{"dp_type": "Project", "free_text": "Climatology"}
[{"awards": "0944018 Lazzara, Matthew; 0943952 Cassano, John", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic Automatic Weather Stations", "datasets": [{"dataset_uid": "200375", "doi": "https://doi.org/10.48567/1hn2-nw60", "keywords": null, "people": null, "repository": "Antarctic Meteorological Research and Data Center", "science_program": null, "title": "Antarctic Automatic Weather Stations", "url": "https://amrdcdata.ssec.wisc.edu/dataset?q=0944018+"}], "date_created": "Fri, 20 Oct 2023 00:00:00 GMT", "description": "The Antarctic Automatic Weather Station (AWS) network, first commenced in 1978, is the most extensive meteorological observing system on the Antarctic continent, approaching its 30th year at many of its key sites. Its prime focus as a long term observational record is vital to the measurement of the near surface climatology of the Antarctic atmosphere. AWS units measure air-temperature, pressure, wind speed and direction at a nominal surface height of 3m. Other parameters such as relative humidity and snow accumulation may also be taken. Observational data from the AWS are collected via the DCS Argos system aboard either NOAA or MetOp polar orbiting satellites and thus made available globally, in near real time via the GTS (Global Telecommunications System), to operational and synoptic weather forecasters. The surface observations from the AWS network also are often used to check on satellite and remote sensing observations, and the simulations of Global Climate Models (GCMs). Research instances of its use in this project include continued development of the climatology of the Antarctic atmosphere and surface wind studies of the Ross Ice Shelf. The AWS observations benefit the broader earth system science community, supporting research activities ranging from paleoclimate studies to penguin phenology.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; DATA COLLECTIONS; SURFACE PRESSURE; HUMIDITY; AIR TEMPERATURE; FIELD SITES; LAND-BASED PLATFORMS; SURFACE WINDS; WEATHER STATIONS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Cassano, John", "platforms": "LAND-BASED PLATFORMS; LAND-BASED PLATFORMS \u003e FIELD SITES; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e DATA COLLECTIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e WEATHER STATIONS", "repo": "Antarctic Meteorological Research and Data Center", "repositories": "Antarctic Meteorological Research and Data Center", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Antarctic Automatic Weather Station Program", "uid": "p0010438", "west": -180.0}, {"awards": "2233016 Blanchard-Wrigglesworth, Edward", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 17 Feb 2023 00:00:00 GMT", "description": "In the austral winter of 2021/2022 a drastic decline in Antarctic sea ice extent has taken place, and February 2022 marked the lowest sea ice extent on record since satellite sea ice observations began in 1979. Combined with the loss of sea ice, the most extreme heat wave ever observed took place over East Antarctica in March 2022 as temperatures climbed over +40\u00b0C from climatology. Extreme events have an oversized footprint in socioeconomic impacts, but also serve as litmus tests for climate predictions. This project will use novel tools to diagnose the factors that led to the record low Antarctic sea ice extent and heat wave focusing on the impact of winds and ocean temperatures. Currently (June 2022) Antarctic sea ice extent remains at record low levels for the time of year, raising the prospect of a long-lasting period of low sea ice extent, yet annual forecasts of Antarctic sea ice do not yet exist. To address this issue, this project will also create exploratory annual sea ice forecasts for the 2022-2024 period. The extreme changes observed in Antarctic sea ice extent and air temperature have questioned our current understanding of Antarctic climate variability. Motivated by the timing of these events and our recent development of novel analysis tools, this project will address the following research questions: (R1) Can local winds account for the observed 2021/2022 sea ice loss, or are remote sea surface temperature (SST) anomalies a necessary ingredient? (R2) Are sea ice conditions over 2022-2024 likely to remain anomalously low? (R3) Can a state-of-the-art climate model simulate a heat wave of comparable magnitude to that observed if it follows the observed circulation that led to the heat wave? The main approach will be to use a nudging technique with a climate model, in which one or several variables in a climate model are nudged toward observed values. The project authors used this tool to attribute Antarctic sea ice variability and trends over 1979-2018 to winds and SST anomalies. This project will apply this tool to the period 2019-2022 to address R1 and R3 by running two different model experiments over this time period in which the winds over Antarctica and SSTs in the Southern Ocean are nudged toward observed values. In addition, we will diagnose the relevant modes of atmospheric variability over 2019-2022 that are known to influence Antarctic sea ice to gain further insight into the 2022 loss of sea ice extent. To address R2, we plan to extend the model simulations but without nudging, using the model as a forecast model (as its 2022 initial conditions will be taken from the end of the nudged simulations and capture important aspects of the observed state). We expect that if current upper ocean heat content is anomalously high, low sea ice extent conditions may continue over 2022-2024, as happened over 2017-2019 following the previous record low of sea ice extent in 2016/2017. To further address R3, we will compare observations and model simulations using novel atmospheric heat transport calculations developed by the project team. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; SURFACE TEMPERATURE", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Blanchard-Wrigglesworth, Edward", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "RAPID: What Caused the Record Warmth and Loss of Antarctic Sea ice in the Austral Summer of 2022, and will Sea Ice Remain Low Over 2022-2024?", "uid": "p0010405", "west": -180.0}, {"awards": "1924730 Lazzara, Matthew", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "AMRC Automatic Weather Station project data", "datasets": [{"dataset_uid": "200316", "doi": "10.48567/1hn2-nw60", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "AMRC Automatic Weather Station project data", "url": "https://doi.org/10.48567/1hn2-nw60"}], "date_created": "Tue, 23 Aug 2022 00:00:00 GMT", "description": "The Antarctic Automatic Weather Station network is the most extensive surficial meteorological network in the Antarctic, approaching its 30th year at several of its data stations. Its prime focus is also as a long term observational record, to measure the near surface weather and climatology of the Antarctic atmosphere. Antarctic Automatic Weather Stations measure air-temperature, pressure, wind speed and direction at a nominal surface height of ~ 2-3m. Other parameters such as relative humidity and snow accumulation may also be taken. The surface observations from the Antarctic Automatic Weather Station network are also used operationally, for forecast purposes, and in the planning of field work. Surface observations made from the network have also been used to check the validity of satellite and remote sensing observations. The proposed effort informs our understanding of the Antarctic environment and its weather and climate trends over the past few decades. The research has implications for potential future operations and logistics for the US Antarctic Program during the winter season. As a part of this endeavor, all project participants will engage in a coordinated outreach effort to bring the famous Antarctic \"cold\" to public seminars, K-12, undergraduate, and graduate classrooms, and senior citizen centers. This project proposes to use the surface conditions observed by the Antarctic Automatic Weather Station (AWS) network to determine how large-scale modes of climate variability impact Antarctic weather and climate, how the surface observations from the AWS network are linked to surface layer and boundary layer processes. Consideration will also be given to low temperature physical environments such as may be encountered during Antarctic winter, and the best ways to characterize these, and other ?cold pool? phenomena. Observational data from the AWS are collected via Iridium network, or DCS Argos aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters over the GTS (WMO Global Telecommunication System). Being able to support improvements in numerical weather prediction and climate modeling will have lasting impacts on Antarctic science and logistical support. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "SURFACE TEMPERATURE; ATMOSPHERIC PRESSURE; ATMOSPHERIC TEMPERATURE; Antarctica; SURFACE WINDS; HUMIDITY; AIR TEMPERATURE; ATMOSPHERIC WINDS; ATMOSPHERIC PRESSURE MEASUREMENTS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Welhouse, Lee J", "platforms": null, "repo": "AMRDC", "repositories": "AMRDC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Antarctic Automatic Weather Station Program 2019-2022", "uid": "p0010370", "west": -180.0}, {"awards": null, "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 23 Aug 2022 00:00:00 GMT", "description": "The Antarctic Automatic Weather Station network is the most extensive surficial meteorological network in the Antarctic, approaching its 30th year at several of its data stations. Its prime focus is also as a long term observational record, to measure the near surface weather and climatology of the Antarctic atmosphere. Antarctic Automatic Weather Stations measure air-temperature, pressure, wind speed and direction at a nominal surface height of ~ 2-3m. Other parameters such as relative humidity and snow accumulation may also be taken. The surface observations from the Antarctic Automatic Weather Station network are also used operationally, for forecast purposes, and in the planning of field work. Surface observations made from the network have also been used to check the validity of satellite and remote sensing observations. The proposed effort informs our understanding of the Antarctic environment and its weather and climate trends over the past few decades. The research has implications for potential future operations and logistics for the US Antarctic Program during the winter season. As a part of this endeavor, all project participants will engage in a coordinated outreach effort to bring the famous Antarctic \"cold\" to public seminars, K-12, undergraduate, and graduate classrooms, and senior citizen centers.\u003cbr/\u003e\u003cbr/\u003eThis project proposes to use the surface conditions observed by the Antarctic Automatic Weather Station (AWS) network to determine how large-scale modes of climate variability impact Antarctic weather and climate, how the surface observations from the AWS network are linked to surface layer and boundary layer processes. Consideration will also be given to low temperature physical environments such as may be encountered during Antarctic winter, and the best ways to characterize these, and other ?cold pool? phenomena. Observational data from the AWS are collected via Iridium network, or DCS Argos aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters over the GTS (WMO Global Telecommunication System). Being able to support improvements in numerical weather prediction and climate modeling will have lasting impacts on Antarctic science and logistical support.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "HUMIDITY; SURFACE WINDS; SURFACE PRESSURE; INCOMING SOLAR RADIATION; SURFACE AIR TEMPERATURE", "locations": null, "north": null, "nsf_funding_programs": null, "paleo_time": null, "persons": null, "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Antarctic Automatic Weather Station Program 2019-2022", "uid": "p0010371", "west": null}, {"awards": "1543305 Lazzara, Matthew", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic Automatic Weather Station", "datasets": [{"dataset_uid": "200291", "doi": "https://doi.org/10.48567/1hn2-nw60", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Antarctic Automatic Weather Station", "url": "https://amrdcdata.ssec.wisc.edu/group/about/automatic-weather-station-project"}], "date_created": "Mon, 16 May 2022 00:00:00 GMT", "description": "The Antarctic Automatic Weather Station (AWS) network is the most extensive ground meteorological network in the Antarctic, approaching its 30th year at several of its installations. Its prime focus as a long term observational record is to measure the near surface weather and climatology of the Antarctic atmosphere. AWS stations measure air-temperature, pressure, wind speed and direction at a nominal surface height of ~ 2-3m. Other parameters such as relative humidity and snow accumulation may also be taken. Observational data from the AWS are collected via Iridium network, or DCS Argos aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters. The surface observations from the AAWS network are important records for recent climate change and meteorological processes. The surface observations from the AAWS network are also used operationally, and in the planning of field work. The surface observations made from the AAWS network have been used to check on satellite and remote sensing observations. This project proposes to use the surface conditions observed by the AWS network to determine how large-scale modes of climate variability impact Antarctic weather and climate, how the surface observations from the AWS network are linked to surface layer and boundary layer processes, and to quantify the impact of snowfall and blowing snow events. Specifically, this project proposes to improve our understanding of the processes that lead to unusual weather events and how these events are related to large-scale modes of climate variability. This project will fill a gap in knowledge of snowfall distribution, and distinguishing between snowfall and blowing snow events using a suite of precipitation sensors near McMurdo Station.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "HUMIDITY; SURFACE PRESSURE; ATMOSPHERIC TEMPERATURE; AMD; ATMOSPHERIC PRESSURE; USA/NSF; AIR TEMPERATURE; Antarctica; USAP-DC; Amd/Us; SURFACE WINDS; SURFACE AIR TEMPERATURE; ATMOSPHERIC PRESSURE MEASUREMENTS; WEATHER STATIONS; ATMOSPHERIC WINDS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e WEATHER STATIONS", "repo": "AMRDC", "repositories": "AMRDC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Antarctic Automatic Weather Station Program 2016-2019", "uid": "p0010319", "west": -180.0}, {"awards": "2039419 Swanger, Kate", "bounds_geometry": "POLYGON((161 -77.3,161.2 -77.3,161.4 -77.3,161.6 -77.3,161.8 -77.3,162 -77.3,162.2 -77.3,162.4 -77.3,162.6 -77.3,162.8 -77.3,163 -77.3,163 -77.35,163 -77.4,163 -77.45,163 -77.5,163 -77.55,163 -77.6,163 -77.65,163 -77.7,163 -77.75,163 -77.8,162.8 -77.8,162.6 -77.8,162.4 -77.8,162.2 -77.8,162 -77.8,161.8 -77.8,161.6 -77.8,161.4 -77.8,161.2 -77.8,161 -77.8,161 -77.75,161 -77.7,161 -77.65,161 -77.6,161 -77.55,161 -77.5,161 -77.45,161 -77.4,161 -77.35,161 -77.3))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 16 Dec 2021 00:00:00 GMT", "description": "The McMurdo Dry Valleys are the largest ice-free region in Antarctica and home to a seasonally active hydrologic system, with streams and saline lakes. Streams are fed by summer meltwater from local glaciers and snowbanks. Therefore, streamflow is tied to summer climate conditions such as air temperatures, ground temperatures, winds, and incoming solar radiation. Based on 50 years of monitoring, summer stream activity has been observed to change, and it likely varied during the geologic past in response to regional climate change and fluctuating glaciers. Thus, deposits from these streams can address questions about past climate, meltwater, and lake level changes in this region. How did meltwater streamflow respond to past climate change? How did streamflow vary during periods of glacial advance and retreat? At what times did large lakes fill many of the valleys and what was their extent? The researchers plan to acquire a record of stream activity for the Dry Valleys that will span the three largest valleys and a time period of about 100,000 years. This record will come from a series of active and ancient alluvial fans that were deposited by streams as they flowed from valley sidewalls onto valley floors. The study will provide a long-term context with which to assess recent observed changes to stream activity and lake levels. The research will be led by two female mid-career investigators and contribute significantly to student research opportunities and education. The research will contribute to graduate and undergraduate education by including students in both field and laboratory research, as well as incorporating data and results into the classroom. The research will be disseminated to K-12 and non-scientific communities through outreach that includes professional development training for K-12 teachers in eastern Massachusetts, development of hands-on activities, visits to K-12 classrooms, and STEM education and literacy activities in North Carolina. The PIs propose to constrain rates of fluvial deposition and periods of increased fluvial activity in the McMurdo Dry Valleys during the Holocene and late Pleistocene. During 50 years of hydrologic monitoring in the Dry Valleys, scientists have observed that streams exhibit significant response to summer conditions. Previous studies of glacial and lacustrine deposits indicate regional glacier advance in the Dry Valleys during recent interglacial periods and high lake levels during and after the Last Glacial Maximum (LGM), with potentially significant low and high stands during the Holocene. However, the geologic record of meltwater activity is poorly constrained. The PIs seek to develop the first spatially-extensive record of stream deposition in the Dry Valleys by analyzing and dating alluvial fans. Given that alluvial fans are deposited by summer meltwater streams in a relatively stable tectonic setting, this record will serve as a proxy of regional summer climate conditions. Meltwater streams are an important component of the regional hydrologic system, connecting glaciers to lakes and affecting ecosystems and soils. A record of fluvial deposition is key to understanding the relationship between past climate change and regional hydrology. The proposed research will include remote- and field-based mapping of alluvial fans, stream channels, and meltwater sources as well as modeling potential incoming solar radiation to the fans and moisture sources during the austral summer. In the field, the PIs will document stratigraphy, collect near-surface sediments from 25 fans across four valleys (Taylor, Pearse, Wright, and Victoria), and collect 2- to 3-m vertical cores of ice-cemented sediments from three alluvial fan complexes. The PIs will then conduct depositional dating of fluvial sands via optically stimulated luminescence, and analyze mineralogy and bulk major element chemistry with X-ray powder diffraction and X-ray fluorescence. From these analyses, the PIs propose to (1) determine the timing of local- to regional-scale periods of high fluvial deposition, (2) calculate depositional rates, and (3) constrain depositional environments and sediment provenance. Given that many of the alluvial fans occur below the hypothesized maximum extents of glacially-dammed lakes in Wright and Victoria valleys, detailed stratigraphy, sediment provenance, and OSL dating of these fans could shed light on ongoing debates regarding the timing and extent of LGM and post-LGM lakes. The work will support a postdoctoral researcher, a PhD student, and many undergraduate and master\u2019s students in cross-disciplinary research that spans stratigraphy, geochemistry, paleoclimatology and physics. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.0, "geometry": "POINT(162 -77.55)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Amd/Us; SEDIMENTS; USA/NSF; AMD; Dry Valleys; USAP-DC", "locations": "Dry Valleys", "north": -77.3, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Swanger, Kate", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -77.8, "title": "Collaborative Research: Holocene and Late Pleistocene Stream Deposition in the McMurdo Dry Valleys, Antarctica as a Proxy for Glacial Meltwater and Paleoclimate", "uid": "p0010285", "west": 161.0}, {"awards": "1445205 Putkonen, Jaakko", "bounds_geometry": "POLYGON((157.6 -83.2,157.62 -83.2,157.64 -83.2,157.66 -83.2,157.68 -83.2,157.7 -83.2,157.72 -83.2,157.74 -83.2,157.76 -83.2,157.78 -83.2,157.8 -83.2,157.8 -83.21,157.8 -83.22,157.8 -83.23,157.8 -83.24,157.8 -83.25,157.8 -83.26,157.8 -83.27,157.8 -83.28,157.8 -83.29,157.8 -83.3,157.78 -83.3,157.76 -83.3,157.74 -83.3,157.72 -83.3,157.7 -83.3,157.68 -83.3,157.66 -83.3,157.64 -83.3,157.62 -83.3,157.6 -83.3,157.6 -83.29,157.6 -83.28,157.6 -83.27,157.6 -83.26,157.6 -83.25,157.6 -83.24,157.6 -83.23,157.6 -83.22,157.6 -83.21,157.6 -83.2))", "dataset_titles": "Cosmogenic-Nuclide data at ICE-D; Old Ice, Ong Valley, Transantarctic Mountains", "datasets": [{"dataset_uid": "200295", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic-Nuclide data at ICE-D", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "601665", "doi": "10.15784/601665", "keywords": "Antarctica; Buried Ice; Cosmogenic Isotopes; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Old Ice; Ong Valley", "people": "Bergelin, Marie; Putkonen, Jaakko", "repository": "USAP-DC", "science_program": null, "title": "Old Ice, Ong Valley, Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/601665"}], "date_created": "Fri, 16 Jul 2021 00:00:00 GMT", "description": "Putkonen/1445205 This award supports the study of a large body of ice that is buried beneath approximately a meter of debris in the Ong Valley of the Transantarctic Mountains of East Antarctica. Preliminary analyses of this material suggest that it could be over a million years old. Most glacial ice contains tiny air bubbles that have trapped the atmospheric gases and other atmospherically transported materials existing at the time that the ice was deposited such as plant pollen, microbes and mineral dust. Samples will be collected from this buried ice mass, down to a depth of 10 meters, and cosmogenic nuclide concentrations both in the overlying debris and in the till contained in the ice will be measured. This site could contain some of the oldest ice on Earth and studies of the material contained within it may help researchers to better understand the processes involved in its survival for such long periods of time. This work will also help inform scientists about the processes involved in the development of landforms here on earth as well as those on Mars where similar dirt covered glaciers are found today. Samples of the buried ice will be collected in Ong Valley and analyzed to determine the cosmogenic nuclide concentrations in both the overlying debris and in the mineral matter suspended in the ice. The combined analysis of the target cosmogenic nuclides (Beryllium-10, Aluminum-26, and Neon-21) will allow the age of the ice to be uniquely determined and will enable determination of the rate that the ice is sublimating. The intellectual merit of this research is to unequivocally determine the age of the ice and the sublimation rate of the ice in Ong Valley, Antarctica and to better understand if this an uniquely Antarctic process or whether it could exist elsewhere on earth or on other planets. The work may also lead to the recognition of the oldest buried ice ever found on Earth and would provide a source from which direct information about the atmospheric chemistry, ancient life forms, and geology of that time could be measured. The broader impacts of this work are that it will be relevant to researchers in a number of different fields including glaciology, paleoclimatology, planetary geology, and biology. Several students will also participate in the project, conducting Antarctic field work, making measurements in the lab, attending meetings, participating in outreach activities, and producing videos. A graduate student will also write a thesis on this research. The results will be published in scientific journals and presented at conferences. The project requires field work in Antarctica.", "east": 157.8, "geometry": "POINT(157.7 -83.25)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; USA/NSF; FIELD SURVEYS; Transantarctic Mountains; GLACIERS/ICE SHEETS; AMD; Amd/Us", "locations": "Transantarctic Mountains", "north": -83.2, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "putkonen, jaakko; Balco, Gregory; Morgan, Daniel", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "ICE-D", "repositories": "ICE-D; USAP-DC", "science_programs": null, "south": -83.3, "title": "Collaborative Research: Long Term Sublimation/Preservation of Two Separate, Buried Glacier Ice Masses, Ong Valley, Southern Transantarctic Mountains", "uid": "p0010231", "west": 157.6}, {"awards": null, "bounds_geometry": null, "dataset_titles": "McMurdo Weather Station Climatology Data (2002)", "datasets": [{"dataset_uid": "601426", "doi": null, "repository": "USAP-DC", "science_program": null, "title": "McMurdo Weather Station Climatology Data (2002)", "url": "http://www.usap-dc.org/view/dataset/601426"}], "date_created": "Wed, 20 Jan 2021 