{"dp_type": "Project", "free_text": "Sea Floor"}
[{"awards": "1745078 Brook, Edward J.", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Atmospheric methane across the Last Glacial Maximum and deglaciation from the GISP2, NEEM and WAIS Divide ice cores ; Atmospheric methane interpolar difference and four-box troposphere model output across the Last Glacial Maximum and Deglaciation; Carbon-13 and Deuterium isotopic composition of atmospheric methane across Heinrich Stadial 4, and Dansgaard Oesgher Event 8, WAIS Divide Replicate Ice Core, Antarctica; Carbon-13 isotopic composition of atmospheric methane across Heinrich Stadials 1 and 5, and Dansgaard Oesgher Event 12, WAIS Divide Ice Core, Antarctica", "datasets": [{"dataset_uid": "601813", "doi": "10.15784/601813", "keywords": "Abrupt Climate Change; Antarctica; Atmospheric Gases; Biogeochemical Cycles; Carbon Cycle; Cryosphere; Greenhouse Gas; Methane; West Antarctic Ice Sheet Divide", "people": "Brook, Edward J.; Lee, James; Schmitt, Jochen; Fischer, Hubertus; Bauska, Thomas; Menking, Andy; Iseli, Rene; Riddell-Young, Benjamin; Clark, Reid", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Carbon-13 and Deuterium isotopic composition of atmospheric methane across Heinrich Stadial 4, and Dansgaard Oesgher Event 8, WAIS Divide Replicate Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601813"}, {"dataset_uid": "601683", "doi": "10.15784/601683", "keywords": "Antarctica; Methane; West Antarctic Ice Sheet", "people": "Riddell-Young, Benjamin", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Carbon-13 isotopic composition of atmospheric methane across Heinrich Stadials 1 and 5, and Dansgaard Oesgher Event 12, WAIS Divide Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601683"}, {"dataset_uid": "601737", "doi": "10.15784/601737", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Greenland; Ice Core Records; Methane; West Antarctic Ice Sheet", "people": "Riddell-Young, Benjamin; Brook, Edward J.; Edwards, Jon S.; Lee, James; Rosen, Julia; Martin, Kaden", "repository": "USAP-DC", "science_program": null, "title": "Atmospheric methane across the Last Glacial Maximum and deglaciation from the GISP2, NEEM and WAIS Divide ice cores ", "url": "https://www.usap-dc.org/view/dataset/601737"}, {"dataset_uid": "601736", "doi": "10.15784/601736", "keywords": "Antarctica; Greenland; Methane; Paleoclimate; West Antarctic Ice Sheet", "people": "Brook, Edward J.; Riddell-Young, Benjamin; Rosen, Julia; Buizert, Christo; Martin, Kaden; Lee, James; Edwards, Jon S.; M\u00fchl, Michaela; Schmitt, Jochen; Fischer, Hubertus; Blunier, Thomas", "repository": "USAP-DC", "science_program": null, "title": "Atmospheric methane interpolar difference and four-box troposphere model output across the Last Glacial Maximum and Deglaciation", "url": "https://www.usap-dc.org/view/dataset/601736"}], "date_created": "Mon, 01 May 2023 00:00:00 GMT", "description": "This project will develop methods to measure the ratios of carbon-13 to carbon-12, and heavy to light hydrogen in methane in air trapped in ice cores. The ratios of the different forms of carbon and hydrogen are \"fingerprints\" of different sources of this gas in the past--for example wetlands in the tropics versus methane frozen in the sea floor. Once the analysis method is developed, the measurements will be used to examine why methane changed abruptly in the past, both during the last ice age, and during previous warm periods. The data will be used to understand how methane sources like wildfires, methane hydrates, and wetlands respond to climate change. This information is needed to understand future risks of large changes in methane in the atmosphere as Earth warms. \u003cbr/\u003e\u003cbr/\u003eThe project involves two tasks. First, the investigators will build and test a gas extraction system for methane isotopic measurements using continuous flow methods, with the goal of equaling or bettering the precision attained by the few other laboratories that make these measurements. The system will be interfaced with existing mass spectrometers at Oregon State University. The system consists of a vacuum chamber and sequence of traps, purification columns, and furnaces that separate methane from other gases and convert it to carbon dioxide or hydrogen for mass spectrometry. Second, the team will measure the isotopic composition of methane across large changes in concentration associated with two past interglacial periods and during abrupt methane changes of the last ice age. These measurements will be used to understand if the main reason for these concentration changes is climate-driven changes in emissions from wetlands, or whether other sources are involved, for example methane hydrates or wildfires.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Ice Sheet; TRACE GASES/TRACE SPECIES; METHANE", "locations": "Antarctic Ice Sheet", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores", "uid": "p0010416", "west": -180.0}, {"awards": "1947657 Dodd, Justin; 1947558 Leckie, Robert; 1947646 Shevenell, Amelia", "bounds_geometry": "POLYGON((-180 -72.5,-177.6 -72.5,-175.2 -72.5,-172.8 -72.5,-170.4 -72.5,-168 -72.5,-165.6 -72.5,-163.2 -72.5,-160.8 -72.5,-158.4 -72.5,-156 -72.5,-156 -73.15,-156 -73.8,-156 -74.45,-156 -75.1,-156 -75.75,-156 -76.4,-156 -77.05,-156 -77.7,-156 -78.35,-156 -79,-158.4 -79,-160.8 -79,-163.2 -79,-165.6 -79,-168 -79,-170.4 -79,-172.8 -79,-175.2 -79,-177.6 -79,180 -79,178.4 -79,176.8 -79,175.2 -79,173.6 -79,172 -79,170.4 -79,168.8 -79,167.2 -79,165.6 -79,164 -79,164 -78.35,164 -77.7,164 -77.05,164 -76.4,164 -75.75,164 -75.1,164 -74.45,164 -73.8,164 -73.15,164 -72.5,165.6 -72.5,167.2 -72.5,168.8 -72.5,170.4 -72.5,172 -72.5,173.6 -72.5,175.2 -72.5,176.8 -72.5,178.4 -72.5,-180 -72.5))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 08 Jun 2022 00:00:00 GMT", "description": "Presently, Antarctica\u0027s glaciers are melting as Earth\u0027s atmosphere and the Southern Ocean warm. Not much is known about how Antarctica\u0027s ice sheets might respond to ongoing and future warming, but such knowledge is important because Antarctica\u0027s ice sheets might raise global sea levels significantly with continued melting. Over time, mud accumulates on the sea floor around Antarctica that is composed of the skeletons and debris of microscopic marine organisms and sediment from the adjacent continent. As this mud is deposited, it creates a record of past environmental and ecological changes, including ocean depth, glacier advance and retreat, ocean temperature, ocean circulation, marine ecosystems, ocean chemistry, and continental weathering. Scientists interested in understanding how Antarctica\u0027s glaciers and ice sheets might respond to ongoing warming can use a variety of physical, biological, and chemical analyses of these mud archives to determine how long ago the mud was deposited and how the ice sheets, oceans, and marine ecosystems responded during intervals in the past when Earth\u0027s climate was warmer. In this project, researchers from the University of South Florida, University of Massachusetts, and Northern Illinois University will reconstruct the depth, ocean temperature, weathering and nutrient input, and marine ecosystems in the central Ross Sea from ~17 to 13 million years ago, when the warm Miocene Climate Optimum transitioned to a cooler interval with more extensive ice sheets. Record will be generated from new sediments recovered during the International Ocean Discovery Program (IODP) Expedition 374 and legacy sequences recovered in the 1970?s during the Deep Sea Drilling Program. Results will be integrated into ice sheet and climate models to improve the accuracy of predictions. ", "east": -156.0, "geometry": "POINT(-176 -75.75)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; LABORATORY; AMD; PALEOCLIMATE RECONSTRUCTIONS; Ross Sea; USAP-DC; USA/NSF", "locations": "Ross Sea", "north": -72.5, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Shevenell, Amelia", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -79.0, "title": "Collaborative Proposal: Miocene Climate Extremes: A Ross Sea Perspective from IODP Expedition 374 and DSDP Leg 28 Marine Sediments", "uid": "p0010335", "west": 164.0}, {"awards": "1542962 Anderson, Robert", "bounds_geometry": "POLYGON((-171 -57,-170.8 -57,-170.6 -57,-170.4 -57,-170.2 -57,-170 -57,-169.8 -57,-169.6 -57,-169.4 -57,-169.2 -57,-169 -57,-169 -57.72,-169 -58.44,-169 -59.16,-169 -59.88,-169 -60.6,-169 -61.32,-169 -62.04,-169 -62.76,-169 -63.48,-169 -64.2,-169.2 -64.2,-169.4 -64.2,-169.6 -64.2,-169.8 -64.2,-170 -64.2,-170.2 -64.2,-170.4 -64.2,-170.6 -64.2,-170.8 -64.2,-171 -64.2,-171 -63.48,-171 -62.76,-171 -62.04,-171 -61.32,-171 -60.6,-171 -59.88,-171 -59.16,-171 -58.44,-171 -57.72,-171 -57))", "dataset_titles": "Expedition Data of NBP1702; Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean ; Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean (SNOWBIRDS)", "datasets": [{"dataset_uid": "200166", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean ", "url": "https://www.ncdc.noaa.gov/paleo/study/31312"}, {"dataset_uid": "200165", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean (SNOWBIRDS)", "url": "https://www.bco-dmo.org/dataset/813379/data"}, {"dataset_uid": "200126", "doi": "10.7284/907211", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP1702", "url": "https://www.rvdata.us/search/cruise/NBP1702"}], "date_created": "Fri, 25 Sep 2020 00:00:00 GMT", "description": "General:\r\nScientists established more than 30 years ago that the climate-related variability of carbon dioxide levels in the atmosphere over Earth\u2019s ice-age cycles was regulated by the ocean. Hypotheses to explain how the ocean that regulates atmospheric carbon dioxide have long been debated, but they have proven to be difficult to test. This project was designed test one leading hypothesis, specifically that the ocean experienced greater density stratification during the ice ages. That is, with greater stratification during the ice ages and the slower replacement of deep water by cold dense water formed near the poles, the deep ocean would have held more carbon dioxide, which is produced by biological respiration of the organic carbon that constantly rains to the abyss in the form of dead organisms and organic debris that sink from the sunlit surface ocean. To test this hypothesis, the degree of ocean stratification during the last ice age and the rate of deep-water replacement was to be constrained by comparing the radiocarbon ages of organisms that grew in the surface ocean and at the sea floor within a critical region around Antarctica, where most of the replacement of deep waters occurs. Completing this work was expected to contribute toward improved models of future climate change. Climate scientists rely on models to estimate the amount of fossil fuel carbon dioxide that will be absorbed by the ocean in the future. Currently the ocean absorbs about 25% of the carbon dioxide produced by burning fossil fuels. Most of this carbon is absorbed in the Southern Ocean (the region around Antarctica). How this will change in the future is poorly known. Models have difficulty representing physical conditions in the Southern Ocean accurately, thereby adding substantial uncertainty to projections of future ocean uptake of carbon dioxide. Results of the proposed study will provide a benchmark to test the ability of models to simulate ocean processes under climate conditions distinctly different from those that occur today, ultimately leading to improvement of the models and to more reliable projections of future absorption of carbon dioxide by the ocean. \r\n\r\nTechnical:\r\nThe project added a research component to an existing scientific expedition to the Southern Ocean, in the region between the Ross Sea and New Zealand, that collected sediment cores at locations down the northern flank of the Pacific-Antarctic Ridge at approximately 170\u00b0W. The goal was to collect sediments at each location deposited since early in the peak of the last ice age. This region is unusual in the Southern Ocean in that sediments deposited during the last ice age contain foraminifera, tiny organisms with calcium carbonate shells, in much greater abundance than in other regions of the Southern Ocean. Foraminifera are widely used as an archive of several geochemical tracers of past ocean conditions. We proposed to compare the radiocarbon age of foraminifera that inhabited the surface ocean with the age of contemporary specimens that grew on the seabed. The difference in age between surface and deep-swelling organisms would have been used to discriminate between two proposed mechanisms of deep water renewal during the ice age: formation in coastal polynyas around the edge of Antarctica, much as occurs today, versus formation by open-ocean convection in deep-water regions far from the continent. If the latter mechanism prevails, then it was expected that surface and deep-dwelling foraminifera would exhibit similar radiocarbon ages. In the case of dominance of deep-water formation in coastal polynyas, one expects to find very different radiocarbon ages in the two populations of foraminifera. In the extreme case of greater ocean stratification during the last ice age, one even expects the surface dwellers to appear to be older than contemporary bottom dwellers because the targeted core sites lie directly under the region where the oldest deep waters outcrop at the surface following their long circuitous transit through the deep ocean. The primary objective of the proposed work was to reconstruct the water mass age structure of the Southern Ocean during the last ice age, which, in turn, is a primary factor that controls the amount of carbon dioxide stored in the deep sea. In addition, the presence of foraminifera in the cores to be recovered provides a valuable resource for many other paleoceanographic applications, such as: 1) the application of nitrogen isotopes to constrain the level of nutrient utilization in the Southern Ocean and, thus, the efficiency of the ocean\u2019s biological pump, 2) the application of neodymium isotopes to constrain the transport history of deep water masses, 3) the application of boron isotopes and boron/calcium ratios to constrain the pH and inorganic carbon system parameters of ice-age seawater, and 4) the exploitation of metal/calcium ratios in foraminifera to reconstruct the temperature (Mg/Ca) and nutrient content (Cd/Ca) of deep waters during the last ice age at a location near their source near Antarctica. \r\n\r\nUnfortunately, the cores were shipped to the core repository in a horizontal orientation and there was sufficient distortion of the sediment that the radiocarbon ages of benthic foraminifera were uninterpretable. Therefore, we report only the radiocarbon dates for planktonic foraminifera as well as the total counts of elemental relative abundance from X-ray Fluorescence analysis of the cores. In addition, we used the expedition as an opportunity to collect water samples from which dissolved concentrations of long-lived isotope of thorium and protactinium were determined. Results from those analyses showed that lateral transport by isopycnal mixing dominates the supply of Pa to the Southern Ocean. We have also developed a new algorithm to correct for supply of Th by isopycnal mixing and thereby derive estimates of dust flux to the Southern Ocean. \r\n", "east": -169.0, "geometry": "POINT(-170 -60.6)", "instruments": null, "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; SEDIMENT CHEMISTRY; South Pacific Ocean; SHIPS", "locations": "South Pacific Ocean", "north": -57.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, Robert; Fleisher, Martin; Pavia, Frank", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "NCEI", "repositories": "BCO-DMO; NCEI; R2R", "science_programs": null, "south": -64.2, "title": "Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean", "uid": "p0010130", "west": -171.0}, {"awards": "1235094 Thurnherr, Andreas", "bounds_geometry": "POLYGON((-19 -19,-18.2 -19,-17.4 -19,-16.6 -19,-15.8 -19,-15 -19,-14.2 -19,-13.4 -19,-12.6 -19,-11.8 -19,-11 -19,-11 -19.4,-11 -19.8,-11 -20.2,-11 -20.6,-11 -21,-11 -21.4,-11 -21.8,-11 -22.2,-11 -22.6,-11 -23,-11.8 -23,-12.6 -23,-13.4 -23,-14.2 -23,-15 -23,-15.8 -23,-16.6 -23,-17.4 -23,-18.2 -23,-19 -23,-19 -22.6,-19 -22.2,-19 -21.8,-19 -21.4,-19 -21,-19 -20.6,-19 -20.2,-19 -19.8,-19 -19.4,-19 -19))", "dataset_titles": "Expedition Data; NBP1406 Expedition data; NBP1508 Expedition data; Processed Current Measurement Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508; Processed Current Measurement, Pressure and Temperature Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508 (2015); Processed Current Measurement, Pressure, Salinity and Temperature Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508", "datasets": [{"dataset_uid": "200153", "doi": "10.7284/903009", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1406 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1406"}, {"dataset_uid": "601353", "doi": null, "keywords": "CTD; CTD Data; Current Measurements; Current Meter; Mid-Ocean Ridge; Mooring; NBP1508; Oceans; Physical Oceanography; Pressure; R/v Nathaniel B. Palmer; Salinity; South Atlantic Ocean; Temperature", "people": "Thurnherr, Andreas", "repository": "USAP-DC", "science_program": null, "title": "Processed Current Measurement, Pressure and Temperature Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508 (2015)", "url": "https://www.usap-dc.org/view/dataset/601353"}, {"dataset_uid": "601352", "doi": null, "keywords": "CTD; Mid-Ocean Ridge; Mooring; NBP1508; Oceans; Physical Oceanography; Pressure; R/v Nathaniel B. Palmer; Salinity; South Atlantic Ocean; Temperature", "people": "Thurnherr, Andreas", "repository": "USAP-DC", "science_program": null, "title": "Processed Current Measurement, Pressure, Salinity and Temperature Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508", "url": "https://www.usap-dc.org/view/dataset/601352"}, {"dataset_uid": "601354", "doi": "10.15784/601354", "keywords": "Current Measurements; LADCP; Mid-Ocean Ridge; NBP1508; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; South Atlantic Ocean", "people": "Thurnherr, Andreas", "repository": "USAP-DC", "science_program": null, "title": "Processed Current Measurement Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508", "url": "https://www.usap-dc.org/view/dataset/601354"}, {"dataset_uid": "200154", "doi": "10.7284/906708", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1508 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1508"}, {"dataset_uid": "001408", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1406"}], "date_created": "Thu, 02 Jul 2020 00:00:00 GMT", "description": "Overview: In order to close the global overturning circulation, high-density deep- and bottom waters produced at high latitudes must be made less dense and upwell to shallower depths. Available observations from the subtropical South Atlantic indicate that the bulk of the mixing in the deep ocean there takes place over the topographically rough Mid-Atlantic Ridge, in particular in the quasi-regularly spaced \"fracture zone canyons\" corrugating the ridge flanks. There, dense water is advected toward the ridge crest (i.e. upwelled) by persistent along-valley currents that flow down the unidirectional density gradients, which are maintained by strong turbulence (diapycnal mixing). Most of the data on which these inferences are based were collected during the Brazil Basin Tracer Release Experiment (BBTRE) along a single ridge-flank canyon in the western South Atlantic near 22S where previous analyses have shown that both tidal mixing and overflow processes are important. Therefore, it is likely that both processes must be considered in order to understand and parameterize the effects of turbulence and mixing in the canyons corrugating the flanks of all slow-spreading ridges, which make up large fractions of the sea floor, in particular in the Atlantic, Indian and Southern Oceans. The primary aim of this follow-on project is to improve our understanding of the dynamics over the corrugated flanks of slow-spreading mid-ocean ridges. Due to the coarse sampling resolution and choice of station locations it is not possible to answer important questions, such as the relative importance of tidal and sill mixing, from the BBTRE data. Therefore, high-resolution surveys of hydrography, three-dimensional flow, turbulence and mixing will be carried out in two neighboring canyons and over the intervening topographic spur in the BBTRE region to determine the relative contributions of tidal and sill-related mixing. Furthermore, profiling moorings deployed on two nearby sill regions will be used to derive time series of spatially integrated mixing related buoyancy fluxes and to investigate the strong but unexplained sub-inertial variability of the along-canyon flow recorded previously. Additionally, three small moorings will be deployed in saddles between the two canyons to investigate inter-canyon exchange. The data analysis will include available data from previous experiments, including a set of tracer profiles that has not been analyzed before. Intellectual Merit: The corrugated flanks of slow-spreading ridges cover large areas of the sea floor of several major ocean basins. Therefore, understanding the dynamics in the ~100 km of ridge-flank canyons and its effects on the buoyancy and upwelling budget of the abyssal ocean is of global significance. In addition to determining the relative importance of tidal mixing and cross-sill flows in two canyons, the temporal variability of turbulence and mixing from tidal to yearly time scales will be investigated to gain insights into the forcing of the along-canyon flows, the exchange between neighboring canyons, and the eventual fate of the canyon waters. Broader Impacts: It