[{"awards": "1543367 Shubin, Neil", "bounds_geometry": "POLYGON((158.3 -77.5,158.54000000000002 -77.5,158.78 -77.5,159.02 -77.5,159.26 -77.5,159.5 -77.5,159.74 -77.5,159.98 -77.5,160.22 -77.5,160.45999999999998 -77.5,160.7 -77.5,160.7 -77.605,160.7 -77.71,160.7 -77.815,160.7 -77.92,160.7 -78.025,160.7 -78.13,160.7 -78.235,160.7 -78.34,160.7 -78.445,160.7 -78.55,160.45999999999998 -78.55,160.22 -78.55,159.98 -78.55,159.74 -78.55,159.5 -78.55,159.26 -78.55,159.02 -78.55,158.78 -78.55,158.54000000000002 -78.55,158.3 -78.55,158.3 -78.445,158.3 -78.34,158.3 -78.235,158.3 -78.13,158.3 -78.025,158.3 -77.92,158.3 -77.815,158.3 -77.71,158.3 -77.605,158.3 -77.5))", "dataset_titles": "Vertebrate Fossils from the Aztec Siltstone (Mid-Late Devonian); Vertebrate Fossils from the Aztec Siltstone (Mid-Late Devonian) 2 (2018-2019)", "datasets": [{"dataset_uid": "601584", "doi": "10.15784/601584", "keywords": "Acanthodii; Antarctica; Chondrichthyes; Cryosphere; Early Vertebrates; Osteolepiformes; Paleontology; Placodermi; Transantarctic Mountains; Vertebrate Evolution", "people": "Daeschler, Ted", "repository": "USAP-DC", "science_program": null, "title": "Vertebrate Fossils from the Aztec Siltstone (Mid-Late Devonian) 2 (2018-2019)", "url": "https://www.usap-dc.org/view/dataset/601584"}, {"dataset_uid": "601580", "doi": "10.15784/601580", "keywords": "Acanthodii; Antarctica; Chondrichthyes; Cryosphere; Early Vertebrates; Osteolepiformes; Paleontology; Placodermi; Transantarctic Mountains; Vertebrate Evolution", "people": "Daeschler, Ted", "repository": "USAP-DC", "science_program": null, "title": "Vertebrate Fossils from the Aztec Siltstone (Mid-Late Devonian)", "url": "https://www.usap-dc.org/view/dataset/601580"}], "date_created": "Fri, 17 Jun 2022 00:00:00 GMT", "description": "This research will provide new insights into the relationships and history of sharks, fish and limbed animals. Understanding these relationships forms the backbone for both basic and applied science because fish often serve as models of human traits and diseases. Some of the main lines of evidence for these relationships come from fossils in rocks over 380 million years old that were originally deposited as ancient rivers and streams. Because rocks of this type and age are abundantly exposed along a number of the dry valleys and mountains of Antarctica, the investigation of these areas holds exceptional promise for discoveries that can have a broad impact. The fieldwork will involve geological mapping and assessment of the rocks with detailed reconnaissance for the fossils that they may hold. Fossil discoveries form the backbone for public communication of the methods and results of scientific research-- these studies will be used as vehicles for training of students at multiple levels as well as communication of science to the broader non-science citizen base.\u003cbr/\u003e\u003cbr/\u003eThe discovery, description, and analysis of Middle to Late Devonian (390-355 Million years ago) vertebrates and depositional environments provide important data on the emergence of novel anatomical structures, faunas, and habitats during a critical interval in the history of life and earth. Biological innovation during this time includes the early evolution of freshwater fish, the origins of major groups of vertebrates (e.g., sharks, lobe and ray-finned fish, tetrapods), and the expansion and elaboration of non-marine ecosystems. Accordingly, expanding our knowledge of vertebrate diversity during the Middle and Late Devonian will provide new evidence on the relationships of the major groups of vertebrates, the assembly of novelties that ultimately enabled tetrapods to invade land, the origin and early evolution of sharks and their relatives, and the assembly and expansion of non-marine ecosystems generally. The Aztec Siltstone of Antarctica Middle-Late Devonian; Givetian-Frasnian Stages) has exceptional potential to produce new paleontological evidence of these events and to illuminate the temporal, ecological, and geographic context in which they occurred. It is essentially fossiliferous throughout its known exposure range, something that is rare for Middle-Late Devonian non-marine rocks anywhere in the world. In addition, fine-grained meandering stream deposits are abundantly exposed in the Aztec Siltstone and are recognized as an important locus for the discovery of well-preserved Devonian fish, including stem tetrapods and their relatives. Given the exceedingly fossiliferous nature of the Aztec Siltstone, the large number of taxa known only from partial material, and the amount of promising exposure yet to be worked, a dedicated reconnaissance, collection, and research effort is designed to recover important new fossil material and embed it in a stratigraphic and sedimentological context. The first major objective of this study is the recovery, preparation, and description of Middle-Late Devonian fossil taxa. Ensuing investigation of the phylogenetic affinities, taphonomic occurrence, and stratigraphic position of fossil assemblages will allow both local and global comparisons of biotic diversity. These analyses will inform: 1) higher level phylogenetic hypotheses of jawed vertebrates, 2) biostratigraphic and biogeographic analysis of the distribution of the Middle-Late Devonian fish, and 3) paleobiological investigation of the elaboration of terrestrial and freshwater habitats. The broader impacts are derived from the utility of paleontology and Antarctic expeditionary science as educational tools with powerful narratives. Specific goals include affiliations with local urban secondary schools (using established relationships for broadening participation) and collegiate and graduate training. Wider dissemination of knowledge to the general public is a direct product of ongoing interactions with national and international media (print, television, internet).", "east": 160.7, "geometry": "POINT(159.5 -78.025)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; FIELD INVESTIGATION; fossils; Transantarctic Mountains; AMD/US; USA/NSF; MACROFOSSILS; USAP-DC", "locations": "Transantarctic Mountains", "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e PALEOZOIC \u003e DEVONIAN", "persons": "Shubin, Neil; Daeschler, Edward B", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.55, "title": "Middle-Late Devonian Vertebrates of Antarctica", "uid": "p0010340", "west": 158.3}, {"awards": "1443557 Isbell, John", "bounds_geometry": "POLYGON((-180 -85,-177.1 -85,-174.2 -85,-171.3 -85,-168.4 -85,-165.5 -85,-162.6 -85,-159.7 -85,-156.8 -85,-153.9 -85,-151 -85,-151 -85.2,-151 -85.4,-151 -85.6,-151 -85.8,-151 -86,-151 -86.2,-151 -86.4,-151 -86.6,-151 -86.8,-151 -87,-153.9 -87,-156.8 -87,-159.7 -87,-162.6 -87,-165.5 -87,-168.4 -87,-171.3 -87,-174.2 -87,-177.1 -87,180 -87,179 -87,178 -87,177 -87,176 -87,175 -87,174 -87,173 -87,172 -87,171 -87,170 -87,170 -86.8,170 -86.6,170 -86.4,170 -86.2,170 -86,170 -85.8,170 -85.6,170 -85.4,170 -85.2,170 -85,171 -85,172 -85,173 -85,174 -85,175 -85,176 -85,177 -85,178 -85,179 -85,-180 -85))", "dataset_titles": "A LITHOFACIES ANALYSIS OF A SOUTH POLAR GLACIATION IN THE EARLY PERMIAN: PAGODA FORMATION, SHACKLETON GLACIER REGION, ANTARCTICA; A new stratigraphic framework built on U-Pb single-zircon TIMS agesand implications for the timing ofthe penultimate icehouse (Paran\u00e1 Basin, Brazil); Constraining late Paleozoic ice extent in the Paganzo Basin of western Argentina utilizing U-Pb detrital zircon geochronology for the lower Paganzo Group strata; Coupled stratigraphic and U-Pb zircon age constraints on the late Paleozoic icehouse-to-greenhouse turnover in south-central Gondwana; Isotopes to ice: Constraining provenance of glacial deposits and ice centers in west-central Gondwana; Late Permian soil-forming paleoenvironments on Gondwana: A review; Provenance of late Paleozoic glacial/post-glacial deposits in the eastern Chaco-Paran\u00e1 Basin, Uruguay and southernmost Paran\u00e1 Basin, Brazil; Supplemental material: Nitrogen-fixing symbiosis inferred from stable isotope analysis of fossil tree rings from the Oligocene of Ethiopia; When does large woody debris influence ancient rivers? Dendrochronology\r\napplications in the Permian and Triassic, Antarctica", "datasets": [{"dataset_uid": "200267", "doi": "10.1016/j.palaeo.2021.110762", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Late Permian soil-forming paleoenvironments on Gondwana: A review", "url": "https://www.sciencedirect.com/science/article/abs/pii/S0031018221005472?via%3Dihub"}, {"dataset_uid": "200266", "doi": "10.2110/jsr.2021.004", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "A LITHOFACIES ANALYSIS OF A SOUTH POLAR GLACIATION IN THE EARLY PERMIAN: PAGODA FORMATION, SHACKLETON GLACIER REGION, ANTARCTICA", "url": "https://www.sepm.org/publications"}, {"dataset_uid": "200273", "doi": "10.1016/j.palaeo.2018.04.020", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Isotopes to ice: Constraining provenance of glacial deposits and ice centers in west-central Gondwana", "url": "https://www.sciencedirect.com/science/article/abs/pii/S0031018217309008?via%3Dihub"}, {"dataset_uid": "200274", "doi": "10.1130/G39213.1", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Supplemental material: Nitrogen-fixing symbiosis inferred from stable isotope analysis of fossil tree rings from the Oligocene of Ethiopia", "url": "https://pubs.geoscienceworld.org/gsa/geology/article-standard/45/8/687/207623/Nitrogen-fixing-symbiosis-inferred-from-stable"}, {"dataset_uid": "200272", "doi": "10.1016/j.jsames.2020.102899", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Constraining late Paleozoic ice extent in the Paganzo Basin of western Argentina utilizing U-Pb detrital zircon geochronology for the lower Paganzo Group strata", "url": "https://www.sciencedirect.com/science/article/pii/S0895981120304429?via%3Dihub#mmc1"}, {"dataset_uid": "200271", "doi": "10.1016/j.palaeo.2019.109544", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "When does large woody debris influence ancient rivers? Dendrochronology\r\napplications in the Permian and Triassic, Antarctica", "url": "https://www.sciencedirect.com/science/article/abs/pii/S0031018219304006?via%3Dihub"}, {"dataset_uid": "200270", "doi": "10.1016/j.jsames.2020.102989", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Provenance of late Paleozoic glacial/post-glacial deposits in the eastern Chaco-Paran\u00e1 Basin, Uruguay and southernmost Paran\u00e1 Basin, Brazil", "url": "https://www.sciencedirect.com/science/article/pii/S0895981120305320#mmc1"}, {"dataset_uid": "200269", "doi": "10.1130/G46740.1", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Coupled stratigraphic and U-Pb zircon age constraints on the late Paleozoic icehouse-to-greenhouse turnover in south-central Gondwana", "url": "https://gsapubs.figshare.com/articles/journal_contribution/Supplemental_material_Coupled_stratigraphic_and_U-Pb_zircon_age_constraints_on_the_late_Paleozoic_icehouse-to-greenhouse_turnover_in_south-central_Gondwana/12542069"}, {"dataset_uid": "200268", "doi": "10.1130/B31775.1.", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "A new stratigraphic framework built on U-Pb single-zircon TIMS agesand implications for the timing ofthe penultimate icehouse (Paran\u00e1 Basin, Brazil)", "url": "https://gsapubs.figshare.com/articles/journal_contribution/Supplemental_material_A_new_stratigraphic_framework_built_on_U-Pb_single-zircon_TIMS_ages_and_implications_for_the_timing_of_the_penultimate_icehouse_Paran_Basin_Brazil_/12535916"}], "date_created": "Fri, 31 Dec 2021 00:00:00 GMT", "description": "The research focus of this collaborative proposal was to collect fossil plants, fossil wood, stratigraphic, sedimentologic, paleosol, and geochemical data from plants and the rocks that contain them in order to reconstruct the extent of the Gondwana glaciation in the Shackleton Glacier (SHK) area, the invasion and subsequent flourishing of life following glacial retreat, changes to the physical environment, and the eventual recovery of plant life after the Late Permian biotic events. Only in Antarctica does a complete polar-to-near-polar succession occur across this climatic and biologic transition. The SHK is an important one as it is one of the few regions in the world where the Permian-Triassic boundary (PTB) is exposed within terrestrial rocks. In addition, outcrops in the SHK area extend from the glacigenic deposits of the Upper Carboniferous-Lower Permian through to the Upper Triassic and thus record ecosystems and the plants that inhabited them from the Gondwana icehouse into the Late Permian-Early Triassic greenhouse and into presumed \"full recovery\" of floras from the PTB extinctions in the Late Triassic.\r\n\r\nThe project encompassed a multidisciplinary plan that used various types of paleobotanical expertise, integrated with detailed sedimentology, stratigraphy, and geochemistry, in order to reconstruct Permian-Triassic plant communities and their paleoenvironments. This interdisciplinary approach is a powerful tool to uncover details of Antarctica\u2019s complex late Paleozoic and Mesozoic environmental, climatic, and biotic history which included: 1) glaciation/deglaciation, 2) development and evolution of a post-glacial landscape and biota, 3) environmental and biotic change associated with the end-Permian mass extinction events, 4) earliest ecosystems in the Triassic, 5) greenhouse conditions in the Triassic, 6) full \u2019recovery\u2019 of floras and ecosystems by the Late Triassic, and, through all of these events, 7) development and changes in a foreland basin system. Three interrelated focus areas, each delimited by distinct hypotheses and action strategies, provided the framework to trace floral diversity and environmental evolution after the retreat of glaciers through to the Late Triassic. Antarctica is the only place on Earth that includes extensive outcrops of high-paleolatitude terrestrial rocks, combined with widespread and well-preserved plant fossils, and that spans this crucial time.\r\n\r\nThe research and broader impacts of this proposal were integrated into action strategies that have been successful in the past. Compression floras were collected (constrained by stratigraphy) both quantitatively and qualitatively in order to obtain biodiversity and abundance data, and as a data source for paleoecological analysis. Even in formations where megafossils were unknown (e.g., Lower Permian), fossil wood is present so that anatomy and geochemistry of tree rings were examined. Standard sedimentologic and stratigraphic analyses were performed, as well as paleosol analyses, including mineralogic and major- and trace-element geochemistry. Collections will also be made for U-Pb zircon geochronology to better constrain geologic and biotic events.\r\n\r\nThe Broader Impacts of the project involved education and outreach initiatives that included women and under-represented groups in the excitement of Antarctic earth sciences: 1) Continuing successful public outreach, teaching, and mentoring of women and under-represented students in Antarctic research; 2) Participation in workshops for under-represented groups via the Expanding Your Horizons Program in Kansas, the TRIO program (KU), and the STELAR summer workshop (UWM) for high-school students. 3) Outreach via the KU Natural History Museum; 4) Exploring Antarctic geosciences through continued presentations to pre K-12 school groups, and field and lab activities at UWM, as well as links from McMurdo Station and satellite conferences from the field with K-12 science classes in Wisconsin and Illinois.", "east": 170.0, "geometry": "POINT(-170.5 -86)", "instruments": null, "is_usap_dc": true, "keywords": "Shackleton Glacier; SEDIMENTARY ROCKS; GLACIATION", "locations": "Shackleton Glacier", "north": -85.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Isbell, John", "platforms": null, "repo": "Publication", "repositories": "Publication", "science_programs": null, "south": -87.0, "title": "Collaborative Research: Permian and Triassic Icehouse to Greenhouse Paleoenvironments and Paleobotany in the Shackleton Glacier Area, Antarctica", "uid": "p0010287", "west": -151.0}, {"awards": "1847067 Levy, Joseph", "bounds_geometry": "POLYGON((161 -76,161.35 -76,161.7 -76,162.05 -76,162.4 -76,162.75 -76,163.1 -76,163.45 -76,163.8 -76,164.15 -76,164.5 -76,164.5 -76.2,164.5 -76.4,164.5 -76.6,164.5 -76.8,164.5 -77,164.5 -77.2,164.5 -77.4,164.5 -77.6,164.5 -77.8,164.5 -78,164.15 -78,163.8 -78,163.45 -78,163.1 -78,162.75 -78,162.4 -78,162.05 -78,161.7 -78,161.35 -78,161 -78,161 -77.8,161 -77.6,161 -77.4,161 -77.2,161 -77,161 -76.8,161 -76.6,161 -76.4,161 -76.2,161 -76))", "dataset_titles": "Biogeochemical measurements of water tracks and adjacent dry soils from the McMurdo Dry Valleys; Surface Water Geochemistry from the McMurdo Dry Valleys", "datasets": [{"dataset_uid": "601703", "doi": "10.15784/601703", "keywords": "Antarctica; Cryosphere; Dry Valleys", "people": "Levy, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Surface Water Geochemistry from the McMurdo Dry Valleys", "url": "https://www.usap-dc.org/view/dataset/601703"}, {"dataset_uid": "601684", "doi": "10.15784/601684", "keywords": "Antarctica; Cation Exchange; Chemistry:Soil; Cryosphere; Dry Valleys; organic matter; Salt; Soil", "people": "Levy, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Biogeochemical measurements of water tracks and adjacent dry soils from the McMurdo Dry Valleys", "url": "https://www.usap-dc.org/view/dataset/601684"}], "date_created": "Fri, 24 Dec 2021 00:00:00 GMT", "description": "Antarctic groundwater drives the regional carbon cycle, accelerates permafrost thaw, and shapes Antarctic climate response. However, groundwater extent, movement, and processes on a continent virtually locked in ice are poorly understood. The proposed work investigates the interplay between groundwater, sediment, and ice in Antarctica\u2019s cold desert landscapes to determine when, where, and why Antarctic groundwater is flowing, and how quickly it will switch Antarctic frozen deserts from dry and stable to wet and disintegrating. Little is known about the extent, chemistry, and duration of groundwater in Antarctic seasonal wetlands. Mapping the changing extent of Antarctic wetlands requires the ability to measure soil moisture rapidly and repeatedly and over large areas. Changing groundwater extent will be captured through an unmanned aerial vehicle (UAV)-based mapping approach. The project integrates a diverse range of sensors with new UAV technologies to provide a higher-resolution and more frequent assessment of Antarctic groundwater extent and composition than can be accomplished using satellite observations alone. To complement the research objectives, the PI will develop a new UAV summer field school, the Geosciences UAV Academy, focused on training undergraduate-level UAV pilots in conducting novel Earth science research using cutting edge imaging tools. The integration of research and technology will prepare students for careers in burgeoning UAV-related industries and research. The project will deliver new UAV tools and workflows for soil moisture mapping relevant to arid regions common not just to Antarctica but to temperate desert and dryland systems and will train student research pilots to tackle next generation airborne challenges. \r\n\r\nWater tracks are the basic hydrological unit that currently feeds the rapidly-changing polar and permafrost wetlands in the Antarctic McMurdo Dry Valleys (MDV). Despite the importance of water tracks in the MDV hydrologic cycle and their influence on biogeochemistry, little is known about how these water tracks control the unique brine processes operating in Antarctic ice-free areas. Both groundwater availability and geochemistry shape Antarctic microbial communities, connecting soil geology and hydrology to carbon cycling and ecosystem functioning. The objectives of this CAREER proposal are to 1) map water tracks to determine the spatial distribution and seasonal magnitude of groundwater impacts on the MDV near-surface environment to determine how water tracks drive irreversible permafrost thaw, how water tracks enhance chemical weathering and biogeochemical cycling, and how water tracks integrate and accelerate climate feedbacks between terrestrial Antarctic soils and the Southern Ocean; 2) establish a UAV academy training earth sciences students to answer geoscience questions using drone-based platforms and remote sensing techniques; and 3) provide a formative step in the development of the PI as a teacher-scholar. UAV-borne hyperspectral imaging complemented with field soil sampling will determine the aerial extent and timing of inundation, water level, and water budget of representative water tracks in the MDV. Soil moisture will be measured via near-infrared reflectance spectroscopy while bulk chemistry of soils and groundwater will be analyzed via ion chromatography and soil x-ray fluorescence. Sedimentological and hydrological properties (suction/matric potential, hydraulic conductivity, etc.) will be determined via analysis of intact core samples. These data will be used to test competing hypotheses regarding the origin of water track solutions and water movement through seasonal wetlands. The will provide a regional understanding of Antarctic groundwater sources, groundwater flux, and the influence of regional hydrogeology on solute export to the Southern Ocean and on soil/atmosphere linkages in earth\u2019s carbon budget. The UAV school will 1) provide comprehensive instruction at the undergraduate level in both how and why UAVs can be used in geoscience research and learning; and 2) provide a long-term piece of educational infrastructure in the form of an ultimately self-sustaining summer program for undergraduate UAV education. \r\n", "east": 164.5, "geometry": "POINT(162.75 -77)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; USA/NSF; AMD/US; AMD; USAP-DC; FROZEN GROUND; Taylor Valley", "locations": "Taylor Valley", "north": -76.