric methane from samples from the NEEM, GISP2 and WAIS Divide ice cores. All measurements were made at the Oregon State University Ice Core and Quaternary Geochemistry Laboratory (Corvallis, OR) using an established analytical system. 433 samples from the NEEM ice core were measured between 1420 and 1560m depths. A measurement uncertainty ranging from 2.8 to 4.2 ppb, depending on the measurement year, was determined from replicate samples. 340 samples from the GISP2 ice core were measured between 1740 and 2060m depths. A measurement uncertainty ranging from 3.1 to 3.4 ppb, depending on the measurement year, was determined from replicate samples. All GISP2 and NEEM data were corrected for excess methane contamination using the established relationship between excess methane and Ca2+ (Lee et al., 2020). Both corrected and uncorrected data are included in the publication. 340 samples from the GISP2 ice core were measured between 1957 and 3081m depths. A measurement uncertainty ranging from 3.1 to 3.4 ppb, depending on the measurement year, was determined from replicate samples. Depths reflect the mid-points of the depth range of each samples, which is typically ~8cm. All replicate measurements are included in the dataset. Lee, J. E. et al. Excess methane in Greenland ice cores associated with high dust concentrations. Geochimica et cosmochimica acta 270, 409-430 (2020). | ["POINT(-112.05 -79.28)"] | ["POINT(-112.05 -79.28)"] | false | false |
Atmospheric methane interpolar difference and four-box troposphere model output across the Last Glacial Maximum and Deglaciation
|
1745078 |
2023-10-02 | Riddell-Young, Benjamin; Rosen, Julia; Buizert, Christo; Martin, Kaden; Lee, James; Edwards, Jon S.; Mühl, Michaela; Schmitt, Jochen; Fischer, Hubertus; Blunier, Thomas; Brook, Edward J. |
Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores |
This dataset includes estimates of the atmospheric methane relative interpolar difference (rIPD) across the Last Glacial Maximum and Deglaciation. The rIPD was calculated using discrete, high-resolution methane measurements from the WAIS Divide, NEEM and GISP2 ice cores. Two independent IPD records were determined: One using NEEM and WAIS and one using GISP2 and WAIS. The dataset includes rIPD values calculated using both Greenland methane data both corrected and uncorrected for excess methane (Lee et al., 2020). The rIPD was calculated by smoothing each methane record and synchronizing them to the WD2014 gas age scale. 1-sigma rIPD uncertainties are included. This dataset also includes the output of the four-box troposphere model used to interpret the rIPD. For both excess methane-corrected records, the model output and 1-sigma uncertainty is provided for northern extratropical (30N - 90N) and total tropical (30S - 30N) sources in Tg yr-1. For the NEEM-derived rIPD, sections of the rIPD where atmospheric methane changed rapidly were deemed untrustworthy were removed from the dataset. Lee, J. E. et al. Excess methane in Greenland ice cores associated with high dust concentrations. Geochimica et cosmochimica acta 270, 409-430 (2020). | ["POINT(-112.05 -79.28)"] | ["POINT(-112.05 -79.28)"] | false | false |
Allan Hills 2022-23 Shallow Ice Core Field Report
|
1744993 |
2023-06-16 | Shackleton, Sarah; Brook, Edward J. |
Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area Center for Oldest Ice Exploration |
Unpublished field report describing drilling, sampling, and temperature profiles for shallow ice cores and boreholes at Allan Hills in 2022-2023 field season | ["POLYGON((159.17 -76.67,159.195 -76.67,159.22 -76.67,159.24499999999998 -76.67,159.26999999999998 -76.67,159.295 -76.67,159.32 -76.67,159.345 -76.67,159.36999999999998 -76.67,159.39499999999998 -76.67,159.42 -76.67,159.42 -76.676,159.42 -76.682,159.42 -76.688,159.42 -76.694,159.42 -76.7,159.42 -76.706,159.42 -76.712,159.42 -76.718,159.42 -76.724,159.42 -76.73,159.39499999999998 -76.73,159.36999999999998 -76.73,159.345 -76.73,159.32 -76.73,159.295 -76.73,159.26999999999998 -76.73,159.24499999999998 -76.73,159.22 -76.73,159.195 -76.73,159.17 -76.73,159.17 -76.724,159.17 -76.718,159.17 -76.712,159.17 -76.706,159.17 -76.7,159.17 -76.694,159.17 -76.688,159.17 -76.682,159.17 -76.676,159.17 -76.67))"] | ["POINT(159.295 -76.7)"] | false | false |
Concentration and isotopic composition of atmospheric N2O over the last century
|
1643716 |
2023-05-22 | Ghosh, Sambit; Toyoda, Sakae ; Buizert, Christo ; Langenfelds, Ray L ; Yoshida, Naohiro ; Joong Kim, Seong; Ahn, Jinho ; Etheridge, David |
Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability |
We have reconstructed the atmospheric N2O mole fraction and its isotopic composition by combining data from ice cores, firn air, and atmospheric samples. The mole fraction reconstruction extends back to 1000 CE using ice cores, firn air, and atmospheric sampling; and the isotopic reconstruction extends back to 1900 CE using only firn air data. We have incorporated both newly measured and previously published data. We present new data for the mole fraction, d15Nbulk, d18O, and d15NSP values from the Styx (East Antarctica) firn air, and mole fraction from the North Greenland Eemian Ice drilling Project (NEEM) firn air. We have used published records from the Styx and NEEM ice cores, direct atmospheric measurements from the NOAA global sampling network, and firn air data, giving a total of 11 sites for N2O mole fraction, 12 sites for d15Nbulk, 11 sites for d18O, and 8 sites for d15NSP values. | ["POLYGON((-180 -67,-144 -67,-108 -67,-72 -67,-36 -67,0 -67,36 -67,72 -67,108 -67,144 -67,180 -67,180 -69.3,180 -71.6,180 -73.9,180 -76.2,180 -78.5,180 -80.8,180 -83.1,180 -85.4,180 -87.7,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.7,-180 -85.4,-180 -83.1,-180 -80.8,-180 -78.5,-180 -76.2,-180 -73.9,-180 -71.6,-180 -69.3,-180 -67))"] | ["POINT(0 -89.999)"] | false | false |
WAIS Divide Core 10Be data, 2850-3240 m
|
1644094 1644128 |
2023-05-20 | Welten, Kees; Caffee, Marc; Woodruff, Thomas |
Synchronizing the WAIS Divide and Greenland Ice Cores from 30-65 ka BP using high-resolution 10Be measurements |
This dataset contains a continuous depth profile of 10Be measured in ice core samples from the WAIS Divide Core between 2850 and 3240 m depth. | ["POINT(-112.05 -79.28)"] | ["POINT(-112.05 -79.28)"] | false | false |
Carbon-13 isotopic composition of atmospheric methane across Heinrich Stadials 1 and 5, and Dansgaard Oesgher Event 12, WAIS Divide Ice Core, Antarctica
|
1745078 |
2023-04-26 | Riddell-Young, Benjamin |
Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores |
This dataset includes ~60-year resolution measurements of the Carbon-13 isotopic Composition of Atmospheric Methane (δ13C-CH4) of gas bubbles from the WAIS Divide Ice Core. All measurements were made at the Oregon State University Ice Core and Quaternary Geochemistry Laboratory (Corvallis, OR) using a new methane stable isotope analytical system. The data includes depth-adjacent replicate samples (separated by no more than 0.3m of depth) and is split up into two sheets for the two different intervals measured (Heinrich Stadial 1 and Heinrich Stadial 5 / Dansgaard Oeschger Event 12). The data are displayed as a function of WAIS Divide depth and were corrected for gravitational and diffusional fractionation that occurs in the firn column according to Buizert et al., 2013. 1-sigma measurement uncertainty is also included and is determined from analytical uncertainty and uncertainties associated with diffusional and gravitational fractionation. The manuscript presenting and analyzing these data is in preparation for publication as of April 2023. | ["POINT(-112.086 -79.468)"] | ["POINT(-112.086 -79.468)"] | false | false |
Old Ice, Ong Valley, Transantarctic Mountains
|
1445205 |
2023-02-09 | Putkonen, Jaakko; Bergelin, Marie |
Collaborative Research: Long Term Sublimation/Preservation of Two Separate, Buried Glacier Ice Masses, Ong Valley, Southern Transantarctic Mountains |
These data include the measurements and analyses done on a ~10 meter long ice cores drilled in Ong Valley buried ice site. Further descriptions can be found in the related paper listed below. | ["POLYGON((157.45 -83.14,157.45299999999997 -83.14,157.456 -83.14,157.459 -83.14,157.462 -83.14,157.46499999999997 -83.14,157.468 -83.14,157.471 -83.14,157.474 -83.14,157.47699999999998 -83.14,157.48 -83.14,157.48 -83.141,157.48 -83.142,157.48 -83.143,157.48 -83.144,157.48 -83.14500000000001,157.48 -83.146,157.48 -83.147,157.48 -83.14800000000001,157.48 -83.149,157.48 -83.15,157.47699999999998 -83.15,157.474 -83.15,157.471 -83.15,157.468 -83.15,157.46499999999997 -83.15,157.462 -83.15,157.459 -83.15,157.456 -83.15,157.45299999999997 -83.15,157.45 -83.15,157.45 -83.149,157.45 -83.14800000000001,157.45 -83.147,157.45 -83.146,157.45 -83.14500000000001,157.45 -83.144,157.45 -83.143,157.45 -83.142,157.45 -83.141,157.45 -83.14))"] | ["POINT(157.46499999999997 -83.14500000000001)"] | false | false |
Seasonal temperatures in West Antarctica during the Holocene
|
1807522 1043092 |
2022-09-01 | Jones, Tyler R. |
Collaborative Research: Targeted resampling of deep polar ice cores using information theory Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core |
We analyzed a continuous record of water-isotope ratios from the West Antarctic Ice Sheet (WAIS) Divide ice core to reveal summer and winter temperature changes through the last 11,000 years. | ["POINT(-112.085 -79.467)"] | ["POINT(-112.085 -79.467)"] | false | false |
Elemental and isotopic composition of nitrogen, oxygen, and argon in Allan Hills ice cores
|
1443263 |
2021-11-02 | Yan, Yuzhen; Bender, Michael; Higgins, John |
Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area |
This file includes the d15N, O2/N2 ratio, Ar/N2 ratio, and d18O of O2 (d18Oatm) in Allan Hills ice cores (ALHIC1502 and ALHIC1503). This dataset replaces an earlier version of the elemental and isotopic composition in Allan Hills ice cores (DOI: 10.15784/601204) by adding new data from 60 depths in ALHIC1502 core (26.26 m to 175.74 m). | ["POINT(159.35507 -76.73286)"] | ["POINT(159.35507 -76.73286)"] | false | false |
Common-era black carbon deposition and atmospheric modeling for 6 Antarctic ice cores
|
None | 2021-07-16 | McConnell, Joseph; Chellman, Nathan | No project link provided | This dataset includes: 1) rBC concentration and flux for 6 Antarctic ice core sites (JRI_2008, JRI_D98, NUS08_7, NUS07_7, B53, and B40). 2) FLEXPART backward-model emission sensitivities for 4 Antarctic ice core sites (JRI, B40, B53, NUS07_7). 3) FLEXPART forward-model deposition for simulated biomass burning emissions from New Zealand. 4) Tie points to constrain flow model used to develop JRI_2008 chronology. | ["POLYGON((-57.7 -64.2,-46.44 -64.2,-35.18 -64.2,-23.92 -64.2,-12.66 -64.2,-1.4 -64.2,9.86 -64.2,21.12 -64.2,32.38 -64.2,43.64 -64.2,54.9 -64.2,54.9 -65.99,54.9 -67.78,54.9 -69.57,54.9 -71.36,54.9 -73.15,54.9 -74.94,54.9 -76.73,54.9 -78.52,54.9 -80.31,54.9 -82.1,43.64 -82.1,32.38 -82.1,21.12 -82.1,9.86 -82.1,-1.4 -82.1,-12.66 -82.1,-23.92 -82.1,-35.18 -82.1,-46.44 -82.1,-57.7 -82.1,-57.7 -80.31,-57.7 -78.52,-57.7 -76.73,-57.7 -74.94,-57.7 -73.15,-57.7 -71.36,-57.7 -69.57,-57.7 -67.78,-57.7 -65.99,-57.7 -64.2))"] | ["POINT(-1.4 -73.15)"] | false | false |
Resampling of Deep Polar Ice Cores using Information Theory
|
1043167 |
2020-07-27 | Jones, Tyler R.; Morris, Valerie; Garland, Joshua; Vaughn, Bruce; White, James |
Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core |
The original water stable isotope data for the WAIS Divide Deep Ice Core was generated under the University of Colorado INSTAAR Stable Isotope Lab (NSF Award# 1443328). This data set contains high-resolution dD and d18O data for the West Antarctic Ice Sheet (WAIS) Divide Ice core. Drilling was initiated in 2006 and completed in 2011, and subsequent analyses on the ice were performed at the University of Colorado INSTAAR Stable Isotope Lab using Continuous Flow Analysis (CFA), completed in 2015 and described in Jones et al. (2017). The targeted resampling of the WAIS Divide Ice core (1035.4 to 1368.2 m) was completed in 2019 (NSF OPP - Antarctic Glaciology 1807522) to replace data analyzed on an older generation Laser Absorption Spectroscopy instrument. The resampling interval was identified using information theory (Garland and Jones et al. 2018). | ["POINT(-112.1115 -79.481)"] | ["POINT(-112.1115 -79.481)"] | false | false |
Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core
|
0636953 1043780 0839122 |
2020-07-15 | Aydin, Murat; Saltzman, Eric |
Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core Methyl Chloride, Methyl Bromide, and Carbonyl Sulfide in Deep Antarctic Ice Cores Carbonyl Sulfide Measurements in the Deep West Antarctic Ice Sheet Divide Ice Core |
This is a data set of ice core carbonyl sulfide data. Carbonyl sulfide was analyzed in air extracted from the Taylor Dome M3C1 ice core at 106 discrete depths as indicated in the data file. This data set includes all COS data presented in a prior data set from the same ice core (/doi.org/10.7265/N5S75D8P) that were analyzed from 2008 through 2010. This data set includes additional data from the same ice core that were analyzed at a later date in 2014. The two sets of measurements are presented as one data set as the same extraction and analytical methods were used for both sets of analyses. Refer to the references associated with the data set for details on the methods. | [] | [] | false | false |
Ice Core Air Carbonyl Sulfide Measurements - SPRESSO Ice Core
|
0440602 0338359 |
2020-07-10 | Aydin, Murat; Saltzman, Eric |
Methyl chloride and methyl bromide in Antarctic ice cores Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site |
This is a data set of ice core carbonyl sulfide data. Carbonyl sulfide was analyzed in air extracted from the SPRESSO ice core at 106 discrete depths as indicated in the data file. SPRESSO is a shallow, dry-drilled ice core from the South Pole. | [] | [] | false | false |
Mid-Holocene high-resolution water isotope time series for the WAIS Divide ice core
|
1807522 |
2020-05-26 | Morris, Valerie; Jones, Tyler R.; Vaughn, Bruce; White, James |
Collaborative Research: Targeted resampling of deep polar ice cores using information theory |
The original water stable isotope data for the WAIS Divide Deep Ice Core was generated under the University of Colorado INSTAAR Stable Isotope Lab (NSF Award# 1443328). This data set contains high-resolution dD and d18O data for the West Antarctic Ice Sheet (WAIS) Divide Ice core. Drilling was initiated in 2006 and completed in 2011, and subsequent analyses on the ice were performed at the University of Colorado INSTAAR Stable Isotope Lab using Continuous Flow Analysis (CFA). The targeted resampling of the WAIS Divide Ice core (1035.4 - 1368.2m) occurred for this grant (NSF OPP - Antarctic Glaciology 1807522) to replace data analyzed on an older generation Laser Absorption Spectroscopy instrument. The resampling interval was identified using information theory. | ["POINT(-112.1115 -79.481)"] | ["POINT(-112.1115 -79.481)"] | false | false |
Measurements of 14CH4 and 14CO in ice from Taylor Glacier: Last Deglaciation and Deep Core Results
|
1245659 |
2020-02-28 | Petrenko, Vasilii; Dyonisius, Michael |
Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive |
This data set contains measurements of 14CH4 and 14CO in ice cores from Taylor Glacier, Antarctica. This includes measurements in ice from the last deglaciation (18 - 8 kyr), for the purposes of paleoatmospheric 14CH4 reconstruction. The data set also includes measurements in older ice (50 - 70 kyr) from a deep ice core, made for the purposes of studying in situ cosmogenic 14C production in ice. All data are in excel format. | ["POINT(161.71353 -77.75855)"] | ["POINT(161.71353 -77.75855)"] | false | false |
Methane concentration in Allan Hills ice cores
|
1443263 |
2019-08-14 | Yan, Yuzhen; Bender, Michael; Brook, Edward J.; Higgins, John |
Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area |
This file includes the concentration methane (CH4) in Allan Hills ice cores (ALHIC1502 and ALHIC1503). | ["POINT(159.35507 -76.73286)"] | ["POINT(159.35507 -76.73286)"] | false | false |
Carbon dioxide concentration and its stable carbon isotope composition in Allan Hills ice cores
|
1443263 |
2019-08-14 | Yan, Yuzhen; Bender, Michael; Brook, Edward J.; Higgins, John |
Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area |
This file includes the concentration of carbon dioxide (CO2) and methane (CH4) and the stable carbon isotope composition of CO2 in Allan Hills ice cores (ALHIC1502 and ALHIC1503). | ["POINT(159.35507 -76.73286)"] | ["POINT(159.35507 -76.73286)"] | false | false |
Elemental and isotopic composition of heavy noble gases in Allan Hills ice cores
|
1443263 |
2019-08-14 | Yan, Yuzhen; Bender, Michael; Higgins, John; Ng, Jessica; Severinghaus, Jeffrey P. |
Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area |
This file includes argon isotope composition and xenon-to-krypton ratios measured in Allan Hills ice cores. | ["POINT(159.35507 -76.73286)"] | ["POINT(159.35507 -76.73286)"] | false | false |
Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores
|
1245659 1245821 1246148 |
2019-08-12 | Menking, James; Brook, Edward J.; Marcott, Shaun; Barker, Stephen; Shackleton, Sarah; Dyonisius, Michael; Petrenko, Vasilii; McConnell, Joseph; Rhodes, Rachel; Bauska, Thomas; Baggenstos, Daniel; Severinghaus, Jeffrey P. |
Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive |
New ice cores retrieved from the Taylor Glacier (Antarctica) blue ice area contain ice and air spanning the Marine Isotope Stage (MIS) 5-4 transition, a period of global cooling and ice sheet expansion. We determine chronologies for the ice and air bubbles in the new ice cores by visually matching variations in gas- and ice- phase tracers to preexisting ice core records. The chronologies reveal an ice age-gas age difference (Δage) approaching 10 ka during MIS 4, implying very low snow accumulation in the Taylor Glacier accumulation zone. A revised chronology for the analagous section of the Taylor Dome ice core (84 to 55 ka), located to the south of the Taylor Glacier accumulation zone, shows that Δage did not exceed 3 ka. The difference in Δage between the two records during MIS 4 is similar in magnitude but opposite in direction to what is observed at the Last Glacial Maximum. This relationship implies that a spatial gradient in snow accumulation existed across the Taylor Dome region during MIS 4 that was oriented in the opposite direction of the accumulation gradient during the Last Glacial Maximum. | ["POINT(162.167 -77.733)"] | ["POINT(162.167 -77.733)"] | false | false |
Noble Gas Data from recent ice in Antarctica for 86Kr problem
|
1543229 |
2019-08-02 | Severinghaus, Jeffrey P.; Shackleton, Sarah |
Collaborative research: Kr-86 as a proxy for barometric pressure variability and movement of the SH westerlies during the last
deglaciation |
This data comprises a survey of Recent ice from multiple sites in Antarctica using shallow ice cores to examine noble gas values in ice that nominally has the same Mean Ocean Temperature as today. The goal is to elucidate fractionation that occurs in the firn before air is trapped in bubbles in the ice, by making the assumption that the atmosphere noble gas content has not changed since this air was trappped. The ages of the air samples are typically early Industrial Revolution or late Holocene. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
WAIS Divide d18Oatm and Siple Dome/WAIS Divide composite and individual delta epsilon LAND
|
0538657 |
2017-08-18 | Seltzer, Alan; Severinghaus, Jeffrey P. |
Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate |
This data set contains measurements of d18Oatm (d18O of O2), d15N, dAr/N2, and dO2/N2 in gas bubbles from the WAIS Divide ice core. The time resolution is variable throughout the record but is ~100 years on average (from 65 ka to present). All measurements were made in the Noble Gas Isotope Laboratory at Scripps Institution of Oceanography (La Jolla, CA). The data set includes all replicate measurements as well as replicate-mean values and a calculation of measurement precision (pooled standard deviation). The second sheet of this data set includes fitted d18Oatm curves for the past 50 ka from both the WAIS Divide and Siple Dome Antarctic ice cores, both on the WD2014 timescale (Buizert et al., 2015). The second sheet also includes calculations of the time derivative of d18Oatm and d e LAND in both ice cores individual as well as in a composite record. Details of the entire data set and all relevant methods are provided in Seltzer et al., 2017. | ["POLYGON((-113 -79,-112.8 -79,-112.6 -79,-112.4 -79,-112.2 -79,-112 -79,-111.8 -79,-111.6 -79,-111.4 -79,-111.2 -79,-111 -79,-111 -79.1,-111 -79.2,-111 -79.3,-111 -79.4,-111 -79.5,-111 -79.6,-111 -79.7,-111 -79.8,-111 -79.9,-111 -80,-111.2 -80,-111.4 -80,-111.6 -80,-111.8 -80,-112 -80,-112.2 -80,-112.4 -80,-112.6 -80,-112.8 -80,-113 -80,-113 -79.9,-113 -79.8,-113 -79.7,-113 -79.6,-113 -79.5,-113 -79.4,-113 -79.3,-113 -79.2,-113 -79.1,-113 -79))"] | ["POINT(-112 -79.5)"] | false | false |
Antarctic Ice Core Tephra Analysis
|
1142007 |
2017-08-03 | Kurbatov, Andrei V. |
Collaborative Research: Developing an Antarctic Tephra Database for Interdisciplinary Paleoclimate Research (AntT) |
This dataset contains ice core tephra geochemical data from 5 temporal intervals in the RICE, WDC-06A, SPRESSO, and SPICE ice cores. The temporal intervals included are 1991 C.E., 1963 C.E., 1815 C.E., 1809 C.E., and 1257 C.E. These intervals are often analyzed for volcanic sulfate by ice core scientists. The volcanic events associated with these intervals caused global weather and climate phenomena and are often used by climate modelers as well to understand volcanic sulfate loading on the climate. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Holocene Black Carbon in Antarctica
|
0839093 |
2017-06-19 | McConnell, Joseph; Arienzo, Monica |
Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core |
Black carbon (BC) and other biomass-burning (BB) aerosols are critical components of climate forcing but quantification, predictive climate modeling, and policy decisions have been hampered by limited understanding of the climate drivers of BB and by the lack of long-term records. Prior modeling studies suggested that increased Northern Hemisphere anthropogenic BC emissions increased recent temperatures and regional precipitation, including a northward shift in the Inter-Tropical Convergence Zone (ITCZ). Two Antarctic ice cores were analyzed for BC and the longest record shows that the highest BC deposition during the Holocene occurred ~8-6k years before present in a period of relatively high austral burning season and low growing season insolation. Atmospheric transport modeling suggests South America (SA) as the dominant source of modern Antarctic BC and, consistent with the ice-core record, climate model experiments using mid-Holocene and preindustrial insolation simulate comparable increases in carbon loss due to fires in SA during the mid-Holocene. SA climate proxies document a northward shifted ITCZ and weakened SA Summer Monsoon (SASM) during this period, with associated impacts on hydroclimate and burning. A second Antarctic ice core spanning the last 2.5k years documents similar linkages between hydroclimate and BC, with the lowest deposition during the Little Ice Age characterized by a southerly shifted ITCZ and strengthened SASM. These new results indicate that insolation-driven changes in SA hydroclimate and BB, likely linked to the position of the ITCZ, modulated Antarctic BC deposition during most of the Holocene and suggests connections and feedbacks between future BC emissions and hydroclimate. | ["POLYGON((161.41425 -77.73489,161.486884 -77.73489,161.559518 -77.73489,161.632152 -77.73489,161.704786 -77.73489,161.77742 -77.73489,161.850054 -77.73489,161.922688 -77.73489,161.995322 -77.73489,162.067956 -77.73489,162.14059 -77.73489,162.14059 -77.747868,162.14059 -77.760846,162.14059 -77.773824,162.14059 -77.786802,162.14059 -77.79978,162.14059 -77.812758,162.14059 -77.825736,162.14059 -77.838714,162.14059 -77.851692,162.14059 -77.86467,162.067956 -77.86467,161.995322 -77.86467,161.922688 -77.86467,161.850054 -77.86467,161.77742 -77.86467,161.704786 -77.86467,161.632152 -77.86467,161.559518 -77.86467,161.486884 -77.86467,161.41425 -77.86467,161.41425 -77.851692,161.41425 -77.838714,161.41425 -77.825736,161.41425 -77.812758,161.41425 -77.79978,161.41425 -77.786802,161.41425 -77.773824,161.41425 -77.760846,161.41425 -77.747868,161.41425 -77.73489))"] | ["POINT(161.77742 -77.79978)"] | false | false |
