{"dp_type": "Project", "free_text": "Aerosol"}
[{"awards": "1841844 Steig, Eric; 1841858 Souney, Joseph; 1841879 Aydin, Murat", "bounds_geometry": "POINT(-105 -86)", "dataset_titles": null, "datasets": null, "date_created": "Mon, 06 Feb 2023 00:00:00 GMT", "description": "The goal of this project is to drill and recover an ice core from Hercules Dome, Antarctica. The geographic setting of Hercules Dome makes it well-situated to investigate changes in the size of the West Antarctic ice sheet over long time periods. The base of the West Antarctic ice sheet lies below sea level, which makes this part of Antarctica vulnerable to melting from the relatively warm deep water of the Southern Ocean. An important research question is whether the West Antarctic Ice Sheet collapsed during Earth\u0027s last prolonged warm period, about 125,000 years ago, when the ocean was warmer and sea level was several meters higher than today. Evidence for or against such a collapse will be recorded in the chemistry and physical properties of the ice. The Hercules Dome ice core will be obtained over three to four field seasons in Antarctica using efficient drilling technology. This grant includes support for project management, pre-drilling science community engagement, ice-core recovery, and education and outreach activities. Hercules Dome is located at the edge of the East Antarctic ice sheet, south of the Transantarctic Mountains at 86 degrees South, 105 degrees West. Glaciological conditions at Hercules Dome are simple, with well-defined layering to the bed, optimal for the recovery of a deep ice core reaching to the last interglacial period at depths between 1600 and 2800 meters. An ice core from Hercules Dome will provide a research opportunity for ice-core analysts and others to make progress on a number of science priorities, including the environmental conditions of the last interglacial period, the history of gases and aerosols, and the magnitude and timing of changes in temperature and snow accumulation over the last 150,000 years. Together with the network of ice cores obtained by U.S. and international researchers over the last few decades, results from Hercules Dome will yield improved estimates of the boundary conditions necessary for the implementation and validation of ice-sheet models critical to the projection of future Antarctic ice-sheet change and sea level. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -105.0, "geometry": "POINT(-105 -86)", "instruments": null, "is_usap_dc": true, "keywords": "ICE SHEETS; Hercules Dome; FIELD SURVEYS; AIR TEMPERATURE; SNOW/ICE CHEMISTRY; GLACIER ELEVATION/ICE SHEET ELEVATION; PALEOCLIMATE RECONSTRUCTIONS", "locations": "Hercules Dome", "north": -86.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Steig, Eric J.; Fudge, T. J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": "Hercules Dome Ice Core", "south": -86.0, "title": "Collaborative Research: An Ice Core from Hercules Dome, East Antarctica", "uid": "p0010401", "west": -105.0}, {"awards": "2123333 Fitzsimmons, Jessica; 2123354 Conway, Timothy; 2123491 John, Seth", "bounds_geometry": "POLYGON((-135 -66,-131.5 -66,-128 -66,-124.5 -66,-121 -66,-117.5 -66,-114 -66,-110.5 -66,-107 -66,-103.5 -66,-100 -66,-100 -67,-100 -68,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-103.5 -76,-107 -76,-110.5 -76,-114 -76,-117.5 -76,-121 -76,-124.5 -76,-128 -76,-131.5 -76,-135 -76,-135 -75,-135 -74,-135 -73,-135 -72,-135 -71,-135 -70,-135 -69,-135 -68,-135 -67,-135 -66))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 08 Sep 2022 00:00:00 GMT", "description": "The goal of the international GEOTRACES program is to understand the distributions of trace chemical elements and their isotopes (TEIs) in the oceans. Many trace metals such as iron are essential for life and thus considered nutrients for phytoplankton growth, with trace metal cycling being especially important for influencing carbon cycling in the iron-limited Southern Ocean, where episodic supply of iron from a range of different external sources is important. The primary goal of this project is to measure the dissolved concentrations, size partitioning, and dissolved isotope signature of Fe on a transect of water-column stations throughout the Amundsen Sea and surrounding region of the Antarctic Margin, as part of the GP17-ANT Expedition. The secondary goal of this project is to analyze the concentrations and size partitioning of the trace metals manganese, zinc, copper, cadmium, nickel, and lead in all water-column samples, measure the isotope ratios of zinc, cadmium, nickel, and copper in a subset of water column samples, and measure the Fe isotopic signature of aerosols, porewaters, and particles. Observations from this project will be incorporated into regional and global biogeochemistry models to assess TEI cycling within the Amundsen Sea and implications for the wider Southern Ocean. This project spans three institutions, four graduate students, undergraduate students, and will provide ultrafiltered samples and data to other PIs as service. The US GEOTRACES GP17 ANT expedition, planned for austral summer 2023/2024 aims to determine the distribution and cycling of trace elements and their isotopes in the Amundsen Sea Sector (100-135\u00b0W) of the Antarctic Margin. The cruise will follow the Amundsen Sea \u2018conveyor belt\u2019 by sampling waters coming from the Antarctic Circumpolar Current onto the continental shelf, including near the Dotson and Pine Island ice shelves, the productive Amundsen Sea Polynya (ASP), and outflowing waters. Episodic addition of dissolved Fe and other TEIs from dust, ice-shelves, melting ice, and sediments drive seasonal primary productivity and carbon export over the Antarctic shelf and offshore into Southern Ocean. Seasonal coastal polynyas such as the highly productive ASP thus act as key levers on global carbon cycling. However, field observations of TEIs in such regions remain scarce, and biogeochemical cycling processes are poorly captured in models of ocean biogeochemistry. The investigators will use their combined analytical toolbox, in collaboration with the diagnostic chemical tracers and regional models of other funded groups to address four main objectives: 1) What is the relative importance of different sources in supplying Fe and other TEIs to the ASP? 2) What is the physiochemical speciation of this Fe, and its potential for transport? 3) How do biological uptake, scavenging and regeneration in the ASP influence TEI distributions, stoichiometry, and nutrient limitation? 4) What is the flux and signature of TEIs transported offshore to the ACC and Southern Ocean? This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -100.0, "geometry": "POINT(-117.5 -71)", "instruments": null, "is_usap_dc": true, "keywords": "R/V NBP; Amundsen Sea; TRACE ELEMENTS; BIOGEOCHEMICAL CYCLES", "locations": "Amundsen Sea", "north": -66.0, "nsf_funding_programs": "Chemical Oceanography; Chemical Oceanography; Chemical Oceanography", "paleo_time": null, "persons": "Conway, Timothy; Fitzsimmons, Jessica; John, Seth", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repositories": null, "science_programs": null, "south": -76.0, "title": "Collaborative Research: US GEOTRACES GP17-ANT: Dissolved concentrations, isotopes, and colloids of the bioactive trace metals", "uid": "p0010374", "west": -135.0}, {"awards": "2046240 Khan, Alia", "bounds_geometry": "POLYGON((-75 -62,-73.5 -62,-72 -62,-70.5 -62,-69 -62,-67.5 -62,-66 -62,-64.5 -62,-63 -62,-61.5 -62,-60 -62,-60 -62.85,-60 -63.7,-60 -64.55,-60 -65.4,-60 -66.25,-60 -67.1,-60 -67.95,-60 -68.8,-60 -69.65,-60 -70.5,-61.5 -70.5,-63 -70.5,-64.5 -70.5,-66 -70.5,-67.5 -70.5,-69 -70.5,-70.5 -70.5,-72 -70.5,-73.5 -70.5,-75 -70.5,-75 -69.65,-75 -68.8,-75 -67.95,-75 -67.1,-75 -66.25,-75 -65.4,-75 -64.55,-75 -63.7,-75 -62.85,-75 -62))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 10 Sep 2021 00:00:00 GMT", "description": "________________________________________________________________________________________________ Part I: Non-technical Summary The Antarctic Peninsula is one of the most rapidly warming regions on the planet. This 5-yr time-series program will build on an ongoing international collaboration with scientists from the Chilean Antarctic Program to evaluate the role of temperature, light absorbing particles, snow-algae growth, and their radiative forcing effects on snow and ice melt in the Western Antarctic Peninsula. There is strong evidence that these effects may be intensifying due to a warming climate. Rising temperatures can increase the growth rate of coastal snow algae as well as enhance the input of particles from sources such as the long-range transport of black carbon to the Antarctic continent from intensifying Southern Hemisphere wildfire seasons. Particle and algae feedbacks can have immediate local impacts on snow melt and long-term regional impacts on climate because reduced snow cover alters how the Antarctic continent interacts with the rest of the global climate. A variety of ground-based and remote sensing data collected across multiple spatial scales will be used. Ground measurements will be compared to satellite imagery to develop novel computer algorithms to map ice algal bloom effects under changing climates. The project is expected to fundamentally advance knowledge of the spatial and temporal snow algae growing season, which is needed to quantify impacts on regional snow and ice melt. The program also has a strong partnership with the International Association of Antarctic Tour Operators to involve cruise passengers as citizen scientists for sample collection. Antarctic research results will be integrated into undergraduate curricula and research opportunities through studies to LAPs and snow algae in the Pacific Northwest. The PI will recruit and train a diverse pool of students in cryosphere climate related research methods on Mt. Baker in Western Washington. Trained undergraduate will then serve as instructors for a local Snow School that takes middle school students to Mt. Baker to learn about snow science. Resulting datasets from Antarctica and Mt. Baker will be used in University classes to explore regional effects of climate change. Along with enhancing cryosphere-oriented place-based undergraduate field courses in the Pacific Northwest, the PI will recruit and train a diverse pool of undergraduate students to serve as instructors for the Mt. Baker Snow School program. This award will advance our understanding of cryosphere-climate feedbacks, which are likely changing and will continue to evolve in a warming world, while also increasing under-represented student engagement in the polar geosciences. Part 2: Technical Summary Rapid and persistent climate warming in the Western Antarctic Peninsula is likely resulting in intensified snow-algae growth and an extended bloom season in coastal areas. Similarly, deposition of light absorbing particles (LAPs) onto Antarctica cryosphere surfaces, such as black carbon from intensifying Southern Hemisphere wildfire seasons, and dust from the expansion of ice-free regions in the Antarctic Peninsula, may be increasing. The presence of snow algae blooms and LAPs enhance the absorption of solar radiation by snow and ice surfaces. This positive feedback creates a measurable radiative forcing, which can have immediate local and long-term regional impacts on albedo, snow melt and downstream ecosystems. This project will investigate the spatial and temporal distribution of snow algae, black carbon and dust across the Western Antarctica Peninsula region, their response to climate warming, and their role in regional snow and ice melt. Data will be collected across multiple spatial scales from in situ field measurements and sample collection to imagery from ground-based photos and high resolution multi-spectral satellite sensors. Ground measurements will inform development and application of novel algorithms to map algal bloom extent through time using 0.5-3m spatial resolution multi-spectral satellite imagery. Results will be used to improve snow algae parameterization in a new version of the Snow Ice Aerosol Radiation model (SNICARv3) that includes bio-albedo feedbacks, eventually informing models of ice-free area expansion through incorporation of SNICARv3 in the Community Earth System Model. Citizen scientists will be mentored and engaged in the research through an active partnership with the International Association of Antarctic Tour Operators that frequently visits the region. The cruise ship association will facilitate sampling to develop a unique snow algae observing network to validate remote sensing algorithms that map snow algae with high-resolution multi-spectral satellite imagery from space. These time-series will inform instantaneous and interannual radiative forcing calculations to assess impacts of snow algae and LAPs on regional snow melt. Quantifying the spatio-temporal growing season of snow algae and impacts from black carbon and dust will increase our ability to model their impact on snow melt, regional climate warming and ice-free expansion in the Antarctic Peninsula region. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -60.0, "geometry": "POINT(-67.5 -66.25)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Antarctic Peninsula; Amd/Us; AMD; SNOW/ICE CHEMISTRY; USA/NSF; USAP-DC; SNOW", "locations": "Antarctic Peninsula", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Khan, Alia", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -70.5, "title": "CAREER: Coastal Antarctic Snow Algae and Light Absorbing Particles: Snowmelt, Climate and Ecosystem Impacts", "uid": "p0010263", "west": -75.0}, {"awards": "1341494 Gao, Yuan", "bounds_geometry": "POINT(-64.05 -64.77)", "dataset_titles": "Concentrations and Particle Size Distributions of Aerosol Trace Elements; Particle sizes of aerosol iron", "datasets": [{"dataset_uid": "601257", "doi": "10.15784/601257", "keywords": "Aerosol Concentration; Antarctica; Chemistry:gas; Chemistry:Gas; Iron; Palmer Station; Particle Size", "people": "Gao, Yuan", "repository": "USAP-DC", "science_program": null, "title": "Particle sizes of aerosol iron", "url": "https://www.usap-dc.org/view/dataset/601257"}, {"dataset_uid": "601370", "doi": "10.15784/601370", "keywords": "Antarctica; Antarctic Peninsula; Palmer Station; Trace Elements", "people": "Gao, Yuan", "repository": "USAP-DC", "science_program": null, "title": "Concentrations and Particle Size Distributions of Aerosol Trace Elements", "url": "https://www.usap-dc.org/view/dataset/601370"}], "date_created": "Thu, 20 Feb 2020 00:00:00 GMT", "description": "The research seeks to further quantify the input of atmospheric Fe into the sparsely sampled Southern Ocean (SO), specifically in the vicinity of the West Antarctic Peninsula (WAP) and adjacent continental shelf waters in the Drake Passage. This is typically a high nutrient low chlorophyll region where surface trace metal and primary productivity data are suggestive of Fe limitation. The WAP is characterized by high productivity in the austral summer, and at this time may be in the path of northern dust (aeolian Fe) input or subject to melt influx of elevated Fe accumulated from glacial and present-day sea ice sources. Primary scientific questions are: (1) to what extent does atmospheric Fe contribute to nutrient cycles and ecosystem dynamics in the SO? (2) How is warming climate occurring in the WAP affecting the aerosol composition of the maritime atmosphere. The primary productivity of the Southern Ocean is key to understanding oceanic uptake of anthropogenic greenhouse gases such as carbon dioxide.", "east": -64.05, "geometry": "POINT(-64.05 -64.77)", "instruments": null, "is_usap_dc": true, "keywords": "Aerosol Concentration; TRACE GASES/TRACE SPECIES; Particle Size; Palmer Station; FIELD INVESTIGATION; Trace Elements; Iron; AEROSOL OPTICAL DEPTH/THICKNESS; USAP-DC", "locations": "Palmer Station", "north": -64.77, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Gao, Yuan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.77, "title": "Quantifying Atmospheric Iron Properties over West Antarctic Peninsula", "uid": "p0010082", "west": -64.05}, {"awards": "1142517 Aydin, Murat; 1141839 Steig, Eric; 1142646 Twickler, Mark", "bounds_geometry": "POINT(90 -90)", "dataset_titles": "South Pole Ice Core Holocene Major Ion Dataset; South Pole Ice Core Sea Salt and Major Ions; South Pole ice core (SPC14) discrete methane data; South Pole Ice Core (SPICEcore) SPC14 Core Quality Versus Depth; SP19 Gas Chronology; Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)", "datasets": [{"dataset_uid": "601396", "doi": "10.15784/601396", "keywords": "Accumulation; Antarctica; Diffusion Length; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Dynamic; Layer Thinning; Oxygen Isotope; South Pole; SPICEcore; Temperature", "people": "Conway, Howard; Stevens, Max; Steig, Eric J.; Schauer, Andrew; Vaughn, Bruce; Morris, Valerie; Kahle, Emma; Koutnik, Michelle; Fudge, T. J.; Buizert, Christo; White, James; Epifanio, Jenna; Jones, Tyler R.; Waddington, Edwin D.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)", "url": "https://www.usap-dc.org/view/dataset/601396"}, {"dataset_uid": "601380", "doi": "10.15784/601380", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Core Stratigraphy; Methane; South Pole; SPICEcore", "people": "Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SP19 Gas Chronology", "url": "https://www.usap-dc.org/view/dataset/601380"}, {"dataset_uid": "601381", "doi": "10.15784/601381", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Methane; South Pole; SPICEcore", "people": "Aydin, Murat; Severinghaus, Jeffrey P.; Kennedy, Joshua A.; Ferris, David G.; Kalk, Michael; Hood, Ekaterina; Fudge, T. J.; Osterberg, Erich; Winski, Dominic A.; Steig, Eric J.; Kahle, Emma; Sowers, Todd A.; Edwards, Jon S.; Kreutz, Karl; Buizert, Christo; Brook, Edward J.; Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core (SPC14) discrete methane data", "url": "https://www.usap-dc.org/view/dataset/601381"}, {"dataset_uid": "601851", "doi": "10.15784/601851", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Sea Salt and Major Ions", "url": "https://www.usap-dc.org/view/dataset/601851"}, {"dataset_uid": "601221", "doi": "10.15784/601221", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Depth; Ice Core Records; Snow/ice; Snow/Ice; SPICEcore", "people": "Fudge, T. J.; Kahle, Emma; Nicewonger, Melinda R.; Hargreaves, Geoff; Nunn, Richard; Steig, Eric J.; Aydin, Murat; Casey, Kimberly A.; Fegyveresi, John; Twickler, Mark; Souney, Joseph Jr.