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; McMurdo", "locations": "McMurdo; Antarctica", "north": null, "nsf_funding_programs": null, "paleo_time": null, "persons": "Noojin, Matthew", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": "1743643 Passchier, Sandra", "bounds_geometry": null, "dataset_titles": "Major and trace element analyses of Eocene-Oligocene marine sediments from ODP Site 696, South Orkney Microcontinent; Particle-size distributions of Eocene-Oligocene sediment from ODP Site 696, South Orkney Microcontinent", "datasets": [{"dataset_uid": "601582", "doi": "10.15784/601582", "keywords": "Antarctica; Glaciation; IODP 650; IODP 696; Paleoceanography; Provenance; Sediment Core Data; Weathering; Weddell Sea", "people": "Passchier, Sandra; Lepp, Allison; States, Abbey; Li, Xiaona; Hojnacki, Victoria", "repository": "USAP-DC", "science_program": null, "title": "Major and trace element analyses of Eocene-Oligocene marine sediments from ODP Site 696, South Orkney Microcontinent", "url": "https://www.usap-dc.org/view/dataset/601582"}, {"dataset_uid": "601581", "doi": "10.15784/601581", "keywords": "Antarctica; Glaciation; IODP 696; Marine Geoscience; Marine Sediments; Paleoceanography; Sediment Core Data; Weddell Sea", "people": "Horowitz Castaldo, Josie; Passchier, Sandra; Lepp, Allison; Light, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Particle-size distributions of Eocene-Oligocene sediment from ODP Site 696, South Orkney Microcontinent", "url": "https://www.usap-dc.org/view/dataset/601581"}], "date_created": "Tue, 26 May 2020 00:00:00 GMT", "description": "Abstract (non-technical) Sea level rise is a problem of global importance and it is increasingly affecting the tens of millions of Americans living along coastlines. The melting of glaciers in mountain areas worldwide in response to global warming is a major cause of sea level rise and increases in nuisance coastal flooding. However, the world\u0027s largest land-based ice sheets are situated in the Polar Regions and their response under continued warming is very difficult to predict. One reason for this uncertainty is a lack of observations of ice behavior and melt under conditions of warming, as it is a relatively new global climate state lasting only a few generations so far. Researchers will investigate ice growth on Antarctica under past warm conditions using geological archives embedded in the layers of sand and mud under the sea floor near Antarctica. By peeling back at the layers beneath the seafloor investigators can read the history book of past events affecting the ice sheet. The Antarctic continent on the South Pole, carries the largest ice mass in the world. The investigator\u0027s findings will substantially improve scientists understanding of the response of ice sheets to global warming and its effect on sea level rise. Abstract (technical) The melt of land based ice is raising global sea levels with at present only minor contributions from polar ice sheets. However, the future role of polar ice sheets in climate change is one of the most critical uncertainties in predictions of sea level rise around the globe. The respective roles of oceanic and atmospheric greenhouse forcing on ice sheets are poorly addressed with recent measurements of polar climatology, because of the extreme rise in greenhouse forcing the earth is experiencing at this time. Data on the evolution of the West Antarctic ice sheet is particularly sparse. To address the data gap, researchers will reconstruct the timing and spatial distribution of Antarctic ice growth through the last greenhouse to icehouse climate transition around 37 to 33 Ma. They will collect sedimentological and geochemical data on core samples from a high-latitude paleoarchive to trace the shutdown of the chemical weathering system, the onset of glacial erosion, ice rafting, and sea ice development, as East and West Antarctic ice sheets coalesced in the Weddell Sea sector. Their findings will lead to profound increases in the understanding of the role of greenhouse forcing in ice sheet development and its effect on the global climate system. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; AMD; SEDIMENTS; LABORATORY; USA/NSF; USAP-DC; Weddell Sea", "locations": "Weddell Sea", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Passchier, Sandra", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Timing and Spatial Distribution of Antarctic Ice Sheet Growth and Sea-ice Formation across the Eocene-Oligocene Transition", "uid": "p0010101", "west": null}, {"awards": "1419979 Severinghaus, Jeffrey", "bounds_geometry": "POLYGON((166.65 -78.62,166.654 -78.62,166.658 -78.62,166.662 -78.62,166.666 -78.62,166.67 -78.62,166.674 -78.62,166.678 -78.62,166.682 -78.62,166.686 -78.62,166.69 -78.62,166.69 -78.6205,166.69 -78.621,166.69 -78.6215,166.69 -78.622,166.69 -78.6225,166.69 -78.623,166.69 -78.6235,166.69 -78.624,166.69 -78.6245,166.69 -78.625,166.686 -78.625,166.682 -78.625,166.678 -78.625,166.674 -78.625,166.67 -78.625,166.666 -78.625,166.662 -78.625,166.658 -78.625,166.654 -78.625,166.65 -78.625,166.65 -78.6245,166.65 -78.624,166.65 -78.6235,166.65 -78.623,166.65 -78.6225,166.65 -78.622,166.65 -78.6215,166.65 -78.621,166.65 -78.6205,166.65 -78.62))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 18 May 2020 00:00:00 GMT", "description": "The PIs will design and build a new rapid access ice drill (RAID) for use in Antarctica. This drill will have the ability to rapidly drill through ice up to 3300 m thick and then collect samples of the ice, ice-sheet bed interface, and bedrock substrate below. This drilling technology will provide a new way to obtain in situ measurements and samples for interdisciplinary studies in geology, glaciology, paleoclimatology, microbiology, and astrophysics. The RAID drilling platform will give the scientific community access to records of geologic and climatic change on a variety of timescales, from the billion-year rock record to thousand-year ice and climate histories. Successful development of the RAID system will provide a research tool that is currently unavailable. Development of this platform will enable scientists to address critical questions about the deep interface between the Antarctic ice sheets and the substrate below. Development of RAID will provide a way to address many of the unknowns associated with general stability of the Antarctic ice sheets in the face of changing climate and sea level rise. The scientific rationale for RAID was reviewed in a previous proposal (Goodge 1242027). The PIs were granted ?Phase I? funding to develop a more detailed conceptual design for the RAID drill that would provide a better understanding of construction costs as well as operation and maintenance costs for RAID once it is constructed. Phase I support also allowed the PIs to work with the research community to develop more detailed science requirements for the drill. This proposal requests continued funding (Phase II) to construct, assemble and test the RAID drilling platform, through to staging it in Antarctic for future scientific operations.", "east": 166.69, "geometry": "POINT(166.67 -78.6225)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "WAIS Divide Ice Core; ICE CORE AIR BUBBLES; FIELD INVESTIGATION; USAP-DC; Minna Bluff", "locations": "Minna Bluff", "north": -78.62, "nsf_funding_programs": "Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -78.625, "title": "Collaborative Research: Phase 2 Development of A Rapid Access Ice Drilling (RAID) Platform for Research in Antarctica", "uid": "p0010099", "west": 166.65}, {"awards": "1443566 Bay, Ryan", "bounds_geometry": "POINT(90 -90)", "dataset_titles": "Laser Dust Logging of the South Pole Ice Core (SPICE)", "datasets": [{"dataset_uid": "601222", "doi": "10.15784/601222", "keywords": "Antarctica; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; SPICEcore", "people": "Bay, Ryan", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Laser Dust Logging of the South Pole Ice Core (SPICE)", "url": "https://www.usap-dc.org/view/dataset/601222"}], "date_created": "Thu, 31 Oct 2019 00:00:00 GMT", "description": "Bay/1443566 This award supports the deployment and analysis of data from an oriented laser dust logger in the South Pole ice core borehole to complement study of the ice core record. Before the core is even processed, data from the borehole probe will immediately determine the depth-age relationship, augment 3D mapping of South Pole stratigraphy, aid in searches for the oldest ice in Antarctica, and reveal layers of volcanic or extraterrestrial fallout. Regarding the intellectual merit, the oriented borehole log will be essential for investigating features in the ice sheet that may have implications for ice core chronology, ice flow, ice sheet physical properties and stability in response to climate change. The tools and techniques developed in this program have applications in glaciology, biogeoscience and exploration of other planetary bodies. The program aims for a deeper understanding of the consequences and causes of abrupt climate change. The broader impacts of the project are that it will include outreach and education, providing a broad training ground for students and post-docs. Data and metadata will be made available through data centers and repositories such as the National Snow and Ice Data Center web portal. The laser dust logger detects reproducible paleoclimate features at sub-centimeter depth scale. Dust logger data are being used for synchronizing records and dating any site on the continent, revealing accumulation anomalies and episodes of rapid ice sheet thinning, and discovering particulate horizons of special interest. In this project we will deploy a laser dust logger equipped with a magnetic compass to find direct evidence of preferentially oriented dust. Using optical scattering measurements from IceCube calibration studies at South Pole and borehole logs at WAIS Divide, we have detected a persistent anisotropy correlated with flow and crystal fabric which suggests that the majority of insoluble particulates must be located within ice grains. With typical concentrations of parts-per-billion, little is known about the location of impurities within the polycrystalline structure of polar ice. While soluble impurities are generally thought to concentrate at inter-grain boundaries and determine electrical conductivity, the fate of insoluble particulates is much less clear, and microscopic examinations are extremely challenging. These in situ borehole measurements will help to unravel intimate relationships between impurities, flow, and crystal fabric. Data from this project will further develop a unique record of South Pole surface roughness as a proxy for paleowind and provide new insights for understanding glacial radar propagation. This project has field work in Antarctica.", "east": 90.0, "geometry": "POINT(90 -90)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; Antarctica; ICE CORE RECORDS; USAP-DC", "locations": "Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bay, Ryan", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Laser Dust Logging of a South Pole Ice Core", "uid": "p0010061", "west": 90.0}, {"awards": "1643735 Li, Yun; 1643901 Zhang, Weifeng; 2021245 Li, Yun", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Dynamic fine-scale sea-icescape shapes adult emperor penguin foraging habitat in East Antarctica; Monthly Stratification Climatology (1978-2021) in Antarctic Coastal Polynyas", "datasets": [{"dataset_uid": "601209", "doi": "10.15784/601209", "keywords": "Animal Behavior Observation; Antarctica; Biota; East Antarctica; GPS; Oceans; Penguin; Southern Ocean", "people": "Pinaud, David; Wienecke, Barbara; Kirkwood, Roger; Ropert-Coudert, Yan; Resinger, Ryan; Jonsen, Ian; Porter-Smith, Rick; Barbraud, Christophe; Ji, Rubao; Jenouvrier, Stephanie; Sumner, Michael; Bost, Charles-Andr\u00e9; Labrousse, Sara; Fraser, Alexander; Tamura, Takeshi", "repository": "USAP-DC", "science_program": null, "title": "Dynamic fine-scale sea-icescape shapes adult emperor penguin foraging habitat in East Antarctica", "url": "https://www.usap-dc.org/view/dataset/601209"}, {"dataset_uid": "601628", "doi": "10.15784/601628", "keywords": "Antarctic; Antarctica; Antarctic Coastal Polynyas; Polynya", "people": "Zhang, Weifeng; Shunk, Nathan; Li, Yun", "repository": "USAP-DC", "science_program": null, "title": "Monthly Stratification Climatology (1978-2021) in Antarctic Coastal Polynyas", "url": "https://www.usap-dc.org/view/dataset/601628"}], "date_created": "Wed, 07 Aug 2019 00:00:00 GMT", "description": "During winter, sea-ice coverage along the Antarctic coast is punctuated by numerous polynyas--isolated openings of tens to hundreds of kilometer wide. These coastal polynyas are hotspots of sea ice production and the primary source regions of the bottom water in the global ocean. They also host high levels of biological activities and are the feeding grounds of Emperor penguins and marine mammals. The polynyas are a key component of the Antarctic coastal system and crucial for the survival of penguins and many other species. These features also differ dramatically from each other in timing of formation, duration, phytoplankton growth season, and overall biological productivity. Yet, the underlying reasons for differences among them are largely unknown. This project studies the fundamental biophysical processes at a variety of polynyas, examines the connection between the physical environment and the phytoplankton and penguin ecology, and investigates the mechanisms behind polynya variability. The results of this interdisciplinary study will provide a context for interpretation of field measurements in Antarctic coastal polynyas, set a baseline for future polynya studies, and examine how polynya ecosystems may respond to local and large-scale environmental changes. The project will include educational and outreach activities that convey scientific messages to a broad audience. It aims to increase public awareness of the interconnection between large-scale environmental change and Antarctic coastal systems. The main objectives of this study are to form a comprehensive understanding of the temporal and spatial variability of Antarctic coastal polynyas and the physical controls of polynya ecosystems. The project takes an interdisciplinary approach and seeks to establish a modeling system centered on the Regional Ocean Modeling System. This system links the ice and ocean conditions to the plankton ecology and penguin population. Applications of the modeling system in representative polynyas, in conjunction with analysis of existing observations, will determine the biophysical influences of individual forcing factors. In particular, this study will test a set of hypothesized effects of winds, offshore water intrusion, ice-shelf melting, sea-ice formation, glacier tongues, and ocean stratification on the timing of polynya phytoplankton bloom and the overall polynya biological productivity. The project will also examine how changing polynya state affects penguin breeding success, adult survival, and population growth. The team will conduct idealized sensitivity analysis to explore implications of forcing variability, including local and large-scale environmental change, on Antarctic coastal ecosystems.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Southern Ocean; Animal Behavior; Penguin; FIELD INVESTIGATION; USAP-DC; COASTAL; PENGUINS; SEA ICE; Antarctica; OCEAN MIXED LAYER", "locations": "Southern Ocean; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science", "paleo_time": null, "persons": "Zhang, Weifeng; Ji, Rubao; Jenouvrier, Stephanie; Maksym, Edward; Li, Yun", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Polynyas in Coastal Antarctica (PICA): Linking Physical Dynamics to Biological Variability", "uid": "p0010044", "west": -180.0}, {"awards": "1743326 Kingslake, Jonathan", "bounds_geometry": null, "dataset_titles": "Report on Antarctic surface hydrology workshop, LDEO, 2018 ", "datasets": [{"dataset_uid": "601170", "doi": "10.15784/601170", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hydrology; Ice Sheet Stability; Ice Shelf; Report; Workshop", "people": "Schoof, Christian; DeConto, Robert; Das, Indrani; Bell, Robin; Banwell, Alison; Lenaerts, Jan; Trusel, Luke; Kingslake, Jonathan; Tedesco, Marco", "repository": "USAP-DC", "science_program": null, "title": "Report on Antarctic surface hydrology workshop, LDEO, 2018 ", "url": "https://www.usap-dc.org/view/dataset/601170"}], "date_created": "Tue, 26 Mar 2019 00:00:00 GMT", "description": "Ice shelves are the floating portions of glaciers that terminate in the ocean. They are common around the periphery of Antarctica. The accumulation of surface meltwater on or near the surface of ice shelves can play a role in ice-shelf collapse, which leads to accelerated loss of grounded ice and sea-level rise. Recent studies have showed that present-day meltwater generation and movement across the surface of Antarctica is more widespread than previously thought and is expected to increase. Consequently, there is a growing need to address the role of surface water in forecasts of ice-shelf behavior. While much progress has been made, understanding of the role of water in ice-shelf collapse is still in its infancy. This award supports a workshop that will bring together experts from multiple disciplines that, together, can advance understanding of Antarctic surface hydrology and its role in the future stability of ice shelves. This workshop will bring together U.S. and international scientists with expertise in ice-sheet dynamics, glacial hydrology, climatology, and other disciplines to identify critical knowledge gaps and move the community towards answering fundamental questions such as: What climate dynamics are responsible for surface meltwater generation in Antarctica? What controls the spatiotemporal distribution of meltwater ponds on Antarctic ice shelves? Where is meltwater generated, where does it pond today, and how will this change this century? How will meltwater impact ice shelves? How will surface hydrology impact sea-level this century? The deliberations will be captured in a workshop report and review paper that will be broadly distributed.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; ICE SHEETS; North America; USAP-DC", "locations": "North America", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Kingslake, Jonathan; Tedesco, Marco; Trusel, Luke", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Workshop on Antarctic Surface Hydrology and Future Ice-shelf Stability", "uid": "p0010021", "west": null}, {"awards": "0732711 Smith, Craig; 0732625 Leventer, Amy; 0732655 Mosley-Thompson, Ellen; 0732602 Truffer, Martin; 0732651 Gordon, Arnold; 0732983 Vernet, Maria", "bounds_geometry": "POLYGON((-68 -57.8,-66.78 -57.8,-65.56 -57.8,-64.34 -57.8,-63.12 -57.8,-61.9 -57.8,-60.68 -57.8,-59.46 -57.8,-58.24 -57.8,-57.02 -57.8,-55.8 -57.8,-55.8 -58.8,-55.8 -59.8,-55.8 -60.8,-55.8 -61.8,-55.8 -62.8,-55.8 -63.8,-55.8 -64.8,-55.8 -65.8,-55.8 -66.8,-55.8 -67.8,-57.02 -67.8,-58.24 -67.8,-59.46 -67.8,-60.68 -67.8,-61.9 -67.8,-63.12 -67.8,-64.34 -67.8,-65.56 -67.8,-66.78 -67.8,-68 -67.8,-68 -66.8,-68 -65.8,-68 -64.8,-68 -63.8,-68 -62.8,-68 -61.8,-68 -60.8,-68 -59.8,-68 -58.8,-68 -57.8))", "dataset_titles": "Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Marine Ecosystems; Biology Species Abundance from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expeditions NBP1001 and NBP1203; Bruce Plateau Accumulation O18 2009-1900; Easten Antarctic Peninsula Surface Sediment Diatom Data; LMG13-11 JKC-1 Paleoceanographic data; Macrofauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001; Megafauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001; NBP1001 cruise data; NBP1203 cruise data; Processed CTD Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001; Processed CTD Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203; Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001; Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203; Radioisotope data (C-14 and Pb-210) from bulk sediments, Larsen A Ice Shelf; Sediment samples (full data link not provided)", "datasets": [{"dataset_uid": "601306", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; LARISSA; Larsen Ice Shelf; Macrofauna; NBP1001; Oceans; R/v Nathaniel B. Palmer; Seafloor Sampling; Species Abundance", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Macrofauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601306"}, {"dataset_uid": "601348", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; CTD; CTD Data; LARISSA; Larsen Ice Shelf; NBP1203; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Huber, Bruce; Gordon, Arnold", "repository": "USAP-DC", "science_program": null, "title": "Processed CTD Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203", "url": "https://www.usap-dc.org/view/dataset/601348"}, {"dataset_uid": "000226", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Biology Species Abundance from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expeditions NBP1001 and NBP1203", "url": "https://doi.org/10.1594/ieda/320821"}, {"dataset_uid": "600073", "doi": "10.15784/600073", "keywords": "Antarctica; Antarctic Peninsula; Araon1304; Biota; LARISSA; Larsen B Ice Shelf; NBP1001; NBP1203; Oceans; Physical Oceanography; Southern Ocean; Weddell Sea", "people": "Vernet, Maria", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Marine Ecosystems", "url": "https://www.usap-dc.org/view/dataset/600073"}, {"dataset_uid": "600167", "doi": "10.15784/600167", "keywords": "Antarctica; Antarctic Peninsula; Bruce Plateau; Glaciology; Ice Core Records; Isotope; LARISSA; Paleoclimate; Sample/collection Description; Sample/Collection Description; Snow Accumulation", "people": "Thompson, Lonnie G.; Mosley-Thompson, Ellen", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Bruce Plateau Accumulation O18 2009-1900", "url": "https://www.usap-dc.org/view/dataset/600167"}, {"dataset_uid": "601346", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Current Measurements; LADCP; Larsen Ice Shelf; NBP1001; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer", "people": "Huber, Bruce; Gordon, Arnold", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601346"}, {"dataset_uid": "601336", "doi": "10.15784/601336", "keywords": "Antarctica; Carbon-14; Larsen Ice Shelf; Lead-210; Marine Sediments; Radioisotope Analysis", "people": "Taylor, Richard; DeMaster, David", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Radioisotope data (C-14 and Pb-210) from bulk sediments, Larsen A Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/601336"}, {"dataset_uid": "601211", "doi": "10.15784/601211", "keywords": "Antarctica; Antarctic Peninsula; Benthos; Biota; Diatom; Geology/Geophysics - Other; LMG0502; Marine Geoscience; Marine Sediments; Microscope; NBP0003; NBP0107; NBP0603; NBP1203; R/v Nathaniel B. Palmer; Surface Sediment", "people": "Leventer, Amy", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Easten Antarctic Peninsula Surface Sediment Diatom Data", "url": "https://www.usap-dc.org/view/dataset/601211"}, {"dataset_uid": "000145", "doi": "", "keywords": null, "people": null, "repository": "AMGRF", "science_program": null, "title": "Sediment samples (full data link not provided)", "url": "http://arf.fsu.edu/"}, {"dataset_uid": "000142", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1001 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP1001"}, {"dataset_uid": "601485", "doi": "10.15784/601485", "keywords": "Antarctica; Antarctic Peninsula; Delta 13C; Delta 18O; Paleoceanography; Temperature", "people": "Shevenell, Amelia", "repository": "USAP-DC", "science_program": "LARISSA", "title": "LMG13-11 JKC-1 Paleoceanographic data", "url": "https://www.usap-dc.org/view/dataset/601485"}, {"dataset_uid": "000143", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1203 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP1203"}, {"dataset_uid": "601347", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Current Measurements; LADCP; LARISSA; Larsen Ice Shelf; NBP1203; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer", "people": "Gordon, Arnold; Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203", "url": "https://www.usap-dc.org/view/dataset/601347"}, {"dataset_uid": "601305", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; LARISSA; Larsen Ice Shelf; Macrofauna; Megafauna; NBP1001; Oceans; R/v Nathaniel B. Palmer; Seafloor Sampling; Species Abundance", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Megafauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601305"}, {"dataset_uid": "601345", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; CTD; CTD Data; LARISSA; Larsen Ice Shelf; NBP1001; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Huber, Bruce; Gordon, Arnold", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Processed CTD Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601345"}], "date_created": "Thu, 01 Feb 2018 00:00:00 GMT", "description": "Like no other region on Earth, the northern Antarctic Peninsula represents a spectacular natural laboratory of climate change and provides the opportunity to study the record of past climate and ecological shifts alongside the present-day changes in one of the most rapidly warming regions on Earth. This award supports the cryospheric and oceano-graphic components of an integrated multi-disciplinary program to address these rapid and fundamental changes now taking place in Antarctic Peninsula (AP). By making use of a marine research platform (the RV NB Palmer and on-board helicopters) and additional logistical support from the Argentine Antarctic program, the project will bring glaciologists, oceanographers, marine geologists and biologists together, working collaboratively to address fundamentally interdisciplinary questions regarding climate change. The project will include gathering a new, high-resolution paleoclimate record from the Bruce Plateau of Graham Land, and using it to compare Holocene- and possibly glacial-epoch climate to the modern period; investigating the stability of the remaining Larsen Ice Shelf and rapid post-breakup glacier response ? in particular, the roles of surface melt and ice-ocean interactions in the speed-up and retreat; observing the contribution of, and response of, oceanographic systems to ice shelf disintegration and ice-glacier interactions. Helicopter support on board will allow access to a wide range of glacial and geological areas of interest adjacent to the Larsen embayment. At these locations, long-term in situ glacial monitoring, isostatic uplift, and ice flow GPS sites will be established, and high-resolution ice core records will be obtained using previously tested lightweight drilling equipment. Long-term monitoring of deep water outflow will, for the first time, be integrated into changes in ice shelf extent and thickness, bottom water formation, and multi-level circulation by linking near-source observations to distal sites of concentrated outflow. The broader impacts of this international, multidisciplinary effort are that it will significantly advance our understanding of linkages amongst the earth\u0027s systems in the Polar Regions, and are proposed with international participation (UK, Spain, Belgium, Germany and Argentina) and interdisciplinary engagement in the true spirit of the International Polar Year (IPY). It will also provide a means of engaging and educating the public in virtually all aspects of polar science and the effects of ongoing climate change. The research team has a long record of involving undergraduates in research, educating high-performing graduate students, and providing innovative and engaging outreach products to the K-12 education and public media forums. Moreover, forging the new links both in science and international Antarctic programs will provide a continuing legacy, beyond IPY, of improved understanding and cooperation in Antarctica.", "east": -55.8, "geometry": "POINT(-61.9 -62.8)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e BOX CORE; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ICE AUGERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SNOW DENSITY CUTTER", "is_usap_dc": true, "keywords": "Paleoclimate; Megafauna; USAP-DC; AMD; Amd/Us; Antarctica; Climate Change; LABORATORY; Climate Variability; Multi-Disciplinary; Cryosphere; NBP1001; FIELD SURVEYS; Not provided; Antarctic Peninsula; R/V NBP; FIELD INVESTIGATION; USA/NSF; Ice Core; Holocene", "locations": "Antarctica; Antarctic Peninsula", "north": -57.8, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Truffer, Martin; Gordon, Arnold; Huber, Bruce; Mosley-Thompson, Ellen; Leventer, Amy; Vernet, Maria; Smith, Craig; Thompson, Lonnie G.