{"dp_type": "Dataset", "free_text": "temperatures"}
[{"awards": "2042495 Blackburn, Terrence; 2423761 Blackburn, Terrence", "bounds_geometry": ["POLYGON((-180 -75,-144 -75,-108 -75,-72 -75,-36 -75,0 -75,36 -75,72 -75,108 -75,144 -75,180 -75,180 -76.5,180 -78,180 -79.5,180 -81,180 -82.5,180 -84,180 -85.5,180 -87,180 -88.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -88.5,-180 -87,-180 -85.5,-180 -84,-180 -82.5,-180 -81,-180 -79.5,-180 -78,-180 -76.5,-180 -75))"], "date_created": "Mon, 17 Mar 2025 00:00:00 GMT", "description": "This dataset includes geochemical analyses of carbonate nodules collected at Elephant Moraine and the Pensacola Mountains, East Antarctica. Oxygen and uranium-series isotope analyses indicate that these carbonates precipitated from glacial meltwater during deglacial periods in the late Pleistocene. Carbonate \u03b413C values as low as -32.75 \u2030 identify thermogenic methane as a primary carbon source, while clumped isotope measurements indicate formation temperatures of 12 - 20\u02daC, consistent with a geothermal origin. Lipid biomarker analyses further show that organic matter preserved in the nodules is highly thermally matured. These findings indicate that deep-sourced thermogenic methane migrated as hydrocarbon seeps to shallow pore spaces within basal sediments, demonstrating that geothermally active areas can be hotspots for methane accumulation below the Antarctic Ice Sheet. This material is based on services provided by the Polar Rock Repository with support from the National Science Foundation, under Cooperative Agreement OPP-2137467.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Carbon Isotopes; Cryosphere; East Antarctica; Elephant Moraine; Geochronology; Isotope Data; Subglacial", "locations": "Elephant Moraine; Antarctica; East Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Piccione, Gavin", "project_titles": "Collaborative Research: Reconstructing East Antarctica\u2019s Past Response to Climate using Subglacial Precipitates; EAGER: Pedogenic Carbonates Record Insolation Driven Surface Melting in Antarctica", "projects": [{"proj_uid": "p0010459", "repository": "USAP-DC", "title": "EAGER: Pedogenic Carbonates Record Insolation Driven Surface Melting in Antarctica"}, {"proj_uid": "p0010192", "repository": "USAP-DC", "title": "Collaborative Research: Reconstructing East Antarctica\u2019s Past Response to Climate using Subglacial Precipitates"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Thermogenic Methane Production in Antarctic Subglacial Hydrocarbon Seeps", "uid": "601918", "west": -180.0}, {"awards": "1745130 Moran, Amy", "bounds_geometry": null, "date_created": "Fri, 31 Jan 2025 00:00:00 GMT", "description": "This dataset contains oxygen consumption of larvae of four different species of marine invertebrate, measured at four different temperatures.", "east": null, "geometry": null, "keywords": "Antarctica; Cryosphere; McMurdo; Temperature", "locations": "McMurdo; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Moran, Amy; Lobert, Graham; Toh, MIng Wei Aaron", "project_titles": "Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development ", "projects": [{"proj_uid": "p0010187", "repository": "USAP-DC", "title": "Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Effect of temperature on oxygen consumption rates of larvae of four Antarctic marine invertebrates", "uid": "601888", "west": null}, {"awards": "1745130 Moran, Amy", "bounds_geometry": null, "date_created": "Fri, 31 Jan 2025 00:00:00 GMT", "description": "This dataset includes cleavage rates of embryos of three species of Antarctic embryos that were reared at a range of temperatures up to the 32-cell stage.", "east": null, "geometry": null, "keywords": "Antarctica; Cryosphere; McMurdo; Temperature", "locations": "McMurdo; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Moran, Amy; Lobert, Graham; Toh, Ming Wei Aaron", "project_titles": "Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development ", "projects": [{"proj_uid": "p0010187", "repository": "USAP-DC", "title": "Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Effect of temperature on cleavage rate of Antarctic invertebrates", "uid": "601887", "west": null}, {"awards": "1745130 Moran, Amy", "bounds_geometry": null, "date_created": "Fri, 31 Jan 2025 00:00:00 GMT", "description": "This dataset includes oxygen consumption rates of larvae of the sea spider Nymphon australe acclimated in the laboratory to two different temperatures, assessed across four different temperatures. The dataset also includes oxygen consumption measured at the same range of temperatures between larvae collected in the field in the late winter (cold) and mid spring (slightly warmer).", "east": null, "geometry": null, "keywords": "Antarctica; Cryosphere; McMurdo; Temperature", "locations": "Antarctica; McMurdo", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Moran, Amy; Lobert, Graham; Toh, MIng Wei Aaron", "project_titles": "Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development ", "projects": [{"proj_uid": "p0010187", "repository": "USAP-DC", "title": "Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Temperature acclimation and acclimatization of sea spider larvae", "uid": "601889", "west": null}, {"awards": "1745130 Moran, Amy", "bounds_geometry": null, "date_created": "Wed, 29 Jan 2025 00:00:00 GMT", "description": "This dataset contains a proximal composition analysis and ash-free dry weight data from embryos and larvae of four different Antarctic marine invertebrates that were raised for two months at four different temperatures. The dataset also contains the length of different developmental stages at different temperatures. Samples were collected and experiments were performed between 2019 and 2022 at McMurdo Station, Antarctica. ", "east": null, "geometry": null, "keywords": "Antarctica; Cryosphere; McMurdo; Temperature", "locations": "Antarctica; McMurdo", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Moran, Amy; Toh, Ming Wei Aaron; Lobert, Graham", "project_titles": "Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development ", "projects": [{"proj_uid": "p0010187", "repository": "USAP-DC", "title": "Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Temperature effects on proximal composition and development rate of embryos and larvae of four Antarctic invertebrates", "uid": "601886", "west": null}, {"awards": "2136938 Tedesco, Marco", "bounds_geometry": ["POLYGON((-40 67.55,-39.611 67.55,-39.222 67.55,-38.833 67.55,-38.444 67.55,-38.055 67.55,-37.666 67.55,-37.277 67.55,-36.888 67.55,-36.499 67.55,-36.11 67.55,-36.11 67.28999999999999,-36.11 67.03,-36.11 66.77,-36.11 66.51,-36.11 66.25,-36.11 65.99,-36.11 65.73,-36.11 65.47,-36.11 65.21000000000001,-36.11 64.95,-36.499 64.95,-36.888 64.95,-37.277 64.95,-37.666 64.95,-38.055 64.95,-38.444 64.95,-38.833 64.95,-39.222 64.95,-39.611 64.95,-40 64.95,-40 65.21000000000001,-40 65.47,-40 65.73,-40 65.99,-40 66.25,-40 66.51,-40 66.77,-40 67.03,-40 67.28999999999999,-40 67.55))"], "date_created": "Mon, 07 Oct 2024 00:00:00 GMT", "description": "This dataset contains high-resolution satellite-derived snow/ice surface melt-related data on a common 100 m equal area grid (Albers equal area projection; EPSG 9822) over Helheim Glacier and surrounding areas in Greenland. The data is used as part of a machine learning framework that aims to fill data gaps in computed meltwater fraction on the 100 m grid using a range of methods, results of which will be published separately.\r\n\u003cbr/\u003e\u003cbr/\u003e\r\n\u003cbr/\u003e\u003cbr/\u003eThe data include fraction of a grid cell covered by meltwater derived from Sentinel-1 synthetic aperture radar (SAR) backscatter, satellite-derived passive microwave (PMW) brightness temperatures, snowpack liquid water content within the first meter of snow and atmospheric and radiative variables from the Mod\u00e9le Atmosph\u00e9rique R\u00e8gional (MAR) regional climate model, spectral reflectance in four wavelength bands from the Moderate Resolution Imaging Spectroradiometer (MODIS), a static digital elevation model (DEM), and an ice sheet mask. \r\n\u003cbr/\u003e\u003cbr/\u003eA similar dataset has also been produced for Larsen C ice shelf and is also available through the US Antarctic Program Data Center. \r\n\u003cbr/\u003e\u003cbr/\u003e\r\n\u003cbr/\u003e\u003cbr/\u003e\r\n\u003cbr/\u003e\u003cbr/\u003e", "east": -36.11, "geometry": ["POINT(-38.055 66.25)"], "keywords": "Antarctica; Climate Modeling; Cryosphere; Downscaling; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland; Ice Sheet; Machine Learning; MAR; Remote Sensing; Sea Level Rise; Snow/ice; Snow/Ice; Surface Melt", "locations": "Greenland; Greenland; Antarctica", "north": 67.55, "nsf_funding_programs": "Polar Cyberinfrastructure", "persons": "Alexander, Patrick; Antwerpen, Raphael; Cervone, Guido; Fettweis, Xavier; L\u00fctjens, Bj\u00f6rn; Tedesco, Marco", "project_titles": "Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning", "projects": [{"proj_uid": "p0010277", "repository": "USAP-DC", "title": "Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": 64.95, "title": "Surface melt-related multi-source remote-sensing and climate model data over Helheim Glacier, Greenland for segmentation and machine learning applications", "uid": "601841", "west": -40.0}, {"awards": "2136938 Tedesco, Marco", "bounds_geometry": ["POLYGON((-68.5 -65.25,-67.35 -65.25,-66.2 -65.25,-65.05 -65.25,-63.9 -65.25,-62.75 -65.25,-61.6 -65.25,-60.45 -65.25,-59.3 -65.25,-58.15 -65.25,-57 -65.25,-57 -65.652,-57 -66.054,-57 -66.456,-57 -66.858,-57 -67.25999999999999,-57 -67.66199999999999,-57 -68.064,-57 -68.466,-57 -68.868,-57 -69.27,-58.15 -69.27,-59.3 -69.27,-60.45 -69.27,-61.6 -69.27,-62.75 -69.27,-63.9 -69.27,-65.05 -69.27,-66.2 -69.27,-67.35 -69.27,-68.5 -69.27,-68.5 -68.868,-68.5 -68.466,-68.5 -68.064,-68.5 -67.66199999999999,-68.5 -67.25999999999999,-68.5 -66.858,-68.5 -66.456,-68.5 -66.054,-68.5 -65.652,-68.5 -65.25))"], "date_created": "Mon, 07 Oct 2024 00:00:00 GMT", "description": "This dataset contains high-resolution satellite-derived snow/ice surface melt-related data on a common 100 m equal area grid (Lambert azimuthal equal area projection; EPSG 9820) over Larsen C Ice Shelf and surrounding areas in Antarctica. The data is prepared to be used as part of a machine learning framework that aims to fill data gaps in computed meltwater fraction on the 100 m grid using a range of methods, results of which will be published separately.\r\n\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eThe data include fraction of a grid cell covered by meltwater derived from Sentinel-1 synthetic aperture radar (SAR) backscatter, satellite-derived passive microwave (PMW) brightness temperatures, snowpack liquid water content within the first meter of snow and atmospheric and radiative variables from the Mod\u00e9le Atmosph\u00e9rique R\u00e8gional (MAR) regional climate model, a static digital elevation model (DEM), and an ice sheet mask. \r\n\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eA similar dataset has been produced for Helheim Glacier, Greenland and is also available through the US Antarctic Program Data Center.", "east": -57.0, "geometry": ["POINT(-62.75 -67.25999999999999)"], "keywords": "Antarctica; Climate Modeling; Cryosphere; Downscaling; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Larsen C Ice Shelf; Machine Learning; MAR; Remote Sensing; Sea Level Rise; Snow/ice; Snow/Ice; Surface Melt", "locations": "Antarctica; Larsen C Ice Shelf", "north": -65.25, "nsf_funding_programs": "Polar Cyberinfrastructure", "persons": "Alexander, Patrick; Antwerpen, Raphael; Cervone, Guido; Fettweis, Xavier; L\u00fctjens, Bj\u00f6rn; Tedesco, Marco", "project_titles": "Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning", "projects": [{"proj_uid": "p0010277", "repository": "USAP-DC", "title": "Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -69.27, "title": "Surface melt-related multi-source remote-sensing and climate model data over Larsen C Ice Shelf, Antarctica for segmentation and machine learning applications", "uid": "601842", "west": -68.5}, {"awards": null, "bounds_geometry": null, "date_created": "Thu, 05 Sep 2024 00:00:00 GMT", "description": "The effects of soluble impurities on the flow of glaciers and ice sheets as well as the effects of ice flow on impurities migration are not well understood. This study investigates the effects of sulfuric acid (H2SO4) concentrations ranging from 10 to 25 ppm on the flow and fabric of polycrystalline ice under compression at temperatures of -3\u00b0C and -12\u00b0C. The results show that H2SO4-doped polycrystalline ice deforms significantly faster than high-purity polycrystalline ice, with the deformation rate being 1.5 to 3 times higher. At -12\u00b0C, the presence of H2SO4 within the grains induces the most ice softening, whereas at -3\u00b0C, H2SO4\u0027s softening effects are observed both within the grains and at grain boundaries. The migration of H2SO4 to grain boundaries during deformation leads to the formation of a liquid-like layer, with increased solubility at higher temperatures potentially homogenizing the impurities within the ice matrix. This homogenization at -3\u00b0C suggests that post-depositional processes near the bed of ice sheets could significantly alter sulfate records. At -12\u00b0C, where homogenization is absent, impurity-induced dislocation processes may heavily influence deformation and impurity migration. Additionally, the comparison of natural ice with lab-grown samples indicates that fabric development significantly impacts compressive strength and creep rates, with implications for the understanding of impurity-induced deformation processes in polar ice.", "east": null, "geometry": null, "keywords": "Antarctica; Cryosphere", "locations": "Antarctica", "north": null, "nsf_funding_programs": null, "persons": "Ogunmolasuyi, Ayobami", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": null, "title": "The Impacts of the Microstructural Location of H2SO4 on the Flow of Polycrystalline Ice", "uid": "601831", "west": null}, {"awards": "1850988 Teets, Nicholas", "bounds_geometry": ["POLYGON((-64.366767 -62.681,-63.991703599999994 -62.681,-63.6166402 -62.681,-63.2415768 -62.681,-62.866513399999995 -62.681,-62.49145 -62.681,-62.1163866 -62.681,-61.7413232 -62.681,-61.366259799999995 -62.681,-60.9911964 -62.681,-60.616133 -62.681,-60.616133 -62.9536677,-60.616133 -63.226335399999996,-60.616133 -63.4990031,-60.616133 -63.7716708,-60.616133 -64.04433850000001,-60.616133 -64.31700620000001,-60.616133 -64.58967390000001,-60.616133 -64.86234160000001,-60.616133 -65.13500930000001,-60.616133 -65.407677,-60.9911964 -65.407677,-61.366259799999995 -65.407677,-61.7413232 -65.407677,-62.1163866 -65.407677,-62.49145 -65.407677,-62.866513399999995 -65.407677,-63.2415768 -65.407677,-63.6166402 -65.407677,-63.991703599999994 -65.407677,-64.366767 -65.407677,-64.366767 -65.13500930000001,-64.366767 -64.86234160000001,-64.366767 -64.58967390000001,-64.366767 -64.31700620000001,-64.366767 -64.04433850000001,-64.366767 -63.7716708,-64.366767 -63.4990031,-64.366767 -63.226335399999996,-64.366767 -62.9536677,-64.366767 -62.681))"], "date_created": "Sun, 11 Jun 2023 00:00:00 GMT", "description": "Antarctic winters are challenging for terrestrial invertebrates, and species that\r\nlive there have specialised adaptations to conserve energy and protect against\r\ncold injury in the winter. However, rapidly occurring climate change in these\r\nregions will increase the unpredictability of winter conditions, and there is\r\ncurrently a dearth of knowledge on how the highly adapted invertebrates of\r\nAntarctica will respond to changes in winter temperatures.\r\n2. We evaluated the response of larvae of the Antarctic midge, Belgica antarctica,\r\nto simulated winters at three ecologically relevant mean temperature scenarios:\r\nwarm (\u22121\u00b0C), normal (\u22123\u00b0C) and cold (\u22125\u00b0C). Within each scenario, larvae were\r\nplaced into three distinct habitat types in which they are commonly observed\r\n(decaying organic matter, living moss, and Prasiola crispa algae). Following the\r\nsimulated overwintering period, a range of physiological outcomes were measured,\r\nnamely survival, locomotor activity, tissue damage, energy store levels and\r\nmolecular stress responses.\r\n3. Survival, energy stores and locomotor activity were significantly lower following\r\nthe Warm overwintering environment than at lower temperatures, but tissue\r\ndamage and heat shock protein expression (a proxy for protein damage) did not\r\nsignificantly differ between the three temperatures. Survival was also significantly\r\nlower in larvae overwintered in Prasiola crispa algae, although the underlying\r\nmechanism is unclear. Heat shock proteins were expressed least in larvae\r\noverwintering in living moss, suggesting it is less stressful to overwinter in this\r\nsubstrate, perhaps due to a more defined structure affording less direct contact\r\nwith ice.\r\n4. Our results demonstrate that a realistic 2\u00b0C increase in winter microhabitat temperature\r\nreduces survival and causes energy deficits that have implications for subsequent\r\ndevelopment and reproduction. While our Warm winter scenario was close tothe range of observed overwintering temperatures for this species, warmer winters\r\nare expected to become more common in response to climate change. Conversely,\r\nif climate change reduces the length of winter, some of the negative consequences\r\nof winter warming may be attenuated, so it will be important to consider this factor\r\nin future studies. Nonetheless, our results indicate that winter warming could\r\nnegatively impact cold-adapted insects such as the Antarctic midge.", "east": -60.616133, "geometry": ["POINT(-62.49145 -64.04433850000001)"], "keywords": "Antarctica", "locations": "Antarctica", "north": -62.681, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Devlin, Jack; Unfried, Laura; McCabe, Eleanor; Gantz, Josiah D.; Kawarasaki, Yuta; Elnitsky, Michael; Hotaling, Scott; Michel, Andrew; Convey, Peter; Hayward, Scott; Teets, Nicholas", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -65.407677, "title": "Simulated winter warming negatively impacts survival of Antarctica\u0027s only endemic insect", "uid": "601694", "west": -64.366767}, {"awards": "1807522 Jones, Tyler; 1043092 Steig, Eric", "bounds_geometry": ["POINT(-112.085 -79.467)"], "date_created": "Thu, 01 Sep 2022 00:00:00 GMT", "description": "We analyzed a continuous record of water-isotope ratios from the West Antarctic Ice Sheet (WAIS) Divide ice core to reveal summer and winter temperature changes through the last 11,000 years. ", "east": -112.085, "geometry": ["POINT(-112.085 -79.467)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Seasonality; Seasonal Temperatures; Temperature; Water Isotopes; West Antarctic Ice Sheet", "locations": "Antarctica; West Antarctic Ice Sheet", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "persons": "Jones, Tyler R.", "project_titles": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core; Collaborative Research: Targeted resampling of deep polar ice cores using information theory", "projects": [{"proj_uid": "p0010100", "repository": "USAP-DC", "title": "Collaborative Research: Targeted resampling of deep polar ice cores using information theory"}, {"proj_uid": "p0000078", "repository": "USAP-DC", "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Seasonal temperatures in West Antarctica during the Holocene ", "uid": "601603", "west": -112.085}, {"awards": "1543245 Rynearson, Tatiana", "bounds_geometry": ["POLYGON((-179 -59,-167.7 -59,-156.4 -59,-145.1 -59,-133.8 -59,-122.5 -59,-111.19999999999999 -59,-99.89999999999999 -59,-88.6 -59,-77.3 -59,-66 -59,-66 -60.9,-66 -62.8,-66 -64.7,-66 -66.6,-66 -68.5,-66 -70.4,-66 -72.3,-66 -74.2,-66 -76.1,-66 -78,-77.3 -78,-88.6 -78,-99.9 -78,-111.2 -78,-122.5 -78,-133.8 -78,-145.10000000000002 -78,-156.4 -78,-167.7 -78,-179 -78,-179 -76.1,-179 -74.2,-179 -72.3,-179 -70.4,-179 -68.5,-179 -66.6,-179 -64.7,-179 -62.8,-179 -60.900000000000006,-179 -59))"], "date_created": "Mon, 27 Jun 2022 00:00:00 GMT", "description": "This dataset includes records of the specific growth rates measured for 43 clonal diatom strains originally isolated during the research cruise NBP-1701 across the Pacific sector of the Southern Ocean during December 2016-January 2017. Strains were grown under continuous light (130 \u00b5mol m-2\u00a0s-1) at up to 8 temperatures that span all or most of each strain\u2019s thermal niche width, from 0-12 degrees C, which encompasses each strain\u2019s optimum temperature for growth. Strains have been molecularly identified to species via 18S Sanger sequencing. Data include the following information for each record: Internal lab strain reference ID, date collected, latitude, longitude, Southern Ocean region, species, tested temperature, replicate number and specific growth rate. Data are provided in comma-separated values (csv) format.", "east": -66.0, "geometry": ["POINT(-122.5 -68.5)"], "keywords": "Antarctica; Biota; NBP1701; Phytoplankton; R/v Nathaniel B. Palmer; Specific Growth Rate; Thermal Optimum Temperature", "locations": "Antarctica", "north": -59.