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core (SPICEcore) SPC14 Core Quality Versus Depth", "url": "https://www.usap-dc.org/view/dataset/601221"}, {"dataset_uid": "601850", "doi": "10.15784/601850", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Holocene Major Ion Dataset", "url": "https://www.usap-dc.org/view/dataset/601850"}], "date_created": "Wed, 30 Oct 2019 00:00:00 GMT", "description": "1142517/Saltzman This proposal requests support for a project to drill and recover a new ice core from South Pole, Antarctica. The South Pole ice core will be drilled to a depth of 1500 m, providing an environmental record spanning approximately 40 kyrs. This core will be recovered using a new intermediate drill, which is under development by the U.S. Ice Drilling Design and Operations (IDDO) group in collaboration with Danish scientists. This proposal seeks support to provide: 1) scientific management and oversight for the South Pole ice core project, 2) personnel for ice core drilling and core processing, 3) data management, and 3) scientific coordination and communication via scientific workshops. The intellectual merit of the work is that the analysis of stable isotopes, atmospheric gases, and aerosol-borne chemicals in polar ice has provided unique information about the magnitude and timing of changes in climate and climate forcing through time. The international ice core research community has articulated the goal of developing spatial arrays of ice cores across Antarctica and Greenland, allowing the reconstruction of regional patterns of climate variability in order to provide greater insight into the mechanisms driving climate change. The broader impacts of the project include obtaining the South Pole ice core will support a wide range of ice core science projects, which will contribute to the societal need for a basic understanding of climate and the capability to predict climate and ice sheet stability on long time scales. Second, the project will help train the next generation of ice core scientists by providing the opportunity for hands-on field and core processing experience for graduate students and postdoctoral researchers. A postdoctoral researcher at the University of Washington will be directly supported by this project, and many other young scientists will interact with the project through individual science proposals. Third, the project will result in the development of a new intermediate drill which will become an important resource to US ice core science community. This drill will have a light logistical footprint which will enable a wide range of ice core projects to be carried out that are not currently feasible. Finally, although this project does not request funds for outreach activities, the project will run workshops that will encourage and enable proposals for coordinated outreach activities involving the South Pole ice core science team.", "east": 90.0, "geometry": "POINT(90 -90)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "USAP-DC; Amd/Us; Antarctica; ANALYTICAL LAB; USA/NSF; AMD; South Pole; ICE CORE RECORDS; FIELD INVESTIGATION; Ice Core", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Twickler, Mark; Souney, Joseph Jr.; Aydin, Murat; Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e ANALYTICAL LAB", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: A 1500m Ice Core from South Pole", "uid": "p0010060", "west": 90.0}, {"awards": "1443341 Hawley, Robert; 1443471 Koutnik, Michelle", "bounds_geometry": "POLYGON((110 -89,117 -89,124 -89,131 -89,138 -89,145 -89,152 -89,159 -89,166 -89,173 -89,180 -89,180 -89.1,180 -89.2,180 -89.3,180 -89.4,180 -89.5,180 -89.6,180 -89.7,180 -89.8,180 -89.9,180 -90,173 -90,166 -90,159 -90,152 -90,145 -90,138 -90,131 -90,124 -90,117 -90,110 -90,110 -89.9,110 -89.8,110 -89.7,110 -89.6,110 -89.5,110 -89.4,110 -89.3,110 -89.2,110 -89.1,110 -89))", "dataset_titles": "7MHz radar in the vicinity of South Pole; Firn density and compaction rates 50km upstream of South Pole; Firn temperatures 50km upstream of South Pole; Shallow radar near South Pole; South Pole area GPS velocities; SPICEcore Advection", "datasets": [{"dataset_uid": "601369", "doi": "10.15784/601369", "keywords": "Antarctica; Ice Sheet", "people": "Waddington, Edwin D.; Fudge, T. J.; Koutnik, Michelle; Lilien, David; Conway, Howard; Stevens, Max", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "7MHz radar in the vicinity of South Pole", "url": "https://www.usap-dc.org/view/dataset/601369"}, {"dataset_uid": "601100", "doi": "10.15784/601100", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ice Velocity", "people": "Fudge, T. J.; Waddington, Edwin D.; Koutnik, Michelle; Lilien, David; Conway, Howard", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole area GPS velocities", "url": "https://www.usap-dc.org/view/dataset/601100"}, {"dataset_uid": "601099", "doi": "10.15784/601099", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar; Snow Accumulation; Snow/ice; Snow/Ice", "people": "Waddington, Edwin D.; Fudge, T. J.; Koutnik, Michelle; Lilien, David; Conway, Howard", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Shallow radar near South Pole", "url": "https://www.usap-dc.org/view/dataset/601099"}, {"dataset_uid": "601525", "doi": "10.15784/601525", "keywords": "Antarctica; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Snow/ice; Snow/Ice; South Pole; SPICEcore; Temperature", "people": "Stevens, Christopher Max; Lilien, David; Conway, Howard; Koutnik, Michelle; Waddington, Edwin D.; Fudge, T. J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Firn temperatures 50km upstream of South Pole", "url": "https://www.usap-dc.org/view/dataset/601525"}, {"dataset_uid": "601680", "doi": "10.15784/601680", "keywords": "Antarctica; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Snow/ice; Snow/Ice; South Pole; Temperature", "people": "Stevens, Christopher Max; Waddington, Edwin D.; Lilien, David; Conway, Howard; Fudge, T. J.; Koutnik, Michelle", "repository": "USAP-DC", "science_program": null, "title": "Firn density and compaction rates 50km upstream of South Pole", "url": "https://www.usap-dc.org/view/dataset/601680"}, {"dataset_uid": "601266", "doi": "10.15784/601266", "keywords": "Antarctica; Ice Core Data; South Pole; SPICEcore", "people": "Fudge, T. J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SPICEcore Advection", "url": "https://www.usap-dc.org/view/dataset/601266"}], "date_created": "Thu, 14 Jun 2018 00:00:00 GMT", "description": "Ice-core records are critical to understanding past climate variations. An Antarctic ice core currently being drilled at the South Pole will allow detailed investigation of atmospheric gases and fill an important gap in understanding the pattern of climate variability across Antarctica. Critical to the interpretation of any ice core are: 1) accurate chronologies for both the ice and the trapped gas and 2) demonstration that records from the ice core reliably reflect climate. The proposed research will improve the ice and gas chronologies by making measurements of snow compaction in the upstream catchment in order to constrain age models of the ice. These measurements will be a key data set needed for better understanding and predicting time-varying conditions in the upper part of the ice sheet. The research team will measure the modern spatial gradients in accumulation rate, surface temperature, and water stable isotopes from shallow ice cores in the upstream catchment in order to determine the climate history from the ice-core record. The new ice-flow measurements will make it possible to define the path of ice from upstream to the South Pole ice-core drill site to assess spatial gradients in snowfall and to infer histories of snowfall from internal layers within the ice sheet. The project will be led by an early-career scientist, provide broad training to graduate students, and engage in public outreach on polar science. Ice-core records of stable isotopes, aerosol-born particles, and atmospheric gases are critical to understanding past climate variations. The proposed research will improve the ice and gas chronologies in the South Pole ice core by making in situ measurements of firn compaction in the upstream catchment to constrain models of the gas-age ice-age difference. The firn measurements will be a key data set needed to form a constitutive relationship for firn, and will drive better understanding and prediction of transient firn evolution. The research team will measure the modern gradients in accumulation rate, surface temperature, and water stable isotopes in the upstream catchment to separate spatial (advection) variations from temporal (climate) variations in the ice-core records. The ice-flow measurements will define the flowline upstream of the drill site, assess spatial gradients in accumulation, and infer histories of accumulation from radar-observed internal layers. Results will directly enhance interpretation of South Pole ice-core records, and also advance understanding of firn densification and drive next-generation firn models.", "east": 180.0, "geometry": "POINT(145 -89.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIRN; Firn; USAP-DC; South Pole; Radar; FIELD SURVEYS; ICE CORE RECORDS", "locations": "South Pole", "north": -89.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Koutnik, Michelle; Conway, Howard; Waddington, Edwin D.; Fudge, T. J.; Hawley, Robert L.; Osterberg, Erich", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: Characterization of Upstream Ice and Firn Dynamics affecting the South Pole Ice Core", "uid": "p0000200", "west": 110.0}, {"awards": "1443232 Waddington, Edwin", "bounds_geometry": "POLYGON((110 -89,117 -89,124 -89,131 -89,138 -89,145 -89,152 -89,159 -89,166 -89,173 -89,180 -89,180 -89.1,180 -89.2,180 -89.3,180 -89.4,180 -89.5,180 -89.6,180 -89.7,180 -89.8,180 -89.9,180 -90,173 -90,166 -90,159 -90,152 -90,145 -90,138 -90,131 -90,124 -90,117 -90,110 -90,110 -89.9,110 -89.8,110 -89.7,110 -89.6,110 -89.5,110 -89.4,110 -89.3,110 -89.2,110 -89.1,110 -89))", "dataset_titles": "AC-ECM for SPICEcore; ECM (DC and AC) multi-track data and images from 2016 processing season", "datasets": [{"dataset_uid": "601366", "doi": "10.15784/601366", "keywords": "Antarctica", "people": "Fudge, T. J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "ECM (DC and AC) multi-track data and images from 2016 processing season", "url": "https://www.usap-dc.org/view/dataset/601366"}, {"dataset_uid": "601189", "doi": " 10.15784/601189 ", "keywords": "Antarctica; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Physical Properties; Snow/ice; Snow/Ice; South Pole; SPICEcore; Volcanic", "people": "Fudge, T. J.; Waddington, Edwin D.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "AC-ECM for SPICEcore", "url": "https://www.usap-dc.org/view/dataset/601189"}], "date_created": "Tue, 08 May 2018 00:00:00 GMT", "description": "Ice cores record detailed histories of past climate variations. The South Pole ice core will allow investigation of atmospheric trace gases and fill an important gap in understanding the pattern of climate variability across Antarctica. An accurate timescale that assigns an age to the ice at each depth in the core is essential to interpretation of the ice-core records. This work will use electrical methods to identify volcanic eruptions throughout the past ~40,000 years in the core by detecting the enhanced electrical conductance in those layers due to volcanic impurities in the ice. These eruptions will be pattern-matched to other cores across Antarctica, synchronizing the timing of climate variations among cores and allowing the precise timescales developed for other Antarctic ice cores to be transferred to the South Pole ice core. The well-dated records of volcanic forcing will be combined with records of atmospheric gases, stable water-isotopes, and aerosols to better understand the large natural climate variations of the past 40,000 years. The electrical conductance method and dielectric profiling measurements will be made along the length of each section of the South Pole ice core at the National Ice Core Lab. These measurements will help to establish a timescale for the core. Electrical measurements will provide a continuous record of volcanic events for the entire core including through the brittle ice (550-1250m representing ~10,000-20,000 year-old ice) where the core quality and thin annual layers may prevent continuous melt analysis and cause discrete measurements to miss volcanic events. The electrical measurements also produce a 2-D image of the electrical layering on a longitudinal cut surface of each core. These data will be used to identify any irregular or absent layering that would indicate a stratigraphic disturbance in the core. A robust chronology is essential to interpretation of the paleoclimate records from the South Pole ice core. The investigators will engage teachers through talks and webinars with the National Science Teachers Association and will share information with the public at events such as Polar Science Weekend at the Pacific Science Center. Results will be disseminated through publications and conference presentations and the data will be archived and publicly available.", "east": 180.0, "geometry": "POINT(145 -89.5)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; USA/NSF; Amd/Us; AMD; LABORATORY", "locations": null, "north": -89.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fudge, T. J.; Waddington, Edwin D.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Using Electrical Conductance Measurements to Develop the South Pole Ice Core Chronology", "uid": "p0000378", "west": 110.0}, {"awards": "0944348 Taylor, Kendrick; 0944266 Twickler, Mark", "bounds_geometry": "POINT(-112.1115 -79.481)", "dataset_titles": "Summary of Results from the WAIS Divide Ice Core Project; WAIS Divide WDC06A Core Quality Versus Depth", "datasets": [{"dataset_uid": "601030", "doi": "10.15784/601030", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide Ice Core", "people": "Twickler, Mark; Souney, Joseph Jr.; Taylor, Kendrick C.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide WDC06A Core Quality Versus Depth", "url": "https://www.usap-dc.org/view/dataset/601030"}, {"dataset_uid": "601021", "doi": "10.15784/601021", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide Ice Core", "people": "Taylor, Kendrick C.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Summary of Results from the WAIS Divide Ice Core Project", "url": "https://www.usap-dc.org/view/dataset/601021"}], "date_created": "Fri, 09 Jun 2017 00:00:00 GMT", "description": "Taylor/0944348\u003cbr/\u003e\u003cbr/\u003eThis award supports renewal of funding of the WAIS Divide Science Coordination Office (SCO). The Science Coordination Office (SCO) was established to represent the research community and facilitates the project by working with support organizations responsible for logistics, drilling, and core curation. During the last five years, 26 projects have been individually funded to work on this effort and 1,511 m of the total 3,470 m of ice at the site has been collected. This proposal seeks funding to continue the SCO and related field operations needed to complete the WAIS Divide ice core project. Tasks for the SCO during the second five years include planning and oversight of logistics, drilling, and core curation; coordinating research activities in the field; assisting in curation of the core in the field; allocating samples to individual projects; coordinating the sampling effort; collecting, archiving, and distributing data and other information about the project; hosting an annual science meeting; and facilitating collaborative efforts among the research groups. The intellectual merit of the WAIS Divide project is to better predict how human-caused increases in greenhouse gases will alter climate requires an improved understanding of how previous natural changes in greenhouse gases influenced climate in the past. Information on previous climate changes is used to validate the physics and results of climate models that are used to predict future climate. Antarctic ice cores are the only source of samples of the paleo-atmosphere that can be used to determine previous concentrations of carbon dioxide. Ice cores also contain records of other components of the climate system such as the paleo air and ocean temperature, atmospheric loading of aerosols, and indicators of atmospheric transport. The WAIS Divide ice core project has been designed to obtain the best possible record of greenhouse gases during the last glacial cycle (last ~100,000 years). The site was selected because it has the best balance of high annual snowfall (23 cm of ice equivalent/year), low dust Antarctic ice that does not compromise the carbon dioxide record, and favorable glaciology. The main science objectives of the project are to investigate climate forcing by greenhouse gases, initiation of climate changes, stability of the West Antarctic Ice Sheet, and cryobiology in the ice core. The project has numerous broader impacts. An established provider of educational material (Teachers? Domain) will develop and distribute web-based resources related to the project and climate change for use in K?12 classrooms. These resources will consist of video and interactive graphics that explain how and why ice cores are collected, and what they tell us about future climate change. Members of the national media will be included in the field team and the SCO will assist in presenting information to the general public. Video of the project will be collected and made available for general use. Finally, an opportunity will be created for cryosphere students and early career scientists to participate in field activities and core analysis. An ice core archive will be available for future projects and scientific discoveries from the project can be used by policy makers to make informed decisions.", "east": -112.1115, "geometry": "POINT(-112.1115 -79.481)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Mark, Twickler; Taylor, Kendrick C.