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Levy, Joseph", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Linking Antarctic Cold Desert Groundwater to Thermokarst \u0026 Chemical Weathering in Partnership with the Geoscience UAV Academy", "uid": "p0010286", "west": 161.0}, {"awards": "1745043 Simkins, Lauren; 1745055 Stearns, Leigh", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Circum-Antarctic grounding-line sinuosity; Pennell Trough, Ross Sea bathymetry and glacial landforms", "datasets": [{"dataset_uid": "601474", "doi": "10.15784/601474", "keywords": "Antarctica; Bathymetry; Bathymetry/Topography; Cryosphere; Geomorphology; Geomorphology; Glacial History; Glaciers/Ice Sheet; Marine Geoscience; NBP1502; Pennell Trough; Ross Sea; R/V Nathaniel B. Palmer", "people": "Greenwood, Sarah; Simkins, Lauren; Prothro, Lindsay; Anderson, John; Eareckson, Elizabeth; Munevar Garcia, Santiago", "repository": "USAP-DC", "science_program": null, "title": "Pennell Trough, Ross Sea bathymetry and glacial landforms", "url": "https://www.usap-dc.org/view/dataset/601474"}, {"dataset_uid": "601484", "doi": "10.15784/601484", "keywords": "Antarctica; Bathymetry/Topography; Bed Roughness; Bed Slope; Cryosphere; Glaciers/Ice Sheet; Pinning Points", "people": "Stearns, Leigh; Riverman, Kiya; Simkins, Lauren", "repository": "USAP-DC", "science_program": null, "title": "Circum-Antarctic grounding-line sinuosity", "url": "https://www.usap-dc.org/view/dataset/601484"}], "date_created": "Tue, 28 Sep 2021 00:00:00 GMT", "description": "The goals of this collaborative project are to merge empirical observations from the deglaciated Antarctic continental shelf and 1-D and 3-D numerical model experiments to test the sensitivity of marine-based ice sheets to subglacial topography with collaborators at the University of Kansas (L. Stearns, C. van der Veen). We focus on five glacial systems (i.e., flowlines) across the Amundsen Sea, Ross Sea, and George V Coast of Wilkes Land that extended to/near the continental shelf break at the Last Glacial Maximum \u2013 with a range of bed characteristics, topographic features, oceanographic and climatic conditions, and patterns of past ice flow and grounding line retreat. Specifically, at the University of Virginia, we (L. Simkins, S. Munevar Garcia) are: (ongoing) exploring bed roughness across the flowlines to determine the sensitivity of ice flow and grounding line behavior to different scales and wavelengths of bed topography/roughness; (upcoming) developing an empirical relationship between ice-marginal landform sediment volume and grounding line occupation time, and combining this with sedimentological analyses and new absolute age constraints to produce more comprehensive timelines of grounding line retreat, influential boundary conditions and processes, and determine the presence/absence of ice shelves; (ongoing) integrating quantitative and qualitative paleo- and offshore data to be incorporated into and/or validate 1-D and 3-D model experiments further testing the sensitivity of the five glacial systems to bed topography; and (completed) co-developing community engagement and education materials that focus on merging paleo-observations and model information of the Antarctic Ice Sheet from the LGM to the present \r\n", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "MARINE SEDIMENTS; USAP-DC; GLACIERS; BATHYMETRY; AMD/US; GLACIAL LANDFORMS; Antarctica; AMD; USA/NSF; R/V NBP", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Simkins, Lauren; Stearns, Leigh; Anderson, John; van der Veen, Cornelis", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Topographic controls on Antarctic Ice Sheet grounding line retreat - integrating models and observations", "uid": "p0010269", "west": -180.0}, {"awards": "2000992 Romans, Brian", "bounds_geometry": "POINT(-172.873074 -74.274008)", "dataset_titles": null, "datasets": null, "date_created": "Tue, 06 Jul 2021 00:00:00 GMT", "description": "Geological records from the Antarctic Ice Sheet (AIS) margin demonstrate that the ice sheet oscillated in response to orbital variations in insolation (i.e., ~400, 100, 41, and 20 kyr), and it appears to be more sensitive to specific frequencies that regulate mean annual insolation (i.e., 41-kyr obliquity), particularly when the ice sheet extends into marine environments and is impacted by ocean circulation. However, the relationship between orbital forcing and the production of Antarctic Bottom Water (AABW) is unconstrained. Thus, a knowledge gap exists in understanding how changing insolation impacts ice marginal and Southern Ocean conditions that directly influence ventilation of the global ocean. We hypothesize that insolation-driven changes directly affected the production and export of AABW to the Southern Ocean from the Pliocene through the Pleistocene. For example, obliquity amplification during the warmer Pliocene may have led to enhanced production and export of dense waters from the shelf due to reduced AIS extent, which, in turn, led to greater AABW outflow. To determine the relationship of AABW production to orbital regime, we plan to reconstruct both from a single, continuous record from the levee of Hillary Canyon, a major conduit of AABW outflow, on the Ross Sea continental rise. \r\n\r\nTo test our hypothesis, we will analyze sediment from IODP Site U1524 (recovered in 2018 during International Ocean Discovery Program Expedition 374) and focus on three data sets. (1) We will use the occurrence, frequency, and character of mm-scale turbidite beds as a proxy of dense-shelf-water cascading outflow and AABW production. We will estimate the down-slope flux via numerical modeling of turbidity current properties using morphology, grain size, and bed thickness as input parameters. (2) We will use grain-size data, physical properties, XRF core scanning, CT imaging, and hyperspectral imaging to guide lithofacies analysis to infer processes occurring during glacial, deglacial, and interglacial periods. Statistical techniques and optimization methods will be applied to test for astronomical forcing of sedimentary packages in order to provide a cyclostratigraphic framework and interpret the orbital-forcing regime. (3) We will use bulk sedimentary carbon and nitrogen abundance and isotope data to determine how relative contributions of terrigenous and marine organic matter change in response to orbital forcing. We will integrate these data with sedimentological records to deconvolve organic matter production from its deposition or remobilization due to AABW outflow as a function of the oscillating extent of the AIS. These data sets will be integrated into a unified chronostratigraphy to determine the relationship between AABW outflow and orbital-forcing scenarios under the varying climate regimes of the Plio-Pleistocene.\r\n", "east": -172.873074, "geometry": "POINT(-172.873074 -74.274008)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; LABORATORY; AMD/US; AMD; USA/NSF; SEDIMENTS; Ross Sea", "locations": "Ross Sea", "north": -74.274008, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Romans, Brian; Patterson, Molly; Ash, Jeanine; Kulhanek, Denise; Ash, Jeannie", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -74.274008, "title": "COLLABORATIVE RESEARCH: Orbital-scale Variability of the West Antarctic Ice Sheet and the Formation of Bottom Water in the Ross Sea during the Pliocene-Pleistocene", "uid": "p0010227", "west": -172.873074}, {"awards": "1341475 Smith, Nathan; 2001033 Makovicky, Peter; 1341645 Makovicky, Peter; 1341304 Sidor, Christian; 1341376 Tabor, Neil", "bounds_geometry": "POLYGON((-180 -84,-178 -84,-176 -84,-174 -84,-172 -84,-170 -84,-168 -84,-166 -84,-164 -84,-162 -84,-160 -84,-160 -84.3,-160 -84.6,-160 -84.9,-160 -85.2,-160 -85.5,-160 -85.8,-160 -86.1,-160 -86.4,-160 -86.7,-160 -87,-162 -87,-164 -87,-166 -87,-168 -87,-170 -87,-172 -87,-174 -87,-176 -87,-178 -87,180 -87,178.5 -87,177 -87,175.5 -87,174 -87,172.5 -87,171 -87,169.5 -87,168 -87,166.5 -87,165 -87,165 -86.7,165 -86.4,165 -86.1,165 -85.8,165 -85.5,165 -85.2,165 -84.9,165 -84.6,165 -84.3,165 -84,166.5 -84,168 -84,169.5 -84,171 -84,172.5 -84,174 -84,175.5 -84,177 -84,178.5 -84,-180 -84))", "dataset_titles": "Lower Triassic Antarctic vertebrate fossils at Field Museum, Chicago, IL", "datasets": [{"dataset_uid": "601511", "doi": "10.15784/601511", "keywords": "Allan Hills; Antarctica; Cryosphere; Fremouw Formation; Lystrosaurus; Permo-Triassic Extinction; Prolacerta; Sample Location; Thrinaxofon; Triassic", "people": "Makovicky, Peter", "repository": "USAP-DC", "science_program": null, "title": "Lower Triassic Antarctic vertebrate fossils at Field Museum, Chicago, IL", "url": "https://www.usap-dc.org/view/dataset/601511"}], "date_created": "Tue, 29 Jun 2021 00:00:00 GMT", "description": "This project will advance our understanding of Antarctic life during the Permian and Triassic. We will apply an interdisciplinary approach to address relationships between environmental change, faunal composition, and biogeographic patterns in the context of the high-latitude strata preserved in the Buckley and Fremouw formations in the Shackleton Glacier region. We will use multiple types of data to assess paleoenvironment, including: 1) paleosol morphology; 2) paleosol geochemistry; 3) pedogenic organic matter; and 4) fossil wood chronology and stable isotopes. The Fremouw Formation of Antarctica preserves the highest paleolatitude tetrapod fauna of the entire Triassic (~70\u00b0 S) and thus has the potential to shed important light on the evolution of polar life during the early Mesozoic. We will collect new fossils from known localities to understand the relationship between Antarctic and southern African tetrapod faunas. Furthermore, we will refine the stratigraphic, sedimentological, and geochronological framework for these Mesozoic faunas, which will include using U/Pb detrital zircon dating to provide the first dates for these vertebrate assemblages. In the lab, we will examine the biology of Triassic vertebrates from Antarctica by comparing their bone and tusk histology to conspecifics from lower paleolatitudes. In addition, we will test Bergmann\u2019s Rule with six species (viz. Lystrosaurus curvatus, L. maccaigi, L. murrayi, Prolacerta broomi, Procolophon trigoniceps, and Thrinaxodon liorhinus). The Early Triassic presents a unique opportunity to perform such investigations as there is no other geologic interval in which species occurring in Antarctica can be compared to conspecifics across a range of paleolatitudes.", "east": -160.0, "geometry": "POINT(-177.5 -85.5)", "instruments": null, "is_usap_dc": true, "keywords": "REPTILES; FIELD SURVEYS; USA/NSF; AMD/US; PALEOCLIMATE RECONSTRUCTIONS; Triassic; USAP-DC; TERRESTRIAL ECOSYSTEMS; MACROFOSSILS; Shackleton Glacier; fossils; LAND RECORDS; ANIMALS/VERTEBRATES; AMD", "locations": "Shackleton Glacier", "north": -84.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Sidor, Christian; Smith, Nathan; Makovicky, Peter; Tabor, Neil", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.0, "title": "Collaborative Research: Understanding the evolution of high-latitude Permo-Triassic paleoenvironments and their vertebrate communities", "uid": "p0010213", "west": 165.0}, {"awards": "1543344 Soreghan, Gerilyn", "bounds_geometry": null, "dataset_titles": "Data and metadata for \"Quantifying surface area in muds from the Antarctic Dry Valleys: Implications for weathering in glacial systems\"", "datasets": [{"dataset_uid": "601599", "doi": "10.15784/601599", "keywords": "Antarctica; Anza Borrego; Cryosphere; Iceland; McMurdo Dry Valleys; Norway; Peru; Puerto Rico; Taylor Valley; Washington; Wright Valley", "people": "Demirel-Floyd, Cansu", "repository": "USAP-DC", "science_program": null, "title": "Data and metadata for \"Quantifying surface area in muds from the Antarctic Dry Valleys: Implications for weathering in glacial systems\"", "url": "https://www.usap-dc.org/view/dataset/601599"}], "date_created": "Tue, 18 May 2021 00:00:00 GMT", "description": "As glaciers creep across the landscape, they can act as earthmovers, plucking up rocks and grinding them into fine sediments. Glaciers have moved across the Antarctic landscape over thousands to millions of years, leaving these ground-up sediments in their wake. This study builds on pilot discoveries by the investigators that revealed remarkably large and variable measurements of surface area in glacially-derived fine-grained sediments found in the McMurdo Dry Valleys (MDV), one of the few landscapes on the Antarctic continent not currently covered by ice. Surface area is key to chemical weathering, the process by which rock is converted to soils as ions are carried away in streams and groundwater. These chemical weathering processes are also one of the primary means by which the Earth system naturally removes carbon dioxide from the atmosphere. Hence, high surface areas observed in sediments implies high \"weatherability\" which in turn translates to more potential carbon dioxide removed from the atmosphere. Therefore, chemical weathering in high surface area glacial sediments may have significant impacts on Earth\u0027s carbon cycle. The researchers will measure the chemical and physical properties of sediments previously collected from the Dry Valleys to understand what factors lead to production of sediment with high-surface area and potential \"weather ability\" and investigate how sediment produced in these glacial systems could ultimately impact Earth\u0027s carbon budget. Results from this research will help scientists (including modelers) refine predictions of the effects of melting glaciers- and attendant exposure of glacial sediment? on atmospheric carbon levels. These results may also contribute to applied research efforts on development of carbon-dioxide removal technologies utilizing principles of rock weathering. In addition to the scientific benefits, this research will involve several students at the undergraduate, graduate, and post-doctoral levels, including science education undergraduates, thus contributing to training of the next-generation STEM workforce.\r\n\r\nPhysical weathering produces fresh surfaces, greatly enhancing specific surface area (SSA) and reactive surface area (RSA) of primary minerals. Quantifying SSA and RSA of sediments is key to determining dissolution and leaching rates during natural weathering, but few data exist on distribution of sediment SA, particularly in glacial and fluvial systems. Pilot data from glacial stream systems in Taylor Valley and Wright Valley (located in the MDV) exhibit remarkably high and variable values in both SSA and RSA, values that in some cases greatly exceed values from muds in temperate glacial systems. This discovery motivates the current research, which aims to investigate the hypothesis that high and variable SAs of muds within Wright and Taylor Valleys reflect textural and/or compositional inheritance from the differing depositional settings within the MDV, biologic controls, dust additions, and/or pedogenic processes. These hypotheses will be tested by sedimentologically, mineralogically, and geochemically characterizing muds from glacially derived sediment deposited in various environments (cold vs. wet based glaciation; fluvial, lacustrine, dust, and drift deposits) and of varying age (Miocene to Modern) from the MDV and quantifying variation of SA and reactivity. Comparisons with analyzed muds from temperate glacial systems will enable polar-temperate comparisons. Analyses will focus on muds of previously collected sediment from the MDVs. Grain size and SSA will be measured by Laser Analysis and N2 adsorption BET, respectively. After carbonate removal, samples will be re-analyzed for SSA, and muds characterized geochemically. Mineralogy and bulk chemistry will also be assessed on co-occurring sand fractions, and textural attributes documented. SSA-normalized dissolution experiments will be used to compare solutes released from sediments to determine RSAs. Results will be integrated with the various sedimentologic and geochemical analyses to test the posed hypotheses. Ultimately, this research should shed light on how weathering in Antarctic systems contributes to global carbon cycling.