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "AMGRF; MGDS; R2R; USAP-DC", "science_programs": "LARISSA", "south": -67.8, "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans", "uid": "p0000101", "west": -68.0}, {"awards": "1245737 Cassano, John; 1245663 Lazzara, Matthew", "bounds_geometry": "POLYGON((161.714 -77.522,162.6077 -77.522,163.5014 -77.522,164.3951 -77.522,165.2888 -77.522,166.1825 -77.522,167.0762 -77.522,167.9699 -77.522,168.8636 -77.522,169.7573 -77.522,170.651 -77.522,170.651 -77.6702,170.651 -77.8184,170.651 -77.9666,170.651 -78.1148,170.651 -78.263,170.651 -78.4112,170.651 -78.5594,170.651 -78.7076,170.651 -78.8558,170.651 -79.004,169.7573 -79.004,168.8636 -79.004,167.9699 -79.004,167.0762 -79.004,166.1825 -79.004,165.2888 -79.004,164.3951 -79.004,163.5014 -79.004,162.6077 -79.004,161.714 -79.004,161.714 -78.8558,161.714 -78.7076,161.714 -78.5594,161.714 -78.4112,161.714 -78.263,161.714 -78.1148,161.714 -77.9666,161.714 -77.8184,161.714 -77.6702,161.714 -77.522))", "dataset_titles": "SUMO unmanned aerial system (UAS) atmospheric data", "datasets": [{"dataset_uid": "601054", "doi": "10.15784/601054", "keywords": "Antarctica; Atmosphere; Meteorology; Navigation; UAS", "people": "Cassano, John", "repository": "USAP-DC", "science_program": null, "title": "SUMO unmanned aerial system (UAS) atmospheric data", "url": "https://www.usap-dc.org/view/dataset/601054"}], "date_created": "Wed, 22 Nov 2017 00:00:00 GMT", "description": "The Antarctic Automatic Weather Station (AAWS) network, first commenced in 1978, is the most extensive ground meteorological network in the Antarctic, approaching its 30th year at several of its installations. Its prime focus as a long term observational record is to measure the near surface weather and climatology of the Antarctic atmosphere. AWS sites measure air-temperature, pressure, wind speed and direction at a nominal surface height of 3m. Other parameters such as relative humidity and snow accumulation may also be measured. Observational data from the AWS are collected via the DCS Argos system aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters. The surface observations from the AAWS network are important records for recent climate change and meteorological processes. The surface observations from the AAWS network are also used operationally, and in the planning of field work. The surface observations from the AAWS network have been used to check on satellite and remote sensing observations.", "east": 170.651, "geometry": "POINT(166.1825 -78.263)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e GAUGES \u003e ADG; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e BAROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e SNOWPACK TEMPERATURE PROBE; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e RADIO \u003e ARGOS", "is_usap_dc": true, "keywords": "Automated Weather Station; Antarctica; AWS; FIXED OBSERVATION STATIONS", "locations": "Antarctica", "north": -77.522, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Cassano, John; Costanza, Carol", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.004, "title": "Collaborative Research: Antarctic Automatic Weather Station Program 2013-2017", "uid": "p0000363", "west": 161.714}, {"awards": "1043471 Kaplan, Michael", "bounds_geometry": "POLYGON((-112.5 -79.468,-112.4586 -79.468,-112.4172 -79.468,-112.3758 -79.468,-112.3344 -79.468,-112.293 -79.468,-112.2516 -79.468,-112.2102 -79.468,-112.1688 -79.468,-112.1274 -79.468,-112.086 -79.468,-112.086 -79.4712,-112.086 -79.4744,-112.086 -79.4776,-112.086 -79.4808,-112.086 -79.484,-112.086 -79.4872,-112.086 -79.4904,-112.086 -79.4936,-112.086 -79.4968,-112.086 -79.5,-112.1274 -79.5,-112.1688 -79.5,-112.2102 -79.5,-112.2516 -79.5,-112.293 -79.5,-112.3344 -79.5,-112.3758 -79.5,-112.4172 -79.5,-112.4586 -79.5,-112.5 -79.5,-112.5 -79.4968,-112.5 -79.4936,-112.5 -79.4904,-112.5 -79.4872,-112.5 -79.484,-112.5 -79.4808,-112.5 -79.4776,-112.5 -79.4744,-112.5 -79.4712,-112.5 -79.468))", "dataset_titles": "List of samples of WAIS Divide and Byrd (deep) ice that were analyzed for radiogenic isotopes at LDEO", "datasets": [{"dataset_uid": "601065", "doi": "10.15784/601065", "keywords": "Antarctica; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Sample/collection Description; Sample/Collection Description; WAIS Divide; WAIS Divide Ice Core", "people": "Kaplan, Michael", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "List of samples of WAIS Divide and Byrd (deep) ice that were analyzed for radiogenic isotopes at LDEO", "url": "https://www.usap-dc.org/view/dataset/601065"}], "date_created": "Sun, 29 Oct 2017 00:00:00 GMT", "description": "1043471/Kaplan This award supports a project to obtain the first set of isotopic-based provenance data from the WAIS divide ice core. A lack of data from the WAIS prevents even a basic knowledge of whether different sources of dust blew around the Pacific and Atlantic sectors of the southern latitudes. Precise isotopic measurements on dust in the new WAIS ice divide core are specifically warranted because the data will be synergistically integrated with other high frequency proxies, such as dust concentration and flux, and carbon dioxide, for example. Higher resolution proxies will bridge gaps between our observations on the same well-dated, well-preserved core. The intellectual merit of the project is that the proposed analyses will contribute to the WAIS Divide Project science themes. Whether an active driver or passive recorder, dust is one of the most important but least understood components of regional and global climate. Collaborative and expert discussion with dust-climate modelers will lead to an important progression in understanding of dust and past atmospheric circulation patterns and climate around the southern latitudes, and help to exclude unlikely air trajectories to the ice sheets. The project will provide data to help evaluate models that simulate the dust patterns and cycle and the relative importance of changes in the sources, air trajectories and transport processes, and deposition to the ice sheet under different climate states. The results will be of broad interest to a range of disciplines beyond those directly associated with the WAIS ice core project, including the paleoceanography and dust- paleoclimatology communities. The broader impacts of the project include infrastructure and professional development, as the proposed research will initiate collaborations between LDEO and other WAIS scientists and modelers with expertise in climate and dust. Most of the researchers are still in the early phase of their careers and hence the project will facilitate long-term relationships. This includes a graduate student from UMaine, an undergraduate student from Columbia University who will be involved in lab work, in addition to a LDEO Postdoctoral scientist, and possibly an additional student involved in the international project PIRE-ICETRICS. The proposed research will broaden the scientific outlooks of three PIs, who come to Antarctic ice core science from a variety of other terrestrial and marine geology perspectives. Outreach activities include interaction with the science writers of the Columbia\u0027s Earth Institute for news releases and associated blog websites, public speaking, and involvement in an arts/science initiative between New York City\u0027s arts and science communities to bridge the gap between scientific knowledge and public perception.", "east": -112.086, "geometry": "POINT(-112.293 -79.484)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.468, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Kaplan, Michael; Winckler, Gisela; Goldstein, Steven L.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.5, "title": "A Study of Atmospheric Dust in the WAIS Divide Ice Core Based on Sr-Nd-Pb-He Isotopes", "uid": "p0000081", "west": -112.5}, {"awards": "0538427 McConnell, Joseph", "bounds_geometry": "POINT(-112.1115 -79.481)", "dataset_titles": "Gas measurement from Higgins et al., 2015 - PNAS; WAIS Divide Ice-Core Aerosol Records from 1.5 to 577 m; WAIS Divide Ice-Core Aerosol Records from Intermediate Core WDC05A; WAIS Divide Ice-Core Aerosol Records from Intermediate Core WDC05Q; WAIS Divide Ice-Core Chronology from Intermediate Core WDC05A; WAIS Divide Ice-Core Chronology from Intermediate Core WDC05Q", "datasets": [{"dataset_uid": "601010", "doi": "10.15784/601010", "keywords": "Aerosol; Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Aerosol Records from Intermediate Core WDC05A", "url": "https://www.usap-dc.org/view/dataset/601010"}, {"dataset_uid": "601011", "doi": "10.15784/601011", "keywords": "Aerosol; Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Aerosol Records from Intermediate Core WDC05Q", "url": "https://www.usap-dc.org/view/dataset/601011"}, {"dataset_uid": "601012", "doi": "10.15784/601012", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Snow Accumulation; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Chronology from Intermediate Core WDC05A", "url": "https://www.usap-dc.org/view/dataset/601012"}, {"dataset_uid": "601009", "doi": "10.15784/601009", "keywords": "Aerosol; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Aerosol Records from 1.5 to 577 m", "url": "https://www.usap-dc.org/view/dataset/601009"}, {"dataset_uid": "601013", "doi": "10.15784/601013", "keywords": "Antarctica; Depth-Age-Model; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Chronology from Intermediate Core WDC05Q", "url": "https://www.usap-dc.org/view/dataset/601013"}, {"dataset_uid": "601014", "doi": "10.15784/601014", "keywords": "Allan Hills; Antarctica; Argon; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope", "people": "Higgins, John", "repository": "USAP-DC", "science_program": null, "title": "Gas measurement from Higgins et al., 2015 - PNAS", "url": "https://www.usap-dc.org/view/dataset/601014"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "0538427\u003cbr/\u003eMcConnell \u003cbr/\u003eThis award supports a project to use unique, high-depth-resolution records of a range of elements, chemical species, and ice properties measured in two WAIS Divide shallow ice cores and one shallow British ice core from West Antarctic to address critical paleoclimate, environmental, and ice-sheet mass-balance questions. Recent development of the CFA-TE method for ice-core analysis presents the opportunity to develop high-resolution, broad-spectrum glaciochemical records at WAIS Divide at relatively modest cost. Together with CFA-TE measurements from Greenland and other Antarctic sites spanning recent decades to centuries, these rich data will open new avenues for using glaciochemical data to investigate environmental and global changes issues ranging from anthropogenic and volcanic-trace-element fallout to changes in hemispheric-scale circulation, biogeochemistry, rapid-climate-change events, long-term climate change, and ice-sheet mass balance. As part of the proposed research, collaborations with U.S., Argentine, and British researchers will be initiated and expanded to directly address three major IPY themes (i.e., present environmental status, past and present environmental and human change, and polar-global interactions). Included in the contributions from these international collaborators will be ice-core samples, ice-core and meteorological model data, and extensive expertise in Antarctic glaciology, climatology, meteorology, and biogeochemistry. The broader impacts of the work include the training of students. The project will partially support one Ph.D. student and hourly undergraduate involvement. Every effort will be made to attract students from underrepresented groups to these positions. To address the challenge of introducing results of scientific research to the public policy debate, we will continue efforts to publish findings in high visibility journals, provide research results to policy makers, and work with the NSF media office to reach the public through mass-media programs. K-12 teacher and classroom involvement will be realized through outreach to local schools and NSF\u0027s Teachers Experiencing the Antarctic and Arctic (or similar) program in collaboration with WAIS Divide and other polar researchers.", "east": -112.1115, "geometry": "POINT(-112.1115 -79.481)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bender, Michael; McConnell, Joseph", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core", "uid": "p0000148", "west": -112.1115}, {"awards": "0538520 Thiemens, Mark; 0538049 Steig, Eric", "bounds_geometry": "POINT(-112.085 -79.5)", "dataset_titles": "Multiple Isotope Analysis of Sulfate in the West Antarctic Ice Sheet Divide Ice Core; WAIS Divide sulfate and nitrate isotopes; WAIS ice core isotope data #387, 385 (full data link not provided)", "datasets": [{"dataset_uid": "002512", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "WAIS ice core isotope data #387, 385 (full data link not provided)", "url": "http://www.waisdivide.unh.edu/"}, {"dataset_uid": "609479", "doi": "10.7265/N5BG2KXH", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Thiemens, Mark H.", "repository": "USAP-DC", "science_program": null, "title": "Multiple Isotope Analysis of Sulfate in the West Antarctic Ice Sheet Divide Ice Core", "url": "https://www.usap-dc.org/view/dataset/609479"}, {"dataset_uid": "601007", "doi": "10.15784/601007", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Nitrate; Oxygen Isotope; Sulfate; WAIS Divide; WAIS Divide Ice Core", "people": "Alexander, Becky; Steig, Eric J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide sulfate and nitrate isotopes", "url": "https://www.usap-dc.org/view/dataset/601007"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "0538520\u003cbr/\u003eThiemens\u003cbr/\u003eThis award supports a project to develop the first complete record of multiple isotope ratios of nitrate and sulfate covering the last ~100,000 years, from the deep ice core planned for the central ice divide of the West Antarctic Ice Sheet (WAIS). The WAIS Divide ice core will be the highest resolution long ice core obtained from Antarctica and we can expect important complementary information to be available, including accurate knowledge of past accumulation rates, temperatures, and compounds such as H2O2, CO and CH4. These compounds play significant roles in global atmospheric chemistry and climate. Especially great potential lies in the use of multiple isotope signatures. The unique mass independent fractionation (MIF) 17O signature of ozone is observed in both nitrate and sulfate, due to the interaction of their precursors with ozone. The development of methods to measure the multiple-isotope composition of small samples of sulfate and nitrate makes continuous high resolution measurements on ice cores feasible for the first time. Recent work has shown that such measurements can be used to determine the hydroxyl radial (OH) and ozone (O3) concentrations in the paleoatmosphere as well as to apportion sulfate and nitrate sources. There is also considerable potential in using these isotope measurements to quantify post depositional changes. In the first two years, continuous measurements from the upper ~100-m of ice at WAIS divide will be obtained, to provide a detailed look at seasonal through centennial scale variability. In the third year, measurements will be made throughout the available depth of the deep core (expected to reach ~500 m at this time). The broader impacts of the project include applications to diverse fields including atmospheric chemistry, glaciology, meteorology, and paleoclimatology. Because nitrate and sulfate are important atmospheric pollutants, the results will also have direct and relevance to global environmental policy. This project will coincide with the International Polar Year (2007-2008), and contributes to goals of the IPY, which include the fostering of interdisciplinary research toward enhanced understanding of atmospheric chemistry and climate in the polar regions.", "east": -112.085, "geometry": "POINT(-112.085 -79.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Isotope Ratios; Temperature; Sulfate; West Antarctic; Paleoatmosphere; LABORATORY; Ice Core; Ice Core Data; Mass Independent Fractionation; FIELD SURVEYS; Not provided; Accumulation Rate; Oxygen Isotope; FIELD INVESTIGATION; Ice Core Chemistry; Isotope", "locations": "West Antarctic", "north": -79.5, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Alexander, Becky; Steig, Eric J.; Thiemens, Mark H.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "Project website", "repositories": "Project website; USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.5, "title": "Collaborative Research: Multiple-isotope Analysis of Nitrate and Sulfate in the West Antarctic Ice Sheet Divide Ice Core", "uid": "p0000020", "west": -112.085}, {"awards": "1043518 Brook, Edward J.", "bounds_geometry": "POINT(-112.08648 -79.46763)", "dataset_titles": "Continuous, Ultra-high Resolution WAIS-Divide Ice Core Methane Record 9.8-67.2 ka BP; Early Holocene methane records from Siple Dome, Antarctica; Methan record", "datasets": [{"dataset_uid": "000176", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Methan record", "url": "https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/ice-core"}, {"dataset_uid": "609628", "doi": "10.7265/N5JM27K4", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Rhodes, Rachel; Brook, Edward J.; McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Continuous, Ultra-high Resolution WAIS-Divide Ice Core Methane Record 9.8-67.2 ka BP", "url": "https://www.usap-dc.org/view/dataset/609628"}, {"dataset_uid": "601055", "doi": "10.15784/601055", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Yang, Ji-Woong; Ahn, Jinho", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Early Holocene methane records from Siple Dome, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601055"}, {"dataset_uid": "601055", "doi": "10.15784/601055", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Ahn, Jinho; Yang, Ji-Woong", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Early Holocene methane records from Siple Dome, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601055"}], "date_created": "Tue, 12 Jan 2016 00:00:00 GMT", "description": "1043500/Sowers This award supports a project to develop a 50 yr resolution methane data set that will play a pivotal role in developing the WAIS Divide timescale as well as providing a common stratigraphic framework for comparing climate records from Greenland and West Antarctica. Even higher resolution data are proposed for key intervals to assist in precisely defining the phasing of abrupt climate change between the hemispheres. Concurrent analysis of a suit of samples from both the WAIS Divide and GISP-2 cores throughout the last 110,000 years is also proposed, to establish the interpolar methan (CH4) gradient that will be used to identify geographic areas responsible for the climate related methane emission changes. The intellectual merit of the proposed work is that it will provide chronological control needed to examine the timing of changes in climate proxies, and critical chronological ties to the Greenland ice core records via methane variations. One main objective is to understand the interpolar timing of millennial-scale climate change. This is an important scientific goal relevant to understanding climate change mechanisms in general. The proposed work will help establish a chronological framework for addressing these issues. In addition, this proposal addresses the question of what methane sources were active during the ice age, through the work on the interpolar methane gradient. This work is directed at the fundamental question of what part of the biosphere controlled past methane variations, and is important for developing more sophisticated understanding of those variations. The broader impacts of the work are that the ultra-high resolution CH4 record will directly benefit all ice core paleoclimate research and the chronological refinements will impact paleoclimate studies that rely on ice core timescales for correlation purposes. The project will support both graduate and undergraduate students and the PIs will participate in outreach to the public.", "east": -112.08648, "geometry": "POINT(-112.08648 -79.46763)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e INFRARED LASER SPECTROSCOPY", "is_usap_dc": true, "keywords": "WAIS Divide; Not provided; LABORATORY; Wais Divide-project; Methane Concentration", "locations": "WAIS Divide", "north": -79.46763, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Rhodes, Rachel; Brook, Edward J.; McConnell, Joseph", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "NCEI", "repositories": "NCEI; USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.46763, "title": "Collaborative Research: Completing an ultra-high resolution methane record from the WAIS Divide ice core", "uid": "p0000185", "west": -112.08648}, {"awards": "0944653 Forster, Richard", "bounds_geometry": "POLYGON((-119.4 -78.1,-118.46000000000001 -78.1,-117.52000000000001 -78.1,-116.58 -78.1,-115.64 -78.1,-114.7 -78.1,-113.76 -78.1,-112.82000000000001 -78.1,-111.88 -78.1,-110.94 -78.1,-110 -78.1,-110 -78.28999999999999,-110 -78.47999999999999,-110 -78.67,-110 -78.86,-110 -79.05,-110 -79.24,-110 -79.42999999999999,-110 -79.62,-110 -79.81,-110 -80,-110.94 -80,-111.88 -80,-112.82000000000001 -80,-113.76 -80,-114.7 -80,-115.64 -80,-116.58 -80,-117.52000000000001 -80,-118.46000000000001 -80,-119.4 -80,-119.4 -79.81,-119.4 -79.62,-119.4 -79.42999999999999,-119.4 -79.24,-119.4 -79.05,-119.4 -78.86,-119.4 -78.67,-119.4 -78.47999999999999,-119.4 -78.28999999999999,-119.4 -78.1))", "dataset_titles": "Annual Satellite Era Accumulation Patterns Over WAIS Divide: A Study Using Shallow Ice Cores, Near-Surface Radars and Satellites", "datasets": [{"dataset_uid": "600146", "doi": "10.15784/600146", "keywords": "Airborne Radar; Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar; WAIS Divide; WAIS Divide Ice Core", "people": "Forster, Richard", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Annual Satellite Era Accumulation Patterns Over WAIS Divide: A Study Using Shallow Ice Cores, Near-Surface Radars and Satellites", "url": "https://www.usap-dc.org/view/dataset/600146"}], "date_created": "Fri, 20 Nov 2015 00:00:00 GMT", "description": "This award supports a project to broaden the knowledge of annual accumulation patterns over the West Antarctic Ice Sheet by processing