is anticipated that insights gained during this project will improve our understanding of abyssal mixing in many different regions with similar bottom topography and provide the basis for better parameterizations of the effects of turbulence and mixing in large-scale circulation and climate models that cannot resolve these small-scale processes. As part of the project, a graduate student and a post-doctoral researcher will be trained in all aspects of observational physical oceanography, from data acquisition to interpretation. ", "east": -11.0, "geometry": "POINT(-15 -21)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "OCEAN CURRENTS; South Atlantic Ocean; R/V NBP; WATER MASSES", "locations": "South Atlantic Ocean", "north": -19.0, "nsf_funding_programs": null, "paleo_time": null, "persons": "Thurnherr, Andreas", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -23.0, "title": "Collaborative Research: Flow, Turbulence and Mixing in Mid-Ocean Ridge Fracture Zone Canyons", "uid": "p0010114", "west": -19.0}, {"awards": "1744584 Klein, Andrew; 1744602 Iken, Katrin; 1744550 Amsler, Charles; 1744570 Galloway, Aaron", "bounds_geometry": "POLYGON((-70 -61,-69 -61,-68 -61,-67 -61,-66 -61,-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-60 -61,-60 -61.772,-60 -62.544,-60 -63.316,-60 -64.088,-60 -64.86,-60 -65.632,-60 -66.404,-60 -67.176,-60 -67.948,-60 -68.72,-61 -68.72,-62 -68.72,-63 -68.72,-64 -68.72,-65 -68.72,-66 -68.72,-67 -68.72,-68 -68.72,-69 -68.72,-70 -68.72,-70 -67.948,-70 -67.176,-70 -66.404,-70 -65.632,-70 -64.86,-70 -64.088,-70 -63.316,-70 -62.544,-70 -61.772,-70 -61))", "dataset_titles": "Average global horizontal solar irradiance at study sites; Carbon and nitrogen isotope data along a gradient at the Antarctic Peninsula; Chemical composition data for Desmarestia menziesii; Chemical composition data for Himantothallus grandifolius; Chemical composition data for Iridaea ; Chemical composition data for Sarcopeltis antarctica ; Computed fetch for project study sites; Five year mean annual and summer sea ice concentration grids for the Western Antarctic Peninsula from AMSR2, National Ice Center Charts and the Sea Ice Index ; Gridded sea ice concentrations from National Ice Center (NIC) Charts 2014-2019 for Western Antarctic Peninsula ; Initial release of code and data associated with Whippo et al. (2024) Fatty acid profiles and stable isotope composition of Antarctic macroalgae: A baseline for a combined biomarker approach in food web studies.; Landsat Sea Ice/Cloud classifications surrounding project study sites; Latitude and longitude data for project study sites; LMG1904 expedition data; Macroalgal species collected along horizontal transect components ; Modelled Solar Irradiance for Western Antarctic Pennisula; Sea Ice Concentration Timeseries for study sites; Underwater transect videos used for community analyses; Underwater video transect community analysis data; VIIRS KD(490) diffuse attenuation coefficients for study sites", "datasets": [{"dataset_uid": "601649", "doi": "10.15784/601649", "keywords": "Antarctica; Antarctic Peninsula; LMG1904; National Ice Center Charts; Sea Ice Concentration", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Five year mean annual and summer sea ice concentration grids for the Western Antarctic Peninsula from AMSR2, National Ice Center Charts and the Sea Ice Index ", "url": "https://www.usap-dc.org/view/dataset/601649"}, {"dataset_uid": "601651", "doi": "10.15784/601651", "keywords": "Antarctica; Antarctic Peninsula; Biota; GIS; GIS Data; LMG1904; R/v Laurence M. Gould; Solar Radiation", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Modelled Solar Irradiance for Western Antarctic Pennisula", "url": "https://www.usap-dc.org/view/dataset/601651"}, {"dataset_uid": "601653", "doi": "10.15784/601653", "keywords": "Antarctica; Antarctic Peninsula; Biota; Carbon; Carbon Isotopes; LMG1904; Nitrogen Isotopes; Oceans", "people": "Iken, Katrin", "repository": "USAP-DC", "science_program": null, "title": "Carbon and nitrogen isotope data along a gradient at the Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601653"}, {"dataset_uid": "601654", "doi": "10.15784/601654", "keywords": "Antarctica; Antarctic Peninsula; GIS; LANDSAT; LMG1904; Remote Sensing; R/v Laurence M. Gould", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Landsat Sea Ice/Cloud classifications surrounding project study sites", "url": "https://www.usap-dc.org/view/dataset/601654"}, {"dataset_uid": "200147", "doi": "10.7284/908260", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "LMG1904 expedition data", "url": "https://www.rvdata.us/search/cruise/LMG1904"}, {"dataset_uid": "200402", "doi": "10.5281/zenodo.10524919", "keywords": null, "people": null, "repository": "Zendo", "science_program": null, "title": "Initial release of code and data associated with Whippo et al. (2024) Fatty acid profiles and stable isotope composition of Antarctic macroalgae: A baseline for a combined biomarker approach in food web studies.", "url": "https://zenodo.org/records/10524920"}, {"dataset_uid": "601884", "doi": "10.15784/601884", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Macroalgae", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Chemical composition data for Iridaea ", "url": "https://www.usap-dc.org/view/dataset/601884"}, {"dataset_uid": "601882", "doi": "10.15784/601882", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Macroalgae", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Chemical composition data for Desmarestia menziesii", "url": "https://www.usap-dc.org/view/dataset/601882"}, {"dataset_uid": "601883", "doi": "10.15784/601883", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Macroalgae", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Chemical composition data for Himantothallus grandifolius", "url": "https://www.usap-dc.org/view/dataset/601883"}, {"dataset_uid": "601330", "doi": "10.15784/601330", "keywords": "Antarctica; Antarctic Peninsula; Biota; LMG1904; R/v Laurence M. Gould; Sample Location", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Latitude and longitude data for project study sites", "url": "https://www.usap-dc.org/view/dataset/601330"}, {"dataset_uid": "601885", "doi": "10.15784/601885", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Macroalgae", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Chemical composition data for Sarcopeltis antarctica ", "url": "https://www.usap-dc.org/view/dataset/601885"}, {"dataset_uid": "601725", "doi": "10.15784/601725", "keywords": "Antarctica; Antarctic Peninsula", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Macroalgal species collected along horizontal transect components ", "url": "https://www.usap-dc.org/view/dataset/601725"}, {"dataset_uid": "601610", "doi": "10.15784/601610", "keywords": "Antarctica; Antarctic Peninsula; Benthic Communities; Biota; Macroalgae; Macroinvertebrates; Oceans; Video Transects", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Underwater transect videos used for community analyses", "url": "https://www.usap-dc.org/view/dataset/601610"}, {"dataset_uid": "601619", "doi": "10.15784/601619", "keywords": "Antarctica; Antarctic Peninsula; Benthic Communities; Biota; Macroalgae; Macroinvertebrates; Oceans; Video Transects", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Underwater video transect community analysis data", "url": "https://www.usap-dc.org/view/dataset/601619"}, {"dataset_uid": "601639", "doi": "10.15784/601639", "keywords": "Antarctica; Antarctic Peninsula; Biota; Fetch; LMG1904; R/v Laurence M. Gould", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Computed fetch for project study sites", "url": "https://www.usap-dc.org/view/dataset/601639"}, {"dataset_uid": "601640", "doi": "10.15784/601640", "keywords": "Antarctica; Biota; Diffuse Attenuation Coefficient; LMG1904; R/v Laurence M. Gould; Turbidity", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "VIIRS KD(490) diffuse attenuation coefficients for study sites", "url": "https://www.usap-dc.org/view/dataset/601640"}, {"dataset_uid": "601641", "doi": "10.15784/601641", "keywords": "Antarctica; Average Global Horizontal Solar Irradiance; Biota; LMG1904; R/v Laurence M. Gould", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Average global horizontal solar irradiance at study sites", "url": "https://www.usap-dc.org/view/dataset/601641"}, {"dataset_uid": "601642", "doi": "10.15784/601642", "keywords": "Antarctica; Antarctic Peninsula; Biota; LMG1904; R/v Laurence M. Gould; Sea Ice Concentration", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Sea Ice Concentration Timeseries for study sites", "url": "https://www.usap-dc.org/view/dataset/601642"}, {"dataset_uid": "601643", "doi": "10.15784/601643", "keywords": "Antarctica; Antarctic Peninsula; LMG1904; National Ice Center Charts; R/v Laurence M. Gould; Sea Ice Concentration", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Gridded sea ice concentrations from National Ice Center (NIC) Charts 2014-2019 for Western Antarctic Peninsula ", "url": "https://www.usap-dc.org/view/dataset/601643"}], "date_created": "Thu, 04 Jun 2020 00:00:00 GMT", "description": "The western Antarctic Peninsula has become a model for understanding cold water communities and how they may be changing in Antarctica and elsewhere. Brown macroalgae (seaweeds) form extensive undersea forests in the northern portion of this region where they play a key role in providing both physical structure and a food (carbon) source for shallow water communities. Yet between Anvers Island (64 degrees S latitude) and Adelaide Island (67 S latitude) these macroalgae become markedly less abundant and diverse. This is probably because the habitat to the south is covered by more sea ice for a longer period, and the sea ice reduces the amount of light that reaches the algae. The reduced macroalgal cover undoubtedly impacts other organisms in the food web, but the ways in which it alters sea-floor community processes and organization is unknown. This project will quantitatively document the macroalgal communities at multiple sites between Anvers and Adelaide Islands using a combination of SCUBA diving, video surveys, and algal collections. Sea ice cover, light levels, and other environmental parameters on community structure will be modelled to determine which factors have the largest influence. Impacts on community structure, food webs, and carbon flow will be assessed through a mixture of SCUBA diving and video surveys. Broader impacts include the training of graduate students and a postdoctoral researcher, as well as numerous informal public education activities including lectures, presentations to K-12 groups, and a variety of social media-based outreach.\u003cbr/\u003e\u003cbr/\u003eMacroalgal communities are more abundance and diverse to the north along the Western Antarctic Peninsula, perhaps due to the greater light availability that is associated with shorter period of sea-ice cover. This project will determine the causes and community level consequence of this variation in algal community structure. First, satellite data on sea ice extent and water turbidity will be used to select study sites between 64 S and 69 S where the extent of annual sea ice cover is the primary factor influencing subsurface light levels. Then, variations in macroalgal cover across these study sites will be determined by video line-transect surveys conducted by SCUBA divers. The health, growth, and physiological status of species found at the different sites will be determined by quadrat sampling. The relative importance of macroalgal-derived carbon to the common invertebrate consumers in the foodweb will be assessed with stable isotope and fatty acid biomarker techniques. This will reveal how variation in macroalgal abundance and species composition across the sea ice cover gradient impacts sea floor community composition and carbon flow throughout the food web. In combination, this work will facilitate predictions of how the ongoing reductions in extent and duration of sea ice cover that is occurring in the region as a result of global climate change will impact the structure of nearshore benthic communities.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -60.0, "geometry": "POINT(-65 -64.86)", "instruments": null, "is_usap_dc": true, "keywords": "COASTAL; R/V LMG; MACROALGAE (SEAWEEDS); BENTHIC; USAP-DC; Antarctic Peninsula", "locations": "Antarctic Peninsula", "north": -61.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Amsler, Charles; McClintock, James; Iken, Katrin; Galloway, Aaron; Klein, Andrew", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "USAP-DC", "repositories": "R2R; USAP-DC; Zendo", "science_programs": null, "south": -68.72, "title": "Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity", "uid": "p0010104", "west": -70.0}, {"awards": "1743643 Passchier, Sandra", "bounds_geometry": null, "dataset_titles": "Major and trace element analyses of Eocene-Oligocene marine sediments from ODP Site 696, South Orkney Microcontinent; Particle-size distributions of Eocene-Oligocene sediment from ODP Site 696, South Orkney Microcontinent", "datasets": [{"dataset_uid": "601582", "doi": "10.15784/601582", "keywords": "Antarctica; Glaciation; IODP 650; IODP 696; Paleoceanography; Provenance; Sediment Core Data; Weathering; Weddell Sea", "people": "Passchier, Sandra; Hojnacki, Victoria; Li, Xiaona; States, Abbey; Lepp, Allison", "repository": "USAP-DC", "science_program": null, "title": "Major and trace element analyses of Eocene-Oligocene marine sediments from ODP Site 696, South Orkney Microcontinent", "url": "https://www.usap-dc.org/view/dataset/601582"}, {"dataset_uid": "601581", "doi": "10.15784/601581", "keywords": "Antarctica; Glaciation; IODP 696; Marine Geoscience; Marine Sediments; Paleoceanography; Sediment Core Data; Weddell Sea", "people": "Passchier, Sandra; Lepp, Allison; Horowitz Castaldo, Josie; Light, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Particle-size distributions of Eocene-Oligocene sediment from ODP Site 696, South Orkney Microcontinent", "url": "https://www.usap-dc.org/view/dataset/601581"}], "date_created": "Tue, 26 May 2020 00:00:00 GMT", "description": "Abstract (non-technical)\u003cbr/\u003eSea level rise is a problem of global importance and it is increasingly affecting the tens of millions of Americans living along coastlines. The melting of glaciers in mountain areas worldwide in response to global warming is a major cause of sea level rise and increases in nuisance coastal flooding. However, the world\u0027s largest land-based ice sheets are situated in the Polar Regions and their response under continued warming is very difficult to predict. One reason for this uncertainty is a lack of observations of ice behavior and melt under conditions of warming, as it is a relatively new global climate state lasting only a few generations so far. Researchers will investigate ice growth on Antarctica under past warm conditions using geological archives embedded in the layers of sand and mud under the sea floor near Antarctica. By peeling back at the layers beneath the seafloor investigators can read the history book of past events affecting the ice sheet. The Antarctic continent on the South Pole, carries the largest ice mass in the world. The investigator\u0027s findings will substantially improve scientists understanding of the response of ice sheets to global warming and its effect on sea level rise.\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eAbstract (technical)\u003cbr/\u003eThe melt of land based ice is raising global sea levels with at present only minor contributions from polar ice sheets. However, the future role of polar ice sheets in climate change is one of the most critical uncertainties in predictions of sea level rise around the globe. The respective roles of oceanic and atmospheric greenhouse forcing on ice sheets are poorly addressed with recent measurements of polar climatology, because of the extreme rise in greenhouse forcing the earth is experiencing at this time. Data on the evolution of the West Antarctic ice sheet is particularly sparse. To address the data gap, researchers will reconstruct the timing and spatial distribution of Antarctic ice growth through the last greenhouse to icehouse climate transition around 37 to 33 Ma. They will collect sedimentological and geochemical data on core samples from a high-latitude paleoarchive to trace the shutdown of the chemical weathering system, the onset of glacial erosion, ice rafting, and sea ice development, as East and West Antarctic ice sheets coalesced in the Weddell Sea sector. Their findings will lead to profound increases in the understanding of the role of greenhouse forcing in ice sheet development and its effect on the global climate system.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; AMD; SEDIMENTS; LABORATORY; USA/NSF; USAP-DC; Weddell Sea", "locations": "Weddell Sea", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Passchier, Sandra", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Timing and Spatial Distribution of Antarctic Ice Sheet Growth and Sea-ice Formation across the Eocene-Oligocene Transition", "uid": "p0010101", "west": null}, {"awards": "1246111 Dalziel, Ian", "bounds_geometry": "POLYGON((-44 -53,-42.9 -53,-41.8 -53,-40.7 -53,-39.6 -53,-38.5 -53,-37.4 -53,-36.3 -53,-35.2 -53,-34.1 -53,-33 -53,-33 -53.4,-33 -53.8,-33 -54.2,-33 -54.6,-33 -55,-33 -55.4,-33 -55.8,-33 -56.2,-33 -56.6,-33 -57,-34.1 -57,-35.2 -57,-36.3 -57,-37.4 -57,-38.5 -57,-39.6 -57,-40.7 -57,-41.8 -57,-42.9 -57,-44 -57,-44 -56.6,-44 -56.2,-44 -55.8,-44 -55.4,-44 -55,-44 -54.6,-44 -54.2,-44 -53.8,-44 -53.4,-44 -53))", "dataset_titles": "BAS Geological Collection: Central Scotia Sea (full data link not provided); Nathaniel B Palmer NBP 1408; South Georgia: SOG1, SOG2, SOG3", "datasets": [{"dataset_uid": "200106", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Nathaniel B Palmer NBP 1408", "url": "http://www.marine-geo.org/tools/search/entry.php?id=NBP1408"}, {"dataset_uid": "200107", "doi": "", "keywords": null, "people": null, "repository": "British Antarctic Survey", "science_program": null, "title": "BAS Geological Collection: Central Scotia Sea (full data link not provided)", "url": "https://www.bas.ac.uk/data/our-data/collections/geological-collections/"}, {"dataset_uid": "200105", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "South Georgia: SOG1, SOG2, SOG3", "url": "https://www.unavco.org/data/gps-gnss/gps-gnss.html"}], "date_created": "Tue, 28 Jan 2020 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eOpening of Drake Passage and the West Scotia Sea south of Tierra del Fuego broke the final continental barrier to onset of a complete Antarctic Circumpolar Current (ACC). Initiation of the ACC has been associated in time with a major, abrupt, drop in global temperatures and the rapid expansion of the Antarctic ice sheets at 33-34 Ma. Events leading to the formation of the Drake Passage gateway are poorly known. Understanding the tectonic evolution of the floor of the Central Scotia Sea (CSS) and the North Scotia Ridge is a key to this understanding. Previous work has demonstrated that superimposed constructs formed a volcanic arc that likely blocked direct eastward flow from the Pacific to the Atlantic through the opening Drake Passage gateway as the active South Sandwich arc does today. The PIs propose a cruise to test, develop and refine, with further targeted mapping and dredging, their theory of CSS tectonics and the influence it had on the onset and development of the ACC. In addition they propose an installation of GPS receiver to test their paleogeographic reconstructions and determine whether South Georgia is moving as part of the South American plate. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eA graduate student will be involved in all stages of the research. Undergraduate students will also be involved as watch-standers. A community college teacher will participate in the cruise. The PIs will have a website on which there will be images of the actual ocean floor dredging in operation. The teacher will participate with web and outreach support through PolarTREC. Results of the cruise are of broad interest to paleoceanographers, paleoclimate modelers and paleobiogeographers.A network of four continuous Global Navigational Satellite Systems (GNSS) receivers was installed on the bedrock of South Georgia in the Southern Ocean in 2013 and 2014. An additional receiver on a concrete foundation provides a tie to a tide gauge, part of the United Kingdom South Atlantic Tide Gauge Network. The GNSS receivers have already provided data suggesting that the South Georgia microcontinent (SGM) is moving independent of both the South American plate to the north and the Scotia plate to the south. The data also demonstrate that the SGM is being uplifted. ", "east": -33.0, "geometry": "POINT(-38.5 -55)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Scotia Sea; PLATE BOUNDARIES; TECTONIC PROCESSES; NOT APPLICABLE; COASTAL ELEVATION; Southern Ocean; USAP-DC", "locations": "Scotia Sea; Southern Ocean", "north": -53.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Dalziel, Ian W.; Lawver, Lawrence; Krissek, Lawrence", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "MGDS", "repositories": "British Antarctic Survey; MGDS; UNAVCO", "science_programs": null, "south": -57.0, "title": "Collaborative Research: Role of the Central Scotia Sea Floor and North Scotia Ridge in the Onset and Development of the Antarctic Circumpolar Current", "uid": "p0010078", "west": -44.0}, {"awards": "1642570 Thurber, Andrew", "bounds_geometry": "POINT(166.666 -77.8)", "dataset_titles": "Microbial community composition of the Cinder Cones Cold Seep", "datasets": [{"dataset_uid": "200035", "doi": "DOI:10.1575/1912/bco-dmo.756997.