{"dp_type": "Project", "free_text": "Notothenioids"}
[{"awards": "2324998 Daane, Jacob; 1955368 Daane, Jacob", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 01 Aug 2024 00:00:00 GMT", "description": "Part I: Nontechnical description The ecologically important notothenioid fish of the Southern Ocean surrounding Antarctica will be studied to address questions central to polar, evolutionary, and adaptational biology. The rapid diversification of the notothenioids into \u003e120 species following a period of Antarctic glaciation and cooling of the Southern Ocean is thought to have been facilitated by key evolutionary innovations, including antifreeze glycoproteins to prevent freezing and bone reduction to increase buoyancy. In this project, a large dataset of genomic sequences will be used to evaluate the genetic mechanisms that underly the broad pattern of novel trait evolution in these fish, including traits relevant to human diseases (e.g., bone density, renal function, and anemia). The team will develop new STEM-based research and teaching modules for undergraduate education at Northeastern University. The work will provide specific research training to scholars at all levels, including a post-doctoral researcher, a graduate student, undergraduate students, and high school students. The team will also contribute to public outreach, including, in part, the develop of teaching videos in molecular evolutionary biology and accompanying educational supplements. Part II: Technical description The researchers will leverage their comprehensive notothenioid phylogenomic dataset comprising \u003e250,000 protein-coding exons and conserved non-coding elements across 44 ingroup and 2 outgroup species to analyze the genetic origins of three iconic notothenioid traits: (1) loss of erythrocytes by the icefish clade in a cold, stable and highly-oxygenated marine environment; (2) reduction in bone mass and retention of juvenile skeletal characteristics as buoyancy mechanisms to facilitate foraging; and (3) loss of kidney glomeruli to retain energetically expensive antifreeze glycoproteins. The team will first track patterns of change in erythroid-related genes throughout the notothenioid phylogeny. They will then examine whether repetitive evolution of a pedomorphic skeleton in notothenioids is based on parallel or divergent evolution of genetic regulators of heterochrony. Third, they will determine whether there is mutational bias in the mechanisms of loss and re-emergence of kidney glomeruli. Finally, identified genetic mechanisms of evolutionary change will be validated by experimental testing using functional genomic strategies in the zebrafish model system. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "United States Of America; FISH", "locations": "United States Of America", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Daane, Jacob; Detrich, H. William", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "ANT LIA: Collaborative Research: Evolutionary Patterns and Mechanisms of Trait Diversification in the Antarctic Notothenioid Radiation", "uid": "p0010473", "west": -180.0}, {"awards": "2232891 Postlethwait, John", "bounds_geometry": "POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 14 Aug 2023 00:00:00 GMT", "description": "Antarctic animals face tremendous threats as Antarctic ice sheets melt and temperatures rise. About 34 million years ago, when Antarctica began to cool, most species of fish became locally extinct. A group called the notothenioids, however, survived due to the evolution of antifreeze. The group eventually split into over 120 species. Why did this group of Antarctic fishes evolve into so many species? One possible reason why a single population splits into two species relates to sex genes and sex chromosomes. Diverging species often have either different sex determining genes (genes that specify whether an individual\u2019s gonads become ovaries or testes) or have different sex chromosomes (chromosomes that differ between males and females within a species, like the human X and Y chromosomes). We know the sex chromosomes of only a few notothenioid species and know the genetic basis for sex determination in none of them. The aims of this research are to: 1) identify sex chromosomes in species representing every major group of Antarctic notothenioid fish; 2) discover possible sex determining genes in every major group of Antarctic notothenioid fish; and 3) find sex chromosomes and possible sex determining genes in two groups of temperate, warmer water, notothenioid fish. These warmer water fish include groups that never experienced the frigid Southern Ocean and groups that had ancestors inhabiting Antarctic oceans that later adjusted to warmer waters. This project will help explain the mechanisms that led to the division of a group of species threatened by climate change. This information is critical to conserve declining populations of Antarctic notothenioids, which are major food sources for other Antarctic species such as bird and seals. The project will offer a diverse group of undergraduates the opportunity to develop a permanent exhibit at the Eugene Science Center Museum. The exhibit will describe the Antarctic environment and explain its rapid climate change. It will also introduce the continent\u2019s bizarre fishes that live below the freezing point of water. The project will collaborate with the university\u2019s Science and Comics Initiative and students in the English Department\u2019s Comics Studies Minor to prepare short graphic novels explaining Antarctic biogeography, icefish specialties, and the science of this project as it develops. As Antarctica cooled, most species disappeared from the continent\u2019s waters, but cryonotothenioid fish radiated into a species flock. What facilitated this radiation? Coyne\u2019s \u201ctwo rules of speciation\u201d offer explanations for why species diverge: 1) the dysgenic sex in an interspecies hybrid is the one with two different sex chromosomes (i.e., in humans, it would be XY males and not XX females); and 2) \u201csex chromosomes play an outsized role in speciation\u201d. These ideas propel the project\u2019s main hypothesis: new sex chromosomes and new sex determination genes associate with cryonotothenioid speciation events. The main objective of the research is to identify notothenioid sex chromosomes and candidate sex-determination genes in many notothenioid species. The project\u2019s first aim is to identify Antarctic fish sex chromosomes, asking the question: Did new sex chromosomes accompany speciation events? Knowledge gaps include: which species have cryptic sex chromosomes; which have newly evolved sex chromosomes; and which are chromosomally XX/XY or ZZ/ZW. Methods involve population genomics (RAD-seq and Pool-seq) for more than 20 Antarctic cryonotothenioids. The prediction is frequent turnover of sex chromosomes. The project\u2019s second aim is to Identify candidate Antarctic cryonotothenioid sex-determination genes, asking the question: Did new sex-determination genes accompany Antarctic cryonotothenioid speciation events? A knowledge gap is the identity of sex determination genes in any notothenioid. Preliminary data show that three sex-linked loci are in or adjacent to three different candidate sex determination genes: 1) a duplicate of bmpr1ba in blackfin icefish; 2) a tandem duplicate of gsdf in South Georgia icefish; and 3) a transposed duplicate of gsdf in striped notothen. Methods involve annotating the genomic neighborhoods of cryonotothenioid sex linked loci for anomalies in candidate sex genes, sequencing sex chromosomes, and testing sex gene variants by CRISPR mutagenesis in zebrafish. The prediction is frequent turnover of sex determination genes. The project\u2019s third aim is to identify sex chromosomes and sex-determination genes in temperate notothenioids. Basally diverging temperate notothenioids (\u2018basals\u2019) lack identifiable sex chromosomes, consistent with temperature-cued sex determination, and one \u2018basal\u2019 species is a hermaphrodite. The constantly cold Southern Ocean rules out temperature, a common sex determination cue in many temperate fish, favoring genetic sex determination. Some cryonotothenioids re-invaded temperate waters (\u2018returnees\u2019). Knowledge gaps include whether basals and returnees have strong sex determination genes. Methods employ pool-seq. The prediction is that genetic sex determination is weak in basals and that returnees have the same, but weaker, sex-linked loci as their Antarctic sister clade. A permanent exhibit will be established at the Eugene Science Center Museum tentatively entitled: The Antarctic: its fishes and climate change. Thousands of visitors, especially school children will be exposed, to the science of Antarctic ecosystems and the impacts of climate change. The research team will collaborate with the university\u2019s Science and Comics Initiative to produce short graphic novels explaining Antarctic biogeography, icefish specialties, and this project. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Speciation; Southern Ocean; Dragonfish; Antarctica; Plunderfish; Fish; Notothenioid; FISH; Eleginopsioidea; Icefish; MARINE ECOSYSTEMS; Cryonotothenioid; Sub-Antarctic", "locations": "Antarctica; Southern Ocean; Sub-Antarctic", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Postlethwait, John; Desvignes, Thomas", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "ANT LIA: The Role of Sex Determination in the Radiation of Antarctic Notothenioid Fish", "uid": "p0010431", "west": -180.0}, {"awards": "1947040 Postlethwait, John; 2232891 Postlethwait, John; 1543383 Postlethwait, John", "bounds_geometry": "POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))", "dataset_titles": "aBSREL tests for episodic diversifying selection on hemoglobin genes in notothenioids.; MEME tests of sites evolving under episodic diversifying selection in notothenioid hemoglobin genes.; Notothenioid hemoglobin protein 3D modeling.; Notothenioid species tree used in the study.; Phylogenetic trees of hemoglobin proteins in notothenioids.; Rates of hemoglobin evolution among genes and across notothenioid species.; RELAX tests for pervasive changes in strength of natural selection on hemoglobin genes in notothenioids.", "datasets": [{"dataset_uid": "601728", "doi": "10.15784/601728", "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Gene; Genetic Analysis; Hemoglobin; Icefish; Notothenioid; Notothenioid Fishes; Plunderfish; Sub-Antarctic", "people": "Postlethwait, John; Desvignes, Thomas", "repository": "USAP-DC", "science_program": null, "title": "aBSREL tests for episodic diversifying selection on hemoglobin genes in notothenioids.", "url": "https://www.usap-dc.org/view/dataset/601728"}, {"dataset_uid": "601732", "doi": "10.15784/601732", "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Genetic Analysis; Hemoglobin; Icefish; Notothenioid; Notothenioid Fishes; Plunderfish; Sub-Antarctic", "people": "Postlethwait, John; Desvignes, Thomas", "repository": "USAP-DC", "science_program": null, "title": "Notothenioid hemoglobin protein 3D modeling.", "url": "https://www.usap-dc.org/view/dataset/601732"}, {"dataset_uid": "601731", "doi": "10.15784/601731", "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Genetic Analysis; Hemoglobin; Icefish; Notothenioid; Notothenioid Fishes; Plunderfish; Sub-Antarctic", "people": "Desvignes, Thomas; Postlethwait, John", "repository": "USAP-DC", "science_program": null, "title": "RELAX tests for pervasive changes in strength of natural selection on hemoglobin genes in notothenioids.", "url": "https://www.usap-dc.org/view/dataset/601731"}, {"dataset_uid": "601730", "doi": "10.15784/601730", "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Genetic Analysis; Hemoglobin; Icefish; Notothenioid; Notothenioid Fishes; Plunderfish; Sub-Antarctic", "people": "Postlethwait, John; Desvignes, Thomas", "repository": "USAP-DC", "science_program": null, "title": "MEME tests of sites evolving under episodic diversifying selection in notothenioid hemoglobin genes.", "url": "https://www.usap-dc.org/view/dataset/601730"}, {"dataset_uid": "601729", "doi": "10.15784/601729", "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Genetic Analysis; Hemoglobin; Icefish; Notothenioid; Notothenioid Fishes; Plunderfish; Sub-Antarctic", "people": "Desvignes, Thomas; Postlethwait, John", "repository": "USAP-DC", "science_program": null, "title": "Rates of hemoglobin evolution among genes and across notothenioid species.", "url": "https://www.usap-dc.org/view/dataset/601729"}, {"dataset_uid": "601722", "doi": "10.15784/601722", "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Gene; Hemoglobin; Icefish; Notothenioid; Plunderfish; Sub-Antarctic", "people": "Postlethwait, John; Desvignes, Thomas", "repository": "USAP-DC", "science_program": null, "title": "Phylogenetic trees of hemoglobin proteins in notothenioids.", "url": "https://www.usap-dc.org/view/dataset/601722"}, {"dataset_uid": "601721", "doi": "10.15784/601721", "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Gene; Hemoglobin; Icefish; Notothenioid; Plunderfish; Sub-Antarctic", "people": "Postlethwait, John; Desvignes, Thomas", "repository": "USAP-DC", "science_program": null, "title": "Notothenioid species tree used in the study.", "url": "https://www.usap-dc.org/view/dataset/601721"}], "date_created": "Wed, 03 May 2023 00:00:00 GMT", "description": "Antarctic notothenioid fishes, also known as cryonotothenioids, inhabit the icy and highly oxygenated waters surrounding the Antarctic continent after diverging from notothenioids inhabiting more temperate waters. Notothenioid hemoglobin and blood parameters are known to have evolved along with the establishment of stable polar conditions, and among Antarctic notothenioids, icefishes are evolutionary oddities living without hemoglobin following the deletion of all functional hemoglobin genes from their genomes. In this project, we investigate the evolution of hemoglobin genes and gene clusters across the notothenioid radiation until their loss in the icefish ancestor after its divergence from the dragonfish lineage to understand the forces, mechanisms, and potential causes for hemoglobin gene loss in the icefish ancestor.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "FISH; Icefish; Cryonotothenioid; Gene; Plunderfish; Eleginopsioidea; AQUATIC ECOSYSTEMS; Dragonfish; Sub-Antarctic; Notothenioid; Blood; Hemoglobin", "locations": "Sub-Antarctic", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Desvignes, Thomas; Postlethwait, John", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Evolution of hemoglobin genes in notothenioid fishes", "uid": "p0010417", "west": -180.0}, {"awards": "1645087 Catchen, Julian", "bounds_geometry": null, "dataset_titles": "Chromosome-Level Genome Assembly and Circadian Gene Repertoire of the Patagonia Blennie Eleginops maclovinus\u2014The Closest Ancestral Proxy of Antarctic Cryonotothenioids; Evaluating Illumina-, Nanopore-, and PacBio-based genome assembly strategies with the bald notothen, Trematomus borchgrevinki; Genomics of Secondarily Temperate Adaptation in the Only Non-Antarctic Icefish", "datasets": [{"dataset_uid": "200380", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "Genomics of Secondarily Temperate Adaptation in the Only Non-Antarctic Icefish", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA857989"}, {"dataset_uid": "200381", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "Chromosome-Level Genome Assembly and Circadian Gene Repertoire of the Patagonia Blennie Eleginops maclovinus\u2014The Closest Ancestral Proxy of Antarctic Cryonotothenioids", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA917608"}, {"dataset_uid": "200331", "doi": "10.5061/dryad.ghx3ffbs3", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Evaluating Illumina-, Nanopore-, and PacBio-based genome assembly strategies with the bald notothen, Trematomus borchgrevinki", "url": "https://datadryad.org/stash/dataset/doi:10.5061/dryad.ghx3ffbs3"}, {"dataset_uid": "200330", "doi": "", "keywords": null, "people": null, "repository": "NCBI ", "science_program": null, "title": "Evaluating Illumina-, Nanopore-, and PacBio-based genome assembly strategies with the bald notothen, Trematomus borchgrevinki", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA861284"}], "date_created": "Mon, 10 Oct 2022 00:00:00 GMT", "description": "As plate tectonics pushed Antarctica into a polar position, by ~34 million years ago, the continent and its surrounding Southern Ocean (SO) became geographically and thermally isolated by the Antarctic Circumpolar Current. Terrestrial and marine glaciation followed, resulting in extinctions as well as the survival and radiation of unique flora and fauna. The notothenioid fish survived and arose from a common ancestral stock into tax with 120 species that dominates today?s SO fish fauna. The Notothenioids evolved adaptive traits including novel antifreeze proteins for survival in extreme cold, but also suffered seemingly adverse trait loss including red blood cells in the icefish family, and the ability to mount cellular responses to mitigate heat stress ? otherwise ubiquitous across all life. This project aims to understand how the notothenoid genomes have changed and contributed to their evolution in the cold. The project will sequence, analyze and compare the genomes of two strategic pairs of notothenioid fishes representing both red-blooded and white-blooded species. Each pair will consist of one Antarctic species and one that has readapted to the temperate waters of S. America or New Zealand. The project will also compare the Antarctic species genomes to a genome of the closet non-Antarctic relative representing the temperate notothenioid ancestor. The work aims to uncover the mechanisms that enabled the adaptive evolution of this ecologically vital group of fish in the freezing Southern Ocean, and shed light on their adaptability to a warming world. The finished genomes will be made available to promote and advance Antarctic research and the project will host a symposium of Polar researchers to discuss the cutting edge developments regarding of genomic adaptations in the polar region. Despite subzero, icy conditions that are perilous to teleost fish, the fish fauna of the isolated Southern Ocean (SO) surrounding Antarctica is remarkably bountiful. A single teleost group ? the notothenioid fishes ? dominate the fauna, comprising over 120 species that arose from a common ancestor. When Antarctica became isolated and SO temperatures began to plunge in early Oligocene, the prior temperate fishes became extinct. The ancestor of Antarctic notothenioids overcame forbidding polar conditions and, absent niche competition, it diversified and filled the SO. How did notothenioids adapt to freezing environmental selection pressures and achieve such extraordinary success? And having specialized to life in chronic cold for 30 myr, can they evolve in pace with today?s warming climate to stay viable? Past studies of Antarctic notothenioid evolutionary adaptation have discovered various remarkable traits including the key, life-saving antifreeze proteins. But life specialized to cold also led to paradoxical trait changes such as the loss of the otherwise universal heat shock response, and of the O2-transporting hemoglobin and red blood cells in the icefish family. A few species interestingly regained abilities to live in temperate waters following the escape of their ancestor out of the freezing SO. This proposed project is the first major effort to advance the field from single trait studies to understanding the full spectrum of genomic and genetic responses to climatic and environmental change during notothenioid evolution, and to evaluate their adaptability to continuing climate change. To this end, the project will sequence the genomes of four key species that embody genomic responses to different thermal selection regimes during notothenioids? evolutionary history, and by comparative analyses of genomic structure, architecture and content, deduce the responding changes. Specifically, the project will (i) obtain whole genome assemblies of the red-blooded T. borchgrevinki and the S. American icefish C. esox; (ii) using the finished genomes from (i) as template, obtain assemblies of the New Zealand notothenioid N. angustata, and the white-blooded icefish C. gunnari, representing a long (11 myr) and recent (1 myr) secondarily temperate evolutionary history respectively. Genes that are under selection in the temperate environment but not in the Antarctic environment can be inferred to be directly necessary for that environment ? and the reverse is also true for genes under selection in the Antarctic but not in the temperate environment. Further, genes important for survival in temperate waters will show parallel selection between N. angustata and C. esox despite the fact that the two fish left the Antarctic at far separated time points. Finally, gene families that expanded due to strong selection within the cold Antarctic should show a degradation of duplicates in the temperate environment. The project will test these hypotheses using a number of techniques to compare the content and form of genes, the structure of the chromosomes containing those genes, and through the identification of key characters, such as selfish genetic elements, introns, and structural variants.