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; AMD; FIELD INVESTIGATION; weathering ; USA/NSF; Dry Valleys; SEDIMENT CHEMISTRY; Antarctica; AMD/US", "locations": "Antarctica; Dry Valleys", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Soreghan, Gerilyn; Elwood Madden, Megan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Quantifying surface area in muds from the Antarctic Dry Valleys: Implications for weathering in glacial systems", "uid": "p0010181", "west": null}, {"awards": "1743643 Passchier, Sandra", "bounds_geometry": null, "dataset_titles": "Major and trace element analyses of Eocene-Oligocene marine sediments from ODP Site 696, South Orkney Microcontinent; Particle-size distributions of Eocene-Oligocene sediment from ODP Site 696, South Orkney Microcontinent", "datasets": [{"dataset_uid": "601581", "doi": "10.15784/601581", "keywords": "Antarctica; Cryosphere; Glaciation; IODP 696; Marine Geoscience; Marine Sediments; Paleoceanography; Sediment Core Data; Weddell Sea", "people": "Lepp, Allison; Horowitz Castaldo, Josie; Passchier, Sandra; Light, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Particle-size distributions of Eocene-Oligocene sediment from ODP Site 696, South Orkney Microcontinent", "url": "https://www.usap-dc.org/view/dataset/601581"}, {"dataset_uid": "601582", "doi": "10.15784/601582", "keywords": "Antarctica; Cryosphere; Glaciation; IODP 650; IODP 696; Paleoceanography; Provenance; Sediment Core Data; Weathering; Weddell Sea", "people": "Hojnacki, Victoria; Lepp, Allison; States, Abbey; Li, Xiaona; Passchier, Sandra", "repository": "USAP-DC", "science_program": null, "title": "Major and trace element analyses of Eocene-Oligocene marine sediments from ODP Site 696, South Orkney Microcontinent", "url": "https://www.usap-dc.org/view/dataset/601582"}], "date_created": "Tue, 26 May 2020 00:00:00 GMT", "description": "Abstract (non-technical)\u003cbr/\u003eSea level rise is a problem of global importance and it is increasingly affecting the tens of millions of Americans living along coastlines. The melting of glaciers in mountain areas worldwide in response to global warming is a major cause of sea level rise and increases in nuisance coastal flooding. However, the world\u0027s largest land-based ice sheets are situated in the Polar Regions and their response under continued warming is very difficult to predict. One reason for this uncertainty is a lack of observations of ice behavior and melt under conditions of warming, as it is a relatively new global climate state lasting only a few generations so far. Researchers will investigate ice growth on Antarctica under past warm conditions using geological archives embedded in the layers of sand and mud under the sea floor near Antarctica. By peeling back at the layers beneath the seafloor investigators can read the history book of past events affecting the ice sheet. The Antarctic continent on the South Pole, carries the largest ice mass in the world. The investigator\u0027s findings will substantially improve scientists understanding of the response of ice sheets to global warming and its effect on sea level rise.\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eAbstract (technical)\u003cbr/\u003eThe melt of land based ice is raising global sea levels with at present only minor contributions from polar ice sheets. However, the future role of polar ice sheets in climate change is one of the most critical uncertainties in predictions of sea level rise around the globe. The respective roles of oceanic and atmospheric greenhouse forcing on ice sheets are poorly addressed with recent measurements of polar climatology, because of the extreme rise in greenhouse forcing the earth is experiencing at this time. Data on the evolution of the West Antarctic ice sheet is particularly sparse. To address the data gap, researchers will reconstruct the timing and spatial distribution of Antarctic ice growth through the last greenhouse to icehouse climate transition around 37 to 33 Ma. They will collect sedimentological and geochemical data on core samples from a high-latitude paleoarchive to trace the shutdown of the chemical weathering system, the onset of glacial erosion, ice rafting, and sea ice development, as East and West Antarctic ice sheets coalesced in the Weddell Sea sector. Their findings will lead to profound increases in the understanding of the role of greenhouse forcing in ice sheet development and its effect on the global climate system.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "AMD; AMD/US; SEDIMENTS; LABORATORY; USA/NSF; USAP-DC; Weddell Sea", "locations": "Weddell Sea", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Passchier, Sandra", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Timing and Spatial Distribution of Antarctic Ice Sheet Growth and Sea-ice Formation across the Eocene-Oligocene Transition", "uid": "p0010101", "west": null}, {"awards": "1246353 Anderson, John", "bounds_geometry": "POLYGON((-180 -74,-144.9 -74,-109.8 -74,-74.7 -74,-39.6 -74,-4.5 -74,30.6 -74,65.7 -74,100.8 -74,135.9 -74,171 -74,171 -74.3,171 -74.6,171 -74.9,171 -75.2,171 -75.5,171 -75.8,171 -76.1,171 -76.4,171 -76.7,171 -77,135.9 -77,100.8 -77,65.7 -77,30.6 -77,-4.5 -77,-39.6 -77,-74.7 -77,-109.8 -77,-144.9 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -76.7,180 -76.4,180 -76.1,180 -75.8,180 -75.5,180 -75.2,180 -74.9,180 -74.6,180 -74.3,180 -74,180 -74,180 -74,180 -74,180 -74,180 -74,180 -74,180 -74,180 -74,180 -74,-180 -74))", "dataset_titles": "Circum-Antarctic grounding-line sinuosity; NBP1502A Cruise Core Data; NBP1502 Cruise Geophysics and underway data; Pennell Trough, Ross Sea bathymetry and glacial landforms", "datasets": [{"dataset_uid": "601083", "doi": "10.15784/601083", "keywords": "Antarctica; Chemistry:Sediment; Cryosphere; Geochronology; Marine Geoscience; Marine Sediments; NBP1502; R/V Nathaniel B. Palmer; Sediment Core", "people": "Prothro, Lindsay; Simkins, Lauren; Anderson, John", "repository": "USAP-DC", "science_program": null, "title": "NBP1502A Cruise Core Data", "url": "https://www.usap-dc.org/view/dataset/601083"}, {"dataset_uid": "000245", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1502 Cruise Geophysics and underway data", "url": "https://www.rvdata.us/search/cruise/NBP1502"}, {"dataset_uid": "601474", "doi": "10.15784/601474", "keywords": "Antarctica; Bathymetry; Bathymetry/Topography; Cryosphere; Geomorphology; Geomorphology; Glacial History; Glaciers/Ice Sheet; Marine Geoscience; NBP1502; Pennell Trough; Ross Sea; R/V Nathaniel B. Palmer", "people": "Greenwood, Sarah; Simkins, Lauren; Prothro, Lindsay; Anderson, John; Eareckson, Elizabeth; Munevar Garcia, Santiago", "repository": "USAP-DC", "science_program": null, "title": "Pennell Trough, Ross Sea bathymetry and glacial landforms", "url": "https://www.usap-dc.org/view/dataset/601474"}, {"dataset_uid": "601484", "doi": "10.15784/601484", "keywords": "Antarctica; Bathymetry/Topography; Bed Roughness; Bed Slope; Cryosphere; Glaciers/Ice Sheet; Pinning Points", "people": "Stearns, Leigh; Riverman, Kiya; Simkins, Lauren", "repository": "USAP-DC", "science_program": null, "title": "Circum-Antarctic grounding-line sinuosity", "url": "https://www.usap-dc.org/view/dataset/601484"}], "date_created": "Tue, 06 Feb 2018 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe PI hypothesizes that bedforms found in the Central and Joides troughs can be interpreted as having been formed by rapid retreat, and possible collapse of an ice stream that occupied this area. To test this hypothesis, the PI proposes to conduct a detailed marine geological and geophysical survey of Central and Joides Troughs in the western Ross Sea. This project will bridge gaps between the small and isolated areas previously surveyed and will acquire a detailed sedimentological record of the retreating grounding line. The PI will reconstruct the retreat history of the Central and Joides troughs to century-scale resolution using radiocarbon dating methods and by looking at geomorphic features that are formed at regular time intervals. Existing multibeam, deep tow side-scan sonar, and core data will provide a framework for this research. The western Ross Sea is an ideal study area to investigate a single ice stream and the dynamics controlling its stability, including interactions between both East and West Antarctic Ice Sheets. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis proposal includes a post-doc, a graduate and two undergraduate students. The post-doc is involved with teaching an in-service K-12 teacher development and training course at Rice University for high-need teachers with a focus on curriculum enhancement. The project fosters collaboration for the PI and students with researchers at Louisiana State University and international colleagues at the Institute for Paleobiology at the Polish Academy of Sciences. The results from this project could lead to a better understanding of ice sheet and ice stream stability. This project will yield implications for society\u0027s understanding of climate change, as this work improves understanding of the behavior of ice sheets and their links to global climate.", "east": 179.99, "geometry": "POINT(175.495 -75.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e CARBON ANALYZERS", "is_usap_dc": true, "keywords": "AMD; AMD/US; USAP-DC; USA/NSF; R/V NBP; NBP1502", "locations": null, "north": -74.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -77.0, "title": "Evidence for Paleo Ice Stream Collapse in the Western Ross Sea since the Last Glacial Maximum.", "uid": "p0000395", "west": 171.0}, {"awards": "1246378 Shevenell, Amelia", "bounds_geometry": "POLYGON((70 -68,70.5 -68,71 -68,71.5 -68,72 -68,72.5 -68,73 -68,73.5 -68,74 -68,74.5 -68,75 -68,75 -68.2,75 -68.4,75 -68.6,75 -68.8,75 -69,75 -69.2,75 -69.4,75 -69.6,75 -69.8,75 -70,74.5 -70,74 -70,73.5 -70,73 -70,72.5 -70,72 -70,71.5 -70,71 -70,70.5 -70,70 -70,70 -69.8,70 -69.6,70 -69.4,70 -69.2,70 -69,70 -68.8,70 -68.6,70 -68.4,70 -68.2,70 -68))", "dataset_titles": "Anvers Trough Foraminifer Stable Isotope data; Geochemical and sedimentologic data from NBP01-01 JPC-34", "datasets": [{"dataset_uid": "601064", "doi": "10.15784/601064", "keywords": "Antarctica; Antarctic Peninsula; Anvers Trough; Chemistry:Sediment; Cryosphere; Foraminifera; Geochemistry; Isotope; LMG1211; LMG1311; Marine Sediments; Oceans; Paleoclimate; Sample/Collection Description; Southern Ocean", "people": "Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "Anvers Trough Foraminifer Stable Isotope data", "url": "https://www.usap-dc.org/view/dataset/601064"}, {"dataset_uid": "601180", "doi": "10.15784/601180", "keywords": "Antarctica; Be-10; Cryosphere; Glaciers/Ice Sheet; Grain Size; Late Quaternary; Magnetic Susceptibility; Mass Spectrometry; NBP0101; Paleoenvironments; Prydz Bay; Radiocarbon; R/V Nathaniel B. Palmer; Sediment; Sediment Core; Sediment Core Data", "people": "Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "Geochemical and sedimentologic data from NBP01-01 JPC-34", "url": "https://www.usap-dc.org/view/dataset/601180"}], "date_created": "Fri, 27 Oct 2017 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eSouthern Ocean processes play an important role in Late Quaternary glacial-interglacial climate change. However, the direct influence of newly upwelled warm nutrient-rich Circumpolar Deep Water on the Antarctic cryosphere remains speculative. The PI proposes to test the hypothesis that Circumpolar Deep Water-derived ocean heat negatively impacts the mass-balance of Antarctica?s ice sheets during deglaciations using precisely dated late Quaternary paleoceanographic studies of Antarctic margin sediments and a suite of geochemical proxies measured on three existing glacial marine sediment cores from the Prydz Channel, Antarctica. Specifically, the PI will use these data to reconstruct the Late Quaternary history of the Lambert Glacier/Amery Ice Shelf system; evaluate the timing, speed, and style of retreat of the Lambert Glacier/Amery Ice Shelf system during the last deglaciation, and to assess the impact of Circumpolar Deep Water intrusions on the Lambert Glacier/Amery Ice Shelf system in the Late Quaternary. Diatom bound radiocarbon and optically stimulated luminescence techniques will be used to obtain precise stratigraphic age control for the Prydz Channel siliceous muddy ooze intervals. In addition, the PI will measure sedimentary 10Be concentrations to determine the origin of the siliceous muddy ooze units and to track past changes in the position of the ice shelf front.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis proposal will support an early career female scientist and will provide professional development and research experiences for women/minority graduate and undergraduate students. The PI will take advantage of USF?s Oceanography Camp for Girls.", "east": 75.0, "geometry": "POINT(72.5 -69)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS", "is_usap_dc": true, "keywords": "R/V NBP; AMD/US; USAP-DC", "locations": null, "north": -68.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Shevenell, Amelia", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Late Quaternary Evolution of the Lambert Glacier/Amery Ice Shelf System, Prydz Bay, Antarctica", "uid": "p0000381", "west": 70.0}, {"awards": "1246378 Shevenell, Amelia", "bounds_geometry": "POLYGON((-65.32 -64.15,-65.309 -64.15,-65.298 -64.15,-65.287 -64.15,-65.276 -64.15,-65.265 -64.15,-65.254 -64.15,-65.243 -64.15,-65.232 -64.15,-65.221 -64.15,-65.21 -64.15,-65.21 -64.186,-65.21 -64.222,-65.21 -64.258,-65.21 -64.294,-65.21 -64.33,-65.21 -64.366,-65.21 -64.402,-65.21 -64.438,-65.21 -64.474,-65.21 -64.51,-65.221 -64.51,-65.232 -64.51,-65.243 -64.51,-65.254 -64.51,-65.265 -64.51,-65.276 -64.51,-65.287 -64.51,-65.298 -64.51,-65.309 -64.51,-65.32 -64.51,-65.32 -64.474,-65.32 -64.438,-65.32 -64.402,-65.32 -64.366,-65.32 -64.33,-65.32 -64.294,-65.32 -64.258,-65.32 -64.222,-65.32 -64.186,-65.32 -64.15))", "dataset_titles": "Anvers Trough Foraminifer Stable Isotope data; Geochemical and sedimentologic data from NBP01-01 JPC-34", "datasets": [{"dataset_uid": "601064", "doi": "10.15784/601064", "keywords": "Antarctica; Antarctic Peninsula; Anvers Trough; Chemistry:Sediment; Cryosphere; Foraminifera; Geochemistry; Isotope; LMG1211; LMG1311; Marine Sediments; Oceans; Paleoclimate; Sample/Collection Description; Southern Ocean", "people": "Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "Anvers Trough Foraminifer Stable Isotope data", "url": "https://www.usap-dc.org/view/dataset/601064"}, {"dataset_uid": "601180", "doi": "10.15784/601180", "keywords": "Antarctica; Be-10; Cryosphere; Glaciers/Ice Sheet; Grain Size; Late Quaternary; Magnetic Susceptibility; Mass Spectrometry; NBP0101; Paleoenvironments; Prydz Bay; Radiocarbon; R/V Nathaniel B. Palmer; Sediment; Sediment Core; Sediment Core Data", "people": "Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "Geochemical and sedimentologic data from NBP01-01 JPC-34", "url": "https://www.usap-dc.org/view/dataset/601180"}], "date_created": "Fri, 27 Oct 2017 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eSouthern Ocean processes play an important role in Late Quaternary glacial-interglacial climate change. However, the direct influence of newly upwelled warm nutrient-rich Circumpolar Deep Water on the Antarctic cryosphere remains speculative. The PI proposes to test the hypothesis that Circumpolar Deep Water-derived ocean heat negatively impacts the mass-balance of Antarctica?s ice sheets during deglaciations using precisely dated late Quaternary paleoceanographic studies of Antarctic margin sediments and a suite of geochemical proxies measured on three existing glacial marine sediment cores from the Prydz Channel, Antarctica. Specifically, the PI will use these data to reconstruct the Late Quaternary history of the Lambert Glacier/Amery Ice Shelf system; evaluate the timing, speed, and style of retreat of the Lambert Glacier/Amery Ice Shelf system during the last deglaciation, and to assess the impact of Circumpolar Deep Water intrusions on the Lambert Glacier/Amery Ice Shelf system in the Late Quaternary. Diatom bound radiocarbon and optically stimulated luminescence techniques will be used to obtain precise stratigraphic age control for the Prydz Channel siliceous muddy ooze intervals. In addition, the PI will measure sedimentary 10Be concentrations to determine the origin of the siliceous muddy ooze units and to track past changes in the position of the ice shelf front.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis proposal will support an early career female scientist and will provide professional development and research experiences for women/minority graduate and undergraduate students. The PI will take advantage of USF?s Oceanography Camp for Girls.", "east": -65.21, "geometry": "POINT(-65.265 -64.33)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS", "is_usap_dc": true, "keywords": "R/V NBP; AMD/US; USAP-DC", "locations": null, "north": -64.15, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Shevenell, Amelia", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.51, "title": "Late Quaternary Evolution of the Lambert Glacier/Amery Ice Shelf System, Prydz Bay, Antarctica", "uid": "p0000381", "west": -65.32}, {"awards": "0943935 Isbell, John; 0943934 Taylor, Edith", "bounds_geometry": null, "dataset_titles": "Portal to search geologic sample collections, Polar Rock Repository, Byrd Polar Research Center, The Ohio State University; Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "datasets": [{"dataset_uid": "001402", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "url": "http://biodiversity.ku.edu/paleobotany/collections/collections-search"}, {"dataset_uid": "002567", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "url": "http://biodiversity.ku.edu/paleobotany/collections/collections-search"}, {"dataset_uid": "001377", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Portal to search geologic sample collections, Polar Rock Repository, Byrd Polar Research Center, The Ohio State University", "url": "http://research.bpcrc.osu.edu/rr/"}], "date_created": "Tue, 23 Sep 2014 00:00:00 GMT", "description": "Intellectual Merit:\u003cbr/\u003eThe focus of this proposal is to collect fossil plants and palynomorphs from Permian-Triassic (P-T) rocks of the central Transantarctic Mountains (CTM), together with detailed data on sedimentologic and paleoecologic depositional environments. Fossil plants are important climate proxies that offer a unique window into the past, and the CTM fossils are an important source of data on the ways that plants responded to a strongly seasonal, polar light regime during a time of global change. The proposed project uses paleobotanical expertise, integrated with detailed sedimentology and stratigraphy, to reconstruct Permian-Triassic plant communities and their paleoenvironments. This interdisciplinary approach could uncover details of Antarctica?s complex late Paleozoic and Mesozoic environmental and climatic history which included: 1) deglaciation, 2) development and evolution of a post-glacial landscape and biota, 3) environmental and biotic change associated with the end-Permian mass extinction, 4) environmental recovery in the earliest Triassic, 5) strong, possible runaway Triassic greenhouse, and 6) widespread orogenesis and development of a foreland basin system. The PIs will collect compression floras both quantitatively and qualitatively to obtain biodiversity and abundance data. Since silicified wood is also present, the PIs will analyze tree rings and growth in a warm, high-latitude environment for which there is no modern analogue. Fossil plants from the CTM can provide biological and environmental information to: 1) interpret paleoclimate when Gondwana moved from icehouse to greenhouse conditions; 2) trace floral evolution across the P-T boundary; 3) reconstruct Antarctic plant life; 4) further understanding of plant adaptations to high latitudes. The Intellectual Merit of the research includes: 1) tracing floral evolution after the retreat of glaciers; 2) examining floral composition and diversity across the PTB; and 3) obtaining data on the recovery of these ecosystems in the Early Triassic, as well as changes in floral cover and diversity in the Early-Middle Triassic. Antarctica is the only place on Earth that includes extensive outcrops of terrestrial rocks, combined with widespread and well-preserved plant fossils, which spans this crucial time period.