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Bishop, Ian", "project_titles": "NSFGEO-NERC: Evolutionary Response of Southern Ocean Diatoms to Environmental Change", "projects": [{"proj_uid": "p0000850", "repository": "USAP-DC", "title": "NSFGEO-NERC: Evolutionary Response of Southern Ocean Diatoms to Environmental Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Specific growth rate measurements for 43 Southern Ocean diatoms", "uid": "601586", "west": -179.0}, {"awards": "1738992 Pettit, Erin C", "bounds_geometry": ["POLYGON((-105.55 -75.03,-105.53 -75.03,-105.51 -75.03,-105.49 -75.03,-105.47 -75.03,-105.45 -75.03,-105.43 -75.03,-105.41 -75.03,-105.39 -75.03,-105.37 -75.03,-105.35 -75.03,-105.35 -75.033,-105.35 -75.036,-105.35 -75.039,-105.35 -75.042,-105.35 -75.045,-105.35 -75.048,-105.35 -75.051,-105.35 -75.054,-105.35 -75.057,-105.35 -75.06,-105.37 -75.06,-105.39 -75.06,-105.41 -75.06,-105.43 -75.06,-105.45 -75.06,-105.47 -75.06,-105.49 -75.06,-105.51 -75.06,-105.53 -75.06,-105.55 -75.06,-105.55 -75.057,-105.55 -75.054,-105.55 -75.051,-105.55 -75.048,-105.55 -75.045,-105.55 -75.042,-105.55 -75.039,-105.55 -75.036,-105.55 -75.033,-105.55 -75.03))"], "date_created": "Tue, 29 Mar 2022 00:00:00 GMT", "description": "Campbell Scientific data loggers with eight platinum resistance thermometers (PRTs) and an acoustic snow height detector were installed as part of the AMIGOS-III instrumentation (AMIGOS: Automated Meteorology Ice Geophysics Observing System) The data are hourly reports of snow and near-surface air temperatures at different depths. At Cavity AMIGOS site, snow temperatures at ~1.2 meters depth (four PRTs) were used to provide reference temperatures for a coil of Distributed Thermal Sensing (DTS) fiber optic cable. At both sites, PRTs were attached to the tower (wrapped in reflective metal foil tape) as a means of investigating inversion strength and snow burial. At both sites, hourly snow height data using an acoustic sensor placed (initially) at 6.75 meters above the snow on a sensor cross-arm were acquired. A correction based on separately-measured air temperature was applied as per Campbell Scientifics correction algorithm. Both snow height sensors failed after just over one year (Cavity) or 10 months (Channel). Thermistor data continued to be acquired for 13 months (Cavity) or 19 months (Channel) \r\n\r\nThe two sites latest positions (01 Oct, 2021) are:\r\nCavity AMIGOS: 75.037\u00b0S, 105.58\u00b0W\r\nChannel AMIGOS: 75.049\u00b0S, 105.44\u00b0W\r\nboth stations are moving NNE at roughly 850 m.yr, having accelerated from about 650 m/yr in early 2020.", "east": -105.35, "geometry": ["POINT(-105.45 -75.045)"], "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Pine Island Bay; Snow Accumulation; Snow Temperature; Thwaites Glacier", "locations": "Antarctica; Thwaites Glacier; Pine Island Bay; Amundsen Sea; Thwaites Glacier", "north": -75.03, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Scambos, Ted", "project_titles": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment", "projects": [{"proj_uid": "p0010162", "repository": "USAP-DC", "title": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -75.06, "title": "AMIGOS-III Cavity and Channel Snow Height and Thermistor Snow Temperature Data", "uid": "601552", "west": -105.55}, {"awards": "1844793 Aksoy, Mustafa", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Tue, 29 Mar 2022 00:00:00 GMT", "description": "This MATLAB dataset includes brightness temperatures measured by AMSR2 and SSMIS from 01/01/2020 to 06/30/2021 over the Concordia and Vostok Stations as well as the entire Antarctic Ice Sheet. Vertically and horizontally polarized GPM SSMIS/AMSR2 common intercalibrated brightness temperatures at 10.65 GHz, 18.7 GHz, 19.35 GHz, 23.8 GHz, 36.5 GHz, 37 GHz, 89 GHz, and 91.655 GHz averaged over 0.25-degree x 0.25-degree grid cells are stored. In addition, AMSR2 measurements at 6.9 GHz and 7.3 GHz in both polarizations are included. Please read the text file \u201csatData_readMe.txt\u201d for more details. ", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Antarctic Ice Sheet; Satellite; Vostok", "locations": "Vostok; Antarctic Ice Sheet; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Aksoy, Mustafa; Kaurejo, Dua; Kar, Rahul", "project_titles": "Characterization of Antarctic Firn by Multi-Frequency Passive Remote Sensing from Space", "projects": [{"proj_uid": "p0010206", "repository": "USAP-DC", "title": "Characterization of Antarctic Firn by Multi-Frequency Passive Remote Sensing from Space"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Antarctic Firn Brightness Temperatures Measured by AMSR2 and SSMIS (Concordia, Vostok, and the Entire Ice Sheet)", "uid": "601550", "west": -180.0}, {"awards": "1443471 Koutnik, Michelle", "bounds_geometry": ["POINT(137.04 -89.54)"], "date_created": "Tue, 22 Feb 2022 00:00:00 GMT", "description": "These data are 6-hourly measurements of temperature in the upper 40 m of firn at a site 50 km upstream of South Pole (89.54 S, 137.04 E). The measurements span the two years from January 2017 to December 2018. ", "east": 137.04, "geometry": ["POINT(137.04 -89.54)"], "keywords": "Antarctica; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Snow/ice; Snow/Ice; South Pole; SPICEcore; Temperature", "locations": "Antarctica; South Pole; Antarctica", "north": -89.54, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Stevens, Christopher Max; Lilien, David; Conway, Howard; Koutnik, Michelle; Waddington, Edwin D.; Fudge, T. J.", "project_titles": "Collaborative Research: Characterization of Upstream Ice and Firn Dynamics affecting the South Pole Ice Core", "projects": [{"proj_uid": "p0000200", "repository": "USAP-DC", "title": "Collaborative Research: Characterization of Upstream Ice and Firn Dynamics affecting the South Pole Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -89.54, "title": "Firn temperatures 50km upstream of South Pole", "uid": "601525", "west": 137.04}, {"awards": "1245871 McCarthy, Christine", "bounds_geometry": null, "date_created": "Thu, 23 Dec 2021 00:00:00 GMT", "description": "This data set contains text files for the experimental logs of ice-on-rock friction experiments that were conducted in a double direct shear apparatus at temperatures of -16.4 C to -2 C. There are eleven files (C28-C34, C39-C41, and C44). Each file contains 4 columns of data that correspond to time (s), vertical displacement (microns), friction, and velocity. The data were prepared by converting voltages from experimental feedbacks, to appropriate units using calibrations, as conducted separate. Miscellaneous loading and unloading data were removed and the data was filtered modestly (100 point moving average filter in matlab). The data set includes all information needed to plot friction or velocity vs. time or displacement from the beginning to end of the run. ", "east": null, "geometry": null, "keywords": "Antarctica", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "McCarthy, Christine M.; Skarbek, Rob; Savage, Heather", "project_titles": "Laboratory Study of Ice Deformation under Tidal Loading Conditions with Application to Antarctic Glaciers", "projects": [{"proj_uid": "p0010186", "repository": "USAP-DC", "title": "Laboratory Study of Ice Deformation under Tidal Loading Conditions with Application to Antarctic Glaciers"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Dataset for Tidal modulation of ice streams: Effect of periodic sliding velocity on ice friction and healing", "uid": "601497", "west": null}, {"awards": "1245871 McCarthy, Christine", "bounds_geometry": null, "date_created": "Fri, 30 Jul 2021 00:00:00 GMT", "description": "This data set contains rate and state frictional parameters for ice-on-rock friction experiments that were conducted in a double direct shear apparatus as temperatures of -16.4 C to -2 C. The frictional parameters were deteremined by directly fitting the frictional response to controlled, harmonic oscillations in load point velocity. The data set includes all information needed to reproduce the fits, as well as tables of the frictional parameters for both the aging and slip law forms of frictional state evolution.", "east": null, "geometry": null, "keywords": "Antarctica", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Skarbek, Rob; McCarthy, Christine M.; Savage, Heather", "project_titles": "Laboratory Study of Ice Deformation under Tidal Loading Conditions with Application to Antarctic Glaciers", "projects": [{"proj_uid": "p0010186", "repository": "USAP-DC", "title": "Laboratory Study of Ice Deformation under Tidal Loading Conditions with Application to Antarctic Glaciers"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Rate-state friction parameters for ice-on-rock oscillation experiments", "uid": "601467", "west": null}, {"awards": "1341663 O\u0027Brien, Kristin", "bounds_geometry": null, "date_created": "Fri, 18 Dec 2020 00:00:00 GMT", "description": "The Southern Ocean has experienced stable, cold temperatures for over 10 million years, yet particular regions are currently undergoing rapid warming. To investigate the impacts of warming on cardiovascular oxygen transport, we compared the cardio-respiratory performance in an Antarctic notothenioid (Notothenia coriiceps) that was maintained at 0 or 5\u00b0C for 6.0-9.5 weeks. When compared at the fish\u0027s respective acclimation temperature, the oxygen consumption rate and cardiac output were significantly higher in 5\u00b0C-acclimated than 0\u00b0C-acclimated fish. The 2.7-fold elevation in cardiac output in 5\u00b0C-acclimated fish (17.4 vs. 6.5 ml min-1 kg-1) was predominantly due to a doubling of stroke volume, likely in response to increased cardiac preload, as measured by higher central venous pressure (0.15 vs. 0.08 kPa); tachycardia was minor (29.5 vs. 25.2 beats min-1). When fish were acutely warmed, oxygen consumption rate increased by similar amounts in 0\u00b0C- and 5\u00b0C-acclimated fish at equivalent test temperatures. In both acclimation groups, the increases in oxygen consumption rate during acute heating were supported by increased cardiac output achieved by elevating heart rate, while stroke volume changed relatively little. Cardiac output was similar between both acclimation groups until 12\u00b0C when cardiac output became significantly higher in 5\u00b0C-acclimated fish, driven largely by their higher stroke volume. Although cardiac arrhythmias developed at a similar temperature (~14.5\u00b0C) in both acclimation groups, the hearts of 5\u00b0C-acclimated fish continued to pump until significantly higher temperatures (CTmax for cardiac function 17.7 vs. 15.0\u00b0C for 0\u00b0C-acclimated fish). These results demonstrate that N. coriiceps is capable of increasing routine cardiac output during both acute and chronic warming, although the mechanisms are different (heart rate-dependent versus primarily stroke volume-dependent regulation, respectively). Cardiac performance was enhanced at higher temperatures following 5\u00b0C acclimation, suggesting cardiovascular function may not constrain the capacity of N. coriiceps to withstand a warming climate.", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula", "locations": "Antarctica; Antarctic Peninsula", "north": null, "nsf_funding_programs": null, "persons": "Joyce, William; Egginton, Stuart; Farrell, Anthony; Axelsson, Michael; Crockett, Elizabeth; O\u0027Brien, Kristin", "project_titles": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0010084", "repository": "USAP-DC", "title": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Acclimation of cardiovascular function in Notothenia coriiceps", "uid": "601408", "west": null}, {"awards": null, "bounds_geometry": ["POINT(-168.626 -82.375)"], "date_created": "Tue, 05 May 2020 00:00:00 GMT", "description": "The Ross Ice Shelf Project (RISP) began in 1973, and lasted six field seasons. One of the primary goals for RISP was to drill a hole through the Ross Ice Shelf in order to study the ice, the ocean, and the ocean floor beneath the ice shelf. In late November 1974, during the second field season, the camp at J-9 (82.375S, 168.626W) was established, and this site was chosen for future deep core drilling.\r\nThis datset records ice shelf and sub-ice shelf temperature profiles taken between 1974 and 1977 at the J9 drill site in The Ross Ice Shelf. ", "east": -168.626, "geometry": ["POINT(-168.626 -82.375)"], "keywords": "Antarctica; Ross Ice Shelf", "locations": "Ross Ice Shelf; Antarctica", "north": -82.375, "nsf_funding_programs": null, "persons": "Clough, John", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -82.375, "title": "J-9 Drill Hole Temperatures", "uid": "601316", "west": -168.626}, {"awards": "1341725 Guest, Peter", "bounds_geometry": ["POLYGON((-180 -62,-179.5 -62,-179 -62,-178.5 -62,-178 -62,-177.5 -62,-177 -62,-176.5 -62,-176 -62,-175.5 -62,-175 -62,-175 -63.6,-175 -65.2,-175 -66.8,-175 -68.4,-175 -70,-175 -71.6,-175 -73.2,-175 -74.8,-175 -76.4,-175 -78,-175.5 -78,-176 -78,-176.5 -78,-177 -78,-177.5 -78,-178 -78,-178.5 -78,-179 -78,-179.5 -78,180 -78,178.8 -78,177.6 -78,176.4 -78,175.2 -78,174 -78,172.8 -78,171.6 -78,170.4 -78,169.2 -78,168 -78,168 -76.4,168 -74.8,168 -73.2,168 -71.6,168 -70,168 -68.4,168 -66.8,168 -65.2,168 -63.6,168 -62,169.2 -62,170.4 -62,171.6 -62,172.8 -62,174 -62,175.2 -62,176.4 -62,177.6 -62,178.8 -62,-180 -62))"], "date_created": "Wed, 12 Jun 2019 00:00:00 GMT", "description": "This file contains times series data from the 2017 PIPERS cruise for the period 15 April 0000 \u2013 8 June 1200 (UT). The time series data represent one minute means and include data collected by the Naval Postgraduate School from the starboard side boom (including occasionally on ice surface temp sampling), radiation system on the helo deck and sometimes in situ surface temp. Also included are meteorological, navigation and surface oceanography (from intake) data from the standard ship systems. ", "east": -175.0, "geometry": ["POINT(176.5 -70)"], "keywords": "Air Temperature; Antarctica; Atmosphere; Meteorology; Near-Surface Air Temperatures; PIPERS; Radiation; Sea Ice Temperatures; Temperature; Weather Station Data; Wind Direction; Wind Speed", "locations": "Antarctica", "north": -62.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Guest, Peter", "project_titles": "Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica", "projects": [{"proj_uid": "p0010032", "repository": "USAP-DC", "title": "Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "PIPERS Meteorology Time Series", "uid": "601184", "west": 168.0}, {"awards": "1041022 McClintock, James", "bounds_geometry": null, "date_created": "Wed, 13 Mar 2019 00:00:00 GMT", "description": "Response time data for snails escaping from predatory sea stars", "east": null, "geometry": null, "keywords": "Antarctica; Benthos; Biota; Oceans; Snail; Southern Ocean; Visual Observations", "locations": "Antarctica; Southern Ocean", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Schram, Julie; Amsler, Charles", "project_titles": "The effects of ocean acidification and rising sea surface temperatures on shallow-water benthic organisms in Antarctica", "projects": [{"proj_uid": "p0000426", "repository": "USAP-DC", "title": "The effects of ocean acidification and rising sea surface temperatures on shallow-water benthic organisms in Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Response time data for snails escaping from predatory sea stars", "uid": "601162", "west": null}, {"awards": "1246407 Jenouvrier, Stephanie", "bounds_geometry": ["POLYGON((68.5 -48.5,68.725 -48.5,68.95 -48.5,69.175 -48.5,69.4 -48.5,69.625 -48.5,69.85 -48.5,70.075 -48.5,70.3 -48.5,70.525 -48.5,70.75 -48.5,70.75 -48.65,70.75 -48.8,70.75 -48.95,70.75 -49.1,70.75 -49.25,70.75 -49.4,70.75 -49.55,70.75 -49.7,70.75 -49.85,70.75 -50,70.525 -50,70.3 -50,70.075 -50,69.85 -50,69.625 -50,69.4 -50,69.175 -50,68.95 -50,68.725 -50,68.5 -50,68.5 -49.85,68.5 -49.7,68.5 -49.55,68.5 -49.4,68.5 -49.25,68.5 -49.1,68.5 -48.95,68.5 -48.8,68.5 -48.65,68.5 -48.5))"], "date_created": "Mon, 03 Dec 2018 00:00:00 GMT", "description": "1. Studies of the mechanisms underlying climate-induced population changes are critically needed to better understand and accurately predict population responses to climate change. Long-lived migratory species might be particularly vulnerable to climate change as they are constrained by different climate conditions and energetic requirements during the breeding and non-breeding seasons. Yet, most studies primarily focus on the breeding season of these species life cycle. Environmental conditions experienced in the non-breeding season may have downstream effects on the other stages of the annual life cycle. Not investigating such effects may potentially lead to erroneous inferences about population dynamics.\r\n2. Combining demographic and tracking data collected between 2006 and 2013 at Kerguelen Island on a long-lived migratory seabird, the Black-Browed Albatross (Thalassarche melanophris), we investigated the links between sea surface temperature during the non-breeding season and behavioural and phenological traits (at-sea behaviour and migratory schedules) while accounting for different responses between birds of different sex and reproductive status (previously failed or successful breeders). We then explored whether variation in the foraging behaviour and timing of spring migration influenced subsequent reproductive performance.\r\n3. Our results showed that foraging activity and migratory schedules varied by both sex and reproductive status suggesting different energetic requirements and constraints among individuals. Higher sea surface temperatures during late winter, assumed to reflect poor winter conditions, were associated with an earlier departure from the wintering grounds and an extended pre-breeding period. However, an earlier spring migration and an earlier return to Kerguelen grounds were associated with a lower breeding success.\r\n4. Our results highlighted that behaviour during some periods of the non-breeding season, particularly towards the end of the wintering period and the pre-breeding period, had a significant effect on the subsequent reproductive success. Therefore caution needs to be given to all stages of the annual cycle when predicting the influence of climate on population dynamics.", "east": 70.75, "geometry": ["POINT(69.625 -49.25)"], "keywords": "Albatross; Animal Behavior Observation; Antarctica; Biota; Birds; Black-Browed Albatross (thalassarche Melanophris); Field Investigations; Foraging; Kerguelen Island; Ocean Island/plateau; Ocean Island/Plateau; Southern Ocean", "locations": "Kerguelen Island; Southern Ocean; Antarctica", "north": -48.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Jenouvrier, Stephanie", "project_titles": "Linking Foraging Behaviors to Demography to understand Albatrosses Population Responses to Climate Change", "projects": [{"proj_uid": "p0010002", "repository": "USAP-DC", "title": "Linking Foraging Behaviors to Demography to understand Albatrosses Population Responses to Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -50.0, "title": "Linking oceanographic conditions, migratory schedules and foraging behaviour during the non-breeding season to reproductive performance in a long-lived seabird", "uid": "601140", "west": 68.5}, {"awards": "1142174 Smith, Walker", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 14 Nov 2018 00:00:00 GMT", "description": "This data set summarizes the responses of a variety of phytoplankton cultures to different temperatures. Variables assessed in triplicate at each temperature include cell abundance, chlorophyll and particulate organic carbon. Some eight species were assessed. Each experiment lasted ca. 25 days. ", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Biota; Chlorophyll; Foraminifera; Growth; Phytoplankton; Plankton; Temperature", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Smith, Walker", "project_titles": "Collaborative Research: Penguin Foraging Reveals Phytoplankton Spatial Structure in the Ross Sea", "projects": [{"proj_uid": "p0000322", "repository": "USAP-DC", "title": "Collaborative Research: Penguin Foraging Reveals Phytoplankton Spatial Structure in the Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Experimental analyses of phytoplankton temperature response", "uid": "601135", "west": -180.0}, {"awards": "0943466 Hawley, Robert", "bounds_geometry": ["POLYGON((-163 -79,-162.8 -79,-162.6 -79,-162.4 -79,-162.2 -79,-162 -79,-161.8 -79,-161.6 -79,-161.4 -79,-161.2 -79,-161 -79,-161 -79.05,-161 -79.1,-161 -79.15,-161 -79.2,-161 -79.25,-161 -79.3,-161 -79.35,-161 -79.4,-161 -79.45,-161 -79.5,-161.2 -79.5,-161.4 -79.5,-161.6 -79.5,-161.8 -79.5,-162 -79.5,-162.2 -79.5,-162.4 -79.5,-162.6 -79.5,-162.8 -79.5,-163 -79.5,-163 -79.45,-163 -79.4,-163 -79.35,-163 -79.3,-163 -79.25,-163 -79.2,-163 -79.15,-163 -79.1,-163 -79.05,-163 -79))"], "date_created": "Tue, 13 Feb 2018 00:00:00 GMT", "description": "These data are firn temperatures, measured by a meteorological station placed at Roosevelt Island. Thermistors were placed at multiple depths through the upper 20 meters of firn and measured through the course of roughly one year.", "east": -161.0, "geometry": ["POINT(-162 -79.25)"], "keywords": "Antarctica; Borehole; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Records; Ice Fabric; Optical Images; Roosevelt Island; Snow/ice; Snow/Ice; Temperature", "locations": "Roosevelt Island; Antarctica", "north": -79.