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Genome Assembly; FISH; McMurdo Sound; Icefish; SHIPS; Notothenioid; Puerto Natales, Chile", "locations": "McMurdo Sound; Puerto Natales, Chile", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Catchen, Julian; Cheng, Chi-Hing", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "NCBI", "repositories": "Dryad; NCBI; NCBI ", "science_programs": null, "south": null, "title": "Evolutionary Genomic Responses in Antarctic Notothenioid Fishes", "uid": "p0010384", "west": null}, {"awards": "1443637 Zakon, Harold", "bounds_geometry": null, "dataset_titles": "Evolutionary analysis of transient receptor potential (TRP) channels in notothenioid fishes; Functional characterization of temperature activated ion channels from Antarctic fishes; TagSeq tissue specific expression data for Antarctic Harpagifer antarcticus and tropical African cichlid Astatotilapia (Haplochromis) burtoni", "datasets": [{"dataset_uid": "200292", "doi": "10.18738/T8/NXGNEI", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "Evolutionary analysis of transient receptor potential (TRP) channels in notothenioid fishes", "url": "https://doi.org/10.18738/T8/NXGNEI"}, {"dataset_uid": "200293", "doi": "", "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "TagSeq tissue specific expression data for Antarctic Harpagifer antarcticus and tropical African cichlid Astatotilapia (Haplochromis) burtoni", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA758918"}, {"dataset_uid": "601695", "doi": "10.15784/601695", "keywords": "Antarctica; Notothenioid; Southern Ocean", "people": "York, Julia", "repository": "USAP-DC", "science_program": null, "title": "Functional characterization of temperature activated ion channels from Antarctic fishes", "url": "https://www.usap-dc.org/view/dataset/601695"}], "date_created": "Fri, 03 Jun 2022 00:00:00 GMT", "description": "This project studies how the proteins of the nerves and muscles of fish that live in Antarctica function in the cold, which should provide information on the function of these same proteins in all animals, including humans. These proteins, called ion channels, open and close to allow ions (atoms or molecules with electrical charge) to flow into or out of cells which causes the electrical activity of nerves and muscles. Mutations that influence this process are the basis of numerous human disorders such as epilepsy, heart arrhythmias, and muscle paralysis. Thus, it is important to understand what parts of the proteins govern these transitions. The speed with which channels open and close depends on temperature. Human ion channels transition slowly when we are cold, which is why we become numb in the cold. Yet Antarctic fish, called icefish, are active at freezing temperatures that drastically limit the activity of human ion channels. The investigators have evidence that specific alterations in the icefishs\u0027 ion channels allow their channels to operate differently in the cold and they will use gene discovery and biophysical methods to test how these changes alter the transitions of icefish proteins at different temperatures. The project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. The gene discovery analysis will be done by undergraduate students including those from a minority-serving university and the investigators will develop a new course which will also serve students at that institution and elsewhere. In addition, the investigators will participate in educational outreach events with the general public as well as with groups with special needs. Notothenioid fishes are one of the most successful groups of vertebrates in Antarctica. Notothens have adaptations to the freezing water they inhabit and this project will study how their voltage-gated ion channels (VGICs) function in the cold. The molecular movements of ion channels are severely impaired by cold, yet notothens function at temperatures that would paralyze the nerves and muscles of \"cold-blooded\" temperate zone animals. Surprisingly, no biophysical or molecular investigations have been conducted on notothen VGICs. The investigators have preliminary data that amino acid substitutions occur at sites in VGICs that are evolutionarily conserved from fruit flies to humans. Some of these sites are known to impact channel function and the role of others in channel transitioning are unknown. The results from studying them will provide novel information also applicable to non-notothen, perhaps even human, VGICs as well as providing insights into how VGICs adapt to the cold. The project will biophysically characterize notothen VGICs using voltage-clamp techniques will and compare their properties over a range of temperatures to the same channel from two temperate zone fish. The role of unique notothen amino acid substitutions will be characterized by mutagenesis. One specific aim will be a project in which undergraduates mine notothen sequence databases to identify other potential amino acid substitutions in VGICs that might facilitate adaptation to the cold.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; USAP-DC; USA/NSF; FIELD INVESTIGATION; AMD; FISHERIES", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Zakon, Harold", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "Texas Data Repository", "repositories": "GenBank; Texas Data Repository; USAP-DC", "science_programs": null, "south": null, "title": "Analysis of Voltage-gated Ion Channels in Antarctic Fish", "uid": "p0010331", "west": null}, {"awards": "1954241 O\u0027\u0027Brien, Kristin", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 17 Aug 2021 00:00:00 GMT", "description": "Part 1: Non-technical description: Global climate warming is increasing the frequency and severity of low oxygen events in marine and freshwater environments worldwide, and these events threaten the health of aquatic ecosystems and the viability of fish populations. The Southern Ocean surrounding Antarctica has historically been a stable, icy-cold, and oxygen-rich environment, but is now warming at an unprecedented rate and faster than all other regions in the Southern hemisphere. Antarctic fishes have evolved in sub-zero temperatures that have been stable over long periods of time with traits allowing them to thrive in frigid waters, but with diminished resilience to warming temperatures. Presently little is known about the ability of Antarctic fishes to withstand hypoxic, or low-oxygen, conditions that often accompany warming. This research will investigate the hypoxia tolerance of four species of Antarctic fishes, including two species of icefishes that lack the oxygen-carrying protein, hemoglobin, which may compromise their ability to oxygenate tissues under hypoxic conditions. The hypoxia tolerance of four Antarctic fish species will be compared to that of a related fish species inhabiting warmer coastal regions of South America. Physiological and biochemical responses to hypoxia will be evaluated and compared amongst the five species to bolster our predictions of the capacity of Antarctic fishes to cope with a changing environment. This research will provide training opportunities for undergraduate and graduate students, and a postdoctoral research fellow. A year-long seminar series hosted by the Aquarium of the Pacific will feature female scientists who work in Antarctica to inspire youth in the greater Los Angeles area to pursue careers in science. Part 2: Technical description: The overarching hypothesis to be tested in this project is that the long evolution of Antarctic notothenioid fishes in a cold, oxygen-rich environment has reduced their capacity to mount a robust physiological, biochemical, and molecular response to hypoxia compared to related, cold-temperate fish species. Hypoxia tolerance will be compared among the red-blooded Antarctic notothenioids, Notothenia coriiceps and Notothenia rossii; the hemoglobinless Antarctic icefishes, Chaenocephalus aceratus and Chionodraco rastrospinosus; and the basal, cold-temperate notothenioid, Eleginops maclovinus, a species that has never inhabited waters south of the Polar Front. The minimum level of oxygen required to sustain maintenance metabolic requirements (O2crit) will be quantified. Animals will then be exposed to 65% of O2crit for 48 hours, and responses to hypoxia will be evaluated by measuring hematocrit and hemoglobin levels, as well as metabolites in brain, liver, glycolytic and cardiac muscles. Maximal activities of key enzymes of aerobic and anaerobic metabolism will be quantified to assess capacities for synthesizing ATP in hypoxic conditions. Gill remodeling will be analyzed using light and scanning electron microscopy. The molecular response to hypoxia will be characterized in liver and brains by quantifying levels of the master transcriptional regulator of oxygen homeostasis, hypoxia-inducible factor-1 (HIF-1), and hypoxic gene expression will be quantified using RNA-Seq. Cell cultures will be used to determine if a previously identified insertion mutation in notothenioid HIF-1 affects the ability of HIF-1 to drive gene expression and thus, hypoxia tolerance. The results of this project will provide the most comprehensive assessment of the hypoxia tolerance of Antarctic fishes to date. Broader impacts include research training opportunities for undergraduate and graduate students and a postdoctoral research associate, with a focus on involving Native Alaskan students in research. In partnership with the Aquarium of the Pacific, a year-long public seminar series will be held, showcasing the research and careers of 9 women who conduct research in Antarctica. The goal of the series is to cultivate and empower a community of middle and high school students in the greater Los Angeles area to pursue their interests in science and related fields, and to enhance the public engagement capacities of research scientists so that they may better inspire youth and early career scientists in STEM fields. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Palmer Station; FIELD SURVEYS; USAP-DC; AMD; USA/NSF; Amd/Us; FISH", "locations": "Palmer Station", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "O\u0027Brien, Kristin", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": null, "title": "ANT LIA: Hypoxia Tolerance in Notothenioid Fishes", "uid": "p0010246", "west": null}, {"awards": "1744999 Todgham, Anne", "bounds_geometry": "POLYGON((162 -77,162.8 -77,163.6 -77,164.4 -77,165.2 -77,166 -77,166.8 -77,167.6 -77,168.4 -77,169.2 -77,170 -77,170 -77.1,170 -77.2,170 -77.3,170 -77.4,170 -77.5,170 -77.6,170 -77.7,170 -77.8,170 -77.9,170 -78,169.2 -78,168.4 -78,167.6 -78,166.8 -78,166 -78,165.2 -78,164.4 -78,163.6 -78,162.8 -78,162 -78,162 -77.9,162 -77.8,162 -77.7,162 -77.6,162 -77.5,162 -77.4,162 -77.3,162 -77.2,162 -77.1,162 -77))", "dataset_titles": "A comparative and ontogenetic examination of mitochondrial function in Antarctic notothenioid species; Differential temperature preferences exhibited in the juvenile Antarctic notothenioids Trematomus bernacchii and Trematomus pennellii", "datasets": [{"dataset_uid": "601766", "doi": null, "keywords": "Antarctica; McMurdo Sound", "people": "Frazier, Amanda; Mandic, Milica; Todgham, Anne; Naslund, Andrew", "repository": "USAP-DC", "science_program": null, "title": "A comparative and ontogenetic examination of mitochondrial function in Antarctic notothenioid species", "url": "https://www.usap-dc.org/view/dataset/601766"}, {"dataset_uid": "601765", "doi": null, "keywords": "Antarctica; McMurdo Sound; Ross Sea", "people": "Frazier, Amanda; Naslund, Andrew; Todgham, Anne; Zillig, Ken; Mandic, Milica", "repository": "USAP-DC", "science_program": null, "title": "Differential temperature preferences exhibited in the juvenile Antarctic notothenioids Trematomus bernacchii and Trematomus pennellii", "url": "https://www.usap-dc.org/view/dataset/601765"}], "date_created": "Thu, 12 Aug 2021 00:00:00 GMT", "description": "The Southern Ocean contains an extraordinary diversity of marine life. Many Antarctic marine organisms have evolved in stable, cold ocean conditions and possess limited ability to respond to environmental fluctuations. To date, research on the physiological limits of Antarctic fishes has focused largely on adult life stages. However, early life stages may be more sensitive to environmental change because they may need to prioritize energy to growth and development instead of maintenance of physiological balance and integrity- even under stress conditions. This project will examine the specific mechanisms that young (embryos, larvae and juveniles) Antarctic fishes use to respond to changes in ocean conditions at the molecular, cellular and physiological levels, so that they are able to survive. The aim is to provide a unifying framework for linking environmental change, gene expression, metabolism and organismal performance in different species that have various rates of growth and development. There is a diverse and robust education and outreach program linked with the research effort that will reach students, teachers, young scientists, community members and government officials at local and regions scales. Polar species have already been identified as highly vulnerable to global change. However as yet, there is no unifying framework for linking environmental change to organismal performance, in part because a mechanistic understanding of how stressors interact at the molecular, biochemical and physiological level is underdeveloped is lacking for most species. In the marine environment, this paucity of information limits our capacity to accurately predict the impacts of warming and CO2-acidification on polar species, and therefore prevents linking climate model projections to population health predictions. This research will evaluate whether metabolic capacity (i.e. the ability to match energy supply with energy demand) limits the capacity of Antarctic fishes to acclimate to the simultaneous stressors of ocean warming and CO2-acidification. If species are unable to reestablish metabolic homeostasis following exposure to stressors, increased energetic costs may lead to a decline in physiological performance, organismal fitness, and survival. This energy-mismatch hypothesis will be tested in a multi-species approach that focuses on the early life stages, as growing juveniles are likely more vulnerable to energetic constraints than adults, while different species are targeted in order to understand how differences in phenology and life history traits influence metabolic plasticity. The research will provide a mechanistic integration of gene expression and metabolite patterns, and metabolic responses at the cellular and whole organism levels to broadly understand metabolic plasticity of fishes. The research is aligned with the theme \"Decoding the genomic and transcriptomic bases of biological adaptation and response across Antarctic organisms and ecosystems\" which is one of three major themes identified by the National Academy of Sciences in their document \"A Strategic Vision for NSF Investments in Antarctic and Southern Ocean Research\". Additionally, this project builds environmental stewardship and awareness by increasing science literacy in the broader community in three main ways: First it will increase the diversity of students involved in environmental science research by supporting one PhD student, one postdoctoral scholar and two undergraduate students and promoting the training of young students from groups traditionally underrepresented in environmental biology. Second, the project will participate in UC Davis\u0027s OneClimate initiative, which leverages the community\u0027s expertise to develop broad perspectives regarding climate change, science and society, and engage K-12 students, government officials, and local and statewide communities on topics of Antarctic research, organismal adaptation as well as ongoing and potential future changes at the poles. Lastly, summer workshops will be conducted in collaborations with the NSF-funded education program APPLES (Arctic Plant Phenology: Learning through Engaged Science), to engage teachers and K-12 students in polar science. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 170.0, "geometry": "POINT(166 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; AMD; McMurdo Sound; FISH; USA/NSF; Amd/Us; USAP-DC", "locations": "McMurdo Sound", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Todgham, Anne", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Interacting Stressors: Metabolic Capacity to Acclimate under Ocean Warming and CO2- Acidification in Early Developmental Stages of Antarctic Fishes", "uid": "p0010241", "west": 162.0}, {"awards": "1644196 Cziko, Paul", "bounds_geometry": "POLYGON((163.47 -77.14,163.803 -77.14,164.136 -77.14,164.469 -77.14,164.802 -77.14,165.135 -77.14,165.468 -77.14,165.801 -77.14,166.134 -77.14,166.467 -77.14,166.8 -77.14,166.8 -77.216,166.8 -77.292,166.8 -77.368,166.8 -77.444,166.8 -77.52,166.8 -77.596,166.8 -77.672,166.8 -77.748,166.8 -77.824,166.8 -77.9,166.467 -77.9,166.134 -77.9,165.801 -77.9,165.468 -77.9,165.135 -77.9,164.802 -77.9,164.469 -77.9,164.136 -77.9,163.803 -77.9,163.47 -77.9,163.47 -77.824,163.47 -77.748,163.47 -77.672,163.47 -77.596,163.47 -77.52,163.47 -77.444,163.47 -77.368,163.47 -77.292,163.47 -77.216,163.47 -77.14))", "dataset_titles": "High-resolution nearshore benthic seawater temperature from around McMurdo Sound, Antarctica (2017-2019); Long-Term broadband underwater acoustic recordings from McMurdo Sound, Antarctica (2017-2019); Long-term underwater images from around a single mooring site in McMurdo Sound, Antarctica (2017-2019)", "datasets": [{"dataset_uid": "601417", "doi": "10.15784/601417", "keywords": "Antarctica; Benthic Ecology; Benthic Invertebrates; Biota; McMurdo Sound; Notothenioid; Notothenioid Fishes; Photo/video; Photo/Video; Rocky Reef Community; Soft-Bottom Community; Timelaps Images", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "Long-term underwater images from around a single mooring site in McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601417"}, {"dataset_uid": "601416", "doi": "10.15784/601416", "keywords": "Antarctica; Bioacoustics; Biota; Hydroacoustics; Killer Whales; Leptonychotes Weddellii; McMurdo Sound; Oceans; Orcinus Orca; Sea Ice; Weddell Seal; Whales", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "Long-Term broadband underwater acoustic recordings from McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601416"}, {"dataset_uid": "601420", "doi": "10.15784/601420", "keywords": "Antarctica; Benthic Ecology; CTD; Depth; McMurdo Sound; Oceanography; Oceans; Physical Oceanography; Pressure; Salinity; Seawater Measurements; Seawater Temperature; Supercooling; Tides", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "High-resolution nearshore benthic seawater temperature from around McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601420"}], "date_created": "Tue, 15 Dec 2020 00:00:00 GMT", "description": "Notothenioid fishes live in the world\u0027s coldest marine waters surrounding Antarctica and have evolved strategies to avoid freezing. Past studies have shown that most Antarctic notothenioids produce special antifreeze proteins that prevent the growth of ice crystals that enter the body. While these proteins help prevent individuals from being killed by growing ice crystals, it is unclear how these fish avoid the accumulation of these small ice crystals inside their tissues over time. This project will observe how ice crystal accumulation relates to the harshness of the fish\u0027s habitat and the fish\u0027s behavior within different habitats of McMurdo Sound, Antarctica. The researchers will collect fishes and ocean observations at different field sites that cover a range of habitat severity in terms of temperature and iciness. Researchers will install an underwater ocean observatory near McMurdo Station which will include a HD video camera and hydrophone. The observatory will allow continuous monitoring of ocean conditions and fish behavior that will help explain the conditions and behaviors that contribute to the acquisition and accrual of ice inside the body. Acoustic and video data from the observatory will be available to other scientists and to the public. The project will advance understanding of the many challenges life faces in extreme cold environments. This work continues a line of inquiry that has resulted in the discovery of potential medical and food preservation applications. Hundreds of antifreeze protein (AFP) structure-function studies have been conducted in the laboratory, providing a basic physical understanding of the AFP-ice interaction. How AFPs function within fishes and their range of environments, however, is far from clear. This project will provide an understanding of notothenioid\u0027s freezing avoidance mechanisms, and strategies by quantifying the acquisition, accumulation, and loss of internal ice crystals. Specifically, the goal is to determine if and how habitat severity (as defined by iciness, seawater temperature, and prevalence of supercooled water) and fish behavior influence the abundance of ice crystals in their tissues. Four locations in the McMurdo Sound with different levels of habitat severity will be sampled for oceanographic conditions and ice crystal count within fish tissues. Researchers will use a new technique to count the number of splenic ice crystals, expanding on and simplifying previous methods. Environmental data loggers will be deployed for the duration of the project at the four sites to provide context and real-time assessment of environmental conditions. An oceanographic observatory near McMurdo Station will provide year-round, real-time and archival records of oceanographic conditions, in situ video observations of anchor ice growth and ice-organism interactions, hydroacoustic recordings, and serve as proof-of concept for expanding scientific infrastructure in McMurdo Sound related to monitoring of supercooled waters and oceanographic information.", "east": 166.8, "geometry": "POINT(165.135 -77.52)", "instruments": null, "is_usap_dc": true, "keywords": "Benthic Ecology; ANIMALS/VERTEBRATES; USA/NSF; OCEAN TEMPERATURE; USAP-DC; MAMMALS; FIELD INVESTIGATION; Amd/Us; McMurdo Sound; FISH; AMD", "locations": "McMurdo Sound", "north": -77.14, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Cziko, Paul; DeVries, Arthur", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes", "uid": "p0010147", "west": 163.47}, {"awards": "1341661 Near, Thomas", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Phylogenomics of Antarctic notothenioid fishes", "datasets": [{"dataset_uid": "601262", "doi": "10.15784/601262", "keywords": "Adaptive Radiation; Antarctica; Fish; Notothenioidei; Phylogeny; Southern Ocean; Speciation", "people": "Near, Thomas; Dornburg, Alex", "repository": "USAP-DC", "science_program": null, "title": "Phylogenomics of Antarctic notothenioid fishes", "url": "https://www.usap-dc.org/view/dataset/601262"}, {"dataset_uid": "601264", "doi": null, "keywords": "Adaptive Radiation; Antarctica; Fish; Notothenioidei; Phylogeny; Southern Ocean; Speciation", "people": "Near, Thomas; Dornburg, Alex", "repository": "USAP-DC", "science_program": null, "title": "Phylogenomics of Antarctic notothenioid fishes", "url": "https://www.usap-dc.org/view/dataset/601264"}], "date_created": "Sat, 29 Feb 2020 00:00:00 GMT", "description": "Understanding how groups of organisms respond to climate change is fundamentally important to assessing the impacts of human activities as well as understanding how past climatic shifts have shaped biological diversity over deep stretches of time. The fishes occupying the near-shore marine habitats around Antarctica are dominated by one group of closely related species called notothenioids. It appears dramatic changes in Antarctic climate were important in the origin and evolutionary diversification of this economically important lineage of fishes. Deposits of fossil fishes in Antarctica that were formed when the continent was experiencing milder temperatures show that the area was home to a much more diverse array of fish lineages. Today the waters of the Southern Ocean are very cold, and often below freezing, but notothenioids fishes exhibit a number of adaptions to live in this harsh set of marine habitats, including the presence of anti-freeze proteins. This research project will collect DNA sequences from hundreds of genes to infer the genealogical relationships of nearly all 124 notothenioid species, and use mathematical techniques to estimate the ages of species and lineages. Knowledge on the timing of evolutionary divergence in notothenioids will allow investigators to assess if timing of previous major climatic shifts in Antarctica are correlated with key events in the formation of the modern Southern Ocean fish fauna. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. The project will support educational outreach activities to teenager groups and to the general public through a natural history museum exhibit and other public lectures. It will provide professional training opportunities for graduate students and a postdoctoral research scholar. Adaptive radiation, where lineages experience high rates of evolutionary diversification coincident with ecological divergence, is mostly studied in island ecosystems. Notothenioids dominate the fish fauna of the Southern Ocean and exhibit antifreeze glycoproteins that allow occupation of the subzero waters. Notothenioids are noted as one of the only examples of adaptive radiation among marine fishes, but the evolutionary history of diversification and radiation into different ecological habitats is poorly understood. This research will generate a species phylogeny (evolutionary history) for nearly all of the 124 recognized notothenioid species to investigate the mechanisms of adaptive radiation in this lineage. The phylogeny is inferred from approximately 350 genes sampled using next generation DNA sequencing and related techniques. Morphometric data are taken for museum specimens to investigate the tempo of morphological diversification and to determine if there are correlations between rates of lineage diversification and the origin of morphological disparity. The patterns of lineage, morphological, and ecological diversification in the notothenioid radiation will be compared to the paleoclimatic record to determine if past instances of global climate change have shaped the evolutionary diversification of this lineage of polar-adapted fishes.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "FISH; Fish; AMD; USA/NSF; Southern Ocean; Amd/Us; NOT APPLICABLE; USAP-DC; MARINE ECOSYSTEMS; Notothenioidei; Phylogeny", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Near, Thomas", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Phylogenomic Study of Adaptive Radiation in Antarctic Fishes", "uid": "p0010087", "west": -180.0}, {"awards": "1543383 Postlethwait, John", "bounds_geometry": "POLYGON((-66 -62,-65.2 -62,-64.4 -62,-63.6 -62,-62.8 -62,-62 -62,-61.2 -62,-60.4 -62,-59.6 -62,-58.8 -62,-58 -62,-58 -62.4,-58 -62.8,-58 -63.2,-58 -63.6,-58 -64,-58 -64.4,-58 -64.8,-58 -65.2,-58 -65.6,-58 -66,-58.8 -66,-59.6 -66,-60.4 -66,-61.2 -66,-62 -66,-62.8 -66,-63.6 -66,-64.4 -66,-65.2 -66,-66 -66,-66 -65.6,-66 -65.2,-66 -64.8,-66 -64.4,-66 -64,-66 -63.6,-66 -63.2,-66 -62.8,-66 -62.4,-66 -62))", "dataset_titles": "C. aceratus pronephric kidney (head kidney) miRNA; mirtop\r\ncommand lines tool to annotate miRNAs with a standard mirna/isomir naming; Patagonotothen cornucola isolate Pcor_18_01 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial; Patagonotothen sima isolate Psim_18_11 cardiac muscle myosin heavy chain 6 (myh6) gene, partial cds; Patagonotothen sima isolate Psim_18_11 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial; Patagonotothen sima isolate Psim_18_12 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial; Prost!, a tool for miRNA annotation and next generation smallRNA sequencing experiment analysis; Quantifying expression levels of smallRNAs between tissues in Danio Rerio strain AB.; Quantifying expression levels of smallRNAs between tissues in three-spined stickleback", "datasets": [{"dataset_uid": "200130", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "C. aceratus pronephric kidney (head kidney) miRNA", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=SRP069031"}, {"dataset_uid": "200131", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Prost!, a tool for miRNA annotation and next generation smallRNA sequencing experiment analysis", "url": "https://github.com/uoregon-postlethwait/prost"}, {"dataset_uid": "200132", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "mirtop\r\ncommand lines tool to annotate miRNAs with a standard mirna/isomir naming", "url": "https://github.com/miRTop"}, {"dataset_uid": "200133", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Patagonotothen cornucola isolate Pcor_18_01 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=MN136231"}, {"dataset_uid": "200134", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Patagonotothen sima isolate Psim_18_11 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=MN136232"}, {"dataset_uid": "200135", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Patagonotothen sima isolate Psim_18_12 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=MN136233+"}, {"dataset_uid": "200136", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Patagonotothen sima isolate Psim_18_11 cardiac muscle myosin heavy chain 6 (myh6) gene, partial cds", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=MN136234+"}, {"dataset_uid": "200129", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "Quantifying expression levels of smallRNAs between tissues in Danio Rerio strain AB.", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=SRP039502"}, {"dataset_uid": "200128", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "Quantifying expression levels of smallRNAs between tissues in three-spined stickleback", "url": "https://www.ncbi.nlm.nih.gov/search/all/?term=SRP157992"}], "date_created": "Wed, 26 Feb 2020 00:00:00 GMT", "description": "Icefish live in frigid Antarctic seas, and have unique traits such as the absence of red blood cells, enlarged hearts, large diameter blood vessels, low bone mineral densities, and fat droplets that disrupt their muscles. These features would be harmful in other animals. In mammals and fish inhabiting warm waters, development of organs involved in these traits is modulated by genes that encode specific proteins, but the rate of protein production is often regulated by short RNA molecules called microRNAs (miRNAs). Genes that code for proteins must first make an RNA copy, and the actual protein is made from this RNA copy intermediate. MiRNAs regulate the amount of protein that is made by binding to the RNA intermediate and interrupting its production of protein. Binding of miRNAs to RNA depends strongly on temperature. Regulation of genes by miRNAs has not been studied in Antarctic fish, which live in seas with temperatures below the freezing point of fresh water. This project will compare miRNA regulation 1) in Antarctic fish vs. warm-water fish to learn how miRNAs regulate gene expression in constant cold; and 2) in Antarctic icefish with no red blood cells, enlarged hearts, and reduced bone density vs. closely related Antarctic fish containing red blood cells, normal hearts, and dense bones. The project will have broad impacts to science and society nationally and globally. First, this will be the first study of important factors in gene regulation (miRNAs) in Antarctic fish, which are an essential component of the entire ecology of the Southern Ocean, and will shed light on how these fish might respond to the warming of Antarctic waters. Second, it will bring Antarctic science to under-represented high school students at a local alternative downtown high school by conducting video conferences during the Antarctic field seasons and hosting student investigations of Antarctic fish in the research laboratory. microRNAs (miRNAs) are key post-transcriptional regulators of gene expression that modulate development and physiology in temperate animals. Although miRNAs act by binding to messenger RNAs (mRNAs), a process that is strongly sensitive to temperature, miRNAs have yet not been studied in Antarctic animals, including Notothenioid fish, which dominate the Southern Ocean. This project will compare miRNA regulation in 1) Antarctic vs. temperate fish to learn the roles of miRNA regulation in adaptation to constant cold; and in 2) bottom-dwelling, dense-boned, red-blooded Nototheniods vs. high buoyancy, osteopenic, white-blooded icefish to understand miRNA regulation in specialized organs after the evolution of the loss of hemoglobin genes and red blood cells, the origin of enlarged heart and vasculature, and the evolution of increased buoyancy, which arose by decreased bone mineralization and increased lipid deposition. Aim 1 is to test the hypothesis that Antarctic fish evolved miRNA-related genome specializations in response to constant cold. The project will compare four Antarctic Notothenioid species to two temperate Notothenioids and two temperate laboratory species to test the hypotheses that (a) Antarctic fish evolved miRNA genome repertoires by loss of ancestral genes and/or gain of new genes, (b) express miRNAs that are involved in cold tolerance, and (c) respond to temperature change by changing miRNA gene expression. Aim 2 is to test the hypothesis that the evolution of icefish from red-blooded bottom-dwelling ancestors was accompanied by an altered miRNA genomic repertoire, sequence, and/or expression. The project will test the hypotheses that (a) miRNAs in icefish evolved in sequence and/or in expression in icefish specializations, including head kidney (origin of red blood cells); heart (changes in vascular system), cranium and pectoral girdle (reduced bone mineral density); and skeletal muscle (lipid deposition), and (b) miRNAs that evolved in icefish specializations had ancestral functions related to their derived roles in icefish, as determined by functional tests of zebrafish orthologs of icefish miRNAs in developing zebrafish. The program will isolate, sequence, and determine the expression of miRNAs and mRNAs using high-throughput transcriptomics and novel software. Results will show how the microRNA system evolves in vertebrate animals pushed to physiological extremes and provide insights into the prospects of key species in the most rapidly warming part of the globe.", "east": -58.0, "geometry": "POINT(-62 -64)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; Palmer Station; NOT APPLICABLE; FISH", "locations": "Palmer Station", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Postlethwait, John; Desvignes, Thomas", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "NCBI SRA", "repositories": "GitHub; NCBI GenBank; NCBI SRA", "science_programs": null, "south": -66.0, "title": "Antarctic Fish and MicroRNA Control of Development and Physiology", "uid": "p0010085", "west": -66.0}, {"awards": "1341602 Crockett, Elizabeth; 1341663 O\u0027Brien, Kristin", "bounds_geometry": null, "dataset_titles": "Acclimation of cardiovascular function in Notothenia coriiceps; Adrenergic and adenosinergic regulation of the cardiovascular system in the Antarctic icefish Chaenocephalus aceratus; Cardiac metabolism in Antarctic fishes in response to an acute increase in temperature; Chaenocephalus aceratus HIF-1A mRNA, complete cds; Chionodraco rastrospinosus HIF-1A mRNA, partial cds; Effects of acute warming on cardiovascular performance of Antarctic fishes; Eleginops maclovinus HIF-1A mRNA, partial cds; Gymnodraco acuticeps HIF-1A mRNA, partial cds; Hypoxia response of hearts of Antarctic fishes; Maximum cardiac performance of Antarctic fishes that lack haemoglobin and myoglobin: exploring the effect of warming on nature\u2019s natural knockouts; Measurements of splenic contraction in Antarctic fishes; Mitochondrial membranes in cardiac muscle from Antarctic notothenioid fishes vary in phospholipid composition and membrane fluidity; Notothenia coriiceps HIF-1A mRNA, complete cds; Parachaenichthys charcoti HIF-1A mRNA, partial cds; Physical, chemical, and functional properties of neuronal membranes vary between species of Antarctic notothenioids differing in thermal tolerance; Thermal sensitivity of membrane fluidity and integrity in hearts of Antarctic fishes that vary in expression of hemoglobin and myoglobin", "datasets": [{"dataset_uid": "601410", "doi": "10.15784/601410", "keywords": "Antarctica; Antarctic Peninsula; Biota; Fish", "people": "O\u0027Brien, Kristin; Crockett, Elizabeth; Egginton, Stuart; Axelsson, Michael; Farrell, Anthony; Joyce, William", "repository": "USAP-DC", "science_program": null, "title": "Effects of acute warming on cardiovascular performance of Antarctic fishes", "url": "https://www.usap-dc.org/view/dataset/601410"}, {"dataset_uid": "200189", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Eleginops maclovinus HIF-1A mRNA, partial cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/KX950830"}, {"dataset_uid": "601407", "doi": "10.15784/601407", "keywords": "Antarctica; Antarctic Peninsula", "people": "Axelsson, Michael; Joyce, William; O\u0027Brien, Kristin", "repository": "USAP-DC", "science_program": null, "title": "Measurements of splenic contraction in Antarctic fishes", "url": "https://www.usap-dc.org/view/dataset/601407"}, {"dataset_uid": "200184", "doi": "10.5061/dryad.83vc5", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Maximum cardiac performance of Antarctic fishes that lack haemoglobin and myoglobin: exploring the effect of warming on nature\u2019s natural knockouts", "url": "https://doi.org/10.5061/dryad.83vc5"}, {"dataset_uid": "200185", "doi": "10.5061/dryad.k90h35k", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Mitochondrial membranes in cardiac muscle from Antarctic notothenioid fishes vary in phospholipid composition and membrane fluidity", "url": "https://doi.org/10.5061/dryad.k90h35k"}, {"dataset_uid": "200186", "doi": "10.5061/dryad.qm0b25h", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Physical, chemical, and functional properties of neuronal membranes vary between species of Antarctic notothenioids differing in