Seasonal 17O Isotope Data from Lake Vostok and WAIS Divide Snow Pits
|
1341360 |
2017-06-05 | Steig, Eric J.; Schoenemann, Spruce |
Development of a Laser Spectroscopy System for Analysis of 17Oexcess on Ice Cores |
Seasonal 17O Isotope Data from Lake Vostok and WAIS Divide Snow Pits | ["POINT(106 -77.5)", "POINT(-112.08 -79.46)"] | ["POINT(106 -77.5)", "POINT(-112.08 -79.46)"] | false | false |
WD2014: Timescale for WAIS Divide Core 2006 A (WDC-06A)
|
0944197 |
2017-03-28 | Fudge, T. J. |
Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core |
The West Antarctic Ice Sheet Divide (WAIS Divide, WD) ice core is a newly drilled, high-accumulation deep ice core that provides Antarctic climate records of the past ~68 ka at unprecedented temporal resolution. The upper 2850 m (back to 31.2 ka BP) have been dated using annual-layer counting. Here we present a chronology for the deep part of the core (67.8-31.2 ka BP), which is based on stratigraphic matching to annual-layer-counted Greenland ice cores using globally well-mixed atmospheric methane. We calculate the WD gas age-ice age difference (Delta age) using a combination of firn densification modeling, ice-flow modeling, and a data set of d15N-N2, a proxy for past firn column thickness. The largest Delta age at WD occurs during the Last Glacial Maximum, and is 525 +/- 120 years. Internally consistent solutions can be found only when assuming little to no influence of impurity content on densification rates, contrary to a recently proposed hypothesis. We synchronize the WD chronology to a linearly scaled version of the layer-counted Greenland Ice Core Chronology (GICC05), which brings the age of Dansgaard-Oeschger (DO) events into agreement with the U/Th absolutely dated Hulu Cave speleothem record. The small Delta age at WD provides valuable opportunities to investigate the timing of atmospheric greenhouse gas variations relative to Antarctic climate, as well as the interhemispheric phasing of the \"bipolar seesaw\". We present the WD2014 chronology for the upper part (0-2850 m; 31.2 ka BP) of the West Antarctic Ice Sheet (WAIS) Divide (WD) ice core. The chronology is based on counting of annual layers observed in the chemical, dust and electrical conductivity records. These layers are caused by seasonal changes in the source, transport, and deposition of aerosols. The measurements were interpreted manually and with the aid of two automated methods. We validated the chronology by comparing to two high-accuracy, absolutely dated chronologies. For the Holocene, the cosmogenic isotope records of 10Be from WAIS Divide and 14C for IntCal13 demonstrated that WD2014 was consistently accurate to better than 0.5% of the age. For the glacial period, comparisons to the Hulu Cave chronology demonstrated that WD2014 had an accuracy of better than 1% of the age at three abrupt climate change events between 27 and 31ka. WD2014 has consistently younger ages than Greenland ice core chronologies during most of the Holocene. For the Younger Dryas-Preboreal transition (11.595 ka; 24 years younger) and the Bolling-Allerod Warming (14.621 ka; 7 years younger), WD2014 ages are within the combined uncertainties of the timescales. Given its high accuracy, WD2014 can become a reference chronology for the Southern Hemisphere, with synchronization to other chronologies feasible using high-quality proxies of volcanism, solar activity, atmospheric mineral dust, and atmospheric methane concentrations. | ["POINT(-112.1115 -79.481)"] | ["POINT(-112.1115 -79.481)"] | false | false |
Gas measurement from Higgins et al., 2015 - PNAS
|
0838849 |
2017-03-27 | Higgins, John |
Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core |
Measurements of Ar isotopes (40Ar/38Ar/36Ar) and other gas species (18O/16O of O2, 15N/14N of N2, O2/N2 and Ar/N2 ratios) from ice cores drilled in the Allan Hills Blue Ice Area | ["POLYGON((159.02 -76.67,159.057 -76.67,159.094 -76.67,159.131 -76.67,159.168 -76.67,159.205 -76.67,159.242 -76.67,159.279 -76.67,159.316 -76.67,159.353 -76.67,159.39 -76.67,159.39 -76.687,159.39 -76.704,159.39 -76.721,159.39 -76.738,159.39 -76.755,159.39 -76.772,159.39 -76.789,159.39 -76.806,159.39 -76.823,159.39 -76.84,159.353 -76.84,159.316 -76.84,159.279 -76.84,159.242 -76.84,159.205 -76.84,159.168 -76.84,159.131 -76.84,159.094 -76.84,159.057 -76.84,159.02 -76.84,159.02 -76.823,159.02 -76.806,159.02 -76.789,159.02 -76.772,159.02 -76.755,159.02 -76.738,159.02 -76.721,159.02 -76.704,159.02 -76.687,159.02 -76.67))"] | ["POINT(159.205 -76.755)"] | false | false |
Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core
|
1043167 |
2016-01-01 | White, James; Morris, Valerie; Vaughn, Bruce; Jones, Tyler R. |
Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core |
This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public. | ["POINT(-112.08 -79.47)"] | ["POINT(-112.08 -79.47)"] | false | false |
Measurements of in situ cosmogenic 14C from Taylor Glacier, Antarctica
|
0839031 |
2016-01-01 | Severinghaus, Jeffrey P. |
Collaborative Research: A "Horizontal Ice Core" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica |
This award supports a project to develop a precise gas-based chronology for an archive of large-volume samples of the ancient atmosphere, which would enable ultra-trace gas measurements that are currently precluded by sample size limitations of ice cores. The intellectual merit of the proposed work is that it will provide a critical test of the 'clathrate hypothesis' that methane clathrates contributed to the two abrupt atmospheric methane concentration increases during the last deglaciation 15 and 11 kyr ago. This approach employs large volumes of ice (>1 ton) to measure carbon-14 on past atmospheric methane across the abrupt events. Carbon-14 is an ideal discriminator of fossil sources of methane to the atmosphere, because most methane sources (e.g., wetlands, termites, biomass burning) are rich in carbon-14, whereas clathrates and other fossil sources are devoid of carbon-14. The proposed work is a logical extension to Taylor Glacier, Antarctica, of an approach pioneered at the margin of the Greenland ice sheet over the past 7 years. The Greenland work found higher-than-expected carbon-14 values, likely due in part to contaminants stemming from the high impurity content of Greenland ice and the interaction of the ice with sediments from the glacier bed. The data also pointed to the possibility of a previously unknown process, in-situ cosmogenic production of carbon-14 methane (radiomethane) in the ice matrix. Antarctic ice in Taylor Glacier is orders of magnitude cleaner than the ice at the Greenland site, and is much colder and less stratigraphically disturbed, offering the potential for a clear resolution of this puzzle and a definitive test of the cosmogenic radiomethane hypothesis. Even if cosmogenic radiomethane in ice is found, it still may be possible to reconstruct atmospheric radiomethane with a correction enabled by a detailed understanding of the process, which will be sought by co-measuring carbon-14 in carbon monoxide and carbon dioxide. The broader impacts of the proposed work are that the clathrate test may shed light on the stability of the clathrate reservoir and its potential for climate feedbacks under human-induced warming. Development of Taylor Glacier as a 'horizontal ice core' would provide a community resource for other researchers. Education of one postdoc, one graduate student, and one undergraduate, would add to human resources. This award has field work in Antarctica. | ["POINT(161.71965 -77.76165)"] | ["POINT(161.71965 -77.76165)"] | false | false |
Bromide in Snow in the Sea Ice Zone
|
1043145 |
2016-01-01 | Obbard, Rachel |
Bromide in Snow in the Sea Ice Zone |
A range of chemical and microphysical pathways in polar latitudes, including spring time (tropospheric) ozone depletion, oxidative pathways for mercury, and cloud condensation nuclei (CCN) production leading to changes in the cloud cover and attendant surface energy budgets, have been invoked as being dependent upon the emission of halogen gases formed in sea-ice. The prospects for climate warming induced reductions in sea ice extent causing alteration of these incompletely known surface-atmospheric feedbacks and interactions requires confirmation of mechanistic details in both laboratory studies and field campaigns. One such mechanistic question is how bromine (BrO and Br) enriched snow migrates or is formed through processes in sea-ice, prior to its subsequent mobilization as an aerosol fraction into the atmosphere by strong winds. Once aloft, it may react with ozone and other atmospheric species. Dartmouth researchers will collect snow from the surface of sea ice, from freely blowing snow and in sea-ice cores from Cape Byrd, Ross Sea. A range of spectroscopic, microanalytic and and microstructural approaches will be subsequently used to determine the Br distribution gradients through sea-ice, in order to shed light on how sea-ice first forms and then releases bromine species into the polar atmospheric boundary layer. | ["POLYGON((164.1005 -77.1188,164.36443 -77.1188,164.62836 -77.1188,164.89229 -77.1188,165.15622 -77.1188,165.42015 -77.1188,165.68408 -77.1188,165.94801 -77.1188,166.21194 -77.1188,166.47587 -77.1188,166.7398 -77.1188,166.7398 -77.19337,166.7398 -77.26794,166.7398 -77.34251,166.7398 -77.41708,166.7398 -77.49165,166.7398 -77.56622,166.7398 -77.64079,166.7398 -77.71536,166.7398 -77.78993,166.7398 -77.8645,166.47587 -77.8645,166.21194 -77.8645,165.94801 -77.8645,165.68408 -77.8645,165.42015 -77.8645,165.15622 -77.8645,164.89229 -77.8645,164.62836 -77.8645,164.36443 -77.8645,164.1005 -77.8645,164.1005 -77.78993,164.1005 -77.71536,164.1005 -77.64079,164.1005 -77.56622,164.1005 -77.49165,164.1005 -77.41708,164.1005 -77.34251,164.1005 -77.26794,164.1005 -77.19337,164.1005 -77.1188))"] | ["POINT(165.42015 -77.49165)"] | false | false |
Mount Moulton Isotopes and Other Ice Core Data
|
0230316 |
2015-11-24 | Steig, Eric J.; White, James; Popp, Trevor |
Collaborative Research: Refining a 500-kry Climate Record From the Moulton Blue Ice Field in West Antarctica |
This data set consists of water isotope ratios from the Mt. Moulton ice-trench record, as well as data from the Taylor Dome, EPICA Dome C, Talos Dome, Vostok, and EPICA Dronning Maud Land ice cores. | ["POINT(-134.43 -74.04)"] | ["POINT(-134.43 -74.04)"] | false | false |
Annual Satellite Era Accumulation Patterns Over WAIS Divide: A Study Using Shallow Ice Cores, Near-Surface Radars and Satellites
|
0944653 |
2015-01-01 | Forster, Richard |
Collaborative Research: Annual satellite era accumulation patterns over WAIS Divide: A study using shallow ice cores, near-surface radars and satellites |