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "persons": "Hawley, Robert L.; Clemens-Sewall, David; Giese, Alexandra", "project_titles": "Collaborative Research: Deglaciation of the Ross Sea Embayment - constraints from Roosevelt Island", "projects": [{"proj_uid": "p0000272", "repository": "USAP-DC", "title": "Collaborative Research: Deglaciation of the Ross Sea Embayment - constraints from Roosevelt Island"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.5, "title": "Roosevelt Island Borehole Firn temperatures", "uid": "601085", "west": -163.0}, {"awards": "1246203 Gooseff, Michael", "bounds_geometry": ["POLYGON((163.1778 -77.6233,163.17792 -77.6233,163.17804 -77.6233,163.17816 -77.6233,163.17828 -77.6233,163.1784 -77.6233,163.17852 -77.6233,163.17864 -77.6233,163.17876 -77.6233,163.17888 -77.6233,163.179 -77.6233,163.179 -77.63331,163.179 -77.64332,163.179 -77.65333,163.179 -77.66334,163.179 -77.67335,163.179 -77.68336,163.179 -77.69337,163.179 -77.70338,163.179 -77.71339,163.179 -77.7234,163.17888 -77.7234,163.17876 -77.7234,163.17864 -77.7234,163.17852 -77.7234,163.1784 -77.7234,163.17828 -77.7234,163.17816 -77.7234,163.17804 -77.7234,163.17792 -77.7234,163.1778 -77.7234,163.1778 -77.71339,163.1778 -77.70338,163.1778 -77.69337,163.1778 -77.68336,163.1778 -77.67335,163.1778 -77.66334,163.1778 -77.65333,163.1778 -77.64332,163.1778 -77.63331,163.1778 -77.6233))"], "date_created": "Mon, 18 Dec 2017 00:00:00 GMT", "description": "As a part of the project titled \"Collaborative Research: The McMurdo Dry Valleys: A landscape on the threshold of change\", we measured ground temperatures from 0-20cm at three stream bank positions (base, mid-slope, and top) at 4 locations along Crescent Stream in Taylor Valley - 2 on the east bank, 2 on the west bank. The goal was to evaluate differences in thermal conduction and temperature dynamics of the active layers of these locations, in particular, in a stream that has undergone extensive bank erosion since 2012 due to permafrost degradation. One of the datalogging stations had significant technical problems and has very little data compared to the almost 2 years of temperature date from the other 3 stations (2015-2017). ", "east": 163.179, "geometry": ["POINT(163.1784 -77.67335)"], "keywords": "Antarctica; Dry Valleys; Glaciology; Paleoclimate; Permafrost; Soil Temperature; Taylor Valley", "locations": "Taylor Valley; Antarctica; Dry Valleys", "north": -77.6233, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Gooseff, Michael N.", "project_titles": "Collaborative Research: THE MCMURDO DRY VALLEYS: A landscape on the Threshold of Change", "projects": [{"proj_uid": "p0000076", "repository": "USAP-DC", "title": "Collaborative Research: THE MCMURDO DRY VALLEYS: A landscape on the Threshold of Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.7234, "title": "Active Layer Temperatures from Crescent Stream banks, Taylor Valley Antarctica", "uid": "601075", "west": 163.1778}, {"awards": "1041022 McClintock, James", "bounds_geometry": ["POLYGON((-64.5 -64.5,-64.45 -64.5,-64.4 -64.5,-64.35 -64.5,-64.3 -64.5,-64.25 -64.5,-64.2 -64.5,-64.15 -64.5,-64.1 -64.5,-64.05 -64.5,-64 -64.5,-64 -64.54,-64 -64.58,-64 -64.62,-64 -64.66,-64 -64.7,-64 -64.74,-64 -64.78,-64 -64.82,-64 -64.86,-64 -64.9,-64.05 -64.9,-64.1 -64.9,-64.15 -64.9,-64.2 -64.9,-64.25 -64.9,-64.3 -64.9,-64.35 -64.9,-64.4 -64.9,-64.45 -64.9,-64.5 -64.9,-64.5 -64.86,-64.5 -64.82,-64.5 -64.78,-64.5 -64.74,-64.5 -64.7,-64.5 -64.66,-64.5 -64.62,-64.5 -64.58,-64.5 -64.54,-64.5 -64.5))"], "date_created": "Fri, 20 Oct 2017 00:00:00 GMT", "description": "", "east": -64.0, "geometry": ["POINT(-64.25 -64.7)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Chemistry:fluid; Chemistry:Fluid; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Southern Ocean; Antarctic Peninsula; Antarctica", "north": -64.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Amsler, Charles; Schram, Julie", "project_titles": "The effects of ocean acidification and rising sea surface temperatures on shallow-water benthic organisms in Antarctica", "projects": [{"proj_uid": "p0000426", "repository": "USAP-DC", "title": "The effects of ocean acidification and rising sea surface temperatures on shallow-water benthic organisms in Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.9, "title": "Data from Schram et al. 2017 MEPS", "uid": "601062", "west": -64.5}, {"awards": "0839093 McConnell, Joseph", "bounds_geometry": ["POLYGON((161.41425 -77.73489,161.486884 -77.73489,161.559518 -77.73489,161.632152 -77.73489,161.704786 -77.73489,161.77742 -77.73489,161.850054 -77.73489,161.922688 -77.73489,161.995322 -77.73489,162.067956 -77.73489,162.14059 -77.73489,162.14059 -77.747868,162.14059 -77.760846,162.14059 -77.773824,162.14059 -77.786802,162.14059 -77.79978,162.14059 -77.812758,162.14059 -77.825736,162.14059 -77.838714,162.14059 -77.851692,162.14059 -77.86467,162.067956 -77.86467,161.995322 -77.86467,161.922688 -77.86467,161.850054 -77.86467,161.77742 -77.86467,161.704786 -77.86467,161.632152 -77.86467,161.559518 -77.86467,161.486884 -77.86467,161.41425 -77.86467,161.41425 -77.851692,161.41425 -77.838714,161.41425 -77.825736,161.41425 -77.812758,161.41425 -77.79978,161.41425 -77.786802,161.41425 -77.773824,161.41425 -77.760846,161.41425 -77.747868,161.41425 -77.73489))"], "date_created": "Mon, 19 Jun 2017 00:00:00 GMT", "description": "Black carbon (BC) and other biomass-burning (BB) aerosols are critical components of climate forcing but quantification, predictive climate modeling, and policy decisions have been hampered by limited understanding of the climate drivers of BB and by the lack of long-term records. Prior modeling studies suggested that increased Northern Hemisphere anthropogenic BC emissions increased recent temperatures and regional precipitation, including a northward shift in the Inter-Tropical Convergence Zone (ITCZ). Two Antarctic ice cores were analyzed for BC and the longest record shows that the highest BC deposition during the Holocene occurred ~8-6k years before present in a period of relatively high austral burning season and low growing season insolation. Atmospheric transport modeling suggests South America (SA) as the dominant source of modern Antarctic BC and, consistent with the ice-core record, climate model experiments using mid-Holocene and preindustrial insolation simulate comparable increases in carbon loss due to fires in SA during the mid-Holocene. SA climate proxies document a northward shifted ITCZ and weakened SA Summer Monsoon (SASM) during this period, with associated impacts on hydroclimate and burning. A second Antarctic ice core spanning the last 2.5k years documents similar linkages between hydroclimate and BC, with the lowest deposition during the Little Ice Age characterized by a southerly shifted ITCZ and strengthened SASM. These new results indicate that insolation-driven changes in SA hydroclimate and BB, likely linked to the position of the ITCZ, modulated Antarctic BC deposition during most of the Holocene and suggests connections and feedbacks between future BC emissions and hydroclimate.", "east": 162.14059, "geometry": ["POINT(161.77742 -77.79978)"], "keywords": "Antarctica; Atmosphere; Black Carbon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -77.73489, "nsf_funding_programs": null, "persons": "McConnell, Joseph; Arienzo, Monica", "project_titles": "Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core", "projects": [{"proj_uid": "p0000273", "repository": "USAP-DC", "title": "Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -77.86467, "title": "Holocene Black Carbon in Antarctica", "uid": "601034", "west": 161.41425}, {"awards": "0539232 Cuffey, Kurt", "bounds_geometry": ["POINT(-112.083 -79.467)"], "date_created": "Thu, 12 Jan 2017 00:00:00 GMT", "description": "This dataset contains the temperature reconstruction at the West Antarctic Ice Sheet (WAIS) Divide reported by Cuffey et al. (2016) in PNAS. Five files contain 1) the primary reconstruction (Eq. 2 of that publication), combining information from borehole temperatures, deuterium isotopic content of ice, and nitrogen-15 content of trapped diatomic nitrogen gas; 2) the primary reconstruction with higher-frequency content restored; 3) the lower limit of the primary reconstruction; 4) the upper limit of the primary reconstruction; and 5) and the primary reconstruction with added perturbations.", "east": -112.083, "geometry": ["POINT(-112.083 -79.467)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Nitrogen; Paleoclimate; Temperature; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.467, "nsf_funding_programs": null, "persons": "Cuffey, Kurt M.", "project_titles": "Collaborative Research: Physical Properties of the WAIS Divide Deep Core", "projects": [{"proj_uid": "p0000038", "repository": "USAP-DC", "title": "Collaborative Research: Physical Properties of the WAIS Divide Deep Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Temperature Reconstruction at the West Antarctic Ice Sheet Divide", "uid": "600377", "west": -112.083}, {"awards": "1141877 Aronson, Richard", "bounds_geometry": null, "date_created": "Tue, 10 Jan 2017 00:00:00 GMT", "description": "Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials.", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula; Anvers Island; Benthos; Biota; Camera Tow; LMG1502; Marguerite Bay; NBP1002; NBP1310; Oceans; Photo/video; Photo/Video; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Marguerite Bay; Antarctic Peninsula; Anvers Island; Southern Ocean; Antarctica", "north": null, "nsf_funding_programs": null, "persons": "Aronson, Richard", "project_titles": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos", "projects": [{"proj_uid": "p0000303", "repository": "USAP-DC", "title": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Climate Change and Predatory Invasion of the Antarctic Benthos", "uid": "600385", "west": null}, {"awards": "1141877 Aronson, Richard", "bounds_geometry": ["POLYGON((-111.18 -49.98,-105.429 -49.98,-99.678 -49.98,-93.927 -49.98,-88.176 -49.98,-82.425 -49.98,-76.674 -49.98,-70.923 -49.98,-65.172 -49.98,-59.421 -49.98,-53.67 -49.98,-53.67 -52.826,-53.67 -55.672,-53.67 -58.518,-53.67 -61.364,-53.67 -64.21,-53.67 -67.056,-53.67 -69.902,-53.67 -72.748,-53.67 -75.594,-53.67 -78.44,-59.421 -78.44,-65.172 -78.44,-70.923 -78.44,-76.674 -78.44,-82.425 -78.44,-88.176 -78.44,-93.927 -78.44,-99.678 -78.44,-105.429 -78.44,-111.18 -78.44,-111.18 -75.594,-111.18 -72.748,-111.18 -69.902,-111.18 -67.056,-111.18 -64.21,-111.18 -61.364,-111.18 -58.518,-111.18 -55.672,-111.18 -52.826,-111.18 -49.98))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials.", "east": -53.67, "geometry": ["POINT(-82.425 -64.21)"], "keywords": "Antarctica; Antarctic Peninsula; Anvers Island; Benthos; Biota; Camera Tow; LMG1502; Marguerite Bay; NBP1002; NBP1310; Oceans; Photo/video; Photo/Video; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Antarctica; Antarctic Peninsula; Anvers Island; Marguerite Bay; Southern Ocean", "north": -49.98, "nsf_funding_programs": null, "persons": "Aronson, Richard", "project_titles": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos", "projects": [{"proj_uid": "p0000303", "repository": "USAP-DC", "title": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.44, "title": "Climate Change and Predatory Invasion of the Antarctic Benthos", "uid": "600171", "west": -111.18}, {"awards": "0632399 Jefferies, Stuart", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "The ultimate goal of this project is to determine the structure and dynamics of the Sun\u0027s atmosphere, assess the role of MHD waves in heating the chromosphere/corona and driving the solar wind, and better understand how the Sun\u0027s atmosphere couples to the solar interior. As the solar atmosphere is \u0027home\u0027 to many of the solar phenomena that can have a direct impact on the biosphere, including flares, coronal mass ejections, and the solar wind, the broader impact of such studies is that they will lead to an improved understanding of the Sun-Earth connection. \nUnder the current award we have developed a suite of instruments that can simultaneously image the line-of-sight Doppler velocity and longitudinal magnetic field at four heights in the solar atmosphere at high temporal cadence. The instruments use magneto-optical filters (see Cacciani, Moretti and Rodgers, Solar Physics 174, p.115, 2004) tuned to the solar absorption lines at 422 nm (Ca I), 589 nm (Na D2), 770 nm (K) and 1083 nm (He). These lines sample the solar atmosphere from the mid-photosphere to the high-chromosphere. \nA proof-of-concept run was made in the Austral summer of 2007/2008 using the Na and K versions of the instruments. Here we recorded over 40 hours of full-disk, intensity images of the Sun in the red and blue wings of the Na and K Fraunhofer lines, in both right- and left-circularly polarized light. The images were obtained at a rate of one every five seconds with a nominal spatial resolution of 4 arc-seconds. The run started at 09:44 UT on February 2, 2008 and ended at 03:30 UT on February 4, 2008.\nData Quality Assessment:\nThe temperature controls of the instrument housings were unable to fully compensate for the harse Antartic winds encountered during the observing run. This led to large (~15 C) temperature swings which adversely affected the instruments (and thus data quality) in two ways: 1) Crystals of Na and K were deposited on the magneto-optical filter windows leading to \"hot spots\" in the images. These \"hot spots\" come and go with time as the temperature changes. 2) The changing temperature caused the optical rails to contract and expand causing the final images to go in- and out-of-focus, thus reducing the resolution to greater than 4 arc-seconds. Both these effect are worse in the K data.\nDespite these problems, the intensity images can be combined to provide magnetic images that show a very high sensitivity (\u003c 5 Gauss in a 5 second integration).\nData Description:\nThe raw data are stored as a series of 1024x1024x4 FITS images. The format is: blue image (left circulary polarized light), blue image (right circularly polarized light), red image (left circulary polarized light), red image (right circularly polarized light).\nThe naming convention for the images is: Type_Instrument_Day_hour_minutes_seconds\nwhere Type is I (intensity), F (flatfield), D (dark)\n Instrument is 0 (Na), 1 (K)\n Day is the day number from the beginning of the year where January 1 is day 0\nFor example, I_0_32_12_34_40.fits is an intensity image taken with the Na instrument at 12:34.40 UT on February 2, 2008.\nNotes: \n1) The flatfield images were acquired by moving a diffuser in front of the Sun during the integration. The resulting images therefore have to be corrected for residual low-spatial frequencies due to the non-flat nature of the light source.\n2) Each FITS file header contains a variety of information on the observation, e.g.,\nF_CNTO\t: number of summed frames in each 5 second integration (*)\nFPS\t\t: Camera frame rate (Frames Per Second)\nFLIP\t: Rate at which the half-wave rotator (magnetic switch) was switched\nINT_PER\t: Integration time (in seconds)\nMOF\t\t: Temperature of magneto-optical filter cell\nWS\t\t: Temperature of wing selector cell\nTEMP_0\t: Temperature of camera 0\nTEMP_1\t: Temperature of camera 1\nTEMP_2\t: Temperature inside instrument (location 1)\nTEMP_3\t: Temperature of narrowband filter\nTEMP_5\t: Temperature of magnets surrounding MOF cell\nTEMP_6\t: Temperature inside instrument (location 2)\nTEMP_7\t: Temperature of housing for magnetic switch\n(*) This is the frame count for the camera. The number of frames in each image for the two different polarization states, is half this number.\nThe measured temperatures are only coarse measurements.\n3) Due to reflection in the final polarizing beam splitter (which separates the \"red\" and \"blue\" signals into the two cameras), the camera 1 data need to \"reversed\" along the x-axis (i.e. listed as [1024:1] instead of [1:1024])\n4) Line-of-sight velocity and magnetic field images are generated from the observed intensity images. Doppler images as (red-blue)/(red+blue), magnetic images as the difference between the Doppler images\nfor right- and left-circularly polarized light.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cosmos; Satellite Remote Sensing; Sun", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Jefferies, Stuart M.", "project_titles": "Tomographic Imaging of the Velocity and Magnetic Fields in the Sun\u0027s Atmosphere", "projects": [{"proj_uid": "p0000526", "repository": "USAP-DC", "title": "Tomographic Imaging of the Velocity and Magnetic Fields in the Sun\u0027s Atmosphere"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Tomographic Imaging of the Velocity and Magnetic Fields in the Sun\u0027s Atmosphere", "uid": "600152", "west": -180.0}, {"awards": "0732730 Truffer, Martin", "bounds_geometry": ["POINT(-100.5 -75.1)"], "date_created": "Fri, 31 Jul 2015 00:00:00 GMT", "description": "This data set is a time series of borehole temperatures at different depths from three thermistor strings deployed in three boreholes drilled through the Pine Island Glacier ice shelf, Antarctica.", "east": -100.5, "geometry": ["POINT(-100.5 -75.1)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Pine Island Glacier; Temperature", "locations": "Pine Island Glacier; Antarctica", "north": -75.1, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Truffer, Martin; Stanton, Timothy", "project_titles": "Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica", "projects": [{"proj_uid": "p0000043", "repository": "USAP-DC", "title": "Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.1, "title": "Borehole Temperatures at Pine Island Glacier, Antarctica", "uid": "609627", "west": -100.5}, {"awards": "1142010 Talghader, Joseph", "bounds_geometry": ["POLYGON((-148.81 -79.42,-145.111 -79.42,-141.412 -79.42,-137.713 -79.42,-134.014 -79.42,-130.315 -79.42,-126.616 -79.42,-122.917 -79.42,-119.218 -79.42,-115.519 -79.42,-111.82 -79.42,-111.82 -79.643,-111.82 -79.866,-111.82 -80.089,-111.82 -80.312,-111.82 -80.535,-111.82 -80.758,-111.82 -80.981,-111.82 -81.204,-111.82 -81.427,-111.82 -81.65,-115.519 -81.65,-119.218 -81.65,-122.917 -81.65,-126.616 -81.65,-130.315 -81.65,-134.014 -81.65,-137.713 -81.65,-141.412 -81.65,-145.111 -81.65,-148.81 -81.65,-148.81 -81.427,-148.81 -81.204,-148.81 -80.981,-148.81 -80.758,-148.81 -80.535,-148.81 -80.312,-148.81 -80.089,-148.81 -79.866,-148.81 -79.643,-148.81 -79.42))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "This award supports a project to combine the expertise of both glaciologists and optical engineers to develop polarization- preserving optical scattering techniques for borehole tools to identify changes in high-resolution crystal structure (fabric) and dust content of glacial ice. The intellectual merit of this work is that the fabric and impurity content of the ice contain details on climate, volcanic activity and ice flow history. Such fabric measurements are currently taken by slicing an ice core into sections after it has started to depressurize which is an extremely time-intensive process that damages the core and does not always preserve the properties of ice in its in-situ state. In addition the ice core usually must be consumed in order to measure the components of the dust. The fabric measurements of this study utilize the concept that singly-scattered light in ice preserves most of its polarization when it is backscattered once from bubbles or dust; therefore, changes to the polarization of singly-backscattered light must originate with the birefringence. Measurements based on this concept will enable this program to obtain continuous records of fabric and correlate them to chronology and dust content. The project will also develop advanced borehole instruments to replace current logging tools, which require optical sources, detectors and power cables to be submerged in borehole fluid and lowered into the ice sheet at temperatures of -50oC. The use of telecommunications fiber will allow all sources and detectors to remain at the surface and enable low-noise signal processing techniques such as lock-in amplification that increase signal integrity and reduce needed power. Further, fiber logging systems would be much smaller and more flexible than current tools and capable of navigating most boreholes without a heavy winch. In order to assess fabric in situ and test fiber-optic borehole tools, field measurements will be made at WAIS Divide and a deep log will also be made at Siple Dome, both in West Antarctica. If successful, the broader impacts of the proposed research would include the development of new analytical methods and lightweight logging