thermal tolerance", "url": "https://doi.org/10.5061/dryad.qm0b25h"}, {"dataset_uid": "200187", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Chaenocephalus aceratus HIF-1A mRNA, complete cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/KX950828"}, {"dataset_uid": "601408", "doi": "10.15784/601408", "keywords": "Antarctica; Antarctic Peninsula", "people": "Farrell, Anthony; Crockett, Elizabeth; Axelsson, Michael; O\u0027Brien, Kristin; Egginton, Stuart; Joyce, William", "repository": "USAP-DC", "science_program": null, "title": "Acclimation of cardiovascular function in Notothenia coriiceps", "url": "https://www.usap-dc.org/view/dataset/601408"}, {"dataset_uid": "200188", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Notothenia coriiceps HIF-1A mRNA, complete cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/KX950829"}, {"dataset_uid": "601409", "doi": "10.15784/601409", "keywords": "Antarctica; Antarctic Peninsula", "people": "Joyce, Michael; O\u0027Brien, Kristin; Egginton, Stuart; Farrell, Anthony; Axelsson, Michael", "repository": "USAP-DC", "science_program": null, "title": "Adrenergic and adenosinergic regulation of the cardiovascular system in the Antarctic icefish Chaenocephalus aceratus", "url": "https://www.usap-dc.org/view/dataset/601409"}, {"dataset_uid": "601414", "doi": "10.15784/601414", "keywords": "Antarctica; Antarctic Peninsula", "people": "Evans, Elizabeth; Farnoud, Amir; Crockett, Elizabeth; O\u0027Brien, Kristin", "repository": "USAP-DC", "science_program": null, "title": "Thermal sensitivity of membrane fluidity and integrity in hearts of Antarctic fishes that vary in expression of hemoglobin and myoglobin", "url": "https://www.usap-dc.org/view/dataset/601414"}, {"dataset_uid": "200190", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Parachaenichthys charcoti HIF-1A mRNA, partial cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/KX950833"}, {"dataset_uid": "601405", "doi": "10.15784/601405", "keywords": "Antarctica; Antarctic Peninsula", "people": "O\u0027Brien, Kristin", "repository": "USAP-DC", "science_program": null, "title": "Cardiac metabolism in Antarctic fishes in response to an acute increase in temperature", "url": "https://www.usap-dc.org/view/dataset/601405"}, {"dataset_uid": "200191", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Gymnodraco acuticeps HIF-1A mRNA, partial cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/kx950832"}, {"dataset_uid": "200192", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Chionodraco rastrospinosus HIF-1A mRNA, partial cds", "url": "https://www.ncbi.nlm.nih.gov/nuccore/kx950831"}, {"dataset_uid": "601406", "doi": "10.15784/601406", "keywords": "Antarctica; Antarctic Peninsula", "people": "O\u0027Brien, Kristin", "repository": "USAP-DC", "science_program": null, "title": "Hypoxia response of hearts of Antarctic fishes", "url": "https://www.usap-dc.org/view/dataset/601406"}], "date_created": "Wed, 26 Feb 2020 00:00:00 GMT", "description": "The ocean surrounding Antarctica is home to an extraordinary assemblage of fishes, dominated by a single group that are extremely well-suited to life in icy waters and which are of significant ecological importance there. Of great concern is the capacity of these fishes to withstand increases in temperature as the region of the Western Antarctic Peninsula warms at a rate faster than any other area in the Southern hemisphere. One particular group of Antarctic fishes, known as the icefishes, are particularly vulnerable to increases in temperature because unlike all other vertebrates on earth, icefishes are white-blooded due to their lack of the oxygen-binding protein hemoglobin. This greatly reduces their capacity to transport and deliver oxygen to tissues compared to red-blooded Antarctic fishes. Previous studies have shown that icefishes are indeed less tolerant to elevations in temperature but the underlying factors are completely unknown. Additionally, it is not understood if red- or white-blooded Antarctic fishes can adjust, or acclimate, to modest increases in temperature, similar to those changes in temperature the animals might experience as the earth warms. The investigators will determine if heart function and/or nervous system function limits thermal tolerance of Antarctic fishes, and will determine their capacity to acclimate to warmer temperatures. The project will further the NSF goal of training new generations of scientists by training graduate and undergraduate students. In addition, the project will collaborate with a high school biology teacher from a school which serves a largely minority student body. The students will learn about the marine environment, and will construct a camera to be used in the field to learn more about Antarctic fishes. Two students and the teacher will also attend a summer marine biology internship program. Antarctic fishes within the suborder Notothenioidei (called \"notothenioids\") are among the organisms on earth least able to deal with changes in temperature. The hemoglobinless icefish are even less able to withstand temperature changes than are red-blooded notothenioids. While this is well documented, the underlying physiological and biochemical mechanisms responsible are unknown. The investigators will test the hypotheses that cardiac work is significantly greater in icefishes compared to red-blooded species, and that as temperature increases, the greater cardiac work of icefishes, coupled with reduced blood oxygen-carrying capacity, results in cardiac failure at a lower temperature compared to red-blooded species. They also hypothesize that neuronal function limits thermal tolerance of red-blooded notothenioids. These hypotheses will be tested using a wide variety of experiments. For example, the investigators will measure heart rate concurrently with critical thermal maximum. They will also characterize metabolic and gene-expression responses to elevated temperature and determine if mitochondrial function contributes to thermal tolerance using a variety of techniques. To determine if neuronal function limits thermal tolerance they will quantify behavioral responses to warming of whole animals and to warming of only the brain area. They will also determine if acclimation to warmer temperatures impacts heart function and they will measure activities of a variety of enzymes from central metabolic pathways.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Amd/Us; FISH; USA/NSF; FIELD INVESTIGATION; AMD; Antarctic Peninsula; LABORATORY; USAP-DC", "locations": "Antarctica; Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Crockett, Elizabeth; O\u0027Brien, Kristin", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "Dryad; GenBank; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes", "uid": "p0010084", "west": null}, {"awards": "1043576 Crockett, Elizabeth; 1043781 O\u0027Brien, Kristin", "bounds_geometry": "POLYGON((-64.45 -63.467,-64.2633 -63.467,-64.0766 -63.467,-63.8899 -63.467,-63.7032 -63.467,-63.5165 -63.467,-63.3298 -63.467,-63.1431 -63.467,-62.9564 -63.467,-62.7697 -63.467,-62.583 -63.467,-62.583 -63.5653,-62.583 -63.6636,-62.583 -63.7619,-62.583 -63.8602,-62.583 -63.9585,-62.583 -64.0568,-62.583 -64.1551,-62.583 -64.2534,-62.583 -64.3517,-62.583 -64.45,-62.7697 -64.45,-62.9564 -64.45,-63.1431 -64.45,-63.3298 -64.45,-63.5165 -64.45,-63.7032 -64.45,-63.8899 -64.45,-64.0766 -64.45,-64.2633 -64.45,-64.45 -64.45,-64.45 -64.3517,-64.45 -64.2534,-64.45 -64.1551,-64.45 -64.0568,-64.45 -63.9585,-64.45 -63.8602,-64.45 -63.7619,-64.45 -63.6636,-64.45 -63.5653,-64.45 -63.467))", "dataset_titles": "Electronic fishing logs; Expedition data of LMG1104; Redox Balance in Antarctic Notothenioid Fishes", "datasets": [{"dataset_uid": "002687", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1104", "url": "https://www.rvdata.us/search/cruise/LMG1104"}, {"dataset_uid": "600390", "doi": "10.15784/600390", "keywords": "Antarctica; Biota; Southern Ocean", "people": "Crockett, Elizabeth", "repository": "USAP-DC", "science_program": null, "title": "Electronic fishing logs", "url": "https://www.usap-dc.org/view/dataset/600390"}, {"dataset_uid": "600382", "doi": "10.15784/600382", "keywords": "Antarctica; Antarctic Peninsula; Biota; Fish; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "O\u0027Brien, Kristin", "repository": "USAP-DC", "science_program": null, "title": "Redox Balance in Antarctic Notothenioid Fishes", "url": "https://www.usap-dc.org/view/dataset/600382"}], "date_created": "Tue, 06 Dec 2016 00:00:00 GMT", "description": "Antarctic channichthyid icefishes are stunning examples of the unique physiological traits that can arise during evolution in a constantly cold environment. Icefishes are the only vertebrates that as adults, lack the circulating oxygen-binding protein hemoglobin (Hb); several species within this family also lack the intracellular oxygen-binding protein myoglobin (Mb) in their heart ventricle. The loss of Hb and Mb has resulted in striking modifications in the cardiovascular system to ensure adequate tissue oxygenation, some of which are energetically costly. Recent indicate there may be at least one benefit to not expressing these heme-centered proteins - oxidized proteins and lipids are higher in red-blooded notothenioids compared to icefishes. The research will address the hypothesis that the loss of Hb and Mb reduces oxidative stress in icefishes compared to red-blooded notothenioid fishes, resulting in a lower rate of protein turnover and energetic cost savings. Specifically, the project will (1) Characterize levels of oxidative stress in red- and white-blooded notothenioid fishes, (2) Determine if red- and white-blooded notothenioids differ in their regulation of iron, (3) Determine if lower levels of oxidized proteins in icefishes result in lower rates of protein turnover and energetic cost savings, and (4) Determine if oxygen-binding proteins promote oxidative stress in-vivo and in-vitro. The results will contribute to the understanding of iron-catalyzed oxidative stress, which is associated with the progression of Alzheimer\u0027s, Parkinson\u0027s and cardiovascular diseases. Moreover, the research will increase understanding of factors related to iron metabolism and oxidative stress in notothenioid fishes that may have played key roles in the success of channichthyid icefishes. The broader impacts include development of a website will enable teachers and students to learn more about the fascinating biology of Antarctic icefishes, as well as the impacts of global climate change and commercial fishing activities on Antarctic fishes. Additionally, Alaska Native high school and undergraduate students will be involved in research at the University of Alaska, Fairbanks.", "east": -62.583, "geometry": "POINT(-63.5165 -63.9585)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "Not provided; R/V LMG", "locations": null, "north": -63.467, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Crockett, Elizabeth; O\u0027Brien, Kristin", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -64.45, "title": "Collaborative research: Redox Balance in Antarctic Notothenioid fishes: Do Icefishes have an Advantage?", "uid": "p0000320", "west": -64.45}, {"awards": "1447291 Place, Sean; 1040945 Place, Sean; 1040957 Sarmiento, Jorge", "bounds_geometry": "POLYGON((-180 90,-144 90,-108 90,-72 90,-36 90,0 90,36 90,72 90,108 90,144 90,180 90,180 72,180 54,180 36,180 18,180 0,180 -18,180 -36,180 -54,180 -72,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -72,-180 -54,-180 -36,-180 -18,-180 0,-180 18,-180 36,-180 54,-180 72,-180 90))", "dataset_titles": "Does the strength of the carbonate pump change with ocean stratification and acidification and how? Project data; NCBI GenBank RNA sequences, Pagothenia borchgrevinki; NCBI GenBank RNA sequences, Trematomus bernacchii; NCBI GenBank RNA sequences, Trematomus newnesi; NCBI links to BioProjects of total RNA isolated from Trematomus bernacchii gill tissues acclimated to elevated temperature and pCO2, July 2015", "datasets": [{"dataset_uid": "000166", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "NCBI links to BioProjects of total RNA isolated from Trematomus bernacchii gill tissues acclimated to elevated temperature and pCO2, July 2015", "url": "http://www.bco-dmo.org/dataset/665853"}, {"dataset_uid": "000164", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "NCBI GenBank RNA sequences, Pagothenia borchgrevinki", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA294774"}, {"dataset_uid": "000163", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "NCBI GenBank RNA sequences, Trematomus bernacchii", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA289753"}, {"dataset_uid": "000184", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "NCBI GenBank RNA sequences, Trematomus bernacchii", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA289753"}, {"dataset_uid": "000219", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Does the strength of the carbonate pump change with ocean stratification and acidification and how? Project data", "url": "http://www.bco-dmo.org/project/521216"}, {"dataset_uid": "000186", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "NCBI GenBank RNA sequences, Trematomus newnesi", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA294787"}, {"dataset_uid": "000185", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "NCBI GenBank RNA sequences, Pagothenia borchgrevinki", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA294774"}, {"dataset_uid": "000165", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "NCBI GenBank RNA sequences, Trematomus newnesi", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA294787"}], "date_created": "Mon, 12 Jan 2015 00:00:00 GMT", "description": "The proposed research will investigate the interacting and potentially synergistic influence of two oceanographic features - ocean acidification and the projected rise in mean sea surface temperature - on the performance of Notothenioids, the dominant fish of the Antarctic marine ecosystem. Understanding the joint effects of acidification and temperature rise on these fish is a vital component of predicting the resilience of coastal marine ecosystems. Notothenioids have repeatedly displayed a narrow window of physiological tolerances when subjected to abiotic stresses. Given that evolutionary adaptation may have led to finely-tuned traits with narrow physiological limits in these organisms, this system provides a unique opportunity to examine physiological trade-offs associated with acclimation to the multi-stressor environment expected from future atmospheric CO2 projections. Understanding these trade-offs will provide valuable insight into the capacity species have for responses to climate change via phenotypic plasticity. As an extension to functional measurements, this study will use evolutionary approaches to map variation in physiological responses onto the phylogeny of these fishes and the genetic diversity within species. These approaches offer insight into the historical constraints and future potential for evolutionary optimization. The research will significantly expand the genomic resources available to polar researchers and will support the training of graduate students and a post doc at an EPSCoR institution. Research outcomes will be incorporated into classroom curriculum.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": 90.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science", "paleo_time": null, "persons": "Place, Sean; Sarmiento, Jorge; Dudycha, Jeffry; Kwon, Eun-Young", "platforms": "Not provided", "repo": "BCO-DMO", "repositories": "BCO-DMO; NCBI GenBank", "science_programs": null, "south": -90.0, "title": "Ocean Acidification Category 1: Identifying Adaptive Responses of Polar Fishes in a Vulnerable Ecosystem", "uid": "p0000006", "west": -180.0}, {"awards": "1019305 Grim, Jeffrey", "bounds_geometry": null, "dataset_titles": "Impact of Rising Oceanic Temperatures on the Embryonic Development of Antarctic Notothenioid Fishes", "datasets": [{"dataset_uid": "600119", "doi": "10.15784/600119", "keywords": "Biota; Fish Logs; LMG1203; LMG1204; LMG1205; Oceans; Pot; Southern Ocean; Trawl", "people": "Grim, Jeffrey", "repository": "USAP-DC", "science_program": null, "title": "Impact of Rising Oceanic Temperatures on the Embryonic Development of Antarctic Notothenioid Fishes", "url": "https://www.usap-dc.org/view/dataset/600119"}], "date_created": "Mon, 10 Feb 2014 00:00:00 GMT", "description": "Survival of Antarctic notothenioid fishes in the context of global climate change will depend upon the impact of rising oceanic temperatures on their embryonic development, yet little is known regarding the molecular mechanisms underlying this complex suite of processes. Many notothenioids are characterized by secondary pelagicism, which enables them to exploit food sources in the water column and is supported in part by skeletal pedomorphism. Here the PI proposes to examine the hypothesis that reactive oxygen species (ROS) regulate notothenioid skeletal pedomorphism. The PI proposes to examine the hypothesis that reactive oxygen species (ROS) regulate notothenioid skeletal pedomorphism. The research objectives are : 1) To quantify and localize ROS production and identify the point(s) of origin of ROS production in embryonic Antarctic fishes that differ in skeletal phenotypes 2) To determine whether the time course of embryogenesis and the extent of osteological development in embryonic Antarctic fishes can be altered by changing the oxidative status of the animal during embryogenesis 3) To evaluate whether transgenic alteration of oxidative status can induce skeletal pedomorphism in a fish model. Broader Impacts will include teaching undergraduate lectures, recruiting undergraduate students to help with lab analyses (and possibly field work), lectures and demonstrations to high school students, and allowing secondary educators access to personal photos and videos of research animals for curriculum development.