This award supports a project to broaden the knowledge of annual accumulation patterns over the West Antarctic Ice Sheet by processing existing near-surface radar data taken on the US ITASE traverse in 2000 and by gathering and validating new ultra/super-high-frequency (UHF) radar images of near surface layers (to depths of ~15 m), expanding abilities to monitor recent annual accumulation patterns from point source ice cores to radar lines. Shallow (15 m) ice cores will be collected in conjunction with UHF radar images to confirm that radar echoed returns correspond with annual layers, and/or sub-annual density changes in the near-surface snow, as determined from ice core stable isotopes. This project will additionally improve accumulation monitoring from space-borne instruments by comparing the spatial-radar-derived-annual accumulation time series to the passive microwave time series dating back over 3 decades and covering most of Antarctica. The intellectual merit of this project is that mapping the spatial and temporal variations in accumulation rates over the Antarctic ice sheet is essential for understanding ice sheet responses to climate forcing. Antarctic precipitation rate is projected to increase up to 20% in the coming century from the predicted warming. Accumulation is a key component for determining ice sheet mass balance and, hence, sea level rise, yet our ability to measure annual accumulation variability over the past 5 decades (satellite era) is mostly limited to point-source ice cores. Developing a radar and ice core derived annual accumulation dataset will provide validation data for space-born remote sensing algorithms, climate models and, additionally, establish accumulation trends. The broader impacts of the project are that it will advance discovery and understanding within the climatology, glaciology and remote sensing communities by verifying the use of UHF radars to monitor annual layers as determined by visual, chemical and isotopic analysis from corresponding shallow ice cores and will provide a dataset of annual to near-annual accumulation measurements over the past ~5 decades across WAIS divide from existing radar data and proposed radar data. By determining if temporal changes in the passive microwave signal are correlated with temporal changes in accumulation will help assess the utility of passive microwave remote sensing to monitor accumulation rates over ice sheets for future decades. The project will promote teaching, training and learning, and increase representation of underrepresented groups by becoming involved in the NASA History of Winter project and Thermochron Mission and by providing K-12 teachers with training to monitor snow accumulation and temperature here in the US, linking polar research to the student's backyard. The project will train both undergraduate and graduate students in polar research and will encouraging young investigators to become involved in careers in science. In particular, two REU students will participate in original research projects as part of this larger project, from development of a hypothesis to presentation and publication of the results. The support of a new, young woman scientist will help to increase gender diversity in polar research. | ["POLYGON((-119.4 -78.1,-118.46 -78.1,-117.52 -78.1,-116.58 -78.1,-115.64 -78.1,-114.7 -78.1,-113.76 -78.1,-112.82 -78.1,-111.88 -78.1,-110.94 -78.1,-110 -78.1,-110 -78.29,-110 -78.48,-110 -78.67,-110 -78.86,-110 -79.05,-110 -79.24,-110 -79.43,-110 -79.62,-110 -79.81,-110 -80,-110.94 -80,-111.88 -80,-112.82 -80,-113.76 -80,-114.7 -80,-115.64 -80,-116.58 -80,-117.52 -80,-118.46 -80,-119.4 -80,-119.4 -79.81,-119.4 -79.62,-119.4 -79.43,-119.4 -79.24,-119.4 -79.05,-119.4 -78.86,-119.4 -78.67,-119.4 -78.48,-119.4 -78.29,-119.4 -78.1))"] | ["POINT(-114.7 -79.05)"] | false | false |
Molecular Level Characterization of Dissolved Organic Carbon and Microbial Diversity in the WAIS Divide Replicate Core
|
1141936 |
2015-01-01 | Foreman, Christine |
Molecular Level Characterization of Dissolved Organic Carbon and Microbial Diversity in the WAIS Divide Replicate Core |
This award supports a detailed, molecular level characterization of dissolved organic carbon and microbes in Antarctic ice cores. Using the most modern biological (genomic), geochemical techniques, and advanced chemical instrumentation researchers will 1) optimize protocols for collecting, extracting and amplifying DNA from deep ice cores suitable for use in next generation pyrosequencing; 2) determine the microbial diversity within the ice core; and 3) obtain and analyze detailed molecular characterizations of the carbon in the ice by ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS). With this pilot study investigators will be able to quantify the amount of material (microbial biomass and carbon) required to perform these characterizations, which is needed to inform future ice coring projects. The ultimate goal will be to develop protocols that maximize the yield, while minimizing the amount of ice required. The broader impacts include education and outreach at both the local and national levels. As a faculty mentor with the American Indian Research Opportunities and BRIDGES programs at Montana State University, Foreman will serve as a mentor to a Native American student in the lab during the summer months. Susan Kelly is an Education and Outreach Coordinator with a MS degree in Geology and over 10 years of experience in science outreach. She will coordinate efforts for comprehensive educational collaboration with the Hardin School District on the Crow Indian Reservation in South-central Montana. | ["POINT(112.086 79.468)"] | ["POINT(112.086 79.468)"] | false | false |
Measurements of Trapped Air from Mullins Valley, Dry Valleys, Antarctica
|
0636731 |
2014-11-26 | Bender, Michael; Yau, Audrey M. |
Collaborative Research: Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica |
These data describe the analyses of the elemental and isotopic composition of O2, N2, and Ar and total air content made on the trapped air from three shallow ice cores (<34m depth) collected during the 2009 field campaign to Mullins Valley of the Dry Valleys, Antarctica. | ["POINT(160.35 -77.87)"] | ["POINT(160.35 -77.87)"] | false | false |
Methyl Chloride Measurements in the Taylor Dome M3C1 Ice Core
|
0636953 |
2014-09-10 | Saltzman, Eric; Aydin, Murat |
Methyl Chloride, Methyl Bromide, and Carbonyl Sulfide in Deep Antarctic Ice Cores |
This data set includes methyl chloride (CH<sub>3</sub>CI) measurements made on air extracted from 62 samples from the Taylor Dome M3C1 ice core in East Antarctica. CH<sub>3</sub>CI was measured in air from the Taylor Dome ice core to reconstruct an atmospheric record for the Holocene (11-0 kyr B.P.) and part of the last glacial period (50-30 kyr B.P.). | ["POINT(158.43 -77.48)"] | ["POINT(158.43 -77.48)"] | false | false |
Methyl Bromide Measurements in the Taylor Dome M3C1 Ice Core
|
0636953 |
2014-09-10 | Saltzman, Eric; Aydin, Murat |
Methyl Chloride, Methyl Bromide, and Carbonyl Sulfide in Deep Antarctic Ice Cores |
The data set includes methyl bromide (CH3Br) measurements made on air extracted from 70 samples from the Taylor Dome M3C1 ice core. CH3Br was measured in air from the Taylor Dome ice core to reconstruct an atmospheric record for the Holocene (11-0 kyr B.P.) and part of the last glacial period (50-30 kyr B.P.). | ["POINT(157.4 -77.44)"] | ["POINT(157.4 -77.44)"] | false | false |
Late Holocene Methane Concentrations from WAIS Divide and GISP2
|
0944584 0538538 0538578 |
2014-01-31 | Mitchell, Logan E |
Collaborative Research: Constructing an Ultra-high Resolution Atmospheric Methane Record for the Last 140,000 Years from WAIS Divide Core. |
This data set measures methane concentrations in ancient air trapped in the West Antarctic Ice Sheet (WAIS) Divide and Greenland Ice Sheet Project (GISP2) ice cores; presenting two, high-resolution ice core methane records of the past 2500 years, one from each pole. These measurements were used to reconstruct the methane Inter-Polar Difference (IPD) during the late Holocene. Also included are model results of methane emissions that were presented in the manuscript describing this data set. | ["POINT(-112.0865 -79.4676)", "POINT(-38.5 72.6)"] | ["POINT(-112.0865 -79.4676)", "POINT(-38.5 72.6)"] | false | false |
Major Ion Concentrations in WDC05Q and WDC06A Ice Cores (WAIS Divide)
|
0538553 |
2014-01-08 | Cole-Dai, Jihong |
Major Ion Chemistry of WAIS Divide Ice Core |
This data set contains major ion concentrations from the chemical analysis of two WAIS Divide ice cores (WDC05Q, 0-114 m; WDC06A, 0-129 m). The analytical technique is Mettler-based Continuous Flow Analysis with online Ion Chromatography detection (CFA-IC). Depth resolution is approximately 2 cm per sample or per measurement. | ["POINT(-112 -79.5)"] | ["POINT(-112 -79.5)"] | false | false |
Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)
|
0838849 |
2014-01-01 | Bender, Michael |
Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA) |
This award supports a project to generate an absolute timescale for the Allan Hills Blue Ice Area (BIA), and then to reconstruct details of past climate changes and greenhouse gas concentrations for certain time periods back to 2.5 Ma. Ice ages will be determined by applying emerging methods for absolute and relative dating of trapped air bubbles (based on Argon-40/Argon-38, delta-18O of O2, and the O2/N2 ratio). To demonstrate the potential of the Allan Hills BIAs as a paleoclimate archive trenches and ice cores will be collected for age intervals corresponding to 110-140 ka, 1 Ma, and 2.5 Ma. During the proposed two field seasons a total of 6x100 m and additional 15 m cores will be combined with trenching. The intellectual merit of the proposed activity is that the results of this work will extend the landmark work of EPICA and other deep ice coring efforts, which give records dating back to 0.8 Ma, and will complement work planned by IPICS to drill a continuous Antarctic ice core extending to 1.5 Ma. The results will help to advance understanding of major climate regimes and transitions that took place between 0-2.5 Ma, including the 40 kyr world and the mid-Pleistocene climate transition. A major long-term scientific goal is to provide a transformative approach to the collection of paleoclimate records by establishing an 'International Climate Park' in the Allan Hills BIA that would enable sampling of large quantities of known age ice as old as 2.5 Ma, by any interested American or foreign investigator. The broader impacts resulting from the proposed activity include training students who are well versed in advanced field, laboratory and numerical modeling methods combining geochemistry, glaciology, and paleoclimatology. We will include material relevant to our proposed research in our ongoing efforts in local education and in our outreach efforts for media. The University of Maine already has cyberinfrastructure, using state of the art web-based technology, which can provide a wide community of scientists with fast access to the results of our research. The work will contribute to the broad array of climate change studies that is informing worldwide understanding of natural and anthropogenic forced climate change, and the options for responding. This award has field work in Antarctica. | ["POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667))"] | ["POINT(159.29167 -76.7)"] | false | false |
Major Ion Concentrations in 2004 South Pole Ice Core
|
0337933 |
2013-11-19 | Cole-Dai, Jihong |
Collaborative Research: Investigating Atmospheric Chemistry and Dynamics through Oxygen and Sulfur Isotopes in Volcanic Sulfate from South Pole Ice Cores |
A 180 m ice core drilled at South Pole in 2004/2005 was analyzed for concentrations of major ions at a depth resolution of approximately 2 cm. Measured ions are chloride, nitrate, sulfate, sodium, potassium, magnesium and calcium. The bottom of the core has been dated to 1830 years before 2004. | ["POINT(0 -90)"] | ["POINT(0 -90)"] | false | false |
US International Trans-Antarctic Scientific Expedition (US ITASE) Glaciochemical Data
|
9725057 0837883 |
2013-07-11 | Dixon, Daniel A.; Mayewski, Paul A. |
Science Management for the United States Component of the International Trans-Antarctic Expedition |
This data set contains sub-annually resolved ice core chemistry data from various sites on the Antarctic Ice Sheet during the US International Trans-Antarctic Scientific Expedition (US ITASE) deployments. Researchers conducted experiments approximately every 30 - 300 km looking for clues representing climatic conditions over the past 200-1000+ years. Ice cores obtained for the glaciochemical component of the US ITASE research were analyzed for soluble major ion content and in some cases trace elements. Extreme events, such as volcanic eruptions, provide absolute age horizons within each core that are easily identified in chemical profiles. Our chemical analysis is also useful for quantifying anthropogenic impact, biogeochemical cycling, and for reconstructing past atmospheric circulation patterns. | ["POLYGON((-76.1 -77.68,-53.253 -77.68,-30.406 -77.68,-7.559 -77.68,15.288 -77.68,38.135 -77.68,60.982 -77.68,83.829 -77.68,106.676 -77.68,129.523 -77.68,152.37 -77.68,152.37 -78.912,152.37 -80.144,152.37 -81.376,152.37 -82.608,152.37 -83.84,152.37 -85.072,152.37 -86.304,152.37 -87.536,152.37 -88.768,152.37 -90,129.523 -90,106.676 -90,83.829 -90,60.982 -90,38.135 -90,15.288 -90,-7.559 -90,-30.406 -90,-53.253 -90,-76.1 -90,-76.1 -88.768,-76.1 -87.536,-76.1 -86.304,-76.1 -85.072,-76.1 -83.84,-76.1 -82.608,-76.1 -81.376,-76.1 -80.144,-76.1 -78.912,-76.1 -77.68))"] | ["POINT(38.135 -83.84)"] | false | false |