\u003cbr/\u003e\u003cbr/\u003eBroader impacts:\u003cbr/\u003eThe broader impacts include public outreach; teaching, and mentoring of women and underrepresented students; mentoring graduate student, postdoctoral, and new faculty women; development of an inquiry-based workshop on Antarctic paleoclimate with the Division of Education, KU Natural History Museum; continuing support of workshops for middle school girls in science via the Expanding Your Horizons Program, Emporia State University, and the TRIO program, KU; exploring Antarctic geosciences through video/computer links from McMurdo Station and satellite phone conferences from the field with K-12 science classes in Wisconsin and Kansas, and through participation in the NSF Research Experiences for Teachers program at the University of Wisconsin.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "FIELD SURVEYS; LABORATORY; Transanatarctic Basin; Paleobotany; Fossil Plants; FIELD INVESTIGATION; Sedimentology; Late Paleozoic Ice Age; Not provided; Beardmore Glacier Area; Central Transantarctic Mountains", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Instrumentation and Support", "paleo_time": "PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN; PHANEROZOIC \u003e MESOZOIC \u003e TRIASSIC; PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN; PHANEROZOIC \u003e MESOZOIC \u003e TRIASSIC", "persons": "Isbell, John", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; Not provided; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "PI website", "repositories": "PI website; PRR", "science_programs": null, "south": null, "title": "Collaborative Research: Antarctic Ecosystems across the Permian-Triassic Boundary: Integrating Paleobotany, Sedimentology, and Paleoecology", "uid": "p0000372", "west": null}, {"awards": "0944662 Elliot, David; 0944532 Isbell, John", "bounds_geometry": "POLYGON((158.9 -83,159.583 -83,160.266 -83,160.949 -83,161.632 -83,162.315 -83,162.998 -83,163.681 -83,164.364 -83,165.047 -83,165.73 -83,165.73 -83.21,165.73 -83.42,165.73 -83.63,165.73 -83.84,165.73 -84.05,165.73 -84.26,165.73 -84.47,165.73 -84.68,165.73 -84.89,165.73 -85.1,165.047 -85.1,164.364 -85.1,163.681 -85.1,162.998 -85.1,162.315 -85.1,161.632 -85.1,160.949 -85.1,160.266 -85.1,159.583 -85.1,158.9 -85.1,158.9 -84.89,158.9 -84.68,158.9 -84.47,158.9 -84.26,158.9 -84.05,158.9 -83.84,158.9 -83.63,158.9 -83.42,158.9 -83.21,158.9 -83))", "dataset_titles": "Rock Samples (full data link not provided)", "datasets": [{"dataset_uid": "000171", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Rock Samples (full data link not provided)", "url": "http://bprc.osu.edu/rr/"}], "date_created": "Thu, 05 Dec 2013 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe goal of this project is to address relationships between foreland basins and their tectonic settings by combining detrital zircon isotope characteristics and sedimentological data. To accomplish this goal the PIs will develop a detailed geochronology and analyze Hf- and O-isotopes of detrital zircons in sandstones of the Devonian Taylor Group and the Permian-Triassic Victoria Group. These data will allow them to better determine provenance and basin fill, and to understand the nature of the now ice covered source regions in East and West Antarctica. The PIs will document possible unexposed/unknown crustal terrains in West Antarctica, investigate sub-glacial terrains of East Antarctica that were exposed to erosion during Devonian to Triassic time, and determine the evolving provenance and tectonic history of the Devonian to Triassic Gondwana basins in the central Transantarctic Mountains. Detrital zircon data will be interpreted in the context of fluvial dispersal/drainage patterns, sandstone petrology, and sequence stratigraphy. This interpretation will identify source terrains and evolving sediment provenances. Paleocurrent analysis and sequence stratigraphy will determine the timing and nature of changing tectonic conditions associated with development of the depositional basins and document the tectonic history of the Antarctic sector of Gondwana. Results from this study will answer questions about the Panthalassan margin of Gondwana, the Antarctic craton, and the Beacon depositional basin and their respective roles in global tectonics and the geologic and biotic history of Antarctica. The Beacon basin and adjacent uplands played an important role in the development and demise of Gondwanan glaciation through modification of polar climates, development of peat-forming mires, colonization of the landscape by plants, and were a migration route for Mesozoic vertebrates into Antarctica. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis proposal includes support for two graduate students who will participate in the fieldwork, and also support for other students to participate in laboratory studies. Results of the research will be incorporated in classroom teaching at the undergraduate and graduate levels and will help train the next generation of field geologists. Interactions with K-12 science classes will be achieved by video/computer conferencing and satellite phone connections from Antarctica. Another outreach effort is the developing cooperation between the Byrd Polar Research Center and the Center of Science and Industry in Columbus.", "east": 165.73, "geometry": "POINT(162.315 -84.05)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e XRF", "is_usap_dc": true, "keywords": "Not provided; LABORATORY", "locations": null, "north": -83.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Elliot, David; Isbell, John", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; Not provided", "repo": "PRR", "repositories": "PRR", "science_programs": null, "south": -85.1, "title": "Collaborative Research:Application of Detrital Zircon Isotope Characteristics and Sandstone Analysis of Beacon Strata to the Tectonic Evolution of the Antarctic Sector of Gondwana", "uid": "p0000312", "west": 158.9}, {"awards": "9615420 Kamb, Barclay", "bounds_geometry": "POINT(-136.404633 -82.39955)", "dataset_titles": "Temperature of the West Antarctic Ice Sheet; Videos of Basal Ice in Boreholes on the Kamb Ice Stream in West Antarctica", "datasets": [{"dataset_uid": "609537", "doi": "10.7265/N5PN93J8", "keywords": "Antarctica; Cryosphere; Glaciers/Ice Sheet; Glaciology; Temperature", "people": "Engelhardt, Hermann", "repository": "USAP-DC", "science_program": null, "title": "Temperature of the West Antarctic Ice Sheet", "url": "https://www.usap-dc.org/view/dataset/609537"}, {"dataset_uid": "609528", "doi": "10.7265/N5028PFH", "keywords": "Antarctica; Borehole Video; Cryosphere; Glaciers/Ice Sheet; Glaciology; Kamb Ice Stream; Photo/Video", "people": "Engelhardt, Hermann", "repository": "USAP-DC", "science_program": null, "title": "Videos of Basal Ice in Boreholes on the Kamb Ice Stream in West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609528"}], "date_created": "Thu, 14 Feb 2013 00:00:00 GMT", "description": "This award is for support for a four year program to study the basal conditions of ice stream D using techniques previously applied to ice stream B. The objective is to determine whether the physical conditions and processes to be observed by borehole geophysics at the base of this large ice stream are consistent with what has been observed at ice stream B and to point to a common basal mechanism of ice streaming. This project includes a comparison between two parts of ice stream D, an upstream reach where flow velocities are modest (about 80 meters/year) and a downstream reach of high velocity (about 400 meters/year). The comparison will help to reveal what physical variable or combination of variables is mainly responsible for the streaming flow. The variables to be monitmred by borehole observation include basal water pressure, basal sliding velocity, flow properties and sedimentological characteristics of subglacial till if present, ice temperature profile including basal water transport velocity, connection time to the basal water system, basal melting rate and others.", "east": -136.404633, "geometry": "POINT(-136.404633 -82.39955)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "Raymond Ridge; Kamb Ice Stream; Engelhardt Ridge; Basal Ice; Unicorn; Alley Ice Stream; Borehole Video; Basal Freeze-on; Ice Stream Flow; West Antarctic Ice Sheet Instability; GROUND-BASED OBSERVATIONS; Basal freezing; Whillans Ice Stream; Basal Debris; Simple Dome; Basal Water; Bindschadler Ice Stream; West Antarctic Ice Sheet", "locations": "Kamb Ice Stream; Alley Ice Stream; Bindschadler Ice Stream; Engelhardt Ridge; Raymond Ridge; Unicorn; West Antarctic Ice Sheet; Whillans Ice Stream", "north": -82.39955, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Kamb, Barclay; Engelhardt, Hermann", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.39955, "title": "Basal Conditions of Ice Stream D and Related Borehole Studies of Antarctic Ice Stream Mechanics", "uid": "p0000181", "west": -136.404633}, {"awards": "9909367 Leventer, Amy", "bounds_geometry": "POLYGON((26.27227 -42.81742,38.414467 -42.81742,50.556664 -42.81742,62.698861 -42.81742,74.841058 -42.81742,86.983255 -42.81742,99.125452 -42.81742,111.267649 -42.81742,123.409846 -42.81742,135.552043 -42.81742,147.69424 -42.81742,147.69424 -45.454494,147.69424 -48.091568,147.69424 -50.728642,147.69424 -53.365716,147.69424 -56.00279,147.69424 -58.639864,147.69424 -61.276938,147.69424 -63.914012,147.69424 -66.551086,147.69424 -69.18816,135.552043 -69.18816,123.409846 -69.18816,111.267649 -69.18816,99.125452 -69.18816,86.983255 -69.18816,74.841058 -69.18816,62.698861 -69.18816,50.556664 -69.18816,38.414467 -69.18816,26.27227 -69.18816,26.27227 -66.551086,26.27227 -63.914012,26.27227 -61.276938,26.27227 -58.639864,26.27227 -56.00279,26.27227 -53.365716,26.27227 -50.728642,26.27227 -48.091568,26.27227 -45.454494,26.27227 -42.81742))", "dataset_titles": "Diatom assemblages from Edward VIII Gulf, Kemp Coast, East Antarctica; NB0101 Expedition Data; Quantitative Diatom Assemblage Data from Iceberg Alley, Mac. Robertson Shelf, East Antarctica acquired during expedition NBP0101", "datasets": [{"dataset_uid": "001879", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NB0101 Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0101"}, {"dataset_uid": "601307", "doi": null, "keywords": "Antarctica; Biology; Cryosphere; Diatom; East Antarctica; Mac. Robertson Shelf; Mac. Robertson Shelf; Marine Geoscience; Microscope; NBP0101; Paleoclimate; Piston Corer; R/V Nathaniel B. Palmer; Sediment Core; Species Abundance", "people": "Leventer, Amy", "repository": "USAP-DC", "science_program": null, "title": "Quantitative Diatom Assemblage Data from Iceberg Alley, Mac. Robertson Shelf, East Antarctica acquired during expedition NBP0101", "url": "https://www.usap-dc.org/view/dataset/601307"}, {"dataset_uid": "601177", "doi": "10.15784/601177", "keywords": "Antarctica; Biology; Biosphere; Cryosphere; Diatom; East Antarctica; Microscopy; NBP0101; Oceans; Paleoceanography; Paleoclimate; R/V Nathaniel B. Palmer; sediment corer", "people": "Leventer, Amy", "repository": "USAP-DC", "science_program": null, "title": "Diatom assemblages from Edward VIII Gulf, Kemp Coast, East Antarctica", "url": "https://www.usap-dc.org/view/dataset/601177"}], "date_created": "Thu, 03 Mar 2011 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a multi-institutional, international (US - Australia) marine geologic and geophysical investigation of Prydz Bay and the MacRobertson Shelf, to be completed during an approximately 60-day cruise aboard the RVIB N.B. Palmer. The primary objective is to develop a record of climate and oceanographic change during the Quaternary, using sediment cores collected via kasten and jumbo piston coring. Core sites will be selected based on seismic profiling (Seabeam 2112 and Bathy2000). Recognition of the central role of the Antarctic Ice Sheet to global oceanic and atmospheric systems is based primarily on data collected along the West Antarctic margin, while similar extensive and high resolution data sets from the much more extensive East Antarctic margin are sparse. Goals of this project include (1) development of a century- to millennial-scale record of Holocene paleoenvironments, and (2) testing of hypotheses concerning the sedimentary record of previous glacial and interglacial events on the shelf, and evaluation of the timing and extent of maximum glaciation along this 500 km stretch of the East Antarctic margin. \u003cbr/\u003e\u003cbr/\u003eHigh-resolution seismic mapping and coring of sediments deposited in inner shelf depressions will be used to reconstruct Holocene paleoenvironments. In similar depositional settings in the Antarctic Peninsula and Ross Sea, sedimentary records demonstrate millennial- and century- scale variability in primary production and sea-ice extent during the Holocene, which have been linked to chronological periodicities in radiocarbon distribution, suggesting the possible role of solar variability in driving some changes in Holocene climate. Similar high-resolution Holocene records from the East Antarctic margin will be used to develop a circum-Antarctic suite of data regarding the response of southern glacial and oceanographic systems to late Quaternary climate change. In addition, these data will help us to evaluate the response of the East Antarctic margin to global warming. \u003cbr/\u003e\u003cbr/\u003eInitial surveys of the Prydz Channel - Amery Depression region reveal sequences deposited during previous Pleistocene interglacials. The upper Holocene and lower (undated) siliceous units can be traced over 15,000 km2 of the Prydz Channel, but more sub-bottom seismic reflection profiling in conjunction with dense coring over this region is needed to define the spatial distribution and extent of the units. Chronological work will determine the timing and duration of previous periods of glacial marine sedimentation on the East Antarctic margin during the late Pleistocene. \u003cbr/\u003e\u003cbr/\u003eAnalyses will focus on detailed sedimentologic, geochemical, micropaleontological, and paleomagnetic techniques. This multi-parameter approach is the most effective way to extract a valuable paleoenvironmental signal in these glacial marine sediments. These results are expected to lead to a significant advance in understanding of the behavior of the Antarctic ice-sheet and ocean system in the recent geologic past.\u003cbr/\u003e\u003cbr/\u003eThe combination of investigators, all with many years of experience working in high latitude marine settings, will provide an effective team to complete the project. University and College faculty (Principal Investigators on this project) will supervise a combination of undergraduate and post-graduate students involved in all stages of the project so that educational objectives will be met in tandem with the research goals of the project.", "east": 147.69424, "geometry": "POINT(86.983255 -56.00279)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS", "is_usap_dc": false, "keywords": "R/V NBP; USAP-DC", "locations": null, "north": -42.81742, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Leventer, Amy", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -69.18816, "title": "Quaternary Glacial History and Paleoenvironments of the East Antarctic Margin", "uid": "p0000609", "west": 26.27227}, {"awards": "0838842 Passchier, Sandra", "bounds_geometry": "POLYGON((-180 -68,-177 -68,-174 -68,-171 -68,-168 -68,-165 -68,-162 -68,-159 -68,-156 -68,-153 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -77,160 -76,160 -75,160 -74,160 -73,160 -72,160 -71,160 -70,160 -69,160 -68,162 -68,164 -68,166 -68,168 -68,170 -68,172 -68,174 -68,176 -68,178 -68,-180 -68))", "dataset_titles": "Particle-size measurements for diamictites AND-2A sediment core, McMurdo Sound", "datasets": [{"dataset_uid": "601452", "doi": "10.15784/601452", "keywords": "Antarctica; Cryosphere; McMurdo Sound; Miocene; Particle Size; Pleistocene; Pliocene", "people": "Passchier, Sandra; Hansen, Melissa A.", "repository": "USAP-DC", "science_program": "ANDRILL", "title": "Particle-size measurements for diamictites AND-2A sediment core, McMurdo Sound", "url": "https://www.usap-dc.org/view/dataset/601452"}], "date_created": "Fri, 27 Aug 2010 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The project aims on studying sediment cores collected from Prydz Bay and the Ross Sea to unravel the Neogene paleoclimatic history of the East Antarctic ice sheet. In the light of current measurements and predictions of a substantial rise in global temperature, investigations into the sensitivity of the East Antarctic ice sheet to climate change and its role in the climate system are essential. Geological records of former periods of climate change provide an opportunity to ground truth model predictions. The scientific objective of this project is to identify a previously proposed middle Miocene transition from a more dynamic wet-based East Antarctic ice sheet to the present semi-permanent ice sheet that is partially frozen to its bed. The timing and significance of this transition is controversial due to a lack of quantitative studies on well-dated ice-proximal sedimentary sequences. This project partially fills that gap using the composition and physical properties of diamictites and sandstones to establish shifts in ice-sheet drainage pathways, paleoenvironments and basal ice conditions. The results from the two key areas around the Antarctic continental margin will provide insight into the behavior of the East Antarctic ice sheet across the middle Miocene transition and through known times of warming in the late Miocene and Pliocene.", "east": -150.0, "geometry": "POINT(-175 -73)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -68.