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Grim, Jeffrey", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "PostDoctoral Research Fellowship", "uid": "p0000482", "west": null}, {"awards": "0741301 O\u0027Brien, Kristin; 1142720 Crockett, Elizabeth", "bounds_geometry": "POLYGON((-64.45 -63.29,-64.249 -63.29,-64.048 -63.29,-63.847 -63.29,-63.646 -63.29,-63.445 -63.29,-63.244 -63.29,-63.043 -63.29,-62.842 -63.29,-62.641 -63.29,-62.44 -63.29,-62.44 -63.370999999999995,-62.44 -63.452,-62.44 -63.533,-62.44 -63.614,-62.44 -63.69499999999999,-62.44 -63.775999999999996,-62.44 -63.857,-62.44 -63.937999999999995,-62.44 -64.01899999999999,-62.44 -64.1,-62.641 -64.1,-62.842 -64.1,-63.043 -64.1,-63.244 -64.1,-63.445 -64.1,-63.646 -64.1,-63.847 -64.1,-64.048 -64.1,-64.249 -64.1,-64.45 -64.1,-64.45 -64.01899999999999,-64.45 -63.937999999999995,-64.45 -63.857,-64.45 -63.775999999999996,-64.45 -63.69499999999999,-64.45 -63.614,-64.45 -63.533,-64.45 -63.452,-64.45 -63.370999999999995,-64.45 -63.29))", "dataset_titles": "Linkages among Mitochondrial Form, Function and Thermal Tolerance of Antarctic Notothenioid Fishes", "datasets": [{"dataset_uid": "600084", "doi": "10.15784/600084", "keywords": "Biota; Oceans; Pot; Southern Ocean; Trawl", "people": "O\u0027Brien, Kristin", "repository": "USAP-DC", "science_program": null, "title": "Linkages among Mitochondrial Form, Function and Thermal Tolerance of Antarctic Notothenioid Fishes", "url": "https://www.usap-dc.org/view/dataset/600084"}], "date_created": "Sat, 30 Nov 2013 00:00:00 GMT", "description": "Abstract Antarctic notothenioid fishes have evolved in the Southern Ocean for 10-14 MY under an unusual set of circumstances. Their characteristics include the complete absence of the circulating oxygen-binding protein, hemoglobin (Hb) within the Channichthyid (Icefish) family of notothenioids. Moreover, some species within the 16 members of this family have also lost the ability to express the oxygen-binding and storage protein, myoglobin (Mb) in cardiac muscle. Our previous work has determined that the loss of Hb and/or Mb is correlated with significant increases in densities of mitochondria within oxidative tissues, and extensive remodeling of these vital organelles. To date, nothing is known about how modifications in mitochondrial architecture of icefishes affect organelle function, or more importantly, how they affect organismal-level physiology. Most critical for Antarctic fishes is that mitochondrial characteristics have been linked to how well ectotherms can withstand increases in temperature. This collaborative research project will address the hypothesis that the unusual mitochondrial architecture of Antarctic Channichthyids has led to changes in function that impact their ability to withstand elevations in temperature. Specifically, the research will (1) determine if the unusual mitochondrial architecture of icefishes affects function and contributes to organismal thermal sensitivity, (2) identify differences in organismal thermal tolerance between red- and white- blooded notothenioids, (3) identify molecular mechanisms regulating changes in mitochondrial structure in icefishes. The results may establish channichthyid icefishes as a sentinel taxon for signaling the impact of global warming on the Southern Ocean. Broad impacts of this project will be realized by participation of high school biology teachers in field work through cooperation with the ARMADA project at the University of Rhode Island, as well as graduate education.", "east": -62.44, "geometry": "POINT(-63.445 -63.695)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -63.29, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Crockett, Elizabeth; O\u0027Brien, Kristin", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.1, "title": "Collaborative Research: Linkages among Mitochondrial Form, Function and Thermal Tolerance of Antarctic Notothenioid Fishes", "uid": "p0000483", "west": -64.45}, {"awards": "0839007 Near, Thomas", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Genetic Sequence Data", "datasets": [{"dataset_uid": "000151", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Genetic Sequence Data", "url": "http://www.ncbi.nlm.nih.gov/genbank/"}], "date_created": "Fri, 22 Nov 2013 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThe teleost fish fauna in the waters surrounding Antarctica are completely dominated by a single clade of closely related species, the Notothenioidei. This clade offers an unprecedented opportunity to investigate the effects of deep time paleogeographic transformations and periods of global climate change on lineage diversification and facilitation of adaptive radiation. With over 100 species, the Antarctic notothenioid radiation has been the subject of intensive investigation of biochemical, physiological, and morphological adaptations associated with freezing avoidance in the subzero Southern Ocean marine habitats. However, broadly sampled time-calibrated phylogenetic hypotheses of notothenioids have not been used to examine patterns of adaptive radiation in this clade. The goals of this project are to develop an intensive phylogenomic scale dataset for 90 of the 124 recognized notothenioid species, and use this genomic resource to generate time-calibrated molecular phylogenetic trees. The results of pilot phylogenetic studies indicate a very exciting correlation of the initial diversification of notothenioids with the fragmentation of East Gondwana approximately 80 million years ago, and the origin of the Antarctic Clade adaptive radiation at a time of global cooling and formation of polar conditions in the Southern Ocean, approximately 35 million years ago. This project will provide research experiences for undergraduates, training for a graduate student, and support a post doctoral researcher. In addition the project will include three high school students from New Haven Public Schools for summer research internships.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Near, Thomas", "platforms": "Not provided", "repo": "NCBI GenBank", "repositories": "NCBI GenBank", "science_programs": null, "south": -90.0, "title": "Genomic Approaches to Resolving Phylogenies of Antarctic Notothenioid Fishes", "uid": "p0000497", "west": -180.0}, {"awards": "0132032 Detrich, H. William", "bounds_geometry": "POLYGON((-68.84315 -42.87167,-61.576321 -42.87167,-54.309492 -42.87167,-47.042663 -42.87167,-39.775834 -42.87167,-32.509005 -42.87167,-25.242176 -42.87167,-17.975347 -42.87167,-10.708518 -42.87167,-3.441689 -42.87167,3.82514 -42.87167,3.82514 -44.482708,3.82514 -46.093746,3.82514 -47.704784,3.82514 -49.315822,3.82514 -50.92686,3.82514 -52.537898,3.82514 -54.148936,3.82514 -55.759974,3.82514 -57.371012,3.82514 -58.98205,-3.441689 -58.98205,-10.708518 -58.98205,-17.975347 -58.98205,-25.242176 -58.98205,-32.509005 -58.98205,-39.775834 -58.98205,-47.042663 -58.98205,-54.309492 -58.98205,-61.576321 -58.98205,-68.84315 -58.98205,-68.84315 -57.371012,-68.84315 -55.759974,-68.84315 -54.148936,-68.84315 -52.537898,-68.84315 -50.92686,-68.84315 -49.315822,-68.84315 -47.704784,-68.84315 -46.093746,-68.84315 -44.482708,-68.84315 -42.87167))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001655", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0404"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Notothenioid fish are a major group of fish in the Southern Ocean. The ancestral notothenioid fish stock of Antarctica probably arose as a sluggish, bottom-dwelling perciform species that evolved some 40-60 million years ago in the then temperate shelf waters of the Antarctic continent. The grounding of the ice sheet on the continental shelf and changing trophic conditions may have eliminated the taxonomically diverse late Eocene fauna and initiated the original diversification of notothenioids. On the High Antarctic shelf, notothenioids today dominate the ichthyofauna in terms of species diversity, abundance and biomass, the latter two at levels of 90-95%. Since the International Geophysical Year of 1957-58, fish biologists from the Antarctic Treaty nations have made impressive progress in understanding the notothenioid ichthyofauna of the cold Antarctic marine ecosystem. However, integration of this work into the broader marine context has been limited, largely due to lack of access to, and analysis of, specimens of Sub-Antarctic notothenioid fishes. Sub-Antarctic fishes of the notothenioid suborder are critical for a complete understanding of the evolution, population dynamics, eco-physiology, and eco-biochemistry of their Antarctic relatives. This project will support an international, collaborative research cruise to collect and study fish indigenous to sub-antarctic habitats. The topics included in the research plans of the international team of researchers includes Systematics and Evolutionary Studies; Life History Strategies and Population Dynamics; Physiological, Biochemical, and Molecular Biological Investigations of Major Organ and Tissue Systems; Genomic Resources for the Sub-Antarctic Notothenioids; and Ecological Studies of Transitional Benthic Invertebrates. In a world that is experiencing changes in global climate, the loss of biological diversity, and the depletion of marine fisheries, the Antarctic, Sub-Antarctic, and their biota offer compelling natural laboratories for understanding the evolutionary impacts of these processes. The proposed work will contribute to development of a baseline understanding of these sensitive ecosystems, one against which future changes in species distribution and survival may be evaluated judiciously.", "east": 3.82514, "geometry": "POINT(-32.509005 -50.92686)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -42.87167, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Detrich, H. William", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -58.98205, "title": "International Collaborative Expedition to Collect and Study Fish Indigenous to Sub-Antarctic Habitats", "uid": "p0000584", "west": -68.84315}, {"awards": "0437887 Sidell, Bruce", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis; Expedition Data; Expedition data of LMG0705; Expedition data of LMG0706", "datasets": [{"dataset_uid": "002712", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0705", "url": "https://www.rvdata.us/search/cruise/LMG0705"}, {"dataset_uid": "002713", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0706", "url": "https://www.rvdata.us/search/cruise/LMG0706"}, {"dataset_uid": "001534", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0705"}, {"dataset_uid": "600039", "doi": "10.15784/600039", "keywords": "Biota; Oceans; Pot; Sample/collection Description; Sample/Collection Description; Southern Ocean; Trawl", "people": "Sidell, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis", "url": "https://www.usap-dc.org/view/dataset/600039"}], "date_created": "Sun, 06 Dec 2009 00:00:00 GMT", "description": "The polar ocean presently surrounding Antarctica is the coldest, most thermally stable marine environment on earth. Because oxygen solubility in seawater is inversely proportional to temperature, the cold Antarctic seas are an exceptionally oxygen-rich aquatic habitat. Eight families of a single perciform suborder, the Notothenioidei, dominate the present fish fauna surrounding Antarctica. Notothenioids account for approximately 35% of fish species and 90% of fish biomass south of the Antarctic Polar Front. Radiation of closely related notothenioid species thus has occurred rapidly and under a very unusual set of conditions: relative oceanographic isolation from other faunas due to circumpolar currents and deep ocean trenches surrounding the continent, chronically, severely cold water temperatures, very high oxygen availability, very low levels of niche competition in a Southern Ocean depauperate of species subsequent to a dramatic crash in species diversity of fishes that occurred sometime between the mid-Tertiary and present. These features make Antarctic notothenioid fishes an uniquely attractive group for the study of physiological and biochemical adaptations to cold body temperature. \u003cbr/\u003eFew distinctive features of Antarctic fishes are as unique as the pattern of expression of oxygen-binding proteins in one notothenioid family, the Channichthyidae (Antarctic icefishes). All channichthyid icefishes lack the circulating oxygen-binding protein, hemoglobin (Hb); the intracellular oxygen-binding protein, myoglobin (Mb) is not uniformly expressed in species of this family. Both proteins are normally considered essential for adequate delivery of oxygen to aerobically poised tissues of animals. To compensate for the absence of Hb, icefishes have developed large hearts, rapidly circulate a large blood volume and possess elaborate vasculature of larger lumenal diameter than is seen in red-blooded fishes. Loss of Mb expression in oxidative muscles correlates with dramatic elevation in density of mitochondria within the cell, although each individual organelle is less densely packed with respiratory proteins. \u003cbr/\u003eWithin the framework of oxygen movement, the adaptive significance of greater vascular density and mitochondrial populations is understandable but mechanisms underlying development of these characteristics remain unknown. The answer may lie in another major function of both Hb and Mb, degradation of the ubiquitous bioactive compound, nitric oxide (NO). The research will test the hypothesis that loss of hemoprotein expression in icefishes has resulted in an increase in levels of NO that mediate modification of vascular systems and expansion of mitochondrial populations in oxidative tissues. The objectives of the proposal are to quantify the vascular density of retinas in +Hb and -Hb notothenioid species, to characterize NOS isoforms and catalytic activity in retina and cardiac muscle of Antarctic notothenioid fishes, to evaluate level of expression of downstream factors implicated in angiogenesis (in retinal tissue) and mitochondrial biogenesis (in cardiac muscle), and to determine whether inhibition of NOS in vivo results in regression of angiogenic and mitochondrial biogenic responses in icefishes. Broader impacts range from basic biology, through training of young scientists, to enhanced understanding of clinically relevant biomedical processes.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS", "is_usap_dc": true, "keywords": "R/V LMG; Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Sidell, Bruce", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis.", "uid": "p0000527", "west": -180.0}, {"awards": "0436190 Eastman, Joseph", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes", "datasets": [{"dataset_uid": "600038", "doi": "10.15784/600038", "keywords": "Biota; NBP0404; Oceans; R/v Nathaniel B. Palmer; Southern Ocean", "people": "Eastman, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes", "url": "https://www.usap-dc.org/view/dataset/600038"}], "date_created": "Mon, 30 Mar 2009 00:00:00 GMT", "description": "Patterns of biodiversity, as revealed by basic research in organismal biology, may be derived from ecological and evolutionary processes expressed in unique settings, such as Antarctica. The polar regions and their faunas are commanding increased attention as declining species diversity, environmental change, commercial fisheries, and resource management are now being viewed in a global context. Commercial fishing is known to have a direct and pervasive effect on marine biodiversity, and occurs in the Southern Ocean as far south as the Ross Sea. \u003cbr/\u003eThe nature of fish biodiversity in the Antarctic is different than in all other ocean shelf areas. Waters of the Antarctic continental shelf are ice covered for most of the year and water temperatures are nearly constant at -1.5 C. In these waters components of the phyletically derived Antarctic clade of Notothenioids dominate fish diversity. In some regions, including the southwestern Ross Sea, Notothenioids are overwhelmingly dominant in terms of number of species, abundance, and biomass. Such dominance by a single taxonomic group is unique among shelf faunas of the world. In the absence of competition from a taxonomically diverse fauna, Notothenioids underwent a habitat or depth related diversification keyed to the utilization of unfilled niches in the water column, especially pelagic or partially pelagic zooplanktivory and piscivory. This has been accomplished in the absence of a swim bladder for buoyancy control. They also may form a special type of adaptive radiation known as a species flock, which is an assemblage of a disproportionately high number of related species that have evolved rapidly within a defined area where most species are endemic. Diversification in buoyancy is the hallmark of the notothenioid radiation. Buoyancy is the feature of notothenioid biology that determines whether a species lives on the substrate, in the water column or both. Buoyancy also influences other key aspects of life history including swimming, feeding and reproduction and thus has implications for the role of the species in the ecosystem. \u003cbr/\u003eWith similarities to classic evolutionary hot spots, the Antarctic shelf and its Notothenioid radiation merit further exploration. The 2004 \"International Collaborative Expedition to collect and study Fish Indigenous to Sub-Antarctic Habitats,\" or, \"ICEFISH,\" provided a platform for collection of notothenioid fishes from sub-Antarctic waters between South America and Africa, which will be examined in this project. This study will determine buoyancy for samples of all notothenioid species captured during the ICEFISH cruise. This essential aspect of the biology is known for only 19% of the notothenioid fauna. Also, the gross and microscopic anatomy of brains and sense organs of the phyletically basal families Bovichtidae, Eleginopidae, and of the non-Antarctic species of the primarily Antarctic family Nototheniidae will be examined. The fish biodiversity and endemicity in poorly known localities along the ICEFISH cruise track, seamounts and deep trenches will be quantified. Broader impacts include improved information for comprehending and conserving biodiversity, a scientific and societal priority.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Eastman, Joseph", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes", "uid": "p0000106", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ANT LIA: Collaborative Research: Evolutionary Patterns and Mechanisms of Trait Diversification in the Antarctic Notothenioid Radiation
|
2324998 1955368 |
2024-08-01 | Daane, Jacob; Detrich, H. William | No dataset link provided | Part I: Nontechnical description The ecologically important notothenioid fish of the Southern Ocean surrounding Antarctica will be studied to address questions central to polar, evolutionary, and adaptational biology. The rapid diversification of the notothenioids into >120 species following a period of Antarctic glaciation and cooling of the Southern Ocean is thought to have been facilitated by key evolutionary innovations, including antifreeze glycoproteins to prevent freezing and bone reduction to increase buoyancy. In this project, a large dataset of genomic sequences will be used to evaluate the genetic mechanisms that underly the broad pattern of novel trait evolution in these fish, including traits relevant to human diseases (e.g., bone density, renal function, and anemia). The team will develop new STEM-based research and teaching modules for undergraduate education at Northeastern University. The work will provide specific research training to scholars at all levels, including a post-doctoral researcher, a graduate student, undergraduate students, and high school students. The team will also contribute to public outreach, including, in part, the develop of teaching videos in molecular evolutionary biology and accompanying educational supplements. Part II: Technical description The researchers will leverage their comprehensive notothenioid phylogenomic dataset comprising >250,000 protein-coding exons and conserved non-coding elements across 44 ingroup and 2 outgroup species to analyze the genetic origins of three iconic notothenioid traits: (1) loss of erythrocytes by the icefish clade in a cold, stable and highly-oxygenated marine environment; (2) reduction in bone mass and retention of juvenile skeletal characteristics as buoyancy mechanisms to facilitate foraging; and (3) loss of kidney glomeruli to retain energetically expensive antifreeze glycoproteins. The team will first track patterns of change in erythroid-related genes throughout the notothenioid phylogeny. They will then examine whether repetitive evolution of a pedomorphic skeleton in notothenioids is based on parallel or divergent evolution of genetic regulators of heterochrony. Third, they will determine whether there is mutational bias in the mechanisms of loss and re-emergence of kidney glomeruli. Finally, identified genetic mechanisms of evolutionary change will be validated by experimental testing using functional genomic strategies in the zebrafish model system. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||
ANT LIA: The Role of Sex Determination in the Radiation of Antarctic Notothenioid Fish
|
2232891 |