West Antarctica Ice Core and Climate Model Data
|
0837988 |
2013-03-13 | Steig, Eric J. |
Collaborative Research: Antarctic Climate Reconstruction Utilizing the US ITASE Ice Core Array (2009- 2012) |
This data set includes ice core water isotope data from Antarctic ice cores covering the last 200 to 2000 years. | ["POLYGON((-180 -65,-144 -65,-108 -65,-72 -65,-36 -65,0 -65,36 -65,72 -65,108 -65,144 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.5,-180 -85,-180 -82.5,-180 -80,-180 -77.5,-180 -75,-180 -72.5,-180 -70,-180 -67.5,-180 -65))"] | ["POINT(0 -89.999)"] | false | false |
Siple Dome A (SDMA) Grain Orientation 640 - 790 Meters
|
0738975 |
2012-11-26 | Baker, Ian; Obbard, Rachel; Sieg, Katherine |
Advanced Microstructural Characterization of Polar Ice Cores |
This data set characterizes the microstructure in ice cores, in particular the microstructural locations of impurities, grain orientations, and strain gradients. The fabric of polycrystalline ice is typically described using only the c-axis orientation, but this is insufficient for a full description of grain orientations in this hexagonal material. Thus, both the a-axis and c-axis are used in this data set showing pole figures for five depths of the Siple Dome (SDMA) core between 640 m and 790 m and misorientation angle distribution for the same grains. | ["POINT(-148.82 -81.66)"] | ["POINT(-148.82 -81.66)"] | false | false |
Ice Core Chemistry from the Norwegian-U.S. Scientific Traverse of East Antarctica, IPY 2007-2009
|
0538416 |
2012-08-08 | McConnell, Joseph |
Collaborative Research: Norwegian-United States IPY Scientific Traverse: Climate Variability and Glaciology in East Antarctica |
This data set consists of sodium (Na) and magnesium (Mg) concentrations versus depth in seven ice cores that were obtained by the Norwegian-U.S. Scientific Traverse of East Antarctica during the International Polar Year (IPY) 2007-2009. Additional glaciochemical analyses and a final depth-age scale will be added as these data become available. Data are available via FTP. | ["POLYGON((-54.9 -73.7,-49.57 -73.7,-44.24 -73.7,-38.91 -73.7,-33.58 -73.7,-28.25 -73.7,-22.92 -73.7,-17.59 -73.7,-12.26 -73.7,-6.93 -73.7,-1.6 -73.7,-1.6 -74.61,-1.6 -75.52,-1.6 -76.43,-1.6 -77.34,-1.6 -78.25,-1.6 -79.16,-1.6 -80.07,-1.6 -80.98,-1.6 -81.89,-1.6 -82.8,-6.93 -82.8,-12.26 -82.8,-17.59 -82.8,-22.92 -82.8,-28.25 -82.8,-33.58 -82.8,-38.91 -82.8,-44.24 -82.8,-49.57 -82.8,-54.9 -82.8,-54.9 -81.89,-54.9 -80.98,-54.9 -80.07,-54.9 -79.16,-54.9 -78.25,-54.9 -77.34,-54.9 -76.43,-54.9 -75.52,-54.9 -74.61,-54.9 -73.7))"] | ["POINT(-28.25 -78.25)"] | false | false |
Microstructural Location and Composition of Impurities in Polar Ice Cores
|
9980379 0440523 |
2010-02-15 | Baker, Ian; Obbard, Rachel |
The Physical Properties of the US ITASE Firn and Ice Cores from South Pole to Taylor Dome |
This data set contains measurements of impurities and ions in three polar ice cores: the Vostok 5G ice core and the Byrd ice core from Antarctica, and the Greenland Ice Sheet Project 2 (GISP2) D core. Parameters include sample depth, grain size, ion concentration, and ice core impurity information. Measurements were made using Ion Chromatography (IC), optical microscopy, and Scanning Electron Microscope-Energy Dispersive Spectroscopy (SEM/EDS). Data are available via FTP in Microsoft Excel (.xls)and Microsoft Word (.doc) formats. | ["POINT(-119.516667 -80.016667)", "POINT(-38.466667 72.583333)", "POINT(106.8 -72.466667)"] | ["POINT(-119.516667 -80.016667)", "POINT(-38.466667 72.583333)", "POINT(106.8 -72.466667)"] | false | false |
Methane Measurements from the GISP2 and Siple Dome Ice Cores
|
0520523 |
2009-12-09 | Brook, Edward J. |
Collaborative Research: New insights into the Holocene methane budget from dual isotope systematics and a high resolution record of the interpolar gradient |
This data set contains methane measurements made in trapped air in the Holocene sections of two ice cores: the Siple Dome ice core in Antarctica, and the Greenland Ice Sheet Project 2 (GISP2) ice core in Greenland. The measurements were made at Oregon State University between 2007 and 2009. Measurements were made relative to the NOAA04 methane concentration scale using a working standard internally calibrated to NOAA certified air standards. Concentrations are corrected for gravitational fractionation and solubility effects in the melt-refreeze extraction. Data are available via FTP in Microsoft Excel (.xls) format. | ["POINT(-148.81 -81.65)", "POINT(-38.466667 73.583333)"] | ["POINT(-148.81 -81.65)", "POINT(-38.466667 73.583333)"] | false | false |
US ITASE Stable Isotope Data, Antarctica
|
0440414 0196105 |
2009-10-01 | Steig, Eric J. |
Stable Isotope Studies at West Antarctic ITASE Sites |
This data set includes stable isotope measurements from snow pits, firn, and ice cores collected by the the US component of the International Trans-Antarctic Scientific Expedition ( ITASE). The ITASE program aims to collect and interpret a continental-wide array of environmental parameters assembled through the coordinated efforts of scientists from several nations. These data were collected between 1999 and 2007. The data have been compiled into single files for each sampling site, though in some cases a file contains data from more than one ice core or snow pit. Each file in the data set includes deuterium/hydrogen (δD) and/or 18-oxygen/16-oxygen (δ18O) ratios, depths, and in some cases ice age or other information. Further details regarding the data are provided in each data file. Data are available via FTP in ASCII text format (.txt). Data were collected during five Antarctic field seasons from 1999 to 2007. Data from 1999 to 2002 are currently available. Data from 2003 to 2007 will be added in the future. | ["POLYGON((-130 -65,-125.8 -65,-121.6 -65,-117.4 -65,-113.2 -65,-109 -65,-104.8 -65,-100.6 -65,-96.4 -65,-92.2 -65,-88 -65,-88 -67.5,-88 -70,-88 -72.5,-88 -75,-88 -77.5,-88 -80,-88 -82.5,-88 -85,-88 -87.5,-88 -90,-92.2 -90,-96.4 -90,-100.6 -90,-104.8 -90,-109 -90,-113.2 -90,-117.4 -90,-121.6 -90,-125.8 -90,-130 -90,-130 -87.5,-130 -85,-130 -82.5,-130 -80,-130 -77.5,-130 -75,-130 -72.5,-130 -70,-130 -67.5,-130 -65))"] | ["POINT(-109 -77.5)"] | false | false |
Nitrogen and Oxygen Gas Isotopes in the Siple Dome and Byrd Ice Cores, Antarctica
|
0440975 |
2009-07-17 | Severinghaus, Jeffrey P. |
Nitrogen and oxygen gas isotopes in the Siple Dome and Byrd ice cores |
This data set consists of Gas-isotopic data from the Siple Dome and and Greenland Ice Sheet Project 2 (GISP2) ice cores covering roughly the last 100,000 years (100 ka), consisting of d15N (15N/14N) of N2, d18O (18O/16O) of O2, dO2/N2, and dAr/N2. Derived parameters include d18Oatm, d15N, dO2/N2, and dAr/N2. Data are available via FTP as ASCII text files (.txt) and Microsoft Excel files (.xls). | ["POINT(-119.533333 -80.016667)"] | ["POINT(-119.533333 -80.016667)"] | false | false |
Late Holocene Climate Variability, Dry Valleys, Antarctica
|
0228052 |
2009-07-01 | Kreutz, Karl; Mayewski, Paul A. |
Dry Valleys Late Holocene Climate Variability |
This data set includes high-resolution ice core records from the Dry Valleys region of Antarctica, and provides interpretations of interannual to decadal-scale climate variability during the last 2000 years (late Holocene). Intermediate-length ice cores (100 to 200 meters) were drilled at four sites along transects in the Taylor and Wright valleys, and analyzed for stable isotopes and major ions. The data set includes high-resolution ice core data for each study site. It also includes mass balance, borehole temperature, and snowpit data for each site, and Global Positioning System (GPS) velocity data for some of the sites. Snow pit data from three additional sites in the same region is also available. Data are available via FTP, in Microsoft Excel (.xls), ASCII text (.txt), and Microsoft Word (.doc) file formats. | ["POLYGON((161.04 -77.3,161.239 -77.3,161.438 -77.3,161.637 -77.3,161.836 -77.3,162.035 -77.3,162.234 -77.3,162.433 -77.3,162.632 -77.3,162.831 -77.3,163.03 -77.3,163.03 -77.378,163.03 -77.456,163.03 -77.534,163.03 -77.612,163.03 -77.69,163.03 -77.768,163.03 -77.846,163.03 -77.924,163.03 -78.002,163.03 -78.08,162.831 -78.08,162.632 -78.08,162.433 -78.08,162.234 -78.08,162.035 -78.08,161.836 -78.08,161.637 -78.08,161.438 -78.08,161.239 -78.08,161.04 -78.08,161.04 -78.002,161.04 -77.924,161.04 -77.846,161.04 -77.768,161.04 -77.69,161.04 -77.612,161.04 -77.534,161.04 -77.456,161.04 -77.378,161.04 -77.3))"] | ["POINT(162.035 -77.69)"] | false | false |
Stable Isotope Studies at East Antarctic US ITASE Sites
|
0440414 |
2009-01-01 | Steig, Eric J. |
Stable Isotope Studies at East Antarctic US ITASE Sites |
This award supports a project to obtain stable isotope profiles from shallow (<100 m) ice cores from East Antarctica, to add to the growing database of environmental proxy data collected under the auspices of the "ITASE" (International TransAntarctic Scientific Expedition) program. In Antarctica, the instrumental record of climate is particularly short (~40 years except in a few isolated locations on the coast), and ice core proxy data are the only means available for extending this record into the past. The use of stable isotopes of water (18-O/16-O and D/H ratios) from ice cores as proxies for temperature is well established for both very short (i.e. seasonal) and long timescales (centuries, millennia). Using multivariate regression methods and shallow ice cores from West Antarctica, a reconstruction of Antarctic climate over the last ~150 years has been developed which suggests the continent has been warming, on average, at a rate of ~0.2 K/century. Further improving these reconstructions is the chief motivation for further extending the US ITASE project. Ten to fifteen shallow (~100 m) from Victoria Land, East Antarctica will be obtained and analyzed. The core will be collected along a traverse route beginning at Taylor Dome and ending at the South Pole. Age-depth relationships for the cores will be determined through a combination of stable isotopes, visual stratigraphy and seasonal chemical signatures and marker horizons. Reconstructions of Antarctic climate obtained from these cores will be incorporated into the global network of paleoclimate information, which has been important in science, policy and educational contexts. The project will include graduate student and postdoctoral training and field experience. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Solar activity during the last millennium, estimated from cosmogenic in-situ C14 in South Pole and GISP2 ice cores
|
0538683 |
2009-01-01 | Lal, Devendra |
Solar Activity during the Last Millennium, Estimated from Cosmogenic in-situ 14C in South Pole and GISP2 Ice Cores |