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Collaborative Research: Climate, Ice Dynamics and Biology using a Deep Ice Core from the West Antarctic Ice Sheet Ice Divide", "uid": "p0000080", "west": -112.1115}, {"awards": "1443260 Conway, Howard", "bounds_geometry": "POLYGON((159 -76.68,159.03 -76.68,159.06 -76.68,159.09 -76.68,159.12 -76.68,159.15 -76.68,159.18 -76.68,159.21 -76.68,159.24 -76.68,159.27 -76.68,159.3 -76.68,159.3 -76.697,159.3 -76.714,159.3 -76.731,159.3 -76.748,159.3 -76.765,159.3 -76.782,159.3 -76.799,159.3 -76.816,159.3 -76.833,159.3 -76.85,159.27 -76.85,159.24 -76.85,159.21 -76.85,159.18 -76.85,159.15 -76.85,159.12 -76.85,159.09 -76.85,159.06 -76.85,159.03 -76.85,159 -76.85,159 -76.833,159 -76.816,159 -76.799,159 -76.782,159 -76.765,159 -76.748,159 -76.731,159 -76.714,159 -76.697,159 -76.68))", "dataset_titles": "2015-2016 GPR Field Report for Allan Hills Shallow Ice Coring; Ground-based ice-penetrating radar profiles collected on the Allan Hills blue ice region", "datasets": [{"dataset_uid": "601005", "doi": "10.15784/601005", "keywords": "Allan Hills; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Navigation; Radar", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Ground-based ice-penetrating radar profiles collected on the Allan Hills blue ice region", "url": "https://www.usap-dc.org/view/dataset/601005"}, {"dataset_uid": "601668", "doi": "10.15784/601668", "keywords": "Allan Hills; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; GPR; Ice Core; Report", "people": "MacKay, Sean; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "2015-2016 GPR Field Report for Allan Hills Shallow Ice Coring", "url": "https://www.usap-dc.org/view/dataset/601668"}], "date_created": "Tue, 02 May 2017 00:00:00 GMT", "description": "Marine paleoclimate archives show that approximately one million years ago Earth\u0027s climate transitioned from 40,000-year glacial /interglacial cycles to 100,000-year cycles. This award will support a study designed to map the distribution of one million year-old ice in the Allan Hills Blue Ice Area, Antarctica using state-of-the-art ground penetrating radar. The Allen Hills was demonstrated to contain a continuous record of the past 400,000 years and is also the collection location of the oldest ice samples (990,000 years) yet recovered. The maps resulting from this study will be used to select an ice-core drilling site at which a million-plus year-old continuous record of climate could be recovered. Ice cores contain the only kind of record to directly capture atmospheric gases and aerosols, but no ice-core-based climate record yet extends continuously beyond the past 800,000 years. A million-plus year-old record will allow better understanding of the major mechanisms and driving forces of natural climate variability in a world with 100,000-year glacial/interglacial cycles. The project will support two early career scientists in collaboration with senior scientists, as well as a graduate student, and will conduct outreach to schools and the public. The Allan Hills Blue Ice Area preserves a continuous climate record covering the last 400,000 years along an established glaciological flow line. Two kilometers to the east of this flow line, the oldest ice on Earth (~1 million years old) is found only 120 m below the surface. Meteorites collected in the area are reported to be as old as 1.8 million years, suggesting still older ice may be present. Combined, these data strongly suggest that the Allen Hills area could contain a continuous, well-resolved environmental record, spanning at least the last million years. As such, this area has been selected as an upcoming target for the new Intermediate Depth Ice Core Drill by the US Ice Core Working Group. This drill will recover a higher-quality core than previous dry drilling attempts. This project will conduct a comprehensive ground penetrating radar survey aimed at tracing the signature of the million-year-old ice layer throughout the region. The resulting map will be used to select a drill site from which an ice core containing the million-plus year-old continuous climate record will be collected. The proposed activities are a necessary precursor to the collection of the oldest known ice on Earth. Ice cores provide a robust reconstruction of past climate and extending this record beyond the 800,000 years currently available will open new opportunities to study the climate system. The data collected will also be used to investigate the bedrock and ice flow parameters favorable to the preservation of old ice, which may allow targeted investigation of other blue ice areas in Antarctica.", "east": 159.3, "geometry": "POINT(159.15 -76.765)", "instruments": null, "is_usap_dc": true, "keywords": "Allan Hills; FIELD SURVEYS; ICE SHEETS", "locations": "Allan Hills", "north": -76.68, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.85, "title": "Collaborative Research: Allan HILLs Englacial Site (AHILLES) Selection", "uid": "p0000385", "west": 159.0}, {"awards": "0538427 McConnell, Joseph", "bounds_geometry": "POINT(-112.1115 -79.481)", "dataset_titles": "Gas measurement from Higgins et al., 2015 - PNAS; WAIS Divide Ice-Core Aerosol Records from 1.5 to 577 m; WAIS Divide Ice-Core Aerosol Records from Intermediate Core WDC05A; WAIS Divide Ice-Core Aerosol Records from Intermediate Core WDC05Q; WAIS Divide Ice-Core Chronology from Intermediate Core WDC05A; WAIS Divide Ice-Core Chronology from Intermediate Core WDC05Q", "datasets": [{"dataset_uid": "601013", "doi": "10.15784/601013", "keywords": "Antarctica; Depth-Age-Model; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Chronology from Intermediate Core WDC05Q", "url": "https://www.usap-dc.org/view/dataset/601013"}, {"dataset_uid": "601010", "doi": "10.15784/601010", "keywords": "Aerosol; Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Aerosol Records from Intermediate Core WDC05A", "url": "https://www.usap-dc.org/view/dataset/601010"}, {"dataset_uid": "601014", "doi": "10.15784/601014", "keywords": "Allan Hills; Antarctica; Argon; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope", "people": "Higgins, John", "repository": "USAP-DC", "science_program": null, "title": "Gas measurement from Higgins et al., 2015 - PNAS", "url": "https://www.usap-dc.org/view/dataset/601014"}, {"dataset_uid": "601012", "doi": "10.15784/601012", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Snow Accumulation; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Chronology from Intermediate Core WDC05A", "url": "https://www.usap-dc.org/view/dataset/601012"}, {"dataset_uid": "601009", "doi": "10.15784/601009", "keywords": "Aerosol; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Aerosol Records from 1.5 to 577 m", "url": "https://www.usap-dc.org/view/dataset/601009"}, {"dataset_uid": "601011", "doi": "10.15784/601011", "keywords": "Aerosol; Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Aerosol Records from Intermediate Core WDC05Q", "url": "https://www.usap-dc.org/view/dataset/601011"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "0538427\u003cbr/\u003eMcConnell \u003cbr/\u003eThis award supports a project to use unique, high-depth-resolution records of a range of elements, chemical species, and ice properties measured in two WAIS Divide shallow ice cores and one shallow British ice core from West Antarctic to address critical paleoclimate, environmental, and ice-sheet mass-balance questions. Recent development of the CFA-TE method for ice-core analysis presents the opportunity to develop high-resolution, broad-spectrum glaciochemical records at WAIS Divide at relatively modest cost. Together with CFA-TE measurements from Greenland and other Antarctic sites spanning recent decades to centuries, these rich data will open new avenues for using glaciochemical data to investigate environmental and global changes issues ranging from anthropogenic and volcanic-trace-element fallout to changes in hemispheric-scale circulation, biogeochemistry, rapid-climate-change events, long-term climate change, and ice-sheet mass balance. As part of the proposed research, collaborations with U.S., Argentine, and British researchers will be initiated and expanded to directly address three major IPY themes (i.e., present environmental status, past and present environmental and human change, and polar-global interactions). Included in the contributions from these international collaborators will be ice-core samples, ice-core and meteorological model data, and extensive expertise in Antarctic glaciology, climatology, meteorology, and biogeochemistry. The broader impacts of the work include the training of students. The project will partially support one Ph.D. student and hourly undergraduate involvement. Every effort will be made to attract students from underrepresented groups to these positions. To address the challenge of introducing results of scientific research to the public policy debate, we will continue efforts to publish findings in high visibility journals, provide research results to policy makers, and work with the NSF media office to reach the public through mass-media programs. K-12 teacher and classroom involvement will be realized through outreach to local schools and NSF\u0027s Teachers Experiencing the Antarctic and Arctic (or similar) program in collaboration with WAIS Divide and other polar researchers.", "east": -112.1115, "geometry": "POINT(-112.1115 -79.481)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bender, Michael; McConnell, Joseph", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core", "uid": "p0000148", "west": -112.1115}, {"awards": "1142166 McConnell, Joseph", "bounds_geometry": "POINT(-112.1115 -79.481)", "dataset_titles": "WAIS Divide Ice-Core Aerosol Records from 1300 to 3404 m", "datasets": [{"dataset_uid": "601008", "doi": "10.15784/601008", "keywords": "Aerosol; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Aerosol Records from 1300 to 3404 m", "url": "https://www.usap-dc.org/view/dataset/601008"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "McConnell/1142166 This award supports a project to use unprecedented aerosol and continuous gas (methane, carbon monoxide) measurements of the deepest section of the West Antarctic Ice Sheet (WAIS) Divide ice core to investigate rapid climate changes in Antarctica during the ~60,000 year long Marine Isotope Stage 3 period of the late Pleistocene. These analyses, combined with others, will take advantage of the high snow accumulation of the WAIS Divide ice core to yield the highest time resolution glaciochemical and gas record of any deep Antarctic ice core for this time period. The research will expand already funded discrete gas measurements and extend currently funded continuous aerosol measurements on the WAIS Divide ice core from ~25,000 to ~60,000 years before present, spanning Heinrich events 3 to 6 and Antarctic Isotope Maximum (AIM, corresponding to the Northern Hemisphere Dansgaard-Oeschger) events 3 to 14. With other high resolution Greenland cores and lower resolution Antarctic cores, the combined record will yield new insights into worldwide climate dynamics and abrupt change. The intellectual merit of the work is that it will be used to address the science goals of the WAIS Divide project including the identification of dust and biomass burning tracers such as black carbon and carbon monoxide which reflect mid- and low-latitude climate and atmospheric circulation patterns, and fallout from these sources affects marine and terrestrial biogeochemical cycles. Similarly, sea salt and ocean productivity tracers reflect changes in sea ice extent, marine primary productivity, wind speeds above the ocean, and atmospheric circulation. Volcanic tracers address the relationship between northern, tropical, and southern climates as well as stability of the West Antarctic ice sheet and sea level change. When combined with other gas records from WAIS Divide, the records developed here will transform understanding of mid- and low-latitude drivers of Antarctic, Southern Hemisphere, and global climate rapid changes and the timing of such changes. The broader impacts of the work are that it will enhance infrastructure through expansion of continuous ice core analytical techniques, train students and support collaboration between two U.S. institutions (DRI and OSU). All data will be made available to the scientific community and the public and will include participation the WAIS Divide Outreach Program. Extensive graduate and undergraduate student involvement is planned. Student recruitment will be made from under-represented groups building on a long track record. Broad outreach will be achieved through collaborations with the global and radiative modeling communities, NESTA-related and other educational outreach efforts, and public lectures. This proposed project does not require field work in the Antarctic.", "east": -112.1115, "geometry": "POINT(-112.1115 -79.481)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "McConnell, Joseph", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Collaborative Research: Investigating Upper Pleistocene Rapid Climate Change using Continuous, Ultra-High-Resolution Aerosol and Gas Measurements in the WAIS Divide Ice Core", "uid": "p0000287", "west": -112.1115}, {"awards": "1043145 Obbard, Rachel", "bounds_geometry": "POLYGON((164.1005 -77.1188,164.36443 -77.1188,164.62836 -77.1188,164.89229 -77.1188,165.15622 -77.1188,165.42015 -77.1188,165.68408 -77.1188,165.94801 -77.1188,166.21194 -77.1188,166.47587 -77.1188,166.7398 -77.1188,166.7398 -77.19337,166.7398 -77.26794,166.7398 -77.34251,166.7398 -77.41708,166.7398 -77.49165,166.7398 -77.56622,166.7398 -77.64079,166.7398 -77.71536,166.7398 -77.78993,166.7398 -77.8645,166.47587 -77.8645,166.21194 -77.8645,165.94801 -77.8645,165.68408 -77.8645,165.42015 -77.8645,165.15622 -77.8645,164.89229 -77.8645,164.62836 -77.8645,164.36443 -77.8645,164.1005 -77.8645,164.1005 -77.78993,164.1005 -77.71536,164.1005 -77.64079,164.1005 -77.56622,164.1005 -77.49165,164.1005 -77.41708,164.1005 -77.34251,164.1005 -77.26794,164.1005 -77.19337,164.1005 -77.1188))", "dataset_titles": "Bromide in Snow in the Sea Ice Zone", "datasets": [{"dataset_uid": "600158", "doi": "10.15784/600158", "keywords": "Atmosphere; Chemistry:ice; Chemistry:Ice; Critical Zone; Crystals; Glaciology; Oceans; Photo/video; Photo/Video; Ross Sea; Sea Ice; Sea Surface; Snow; Southern Ocean", "people": "Obbard, Rachel", "repository": "USAP-DC", "science_program": null, "title": "Bromide in Snow in the Sea Ice Zone", "url": "https://www.usap-dc.org/view/dataset/600158"}], "date_created": "Tue, 01 Mar 2016 00:00:00 GMT", "description": "A range of chemical and microphysical pathways in polar latitudes, including spring time (tropospheric) ozone depletion, oxidative pathways for mercury, and cloud condensation nuclei (CCN) production leading to changes in the cloud cover and attendant surface energy budgets, have been invoked as being dependent upon the emission of halogen gases formed in sea-ice. The prospects for climate warming induced reductions in sea ice extent causing alteration of these incompletely known surface-atmospheric feedbacks and interactions requires confirmation of mechanistic details in both laboratory studies and field campaigns. One such mechanistic question is how bromine (BrO and Br) enriched snow migrates or is formed through processes in sea-ice, prior to its subsequent mobilization as an aerosol fraction into the atmosphere by strong winds. Once aloft, it may react with ozone and other atmospheric species. Dartmouth researchers will collect snow from the surface of sea ice, from freely blowing snow and in sea-ice cores from Cape Byrd, Ross Sea. A range of spectroscopic, microanalytic and and microstructural approaches will be subsequently used to determine the Br distribution gradients through sea-ice, in order to shed light on how sea-ice first forms and then releases bromine species into the polar atmospheric boundary layer.", "east": 166.7398, "geometry": "POINT(165.42015 -77.49165)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.1188, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Obbard, Rachel", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.8645, "title": "Bromide in Snow in the Sea Ice Zone", "uid": "p0000414", "west": 164.1005}, {"awards": "0944659 Kiene, Ronald; 0944686 Kieber, David", "bounds_geometry": "POLYGON((-180 -68,-177 -68,-174 -68,-171 -68,-168 -68,-165 -68,-162 -68,-159 -68,-156 -68,-153 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -77,160 -76,160 -75,160 -74,160 -73,160 -72,160 -71,160 -70,160 -69,160 -68,162 -68,164 -68,166 -68,168 -68,170 -68,172 -68,174 -68,176 -68,178 -68,-180 -68))", "dataset_titles": "Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "datasets": [{"dataset_uid": "600150", "doi": "10.15784/600150", "keywords": "Antarctica; Biota; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Oceans; Ross Sea", "people": "Kiene, Ronald", "repository": "USAP-DC", "science_program": null, "title": "Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "url": "https://www.usap-dc.org/view/dataset/600150"}, {"dataset_uid": "600117", "doi": "10.15784/600117", "keywords": "Biota; Ross Sea; Southern Ocean", "people": "Kieber, David John", "repository": "USAP-DC", "science_program": null, "title": "Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "url": "https://www.usap-dc.org/view/dataset/600117"}], "date_created": "Wed, 16 Dec 2015 00:00:00 GMT", "description": "Spectacular blooms of Phaeocystis antarctica in the Ross Sea, Antarctica are the source of some of the world\u0027s highest concentrations of dimethylsulfoniopropionate (DMSP) and its volatile degradation product, dimethylsulfide (DMS). The flux of DMS from the oceans to the atmosphere in this region and its subsequent gas phase oxidation generates aerosols that have a strong influence on cloud properties and possibly climate. In the oceans, DMS and DMSP are quantitatively significant components of the carbon, sulfur, and energy flows in marine food webs, especially in the Ross Sea. Despite its central role in carbon and sulfur biogeochemistry in the Ross Sea, surprisingly little is known about the physiological functions of DMSP in P. Antarctica. The research will isolate and characterize DMSP lyases from P. antarctica, with the goal of obtaining amino acid and gene sequence information on these important enzymes. The physiological studies will focus on the effects of varying intensities of photosynthetically active radiation, with and without ultraviolet radiation as these are factors that we have found to be important controls on DMSP and DMS dynamics. The research also will examine the effects of prolonged darkness on the dynamics of DMSP and related compounds in P. antarctica, as survival of this species during the dark Antarctic winter and at sub-euphotic depths appears to be an important part of the Phaeocystis? ecology. A unique aspect of this work is the focus on measurements of intracellular MSA, which if detected, would provide strong evidence for in vivo radical scavenging functions for methyl sulfur compounds. The study will advance understanding of what controls DMSP cycling and ultimately DMS emissions from the Ross Sea and also provide information on what makes P. antarctica so successful in this extreme environment. The research will directly benefit and build on several interrelated ocean-atmosphere programs including the International Surface Ocean Lower Atmosphere Study (SOLAS) program. The PIs will participate in several activities involving K-12 education, High School teacher training, public education and podcasting through the auspices of the Dauphin Island Sea Lab Discovery Hall program and SUNY ESF. Two graduate students will be employed full time, and six undergraduates (2 each summer) will be trained as part of this project.", "east": -150.0, "geometry": "POINT(-175 -73)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; Not provided; Ecophysiology; AMD; USAP-DC; FIELD SURVEYS", "locations": null, "north": -68.