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Passchier, Sandra", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Determining Middle Miocene through Pliocene Changes in Paleo Ice-flow and Basal Ice Conditions in East Antarctica through Sedimentological Analyses of Core Samples", "uid": "p0000147", "west": 160.0}, {"awards": "0003060 Domack, Eugene", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0107", "datasets": [{"dataset_uid": "002656", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0107", "url": "https://www.rvdata.us/search/cruise/NBP0107"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports project to test and develop approaches for using thermoluminescence techniques to determine the age of Antarctic marine sediments. \u003cbr/\u003e\u003cbr/\u003eQuaternary (last 2 million yrs) marine sediments surrounding Antarctica record the waxing and waning of ice shelves and ice sheets, and also other paleoclimatic information, yet accurate chronologies of these sediments are difficult to obtain. Such chronologies provide the essential foundation for study of geological processes in the past. Within the range of radiocarbon (14C) dating (less than 30-40 thousand yrs, note - \"ka\" below means 1000 yrs) 14C dates can be inaccurate because of a variable 14C reservoir effect, and beyond 30-40 ka few methods are applicable. Photon-stimulated-luminescence sediment dating (photonic dating) of eolian and waterlain deposits in temperate latitudes spans the range from decades to hundreds of ka, but marine sediments in and around Antarctica pose special difficulty because of the potentially restricted exposure to daylight (the clock-zeroing process) of most detrital grains before deposition. This proposal will test the clock-zeroing assumption in representative Antarctic glaciomarine depositional settings, and thereby determine the potential reliability of photonic dating of Antarctic marine sediments.\u003cbr/\u003e\u003cbr/\u003eLimited luminescence dating and signal-zeroing tests using glaciomarine and marine deposits have been conducted in the northern temperate and polar latitudes, but the effects on luminescence of the different glaciomarine depositional processes have never been studied in detail. Furthermore, the depositional settings around Antarctica are almost entirely polar, with consequent specific processes operating there. For example, transport of terrigenous suspensions by neutrally buoyant \"cold-tongue\" (mid-water) plumes may be common around Antarctica, yet the effect of such transport on luminescence zeroing is unknown. Typical marine cores near Antarctica may contain an unknown fraction of detrital grains from cold-tongue and near-bottom suspensions. Thus the extent to which the polar glaciomarine depositional processes around Antarctica may limit the potential accuracy of photonic dating of marine cores is unknown (age overestimates would result if grains are not exposed to daylight before deposition).\u003cbr/\u003e\u003cbr/\u003eThis project will collect detrital grains from a variety of \"zero-age\" (modern) marine depositional settings within the Antarctic Peninsula, where representative Antarctic depositional processes have been documented and where logistics permit access. Suspensions will be collected from four fjords representing a transect from polar through subpolar conditions. Suspensions will be collected from two stations and from up to 3 depths (surface and 2 deep plumes) at each station. Sediment traps will be deployed at two of these fjord settings. As well, core-top sediments will be collected from several sites. All samples will be shielded from light and transported to Reno, Nevada, for luminescence analyses.\u003cbr/\u003e\u003cbr/\u003eSystematic study of the effectiveness of luminescence-clock-zeroing in Antarctic glaciomarine settings will determine if photonic dating can be reliable for future applications to Antarctic marine sediments. Refined sedimentological criteria for the selection of future samples for photonic dating are expected from this project. A photonic-dating capability would provide a numeric geochronometer extending well beyond the age range of 14C dating. Such a capability would permit answering a number of broader questions about the timing and extent of past glaciations near and on the Antarctic shelves.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "Palmer Deep; Hugo Island; R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Domack, Eugene Walter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Development of a Luminescence Dating Capability for Antarctic Glaciomarine Sediments: Tests of Signal Zeroing at the Antarctic Peninsula", "uid": "p0000845", "west": null}, {"awards": "9220848 Bartek, Louis", "bounds_geometry": "POLYGON((-179.9996 -52.35472,-143.99968 -52.35472,-107.99976 -52.35472,-71.99984 -52.35472,-35.99992 -52.35472,0 -52.35472,35.99992 -52.35472,71.99984 -52.35472,107.99976 -52.35472,143.99968 -52.35472,179.9996 -52.35472,179.9996 -54.916322,179.9996 -57.477924,179.9996 -60.039526,179.9996 -62.601128,179.9996 -65.16273,179.9996 -67.724332,179.9996 -70.285934,179.9996 -72.847536,179.9996 -75.409138,179.9996 -77.97074,143.99968 -77.97074,107.99976 -77.97074,71.99984 -77.97074,35.99992 -77.97074,0 -77.97074,-35.99992 -77.97074,-71.99984 -77.97074,-107.99976 -77.97074,-143.99968 -77.97074,-179.9996 -77.97074,-179.9996 -75.409138,-179.9996 -72.847536,-179.9996 -70.285934,-179.9996 -67.724332,-179.9996 -65.16273,-179.9996 -62.601128,-179.9996 -60.039526,-179.9996 -57.477924,-179.9996 -54.916322,-179.9996 -52.35472))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002265", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9307"}, {"dataset_uid": "002245", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9407"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award supports an integrated seismic, sedimentologic, and paleontologic investigation of glacio-marine stratigraphy of the Ross Sea continental shelf. The purpose of this work is to acquire seismic images and sediment cores of the glacial sediments toward a better understanding of the Cenozoic history of glaciation in the Ross Sea region. This investigation will utilize high resolution seismic profiling data to locate regions where the Pleistocene glacial till is thin or perhaps absent. Piston coring at these locations, if the till is penetrated, will provide sedimentary records of Cenozoic depositional environments and could provide important clues to fluctuations of the Antarctic Ice Sheets. The seismic profiling will provide a direct record of the grounding history of the Ross Ice Shelf during the Pleistocene and it will also allow first order correlations of Cenozoic sedimentary units that are represented by sediments recovered in the piston cores. This work will provide important proxy records of the history of both the West Antarctic Ice Sheet and the East Antarctic Ice Sheet and this, in turn, will provide important constraints to climate models.", "east": 179.9996, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.35472, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bartek, Louis", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.97074, "title": "Integrated Biostratigraphy and High Resolution Seismic Stratigraphy of the Ross Sea: Implications for Cenozoic Eustatic and Climatic Change", "uid": "p0000643", "west": -179.9996}, {"awards": "9119683 Anderson, John", "bounds_geometry": "POLYGON((-179.999 -72.1543,-143.9991 -72.1543,-107.9992 -72.1543,-71.9993 -72.1543,-35.9994 -72.1543,0.000500000000017 -72.1543,36.0004 -72.1543,72.0003 -72.1543,108.0002 -72.1543,144.0001 -72.1543,180 -72.1543,180 -72.72384,180 -73.29338,180 -73.86292,180 -74.43246,180 -75.002,180 -75.57154,180 -76.14108,180 -76.71062,180 -77.28016,180 -77.8497,144.0001 -77.8497,108.0002 -77.8497,72.0003 -77.8497,36.0004 -77.8497,0.000499999999988 -77.8497,-35.9994 -77.8497,-71.9993 -77.8497,-107.9992 -77.8497,-143.9991 -77.8497,-179.999 -77.8497,-179.999 -77.28016,-179.999 -76.71062,-179.999 -76.14108,-179.999 -75.57154,-179.999 -75.002,-179.999 -74.43246,-179.999 -73.86292,-179.999 -73.29338,-179.999 -72.72384,-179.999 -72.1543))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002241", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9501"}, {"dataset_uid": "002258", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9401"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Marine geological and geophysical studies of the Ross Sea and Weddell Sea continental shelves provide evidence that the ice sheet grounded near the shelf edge in these areas during the late Wisconsinan, and that the retreat of the ice sheet to its present position was rapid and probably episodic. This Award supports a project which will establish the most recent (late Wisconsin- Holocene) history of ice sheet advance and retreat in Ross Sea. The objectives include: 1) reconstruction the late Wisconsin paleodrainage regime, including ice stream divides; 2) reconstruction of former grounding zone positions; 3) constraint of the timing of ice sheet retreat from the shelf; and 4) acquisition of geophysical, sedimentological, and paleontological data which may provide indicators the environmental factors that may have influenced to ice sheet retreat. This is a joint effort between Rice University, the University of Colorado, and Hamilton College. The project involves experts in a wide variety of fields, and will interface with glaciologists, physical oceanographers and climatologists who will address the problem of ice sheet stability and the record of climatic and glaciological change.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -72.1543, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.8497, "title": "Geologic Record of Late Wisconsinan/Holocene Ice Sheet Advance and Retreat from Ross Sea", "uid": "p0000641", "west": -179.999}, {"awards": "9615053 Domack, Eugene", "bounds_geometry": null, "dataset_titles": "Expedition data of LMG9802", "datasets": [{"dataset_uid": "002718", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG9802", "url": "https://www.rvdata.us/search/cruise/LMG9802"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Domack: OPP 9615053 Manley: OPP 9615670 Banerjee: OPP 9615695 Dunbar: OPP 9615668 Ishman: OPP 9615669 Leventer: OPP 9714371 Abstract This award supports a multi-disciplinary, multi-institutional effort to elucidate the detailed climate history of the Antarctic Peninsula during the Holocene epoch (the last 10,000 years). The Holocene is an important, but often overlooked, portion of the Antarctic paleoclimatic record because natural variability in Holocene climate on time scales of decades to millennia can be evaluated as a model for our present \"interglacial\" world. This project builds on over ten years of prior investigation into the depositional processes, productivity patterns and climate regime of the Antarctic Peninsula. This previous work identified key locations that contain ultra-high resolution records of past climatic variation. These data indicate that solar cycles operating on multi-century and millennial time scales are important regulators of meltwater production and paleoproductivity. These marine records can be correlated with ice core records in Greenland and Antarctica. This project will focus on sediment dispersal patterns across the Palmer Deep region. The objective is to understand the present links between the modern climatic and oceanographic systems and sediment distribution. In particular, additional information is needed regarding the influence of sea ice on the distribution of both biogenic and terrigenous sediment distribution. Sediment samples will be collected with a variety of grab sampling and coring devices. Analytical work will include carbon-14 dating of surface sediments using accellerator mass spectrometry and standard sedimentologic, micropaleontologic and magnetic granulometric analyses. This multiparameter approach is the most effective way to extract the paleoclimatic signals contained in the marine sediment cores. Two additional objectives are the deployment of sediment traps in front of the Muller Ice Shelf in Lallemand Fjord and seismic reflection work in conjunction with site augmentation funded through the Joint Oceanographic Institute. The goal of sediment trap work is to address whether sand transport and deposition adjacent to the ice shelf calving line results from meltwater or aeolian processes. In addition, the relationship between sea ice conditions and primary productivity will be investigated. The collection of a short series of seismic lines across the Palmer Deep basins will fully resolve the question of depth to acoustic basement. The combination of investigators on this project, all with many years of experience working in high latitude settings, provides an effective team to complete the project in a timely fashion. A combination of undergraduate, graduate and post-graduate students will be involved in all stages of the project so that educational objectives will be met in-tandem with research goals of the project.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Domack, Eugene Walter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Holocene Paleoenvironmental Change Along the Antarctic Peninsula: A Test of the Solar/Bi-Polar Signal", "uid": "p0000869", "west": null}, {"awards": "9909665 Berger, Glenn", "bounds_geometry": "POLYGON((-67.25 -62,-66.025 -62,-64.8 -62,-63.575 -62,-62.35 -62,-61.125 -62,-59.9 -62,-58.675 -62,-57.45 -62,-56.225 -62,-55 -62,-55 -62.525,-55 -63.05,-55 -63.575,-55 -64.1,-55 -64.625,-55 -65.15,-55 -65.675,-55 -66.2,-55 -66.725,-55 -67.25,-56.225 -67.25,-57.45 -67.25,-58.675 -67.25,-59.9 -67.25,-61.125 -67.25,-62.35 -67.25,-63.575 -67.25,-64.8 -67.25,-66.025 -67.25,-67.25 -67.25,-67.25 -66.725,-67.25 -66.2,-67.25 -65.675,-67.25 -65.15,-67.25 -64.625,-67.25 -64.1,-67.25 -63.575,-67.25 -63.05,-67.25 -62.525,-67.25 -62))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001707", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0303"}, {"dataset_uid": "001818", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0107"}], "date_created": "Wed, 10 Oct 2007 00:00:00 GMT", "description": "9909665\u003cbr/\u003eBerger\u003cbr/\u003e\u003cbr/\u003eThis award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports project to test and develop approaches for using thermoluminescence techniques to determine the age of Antarctic marine sediments. \u003cbr/\u003e\u003cbr/\u003eQuaternary (last 2 million yrs) marine sediments surrounding Antarctica record the waxing and waning of ice shelves and ice sheets, and also other paleoclimatic information, yet accurate chronologies of these sediments are difficult to obtain. Such chronologies provide the essential foundation for study of geological processes in the past. Within the range of radiocarbon (14C) dating (less than 30-40 thousand yrs, note - \"ka\" below means 1000 yrs) 14C dates can be inaccurate because of a variable 14C reservoir effect, and beyond 30-40 ka few methods are applicable. Photon-stimulated-luminescence sediment dating (photonic dating) of eolian and waterlain deposits in temperate latitudes spans the range from decades to hundreds of ka, but marine sediments in and around Antarctica pose special difficulty because of the potentially restricted exposure to daylight (the clock-zeroing process) of most detrital grains before deposition. This proposal will test the clock-zeroing assumption in representative Antarctic glaciomarine depositional settings, and thereby determine the potential reliability of photonic dating of Antarctic marine sediments.\u003cbr/\u003e\u003cbr/\u003eLimited luminescence dating and signal-zeroing tests using glaciomarine and marine deposits have been conducted in the northern temperate and polar latitudes, but the effects on luminescence of the different glaciomarine depositional processes have never been studied in detail. Furthermore, the depositional settings around Antarctica are almost entirely polar, with consequent specific processes operating there. For example, transport of terrigenous suspensions by neutrally buoyant \"cold-tongue\" (mid-water) plumes may be common around Antarctica, yet the effect of such transport on luminescence zeroing is unknown. Typical marine cores near Antarctica may contain an unknown fraction of detrital grains from cold-tongue and near-bottom suspensions. Thus the extent to which the polar glaciomarine depositional processes around Antarctica may limit the potential accuracy of photonic dating of marine cores is unknown (age overestimates would result if grains are not exposed to daylight before deposition).\u003cbr/\u003e\u003cbr/\u003eThis project will collect detrital grains from a variety of \"zero-age\" (modern) marine depositional settings within the Antarctic Peninsula, where representative Antarctic depositional processes have been documented and where logistics permit access. Suspensions will be collected from four fjords representing a transect from polar through subpolar conditions. Suspensions will be collected from two stations and from up to 3 depths (surface and 2 deep plumes) at each station. Sediment traps will be deployed at two of these fjord settings. As well, core-top sediments will be collected from several sites. All samples will be shielded from light and transported to Reno, Nevada, for luminescence analyses.\u003cbr/\u003e\u003cbr/\u003eSystematic study of the effectiveness of luminescence-clock-zeroing in Antarctic glaciomarine settings will determine if photonic dating can be reliable for future applications to Antarctic marine sediments. Refined sedimentological criteria for the selection of future samples for photonic dating are expected from this project. A photonic-dating capability would provide a numeric geochronometer extending well beyond the age range of 14C dating. Such a capability would permit answering a number of broader questions about the timing and extent of past glaciations near and on the Antarctic shelves.", "east": -55.0, "geometry": "POINT(-61.125 -64.625)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS", "is_usap_dc": false, "keywords": "R/V LMG; Not provided; Luminescence; Hugo Island; Geochronology; R/V NBP; Palmer Deep", "locations": null, "north": -62.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Berger, Glenn; Domack, Eugene Walter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; Not provided", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -67.25, "title": "Collaborative Research: Development of a Luminescence Dating Capability for Antarctic Glaciomarine Sediments: Tests of Signal Zeroing at the Antarctic Pennisula", "uid": "p0000592", "west": -67.25}, {"awards": "0126146 Miller, Molly", "bounds_geometry": "POINT(171 -83.75)", "dataset_titles": null, "datasets": null, "date_created": "Wed, 20 Jun 2007 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a study to investigate paleoenvironmental conditions during the late Paleozoic and Mesozoic in central interior Antarctica. The 4 km thick sequence of sedimentary rocks, known as the Beacon Supergroup, in the Beardmore Glacier area records 90 million years of Permian through Jurassic history of this high-paleolatitude sector of Gondwana. It accumulated in a foreland basin with a rate of subsidence approximately equal to the rate of deposition. The deposits have yielded diverse vertebrate fossils, in situ fossil forests, and exceptionally well preserved plant fossils. They give a unique glimpse of glacial, lake, and stream/river environments and ecosystems and preserve an unparalleled record of the depositional, paleoclimatic, and tectonic history of the area. The excellent work done to date provides a solid base of information on which to build understanding of conditions and processes.