existing near-surface radar data taken on the US ITASE traverse in 2000 and by gathering and validating new ultra/super-high-frequency (UHF) radar images of near surface layers (to depths of ~15 m), expanding abilities to monitor recent annual accumulation patterns from point source ice cores to radar lines. Shallow (15 m) ice cores will be collected in conjunction with UHF radar images to confirm that radar echoed returns correspond with annual layers, and/or sub-annual density changes in the near-surface snow, as determined from ice core stable isotopes. This project will additionally improve accumulation monitoring from space-borne instruments by comparing the spatial-radar-derived-annual accumulation time series to the passive microwave time series dating back over 3 decades and covering most of Antarctica. The intellectual merit of this project is that mapping the spatial and temporal variations in accumulation rates over the Antarctic ice sheet is essential for understanding ice sheet responses to climate forcing. Antarctic precipitation rate is projected to increase up to 20% in the coming century from the predicted warming. Accumulation is a key component for determining ice sheet mass balance and, hence, sea level rise, yet our ability to measure annual accumulation variability over the past 5 decades (satellite era) is mostly limited to point-source ice cores. Developing a radar and ice core derived annual accumulation dataset will provide validation data for space-born remote sensing algorithms, climate models and, additionally, establish accumulation trends. The broader impacts of the project are that it will advance discovery and understanding within the climatology, glaciology and remote sensing communities by verifying the use of UHF radars to monitor annual layers as determined by visual, chemical and isotopic analysis from corresponding shallow ice cores and will provide a dataset of annual to near-annual accumulation measurements over the past ~5 decades across WAIS divide from existing radar data and proposed radar data. By determining if temporal changes in the passive microwave signal are correlated with temporal changes in accumulation will help assess the utility of passive microwave remote sensing to monitor accumulation rates over ice sheets for future decades. The project will promote teaching, training and learning, and increase representation of underrepresented groups by becoming involved in the NASA History of Winter project and Thermochron Mission and by providing K-12 teachers with training to monitor snow accumulation and temperature here in the US, linking polar research to the student?s backyard. The project will train both undergraduate and graduate students in polar research and will encouraging young investigators to become involved in careers in science. In particular, two REU students will participate in original research projects as part of this larger project, from development of a hypothesis to presentation and publication of the results. The support of a new, young woman scientist will help to increase gender diversity in polar research.", "east": -110.0, "geometry": "POINT(-114.7 -79.05)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -78.1, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Forster, Richard", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -80.0, "title": "Collaborative Research: Annual satellite era accumulation patterns over WAIS Divide: A study using shallow ice cores, near-surface radars and satellites", "uid": "p0000079", "west": -119.4}, {"awards": "1245659 Petrenko, Vasilii; 1246148 Severinghaus, Jeffrey; 1245821 Brook, Edward J.", "bounds_geometry": "POINT(162.167 -77.733)", "dataset_titles": "Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores; Last Interglacial Mean Ocean Temperature; Mean Ocean Temperature in Marine Isotope Stage 4; Measurements of 14CH4 and 14CO in ice from Taylor Glacier: Last Deglaciation; N2O Concentration and Isotope Data for 74-59 ka from Taylor Glacier, Antarctica; Taylor Glacier CO2 Isotope Data 74-59 kyr; Taylor Glacier Noble Gases - Younger Dryas; The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "datasets": [{"dataset_uid": "601176", "doi": "10.15784/601176", "keywords": "Antarctica; CO2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Methane; Noble Gas; Noble Gas Isotopes; Snow/ice; Snow/Ice; Taylor Glacier; Younger Dryas", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Taylor Glacier Noble Gases - Younger Dryas", "url": "https://www.usap-dc.org/view/dataset/601176"}, {"dataset_uid": "601198", "doi": "10.15784/601198", "keywords": "Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; CO2; Dust; Gas; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Mass Spectrometer; Methane; Nitrogen Isotopes; Oxygen Isotope; Paleoclimate; Snow/ice; Snow/Ice; Taylor Dome; Taylor Dome Ice Core", "people": "Dyonisius, Michael; Menking, James; Brook, Edward J.; Marcott, Shaun; Barker, Stephen; Shackleton, Sarah; Petrenko, Vasilii; McConnell, Joseph; Rhodes, Rachel; Bauska, Thomas; Severinghaus, Jeffrey P.; Baggenstos, Daniel", "repository": "USAP-DC", "science_program": null, "title": "Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/601198"}, {"dataset_uid": "600163", "doi": "10.15784/600163", "keywords": "Antarctica; Atmosphere; Geochemistry; Ice Core Records; Isotope; Paleoclimate; Taylor Glacier; Transantarctic Mountains", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "url": "https://www.usap-dc.org/view/dataset/600163"}, {"dataset_uid": "601398", "doi": "10.15784/601398", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Gas Records; Ice Core Records; Marine Isotope Stage 4; MIS 4; Nitrous Oxide; Pleistocene; Taylor Dome Ice Core; Taylor Glacier", "people": "Severinghaus, Jeffrey P.; Menking, James; Brook, Edward J.; Schilt, Adrian; Shackleton, Sarah; Dyonisius, Michael; Petrenko, Vasilii", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "N2O Concentration and Isotope Data for 74-59 ka from Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601398"}, {"dataset_uid": "601218", "doi": "10.15784/601218", "keywords": "Antarctica; Carbon-14; Carbon Dioxide; Chemistry:ice; Chemistry:Ice; CO2; Dome C Ice Core; Epica; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Isotope Data; Last Interglacial; Mass Spectrometer; Mass Spectrometry; Methane; Oxygen; Oxygen Isotope; Paleotemperature; Pleistocene; Snow/ice; Snow/Ice; Taylor Dome Ice Core; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Last Interglacial Mean Ocean Temperature", "url": "https://www.usap-dc.org/view/dataset/601218"}, {"dataset_uid": "601218", "doi": "10.15784/601218", "keywords": "Antarctica; Carbon-14; Carbon Dioxide; Chemistry:ice; Chemistry:Ice; CO2; Dome C Ice Core; Epica; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Isotope Data; Last Interglacial; Mass Spectrometer; Mass Spectrometry; Methane; Oxygen; Oxygen Isotope; Paleotemperature; Pleistocene; Snow/ice; Snow/Ice; Taylor Dome Ice Core; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Last Interglacial Mean Ocean Temperature", "url": "https://www.usap-dc.org/view/dataset/601218"}, {"dataset_uid": "601600", "doi": "10.15784/601600", "keywords": "Antarctica; Taylor Glacier", "people": "Bauska, Thomas; Buffen, Aron; Brook, Edward J.; Shackleton, Sarah; Menking, James; Menking, Andy; Petrenko, Vasilii; Dyonisius, Michael; Severinghaus, Jeffrey P.; Barker, Stephen", "repository": "USAP-DC", "science_program": null, "title": "Taylor Glacier CO2 Isotope Data 74-59 kyr", "url": "https://www.usap-dc.org/view/dataset/601600"}, {"dataset_uid": "601260", "doi": "10.15784/601260", "keywords": "Antarctica; Carbon-14; Cosmogenic; Ice Core; Methane", "people": "Dyonisius, Michael; Petrenko, Vasilii", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Measurements of 14CH4 and 14CO in ice from Taylor Glacier: Last Deglaciation", "url": "https://www.usap-dc.org/view/dataset/601260"}, {"dataset_uid": "601415", "doi": "10.15784/601415", "keywords": "Antarctica; Glaciology; Ice Core Data; Ice Core Records; Paleoclimate; Paleotemperature; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Mean Ocean Temperature in Marine Isotope Stage 4", "url": "https://www.usap-dc.org/view/dataset/601415"}], "date_created": "Mon, 13 Jul 2015 00:00:00 GMT", "description": "1245659/Petrenko This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, \u0026#948;18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, \u0026#948;13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of \u0026#948;13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica.", "east": 162.167, "geometry": "POINT(162.167 -77.733)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Not provided; USAP-DC; FIELD INVESTIGATION; Stratigraphy; FIELD SURVEYS; Antarctica; Paleoenvironment; Methane; Ice Core; Carbon Dioxide; FIXED OBSERVATION STATIONS; Stable Isotopes; Ablation Zone; Taylor Glacier; Nitrous Oxide; USA/NSF; LABORATORY; AMD; Cosmogenic; Amd/Us", "locations": "Taylor Glacier; Antarctica", "north": -77.733, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Petrenko, Vasilii; Brook, Edward J.; Severinghaus, Jeffrey P.; PETRENKO, VASILLI", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": -77.733, "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "uid": "p0000283", "west": 162.167}, {"awards": "0838843 Kurbatov, Andrei; 0838849 Bender, Michael", "bounds_geometry": "POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667))", "dataset_titles": "Allan Hills Stable Water Isotopes; Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "datasets": [{"dataset_uid": "600099", "doi": "10.15784/600099", "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Ice Core Records; Paleoclimate; Solid Earth", "people": "Bender, Michael", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "url": "https://www.usap-dc.org/view/dataset/600099"}, {"dataset_uid": "609541", "doi": "10.7265/N5NP22DF", "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Isotope", "people": "Spaulding, Nicole; Mayewski, Paul A.; Introne, Douglas; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills Stable Water Isotopes", "url": "https://www.usap-dc.org/view/dataset/609541"}], "date_created": "Wed, 10 Dec 2014 00:00:00 GMT", "description": "This award supports a project to generate an absolute timescale for the Allan Hills Blue Ice Area (BIA), and then to reconstruct details of past climate changes and greenhouse gas concentrations for certain time periods back to 2.5 Ma. Ice ages will be determined by applying emerging methods for absolute and relative dating of trapped air bubbles (based on Argon-40/Argon-38, delta-18O of O2, and the O2/N2 ratio). To demonstrate the potential of the Allan Hills BIAs as a paleoclimate archive trenches and ice cores will be collected for age intervals corresponding to 110-140 ka, 1 Ma, and 2.5 Ma. During the proposed two field seasons a total of 6x100 m and additional 15 m cores will be combined with trenching. The intellectual merit of the proposed activity is that the results of this work will extend the landmark work of EPICA and other deep ice coring efforts, which give records dating back to 0.8 Ma, and will complement work planned by IPICS to drill a continuous Antarctic ice core extending to 1.5 Ma. The results will help to advance understanding of major climate regimes and transitions that took place between 0-2.5 Ma, including the 40 kyr world and the mid-Pleistocene climate transition. A major long-term scientific goal is to provide a transformative approach to the collection of paleoclimate records by establishing an \"International Climate Park\" in the Allan Hills BIA that would enable sampling of large quantities of known age ice as old as 2.5 Ma, by any interested American or foreign investigator. The broader impacts resulting from the proposed activity include training students who are well versed in advanced field, laboratory and numerical modeling methods combining geochemistry, glaciology, and paleoclimatology. We will include material relevant to our proposed research in our ongoing efforts in local education and in our outreach efforts for media. The University of Maine already has cyberinfrastructure, using state of the art web-based technology, which can provide a wide community of scientists with fast access to the results of our research. The work will contribute to the broad array of climate change studies that is informing worldwide understanding of natural and anthropogenic forced climate change, and the options for responding. This award has field work in Antarctica.", "east": 159.41667, "geometry": "POINT(159.29167 -76.7)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "GROUND-BASED OBSERVATIONS; LABORATORY; Deuterium Isotopes; Not provided; Oxygen Isotope", "locations": null, "north": -76.66667, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Spaulding, Nicole; Introne, Douglas; Bender, Michael; Kurbatov, Andrei V.; Mayewski, Paul A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73333, "title": "Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "uid": "p0000046", "west": 159.16667}, {"awards": "0839078 Brook, Edward J.", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 31 Oct 2013 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to develop a robust analytical technique for measuring the stable isotopes of CO2 in air trapped in polar ice, and to reconstruct the \u00e413C of CO2 over the last glacial to interglacial transition (20,000 to 10,000 years BP) and through the Holocene. The bulk of these measurements will be made on newly cored ice from the WAIS Divide Ice Core. A robust record \u00e413C of CO2 will be a valuable addition to the rich data produced from this project. The intellectual merit of the proposed work relates to the fact that explaining glacial-interglacial changes in atmospheric CO2 remains a major challenge for paleoclimatology. The lack of a coherent, widely accepted explanation underscores uncertainties in the basic mechanisms that control the carbon cycle, and that lack of understanding limits our ability to confidently predict how the carbon cycle will change in the future, in the face of a potentially major perturbation of both global temperature and the CO2 content of the atmosphere. A widely accepted record of this parameter could transform our understanding of how the carbon cycle and climate change are linked. The broader impacts of the work include training of graduate student at OSU who will conduct much of the lab work and will also participate in fieldwork at the WAIS Divide Core site. The student will also participate in a number of organized outreach efforts and will develop his own outreach effort, through weblogs and other communication of his research. The PIs will communicate the results from this project to a variety of audiences through academic courses and public talks. The proposed work addresses a major topic in biogeochemistry, the origin of glacial-interglacial CO2 cycles. The results are relevant to understanding changes in the carbon cycle due to human activities because the lack of clear understanding of past variations contributes to public uncertainty about the importance of modern climate change. The proposed funding will also contribute to analytical infrastructure at OSU and develop an analytical capability for an ice core measurement currently not available in the United States.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward J.; Mix, Alan", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Developing a glacial-interglacial record of delta-13C of atmospheric CO2", "uid": "p0000260", "west": null}, {"awards": "0636740 Kreutz, Karl; 0636767 Dunbar, Nelia", "bounds_geometry": "POINT(112.11666 -79.46666)", "dataset_titles": "Microparticle, Conductivity, and Density Measurements from the WAIS Divide Deep Ice Core, Antarctica; Snowpit Chemistry - Methods Comparison, WAIS Divide, Antarctica; Snowpit evidence of the 2011 Puyehue-Cordon Caulle (Chile) eruption in West Antarctica; WAIS Divide Microparticle Concentration and Size Distribution, 0-2400 ka; WAIS Divide Snowpit Chemical and Isotope Measurements, Antarctica; WAIS Divide WDC06A Discrete ICP-MS Chemistry", "datasets": [{"dataset_uid": "609499", "doi": "10.7265/N5K07264", "keywords": "Antarctica; Density; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Microparticle Concentration; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "Koffman, Bess; Breton, Daniel; Hamilton, Gordon S.; Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Microparticle, Conductivity, and Density Measurements from the WAIS Divide Deep Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609499"}, {"dataset_uid": "601036", "doi": "10.15784/601036", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Intracontinental Magmatism; IntraContinental Magmatism; Snow Pit; Tephra; WAIS Divide; WAIS Divide Ice Core", "people": "Koffman, Bess; Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Snowpit evidence of the 2011 Puyehue-Cordon Caulle (Chile) eruption in West Antarctica", "url": "https://www.usap-dc.org/view/dataset/601036"}, {"dataset_uid": "609506", "doi": "10.7265/N5SJ1HHN", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Isotope; Microparticle Concentration; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core", "people": "Koffman, Bess; Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Snowpit Chemical and Isotope Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609506"}, {"dataset_uid": "601023", "doi": "10.15784/601023", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; ICP-MS; Isotope; WAIS Divide; WAIS Divide Ice Core", "people": "Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide WDC06A Discrete ICP-MS Chemistry", "url": "https://www.usap-dc.org/view/dataset/601023"}, {"dataset_uid": "609620", "doi": "10.7265/N5Q81B1X", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Trace Elements; WAIS Divide; WAIS Divide Ice Core", "people": "Kreutz, Karl; Koffman, Bess", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Snowpit Chemistry - Methods Comparison, WAIS Divide, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609620"}, {"dataset_uid": "609616", "doi": "10.7265/N5KK98QZ", "keywords": "Antarctica; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Particle Size; WAIS Divide; WAIS Divide Ice Core", "people": "Koffman, Bess; Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Microparticle Concentration and Size Distribution, 0-2400 ka", "url": "https://www.usap-dc.org/view/dataset/609616"}], "date_created": "Tue, 19 Jun 2012 00:00:00 GMT", "description": "This award supports a project to perform continuous microparticle concentration and size distribution measurements (using coulter counter and state-of-the-art laser detector methods), analysis of biologically relevant trace elements associated with microparticles (Fe, Zn, Co, Cd, Cu), and tephra measurements on the WAIS Divide ice core. This initial three-year project includes analysis of ice core spanning the instrumental (~1850-present) to mid- Holocene (~5000 years BP) period, with sample resolution ranging from subannual to decadal. The intellectual merit of the project is that it will help in establishing the relationships among climate, atmospheric aerosols from terrestrial and volcanic sources, ocean biogeochemistry, and greenhouse gases on several timescales which remain a fundamental problem in paleoclimatology. The atmospheric mineral dust plays an important but uncertain role in direct radiative forcing, and the microparticle datasets produced in this project will allow us to examine changes in South Pacific aerosol loading, atmospheric dynamics, and dust source area climate. The phasing of changes in aerosol properties within Antarctica, throughout the Southern Hemisphere, and globally is unclear, largely due to the limited number of annually dated records extending into the glacial period and the lack of a\u003cbr/\u003etephra framework to correlate records. The broader impacts of the proposed research are an interdisciplinary approach to climate science problems, and will contribute to several WAIS Divide science themes as well as the broader paleoclimate and oceanographic communities. Because the research topics have a large and direct societal relevance, the project will form a centerpiece of various outreach efforts at UMaine and NMT including institution websites, public speaking, local K-12 school interaction, media interviews and news releases, and popular literature. At least one PhD student and one MS student will be directly supported by this project, including fieldwork, core processing, laboratory analysis, and data interpretation/publication. We expect that one graduate student per year will apply for a core handler/assistant driller position through the WAIS Divide Science Coordination Office, and that undergraduate student involvement will result in several Capstone experience projects (a UMaine graduation requirement). Data and ideas generated from the project will be integrated into undergraduate and graduate course curricula at both institutions.", "east": 112.11666, "geometry": "POINT(112.11666 -79.46666)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PARTICLE DETECTORS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e LOPC-PMS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e ICE CORE MELTER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PARTICLE DETECTORS", "is_usap_dc": true, "keywords": "Ice Core Dust; Tephra; Radiative Forcing; Greenhouse Gas; West Antarctica; Atmospheric Aerosols; Oxygen Isotope; Not provided; WAIS Divide; Snow Pit; Ice Core Chemistry; Microparticle; Wais Divide-project; Microparticles Size; Paleoclimate; LABORATORY; Ice Core Data; Atmospheric Dynamics; Antarctica; FIELD SURVEYS; Ice Core; Trace Elements; FIELD INVESTIGATION; Holocene; Isotope; Snow Chemistry", "locations": "Antarctica; WAIS Divide; West Antarctica", "north": -79.46666, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Koffman, Bess; Kreutz, Karl; Breton, Daniel; Dunbar, Nelia; Hamilton, Gordon S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.46666, "title": "Collaborative Research: Microparticle/tephra analysis of the WAIS Divide ice core", "uid": "p0000040", "west": 112.11666}, {"awards": "0738658 Price, P. Buford", "bounds_geometry": "POINT(112.1125 -79.4638)", "dataset_titles": "Access to data; data from one of three optical logs we made at WAIS Divide; WAIS Divide Laser Dust Logger Data", "datasets": [{"dataset_uid": "609540", "doi": "10.7265/N5C53HSG", "keywords": "Antarctica; Atmosphere; Chemistry:ice; Chemistry:Ice; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Laser Dust Logger; WAIS Divide Ice Core", "people": "Bay, Ryan", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Laser Dust Logger Data", "url": "https://www.usap-dc.org/view/dataset/609540"}, {"dataset_uid": "000188", "doi": "", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "data from one of three optical logs we made at WAIS Divide", "url": "http://icecube.berkeley.edu/~bay/wdc/"}, {"dataset_uid": "001349", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to data", "url": "http://icecube.berkeley.edu/~bay/wdc/"}], "date_created": "Tue, 19 Jun 2012 00:00:00 GMT", "description": "This award supports a project to use two new scanning fluorimeters to map microbial concentrations vs depth in the WAIS Divide ice core as portions of it become available at NICL, and selected portions of the GISP2 ice core for inter-hemispheric comparison. Ground-truth calibrations with microbes in ice show that the instruments are sensitive to a single cell and can scan the full length of a 1-meter core at 300-micron intervals in two minutes. The goals of these studies will be to exploit the discovery that microbes are transported onto ice, in clumps, several times per year and that at rare intervals (not periodically) of ~104 years, a much higher flux, sometimes lasting \u003e1 decade, reaches the ice. From variations ranging from seasonal to millennial to glacial scale in the arrival time distribution of phototrophs, methanogens, and total microbes in the Antarctic and Arctic ice, the investigators will attempt to determine oceanic and terrestrial sources of these microbes and will look for correlations of microbial bursts with dust concentration and temperature proxies. In addition the project will follow up on the discovery that the rare instances of very high microbial flux account for some of the\"gas artifacts\" in ice cores - isolated spikes of excess CH4 and N2O that have been discarded by others in previous climate studies. The intellectual merit of this project is that it will exploit scanning fluorimetry of microbes as a powerful new tool for studies ranging from meteorology to climatology to biology, especially when combined with mapping of dust, gases, and major element chemistry in ice cores. In 2010-11 the WAIS Divide borehole will be logged with the latest version of the dust logger. The log will provide mm-scale depth resolution of dust concentration and of volcanic ash layers down the entire depth of the borehole. The locations of ash layers in the ice will be determined and chemical analyses of the ash will be analyzed in order to determine provenance. By comparing data from the WAIS Divide borehole with data from other boreholes and with chemical data (obtained by others) on volcanic layers, the researchers will examine the relationship between the timing of volcanic eruptions and abrupt climate change. Results from this project with the scanning fluorimeters and the dust logger could have applications to planetary missions, borehole oceanography, limnology, meteorology, climate, volcanology, and ancient life in ice. A deeper understanding of the causes of abrupt climate change, including a causal relationship with volcanic explosivity, would enable a better understanding of the adverse effects on climate. The broader impact of the project is that it will provide training to students and post-docs from the U. S. and other countries.", "east": 112.1125, "geometry": "POINT(112.1125 -79.4638)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS", "is_usap_dc": true, "keywords": "Dust Loggers; Dust Concentration; Ice Core; West Antarctic Ice Sheet; LABORATORY; Microbial; Fluorimetry; GROUND-BASED OBSERVATIONS; Meteorology; Climatologymeteorologyatmosphere; Ice", "locations": "West Antarctic Ice Sheet", "north": -79.4638, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bay, Ryan; Price, Buford; Souney, Joseph Jr.