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Microbial community composition of the Cinder Cones Cold Seep", "url": "https://www.bco-dmo.org/dataset/756997"}], "date_created": "Fri, 24 May 2019 00:00:00 GMT", "description": "Methane is a potent greenhouse gas that is naturally emitted into the oceans by geologic seeps and microbial production. Based on studies of persistent deep-sea seeps at mid- and northern latitudes, researchers have learned that bacteria and archaea can create a \"sediment filter\" that oxidizes methane prior to its release. Antarctica is thought to contain large reservoirs of organic carbon buried beneath its ice which could a quantity of methane equivalent to all of the permafrost in the Arctic and yet we know almost nothing about the methane oxidizing microbes in this region. How these microbial communities develop and potentially respond to fluctuations in methane levels is an under-explored avenue of research. A bacterial mat was recently discovered at 78 degrees south, suggesting the possible presence of a methane seep, and associated microbial communities. This project will explore this environment in detail to assess the levels and origin of methane, and the nature of the microbial ecosystem present. \u003cbr/\u003e \u003cbr/\u003eAn expansive bacterial mat appeared and/or was discovered at 78 degrees south in 2011. This site, near McMurdo Station Antarctica, has been visited since the mid-1960s, but this mat was not observed until 2011. The finding of this site provides an unusual opportunity to study an Antarctic marine benthic habitat with active methane cycling and to examine the dynamics of recruitment and community succession of seep fauna including bacteria, archaea, protists and metazoans. This project will collect the necessary baseline data to facilitate further studies of Antarctic methane cycling. The concentration and source of methane will be determined at this site and at potentially analogous sites in McMurdo Sound. In addition to biogeochemical characterization of the sites, molecular analysis of the microbial community will quantify the time scales on which bacteria and archaea respond to methane input and provide information on rates of community development and succession in the Southern Ocean. Project activities will facilitate the training of at least one graduate student and results will be shared at both local and international levels. A female graduate student will be mentored as part of this project and data collected will form part of her dissertation. Lectures will be given in K-12 classrooms in Oregon to excite students about polar science. National and international audiences will be reached through blogs and presentations at a scientific conference. The PI\u0027s previous blogs have been used by K-12 classrooms as part of their lesson plans and followed in over 65 countries.\u003cbr/\u003e", "east": 166.666, "geometry": "POINT(166.666 -77.8)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Sea Floor; USAP-DC; Ross Sea; BACTERIA/ARCHAEA; NOT APPLICABLE", "locations": "Ross Sea; Sea Floor", "north": -77.8, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Thurber, Andrew", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": -77.8, "title": "EAGER: Elucidating the Antarctic Methane Cycle at the Cinder Cones Reducing Habitat.", "uid": "p0010030", "west": 166.666}, {"awards": "1822289 Vernet, Maria; 1822256 Smith, Craig", "bounds_geometry": "POLYGON((-59.5 -62,-59.05 -62,-58.6 -62,-58.15 -62,-57.7 -62,-57.25 -62,-56.8 -62,-56.35 -62,-55.9 -62,-55.45 -62,-55 -62,-55 -62.27,-55 -62.54,-55 -62.81,-55 -63.08,-55 -63.35,-55 -63.62,-55 -63.89,-55 -64.16,-55 -64.43,-55 -64.7,-55.45 -64.7,-55.9 -64.7,-56.35 -64.7,-56.8 -64.7,-57.25 -64.7,-57.7 -64.7,-58.15 -64.7,-58.6 -64.7,-59.05 -64.7,-59.5 -64.7,-59.5 -64.43,-59.5 -64.16,-59.5 -63.89,-59.5 -63.62,-59.5 -63.35,-59.5 -63.08,-59.5 -62.81,-59.5 -62.54,-59.5 -62.27,-59.5 -62))", "dataset_titles": "CTD stations and logs for Araon 2018 ANA08D expedition to Larson C; Yoyo camera survey transects, King George Island and Bransfield Strait", "datasets": [{"dataset_uid": "601199", "doi": "10.15784/601199", "keywords": "Antarctica; Araon; Araon Ana08d; Benthic Images; Benthos; Photo/video; Photo/Video; Southern Ocean; Station List; Yoyo Camera", "people": "Smith, Craig; Ziegler, Amanda", "repository": "USAP-DC", "science_program": null, "title": "Yoyo camera survey transects, King George Island and Bransfield Strait", "url": "https://www.usap-dc.org/view/dataset/601199"}, {"dataset_uid": "601178", "doi": "10.15784/601178", "keywords": "Antarctica; Biota; Chlorophyll; CTD; Glacier; Iceberg; Ice Shelf; Larsen C Ice Shelf; Oceans; Physical Oceanography; Phytoplankton; Sample Location; Sea Ice; Southern Ocean; Station List", "people": "Vernet, Maria; Pan, B. Jack", "repository": "USAP-DC", "science_program": null, "title": "CTD stations and logs for Araon 2018 ANA08D expedition to Larson C", "url": "https://www.usap-dc.org/view/dataset/601178"}], "date_created": "Wed, 15 May 2019 00:00:00 GMT", "description": "Marine ecosystems under large ice shelves are thought to contain sparse, low-diversity plankton and seafloor communities due the low supply of food from productive sunlight waters. Past studies have shown sub-ice shelf ecosystems to change in response to altered oceanographic processes resulting from ice-shelve retreat. However, information on community changes and ecosystem structure under ice shelves are limited because sub-ice-shelf ecosystems have either been sampled many years after ice-shelf breakout, or have been sampled through small boreholes, yielding extremely limited spatial information. The recent breakout of the A-68 iceberg from the Larsen C ice shelf in the western Weddell Sea provides an opportunity to use a ship-based study to evaluate benthic communities and water column characteristics in an area recently vacated by a large overlying ice shelf. The opportunity will allow spatial assessments at the time of transition from an under ice-shelf environment to one initially exposed to conditions more typical of a coastal Antarctic marine setting. \\r\\n\\r\\n\\r\\n\\r\\nThis RAPID project will help determine the state of a coastal Antarctic ecosystem newly exposed from ice-shelf cover and will aid in understanding of rates of community change during transition. The project will conduct a 10-day field program, allowing contrasts to be made of phytoplankton and seafloor megafaunal communities in areas recently exposed by ice-shelf loss to areas exposed for many decades. The project will be undertaken in a collaborative manner with the South Korean Antarctic Agency, KOPRI, by participating in a cruise in March/May 2018. Combining new information in the area of Larsen C with existing observations after the Larsen A and B ice shelf breakups further to the north, the project is expected to generate a dataset that can elucidate fundamental processes of planktonic and benthic community development in transition from food-poor to food-rich ecosystems. The project will provide field experience to two graduate students, a post-doctoral associate and an undergraduate student. Material from the project will be incorporated into graduate courses and the project will communicate daily work and unfolding events through social media and blogs while they explore this area of the world that is largely underexplored.", "east": -55.0, "geometry": "POINT(-57.25 -63.35)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Antarctica; R/V NBP; Sea Floor; ANIMALS/INVERTEBRATES; ICEBERGS; USAP-DC", "locations": "Antarctica; Sea Floor", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Vernet, Maria; Smith, Craig", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.7, "title": "RAPID: Collaborative Research: Marine Ecosystem Response to the Larsen C Ice-Shelf Breakout: \"Time zero\"", "uid": "p0010029", "west": -59.5}, {"awards": "0838763 Anandakrishnan, Sridhar; 0838855 Jacobel, Robert; 0839107 Powell, Ross; 0839142 Tulaczyk, Slawek; 0838947 Tulaczyk, Slawek; 0839059 Powell, Ross; 0838764 Anandakrishnan, Sridhar", "bounds_geometry": null, "dataset_titles": "Basal melt rates of the Ross Ice Shelf near the Whillans Ice Stream grounding line; Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats in W Antarctica - Lake and Ice Stream Subglacial Access Research Drilling (LISSARD); Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats - Robotic Access to Grounding-zones for Exploration and Science (RAGES); IRIS ID#s 201035, 201162, 201205; IRIS offers free and open access to a comprehensive data store of raw geophysical time-series data collected from a large variety of sensors, courtesy of a vast array of US and International scientific networks, including seismometers (permanent and temporary), tilt and strain meters, infrasound, temperature, atmospheric pressure and gravimeters, to support basic research aimed at imaging the Earth\u0027s interior.; Paleogene marine and terrestrial development of the West Antarctic Rift System: Biomarker Data Set; Paleogene marine and terrestrial development of the West Antarctic Rift System: Palynomorph Data Set; Radar Studies of Subglacial Lake Whillans and the Whillans Ice Stream Grounding Zone; The IRIS DMC archives and distributes data to support the seismological research community.; UNAVCO ID#s WHL1, WHL2, LA02, LA09 (full data link not provided)", "datasets": [{"dataset_uid": "609594", "doi": "10.7265/N54J0C2W", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; GPS; Radar; Whillans Ice Stream", "people": "Jacobel, Robert", "repository": "USAP-DC", "science_program": null, "title": "Radar Studies of Subglacial Lake Whillans and the Whillans Ice Stream Grounding Zone", "url": "https://www.usap-dc.org/view/dataset/609594"}, {"dataset_uid": "001406", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "The IRIS DMC archives and distributes data to support the seismological research community.", "url": "http://ds.iris.edu/ds/nodes/dmc/"}, {"dataset_uid": "001405", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IRIS offers free and open access to a comprehensive data store of raw geophysical time-series data collected from a large variety of sensors, courtesy of a vast array of US and International scientific networks, including seismometers (permanent and temporary), tilt and strain meters, infrasound, temperature, atmospheric pressure and gravimeters, to support basic research aimed at imaging the Earth\u0027s interior.", "url": "http://www.iris.edu/hq/data_and_software"}, {"dataset_uid": "601234", "doi": "10.15784/601234", "keywords": "ACL; Antarctica; Biomarker; BIT Index; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Stream; Whillans Ice Stream; WISSARD", "people": "Askin, Rosemary; Baudoin, Patrick; Scherer, Reed Paul; Warny, Sophie; Casta\u00f1eda, Isla; Coenen, Jason", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Paleogene marine and terrestrial development of the West Antarctic Rift System: Biomarker Data Set", "url": "https://www.usap-dc.org/view/dataset/601234"}, {"dataset_uid": "601245", "doi": "10.15784/601245", "keywords": "Antarctica; Pollen; West Antarctica; WISSARD", "people": "Coenen, Jason; Baudoin, Patrick; Warny, Sophie; Askin, Rosemary; Scherer, Reed Paul; Casta\u00f1eda, Isla", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Paleogene marine and terrestrial development of the West Antarctic Rift System: Palynomorph Data Set", "url": "https://www.usap-dc.org/view/dataset/601245"}, {"dataset_uid": "601122", "doi": "10.15784/601122", "keywords": "Antarctica; Flexure Zone; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Ice-Shelf Basal Melting; Ice-Shelf Strain Rate", "people": "Begeman, Carolyn", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Basal melt rates of the Ross Ice Shelf near the Whillans Ice Stream grounding line", "url": "https://www.usap-dc.org/view/dataset/601122"}, {"dataset_uid": "600155", "doi": "10.15784/600155", "keywords": "Antarctica; Glaciology; Oceans; Southern Ocean; WISSARD", "people": "Powell, Ross", "repository": "USAP-DC", "science_program": null, "title": "Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats - Robotic Access to Grounding-zones for Exploration and Science (RAGES)", "url": "https://www.usap-dc.org/view/dataset/600155"}, {"dataset_uid": "600154", "doi": "10.15784/600154", "keywords": "Antarctica; Biota; Diatom; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Lake Whillans; Paleoclimate; Ross Sea; Southern Ocean; Subglacial Lake; WISSARD", "people": "Powell, Ross", "repository": "USAP-DC", "science_program": null, "title": "Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats in W Antarctica - Lake and Ice Stream Subglacial Access Research Drilling (LISSARD)", "url": "https://www.usap-dc.org/view/dataset/600154"}, {"dataset_uid": "000150", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "UNAVCO ID#s WHL1, WHL2, LA02, LA09 (full data link not provided)", "url": "http://www.unavco.org/"}, {"dataset_uid": "000148", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IRIS ID#s 201035, 201162, 201205", "url": "http://ds.iris.edu/"}], "date_created": "Mon, 10 Sep 2018 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The LISSARD project (Lake and Ice Stream Subglacial Access Research Drilling) is one of three research components of the WISSARD integrative initiative (Whillans Ice Stream Subglacial Access Research Drilling) that is being funded by the Antarctic Integrated System Science Program of NSF\u0027s Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The LISSARD component of WISSARD focuses on the role of active subglacial lakes in determining how fast the West Antarctic ice sheet loses mass to the global ocean and influences global sea level changes. The importance of Antarctic subglacial lakes has only been recently recognized, and the lakes have been identified as high priority targets for scientific investigations because of their unknown contributions to ice sheet stability under future global warming scenarios. LISSARD has several primary science goals: A) To provide an observational basis for improving treatments of subglacial hydrological and mechanical processes in models of ice sheet mass balance and stability; B) To reconstruct the past history of ice stream stability by analyzing archives of past basal water and ice flow variability contained in subglacial sediments, porewater, lake water, and basal accreted ice; C) To provide background understanding of subglacial lake environments to benefit RAGES and GBASE (the other two components of the WISSARD project); and D) To synthesize data and concepts developed as part of this project to determine whether subglacial lakes play an important role in (de)stabilizing Antarctic ice sheets. We propose an unprecedented synthesis of approaches to studying ice sheet processes, including: (1) satellite remote sensing, (2) surface geophysics, (3) borehole observations and measurements and, (4) basal and subglacial sampling. \u003cbr/\u003e\u003cbr/\u003eINTELLECTUAL MERIT: The latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations. \u003cbr/\u003e\u003cbr/\u003eBROADER IMPACTS: Societal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS", "is_usap_dc": true, "keywords": "USAP-DC; Ice Penetrating Radar; Antarctic; Subglacial Lake; Subglacial Hydrology; Grounding Line; Sea Level Rise; Bed Reflectivity; Ice Sheet Stability; Stability; Radar; Sub-Ice-Shelf; Geophysics; Biogeochemical; LABORATORY; Sediment; Sea Floor Sediment; Ice Thickness; Model; Ice Stream Stability; Basal Ice; SATELLITES; Ice Sheet Thickness; Subglacial; Antarctica; NOT APPLICABLE; Antarctic Ice Sheet; Ice Sheet; FIELD SURVEYS; Surface Elevation; Geochemistry; FIELD INVESTIGATION; Not provided", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Tulaczyk, Slawek; Fisher, Andrew; Powell, Ross; Anandakrishnan, Sridhar; Jacobel, Robert; Scherer, Reed Paul", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES", "repo": "USAP-DC", "repositories": "IRIS; UNAVCO; USAP-DC", "science_programs": "WISSARD", "south": null, "title": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)", "uid": "p0000105", "west": null}, {"awards": "1341585 Sorlien, Christopher", "bounds_geometry": "POLYGON((-180 -73.33,-179.1 -73.33,-178.2 -73.33,-177.3 -73.33,-176.4 -73.33,-175.5 -73.33,-174.6 -73.33,-173.7 -73.33,-172.8 -73.33,-171.9 -73.33,-171 -73.33,-171 -73.864,-171 -74.398,-171 -74.932,-171 -75.466,-171 -76,-171 -76.534,-171 -77.068,-171 -77.602,-171 -78.136,-171 -78.67,-171.9 -78.67,-172.8 -78.67,-173.7 -78.67,-174.6 -78.67,-175.5 -78.67,-176.4 -78.67,-177.3 -78.67,-178.2 -78.67,-179.1 -78.67,180 -78.67,178.5 -78.67,177 -78.67,175.5 -78.67,174 -78.67,172.5 -78.67,171 -78.67,169.5 -78.67,168 -78.67,166.5 -78.67,165 -78.67,165 -78.136,165 -77.602,165 -77.068,165 -76.534,165 -76,165 -75.466,165 -74.932,165 -74.398,165 -73.864,165 -73.33,166.5 -73.33,168 -73.33,169.5 -73.33,171 -73.33,172.5 -73.33,174 -73.33,175.5 -73.33,177 -73.33,178.5 -73.33,-180 -73.33))", "dataset_titles": "Ross Sea unconformities digital grids in depth and two-way time", "datasets": [{"dataset_uid": "601098", "doi": "10.15784/601098", "keywords": "Antarctica; Continental Margin; Geology/Geophysics - Other; Marine Geoscience; Miocene; Oligocene; Seismic Reflection", "people": "Wilson, Douglas S.; Sorlien, Christopher", "repository": "USAP-DC", "science_program": null, "title": "Ross Sea unconformities digital grids in depth and two-way time", "url": "https://www.usap-dc.org/view/dataset/601098"}], "date_created": "Fri, 25 May 2018 00:00:00 GMT", "description": "Intellectual Merit:\u003cbr/\u003eThis project will produce a new compilation of Ross Sea seismic stratigraphy, including new interpretations, that can be used to provide boundary conditions on the tectonic and glacial evolution of West Antarctica and the Ross Sea. The principal goals include compilation of, and interpretation of, all available existing seismic reflection data for the Western Ross Sea, coupled with geophysical modeling to produce paleo-bathymetric reconstructions for the entire 800 km-wide Ross Sea. Specific tasks will include: extending existing work on mapping travel time to reflectors, identifying relations in the seismic data that indicate subsidence through sea level, constructing velocity models for converting travel time to thickness, and using the velocity models to estimate density and porosity of sediments for backstripping analysis. Modeling/backstripping efforts will be used to constrain past bathymetry. Digital interpretations and stratigraphic grids will be provided as supplements to publications. In that way the results of this study can be used in thermal subsidence modeling and restoration of eroded rock to other parts of Ross Embayment and Marie Byrd Land by others. Digital products may be provided in advance of publication to modelers in a way that will not hurt publication chances.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThe results of this work will be important for paleo-geographic reconstructions of Antarctica and will therefore be of use to a broad range of researchers, particularly those working in the Ross Sea region. The digital products can be used to test models for the past fluctuations of West Antarctic ice sheets, and in planning for future sediment drilling projects. Two undergraduates to be chosen from applicants will be involved in summer internships held at the University of Rhode Island. Outreach will also include a new website and one or more Wikipedia entries related to Ross Sea sub-sea floor characteristics. The project includes an international collaboration with Dr. Chiara Sauli and others at Instituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS) in Italy.", "east": -171.0, "geometry": "POINT(177 -76)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": -73.33, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Sorlien, Christopher; Luyendyk, Bruce P.", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.67, "title": "Subsidence, Tilting, Sedimentation, and Oligocene-middle Miocene paleo-depth of Ross Sea", "uid": "p0000271", "west": 165.0}, {"awards": "0838735 Nitsche, Frank O.", "bounds_geometry": "POLYGON((-140 -68,-136 -68,-132 -68,-128 -68,-124 -68,-120 -68,-116 -68,-112 -68,-108 -68,-104 -68,-100 -68,-100 -68.75,-100 -69.5,-100 -70.25,-100 -71,-100 -71.75,-100 -72.5,-100 -73.25,-100 -74,-100 -74.75,-100 -75.5,-104 -75.5,-108 -75.5,-112 -75.5,-116 -75.5,-120 -75.5,-124 -75.5,-128 -75.5,-132 -75.5,-136 -75.5,-140 -75.5,-140 -74.75,-140 -74,-140 -73.25,-140 -72.5,-140 -71.75,-140 -71,-140 -70.25,-140 -69.5,-140 -68.75,-140 -68))", "dataset_titles": "Bathymetry compilation of Pine Island Bay, Amundsen Sea, Antarctica; OSO0910 Expedition Data", "datasets": [{"dataset_uid": "000525", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "OSO0910 Expedition Data", "url": "https://www.marine-geo.org/tools/search/entry.php?id=OSO0910"}, {"dataset_uid": "000225", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Bathymetry compilation of Pine Island Bay, Amundsen Sea, Antarctica", "url": "http://dx.doi.org/10.1594/IEDA/320080"}], "date_created": "Fri, 26 Jan 2018 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The West Antarctic Ice Sheet is believed to be vulnerable to climate change as it is grounded below sea level, is drained by rapidly flowing ice streams and is fringed by floating ice shelves subject to melting by incursions of relatively warm Antarctic circumpolar water. Currently, the most rapidly thinning glaciers in Antarctica occur in the Amundsen and Bellingshausen Sea sectors. This study seeks to place the present day observations into a longer-term geological context over a broad scale by high-resolution swath bathymetric mapping of continental shelf sea floor features that indicate past ice presence and behavior. Gaps in existing survey coverage of glacial lineations and troughs indicating ice flow direction and paleo-grounding zone wedges over the Ross, Amundsen and Bellingshausen Sea sectors are targeted. The surveys will be conducted as part of the 2010 Icebreaker Oden science opportunity and will take advantage of the vessel?s state-of-the-art swath mapping system.