\u003cbr/\u003e\u003cbr/\u003eThis project is a collaborative study of this stratigraphic section that will integrate sedimentologic, paleontologic, and ichnologic observations to answer focused questions, including: (1) What are the stratigraphic architecture and alluvial facies of Upper Permian to Jurassic rocks in the Beardmore area?; (2) In what tectonostratigraphic setting were these rocks deposited?; (3) Did vertebrates inhabit the cold, near-polar, Permian floodplains, as indicated by vertebrate burrows, and can these burrows be used to identify, for the first time, the presence of small early mammals in Mesozoic deposits?; and (4) How did bottom-dwelling animals in lakes and streams use substrate ecospace, how did ecospace use at these high paleolatitudes differ from ecospace use in equivalent environments at low paleolatitudes, and what does burrow distribution reveal about seasonality of river flow and thus about paleoclimate? Answers to these questions will (1) clarify the paleoclimatic, basinal, and tectonic history of this part of Gondwana, (2) elucidate the colonization of near-polar ecosystems by vertebrates, (3) provide new information on the environmental and paleolatitudinal distributions of early mammals, and (4) allow semi-quantitative assessment of the activity and abundance of bottom-dwelling animals in different freshwater environments at high and low latitudes. In summary, this project will contribute significantly to an understanding of paleobiology and paleoecology at a high latitude floodplain setting during a time in Earth history when the climate was much different than today.", "east": 171.0, "geometry": "POINT(171 -83.75)", "instruments": null, "is_usap_dc": false, "keywords": "FIELD SURVEYS; Permian; paleontologic; sedimentologic; paleoclimatic; FIELD INVESTIGATION; stratigraphic; ichnologic; Beardmore; Gondwana", "locations": null, "north": -83.75, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e MESOZOIC \u003e JURASSIC; PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN; PHANEROZOIC \u003e MESOZOIC \u003e TRIASSIC", "persons": "Miller, Molly", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -83.75, "title": "Collaborative Research: Late Paleozoic-Mesozoic Fauna, Environment, Climate and Basinal History: Beardmore Glacier Area, Transantarctic Mountains", "uid": "p0000736", "west": 171.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
The Results Map and the Results Table
The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
As the map is panned or zoomed, the highlighted rows in the table will update.
If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page.
The bounds for the project(s)/dataset(s) selected will be displayed in red.
The selected result(s) will be highlighted in red and brought to the top of the table.
The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds
and highlight the centroid on the Results Map.
Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other
search criteria already selected.
After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
Clicking Clear in the map will clear any drawn polygon.
Clicking Search in the map, or Search on the form will have the same effect.
The returned results will be any projects/datasets with bounds that intersect the polygon.
Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
This research will provide new insights into the relationships and history of sharks, fish and limbed animals. Understanding these relationships forms the backbone for both basic and applied science because fish often serve as models of human traits and diseases. Some of the main lines of evidence for these relationships come from fossils in rocks over 380 million years old that were originally deposited as ancient rivers and streams. Because rocks of this type and age are abundantly exposed along a number of the dry valleys and mountains of Antarctica, the investigation of these areas holds exceptional promise for discoveries that can have a broad impact. The fieldwork will involve geological mapping and assessment of the rocks with detailed reconnaissance for the fossils that they may hold. Fossil discoveries form the backbone for public communication of the methods and results of scientific research-- these studies will be used as vehicles for training of students at multiple levels as well as communication of science to the broader non-science citizen base.<br/><br/>The discovery, description, and analysis of Middle to Late Devonian (390-355 Million years ago) vertebrates and depositional environments provide important data on the emergence of novel anatomical structures, faunas, and habitats during a critical interval in the history of life and earth. Biological innovation during this time includes the early evolution of freshwater fish, the origins of major groups of vertebrates (e.g., sharks, lobe and ray-finned fish, tetrapods), and the expansion and elaboration of non-marine ecosystems. Accordingly, expanding our knowledge of vertebrate diversity during the Middle and Late Devonian will provide new evidence on the relationships of the major groups of vertebrates, the assembly of novelties that ultimately enabled tetrapods to invade land, the origin and early evolution of sharks and their relatives, and the assembly and expansion of non-marine ecosystems generally. The Aztec Siltstone of Antarctica Middle-Late Devonian; Givetian-Frasnian Stages) has exceptional potential to produce new paleontological evidence of these events and to illuminate the temporal, ecological, and geographic context in which they occurred. It is essentially fossiliferous throughout its known exposure range, something that is rare for Middle-Late Devonian non-marine rocks anywhere in the world. In addition, fine-grained meandering stream deposits are abundantly exposed in the Aztec Siltstone and are recognized as an important locus for the discovery of well-preserved Devonian fish, including stem tetrapods and their relatives. Given the exceedingly fossiliferous nature of the Aztec Siltstone, the large number of taxa known only from partial material, and the amount of promising exposure yet to be worked, a dedicated reconnaissance, collection, and research effort is designed to recover important new fossil material and embed it in a stratigraphic and sedimentological context. The first major objective of this study is the recovery, preparation, and description of Middle-Late Devonian fossil taxa. Ensuing investigation of the phylogenetic affinities, taphonomic occurrence, and stratigraphic position of fossil assemblages will allow both local and global comparisons of biotic diversity. These analyses will inform: 1) higher level phylogenetic hypotheses of jawed vertebrates, 2) biostratigraphic and biogeographic analysis of the distribution of the Middle-Late Devonian fish, and 3) paleobiological investigation of the elaboration of terrestrial and freshwater habitats. The broader impacts are derived from the utility of paleontology and Antarctic expeditionary science as educational tools with powerful narratives. Specific goals include affiliations with local urban secondary schools (using established relationships for broadening participation) and collegiate and graduate training. Wider dissemination of knowledge to the general public is a direct product of ongoing interactions with national and international media (print, television, internet).
The research focus of this collaborative proposal was to collect fossil plants, fossil wood, stratigraphic, sedimentologic, paleosol, and geochemical data from plants and the rocks that contain them in order to reconstruct the extent of the Gondwana glaciation in the Shackleton Glacier (SHK) area, the invasion and subsequent flourishing of life following glacial retreat, changes to the physical environment, and the eventual recovery of plant life after the Late Permian biotic events. Only in Antarctica does a complete polar-to-near-polar succession occur across this climatic and biologic transition. The SHK is an important one as it is one of the few regions in the world where the Permian-Triassic boundary (PTB) is exposed within terrestrial rocks. In addition, outcrops in the SHK area extend from the glacigenic deposits of the Upper Carboniferous-Lower Permian through to the Upper Triassic and thus record ecosystems and the plants that inhabited them from the Gondwana icehouse into the Late Permian-Early Triassic greenhouse and into presumed "full recovery" of floras from the PTB extinctions in the Late Triassic.
The project encompassed a multidisciplinary plan that used various types of paleobotanical expertise, integrated with detailed sedimentology, stratigraphy, and geochemistry, in order to reconstruct Permian-Triassic plant communities and their paleoenvironments. This interdisciplinary approach is a powerful tool to uncover details of Antarctica’s complex late Paleozoic and Mesozoic environmental, climatic, and biotic history which included: 1) glaciation/deglaciation, 2) development and evolution of a post-glacial landscape and biota, 3) environmental and biotic change associated with the end-Permian mass extinction events, 4) earliest ecosystems in the Triassic, 5) greenhouse conditions in the Triassic, 6) full ’recovery’ of floras and ecosystems by the Late Triassic, and, through all of these events, 7) development and changes in a foreland basin system. Three interrelated focus areas, each delimited by distinct hypotheses and action strategies, provided the framework to trace floral diversity and environmental evolution after the retreat of glaciers through to the Late Triassic. Antarctica is the only place on Earth that includes extensive outcrops of high-paleolatitude terrestrial rocks, combined with widespread and well-preserved plant fossils, and that spans this crucial time.
The research and broader impacts of this proposal were integrated into action strategies that have been successful in the past. Compression floras were collected (constrained by stratigraphy) both quantitatively and qualitatively in order to obtain biodiversity and abundance data, and as a data source for paleoecological analysis. Even in formations where megafossils were unknown (e.g., Lower Permian), fossil wood is present so that anatomy and geochemistry of tree rings were examined. Standard sedimentologic and stratigraphic analyses were performed, as well as paleosol analyses, including mineralogic and major- and trace-element geochemistry. Collections will also be made for U-Pb zircon geochronology to better constrain geologic and biotic events.
The Broader Impacts of the project involved education and outreach initiatives that included women and under-represented groups in the excitement of Antarctic earth sciences: 1) Continuing successful public outreach, teaching, and mentoring of women and under-represented students in Antarctic research; 2) Participation in workshops for under-represented groups via the Expanding Your Horizons Program in Kansas, the TRIO program (KU), and the STELAR summer workshop (UWM) for high-school students. 3) Outreach via the KU Natural History Museum; 4) Exploring Antarctic geosciences through continued presentations to pre K-12 school groups, and field and lab activities at UWM, as well as links from McMurdo Station and satellite conferences from the field with K-12 science classes in Wisconsin and Illinois.
Antarctic groundwater drives the regional carbon cycle, accelerates permafrost thaw, and shapes Antarctic climate response. However, groundwater extent, movement, and processes on a continent virtually locked in ice are poorly understood. The proposed work investigates the interplay between groundwater, sediment, and ice in Antarctica’s cold desert landscapes to determine when, where, and why Antarctic groundwater is flowing, and how quickly it will switch Antarctic frozen deserts from dry and stable to wet and disintegrating. Little is known about the extent, chemistry, and duration of groundwater in Antarctic seasonal wetlands. Mapping the changing extent of Antarctic wetlands requires the ability to measure soil moisture rapidly and repeatedly and over large areas. Changing groundwater extent will be captured through an unmanned aerial vehicle (UAV)-based mapping approach. The project integrates a diverse range of sensors with new UAV technologies to provide a higher-resolution and more frequent assessment of Antarctic groundwater extent and composition than can be accomplished using satellite observations alone. To complement the research objectives, the PI will develop a new UAV summer field school, the Geosciences UAV Academy, focused on training undergraduate-level UAV pilots in conducting novel Earth science research using cutting edge imaging tools. The integration of research and technology will prepare students for careers in burgeoning UAV-related industries and research. The project will deliver new UAV tools and workflows for soil moisture mapping relevant to arid regions common not just to Antarctica but to temperate desert and dryland systems and will train student research pilots to tackle next generation airborne challenges.
Water tracks are the basic hydrological unit that currently feeds the rapidly-changing polar and permafrost wetlands in the Antarctic McMurdo Dry Valleys (MDV). Despite the importance of water tracks in the MDV hydrologic cycle and their influence on biogeochemistry, little is known about how these water tracks control the unique brine processes operating in Antarctic ice-free areas. Both groundwater availability and geochemistry shape Antarctic microbial communities, connecting soil geology and hydrology to carbon cycling and ecosystem functioning. The objectives of this CAREER proposal are to 1) map water tracks to determine the spatial distribution and seasonal magnitude of groundwater impacts on the MDV near-surface environment to determine how water tracks drive irreversible permafrost thaw, how water tracks enhance chemical weathering and biogeochemical cycling, and how water tracks integrate and accelerate climate feedbacks between terrestrial Antarctic soils and the Southern Ocean; 2) establish a UAV academy training earth sciences students to answer geoscience questions using drone-based platforms and remote sensing techniques; and 3) provide a formative step in the development of the PI as a teacher-scholar. UAV-borne hyperspectral imaging complemented with field soil sampling will determine the aerial extent and timing of inundation, water level, and water budget of representative water tracks in the MDV. Soil moisture will be measured via near-infrared reflectance spectroscopy while bulk chemistry of soils and groundwater will be analyzed via ion chromatography and soil x-ray fluorescence. Sedimentological and hydrological properties (suction/matric potential, hydraulic conductivity, etc.) will be determined via analysis of intact core samples. These data will be used to test competing hypotheses regarding the origin of water track solutions and water movement through seasonal wetlands. The will provide a regional understanding of Antarctic groundwater sources, groundwater flux, and the influence of regional hydrogeology on solute export to the Southern Ocean and on soil/atmosphere linkages in earth’s carbon budget. The UAV school will 1) provide comprehensive instruction at the undergraduate level in both how and why UAVs can be used in geoscience research and learning; and 2) provide a long-term piece of educational infrastructure in the form of an ultimately self-sustaining summer program for undergraduate UAV education.
The goals of this collaborative project are to merge empirical observations from the deglaciated Antarctic continental shelf and 1-D and 3-D numerical model experiments to test the sensitivity of marine-based ice sheets to subglacial topography with collaborators at the University of Kansas (L. Stearns, C. van der Veen). We focus on five glacial systems (i.e., flowlines) across the Amundsen Sea, Ross Sea, and George V Coast of Wilkes Land that extended to/near the continental shelf break at the Last Glacial Maximum – with a range of bed characteristics, topographic features, oceanographic and climatic conditions, and patterns of past ice flow and grounding line retreat. Specifically, at the University of Virginia, we (L. Simkins, S. Munevar Garcia) are: (ongoing) exploring bed roughness across the flowlines to determine the sensitivity of ice flow and grounding line behavior to different scales and wavelengths of bed topography/roughness; (upcoming) developing an empirical relationship between ice-marginal landform sediment volume and grounding line occupation time, and combining this with sedimentological analyses and new absolute age constraints to produce more comprehensive timelines of grounding line retreat, influential boundary conditions and processes, and determine the presence/absence of ice shelves; (ongoing) integrating quantitative and qualitative paleo- and offshore data to be incorporated into and/or validate 1-D and 3-D model experiments further testing the sensitivity of the five glacial systems to bed topography; and (completed) co-developing community engagement and education materials that focus on merging paleo-observations and model information of the Antarctic Ice Sheet from the LGM to the present
Geological records from the Antarctic Ice Sheet (AIS) margin demonstrate that the ice sheet oscillated in response to orbital variations in insolation (i.e., ~400, 100, 41, and 20 kyr), and it appears to be more sensitive to specific frequencies that regulate mean annual insolation (i.e., 41-kyr obliquity), particularly when the ice sheet extends into marine environments and is impacted by ocean circulation. However, the relationship between orbital forcing and the production of Antarctic Bottom Water (AABW) is unconstrained. Thus, a knowledge gap exists in understanding how changing insolation impacts ice marginal and Southern Ocean conditions that directly influence ventilation of the global ocean. We hypothesize that insolation-driven changes directly affected the production and export of AABW to the Southern Ocean from the Pliocene through the Pleistocene. For example, obliquity amplification during the warmer Pliocene may have led to enhanced production and export of dense waters from the shelf due to reduced AIS extent, which, in turn, led to greater AABW outflow. To determine the relationship of AABW production to orbital regime, we plan to reconstruct both from a single, continuous record from the levee of Hillary Canyon, a major conduit of AABW outflow, on the Ross Sea continental rise.