The principal aim of this research is to determine the precise manner in which solar activity has varied in the past 1000 years. During this period, four periods of very low solar activity have been identified: Wolf (1305-1345 AD), Spoerer (1418-1540 AD), Maunder (1645-1715), and one period of high solar activity (1100-1250 A.D.) have been deduced based on available historical records of sunspot numbers and aurora. Our proposal aims to study the solar activity during the past 1000 years in detail using a new method, based on studies of polar ice, as developed earlier (Earth and Planetary Science Letters, 234, 335-349, 2005). The method is based on the fact that greater solar activity leads to production of greater magnetic fields in the heliosphere, which reduces the primary cosmic ray flux in the near Earth environment, and vice-versa. Consequently if one can measure the primary cosmic ray flux in the near Earth space, it becomes a direct measure of the solar activity. Lal et al. (Earth and Planetary Science Letters, 234, 335-349, 2005) concluded that the best way of measuring the primary cosmic ray flux would be to measure the concentration of cosmogenic in-situ produced 14C in polar ice sheets, which was discovered by Lal et al. (Nature 346, 350-352, 1990). Following this idea Lal et al. (op. cit.) measured cosmogenic in-situ produced in 19 samples from the GISP 2 core covering time range of 375-31,250 yrs B.P. Their studies showed that there were two periods of very low solar activity in this time bracket (during 8500-9500 B.P and 27,000-32,000 B.P.), and one high solar activity period during 12,000-16,000 yrs B.P. In order to provide an independent check on the veracity of the new method, we decided to apply it to the historical period, < 1000 yrs B.P. The inferred Solar activities based on the study of cosmogenic in-situ produced 14C in South Pole ice samples clearly establish that there was a period of high Solar activity during 1100-1250 A.D., and a period of very low solar activity during 1416-1534 A.D, designated as the Spoerer Minimum. These results however do not confirm the proposed dates for the Dalton and the Maunder Minimum periods, predicted to be 1795-1825 A.D. and 1654-1714 A.D. respectively. Instead, our studies show that there was a long duration period of low solar activity during 1750-1860 A.D. These results make it quite clear that we should carry out more studies to fully establish the temporal behavior of the Solar activity in the past 1000 yrs. | ["POINT(-180 -90)"] | ["POINT(-180 -90)"] | false | false |
GISP2 (D Core) Helium Isotopes from Interplanetary Dust
|
0126057 |
2008-12-16 | Brook, Edward J.; Kurz, Mark D. |
High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change |
Ice Core Interplanetary Dust Helium Isotope Data Helium isotope data from Ice Cores at GISP2 (Greenland) and Vostok (Antarctica) as a proxy for extraterrestrial dust flux. | ["POINT(-38.466667 72.5833333)"] | ["POINT(-38.466667 72.5833333)"] | false | false |
GISP2 (D Core) Methane Concentration Data
|
0126057 |
2008-12-16 | Brook, Edward J. |
High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change |
This ice core data is archived at the World Data Center for Paleoclimatology and is available through the Ice Core Data Gateway. The data includes methane data from the Greenland Ice Sheet Project 2 (GISP2). GISP2 is an ice core project that drilled through the Greenland ice sheet and 1.55 meters into bedrock. The ice core is 3053.44 meters in depth, the deepest ice core recovered in the world at the time. The ice core was completed in 1993 after five years of drilling. Methane concentrations were determined by GC-FID using standards calibrated by NOAA CMDL. The gas age time scales and analytical techniques are described in further detail in the publication. | ["POINT(-38.466667 72.5833333)"] | ["POINT(-38.466667 72.5833333)"] | false | false |
Methyl Chloride Measurements from the Siple Dome A Deep Core, Antarctica
|
0636953 |
2008-10-22 | Saltzman, Eric; Aydin, Murat; Williams, Margaret |
Methyl Chloride, Methyl Bromide, and Carbonyl Sulfide in Deep Antarctic Ice Cores |
This data set is an analysis of methyl chloride concentration measured in air extracted from ice core samples from the Siple Dome A deep core in West Antarctica. In total, forty six (46) ice samples, approximately 10-15 cm in length, were analyzed in this study. Data are available in Microsoft Excel format and are available via FTP. | ["POINT(-148.82 -81.66)"] | ["POINT(-148.82 -81.66)"] | false | false |
Comprehensive Biological Study of Vostok Accretion Ice
|
0536870 |
2008-01-01 | Rogers, Scott O. |
Comprehensive Biological Study of Vostok Accretion Ice |
The large subglacial Lake Vostok in Antarctica is unique ecological site with a novel microbial biota. The temperatures, pressures and lack of light all select for organisms that may not exist anywhere else on Earth. The accretion ice (lake water frozen to the bottom of the lower surface of the glacier) has preserved microbial samples from each region of Lake Vostok as the glacier passes over and into the lake. Thus, without contaminating the lake with microorganisms from the surface, microbes originating from the lake can be collected, transported to the laboratory and studied. Two of the deepest ice cores sections in this project are part of the international allocation. The will be shared between four researchers (Sergey Bulat from Russia, Jean-Robert Petit and Daniel Prieur from France, Scott Rogers from USA). The United States team will study, isolate, and characterize bacteria, fungi, and viruses that have been sampled from the lake through the process of ice accretion to the lower surface of 3500+m thick glacier overriding the lake. The project will involve a suite of methods, including molecular, morphological, and cultural. This includes observation and description by fluorescence, light, and electron microscopy, isolation on thirteen separate cultural media, polymerase chain reaction amplification, DNA sequencing, and phylogenetic analyses. Eleven accretion ice core sections, as well as two glacial ice core sections. As well as two glacial ice core sections will be studied. The accretion ice core sections, as well as two glacial ice core sections will be studied. The accretion ice core sections represent all of the major regions of the lake that have been sampled by the accretion process in the vicinity of the Vostok 5G ice core. The broader impacts of the work relate to the impact the results will have on the filed. These long=isolated lakes, deep below the Antarctic ice sheet may contain novel uniquely adapted organisms. Glacial ice contains an enormous diversity of entrapped microbes, some of which may be metabolically active in the ice. The microbes from Lake Vostok are of special interest, since they are adapted to cold, dark, and high pressure. Thus, their enzyme systems and biochemical pathways may be significantly different from those in the microbes that are the subject of current studies. As such, these organisms may form compounds that may have useful applications. Also, study of the accretion ice, and eventually the water, from Lake Vostok will provide a basis for the study of other subglacial lakes. Additionally, study of the microbes in the accretion ice will be useful to those planning to study analogous systems on ice-covered planets and moons. | ["POINT(106.8 -72.4667)"] | ["POINT(106.8 -72.4667)"] | false | false |
Antarctic Ice Cores: Methyl Chloride and Methyl Bromide
|
0338359 |
2007-11-10 | Saltzman, Eric; Aydin, Murat; Williams, Margaret; Tatum, Cheryl |
Methyl chloride and methyl bromide in Antarctic ice cores |
This data set is an analysis of methyl chloride (CH3Cl) and methyl bromide (CH3Br) in Antarctic ice core samples. Investigators reported mixing ratios of methyl chloride gas extracted from samples taken from the South Pole Remote Earth Science and Seismological Observatory (SPRESSO) core, drilled as part of the International Trans Antarctic Science Expedition (ITASE). This data covers an age range of 2159 - 140 years before present (Y.B.P.) where the year 2000 was used as present. Investigators analyzed trace gases in ice core samples from Siple Dome, West Antarctica (dry-drilled C core and deep, fluid-drilled A core) and from South Pole, Antarctica (300 m dry drilled SPRESSO core). Data are available in Microsoft Excel format and are available via FTP. | ["POINT(-144.39 -89.93)"] | ["POINT(-144.39 -89.93)"] | false | false |
Analysis of Siple Dome Ice Core: Carbonyl Sulfide (COS), Methyl Chloride (CH3Cl), and Methyl Bromide (CH3Br)
|
0338359 |
2005-11-16 | Saltzman, Eric; Aydin, Murat |
Methyl chloride and methyl bromide in Antarctic ice cores |
This data set is part of the WAISCORES (West Antarctic Ice Sheet cores) project, research funded by the National Science Foundation (NSF) and designed to improve understanding of how the West Antarctic ice sheet influences climate and sea level change. WAISCORES investigators acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. These data provide researchers with a record of natural climatic variability and anthropogenic influence on biogeochemical cycles. Because ice cores contain an archive of preindustrial air, a baseline can be established, and the extent of human impact on the climate can be ascertained. This data set includes mixing ratios of carbonyl sulfide (COS), methyl chloride (CH3Cl), and methyl bromide (CH3Br). Data samples were retrieved from the Siple C ice core, which was drilled at 81.65° S, 148.81° W in December 1995. The core site sits 620 m above sea level near the edge of the Ross Ice Shelf where there is a mean annual temperature of -25.4 °C. Data are available via FTP. | ["POINT(-148.81 -81.65)"] | ["POINT(-148.81 -81.65)"] | false | false |
Ross Ice Drainage System (RIDS) Glaciochemical Analysis
|
9316564 |
2005-05-09 | Mayewski, Paul A.; Kreutz, Karl; Twickler, Mark; Whitlow, Sallie; Meeker, Loren D. |
Ross Ice Drainage System (RIDS) Late Holocene Climate Variability |
The Ross Ice Drainage System (RIDS) project provides a high-resolution record of atmospheric chemical deposition taken from several ice cores and snow pits located at sites within or immediately adjacent to the Ross Ice Drainage System. Three sites were visited during a 1995 traverse in inland West Antarctica. The traverse was 158 km, trending 26° from Byrd Surface Camp. The core from site A (78°44'S, 116°20'W) is 148 m deep, the core from site B (79°27.66'S, 118°02.68'W) is 60 m deep, and the core from site C (80°00.85'S, 119°33.73'W) is 60 m deep. Glaciochemical analysis focuses on the major ions deposited from the antarctic atmosphere, including Na (sodium), NH4 (ammonium), K (potassium), Mg (magnesium), Ca (calcium), Cl (chloride), NO3 (nitrate), and SO4 (sulfate). Chemical analysis also includes methanesulfonic acid (MSA) and nssSO4 (non-sea salt sulfate). The data are available by FTP in ASCII text format and Excel files. | ["POINT(-118.045 -79.461)", "POINT(-119.562 -80.014)", "POINT(-116.333 -78.733)"] | ["POINT(-118.045 -79.461)", "POINT(-119.562 -80.014)", "POINT(-116.333 -78.733)"] | false | false |
Antarctic and Greenland Climate Change Comparison
|
0126057 |
2004-08-27 | Blunier, Thomas; Stauffer, Bernhard; Chappellaz, Jerome; Brook, Edward J. |
High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change |
This data set compares global atmospheric concentration of methane from ice cores taken on the ice sheets of Antarctica and Greenland. The data come from multiple ice cores on each continent, including Greenland Ice Core Project (GRIP) and Greenland Ice Sheet Project (GISP) ice cores and the Byrd and Vostok cores from Antarctica. (The orignal dataset is located at ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/greenland/summit/grip/synchronization/) | [] | [] | false | false |
Byrd Ice Core Microparticle and Chemistry Data
|
9725918 9714687 |
2004-08-26 | Blunier, Thomas; Fluckiger, Jacqueline; Thompson, Lonnie G.; Brook, Edward J. |
Collaborative Research: Studies of Trapped Gases in Firn and Ice from Antarctic Deep Ice Cores |
This data set consists of microparticle and chemistry data from Byrd Ice Core, the first ice core to reach bedrock in Antarctica. The core was drilled with a cable-suspended electromechanical rotary drill at Byrd Station, Antarctica. The vertical thickness of the ice was 2164 meters and more than 99 percent of the core was recovered. Cores were sought for investigations of the physical properties of the ice sheet, the nature of the ice-rock contact, and the composition of the underlying bedrock. | ["POINT(-119.516667 -80.016667)"] | ["POINT(-119.516667 -80.016667)"] | false | false |
Law Dome Ice Cores Chemistry Data
|
None | 2004-08-26 | Barnola, J. M.; Etheridge, David; Morgan, Vin | No project link provided | This data set includes CO2 and CH4 records derived from three ice cores obtained at Law Dome, East Antarctica, from 1987 to 1993. Law Dome is a medium size, approximately circular, (200 km dia., 1390 m high) ice sheet situated at the edge of the main East Antarctic ice sheet. The data in this set include cores drilled between 1987 and 1993 to a depth of 1199.6. | ["POINT(112.833333 -66.65)"] | ["POINT(112.833333 -66.65)"] | false | false |