tools for ice drilling research that can operate in boreholes drilled in ice. Eventually the work could result in the development of better prehistoric records of glacier flow, atmospheric particulates, precipitation, and climate forcing. The project encompasses a broad base of theoretical, experimental, and design work, which makes it ideal for training graduate students and advanced undergraduates. Collaboration with schools and classroom teachers will help bring aspects of optics, climate, and polar science to an existing Middle School curriculum.", "east": -111.82, "geometry": ["POINT(-130.315 -80.535)"], "keywords": "Antarctica; Ash Layer; Borehole Camera; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.42, "nsf_funding_programs": null, "persons": "Talghader, Joseph", "project_titles": "Optical Fabric and Fiber Logging of Glacial Ice", "projects": [{"proj_uid": "p0000339", "repository": "USAP-DC", "title": "Optical Fabric and Fiber Logging of Glacial Ice"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -81.65, "title": "Optical Fabric and Fiber Logging of Glacial Ice (1142010)", "uid": "600172", "west": -148.81}, {"awards": "1041022 McClintock, James", "bounds_geometry": ["POLYGON((-79 -60,-76.4 -60,-73.8 -60,-71.2 -60,-68.6 -60,-66 -60,-63.4 -60,-60.8 -60,-58.2 -60,-55.6 -60,-53 -60,-53 -61,-53 -62,-53 -63,-53 -64,-53 -65,-53 -66,-53 -67,-53 -68,-53 -69,-53 -70,-55.6 -70,-58.2 -70,-60.8 -70,-63.4 -70,-66 -70,-68.6 -70,-71.2 -70,-73.8 -70,-76.4 -70,-79 -70,-79 -69,-79 -68,-79 -67,-79 -66,-79 -65,-79 -64,-79 -63,-79 -62,-79 -61,-79 -60))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "The research will investigate the individual and combined effects of rising ocean acidification and sea surface temperatures on shallow-water calcified benthic organisms in western Antarctic Peninsular (WAP) marine communities. The Southern Ocean is predicted to become undersaturated in terms of both aragonite and calcite within 50 and 100 years, respectively, challenging calcification processes. Adding to the problem, antarctic calcified benthic marine organisms are more vulnerable to ocean acidification than temperate and tropical species because they are generally weakly calcified. Many antarctic organisms are essentially stenothermal, and those in the West Antarctic Peninsula are being subjected to rising seawater temperatures. The project employs both single-species and multi-species level approaches to evaluating the impacts of rising ocean acidification and seawater temperature on representative calcified and non-calcified macroalgae, on calcified and non-calcified mesograzers, and on a calcified macro-grazer, all of which are important ecological players in the rich benthic communities. Multi-species analysis will focus on the diverse assemblage of amphipods and mesogastropods that are associated with dominant macroalgae that collectively play a key role in community dynamics along the WAP. The project will support undergraduate research, both through NSF programs, as well as home university-based programs, some designed to enhance the representation of minorities in the sciences. The principal investigators also will support and foster graduate education through mentoring of graduate students. Through their highly successful UAB IN ANTARCTICA interactive web program, they will continue to involve large numbers of teachers, K-12 students, and other members of the community at large in their scientific endeavors in Antarctica.", "east": -53.0, "geometry": ["POINT(-66 -65)"], "keywords": "Antarctic Peninsula; Biota; Oceans; Southern Ocean", "locations": "Southern Ocean; Antarctic Peninsula", "north": -60.0, "nsf_funding_programs": null, "persons": "McClintock, James; Amsler, Charles; Angus, Robert", "project_titles": "The effects of ocean acidification and rising sea surface temperatures on shallow-water benthic organisms in Antarctica", "projects": [{"proj_uid": "p0000426", "repository": "USAP-DC", "title": "The effects of ocean acidification and rising sea surface temperatures on shallow-water benthic organisms in Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "The effects of ocean acidification and rising sea surface temperatures on shallow-water benthic organisms in Antarctica", "uid": "600122", "west": -79.0}, {"awards": "0539232 Cuffey, Kurt", "bounds_geometry": ["POINT(-112.0865 -79.4676)"], "date_created": "Wed, 30 Apr 2014 00:00:00 GMT", "description": "This data set reports depth versus temperatures in the fluid-filled portion of the West Antarctic Ice Sheet Divide (WAIS\u2013D) deep borehole (70 to 3328 meters depth). Data were acquired on December 5, 2011 and have been post-processed to convert resistance to temperature.", "east": -112.0865, "geometry": ["POINT(-112.0865 -79.4676)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Temperature; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.4676, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Cuffey, Kurt M.; Clow, Gary D.", "project_titles": "Collaborative Research: Physical Properties of the WAIS Divide Deep Core", "projects": [{"proj_uid": "p0000038", "repository": "USAP-DC", "title": "Collaborative Research: Physical Properties of the WAIS Divide Deep Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.4676, "title": "Temperature Profile of the West Antarctic Ice Sheet Divide Deep Borehole", "uid": "609550", "west": -112.0865}, {"awards": "1043740 Lenczewski, Melissa", "bounds_geometry": ["POLYGON((165 -77.5,165.3 -77.5,165.6 -77.5,165.9 -77.5,166.2 -77.5,166.5 -77.5,166.8 -77.5,167.1 -77.5,167.4 -77.5,167.7 -77.5,168 -77.5,168 -77.6,168 -77.7,168 -77.8,168 -77.9,168 -78,168 -78.1,168 -78.2,168 -78.3,168 -78.4,168 -78.5,167.7 -78.5,167.4 -78.5,167.1 -78.5,166.8 -78.5,166.5 -78.5,166.2 -78.5,165.9 -78.5,165.6 -78.5,165.3 -78.5,165 -78.5,165 -78.4,165 -78.3,165 -78.2,165 -78.1,165 -78,165 -77.9,165 -77.8,165 -77.7,165 -77.6,165 -77.5))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "The PI proposes to utilize computer models used by hydrogeologists to establish the fate and transport of contamination and determine the extent of drilling fluid contamination in the ANDRILL SMS core. For these models, previously collected logs of lithology, porosity, fracture density, fracture type, fracture orientation, drilling fluid loss, drilling fluid characteristics and temperature will be used as input parameters. In addition, biodegradation and sorption constants for the drilling fluid will be determined and incorporated into the models. Samples of drilling fluids used during coring as well as the return fluids were collected at the drill site using standard microbiological sampling techniques. Fluids will be tested at in situ temperatures under aerobic and anaerobic conditions to determine biodegradation constants. Sorption will be determined between the drilling fluids and core samples using standard isotherm methods. Geochemical and microbial fingerprints of the fluids and the changes during biodegradation will determine the potential impact of the drilling fluids on the isolated microbial communities and the geochemistry within various subsurface lithologic units beneath the southern McMurdo Sound in Antarctica. The results of this study could potentially provide guidelines on developing less detrimental methods for future exploration, if deemed necessary through this research.\nThis proposed project will train a graduate student. The methods developed for analyses of samples in this project will serve as a guide for future studies of similar interest and will improve the understanding of ecological impacts of geologic drilling in Antarctica. The results of this study will be used as a reference for comparison with future studies examining newly developed, and improved, sample collection methods in future exploratory drilling projects in pristine environments. The PI is new to Antarctic research.\n", "east": 168.0, "geometry": ["POINT(166.5 -78)"], "keywords": "Andrill; Antarctica; Chemistry:fluid; Chemistry:Fluid; Chemistry:rock; Chemistry:Rock; Drilling Fluid; Geochemistry; McMurdo; Ross Sea; Sediment Core", "locations": "McMurdo; Antarctica; Ross Sea", "north": -77.5, "nsf_funding_programs": null, "persons": "Lenczewski, Melissa", "project_titles": "Fate of Drilling Fluids during the South McMurdo Sound Project (SMS) of the Antarctic Geological Drilling Program (ANDRILL)", "projects": [{"proj_uid": "p0000468", "repository": "USAP-DC", "title": "Fate of Drilling Fluids during the South McMurdo Sound Project (SMS) of the Antarctic Geological Drilling Program (ANDRILL)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ANDRILL", "south": -78.5, "title": "Fate of Drilling Fluids during the South McMurdo Sound Project (SMS) of the Antarctic Geological Drilling Program (ANDRILL)", "uid": "600129", "west": 165.0}, {"awards": "1354231 Kowalewski, Douglas", "bounds_geometry": ["POLYGON((-160 -70,-156 -70,-152 -70,-148 -70,-144 -70,-140 -70,-136 -70,-132 -70,-128 -70,-124 -70,-120 -70,-120 -71.5,-120 -73,-120 -74.5,-120 -76,-120 -77.5,-120 -79,-120 -80.5,-120 -82,-120 -83.5,-120 -85,-124 -85,-128 -85,-132 -85,-136 -85,-140 -85,-144 -85,-148 -85,-152 -85,-156 -85,-160 -85,-160 -83.5,-160 -82,-160 -80.5,-160 -79,-160 -77.5,-160 -76,-160 -74.5,-160 -73,-160 -71.5,-160 -70))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: Neogene sediment records recovered by ANDRILL suggest multiple events of open water conditions and elevated sea surface temperatures at times when terrestrial data from the McMurdo Dry Valleys indicate hyper arid, cold, desert conditions. Interpretation of the ANDRILL data suggests the West Antarctic Ice Sheet is highly sensitive to changes in Pliocene sea surface temperatures and this conclusion has been supported by recent Global Circulation Model results for the early to mid Pliocene. The PIs propose to model paleo-ice configurations and warm orbits associated with a WAIS collapse to assess potential climate change in East Antarctica. During such episodes of polar warmth they propose to answer: What is the limit of ablation along the East Antarctic Ice Sheet?; Are relict landforms in the Dry Valleys susceptible to modification from increase in maximum summertime temperatures?; and Is there sufficient increase in minimum wintertime temperatures to sustain a tundra environment in the Dry Valleys? Integration of depositional records and model outputs have the potential to test the performance of numerical models currently under development as part of ANDRILL; reconcile inconsistencies between marine and terrestrial paleoclimate records in high Southern Latitudes; and improve understanding of Antarctic climate and ice volume sensitivity to forcing for both the East Antarctic and West Antarctic Ice Sheets. Broader impacts: Results from this study have the potential to be used widely by the research community. Outreach to local elementary schools from other funded efforts will continue and be extended to homeschooled students. A Post Doc will be supported as part of this award.\n", "east": -120.0, "geometry": ["POINT(-140 -77.5)"], "keywords": "Antarctica; Atmosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Model Data; Paleoclimate; Transantarctic Mountains", "locations": "Antarctica; Transantarctic Mountains", "north": -70.0, "nsf_funding_programs": null, "persons": "Kowalewski, Douglas", "project_titles": "Validating contrasting terrestrial climate-sensitive Pliocene deposits through high resolution modeling of paleo-environments in the Transantarctic Mountains", "projects": [{"proj_uid": "p0000463", "repository": "USAP-DC", "title": "Validating contrasting terrestrial climate-sensitive Pliocene deposits through high resolution modeling of paleo-environments in the Transantarctic Mountains"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Validating contrasting terrestrial climate-sensitive Pliocene deposits through high resolution modeling of paleo-environments in the Transantarctic Mountains", "uid": "600140", "west": -160.0}, {"awards": "1019305 Grim, Jeffrey", "bounds_geometry": null, "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Survival of Antarctic notothenioid fishes in the context of global climate change will depend upon the impact of rising oceanic temperatures on their embryonic development, yet little is known regarding the molecular mechanisms underlying this complex suite of processes. Many notothenioids are characterized by secondary pelagicism, which enables them to exploit food sources in the water column and is supported in part by skeletal pedomorphism. Here the PI proposes to examine the hypothesis that reactive oxygen species (ROS) regulate notothenioid skeletal pedomorphism. The research objectives are : 1) To quantify and localize ROS production and identify the point(s) of origin of ROS production in embryonic Antarctic fishes that differ in skeletal phenotypes 2) To determine whether the time course of embryogenesis and the extent of osteological development in embryonic Antarctic fishes can be altered by changing the oxidative status of the animal during embryogenesis 3) To evaluate whether transgenic alteration of oxidative status can induce skeletal pedomorphism in a fish model. Broader Impacts will include teaching undergraduate lectures, recruiting undergraduate students to help with lab analyses (and possibly field work), lectures and demonstrations to high school students, and allowing secondary educators access to personal photos and videos of research animals for curriculum development.", "east": null, "geometry": null, "keywords": "Biota; Fish Logs; LMG1203; LMG1204; LMG1205; Oceans; Pot; Southern Ocean; Trawl", "locations": "Southern Ocean", "north": null, "nsf_funding_programs": null, "persons": "Grim, Jeffrey", "project_titles": "PostDoctoral Research Fellowship", "projects": [{"proj_uid": "p0000482", "repository": "USAP-DC", "title": "PostDoctoral Research Fellowship"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Impact of Rising Oceanic Temperatures on the Embryonic Development of Antarctic Notothenioid Fishes", "uid": "600119", "west": null}, {"awards": "0739783 Junge, Karen", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "The mechanisms enabling bacteria to be metabolically active at very low temperatures are of considerable importance to polar microbial ecology, astrobiology, climate and cryopreservation. This research program has two main objectives. The first is to investigate metabolic activities and gene expression of polar marine psychrophilic bacteria when confronted with freezing conditions at temperatures above the eutectic of seawater (\u003c54C) to unveil cold adaptation mechanisms with relevance to wintertime sea-ice ecology. The second objective is to discern if psychrophilic processes of leucine incorporation into proteins, shown to occur to -196C, amount to metabolic activity providing for the survival of cells or are merely biochemical reactions still possible in flash-frozen samples without any effect on survival. We will examine extracellular and intracellular processes of psychrophilic activity above and below the eutectic by (i) determining the temperature range of metabolic activities such as DNA synthesis, carbon utilization, respiration and ATP generation using radioactive tracer technology, including a control at liquid helium temperature (-268.9C), (ii) analyzing gene expression in ice using whole genome and microarray analyses and iii) examining the role of exopolymeric substances (EPS) and ice micro-physics for the observed activity using an in-situ microscopy technique. Results of the proposed research can be expected to aid in the determination of cellular and genetic strategies that allow cells to maintain activity at extremely low temperatures within an icy matrix and/or to resume activity again when more growth-permissive conditions are encountered. The research is an interdisciplinary collaboration involving three different institutions with participants in Oceanography, Genomics, and Geophysical Sciences. The proposed activity will support the beginning professional career of a female researcher and will serve as the basis for several undergraduate student laboratory projects.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Biota; Microbiology; Oceans; Sea Ice; Southern Ocean", "locations": "Southern Ocean; Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Junge, Karen", "project_titles": "Metabolic Activities and Gene Expression of Marine Psychrophiles in Cold Ice", "projects": [{"proj_uid": "p0000673", "repository": "USAP-DC", "title": "Metabolic Activities and Gene Expression of Marine Psychrophiles in Cold Ice"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Metabolic Activities and Gene Expression of Marine Psychrophiles in Cold Ice", "uid": "600083", "west": -180.0}, {"awards": "0739681 Murray, Alison; 0739698 Doran, Peter", "bounds_geometry": ["POINT(161.931 -77.3885)"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "Lake Vida is the largest lake of the McMurdo Dry Valleys, with an approximately 20 m ice cover overlaying a brine of unknown depth with at least 7 times seawater salinity and temperatures below -10 degrees C year-round. Samples of brine collected from ice above the main water body contain 1) the highest nitrous oxide levels of any natural water body on Earth, 2) unusual geochemistry including anomalously high ammonia and iron concentrations, 3) high microbial counts with an unusual proportion (99%) of ultramicrobacteria. The microbial community is unique even compared to other Dry Valley Lakes. The research proposes to enter, for the first time the main brine body below the thick ice of Lake Vida and perform in situ measurements, collect samples of the brine column, and collect sediment cores from the lake bottom for detailed geochemical and microbiological analyses. The results will allow the characterization of present and past life in the lake, assessment of modern and past sedimentary processes, and determination of the lake\u0027s history. The research will be conducted by a multidisciplinary team that will uncover the biogeochemical processes associated with a non-photosynthetic microbial community isolated for a significant period of time. This research will address diversity, adaptive mechanisms and evolutionary processes in the context of the physical evolution of the environment of Lake Vida. Results will be widely disseminated through publications, presentations at national and international meetings, through the Subglacial Antarctic Lake Exploration (SALE) web site and the McMurdo LTER web site. The research will support three graduate students and three undergraduate research assistants. The results will be incorporated into a new undergraduate biogeosciences course at the University of Illinois at Chicago which has an extremely diverse student body, dominated by minorities.", "east": 161.931, "geometry": ["POINT(161.931 -77.3885)"], "keywords": "Antarctica; Biota; Carbon-14; Chemistry:fluid; Chemistry:Fluid; Chemistry:ice; Chemistry:Ice; Dry Valleys; Geochronology; Ice Core Records; Lake Vida; Microbiology", "locations": "Dry Valleys; Lake Vida; Antarctica", "north": -77.3885, "nsf_funding_programs": null, "persons": "Murray, Alison", "project_titles": "Collaborative Research: Geochemistry and Microbiology of the Extreme Aquatic Environment in Lake Vida, East Antarctica", "projects": [{"proj_uid": "p0000485", "repository": "USAP-DC", "title": "Collaborative Research: Geochemistry and Microbiology of the Extreme Aquatic Environment in Lake Vida, East Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.3885, "title": "Geochemistry and Microbiology of the Extreme Aquatic Environment in Lake Vida, East Antarctica", "uid": "600080", "west": 161.931}, {"awards": "0944743 Buckley, Bradley", "bounds_geometry": ["POINT(166.66667 -77.83333)"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "The research will investigate a novel mechanism by which cold-adapted fishes of the Southern Ocean sense and respond to elevated temperatures. It is hypothesized that sub-lethal heat stress may induce cell cycle arrest and/or programmed cell death through apoptosis. The study will use genome-enabled technologies to examine the environmental control over gene expression in Antarctic species and will build direct mechanistic links between the expression of a specific signaling pathway gene and heat-induced changes in cells. Prior results support the hypothesis that heat stress results in cell cycle arrest and, in some cases, programmed cell death in Antarctic fishes. If so, this represents a novel, modified version of the well-conserved cellular stress response found in essentially all other species and suggests that warming ocean temperatures may have profound cellular and physiological impacts on these extremely stenothermal species. The P.I. conducts outreach activities with the Oregon Museum of Science and Industry, will be involved in developing a science curriculum for the Native American Youth and Family Center (NAYA) Early College Academy in Portland, and supports the educational and professional development of both undergraduate and graduate students at Portland State University.