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Kiene, Ronald; Kieber, David John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "uid": "p0000085", "west": 160.0}, {"awards": "1343649 Levy, Joseph", "bounds_geometry": "POLYGON((162.852 -77.6111,162.9893 -77.6111,163.1266 -77.6111,163.2639 -77.6111,163.4012 -77.6111,163.5385 -77.6111,163.6758 -77.6111,163.8131 -77.6111,163.9504 -77.6111,164.0877 -77.6111,164.225 -77.6111,164.225 -77.65331,164.225 -77.69552,164.225 -77.73773,164.225 -77.77994,164.225 -77.82215,164.225 -77.86436,164.225 -77.90657,164.225 -77.94878,164.225 -77.99099,164.225 -78.0332,164.0877 -78.0332,163.9504 -78.0332,163.8131 -78.0332,163.6758 -78.0332,163.5385 -78.0332,163.4012 -78.0332,163.2639 -78.0332,163.1266 -78.0332,162.9893 -78.0332,162.852 -78.0332,162.852 -77.99099,162.852 -77.94878,162.852 -77.90657,162.852 -77.86436,162.852 -77.82215,162.852 -77.77994,162.852 -77.73773,162.852 -77.69552,162.852 -77.65331,162.852 -77.6111))", "dataset_titles": "Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica", "datasets": [{"dataset_uid": "600139", "doi": "10.15784/600139", "keywords": "Antarctica; Chemistry:soil; Chemistry:Soil; Critical Zone; Dry Valleys; Permafrost; Sample/collection Description; Sample/Collection Description; Well Measurements", "people": "Levy, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600139"}], "date_created": "Mon, 05 Oct 2015 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to quantify the hillslope water, solute, and carbon budgets for Taylor Valley in the McMurdo Dry Valleys, using water tracks to investigate near-surface geological processes and challenge the paradigm that shallow groundwater is minimal or non-exixtant. Water tracks are linear zones of high soil moisture that route shallow groundwater downslope in permafrost dominated soils. Four hypotheses will be tested: 1) water tracks are important pathways for water and solute transport; 2) water tracks transport more dissolved silica than streams in Taylor Valley indicating they are the primary site of chemical weathering for cold desert soils and bedrock; 3) water tracks that drain highland terrains are dominated by humidity-separated brines while water tracks that drain lowland terrains are dominated by marine aerosols; 4) water tracks are the sites of the highest terrestrial soil carbon concentrations and the strongest CO2 fluxes in Taylor Valley and their carbon content increases with soil age, while carbon flux decreases with age. To test these hypotheses the PIs will carry out a suite of field measurements supported by modeling and remote sensing. They will install shallow permafrost wells in water tracks that span the range of geological, climatological, and topographic conditions in Taylor Valley. Multifrequency electromagnetic induction sounding of the upper ~1 m of the permafrost will create the first comprehensive map of soil moisture in Taylor Valley, and will permit direct quantification of water track discharge across the valley. The carbon contents of water track soils will be measured and linked to global carbon dynamics. Broader impacts: Non-science majors at Oregon State University will be integrated into the proposed research through a new Global Environmental Change course focusing on the scientific method in Antarctica. Three undergraduate students, members of underrepresented minorities, will be entrained in the research, will contribute to all aspects of field and laboratory science, and will present results at national meetings.", "east": 164.225, "geometry": "POINT(163.5385 -77.82215)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.6111, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Levy, Joseph", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0332, "title": "Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica", "uid": "p0000407", "west": 162.852}, {"awards": "1043265 Deming, Jody", "bounds_geometry": "POLYGON((162.1397 -77.14085,162.828507 -77.14085,163.517314 -77.14085,164.206121 -77.14085,164.894928 -77.14085,165.583735 -77.14085,166.272542 -77.14085,166.961349 -77.14085,167.650156 -77.14085,168.338963 -77.14085,169.02777 -77.14085,169.02777 -77.200745,169.02777 -77.26064,169.02777 -77.320535,169.02777 -77.38043,169.02777 -77.440325,169.02777 -77.50022,169.02777 -77.560115,169.02777 -77.62001,169.02777 -77.679905,169.02777 -77.7398,168.338963 -77.7398,167.650156 -77.7398,166.961349 -77.7398,166.272542 -77.7398,165.583735 -77.7398,164.894928 -77.7398,164.206121 -77.7398,163.517314 -77.7398,162.828507 -77.7398,162.1397 -77.7398,162.1397 -77.679905,162.1397 -77.62001,162.1397 -77.560115,162.1397 -77.50022,162.1397 -77.440325,162.1397 -77.38043,162.1397 -77.320535,162.1397 -77.26064,162.1397 -77.200745,162.1397 -77.14085))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 31 Jul 2014 00:00:00 GMT", "description": "The relatively pristine Antarctic continent with its extensive maritime zone represents a unique location on the planet to investigate the long distance aerial transport and deposition of marine microorganisms. The vast extent of new sea ice that forms each winter around the continent results in large numbers of frost flowers, delicate ice-crystal structures of high salt content that form on the surface of the ice and are readily dispersed by wind. The proposed research builds on earlier work in the Arctic and tests the new hypothesis that wind-borne frost flowers provide an effective mechanism for the transport of marine bacteria over long distances, one that can be uniquely sourced and tracked by the frost flower salt signature in the Antarctic realm. A highly resolved genomic snapshot of the microbial community will be acquired at each stage in the transport path, which will track decreasing fractions of the marine microbial community as it freezes into sea ice, incorporates into frost flowers, converts to aerosols, and ultimately deposits within continental snowpack. En route from sea ice to snowpack, marine bacteria will be exposed to an array of environmental stresses, including high salinity, low temperatures, UV light and potential desiccation. A parallel proteomic analysis will enable an evaluation of the microbial response to these extreme conditions and potential survival mechanisms that allow persistence or eventual colonization of deposition sites across Antarctica. Current understanding of microbes in the Antarctic atmosphere is based on a limited number of microscopic and culture-based assays and a single report of low-resolution 16S RNA gene sequence analysis. The research will broadly impact understanding of atmospheric microbiology, from source to deposition, and various issues of microbial survival, colonization, endemism, and diversity under extreme conditions. In addition to venues that reach the scientific community, the research team will develop a permanent multi-media and artifact-based exhibit on Antarctic Microbial Transport that will be showcased at Seattle\u0027s Pacific Science Center (PSC), which educates nearly a million visitors annually.", "east": 169.02777, "geometry": "POINT(165.583735 -77.440325)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.14085, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Deming, Jody", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -77.7398, "title": "High Resolution Genomic and Proteomic Analyses of a Microbial Transport Mechanism from Antarctic Marine Waters to Permanent Snowpack", "uid": "p0000356", "west": 162.1397}, {"awards": "0636767 Dunbar, Nelia; 0636740 Kreutz, Karl", "bounds_geometry": "POINT(112.11666 -79.46666)", "dataset_titles": "Microparticle, Conductivity, and Density Measurements from the WAIS Divide Deep Ice Core, Antarctica; Snowpit Chemistry - Methods Comparison, WAIS Divide, Antarctica; Snowpit evidence of the 2011 Puyehue-Cordon Caulle (Chile) eruption in West Antarctica; WAIS Divide Microparticle Concentration and Size Distribution, 0-2400 ka; WAIS Divide Snowpit Chemical and Isotope Measurements, Antarctica; WAIS Divide WDC06A Discrete ICP-MS Chemistry", "datasets": [{"dataset_uid": "609620", "doi": "10.7265/N5Q81B1X", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Trace Elements; WAIS Divide; WAIS Divide Ice Core", "people": "Kreutz, Karl; Koffman, Bess", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Snowpit Chemistry - Methods Comparison, WAIS Divide, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609620"}, {"dataset_uid": "601036", "doi": "10.15784/601036", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Intracontinental Magmatism; IntraContinental Magmatism; Snow Pit; Tephra; WAIS Divide; WAIS Divide Ice Core", "people": "Koffman, Bess; Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Snowpit evidence of the 2011 Puyehue-Cordon Caulle (Chile) eruption in West Antarctica", "url": "https://www.usap-dc.org/view/dataset/601036"}, {"dataset_uid": "601023", "doi": "10.15784/601023", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; ICP-MS; Isotope; WAIS Divide; WAIS Divide Ice Core", "people": "Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide WDC06A Discrete ICP-MS Chemistry", "url": "https://www.usap-dc.org/view/dataset/601023"}, {"dataset_uid": "609506", "doi": "10.7265/N5SJ1HHN", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Isotope; Microparticle Concentration; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core", "people": "Koffman, Bess; Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Snowpit Chemical and Isotope Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609506"}, {"dataset_uid": "609616", "doi": "10.7265/N5KK98QZ", "keywords": "Antarctica; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Particle Size; WAIS Divide; WAIS Divide Ice Core", "people": "Koffman, Bess; Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Microparticle Concentration and Size Distribution, 0-2400 ka", "url": "https://www.usap-dc.org/view/dataset/609616"}, {"dataset_uid": "609499", "doi": "10.7265/N5K07264", "keywords": "Antarctica; Density; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Microparticle Concentration; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "Kreutz, Karl; Hamilton, Gordon S.; Koffman, Bess; Breton, Daniel", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Microparticle, Conductivity, and Density Measurements from the WAIS Divide Deep Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609499"}], "date_created": "Tue, 19 Jun 2012 00:00:00 GMT", "description": "This award supports a project to perform continuous microparticle concentration and size distribution measurements (using coulter counter and state-of-the-art laser detector methods), analysis of biologically relevant trace elements associated with microparticles (Fe, Zn, Co, Cd, Cu), and tephra measurements on the WAIS Divide ice core. This initial three-year project includes analysis of ice core spanning the instrumental (~1850-present) to mid- Holocene (~5000 years BP) period, with sample resolution ranging from subannual to decadal. The intellectual merit of the project is that it will help in establishing the relationships among climate, atmospheric aerosols from terrestrial and volcanic sources, ocean biogeochemistry, and greenhouse gases on several timescales which remain a fundamental problem in paleoclimatology. The atmospheric mineral dust plays an important but uncertain role in direct radiative forcing, and the microparticle datasets produced in this project will allow us to examine changes in South Pacific aerosol loading, atmospheric dynamics, and dust source area climate. The phasing of changes in aerosol properties within Antarctica, throughout the Southern Hemisphere, and globally is unclear, largely due to the limited number of annually dated records extending into the glacial period and the lack of a\u003cbr/\u003etephra framework to correlate records. The broader impacts of the proposed research are an interdisciplinary approach to climate science problems, and will contribute to several WAIS Divide science themes as well as the broader paleoclimate and oceanographic communities. Because the research topics have a large and direct societal relevance, the project will form a centerpiece of various outreach efforts at UMaine and NMT including institution websites, public speaking, local K-12 school interaction, media interviews and news releases, and popular literature. At least one PhD student and one MS student will be directly supported by this project, including fieldwork, core processing, laboratory analysis, and data interpretation/publication. We expect that one graduate student per year will apply for a core handler/assistant driller position through the WAIS Divide Science Coordination Office, and that undergraduate student involvement will result in several Capstone experience projects (a UMaine graduation requirement). Data and ideas generated from the project will be integrated into undergraduate and graduate course curricula at both institutions.", "east": 112.11666, "geometry": "POINT(112.11666 -79.46666)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PARTICLE DETECTORS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e LOPC-PMS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e ICE CORE MELTER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PARTICLE DETECTORS", "is_usap_dc": true, "keywords": "Ice Core Dust; Tephra; Radiative Forcing; Greenhouse Gas; West Antarctica; Atmospheric Aerosols; Oxygen Isotope; Not provided; WAIS Divide; Snow Pit; Ice Core Chemistry; Microparticle; Wais Divide-project; Microparticles Size; Paleoclimate; LABORATORY; Ice Core Data; Atmospheric Dynamics; Antarctica; FIELD SURVEYS; Ice Core; Trace Elements; FIELD INVESTIGATION; Holocene; Isotope; Snow Chemistry", "locations": "Antarctica; WAIS Divide; West Antarctica", "north": -79.46666, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Koffman, Bess; Kreutz, Karl; Breton, Daniel; Dunbar, Nelia; Hamilton, Gordon S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.46666, "title": "Collaborative Research: Microparticle/tephra analysis of the WAIS Divide ice core", "uid": "p0000040", "west": 112.11666}, {"awards": "0636898 Winckler, Gisela", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 30 Nov 2011 00:00:00 GMT", "description": "Winckler/0636898\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to study dust sources in Antarctic ice cores. Atmospheric aerosols play an important role both in global biogeochemical cycles as well as in the climate system of the Earth. Records extracted from Antarctic ice cores inform us that dust deposition from the atmosphere to the ice sheet was 15-20 times greater during glacial periods than during interglacials, which raises the possibility that dust may be a key player in climate change on glacial-interglacial timescales. By characterizing potential source areas from South America, South Africa, and Australia as well as fresh glacial flour from Patagonia, the project will determine if the interglacial dust was mobilized from a distinct geographical region (e.g., Australia) or from a more heavily weathered source region in South America. The intellectual merit of the project is that it will contribute to reconstructing climate-related changes in the rate of dust deposition, and in the provenance of the dust, it will provide critical constraints on hydrology and vegetation in the source regions, as well as on the nature of the atmospheric circulation transporting dust to the archive location. In a recent pilot study it was found that there is a dramatic glacial to Holocene change in the 4He/Ca ratio in the dust extracted from ice from Dronning Maud Land, Antarctica, indicating a shift in the source of dust transported to Antarctica. The broader impacts of the project are that Helium isotopes and calcium measurements provide a wealth of information that can then be turned into critical input for dust-climate models. Improved models, which are able to accurately reconstruct paleo dust distribution, will help us to predict changes in dust in response to future climate variability. This information will contribute to an improvement of our integrated understanding of the Earth\u0027s climate system and, in turn, will better inform policy makers of those processes and conditions most susceptible to perturbation by climate change, thereby leading to more meaningful climate-change policy. The project will support a graduate student in the dual masters Earth and Environmental Science Journalism program. The lead-PI manages the rock noble gas laboratory at Lamont. Her leadership role in this facility impacts the training of undergraduate and graduate students as well as visiting scientists.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": false, "keywords": "Deposition; LABORATORY; Dust; Climate; Not provided; Climate Change; Helium Isotopes; FIELD INVESTIGATION; Biogeochemical Cycles", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Winckler, Gisela", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Tracing Glacial-interglacial Changes in the Dust Source to Antarctica using Helium Isotopes", "uid": "p0000265", "west": null}, {"awards": "0739780 Taylor, Kendrick", "bounds_geometry": "POINT(-112.117 -79.666)", "dataset_titles": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "datasets": [{"dataset_uid": "600142", "doi": "10.15784/600142", "keywords": "Antarctica; Atmosphere; Black Carbon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Taylor, Kendrick C.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "url": "https://www.usap-dc.org/view/dataset/600142"}], "date_created": "Thu, 28 Apr 2011 00:00:00 GMT", "description": "Edwards/0739780\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to develop a 2,000-year high-temporal resolution record of biomass burning from the analysis of black carbon in the WAIS Divide bedrock ice core. Pilot data for the WAIS WD05A core demonstrates that we now have the ability to reconstruct this record with minimal impact on the amount of ice available for other projects. The intellectual merit of this project is that black carbon (BC) aerosols result solely from combustion and play a critical but poorly quantified role in global climate forcing and the carbon cycle. When incorporated into snow and ice, BC increases absorption of solar radiation making seasonal snow packs, mountain glaciers, polar ice sheets, and sea ice much more vulnerable to climate warming. BC emissions in the Southern Hemisphere are dominated by biomass burning in the tropical regions of Southern Africa, South America and South Asia. Biomass burning, which results from both climate and human activities, alters the atmospheric composition of greenhouse gases, aerosols and perturbs key biogeochemical cycles. A long-term record of biomass burning is needed to aid in the interpretation of ice core gas composition and will provide important information regarding human impacts on the environment and climate before instrumental records. The broader impacts of the project are that it represents a paradigm shift in our ability to reconstruct the history of fire from ice core records and to understand its impact on atmospheric chemistry and climate over millennial time scales. This type of data is especially needed to drive global circulation model simulations of black carbon aerosols, which have been found to be an important component of global warming and which may be perturbing the hydrologic cycle. The project will also employ undergraduate students and is committed to attracting underrepresented groups to the physical sciences. The project?s outreach component will be conducted as part of the WAIS project outreach program and will reach a wide audience.", "east": -112.117, "geometry": "POINT(-112.117 -79.666)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Ice Core Chemistry; Not provided; Gas Record; Ice Core; Gas Measurement; Ice Core Gas Composition; Antarctica; LABORATORY; Bedrock Ice Core; Ice Core Gas Records; Wais Project; Greenhouse Gas; Atmospheric Chemistry; FIELD INVESTIGATION; Black Carbon; Biomass Burning; WAIS Divide; FIELD SURVEYS; West Antarctica; Methane", "locations": "Antarctica; West Antarctica; WAIS Divide", "north": -79.666, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward J.; McConnell, Joseph; Mitchell, Logan E; Sowers, Todd A.; Taylor, Kendrick C.