To test our hypothesis, we will analyze sediment from IODP Site U1524 (recovered in 2018 during International Ocean Discovery Program Expedition 374) and focus on three data sets. (1) We will use the occurrence, frequency, and character of mm-scale turbidite beds as a proxy of dense-shelf-water cascading outflow and AABW production. We will estimate the down-slope flux via numerical modeling of turbidity current properties using morphology, grain size, and bed thickness as input parameters. (2) We will use grain-size data, physical properties, XRF core scanning, CT imaging, and hyperspectral imaging to guide lithofacies analysis to infer processes occurring during glacial, deglacial, and interglacial periods. Statistical techniques and optimization methods will be applied to test for astronomical forcing of sedimentary packages in order to provide a cyclostratigraphic framework and interpret the orbital-forcing regime. (3) We will use bulk sedimentary carbon and nitrogen abundance and isotope data to determine how relative contributions of terrigenous and marine organic matter change in response to orbital forcing. We will integrate these data with sedimentological records to deconvolve organic matter production from its deposition or remobilization due to AABW outflow as a function of the oscillating extent of the AIS. These data sets will be integrated into a unified chronostratigraphy to determine the relationship between AABW outflow and orbital-forcing scenarios under the varying climate regimes of the Plio-Pleistocene.
This project will advance our understanding of Antarctic life during the Permian and Triassic. We will apply an interdisciplinary approach to address relationships between environmental change, faunal composition, and biogeographic patterns in the context of the high-latitude strata preserved in the Buckley and Fremouw formations in the Shackleton Glacier region. We will use multiple types of data to assess paleoenvironment, including: 1) paleosol morphology; 2) paleosol geochemistry; 3) pedogenic organic matter; and 4) fossil wood chronology and stable isotopes. The Fremouw Formation of Antarctica preserves the highest paleolatitude tetrapod fauna of the entire Triassic (~70° S) and thus has the potential to shed important light on the evolution of polar life during the early Mesozoic. We will collect new fossils from known localities to understand the relationship between Antarctic and southern African tetrapod faunas. Furthermore, we will refine the stratigraphic, sedimentological, and geochronological framework for these Mesozoic faunas, which will include using U/Pb detrital zircon dating to provide the first dates for these vertebrate assemblages. In the lab, we will examine the biology of Triassic vertebrates from Antarctica by comparing their bone and tusk histology to conspecifics from lower paleolatitudes. In addition, we will test Bergmann’s Rule with six species (viz. Lystrosaurus curvatus, L. maccaigi, L. murrayi, Prolacerta broomi, Procolophon trigoniceps, and Thrinaxodon liorhinus). The Early Triassic presents a unique opportunity to perform such investigations as there is no other geologic interval in which species occurring in Antarctica can be compared to conspecifics across a range of paleolatitudes.
As glaciers creep across the landscape, they can act as earthmovers, plucking up rocks and grinding them into fine sediments. Glaciers have moved across the Antarctic landscape over thousands to millions of years, leaving these ground-up sediments in their wake. This study builds on pilot discoveries by the investigators that revealed remarkably large and variable measurements of surface area in glacially-derived fine-grained sediments found in the McMurdo Dry Valleys (MDV), one of the few landscapes on the Antarctic continent not currently covered by ice. Surface area is key to chemical weathering, the process by which rock is converted to soils as ions are carried away in streams and groundwater. These chemical weathering processes are also one of the primary means by which the Earth system naturally removes carbon dioxide from the atmosphere. Hence, high surface areas observed in sediments implies high "weatherability" which in turn translates to more potential carbon dioxide removed from the atmosphere. Therefore, chemical weathering in high surface area glacial sediments may have significant impacts on Earth's carbon cycle. The researchers will measure the chemical and physical properties of sediments previously collected from the Dry Valleys to understand what factors lead to production of sediment with high-surface area and potential "weather ability" and investigate how sediment produced in these glacial systems could ultimately impact Earth's carbon budget. Results from this research will help scientists (including modelers) refine predictions of the effects of melting glaciers- and attendant exposure of glacial sediment? on atmospheric carbon levels. These results may also contribute to applied research efforts on development of carbon-dioxide removal technologies utilizing principles of rock weathering. In addition to the scientific benefits, this research will involve several students at the undergraduate, graduate, and post-doctoral levels, including science education undergraduates, thus contributing to training of the next-generation STEM workforce.
Physical weathering produces fresh surfaces, greatly enhancing specific surface area (SSA) and reactive surface area (RSA) of primary minerals. Quantifying SSA and RSA of sediments is key to determining dissolution and leaching rates during natural weathering, but few data exist on distribution of sediment SA, particularly in glacial and fluvial systems. Pilot data from glacial stream systems in Taylor Valley and Wright Valley (located in the MDV) exhibit remarkably high and variable values in both SSA and RSA, values that in some cases greatly exceed values from muds in temperate glacial systems. This discovery motivates the current research, which aims to investigate the hypothesis that high and variable SAs of muds within Wright and Taylor Valleys reflect textural and/or compositional inheritance from the differing depositional settings within the MDV, biologic controls, dust additions, and/or pedogenic processes. These hypotheses will be tested by sedimentologically, mineralogically, and geochemically characterizing muds from glacially derived sediment deposited in various environments (cold vs. wet based glaciation; fluvial, lacustrine, dust, and drift deposits) and of varying age (Miocene to Modern) from the MDV and quantifying variation of SA and reactivity. Comparisons with analyzed muds from temperate glacial systems will enable polar-temperate comparisons. Analyses will focus on muds of previously collected sediment from the MDVs. Grain size and SSA will be measured by Laser Analysis and N2 adsorption BET, respectively. After carbonate removal, samples will be re-analyzed for SSA, and muds characterized geochemically. Mineralogy and bulk chemistry will also be assessed on co-occurring sand fractions, and textural attributes documented. SSA-normalized dissolution experiments will be used to compare solutes released from sediments to determine RSAs. Results will be integrated with the various sedimentologic and geochemical analyses to test the posed hypotheses. Ultimately, this research should shed light on how weathering in Antarctic systems contributes to global carbon cycling.
Abstract (non-technical)<br/>Sea level rise is a problem of global importance and it is increasingly affecting the tens of millions of Americans living along coastlines. The melting of glaciers in mountain areas worldwide in response to global warming is a major cause of sea level rise and increases in nuisance coastal flooding. However, the world's largest land-based ice sheets are situated in the Polar Regions and their response under continued warming is very difficult to predict. One reason for this uncertainty is a lack of observations of ice behavior and melt under conditions of warming, as it is a relatively new global climate state lasting only a few generations so far. Researchers will investigate ice growth on Antarctica under past warm conditions using geological archives embedded in the layers of sand and mud under the sea floor near Antarctica. By peeling back at the layers beneath the seafloor investigators can read the history book of past events affecting the ice sheet. The Antarctic continent on the South Pole, carries the largest ice mass in the world. The investigator's findings will substantially improve scientists understanding of the response of ice sheets to global warming and its effect on sea level rise.<br/><br/><br/>Abstract (technical)<br/>The melt of land based ice is raising global sea levels with at present only minor contributions from polar ice sheets. However, the future role of polar ice sheets in climate change is one of the most critical uncertainties in predictions of sea level rise around the globe. The respective roles of oceanic and atmospheric greenhouse forcing on ice sheets are poorly addressed with recent measurements of polar climatology, because of the extreme rise in greenhouse forcing the earth is experiencing at this time. Data on the evolution of the West Antarctic ice sheet is particularly sparse. To address the data gap, researchers will reconstruct the timing and spatial distribution of Antarctic ice growth through the last greenhouse to icehouse climate transition around 37 to 33 Ma. They will collect sedimentological and geochemical data on core samples from a high-latitude paleoarchive to trace the shutdown of the chemical weathering system, the onset of glacial erosion, ice rafting, and sea ice development, as East and West Antarctic ice sheets coalesced in the Weddell Sea sector. Their findings will lead to profound increases in the understanding of the role of greenhouse forcing in ice sheet development and its effect on the global climate system.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Intellectual Merit: <br/>The PI hypothesizes that bedforms found in the Central and Joides troughs can be interpreted as having been formed by rapid retreat, and possible collapse of an ice stream that occupied this area. To test this hypothesis, the PI proposes to conduct a detailed marine geological and geophysical survey of Central and Joides Troughs in the western Ross Sea. This project will bridge gaps between the small and isolated areas previously surveyed and will acquire a detailed sedimentological record of the retreating grounding line. The PI will reconstruct the retreat history of the Central and Joides troughs to century-scale resolution using radiocarbon dating methods and by looking at geomorphic features that are formed at regular time intervals. Existing multibeam, deep tow side-scan sonar, and core data will provide a framework for this research. The western Ross Sea is an ideal study area to investigate a single ice stream and the dynamics controlling its stability, including interactions between both East and West Antarctic Ice Sheets. <br/><br/>Broader impacts: <br/>This proposal includes a post-doc, a graduate and two undergraduate students. The post-doc is involved with teaching an in-service K-12 teacher development and training course at Rice University for high-need teachers with a focus on curriculum enhancement. The project fosters collaboration for the PI and students with researchers at Louisiana State University and international colleagues at the Institute for Paleobiology at the Polish Academy of Sciences. The results from this project could lead to a better understanding of ice sheet and ice stream stability. This project will yield implications for society's understanding of climate change, as this work improves understanding of the behavior of ice sheets and their links to global climate.
Intellectual Merit: <br/>Southern Ocean processes play an important role in Late Quaternary glacial-interglacial climate change. However, the direct influence of newly upwelled warm nutrient-rich Circumpolar Deep Water on the Antarctic cryosphere remains speculative. The PI proposes to test the hypothesis that Circumpolar Deep Water-derived ocean heat negatively impacts the mass-balance of Antarctica?s ice sheets during deglaciations using precisely dated late Quaternary paleoceanographic studies of Antarctic margin sediments and a suite of geochemical proxies measured on three existing glacial marine sediment cores from the Prydz Channel, Antarctica. Specifically, the PI will use these data to reconstruct the Late Quaternary history of the Lambert Glacier/Amery Ice Shelf system; evaluate the timing, speed, and style of retreat of the Lambert Glacier/Amery Ice Shelf system during the last deglaciation, and to assess the impact of Circumpolar Deep Water intrusions on the Lambert Glacier/Amery Ice Shelf system in the Late Quaternary. Diatom bound radiocarbon and optically stimulated luminescence techniques will be used to obtain precise stratigraphic age control for the Prydz Channel siliceous muddy ooze intervals. In addition, the PI will measure sedimentary 10Be concentrations to determine the origin of the siliceous muddy ooze units and to track past changes in the position of the ice shelf front.<br/><br/>Broader impacts: <br/>This proposal will support an early career female scientist and will provide professional development and research experiences for women/minority graduate and undergraduate students. The PI will take advantage of USF?s Oceanography Camp for Girls.
Intellectual Merit: <br/>Southern Ocean processes play an important role in Late Quaternary glacial-interglacial climate change. However, the direct influence of newly upwelled warm nutrient-rich Circumpolar Deep Water on the Antarctic cryosphere remains speculative. The PI proposes to test the hypothesis that Circumpolar Deep Water-derived ocean heat negatively impacts the mass-balance of Antarctica?s ice sheets during deglaciations using precisely dated late Quaternary paleoceanographic studies of Antarctic margin sediments and a suite of geochemical proxies measured on three existing glacial marine sediment cores from the Prydz Channel, Antarctica. Specifically, the PI will use these data to reconstruct the Late Quaternary history of the Lambert Glacier/Amery Ice Shelf system; evaluate the timing, speed, and style of retreat of the Lambert Glacier/Amery Ice Shelf system during the last deglaciation, and to assess the impact of Circumpolar Deep Water intrusions on the Lambert Glacier/Amery Ice Shelf system in the Late Quaternary. Diatom bound radiocarbon and optically stimulated luminescence techniques will be used to obtain precise stratigraphic age control for the Prydz Channel siliceous muddy ooze intervals. In addition, the PI will measure sedimentary 10Be concentrations to determine the origin of the siliceous muddy ooze units and to track past changes in the position of the ice shelf front.<br/><br/>Broader impacts: <br/>This proposal will support an early career female scientist and will provide professional development and research experiences for women/minority graduate and undergraduate students. The PI will take advantage of USF?s Oceanography Camp for Girls.
Intellectual Merit:<br/>The focus of this proposal is to collect fossil plants and palynomorphs from Permian-Triassic (P-T) rocks of the central Transantarctic Mountains (CTM), together with detailed data on sedimentologic and paleoecologic depositional environments. Fossil plants are important climate proxies that offer a unique window into the past, and the CTM fossils are an important source of data on the ways that plants responded to a strongly seasonal, polar light regime during a time of global change. The proposed project uses paleobotanical expertise, integrated with detailed sedimentology and stratigraphy, to reconstruct Permian-Triassic plant communities and their paleoenvironments. This interdisciplinary approach could uncover details of Antarctica?s complex late Paleozoic and Mesozoic environmental and climatic history which included: 1) deglaciation, 2) development and evolution of a post-glacial landscape and biota, 3) environmental and biotic change associated with the end-Permian mass extinction, 4) environmental recovery in the earliest Triassic, 5) strong, possible runaway Triassic greenhouse, and 6) widespread orogenesis and development of a foreland basin system. The PIs will collect compression floras both quantitatively and qualitatively to obtain biodiversity and abundance data. Since silicified wood is also present, the PIs will analyze tree rings and growth in a warm, high-latitude environment for which there is no modern analogue. Fossil plants from the CTM can provide biological and environmental information to: 1) interpret paleoclimate when Gondwana moved from icehouse to greenhouse conditions; 2) trace floral evolution across the P-T boundary; 3) reconstruct Antarctic plant life; 4) further understanding of plant adaptations to high latitudes. The Intellectual Merit of the research includes: 1) tracing floral evolution after the retreat of glaciers; 2) examining floral composition and diversity across the PTB; and 3) obtaining data on the recovery of these ecosystems in the Early Triassic, as well as changes in floral cover and diversity in the Early-Middle Triassic. Antarctica is the only place on Earth that includes extensive outcrops of terrestrial rocks, combined with widespread and well-preserved plant fossils, which spans this crucial time period.<br/><br/>Broader impacts:<br/>The broader impacts include public outreach; teaching, and mentoring of women and underrepresented students; mentoring graduate student, postdoctoral, and new faculty women; development of an inquiry-based workshop on Antarctic paleoclimate with the Division of Education, KU Natural History Museum; continuing support of workshops for middle school girls in science via the Expanding Your Horizons Program, Emporia State University, and the TRIO program, KU; exploring Antarctic geosciences through video/computer links from McMurdo Station and satellite phone conferences from the field with K-12 science classes in Wisconsin and Kansas, and through participation in the NSF Research Experiences for Teachers program at the University of Wisconsin.
Intellectual Merit: <br/>The goal of this project is to address relationships between foreland basins and their tectonic settings by combining detrital zircon isotope characteristics and sedimentological data. To accomplish this goal the PIs will develop a detailed geochronology and analyze Hf- and O-isotopes of detrital zircons in sandstones of the Devonian Taylor Group and the Permian-Triassic Victoria Group. These data will allow them to better determine provenance and basin fill, and to understand the nature of the now ice covered source regions in East and West Antarctica. The PIs will document possible unexposed/unknown crustal terrains in West Antarctica, investigate sub-glacial terrains of East Antarctica that were exposed to erosion during Devonian to Triassic time, and determine the evolving provenance and tectonic history of the Devonian to Triassic Gondwana basins in the central Transantarctic Mountains. Detrital zircon data will be interpreted in the context of fluvial dispersal/drainage patterns, sandstone petrology, and sequence stratigraphy. This interpretation will identify source terrains and evolving sediment provenances. Paleocurrent analysis and sequence stratigraphy will determine the timing and nature of changing tectonic conditions associated with development of the depositional basins and document the tectonic history of the Antarctic sector of Gondwana. Results from this study will answer questions about the Panthalassan margin of Gondwana, the Antarctic craton, and the Beacon depositional basin and their respective roles in global tectonics and the geologic and biotic history of Antarctica. The Beacon basin and adjacent uplands played an important role in the development and demise of Gondwanan glaciation through modification of polar climates, development of peat-forming mires, colonization of the landscape by plants, and were a migration route for Mesozoic vertebrates into Antarctica. <br/><br/>Broader impacts: <br/>This proposal includes support for two graduate students who will participate in the fieldwork, and also support for other students to participate in laboratory studies. Results of the research will be incorporated in classroom teaching at the undergraduate and graduate levels and will help train the next generation of field geologists. Interactions with K-12 science classes will be achieved by video/computer conferencing and satellite phone connections from Antarctica. Another outreach effort is the developing cooperation between the Byrd Polar Research Center and the Center of Science and Industry in Columbus.