\n", "east": 166.66667, "geometry": ["POINT(166.66667 -77.83333)"], "keywords": "Biota; Southern Ocean", "locations": "Southern Ocean", "north": -77.83333, "nsf_funding_programs": null, "persons": "Buckley, Bradley", "project_titles": "The Cellular Stress Response in Cold-adapted Organisms: Building Novel Mechanistic Links between Heat Stress, Cell Cycle Arrest and Apoptosis in Antarctic Fishes.", "projects": [{"proj_uid": "p0000493", "repository": "USAP-DC", "title": "The Cellular Stress Response in Cold-adapted Organisms: Building Novel Mechanistic Links between Heat Stress, Cell Cycle Arrest and Apoptosis in Antarctic Fishes."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.83333, "title": "The Cellular Stress Response in Cold-adapted Organisms: Building Novel Mechanistic Links between Heat Stress, Cell Cycle Arrest and Apoptosis in Antarctic Fishes.", "uid": "600118", "west": 166.66667}, {"awards": "9024544 Andreas, Edgar", "bounds_geometry": ["POLYGON((-53.8 -61.2,-52.74 -61.2,-51.68 -61.2,-50.62 -61.2,-49.56 -61.2,-48.5 -61.2,-47.44 -61.2,-46.38 -61.2,-45.32 -61.2,-44.26 -61.2,-43.2 -61.2,-43.2 -62.22,-43.2 -63.24,-43.2 -64.26,-43.2 -65.28,-43.2 -66.3,-43.2 -67.32,-43.2 -68.34,-43.2 -69.36,-43.2 -70.38,-43.2 -71.4,-44.26 -71.4,-45.32 -71.4,-46.38 -71.4,-47.44 -71.4,-48.5 -71.4,-49.56 -71.4,-50.62 -71.4,-51.68 -71.4,-52.74 -71.4,-53.8 -71.4,-53.8 -70.38,-53.8 -69.36,-53.8 -68.34,-53.8 -67.32,-53.8 -66.3,-53.8 -65.28,-53.8 -64.26,-53.8 -63.24,-53.8 -62.22,-53.8 -61.2))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Location: Ice camp on perennial sea ice in the southwestern corner of the Weddell Sea, Antarctic\n\nThe first direct radiative and turbulent surface flux measurements ever made over floating Antarctic sea ice. The data are from Ice Station Weddell as it drifted in the western Weddell Sea from February to late May 1992.\n\nData Types:\n\nHourly measurements of the turbulent surface fluxes of momentum and sensible and latent heat by eddy covariance at a height of 4.65 m above snow-covered sea ice. Instruments were a 3-axis sonic anemometer/thermometer and a Lyman-alpha hygrometer.\n\nHourly, surface-level measurements of the four radiation components: in-coming and out-going longwave and shortwave radiation. Instruments were hemispherical pyranometers and pyrgeometers.\n\nHourly mean values of standard meteorological variables: air temperature, dew point temperature, wind speed and direction, barometric pressure, surface temperature. Instruments were a propeller-vane for wind speed and direction and cooled-mirror dew-point hygrometers and platinum resistance thermometers for dew-points and temperatures. Surface temperature came from a Barnes PRT-5 infrared thermometer.\n\nFlux Data\nThe entire data kit is bundled as a zip file named ISW_Flux_Data.zip\nThe main data file is comma delimited.\nThe README file is ASCII.\nThe associated reprints of publications are in pdf.\n\nRadiosounding data: On Ice Station Weddell, typically twice a day from 21 February through 4 June 1992 made with both tethered (i.e., only boundary-layer profiles) and (more rarely) free-flying sondes that did not measure wind speed. (168 soundings).\n\nISW Radiosoundings\nThe entire data kit is bundled as a zip file named ISW_Radiosounding.zip.\nThe README file is in ASCII.\nTwo summary files that include the list of sounding and the declinations are in ASCII.\nThe 168 individual sounding files are in ASCII.\nTwo supporting publications that describe the data and some analyses are in pdf.\n\nRadiosounding data collected from the Russian ship Akademic Fedorov from 26 May through 5 June 1992 at 6-hourly intervals as it approached Ice Station Weddell from the north. These soundings include wind vector, temperature, humidity, and pressure. (40 soundings)\n\nAkademic Federov Radiosoundings\nThe entire data kit is bundled as a zip file named Akad_Federov_Radiosounding.zip.\nThe README file is in ASCII.\nA summary file that lists the soundings is in ASCII.\nThe 40 individual sounding files are in ASCII.\nTwo supporting publications that describe the data and some analyses are in pdf.\n\n\nDocumentation:\n\nAndreas, E. L, and K. J. Claffey, 1995: Air-ice drag coefficients in the western Weddell Sea: 1. Values deduced from profile measurements. Journal of Geophysical Research, 100, 4821\u20134831.\n\nAndreas, E. L, K. J. Claffey, and A. P. Makshtas, 2000: Low-level atmospheric jets and inversions over the western Weddell Sea. Boundary-Layer Meteorology, 97, 459\u2013486.\n\nAndreas, E. L, R. E. Jordan, and A. P. Makshtas, 2004: Simulations of snow, ice, and near-surface atmospheric processes on Ice Station Weddell. Journal of Hydrometeorology, 5, 611\u2013624.\n\nAndreas, E. L, R. E. Jordan, and A. P. Makshtas, 2005: Parameterizing turbulent exchange over sea ice: The Ice Station Weddell results. Boundary-Layer Meteorology, 114, 439\u2013460.\n\nAndreas, E. L, P. O. G. Persson, R. E. Jordan, T. W. Horst, P. S. Guest, A. A. Grachev, and C. W. Fairall, 2010: Parameterizing turbulent exchange over sea ice in winter. Journal of Hydrometeorology, 11, 87\u2013104.\n\nClaffey, K. J., E. L Andreas, and A. P. Makshtas, 1994: Upper-air data collected on Ice Station Weddell. Special Report 94-25, U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH, 62 pp.\n\nISW Group, 1993: Weddell Sea exploration from ice station. Eos, Transactions, American Geophysical Union, 74, 121\u2013126.\n\nMakshtas, A. P., E. L Andreas, P. N. Svyaschennikov, and V. F. Timachev, 1999: Accounting for clouds in sea ice models. Atmospheric Research, 52, 77\u2013113.", "east": -43.2, "geometry": ["POINT(-48.5 -66.3)"], "keywords": "Antarctica; Atmosphere; Critical Zone; Meteorology; Oceans; Radiosounding; Southern Ocean; Weddell Sea", "locations": "Southern Ocean; Antarctica; Weddell Sea", "north": -61.2, "nsf_funding_programs": null, "persons": "Andreas, Edgar", "project_titles": "Atmospheric Boundary Layer Measurements on the Weddell Sea Drifting Station", "projects": [{"proj_uid": "p0000655", "repository": "USAP-DC", "title": "Atmospheric Boundary Layer Measurements on the Weddell Sea Drifting Station"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -71.4, "title": "Atmospheric Boundary Layer Measurements on the Weddell Sea Drifting Station", "uid": "600141", "west": -53.8}, {"awards": "0801392 Swanson, Brian", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "The primary objective of this research is to investigate polar marine psychrophilic bacteria for their potential to nucleate ice using a combination of microbiological, molecular biological and atmospheric science approaches in the laboratory. Very little is known about how psychrophiles interact and cope with ice or their adaptations to conditions of extreme cold and salinity. This work will involve a series of laboratory experiments using a novel freeze-tube technique for assaying freezing spectra which will provide quantitative information on: (i) the temperature-dependent freezing rates for heterogeneously frozen droplets containing sea-ice bacteria, (ii) the proportional occurrence of ice-nucleation activity versus anti-freeze activity among sea-ice bacterial isolates and (iii) the temperature-dependent freezing rates of bacteria with ice-nucleation activity grown at a range of temperatures and salinities. The compound(s) responsible for the observed activity will be identified, which is an essential step towards the development of an in-situ bacterial ice-nucleation detection assay that can be applied in the field to Antarctic water and cloud samples. One of the goals of this work is to better understand survival and cold adaptation processes of polar marine bacteria confronted with freezing conditions in sea ice. Since sea ice strongly impacts polar, as well as the global climates, this research is of significant interest because it will also provide data for accessing the importance of bacterial ice nucleation in the formation of sea ice. These measurements of ice-nucleation rates will be the first high-resolution measurements for psychrophilic marine bacteria. Another goal is to better understand the impact of bacterial ice initiation processes in polar clouds by making high-resolution measurements of nucleation rates for cloud bacteria found over Arctic and Antarctic regions. Initial measurements indicate these bacteria nucleate ice at warmer temperatures and the effect in polar regions may be quite important, since ice can strongly impact cloud dynamics, cloud radiative properties, precipitation formation, and cloud chemistry. If these initial measurements are confirmed, the data collected here will be important for improving the understanding of polar cloud processes and models. A third goal is to better understand the molecular basis of marine bacterial ice nucleation by characterizing the ice-nucleation compound and comparing it with those of known plant-derived ice-nucleating bacteria, which are the only ice-nucleating bacteria examined in detail to date. The proposed activity will support the beginning academic career of a post-doctoral researcher and will serve as the basis for several undergraduate student laboratory projects. Results from this research will be widely published in various scientific journals and outreach venues.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Biota; Microbiology; Oceans; Raman Spectroscopy; Sea Ice; Sea Surface; Southern Ocean", "locations": "Sea Surface; Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Swanson, Brian", "project_titles": "Ice Nucleation by Marine Psychrophiles", "projects": [{"proj_uid": "p0000195", "repository": "USAP-DC", "title": "Ice Nucleation by Marine Psychrophiles"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Ice Nucleation by Marine Psychrophiles", "uid": "600087", "west": -180.0}, {"awards": "0436190 Eastman, Joseph", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "Patterns of biodiversity, as revealed by basic research in organismal biology, may be derived from ecological and evolutionary processes expressed in unique settings, such as Antarctica. The polar regions and their faunas are commanding increased attention as declining species diversity, environmental change, commercial fisheries, and resource management are now being viewed in a global context. Commercial fishing is known to have a direct and pervasive effect on marine biodiversity, and occurs in the Southern Ocean as far south as the Ross Sea. The nature of fish biodiversity in the Antarctic is different than in all other ocean shelf areas. Waters of the Antarctic continental shelf are ice covered for most of the year and water temperatures are nearly constant at -1.5 C. In these waters components of the phyletically derived Antarctic clade of Notothenioids dominate fish diversity. In some regions, including the southwestern Ross Sea, Notothenioids are overwhelmingly dominant in terms of number of species, abundance, and biomass. Such dominance by a single taxonomic group is unique among shelf faunas of the world. In the absence of competition from a taxonomically diverse fauna, Notothenioids underwent a habitat or depth related diversification keyed to the utilization of unfilled niches in the water column, especially pelagic or partially pelagic zooplanktivory and piscivory. This has been accomplished in the absence of a swim bladder for buoyancy control. They also may form a special type of adaptive radiation known as a species flock, which is an assemblage of a disproportionately high number of related species that have evolved rapidly within a defined area where most species are endemic. Diversification in buoyancy is the hallmark of the notothenioid radiation. Buoyancy is the feature of notothenioid biology that determines whether a species lives on the substrate, in the water column or both. Buoyancy also influences other key aspects of life history including swimming, feeding and reproduction and thus has implications for the role of the species in the ecosystem. With similarities to classic evolutionary hot spots, the Antarctic shelf and its Notothenioid radiation merit further exploration. The 2004 \u0027International Collaborative Expedition to collect and study Fish Indigenous to Sub-Antarctic Habitats,\u0027 or, \u0027ICEFISH,\u0027 provided a platform for collection of notothenioid fishes from sub-Antarctic waters between South America and Africa, which will be examined in this project. This study will determine buoyancy for samples of all notothenioid species captured during the ICEFISH cruise. This essential aspect of the biology is known for only 19% of the notothenioid fauna. Also, the gross and microscopic anatomy of brains and sense organs of the phyletically basal families Bovichtidae, Eleginopidae, and of the non-Antarctic species of the primarily Antarctic family Nototheniidae will be examined. The fish biodiversity and endemicity in poorly known localities along the ICEFISH cruise track, seamounts and deep trenches will be quantified. Broader impacts include improved information for comprehending and conserving biodiversity, a scientific and societal priority.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Biota; NBP0404; Oceans; R/v Nathaniel B. Palmer; Southern Ocean", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Eastman, Joseph", "project_titles": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0000106", "repository": "USAP-DC", "title": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes", "uid": "600038", "west": -180.0}, {"awards": "0437887 Sidell, Bruce", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "The polar ocean presently surrounding Antarctica is the coldest, most thermally stable marine environment on earth. Because oxygen solubility in seawater is inversely proportional to temperature, the cold Antarctic seas are an exceptionally oxygen-rich aquatic habitat. Eight families of a single perciform suborder, the Notothenioidei, dominate the present fish fauna surrounding Antarctica. Notothenioids account for approximately 35% of fish species and 90% of fish biomass south of the Antarctic Polar Front. Radiation of closely related notothenioid species thus has occurred rapidly and under a very unusual set of conditions: relative oceanographic isolation from other faunas due to circumpolar currents and deep ocean trenches surrounding the continent, chronically, severely cold water temperatures, very high oxygen availability, very low levels of niche competition in a Southern Ocean depauperate of species subsequent to a dramatic crash in species diversity of fishes that occurred sometime between the mid-Tertiary and present. These features make Antarctic notothenioid fishes an uniquely attractive group for the study of physiological and biochemical adaptations to cold body temperature. Few distinctive features of Antarctic fishes are as unique as the pattern of expression of oxygen-binding proteins in one notothenioid family, the Channichthyidae (Antarctic icefishes). All channichthyid icefishes lack the circulating oxygen-binding protein, hemoglobin (Hb); the intracellular oxygen-binding protein, myoglobin (Mb) is not uniformly expressed in species of this family. Both proteins are normally considered essential for adequate delivery of oxygen to aerobically poised tissues of animals. To compensate for the absence of Hb, icefishes have developed large hearts, rapidly circulate a large blood volume and possess elaborate vasculature of larger lumenal diameter than is seen in red-blooded fishes. Loss of Mb expression in oxidative muscles correlates with dramatic elevation in density of mitochondria within the cell, although each individual organelle is less densely packed with respiratory proteins. Within the framework of oxygen movement, the adaptive significance of greater vascular density and mitochondrial populations is understandable but mechanisms underlying development of these characteristics remain unknown. The answer may lie in another major function of both Hb and Mb, degradation of the ubiquitous bioactive compound, nitric oxide (NO). The research will test the hypothesis that loss of hemoprotein expression in icefishes has resulted in an increase in levels of NO that mediate modification of vascular systems and expansion of mitochondrial populations in oxidative tissues. The objectives of the proposal are to quantify the vascular density of retinas in +Hb and -Hb notothenioid species, to characterize NOS isoforms and catalytic activity in retina and cardiac muscle of Antarctic notothenioid fishes, to evaluate level of expression of downstream factors implicat ed in angiogenesis (in retinal tissue) and mitochondrial biogenesis (in cardiac muscle), and to determine whether inhibition of NOS in vivo results in regression of angiogenic and mitochondrial biogenic responses in icefishes. Broader impacts range from basic biology, through training of young scientists, to enhanced understanding of clinically relevant biomedical processes.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Biota; Oceans; Pot; Sample/collection Description; Sample/Collection Description; Southern Ocean; Trawl", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Sidell, Bruce", "project_titles": "Collaborative Research: Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis.", "projects": [{"proj_uid": "p0000527", "repository": "USAP-DC", "title": "Collaborative Research: Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis", "uid": "600039", "west": -180.0}, {"awards": "0228842 Grew, Edward", "bounds_geometry": ["POLYGON((76 -69.3,76.05 -69.3,76.1 -69.3,76.15 -69.3,76.2 -69.3,76.25 -69.3,76.3 -69.3,76.35 -69.3,76.4 -69.3,76.45 -69.3,76.5 -69.3,76.5 -69.32,76.5 -69.34,76.5 -69.36,76.5 -69.38,76.5 -69.4,76.5 -69.42,76.5 -69.44,76.5 -69.46,76.5 -69.48,76.5 -69.5,76.45 -69.5,76.4 -69.5,76.35 -69.5,76.3 -69.5,76.25 -69.5,76.2 -69.5,76.15 -69.5,76.1 -69.5,76.05 -69.5,76 -69.5,76 -69.48,76 -69.46,76 -69.44,76 -69.42,76 -69.4,76 -69.38,76 -69.36,76 -69.34,76 -69.32,76 -69.3))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the role and fate of Boron in high-grade metamorphic rocks of the Larsemann Hills region of Antarctica. Trace elements provide valuable information on the changes sedimentary rocks undergo as temperature and pressure increase during burial. One such element, boron, is particularly sensitive to increasing temperature because of its affinity for aqueous fluids, which are lost as rocks are buried. Boron contents of unmetamorphosed pelitic sediments range from 20 to over 200 parts per million, but rarely exceed 5 parts per million in rocks subjected to conditions of the middle and lower crust, that is, temperatures of 700 degrees C or more in the granulite-facies, which is characterized by very low water activities at pressures of 5 to 10 kbar (18-35 km burial). Devolatization reactions with loss of aqueous fluid and partial melting with removal of melt have been cited as primary causes for boron depletion under granulite-facies conditions. Despite the pervasiveness of both these processes, rocks rich in boron are locally found in the granulite-facies, that is, there are mechanisms for retaining boron during the metamorphic process. The Larsemann Hills, Prydz Bay, Antarctica, are a prime example. More than 20 lenses and layered bodies containing four borosilicate mineral species crop out over a 50 square kilometer area, which thus would be well suited for research on boron-rich granulite-facies metamorphic rocks. While most investigators have focused on the causes for loss of boron, this work will investigate how boron is retained during high-grade metamorphism. Field observations and mapping in the Larsemann Hills, chemical analyses of minerals and their host rocks, and microprobe age dating will be used to identify possible precursors and deduce how the precursor materials recrystallized into borosilicate rocks under granulite-facies conditions. \n\nThe working hypothesis is that high initial boron content facilitates retention of boron during metamorphism because above a certain threshold boron content, a mechanism \u0027kicks in\u0027 that facilitates retention of boron in metamorphosed rocks. For example, in a rock with large amounts of the borosilicate tourmaline, such as stratabound tourmalinite, the breakdown of tourmaline to melt could result in the formation of prismatine and grandidierite, two borosilicates found in the Larsemann Hills. This situation is rarely observed in rocks with modest boron content, in which breakdown of tourmaline releases boron into partial melts, which in turn remove boron when they leave the system. Stratabound tourmalinite is associated with manganese-rich quartzite, phosphorus-rich rocks and sulfide concentrations that could be diagnostic for recognizing a tourmalinite protolith in a highly metamorphosed complex where sedimentary features have been destroyed by deformation. Because partial melting plays an important role in the fate of boron during metamorphism, our field and laboratory research will focus on the relationship between the borosilicate units, granite pegmatites and other granitic intrusives. The results of our study will provide information on cycling of boron at deeper levels in the Earth\u0027s crust and on possible sources of boron for granites originating from deep-seated rocks. An undergraduate student will participate in the electron microprobe age-dating of monazite and xenotime as part of a senior project, thereby integrating the proposed research into the educational mission of the University of Maine. In response to a proposal for fieldwork, the Australian Antarctic Division, which maintains Davis station near the Larsemann Hills, has indicated that they will support the Antarctic fieldwork.", "east": 76.5, "geometry": ["POINT(76.25 -69.4)"], "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Geochronology; Solid Earth", "locations": "Antarctica", "north": -69.3, "nsf_funding_programs": null, "persons": "Grew, Edward", "project_titles": "Boron in Antarctic granulite-facies rocks: under what conditions is boron retained in the middle crust?", "projects": [{"proj_uid": "p0000431", "repository": "USAP-DC", "title": "Boron in Antarctic granulite-facies rocks: under what conditions is boron retained in the middle crust?"