Newall Glacier Ice Core and Snow Pit Beta Profiles, Chemistry, and Stratigraphy
|
8613786 8411018 |
2004-08-26 | Welch, Kathy A.; Mayewski, Paul A. |
Characterization of Climatic Events for the Last 2 x 103y through the Retrieval of Ice Cores from the Transantarctic Mountains, Antarctica |
This data set includes beta profiles, chemistry, stratigraphy data, and density and temperature profiles collected from snow pits and two ice cores on the Newall Glacier. Snow pit and ice core data were collected between 1987 and 1989. Ice Core A was 175 meters long and core B was 150 meters long. | ["POINT(162.5 -77.61667)"] | ["POINT(162.5 -77.61667)"] | false | false |
Taylor Dome Ice Core Chemistry, Ion, and Isotope Data
|
9615292 |
2004-08-26 | Smith, Jesse; Sowers, Todd A.; Brook, Edward J.; Mayewski, Paul A.; Steig, Eric J.; Indermuhle, A. |
Carbon Dioxide and Carbon Isotopes in the Taylor Dome and Vostok Ice Cores |
This data set includes chemistry, ion, and istotope data from Taylor Dome, part of the East Antarctic ice sheet. Deep drilling at Taylor Dome successfully reached bedrock at a depth of 554 meters during the 1993-1994 austral summer. The Taylor Dome ice core is only the second core (after Vostok) to provide a stratigraphically undisturbed record through the entire last glacial cycle (the last 130,000 years or more). | ["POINT(158 -77.6666667)"] | ["POINT(158 -77.6666667)"] | false | false |
Dominion Range Ice Core Beta Profiles, Chemistry, and Density Data
|
8613786 8411018 |
2004-08-26 | Sowers, Todd A.; Saltzman, Eric; Watson, M. Scott; Grootes, Pieter; Mayewski, Paul A.; Meese, Deb; Gow, Tony |
Characterization of Climatic Events for the Last 2 x 103y through the Retrieval of Ice Cores from the Transantarctic Mountains, Antarctica |
This data set includes beta profiles, chemistry, and density data obtained from Dominion Range ice cores. The Dominion Range is on the East Antarctic Ice Sheet. The chemistry data consists of the composition of oxygen-isotopes and trapped gasses. Other information includes ice thickness, mean annual net accumulation, and crystal size. The core samples were collected in the austral summer of 1984-85. | ["POINT(166.16667 -85.25)"] | ["POINT(166.16667 -85.25)"] | false | false |
European Project for Ice Coring in Antarctica (EPICA) Dome C Ice Core Data
|
None | 2004-08-26 | Wolff, Eric W.; Monnin, Eric; Fluckiger, Jacqueline | No project link provided | This data set is a collection of analyses done on the the European Project for Ice Coring in Antarctica (EPICA)Dome C ice cores. The data include deuterium and other chemistry, insoluble dust, ice grain radius, dielectric profiling, electrical conductivity, and timescales. EPICA has completed one core in the Dome Concordia region (Core EDC96, started in 1996, 788 m length). Drilling is ongoing on a second core EDC99 (started in 1999, reached a depth of 3200 m during the 2002/2003 field season. The ice at this depth is estimated to be about 700,000 years old.) | ["POINT(123.332196 -75.09978)"] | ["POINT(123.332196 -75.09978)"] | false | false |
Sulfate-Based Volcanic Record from South Pole Ice Core
|
0087151 |
2004-04-09 | Cole-Dai, Jihong |
A Sulfate-based Volcanic Record from South Pole Ice Cores |
This data set contains concentrations of soluble chemical species (ions) within a 120 m ice core retrieved at the South Pole station in 2001. The ice core was dated with annual resolution using annual layer counting. Investigators measured chemical species, ions, and volcanic deposits found in the cores. The analysis was conducted at South Dakota State University between 2001 and 2003. Data are available in Microsoft Excel or ASCII text format via FTP from NSIDC. | ["POINT(0 -90)"] | ["POINT(0 -90)"] | false | false |
Atmospheric CO2 Trapped in the Ice Core from Siple Dome, Antarctica
|
9980691 |
2003-12-11 | Ahn, Jinho; Wahlen, Martin; Deck, Bruce |
CO2 and Delta 13CO2 in Antarctic Ice Cores |
These data are CO2 concentrations of the air occulded in Siple Dome ice core, Antarctica. The study was conducted between January 2001 and March 2003 on a deep ice core from Siple Dome Core A, located at 81.66 S, 148.82 W. | ["POINT(-148.82 -81.66)"] | ["POINT(-148.82 -81.66)"] | false | false |
Central West Antarctic Glaciochemistry from Ice Cores
|
None | 2003-10-16 | Reusch, David | No project link provided | Glaciochemical and accumulation rate records developed from four ice cores in central West Antarctica are used to reconstruct former atmospheric circulation patterns in this region for the last 40 years with extended records (150-250 years) at two sites. The sites lie on a 200 km traverse from 82 degrees 22 minutes south, 119 degrees 17 minutes west to 81 degrees 22 minutes south, 107 degrees 17 minutes west, gaining elevation from 950 to 1930 m. The glaciochemical records represent the major ionic species present in Antarctic snow: sodium, potassium, magnesium, calcium, chloride, nitrate, and sulfate. | ["POLYGON((-120 -80,-118.5 -80,-117 -80,-115.5 -80,-114 -80,-112.5 -80,-111 -80,-109.5 -80,-108 -80,-106.5 -80,-105 -80,-105 -80.5,-105 -81,-105 -81.5,-105 -82,-105 -82.5,-105 -83,-105 -83.5,-105 -84,-105 -84.5,-105 -85,-106.5 -85,-108 -85,-109.5 -85,-111 -85,-112.5 -85,-114 -85,-115.5 -85,-117 -85,-118.5 -85,-120 -85,-120 -84.5,-120 -84,-120 -83.5,-120 -83,-120 -82.5,-120 -82,-120 -81.5,-120 -81,-120 -80.5,-120 -80))"] | ["POINT(-112.5 -82.5)"] | false | false |
Siple Dome Ice Core Age-Depth Scales
|
9420648 |
2003-09-09 | Nereson, Nadine A. |
Ice Modelling Study of Siple Dome: WAIS Ice Dynamics, WAISCORES Paleoclimate and Ice Stream/Ice Dome Interactions |
This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. Nereson's 'Age Versus Depth' plot shows the results of the calculations published in her paper on predicted age-depth scales (Nereson, N.A., E.D. Waddington, C.F. Raymond, and H.P. Jacobson. 1996. Predicted Age-Depth Scales for Siple Dome and Inland WAIS Ice Cores in West Antarctica.Geophys. Res. Let., 23(22): 3163-3166.). | ["POINT(-149 -81)"] | ["POINT(-149 -81)"] | false | false |
Siple Dome Highlights: Stable isotopes
|
None | 2003-08-18 | Steig, Eric J.; White, James | No project link provided | This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. This data set provides measurements of stable isotopes of water and deuterium excess for the Siple Dome ice cores. The shallow cores from Siple Dome were analyzed for isotopes with sub-annual temporal detail. | ["POINT(-149 -81)"] | ["POINT(-149 -81)"] | false | false |
Siple Dome Methane Record
|
0512971 |
2003-08-18 | Brook, Edward J. |
High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change |
This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. Brooks measured methane in approximately 196 samples between 55.6 and 738.5 m (0-20 ka) in the Siple Dome ice core, and then extended the Siple Dome methane record at medium resolution down to about 860m, corresponding to an age of about 45 ka. The team compared the results with data from the Greenland Ice Sheet Project 2 (GISP2) and the Greenland Ice Core Project (GRIP). | ["POINT(-149 -81)"] | ["POINT(-149 -81)"] | false | false |
GISP2 (B and D Core) Methane Concentrations
|
0512971 |
2003-05-14 | Brook, Edward J. |
High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change |
The data include methane data from the Greenland Ice Sheet Project 2 (GISP2) B & D Cores. Gas ages were calculated according to the methods described in Brook et al. 1996, and are subject to change. Ice ages were calculated by by linear interpolation from the Meese et al. timescale. | ["POINT(-38.466667 72.5833333)"] | ["POINT(-38.466667 72.5833333)"] | false | false |
Siple Shallow Core Density Data
|
0126286 |
2003-05-14 | Lamorey, Gregg W. |
Continuous High Resolution Ice-Core Chemistry using ICP-MS at Siple Dome |
This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. Lamorey measured the density of the shallow Siple Dome cores B - I. One-meter sections of the ice core were weighed on a balance beam in the field. The volume was determined by measuring the diameter and length of the core. The data consists of tab-delimited text files of density measurements and a sonic velocity profile, and a .gif format density-versus-depth plot. Data are available via FTP. | ["POINT(-149 -81)"] | ["POINT(-149 -81)"] | false | false |
Physical and Structural Properties of the Siple Dome Ice Cores
|
9527262 |
2003-05-14 | Gow, Tony; Meese, Deb |
Physical and Structural Properties of the Siple Dome Core |
This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. This data set includes annual layer data for Siple Dome ice cores A, B, and C, based on stratigraphy; thin-section images, and fabric data. The study included the analysis of more than 2500 crystallographic c-axes conducted on 50 thin sections from the main PICO core. | ["POINT(-149 -81)"] | ["POINT(-149 -81)"] | false | false |
Digital Images of Thin Sections from Siple Dome
|
9615554 |
2003-05-14 | Fitzpatrick, Joan |
Digital Imaging for Ice Core Analysis |
This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. This data set comprises low-resolution (72 dpi) jpg images of thin sections from the Siple Dome ice core. The images were acquired during the 1997/1998 field season, from both the SDM-A, or main 13.2-cm, core and from the hot water core recovered by Hermann Englehardt. The data set includes both vertical and horizontal thin sections. With one exception, all images were recorded in cross-polarized light. Two examples of archived high-resolution (275 dpi) images are provided for direct comparison of the low- and high-resolution images. | ["POINT(-149 -81)"] | ["POINT(-149 -81)"] | false | false |
Volcanic Records in the Siple and Taylor Dome Ice Cores
|
9527373 |
2003-05-14 | Zielinski, Gregory; Dunbar, Nelia |
Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region |
This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. This data set includes backscattered electron images of tephra samples extracted from the Siple and Taylor Dome ice cores, as well as electron microprobe analyses of glass shards in cases where significant, compositionally-consistent glass populations were present. The data set also includes data on the amount of volcanically derived sulfate deposited on the West Antarctic Ice Sheet and recorded in the Siple Dome ice core. | ["POINT(-149 -81)", "POINT(158.7889 -77.95)"] | ["POINT(-149 -81)", "POINT(158.7889 -77.95)"] | false | false |
Siple Dome Cores Electrical Measurement Data
|
9526420 |
2003-05-08 | Taylor, Kendrick C. |
Electrical and Optical Measurements on the Siple Dome Ice Core |
This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. Taylor measured the electrical conductivity (ECM) and Complex Conductivity (CC), a measure of the total ions in the ice, in the main Siple Dome ice core. Measurements were taken along the core from a depth of 0 m to 800 m. The project also analyzed shallower cores for ECM and dielectric properties (DEP). (DEP is also a measure of the total ions in the ice, but with lower spatial resolution than the CC.) Albedo measurements where made on the shallow cores and the main core to a depth of 391 m. The data set includes images showing the electrical conductivity of a vertical section of the core. | ["POINT(-149 -81)"] | ["POINT(-149 -81)"] | false | false |
Blue Ice Tephra II - Brimstone Peak
|
9527373 |
2003-02-18 | Dunbar, Nelia |
Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region |