\u003cbr/\u003e\u003cbr/\u003eBroader impacts:\u003cbr/\u003eThis activity will supplement and complement more focused regional studies by US, Swedish, UK, French, Japanese and Polish collaborators also sailing on the Oden. The PI will compile bathymetric data to be acquired by the Oden and other ships in the region over the duration of the project into the existing bathymetric data base. The compiled data set will be made publically available through the NSF founded Antarctic Multibeam Bathymetry and Geophysical Data Synthesis (AMBS) site. It will also be integrated into the GEBCO International Bathymetric Chart of the Southern Ocean (IBCSO) and so significantly improve the basis for ship navigation in the Pacific sector of the Southern Ocean. Undergraduate students will be involved in the research under supervision of the PI via the Lamont summer internship program. The PI is a young investigator and this will be his first NSF grant as a PI.", "east": -100.0, "geometry": "POINT(-120 -71.75)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES", "is_usap_dc": true, "keywords": "BATHYMETRY; SHIPS; Southern Ocean; Antarctica; Polar; GLACIERS/ICE SHEETS; R/V NBP", "locations": "Polar; Southern Ocean; Antarctica", "north": -68.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Nitsche, Frank O.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "MGDS", "repositories": "MGDS", "science_programs": null, "south": -75.5, "title": "Ice sheet Dynamics and Processes along the West Antarctic Continental Shelf", "uid": "p0010001", "west": -140.0}, {"awards": "1543452 Blankenship, Donald", "bounds_geometry": "POLYGON((90 -64,97 -64,104 -64,111 -64,118 -64,125 -64,132 -64,139 -64,146 -64,153 -64,160 -64,160 -64.6,160 -65.2,160 -65.8,160 -66.4,160 -67,160 -67.6,160 -68.2,160 -68.8,160 -69.4,160 -70,153 -70,146 -70,139 -70,132 -70,125 -70,118 -70,111 -70,104 -70,97 -70,90 -70,90 -69.4,90 -68.8,90 -68.2,90 -67.6,90 -67,90 -66.4,90 -65.8,90 -65.2,90 -64.6,90 -64))", "dataset_titles": "EAGLE/ICECAP II GEOPHYSICAL OBSERVATIONS (SURFACE AND BED ELEVATION, ICE THICKNESS, GRAVITY DISTURBANCE AND MAGNETIC ANOMALIES); EAGLE/ICECAP II INSTRUMENT MEASUREMENTS (LASER, MAGNETICS and POSITIONING); EAGLE/ICECAP II RADARGRAMS; EAGLE/ICECAP II Raw data (gps, raw serial packet data, raw radar records, gravimeter data and camera images); ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "datasets": [{"dataset_uid": "200043", "doi": "http://dx.doi.org/doi:10.26179/5bcff4afc287d", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "EAGLE/ICECAP II RADARGRAMS", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_EAGLE_ICECAP_LEVEL2_RADAR_DATA"}, {"dataset_uid": "601371", "doi": "10.15784/601371", "keywords": "Antarctica; East Antarctica; ICECAP; Ice Penetrating Radar; Radar Echo Sounder; Radar Echo Sounding; Subglacial Hydrology", "people": "Siegert, Martin; Roberts, Jason; Blankenship, Donald D.; van Ommen, Tas; Young, Duncan A.; Greenbaum, Jamin; Schroeder, Dustin", "repository": "USAP-DC", "science_program": null, "title": "ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "url": "https://www.usap-dc.org/view/dataset/601371"}, {"dataset_uid": "200044", "doi": "https://dx.doi.org/10.26179/5bbedd001756b", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "EAGLE/ICECAP II Raw data (gps, raw serial packet data, raw radar records, gravimeter data and camera images)", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_EAGLE_ICECAP_LEVEL0_RAW_DATA"}, {"dataset_uid": "200041", "doi": "https://doi.org/10.26179/5bcfffdabcf92", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "EAGLE/ICECAP II GEOPHYSICAL OBSERVATIONS (SURFACE AND BED ELEVATION, ICE THICKNESS, GRAVITY DISTURBANCE AND MAGNETIC ANOMALIES)", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_EAGLE_ICECAP_LEVEL2_AEROGEOPHYSICS"}, {"dataset_uid": "200042", "doi": "http://dx.doi.org/doi:10.26179/5bcfef4e3a297", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "EAGLE/ICECAP II INSTRUMENT MEASUREMENTS (LASER, MAGNETICS and POSITIONING)", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_EAGLE_ICECAP_Level1B_AEROGEOPHYSICS"}], "date_created": "Tue, 05 Dec 2017 00:00:00 GMT", "description": "Previous studies of the Indo-Pacific region of Antarctica show that the margin of the ice sheet in this region has advanced and retreated into deep interior basins many times in the past. The apparent instability of this region makes it an important target for study in terms of understanding the future of the East Antarctic ice sheet and sea level rise. This project will study a number of processes that control the ice-shelf stability of this region, with the aim of improving projections of the rate and magnitude of future sea-level rise. This project will engage a range of students and train this next generation of scientists in the complex, interdisciplinary issue of ice-ocean interaction. The project will integrate geophysical data collected from aircraft over three critical sections of the East Antarctic grounding line (Totten Glacier, Denman Glacier, and Cook Ice Shelf) with an advanced ocean model. Using Australian and French assets, the team will collect new data around Denman Glacier and Cook Ice Shelf whereas analysis of Totten Glacier will be based on existing data. The project will assess three hypotheses to isolate the processes that drive the differences in observed grounding line thinning among these three glaciers: 1. bathymetry and large-scale ocean forcing control cavity circulation; 2. ice-shelf draft and basal morphology control cavity circulation; 3. subglacial freshwater input across the grounding line controls cavity circulation. The key outcomes of this new project will be to: 1. evaluate of ice-ocean coupling in areas of significant potential sea-level contribution; 2. relate volume changes of grounded and floating ice to regional oceanic heat transport and sub-ice shelf ocean dynamics in areas of significant potential sea-level and meridional overturning circulation impacts; and 3. improve boundary conditions to evaluate mass, heat, and freshwater budgets of East Antarctica\u0027s continental margins.", "east": 160.0, "geometry": "POINT(125 -67)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e MAGNETOMETERS \u003e GEOMET 823A; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": true, "keywords": "BT-67; Antarctica; GLACIER TOPOGRAPHY/ICE SHEET TOPOGRAPHY; USAP-DC; SEAFLOOR TOPOGRAPHY; GRAVITY ANOMALIES; MAGNETIC ANOMALIES; Polar; Sea Floor", "locations": "Antarctica; Sea Floor; Polar", "north": -64.0, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Young, Duncan A.; Grima, Cyril; Blankenship, Donald D.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e BT-67", "repo": "AADC", "repositories": "AADC; USAP-DC", "science_programs": null, "south": -70.0, "title": "East Antarctic Grounding Line Experiment (EAGLE)", "uid": "p0000254", "west": 90.0}, {"awards": "1043217 Zagorodnov, Victor", "bounds_geometry": null, "dataset_titles": "Fiber-Optic Distributed Temperature Sensing at Windless Bight", "datasets": [{"dataset_uid": "609604", "doi": "10.7265/N5V122QS", "keywords": "Antarctica; Ice Shelf; McMurdo Sound; Mooring; Oceans; Physical Oceanography; Ross Ice Shelf; Southern Ocean", "people": "Zagorodnov, Victor; Holland, David; Tyler, Scott W.", "repository": "USAP-DC", "science_program": null, "title": "Fiber-Optic Distributed Temperature Sensing at Windless Bight", "url": "https://www.usap-dc.org/view/dataset/609604"}], "date_created": "Tue, 05 May 2015 00:00:00 GMT", "description": "Abstract\u003cbr/\u003e\u003cbr/\u003eResearchers will explore the use of a distributed temperature sensing monitoring system (DTS), using fiber-optical (FO) technology, as the basis of a sustainable, sub-ice cavity sensing array. FO cable systems, such as may be deployed through a hot-water drilled hole through an ice shelf, passing through the underlying cavity to the sea floor, are capable of measuring temperatures down fiber at 1 meter intervals, and at time frequencies as high as 15 seconds. DTS FO systems operate via optical time domain reflectometry along the fiber waveguide using inelastic backscatter of coherent laser light as a probe beam in the FO environment.\u003cbr/\u003e\u003cbr/\u003eThe introduction of new technologies to the harsh environmental conditions of the Antarctic are often associated with high risk. However, the potential rewards of this approach (e.g. multiyear capability, minimal submerged mechanical or electrical components that may fail, relative simplicity of deployment and measurement principle, yet yielding distributed real time and spatial observation) are attractive enough to conduct a pilot project at a field-ready location (McMurdo). \u003cbr/\u003e\u003cbr/\u003eCurrent indications are that the instability of some of the world\u0027s largest ice sheets located around the Antarctic and Greenland may be caused by the presence of warming, deep ocean waters, shoaling over continental shelves, and melting the underside of floating ice shelves. Additional knowledge of the temporal and spatial variability of the temperature fields underneath terminal ice shelves, such as those draining the West Antarctic Ice Sheet, are needed to accurately project future global climate effects on ice-shelf ocean interactions, and in order to inform societal and technological aspects of adaption to changing sea-level.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e TEMPERATURE LOGGERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "GROUND STATIONS; Not provided; Conservative Temperature; MOORINGS; Ice Shelf Temperature; Ocean Temperature", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Zagorodnov, Victor; Holland, David; Tyler, Scott W.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED \u003e MOORINGS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Application of Distributed Temperature Sensors (DTS) for Antarctic Ice Shelves and Cavities", "uid": "p0000183", "west": null}, {"awards": "9527876 Anderson, John", "bounds_geometry": "POLYGON((-179.9996 -70.29238,-143.99968 -70.29238,-107.99976 -70.29238,-71.99984 -70.29238,-35.99992 -70.29238,0 -70.29238,35.99992 -70.29238,71.99984 -70.29238,107.99976 -70.29238,143.99968 -70.29238,179.9996 -70.29238,179.9996 -71.048723,179.9996 -71.805066,179.9996 -72.561409,179.9996 -73.317752,179.9996 -74.074095,179.9996 -74.830438,179.9996 -75.586781,179.9996 -76.343124,179.9996 -77.099467,179.9996 -77.85581,143.99968 -77.85581,107.99976 -77.85581,71.99984 -77.85581,35.99992 -77.85581,0 -77.85581,-35.99992 -77.85581,-71.99984 -77.85581,-107.99976 -77.85581,-143.99968 -77.85581,-179.9996 -77.85581,-179.9996 -77.099467,-179.9996 -76.343124,-179.9996 -75.586781,-179.9996 -74.830438,-179.9996 -74.074095,-179.9996 -73.317752,-179.9996 -72.561409,-179.9996 -71.805066,-179.9996 -71.048723,-179.9996 -70.29238))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002067", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9902"}, {"dataset_uid": "002125", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9801"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Anderson OPP 9527876 Abstract This award supports continuation of a long term investigation of the continental shelf sediments that is aimed at examining the configuration of the West Antarctic Ice Sheet during the last glacial maximum, the events and mechanisms involved in its retreat, and the timing of retreat. The project involves: 1) characterizing variations in the ice sheet grounding zone in a latitudinal transect extending from Ross Sea to Bransfield Basin, 2) reconstructing conditions at the ice/bed interface prior to and after ice sheet retreat, and 3) radiometrically dating ice sheet retreat along this transect. Detailed sea floor imagery (multibeam and deep-tow side-scan sonar), high resolution seismic reflection profiles, and sediment cores will be used to map and characterize prior grounding zones. Of particular concern are features that indicate the amount and organization (channelization) of basal meltwater and the extent of bed deformation that occurred in different ice streams. The timing of ice sheet retreat provides information about the link between Northern and Southern hemisphere ice expansion, and the role of eustasy in ice sheet decoupling. This research should lead to better predictive models to determine which ice streams are most unstable and likely, therefore, to serve as Oweak linksO in the long term behavior of West Antarctic Ice Sheet.", "east": 179.9996, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -70.29238, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.85581, "title": "Mechanism and Timing of West Antarctic Ice Sheet Retreat at the End of the Last Glacial Maximum", "uid": "p0000624", "west": -179.9996}, {"awards": "0636787 Robinson, Laura", "bounds_geometry": "POLYGON((-69.13317 -52.716503,-65.8622114 -52.716503,-62.5912528 -52.716503,-59.3202942 -52.716503,-56.0493356 -52.716503,-52.778377 -52.716503,-49.5074184 -52.716503,-46.2364598 -52.716503,-42.9655012 -52.716503,-39.6945426 -52.716503,-36.423584 -52.716503,-36.423584 -53.5798407,-36.423584 -54.4431784,-36.423584 -55.3065161,-36.423584 -56.1698538,-36.423584 -57.0331915,-36.423584 -57.8965292,-36.423584 -58.7598669,-36.423584 -59.6232046,-36.423584 -60.4865423,-36.423584 -61.34988,-39.6945426 -61.34988,-42.9655012 -61.34988,-46.2364598 -61.34988,-49.5074184 -61.34988,-52.778377 -61.34988,-56.0493356 -61.34988,-59.3202942 -61.34988,-62.5912528 -61.34988,-65.8622114 -61.34988,-69.13317 -61.34988,-69.13317 -60.4865423,-69.13317 -59.6232046,-69.13317 -58.7598669,-69.13317 -57.8965292,-69.13317 -57.0331915,-69.13317 -56.1698538,-69.13317 -55.3065161,-69.13317 -54.4431784,-69.13317 -53.5798407,-69.13317 -52.716503))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001510", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0805"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project uses radiocarbon in deep-sea corals to understand the Southern Ocean\u0027s role in modulating global climate. A key site of deep-water formation, the Southern Ocean is critical to exchange of heat and carbon between the deep-ocean and atmosphere. Changes in it may be linked to low atmospheric CO2 during the last glacial maximum through increased biologic carbon draw down or decreased air-sea CO2 exchange. Testing these hypotheses is challenging because of the scarcity of suitable records of the Southern Ocean\u0027s biogeochemistry and circulation. The aragonitic skeletons of deep-sea corals may offer insight because they are well suited for radiocarbon analyses-reflective of the 14C content of the past water column--while also allowing for timing of events through U-series age measurements. Overall, these measurements will put new constraints on the extent of air-sea gas exchange, polar water-column stratification, and the flux of Southern-sourced deep water to the rest of the world\u0027s oceans. As a part of this work, new sections of the Drake Passage sea floor will be mapped and imaged, along with the present and past distributions of deep-sea corals and their habitats. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eA significant broader impact of this work is characterizing the functioning of what may be a key control of atmospheric CO2 content, which could prove important for fully understanding the impacts of continued CO2 emissions and developing mitigation strategies. As well, the work will characterize deep marine ecologies that are poorly understood, but increasingly exploited as fisheries resources.", "east": -36.423584, "geometry": "POINT(-52.778377 -57.0331915)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.716503, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Dalziel, Ian W.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -61.34988, "title": "Glacial Radiocarbon Constraints from Drake Passage Deep-Sea Corals", "uid": "p0000528", "west": -69.13317}, {"awards": "0440775 Jacobs, Stanley", "bounds_geometry": null, "dataset_titles": "Amundsen Sea Continental Shelf Mooring Data (2006-2007); Expedition data of NBP0702; NBP0702 surface sediment sample information and images", "datasets": [{"dataset_uid": "601473", "doi": "10.15784/601473", "keywords": "Amundsen Sea; Antarctica; Marine Geoscience; Marine Sediments; NBP0702; Photo; R/v Nathaniel B. Palmer; Seafloor Sampling; Sediment Description; Smith-Mcintyre Grab", "people": "Leventer, Amy; Jacobs, Stanley", "repository": "USAP-DC", "science_program": null, "title": "NBP0702 surface sediment sample information and images", "url": "https://www.usap-dc.org/view/dataset/601473"}, {"dataset_uid": "002645", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0702", "url": "https://www.rvdata.us/search/cruise/NBP0702"}, {"dataset_uid": "601809", "doi": "10.15784/601809", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Mooring; Ocean Currents; Pressure; Salinity; Temperature", "people": "Jacobs, Stanley; Giulivi, Claudia F.", "repository": "USAP-DC", "science_program": null, "title": "Amundsen Sea Continental Shelf Mooring Data (2006-2007)", "url": "https://www.usap-dc.org/view/dataset/601809"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This collaborative study between Columbia University and the Southampton Oceanography Centre will investigate the dynamics of warm water intrusions under antarctic floating ice shelves. The study will focus on the Amundsen Sea and Pine Island Glacier, and will document how this water gains access to the continental shelf, transports heat into the ice shelf cavities via deep, glacially-scoured troughs, and rises beneath the ice to drive basal melting. The resulting seawater-meltwater mixtures upwell near the ice fronts, contributing to the formation of atypical coastal polynyas with strong geochemical signatures. Multidecadal freshening downstream is consistent with thinning ice shelves, which may be triggering changes inland, increasing the flow of grounded ice into the sea. This work will be carried out in combination with parallel modeling, remote sensing and data based projects, in an effort to narrow uncertainties about the response of West Antarctic Ice Sheet to climate change. Using state-of-the-art facilities and instruments, this work will enhance knowledge of water mass production and modification, and the understanding of interactions between the ocean circulation, sea floor and ice shelves. The data and findings will be reported to publicly accessible archives and submitted for publication in the scientific literature. The information obtained should prove invaluable for the development and validation of general circulation models, needed to predict the future role of the Antarctic Ice Sheet in sea level change.