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.666, "title": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "uid": "p0000022", "west": -112.117}, {"awards": "0440609 Price, P. Buford", "bounds_geometry": "POINT(-112.06556 -79.469444)", "dataset_titles": null, "datasets": null, "date_created": "Tue, 03 Jun 2008 00:00:00 GMT", "description": "This award supports a project to use three downhole instruments - an optical logger; a\u003cbr/\u003eminiaturized biospectral logger at 420 nm (miniBSL-420); and an Acoustic TeleViewer (ATV) - to log a 350-m borehole at the WAIS Divide drill site. In addition, miniBSL-224 (at 224 nm) and miniBSL-420 will scan ice core sections at NICL to look for abrupt climate changes, volcanic ash, microbial concentrations, and correlations among them. Using the optical logger and ATV to log bubble number densities vs depth in a WAIS Divide borehole, we will detect annual layers, from which we can establish the age vs depth relation to the bottom of the borehole that will be available during the three-year grant period. With the same instruments we will search for long-period modulation of bubble and dust concentrations in order to provide definitive evidence for or against an effect of long-period variability of the sun or solar wind on climate. We will detect and accurately date ash layers in a WAIS Divide borehole. We will match them with ash layers that we previously detected in the Siple Dome borehole, and also match them with sulfate and ash layers found by others at Vostok, Dome Fuji, Dome C, and GISP2. The expected new data will allow us to extend our recent study which showed that the Antarctic record of volcanism correlates with abrupt climate change at a 95% to \u003e99.8% significance level and that the volcanic signatures at bipolar locations match at better than 3 sigma during the interval 2 to 45 kiloyears. The results to be obtained during this grant period will position us to extend an accurate age vs depth relation and volcano-climate correlations to earlier than 150 kiloyears ago in the future WAIS Divide borehole to be drilled to bedrock. Using the miniBSLs to identify biomolecules via their fluorescence, we will log a 350-m borehole at WAIS Divide, and we will scan selected lengths of ice core at NICL. Among the biomolecules the miniBSLs can identify will be chlorophyll, which will provide the first map of aerobic microbes in ice, and F420, which will provide the first map of methanogens in ice. We will collaborate with others in relating results from WAIS Divide and NICL ice cores to broader topics in climatology, volcanology, and microbial ecology. We will continue to give broad training to undergraduate and graduate students, to attract underrepresented minorities to science, engineering, and math, and to educate the press and college teachers. A deeper understanding of the causes of abrupt climate change, including a causal relationship with strong volcanic eruptions, can enable us to understand and mitigate adverse effects on climate.", "east": -112.06556, "geometry": "POINT(-112.06556 -79.469444)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUORESCENCE SPECTROSCOPY; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS", "is_usap_dc": false, "keywords": "Volcanic Ash; Dust Concentration; Antarctica; FIELD INVESTIGATION; Liquid Veins In Ice; Optical Logger; Borehole; Ash Layer; FIELD SURVEYS; Microbial Metabolism; Climate; Biospectral Logger; Not provided; Protein Fluorescence; Gas Artifacts; Aerosol Fluorescence; Volcanism; WAIS Divide; Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.469444, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bay, Ryan; Price, Buford", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repositories": null, "science_programs": null, "south": -79.469444, "title": "Climatology, Volcanism, and Microbial Life in Ice with Downhole Loggers", "uid": "p0000746", "west": -112.06556}, {"awards": "0125761 Thiemens, Mark", "bounds_geometry": null, "dataset_titles": "Atmospheric Nitrate Isotopic Analysis at Amundsen-Scott South Pole Station, A Twenty-Five Year Record", "datasets": [{"dataset_uid": "609281", "doi": "10.7265/N5TT4NWF", "keywords": "Aerosol; Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; NBP1502; Snow/ice; Snow/Ice; South Pole Station", "people": "Thiemens, Mark H.; Savarino, Joel", "repository": "USAP-DC", "science_program": null, "title": "Atmospheric Nitrate Isotopic Analysis at Amundsen-Scott South Pole Station, A Twenty-Five Year Record", "url": "https://www.usap-dc.org/view/dataset/609281"}], "date_created": "Tue, 27 Dec 2005 00:00:00 GMT", "description": "This award supports a detailed laboratory analysis of the mass-independent isotopic composition of processes associated with atmospheric nitrate trapped in the snow pack at the South Pole. The project will specifically test if the oxygen isotopes 16O, 17O, 18O of nitrate can be used to probe the denitrification of the Antarctic stratosphere. Despite decades of research, there are several important issues in Antarctic atmospheric science, which are presently inadequately resolved. This includes quantification over time of the sources of nitrate aerosols. Today, little is known about the past denitrification of the stratosphere in high latitude regions. This lack of knowledge significantly limits our ability to understand the chemical state of ancient atmospheres and therefore evaluate present and past-coupled climate/atmosphere models. The role of nitrogen in environmental degradation is well known. This issue will also be addressed in this proposal. Atmospheric aerosols have now been shown to possess a mass-independent oxygen isotopic content. The proposed research will investigate the stable oxygen isotope ratios of nitrate in Antarctica both collected in real time and from the snow. Two periods of time will be covered. Full year nitrate aerosol collections, with week resolution time horizons, will be performed at the South Pole. Weekly aerosol collections will help us to identify any seasonal trend of the oxygen-17 excess anomaly, and eventually link this anomaly to the denitrification of the Antarctic stratosphere. This data set will also be used to test our assumption that the oxygen isotopic anomaly of nitrate is mainly formed in the stratosphere and is well preserved in the snow pack. If true, we will for the first time resolve an atmospheric signal extracted from a nitrate profile. The snow pit will allow us to see any trend in the data on a multiple decade timescale.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Snow; GROUND STATIONS; Ion Chemistry; South Pole; Not provided; Aerosol; Oxygen Isotope; GROUND-BASED OBSERVATIONS; Snow Pit; Antarctica; Admundsen-Scott Station", "locations": "Antarctica; South Pole", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Savarino, Joel; Thiemens, Mark H.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "South Pole Atmospheric Nitrate Isotopic Analysis (SPANIA)", "uid": "p0000242", "west": null}, {"awards": "9615333 Saltzman, Eric", "bounds_geometry": "POINT(-148.8 -81.7)", "dataset_titles": "Biogenic Sulfur in the Siple Dome Ice Core", "datasets": [{"dataset_uid": "609201", "doi": "10.7265/N5S180F1", "keywords": "Antarctica; Biota; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Saltzman, Eric; Dioumaeva, Irina; Finley, Brandon", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Biogenic Sulfur in the Siple Dome Ice Core", "url": "https://www.usap-dc.org/view/dataset/609201"}], "date_created": "Tue, 09 Mar 2004 00:00:00 GMT", "description": "This award is for support for four years of funding for a program of biogenic sulfur measurements on the Siple Dome ice core. Biogenic sulfur is a major aerosol-forming constituent of the atmosphere and has potentially important links to the earth\u0027s radiation budget. Previous work on the Vostok ice core has demonstrated a remarkable climate-related variability in biogenic sulfur, suggesting that the sulfur cycle may act to stabilize climate (keep the glacial atmosphere cool and the interglacial atmosphere warm) in the Southern Hemisphere. In this study, methane-sulfonate (MSA) will be measured on the Siple Dome ice core as part of the West Antarctic ice sheet program (WAIS). Siple Dome is located in a region which is strongly impacted by the incursion of marine air onto the Antarctic plateau. Because of its proximity to the coast and meteorological setting, it is expected that variability in high-latitude marine biogenic sulfur emissions should dominate the MSA record at this site. In addition to the deep ice core record, samples from shallow cores will also be analyzed to provide information about regional variability and decadal-to-centennial scale variability in the deposition of sulfur-containing aerosols from high latitude source regions over the past 200 years.", "east": -148.8, "geometry": "POINT(-148.8 -81.7)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Siple Dome; GROUND-BASED OBSERVATIONS; Biogenic Sulfur; FIELD INVESTIGATION; Not provided; LABORATORY; Methane Sulfonate", "locations": "Siple Dome", "north": -81.7, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Saltzman, Eric; Dioumaeva, Irina; Finley, Brandon", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.7, "title": "Biogenic Sulfur in the Siple Dome Ice Core", "uid": "p0000251", "west": -148.8}, {"awards": "9615167 Dunbar, Nelia; 9527373 Dunbar, Nelia", "bounds_geometry": null, "dataset_titles": "Blue Ice Tephra II - Brimstone Peak; Blue Ice Tephra II - Mt. DeWitt; Tephra in Siple and Taylor Dome Ice Cores; Volcanic Records in the Siple and Taylor Dome Ice Cores", "datasets": [{"dataset_uid": "609110", "doi": "10.7265/N50P0WXF", "keywords": "Antarctica; Backscattered Electron Images; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Siple Dome Ice Core; Taylor Dome Ice Core; WAIS", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Tephra in Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609110"}, {"dataset_uid": "609126", "doi": "10.7265/N5FQ9TJG", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome Ice Core; Taylor Dome Ice Core; Tephra; WAIS; WAISCORES", "people": "Zielinski, Gregory; Dunbar, Nelia", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Volcanic Records in the Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609126"}, {"dataset_uid": "609126", "doi": "10.7265/N5FQ9TJG", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome Ice Core; Taylor Dome Ice Core; Tephra; WAIS; WAISCORES", "people": "Zielinski, Gregory; Dunbar, Nelia", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Volcanic Records in the Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609126"}, {"dataset_uid": "609114", "doi": "10.7265/N5MG7MDK", "keywords": "Antarctica; Blue Ice; Brimstone Peak; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Petrography; Tephra", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": null, "title": "Blue Ice Tephra II - Brimstone Peak", "url": "https://www.usap-dc.org/view/dataset/609114"}, {"dataset_uid": "609115", "doi": "10.7265/N5GQ6VPV", "keywords": "Antarctica; Blue Ice; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Mount Dewitt; Petrography; Tephra", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": null, "title": "Blue Ice Tephra II - Mt. DeWitt", "url": "https://www.usap-dc.org/view/dataset/609115"}, {"dataset_uid": "609110", "doi": "10.7265/N50P0WXF", "keywords": "Antarctica; Backscattered Electron Images; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Siple Dome Ice Core; Taylor Dome Ice Core; WAIS", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Tephra in Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609110"}], "date_created": "Sat, 01 Jun 2002 00:00:00 GMT", "description": "Dunbar/Kyle OPP 9527373 Zielinski OPP 9527824 Abstract The Antarctic ice sheets are ideal places to preserve a record the volcanic ash (tephra) layers and chemical aerosol signatures of volcanic eruptions. This record, which is present both in areas of bare blue ice, as well as in deep ice cores, consists of a combination of local eruptions, as well as eruptions from more distant volcanic sources from which glassy shards can be chemically fingerprinted and related to a source volcano. Field work carried out during the 1994/1995 Antarctic field season in the Allan Hills area of Antarctica, and subsequent microbeam chemical analysis and 40Ar/39Ar dating has shown that tephra layers in deep Antarctic ice preserve a coherent, systematic stratigraphy, and can be successfully mapped, dated, chemically fingerprinted and tied to source volcanoes. The combination of chemical fingerprinting of glass shards, and chemical analysis of volcanic aerosols associated with ash layers will allow establishment of a high-resolution chronology of local and distant volcanism that can help understand patterns of significant explosive volcanisms and atmospheric loading and climactic effects associated with volcanic eruptions. Correlation of individual tephra layers, or sets of layers, in blue ice areas, which have been identified in many places the Transantarctic Mountains, will allow the geometry of ice flow in these areas to be better understood and will provide a useful basis for interpreting ice core records.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES", "is_usap_dc": true, "keywords": "USAP-DC; Siple Coast; Sulfur Dioxide; Siple Dome; Taylor Dome; Chlorine; WAISCORES; Ice Core; Tephra; Geochemistry; Volcanic Deposits; GROUND STATIONS; Brimstone Peak; GROUND-BASED OBSERVATIONS; Magnesium Oxide; Glaciology; Mount Dewitt; Silicon Dioxide; Glass Shards; Ice Sheet; Siple; Nickel Oxide; Potassium Dioxide; Not provided; Manganese Oxide; Volcanic; Snow; Nitrogen; Iron Oxide; Titanium Dioxide; Stratigraphy; Antarctica", "locations": "Antarctica; Siple; Siple Coast; Siple Dome; Taylor Dome; Brimstone Peak; Mount Dewitt", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Dunbar, Nelia; Zielinski, Gregory", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": null, "title": "Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region", "uid": "p0000065", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Collaborative Research: An Ice Core from Hercules Dome, East Antarctica
|
1841844 1841858 1841879 |
2023-02-06 | Steig, Eric J.; Fudge, T. J. | No dataset link provided | The goal of this project is to drill and recover an ice core from Hercules Dome, Antarctica. The geographic setting of Hercules Dome makes it well-situated to investigate changes in the size of the West Antarctic ice sheet over long time periods. The base of the West Antarctic ice sheet lies below sea level, which makes this part of Antarctica vulnerable to melting from the relatively warm deep water of the Southern Ocean. An important research question is whether the West Antarctic Ice Sheet collapsed during Earth's last prolonged warm period, about 125,000 years ago, when the ocean was warmer and sea level was several meters higher than today. Evidence for or against such a collapse will be recorded in the chemistry and physical properties of the ice. The Hercules Dome ice core will be obtained over three to four field seasons in Antarctica using efficient drilling technology. This grant includes support for project management, pre-drilling science community engagement, ice-core recovery, and education and outreach activities. Hercules Dome is located at the edge of the East Antarctic ice sheet, south of the Transantarctic Mountains at 86 degrees South, 105 degrees West. Glaciological conditions at Hercules Dome are simple, with well-defined layering to the bed, optimal for the recovery of a deep ice core reaching to the last interglacial period at depths between 1600 and 2800 meters. An ice core from Hercules Dome will provide a research opportunity for ice-core analysts and others to make progress on a number of science priorities, including the environmental conditions of the last interglacial period, the history of gases and aerosols, and the magnitude and timing of changes in temperature and snow accumulation over the last 150,000 years. Together with the network of ice cores obtained by U.S. and international researchers over the last few decades, results from Hercules Dome will yield improved estimates of the boundary conditions necessary for the implementation and validation of ice-sheet models critical to the projection of future Antarctic ice-sheet change and sea level. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POINT(-105 -86) | POINT(-105 -86) | false | false | |||||
Collaborative Research: US GEOTRACES GP17-ANT: Dissolved concentrations, isotopes, and colloids of the bioactive trace metals
|
2123333 2123354 2123491 |
2022-09-08 | Conway, Timothy; Fitzsimmons, Jessica; John, Seth | No dataset link provided | The goal of the international GEOTRACES program is to understand the distributions of trace chemical elements and their isotopes (TEIs) in the oceans. Many trace metals such as iron are essential for life and thus considered nutrients for phytoplankton growth, with trace metal cycling being especially important for influencing carbon cycling in the iron-limited Southern Ocean, where episodic supply of iron from a range of different external sources is important. The primary goal of this project is to measure the dissolved concentrations, size partitioning, and dissolved isotope signature of Fe on a transect of water-column stations throughout the Amundsen Sea and surrounding region of the Antarctic Margin, as part of the GP17-ANT Expedition. The secondary goal of this project is to analyze the concentrations and size partitioning of the trace metals manganese, zinc, copper, cadmium, nickel, and lead in all water-column samples, measure the isotope ratios of zinc, cadmium, nickel, and copper in a subset of water column samples, and measure the Fe isotopic signature of aerosols, porewaters, and particles. Observations from this project will be incorporated into regional and global biogeochemistry models to assess TEI cycling within the Amundsen Sea and implications for the wider Southern Ocean. This project spans three institutions, four graduate students, undergraduate students, and will provide ultrafiltered samples and data to other PIs as service. The US GEOTRACES GP17 ANT expedition, planned for austral summer 2023/2024 aims to determine the distribution and cycling of trace elements and their isotopes in the Amundsen Sea Sector (100-135°W) of the Antarctic Margin. The cruise will follow the Amundsen Sea ‘conveyor belt’ by sampling waters coming from the Antarctic Circumpolar Current onto the continental shelf, including near the Dotson and Pine Island ice shelves, the productive Amundsen Sea Polynya (ASP), and outflowing waters. Episodic addition of dissolved Fe and other TEIs from dust, ice-shelves, melting ice, and sediments drive seasonal primary productivity and carbon export over the Antarctic shelf and offshore into Southern Ocean. Seasonal coastal polynyas such as the highly productive ASP thus act as key levers on global carbon cycling. However, field observations of TEIs in such regions remain scarce, and biogeochemical cycling processes are poorly captured in models of ocean biogeochemistry. The investigators will use their combined analytical toolbox, in collaboration with the diagnostic chemical tracers and regional models of other funded groups to address four main objectives: 1) What is the relative importance of different sources in supplying Fe and other TEIs to the ASP? 2) What is the physiochemical speciation of this Fe, and its potential for transport? 3) How do biological uptake, scavenging and regeneration in the ASP influence TEI distributions, stoichiometry, and nutrient limitation? 4) What is the flux and signature of TEIs transported offshore to the ACC and Southern Ocean? This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-135 -66,-131.5 -66,-128 -66,-124.5 -66,-121 -66,-117.5 -66,-114 -66,-110.5 -66,-107 -66,-103.5 -66,-100 -66,-100 -67,-100 -68,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-103.5 -76,-107 -76,-110.5 -76,-114 -76,-117.5 -76,-121 -76,-124.5 -76,-128 -76,-131.5 -76,-135 -76,-135 -75,-135 -74,-135 -73,-135 -72,-135 -71,-135 -70,-135 -69,-135 -68,-135 -67,-135 -66)) | POINT(-117.5 -71) | false | false | |||||