2023-08-14 | Postlethwait, John; Desvignes, Thomas | No dataset link provided | Antarctic animals face tremendous threats as Antarctic ice sheets melt and temperatures rise. About 34 million years ago, when Antarctica began to cool, most species of fish became locally extinct. A group called the notothenioids, however, survived due to the evolution of antifreeze. The group eventually split into over 120 species. Why did this group of Antarctic fishes evolve into so many species? One possible reason why a single population splits into two species relates to sex genes and sex chromosomes. Diverging species often have either different sex determining genes (genes that specify whether an individual’s gonads become ovaries or testes) or have different sex chromosomes (chromosomes that differ between males and females within a species, like the human X and Y chromosomes). We know the sex chromosomes of only a few notothenioid species and know the genetic basis for sex determination in none of them. The aims of this research are to: 1) identify sex chromosomes in species representing every major group of Antarctic notothenioid fish; 2) discover possible sex determining genes in every major group of Antarctic notothenioid fish; and 3) find sex chromosomes and possible sex determining genes in two groups of temperate, warmer water, notothenioid fish. These warmer water fish include groups that never experienced the frigid Southern Ocean and groups that had ancestors inhabiting Antarctic oceans that later adjusted to warmer waters. This project will help explain the mechanisms that led to the division of a group of species threatened by climate change. This information is critical to conserve declining populations of Antarctic notothenioids, which are major food sources for other Antarctic species such as bird and seals. The project will offer a diverse group of undergraduates the opportunity to develop a permanent exhibit at the Eugene Science Center Museum. The exhibit will describe the Antarctic environment and explain its rapid climate change. It will also introduce the continent’s bizarre fishes that live below the freezing point of water. The project will collaborate with the university’s Science and Comics Initiative and students in the English Department’s Comics Studies Minor to prepare short graphic novels explaining Antarctic biogeography, icefish specialties, and the science of this project as it develops. As Antarctica cooled, most species disappeared from the continent’s waters, but cryonotothenioid fish radiated into a species flock. What facilitated this radiation? Coyne’s “two rules of speciation” offer explanations for why species diverge: 1) the dysgenic sex in an interspecies hybrid is the one with two different sex chromosomes (i.e., in humans, it would be XY males and not XX females); and 2) “sex chromosomes play an outsized role in speciation”. These ideas propel the project’s main hypothesis: new sex chromosomes and new sex determination genes associate with cryonotothenioid speciation events. The main objective of the research is to identify notothenioid sex chromosomes and candidate sex-determination genes in many notothenioid species. The project’s first aim is to identify Antarctic fish sex chromosomes, asking the question: Did new sex chromosomes accompany speciation events? Knowledge gaps include: which species have cryptic sex chromosomes; which have newly evolved sex chromosomes; and which are chromosomally XX/XY or ZZ/ZW. Methods involve population genomics (RAD-seq and Pool-seq) for more than 20 Antarctic cryonotothenioids. The prediction is frequent turnover of sex chromosomes. The project’s second aim is to Identify candidate Antarctic cryonotothenioid sex-determination genes, asking the question: Did new sex-determination genes accompany Antarctic cryonotothenioid speciation events? A knowledge gap is the identity of sex determination genes in any notothenioid. Preliminary data show that three sex-linked loci are in or adjacent to three different candidate sex determination genes: 1) a duplicate of bmpr1ba in blackfin icefish; 2) a tandem duplicate of gsdf in South Georgia icefish; and 3) a transposed duplicate of gsdf in striped notothen. Methods involve annotating the genomic neighborhoods of cryonotothenioid sex linked loci for anomalies in candidate sex genes, sequencing sex chromosomes, and testing sex gene variants by CRISPR mutagenesis in zebrafish. The prediction is frequent turnover of sex determination genes. The project’s third aim is to identify sex chromosomes and sex-determination genes in temperate notothenioids. Basally diverging temperate notothenioids (‘basals’) lack identifiable sex chromosomes, consistent with temperature-cued sex determination, and one ‘basal’ species is a hermaphrodite. The constantly cold Southern Ocean rules out temperature, a common sex determination cue in many temperate fish, favoring genetic sex determination. Some cryonotothenioids re-invaded temperate waters (‘returnees’). Knowledge gaps include whether basals and returnees have strong sex determination genes. Methods employ pool-seq. The prediction is that genetic sex determination is weak in basals and that returnees have the same, but weaker, sex-linked loci as their Antarctic sister clade. A permanent exhibit will be established at the Eugene Science Center Museum tentatively entitled: The Antarctic: its fishes and climate change. Thousands of visitors, especially school children will be exposed, to the science of Antarctic ecosystems and the impacts of climate change. The research team will collaborate with the university’s Science and Comics Initiative to produce short graphic novels explaining Antarctic biogeography, icefish specialties, and this project. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37)) | POINT(0 -89.999) | false | false | |||||||
Evolution of hemoglobin genes in notothenioid fishes
|
1947040 2232891 1543383 |
2023-05-03 | Desvignes, Thomas; Postlethwait, John | Antarctic notothenioid fishes, also known as cryonotothenioids, inhabit the icy and highly oxygenated waters surrounding the Antarctic continent after diverging from notothenioids inhabiting more temperate waters. Notothenioid hemoglobin and blood parameters are known to have evolved along with the establishment of stable polar conditions, and among Antarctic notothenioids, icefishes are evolutionary oddities living without hemoglobin following the deletion of all functional hemoglobin genes from their genomes. In this project, we investigate the evolution of hemoglobin genes and gene clusters across the notothenioid radiation until their loss in the icefish ancestor after its divergence from the dragonfish lineage to understand the forces, mechanisms, and potential causes for hemoglobin gene loss in the icefish ancestor. | POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37)) | POINT(0 -89.999) | false | false | ||||||||
Evolutionary Genomic Responses in Antarctic Notothenioid Fishes
|
1645087 |
2022-10-10 | Catchen, Julian; Cheng, Chi-Hing | As plate tectonics pushed Antarctica into a polar position, by ~34 million years ago, the continent and its surrounding Southern Ocean (SO) became geographically and thermally isolated by the Antarctic Circumpolar Current. Terrestrial and marine glaciation followed, resulting in extinctions as well as the survival and radiation of unique flora and fauna. The notothenioid fish survived and arose from a common ancestral stock into tax with 120 species that dominates today?s SO fish fauna. The Notothenioids evolved adaptive traits including novel antifreeze proteins for survival in extreme cold, but also suffered seemingly adverse trait loss including red blood cells in the icefish family, and the ability to mount cellular responses to mitigate heat stress ? otherwise ubiquitous across all life. This project aims to understand how the notothenoid genomes have changed and contributed to their evolution in the cold. The project will sequence, analyze and compare the genomes of two strategic pairs of notothenioid fishes representing both red-blooded and white-blooded species. Each pair will consist of one Antarctic species and one that has readapted to the temperate waters of S. America or New Zealand. The project will also compare the Antarctic species genomes to a genome of the closet non-Antarctic relative representing the temperate notothenioid ancestor. The work aims to uncover the mechanisms that enabled the adaptive evolution of this ecologically vital group of fish in the freezing Southern Ocean, and shed light on their adaptability to a warming world. The finished genomes will be made available to promote and advance Antarctic research and the project will host a symposium of Polar researchers to discuss the cutting edge developments regarding of genomic adaptations in the polar region. Despite subzero, icy conditions that are perilous to teleost fish, the fish fauna of the isolated Southern Ocean (SO) surrounding Antarctica is remarkably bountiful. A single teleost group ? the notothenioid fishes ? dominate the fauna, comprising over 120 species that arose from a common ancestor. When Antarctica became isolated and SO temperatures began to plunge in early Oligocene, the prior temperate fishes became extinct. The ancestor of Antarctic notothenioids overcame forbidding polar conditions and, absent niche competition, it diversified and filled the SO. How did notothenioids adapt to freezing environmental selection pressures and achieve such extraordinary success? And having specialized to life in chronic cold for 30 myr, can they evolve in pace with today?s warming climate to stay viable? Past studies of Antarctic notothenioid evolutionary adaptation have discovered various remarkable traits including the key, life-saving antifreeze proteins. But life specialized to cold also led to paradoxical trait changes such as the loss of the otherwise universal heat shock response, and of the O2-transporting hemoglobin and red blood cells in the icefish family. A few species interestingly regained abilities to live in temperate waters following the escape of their ancestor out of the freezing SO. This proposed project is the first major effort to advance the field from single trait studies to understanding the full spectrum of genomic and genetic responses to climatic and environmental change during notothenioid evolution, and to evaluate their adaptability to continuing climate change. To this end, the project will sequence the genomes of four key species that embody genomic responses to different thermal selection regimes during notothenioids? evolutionary history, and by comparative analyses of genomic structure, architecture and content, deduce the responding changes. Specifically, the project will (i) obtain whole genome assemblies of the red-blooded T. borchgrevinki and the S. American icefish C. esox; (ii) using the finished genomes from (i) as template, obtain assemblies of the New Zealand notothenioid N. angustata, and the white-blooded icefish C. gunnari, representing a long (11 myr) and recent (1 myr) secondarily temperate evolutionary history respectively. Genes that are under selection in the temperate environment but not in the Antarctic environment can be inferred to be directly necessary for that environment ? and the reverse is also true for genes under selection in the Antarctic but not in the temperate environment. Further, genes important for survival in temperate waters will show parallel selection between N. angustata and C. esox despite the fact that the two fish left the Antarctic at far separated time points. Finally, gene families that expanded due to strong selection within the cold Antarctic should show a degradation of duplicates in the temperate environment. The project will test these hypotheses using a number of techniques to compare the content and form of genes, the structure of the chromosomes containing those genes, and through the identification of key characters, such as selfish genetic elements, introns, and structural variants. | None | None | false | false | ||||||||
Analysis of Voltage-gated Ion Channels in Antarctic Fish
|
1443637 |
2022-06-03 | Zakon, Harold | This project studies how the proteins of the nerves and muscles of fish that live in Antarctica function in the cold, which should provide information on the function of these same proteins in all animals, including humans. These proteins, called ion channels, open and close to allow ions (atoms or molecules with electrical charge) to flow into or out of cells which causes the electrical activity of nerves and muscles. Mutations that influence this process are the basis of numerous human disorders such as epilepsy, heart arrhythmias, and muscle paralysis. Thus, it is important to understand what parts of the proteins govern these transitions. The speed with which channels open and close depends on temperature. Human ion channels transition slowly when we are cold, which is why we become numb in the cold. Yet Antarctic fish, called icefish, are active at freezing temperatures that drastically limit the activity of human ion channels. The investigators have evidence that specific alterations in the icefishs' ion channels allow their channels to operate differently in the cold and they will use gene discovery and biophysical methods to test how these changes alter the transitions of icefish proteins at different temperatures. The project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. The gene discovery analysis will be done by undergraduate students including those from a minority-serving university and the investigators will develop a new course which will also serve students at that institution and elsewhere. In addition, the investigators will participate in educational outreach events with the general public as well as with groups with special needs. Notothenioid fishes are one of the most successful groups of vertebrates in Antarctica. Notothens have adaptations to the freezing water they inhabit and this project will study how their voltage-gated ion channels (VGICs) function in the cold. The molecular movements of ion channels are severely impaired by cold, yet notothens function at temperatures that would paralyze the nerves and muscles of "cold-blooded" temperate zone animals. Surprisingly, no biophysical or molecular investigations have been conducted on notothen VGICs. The investigators have preliminary data that amino acid substitutions occur at sites in VGICs that are evolutionarily conserved from fruit flies to humans. Some of these sites are known to impact channel function and the role of others in channel transitioning are unknown. The results from studying them will provide novel information also applicable to non-notothen, perhaps even human, VGICs as well as providing insights into how VGICs adapt to the cold. The project will biophysically characterize notothen VGICs using voltage-clamp techniques will and compare their properties over a range of temperatures to the same channel from two temperate zone fish. The role of unique notothen amino acid substitutions will be characterized by mutagenesis. One specific aim will be a project in which undergraduates mine notothen sequence databases to identify other potential amino acid substitutions in VGICs that might facilitate adaptation to the cold. | None | None | false | false | ||||||||
ANT LIA: Hypoxia Tolerance in Notothenioid Fishes
|
1954241 |
2021-08-17 | O'Brien, Kristin | No dataset link provided | Part 1: Non-technical description: Global climate warming is increasing the frequency and severity of low oxygen events in marine and freshwater environments worldwide, and these events threaten the health of aquatic ecosystems and the viability of fish populations. The Southern Ocean surrounding Antarctica has historically been a stable, icy-cold, and oxygen-rich environment, but is now warming at an unprecedented rate and faster than all other regions in the Southern hemisphere. Antarctic fishes have evolved in sub-zero temperatures that have been stable over long periods of time with traits allowing them to thrive in frigid waters, but with diminished resilience to warming temperatures. Presently little is known about the ability of Antarctic fishes to withstand hypoxic, or low-oxygen, conditions that often accompany warming. This research will investigate the hypoxia tolerance of four species of Antarctic fishes, including two species of icefishes that lack the oxygen-carrying protein, hemoglobin, which may compromise their ability to oxygenate tissues under hypoxic conditions. The hypoxia tolerance of four Antarctic fish species will be compared to that of a related fish species inhabiting warmer coastal regions of South America. Physiological and biochemical responses to hypoxia will be evaluated and compared amongst the five species to bolster our predictions of the capacity of Antarctic fishes to cope with a changing environment. This research will provide training opportunities for undergraduate and graduate students, and a postdoctoral research fellow. A year-long seminar series hosted by the Aquarium of the Pacific will feature female scientists who work in Antarctica to inspire youth in the greater Los Angeles area to pursue careers in science. Part 2: Technical description: The overarching hypothesis to be tested in this project is that the long evolution of Antarctic notothenioid fishes in a cold, oxygen-rich environment has reduced their capacity to mount a robust physiological, biochemical, and molecular response to hypoxia compared to related, cold-temperate fish species. Hypoxia tolerance will be compared among the red-blooded Antarctic notothenioids, Notothenia coriiceps and Notothenia rossii; the hemoglobinless Antarctic icefishes, Chaenocephalus aceratus and Chionodraco rastrospinosus; and the basal, cold-temperate notothenioid, Eleginops maclovinus, a species that has never inhabited waters south of the Polar Front. The minimum level of oxygen required to sustain maintenance metabolic requirements (O2crit) will be quantified. Animals will then be exposed to 65% of O2crit for 48 hours, and responses to hypoxia will be evaluated by measuring hematocrit and hemoglobin levels, as well as metabolites in brain, liver, glycolytic and cardiac muscles. Maximal activities of key enzymes of aerobic and anaerobic metabolism will be quantified to assess capacities for synthesizing ATP in hypoxic conditions. Gill remodeling will be analyzed using light and scanning electron microscopy. The molecular response to hypoxia will be characterized in liver and brains by quantifying levels of the master transcriptional regulator of oxygen homeostasis, hypoxia-inducible factor-1 (HIF-1), and hypoxic gene expression will be quantified using RNA-Seq. Cell cultures will be used to determine if a previously identified insertion mutation in notothenioid HIF-1 affects the ability of HIF-1 to drive gene expression and thus, hypoxia tolerance. The results of this project will provide the most comprehensive assessment of the hypoxia tolerance of Antarctic fishes to date. Broader impacts include research training opportunities for undergraduate and graduate students and a postdoctoral research associate, with a focus on involving Native Alaskan students in research. In partnership with the Aquarium of the Pacific, a year-long public seminar series will be held, showcasing the research and careers of 9 women who conduct research in Antarctica. The goal of the series is to cultivate and empower a community of middle and high school students in the greater Los Angeles area to pursue their interests in science and related fields, and to enhance the public engagement capacities of research scientists so that they may better inspire youth and early career scientists in STEM fields. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | |||||||
Interacting Stressors: Metabolic Capacity to Acclimate under Ocean Warming and CO2- Acidification in Early Developmental Stages of Antarctic Fishes
|
1744999 |