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -69.5, "title": "Boron in Antarctic granulite-facies rocks: under what conditions is boron retained in the middle crust?", "uid": "600030", "west": 76.0}, {"awards": "0229546 MacAyeal, Douglas", "bounds_geometry": ["POINT(-178 -78)"], "date_created": "Mon, 15 Dec 2008 00:00:00 GMT", "description": "Since November of 2006, 12 thermistors were planted in the upper 16 meters of the firn on the Ross Ice Shelf near its calving front. Temperature data are collected every 20 minutes and are transmitted via ARGOS satellite relay. Data are intended to provide a view of how firn temperatures change as the ice shelf evolves. Data are available in comma-delimited ASCII format. Data are available via FTP.", "east": -178.0, "geometry": ["POINT(-178 -78)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ross Ice Shelf; Snow/ice; Snow/Ice; Temperature", "locations": "Antarctica; Ross Ice Shelf", "north": -78.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Scambos, Ted; Muto, Atsu; Sergienko, Olga; MacAyeal, Douglas", "project_titles": "Collaborative Research of Earth\u0027s Largest Icebergs", "projects": [{"proj_uid": "p0000117", "repository": "USAP-DC", "title": "Collaborative Research of Earth\u0027s Largest Icebergs"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Ross Ice Shelf Firn Temperature, Antarctica", "uid": "609354", "west": -178.0}, {"awards": "0229546 MacAyeal, Douglas", "bounds_geometry": ["POINT(168 -78)"], "date_created": "Fri, 28 Nov 2008 00:00:00 GMT", "description": "Since November of 2005, 12 thermistors were planted in the upper 2.5 meters of the firn on iceberg C16, Antarctica. Temperature data are collected every 20 minutes and are transmitted via ARGOS satellite relay. Data are intended to provide a view of how firn temperatures change as an iceberg moves north into warmer climate.", "east": 168.0, "geometry": ["POINT(168 -78)"], "keywords": "Glaciology; Iceberg; Oceans; Ross Ice Shelf; Sea Ice; Snow/ice; Snow/Ice; Southern Ocean; Temperature", "locations": "Southern Ocean; Ross Ice Shelf", "north": -78.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Thom, Jonathan; Sergienko, Olga; MacAyeal, Douglas", "project_titles": "Collaborative Research of Earth\u0027s Largest Icebergs", "projects": [{"proj_uid": "p0000117", "repository": "USAP-DC", "title": "Collaborative Research of Earth\u0027s Largest Icebergs"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Iceberg Firn Temperatures, Antarctica", "uid": "609352", "west": 168.0}, {"awards": "0238281 Marsh, Adam", "bounds_geometry": ["POLYGON((163 -77,163.4 -77,163.8 -77,164.2 -77,164.6 -77,165 -77,165.4 -77,165.8 -77,166.2 -77,166.6 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.6 -78,166.2 -78,165.8 -78,165.4 -78,165 -78,164.6 -78,164.2 -78,163.8 -78,163.4 -78,163 -78,163 -77.9,163 -77.8,163 -77.7,163 -77.6,163 -77.5,163 -77.4,163 -77.3,163 -77.2,163 -77.1,163 -77))"], "date_created": "Tue, 01 Jan 2008 00:00:00 GMT", "description": "Although we envision the coastal margins of Antarctica as an extreme environment challenging to the existence of life, there are many marine invertebrates that are adapted to live and thrive under the sea ice. For two field seasons, the SCUBA diving activities of this project routinely involved photographing these animals in all the dive locations as a way to document what we observed as the dominant organisms at each site. Ice diving is very strenuous for humans, and often the constraints of managing the work on a dive, monitoring air reserves, tracking proximity to the dive hole, and the 50 minute exposure to subfreezing temperatures limits a divers ability to \"catalog\" observations that are not essential to the current dive plan. The photographs archived here have provided the project\u0027s dive team with the ability to \"debrief\" following a dive and more or less reenact the dive by moving through the photograph images. Studying these images often served as a visual trigger for divers to recall more specific observations and in many cases details in the photographs were captured without the photographer (A. Marsh) realizing that they were there (such as small, cryptic species hiding in a shadow until the strobe light fires for the photo, illuminating these secondary subjects). These photographs are intended to serve as a record of what organisms we encountered in the McMurdo Sound area in 2004 and 2005. All photographs were taken with a Nikon D-70 in a polycarbonate underwater housing using either a 18 mm (wide) or 60 mm (macro) lens.", "east": 167.0, "geometry": ["POINT(165 -77.5)"], "keywords": "Antarctica; Biota; McMurdo Sound; Oceans; Photo/video; Photo/Video; Southern Ocean", "locations": "McMurdo Sound; Southern Ocean; Antarctica", "north": -77.0, "nsf_funding_programs": null, "persons": "Marsh, Adam G.", "project_titles": "CAREER: Genomic Networks for Cold-Adaptation in Embryos of Polar Marine Invertebrates", "projects": [{"proj_uid": "p0000240", "repository": "USAP-DC", "title": "CAREER: Genomic Networks for Cold-Adaptation in Embryos of Polar Marine Invertebrates"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Marine Invertebrates of McMurdo Sound", "uid": "600034", "west": 163.0}, {"awards": "0536870 Rogers, Scott", "bounds_geometry": ["POINT(106.8 -72.4667)"], "date_created": "Tue, 01 Jan 2008 00:00:00 GMT", "description": "The large subglacial Lake Vostok in Antarctica is unique ecological site with a novel microbial biota. The temperatures, pressures and lack of light all select for organisms that may not exist anywhere else on Earth. The accretion ice (lake water frozen to the bottom of the lower surface of the glacier) has preserved microbial samples from each region of Lake Vostok as the glacier passes over and into the lake. Thus, without contaminating the lake with microorganisms from the surface, microbes originating from the lake can be collected, transported to the laboratory and studied. Two of the deepest ice cores sections in this project are part of the international allocation. \n\nThe will be shared between four researchers (Sergey Bulat from Russia, Jean-Robert Petit and Daniel Prieur from France, Scott Rogers from USA). The United States team will study, isolate, and characterize bacteria, fungi, and viruses that have been sampled from the lake through the process of ice accretion to the lower surface of 3500+m thick glacier overriding the lake. The project will involve a suite of methods, including molecular, morphological, and cultural. This includes observation and description by fluorescence, light, and electron microscopy, isolation on thirteen separate cultural media, polymerase chain reaction amplification, DNA sequencing, and phylogenetic analyses. Eleven accretion ice core sections, as well as two glacial ice core sections. As well as two glacial ice core sections will be studied. The accretion ice core sections, as well as two glacial ice core sections will be studied. The accretion ice core sections represent all of the major regions of the lake that have been sampled by the accretion process in the vicinity of the Vostok 5G ice core. The broader impacts of the work relate to the impact the results will have on the filed. These long=isolated lakes, deep below the Antarctic ice sheet may contain novel uniquely adapted organisms. Glacial ice contains an enormous diversity of entrapped microbes, some of which may be metabolically active in the ice. The microbes from Lake Vostok are of special interest, since they are adapted to cold, dark, and high pressure. Thus, their enzyme systems and biochemical pathways may be significantly different from those in the microbes that are the subject of current studies. As such, these organisms may form compounds that may have useful applications. Also, study of the accretion ice, and eventually the water, from Lake Vostok will provide a basis for the study of other subglacial lakes. Additionally, study of the microbes in the accretion ice will be useful to those planning to study analogous systems on ice-covered planets and moons.", "east": 106.8, "geometry": ["POINT(106.8 -72.4667)"], "keywords": "Antarctica; Biota; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hydrothermal Vent; Lake Vostok; Microbes; Subglacial Lake", "locations": "Lake Vostok; Antarctica", "north": -72.4667, "nsf_funding_programs": null, "persons": "Rogers, Scott O.", "project_titles": "Comprehensive Biological Study of Vostok Accretion Ice", "projects": [{"proj_uid": "p0000566", "repository": "USAP-DC", "title": "Comprehensive Biological Study of Vostok Accretion Ice"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -72.4667, "title": "Comprehensive Biological Study of Vostok Accretion Ice", "uid": "600052", "west": 106.8}, {"awards": "9526566 Bindschadler, Robert", "bounds_geometry": ["POINT(160.41 -74.21)", "POINT(-174.45 -82.52)", "POINT(-84 -75.9)", "POINT(-119.4 -80.01)"], "date_created": "Tue, 28 Nov 2006 00:00:00 GMT", "description": "This data set includes daily, monthly, and yearly mean surface air temperatures for four interior West Antarctic sites between 1978 and 1997. Data include air surface temperatures measured at the Byrd, Lettau, Lynn, and Siple Station automatic weather stations. In addition, because weather stations in Antarctica are difficult to maintain, and resulting multi-decade records are often incomplete, the investigators also calculated surface temperatures from satellite passive microwave brightness temperatures. Calibration of 37-GHz vertically polarized brightness temperature data during periods of known air temperature, using emissivity modeling, allowed the investigators to replace data gaps with calibrated brightness temperatures.\n\nMS Excel data files and GIF images derived from the data are available via ftp from the National Snow and Ice Data Center.", "east": 160.41, "geometry": ["POINT(160.41 -74.21)", "POINT(-174.45 -82.52)", "POINT(-84 -75.9)", "POINT(-119.4 -80.01)"], "keywords": "Antarctica; Atmosphere; Automated Weather Station; Meteorology; Temperature; West Antarctica", "locations": "West Antarctica; Antarctica", "north": -74.21, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Shuman, Christopher A.; Stearns, Charles R.", "project_titles": "Passive Microwave Remote Sensing for Paleoclimate Indicators at Siple Dome, Antarctica", "projects": [{"proj_uid": "p0000191", "repository": "USAP-DC", "title": "Passive Microwave Remote Sensing for Paleoclimate Indicators at Siple Dome, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.52, "title": "Decadal-Length Composite West Antarctic Air Temperature Records", "uid": "609097", "west": -174.45}, {"awards": "9980538 Lohmann, Kyger", "bounds_geometry": null, "date_created": "Mon, 11 Jun 2001 00:00:00 GMT", "description": "Geochemical composition of shells of the bivalve, Cucullaea from the La Meseta Formation, Seymour Island, Antarctica.", "east": null, "geometry": null, "keywords": null, "locations": null, "north": null, "nsf_funding_programs": null, "persons": "Lohmann, Kyger", "project_titles": "Evolution of Sea Surface Temperatures in the Coastal Antarctic Paleoenvironment During the Late Cretaceous and Paleogene", "projects": [{"proj_uid": "p0000613", "repository": "USAP-DC", "title": "Evolution of Sea Surface Temperatures in the Coastal Antarctic Paleoenvironment During the Late Cretaceous and Paleogene"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Stable isotope and minor element proxies for Eocene climate of Seymour Island, Antarctica", "uid": "600019", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Thermogenic Methane Production in Antarctic Subglacial Hydrocarbon Seeps
|
2042495 2423761 |
2025-03-17 | Piccione, Gavin |
EAGER: Pedogenic Carbonates Record Insolation Driven Surface Melting in Antarctica Collaborative Research: Reconstructing East Antarctica’s Past Response to Climate using Subglacial Precipitates |
This dataset includes geochemical analyses of carbonate nodules collected at Elephant Moraine and the Pensacola Mountains, East Antarctica. Oxygen and uranium-series isotope analyses indicate that these carbonates precipitated from glacial meltwater during deglacial periods in the late Pleistocene. Carbonate δ13C values as low as -32.75 ‰ identify thermogenic methane as a primary carbon source, while clumped isotope measurements indicate formation temperatures of 12 - 20˚C, consistent with a geothermal origin. Lipid biomarker analyses further show that organic matter preserved in the nodules is highly thermally matured. These findings indicate that deep-sourced thermogenic methane migrated as hydrocarbon seeps to shallow pore spaces within basal sediments, demonstrating that geothermally active areas can be hotspots for methane accumulation below the Antarctic Ice Sheet. This material is based on services provided by the Polar Rock Repository with support from the National Science Foundation, under Cooperative Agreement OPP-2137467. | ["POLYGON((-180 -75,-144 -75,-108 -75,-72 -75,-36 -75,0 -75,36 -75,72 -75,108 -75,144 -75,180 -75,180 -76.5,180 -78,180 -79.5,180 -81,180 -82.5,180 -84,180 -85.5,180 -87,180 -88.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -88.5,-180 -87,-180 -85.5,-180 -84,-180 -82.5,-180 -81,-180 -79.5,-180 -78,-180 -76.5,-180 -75))"] | ["POINT(0 -89.999)"] | false | false |
Effect of temperature on oxygen consumption rates of larvae of four Antarctic marine invertebrates
|
1745130 |
2025-01-31 | Moran, Amy; Lobert, Graham; Toh, MIng Wei Aaron |
Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development |
This dataset contains oxygen consumption of larvae of four different species of marine invertebrate, measured at four different temperatures. | [] | [] | false | false |
Effect of temperature on cleavage rate of Antarctic invertebrates
|
1745130 |
2025-01-31 | Moran, Amy; Lobert, Graham; Toh, Ming Wei Aaron |
Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development |
This dataset includes cleavage rates of embryos of three species of Antarctic embryos that were reared at a range of temperatures up to the 32-cell stage. | [] | [] | false | false |
Temperature acclimation and acclimatization of sea spider larvae
|
1745130 |
2025-01-31 | Moran, Amy; Lobert, Graham; Toh, MIng Wei Aaron |
Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development |
This dataset includes oxygen consumption rates of larvae of the sea spider Nymphon australe acclimated in the laboratory to two different temperatures, assessed across four different temperatures. The dataset also includes oxygen consumption measured at the same range of temperatures between larvae collected in the field in the late winter (cold) and mid spring (slightly warmer). | [] | [] | false | false |
Temperature effects on proximal composition and development rate of embryos and larvae of four Antarctic invertebrates
|
1745130 |
2025-01-29 | Moran, Amy; Toh, Ming Wei Aaron; Lobert, Graham |
Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development |
This dataset contains a proximal composition analysis and ash-free dry weight data from embryos and larvae of four different Antarctic marine invertebrates that were raised for two months at four different temperatures. The dataset also contains the length of different developmental stages at different temperatures. Samples were collected and experiments were performed between 2019 and 2022 at McMurdo Station, Antarctica. | [] | [] | false | false |
Surface melt-related multi-source remote-sensing and climate model data over Helheim Glacier, Greenland for segmentation and machine learning applications
|
2136938 |
2024-10-07 | Alexander, Patrick; Antwerpen, Raphael; Cervone, Guido; Fettweis, Xavier; Lütjens, Björn; Tedesco, Marco |
Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning |
This dataset contains high-resolution satellite-derived snow/ice surface melt-related data on a common 100 m equal area grid (Albers equal area projection; EPSG 9822) over Helheim Glacier and surrounding areas in Greenland. The data is used as part of a machine learning framework that aims to fill data gaps in computed meltwater fraction on the 100 m grid using a range of methods, results of which will be published separately. <br/><br/> <br/><br/>The data include fraction of a grid cell covered by meltwater derived from Sentinel-1 synthetic aperture radar (SAR) backscatter, satellite-derived passive microwave (PMW) brightness temperatures, snowpack liquid water content within the first meter of snow and atmospheric and radiative variables from the Modéle Atmosphérique Règional (MAR) regional climate model, spectral reflectance in four wavelength bands from the Moderate Resolution Imaging Spectroradiometer (MODIS), a static digital elevation model (DEM), and an ice sheet mask. <br/><br/>A similar dataset has also been produced for Larsen C ice shelf and is also available through the US Antarctic Program Data Center. <br/><br/> <br/><br/> <br/><br/> | ["POLYGON((-40 67.55,-39.611 67.55,-39.222 67.55,-38.833 67.55,-38.444 67.55,-38.055 67.55,-37.666 67.55,-37.277 67.55,-36.888 67.55,-36.499 67.55,-36.11 67.55,-36.11 67.28999999999999,-36.11 67.03,-36.11 66.77,-36.11 66.51,-36.11 66.25,-36.11 65.99,-36.11 65.73,-36.11 65.47,-36.11 65.21000000000001,-36.11 64.95,-36.499 64.95,-36.888 64.95,-37.277 64.95,-37.666 64.95,-38.055 64.95,-38.444 64.95,-38.833 64.95,-39.222 64.95,-39.611 64.95,-40 64.95,-40 65.21000000000001,-40 65.47,-40 65.73,-40 65.99,-40 66.25,-40 66.51,-40 66.77,-40 67.03,-40 67.28999999999999,-40 67.55))"] | ["POINT(-38.055 66.25)"] | false | false |
Surface melt-related multi-source remote-sensing and climate model data over Larsen C Ice Shelf, Antarctica for segmentation and machine learning applications
|
2136938 |
2024-10-07 | Alexander, Patrick; Antwerpen, Raphael; Cervone, Guido; Fettweis, Xavier; Lütjens, Björn; Tedesco, Marco |
Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning |
This dataset contains high-resolution satellite-derived snow/ice surface melt-related data on a common 100 m equal area grid (Lambert azimuthal equal area projection; EPSG 9820) over Larsen C Ice Shelf and surrounding areas in Antarctica. The data is prepared to be used as part of a machine learning framework that aims to fill data gaps in computed meltwater fraction on the 100 m grid using a range of methods, results of which will be published separately. <br/><br/><br/>The data include fraction of a grid cell covered by meltwater derived from Sentinel-1 synthetic aperture radar (SAR) backscatter, satellite-derived passive microwave (PMW) brightness temperatures, snowpack liquid water content within the first meter of snow and atmospheric and radiative variables from the Modéle Atmosphérique Règional (MAR) regional climate model, a static digital elevation model (DEM), and an ice sheet mask. <br/><br/><br/>A similar dataset has been produced for Helheim Glacier, Greenland and is also available through the US Antarctic Program Data Center. | ["POLYGON((-68.5 -65.25,-67.35 -65.25,-66.2 -65.25,-65.05 -65.25,-63.9 -65.25,-62.75 -65.25,-61.6 -65.25,-60.45 -65.25,-59.3 -65.25,-58.15 -65.25,-57 -65.25,-57 -65.652,-57 -66.054,-57 -66.456,-57 -66.858,-57 -67.25999999999999,-57 -67.66199999999999,-57 -68.064,-57 -68.466,-57 -68.868,-57 -69.27,-58.15 -69.27,-59.3 -69.27,-60.45 -69.27,-61.6 -69.27,-62.75 -69.27,-63.9 -69.27,-65.05 -69.27,-66.2 -69.27,-67.35 -69.27,-68.5 -69.27,-68.5 -68.868,-68.5 -68.466,-68.5 -68.064,-68.5 -67.66199999999999,-68.5 -67.25999999999999,-68.5 -66.858,-68.5 -66.456,-68.5 -66.054,-68.5 -65.652,-68.5 -65.25))"] | ["POINT(-62.75 -67.25999999999999)"] | false | false |
The Impacts of the Microstructural Location of H2SO4 on the Flow of Polycrystalline Ice
|