CAREER: Coastal Antarctic Snow Algae and Light Absorbing Particles: Snowmelt, Climate and Ecosystem Impacts
|
2046240 |
2021-09-10 | Khan, Alia | No dataset link provided | ________________________________________________________________________________________________ Part I: Non-technical Summary The Antarctic Peninsula is one of the most rapidly warming regions on the planet. This 5-yr time-series program will build on an ongoing international collaboration with scientists from the Chilean Antarctic Program to evaluate the role of temperature, light absorbing particles, snow-algae growth, and their radiative forcing effects on snow and ice melt in the Western Antarctic Peninsula. There is strong evidence that these effects may be intensifying due to a warming climate. Rising temperatures can increase the growth rate of coastal snow algae as well as enhance the input of particles from sources such as the long-range transport of black carbon to the Antarctic continent from intensifying Southern Hemisphere wildfire seasons. Particle and algae feedbacks can have immediate local impacts on snow melt and long-term regional impacts on climate because reduced snow cover alters how the Antarctic continent interacts with the rest of the global climate. A variety of ground-based and remote sensing data collected across multiple spatial scales will be used. Ground measurements will be compared to satellite imagery to develop novel computer algorithms to map ice algal bloom effects under changing climates. The project is expected to fundamentally advance knowledge of the spatial and temporal snow algae growing season, which is needed to quantify impacts on regional snow and ice melt. The program also has a strong partnership with the International Association of Antarctic Tour Operators to involve cruise passengers as citizen scientists for sample collection. Antarctic research results will be integrated into undergraduate curricula and research opportunities through studies to LAPs and snow algae in the Pacific Northwest. The PI will recruit and train a diverse pool of students in cryosphere climate related research methods on Mt. Baker in Western Washington. Trained undergraduate will then serve as instructors for a local Snow School that takes middle school students to Mt. Baker to learn about snow science. Resulting datasets from Antarctica and Mt. Baker will be used in University classes to explore regional effects of climate change. Along with enhancing cryosphere-oriented place-based undergraduate field courses in the Pacific Northwest, the PI will recruit and train a diverse pool of undergraduate students to serve as instructors for the Mt. Baker Snow School program. This award will advance our understanding of cryosphere-climate feedbacks, which are likely changing and will continue to evolve in a warming world, while also increasing under-represented student engagement in the polar geosciences. Part 2: Technical Summary Rapid and persistent climate warming in the Western Antarctic Peninsula is likely resulting in intensified snow-algae growth and an extended bloom season in coastal areas. Similarly, deposition of light absorbing particles (LAPs) onto Antarctica cryosphere surfaces, such as black carbon from intensifying Southern Hemisphere wildfire seasons, and dust from the expansion of ice-free regions in the Antarctic Peninsula, may be increasing. The presence of snow algae blooms and LAPs enhance the absorption of solar radiation by snow and ice surfaces. This positive feedback creates a measurable radiative forcing, which can have immediate local and long-term regional impacts on albedo, snow melt and downstream ecosystems. This project will investigate the spatial and temporal distribution of snow algae, black carbon and dust across the Western Antarctica Peninsula region, their response to climate warming, and their role in regional snow and ice melt. Data will be collected across multiple spatial scales from in situ field measurements and sample collection to imagery from ground-based photos and high resolution multi-spectral satellite sensors. Ground measurements will inform development and application of novel algorithms to map algal bloom extent through time using 0.5-3m spatial resolution multi-spectral satellite imagery. Results will be used to improve snow algae parameterization in a new version of the Snow Ice Aerosol Radiation model (SNICARv3) that includes bio-albedo feedbacks, eventually informing models of ice-free area expansion through incorporation of SNICARv3 in the Community Earth System Model. Citizen scientists will be mentored and engaged in the research through an active partnership with the International Association of Antarctic Tour Operators that frequently visits the region. The cruise ship association will facilitate sampling to develop a unique snow algae observing network to validate remote sensing algorithms that map snow algae with high-resolution multi-spectral satellite imagery from space. These time-series will inform instantaneous and interannual radiative forcing calculations to assess impacts of snow algae and LAPs on regional snow melt. Quantifying the spatio-temporal growing season of snow algae and impacts from black carbon and dust will increase our ability to model their impact on snow melt, regional climate warming and ice-free expansion in the Antarctic Peninsula region. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-75 -62,-73.5 -62,-72 -62,-70.5 -62,-69 -62,-67.5 -62,-66 -62,-64.5 -62,-63 -62,-61.5 -62,-60 -62,-60 -62.85,-60 -63.7,-60 -64.55,-60 -65.4,-60 -66.25,-60 -67.1,-60 -67.95,-60 -68.8,-60 -69.65,-60 -70.5,-61.5 -70.5,-63 -70.5,-64.5 -70.5,-66 -70.5,-67.5 -70.5,-69 -70.5,-70.5 -70.5,-72 -70.5,-73.5 -70.5,-75 -70.5,-75 -69.65,-75 -68.8,-75 -67.95,-75 -67.1,-75 -66.25,-75 -65.4,-75 -64.55,-75 -63.7,-75 -62.85,-75 -62)) | POINT(-67.5 -66.25) | false | false | |||||
Quantifying Atmospheric Iron Properties over West Antarctic Peninsula
|
1341494 |
2020-02-20 | Gao, Yuan |
|
The research seeks to further quantify the input of atmospheric Fe into the sparsely sampled Southern Ocean (SO), specifically in the vicinity of the West Antarctic Peninsula (WAP) and adjacent continental shelf waters in the Drake Passage. This is typically a high nutrient low chlorophyll region where surface trace metal and primary productivity data are suggestive of Fe limitation. The WAP is characterized by high productivity in the austral summer, and at this time may be in the path of northern dust (aeolian Fe) input or subject to melt influx of elevated Fe accumulated from glacial and present-day sea ice sources. Primary scientific questions are: (1) to what extent does atmospheric Fe contribute to nutrient cycles and ecosystem dynamics in the SO? (2) How is warming climate occurring in the WAP affecting the aerosol composition of the maritime atmosphere. The primary productivity of the Southern Ocean is key to understanding oceanic uptake of anthropogenic greenhouse gases such as carbon dioxide. | POINT(-64.05 -64.77) | POINT(-64.05 -64.77) | false | false | |||||
Collaborative Research: A 1500m Ice Core from South Pole
|
1142517 1141839 1142646 |
2019-10-30 | Twickler, Mark; Souney, Joseph Jr.; Aydin, Murat; Steig, Eric J. | 1142517/Saltzman This proposal requests support for a project to drill and recover a new ice core from South Pole, Antarctica. The South Pole ice core will be drilled to a depth of 1500 m, providing an environmental record spanning approximately 40 kyrs. This core will be recovered using a new intermediate drill, which is under development by the U.S. Ice Drilling Design and Operations (IDDO) group in collaboration with Danish scientists. This proposal seeks support to provide: 1) scientific management and oversight for the South Pole ice core project, 2) personnel for ice core drilling and core processing, 3) data management, and 3) scientific coordination and communication via scientific workshops. The intellectual merit of the work is that the analysis of stable isotopes, atmospheric gases, and aerosol-borne chemicals in polar ice has provided unique information about the magnitude and timing of changes in climate and climate forcing through time. The international ice core research community has articulated the goal of developing spatial arrays of ice cores across Antarctica and Greenland, allowing the reconstruction of regional patterns of climate variability in order to provide greater insight into the mechanisms driving climate change. The broader impacts of the project include obtaining the South Pole ice core will support a wide range of ice core science projects, which will contribute to the societal need for a basic understanding of climate and the capability to predict climate and ice sheet stability on long time scales. Second, the project will help train the next generation of ice core scientists by providing the opportunity for hands-on field and core processing experience for graduate students and postdoctoral researchers. A postdoctoral researcher at the University of Washington will be directly supported by this project, and many other young scientists will interact with the project through individual science proposals. Third, the project will result in the development of a new intermediate drill which will become an important resource to US ice core science community. This drill will have a light logistical footprint which will enable a wide range of ice core projects to be carried out that are not currently feasible. Finally, although this project does not request funds for outreach activities, the project will run workshops that will encourage and enable proposals for coordinated outreach activities involving the South Pole ice core science team. | POINT(90 -90) | POINT(90 -90) | false | false | ||||||
Collaborative Research: Characterization of Upstream Ice and Firn Dynamics affecting the South Pole Ice Core
|
1443341 1443471 |
2018-06-14 | Koutnik, Michelle; Conway, Howard; Waddington, Edwin D.; Fudge, T. J.; Hawley, Robert L.; Osterberg, Erich | Ice-core records are critical to understanding past climate variations. An Antarctic ice core currently being drilled at the South Pole will allow detailed investigation of atmospheric gases and fill an important gap in understanding the pattern of climate variability across Antarctica. Critical to the interpretation of any ice core are: 1) accurate chronologies for both the ice and the trapped gas and 2) demonstration that records from the ice core reliably reflect climate. The proposed research will improve the ice and gas chronologies by making measurements of snow compaction in the upstream catchment in order to constrain age models of the ice. These measurements will be a key data set needed for better understanding and predicting time-varying conditions in the upper part of the ice sheet. The research team will measure the modern spatial gradients in accumulation rate, surface temperature, and water stable isotopes from shallow ice cores in the upstream catchment in order to determine the climate history from the ice-core record. The new ice-flow measurements will make it possible to define the path of ice from upstream to the South Pole ice-core drill site to assess spatial gradients in snowfall and to infer histories of snowfall from internal layers within the ice sheet. The project will be led by an early-career scientist, provide broad training to graduate students, and engage in public outreach on polar science. Ice-core records of stable isotopes, aerosol-born particles, and atmospheric gases are critical to understanding past climate variations. The proposed research will improve the ice and gas chronologies in the South Pole ice core by making in situ measurements of firn compaction in the upstream catchment to constrain models of the gas-age ice-age difference. The firn measurements will be a key data set needed to form a constitutive relationship for firn, and will drive better understanding and prediction of transient firn evolution. The research team will measure the modern gradients in accumulation rate, surface temperature, and water stable isotopes in the upstream catchment to separate spatial (advection) variations from temporal (climate) variations in the ice-core records. The ice-flow measurements will define the flowline upstream of the drill site, assess spatial gradients in accumulation, and infer histories of accumulation from radar-observed internal layers. Results will directly enhance interpretation of South Pole ice-core records, and also advance understanding of firn densification and drive next-generation firn models. | POLYGON((110 -89,117 -89,124 -89,131 -89,138 -89,145 -89,152 -89,159 -89,166 -89,173 -89,180 -89,180 -89.1,180 -89.2,180 -89.3,180 -89.4,180 -89.5,180 -89.6,180 -89.7,180 -89.8,180 -89.9,180 -90,173 -90,166 -90,159 -90,152 -90,145 -90,138 -90,131 -90,124 -90,117 -90,110 -90,110 -89.9,110 -89.8,110 -89.7,110 -89.6,110 -89.5,110 -89.4,110 -89.3,110 -89.2,110 -89.1,110 -89)) | POINT(145 -89.5) | false | false | ||||||
Using Electrical Conductance Measurements to Develop the South Pole Ice Core Chronology
|
1443232 |
2018-05-08 | Fudge, T. J.; Waddington, Edwin D. |
|
Ice cores record detailed histories of past climate variations. The South Pole ice core will allow investigation of atmospheric trace gases and fill an important gap in understanding the pattern of climate variability across Antarctica. An accurate timescale that assigns an age to the ice at each depth in the core is essential to interpretation of the ice-core records. This work will use electrical methods to identify volcanic eruptions throughout the past ~40,000 years in the core by detecting the enhanced electrical conductance in those layers due to volcanic impurities in the ice. These eruptions will be pattern-matched to other cores across Antarctica, synchronizing the timing of climate variations among cores and allowing the precise timescales developed for other Antarctic ice cores to be transferred to the South Pole ice core. The well-dated records of volcanic forcing will be combined with records of atmospheric gases, stable water-isotopes, and aerosols to better understand the large natural climate variations of the past 40,000 years. The electrical conductance method and dielectric profiling measurements will be made along the length of each section of the South Pole ice core at the National Ice Core Lab. These measurements will help to establish a timescale for the core. Electrical measurements will provide a continuous record of volcanic events for the entire core including through the brittle ice (550-1250m representing ~10,000-20,000 year-old ice) where the core quality and thin annual layers may prevent continuous melt analysis and cause discrete measurements to miss volcanic events. The electrical measurements also produce a 2-D image of the electrical layering on a longitudinal cut surface of each core. These data will be used to identify any irregular or absent layering that would indicate a stratigraphic disturbance in the core. A robust chronology is essential to interpretation of the paleoclimate records from the South Pole ice core. The investigators will engage teachers through talks and webinars with the National Science Teachers Association and will share information with the public at events such as Polar Science Weekend at the Pacific Science Center. Results will be disseminated through publications and conference presentations and the data will be archived and publicly available. | POLYGON((110 -89,117 -89,124 -89,131 -89,138 -89,145 -89,152 -89,159 -89,166 -89,173 -89,180 -89,180 -89.1,180 -89.2,180 -89.3,180 -89.4,180 -89.5,180 -89.6,180 -89.7,180 -89.8,180 -89.9,180 -90,173 -90,166 -90,159 -90,152 -90,145 -90,138 -90,131 -90,124 -90,117 -90,110 -90,110 -89.9,110 -89.8,110 -89.7,110 -89.6,110 -89.5,110 -89.4,110 -89.3,110 -89.2,110 -89.1,110 -89)) | POINT(145 -89.5) | false | false | |||||
Collaborative Research: Climate, Ice Dynamics and Biology using a Deep Ice Core from the West Antarctic Ice Sheet Ice Divide
|
0944348 0944266 |
2017-06-09 | Mark, Twickler; Taylor, Kendrick C. |
|