This award is for support for a four year program to study the basal conditions of ice stream D using techniques previously applied to ice stream B. The objective is to determine whether the physical conditions and processes to be observed by borehole geophysics at the base of this large ice stream are consistent with what has been observed at ice stream B and to point to a common basal mechanism of ice streaming. This project includes a comparison between two parts of ice stream D, an upstream reach where flow velocities are modest (about 80 meters/year) and a downstream reach of high velocity (about 400 meters/year). The comparison will help to reveal what physical variable or combination of variables is mainly responsible for the streaming flow. The variables to be monitmred by borehole observation include basal water pressure, basal sliding velocity, flow properties and sedimentological characteristics of subglacial till if present, ice temperature profile including basal water transport velocity, connection time to the basal water system, basal melting rate and others.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a multi-institutional, international (US - Australia) marine geologic and geophysical investigation of Prydz Bay and the MacRobertson Shelf, to be completed during an approximately 60-day cruise aboard the RVIB N.B. Palmer. The primary objective is to develop a record of climate and oceanographic change during the Quaternary, using sediment cores collected via kasten and jumbo piston coring. Core sites will be selected based on seismic profiling (Seabeam 2112 and Bathy2000). Recognition of the central role of the Antarctic Ice Sheet to global oceanic and atmospheric systems is based primarily on data collected along the West Antarctic margin, while similar extensive and high resolution data sets from the much more extensive East Antarctic margin are sparse. Goals of this project include (1) development of a century- to millennial-scale record of Holocene paleoenvironments, and (2) testing of hypotheses concerning the sedimentary record of previous glacial and interglacial events on the shelf, and evaluation of the timing and extent of maximum glaciation along this 500 km stretch of the East Antarctic margin. <br/><br/>High-resolution seismic mapping and coring of sediments deposited in inner shelf depressions will be used to reconstruct Holocene paleoenvironments. In similar depositional settings in the Antarctic Peninsula and Ross Sea, sedimentary records demonstrate millennial- and century- scale variability in primary production and sea-ice extent during the Holocene, which have been linked to chronological periodicities in radiocarbon distribution, suggesting the possible role of solar variability in driving some changes in Holocene climate. Similar high-resolution Holocene records from the East Antarctic margin will be used to develop a circum-Antarctic suite of data regarding the response of southern glacial and oceanographic systems to late Quaternary climate change. In addition, these data will help us to evaluate the response of the East Antarctic margin to global warming. <br/><br/>Initial surveys of the Prydz Channel - Amery Depression region reveal sequences deposited during previous Pleistocene interglacials. The upper Holocene and lower (undated) siliceous units can be traced over 15,000 km2 of the Prydz Channel, but more sub-bottom seismic reflection profiling in conjunction with dense coring over this region is needed to define the spatial distribution and extent of the units. Chronological work will determine the timing and duration of previous periods of glacial marine sedimentation on the East Antarctic margin during the late Pleistocene. <br/><br/>Analyses will focus on detailed sedimentologic, geochemical, micropaleontological, and paleomagnetic techniques. This multi-parameter approach is the most effective way to extract a valuable paleoenvironmental signal in these glacial marine sediments. These results are expected to lead to a significant advance in understanding of the behavior of the Antarctic ice-sheet and ocean system in the recent geologic past.<br/><br/>The combination of investigators, all with many years of experience working in high latitude marine settings, will provide an effective team to complete the project. University and College faculty (Principal Investigators on this project) will supervise a combination of undergraduate and post-graduate students involved in all stages of the project so that educational objectives will be met in tandem with the research goals of the project.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The project aims on studying sediment cores collected from Prydz Bay and the Ross Sea to unravel the Neogene paleoclimatic history of the East Antarctic ice sheet. In the light of current measurements and predictions of a substantial rise in global temperature, investigations into the sensitivity of the East Antarctic ice sheet to climate change and its role in the climate system are essential. Geological records of former periods of climate change provide an opportunity to ground truth model predictions. The scientific objective of this project is to identify a previously proposed middle Miocene transition from a more dynamic wet-based East Antarctic ice sheet to the present semi-permanent ice sheet that is partially frozen to its bed. The timing and significance of this transition is controversial due to a lack of quantitative studies on well-dated ice-proximal sedimentary sequences. This project partially fills that gap using the composition and physical properties of diamictites and sandstones to establish shifts in ice-sheet drainage pathways, paleoenvironments and basal ice conditions. The results from the two key areas around the Antarctic continental margin will provide insight into the behavior of the East Antarctic ice sheet across the middle Miocene transition and through known times of warming in the late Miocene and Pliocene.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports project to test and develop approaches for using thermoluminescence techniques to determine the age of Antarctic marine sediments. <br/><br/>Quaternary (last 2 million yrs) marine sediments surrounding Antarctica record the waxing and waning of ice shelves and ice sheets, and also other paleoclimatic information, yet accurate chronologies of these sediments are difficult to obtain. Such chronologies provide the essential foundation for study of geological processes in the past. Within the range of radiocarbon (14C) dating (less than 30-40 thousand yrs, note - "ka" below means 1000 yrs) 14C dates can be inaccurate because of a variable 14C reservoir effect, and beyond 30-40 ka few methods are applicable. Photon-stimulated-luminescence sediment dating (photonic dating) of eolian and waterlain deposits in temperate latitudes spans the range from decades to hundreds of ka, but marine sediments in and around Antarctica pose special difficulty because of the potentially restricted exposure to daylight (the clock-zeroing process) of most detrital grains before deposition. This proposal will test the clock-zeroing assumption in representative Antarctic glaciomarine depositional settings, and thereby determine the potential reliability of photonic dating of Antarctic marine sediments.<br/><br/>Limited luminescence dating and signal-zeroing tests using glaciomarine and marine deposits have been conducted in the northern temperate and polar latitudes, but the effects on luminescence of the different glaciomarine depositional processes have never been studied in detail. Furthermore, the depositional settings around Antarctica are almost entirely polar, with consequent specific processes operating there. For example, transport of terrigenous suspensions by neutrally buoyant "cold-tongue" (mid-water) plumes may be common around Antarctica, yet the effect of such transport on luminescence zeroing is unknown. Typical marine cores near Antarctica may contain an unknown fraction of detrital grains from cold-tongue and near-bottom suspensions. Thus the extent to which the polar glaciomarine depositional processes around Antarctica may limit the potential accuracy of photonic dating of marine cores is unknown (age overestimates would result if grains are not exposed to daylight before deposition).<br/><br/>This project will collect detrital grains from a variety of "zero-age" (modern) marine depositional settings within the Antarctic Peninsula, where representative Antarctic depositional processes have been documented and where logistics permit access. Suspensions will be collected from four fjords representing a transect from polar through subpolar conditions. Suspensions will be collected from two stations and from up to 3 depths (surface and 2 deep plumes) at each station. Sediment traps will be deployed at two of these fjord settings. As well, core-top sediments will be collected from several sites. All samples will be shielded from light and transported to Reno, Nevada, for luminescence analyses.<br/><br/>Systematic study of the effectiveness of luminescence-clock-zeroing in Antarctic glaciomarine settings will determine if photonic dating can be reliable for future applications to Antarctic marine sediments. Refined sedimentological criteria for the selection of future samples for photonic dating are expected from this project. A photonic-dating capability would provide a numeric geochronometer extending well beyond the age range of 14C dating. Such a capability would permit answering a number of broader questions about the timing and extent of past glaciations near and on the Antarctic shelves.
This award supports an integrated seismic, sedimentologic, and paleontologic investigation of glacio-marine stratigraphy of the Ross Sea continental shelf. The purpose of this work is to acquire seismic images and sediment cores of the glacial sediments toward a better understanding of the Cenozoic history of glaciation in the Ross Sea region. This investigation will utilize high resolution seismic profiling data to locate regions where the Pleistocene glacial till is thin or perhaps absent. Piston coring at these locations, if the till is penetrated, will provide sedimentary records of Cenozoic depositional environments and could provide important clues to fluctuations of the Antarctic Ice Sheets. The seismic profiling will provide a direct record of the grounding history of the Ross Ice Shelf during the Pleistocene and it will also allow first order correlations of Cenozoic sedimentary units that are represented by sediments recovered in the piston cores. This work will provide important proxy records of the history of both the West Antarctic Ice Sheet and the East Antarctic Ice Sheet and this, in turn, will provide important constraints to climate models.
Marine geological and geophysical studies of the Ross Sea and Weddell Sea continental shelves provide evidence that the ice sheet grounded near the shelf edge in these areas during the late Wisconsinan, and that the retreat of the ice sheet to its present position was rapid and probably episodic. This Award supports a project which will establish the most recent (late Wisconsin- Holocene) history of ice sheet advance and retreat in Ross Sea. The objectives include: 1) reconstruction the late Wisconsin paleodrainage regime, including ice stream divides; 2) reconstruction of former grounding zone positions; 3) constraint of the timing of ice sheet retreat from the shelf; and 4) acquisition of geophysical, sedimentological, and paleontological data which may provide indicators the environmental factors that may have influenced to ice sheet retreat. This is a joint effort between Rice University, the University of Colorado, and Hamilton College. The project involves experts in a wide variety of fields, and will interface with glaciologists, physical oceanographers and climatologists who will address the problem of ice sheet stability and the record of climatic and glaciological change.
Domack: OPP 9615053 Manley: OPP 9615670 Banerjee: OPP 9615695 Dunbar: OPP 9615668 Ishman: OPP 9615669 Leventer: OPP 9714371 Abstract This award supports a multi-disciplinary, multi-institutional effort to elucidate the detailed climate history of the Antarctic Peninsula during the Holocene epoch (the last 10,000 years). The Holocene is an important, but often overlooked, portion of the Antarctic paleoclimatic record because natural variability in Holocene climate on time scales of decades to millennia can be evaluated as a model for our present "interglacial" world. This project builds on over ten years of prior investigation into the depositional processes, productivity patterns and climate regime of the Antarctic Peninsula. This previous work identified key locations that contain ultra-high resolution records of past climatic variation. These data indicate that solar cycles operating on multi-century and millennial time scales are important regulators of meltwater production and paleoproductivity. These marine records can be correlated with ice core records in Greenland and Antarctica. This project will focus on sediment dispersal patterns across the Palmer Deep region. The objective is to understand the present links between the modern climatic and oceanographic systems and sediment distribution. In particular, additional information is needed regarding the influence of sea ice on the distribution of both biogenic and terrigenous sediment distribution. Sediment samples will be collected with a variety of grab sampling and coring devices. Analytical work will include carbon-14 dating of surface sediments using accellerator mass spectrometry and standard sedimentologic, micropaleontologic and magnetic granulometric analyses. This multiparameter approach is the most effective way to extract the paleoclimatic signals contained in the marine sediment cores. Two additional objectives are the deployment of sediment traps in front of the Muller Ice Shelf in Lallemand Fjord and seismic reflection work in conjunction with site augmentation funded through the Joint Oceanographic Institute. The goal of sediment trap work is to address whether sand transport and deposition adjacent to the ice shelf calving line results from meltwater or aeolian processes. In addition, the relationship between sea ice conditions and primary productivity will be investigated. The collection of a short series of seismic lines across the Palmer Deep basins will fully resolve the question of depth to acoustic basement. The combination of investigators on this project, all with many years of experience working in high latitude settings, provides an effective team to complete the project in a timely fashion. A combination of undergraduate, graduate and post-graduate students will be involved in all stages of the project so that educational objectives will be met in-tandem with research goals of the project.
9909665<br/>Berger<br/><br/>This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports project to test and develop approaches for using thermoluminescence techniques to determine the age of Antarctic marine sediments. <br/><br/>Quaternary (last 2 million yrs) marine sediments surrounding Antarctica record the waxing and waning of ice shelves and ice sheets, and also other paleoclimatic information, yet accurate chronologies of these sediments are difficult to obtain. Such chronologies provide the essential foundation for study of geological processes in the past. Within the range of radiocarbon (14C) dating (less than 30-40 thousand yrs, note - "ka" below means 1000 yrs) 14C dates can be inaccurate because of a variable 14C reservoir effect, and beyond 30-40 ka few methods are applicable. Photon-stimulated-luminescence sediment dating (photonic dating) of eolian and waterlain deposits in temperate latitudes spans the range from decades to hundreds of ka, but marine sediments in and around Antarctica pose special difficulty because of the potentially restricted exposure to daylight (the clock-zeroing process) of most detrital grains before deposition. This proposal will test the clock-zeroing assumption in representative Antarctic glaciomarine depositional settings, and thereby determine the potential reliability of photonic dating of Antarctic marine sediments.<br/><br/>Limited luminescence dating and signal-zeroing tests using glaciomarine and marine deposits have been conducted in the northern temperate and polar latitudes, but the effects on luminescence of the different glaciomarine depositional processes have never been studied in detail. Furthermore, the depositional settings around Antarctica are almost entirely polar, with consequent specific processes operating there. For example, transport of terrigenous suspensions by neutrally buoyant "cold-tongue" (mid-water) plumes may be common around Antarctica, yet the effect of such transport on luminescence zeroing is unknown. Typical marine cores near Antarctica may contain an unknown fraction of detrital grains from cold-tongue and near-bottom suspensions. Thus the extent to which the polar glaciomarine depositional processes around Antarctica may limit the potential accuracy of photonic dating of marine cores is unknown (age overestimates would result if grains are not exposed to daylight before deposition).<br/><br/>This project will collect detrital grains from a variety of "zero-age" (modern) marine depositional settings within the Antarctic Peninsula, where representative Antarctic depositional processes have been documented and where logistics permit access. Suspensions will be collected from four fjords representing a transect from polar through subpolar conditions. Suspensions will be collected from two stations and from up to 3 depths (surface and 2 deep plumes) at each station. Sediment traps will be deployed at two of these fjord settings. As well, core-top sediments will be collected from several sites. All samples will be shielded from light and transported to Reno, Nevada, for luminescence analyses.<br/><br/>Systematic study of the effectiveness of luminescence-clock-zeroing in Antarctic glaciomarine settings will determine if photonic dating can be reliable for future applications to Antarctic marine sediments. Refined sedimentological criteria for the selection of future samples for photonic dating are expected from this project. A photonic-dating capability would provide a numeric geochronometer extending well beyond the age range of 14C dating. Such a capability would permit answering a number of broader questions about the timing and extent of past glaciations near and on the Antarctic shelves.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a study to investigate paleoenvironmental conditions during the late Paleozoic and Mesozoic in central interior Antarctica. The 4 km thick sequence of sedimentary rocks, known as the Beacon Supergroup, in the Beardmore Glacier area records 90 million years of Permian through Jurassic history of this high-paleolatitude sector of Gondwana. It accumulated in a foreland basin with a rate of subsidence approximately equal to the rate of deposition. The deposits have yielded diverse vertebrate fossils, in situ fossil forests, and exceptionally well preserved plant fossils. They give a unique glimpse of glacial, lake, and stream/river environments and ecosystems and preserve an unparalleled record of the depositional, paleoclimatic, and tectonic history of the area. The excellent work done to date provides a solid base of information on which to build understanding of conditions and processes.<br/><br/>This project is a collaborative study of this stratigraphic section that will integrate sedimentologic, paleontologic, and ichnologic observations to answer focused questions, including: (1) What are the stratigraphic architecture and alluvial facies of Upper Permian to Jurassic rocks in the Beardmore area?; (2) In what tectonostratigraphic setting were these rocks deposited?; (3) Did vertebrates inhabit the cold, near-polar, Permian floodplains, as indicated by vertebrate burrows, and can these burrows be used to identify, for the first time, the presence of small early mammals in Mesozoic deposits?; and (4) How did bottom-dwelling animals in lakes and streams use substrate ecospace, how did ecospace use at these high paleolatitudes differ from ecospace use in equivalent environments at low paleolatitudes, and what does burrow distribution reveal about seasonality of river flow and thus about paleoclimate? Answers to these questions will (1) clarify the paleoclimatic, basinal, and tectonic history of this part of Gondwana, (2) elucidate the colonization of near-polar ecosystems by vertebrates, (3) provide new information on the environmental and paleolatitudinal distributions of early mammals, and (4) allow semi-quantitative assessment of the activity and abundance of bottom-dwelling animals in different freshwater environments at high and low latitudes. In summary, this project will contribute significantly to an understanding of paleobiology and paleoecology at a high latitude floodplain setting during a time in Earth history when the climate was much different than today.