None | 2024-09-05 | Ogunmolasuyi, Ayobami | No project link provided | The effects of soluble impurities on the flow of glaciers and ice sheets as well as the effects of ice flow on impurities migration are not well understood. This study investigates the effects of sulfuric acid (H2SO4) concentrations ranging from 10 to 25 ppm on the flow and fabric of polycrystalline ice under compression at temperatures of -3°C and -12°C. The results show that H2SO4-doped polycrystalline ice deforms significantly faster than high-purity polycrystalline ice, with the deformation rate being 1.5 to 3 times higher. At -12°C, the presence of H2SO4 within the grains induces the most ice softening, whereas at -3°C, H2SO4's softening effects are observed both within the grains and at grain boundaries. The migration of H2SO4 to grain boundaries during deformation leads to the formation of a liquid-like layer, with increased solubility at higher temperatures potentially homogenizing the impurities within the ice matrix. This homogenization at -3°C suggests that post-depositional processes near the bed of ice sheets could significantly alter sulfate records. At -12°C, where homogenization is absent, impurity-induced dislocation processes may heavily influence deformation and impurity migration. Additionally, the comparison of natural ice with lab-grown samples indicates that fabric development significantly impacts compressive strength and creep rates, with implications for the understanding of impurity-induced deformation processes in polar ice. | [] | [] | false | false |
Simulated winter warming negatively impacts survival of Antarctica's only endemic insect
|
1850988 |
2023-06-11 | Devlin, Jack; Unfried, Laura; McCabe, Eleanor; Gantz, Josiah D.; Kawarasaki, Yuta; Elnitsky, Michael; Hotaling, Scott; Michel, Andrew; Convey, Peter; Hayward, Scott; Teets, Nicholas | No project link provided | Antarctic winters are challenging for terrestrial invertebrates, and species that live there have specialised adaptations to conserve energy and protect against cold injury in the winter. However, rapidly occurring climate change in these regions will increase the unpredictability of winter conditions, and there is currently a dearth of knowledge on how the highly adapted invertebrates of Antarctica will respond to changes in winter temperatures. 2. We evaluated the response of larvae of the Antarctic midge, Belgica antarctica, to simulated winters at three ecologically relevant mean temperature scenarios: warm (−1°C), normal (−3°C) and cold (−5°C). Within each scenario, larvae were placed into three distinct habitat types in which they are commonly observed (decaying organic matter, living moss, and Prasiola crispa algae). Following the simulated overwintering period, a range of physiological outcomes were measured, namely survival, locomotor activity, tissue damage, energy store levels and molecular stress responses. 3. Survival, energy stores and locomotor activity were significantly lower following the Warm overwintering environment than at lower temperatures, but tissue damage and heat shock protein expression (a proxy for protein damage) did not significantly differ between the three temperatures. Survival was also significantly lower in larvae overwintered in Prasiola crispa algae, although the underlying mechanism is unclear. Heat shock proteins were expressed least in larvae overwintering in living moss, suggesting it is less stressful to overwinter in this substrate, perhaps due to a more defined structure affording less direct contact with ice. 4. Our results demonstrate that a realistic 2°C increase in winter microhabitat temperature reduces survival and causes energy deficits that have implications for subsequent development and reproduction. While our Warm winter scenario was close tothe range of observed overwintering temperatures for this species, warmer winters are expected to become more common in response to climate change. Conversely, if climate change reduces the length of winter, some of the negative consequences of winter warming may be attenuated, so it will be important to consider this factor in future studies. Nonetheless, our results indicate that winter warming could negatively impact cold-adapted insects such as the Antarctic midge. | ["POLYGON((-64.366767 -62.681,-63.991703599999994 -62.681,-63.6166402 -62.681,-63.2415768 -62.681,-62.866513399999995 -62.681,-62.49145 -62.681,-62.1163866 -62.681,-61.7413232 -62.681,-61.366259799999995 -62.681,-60.9911964 -62.681,-60.616133 -62.681,-60.616133 -62.9536677,-60.616133 -63.226335399999996,-60.616133 -63.4990031,-60.616133 -63.7716708,-60.616133 -64.04433850000001,-60.616133 -64.31700620000001,-60.616133 -64.58967390000001,-60.616133 -64.86234160000001,-60.616133 -65.13500930000001,-60.616133 -65.407677,-60.9911964 -65.407677,-61.366259799999995 -65.407677,-61.7413232 -65.407677,-62.1163866 -65.407677,-62.49145 -65.407677,-62.866513399999995 -65.407677,-63.2415768 -65.407677,-63.6166402 -65.407677,-63.991703599999994 -65.407677,-64.366767 -65.407677,-64.366767 -65.13500930000001,-64.366767 -64.86234160000001,-64.366767 -64.58967390000001,-64.366767 -64.31700620000001,-64.366767 -64.04433850000001,-64.366767 -63.7716708,-64.366767 -63.4990031,-64.366767 -63.226335399999996,-64.366767 -62.9536677,-64.366767 -62.681))"] | ["POINT(-62.49145 -64.04433850000001)"] | false | false |
Seasonal temperatures in West Antarctica during the Holocene
|
1807522 1043092 |
2022-09-01 | Jones, Tyler R. |
Collaborative Research: Targeted resampling of deep polar ice cores using information theory Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core |
We analyzed a continuous record of water-isotope ratios from the West Antarctic Ice Sheet (WAIS) Divide ice core to reveal summer and winter temperature changes through the last 11,000 years. | ["POINT(-112.085 -79.467)"] | ["POINT(-112.085 -79.467)"] | false | false |
Specific growth rate measurements for 43 Southern Ocean diatoms
|
1543245 |
2022-06-27 | Bishop, Ian |
NSFGEO-NERC: Evolutionary Response of Southern Ocean Diatoms to Environmental Change |
This dataset includes records of the specific growth rates measured for 43 clonal diatom strains originally isolated during the research cruise NBP-1701 across the Pacific sector of the Southern Ocean during December 2016-January 2017. Strains were grown under continuous light (130 µmol m-2 s-1) at up to 8 temperatures that span all or most of each strain’s thermal niche width, from 0-12 degrees C, which encompasses each strain’s optimum temperature for growth. Strains have been molecularly identified to species via 18S Sanger sequencing. Data include the following information for each record: Internal lab strain reference ID, date collected, latitude, longitude, Southern Ocean region, species, tested temperature, replicate number and specific growth rate. Data are provided in comma-separated values (csv) format. | ["POLYGON((-179 -59,-167.7 -59,-156.4 -59,-145.1 -59,-133.8 -59,-122.5 -59,-111.19999999999999 -59,-99.89999999999999 -59,-88.6 -59,-77.3 -59,-66 -59,-66 -60.9,-66 -62.8,-66 -64.7,-66 -66.6,-66 -68.5,-66 -70.4,-66 -72.3,-66 -74.2,-66 -76.1,-66 -78,-77.3 -78,-88.6 -78,-99.9 -78,-111.2 -78,-122.5 -78,-133.8 -78,-145.10000000000002 -78,-156.4 -78,-167.7 -78,-179 -78,-179 -76.1,-179 -74.2,-179 -72.3,-179 -70.4,-179 -68.5,-179 -66.6,-179 -64.7,-179 -62.8,-179 -60.900000000000006,-179 -59))"] | ["POINT(-122.5 -68.5)"] | false | false |
AMIGOS-III Cavity and Channel Snow Height and Thermistor Snow Temperature Data
|
1738992 |
2022-03-29 | Scambos, Ted |
NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment |
Campbell Scientific data loggers with eight platinum resistance thermometers (PRTs) and an acoustic snow height detector were installed as part of the AMIGOS-III instrumentation (AMIGOS: Automated Meteorology Ice Geophysics Observing System) The data are hourly reports of snow and near-surface air temperatures at different depths. At Cavity AMIGOS site, snow temperatures at ~1.2 meters depth (four PRTs) were used to provide reference temperatures for a coil of Distributed Thermal Sensing (DTS) fiber optic cable. At both sites, PRTs were attached to the tower (wrapped in reflective metal foil tape) as a means of investigating inversion strength and snow burial. At both sites, hourly snow height data using an acoustic sensor placed (initially) at 6.75 meters above the snow on a sensor cross-arm were acquired. A correction based on separately-measured air temperature was applied as per Campbell Scientifics correction algorithm. Both snow height sensors failed after just over one year (Cavity) or 10 months (Channel). Thermistor data continued to be acquired for 13 months (Cavity) or 19 months (Channel) The two sites latest positions (01 Oct, 2021) are: Cavity AMIGOS: 75.037°S, 105.58°W Channel AMIGOS: 75.049°S, 105.44°W both stations are moving NNE at roughly 850 m.yr, having accelerated from about 650 m/yr in early 2020. | ["POLYGON((-105.55 -75.03,-105.53 -75.03,-105.51 -75.03,-105.49 -75.03,-105.47 -75.03,-105.45 -75.03,-105.43 -75.03,-105.41 -75.03,-105.39 -75.03,-105.37 -75.03,-105.35 -75.03,-105.35 -75.033,-105.35 -75.036,-105.35 -75.039,-105.35 -75.042,-105.35 -75.045,-105.35 -75.048,-105.35 -75.051,-105.35 -75.054,-105.35 -75.057,-105.35 -75.06,-105.37 -75.06,-105.39 -75.06,-105.41 -75.06,-105.43 -75.06,-105.45 -75.06,-105.47 -75.06,-105.49 -75.06,-105.51 -75.06,-105.53 -75.06,-105.55 -75.06,-105.55 -75.057,-105.55 -75.054,-105.55 -75.051,-105.55 -75.048,-105.55 -75.045,-105.55 -75.042,-105.55 -75.039,-105.55 -75.036,-105.55 -75.033,-105.55 -75.03))"] | ["POINT(-105.45 -75.045)"] | false | false |
Antarctic Firn Brightness Temperatures Measured by AMSR2 and SSMIS (Concordia, Vostok, and the Entire Ice Sheet)
|
1844793 |
2022-03-29 | Aksoy, Mustafa; Kaurejo, Dua; Kar, Rahul |
Characterization of Antarctic Firn by Multi-Frequency Passive Remote Sensing from Space |
This MATLAB dataset includes brightness temperatures measured by AMSR2 and SSMIS from 01/01/2020 to 06/30/2021 over the Concordia and Vostok Stations as well as the entire Antarctic Ice Sheet. Vertically and horizontally polarized GPM SSMIS/AMSR2 common intercalibrated brightness temperatures at 10.65 GHz, 18.7 GHz, 19.35 GHz, 23.8 GHz, 36.5 GHz, 37 GHz, 89 GHz, and 91.655 GHz averaged over 0.25-degree x 0.25-degree grid cells are stored. In addition, AMSR2 measurements at 6.9 GHz and 7.3 GHz in both polarizations are included. Please read the text file “satData_readMe.txt” for more details. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Firn temperatures 50km upstream of South Pole
|
1443471 |
2022-02-22 | Stevens, Christopher Max; Lilien, David; Conway, Howard; Koutnik, Michelle; Waddington, Edwin D.; Fudge, T. J. |
Collaborative Research: Characterization of Upstream Ice and Firn Dynamics affecting the South Pole Ice Core |
These data are 6-hourly measurements of temperature in the upper 40 m of firn at a site 50 km upstream of South Pole (89.54 S, 137.04 E). The measurements span the two years from January 2017 to December 2018. | ["POINT(137.04 -89.54)"] | ["POINT(137.04 -89.54)"] | false | false |
Dataset for Tidal modulation of ice streams: Effect of periodic sliding velocity on ice friction and healing
|
1245871 |
2021-12-23 | McCarthy, Christine M.; Skarbek, Rob; Savage, Heather |
Laboratory Study of Ice Deformation under Tidal Loading Conditions with Application to Antarctic Glaciers |
This data set contains text files for the experimental logs of ice-on-rock friction experiments that were conducted in a double direct shear apparatus at temperatures of -16.4 C to -2 C. There are eleven files (C28-C34, C39-C41, and C44). Each file contains 4 columns of data that correspond to time (s), vertical displacement (microns), friction, and velocity. The data were prepared by converting voltages from experimental feedbacks, to appropriate units using calibrations, as conducted separate. Miscellaneous loading and unloading data were removed and the data was filtered modestly (100 point moving average filter in matlab). The data set includes all information needed to plot friction or velocity vs. time or displacement from the beginning to end of the run. | [] | [] | false | false |
Rate-state friction parameters for ice-on-rock oscillation experiments
|
1245871 |
2021-07-30 | Skarbek, Rob; McCarthy, Christine M.; Savage, Heather |
Laboratory Study of Ice Deformation under Tidal Loading Conditions with Application to Antarctic Glaciers |
This data set contains rate and state frictional parameters for ice-on-rock friction experiments that were conducted in a double direct shear apparatus as temperatures of -16.4 C to -2 C. The frictional parameters were deteremined by directly fitting the frictional response to controlled, harmonic oscillations in load point velocity. The data set includes all information needed to reproduce the fits, as well as tables of the frictional parameters for both the aging and slip law forms of frictional state evolution. | [] | [] | false | false |
Acclimation of cardiovascular function in Notothenia coriiceps
|
1341663 |
2020-12-18 | Joyce, William; Egginton, Stuart; Farrell, Anthony; Axelsson, Michael; Crockett, Elizabeth; O'Brien, Kristin |
Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes |
The Southern Ocean has experienced stable, cold temperatures for over 10 million years, yet particular regions are currently undergoing rapid warming. To investigate the impacts of warming on cardiovascular oxygen transport, we compared the cardio-respiratory performance in an Antarctic notothenioid (Notothenia coriiceps) that was maintained at 0 or 5°C for 6.0-9.5 weeks. When compared at the fish's respective acclimation temperature, the oxygen consumption rate and cardiac output were significantly higher in 5°C-acclimated than 0°C-acclimated fish. The 2.7-fold elevation in cardiac output in 5°C-acclimated fish (17.4 vs. 6.5 ml min-1 kg-1) was predominantly due to a doubling of stroke volume, likely in response to increased cardiac preload, as measured by higher central venous pressure (0.15 vs. 0.08 kPa); tachycardia was minor (29.5 vs. 25.2 beats min-1). When fish were acutely warmed, oxygen consumption rate increased by similar amounts in 0°C- and 5°C-acclimated fish at equivalent test temperatures. In both acclimation groups, the increases in oxygen consumption rate during acute heating were supported by increased cardiac output achieved by elevating heart rate, while stroke volume changed relatively little. Cardiac output was similar between both acclimation groups until 12°C when cardiac output became significantly higher in 5°C-acclimated fish, driven largely by their higher stroke volume. Although cardiac arrhythmias developed at a similar temperature (~14.5°C) in both acclimation groups, the hearts of 5°C-acclimated fish continued to pump until significantly higher temperatures (CTmax for cardiac function 17.7 vs. 15.0°C for 0°C-acclimated fish). These results demonstrate that N. coriiceps is capable of increasing routine cardiac output during both acute and chronic warming, although the mechanisms are different (heart rate-dependent versus primarily stroke volume-dependent regulation, respectively). Cardiac performance was enhanced at higher temperatures following 5°C acclimation, suggesting cardiovascular function may not constrain the capacity of N. coriiceps to withstand a warming climate. | [] | [] | false | false |
J-9 Drill Hole Temperatures
|
None | 2020-05-05 | Clough, John | No project link provided | The Ross Ice Shelf Project (RISP) began in 1973, and lasted six field seasons. One of the primary goals for RISP was to drill a hole through the Ross Ice Shelf in order to study the ice, the ocean, and the ocean floor beneath the ice shelf. In late November 1974, during the second field season, the camp at J-9 (82.375S, 168.626W) was established, and this site was chosen for future deep core drilling. This datset records ice shelf and sub-ice shelf temperature profiles taken between 1974 and 1977 at the J9 drill site in The Ross Ice Shelf. | ["POINT(-168.626 -82.375)"] | ["POINT(-168.626 -82.375)"] | false | false |
PIPERS Meteorology Time Series
|
1341725 |
2019-06-12 | Guest, Peter |
Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica |
This file contains times series data from the 2017 PIPERS cruise for the period 15 April 0000 – 8 June 1200 (UT). The time series data represent one minute means and include data collected by the Naval Postgraduate School from the starboard side boom (including occasionally on ice surface temp sampling), radiation system on the helo deck and sometimes in situ surface temp. Also included are meteorological, navigation and surface oceanography (from intake) data from the standard ship systems. | ["POLYGON((-180 -62,-179.5 -62,-179 -62,-178.5 -62,-178 -62,-177.5 -62,-177 -62,-176.5 -62,-176 -62,-175.5 -62,-175 -62,-175 -63.6,-175 -65.2,-175 -66.8,-175 -68.4,-175 -70,-175 -71.6,-175 -73.2,-175 -74.8,-175 -76.4,-175 -78,-175.5 -78,-176 -78,-176.5 -78,-177 -78,-177.5 -78,-178 -78,-178.5 -78,-179 -78,-179.5 -78,180 -78,178.8 -78,177.6 -78,176.4 -78,175.2 -78,174 -78,172.8 -78,171.6 -78,170.4 -78,169.2 -78,168 -78,168 -76.4,168 -74.8,168 -73.2,168 -71.6,168 -70,168 -68.4,168 -66.8,168 -65.2,168 -63.6,168 -62,169.2 -62,170.4 -62,171.6 -62,172.8 -62,174 -62,175.2 -62,176.4 -62,177.6 -62,178.8 -62,-180 -62))"] | ["POINT(176.5 -70)"] | false | false |
Response time data for snails escaping from predatory sea stars
|
1041022 |
2019-03-13 | Schram, Julie; Amsler, Charles |
The effects of ocean acidification and rising sea surface temperatures on shallow-water benthic organisms in Antarctica |
Response time data for snails escaping from predatory sea stars | [] | [] | false | false |
Linking oceanographic conditions, migratory schedules and foraging behaviour during the non-breeding season to reproductive performance in a long-lived seabird
|
1246407 |
2018-12-03 | Jenouvrier, Stephanie |
Linking Foraging Behaviors to Demography to understand Albatrosses Population Responses to Climate Change |
1. Studies of the mechanisms underlying climate-induced population changes are critically needed to better understand and accurately predict population responses to climate change. Long-lived migratory species might be particularly vulnerable to climate change as they are constrained by different climate conditions and energetic requirements during the breeding and non-breeding seasons. Yet, most studies primarily focus on the breeding season of these species life cycle. Environmental conditions experienced in the non-breeding season may have downstream effects on the other stages of the annual life cycle. Not investigating such effects may potentially lead to erroneous inferences about population dynamics. 2. Combining demographic and tracking data collected between 2006 and 2013 at Kerguelen Island on a long-lived migratory seabird, the Black-Browed Albatross (Thalassarche melanophris), we investigated the links between sea surface temperature during the non-breeding season and behavioural and phenological traits (at-sea behaviour and migratory schedules) while accounting for different responses between birds of different sex and reproductive status (previously failed or successful breeders). We then explored whether variation in the foraging behaviour and timing of spring migration influenced subsequent reproductive performance. 3. Our results showed that foraging activity and migratory schedules varied by both sex and reproductive status suggesting different energetic requirements and constraints among individuals. Higher sea surface temperatures during late winter, assumed to reflect poor winter conditions, were associated with an earlier departure from the wintering grounds and an extended pre-breeding period. However, an earlier spring migration and an earlier return to Kerguelen grounds were associated with a lower breeding success. 4. Our results highlighted that behaviour during some periods of the non-breeding season, particularly towards the end of the wintering period and the pre-breeding period, had a significant effect on the subsequent reproductive success. Therefore caution needs to be given to all stages of the annual cycle when predicting the influence of climate on population dynamics. | ["POLYGON((68.5 -48.5,68.725 -48.5,68.95 -48.5,69.175 -48.5,69.4 -48.5,69.625 -48.5,69.85 -48.5,70.075 -48.5,70.3 -48.5,70.525 -48.5,70.75 -48.5,70.75 -48.65,70.75 -48.8,70.75 -48.95,70.75 -49.1,70.75 -49.25,70.75 -49.4,70.75 -49.55,70.75 -49.7,70.75 -49.85,70.75 -50,70.525 -50,70.3 -50,70.075 -50,69.85 -50,69.625 -50,69.4 -50,69.175 -50,68.95 -50,68.725 -50,68.5 -50,68.5 -49.85,68.5 -49.7,68.5 -49.55,68.5 -49.4,68.5 -49.25,68.5 -49.1,68.5 -48.95,68.5 -48.8,68.5 -48.65,68.5 -48.5))"] | ["POINT(69.625 -49.25)"] | false | false |
Experimental analyses of phytoplankton temperature response
|
1142174 |
2018-11-14 | Smith, Walker |
Collaborative Research: Penguin Foraging Reveals Phytoplankton Spatial Structure in the Ross Sea |
This data set summarizes the responses of a variety of phytoplankton cultures to different temperatures. Variables assessed in triplicate at each temperature include cell abundance, chlorophyll and particulate organic carbon. Some eight species were assessed. Each experiment lasted ca. 25 days. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Roosevelt Island Borehole Firn temperatures
|
0943466 |
2018-02-13 | Hawley, Robert L.; Clemens-Sewall, David; Giese, Alexandra |
Collaborative Research: Deglaciation of the Ross Sea Embayment - constraints from Roosevelt Island |