This data set is the result of a study of volcanic ash and rock fragment (tephra) layers in exposed blue ice areas on Brimstone Peak (75.888S 158.55E) in East Antarctica. Tephra samples were collected between 15 November 1996 and 15 January 1997. The Antarctic ice sheets preserve a record of the volcanic ash layers and chemical aerosol signatures of local and distant volcanic eruptions. Correlation of individual tephra layers, or sets of layers, in blue ice areas will allow a better understanding of the geometry of ice flow in these areas. Tephra layers in deep ice cores can also provide unique time-stratigraphic markers in cores that are difficult to date. Data include the following information for each sample site: a general description, electron microprobe analysis, GPS location, neutron activation analysis, and a visual description of the petrography.Data are provided as Excel 97 data files, JPG map files, and GIF-formatted BSE images. Data are available via ftp. | ["POLYGON((158.55 -75.86,158.562 -75.86,158.574 -75.86,158.586 -75.86,158.598 -75.86,158.61 -75.86,158.622 -75.86,158.634 -75.86,158.646 -75.86,158.658 -75.86,158.67 -75.86,158.67 -75.864,158.67 -75.868,158.67 -75.872,158.67 -75.876,158.67 -75.88,158.67 -75.884,158.67 -75.888,158.67 -75.892,158.67 -75.896,158.67 -75.9,158.658 -75.9,158.646 -75.9,158.634 -75.9,158.622 -75.9,158.61 -75.9,158.598 -75.9,158.586 -75.9,158.574 -75.9,158.562 -75.9,158.55 -75.9,158.55 -75.896,158.55 -75.892,158.55 -75.888,158.55 -75.884,158.55 -75.88,158.55 -75.876,158.55 -75.872,158.55 -75.868,158.55 -75.864,158.55 -75.86))"] | ["POINT(158.61 -75.88)"] | false | false |
Blue Ice Tephra II - Mt. DeWitt
|
9527373 |
2003-02-01 | Dunbar, Nelia |
Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region |
This data set is the result of a study of volcanic ash and rock fragment (tephra) layers in exposed blue ice areas on Mt. DeWitt, Antarctica (77.12 deg S, 159.51 deg E). Tephra samples were collected between 15 November 1996 and 15 January 1997. Data include the following information for each sample site: a general description, electron microprobe analysis, GPS location, neutron activation analysis, and a visual description of the petrography. Data are provided as an Excel 97 data file, (this file is also divided into various text files) and TIF images. Data are available via ftp. Antarctic ice sheets preserve a record of the volcanic ash layers and chemical aerosol signatures of local and distant volcanic eruptions. Correlation of individual tephra layers, or sets of layers, in blue ice areas will allow a better understanding of the geometry of ice flow in these areas. Tephra layers in deep ice cores can also provide unique time-stratigraphic markers in cores that are difficult to date. | ["POINT(-159.51 -77.12)"] | ["POINT(-159.51 -77.12)"] | false | false |
Snow-atmosphere Transfer Function for Reversibly Deposited Chemical Species in West Antarctica
|
9526572 |
2002-07-11 | McConnell, Joseph; Bales, Roger |
Snow-Atmosphere Transfer Function for Reversibly Deposited Chemical Species in West Antarctica |
This data set is part of the West Antarctic Ice Sheet Cores (WAISCORES) project, an NSF-funded project to understand the influence of the West Antarctic Ice Sheet on climate and sea level change. WAISCORES researchers acquired and analyzed snow pit and core samples from the Siple Dome, in the Siple Coast region, West Antarctica. This data set includes glaciochemical spatial variability data for six Siple Dome snow pits. Samples involved measuring hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and formaldehyde (HCHO) in the air, snow, firn, and ice via suppressed ion chromatography. The data can be used to interpret changes in concentrations of these species recorded in ice cores. Data in this collection were obtained during two Antarctic field seasons in 1994 to 1995 and 1996 to 1997. Data are available via FTP in tab-delimited ASCII text (.dat, .txt) file format. | ["POINT(-149 -81)"] | ["POINT(-149 -81)"] | false | false |
Methane and Carbonyl Sulfide Analysis of Siple Dome Ice Core Subsamples
|
0338359 |
2002-07-10 | Saltzman, Eric; Aydin, Murat |
Methyl chloride and methyl bromide in Antarctic ice cores |
This data set is part of the West Antarctic Ice Sheet cores (WAISCORES) project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. Siple Dome ice cores were analyzed for methanesulfonate (MSA) and carbonyl sulfide (OCS). The methanesulfonate analysis was done on cores A-E and a hot water core, and the carbonyl sulfide analysis was done on 11 C cores. Methanesulfonate data include the sample identification number, depth, and methanesulfonate parts per billion (ppb) of each sample. Carbonyl sulfide data include the depth, OCS parts per trillion (ppt) of each sample, percent error, and gas age (years). Data are available via FTP in tab-delimited ASCII text (.dat, .txt) file format. | ["POINT(-149 -81)"] | ["POINT(-149 -81)"] | false | false |
Tephra in Siple and Taylor Dome Ice Cores
|
9615167 |
2002-06-01 | Dunbar, Nelia |
Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region |
This data set consists of electron microprobe geochemical analyses of glass shards sampled from Siple Dome and Taylor Dome ice cores during the 1999-2000 field season. Geochemical data are in tab-delimited ASCII and Excel formats. Backscattered electron images of tephra samples are in TIFF format. Data are available via ftp. | ["POINT(-148 -81)", "POINT(158.71 -77.8)"] | ["POINT(-148 -81)", "POINT(158.71 -77.8)"] | false | false |
Carbon-Isotopic Composition of Atmospheric CO2 since the Last Glacial Maximum
|
9615292 |
2002-01-01 | Wahlen, Martin |
Carbon Dioxide and Carbon Isotopes in the Taylor Dome and Vostok Ice Cores |
These data describe the concentration and carbon-isotopic composition (d13CO2) of atmospheric CO2 from air trapped in ice between 27,000 and 1,300 years before present from Taylor Dome, Antarctica. Data are used to investigate the causes of the CO2 concentration increase that occurred during the transition between the last glacial maximum (LGM) and the Holocene. Data are in tab-delimited ASCII and Excel formats, and are available via ftp. | ["POINT(158.71 -77.8)"] | ["POINT(158.71 -77.8)"] | false | false |
WAISCORES: Deep Ice Coring in West Antarctica
|
None | 2002-01-01 | Lamorey, Gregg W. | No project link provided | The WAISCORES project is part of the National Science Foundation Office of Polar Programs' West Antarctic Ice Sheet (WAIS) initiative, which is aimed at understanding the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. These cores allow researchers to distinguish local from regional influences on the climate records recovered from the cores. Drilling for the Siple Dome core began in November 1996 and finished in January 1999. The core site is located between ice streams C and D at approximately 81° 40' S and 148° 49' W. Preliminary studies indicate that the paleoclimate record preserved in the 1003-meter Siple Dome ice core extends back more than 90 thousand years. Data are available via ftp. The following WAISCORES investigators have made contributions to WAISCORES research. NSIDC archives data for many of these investigators: Mary Albert, Richard Alley, Robin Bell, Michael Bender, Robert Bindscadler, Pierre Biscaye, Donald Blankenship, Ed Brook, Nelia Dunbar, Joan Fitzpatrick, Tony Gow, Gregg Lamorey, Paul Mayewski, Joseph McConnell, Deb Meese, Nadine Nereson, Charlie Raymond, Eric Saltzman, Eric Steig, Christopher Shuman, Ken Taylor, Lonnie Thompson, Edwin Waddington, Martin Wahlen, James White, and Gret Zielinksi. This landing page has no data files! | ["POINT(-149 -81)"] | ["POINT(-149 -81)"] | false | false |
Snow and Firn Temperature and Permeability Measurements from Siple Dome, Antarctica
|
9526601 |
2001-12-01 | Albert, Mary R. |
Near-Surface Processes Affecting Gas Exchange: West Antarctic Ice Sheet |
This data set includes measurements of snow and firn temperature and permeability collected between November 1998 and June 1999 at Siple Dome. The physical characteristics of snow determine the nature of air-snow exchange processes, which in turn affect chemical records in ice cores. Thus a better understanding of the physical properties of snow will improve interpretation of ice core records of atmospheric composition. Data are available via ftp in both ASCII and Excel formats. | ["POINT(-148 -81)"] | ["POINT(-148 -81)"] | false | false |
Newall Glacier Snow Pit and Ice Core, 1987 to 1989
|
None | 1999-01-01 | Mayewski, Paul A.; Whitlow, Sallie |
Characterization of Climatic Events for the Last 2 x 103y through the Retrieval of Ice Cores from the Transantarctic Mountains, Antarctica |
Snow pit and ice core data from the Newall Glacier (location - 162 30' East, 77 35' South) were collected during 1987 and 1988. These include information on chemistry, Beta profiles and stratigraphy. Ice cores were collected during the austral summer of 1988-1989 and contain information on chemistry, Pb- 210 profiles, density profiles and temperature profiles. Core A was 175 meters long and core B was 150 meters long. The snow pits were dug and sampled by the Glacier Research Group (GRG), using established protocols to prevent contamination. The samples for major ion chemistry remained frozen until melted for analysis in the GRG lab, located at the University of New Hampshire (UNH), and all core processing was done by GRG established protocols to prevent contamination. Major ions were analyzed using suppressed ion chromatography. | ["POINT(162 -77)"] | ["POINT(162 -77)"] | false | false |
Siple Dome Glaciology and Ice Stream History 1994, 1996
|
9316338 |
1999-01-01 | Jacobel, Robert |
Siple Dome Glaciology and Ice Stream History |
The Siple Dome Glaciology and Ice Stream History project was part of Western Divide West Antarctic Ice Cores (WAISCORES), an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. This project supported glaciological studies of Siple Dome and its surroundings between Ice Streams C and D, via two major goals. First, it sought to characterize the dynamic environment and ice stratigraphy of Siple Dome and its surroundings, with the specific mission of assessing Siple Dome as a potential deep core site; and second, to determine whether the configuration of ice stream flow in the region has changed over time. Both goals are relevant to understanding the dynamics of the West Antarctic Ice Sheet (WAIS), its history, and potential future behavior. This project was a collaboration between Saint Olaf College, the University of Washington, and the National Snow and Ice Data Center at the University of Colorado. It included studies of satellite imagery and acquisition and analysis of field data from GPS, firn cores and snow pits, and ground-based ice-penetrating radar. Data in this collection were obtained during two Antarctic field seasons in 1994–95 and 1996–97. The data set is available via FTP as Microsoft Excel Spreadsheet (.xls) and ASCII tab delimited (.txt) files. Related notes are available as a Microsoft Word (.doc) or text (.txt) file. Related images and charts are available as Graphics Interchange Format (.gif) and Joint Photographic Experts Group (.jpg) files. | ["POLYGON((-155 -81,-154 -81,-153 -81,-152 -81,-151 -81,-150 -81,-149 -81,-148 -81,-147 -81,-146 -81,-145 -81,-145 -81.2,-145 -81.4,-145 -81.6,-145 -81.8,-145 -82,-145 -82.2,-145 -82.4,-145 -82.6,-145 -82.8,-145 -83,-146 -83,-147 -83,-148 -83,-149 -83,-150 -83,-151 -83,-152 -83,-153 -83,-154 -83,-155 -83,-155 -82.8,-155 -82.6,-155 -82.4,-155 -82.2,-155 -82,-155 -81.8,-155 -81.6,-155 -81.4,-155 -81.2,-155 -81))"] | ["POINT(-150 -82)"] | false | false |
Visible Stratigraphic Dating, Siple Dome and Upstream C Cores
|
9526374 |
1997-01-01 | Alley, Richard |
Physical Properties of the Siple Dome Deep Ice Core |
This data set is part of the West Antarctic Ice Sheet cores (WAISCORES) project, an NSF-funded project to understand the influence of the West Antarctic Ice Sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. This data set includes melt layers and annual layer data for Siple Dome cores A through J, and upstream core C (UpC). Cores were examined on a light table after the core had been sectioned longitudinally and samples removed for isotopic, chemical, and other analyses, and after the surface had been smoothed using a planer. Major stratigraphic features were noted, such as coarse-grained and fine-grained firn at shallow depths, and coarse-bubbled and fine-bubbled ice at greater depth. Melt layers were identified as bubble-free or nearly-bubble-free zones. Core lengths ranged from 30 to 133 meters. Data in this collection were obtained in the summer of 1997. The data set is available via FTP as ACSII data (.dat), metadata (.meta) and text (.txt) files. | ["POINT(-149 -81)"] | ["POINT(-149 -81)"] | false | false |