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "PI website; USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.4638, "title": "Climatology, Meteorology, and Microbial Metabolism in Ice with Dust Loggers and Fluorimetry", "uid": "p0000009", "west": 112.1125}, {"awards": "0538494 Meese, Debra", "bounds_geometry": null, "dataset_titles": "Microstructural Location and Composition of Impurities in Polar Ice Cores", "datasets": [{"dataset_uid": "609436", "doi": "10.7265/N5DF6P5P", "keywords": "Antarctica; Arctic; Byrd Glacier; Byrd Ice Core; Chemistry:ice; Chemistry:Ice; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Lake Vostok; Paleoclimate; Vostok Ice Core", "people": "Obbard, Rachel; Baker, Ian", "repository": "USAP-DC", "science_program": null, "title": "Microstructural Location and Composition of Impurities in Polar Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609436"}], "date_created": "Thu, 03 Jun 2010 00:00:00 GMT", "description": "0538494\u003cbr/\u003eMeese\u003cbr/\u003eThis award supports a project for physical properties research on snow pits and firn/ice cores with specific objectives that include stratigraphic analysis including determination of accumulation rates, annual layers, depth hoar, ice and wind crusts and rates of grain growth with depth. Studies of firn densification rates and how these parameters relate to the meteorology and climatology over the last 200 years of snow accumulation in Antarctica will also be investigated. The project will also determine the seasonality of accumulation by co-registration of stratigraphy and chemistry and determination of chemical species at the grain boundaries, how these may change with depth/densification (and therefore temperature), precipitation, and may affect grain growth. Fabric analyses will be made, including variation with depth, location on undulations and if any variation exists with climate/chemistry. The large spatial coverage of the US ITASE program offers the opportunity to determine how these parameters are affected by a large range of temperature, precipitation and topographic effects. The intellectual merit of the project includes the fact that ITASE is the terrestrial equivalent of a polar research vessel that provides a unique, logistically efficient, multi-dimensional (x, y, z and time) view of the atmosphere, ice sheet and their histories. Physical properties measurements/ analyses are an integral part of understanding the dynamic processes to which the accumulated snow is subjected. Recent advancements in the field along with multiple core sites provide an excellent opportunity to gain a much broader understanding of the spatial, temporal and physical variables that impact firnification and the possible resultant impact on climatic interpretation. In terms of broader impacts, the data collected by US ITASE and its international ITASE partners is available to a broad scientific community. US ITASE has an extensive program of public outreach and provides significant opportunities for many students to experience multidisciplinary Antarctic research. A graduate student, a post-doctoral fellow and at least one undergraduate would be funded by this work. Dr. Meese is also a member of the New England Science Collaborative, an organization that educates the public on climate change based on recent scientific advancements.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES", "is_usap_dc": false, "keywords": "LABORATORY; Grain Growth; FIELD SURVEYS; Accumulation Rate; Firn Core; FIELD INVESTIGATION; Chemistry; Snow Pit; Depth Hoar; Firn Density; Ice Core; Not provided; Stratigraphic Analysis; Firn; US ITASE; Annual Layers", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Meese, Deb; MEESE, DEBRA", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "The Physical Properties of the US ITASE Firn and Ice Cores from South Pole to Taylor Dome", "uid": "p0000289", "west": null}, {"awards": "0125794 Price, P. Buford", "bounds_geometry": null, "dataset_titles": "Optical Logging for Dust and Microbes in Boreholes in Glacial Ice", "datasets": [{"dataset_uid": "609403", "doi": "10.7265/N59P2ZKB", "keywords": "Antarctica; Dust; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Microbiology; Optical Backscatter", "people": "Bay, Ryan", "repository": "USAP-DC", "science_program": null, "title": "Optical Logging for Dust and Microbes in Boreholes in Glacial Ice", "url": "https://www.usap-dc.org/view/dataset/609403"}], "date_created": "Wed, 29 Jul 2009 00:00:00 GMT", "description": "0125794\u003cbr/\u003ePrice\u003cbr/\u003e\u003cbr/\u003eThis award supports research in climatology, geosciences, and life in extreme environments to be carried out with a newly developed optical borehole logger. The logger fits into a fluid-filled borehole in glacial ice. It emits light at 370 nm in a horizontal plane in order to probe optical properties of particles embedded in the ice out to several meters from the borehole. After leaving the borehole, the light is partially absorbed and scattered by dust, biomolecules, or microbes. A fraction of the light is scattered back into the borehole and is detected by a system of seven phototubes, each of which collects light with high efficiency in a separate wavelength band. One of them collects light that scatters off of dust and air bubbles without wavelength shift, and serves as a dust logger. The other six are covered with notch filters that measure six different wavelength bands and measure the shape of the fluorescence spectrum of microbes and biomolecules. Thus, the same instrument serves as both a dust logger and a microbe logger. Applications include: 1) Precise chronologies and long-period solar variability. With a resolution of 1 to 2 cm for both GISP2 and Siple Dome, the logger will record annual dust maxima and evaluate claims of modulations of dust concentration with periods ranging from 11 yrs (the solar cycle) to 2300 yrs; 2) Volcanism and age-depth markers. Dozens of volcanic ash bands will be detectable and will serve as primary age-depth markers for other boreholes; 3) Microorganisms and biomolecules. The vertical distribution of living, dormant, and dead microbes can be logged, and searches for archaea and aeolian polyaromatic hydrocarbons can be made. The logging experiments will be carried out at Siple Dome and Dome C in Antarctica and at GISP2 and GRIP in Greenland.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS", "is_usap_dc": true, "keywords": "Ice Core Data; Not provided; Climate Research; Climate; FIELD INVESTIGATION; Climate Change; FIELD SURVEYS; LABORATORY; Paleoclimate; Ice Core; Volcanic", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology; Arctic Natural Sciences", "paleo_time": null, "persons": "Bay, Ryan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Optical Logging for Dust and Microbes in Boreholes in Glacial Ice", "uid": "p0000156", "west": null}, {"awards": "0126057 Brook, Edward J.; 0512971 Brook, Edward J.", "bounds_geometry": null, "dataset_titles": "Antarctic and Greenland Climate Change Comparison; GISP2 (B and D Core) Methane Concentrations; GISP2 (D Core) Helium Isotopes from Interplanetary Dust; GISP2 (D Core) Methane Concentration Data; Siple Dome Methane Record", "datasets": [{"dataset_uid": "609253", "doi": "", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Vostok Ice Core", "people": "Stauffer, Bernhard; Blunier, Thomas; Chappellaz, Jerome; Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "Antarctic and Greenland Climate Change Comparison", "url": "https://www.usap-dc.org/view/dataset/609253"}, {"dataset_uid": "609125", "doi": "", "keywords": "Arctic; Chemistry:fluid; Chemistry:Fluid; Chemistry:ice; Chemistry:Ice; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland; Ice Core Records; Methane; Paleoclimate", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "GISP2 (B and D Core) Methane Concentrations", "url": "https://www.usap-dc.org/view/dataset/609125"}, {"dataset_uid": "609361", "doi": "", "keywords": "Antarctica; Arctic; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Lake Vostok; Paleoclimate; Vostok Ice Core", "people": "Brook, Edward J.; Kurz, Mark D.", "repository": "USAP-DC", "science_program": null, "title": "GISP2 (D Core) Helium Isotopes from Interplanetary Dust", "url": "https://www.usap-dc.org/view/dataset/609361"}, {"dataset_uid": "609360", "doi": "", "keywords": "Antarctica; Arctic; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Methane; Paleoclimate; Taylor Dome", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "GISP2 (D Core) Methane Concentration Data", "url": "https://www.usap-dc.org/view/dataset/609360"}, {"dataset_uid": "609124", "doi": "10.7265/N5KH0K8R", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Methane Record", "url": "https://www.usap-dc.org/view/dataset/609124"}], "date_created": "Tue, 16 Dec 2008 00:00:00 GMT", "description": "This award supports work on trapped gases in Antarctic and other ice cores for paleoenvironmental and chronological purposes. The project will complete a ~ 100,000 year, high-resolution record of atmospheric methane from the Siple Dome ice core and use these data to construct a precise chronology for climate events recorded by the Siple Dome record. In addition, the resolution of the GISP2 (Greenland) ice core record will be increased in some critical intervals to help with the Siple Dome chronology and that of future ice cores. Finally, an upgrade to the analytical capabilities of the laboratory, including increasing precision and throughput and decreasing sample size needed for ice core methane measurements will be an important goal of this work. The proposed work will contribute to the understanding of the timing of rapid climate change in the Northern and Southern hemispheres during the last glacial period, the evolution of the global methane budget in the late Quaternary, and the late Quaternary climate history of Antarctica. It will also improve our ability to generate methane records for future ice coring projects, and inform and enrich the educational and outreach activities of our laboratory.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Isotope; Siple Coast; WAISCORES; GROUND-BASED OBSERVATIONS; Interplanetary Dust; FIELD SURVEYS; Not provided; Ice Sheet; Snow; GROUND STATIONS; Gas Measurement; Ice Core; Siple; Antarctica; Methane; Glaciology; Stratigraphy; Siple Dome", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Glaciology; Antarctic Organisms and Ecosystems; Antarctic Glaciology", "paleo_time": null, "persons": "Blunier, Thomas; Chappellaz, Jerome; Stauffer, Bernhard; Kurz, Mark D.; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change", "uid": "p0000034", "west": null}, {"awards": "0440609 Price, P. Buford", "bounds_geometry": "POINT(-112.06556 -79.469444)", "dataset_titles": null, "datasets": null, "date_created": "Tue, 03 Jun 2008 00:00:00 GMT", "description": "This award supports a project to use three downhole instruments - an optical logger; a\u003cbr/\u003eminiaturized biospectral logger at 420 nm (miniBSL-420); and an Acoustic TeleViewer (ATV) - to log a 350-m borehole at the WAIS Divide drill site. In addition, miniBSL-224 (at 224 nm) and miniBSL-420 will scan ice core sections at NICL to look for abrupt climate changes, volcanic ash, microbial concentrations, and correlations among them. Using the optical logger and ATV to log bubble number densities vs depth in a WAIS Divide borehole, we will detect annual layers, from which we can establish the age vs depth relation to the bottom of the borehole that will be available during the three-year grant period. With the same instruments we will search for long-period modulation of bubble and dust concentrations in order to provide definitive evidence for or against an effect of long-period variability of the sun or solar wind on climate. We will detect and accurately date ash layers in a WAIS Divide borehole. We will match them with ash layers that we previously detected in the Siple Dome borehole, and also match them with sulfate and ash layers found by others at Vostok, Dome Fuji, Dome C, and GISP2. The expected new data will allow us to extend our recent study which showed that the Antarctic record of volcanism correlates with abrupt climate change at a 95% to \u003e99.8% significance level and that the volcanic signatures at bipolar locations match at better than 3 sigma during the interval 2 to 45 kiloyears. The results to be obtained during this grant period will position us to extend an accurate age vs depth relation and volcano-climate correlations to earlier than 150 kiloyears ago in the future WAIS Divide borehole to be drilled to bedrock. Using the miniBSLs to identify biomolecules via their fluorescence, we will log a 350-m borehole at WAIS Divide, and we will scan selected lengths of ice core at NICL. Among the biomolecules the miniBSLs can identify will be chlorophyll, which will provide the first map of aerobic microbes in ice, and F420, which will provide the first map of methanogens in ice. We will collaborate with others in relating results from WAIS Divide and NICL ice cores to broader topics in climatology, volcanology, and microbial ecology. We will continue to give broad training to undergraduate and graduate students, to attract underrepresented minorities to science, engineering, and math, and to educate the press and college teachers. A deeper understanding of the causes of abrupt climate change, including a causal relationship with strong volcanic eruptions, can enable us to understand and mitigate adverse effects on climate.", "east": -112.06556, "geometry": "POINT(-112.06556 -79.469444)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUORESCENCE SPECTROSCOPY; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS", "is_usap_dc": false, "keywords": "Volcanic Ash; Dust Concentration; Antarctica; FIELD INVESTIGATION; Liquid Veins In Ice; Optical Logger; Borehole; Ash Layer; FIELD SURVEYS; Microbial Metabolism; Climate; Biospectral Logger; Not provided; Protein Fluorescence; Gas Artifacts; Aerosol Fluorescence; Volcanism; WAIS Divide; Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.469444, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bay, Ryan; Price, Buford", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repositories": null, "science_programs": null, "south": -79.469444, "title": "Climatology, Volcanism, and Microbial Life in Ice with Downhole Loggers", "uid": "p0000746", "west": -112.06556}, {"awards": "0337891 Brook, Edward J.", "bounds_geometry": "POINT(158 -77.666667)", "dataset_titles": "Atmospheric CO2 and Climate: Byrd Ice Core, Antarctica; Atmospheric CO2 and Climate: Taylor Dome Ice Core, Antarctica", "datasets": [{"dataset_uid": "609315", "doi": "10.7265/N5542KJK", "keywords": "Antarctica; Atmosphere; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "people": "Brook, Edward J.; Ahn, Jinho", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Atmospheric CO2 and Climate: Taylor Dome Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609315"}, {"dataset_uid": "609314", "doi": "10.7265/N58W3B80", "keywords": "Antarctica; Atmosphere; Byrd Glacier; Byrd Ice Core; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate", "people": "Brook, Edward J.; Ahn, Jinho", "repository": "USAP-DC", "science_program": "Byrd Ice Core", "title": "Atmospheric CO2 and Climate: Byrd Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609314"}], "date_created": "Mon, 05 Nov 2007 00:00:00 GMT", "description": "This award supports the development of a new laboratory capability in the U.S. to measure CO2 in ice cores and investigate millennial-scale changes in CO2 during the last glacial period using samples from the Byrd and Siple Dome ice cores. Both cores have precise relative chronologies based on correlation of methane and the isotopic composition of atmospheric oxygen with counterpart records from Greenland ice cores. The proposed work will therefore allow comparison of the timing of CO2 change, Antarctic temperature change, and Greenland temperature change on common time scales. Such comparisons are vital for evaluating models that explain changes in atmospheric CO2. The techniques being developed will also be available for future projects, specifically the proposed Inland WAIS ice core, for which a highly detailed CO2 record is a major objective, and studies greenhouse and other atmospheric gases and their isotopic composition for which dry extraction is necessary (stable isotopes in CO2, for example). There are many broad impacts of the proposed work. Ice core greenhouse gas records are central contributions of paleoclimatology to research and policy-making concerning global change. The proposed work will enhance those contributions by improving our understanding of the natural cycling of the most important greenhouse gas. It will contribute to the training of a postdoctoral researcher, who will be an integral part of an established research group and benefit from the diverse paleoclimate and geochemistry community at OSU. The PI teaches major and non-major undergraduate and graduate courses on climate and global change. The proposed work will enrich those courses and the courses will provide an opportunity for the postdoctoral researcher to participate in teaching by giving guest lectures. The PI also participates in a summer climate workshop for high school teachers at Washington State University and the proposed work will enrich that contribution. The extraction device that is built and the expertise gained in using it will be resources for the ice core community and available for future projects. Data will be made available through established national data center and the equipment designs will also be made available to other researchers.", "east": 158.0, "geometry": "POINT(158 -77.666667)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Ice Core; Climate Change; CO2; Atmospheric Chemistry; Atmospheric CO2; LABORATORY; Not provided; Ice Core Data; Climate; Ice Core Chemistry; Atmospheric Gases; Ice Core Gas Records; GROUND STATIONS; Climate Research", "locations": null, "north": -77.666667, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Ahn, Jinho; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": -77.666667, "title": "Developing Dry Extraction of Ice Core Gases and Application to Millennial-Scale Variability in Atmospheric CO2", "uid": "p0000268", "west": 158.0}, {"awards": "0537827 Lazzara, Matthew", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Access Antarctic NOAA Polar Orbiting AVHRR HRPT GAC and LAC images.; Access Arrival Heights Meteorological Observations; Access Building 189 Meteorological Observations; Access Building 69 Meteorological Observations; Access Building 71 Meteorological Observations; Access McMurdo Meteorological Observations; Access Neumayer Meteorological Observations; Access Palmer Meteorological Observations; Access South Pole Meteorological Observations", "datasets": [{"dataset_uid": "001296", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Neumayer Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/neumayer/"}, {"dataset_uid": "001293", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Building 69 Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/mcmurdo/building69/"}, {"dataset_uid": "001297", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Palmer Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/palmer/observations/"}, {"dataset_uid": "001298", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access South Pole Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/southpole/surface_observations/"}, {"dataset_uid": "001292", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Building 189 Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/mcmurdo/building189/"}, {"dataset_uid": "001291", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Arrival Heights Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/mcmurdo/arrivalheights/"}, {"dataset_uid": "001294", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Building 71 Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/mcmurdo/building71/"}, {"dataset_uid": "001295", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access McMurdo Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/mcmurdo/climatology/"}, {"dataset_uid": "001287", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Antarctic NOAA Polar Orbiting AVHRR HRPT GAC and LAC images.", "url": "ftp://amrc.ssec.wisc.edu"}], "date_created": "Thu, 12 Oct 2000 00:00:00 GMT", "description": "This proposed work is the continued operation of the Antarctic Meteorological Research Center (AMRC) for three years through 2009. AMRC is a meteorological data acquisition and management system with nodes at McMurdo Station and at the University of Wisconsin, Madison. The system is a resource and archive for meteorological research and a test bed for improving operational synoptic forecasting. Its basis is a computer-based system for organizing, manipulating, and integrating antarctic environmental data, developed by the University of Wisconsin. It captures the flow of meteorological information from polar orbiting satellites, automatic weather stations, operational station synoptic observations, and research project data, producing a mosaic of antarctic satellite images on an operational basis. It also receives environmental data products, such as weather forecasts, from outside Antarctica, and acts as a repository for existing archived databases. The AMRC provides customized weather and climate information for a variety of antarctic users, including aircraft and ship operations of the US Antarctic Program. Currently the AMRC produces the Antarctic Composite Infrared Image, a mosaic of images from four geostationary and three polar-orbiting satellites, which is used for both forecasting and research purposes. In the current time period, AMRC will develop a data exploration/classification toolkit based on self-organizing maps to produce a new, satellite-based antarctic cloud climatology for regions. The AMRC will also be at the center of the evolving Antarctic-Internet Data Distribution (Antarctic-IDD) system, a reliable and formalized means of sharing and distributing Antarctic data among operational and research users. \u003cbr/\u003e***", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e AVHRR", "is_usap_dc": false, "keywords": "NOAA-14; FIXED OBSERVATION STATIONS; Antarctica; Not provided; Satellite Imagery; NOAA-15; Noaa Avhrr Lac; NOAA-12; Observation Data", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Costanza, Carol; Snarski, Joey", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e POLAR ORBITING ENVIRONMENTAL SATELLITES (POES) \u003e NOAA-12; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e POLAR ORBITING ENVIRONMENTAL SATELLITES (POES) \u003e NOAA-14; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e POLAR ORBITING ENVIRONMENTAL SATELLITES (POES) \u003e NOAA-15", "repo": "AMRDC", "repositories": "AMRDC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Antarctic Meteorological Research Center (2006-2009)", "uid": "p0000280", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Collaborative Research: Antarctic Automatic Weather Station Program
|
0944018 0943952 |
2023-10-20 | Lazzara, Matthew; Cassano, John |
|
The Antarctic Automatic Weather Station (AWS) network, first commenced in 1978, is the most extensive meteorological observing system on the Antarctic continent, approaching its 30th year at many of its key sites. Its prime focus as a long term observational record is vital to the measurement of the near surface climatology of the Antarctic atmosphere. AWS units measure air-temperature, pressure, wind speed and direction at a nominal surface height of 3m. Other parameters such as relative humidity and snow accumulation may also be taken. Observational data from the AWS are collected via the DCS Argos system aboard either NOAA or MetOp polar orbiting satellites and thus made available globally, in near real time via the GTS (Global Telecommunications System), to operational and synoptic weather forecasters. The surface observations from the AWS network also are often used to check on satellite and remote sensing observations, and the simulations of Global Climate Models (GCMs). Research instances of its use in this project include continued development of the climatology of the Antarctic atmosphere and surface wind studies of the Ross Ice Shelf. The AWS observations benefit the broader earth system science community, supporting research activities ranging from paleoclimate studies to penguin phenology. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||
RAPID: What Caused the Record Warmth and Loss of Antarctic Sea ice in the Austral Summer of 2022, and will Sea Ice Remain Low Over 2022-2024?