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "AMD; Amd/Us; R/V NBP; NSF/USA; Amundsen Sea; USAP-DC", "locations": "Amundsen Sea", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jacobs, Stanley", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "The Amundsen Continental Shelf and the Antarctic Ice Sheet", "uid": "p0000836", "west": null}, {"awards": "9725972 Klinkhammer, Gary", "bounds_geometry": "POLYGON((-70.90664 -52.35256,-69.221316 -52.35256,-67.535992 -52.35256,-65.850668 -52.35256,-64.165344 -52.35256,-62.48002 -52.35256,-60.794696 -52.35256,-59.109372 -52.35256,-57.424048 -52.35256,-55.738724 -52.35256,-54.0534 -52.35256,-54.0534 -53.399775,-54.0534 -54.44699,-54.0534 -55.494205,-54.0534 -56.54142,-54.0534 -57.588635,-54.0534 -58.63585,-54.0534 -59.683065,-54.0534 -60.73028,-54.0534 -61.777495,-54.0534 -62.82471,-55.738724 -62.82471,-57.424048 -62.82471,-59.109372 -62.82471,-60.794696 -62.82471,-62.48002 -62.82471,-64.165344 -62.82471,-65.850668 -62.82471,-67.535992 -62.82471,-69.221316 -62.82471,-70.90664 -62.82471,-70.90664 -61.777495,-70.90664 -60.73028,-70.90664 -59.683065,-70.90664 -58.63585,-70.90664 -57.588635,-70.90664 -56.54142,-70.90664 -55.494205,-70.90664 -54.44699,-70.90664 -53.399775,-70.90664 -52.35256))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002064", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9904"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "NSF FORM 1358 (1/94) This award, provided by the Office of Polar Programs of the National Science Foundation, supports research to investigate hydrothermal venting in Bransfield Strait, between the South Shetland Islands and the Antarctic Peninsula. Previous exploratory work in the Strait identified several sites where hot hydrothermal fluids emanate from the sea floor. These discoveries were made using an instrument package specially designed to detect and map the thermal and chemical anomalies that hydrothermal activity imparts on the overlying water column. Hydrothermal sites in the Strait range in water depth from \u003c200 to 1300 meters and occur on the volcanic outcrops that periodically protrude through the sediment cover along the strike of the rift zone. These sites are alligned with the caldera at Deception Island which has active hot springs. These are the first submarine hydrothermal sites discovered in Antarctica and as such represent unique research opportunities. This project will return to the Strait to further map and sample these areas. There are several compelling reasons to believe that further exploration of vent systems in the Bransfield will yield exciting new information: (1) Bransfield Strait is a back-arc rift system and it is likely that the vent fluids and mineral deposits associated with venting in this setting are unlike anything sampled so far from submarine vents. (2) Preliminary evidence suggests that venting in the Bransfield occurs in two different volcanic substrates: andesite and rhyolite. This situation provides a natural laboratory for investigating the effects of substrate chemistry on vent fluid composition. (3) Bransfield Strait is isolated from the system of mid-ocean ridges and has a relatively short history of rifting (approximately 4 my). So, while the region straddles the Atlantic and Pacific, vent biota in the Strait may well have a distinct genealogy. Biochemical information on vent species in the Bransfield will add to our knowledge of the dispersal of life in the deep ocean. In the past such discoveries have led to the identification of new species and the isolation of previously unknown biochemical compounds. (4) The fire and ice environments of hydrothermal sites in the Bransfield may prove to be the closest analog for primordial environments on Earth and extraterrestrial bodies. The Bransfield Strait is one of the most productive areas of the world\u0027s oceans and lies close to the Antarctic continent, far removed from the mid-ocean ridge system. The combination of organic-rich sediment and heat produced by volcanism in this back- arc setting creates a situation conducive to unusual fluids, unique vent biota, and exotic hydrothermal deposits. Collaborative awards: OPP 9725972 and OPP 9813450", "east": -54.0534, "geometry": "POINT(-62.48002 -57.588635)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.35256, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Klinkhammer, Gary", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -62.82471, "title": "Heat and Chemical Exchange During the Early Stages of Backarc Rifting in a Polar Region: Hydrothermal Activity in Bransfield Strait, Antarctica", "uid": "p0000622", "west": -70.90664}, {"awards": "0440959 Cande, Steven", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0701", "datasets": [{"dataset_uid": "002644", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0701", "url": "https://www.rvdata.us/search/cruise/NBP0701"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This work will perform a marine geophysical survey of sea floor spreading off Cape Adare, Antarctica. Magnetic, gravity, swath bathymetry and multi-channel seismic data will be acquired from the southern end of the Adare Basin to the northern parts of the Northern Basin and Central Trough in the Ross Embayment. Previous surveys documented 170 km of regional extension between forty-three and twenty-six million years ago, which resulted in some seafloor spreading in the Adare Basin. However, the relationship of Adare Basin spreading to the overall extension and the southward continental basins of the Ross Embayment has not been established. This relationship is critical to understanding the tectonic evolution of East and West Antarctica and linking Pacific plate motions to the rest of the world. The study will also offer unique insight into rifting processes by studying the transition of rifting between oceanic and continental lithosphere. In terms of broader impacts, this project will support two graduate students and field research experience for undergraduates. The project also involves cooperation between scientists from the US, Australia, New Zealand and Japan.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ROCK CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Cande, Steven", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: The Connection Between Mid-Cenozoic Seafloor Spreading and the Western Ross Sea Embayment", "uid": "p0000835", "west": null}, {"awards": "9731695 Klinkhammer, Gary", "bounds_geometry": "POLYGON((-179.9993 -43.56612,-143.99965 -43.56612,-108 -43.56612,-72.00035 -43.56612,-36.0007 -43.56612,-0.00105000000002 -43.56612,35.9986 -43.56612,71.99825 -43.56612,107.9979 -43.56612,143.99755 -43.56612,179.9972 -43.56612,179.9972 -45.894301,179.9972 -48.222482,179.9972 -50.550663,179.9972 -52.878844,179.9972 -55.207025,179.9972 -57.535206,179.9972 -59.863387,179.9972 -62.191568,179.9972 -64.519749,179.9972 -66.84793,143.99755 -66.84793,107.9979 -66.84793,71.99825 -66.84793,35.9986 -66.84793,-0.00104999999999 -66.84793,-36.0007 -66.84793,-72.00035 -66.84793,-108 -66.84793,-143.99965 -66.84793,-179.9993 -66.84793,-179.9993 -64.519749,-179.9993 -62.191568,-179.9993 -59.863387,-179.9993 -57.535206,-179.9993 -55.207025,-179.9993 -52.878844,-179.9993 -50.550663,-179.9993 -48.222482,-179.9993 -45.894301,-179.9993 -43.56612))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002227", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9507"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9731695 Klinkhammer This award supports participation of Oregon State University (OSU) researchers in an expedition of the German oceanographic research vessel POLARSTERN to the Antarctic Ocean (POLARSTERN cruise ANT-XV/2). Previous OSU researchers supported by the US Antarctic Program identified several areas of hydrothermal venting in the Bransfield Strait. This discovery has important implications to the biogeography of vent animals, the geological evolution of ore deposits, and the chemical and heat budgets of the Earth. The previous work sampled water and particles from above the vent sites at a reconnaissance level. Subsequent chemical analyses of these samples provided insight into the chemistry of fluids emanating from vents on the sea floor. The POLARSTERN cruise affords a unique opportunity to build on these discoveries in the Bransfield Strait, foster future international work in the Bransfield area, extend research on hydrothermal activity to other parts of the Antarctic Peninsula region, and develop a working relationship with a strong international group. In particular, the POLARSTERN expedition provides the opportunity for: 1) additional sampling of water and suspended particulate matter in the water column over the Bransfield hydrothermal sites this sampling would be aided by German photographic reconnaissance; 2) reconnaissance, to determine the broader geographical extent of hydrothermal activity, would be extended to the Scotia Arc and trench areas following the general theme of the German program which is fluid expulsion from the Scotia- Bransfield system; and 3) the use of unique tools available on the POLARSTERN such as a camera sled and grab bottom sampler. This work will make it possible to better define the location of hydrothermal vents and to begin to quantify the amount of water being expelled by this hydrothermal activity. If vents can be precisely located, the bottom photography holds the promise of revealing possible biologic al communities associated with these submarine hot springs.", "east": 179.9972, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -43.56612, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Klinkhammer, Gary", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -66.84793, "title": "SGER Proposal: Rare Research Opportunity to Study Geotectonic Fluids in Bransfield Strait and Scotia Arc, Antarctica", "uid": "p0000640", "west": -179.9993}, {"awards": "0126279 Lawver, Lawrence; 0125624 Wilson, Terry", "bounds_geometry": "POLYGON((163.69456 -75.04911,164.525266 -75.04911,165.355972 -75.04911,166.186678 -75.04911,167.017384 -75.04911,167.84809 -75.04911,168.678796 -75.04911,169.509502 -75.04911,170.340208 -75.04911,171.170914 -75.04911,172.00162 -75.04911,172.00162 -75.3293,172.00162 -75.60949,172.00162 -75.88968,172.00162 -76.16987,172.00162 -76.45006,172.00162 -76.73025,172.00162 -77.01044,172.00162 -77.29063,172.00162 -77.57082,172.00162 -77.85101,171.170914 -77.85101,170.340208 -77.85101,169.509502 -77.85101,168.678796 -77.85101,167.84809 -77.85101,167.017384 -77.85101,166.186678 -77.85101,165.355972 -77.85101,164.525266 -77.85101,163.69456 -77.85101,163.69456 -77.57082,163.69456 -77.29063,163.69456 -77.01044,163.69456 -76.73025,163.69456 -76.45006,163.69456 -76.16987,163.69456 -75.88968,163.69456 -75.60949,163.69456 -75.3293,163.69456 -75.04911))", "dataset_titles": "Expedition Data; NBP0401 data", "datasets": [{"dataset_uid": "000106", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0401 data", "url": "https://www.rvdata.us/search/cruise/NBP0401"}, {"dataset_uid": "001664", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0401"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a study to investigate the tectonic development of the southwestern Ross Sea region. Displacements between East and West Antarctica have long been proposed based on global plate circuits, apparent hot spot motions, interpretations of seafloor magnetic anomalies, paleomagnetism, and on geologic grounds. Such motions require plate boundaries crossing Antarctica, yet these boundaries have never been explicitly defined. This project will attempt to delineate the late Cenozoic - active boundary between East and West Antarctica along the Terror Rift in the western Ross Sea, where young structures have been identified, continuity between active extension and intracontinental structures can be established, and where accessibility via ship will allow new key data sets to be acquired. We will use multi-source marine and airborne geophysical data to map the fault patterns and volcanic structure along the eastern margin of the Terror Rift. The orientations of volcanic fissures and seamount alignments on the seafloor will be mapped using multibeam bathymetry. The volcanic alignments will show the regional extension or shear directions across the Terror Rift and the orientations of associated crustal stresses. Swath bathymetry and single channel seismic data will be used to document neotectonic fault patterns and the eastern limit of recent faulting. Delineation of neotectonic fault patterns will demonstrate whether the eastern margin of the Terror Rift forms a continuous boundary and whether the rift itself can be linked with postulated strike-slip faults in the northwestern Ross Sea. Seafloor findings from this project will be combined with fault kinematic and stress field determinations from the surrounding volcanic islands and the Transantarctic Mountains. The integrated results will test the propositions that the eastern boundary of the Terror Rift forms the limit of the major, late Cenozoic -active structures through the Ross Sea and that Terror Rift kinematics involve dextral transtension linked to the right-lateral strike-slip faulting to the north. These results will help constrain the kinematic and dynamic links between the West Antarctic rift system and Southern Ocean structures and any related motions between East and West Antarctica. In the first year, a collaborative structural analysis of existing multichannel and single channel seismic profiles and aeromagnetic data over the Terror Rift will be conducted. The location of volcanic vents or fissures and any fault scarps on the sea floor will be identified and a preliminary interpretation of the age and kinematics of deformation in the Terror Rift will be produced. Late in the second year, a one-month cruise on RVIB N.B. Palmer will carry out multibeam bathymetric and sidescan sonar mapping of selected portions of the seafloor of Terror Rift. Gravity, magnetics, seismic reflection and Bathy2000 3.5 kHz sub-bottom profile data will also be collected across the rift. In the third year, we will use these multisource data to map the orientations and forms of volcanic bodies and the extent and geometry of neotectonic faulting associated with the Terror Rift. The project will: 1) complete a map of neotectonic faults and volcanic structures in the Terror Rift; 2) interpret the structural pattern to derive the motions and stresses associated with development of the rift; 3) compare Terror Rift structures with faults and lineaments mapped in the Transantarctic Mountains to improve age constraints on the structures; and 4) integrate the late Cenozoic structural interpretations from the western Ross Sea with Southern Ocean plate boundary kinematics.", "east": 172.00162, "geometry": "POINT(167.84809 -76.45006)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": true, "keywords": "R/V NBP", "locations": null, "north": -75.04911, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Wilson, Terry", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.85101, "title": "Collaborative Research: Neotectonic Structure of Terror Rift, Western Ross Sea", "uid": "p0000111", "west": 163.69456}, {"awards": "9727077 Smith, Kenneth", "bounds_geometry": "POLYGON((-70.907166 -52.348,-69.6496994 -52.348,-68.3922328 -52.348,-67.1347662 -52.348,-65.8772996 -52.348,-64.619833 -52.348,-63.3623664 -52.348,-62.1048998 -52.348,-60.8474332 -52.348,-59.5899666 -52.348,-58.3325 -52.348,-58.3325 -53.600917,-58.3325 -54.853834,-58.3325 -56.106751,-58.3325 -57.359668,-58.3325 -58.612585,-58.3325 -59.865502,-58.3325 -61.118419,-58.3325 -62.371336,-58.3325 -63.624253,-58.3325 -64.87717,-59.5899666 -64.87717,-60.8474332 -64.87717,-62.1048998 -64.87717,-63.3623664 -64.87717,-64.619833 -64.87717,-65.8772996 -64.87717,-67.1347662 -64.87717,-68.3922328 -64.87717,-69.6496994 -64.87717,-70.907166 -64.87717,-70.907166 -63.624253,-70.907166 -62.371336,-70.907166 -61.118419,-70.907166 -59.865502,-70.907166 -58.612585,-70.907166 -57.359668,-70.907166 -56.106751,-70.907166 -54.853834,-70.907166 -53.600917,-70.907166 -52.348))", "dataset_titles": "Expedition Data; Expedition data of LMG0002; Expedition data of LMG0005", "datasets": [{"dataset_uid": "002670", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0002", "url": "https://www.rvdata.us/search/cruise/LMG0002"}, {"dataset_uid": "001964", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0010"}, {"dataset_uid": "002667", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0005", "url": "https://www.rvdata.us/search/cruise/LMG0005"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9727077 SMITH The annual expansion and contraction of ice cover in the Southern Ocean is the largest seasonal process in the World Ocean. This seasonal variability in ice cover creates extensive fluctuations in primary production, which heavily impacts pelagic and benthic communities. This research will initiate a long time-series study of the water column and sea floor using long-term, autonomous monitoring and sampling systems developed for use in the Antarctic. The study will be located in Post Foster, Deception Island, which supports a pelagic and benthic fauna representative of the Antarctic coastal zone and experiences seasonal ice cover. A bottom-moored, upward-looking acoustic instrument will be deployed on the sea floor for a period of one year to monitor the vertical distribution, abundance and biomass of acoustically-detectable macrozooplankton and micronekton in the water column. Collections will be made over this period using a newly-developed vertically-profiling pump sampling. Simultaneously, a time-lapse camera system will be moored on the sea floor to monitor the spatial distribution, sizes and movements of the epibenthic megafauna component of the benthic community. The instrumentation development will allow the research project to focus on the effect of the seasonal sea ice cycle on the distribution, abundance and biomass of the macrozooplankton and micronekton in the water column. Similar questions on the distribution, abundance, size and movements of the epibenthic megafauna will be addressed. Results from this study will provide a valuable data base for the evaluation of the pelagic and benthic community responses to seasonal variability in the Southern Ocean.", "east": -58.3325, "geometry": "POINT(-64.619833 -58.612585)", "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.348, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Kenneth", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -64.87717, "title": "Influence of Seasonal Ice Cover on Pelagic and Benthic Communities: Long Time-Series Studies", "uid": "p0000608", "west": -70.907166}, {"awards": "9527329 Kyle, Philip", "bounds_geometry": "POLYGON((-180 -65,-175.5 -65,-171 -65,-166.5 -65,-162 -65,-157.5 -65,-153 -65,-148.5 -65,-144 -65,-139.5 -65,-135 -65,-135 -66.5,-135 -68,-135 -69.5,-135 -71,-135 -72.5,-135 -74,-135 -75.5,-135 -77,-135 -78.5,-135 -80,-139.5 -80,-144 -80,-148.5 -80,-153 -80,-157.5 -80,-162 -80,-166.5 -80,-171 -80,-175.5 -80,180 -80,177 -80,174 -80,171 -80,168 -80,165 -80,162 -80,159 -80,156 -80,153 -80,150 -80,150 -78.5,150 -77,150 -75.5,150 -74,150 -72.5,150 -71,150 -69.5,150 -68,150 -66.5,150 -65,153 -65,156 -65,159 -65,162 -65,165 -65,168 -65,171 -65,174 -65,177 -65,-180 -65))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 01 Jan 1970 00:00:00 GMT", "description": "Kyle OPP 9527329 Abstract The Cape Roberts Project is an international drilling project to obtain a series of cores from the sedimentary strata beneath the sea floor off Cape Roberts in the Ross Sea. The project is a joint venture by scientists from the national Antarctic programs of Germany, Italy, New Zealand, the United Kingdom., Australia, and the United States. Drilling will continuously core a composite section of sediments over 1500 m thick which is expected to represent parts of the time period between 30 and more than 100 million years ago. The principle objectives of this component of the project will be to examine the record of igneous material in the drill core and provide high precision 40Ar/39Ar dates from tephra (volcanic ash) layers, disseminated ash, feldspars and epiclastic volcanic detrital grains to constrain depositional age and provenance of the sediments in the cores. This project will contribute to general geologic logging of the core and will characterize any igneous material using electron microprobe, x-ray fluorescence (XRF) and instrumental neutron activation analysis (INAA) analyses. The presence of alkalic volcanic detritus from the Cenozoic McMurdo Volcanics will constrain the initiation of this phase of volcanism and improve our understanding of the relationship between volcanism and tectonism. The influx of sediments eroded from Jurassic Kirkpatrick Basalts and Ferrar Dolerites will be used to time the unroofing and rates of uplift of the Transantarctic Mountains. Geochemical analyses of core samples will examine the geochemistry and provenance of the sediments.", "east": -135.0, "geometry": "POINT(-172.5 -72.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ROCK CORERS", "is_usap_dc": false, "keywords": "Radiometric Dating; Radiometric Ages; Argon-Argon Dates; Geochronology; 40Ar/39Ar; Tephra; Geochemistry; Cape Roberts Project; Geology; Not provided", "locations": null, "north": -65.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kyle, Philip; Krissek, Lawrence", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -80.0, "title": "The Cape Roberts Project: Volcanic Record, Geochemistry and 40Ar/39Ar Chronology", "uid": "p0000050", "west": 150.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores
|
1745078 |
2023-05-01 | Brook, Edward | This project will develop methods to measure the ratios of carbon-13 to carbon-12, and heavy to light hydrogen in methane in air trapped in ice cores. The ratios of the different forms of carbon and hydrogen are "fingerprints" of different sources of this gas in the past--for example wetlands in the tropics versus methane frozen in the sea floor. Once the analysis method is developed, the measurements will be used to examine why methane changed abruptly in the past, both during the last ice age, and during previous warm periods. The data will be used to understand how methane sources like wildfires, methane hydrates, and wetlands respond to climate change. This information is needed to understand future risks of large changes in methane in the atmosphere as Earth warms. <br/><br/>The project involves two tasks. First, the investigators will build and test a gas extraction system for methane isotopic measurements using continuous flow methods, with the goal of equaling or bettering the precision attained by the few other laboratories that make these measurements. The system will be interfaced with existing mass spectrometers at Oregon State University. The system consists of a vacuum chamber and sequence of traps, purification columns, and furnaces that separate methane from other gases and convert it to carbon dioxide or hydrogen for mass spectrometry. Second, the team will measure the isotopic composition of methane across large changes in concentration associated with two past interglacial periods and during abrupt methane changes of the last ice age. These measurements will be used to understand if the main reason for these concentration changes is climate-driven changes in emissions from wetlands, or whether other sources are involved, for example methane hydrates or wildfires.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||||
Collaborative Proposal: Miocene Climate Extremes: A Ross Sea Perspective from IODP Expedition 374 and DSDP Leg 28 Marine Sediments
|
1947657 1947558 1947646 |