2021-08-12 | Todgham, Anne | The Southern Ocean contains an extraordinary diversity of marine life. Many Antarctic marine organisms have evolved in stable, cold ocean conditions and possess limited ability to respond to environmental fluctuations. To date, research on the physiological limits of Antarctic fishes has focused largely on adult life stages. However, early life stages may be more sensitive to environmental change because they may need to prioritize energy to growth and development instead of maintenance of physiological balance and integrity- even under stress conditions. This project will examine the specific mechanisms that young (embryos, larvae and juveniles) Antarctic fishes use to respond to changes in ocean conditions at the molecular, cellular and physiological levels, so that they are able to survive. The aim is to provide a unifying framework for linking environmental change, gene expression, metabolism and organismal performance in different species that have various rates of growth and development. There is a diverse and robust education and outreach program linked with the research effort that will reach students, teachers, young scientists, community members and government officials at local and regions scales. Polar species have already been identified as highly vulnerable to global change. However as yet, there is no unifying framework for linking environmental change to organismal performance, in part because a mechanistic understanding of how stressors interact at the molecular, biochemical and physiological level is underdeveloped is lacking for most species. In the marine environment, this paucity of information limits our capacity to accurately predict the impacts of warming and CO2-acidification on polar species, and therefore prevents linking climate model projections to population health predictions. This research will evaluate whether metabolic capacity (i.e. the ability to match energy supply with energy demand) limits the capacity of Antarctic fishes to acclimate to the simultaneous stressors of ocean warming and CO2-acidification. If species are unable to reestablish metabolic homeostasis following exposure to stressors, increased energetic costs may lead to a decline in physiological performance, organismal fitness, and survival. This energy-mismatch hypothesis will be tested in a multi-species approach that focuses on the early life stages, as growing juveniles are likely more vulnerable to energetic constraints than adults, while different species are targeted in order to understand how differences in phenology and life history traits influence metabolic plasticity. The research will provide a mechanistic integration of gene expression and metabolite patterns, and metabolic responses at the cellular and whole organism levels to broadly understand metabolic plasticity of fishes. The research is aligned with the theme "Decoding the genomic and transcriptomic bases of biological adaptation and response across Antarctic organisms and ecosystems" which is one of three major themes identified by the National Academy of Sciences in their document "A Strategic Vision for NSF Investments in Antarctic and Southern Ocean Research". Additionally, this project builds environmental stewardship and awareness by increasing science literacy in the broader community in three main ways: First it will increase the diversity of students involved in environmental science research by supporting one PhD student, one postdoctoral scholar and two undergraduate students and promoting the training of young students from groups traditionally underrepresented in environmental biology. Second, the project will participate in UC Davis's OneClimate initiative, which leverages the community's expertise to develop broad perspectives regarding climate change, science and society, and engage K-12 students, government officials, and local and statewide communities on topics of Antarctic research, organismal adaptation as well as ongoing and potential future changes at the poles. Lastly, summer workshops will be conducted in collaborations with the NSF-funded education program APPLES (Arctic Plant Phenology: Learning through Engaged Science), to engage teachers and K-12 students in polar science. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((162 -77,162.8 -77,163.6 -77,164.4 -77,165.2 -77,166 -77,166.8 -77,167.6 -77,168.4 -77,169.2 -77,170 -77,170 -77.1,170 -77.2,170 -77.3,170 -77.4,170 -77.5,170 -77.6,170 -77.7,170 -77.8,170 -77.9,170 -78,169.2 -78,168.4 -78,167.6 -78,166.8 -78,166 -78,165.2 -78,164.4 -78,163.6 -78,162.8 -78,162 -78,162 -77.9,162 -77.8,162 -77.7,162 -77.6,162 -77.5,162 -77.4,162 -77.3,162 -77.2,162 -77.1,162 -77)) | POINT(166 -77.5) | false | false | ||||||||
Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes
|
1644196 |
2020-12-15 | Cziko, Paul; DeVries, Arthur | Notothenioid fishes live in the world's coldest marine waters surrounding Antarctica and have evolved strategies to avoid freezing. Past studies have shown that most Antarctic notothenioids produce special antifreeze proteins that prevent the growth of ice crystals that enter the body. While these proteins help prevent individuals from being killed by growing ice crystals, it is unclear how these fish avoid the accumulation of these small ice crystals inside their tissues over time. This project will observe how ice crystal accumulation relates to the harshness of the fish's habitat and the fish's behavior within different habitats of McMurdo Sound, Antarctica. The researchers will collect fishes and ocean observations at different field sites that cover a range of habitat severity in terms of temperature and iciness. Researchers will install an underwater ocean observatory near McMurdo Station which will include a HD video camera and hydrophone. The observatory will allow continuous monitoring of ocean conditions and fish behavior that will help explain the conditions and behaviors that contribute to the acquisition and accrual of ice inside the body. Acoustic and video data from the observatory will be available to other scientists and to the public. The project will advance understanding of the many challenges life faces in extreme cold environments. This work continues a line of inquiry that has resulted in the discovery of potential medical and food preservation applications. Hundreds of antifreeze protein (AFP) structure-function studies have been conducted in the laboratory, providing a basic physical understanding of the AFP-ice interaction. How AFPs function within fishes and their range of environments, however, is far from clear. This project will provide an understanding of notothenioid's freezing avoidance mechanisms, and strategies by quantifying the acquisition, accumulation, and loss of internal ice crystals. Specifically, the goal is to determine if and how habitat severity (as defined by iciness, seawater temperature, and prevalence of supercooled water) and fish behavior influence the abundance of ice crystals in their tissues. Four locations in the McMurdo Sound with different levels of habitat severity will be sampled for oceanographic conditions and ice crystal count within fish tissues. Researchers will use a new technique to count the number of splenic ice crystals, expanding on and simplifying previous methods. Environmental data loggers will be deployed for the duration of the project at the four sites to provide context and real-time assessment of environmental conditions. An oceanographic observatory near McMurdo Station will provide year-round, real-time and archival records of oceanographic conditions, in situ video observations of anchor ice growth and ice-organism interactions, hydroacoustic recordings, and serve as proof-of concept for expanding scientific infrastructure in McMurdo Sound related to monitoring of supercooled waters and oceanographic information. | POLYGON((163.47 -77.14,163.803 -77.14,164.136 -77.14,164.469 -77.14,164.802 -77.14,165.135 -77.14,165.468 -77.14,165.801 -77.14,166.134 -77.14,166.467 -77.14,166.8 -77.14,166.8 -77.216,166.8 -77.292,166.8 -77.368,166.8 -77.444,166.8 -77.52,166.8 -77.596,166.8 -77.672,166.8 -77.748,166.8 -77.824,166.8 -77.9,166.467 -77.9,166.134 -77.9,165.801 -77.9,165.468 -77.9,165.135 -77.9,164.802 -77.9,164.469 -77.9,164.136 -77.9,163.803 -77.9,163.47 -77.9,163.47 -77.824,163.47 -77.748,163.47 -77.672,163.47 -77.596,163.47 -77.52,163.47 -77.444,163.47 -77.368,163.47 -77.292,163.47 -77.216,163.47 -77.14)) | POINT(165.135 -77.52) | false | false | ||||||||
Phylogenomic Study of Adaptive Radiation in Antarctic Fishes
|
1341661 |
2020-02-29 | Near, Thomas |
|
Understanding how groups of organisms respond to climate change is fundamentally important to assessing the impacts of human activities as well as understanding how past climatic shifts have shaped biological diversity over deep stretches of time. The fishes occupying the near-shore marine habitats around Antarctica are dominated by one group of closely related species called notothenioids. It appears dramatic changes in Antarctic climate were important in the origin and evolutionary diversification of this economically important lineage of fishes. Deposits of fossil fishes in Antarctica that were formed when the continent was experiencing milder temperatures show that the area was home to a much more diverse array of fish lineages. Today the waters of the Southern Ocean are very cold, and often below freezing, but notothenioids fishes exhibit a number of adaptions to live in this harsh set of marine habitats, including the presence of anti-freeze proteins. This research project will collect DNA sequences from hundreds of genes to infer the genealogical relationships of nearly all 124 notothenioid species, and use mathematical techniques to estimate the ages of species and lineages. Knowledge on the timing of evolutionary divergence in notothenioids will allow investigators to assess if timing of previous major climatic shifts in Antarctica are correlated with key events in the formation of the modern Southern Ocean fish fauna. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. The project will support educational outreach activities to teenager groups and to the general public through a natural history museum exhibit and other public lectures. It will provide professional training opportunities for graduate students and a postdoctoral research scholar. Adaptive radiation, where lineages experience high rates of evolutionary diversification coincident with ecological divergence, is mostly studied in island ecosystems. Notothenioids dominate the fish fauna of the Southern Ocean and exhibit antifreeze glycoproteins that allow occupation of the subzero waters. Notothenioids are noted as one of the only examples of adaptive radiation among marine fishes, but the evolutionary history of diversification and radiation into different ecological habitats is poorly understood. This research will generate a species phylogeny (evolutionary history) for nearly all of the 124 recognized notothenioid species to investigate the mechanisms of adaptive radiation in this lineage. The phylogeny is inferred from approximately 350 genes sampled using next generation DNA sequencing and related techniques. Morphometric data are taken for museum specimens to investigate the tempo of morphological diversification and to determine if there are correlations between rates of lineage diversification and the origin of morphological disparity. The patterns of lineage, morphological, and ecological diversification in the notothenioid radiation will be compared to the paleoclimatic record to determine if past instances of global climate change have shaped the evolutionary diversification of this lineage of polar-adapted fishes. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||
Antarctic Fish and MicroRNA Control of Development and Physiology
|
1543383 |
2020-02-26 | Postlethwait, John; Desvignes, Thomas | Icefish live in frigid Antarctic seas, and have unique traits such as the absence of red blood cells, enlarged hearts, large diameter blood vessels, low bone mineral densities, and fat droplets that disrupt their muscles. These features would be harmful in other animals. In mammals and fish inhabiting warm waters, development of organs involved in these traits is modulated by genes that encode specific proteins, but the rate of protein production is often regulated by short RNA molecules called microRNAs (miRNAs). Genes that code for proteins must first make an RNA copy, and the actual protein is made from this RNA copy intermediate. MiRNAs regulate the amount of protein that is made by binding to the RNA intermediate and interrupting its production of protein. Binding of miRNAs to RNA depends strongly on temperature. Regulation of genes by miRNAs has not been studied in Antarctic fish, which live in seas with temperatures below the freezing point of fresh water. This project will compare miRNA regulation 1) in Antarctic fish vs. warm-water fish to learn how miRNAs regulate gene expression in constant cold; and 2) in Antarctic icefish with no red blood cells, enlarged hearts, and reduced bone density vs. closely related Antarctic fish containing red blood cells, normal hearts, and dense bones. The project will have broad impacts to science and society nationally and globally. First, this will be the first study of important factors in gene regulation (miRNAs) in Antarctic fish, which are an essential component of the entire ecology of the Southern Ocean, and will shed light on how these fish might respond to the warming of Antarctic waters. Second, it will bring Antarctic science to under-represented high school students at a local alternative downtown high school by conducting video conferences during the Antarctic field seasons and hosting student investigations of Antarctic fish in the research laboratory. microRNAs (miRNAs) are key post-transcriptional regulators of gene expression that modulate development and physiology in temperate animals. Although miRNAs act by binding to messenger RNAs (mRNAs), a process that is strongly sensitive to temperature, miRNAs have yet not been studied in Antarctic animals, including Notothenioid fish, which dominate the Southern Ocean. This project will compare miRNA regulation in 1) Antarctic vs. temperate fish to learn the roles of miRNA regulation in adaptation to constant cold; and in 2) bottom-dwelling, dense-boned, red-blooded Nototheniods vs. high buoyancy, osteopenic, white-blooded icefish to understand miRNA regulation in specialized organs after the evolution of the loss of hemoglobin genes and red blood cells, the origin of enlarged heart and vasculature, and the evolution of increased buoyancy, which arose by decreased bone mineralization and increased lipid deposition. Aim 1 is to test the hypothesis that Antarctic fish evolved miRNA-related genome specializations in response to constant cold. The project will compare four Antarctic Notothenioid species to two temperate Notothenioids and two temperate laboratory species to test the hypotheses that (a) Antarctic fish evolved miRNA genome repertoires by loss of ancestral genes and/or gain of new genes, (b) express miRNAs that are involved in cold tolerance, and (c) respond to temperature change by changing miRNA gene expression. Aim 2 is to test the hypothesis that the evolution of icefish from red-blooded bottom-dwelling ancestors was accompanied by an altered miRNA genomic repertoire, sequence, and/or expression. The project will test the hypotheses that (a) miRNAs in icefish evolved in sequence and/or in expression in icefish specializations, including head kidney (origin of red blood cells); heart (changes in vascular system), cranium and pectoral girdle (reduced bone mineral density); and skeletal muscle (lipid deposition), and (b) miRNAs that evolved in icefish specializations had ancestral functions related to their derived roles in icefish, as determined by functional tests of zebrafish orthologs of icefish miRNAs in developing zebrafish. The program will isolate, sequence, and determine the expression of miRNAs and mRNAs using high-throughput transcriptomics and novel software. Results will show how the microRNA system evolves in vertebrate animals pushed to physiological extremes and provide insights into the prospects of key species in the most rapidly warming part of the globe. | POLYGON((-66 -62,-65.2 -62,-64.4 -62,-63.6 -62,-62.8 -62,-62 -62,-61.2 -62,-60.4 -62,-59.6 -62,-58.8 -62,-58 -62,-58 -62.4,-58 -62.8,-58 -63.2,-58 -63.6,-58 -64,-58 -64.4,-58 -64.8,-58 -65.2,-58 -65.6,-58 -66,-58.8 -66,-59.6 -66,-60.4 -66,-61.2 -66,-62 -66,-62.8 -66,-63.6 -66,-64.4 -66,-65.2 -66,-66 -66,-66 -65.6,-66 -65.2,-66 -64.8,-66 -64.4,-66 -64,-66 -63.6,-66 -63.2,-66 -62.8,-66 -62.4,-66 -62)) | POINT(-62 -64) | false | false | ||||||||
Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes
|
1341602 1341663 |
2020-02-26 | Crockett, Elizabeth; O'Brien, Kristin | The ocean surrounding Antarctica is home to an extraordinary assemblage of fishes, dominated by a single group that are extremely well-suited to life in icy waters and which are of significant ecological importance there. Of great concern is the capacity of these fishes to withstand increases in temperature as the region of the Western Antarctic Peninsula warms at a rate faster than any other area in the Southern hemisphere. One particular group of Antarctic fishes, known as the icefishes, are particularly vulnerable to increases in temperature because unlike all other vertebrates on earth, icefishes are white-blooded due to their lack of the oxygen-binding protein hemoglobin. This greatly reduces their capacity to transport and deliver oxygen to tissues compared to red-blooded Antarctic fishes. Previous studies have shown that icefishes are indeed less tolerant to elevations in temperature but the underlying factors are completely unknown. Additionally, it is not understood if red- or white-blooded Antarctic fishes can adjust, or acclimate, to modest increases in temperature, similar to those changes in temperature the animals might experience as the earth warms. The investigators will determine if heart function and/or nervous system function limits thermal tolerance of Antarctic fishes, and will determine their capacity to acclimate to warmer temperatures. The project will further the NSF goal of training new generations of scientists by training graduate and undergraduate students. In addition, the project will collaborate with a high school biology teacher from a school which serves a largely minority student body. The students will learn about the marine environment, and will construct a camera to be used in the field to learn more about Antarctic fishes. Two students and the teacher will also attend a summer marine biology internship program. Antarctic fishes within the suborder Notothenioidei (called "notothenioids") are among the organisms on earth least able to deal with changes in temperature. The hemoglobinless icefish are even less able to withstand temperature changes than are red-blooded notothenioids. While this is well documented, the underlying physiological and biochemical mechanisms responsible are unknown. The investigators will test the hypotheses that cardiac work is significantly greater in icefishes compared to red-blooded species, and that as temperature increases, the greater cardiac work of icefishes, coupled with reduced blood oxygen-carrying capacity, results in cardiac failure at a lower temperature compared to red-blooded species. They also hypothesize that neuronal function limits thermal tolerance of red-blooded notothenioids. These hypotheses will be tested using a wide variety of experiments. For example, the investigators will measure heart rate concurrently with critical thermal maximum. They will also characterize metabolic and gene-expression responses to elevated temperature and determine if mitochondrial function contributes to thermal tolerance using a variety of techniques. To determine if neuronal function limits thermal tolerance they will quantify behavioral responses to warming of whole animals and to warming of only the brain area. They will also determine if acclimation to warmer temperatures impacts heart function and they will measure activities of a variety of enzymes from central metabolic pathways. | None | None | false | false | ||||||||
Collaborative research: Redox Balance in Antarctic Notothenioid fishes: Do Icefishes have an Advantage?