|
2233016 |
2023-02-17 | Blanchard-Wrigglesworth, Edward | No dataset link provided | In the austral winter of 2021/2022 a drastic decline in Antarctic sea ice extent has taken place, and February 2022 marked the lowest sea ice extent on record since satellite sea ice observations began in 1979. Combined with the loss of sea ice, the most extreme heat wave ever observed took place over East Antarctica in March 2022 as temperatures climbed over +40°C from climatology. Extreme events have an oversized footprint in socioeconomic impacts, but also serve as litmus tests for climate predictions. This project will use novel tools to diagnose the factors that led to the record low Antarctic sea ice extent and heat wave focusing on the impact of winds and ocean temperatures. Currently (June 2022) Antarctic sea ice extent remains at record low levels for the time of year, raising the prospect of a long-lasting period of low sea ice extent, yet annual forecasts of Antarctic sea ice do not yet exist. To address this issue, this project will also create exploratory annual sea ice forecasts for the 2022-2024 period. The extreme changes observed in Antarctic sea ice extent and air temperature have questioned our current understanding of Antarctic climate variability. Motivated by the timing of these events and our recent development of novel analysis tools, this project will address the following research questions: (R1) Can local winds account for the observed 2021/2022 sea ice loss, or are remote sea surface temperature (SST) anomalies a necessary ingredient? (R2) Are sea ice conditions over 2022-2024 likely to remain anomalously low? (R3) Can a state-of-the-art climate model simulate a heat wave of comparable magnitude to that observed if it follows the observed circulation that led to the heat wave? The main approach will be to use a nudging technique with a climate model, in which one or several variables in a climate model are nudged toward observed values. The project authors used this tool to attribute Antarctic sea ice variability and trends over 1979-2018 to winds and SST anomalies. This project will apply this tool to the period 2019-2022 to address R1 and R3 by running two different model experiments over this time period in which the winds over Antarctica and SSTs in the Southern Ocean are nudged toward observed values. In addition, we will diagnose the relevant modes of atmospheric variability over 2019-2022 that are known to influence Antarctic sea ice to gain further insight into the 2022 loss of sea ice extent. To address R2, we plan to extend the model simulations but without nudging, using the model as a forecast model (as its 2022 initial conditions will be taken from the end of the nudged simulations and capture important aspects of the observed state). We expect that if current upper ocean heat content is anomalously high, low sea ice extent conditions may continue over 2022-2024, as happened over 2017-2019 following the previous record low of sea ice extent in 2016/2017. To further address R3, we will compare observations and model simulations using novel atmospheric heat transport calculations developed by the project team. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||
Collaborative Research: Antarctic Automatic Weather Station Program 2019-2022
|
1924730 |
2022-08-23 | Lazzara, Matthew; Welhouse, Lee J |
|
The Antarctic Automatic Weather Station network is the most extensive surficial meteorological network in the Antarctic, approaching its 30th year at several of its data stations. Its prime focus is also as a long term observational record, to measure the near surface weather and climatology of the Antarctic atmosphere. Antarctic Automatic Weather Stations measure air-temperature, pressure, wind speed and direction at a nominal surface height of ~ 2-3m. Other parameters such as relative humidity and snow accumulation may also be taken. The surface observations from the Antarctic Automatic Weather Station network are also used operationally, for forecast purposes, and in the planning of field work. Surface observations made from the network have also been used to check the validity of satellite and remote sensing observations. The proposed effort informs our understanding of the Antarctic environment and its weather and climate trends over the past few decades. The research has implications for potential future operations and logistics for the US Antarctic Program during the winter season. As a part of this endeavor, all project participants will engage in a coordinated outreach effort to bring the famous Antarctic "cold" to public seminars, K-12, undergraduate, and graduate classrooms, and senior citizen centers. This project proposes to use the surface conditions observed by the Antarctic Automatic Weather Station (AWS) network to determine how large-scale modes of climate variability impact Antarctic weather and climate, how the surface observations from the AWS network are linked to surface layer and boundary layer processes. Consideration will also be given to low temperature physical environments such as may be encountered during Antarctic winter, and the best ways to characterize these, and other ?cold pool? phenomena. Observational data from the AWS are collected via Iridium network, or DCS Argos aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters over the GTS (WMO Global Telecommunication System). Being able to support improvements in numerical weather prediction and climate modeling will have lasting impacts on Antarctic science and logistical support. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||
Collaborative Research: Antarctic Automatic Weather Station Program 2019-2022
|
None | 2022-08-23 | None | No dataset link provided | The Antarctic Automatic Weather Station network is the most extensive surficial meteorological network in the Antarctic, approaching its 30th year at several of its data stations. Its prime focus is also as a long term observational record, to measure the near surface weather and climatology of the Antarctic atmosphere. Antarctic Automatic Weather Stations measure air-temperature, pressure, wind speed and direction at a nominal surface height of ~ 2-3m. Other parameters such as relative humidity and snow accumulation may also be taken. The surface observations from the Antarctic Automatic Weather Station network are also used operationally, for forecast purposes, and in the planning of field work. Surface observations made from the network have also been used to check the validity of satellite and remote sensing observations. The proposed effort informs our understanding of the Antarctic environment and its weather and climate trends over the past few decades. The research has implications for potential future operations and logistics for the US Antarctic Program during the winter season. As a part of this endeavor, all project participants will engage in a coordinated outreach effort to bring the famous Antarctic "cold" to public seminars, K-12, undergraduate, and graduate classrooms, and senior citizen centers.<br/><br/>This project proposes to use the surface conditions observed by the Antarctic Automatic Weather Station (AWS) network to determine how large-scale modes of climate variability impact Antarctic weather and climate, how the surface observations from the AWS network are linked to surface layer and boundary layer processes. Consideration will also be given to low temperature physical environments such as may be encountered during Antarctic winter, and the best ways to characterize these, and other ?cold pool? phenomena. Observational data from the AWS are collected via Iridium network, or DCS Argos aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters over the GTS (WMO Global Telecommunication System). Being able to support improvements in numerical weather prediction and climate modeling will have lasting impacts on Antarctic science and logistical support.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | |||||||
Collaborative Research: Antarctic Automatic Weather Station Program 2016-2019
|
1543305 |
2022-05-16 | Lazzara, Matthew |
|
The Antarctic Automatic Weather Station (AWS) network is the most extensive ground meteorological network in the Antarctic, approaching its 30th year at several of its installations. Its prime focus as a long term observational record is to measure the near surface weather and climatology of the Antarctic atmosphere. AWS stations measure air-temperature, pressure, wind speed and direction at a nominal surface height of ~ 2-3m. Other parameters such as relative humidity and snow accumulation may also be taken. Observational data from the AWS are collected via Iridium network, or DCS Argos aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters. The surface observations from the AAWS network are important records for recent climate change and meteorological processes. The surface observations from the AAWS network are also used operationally, and in the planning of field work. The surface observations made from the AAWS network have been used to check on satellite and remote sensing observations. This project proposes to use the surface conditions observed by the AWS network to determine how large-scale modes of climate variability impact Antarctic weather and climate, how the surface observations from the AWS network are linked to surface layer and boundary layer processes, and to quantify the impact of snowfall and blowing snow events. Specifically, this project proposes to improve our understanding of the processes that lead to unusual weather events and how these events are related to large-scale modes of climate variability. This project will fill a gap in knowledge of snowfall distribution, and distinguishing between snowfall and blowing snow events using a suite of precipitation sensors near McMurdo Station. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||
Collaborative Research: Holocene and Late Pleistocene Stream Deposition in the McMurdo Dry Valleys, Antarctica as a Proxy for Glacial Meltwater and Paleoclimate
|
2039419 |
2021-12-16 | Swanger, Kate | No dataset link provided | The McMurdo Dry Valleys are the largest ice-free region in Antarctica and home to a seasonally active hydrologic system, with streams and saline lakes. Streams are fed by summer meltwater from local glaciers and snowbanks. Therefore, streamflow is tied to summer climate conditions such as air temperatures, ground temperatures, winds, and incoming solar radiation. Based on 50 years of monitoring, summer stream activity has been observed to change, and it likely varied during the geologic past in response to regional climate change and fluctuating glaciers. Thus, deposits from these streams can address questions about past climate, meltwater, and lake level changes in this region. How did meltwater streamflow respond to past climate change? How did streamflow vary during periods of glacial advance and retreat? At what times did large lakes fill many of the valleys and what was their extent? The researchers plan to acquire a record of stream activity for the Dry Valleys that will span the three largest valleys and a time period of about 100,000 years. This record will come from a series of active and ancient alluvial fans that were deposited by streams as they flowed from valley sidewalls onto valley floors. The study will provide a long-term context with which to assess recent observed changes to stream activity and lake levels. The research will be led by two female mid-career investigators and contribute significantly to student research opportunities and education. The research will contribute to graduate and undergraduate education by including students in both field and laboratory research, as well as incorporating data and results into the classroom. The research will be disseminated to K-12 and non-scientific communities through outreach that includes professional development training for K-12 teachers in eastern Massachusetts, development of hands-on activities, visits to K-12 classrooms, and STEM education and literacy activities in North Carolina. The PIs propose to constrain rates of fluvial deposition and periods of increased fluvial activity in the McMurdo Dry Valleys during the Holocene and late Pleistocene. During 50 years of hydrologic monitoring in the Dry Valleys, scientists have observed that streams exhibit significant response to summer conditions. Previous studies of glacial and lacustrine deposits indicate regional glacier advance in the Dry Valleys during recent interglacial periods and high lake levels during and after the Last Glacial Maximum (LGM), with potentially significant low and high stands during the Holocene. However, the geologic record of meltwater activity is poorly constrained. The PIs seek to develop the first spatially-extensive record of stream deposition in the Dry Valleys by analyzing and dating alluvial fans. Given that alluvial fans are deposited by summer meltwater streams in a relatively stable tectonic setting, this record will serve as a proxy of regional summer climate conditions. Meltwater streams are an important component of the regional hydrologic system, connecting glaciers to lakes and affecting ecosystems and soils. A record of fluvial deposition is key to understanding the relationship between past climate change and regional hydrology. The proposed research will include remote- and field-based mapping of alluvial fans, stream channels, and meltwater sources as well as modeling potential incoming solar radiation to the fans and moisture sources during the austral summer. In the field, the PIs will document stratigraphy, collect near-surface sediments from 25 fans across four valleys (Taylor, Pearse, Wright, and Victoria), and collect 2- to 3-m vertical cores of ice-cemented sediments from three alluvial fan complexes. The PIs will then conduct depositional dating of fluvial sands via optically stimulated luminescence, and analyze mineralogy and bulk major element chemistry with X-ray powder diffraction and X-ray fluorescence. From these analyses, the PIs propose to (1) determine the timing of local- to regional-scale periods of high fluvial deposition, (2) calculate depositional rates, and (3) constrain depositional environments and sediment provenance. Given that many of the alluvial fans occur below the hypothesized maximum extents of glacially-dammed lakes in Wright and Victoria valleys, detailed stratigraphy, sediment provenance, and OSL dating of these fans could shed light on ongoing debates regarding the timing and extent of LGM and post-LGM lakes. The work will support a postdoctoral researcher, a PhD student, and many undergraduate and master’s students in cross-disciplinary research that spans stratigraphy, geochemistry, paleoclimatology and physics. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((161 -77.3,161.2 -77.3,161.4 -77.3,161.6 -77.3,161.8 -77.3,162 -77.3,162.2 -77.3,162.4 -77.3,162.6 -77.3,162.8 -77.3,163 -77.3,163 -77.35,163 -77.4,163 -77.45,163 -77.5,163 -77.55,163 -77.6,163 -77.65,163 -77.7,163 -77.75,163 -77.8,162.8 -77.8,162.6 -77.8,162.4 -77.8,162.2 -77.8,162 -77.8,161.8 -77.8,161.6 -77.8,161.4 -77.8,161.2 -77.8,161 -77.8,161 -77.75,161 -77.7,161 -77.65,161 -77.6,161 -77.55,161 -77.5,161 -77.45,161 -77.4,161 -77.35,161 -77.3)) | POINT(162 -77.55) | false | false | |||||||
Collaborative Research: Long Term Sublimation/Preservation of Two Separate, Buried Glacier Ice Masses, Ong Valley, Southern Transantarctic Mountains
|
1445205 |
2021-07-16 | putkonen, jaakko; Balco, Gregory; Morgan, Daniel |
|
Putkonen/1445205 This award supports the study of a large body of ice that is buried beneath approximately a meter of debris in the Ong Valley of the Transantarctic Mountains of East Antarctica. Preliminary analyses of this material suggest that it could be over a million years old. Most glacial ice contains tiny air bubbles that have trapped the atmospheric gases and other atmospherically transported materials existing at the time that the ice was deposited such as plant pollen, microbes and mineral dust. Samples will be collected from this buried ice mass, down to a depth of 10 meters, and cosmogenic nuclide concentrations both in the overlying debris and in the till contained in the ice will be measured. This site could contain some of the oldest ice on Earth and studies of the material contained within it may help researchers to better understand the processes involved in its survival for such long periods of time. This work will also help inform scientists about the processes involved in the development of landforms here on earth as well as those on Mars where similar dirt covered glaciers are found today. Samples of the buried ice will be collected in Ong Valley and analyzed to determine the cosmogenic nuclide concentrations in both the overlying debris and in the mineral matter suspended in the ice. The combined analysis of the target cosmogenic nuclides (Beryllium-10, Aluminum-26, and Neon-21) will allow the age of the ice to be uniquely determined and will enable determination of the rate that the ice is sublimating. The intellectual merit of this research is to unequivocally determine the age of the ice and the sublimation rate of the ice in Ong Valley, Antarctica and to better understand if this an uniquely Antarctic process or whether it could exist elsewhere on earth or on other planets. The work may also lead to the recognition of the oldest buried ice ever found on Earth and would provide a source from which direct information about the atmospheric chemistry, ancient life forms, and geology of that time could be measured. The broader impacts of this work are that it will be relevant to researchers in a number of different fields including glaciology, paleoclimatology, planetary geology, and biology. Several students will also participate in the project, conducting Antarctic field work, making measurements in the lab, attending meetings, participating in outreach activities, and producing videos. A graduate student will also write a thesis on this research. The results will be published in scientific journals and presented at conferences. The project requires field work in Antarctica. | POLYGON((157.6 -83.2,157.62 -83.2,157.64 -83.2,157.66 -83.2,157.68 -83.2,157.7 -83.2,157.72 -83.2,157.74 -83.2,157.76 -83.2,157.78 -83.2,157.8 -83.2,157.8 -83.21,157.8 -83.22,157.8 -83.23,157.8 -83.24,157.8 -83.25,157.8 -83.26,157.8 -83.27,157.8 -83.28,157.8 -83.29,157.8 -83.3,157.78 -83.3,157.76 -83.3,157.74 -83.3,157.72 -83.3,157.7 -83.3,157.68 -83.3,157.66 -83.3,157.64 -83.3,157.62 -83.3,157.6 -83.3,157.6 -83.29,157.6 -83.28,157.6 -83.27,157.6 -83.26,157.6 -83.25,157.6 -83.24,157.6 -83.23,157.6 -83.22,157.6 -83.21,157.6 -83.2)) | POINT(157.7 -83.25) | false | false | |||||||
None
|
None | 2021-01-20 | Noojin, Matthew |
|
None | None | None | false | false | |||||||
Timing and Spatial Distribution of Antarctic Ice Sheet Growth and Sea-ice Formation across the Eocene-Oligocene Transition
|
1743643 |
2020-05-26 | Passchier, Sandra | Abstract (non-technical) Sea level rise is a problem of global importance and it is increasingly affecting the tens of millions of Americans living along coastlines. The melting of glaciers in mountain areas worldwide in response to global warming is a major cause of sea level rise and increases in nuisance coastal flooding. However, the world's largest land-based ice sheets are situated in the Polar Regions and their response under continued warming is very difficult to predict. One reason for this uncertainty is a lack of observations of ice behavior and melt under conditions of warming, as it is a relatively new global climate state lasting only a few generations so far. Researchers will investigate ice growth on Antarctica under past warm conditions using geological archives embedded in the layers of sand and mud under the sea floor near Antarctica. By peeling back at the layers beneath the seafloor investigators can read the history book of past events affecting the ice sheet. The Antarctic continent on the South Pole, carries the largest ice mass in the world. The investigator's findings will substantially improve scientists understanding of the response of ice sheets to global warming and its effect on sea level rise. Abstract (technical) The melt of land based ice is raising global sea levels with at present only minor contributions from polar ice sheets. However, the future role of polar ice sheets in climate change is one of the most critical uncertainties in predictions of sea level rise around the globe. The respective roles of oceanic and atmospheric greenhouse forcing on ice sheets are poorly addressed with recent measurements of polar climatology, because of the extreme rise in greenhouse forcing the earth is experiencing at this time. Data on the evolution of the West Antarctic ice sheet is particularly sparse. To address the data gap, researchers will reconstruct the timing and spatial distribution of Antarctic ice growth through the last greenhouse to icehouse climate transition around 37 to 33 Ma. They will collect sedimentological and geochemical data on core samples from a high-latitude paleoarchive to trace the shutdown of the chemical weathering system, the onset of glacial erosion, ice rafting, and sea ice development, as East and West Antarctic ice sheets coalesced in the Weddell Sea sector. Their findings will lead to profound increases in the understanding of the role of greenhouse forcing in ice sheet development and its effect on the global climate system. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | ||||||||
Collaborative Research: Phase 2 Development of A Rapid Access Ice Drilling (RAID) Platform for Research in Antarctica
|
1419979 |
2020-05-18 | Severinghaus, Jeffrey P. | No dataset link provided | The PIs will design and build a new rapid access ice drill (RAID) for use in Antarctica. This drill will have the ability to rapidly drill through ice up to 3300 m thick and then collect samples of the ice, ice-sheet bed interface, and bedrock substrate below. This drilling technology will provide a new way to obtain in situ measurements and samples for interdisciplinary studies in geology, glaciology, paleoclimatology, microbiology, and astrophysics. The RAID drilling platform will give the scientific community access to records of geologic and climatic change on a variety of timescales, from the billion-year rock record to thousand-year ice and climate histories. Successful development of the RAID system will provide a research tool that is currently unavailable. Development of this platform will enable scientists to address critical questions about the deep interface between the Antarctic ice sheets and the substrate below. Development of RAID will provide a way to address many of the unknowns associated with general stability of the Antarctic ice sheets in the face of changing climate and sea level rise. The scientific rationale for RAID was reviewed in a previous proposal (Goodge 1242027). The PIs were granted ?Phase I? funding to develop a more detailed conceptual design for the RAID drill that would provide a better understanding of construction costs as well as operation and maintenance costs for RAID once it is constructed. Phase I support also allowed the PIs to work with the research community to develop more detailed science requirements for the drill. This proposal requests continued funding (Phase II) to construct, assemble and test the RAID drilling platform, through to staging it in Antarctic for future scientific operations. | POLYGON((166.65 -78.62,166.654 -78.62,166.658 -78.62,166.662 -78.62,166.666 -78.62,166.67 -78.62,166.674 -78.62,166.678 -78.62,166.682 -78.62,166.686 -78.62,166.69 -78.62,166.69 -78.6205,166.69 -78.621,166.69 -78.6215,166.69 -78.622,166.69 -78.6225,166.69 -78.623,166.69 -78.6235,166.69 -78.624,166.69 -78.6245,166.69 -78.625,166.686 -78.625,166.682 -78.625,166.678 -78.625,166.674 -78.625,166.67 -78.625,166.666 -78.625,166.662 -78.625,166.658 -78.625,166.654 -78.625,166.65 -78.625,166.65 -78.6245,166.65 -78.624,166.65 -78.6235,166.65 -78.623,166.65 -78.6225,166.65 -78.622,166.65 -78.6215,166.65 -78.621,166.65 -78.6205,166.65 -78.62)) | POINT(166.67 -78.6225) | false | false | |||||||
Laser Dust Logging of a South Pole Ice Core
|
1443566 |
2019-10-31 | Bay, Ryan |
|
Bay/1443566 This award supports the deployment and analysis of data from an oriented laser dust logger in the South Pole ice core borehole to complement study of the ice core record. Before the core is even processed, data from the borehole probe will immediately determine the depth-age relationship, augment 3D mapping of South Pole stratigraphy, aid in searches for the oldest ice in Antarctica, and reveal layers of volcanic or extraterrestrial fallout. Regarding the intellectual merit, the oriented borehole log will be essential for investigating features in the ice sheet that may have implications for ice core chronology, ice flow, ice sheet physical properties and stability in response to climate change. The tools and techniques developed in this program have applications in glaciology, biogeoscience and exploration of other planetary bodies. The program aims for a deeper understanding of the consequences and causes of abrupt climate change. The broader impacts of the project are that it will include outreach and education, providing a broad training ground for students and post-docs. Data and metadata will be made available through data centers and repositories such as the National Snow and Ice Data Center web portal. The laser dust logger detects reproducible paleoclimate features at sub-centimeter depth scale. Dust logger data are being used for synchronizing records and dating any site on the continent, revealing accumulation anomalies and episodes of rapid ice sheet thinning, and discovering particulate horizons of special interest. In this project we will deploy a laser dust logger equipped with a magnetic compass to find direct evidence of preferentially oriented dust. Using optical scattering measurements from IceCube calibration studies at South Pole and borehole logs at WAIS Divide, we have detected a persistent anisotropy correlated with flow and crystal fabric which suggests that the majority of insoluble particulates must be located within ice grains. With typical concentrations of parts-per-billion, little is known about the location of impurities within the polycrystalline structure of polar ice. While soluble impurities are generally thought to concentrate at inter-grain boundaries and determine electrical conductivity, the fate of insoluble particulates is much less clear, and microscopic examinations are extremely challenging. These in situ borehole measurements will help to unravel intimate relationships between impurities, flow, and crystal fabric. Data from this project will further develop a unique record of South Pole surface roughness as a proxy for paleowind and provide new insights for understanding glacial radar propagation. This project has field work in Antarctica. | POINT(90 -90) | POINT(90 -90) | false | false | |||||||