2022-06-08 | Shevenell, Amelia | No dataset link provided | Presently, Antarctica's glaciers are melting as Earth's atmosphere and the Southern Ocean warm. Not much is known about how Antarctica's ice sheets might respond to ongoing and future warming, but such knowledge is important because Antarctica's ice sheets might raise global sea levels significantly with continued melting. Over time, mud accumulates on the sea floor around Antarctica that is composed of the skeletons and debris of microscopic marine organisms and sediment from the adjacent continent. As this mud is deposited, it creates a record of past environmental and ecological changes, including ocean depth, glacier advance and retreat, ocean temperature, ocean circulation, marine ecosystems, ocean chemistry, and continental weathering. Scientists interested in understanding how Antarctica's glaciers and ice sheets might respond to ongoing warming can use a variety of physical, biological, and chemical analyses of these mud archives to determine how long ago the mud was deposited and how the ice sheets, oceans, and marine ecosystems responded during intervals in the past when Earth's climate was warmer. In this project, researchers from the University of South Florida, University of Massachusetts, and Northern Illinois University will reconstruct the depth, ocean temperature, weathering and nutrient input, and marine ecosystems in the central Ross Sea from ~17 to 13 million years ago, when the warm Miocene Climate Optimum transitioned to a cooler interval with more extensive ice sheets. Record will be generated from new sediments recovered during the International Ocean Discovery Program (IODP) Expedition 374 and legacy sequences recovered in the 1970?s during the Deep Sea Drilling Program. Results will be integrated into ice sheet and climate models to improve the accuracy of predictions. | POLYGON((-180 -72.5,-177.6 -72.5,-175.2 -72.5,-172.8 -72.5,-170.4 -72.5,-168 -72.5,-165.6 -72.5,-163.2 -72.5,-160.8 -72.5,-158.4 -72.5,-156 -72.5,-156 -73.15,-156 -73.8,-156 -74.45,-156 -75.1,-156 -75.75,-156 -76.4,-156 -77.05,-156 -77.7,-156 -78.35,-156 -79,-158.4 -79,-160.8 -79,-163.2 -79,-165.6 -79,-168 -79,-170.4 -79,-172.8 -79,-175.2 -79,-177.6 -79,180 -79,178.4 -79,176.8 -79,175.2 -79,173.6 -79,172 -79,170.4 -79,168.8 -79,167.2 -79,165.6 -79,164 -79,164 -78.35,164 -77.7,164 -77.05,164 -76.4,164 -75.75,164 -75.1,164 -74.45,164 -73.8,164 -73.15,164 -72.5,165.6 -72.5,167.2 -72.5,168.8 -72.5,170.4 -72.5,172 -72.5,173.6 -72.5,175.2 -72.5,176.8 -72.5,178.4 -72.5,-180 -72.5)) | POINT(-176 -75.75) | false | false | |||||||
Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean
|
1542962 |
2020-09-25 | Anderson, Robert; Fleisher, Martin; Pavia, Frank | General: Scientists established more than 30 years ago that the climate-related variability of carbon dioxide levels in the atmosphere over Earth’s ice-age cycles was regulated by the ocean. Hypotheses to explain how the ocean that regulates atmospheric carbon dioxide have long been debated, but they have proven to be difficult to test. This project was designed test one leading hypothesis, specifically that the ocean experienced greater density stratification during the ice ages. That is, with greater stratification during the ice ages and the slower replacement of deep water by cold dense water formed near the poles, the deep ocean would have held more carbon dioxide, which is produced by biological respiration of the organic carbon that constantly rains to the abyss in the form of dead organisms and organic debris that sink from the sunlit surface ocean. To test this hypothesis, the degree of ocean stratification during the last ice age and the rate of deep-water replacement was to be constrained by comparing the radiocarbon ages of organisms that grew in the surface ocean and at the sea floor within a critical region around Antarctica, where most of the replacement of deep waters occurs. Completing this work was expected to contribute toward improved models of future climate change. Climate scientists rely on models to estimate the amount of fossil fuel carbon dioxide that will be absorbed by the ocean in the future. Currently the ocean absorbs about 25% of the carbon dioxide produced by burning fossil fuels. Most of this carbon is absorbed in the Southern Ocean (the region around Antarctica). How this will change in the future is poorly known. Models have difficulty representing physical conditions in the Southern Ocean accurately, thereby adding substantial uncertainty to projections of future ocean uptake of carbon dioxide. Results of the proposed study will provide a benchmark to test the ability of models to simulate ocean processes under climate conditions distinctly different from those that occur today, ultimately leading to improvement of the models and to more reliable projections of future absorption of carbon dioxide by the ocean. Technical: The project added a research component to an existing scientific expedition to the Southern Ocean, in the region between the Ross Sea and New Zealand, that collected sediment cores at locations down the northern flank of the Pacific-Antarctic Ridge at approximately 170°W. The goal was to collect sediments at each location deposited since early in the peak of the last ice age. This region is unusual in the Southern Ocean in that sediments deposited during the last ice age contain foraminifera, tiny organisms with calcium carbonate shells, in much greater abundance than in other regions of the Southern Ocean. Foraminifera are widely used as an archive of several geochemical tracers of past ocean conditions. We proposed to compare the radiocarbon age of foraminifera that inhabited the surface ocean with the age of contemporary specimens that grew on the seabed. The difference in age between surface and deep-swelling organisms would have been used to discriminate between two proposed mechanisms of deep water renewal during the ice age: formation in coastal polynyas around the edge of Antarctica, much as occurs today, versus formation by open-ocean convection in deep-water regions far from the continent. If the latter mechanism prevails, then it was expected that surface and deep-dwelling foraminifera would exhibit similar radiocarbon ages. In the case of dominance of deep-water formation in coastal polynyas, one expects to find very different radiocarbon ages in the two populations of foraminifera. In the extreme case of greater ocean stratification during the last ice age, one even expects the surface dwellers to appear to be older than contemporary bottom dwellers because the targeted core sites lie directly under the region where the oldest deep waters outcrop at the surface following their long circuitous transit through the deep ocean. The primary objective of the proposed work was to reconstruct the water mass age structure of the Southern Ocean during the last ice age, which, in turn, is a primary factor that controls the amount of carbon dioxide stored in the deep sea. In addition, the presence of foraminifera in the cores to be recovered provides a valuable resource for many other paleoceanographic applications, such as: 1) the application of nitrogen isotopes to constrain the level of nutrient utilization in the Southern Ocean and, thus, the efficiency of the ocean’s biological pump, 2) the application of neodymium isotopes to constrain the transport history of deep water masses, 3) the application of boron isotopes and boron/calcium ratios to constrain the pH and inorganic carbon system parameters of ice-age seawater, and 4) the exploitation of metal/calcium ratios in foraminifera to reconstruct the temperature (Mg/Ca) and nutrient content (Cd/Ca) of deep waters during the last ice age at a location near their source near Antarctica. Unfortunately, the cores were shipped to the core repository in a horizontal orientation and there was sufficient distortion of the sediment that the radiocarbon ages of benthic foraminifera were uninterpretable. Therefore, we report only the radiocarbon dates for planktonic foraminifera as well as the total counts of elemental relative abundance from X-ray Fluorescence analysis of the cores. In addition, we used the expedition as an opportunity to collect water samples from which dissolved concentrations of long-lived isotope of thorium and protactinium were determined. Results from those analyses showed that lateral transport by isopycnal mixing dominates the supply of Pa to the Southern Ocean. We have also developed a new algorithm to correct for supply of Th by isopycnal mixing and thereby derive estimates of dust flux to the Southern Ocean. | POLYGON((-171 -57,-170.8 -57,-170.6 -57,-170.4 -57,-170.2 -57,-170 -57,-169.8 -57,-169.6 -57,-169.4 -57,-169.2 -57,-169 -57,-169 -57.72,-169 -58.44,-169 -59.16,-169 -59.88,-169 -60.6,-169 -61.32,-169 -62.04,-169 -62.76,-169 -63.48,-169 -64.2,-169.2 -64.2,-169.4 -64.2,-169.6 -64.2,-169.8 -64.2,-170 -64.2,-170.2 -64.2,-170.4 -64.2,-170.6 -64.2,-170.8 -64.2,-171 -64.2,-171 -63.48,-171 -62.76,-171 -62.04,-171 -61.32,-171 -60.6,-171 -59.88,-171 -59.16,-171 -58.44,-171 -57.72,-171 -57)) | POINT(-170 -60.6) | false | false | ||||||||
Collaborative Research: Flow, Turbulence and Mixing in Mid-Ocean Ridge Fracture Zone Canyons
|
1235094 |
2020-07-02 | Thurnherr, Andreas | Overview: In order to close the global overturning circulation, high-density deep- and bottom waters produced at high latitudes must be made less dense and upwell to shallower depths. Available observations from the subtropical South Atlantic indicate that the bulk of the mixing in the deep ocean there takes place over the topographically rough Mid-Atlantic Ridge, in particular in the quasi-regularly spaced "fracture zone canyons" corrugating the ridge flanks. There, dense water is advected toward the ridge crest (i.e. upwelled) by persistent along-valley currents that flow down the unidirectional density gradients, which are maintained by strong turbulence (diapycnal mixing). Most of the data on which these inferences are based were collected during the Brazil Basin Tracer Release Experiment (BBTRE) along a single ridge-flank canyon in the western South Atlantic near 22S where previous analyses have shown that both tidal mixing and overflow processes are important. Therefore, it is likely that both processes must be considered in order to understand and parameterize the effects of turbulence and mixing in the canyons corrugating the flanks of all slow-spreading ridges, which make up large fractions of the sea floor, in particular in the Atlantic, Indian and Southern Oceans. The primary aim of this follow-on project is to improve our understanding of the dynamics over the corrugated flanks of slow-spreading mid-ocean ridges. Due to the coarse sampling resolution and choice of station locations it is not possible to answer important questions, such as the relative importance of tidal and sill mixing, from the BBTRE data. Therefore, high-resolution surveys of hydrography, three-dimensional flow, turbulence and mixing will be carried out in two neighboring canyons and over the intervening topographic spur in the BBTRE region to determine the relative contributions of tidal and sill-related mixing. Furthermore, profiling moorings deployed on two nearby sill regions will be used to derive time series of spatially integrated mixing related buoyancy fluxes and to investigate the strong but unexplained sub-inertial variability of the along-canyon flow recorded previously. Additionally, three small moorings will be deployed in saddles between the two canyons to investigate inter-canyon exchange. The data analysis will include available data from previous experiments, including a set of tracer profiles that has not been analyzed before. Intellectual Merit: The corrugated flanks of slow-spreading ridges cover large areas of the sea floor of several major ocean basins. Therefore, understanding the dynamics in the ~100 km of ridge-flank canyons and its effects on the buoyancy and upwelling budget of the abyssal ocean is of global significance. In addition to determining the relative importance of tidal mixing and cross-sill flows in two canyons, the temporal variability of turbulence and mixing from tidal to yearly time scales will be investigated to gain insights into the forcing of the along-canyon flows, the exchange between neighboring canyons, and the eventual fate of the canyon waters. Broader Impacts: It is anticipated that insights gained during this project will improve our understanding of abyssal mixing in many different regions with similar bottom topography and provide the basis for better parameterizations of the effects of turbulence and mixing in large-scale circulation and climate models that cannot resolve these small-scale processes. As part of the project, a graduate student and a post-doctoral researcher will be trained in all aspects of observational physical oceanography, from data acquisition to interpretation. | POLYGON((-19 -19,-18.2 -19,-17.4 -19,-16.6 -19,-15.8 -19,-15 -19,-14.2 -19,-13.4 -19,-12.6 -19,-11.8 -19,-11 -19,-11 -19.4,-11 -19.8,-11 -20.2,-11 -20.6,-11 -21,-11 -21.4,-11 -21.8,-11 -22.2,-11 -22.6,-11 -23,-11.8 -23,-12.6 -23,-13.4 -23,-14.2 -23,-15 -23,-15.8 -23,-16.6 -23,-17.4 -23,-18.2 -23,-19 -23,-19 -22.6,-19 -22.2,-19 -21.8,-19 -21.4,-19 -21,-19 -20.6,-19 -20.2,-19 -19.8,-19 -19.4,-19 -19)) | POINT(-15 -21) | false | false | ||||||||
Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity
|
1744584 1744602 1744550 1744570 |
2020-06-04 | Amsler, Charles; McClintock, James; Iken, Katrin; Galloway, Aaron; Klein, Andrew | The western Antarctic Peninsula has become a model for understanding cold water communities and how they may be changing in Antarctica and elsewhere. Brown macroalgae (seaweeds) form extensive undersea forests in the northern portion of this region where they play a key role in providing both physical structure and a food (carbon) source for shallow water communities. Yet between Anvers Island (64 degrees S latitude) and Adelaide Island (67 S latitude) these macroalgae become markedly less abundant and diverse. This is probably because the habitat to the south is covered by more sea ice for a longer period, and the sea ice reduces the amount of light that reaches the algae. The reduced macroalgal cover undoubtedly impacts other organisms in the food web, but the ways in which it alters sea-floor community processes and organization is unknown. This project will quantitatively document the macroalgal communities at multiple sites between Anvers and Adelaide Islands using a combination of SCUBA diving, video surveys, and algal collections. Sea ice cover, light levels, and other environmental parameters on community structure will be modelled to determine which factors have the largest influence. Impacts on community structure, food webs, and carbon flow will be assessed through a mixture of SCUBA diving and video surveys. Broader impacts include the training of graduate students and a postdoctoral researcher, as well as numerous informal public education activities including lectures, presentations to K-12 groups, and a variety of social media-based outreach.<br/><br/>Macroalgal communities are more abundance and diverse to the north along the Western Antarctic Peninsula, perhaps due to the greater light availability that is associated with shorter period of sea-ice cover. This project will determine the causes and community level consequence of this variation in algal community structure. First, satellite data on sea ice extent and water turbidity will be used to select study sites between 64 S and 69 S where the extent of annual sea ice cover is the primary factor influencing subsurface light levels. Then, variations in macroalgal cover across these study sites will be determined by video line-transect surveys conducted by SCUBA divers. The health, growth, and physiological status of species found at the different sites will be determined by quadrat sampling. The relative importance of macroalgal-derived carbon to the common invertebrate consumers in the foodweb will be assessed with stable isotope and fatty acid biomarker techniques. This will reveal how variation in macroalgal abundance and species composition across the sea ice cover gradient impacts sea floor community composition and carbon flow throughout the food web. In combination, this work will facilitate predictions of how the ongoing reductions in extent and duration of sea ice cover that is occurring in the region as a result of global climate change will impact the structure of nearshore benthic communities.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-70 -61,-69 -61,-68 -61,-67 -61,-66 -61,-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-60 -61,-60 -61.772,-60 -62.544,-60 -63.316,-60 -64.088,-60 -64.86,-60 -65.632,-60 -66.404,-60 -67.176,-60 -67.948,-60 -68.72,-61 -68.72,-62 -68.72,-63 -68.72,-64 -68.72,-65 -68.72,-66 -68.72,-67 -68.72,-68 -68.72,-69 -68.72,-70 -68.72,-70 -67.948,-70 -67.176,-70 -66.404,-70 -65.632,-70 -64.86,-70 -64.088,-70 -63.316,-70 -62.544,-70 -61.772,-70 -61)) | POINT(-65 -64.86) | false | false | ||||||||
Timing and Spatial Distribution of Antarctic Ice Sheet Growth and Sea-ice Formation across the Eocene-Oligocene Transition
|
1743643 |
2020-05-26 | Passchier, Sandra | Abstract (non-technical)<br/>Sea level rise is a problem of global importance and it is increasingly affecting the tens of millions of Americans living along coastlines. The melting of glaciers in mountain areas worldwide in response to global warming is a major cause of sea level rise and increases in nuisance coastal flooding. However, the world's largest land-based ice sheets are situated in the Polar Regions and their response under continued warming is very difficult to predict. One reason for this uncertainty is a lack of observations of ice behavior and melt under conditions of warming, as it is a relatively new global climate state lasting only a few generations so far. Researchers will investigate ice growth on Antarctica under past warm conditions using geological archives embedded in the layers of sand and mud under the sea floor near Antarctica. By peeling back at the layers beneath the seafloor investigators can read the history book of past events affecting the ice sheet. The Antarctic continent on the South Pole, carries the largest ice mass in the world. The investigator's findings will substantially improve scientists understanding of the response of ice sheets to global warming and its effect on sea level rise.<br/><br/><br/>Abstract (technical)<br/>The melt of land based ice is raising global sea levels with at present only minor contributions from polar ice sheets. However, the future role of polar ice sheets in climate change is one of the most critical uncertainties in predictions of sea level rise around the globe. The respective roles of oceanic and atmospheric greenhouse forcing on ice sheets are poorly addressed with recent measurements of polar climatology, because of the extreme rise in greenhouse forcing the earth is experiencing at this time. Data on the evolution of the West Antarctic ice sheet is particularly sparse. To address the data gap, researchers will reconstruct the timing and spatial distribution of Antarctic ice growth through the last greenhouse to icehouse climate transition around 37 to 33 Ma. They will collect sedimentological and geochemical data on core samples from a high-latitude paleoarchive to trace the shutdown of the chemical weathering system, the onset of glacial erosion, ice rafting, and sea ice development, as East and West Antarctic ice sheets coalesced in the Weddell Sea sector. Their findings will lead to profound increases in the understanding of the role of greenhouse forcing in ice sheet development and its effect on the global climate system.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | ||||||||
Collaborative Research: Role of the Central Scotia Sea Floor and North Scotia Ridge in the Onset and Development of the Antarctic Circumpolar Current
|
1246111 |
2020-01-28 | Dalziel, Ian W.; Lawver, Lawrence; Krissek, Lawrence |
|
Intellectual Merit: <br/>Opening of Drake Passage and the West Scotia Sea south of Tierra del Fuego broke the final continental barrier to onset of a complete Antarctic Circumpolar Current (ACC). Initiation of the ACC has been associated in time with a major, abrupt, drop in global temperatures and the rapid expansion of the Antarctic ice sheets at 33-34 Ma. Events leading to the formation of the Drake Passage gateway are poorly known. Understanding the tectonic evolution of the floor of the Central Scotia Sea (CSS) and the North Scotia Ridge is a key to this understanding. Previous work has demonstrated that superimposed constructs formed a volcanic arc that likely blocked direct eastward flow from the Pacific to the Atlantic through the opening Drake Passage gateway as the active South Sandwich arc does today. The PIs propose a cruise to test, develop and refine, with further targeted mapping and dredging, their theory of CSS tectonics and the influence it had on the onset and development of the ACC. In addition they propose an installation of GPS receiver to test their paleogeographic reconstructions and determine whether South Georgia is moving as part of the South American plate. <br/><br/>Broader impacts: <br/>A graduate student will be involved in all stages of the research. Undergraduate students will also be involved as watch-standers. A community college teacher will participate in the cruise. The PIs will have a website on which there will be images of the actual ocean floor dredging in operation. The teacher will participate with web and outreach support through PolarTREC. Results of the cruise are of broad interest to paleoceanographers, paleoclimate modelers and paleobiogeographers.A network of four continuous Global Navigational Satellite Systems (GNSS) receivers was installed on the bedrock of South Georgia in the Southern Ocean in 2013 and 2014. An additional receiver on a concrete foundation provides a tie to a tide gauge, part of the United Kingdom South Atlantic Tide Gauge Network. The GNSS receivers have already provided data suggesting that the South Georgia microcontinent (SGM) is moving independent of both the South American plate to the north and the Scotia plate to the south. The data also demonstrate that the SGM is being uplifted. | POLYGON((-44 -53,-42.9 -53,-41.8 -53,-40.7 -53,-39.6 -53,-38.5 -53,-37.4 -53,-36.3 -53,-35.2 -53,-34.1 -53,-33 -53,-33 -53.4,-33 -53.8,-33 -54.2,-33 -54.6,-33 -55,-33 -55.4,-33 -55.8,-33 -56.2,-33 -56.6,-33 -57,-34.1 -57,-35.2 -57,-36.3 -57,-37.4 -57,-38.5 -57,-39.6 -57,-40.7 -57,-41.8 -57,-42.9 -57,-44 -57,-44 -56.6,-44 -56.2,-44 -55.8,-44 -55.4,-44 -55,-44 -54.6,-44 -54.2,-44 -53.8,-44 -53.4,-44 -53)) | POINT(-38.5 -55) | false | false | |||||||
EAGER: Elucidating the Antarctic Methane Cycle at the Cinder Cones Reducing Habitat.