Taylor/0944348<br/><br/>This award supports renewal of funding of the WAIS Divide Science Coordination Office (SCO). The Science Coordination Office (SCO) was established to represent the research community and facilitates the project by working with support organizations responsible for logistics, drilling, and core curation. During the last five years, 26 projects have been individually funded to work on this effort and 1,511 m of the total 3,470 m of ice at the site has been collected. This proposal seeks funding to continue the SCO and related field operations needed to complete the WAIS Divide ice core project. Tasks for the SCO during the second five years include planning and oversight of logistics, drilling, and core curation; coordinating research activities in the field; assisting in curation of the core in the field; allocating samples to individual projects; coordinating the sampling effort; collecting, archiving, and distributing data and other information about the project; hosting an annual science meeting; and facilitating collaborative efforts among the research groups. The intellectual merit of the WAIS Divide project is to better predict how human-caused increases in greenhouse gases will alter climate requires an improved understanding of how previous natural changes in greenhouse gases influenced climate in the past. Information on previous climate changes is used to validate the physics and results of climate models that are used to predict future climate. Antarctic ice cores are the only source of samples of the paleo-atmosphere that can be used to determine previous concentrations of carbon dioxide. Ice cores also contain records of other components of the climate system such as the paleo air and ocean temperature, atmospheric loading of aerosols, and indicators of atmospheric transport. The WAIS Divide ice core project has been designed to obtain the best possible record of greenhouse gases during the last glacial cycle (last ~100,000 years). The site was selected because it has the best balance of high annual snowfall (23 cm of ice equivalent/year), low dust Antarctic ice that does not compromise the carbon dioxide record, and favorable glaciology. The main science objectives of the project are to investigate climate forcing by greenhouse gases, initiation of climate changes, stability of the West Antarctic Ice Sheet, and cryobiology in the ice core. The project has numerous broader impacts. An established provider of educational material (Teachers? Domain) will develop and distribute web-based resources related to the project and climate change for use in K?12 classrooms. These resources will consist of video and interactive graphics that explain how and why ice cores are collected, and what they tell us about future climate change. Members of the national media will be included in the field team and the SCO will assist in presenting information to the general public. Video of the project will be collected and made available for general use. Finally, an opportunity will be created for cryosphere students and early career scientists to participate in field activities and core analysis. An ice core archive will be available for future projects and scientific discoveries from the project can be used by policy makers to make informed decisions. | POINT(-112.1115 -79.481) | POINT(-112.1115 -79.481) | false | false | |||||
Collaborative Research: Allan HILLs Englacial Site (AHILLES) Selection
|
1443260 |
2017-05-02 | Conway, Howard |
|
Marine paleoclimate archives show that approximately one million years ago Earth's climate transitioned from 40,000-year glacial /interglacial cycles to 100,000-year cycles. This award will support a study designed to map the distribution of one million year-old ice in the Allan Hills Blue Ice Area, Antarctica using state-of-the-art ground penetrating radar. The Allen Hills was demonstrated to contain a continuous record of the past 400,000 years and is also the collection location of the oldest ice samples (990,000 years) yet recovered. The maps resulting from this study will be used to select an ice-core drilling site at which a million-plus year-old continuous record of climate could be recovered. Ice cores contain the only kind of record to directly capture atmospheric gases and aerosols, but no ice-core-based climate record yet extends continuously beyond the past 800,000 years. A million-plus year-old record will allow better understanding of the major mechanisms and driving forces of natural climate variability in a world with 100,000-year glacial/interglacial cycles. The project will support two early career scientists in collaboration with senior scientists, as well as a graduate student, and will conduct outreach to schools and the public. The Allan Hills Blue Ice Area preserves a continuous climate record covering the last 400,000 years along an established glaciological flow line. Two kilometers to the east of this flow line, the oldest ice on Earth (~1 million years old) is found only 120 m below the surface. Meteorites collected in the area are reported to be as old as 1.8 million years, suggesting still older ice may be present. Combined, these data strongly suggest that the Allen Hills area could contain a continuous, well-resolved environmental record, spanning at least the last million years. As such, this area has been selected as an upcoming target for the new Intermediate Depth Ice Core Drill by the US Ice Core Working Group. This drill will recover a higher-quality core than previous dry drilling attempts. This project will conduct a comprehensive ground penetrating radar survey aimed at tracing the signature of the million-year-old ice layer throughout the region. The resulting map will be used to select a drill site from which an ice core containing the million-plus year-old continuous climate record will be collected. The proposed activities are a necessary precursor to the collection of the oldest known ice on Earth. Ice cores provide a robust reconstruction of past climate and extending this record beyond the 800,000 years currently available will open new opportunities to study the climate system. The data collected will also be used to investigate the bedrock and ice flow parameters favorable to the preservation of old ice, which may allow targeted investigation of other blue ice areas in Antarctica. | POLYGON((159 -76.68,159.03 -76.68,159.06 -76.68,159.09 -76.68,159.12 -76.68,159.15 -76.68,159.18 -76.68,159.21 -76.68,159.24 -76.68,159.27 -76.68,159.3 -76.68,159.3 -76.697,159.3 -76.714,159.3 -76.731,159.3 -76.748,159.3 -76.765,159.3 -76.782,159.3 -76.799,159.3 -76.816,159.3 -76.833,159.3 -76.85,159.27 -76.85,159.24 -76.85,159.21 -76.85,159.18 -76.85,159.15 -76.85,159.12 -76.85,159.09 -76.85,159.06 -76.85,159.03 -76.85,159 -76.85,159 -76.833,159 -76.816,159 -76.799,159 -76.782,159 -76.765,159 -76.748,159 -76.731,159 -76.714,159 -76.697,159 -76.68)) | POINT(159.15 -76.765) | false | false | |||||
Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core
|
0538427 |
2017-04-25 | Bender, Michael; McConnell, Joseph | 0538427<br/>McConnell <br/>This award supports a project to use unique, high-depth-resolution records of a range of elements, chemical species, and ice properties measured in two WAIS Divide shallow ice cores and one shallow British ice core from West Antarctic to address critical paleoclimate, environmental, and ice-sheet mass-balance questions. Recent development of the CFA-TE method for ice-core analysis presents the opportunity to develop high-resolution, broad-spectrum glaciochemical records at WAIS Divide at relatively modest cost. Together with CFA-TE measurements from Greenland and other Antarctic sites spanning recent decades to centuries, these rich data will open new avenues for using glaciochemical data to investigate environmental and global changes issues ranging from anthropogenic and volcanic-trace-element fallout to changes in hemispheric-scale circulation, biogeochemistry, rapid-climate-change events, long-term climate change, and ice-sheet mass balance. As part of the proposed research, collaborations with U.S., Argentine, and British researchers will be initiated and expanded to directly address three major IPY themes (i.e., present environmental status, past and present environmental and human change, and polar-global interactions). Included in the contributions from these international collaborators will be ice-core samples, ice-core and meteorological model data, and extensive expertise in Antarctic glaciology, climatology, meteorology, and biogeochemistry. The broader impacts of the work include the training of students. The project will partially support one Ph.D. student and hourly undergraduate involvement. Every effort will be made to attract students from underrepresented groups to these positions. To address the challenge of introducing results of scientific research to the public policy debate, we will continue efforts to publish findings in high visibility journals, provide research results to policy makers, and work with the NSF media office to reach the public through mass-media programs. K-12 teacher and classroom involvement will be realized through outreach to local schools and NSF's Teachers Experiencing the Antarctic and Arctic (or similar) program in collaboration with WAIS Divide and other polar researchers. | POINT(-112.1115 -79.481) | POINT(-112.1115 -79.481) | false | false | ||||||
Collaborative Research: Investigating Upper Pleistocene Rapid Climate Change using Continuous, Ultra-High-Resolution Aerosol and Gas Measurements in the WAIS Divide Ice Core
|
1142166 |
2017-04-25 | McConnell, Joseph |
|
McConnell/1142166 This award supports a project to use unprecedented aerosol and continuous gas (methane, carbon monoxide) measurements of the deepest section of the West Antarctic Ice Sheet (WAIS) Divide ice core to investigate rapid climate changes in Antarctica during the ~60,000 year long Marine Isotope Stage 3 period of the late Pleistocene. These analyses, combined with others, will take advantage of the high snow accumulation of the WAIS Divide ice core to yield the highest time resolution glaciochemical and gas record of any deep Antarctic ice core for this time period. The research will expand already funded discrete gas measurements and extend currently funded continuous aerosol measurements on the WAIS Divide ice core from ~25,000 to ~60,000 years before present, spanning Heinrich events 3 to 6 and Antarctic Isotope Maximum (AIM, corresponding to the Northern Hemisphere Dansgaard-Oeschger) events 3 to 14. With other high resolution Greenland cores and lower resolution Antarctic cores, the combined record will yield new insights into worldwide climate dynamics and abrupt change. The intellectual merit of the work is that it will be used to address the science goals of the WAIS Divide project including the identification of dust and biomass burning tracers such as black carbon and carbon monoxide which reflect mid- and low-latitude climate and atmospheric circulation patterns, and fallout from these sources affects marine and terrestrial biogeochemical cycles. Similarly, sea salt and ocean productivity tracers reflect changes in sea ice extent, marine primary productivity, wind speeds above the ocean, and atmospheric circulation. Volcanic tracers address the relationship between northern, tropical, and southern climates as well as stability of the West Antarctic ice sheet and sea level change. When combined with other gas records from WAIS Divide, the records developed here will transform understanding of mid- and low-latitude drivers of Antarctic, Southern Hemisphere, and global climate rapid changes and the timing of such changes. The broader impacts of the work are that it will enhance infrastructure through expansion of continuous ice core analytical techniques, train students and support collaboration between two U.S. institutions (DRI and OSU). All data will be made available to the scientific community and the public and will include participation the WAIS Divide Outreach Program. Extensive graduate and undergraduate student involvement is planned. Student recruitment will be made from under-represented groups building on a long track record. Broad outreach will be achieved through collaborations with the global and radiative modeling communities, NESTA-related and other educational outreach efforts, and public lectures. This proposed project does not require field work in the Antarctic. | POINT(-112.1115 -79.481) | POINT(-112.1115 -79.481) | false | false | |||||
Bromide in Snow in the Sea Ice Zone
|
1043145 |
2016-03-01 | Obbard, Rachel |
|
A range of chemical and microphysical pathways in polar latitudes, including spring time (tropospheric) ozone depletion, oxidative pathways for mercury, and cloud condensation nuclei (CCN) production leading to changes in the cloud cover and attendant surface energy budgets, have been invoked as being dependent upon the emission of halogen gases formed in sea-ice. The prospects for climate warming induced reductions in sea ice extent causing alteration of these incompletely known surface-atmospheric feedbacks and interactions requires confirmation of mechanistic details in both laboratory studies and field campaigns. One such mechanistic question is how bromine (BrO and Br) enriched snow migrates or is formed through processes in sea-ice, prior to its subsequent mobilization as an aerosol fraction into the atmosphere by strong winds. Once aloft, it may react with ozone and other atmospheric species. Dartmouth researchers will collect snow from the surface of sea ice, from freely blowing snow and in sea-ice cores from Cape Byrd, Ross Sea. A range of spectroscopic, microanalytic and and microstructural approaches will be subsequently used to determine the Br distribution gradients through sea-ice, in order to shed light on how sea-ice first forms and then releases bromine species into the polar atmospheric boundary layer. | POLYGON((164.1005 -77.1188,164.36443 -77.1188,164.62836 -77.1188,164.89229 -77.1188,165.15622 -77.1188,165.42015 -77.1188,165.68408 -77.1188,165.94801 -77.1188,166.21194 -77.1188,166.47587 -77.1188,166.7398 -77.1188,166.7398 -77.19337,166.7398 -77.26794,166.7398 -77.34251,166.7398 -77.41708,166.7398 -77.49165,166.7398 -77.56622,166.7398 -77.64079,166.7398 -77.71536,166.7398 -77.78993,166.7398 -77.8645,166.47587 -77.8645,166.21194 -77.8645,165.94801 -77.8645,165.68408 -77.8645,165.42015 -77.8645,165.15622 -77.8645,164.89229 -77.8645,164.62836 -77.8645,164.36443 -77.8645,164.1005 -77.8645,164.1005 -77.78993,164.1005 -77.71536,164.1005 -77.64079,164.1005 -77.56622,164.1005 -77.49165,164.1005 -77.41708,164.1005 -77.34251,164.1005 -77.26794,164.1005 -77.19337,164.1005 -77.1188)) | POINT(165.42015 -77.49165) | false | false | |||||
Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica
|
0944659 0944686 |
2015-12-16 | Kiene, Ronald; Kieber, David John | Spectacular blooms of Phaeocystis antarctica in the Ross Sea, Antarctica are the source of some of the world's highest concentrations of dimethylsulfoniopropionate (DMSP) and its volatile degradation product, dimethylsulfide (DMS). The flux of DMS from the oceans to the atmosphere in this region and its subsequent gas phase oxidation generates aerosols that have a strong influence on cloud properties and possibly climate. In the oceans, DMS and DMSP are quantitatively significant components of the carbon, sulfur, and energy flows in marine food webs, especially in the Ross Sea. Despite its central role in carbon and sulfur biogeochemistry in the Ross Sea, surprisingly little is known about the physiological functions of DMSP in P. Antarctica. The research will isolate and characterize DMSP lyases from P. antarctica, with the goal of obtaining amino acid and gene sequence information on these important enzymes. The physiological studies will focus on the effects of varying intensities of photosynthetically active radiation, with and without ultraviolet radiation as these are factors that we have found to be important controls on DMSP and DMS dynamics. The research also will examine the effects of prolonged darkness on the dynamics of DMSP and related compounds in P. antarctica, as survival of this species during the dark Antarctic winter and at sub-euphotic depths appears to be an important part of the Phaeocystis? ecology. A unique aspect of this work is the focus on measurements of intracellular MSA, which if detected, would provide strong evidence for in vivo radical scavenging functions for methyl sulfur compounds. The study will advance understanding of what controls DMSP cycling and ultimately DMS emissions from the Ross Sea and also provide information on what makes P. antarctica so successful in this extreme environment. The research will directly benefit and build on several interrelated ocean-atmosphere programs including the International Surface Ocean Lower Atmosphere Study (SOLAS) program. The PIs will participate in several activities involving K-12 education, High School teacher training, public education and podcasting through the auspices of the Dauphin Island Sea Lab Discovery Hall program and SUNY ESF. Two graduate students will be employed full time, and six undergraduates (2 each summer) will be trained as part of this project. | POLYGON((-180 -68,-177 -68,-174 -68,-171 -68,-168 -68,-165 -68,-162 -68,-159 -68,-156 -68,-153 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -77,160 -76,160 -75,160 -74,160 -73,160 -72,160 -71,160 -70,160 -69,160 -68,162 -68,164 -68,166 -68,168 -68,170 -68,172 -68,174 -68,176 -68,178 -68,-180 -68)) | POINT(-175 -73) | false | false | ||||||
Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica
|
1343649 |
2015-10-05 | Levy, Joseph |
|
Intellectual Merit: The PIs propose to quantify the hillslope water, solute, and carbon budgets for Taylor Valley in the McMurdo Dry Valleys, using water tracks to investigate near-surface geological processes and challenge the paradigm that shallow groundwater is minimal or non-exixtant. Water tracks are linear zones of high soil moisture that route shallow groundwater downslope in permafrost dominated soils. Four hypotheses will be tested: 1) water tracks are important pathways for water and solute transport; 2) water tracks transport more dissolved silica than streams in Taylor Valley indicating they are the primary site of chemical weathering for cold desert soils and bedrock; 3) water tracks that drain highland terrains are dominated by humidity-separated brines while water tracks that drain lowland terrains are dominated by marine aerosols; 4) water tracks are the sites of the highest terrestrial soil carbon concentrations and the strongest CO2 fluxes in Taylor Valley and their carbon content increases with soil age, while carbon flux decreases with age. To test these hypotheses the PIs will carry out a suite of field measurements supported by modeling and remote sensing. They will install shallow permafrost wells in water tracks that span the range of geological, climatological, and topographic conditions in Taylor Valley. Multifrequency electromagnetic induction sounding of the upper ~1 m of the permafrost will create the first comprehensive map of soil moisture in Taylor Valley, and will permit direct quantification of water track discharge across the valley. The carbon contents of water track soils will be measured and linked to global carbon dynamics. Broader impacts: Non-science majors at Oregon State University will be integrated into the proposed research through a new Global Environmental Change course focusing on the scientific method in Antarctica. Three undergraduate students, members of underrepresented minorities, will be entrained in the research, will contribute to all aspects of field and laboratory science, and will present results at national meetings. | POLYGON((162.852 -77.6111,162.9893 -77.6111,163.1266 -77.6111,163.2639 -77.6111,163.4012 -77.6111,163.5385 -77.6111,163.6758 -77.6111,163.8131 -77.6111,163.9504 -77.6111,164.0877 -77.6111,164.225 -77.6111,164.225 -77.65331,164.225 -77.69552,164.225 -77.73773,164.225 -77.77994,164.225 -77.82215,164.225 -77.86436,164.225 -77.90657,164.225 -77.94878,164.225 -77.99099,164.225 -78.0332,164.0877 -78.0332,163.9504 -78.0332,163.8131 -78.0332,163.6758 -78.0332,163.5385 -78.0332,163.4012 -78.0332,163.2639 -78.0332,163.1266 -78.0332,162.9893 -78.0332,162.852 -78.0332,162.852 -77.99099,162.852 -77.94878,162.852 -77.90657,162.852 -77.86436,162.852 -77.82215,162.852 -77.77994,162.852 -77.73773,162.852 -77.69552,162.852 -77.65331,162.852 -77.6111)) | POINT(163.5385 -77.82215) | false | false | |||||