Collaborative Research: Polynyas in Coastal Antarctica (PICA): Linking Physical Dynamics to Biological Variability
|
1643735 1643901 2021245 |
2019-08-07 | Zhang, Weifeng; Ji, Rubao; Jenouvrier, Stephanie; Maksym, Edward; Li, Yun |
|
During winter, sea-ice coverage along the Antarctic coast is punctuated by numerous polynyas--isolated openings of tens to hundreds of kilometer wide. These coastal polynyas are hotspots of sea ice production and the primary source regions of the bottom water in the global ocean. They also host high levels of biological activities and are the feeding grounds of Emperor penguins and marine mammals. The polynyas are a key component of the Antarctic coastal system and crucial for the survival of penguins and many other species. These features also differ dramatically from each other in timing of formation, duration, phytoplankton growth season, and overall biological productivity. Yet, the underlying reasons for differences among them are largely unknown. This project studies the fundamental biophysical processes at a variety of polynyas, examines the connection between the physical environment and the phytoplankton and penguin ecology, and investigates the mechanisms behind polynya variability. The results of this interdisciplinary study will provide a context for interpretation of field measurements in Antarctic coastal polynyas, set a baseline for future polynya studies, and examine how polynya ecosystems may respond to local and large-scale environmental changes. The project will include educational and outreach activities that convey scientific messages to a broad audience. It aims to increase public awareness of the interconnection between large-scale environmental change and Antarctic coastal systems. The main objectives of this study are to form a comprehensive understanding of the temporal and spatial variability of Antarctic coastal polynyas and the physical controls of polynya ecosystems. The project takes an interdisciplinary approach and seeks to establish a modeling system centered on the Regional Ocean Modeling System. This system links the ice and ocean conditions to the plankton ecology and penguin population. Applications of the modeling system in representative polynyas, in conjunction with analysis of existing observations, will determine the biophysical influences of individual forcing factors. In particular, this study will test a set of hypothesized effects of winds, offshore water intrusion, ice-shelf melting, sea-ice formation, glacier tongues, and ocean stratification on the timing of polynya phytoplankton bloom and the overall polynya biological productivity. The project will also examine how changing polynya state affects penguin breeding success, adult survival, and population growth. The team will conduct idealized sensitivity analysis to explore implications of forcing variability, including local and large-scale environmental change, on Antarctic coastal ecosystems. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||
Workshop on Antarctic Surface Hydrology and Future Ice-shelf Stability
|
1743326 |
2019-03-26 | Kingslake, Jonathan; Tedesco, Marco; Trusel, Luke |
|
Ice shelves are the floating portions of glaciers that terminate in the ocean. They are common around the periphery of Antarctica. The accumulation of surface meltwater on or near the surface of ice shelves can play a role in ice-shelf collapse, which leads to accelerated loss of grounded ice and sea-level rise. Recent studies have showed that present-day meltwater generation and movement across the surface of Antarctica is more widespread than previously thought and is expected to increase. Consequently, there is a growing need to address the role of surface water in forecasts of ice-shelf behavior. While much progress has been made, understanding of the role of water in ice-shelf collapse is still in its infancy. This award supports a workshop that will bring together experts from multiple disciplines that, together, can advance understanding of Antarctic surface hydrology and its role in the future stability of ice shelves. This workshop will bring together U.S. and international scientists with expertise in ice-sheet dynamics, glacial hydrology, climatology, and other disciplines to identify critical knowledge gaps and move the community towards answering fundamental questions such as: What climate dynamics are responsible for surface meltwater generation in Antarctica? What controls the spatiotemporal distribution of meltwater ponds on Antarctic ice shelves? Where is meltwater generated, where does it pond today, and how will this change this century? How will meltwater impact ice shelves? How will surface hydrology impact sea-level this century? The deliberations will be captured in a workshop report and review paper that will be broadly distributed. | None | None | false | false | |||||||
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans
|
0732711 0732625 0732655 0732602 0732651 0732983 |
2018-02-01 | Truffer, Martin; Gordon, Arnold; Huber, Bruce; Mosley-Thompson, Ellen; Leventer, Amy; Vernet, Maria; Smith, Craig; Thompson, Lonnie G. | Like no other region on Earth, the northern Antarctic Peninsula represents a spectacular natural laboratory of climate change and provides the opportunity to study the record of past climate and ecological shifts alongside the present-day changes in one of the most rapidly warming regions on Earth. This award supports the cryospheric and oceano-graphic components of an integrated multi-disciplinary program to address these rapid and fundamental changes now taking place in Antarctic Peninsula (AP). By making use of a marine research platform (the RV NB Palmer and on-board helicopters) and additional logistical support from the Argentine Antarctic program, the project will bring glaciologists, oceanographers, marine geologists and biologists together, working collaboratively to address fundamentally interdisciplinary questions regarding climate change. The project will include gathering a new, high-resolution paleoclimate record from the Bruce Plateau of Graham Land, and using it to compare Holocene- and possibly glacial-epoch climate to the modern period; investigating the stability of the remaining Larsen Ice Shelf and rapid post-breakup glacier response ? in particular, the roles of surface melt and ice-ocean interactions in the speed-up and retreat; observing the contribution of, and response of, oceanographic systems to ice shelf disintegration and ice-glacier interactions. Helicopter support on board will allow access to a wide range of glacial and geological areas of interest adjacent to the Larsen embayment. At these locations, long-term in situ glacial monitoring, isostatic uplift, and ice flow GPS sites will be established, and high-resolution ice core records will be obtained using previously tested lightweight drilling equipment. Long-term monitoring of deep water outflow will, for the first time, be integrated into changes in ice shelf extent and thickness, bottom water formation, and multi-level circulation by linking near-source observations to distal sites of concentrated outflow. The broader impacts of this international, multidisciplinary effort are that it will significantly advance our understanding of linkages amongst the earth's systems in the Polar Regions, and are proposed with international participation (UK, Spain, Belgium, Germany and Argentina) and interdisciplinary engagement in the true spirit of the International Polar Year (IPY). It will also provide a means of engaging and educating the public in virtually all aspects of polar science and the effects of ongoing climate change. The research team has a long record of involving undergraduates in research, educating high-performing graduate students, and providing innovative and engaging outreach products to the K-12 education and public media forums. Moreover, forging the new links both in science and international Antarctic programs will provide a continuing legacy, beyond IPY, of improved understanding and cooperation in Antarctica. | POLYGON((-68 -57.8,-66.78 -57.8,-65.56 -57.8,-64.34 -57.8,-63.12 -57.8,-61.9 -57.8,-60.68 -57.8,-59.46 -57.8,-58.24 -57.8,-57.02 -57.8,-55.8 -57.8,-55.8 -58.8,-55.8 -59.8,-55.8 -60.8,-55.8 -61.8,-55.8 -62.8,-55.8 -63.8,-55.8 -64.8,-55.8 -65.8,-55.8 -66.8,-55.8 -67.8,-57.02 -67.8,-58.24 -67.8,-59.46 -67.8,-60.68 -67.8,-61.9 -67.8,-63.12 -67.8,-64.34 -67.8,-65.56 -67.8,-66.78 -67.8,-68 -67.8,-68 -66.8,-68 -65.8,-68 -64.8,-68 -63.8,-68 -62.8,-68 -61.8,-68 -60.8,-68 -59.8,-68 -58.8,-68 -57.8)) | POINT(-61.9 -62.8) | false | false | ||||||||
Collaborative Research: Antarctic Automatic Weather Station Program 2013-2017
|
1245737 1245663 |
2017-11-22 | Lazzara, Matthew; Cassano, John; Costanza, Carol |
|
The Antarctic Automatic Weather Station (AAWS) network, first commenced in 1978, is the most extensive ground meteorological network in the Antarctic, approaching its 30th year at several of its installations. Its prime focus as a long term observational record is to measure the near surface weather and climatology of the Antarctic atmosphere. AWS sites measure air-temperature, pressure, wind speed and direction at a nominal surface height of 3m. Other parameters such as relative humidity and snow accumulation may also be measured. Observational data from the AWS are collected via the DCS Argos system aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters. The surface observations from the AAWS network are important records for recent climate change and meteorological processes. The surface observations from the AAWS network are also used operationally, and in the planning of field work. The surface observations from the AAWS network have been used to check on satellite and remote sensing observations. | POLYGON((161.714 -77.522,162.6077 -77.522,163.5014 -77.522,164.3951 -77.522,165.2888 -77.522,166.1825 -77.522,167.0762 -77.522,167.9699 -77.522,168.8636 -77.522,169.7573 -77.522,170.651 -77.522,170.651 -77.6702,170.651 -77.8184,170.651 -77.9666,170.651 -78.1148,170.651 -78.263,170.651 -78.4112,170.651 -78.5594,170.651 -78.7076,170.651 -78.8558,170.651 -79.004,169.7573 -79.004,168.8636 -79.004,167.9699 -79.004,167.0762 -79.004,166.1825 -79.004,165.2888 -79.004,164.3951 -79.004,163.5014 -79.004,162.6077 -79.004,161.714 -79.004,161.714 -78.8558,161.714 -78.7076,161.714 -78.5594,161.714 -78.4112,161.714 -78.263,161.714 -78.1148,161.714 -77.9666,161.714 -77.8184,161.714 -77.6702,161.714 -77.522)) | POINT(166.1825 -78.263) | false | false | |||||||
A Study of Atmospheric Dust in the WAIS Divide Ice Core Based on Sr-Nd-Pb-He Isotopes
|
1043471 |
2017-10-29 | Kaplan, Michael; Winckler, Gisela; Goldstein, Steven L. |
|
1043471/Kaplan This award supports a project to obtain the first set of isotopic-based provenance data from the WAIS divide ice core. A lack of data from the WAIS prevents even a basic knowledge of whether different sources of dust blew around the Pacific and Atlantic sectors of the southern latitudes. Precise isotopic measurements on dust in the new WAIS ice divide core are specifically warranted because the data will be synergistically integrated with other high frequency proxies, such as dust concentration and flux, and carbon dioxide, for example. Higher resolution proxies will bridge gaps between our observations on the same well-dated, well-preserved core. The intellectual merit of the project is that the proposed analyses will contribute to the WAIS Divide Project science themes. Whether an active driver or passive recorder, dust is one of the most important but least understood components of regional and global climate. Collaborative and expert discussion with dust-climate modelers will lead to an important progression in understanding of dust and past atmospheric circulation patterns and climate around the southern latitudes, and help to exclude unlikely air trajectories to the ice sheets. The project will provide data to help evaluate models that simulate the dust patterns and cycle and the relative importance of changes in the sources, air trajectories and transport processes, and deposition to the ice sheet under different climate states. The results will be of broad interest to a range of disciplines beyond those directly associated with the WAIS ice core project, including the paleoceanography and dust- paleoclimatology communities. The broader impacts of the project include infrastructure and professional development, as the proposed research will initiate collaborations between LDEO and other WAIS scientists and modelers with expertise in climate and dust. Most of the researchers are still in the early phase of their careers and hence the project will facilitate long-term relationships. This includes a graduate student from UMaine, an undergraduate student from Columbia University who will be involved in lab work, in addition to a LDEO Postdoctoral scientist, and possibly an additional student involved in the international project PIRE-ICETRICS. The proposed research will broaden the scientific outlooks of three PIs, who come to Antarctic ice core science from a variety of other terrestrial and marine geology perspectives. Outreach activities include interaction with the science writers of the Columbia's Earth Institute for news releases and associated blog websites, public speaking, and involvement in an arts/science initiative between New York City's arts and science communities to bridge the gap between scientific knowledge and public perception. | POLYGON((-112.5 -79.468,-112.4586 -79.468,-112.4172 -79.468,-112.3758 -79.468,-112.3344 -79.468,-112.293 -79.468,-112.2516 -79.468,-112.2102 -79.468,-112.1688 -79.468,-112.1274 -79.468,-112.086 -79.468,-112.086 -79.4712,-112.086 -79.4744,-112.086 -79.4776,-112.086 -79.4808,-112.086 -79.484,-112.086 -79.4872,-112.086 -79.4904,-112.086 -79.4936,-112.086 -79.4968,-112.086 -79.5,-112.1274 -79.5,-112.1688 -79.5,-112.2102 -79.5,-112.2516 -79.5,-112.293 -79.5,-112.3344 -79.5,-112.3758 -79.5,-112.4172 -79.5,-112.4586 -79.5,-112.5 -79.5,-112.5 -79.4968,-112.5 -79.4936,-112.5 -79.4904,-112.5 -79.4872,-112.5 -79.484,-112.5 -79.4808,-112.5 -79.4776,-112.5 -79.4744,-112.5 -79.4712,-112.5 -79.468)) | POINT(-112.293 -79.484) | false | false | |||||||
Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core
|
0538427 |
2017-04-25 | Bender, Michael; McConnell, Joseph | 0538427<br/>McConnell <br/>This award supports a project to use unique, high-depth-resolution records of a range of elements, chemical species, and ice properties measured in two WAIS Divide shallow ice cores and one shallow British ice core from West Antarctic to address critical paleoclimate, environmental, and ice-sheet mass-balance questions. Recent development of the CFA-TE method for ice-core analysis presents the opportunity to develop high-resolution, broad-spectrum glaciochemical records at WAIS Divide at relatively modest cost. Together with CFA-TE measurements from Greenland and other Antarctic sites spanning recent decades to centuries, these rich data will open new avenues for using glaciochemical data to investigate environmental and global changes issues ranging from anthropogenic and volcanic-trace-element fallout to changes in hemispheric-scale circulation, biogeochemistry, rapid-climate-change events, long-term climate change, and ice-sheet mass balance. As part of the proposed research, collaborations with U.S., Argentine, and British researchers will be initiated and expanded to directly address three major IPY themes (i.e., present environmental status, past and present environmental and human change, and polar-global interactions). Included in the contributions from these international collaborators will be ice-core samples, ice-core and meteorological model data, and extensive expertise in Antarctic glaciology, climatology, meteorology, and biogeochemistry. The broader impacts of the work include the training of students. The project will partially support one Ph.D. student and hourly undergraduate involvement. Every effort will be made to attract students from underrepresented groups to these positions. To address the challenge of introducing results of scientific research to the public policy debate, we will continue efforts to publish findings in high visibility journals, provide research results to policy makers, and work with the NSF media office to reach the public through mass-media programs. K-12 teacher and classroom involvement will be realized through outreach to local schools and NSF's Teachers Experiencing the Antarctic and Arctic (or similar) program in collaboration with WAIS Divide and other polar researchers. | POINT(-112.1115 -79.481) | POINT(-112.1115 -79.481) | false | false | ||||||||
Collaborative Research: Multiple-isotope Analysis of Nitrate and Sulfate in the West Antarctic Ice Sheet Divide Ice Core
|
0538520 0538049 |
2017-04-25 | Alexander, Becky; Steig, Eric J.; Thiemens, Mark H. | 0538520<br/>Thiemens<br/>This award supports a project to develop the first complete record of multiple isotope ratios of nitrate and sulfate covering the last ~100,000 years, from the deep ice core planned for the central ice divide of the West Antarctic Ice Sheet (WAIS). The WAIS Divide ice core will be the highest resolution long ice core obtained from Antarctica and we can expect important complementary information to be available, including accurate knowledge of past accumulation rates, temperatures, and compounds such as H2O2, CO and CH4. These compounds play significant roles in global atmospheric chemistry and climate. Especially great potential lies in the use of multiple isotope signatures. The unique mass independent fractionation (MIF) 17O signature of ozone is observed in both nitrate and sulfate, due to the interaction of their precursors with ozone. The development of methods to measure the multiple-isotope composition of small samples of sulfate and nitrate makes continuous high resolution measurements on ice cores feasible for the first time. Recent work has shown that such measurements can be used to determine the hydroxyl radial (OH) and ozone (O3) concentrations in the paleoatmosphere as well as to apportion sulfate and nitrate sources. There is also considerable potential in using these isotope measurements to quantify post depositional changes. In the first two years, continuous measurements from the upper ~100-m of ice at WAIS divide will be obtained, to provide a detailed look at seasonal through centennial scale variability. In the third year, measurements will be made throughout the available depth of the deep core (expected to reach ~500 m at this time). The broader impacts of the project include applications to diverse fields including atmospheric chemistry, glaciology, meteorology, and paleoclimatology. Because nitrate and sulfate are important atmospheric pollutants, the results will also have direct and relevance to global environmental policy. This project will coincide with the International Polar Year (2007-2008), and contributes to goals of the IPY, which include the fostering of interdisciplinary research toward enhanced understanding of atmospheric chemistry and climate in the polar regions. | POINT(-112.085 -79.5) | POINT(-112.085 -79.5) | false | false | ||||||||
Collaborative Research: Completing an ultra-high resolution methane record from the WAIS Divide ice core
|
1043518 |
2016-01-12 | Rhodes, Rachel; Brook, Edward J.; McConnell, Joseph | 1043500/Sowers This award supports a project to develop a 50 yr resolution methane data set that will play a pivotal role in developing the WAIS Divide timescale as well as providing a common stratigraphic framework for comparing climate records from Greenland and West Antarctica. Even higher resolution data are proposed for key intervals to assist in precisely defining the phasing of abrupt climate change between the hemispheres. Concurrent analysis of a suit of samples from both the WAIS Divide and GISP-2 cores throughout the last 110,000 years is also proposed, to establish the interpolar methan (CH4) gradient that will be used to identify geographic areas responsible for the climate related methane emission changes. The intellectual merit of the proposed work is that it will provide chronological control needed to examine the timing of changes in climate proxies, and critical chronological ties to the Greenland ice core records via methane variations. One main objective is to understand the interpolar timing of millennial-scale climate change. This is an important scientific goal relevant to understanding climate change mechanisms in general. The proposed work will help establish a chronological framework for addressing these issues. In addition, this proposal addresses the question of what methane sources were active during the ice age, through the work on the interpolar methane gradient. This work is directed at the fundamental question of what part of the biosphere controlled past methane variations, and is important for developing more sophisticated understanding of those variations. The broader impacts of the work are that the ultra-high resolution CH4 record will directly benefit all ice core paleoclimate research and the chronological refinements will impact paleoclimate studies that rely on ice core timescales for correlation purposes. The project will support both graduate and undergraduate students and the PIs will participate in outreach to the public. | POINT(-112.08648 -79.46763) | POINT(-112.08648 -79.46763) | false | false | ||||||||
Collaborative Research: Annual satellite era accumulation patterns over WAIS Divide: A study using shallow ice cores, near-surface radars and satellites
|
0944653 |
2015-11-20 | Forster, Richard |
|
This award supports a project to broaden the knowledge of annual accumulation patterns over the West Antarctic Ice Sheet by processing existing near-surface radar data taken on the US ITASE traverse in 2000 and by gathering and validating new ultra/super-high-frequency (UHF) radar images of near surface layers (to depths of ~15 m), expanding abilities to monitor recent annual accumulation patterns from point source ice cores to radar lines. Shallow (15 m) ice cores will be collected in conjunction with UHF radar images to confirm that radar echoed returns correspond with annual layers, and/or sub-annual density changes in the near-surface snow, as determined from ice core stable isotopes. This project will additionally improve accumulation monitoring from space-borne instruments by comparing the spatial-radar-derived-annual accumulation time series to the passive microwave time series dating back over 3 decades and covering most of Antarctica. The intellectual merit of this project is that mapping the spatial and temporal variations in accumulation rates over the Antarctic ice sheet is essential for understanding ice sheet responses to climate forcing. Antarctic precipitation rate is projected to increase up to 20% in the coming century from the predicted warming. Accumulation is a key component for determining ice sheet mass balance and, hence, sea level rise, yet our ability to measure annual accumulation variability over the past 5 decades (satellite era) is mostly limited to point-source ice cores. Developing a radar and ice core derived annual accumulation dataset will provide validation data for space-born remote sensing algorithms, climate models and, additionally, establish accumulation trends. The broader impacts of the project are that it will advance discovery and understanding within the climatology, glaciology and remote sensing communities by verifying the use of UHF radars to monitor annual layers as determined by visual, chemical and isotopic analysis from corresponding shallow ice cores and will provide a dataset of annual to near-annual accumulation measurements over the past ~5 decades across WAIS divide from existing radar data and proposed radar data. By determining if temporal changes in the passive microwave signal are correlated with temporal changes in accumulation will help assess the utility of passive microwave remote sensing to monitor accumulation rates over ice sheets for future decades. The project will promote teaching, training and learning, and increase representation of underrepresented groups by becoming involved in the NASA History of Winter project and Thermochron Mission and by providing K-12 teachers with training to monitor snow accumulation and temperature here in the US, linking polar research to the student?s backyard. The project will train both undergraduate and graduate students in polar research and will encouraging young investigators to become involved in careers in science. In particular, two REU students will participate in original research projects as part of this larger project, from development of a hypothesis to presentation and publication of the results. The support of a new, young woman scientist will help to increase gender diversity in polar research. | POLYGON((-119.4 -78.1,-118.46000000000001 -78.1,-117.52000000000001 -78.1,-116.58 -78.1,-115.64 -78.1,-114.7 -78.1,-113.76 -78.1,-112.82000000000001 -78.1,-111.88 -78.1,-110.94 -78.1,-110 -78.1,-110 -78.28999999999999,-110 -78.47999999999999,-110 -78.67,-110 -78.86,-110 -79.05,-110 -79.24,-110 -79.42999999999999,-110 -79.62,-110 -79.81,-110 -80,-110.94 -80,-111.88 -80,-112.82000000000001 -80,-113.76 -80,-114.7 -80,-115.64 -80,-116.58 -80,-117.52000000000001 -80,-118.46000000000001 -80,-119.4 -80,-119.4 -79.81,-119.4 -79.62,-119.4 -79.42999999999999,-119.4 -79.24,-119.4 -79.05,-119.4 -78.86,-119.4 -78.67,-119.4 -78.47999999999999,-119.4 -78.28999999999999,-119.4 -78.1)) | POINT(-114.7 -79.05) | false | false | |||||||
Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive
|
1245659 1246148 1245821 |
2015-07-13 | Petrenko, Vasilii; Brook, Edward J.; Severinghaus, Jeffrey P.; PETRENKO, VASILLI | 1245659/Petrenko This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, δ18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, δ13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of δ13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica. | POINT(162.167 -77.733) | POINT(162.167 -77.733) | false | false | ||||||||
Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)
|
0838843 0838849 |
2014-12-10 | Spaulding, Nicole; Introne, Douglas; Bender, Michael; Kurbatov, Andrei V.; Mayewski, Paul A. |
|
This award supports a project to generate an absolute timescale for the Allan Hills Blue Ice Area (BIA), and then to reconstruct details of past climate changes and greenhouse gas concentrations for certain time periods back to 2.5 Ma. Ice ages will be determined by applying emerging methods for absolute and relative dating of trapped air bubbles (based on Argon-40/Argon-38, delta-18O of O2, and the O2/N2 ratio). To demonstrate the potential of the Allan Hills BIAs as a paleoclimate archive trenches and ice cores will be collected for age intervals corresponding to 110-140 ka, 1 Ma, and 2.5 Ma. During the proposed two field seasons a total of 6x100 m and additional 15 m cores will be combined with trenching. The intellectual merit of the proposed activity is that the results of this work will extend the landmark work of EPICA and other deep ice coring efforts, which give records dating back to 0.8 Ma, and will complement work planned by IPICS to drill a continuous Antarctic ice core extending to 1.5 Ma. The results will help to advance understanding of major climate regimes and transitions that took place between 0-2.5 Ma, including the 40 kyr world and the mid-Pleistocene climate transition. A major long-term scientific goal is to provide a transformative approach to the collection of paleoclimate records by establishing an "International Climate Park" in the Allan Hills BIA that would enable sampling of large quantities of known age ice as old as 2.5 Ma, by any interested American or foreign investigator. The broader impacts resulting from the proposed activity include training students who are well versed in advanced field, laboratory and numerical modeling methods combining geochemistry, glaciology, and paleoclimatology. We will include material relevant to our proposed research in our ongoing efforts in local education and in our outreach efforts for media. The University of Maine already has cyberinfrastructure, using state of the art web-based technology, which can provide a wide community of scientists with fast access to the results of our research. The work will contribute to the broad array of climate change studies that is informing worldwide understanding of natural and anthropogenic forced climate change, and the options for responding. This award has field work in Antarctica. | POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667)) | POINT(159.29167 -76.7) | false | false | |||||||
Developing a glacial-interglacial record of delta-13C of atmospheric CO2
|
0839078 |
2013-10-31 | Brook, Edward J.; Mix, Alan | No dataset link provided | This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>This award supports a project to develop a robust analytical technique for measuring the stable isotopes of CO2 in air trapped in polar ice, and to reconstruct the ä13C of CO2 over the last glacial to interglacial transition (20,000 to 10,000 years BP) and through the Holocene. The bulk of these measurements will be made on newly cored ice from the WAIS Divide Ice Core. A robust record ä13C of CO2 will be a valuable addition to the rich data produced from this project. The intellectual merit of the proposed work relates to the fact that explaining glacial-interglacial changes in atmospheric CO2 remains a major challenge for paleoclimatology. The lack of a coherent, widely accepted explanation underscores uncertainties in the basic mechanisms that control the carbon cycle, and that lack of understanding limits our ability to confidently predict how the carbon cycle will change in the future, in the face of a potentially major perturbation of both global temperature and the CO2 content of the atmosphere. A widely accepted record of this parameter could transform our understanding of how the carbon cycle and climate change are linked. The broader impacts of the work include training of graduate student at OSU who will conduct much of the lab work and will also participate in fieldwork at the WAIS Divide Core site. The student will also participate in a number of organized outreach efforts and will develop his own outreach effort, through weblogs and other communication of his research. The PIs will communicate the results from this project to a variety of audiences through academic courses and public talks. The proposed work addresses a major topic in biogeochemistry, the origin of glacial-interglacial CO2 cycles. The results are relevant to understanding changes in the carbon cycle due to human activities because the lack of clear understanding of past variations contributes to public uncertainty about the importance of modern climate change. The proposed funding will also contribute to analytical infrastructure at OSU and develop an analytical capability for an ice core measurement currently not available in the United States. | None | None | false | false | |||||||
Collaborative Research: Microparticle/tephra analysis of the WAIS Divide ice core
|
0636740 0636767 |
2012-06-19 | Koffman, Bess; Kreutz, Karl; Breton, Daniel; Dunbar, Nelia; Hamilton, Gordon S. | This award supports a project to perform continuous microparticle concentration and size distribution measurements (using coulter counter and state-of-the-art laser detector methods), analysis of biologically relevant trace elements associated with microparticles (Fe, Zn, Co, Cd, Cu), and tephra measurements on the WAIS Divide ice core. This initial three-year project includes analysis of ice core spanning the instrumental (~1850-present) to mid- Holocene (~5000 years BP) period, with sample resolution ranging from subannual to decadal. The intellectual merit of the project is that it will help in establishing the relationships among climate, atmospheric aerosols from terrestrial and volcanic sources, ocean biogeochemistry, and greenhouse gases on several timescales which remain a fundamental problem in paleoclimatology. The atmospheric mineral dust plays an important but uncertain role in direct radiative forcing, and the microparticle datasets produced in this project will allow us to examine changes in South Pacific aerosol loading, atmospheric dynamics, and dust source area climate. The phasing of changes in aerosol properties within Antarctica, throughout the Southern Hemisphere, and globally is unclear, largely due to the limited number of annually dated records extending into the glacial period and the lack of a<br/>tephra framework to correlate records. The broader impacts of the proposed research are an interdisciplinary approach to climate science problems, and will contribute to several WAIS Divide science themes as well as the broader paleoclimate and oceanographic communities. Because the research topics have a large and direct societal relevance, the project will form a centerpiece of various outreach efforts at UMaine and NMT including institution websites, public speaking, local K-12 school interaction, media interviews and news releases, and popular literature. At least one PhD student and one MS student will be directly supported by this project, including fieldwork, core processing, laboratory analysis, and data interpretation/publication. We expect that one graduate student per year will apply for a core handler/assistant driller position through the WAIS Divide Science Coordination Office, and that undergraduate student involvement will result in several Capstone experience projects (a UMaine graduation requirement). Data and ideas generated from the project will be integrated into undergraduate and graduate course curricula at both institutions. | POINT(112.11666 -79.46666) | POINT(112.11666 -79.46666) | false | false | ||||||||
Climatology, Meteorology, and Microbial Metabolism in Ice with Dust Loggers and Fluorimetry
|
0738658 |
2012-06-19 | Bay, Ryan; Price, Buford; Souney, Joseph Jr. |
|
This award supports a project to use two new scanning fluorimeters to map microbial concentrations vs depth in the WAIS Divide ice core as portions of it become available at NICL, and selected portions of the GISP2 ice core for inter-hemispheric comparison. Ground-truth calibrations with microbes in ice show that the instruments are sensitive to a single cell and can scan the full length of a 1-meter core at 300-micron intervals in two minutes. The goals of these studies will be to exploit the discovery that microbes are transported onto ice, in clumps, several times per year and that at rare intervals (not periodically) of ~104 years, a much higher flux, sometimes lasting >1 decade, reaches the ice. From variations ranging from seasonal to millennial to glacial scale in the arrival time distribution of phototrophs, methanogens, and total microbes in the Antarctic and Arctic ice, the investigators will attempt to determine oceanic and terrestrial sources of these microbes and will look for correlations of microbial bursts with dust concentration and temperature proxies. In addition the project will follow up on the discovery that the rare instances of very high microbial flux account for some of the"gas artifacts" in ice cores - isolated spikes of excess CH4 and N2O that have been discarded by others in previous climate studies. The intellectual merit of this project is that it will exploit scanning fluorimetry of microbes as a powerful new tool for studies ranging from meteorology to climatology to biology, especially when combined with mapping of dust, gases, and major element chemistry in ice cores. In 2010-11 the WAIS Divide borehole will be logged with the latest version of the dust logger. The log will provide mm-scale depth resolution of dust concentration and of volcanic ash layers down the entire depth of the borehole. The locations of ash layers in the ice will be determined and chemical analyses of the ash will be analyzed in order to determine provenance. By comparing data from the WAIS Divide borehole with data from other boreholes and with chemical data (obtained by others) on volcanic layers, the researchers will examine the relationship between the timing of volcanic eruptions and abrupt climate change. Results from this project with the scanning fluorimeters and the dust logger could have applications to planetary missions, borehole oceanography, limnology, meteorology, climate, volcanology, and ancient life in ice. A deeper understanding of the causes of abrupt climate change, including a causal relationship with volcanic explosivity, would enable a better understanding of the adverse effects on climate. The broader impact of the project is that it will provide training to students and post-docs from the U. S. and other countries. | POINT(112.1125 -79.4638) | POINT(112.1125 -79.4638) | false | false | |||||||
The Physical Properties of the US ITASE Firn and Ice Cores from South Pole to Taylor Dome
|
0538494 |
2010-06-03 | Meese, Deb; MEESE, DEBRA |
|
0538494<br/>Meese<br/>This award supports a project for physical properties research on snow pits and firn/ice cores with specific objectives that include stratigraphic analysis including determination of accumulation rates, annual layers, depth hoar, ice and wind crusts and rates of grain growth with depth. Studies of firn densification rates and how these parameters relate to the meteorology and climatology over the last 200 years of snow accumulation in Antarctica will also be investigated. The project will also determine the seasonality of accumulation by co-registration of stratigraphy and chemistry and determination of chemical species at the grain boundaries, how these may change with depth/densification (and therefore temperature), precipitation, and may affect grain growth. Fabric analyses will be made, including variation with depth, location on undulations and if any variation exists with climate/chemistry. The large spatial coverage of the US ITASE program offers the opportunity to determine how these parameters are affected by a large range of temperature, precipitation and topographic effects. The intellectual merit of the project includes the fact that ITASE is the terrestrial equivalent of a polar research vessel that provides a unique, logistically efficient, multi-dimensional (x, y, z and time) view of the atmosphere, ice sheet and their histories. Physical properties measurements/ analyses are an integral part of understanding the dynamic processes to which the accumulated snow is subjected. Recent advancements in the field along with multiple core sites provide an excellent opportunity to gain a much broader understanding of the spatial, temporal and physical variables that impact firnification and the possible resultant impact on climatic interpretation. In terms of broader impacts, the data collected by US ITASE and its international ITASE partners is available to a broad scientific community. US ITASE has an extensive program of public outreach and provides significant opportunities for many students to experience multidisciplinary Antarctic research. A graduate student, a post-doctoral fellow and at least one undergraduate would be funded by this work. Dr. Meese is also a member of the New England Science Collaborative, an organization that educates the public on climate change based on recent scientific advancements. | None | None | false | false | |||||||
Optical Logging for Dust and Microbes in Boreholes in Glacial Ice
|
0125794 |
2009-07-29 | Bay, Ryan |
|
0125794<br/>Price<br/><br/>This award supports research in climatology, geosciences, and life in extreme environments to be carried out with a newly developed optical borehole logger. The logger fits into a fluid-filled borehole in glacial ice. It emits light at 370 nm in a horizontal plane in order to probe optical properties of particles embedded in the ice out to several meters from the borehole. After leaving the borehole, the light is partially absorbed and scattered by dust, biomolecules, or microbes. A fraction of the light is scattered back into the borehole and is detected by a system of seven phototubes, each of which collects light with high efficiency in a separate wavelength band. One of them collects light that scatters off of dust and air bubbles without wavelength shift, and serves as a dust logger. The other six are covered with notch filters that measure six different wavelength bands and measure the shape of the fluorescence spectrum of microbes and biomolecules. Thus, the same instrument serves as both a dust logger and a microbe logger. Applications include: 1) Precise chronologies and long-period solar variability. With a resolution of 1 to 2 cm for both GISP2 and Siple Dome, the logger will record annual dust maxima and evaluate claims of modulations of dust concentration with periods ranging from 11 yrs (the solar cycle) to 2300 yrs; 2) Volcanism and age-depth markers. Dozens of volcanic ash bands will be detectable and will serve as primary age-depth markers for other boreholes; 3) Microorganisms and biomolecules. The vertical distribution of living, dormant, and dead microbes can be logged, and searches for archaea and aeolian polyaromatic hydrocarbons can be made. The logging experiments will be carried out at Siple Dome and Dome C in Antarctica and at GISP2 and GRIP in Greenland. | None | None | false | false | |||||||
High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change
|
0126057 0512971 |
2008-12-16 | Blunier, Thomas; Chappellaz, Jerome; Stauffer, Bernhard; Kurz, Mark D.; Brook, Edward J. | This award supports work on trapped gases in Antarctic and other ice cores for paleoenvironmental and chronological purposes. The project will complete a ~ 100,000 year, high-resolution record of atmospheric methane from the Siple Dome ice core and use these data to construct a precise chronology for climate events recorded by the Siple Dome record. In addition, the resolution of the GISP2 (Greenland) ice core record will be increased in some critical intervals to help with the Siple Dome chronology and that of future ice cores. Finally, an upgrade to the analytical capabilities of the laboratory, including increasing precision and throughput and decreasing sample size needed for ice core methane measurements will be an important goal of this work. The proposed work will contribute to the understanding of the timing of rapid climate change in the Northern and Southern hemispheres during the last glacial period, the evolution of the global methane budget in the late Quaternary, and the late Quaternary climate history of Antarctica. It will also improve our ability to generate methane records for future ice coring projects, and inform and enrich the educational and outreach activities of our laboratory. | None | None | false | false | ||||||||
Climatology, Volcanism, and Microbial Life in Ice with Downhole Loggers
|
0440609 |
2008-06-03 | Bay, Ryan; Price, Buford | No dataset link provided | This award supports a project to use three downhole instruments - an optical logger; a<br/>miniaturized biospectral logger at 420 nm (miniBSL-420); and an Acoustic TeleViewer (ATV) - to log a 350-m borehole at the WAIS Divide drill site. In addition, miniBSL-224 (at 224 nm) and miniBSL-420 will scan ice core sections at NICL to look for abrupt climate changes, volcanic ash, microbial concentrations, and correlations among them. Using the optical logger and ATV to log bubble number densities vs depth in a WAIS Divide borehole, we will detect annual layers, from which we can establish the age vs depth relation to the bottom of the borehole that will be available during the three-year grant period. With the same instruments we will search for long-period modulation of bubble and dust concentrations in order to provide definitive evidence for or against an effect of long-period variability of the sun or solar wind on climate. We will detect and accurately date ash layers in a WAIS Divide borehole. We will match them with ash layers that we previously detected in the Siple Dome borehole, and also match them with sulfate and ash layers found by others at Vostok, Dome Fuji, Dome C, and GISP2. The expected new data will allow us to extend our recent study which showed that the Antarctic record of volcanism correlates with abrupt climate change at a 95% to >99.8% significance level and that the volcanic signatures at bipolar locations match at better than 3 sigma during the interval 2 to 45 kiloyears. The results to be obtained during this grant period will position us to extend an accurate age vs depth relation and volcano-climate correlations to earlier than 150 kiloyears ago in the future WAIS Divide borehole to be drilled to bedrock. Using the miniBSLs to identify biomolecules via their fluorescence, we will log a 350-m borehole at WAIS Divide, and we will scan selected lengths of ice core at NICL. Among the biomolecules the miniBSLs can identify will be chlorophyll, which will provide the first map of aerobic microbes in ice, and F420, which will provide the first map of methanogens in ice. We will collaborate with others in relating results from WAIS Divide and NICL ice cores to broader topics in climatology, volcanology, and microbial ecology. We will continue to give broad training to undergraduate and graduate students, to attract underrepresented minorities to science, engineering, and math, and to educate the press and college teachers. A deeper understanding of the causes of abrupt climate change, including a causal relationship with strong volcanic eruptions, can enable us to understand and mitigate adverse effects on climate. | POINT(-112.06556 -79.469444) | POINT(-112.06556 -79.469444) | false | false | |||||||
Developing Dry Extraction of Ice Core Gases and Application to Millennial-Scale Variability in Atmospheric CO2
|
0337891 |
2007-11-05 | Ahn, Jinho; Brook, Edward J. |
|
This award supports the development of a new laboratory capability in the U.S. to measure CO2 in ice cores and investigate millennial-scale changes in CO2 during the last glacial period using samples from the Byrd and Siple Dome ice cores. Both cores have precise relative chronologies based on correlation of methane and the isotopic composition of atmospheric oxygen with counterpart records from Greenland ice cores. The proposed work will therefore allow comparison of the timing of CO2 change, Antarctic temperature change, and Greenland temperature change on common time scales. Such comparisons are vital for evaluating models that explain changes in atmospheric CO2. The techniques being developed will also be available for future projects, specifically the proposed Inland WAIS ice core, for which a highly detailed CO2 record is a major objective, and studies greenhouse and other atmospheric gases and their isotopic composition for which dry extraction is necessary (stable isotopes in CO2, for example). There are many broad impacts of the proposed work. Ice core greenhouse gas records are central contributions of paleoclimatology to research and policy-making concerning global change. The proposed work will enhance those contributions by improving our understanding of the natural cycling of the most important greenhouse gas. It will contribute to the training of a postdoctoral researcher, who will be an integral part of an established research group and benefit from the diverse paleoclimate and geochemistry community at OSU. The PI teaches major and non-major undergraduate and graduate courses on climate and global change. The proposed work will enrich those courses and the courses will provide an opportunity for the postdoctoral researcher to participate in teaching by giving guest lectures. The PI also participates in a summer climate workshop for high school teachers at Washington State University and the proposed work will enrich that contribution. The extraction device that is built and the expertise gained in using it will be resources for the ice core community and available for future projects. Data will be made available through established national data center and the equipment designs will also be made available to other researchers. | POINT(158 -77.666667) | POINT(158 -77.666667) | false | false | |||||||
Collaborative Research: Antarctic Meteorological Research Center (2006-2009)
|
0537827 |
2000-10-12 | Lazzara, Matthew; Costanza, Carol; Snarski, Joey | This proposed work is the continued operation of the Antarctic Meteorological Research Center (AMRC) for three years through 2009. AMRC is a meteorological data acquisition and management system with nodes at McMurdo Station and at the University of Wisconsin, Madison. The system is a resource and archive for meteorological research and a test bed for improving operational synoptic forecasting. Its basis is a computer-based system for organizing, manipulating, and integrating antarctic environmental data, developed by the University of Wisconsin. It captures the flow of meteorological information from polar orbiting satellites, automatic weather stations, operational station synoptic observations, and research project data, producing a mosaic of antarctic satellite images on an operational basis. It also receives environmental data products, such as weather forecasts, from outside Antarctica, and acts as a repository for existing archived databases. The AMRC provides customized weather and climate information for a variety of antarctic users, including aircraft and ship operations of the US Antarctic Program. Currently the AMRC produces the Antarctic Composite Infrared Image, a mosaic of images from four geostationary and three polar-orbiting satellites, which is used for both forecasting and research purposes. In the current time period, AMRC will develop a data exploration/classification toolkit based on self-organizing maps to produce a new, satellite-based antarctic cloud climatology for regions. The AMRC will also be at the center of the evolving Antarctic-Internet Data Distribution (Antarctic-IDD) system, a reliable and formalized means of sharing and distributing Antarctic data among operational and research users. <br/>*** | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false |