|
1642570 |
2019-05-24 | Thurber, Andrew |
|
Methane is a potent greenhouse gas that is naturally emitted into the oceans by geologic seeps and microbial production. Based on studies of persistent deep-sea seeps at mid- and northern latitudes, researchers have learned that bacteria and archaea can create a "sediment filter" that oxidizes methane prior to its release. Antarctica is thought to contain large reservoirs of organic carbon buried beneath its ice which could a quantity of methane equivalent to all of the permafrost in the Arctic and yet we know almost nothing about the methane oxidizing microbes in this region. How these microbial communities develop and potentially respond to fluctuations in methane levels is an under-explored avenue of research. A bacterial mat was recently discovered at 78 degrees south, suggesting the possible presence of a methane seep, and associated microbial communities. This project will explore this environment in detail to assess the levels and origin of methane, and the nature of the microbial ecosystem present. <br/> <br/>An expansive bacterial mat appeared and/or was discovered at 78 degrees south in 2011. This site, near McMurdo Station Antarctica, has been visited since the mid-1960s, but this mat was not observed until 2011. The finding of this site provides an unusual opportunity to study an Antarctic marine benthic habitat with active methane cycling and to examine the dynamics of recruitment and community succession of seep fauna including bacteria, archaea, protists and metazoans. This project will collect the necessary baseline data to facilitate further studies of Antarctic methane cycling. The concentration and source of methane will be determined at this site and at potentially analogous sites in McMurdo Sound. In addition to biogeochemical characterization of the sites, molecular analysis of the microbial community will quantify the time scales on which bacteria and archaea respond to methane input and provide information on rates of community development and succession in the Southern Ocean. Project activities will facilitate the training of at least one graduate student and results will be shared at both local and international levels. A female graduate student will be mentored as part of this project and data collected will form part of her dissertation. Lectures will be given in K-12 classrooms in Oregon to excite students about polar science. National and international audiences will be reached through blogs and presentations at a scientific conference. The PI's previous blogs have been used by K-12 classrooms as part of their lesson plans and followed in over 65 countries.<br/> | POINT(166.666 -77.8) | POINT(166.666 -77.8) | false | false | |||||||
RAPID: Collaborative Research: Marine Ecosystem Response to the Larsen C Ice-Shelf Breakout: "Time zero"
|
1822289 1822256 |
2019-05-15 | Vernet, Maria; Smith, Craig |
|
Marine ecosystems under large ice shelves are thought to contain sparse, low-diversity plankton and seafloor communities due the low supply of food from productive sunlight waters. Past studies have shown sub-ice shelf ecosystems to change in response to altered oceanographic processes resulting from ice-shelve retreat. However, information on community changes and ecosystem structure under ice shelves are limited because sub-ice-shelf ecosystems have either been sampled many years after ice-shelf breakout, or have been sampled through small boreholes, yielding extremely limited spatial information. The recent breakout of the A-68 iceberg from the Larsen C ice shelf in the western Weddell Sea provides an opportunity to use a ship-based study to evaluate benthic communities and water column characteristics in an area recently vacated by a large overlying ice shelf. The opportunity will allow spatial assessments at the time of transition from an under ice-shelf environment to one initially exposed to conditions more typical of a coastal Antarctic marine setting. \r\n\r\n\r\n\r\nThis RAPID project will help determine the state of a coastal Antarctic ecosystem newly exposed from ice-shelf cover and will aid in understanding of rates of community change during transition. The project will conduct a 10-day field program, allowing contrasts to be made of phytoplankton and seafloor megafaunal communities in areas recently exposed by ice-shelf loss to areas exposed for many decades. The project will be undertaken in a collaborative manner with the South Korean Antarctic Agency, KOPRI, by participating in a cruise in March/May 2018. Combining new information in the area of Larsen C with existing observations after the Larsen A and B ice shelf breakups further to the north, the project is expected to generate a dataset that can elucidate fundamental processes of planktonic and benthic community development in transition from food-poor to food-rich ecosystems. The project will provide field experience to two graduate students, a post-doctoral associate and an undergraduate student. Material from the project will be incorporated into graduate courses and the project will communicate daily work and unfolding events through social media and blogs while they explore this area of the world that is largely underexplored. | POLYGON((-59.5 -62,-59.05 -62,-58.6 -62,-58.15 -62,-57.7 -62,-57.25 -62,-56.8 -62,-56.35 -62,-55.9 -62,-55.45 -62,-55 -62,-55 -62.27,-55 -62.54,-55 -62.81,-55 -63.08,-55 -63.35,-55 -63.62,-55 -63.89,-55 -64.16,-55 -64.43,-55 -64.7,-55.45 -64.7,-55.9 -64.7,-56.35 -64.7,-56.8 -64.7,-57.25 -64.7,-57.7 -64.7,-58.15 -64.7,-58.6 -64.7,-59.05 -64.7,-59.5 -64.7,-59.5 -64.43,-59.5 -64.16,-59.5 -63.89,-59.5 -63.62,-59.5 -63.35,-59.5 -63.08,-59.5 -62.81,-59.5 -62.54,-59.5 -62.27,-59.5 -62)) | POINT(-57.25 -63.35) | false | false | |||||||
Collaborative Research: Integrative Study of Marine Ice Sheet Stability & Subglacial Life Habitats in W Antarctica - Lake & Ice Stream Subglacial Access Research Drilling (LISSARD)
|
0838763 0838855 0839107 0839142 0838947 0839059 0838764 |
2018-09-10 | Tulaczyk, Slawek; Fisher, Andrew; Powell, Ross; Anandakrishnan, Sridhar; Jacobel, Robert; Scherer, Reed Paul | This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The LISSARD project (Lake and Ice Stream Subglacial Access Research Drilling) is one of three research components of the WISSARD integrative initiative (Whillans Ice Stream Subglacial Access Research Drilling) that is being funded by the Antarctic Integrated System Science Program of NSF's Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The LISSARD component of WISSARD focuses on the role of active subglacial lakes in determining how fast the West Antarctic ice sheet loses mass to the global ocean and influences global sea level changes. The importance of Antarctic subglacial lakes has only been recently recognized, and the lakes have been identified as high priority targets for scientific investigations because of their unknown contributions to ice sheet stability under future global warming scenarios. LISSARD has several primary science goals: A) To provide an observational basis for improving treatments of subglacial hydrological and mechanical processes in models of ice sheet mass balance and stability; B) To reconstruct the past history of ice stream stability by analyzing archives of past basal water and ice flow variability contained in subglacial sediments, porewater, lake water, and basal accreted ice; C) To provide background understanding of subglacial lake environments to benefit RAGES and GBASE (the other two components of the WISSARD project); and D) To synthesize data and concepts developed as part of this project to determine whether subglacial lakes play an important role in (de)stabilizing Antarctic ice sheets. We propose an unprecedented synthesis of approaches to studying ice sheet processes, including: (1) satellite remote sensing, (2) surface geophysics, (3) borehole observations and measurements and, (4) basal and subglacial sampling. <br/><br/>INTELLECTUAL MERIT: The latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations. <br/><br/>BROADER IMPACTS: Societal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars. | None | None | false | false | ||||||||
Subsidence, Tilting, Sedimentation, and Oligocene-middle Miocene paleo-depth of Ross Sea
|
1341585 |
2018-05-25 | Sorlien, Christopher; Luyendyk, Bruce P. |
|
Intellectual Merit:<br/>This project will produce a new compilation of Ross Sea seismic stratigraphy, including new interpretations, that can be used to provide boundary conditions on the tectonic and glacial evolution of West Antarctica and the Ross Sea. The principal goals include compilation of, and interpretation of, all available existing seismic reflection data for the Western Ross Sea, coupled with geophysical modeling to produce paleo-bathymetric reconstructions for the entire 800 km-wide Ross Sea. Specific tasks will include: extending existing work on mapping travel time to reflectors, identifying relations in the seismic data that indicate subsidence through sea level, constructing velocity models for converting travel time to thickness, and using the velocity models to estimate density and porosity of sediments for backstripping analysis. Modeling/backstripping efforts will be used to constrain past bathymetry. Digital interpretations and stratigraphic grids will be provided as supplements to publications. In that way the results of this study can be used in thermal subsidence modeling and restoration of eroded rock to other parts of Ross Embayment and Marie Byrd Land by others. Digital products may be provided in advance of publication to modelers in a way that will not hurt publication chances.<br/><br/>Broader impacts: <br/>The results of this work will be important for paleo-geographic reconstructions of Antarctica and will therefore be of use to a broad range of researchers, particularly those working in the Ross Sea region. The digital products can be used to test models for the past fluctuations of West Antarctic ice sheets, and in planning for future sediment drilling projects. Two undergraduates to be chosen from applicants will be involved in summer internships held at the University of Rhode Island. Outreach will also include a new website and one or more Wikipedia entries related to Ross Sea sub-sea floor characteristics. The project includes an international collaboration with Dr. Chiara Sauli and others at Instituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS) in Italy. | POLYGON((-180 -73.33,-179.1 -73.33,-178.2 -73.33,-177.3 -73.33,-176.4 -73.33,-175.5 -73.33,-174.6 -73.33,-173.7 -73.33,-172.8 -73.33,-171.9 -73.33,-171 -73.33,-171 -73.864,-171 -74.398,-171 -74.932,-171 -75.466,-171 -76,-171 -76.534,-171 -77.068,-171 -77.602,-171 -78.136,-171 -78.67,-171.9 -78.67,-172.8 -78.67,-173.7 -78.67,-174.6 -78.67,-175.5 -78.67,-176.4 -78.67,-177.3 -78.67,-178.2 -78.67,-179.1 -78.67,180 -78.67,178.5 -78.67,177 -78.67,175.5 -78.67,174 -78.67,172.5 -78.67,171 -78.67,169.5 -78.67,168 -78.67,166.5 -78.67,165 -78.67,165 -78.136,165 -77.602,165 -77.068,165 -76.534,165 -76,165 -75.466,165 -74.932,165 -74.398,165 -73.864,165 -73.33,166.5 -73.33,168 -73.33,169.5 -73.33,171 -73.33,172.5 -73.33,174 -73.33,175.5 -73.33,177 -73.33,178.5 -73.33,-180 -73.33)) | POINT(177 -76) | false | false | |||||||
Ice sheet Dynamics and Processes along the West Antarctic Continental Shelf
|
0838735 |
2018-01-26 | Nitsche, Frank O. |
|
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The West Antarctic Ice Sheet is believed to be vulnerable to climate change as it is grounded below sea level, is drained by rapidly flowing ice streams and is fringed by floating ice shelves subject to melting by incursions of relatively warm Antarctic circumpolar water. Currently, the most rapidly thinning glaciers in Antarctica occur in the Amundsen and Bellingshausen Sea sectors. This study seeks to place the present day observations into a longer-term geological context over a broad scale by high-resolution swath bathymetric mapping of continental shelf sea floor features that indicate past ice presence and behavior. Gaps in existing survey coverage of glacial lineations and troughs indicating ice flow direction and paleo-grounding zone wedges over the Ross, Amundsen and Bellingshausen Sea sectors are targeted. The surveys will be conducted as part of the 2010 Icebreaker Oden science opportunity and will take advantage of the vessel?s state-of-the-art swath mapping system.<br/><br/>Broader impacts:<br/>This activity will supplement and complement more focused regional studies by US, Swedish, UK, French, Japanese and Polish collaborators also sailing on the Oden. The PI will compile bathymetric data to be acquired by the Oden and other ships in the region over the duration of the project into the existing bathymetric data base. The compiled data set will be made publically available through the NSF founded Antarctic Multibeam Bathymetry and Geophysical Data Synthesis (AMBS) site. It will also be integrated into the GEBCO International Bathymetric Chart of the Southern Ocean (IBCSO) and so significantly improve the basis for ship navigation in the Pacific sector of the Southern Ocean. Undergraduate students will be involved in the research under supervision of the PI via the Lamont summer internship program. The PI is a young investigator and this will be his first NSF grant as a PI. | POLYGON((-140 -68,-136 -68,-132 -68,-128 -68,-124 -68,-120 -68,-116 -68,-112 -68,-108 -68,-104 -68,-100 -68,-100 -68.75,-100 -69.5,-100 -70.25,-100 -71,-100 -71.75,-100 -72.5,-100 -73.25,-100 -74,-100 -74.75,-100 -75.5,-104 -75.5,-108 -75.5,-112 -75.5,-116 -75.5,-120 -75.5,-124 -75.5,-128 -75.5,-132 -75.5,-136 -75.5,-140 -75.5,-140 -74.75,-140 -74,-140 -73.25,-140 -72.5,-140 -71.75,-140 -71,-140 -70.25,-140 -69.5,-140 -68.75,-140 -68)) | POINT(-120 -71.75) | false | false | |||||||
East Antarctic Grounding Line Experiment (EAGLE)
|
1543452 |
2017-12-05 | Young, Duncan A.; Grima, Cyril; Blankenship, Donald D. | Previous studies of the Indo-Pacific region of Antarctica show that the margin of the ice sheet in this region has advanced and retreated into deep interior basins many times in the past. The apparent instability of this region makes it an important target for study in terms of understanding the future of the East Antarctic ice sheet and sea level rise. This project will study a number of processes that control the ice-shelf stability of this region, with the aim of improving projections of the rate and magnitude of future sea-level rise. This project will engage a range of students and train this next generation of scientists in the complex, interdisciplinary issue of ice-ocean interaction. The project will integrate geophysical data collected from aircraft over three critical sections of the East Antarctic grounding line (Totten Glacier, Denman Glacier, and Cook Ice Shelf) with an advanced ocean model. Using Australian and French assets, the team will collect new data around Denman Glacier and Cook Ice Shelf whereas analysis of Totten Glacier will be based on existing data. The project will assess three hypotheses to isolate the processes that drive the differences in observed grounding line thinning among these three glaciers: 1. bathymetry and large-scale ocean forcing control cavity circulation; 2. ice-shelf draft and basal morphology control cavity circulation; 3. subglacial freshwater input across the grounding line controls cavity circulation. The key outcomes of this new project will be to: 1. evaluate of ice-ocean coupling in areas of significant potential sea-level contribution; 2. relate volume changes of grounded and floating ice to regional oceanic heat transport and sub-ice shelf ocean dynamics in areas of significant potential sea-level and meridional overturning circulation impacts; and 3. improve boundary conditions to evaluate mass, heat, and freshwater budgets of East Antarctica's continental margins. | POLYGON((90 -64,97 -64,104 -64,111 -64,118 -64,125 -64,132 -64,139 -64,146 -64,153 -64,160 -64,160 -64.6,160 -65.2,160 -65.8,160 -66.4,160 -67,160 -67.6,160 -68.2,160 -68.8,160 -69.4,160 -70,153 -70,146 -70,139 -70,132 -70,125 -70,118 -70,111 -70,104 -70,97 -70,90 -70,90 -69.4,90 -68.8,90 -68.2,90 -67.6,90 -67,90 -66.4,90 -65.8,90 -65.2,90 -64.6,90 -64)) | POINT(125 -67) | false | false | ||||||||
Collaborative Research: Application of Distributed Temperature Sensors (DTS) for Antarctic Ice Shelves and Cavities
|
1043217 |
2015-05-05 | Zagorodnov, Victor; Holland, David; Tyler, Scott W. |
|
Abstract<br/><br/>Researchers will explore the use of a distributed temperature sensing monitoring system (DTS), using fiber-optical (FO) technology, as the basis of a sustainable, sub-ice cavity sensing array. FO cable systems, such as may be deployed through a hot-water drilled hole through an ice shelf, passing through the underlying cavity to the sea floor, are capable of measuring temperatures down fiber at 1 meter intervals, and at time frequencies as high as 15 seconds. DTS FO systems operate via optical time domain reflectometry along the fiber waveguide using inelastic backscatter of coherent laser light as a probe beam in the FO environment.<br/><br/>The introduction of new technologies to the harsh environmental conditions of the Antarctic are often associated with high risk. However, the potential rewards of this approach (e.g. multiyear capability, minimal submerged mechanical or electrical components that may fail, relative simplicity of deployment and measurement principle, yet yielding distributed real time and spatial observation) are attractive enough to conduct a pilot project at a field-ready location (McMurdo). <br/><br/>Current indications are that the instability of some of the world's largest ice sheets located around the Antarctic and Greenland may be caused by the presence of warming, deep ocean waters, shoaling over continental shelves, and melting the underside of floating ice shelves. Additional knowledge of the temporal and spatial variability of the temperature fields underneath terminal ice shelves, such as those draining the West Antarctic Ice Sheet, are needed to accurately project future global climate effects on ice-shelf ocean interactions, and in order to inform societal and technological aspects of adaption to changing sea-level. | None | None | false | false | |||||||
Mechanism and Timing of West Antarctic Ice Sheet Retreat at the End of the Last Glacial Maximum
|
9527876 |
2010-05-04 | Anderson, John |
|
Anderson OPP 9527876 Abstract This award supports continuation of a long term investigation of the continental shelf sediments that is aimed at examining the configuration of the West Antarctic Ice Sheet during the last glacial maximum, the events and mechanisms involved in its retreat, and the timing of retreat. The project involves: 1) characterizing variations in the ice sheet grounding zone in a latitudinal transect extending from Ross Sea to Bransfield Basin, 2) reconstructing conditions at the ice/bed interface prior to and after ice sheet retreat, and 3) radiometrically dating ice sheet retreat along this transect. Detailed sea floor imagery (multibeam and deep-tow side-scan sonar), high resolution seismic reflection profiles, and sediment cores will be used to map and characterize prior grounding zones. Of particular concern are features that indicate the amount and organization (channelization) of basal meltwater and the extent of bed deformation that occurred in different ice streams. The timing of ice sheet retreat provides information about the link between Northern and Southern hemisphere ice expansion, and the role of eustasy in ice sheet decoupling. This research should lead to better predictive models to determine which ice streams are most unstable and likely, therefore, to serve as Oweak linksO in the long term behavior of West Antarctic Ice Sheet. | POLYGON((-179.9996 -70.29238,-143.99968 -70.29238,-107.99976 -70.29238,-71.99984 -70.29238,-35.99992 -70.29238,0 -70.29238,35.99992 -70.29238,71.99984 -70.29238,107.99976 -70.29238,143.99968 -70.29238,179.9996 -70.29238,179.9996 -71.048723,179.9996 -71.805066,179.9996 -72.561409,179.9996 -73.317752,179.9996 -74.074095,179.9996 -74.830438,179.9996 -75.586781,179.9996 -76.343124,179.9996 -77.099467,179.9996 -77.85581,143.99968 -77.85581,107.99976 -77.85581,71.99984 -77.85581,35.99992 -77.85581,0 -77.85581,-35.99992 -77.85581,-71.99984 -77.85581,-107.99976 -77.85581,-143.99968 -77.85581,-179.9996 -77.85581,-179.9996 -77.099467,-179.9996 -76.343124,-179.9996 -75.586781,-179.9996 -74.830438,-179.9996 -74.074095,-179.9996 -73.317752,-179.9996 -72.561409,-179.9996 -71.805066,-179.9996 -71.048723,-179.9996 -70.29238)) | POINT(0 -89.999) | false | false | |||||||
Glacial Radiocarbon Constraints from Drake Passage Deep-Sea Corals
|
0636787 |
2010-05-04 | Dalziel, Ian W. |
|