|
1043576 1043781 |
2016-12-06 | Crockett, Elizabeth; O'Brien, Kristin |
|
Antarctic channichthyid icefishes are stunning examples of the unique physiological traits that can arise during evolution in a constantly cold environment. Icefishes are the only vertebrates that as adults, lack the circulating oxygen-binding protein hemoglobin (Hb); several species within this family also lack the intracellular oxygen-binding protein myoglobin (Mb) in their heart ventricle. The loss of Hb and Mb has resulted in striking modifications in the cardiovascular system to ensure adequate tissue oxygenation, some of which are energetically costly. Recent indicate there may be at least one benefit to not expressing these heme-centered proteins - oxidized proteins and lipids are higher in red-blooded notothenioids compared to icefishes. The research will address the hypothesis that the loss of Hb and Mb reduces oxidative stress in icefishes compared to red-blooded notothenioid fishes, resulting in a lower rate of protein turnover and energetic cost savings. Specifically, the project will (1) Characterize levels of oxidative stress in red- and white-blooded notothenioid fishes, (2) Determine if red- and white-blooded notothenioids differ in their regulation of iron, (3) Determine if lower levels of oxidized proteins in icefishes result in lower rates of protein turnover and energetic cost savings, and (4) Determine if oxygen-binding proteins promote oxidative stress in-vivo and in-vitro. The results will contribute to the understanding of iron-catalyzed oxidative stress, which is associated with the progression of Alzheimer's, Parkinson's and cardiovascular diseases. Moreover, the research will increase understanding of factors related to iron metabolism and oxidative stress in notothenioid fishes that may have played key roles in the success of channichthyid icefishes. The broader impacts include development of a website will enable teachers and students to learn more about the fascinating biology of Antarctic icefishes, as well as the impacts of global climate change and commercial fishing activities on Antarctic fishes. Additionally, Alaska Native high school and undergraduate students will be involved in research at the University of Alaska, Fairbanks. | POLYGON((-64.45 -63.467,-64.2633 -63.467,-64.0766 -63.467,-63.8899 -63.467,-63.7032 -63.467,-63.5165 -63.467,-63.3298 -63.467,-63.1431 -63.467,-62.9564 -63.467,-62.7697 -63.467,-62.583 -63.467,-62.583 -63.5653,-62.583 -63.6636,-62.583 -63.7619,-62.583 -63.8602,-62.583 -63.9585,-62.583 -64.0568,-62.583 -64.1551,-62.583 -64.2534,-62.583 -64.3517,-62.583 -64.45,-62.7697 -64.45,-62.9564 -64.45,-63.1431 -64.45,-63.3298 -64.45,-63.5165 -64.45,-63.7032 -64.45,-63.8899 -64.45,-64.0766 -64.45,-64.2633 -64.45,-64.45 -64.45,-64.45 -64.3517,-64.45 -64.2534,-64.45 -64.1551,-64.45 -64.0568,-64.45 -63.9585,-64.45 -63.8602,-64.45 -63.7619,-64.45 -63.6636,-64.45 -63.5653,-64.45 -63.467)) | POINT(-63.5165 -63.9585) | false | false | |||||||
Ocean Acidification Category 1: Identifying Adaptive Responses of Polar Fishes in a Vulnerable Ecosystem
|
1447291 1040945 1040957 |
2015-01-12 | Place, Sean; Sarmiento, Jorge; Dudycha, Jeffry; Kwon, Eun-Young | The proposed research will investigate the interacting and potentially synergistic influence of two oceanographic features - ocean acidification and the projected rise in mean sea surface temperature - on the performance of Notothenioids, the dominant fish of the Antarctic marine ecosystem. Understanding the joint effects of acidification and temperature rise on these fish is a vital component of predicting the resilience of coastal marine ecosystems. Notothenioids have repeatedly displayed a narrow window of physiological tolerances when subjected to abiotic stresses. Given that evolutionary adaptation may have led to finely-tuned traits with narrow physiological limits in these organisms, this system provides a unique opportunity to examine physiological trade-offs associated with acclimation to the multi-stressor environment expected from future atmospheric CO2 projections. Understanding these trade-offs will provide valuable insight into the capacity species have for responses to climate change via phenotypic plasticity. As an extension to functional measurements, this study will use evolutionary approaches to map variation in physiological responses onto the phylogeny of these fishes and the genetic diversity within species. These approaches offer insight into the historical constraints and future potential for evolutionary optimization. The research will significantly expand the genomic resources available to polar researchers and will support the training of graduate students and a post doc at an EPSCoR institution. Research outcomes will be incorporated into classroom curriculum. | POLYGON((-180 90,-144 90,-108 90,-72 90,-36 90,0 90,36 90,72 90,108 90,144 90,180 90,180 72,180 54,180 36,180 18,180 0,180 -18,180 -36,180 -54,180 -72,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -72,-180 -54,-180 -36,-180 -18,-180 0,-180 18,-180 36,-180 54,-180 72,-180 90)) | POINT(0 -89.999) | false | false | ||||||||
PostDoctoral Research Fellowship
|
1019305 |
2014-02-10 | Grim, Jeffrey |
|
Survival of Antarctic notothenioid fishes in the context of global climate change will depend upon the impact of rising oceanic temperatures on their embryonic development, yet little is known regarding the molecular mechanisms underlying this complex suite of processes. Many notothenioids are characterized by secondary pelagicism, which enables them to exploit food sources in the water column and is supported in part by skeletal pedomorphism. Here the PI proposes to examine the hypothesis that reactive oxygen species (ROS) regulate notothenioid skeletal pedomorphism. The PI proposes to examine the hypothesis that reactive oxygen species (ROS) regulate notothenioid skeletal pedomorphism. The research objectives are : 1) To quantify and localize ROS production and identify the point(s) of origin of ROS production in embryonic Antarctic fishes that differ in skeletal phenotypes 2) To determine whether the time course of embryogenesis and the extent of osteological development in embryonic Antarctic fishes can be altered by changing the oxidative status of the animal during embryogenesis 3) To evaluate whether transgenic alteration of oxidative status can induce skeletal pedomorphism in a fish model. Broader Impacts will include teaching undergraduate lectures, recruiting undergraduate students to help with lab analyses (and possibly field work), lectures and demonstrations to high school students, and allowing secondary educators access to personal photos and videos of research animals for curriculum development. | None | None | false | false | |||||||
Collaborative Research: Linkages among Mitochondrial Form, Function and Thermal Tolerance of Antarctic Notothenioid Fishes
|
0741301 1142720 |
2013-11-30 | Crockett, Elizabeth; O'Brien, Kristin |
|
Abstract Antarctic notothenioid fishes have evolved in the Southern Ocean for 10-14 MY under an unusual set of circumstances. Their characteristics include the complete absence of the circulating oxygen-binding protein, hemoglobin (Hb) within the Channichthyid (Icefish) family of notothenioids. Moreover, some species within the 16 members of this family have also lost the ability to express the oxygen-binding and storage protein, myoglobin (Mb) in cardiac muscle. Our previous work has determined that the loss of Hb and/or Mb is correlated with significant increases in densities of mitochondria within oxidative tissues, and extensive remodeling of these vital organelles. To date, nothing is known about how modifications in mitochondrial architecture of icefishes affect organelle function, or more importantly, how they affect organismal-level physiology. Most critical for Antarctic fishes is that mitochondrial characteristics have been linked to how well ectotherms can withstand increases in temperature. This collaborative research project will address the hypothesis that the unusual mitochondrial architecture of Antarctic Channichthyids has led to changes in function that impact their ability to withstand elevations in temperature. Specifically, the research will (1) determine if the unusual mitochondrial architecture of icefishes affects function and contributes to organismal thermal sensitivity, (2) identify differences in organismal thermal tolerance between red- and white- blooded notothenioids, (3) identify molecular mechanisms regulating changes in mitochondrial structure in icefishes. The results may establish channichthyid icefishes as a sentinel taxon for signaling the impact of global warming on the Southern Ocean. Broad impacts of this project will be realized by participation of high school biology teachers in field work through cooperation with the ARMADA project at the University of Rhode Island, as well as graduate education. | POLYGON((-64.45 -63.29,-64.249 -63.29,-64.048 -63.29,-63.847 -63.29,-63.646 -63.29,-63.445 -63.29,-63.244 -63.29,-63.043 -63.29,-62.842 -63.29,-62.641 -63.29,-62.44 -63.29,-62.44 -63.370999999999995,-62.44 -63.452,-62.44 -63.533,-62.44 -63.614,-62.44 -63.69499999999999,-62.44 -63.775999999999996,-62.44 -63.857,-62.44 -63.937999999999995,-62.44 -64.01899999999999,-62.44 -64.1,-62.641 -64.1,-62.842 -64.1,-63.043 -64.1,-63.244 -64.1,-63.445 -64.1,-63.646 -64.1,-63.847 -64.1,-64.048 -64.1,-64.249 -64.1,-64.45 -64.1,-64.45 -64.01899999999999,-64.45 -63.937999999999995,-64.45 -63.857,-64.45 -63.775999999999996,-64.45 -63.69499999999999,-64.45 -63.614,-64.45 -63.533,-64.45 -63.452,-64.45 -63.370999999999995,-64.45 -63.29)) | POINT(-63.445 -63.695) | false | false | |||||||
Genomic Approaches to Resolving Phylogenies of Antarctic Notothenioid Fishes
|
0839007 |
2013-11-22 | Near, Thomas |
|
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>The teleost fish fauna in the waters surrounding Antarctica are completely dominated by a single clade of closely related species, the Notothenioidei. This clade offers an unprecedented opportunity to investigate the effects of deep time paleogeographic transformations and periods of global climate change on lineage diversification and facilitation of adaptive radiation. With over 100 species, the Antarctic notothenioid radiation has been the subject of intensive investigation of biochemical, physiological, and morphological adaptations associated with freezing avoidance in the subzero Southern Ocean marine habitats. However, broadly sampled time-calibrated phylogenetic hypotheses of notothenioids have not been used to examine patterns of adaptive radiation in this clade. The goals of this project are to develop an intensive phylogenomic scale dataset for 90 of the 124 recognized notothenioid species, and use this genomic resource to generate time-calibrated molecular phylogenetic trees. The results of pilot phylogenetic studies indicate a very exciting correlation of the initial diversification of notothenioids with the fragmentation of East Gondwana approximately 80 million years ago, and the origin of the Antarctic Clade adaptive radiation at a time of global cooling and formation of polar conditions in the Southern Ocean, approximately 35 million years ago. This project will provide research experiences for undergraduates, training for a graduate student, and support a post doctoral researcher. In addition the project will include three high school students from New Haven Public Schools for summer research internships. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||
International Collaborative Expedition to Collect and Study Fish Indigenous to Sub-Antarctic Habitats
|
0132032 |
2010-05-04 | Detrich, H. William |
|
Notothenioid fish are a major group of fish in the Southern Ocean. The ancestral notothenioid fish stock of Antarctica probably arose as a sluggish, bottom-dwelling perciform species that evolved some 40-60 million years ago in the then temperate shelf waters of the Antarctic continent. The grounding of the ice sheet on the continental shelf and changing trophic conditions may have eliminated the taxonomically diverse late Eocene fauna and initiated the original diversification of notothenioids. On the High Antarctic shelf, notothenioids today dominate the ichthyofauna in terms of species diversity, abundance and biomass, the latter two at levels of 90-95%. Since the International Geophysical Year of 1957-58, fish biologists from the Antarctic Treaty nations have made impressive progress in understanding the notothenioid ichthyofauna of the cold Antarctic marine ecosystem. However, integration of this work into the broader marine context has been limited, largely due to lack of access to, and analysis of, specimens of Sub-Antarctic notothenioid fishes. Sub-Antarctic fishes of the notothenioid suborder are critical for a complete understanding of the evolution, population dynamics, eco-physiology, and eco-biochemistry of their Antarctic relatives. This project will support an international, collaborative research cruise to collect and study fish indigenous to sub-antarctic habitats. The topics included in the research plans of the international team of researchers includes Systematics and Evolutionary Studies; Life History Strategies and Population Dynamics; Physiological, Biochemical, and Molecular Biological Investigations of Major Organ and Tissue Systems; Genomic Resources for the Sub-Antarctic Notothenioids; and Ecological Studies of Transitional Benthic Invertebrates. In a world that is experiencing changes in global climate, the loss of biological diversity, and the depletion of marine fisheries, the Antarctic, Sub-Antarctic, and their biota offer compelling natural laboratories for understanding the evolutionary impacts of these processes. The proposed work will contribute to development of a baseline understanding of these sensitive ecosystems, one against which future changes in species distribution and survival may be evaluated judiciously. | POLYGON((-68.84315 -42.87167,-61.576321 -42.87167,-54.309492 -42.87167,-47.042663 -42.87167,-39.775834 -42.87167,-32.509005 -42.87167,-25.242176 -42.87167,-17.975347 -42.87167,-10.708518 -42.87167,-3.441689 -42.87167,3.82514 -42.87167,3.82514 -44.482708,3.82514 -46.093746,3.82514 -47.704784,3.82514 -49.315822,3.82514 -50.92686,3.82514 -52.537898,3.82514 -54.148936,3.82514 -55.759974,3.82514 -57.371012,3.82514 -58.98205,-3.441689 -58.98205,-10.708518 -58.98205,-17.975347 -58.98205,-25.242176 -58.98205,-32.509005 -58.98205,-39.775834 -58.98205,-47.042663 -58.98205,-54.309492 -58.98205,-61.576321 -58.98205,-68.84315 -58.98205,-68.84315 -57.371012,-68.84315 -55.759974,-68.84315 -54.148936,-68.84315 -52.537898,-68.84315 -50.92686,-68.84315 -49.315822,-68.84315 -47.704784,-68.84315 -46.093746,-68.84315 -44.482708,-68.84315 -42.87167)) | POINT(-32.509005 -50.92686) | false | false | |||||||
Collaborative Research: Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis.
|
0437887 |
2009-12-06 | Sidell, Bruce | The polar ocean presently surrounding Antarctica is the coldest, most thermally stable marine environment on earth. Because oxygen solubility in seawater is inversely proportional to temperature, the cold Antarctic seas are an exceptionally oxygen-rich aquatic habitat. Eight families of a single perciform suborder, the Notothenioidei, dominate the present fish fauna surrounding Antarctica. Notothenioids account for approximately 35% of fish species and 90% of fish biomass south of the Antarctic Polar Front. Radiation of closely related notothenioid species thus has occurred rapidly and under a very unusual set of conditions: relative oceanographic isolation from other faunas due to circumpolar currents and deep ocean trenches surrounding the continent, chronically, severely cold water temperatures, very high oxygen availability, very low levels of niche competition in a Southern Ocean depauperate of species subsequent to a dramatic crash in species diversity of fishes that occurred sometime between the mid-Tertiary and present. These features make Antarctic notothenioid fishes an uniquely attractive group for the study of physiological and biochemical adaptations to cold body temperature. <br/>Few distinctive features of Antarctic fishes are as unique as the pattern of expression of oxygen-binding proteins in one notothenioid family, the Channichthyidae (Antarctic icefishes). All channichthyid icefishes lack the circulating oxygen-binding protein, hemoglobin (Hb); the intracellular oxygen-binding protein, myoglobin (Mb) is not uniformly expressed in species of this family. Both proteins are normally considered essential for adequate delivery of oxygen to aerobically poised tissues of animals. To compensate for the absence of Hb, icefishes have developed large hearts, rapidly circulate a large blood volume and possess elaborate vasculature of larger lumenal diameter than is seen in red-blooded fishes. Loss of Mb expression in oxidative muscles correlates with dramatic elevation in density of mitochondria within the cell, although each individual organelle is less densely packed with respiratory proteins. <br/>Within the framework of oxygen movement, the adaptive significance of greater vascular density and mitochondrial populations is understandable but mechanisms underlying development of these characteristics remain unknown. The answer may lie in another major function of both Hb and Mb, degradation of the ubiquitous bioactive compound, nitric oxide (NO). The research will test the hypothesis that loss of hemoprotein expression in icefishes has resulted in an increase in levels of NO that mediate modification of vascular systems and expansion of mitochondrial populations in oxidative tissues. The objectives of the proposal are to quantify the vascular density of retinas in +Hb and -Hb notothenioid species, to characterize NOS isoforms and catalytic activity in retina and cardiac muscle of Antarctic notothenioid fishes, to evaluate level of expression of downstream factors implicated in angiogenesis (in retinal tissue) and mitochondrial biogenesis (in cardiac muscle), and to determine whether inhibition of NOS in vivo results in regression of angiogenic and mitochondrial biogenic responses in icefishes. Broader impacts range from basic biology, through training of young scientists, to enhanced understanding of clinically relevant biomedical processes. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||||
Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes
|
0436190 |
2009-03-30 | Eastman, Joseph |
|
Patterns of biodiversity, as revealed by basic research in organismal biology, may be derived from ecological and evolutionary processes expressed in unique settings, such as Antarctica. The polar regions and their faunas are commanding increased attention as declining species diversity, environmental change, commercial fisheries, and resource management are now being viewed in a global context. Commercial fishing is known to have a direct and pervasive effect on marine biodiversity, and occurs in the Southern Ocean as far south as the Ross Sea. <br/>The nature of fish biodiversity in the Antarctic is different than in all other ocean shelf areas. Waters of the Antarctic continental shelf are ice covered for most of the year and water temperatures are nearly constant at -1.5 C. In these waters components of the phyletically derived Antarctic clade of Notothenioids dominate fish diversity. In some regions, including the southwestern Ross Sea, Notothenioids are overwhelmingly dominant in terms of number of species, abundance, and biomass. Such dominance by a single taxonomic group is unique among shelf faunas of the world. In the absence of competition from a taxonomically diverse fauna, Notothenioids underwent a habitat or depth related diversification keyed to the utilization of unfilled niches in the water column, especially pelagic or partially pelagic zooplanktivory and piscivory. This has been accomplished in the absence of a swim bladder for buoyancy control. They also may form a special type of adaptive radiation known as a species flock, which is an assemblage of a disproportionately high number of related species that have evolved rapidly within a defined area where most species are endemic. Diversification in buoyancy is the hallmark of the notothenioid radiation. Buoyancy is the feature of notothenioid biology that determines whether a species lives on the substrate, in the water column or both. Buoyancy also influences other key aspects of life history including swimming, feeding and reproduction and thus has implications for the role of the species in the ecosystem. <br/>With similarities to classic evolutionary hot spots, the Antarctic shelf and its Notothenioid radiation merit further exploration. The 2004 "International Collaborative Expedition to collect and study Fish Indigenous to Sub-Antarctic Habitats," or, "ICEFISH," provided a platform for collection of notothenioid fishes from sub-Antarctic waters between South America and Africa, which will be examined in this project. This study will determine buoyancy for samples of all notothenioid species captured during the ICEFISH cruise. This essential aspect of the biology is known for only 19% of the notothenioid fauna. Also, the gross and microscopic anatomy of brains and sense organs of the phyletically basal families Bovichtidae, Eleginopidae, and of the non-Antarctic species of the primarily Antarctic family Nototheniidae will be examined. The fish biodiversity and endemicity in poorly known localities along the ICEFISH cruise track, seamounts and deep trenches will be quantified. Broader impacts include improved information for comprehending and conserving biodiversity, a scientific and societal priority. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false |