High Resolution Genomic and Proteomic Analyses of a Microbial Transport Mechanism from Antarctic Marine Waters to Permanent Snowpack
|
1043265 |
2014-07-31 | Deming, Jody | No dataset link provided | The relatively pristine Antarctic continent with its extensive maritime zone represents a unique location on the planet to investigate the long distance aerial transport and deposition of marine microorganisms. The vast extent of new sea ice that forms each winter around the continent results in large numbers of frost flowers, delicate ice-crystal structures of high salt content that form on the surface of the ice and are readily dispersed by wind. The proposed research builds on earlier work in the Arctic and tests the new hypothesis that wind-borne frost flowers provide an effective mechanism for the transport of marine bacteria over long distances, one that can be uniquely sourced and tracked by the frost flower salt signature in the Antarctic realm. A highly resolved genomic snapshot of the microbial community will be acquired at each stage in the transport path, which will track decreasing fractions of the marine microbial community as it freezes into sea ice, incorporates into frost flowers, converts to aerosols, and ultimately deposits within continental snowpack. En route from sea ice to snowpack, marine bacteria will be exposed to an array of environmental stresses, including high salinity, low temperatures, UV light and potential desiccation. A parallel proteomic analysis will enable an evaluation of the microbial response to these extreme conditions and potential survival mechanisms that allow persistence or eventual colonization of deposition sites across Antarctica. Current understanding of microbes in the Antarctic atmosphere is based on a limited number of microscopic and culture-based assays and a single report of low-resolution 16S RNA gene sequence analysis. The research will broadly impact understanding of atmospheric microbiology, from source to deposition, and various issues of microbial survival, colonization, endemism, and diversity under extreme conditions. In addition to venues that reach the scientific community, the research team will develop a permanent multi-media and artifact-based exhibit on Antarctic Microbial Transport that will be showcased at Seattle's Pacific Science Center (PSC), which educates nearly a million visitors annually. | POLYGON((162.1397 -77.14085,162.828507 -77.14085,163.517314 -77.14085,164.206121 -77.14085,164.894928 -77.14085,165.583735 -77.14085,166.272542 -77.14085,166.961349 -77.14085,167.650156 -77.14085,168.338963 -77.14085,169.02777 -77.14085,169.02777 -77.200745,169.02777 -77.26064,169.02777 -77.320535,169.02777 -77.38043,169.02777 -77.440325,169.02777 -77.50022,169.02777 -77.560115,169.02777 -77.62001,169.02777 -77.679905,169.02777 -77.7398,168.338963 -77.7398,167.650156 -77.7398,166.961349 -77.7398,166.272542 -77.7398,165.583735 -77.7398,164.894928 -77.7398,164.206121 -77.7398,163.517314 -77.7398,162.828507 -77.7398,162.1397 -77.7398,162.1397 -77.679905,162.1397 -77.62001,162.1397 -77.560115,162.1397 -77.50022,162.1397 -77.440325,162.1397 -77.38043,162.1397 -77.320535,162.1397 -77.26064,162.1397 -77.200745,162.1397 -77.14085)) | POINT(165.583735 -77.440325) | false | false | |||||
Collaborative Research: Microparticle/tephra analysis of the WAIS Divide ice core
|
0636767 0636740 |
2012-06-19 | Koffman, Bess; Kreutz, Karl; Breton, Daniel; Dunbar, Nelia; Hamilton, Gordon S. | This award supports a project to perform continuous microparticle concentration and size distribution measurements (using coulter counter and state-of-the-art laser detector methods), analysis of biologically relevant trace elements associated with microparticles (Fe, Zn, Co, Cd, Cu), and tephra measurements on the WAIS Divide ice core. This initial three-year project includes analysis of ice core spanning the instrumental (~1850-present) to mid- Holocene (~5000 years BP) period, with sample resolution ranging from subannual to decadal. The intellectual merit of the project is that it will help in establishing the relationships among climate, atmospheric aerosols from terrestrial and volcanic sources, ocean biogeochemistry, and greenhouse gases on several timescales which remain a fundamental problem in paleoclimatology. The atmospheric mineral dust plays an important but uncertain role in direct radiative forcing, and the microparticle datasets produced in this project will allow us to examine changes in South Pacific aerosol loading, atmospheric dynamics, and dust source area climate. The phasing of changes in aerosol properties within Antarctica, throughout the Southern Hemisphere, and globally is unclear, largely due to the limited number of annually dated records extending into the glacial period and the lack of a<br/>tephra framework to correlate records. The broader impacts of the proposed research are an interdisciplinary approach to climate science problems, and will contribute to several WAIS Divide science themes as well as the broader paleoclimate and oceanographic communities. Because the research topics have a large and direct societal relevance, the project will form a centerpiece of various outreach efforts at UMaine and NMT including institution websites, public speaking, local K-12 school interaction, media interviews and news releases, and popular literature. At least one PhD student and one MS student will be directly supported by this project, including fieldwork, core processing, laboratory analysis, and data interpretation/publication. We expect that one graduate student per year will apply for a core handler/assistant driller position through the WAIS Divide Science Coordination Office, and that undergraduate student involvement will result in several Capstone experience projects (a UMaine graduation requirement). Data and ideas generated from the project will be integrated into undergraduate and graduate course curricula at both institutions. | POINT(112.11666 -79.46666) | POINT(112.11666 -79.46666) | false | false | ||||||
Tracing Glacial-interglacial Changes in the Dust Source to Antarctica using Helium Isotopes
|
0636898 |
2011-11-30 | Winckler, Gisela | No dataset link provided | Winckler/0636898<br/><br/>This award supports a project to study dust sources in Antarctic ice cores. Atmospheric aerosols play an important role both in global biogeochemical cycles as well as in the climate system of the Earth. Records extracted from Antarctic ice cores inform us that dust deposition from the atmosphere to the ice sheet was 15-20 times greater during glacial periods than during interglacials, which raises the possibility that dust may be a key player in climate change on glacial-interglacial timescales. By characterizing potential source areas from South America, South Africa, and Australia as well as fresh glacial flour from Patagonia, the project will determine if the interglacial dust was mobilized from a distinct geographical region (e.g., Australia) or from a more heavily weathered source region in South America. The intellectual merit of the project is that it will contribute to reconstructing climate-related changes in the rate of dust deposition, and in the provenance of the dust, it will provide critical constraints on hydrology and vegetation in the source regions, as well as on the nature of the atmospheric circulation transporting dust to the archive location. In a recent pilot study it was found that there is a dramatic glacial to Holocene change in the 4He/Ca ratio in the dust extracted from ice from Dronning Maud Land, Antarctica, indicating a shift in the source of dust transported to Antarctica. The broader impacts of the project are that Helium isotopes and calcium measurements provide a wealth of information that can then be turned into critical input for dust-climate models. Improved models, which are able to accurately reconstruct paleo dust distribution, will help us to predict changes in dust in response to future climate variability. This information will contribute to an improvement of our integrated understanding of the Earth's climate system and, in turn, will better inform policy makers of those processes and conditions most susceptible to perturbation by climate change, thereby leading to more meaningful climate-change policy. The project will support a graduate student in the dual masters Earth and Environmental Science Journalism program. The lead-PI manages the rock noble gas laboratory at Lamont. Her leadership role in this facility impacts the training of undergraduate and graduate students as well as visiting scientists. | None | None | false | false | |||||
WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning
|
0739780 |
2011-04-28 | Brook, Edward J.; McConnell, Joseph; Mitchell, Logan E; Sowers, Todd A.; Taylor, Kendrick C. |
|
Edwards/0739780<br/><br/>This award supports a project to develop a 2,000-year high-temporal resolution record of biomass burning from the analysis of black carbon in the WAIS Divide bedrock ice core. Pilot data for the WAIS WD05A core demonstrates that we now have the ability to reconstruct this record with minimal impact on the amount of ice available for other projects. The intellectual merit of this project is that black carbon (BC) aerosols result solely from combustion and play a critical but poorly quantified role in global climate forcing and the carbon cycle. When incorporated into snow and ice, BC increases absorption of solar radiation making seasonal snow packs, mountain glaciers, polar ice sheets, and sea ice much more vulnerable to climate warming. BC emissions in the Southern Hemisphere are dominated by biomass burning in the tropical regions of Southern Africa, South America and South Asia. Biomass burning, which results from both climate and human activities, alters the atmospheric composition of greenhouse gases, aerosols and perturbs key biogeochemical cycles. A long-term record of biomass burning is needed to aid in the interpretation of ice core gas composition and will provide important information regarding human impacts on the environment and climate before instrumental records. The broader impacts of the project are that it represents a paradigm shift in our ability to reconstruct the history of fire from ice core records and to understand its impact on atmospheric chemistry and climate over millennial time scales. This type of data is especially needed to drive global circulation model simulations of black carbon aerosols, which have been found to be an important component of global warming and which may be perturbing the hydrologic cycle. The project will also employ undergraduate students and is committed to attracting underrepresented groups to the physical sciences. The project?s outreach component will be conducted as part of the WAIS project outreach program and will reach a wide audience. | POINT(-112.117 -79.666) | POINT(-112.117 -79.666) | false | false | |||||
Climatology, Volcanism, and Microbial Life in Ice with Downhole Loggers
|
0440609 |
2008-06-03 | Bay, Ryan; Price, Buford | No dataset link provided | This award supports a project to use three downhole instruments - an optical logger; a<br/>miniaturized biospectral logger at 420 nm (miniBSL-420); and an Acoustic TeleViewer (ATV) - to log a 350-m borehole at the WAIS Divide drill site. In addition, miniBSL-224 (at 224 nm) and miniBSL-420 will scan ice core sections at NICL to look for abrupt climate changes, volcanic ash, microbial concentrations, and correlations among them. Using the optical logger and ATV to log bubble number densities vs depth in a WAIS Divide borehole, we will detect annual layers, from which we can establish the age vs depth relation to the bottom of the borehole that will be available during the three-year grant period. With the same instruments we will search for long-period modulation of bubble and dust concentrations in order to provide definitive evidence for or against an effect of long-period variability of the sun or solar wind on climate. We will detect and accurately date ash layers in a WAIS Divide borehole. We will match them with ash layers that we previously detected in the Siple Dome borehole, and also match them with sulfate and ash layers found by others at Vostok, Dome Fuji, Dome C, and GISP2. The expected new data will allow us to extend our recent study which showed that the Antarctic record of volcanism correlates with abrupt climate change at a 95% to >99.8% significance level and that the volcanic signatures at bipolar locations match at better than 3 sigma during the interval 2 to 45 kiloyears. The results to be obtained during this grant period will position us to extend an accurate age vs depth relation and volcano-climate correlations to earlier than 150 kiloyears ago in the future WAIS Divide borehole to be drilled to bedrock. Using the miniBSLs to identify biomolecules via their fluorescence, we will log a 350-m borehole at WAIS Divide, and we will scan selected lengths of ice core at NICL. Among the biomolecules the miniBSLs can identify will be chlorophyll, which will provide the first map of aerobic microbes in ice, and F420, which will provide the first map of methanogens in ice. We will collaborate with others in relating results from WAIS Divide and NICL ice cores to broader topics in climatology, volcanology, and microbial ecology. We will continue to give broad training to undergraduate and graduate students, to attract underrepresented minorities to science, engineering, and math, and to educate the press and college teachers. A deeper understanding of the causes of abrupt climate change, including a causal relationship with strong volcanic eruptions, can enable us to understand and mitigate adverse effects on climate. | POINT(-112.06556 -79.469444) | POINT(-112.06556 -79.469444) | false | false | |||||
South Pole Atmospheric Nitrate Isotopic Analysis (SPANIA)
|
0125761 |
2005-12-27 | Savarino, Joel; Thiemens, Mark H. |
|
This award supports a detailed laboratory analysis of the mass-independent isotopic composition of processes associated with atmospheric nitrate trapped in the snow pack at the South Pole. The project will specifically test if the oxygen isotopes 16O, 17O, 18O of nitrate can be used to probe the denitrification of the Antarctic stratosphere. Despite decades of research, there are several important issues in Antarctic atmospheric science, which are presently inadequately resolved. This includes quantification over time of the sources of nitrate aerosols. Today, little is known about the past denitrification of the stratosphere in high latitude regions. This lack of knowledge significantly limits our ability to understand the chemical state of ancient atmospheres and therefore evaluate present and past-coupled climate/atmosphere models. The role of nitrogen in environmental degradation is well known. This issue will also be addressed in this proposal. Atmospheric aerosols have now been shown to possess a mass-independent oxygen isotopic content. The proposed research will investigate the stable oxygen isotope ratios of nitrate in Antarctica both collected in real time and from the snow. Two periods of time will be covered. Full year nitrate aerosol collections, with week resolution time horizons, will be performed at the South Pole. Weekly aerosol collections will help us to identify any seasonal trend of the oxygen-17 excess anomaly, and eventually link this anomaly to the denitrification of the Antarctic stratosphere. This data set will also be used to test our assumption that the oxygen isotopic anomaly of nitrate is mainly formed in the stratosphere and is well preserved in the snow pack. If true, we will for the first time resolve an atmospheric signal extracted from a nitrate profile. The snow pit will allow us to see any trend in the data on a multiple decade timescale. | None | None | false | false | |||||
Biogenic Sulfur in the Siple Dome Ice Core
|
9615333 |
2004-03-09 | Saltzman, Eric; Dioumaeva, Irina; Finley, Brandon |
|
This award is for support for four years of funding for a program of biogenic sulfur measurements on the Siple Dome ice core. Biogenic sulfur is a major aerosol-forming constituent of the atmosphere and has potentially important links to the earth's radiation budget. Previous work on the Vostok ice core has demonstrated a remarkable climate-related variability in biogenic sulfur, suggesting that the sulfur cycle may act to stabilize climate (keep the glacial atmosphere cool and the interglacial atmosphere warm) in the Southern Hemisphere. In this study, methane-sulfonate (MSA) will be measured on the Siple Dome ice core as part of the West Antarctic ice sheet program (WAIS). Siple Dome is located in a region which is strongly impacted by the incursion of marine air onto the Antarctic plateau. Because of its proximity to the coast and meteorological setting, it is expected that variability in high-latitude marine biogenic sulfur emissions should dominate the MSA record at this site. In addition to the deep ice core record, samples from shallow cores will also be analyzed to provide information about regional variability and decadal-to-centennial scale variability in the deposition of sulfur-containing aerosols from high latitude source regions over the past 200 years. | POINT(-148.8 -81.7) | POINT(-148.8 -81.7) | false | false | |||||
Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region
|
9615167 9527373 |
2002-06-01 | Dunbar, Nelia; Zielinski, Gregory | Dunbar/Kyle OPP 9527373 Zielinski OPP 9527824 Abstract The Antarctic ice sheets are ideal places to preserve a record the volcanic ash (tephra) layers and chemical aerosol signatures of volcanic eruptions. This record, which is present both in areas of bare blue ice, as well as in deep ice cores, consists of a combination of local eruptions, as well as eruptions from more distant volcanic sources from which glassy shards can be chemically fingerprinted and related to a source volcano. Field work carried out during the 1994/1995 Antarctic field season in the Allan Hills area of Antarctica, and subsequent microbeam chemical analysis and 40Ar/39Ar dating has shown that tephra layers in deep Antarctic ice preserve a coherent, systematic stratigraphy, and can be successfully mapped, dated, chemically fingerprinted and tied to source volcanoes. The combination of chemical fingerprinting of glass shards, and chemical analysis of volcanic aerosols associated with ash layers will allow establishment of a high-resolution chronology of local and distant volcanism that can help understand patterns of significant explosive volcanisms and atmospheric loading and climactic effects associated with volcanic eruptions. Correlation of individual tephra layers, or sets of layers, in blue ice areas, which have been identified in many places the Transantarctic Mountains, will allow the geometry of ice flow in these areas to be better understood and will provide a useful basis for interpreting ice core records. | None | None | false | false |