This project uses radiocarbon in deep-sea corals to understand the Southern Ocean's role in modulating global climate. A key site of deep-water formation, the Southern Ocean is critical to exchange of heat and carbon between the deep-ocean and atmosphere. Changes in it may be linked to low atmospheric CO2 during the last glacial maximum through increased biologic carbon draw down or decreased air-sea CO2 exchange. Testing these hypotheses is challenging because of the scarcity of suitable records of the Southern Ocean's biogeochemistry and circulation. The aragonitic skeletons of deep-sea corals may offer insight because they are well suited for radiocarbon analyses-reflective of the 14C content of the past water column--while also allowing for timing of events through U-series age measurements. Overall, these measurements will put new constraints on the extent of air-sea gas exchange, polar water-column stratification, and the flux of Southern-sourced deep water to the rest of the world's oceans. As a part of this work, new sections of the Drake Passage sea floor will be mapped and imaged, along with the present and past distributions of deep-sea corals and their habitats. <br/><br/><br/><br/>A significant broader impact of this work is characterizing the functioning of what may be a key control of atmospheric CO2 content, which could prove important for fully understanding the impacts of continued CO2 emissions and developing mitigation strategies. As well, the work will characterize deep marine ecologies that are poorly understood, but increasingly exploited as fisheries resources. | POLYGON((-69.13317 -52.716503,-65.8622114 -52.716503,-62.5912528 -52.716503,-59.3202942 -52.716503,-56.0493356 -52.716503,-52.778377 -52.716503,-49.5074184 -52.716503,-46.2364598 -52.716503,-42.9655012 -52.716503,-39.6945426 -52.716503,-36.423584 -52.716503,-36.423584 -53.5798407,-36.423584 -54.4431784,-36.423584 -55.3065161,-36.423584 -56.1698538,-36.423584 -57.0331915,-36.423584 -57.8965292,-36.423584 -58.7598669,-36.423584 -59.6232046,-36.423584 -60.4865423,-36.423584 -61.34988,-39.6945426 -61.34988,-42.9655012 -61.34988,-46.2364598 -61.34988,-49.5074184 -61.34988,-52.778377 -61.34988,-56.0493356 -61.34988,-59.3202942 -61.34988,-62.5912528 -61.34988,-65.8622114 -61.34988,-69.13317 -61.34988,-69.13317 -60.4865423,-69.13317 -59.6232046,-69.13317 -58.7598669,-69.13317 -57.8965292,-69.13317 -57.0331915,-69.13317 -56.1698538,-69.13317 -55.3065161,-69.13317 -54.4431784,-69.13317 -53.5798407,-69.13317 -52.716503)) | POINT(-52.778377 -57.0331915) | false | false | |||||||
The Amundsen Continental Shelf and the Antarctic Ice Sheet
|
0440775 |
2010-05-04 | Jacobs, Stanley |
|
This collaborative study between Columbia University and the Southampton Oceanography Centre will investigate the dynamics of warm water intrusions under antarctic floating ice shelves. The study will focus on the Amundsen Sea and Pine Island Glacier, and will document how this water gains access to the continental shelf, transports heat into the ice shelf cavities via deep, glacially-scoured troughs, and rises beneath the ice to drive basal melting. The resulting seawater-meltwater mixtures upwell near the ice fronts, contributing to the formation of atypical coastal polynyas with strong geochemical signatures. Multidecadal freshening downstream is consistent with thinning ice shelves, which may be triggering changes inland, increasing the flow of grounded ice into the sea. This work will be carried out in combination with parallel modeling, remote sensing and data based projects, in an effort to narrow uncertainties about the response of West Antarctic Ice Sheet to climate change. Using state-of-the-art facilities and instruments, this work will enhance knowledge of water mass production and modification, and the understanding of interactions between the ocean circulation, sea floor and ice shelves. The data and findings will be reported to publicly accessible archives and submitted for publication in the scientific literature. The information obtained should prove invaluable for the development and validation of general circulation models, needed to predict the future role of the Antarctic Ice Sheet in sea level change. | None | None | false | false | |||||||
Heat and Chemical Exchange During the Early Stages of Backarc Rifting in a Polar Region: Hydrothermal Activity in Bransfield Strait, Antarctica
|
9725972 |
2010-05-04 | Klinkhammer, Gary |
|
NSF FORM 1358 (1/94) This award, provided by the Office of Polar Programs of the National Science Foundation, supports research to investigate hydrothermal venting in Bransfield Strait, between the South Shetland Islands and the Antarctic Peninsula. Previous exploratory work in the Strait identified several sites where hot hydrothermal fluids emanate from the sea floor. These discoveries were made using an instrument package specially designed to detect and map the thermal and chemical anomalies that hydrothermal activity imparts on the overlying water column. Hydrothermal sites in the Strait range in water depth from <200 to 1300 meters and occur on the volcanic outcrops that periodically protrude through the sediment cover along the strike of the rift zone. These sites are alligned with the caldera at Deception Island which has active hot springs. These are the first submarine hydrothermal sites discovered in Antarctica and as such represent unique research opportunities. This project will return to the Strait to further map and sample these areas. There are several compelling reasons to believe that further exploration of vent systems in the Bransfield will yield exciting new information: (1) Bransfield Strait is a back-arc rift system and it is likely that the vent fluids and mineral deposits associated with venting in this setting are unlike anything sampled so far from submarine vents. (2) Preliminary evidence suggests that venting in the Bransfield occurs in two different volcanic substrates: andesite and rhyolite. This situation provides a natural laboratory for investigating the effects of substrate chemistry on vent fluid composition. (3) Bransfield Strait is isolated from the system of mid-ocean ridges and has a relatively short history of rifting (approximately 4 my). So, while the region straddles the Atlantic and Pacific, vent biota in the Strait may well have a distinct genealogy. Biochemical information on vent species in the Bransfield will add to our knowledge of the dispersal of life in the deep ocean. In the past such discoveries have led to the identification of new species and the isolation of previously unknown biochemical compounds. (4) The fire and ice environments of hydrothermal sites in the Bransfield may prove to be the closest analog for primordial environments on Earth and extraterrestrial bodies. The Bransfield Strait is one of the most productive areas of the world's oceans and lies close to the Antarctic continent, far removed from the mid-ocean ridge system. The combination of organic-rich sediment and heat produced by volcanism in this back- arc setting creates a situation conducive to unusual fluids, unique vent biota, and exotic hydrothermal deposits. Collaborative awards: OPP 9725972 and OPP 9813450 | POLYGON((-70.90664 -52.35256,-69.221316 -52.35256,-67.535992 -52.35256,-65.850668 -52.35256,-64.165344 -52.35256,-62.48002 -52.35256,-60.794696 -52.35256,-59.109372 -52.35256,-57.424048 -52.35256,-55.738724 -52.35256,-54.0534 -52.35256,-54.0534 -53.399775,-54.0534 -54.44699,-54.0534 -55.494205,-54.0534 -56.54142,-54.0534 -57.588635,-54.0534 -58.63585,-54.0534 -59.683065,-54.0534 -60.73028,-54.0534 -61.777495,-54.0534 -62.82471,-55.738724 -62.82471,-57.424048 -62.82471,-59.109372 -62.82471,-60.794696 -62.82471,-62.48002 -62.82471,-64.165344 -62.82471,-65.850668 -62.82471,-67.535992 -62.82471,-69.221316 -62.82471,-70.90664 -62.82471,-70.90664 -61.777495,-70.90664 -60.73028,-70.90664 -59.683065,-70.90664 -58.63585,-70.90664 -57.588635,-70.90664 -56.54142,-70.90664 -55.494205,-70.90664 -54.44699,-70.90664 -53.399775,-70.90664 -52.35256)) | POINT(-62.48002 -57.588635) | false | false | |||||||
Collaborative Research: The Connection Between Mid-Cenozoic Seafloor Spreading and the Western Ross Sea Embayment
|
0440959 |
2010-05-04 | Cande, Steven |
|
This work will perform a marine geophysical survey of sea floor spreading off Cape Adare, Antarctica. Magnetic, gravity, swath bathymetry and multi-channel seismic data will be acquired from the southern end of the Adare Basin to the northern parts of the Northern Basin and Central Trough in the Ross Embayment. Previous surveys documented 170 km of regional extension between forty-three and twenty-six million years ago, which resulted in some seafloor spreading in the Adare Basin. However, the relationship of Adare Basin spreading to the overall extension and the southward continental basins of the Ross Embayment has not been established. This relationship is critical to understanding the tectonic evolution of East and West Antarctica and linking Pacific plate motions to the rest of the world. The study will also offer unique insight into rifting processes by studying the transition of rifting between oceanic and continental lithosphere. In terms of broader impacts, this project will support two graduate students and field research experience for undergraduates. The project also involves cooperation between scientists from the US, Australia, New Zealand and Japan. | None | None | false | false | |||||||
SGER Proposal: Rare Research Opportunity to Study Geotectonic Fluids in Bransfield Strait and Scotia Arc, Antarctica
|
9731695 |
2010-05-04 | Klinkhammer, Gary |
|
9731695 Klinkhammer This award supports participation of Oregon State University (OSU) researchers in an expedition of the German oceanographic research vessel POLARSTERN to the Antarctic Ocean (POLARSTERN cruise ANT-XV/2). Previous OSU researchers supported by the US Antarctic Program identified several areas of hydrothermal venting in the Bransfield Strait. This discovery has important implications to the biogeography of vent animals, the geological evolution of ore deposits, and the chemical and heat budgets of the Earth. The previous work sampled water and particles from above the vent sites at a reconnaissance level. Subsequent chemical analyses of these samples provided insight into the chemistry of fluids emanating from vents on the sea floor. The POLARSTERN cruise affords a unique opportunity to build on these discoveries in the Bransfield Strait, foster future international work in the Bransfield area, extend research on hydrothermal activity to other parts of the Antarctic Peninsula region, and develop a working relationship with a strong international group. In particular, the POLARSTERN expedition provides the opportunity for: 1) additional sampling of water and suspended particulate matter in the water column over the Bransfield hydrothermal sites this sampling would be aided by German photographic reconnaissance; 2) reconnaissance, to determine the broader geographical extent of hydrothermal activity, would be extended to the Scotia Arc and trench areas following the general theme of the German program which is fluid expulsion from the Scotia- Bransfield system; and 3) the use of unique tools available on the POLARSTERN such as a camera sled and grab bottom sampler. This work will make it possible to better define the location of hydrothermal vents and to begin to quantify the amount of water being expelled by this hydrothermal activity. If vents can be precisely located, the bottom photography holds the promise of revealing possible biologic al communities associated with these submarine hot springs. | POLYGON((-179.9993 -43.56612,-143.99965 -43.56612,-108 -43.56612,-72.00035 -43.56612,-36.0007 -43.56612,-0.00105000000002 -43.56612,35.9986 -43.56612,71.99825 -43.56612,107.9979 -43.56612,143.99755 -43.56612,179.9972 -43.56612,179.9972 -45.894301,179.9972 -48.222482,179.9972 -50.550663,179.9972 -52.878844,179.9972 -55.207025,179.9972 -57.535206,179.9972 -59.863387,179.9972 -62.191568,179.9972 -64.519749,179.9972 -66.84793,143.99755 -66.84793,107.9979 -66.84793,71.99825 -66.84793,35.9986 -66.84793,-0.00104999999999 -66.84793,-36.0007 -66.84793,-72.00035 -66.84793,-108 -66.84793,-143.99965 -66.84793,-179.9993 -66.84793,-179.9993 -64.519749,-179.9993 -62.191568,-179.9993 -59.863387,-179.9993 -57.535206,-179.9993 -55.207025,-179.9993 -52.878844,-179.9993 -50.550663,-179.9993 -48.222482,-179.9993 -45.894301,-179.9993 -43.56612)) | POINT(0 -89.999) | false | false | |||||||
Collaborative Research: Neotectonic Structure of Terror Rift, Western Ross Sea
|
0126279 0125624 |
2010-05-04 | Wilson, Terry |
|
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a study to investigate the tectonic development of the southwestern Ross Sea region. Displacements between East and West Antarctica have long been proposed based on global plate circuits, apparent hot spot motions, interpretations of seafloor magnetic anomalies, paleomagnetism, and on geologic grounds. Such motions require plate boundaries crossing Antarctica, yet these boundaries have never been explicitly defined. This project will attempt to delineate the late Cenozoic - active boundary between East and West Antarctica along the Terror Rift in the western Ross Sea, where young structures have been identified, continuity between active extension and intracontinental structures can be established, and where accessibility via ship will allow new key data sets to be acquired. We will use multi-source marine and airborne geophysical data to map the fault patterns and volcanic structure along the eastern margin of the Terror Rift. The orientations of volcanic fissures and seamount alignments on the seafloor will be mapped using multibeam bathymetry. The volcanic alignments will show the regional extension or shear directions across the Terror Rift and the orientations of associated crustal stresses. Swath bathymetry and single channel seismic data will be used to document neotectonic fault patterns and the eastern limit of recent faulting. Delineation of neotectonic fault patterns will demonstrate whether the eastern margin of the Terror Rift forms a continuous boundary and whether the rift itself can be linked with postulated strike-slip faults in the northwestern Ross Sea. Seafloor findings from this project will be combined with fault kinematic and stress field determinations from the surrounding volcanic islands and the Transantarctic Mountains. The integrated results will test the propositions that the eastern boundary of the Terror Rift forms the limit of the major, late Cenozoic -active structures through the Ross Sea and that Terror Rift kinematics involve dextral transtension linked to the right-lateral strike-slip faulting to the north. These results will help constrain the kinematic and dynamic links between the West Antarctic rift system and Southern Ocean structures and any related motions between East and West Antarctica. In the first year, a collaborative structural analysis of existing multichannel and single channel seismic profiles and aeromagnetic data over the Terror Rift will be conducted. The location of volcanic vents or fissures and any fault scarps on the sea floor will be identified and a preliminary interpretation of the age and kinematics of deformation in the Terror Rift will be produced. Late in the second year, a one-month cruise on RVIB N.B. Palmer will carry out multibeam bathymetric and sidescan sonar mapping of selected portions of the seafloor of Terror Rift. Gravity, magnetics, seismic reflection and Bathy2000 3.5 kHz sub-bottom profile data will also be collected across the rift. In the third year, we will use these multisource data to map the orientations and forms of volcanic bodies and the extent and geometry of neotectonic faulting associated with the Terror Rift. The project will: 1) complete a map of neotectonic faults and volcanic structures in the Terror Rift; 2) interpret the structural pattern to derive the motions and stresses associated with development of the rift; 3) compare Terror Rift structures with faults and lineaments mapped in the Transantarctic Mountains to improve age constraints on the structures; and 4) integrate the late Cenozoic structural interpretations from the western Ross Sea with Southern Ocean plate boundary kinematics. | POLYGON((163.69456 -75.04911,164.525266 -75.04911,165.355972 -75.04911,166.186678 -75.04911,167.017384 -75.04911,167.84809 -75.04911,168.678796 -75.04911,169.509502 -75.04911,170.340208 -75.04911,171.170914 -75.04911,172.00162 -75.04911,172.00162 -75.3293,172.00162 -75.60949,172.00162 -75.88968,172.00162 -76.16987,172.00162 -76.45006,172.00162 -76.73025,172.00162 -77.01044,172.00162 -77.29063,172.00162 -77.57082,172.00162 -77.85101,171.170914 -77.85101,170.340208 -77.85101,169.509502 -77.85101,168.678796 -77.85101,167.84809 -77.85101,167.017384 -77.85101,166.186678 -77.85101,165.355972 -77.85101,164.525266 -77.85101,163.69456 -77.85101,163.69456 -77.57082,163.69456 -77.29063,163.69456 -77.01044,163.69456 -76.73025,163.69456 -76.45006,163.69456 -76.16987,163.69456 -75.88968,163.69456 -75.60949,163.69456 -75.3293,163.69456 -75.04911)) | POINT(167.84809 -76.45006) | false | false | |||||||
Influence of Seasonal Ice Cover on Pelagic and Benthic Communities: Long Time-Series Studies
|
9727077 |
2010-05-04 | Smith, Kenneth |
|
9727077 SMITH The annual expansion and contraction of ice cover in the Southern Ocean is the largest seasonal process in the World Ocean. This seasonal variability in ice cover creates extensive fluctuations in primary production, which heavily impacts pelagic and benthic communities. This research will initiate a long time-series study of the water column and sea floor using long-term, autonomous monitoring and sampling systems developed for use in the Antarctic. The study will be located in Post Foster, Deception Island, which supports a pelagic and benthic fauna representative of the Antarctic coastal zone and experiences seasonal ice cover. A bottom-moored, upward-looking acoustic instrument will be deployed on the sea floor for a period of one year to monitor the vertical distribution, abundance and biomass of acoustically-detectable macrozooplankton and micronekton in the water column. Collections will be made over this period using a newly-developed vertically-profiling pump sampling. Simultaneously, a time-lapse camera system will be moored on the sea floor to monitor the spatial distribution, sizes and movements of the epibenthic megafauna component of the benthic community. The instrumentation development will allow the research project to focus on the effect of the seasonal sea ice cycle on the distribution, abundance and biomass of the macrozooplankton and micronekton in the water column. Similar questions on the distribution, abundance, size and movements of the epibenthic megafauna will be addressed. Results from this study will provide a valuable data base for the evaluation of the pelagic and benthic community responses to seasonal variability in the Southern Ocean. | POLYGON((-70.907166 -52.348,-69.6496994 -52.348,-68.3922328 -52.348,-67.1347662 -52.348,-65.8772996 -52.348,-64.619833 -52.348,-63.3623664 -52.348,-62.1048998 -52.348,-60.8474332 -52.348,-59.5899666 -52.348,-58.3325 -52.348,-58.3325 -53.600917,-58.3325 -54.853834,-58.3325 -56.106751,-58.3325 -57.359668,-58.3325 -58.612585,-58.3325 -59.865502,-58.3325 -61.118419,-58.3325 -62.371336,-58.3325 -63.624253,-58.3325 -64.87717,-59.5899666 -64.87717,-60.8474332 -64.87717,-62.1048998 -64.87717,-63.3623664 -64.87717,-64.619833 -64.87717,-65.8772996 -64.87717,-67.1347662 -64.87717,-68.3922328 -64.87717,-69.6496994 -64.87717,-70.907166 -64.87717,-70.907166 -63.624253,-70.907166 -62.371336,-70.907166 -61.118419,-70.907166 -59.865502,-70.907166 -58.612585,-70.907166 -57.359668,-70.907166 -56.106751,-70.907166 -54.853834,-70.907166 -53.600917,-70.907166 -52.348)) | POINT(-64.619833 -58.612585) | false | false | |||||||
The Cape Roberts Project: Volcanic Record, Geochemistry and 40Ar/39Ar Chronology
|
9527329 |
1970-01-01 | Kyle, Philip; Krissek, Lawrence | No dataset link provided | Kyle OPP 9527329 Abstract The Cape Roberts Project is an international drilling project to obtain a series of cores from the sedimentary strata beneath the sea floor off Cape Roberts in the Ross Sea. The project is a joint venture by scientists from the national Antarctic programs of Germany, Italy, New Zealand, the United Kingdom., Australia, and the United States. Drilling will continuously core a composite section of sediments over 1500 m thick which is expected to represent parts of the time period between 30 and more than 100 million years ago. The principle objectives of this component of the project will be to examine the record of igneous material in the drill core and provide high precision 40Ar/39Ar dates from tephra (volcanic ash) layers, disseminated ash, feldspars and epiclastic volcanic detrital grains to constrain depositional age and provenance of the sediments in the cores. This project will contribute to general geologic logging of the core and will characterize any igneous material using electron microprobe, x-ray fluorescence (XRF) and instrumental neutron activation analysis (INAA) analyses. The presence of alkalic volcanic detritus from the Cenozoic McMurdo Volcanics will constrain the initiation of this phase of volcanism and improve our understanding of the relationship between volcanism and tectonism. The influx of sediments eroded from Jurassic Kirkpatrick Basalts and Ferrar Dolerites will be used to time the unroofing and rates of uplift of the Transantarctic Mountains. Geochemical analyses of core samples will examine the geochemistry and provenance of the sediments. | POLYGON((-180 -65,-175.5 -65,-171 -65,-166.5 -65,-162 -65,-157.5 -65,-153 -65,-148.5 -65,-144 -65,-139.5 -65,-135 -65,-135 -66.5,-135 -68,-135 -69.5,-135 -71,-135 -72.5,-135 -74,-135 -75.5,-135 -77,-135 -78.5,-135 -80,-139.5 -80,-144 -80,-148.5 -80,-153 -80,-157.5 -80,-162 -80,-166.5 -80,-171 -80,-175.5 -80,180 -80,177 -80,174 -80,171 -80,168 -80,165 -80,162 -80,159 -80,156 -80,153 -80,150 -80,150 -78.5,150 -77,150 -75.5,150 -74,150 -72.5,150 -71,150 -69.5,150 -68,150 -66.5,150 -65,153 -65,156 -65,159 -65,162 -65,165 -65,168 -65,171 -65,174 -65,177 -65,-180 -65)) | POINT(-172.5 -72.5) | false | false |