These data are firn temperatures, measured by a meteorological station placed at Roosevelt Island. Thermistors were placed at multiple depths through the upper 20 meters of firn and measured through the course of roughly one year. | ["POLYGON((-163 -79,-162.8 -79,-162.6 -79,-162.4 -79,-162.2 -79,-162 -79,-161.8 -79,-161.6 -79,-161.4 -79,-161.2 -79,-161 -79,-161 -79.05,-161 -79.1,-161 -79.15,-161 -79.2,-161 -79.25,-161 -79.3,-161 -79.35,-161 -79.4,-161 -79.45,-161 -79.5,-161.2 -79.5,-161.4 -79.5,-161.6 -79.5,-161.8 -79.5,-162 -79.5,-162.2 -79.5,-162.4 -79.5,-162.6 -79.5,-162.8 -79.5,-163 -79.5,-163 -79.45,-163 -79.4,-163 -79.35,-163 -79.3,-163 -79.25,-163 -79.2,-163 -79.15,-163 -79.1,-163 -79.05,-163 -79))"] | ["POINT(-162 -79.25)"] | false | false |
Active Layer Temperatures from Crescent Stream banks, Taylor Valley Antarctica
|
1246203 |
2017-12-18 | Gooseff, Michael N. |
Collaborative Research: THE MCMURDO DRY VALLEYS: A landscape on the Threshold of Change |
As a part of the project titled "Collaborative Research: The McMurdo Dry Valleys: A landscape on the threshold of change", we measured ground temperatures from 0-20cm at three stream bank positions (base, mid-slope, and top) at 4 locations along Crescent Stream in Taylor Valley - 2 on the east bank, 2 on the west bank. The goal was to evaluate differences in thermal conduction and temperature dynamics of the active layers of these locations, in particular, in a stream that has undergone extensive bank erosion since 2012 due to permafrost degradation. One of the datalogging stations had significant technical problems and has very little data compared to the almost 2 years of temperature date from the other 3 stations (2015-2017). | ["POLYGON((163.1778 -77.6233,163.17792 -77.6233,163.17804 -77.6233,163.17816 -77.6233,163.17828 -77.6233,163.1784 -77.6233,163.17852 -77.6233,163.17864 -77.6233,163.17876 -77.6233,163.17888 -77.6233,163.179 -77.6233,163.179 -77.63331,163.179 -77.64332,163.179 -77.65333,163.179 -77.66334,163.179 -77.67335,163.179 -77.68336,163.179 -77.69337,163.179 -77.70338,163.179 -77.71339,163.179 -77.7234,163.17888 -77.7234,163.17876 -77.7234,163.17864 -77.7234,163.17852 -77.7234,163.1784 -77.7234,163.17828 -77.7234,163.17816 -77.7234,163.17804 -77.7234,163.17792 -77.7234,163.1778 -77.7234,163.1778 -77.71339,163.1778 -77.70338,163.1778 -77.69337,163.1778 -77.68336,163.1778 -77.67335,163.1778 -77.66334,163.1778 -77.65333,163.1778 -77.64332,163.1778 -77.63331,163.1778 -77.6233))"] | ["POINT(163.1784 -77.67335)"] | false | false |
Data from Schram et al. 2017 MEPS
|
1041022 |
2017-10-20 | Amsler, Charles; Schram, Julie |
The effects of ocean acidification and rising sea surface temperatures on shallow-water benthic organisms in Antarctica |
["POLYGON((-64.5 -64.5,-64.45 -64.5,-64.4 -64.5,-64.35 -64.5,-64.3 -64.5,-64.25 -64.5,-64.2 -64.5,-64.15 -64.5,-64.1 -64.5,-64.05 -64.5,-64 -64.5,-64 -64.54,-64 -64.58,-64 -64.62,-64 -64.66,-64 -64.7,-64 -64.74,-64 -64.78,-64 -64.82,-64 -64.86,-64 -64.9,-64.05 -64.9,-64.1 -64.9,-64.15 -64.9,-64.2 -64.9,-64.25 -64.9,-64.3 -64.9,-64.35 -64.9,-64.4 -64.9,-64.45 -64.9,-64.5 -64.9,-64.5 -64.86,-64.5 -64.82,-64.5 -64.78,-64.5 -64.74,-64.5 -64.7,-64.5 -64.66,-64.5 -64.62,-64.5 -64.58,-64.5 -64.54,-64.5 -64.5))"] | ["POINT(-64.25 -64.7)"] | false | false | |
Holocene Black Carbon in Antarctica
|
0839093 |
2017-06-19 | McConnell, Joseph; Arienzo, Monica |
Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core |
Black carbon (BC) and other biomass-burning (BB) aerosols are critical components of climate forcing but quantification, predictive climate modeling, and policy decisions have been hampered by limited understanding of the climate drivers of BB and by the lack of long-term records. Prior modeling studies suggested that increased Northern Hemisphere anthropogenic BC emissions increased recent temperatures and regional precipitation, including a northward shift in the Inter-Tropical Convergence Zone (ITCZ). Two Antarctic ice cores were analyzed for BC and the longest record shows that the highest BC deposition during the Holocene occurred ~8-6k years before present in a period of relatively high austral burning season and low growing season insolation. Atmospheric transport modeling suggests South America (SA) as the dominant source of modern Antarctic BC and, consistent with the ice-core record, climate model experiments using mid-Holocene and preindustrial insolation simulate comparable increases in carbon loss due to fires in SA during the mid-Holocene. SA climate proxies document a northward shifted ITCZ and weakened SA Summer Monsoon (SASM) during this period, with associated impacts on hydroclimate and burning. A second Antarctic ice core spanning the last 2.5k years documents similar linkages between hydroclimate and BC, with the lowest deposition during the Little Ice Age characterized by a southerly shifted ITCZ and strengthened SASM. These new results indicate that insolation-driven changes in SA hydroclimate and BB, likely linked to the position of the ITCZ, modulated Antarctic BC deposition during most of the Holocene and suggests connections and feedbacks between future BC emissions and hydroclimate. | ["POLYGON((161.41425 -77.73489,161.486884 -77.73489,161.559518 -77.73489,161.632152 -77.73489,161.704786 -77.73489,161.77742 -77.73489,161.850054 -77.73489,161.922688 -77.73489,161.995322 -77.73489,162.067956 -77.73489,162.14059 -77.73489,162.14059 -77.747868,162.14059 -77.760846,162.14059 -77.773824,162.14059 -77.786802,162.14059 -77.79978,162.14059 -77.812758,162.14059 -77.825736,162.14059 -77.838714,162.14059 -77.851692,162.14059 -77.86467,162.067956 -77.86467,161.995322 -77.86467,161.922688 -77.86467,161.850054 -77.86467,161.77742 -77.86467,161.704786 -77.86467,161.632152 -77.86467,161.559518 -77.86467,161.486884 -77.86467,161.41425 -77.86467,161.41425 -77.851692,161.41425 -77.838714,161.41425 -77.825736,161.41425 -77.812758,161.41425 -77.79978,161.41425 -77.786802,161.41425 -77.773824,161.41425 -77.760846,161.41425 -77.747868,161.41425 -77.73489))"] | ["POINT(161.77742 -77.79978)"] | false | false |
Temperature Reconstruction at the West Antarctic Ice Sheet Divide
|
0539232 |
2017-01-12 | Cuffey, Kurt M. |
Collaborative Research: Physical Properties of the WAIS Divide Deep Core |
This dataset contains the temperature reconstruction at the West Antarctic Ice Sheet (WAIS) Divide reported by Cuffey et al. (2016) in PNAS. Five files contain 1) the primary reconstruction (Eq. 2 of that publication), combining information from borehole temperatures, deuterium isotopic content of ice, and nitrogen-15 content of trapped diatomic nitrogen gas; 2) the primary reconstruction with higher-frequency content restored; 3) the lower limit of the primary reconstruction; 4) the upper limit of the primary reconstruction; and 5) and the primary reconstruction with added perturbations. | ["POINT(-112.083 -79.467)"] | ["POINT(-112.083 -79.467)"] | false | false |
Climate Change and Predatory Invasion of the Antarctic Benthos
|
1141877 |
2017-01-10 | Aronson, Richard |
Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos |
Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials. | [] | [] | false | false |
Climate Change and Predatory Invasion of the Antarctic Benthos
|
1141877 |
2016-01-01 | Aronson, Richard |
Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos |
Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials. | ["POLYGON((-111.18 -49.98,-105.429 -49.98,-99.678 -49.98,-93.927 -49.98,-88.176 -49.98,-82.425 -49.98,-76.674 -49.98,-70.923 -49.98,-65.172 -49.98,-59.421 -49.98,-53.67 -49.98,-53.67 -52.826,-53.67 -55.672,-53.67 -58.518,-53.67 -61.364,-53.67 -64.21,-53.67 -67.056,-53.67 -69.902,-53.67 -72.748,-53.67 -75.594,-53.67 -78.44,-59.421 -78.44,-65.172 -78.44,-70.923 -78.44,-76.674 -78.44,-82.425 -78.44,-88.176 -78.44,-93.927 -78.44,-99.678 -78.44,-105.429 -78.44,-111.18 -78.44,-111.18 -75.594,-111.18 -72.748,-111.18 -69.902,-111.18 -67.056,-111.18 -64.21,-111.18 -61.364,-111.18 -58.518,-111.18 -55.672,-111.18 -52.826,-111.18 -49.98))"] | ["POINT(-82.425 -64.21)"] | false | false |
Tomographic Imaging of the Velocity and Magnetic Fields in the Sun's Atmosphere
|
0632399 |
2016-01-01 | Jefferies, Stuart M. |
Tomographic Imaging of the Velocity and Magnetic Fields in the Sun's Atmosphere |
The ultimate goal of this project is to determine the structure and dynamics of the Sun's atmosphere, assess the role of MHD waves in heating the chromosphere/corona and driving the solar wind, and better understand how the Sun's atmosphere couples to the solar interior. As the solar atmosphere is 'home' to many of the solar phenomena that can have a direct impact on the biosphere, including flares, coronal mass ejections, and the solar wind, the broader impact of such studies is that they will lead to an improved understanding of the Sun-Earth connection. Under the current award we have developed a suite of instruments that can simultaneously image the line-of-sight Doppler velocity and longitudinal magnetic field at four heights in the solar atmosphere at high temporal cadence. The instruments use magneto-optical filters (see Cacciani, Moretti and Rodgers, Solar Physics 174, p.115, 2004) tuned to the solar absorption lines at 422 nm (Ca I), 589 nm (Na D2), 770 nm (K) and 1083 nm (He). These lines sample the solar atmosphere from the mid-photosphere to the high-chromosphere. A proof-of-concept run was made in the Austral summer of 2007/2008 using the Na and K versions of the instruments. Here we recorded over 40 hours of full-disk, intensity images of the Sun in the red and blue wings of the Na and K Fraunhofer lines, in both right- and left-circularly polarized light. The images were obtained at a rate of one every five seconds with a nominal spatial resolution of 4 arc-seconds. The run started at 09:44 UT on February 2, 2008 and ended at 03:30 UT on February 4, 2008. Data Quality Assessment: The temperature controls of the instrument housings were unable to fully compensate for the harse Antartic winds encountered during the observing run. This led to large (~15 C) temperature swings which adversely affected the instruments (and thus data quality) in two ways: 1) Crystals of Na and K were deposited on the magneto-optical filter windows leading to "hot spots" in the images. These "hot spots" come and go with time as the temperature changes. 2) The changing temperature caused the optical rails to contract and expand causing the final images to go in- and out-of-focus, thus reducing the resolution to greater than 4 arc-seconds. Both these effect are worse in the K data. Despite these problems, the intensity images can be combined to provide magnetic images that show a very high sensitivity (< 5 Gauss in a 5 second integration). Data Description: The raw data are stored as a series of 1024x1024x4 FITS images. The format is: blue image (left circulary polarized light), blue image (right circularly polarized light), red image (left circulary polarized light), red image (right circularly polarized light). The naming convention for the images is: Type_Instrument_Day_hour_minutes_seconds where Type is I (intensity), F (flatfield), D (dark) Instrument is 0 (Na), 1 (K) Day is the day number from the beginning of the year where January 1 is day 0 For example, I_0_32_12_34_40.fits is an intensity image taken with the Na instrument at 12:34.40 UT on February 2, 2008. Notes: 1) The flatfield images were acquired by moving a diffuser in front of the Sun during the integration. The resulting images therefore have to be corrected for residual low-spatial frequencies due to the non-flat nature of the light source. 2) Each FITS file header contains a variety of information on the observation, e.g., F_CNTO : number of summed frames in each 5 second integration (*) FPS : Camera frame rate (Frames Per Second) FLIP : Rate at which the half-wave rotator (magnetic switch) was switched INT_PER : Integration time (in seconds) MOF : Temperature of magneto-optical filter cell WS : Temperature of wing selector cell TEMP_0 : Temperature of camera 0 TEMP_1 : Temperature of camera 1 TEMP_2 : Temperature inside instrument (location 1) TEMP_3 : Temperature of narrowband filter TEMP_5 : Temperature of magnets surrounding MOF cell TEMP_6 : Temperature inside instrument (location 2) TEMP_7 : Temperature of housing for magnetic switch (*) This is the frame count for the camera. The number of frames in each image for the two different polarization states, is half this number. The measured temperatures are only coarse measurements. 3) Due to reflection in the final polarizing beam splitter (which separates the "red" and "blue" signals into the two cameras), the camera 1 data need to "reversed" along the x-axis (i.e. listed as [1024:1] instead of [1:1024]) 4) Line-of-sight velocity and magnetic field images are generated from the observed intensity images. Doppler images as (red-blue)/(red+blue), magnetic images as the difference between the Doppler images for right- and left-circularly polarized light. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Borehole Temperatures at Pine Island Glacier, Antarctica
|
0732730 |
2015-07-31 | Truffer, Martin; Stanton, Timothy |
Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica |
This data set is a time series of borehole temperatures at different depths from three thermistor strings deployed in three boreholes drilled through the Pine Island Glacier ice shelf, Antarctica. | ["POINT(-100.5 -75.1)"] | ["POINT(-100.5 -75.1)"] | false | false |
Optical Fabric and Fiber Logging of Glacial Ice (1142010)
|
1142010 |
2015-01-01 | Talghader, Joseph |
Optical Fabric and Fiber Logging of Glacial Ice |
This award supports a project to combine the expertise of both glaciologists and optical engineers to develop polarization- preserving optical scattering techniques for borehole tools to identify changes in high-resolution crystal structure (fabric) and dust content of glacial ice. The intellectual merit of this work is that the fabric and impurity content of the ice contain details on climate, volcanic activity and ice flow history. Such fabric measurements are currently taken by slicing an ice core into sections after it has started to depressurize which is an extremely time-intensive process that damages the core and does not always preserve the properties of ice in its in-situ state. In addition the ice core usually must be consumed in order to measure the components of the dust. The fabric measurements of this study utilize the concept that singly-scattered light in ice preserves most of its polarization when it is backscattered once from bubbles or dust; therefore, changes to the polarization of singly-backscattered light must originate with the birefringence. Measurements based on this concept will enable this program to obtain continuous records of fabric and correlate them to chronology and dust content. The project will also develop advanced borehole instruments to replace current logging tools, which require optical sources, detectors and power cables to be submerged in borehole fluid and lowered into the ice sheet at temperatures of -50oC. The use of telecommunications fiber will allow all sources and detectors to remain at the surface and enable low-noise signal processing techniques such as lock-in amplification that increase signal integrity and reduce needed power. Further, fiber logging systems would be much smaller and more flexible than current tools and capable of navigating most boreholes without a heavy winch. In order to assess fabric in situ and test fiber-optic borehole tools, field measurements will be made at WAIS Divide and a deep log will also be made at Siple Dome, both in West Antarctica. If successful, the broader impacts of the proposed research would include the development of new analytical methods and lightweight logging tools for ice drilling research that can operate in boreholes drilled in ice. Eventually the work could result in the development of better prehistoric records of glacier flow, atmospheric particulates, precipitation, and climate forcing. The project encompasses a broad base of theoretical, experimental, and design work, which makes it ideal for training graduate students and advanced undergraduates. Collaboration with schools and classroom teachers will help bring aspects of optics, climate, and polar science to an existing Middle School curriculum. | ["POLYGON((-148.81 -79.42,-145.111 -79.42,-141.412 -79.42,-137.713 -79.42,-134.014 -79.42,-130.315 -79.42,-126.616 -79.42,-122.917 -79.42,-119.218 -79.42,-115.519 -79.42,-111.82 -79.42,-111.82 -79.643,-111.82 -79.866,-111.82 -80.089,-111.82 -80.312,-111.82 -80.535,-111.82 -80.758,-111.82 -80.981,-111.82 -81.204,-111.82 -81.427,-111.82 -81.65,-115.519 -81.65,-119.218 -81.65,-122.917 -81.65,-126.616 -81.65,-130.315 -81.65,-134.014 -81.65,-137.713 -81.65,-141.412 -81.65,-145.111 -81.65,-148.81 -81.65,-148.81 -81.427,-148.81 -81.204,-148.81 -80.981,-148.81 -80.758,-148.81 -80.535,-148.81 -80.312,-148.81 -80.089,-148.81 -79.866,-148.81 -79.643,-148.81 -79.42))"] | ["POINT(-130.315 -80.535)"] | false | false |
The effects of ocean acidification and rising sea surface temperatures on shallow-water benthic organisms in Antarctica
|
1041022 |
2015-01-01 | McClintock, James; Amsler, Charles; Angus, Robert |
The effects of ocean acidification and rising sea surface temperatures on shallow-water benthic organisms in Antarctica |
The research will investigate the individual and combined effects of rising ocean acidification and sea surface temperatures on shallow-water calcified benthic organisms in western Antarctic Peninsular (WAP) marine communities. The Southern Ocean is predicted to become undersaturated in terms of both aragonite and calcite within 50 and 100 years, respectively, challenging calcification processes. Adding to the problem, antarctic calcified benthic marine organisms are more vulnerable to ocean acidification than temperate and tropical species because they are generally weakly calcified. Many antarctic organisms are essentially stenothermal, and those in the West Antarctic Peninsula are being subjected to rising seawater temperatures. The project employs both single-species and multi-species level approaches to evaluating the impacts of rising ocean acidification and seawater temperature on representative calcified and non-calcified macroalgae, on calcified and non-calcified mesograzers, and on a calcified macro-grazer, all of which are important ecological players in the rich benthic communities. Multi-species analysis will focus on the diverse assemblage of amphipods and mesogastropods that are associated with dominant macroalgae that collectively play a key role in community dynamics along the WAP. The project will support undergraduate research, both through NSF programs, as well as home university-based programs, some designed to enhance the representation of minorities in the sciences. The principal investigators also will support and foster graduate education through mentoring of graduate students. Through their highly successful UAB IN ANTARCTICA interactive web program, they will continue to involve large numbers of teachers, K-12 students, and other members of the community at large in their scientific endeavors in Antarctica. | ["POLYGON((-79 -60,-76.4 -60,-73.8 -60,-71.2 -60,-68.6 -60,-66 -60,-63.4 -60,-60.8 -60,-58.2 -60,-55.6 -60,-53 -60,-53 -61,-53 -62,-53 -63,-53 -64,-53 -65,-53 -66,-53 -67,-53 -68,-53 -69,-53 -70,-55.6 -70,-58.2 -70,-60.8 -70,-63.4 -70,-66 -70,-68.6 -70,-71.2 -70,-73.8 -70,-76.4 -70,-79 -70,-79 -69,-79 -68,-79 -67,-79 -66,-79 -65,-79 -64,-79 -63,-79 -62,-79 -61,-79 -60))"] | ["POINT(-66 -65)"] | false | false |
Temperature Profile of the West Antarctic Ice Sheet Divide Deep Borehole
|
0539232 |
2014-04-30 | Cuffey, Kurt M.; Clow, Gary D. |
Collaborative Research: Physical Properties of the WAIS Divide Deep Core |
This data set reports depth versus temperatures in the fluid-filled portion of the West Antarctic Ice Sheet Divide (WAIS–D) deep borehole (70 to 3328 meters depth). Data were acquired on December 5, 2011 and have been post-processed to convert resistance to temperature. | ["POINT(-112.0865 -79.4676)"] | ["POINT(-112.0865 -79.4676)"] | false | false |
Fate of Drilling Fluids during the South McMurdo Sound Project (SMS) of the Antarctic Geological Drilling Program (ANDRILL)
|
1043740 |
2014-01-01 | Lenczewski, Melissa |
Fate of Drilling Fluids during the South McMurdo Sound Project (SMS) of the Antarctic Geological Drilling Program (ANDRILL) |
The PI proposes to utilize computer models used by hydrogeologists to establish the fate and transport of contamination and determine the extent of drilling fluid contamination in the ANDRILL SMS core. For these models, previously collected logs of lithology, porosity, fracture density, fracture type, fracture orientation, drilling fluid loss, drilling fluid characteristics and temperature will be used as input parameters. In addition, biodegradation and sorption constants for the drilling fluid will be determined and incorporated into the models. Samples of drilling fluids used during coring as well as the return fluids were collected at the drill site using standard microbiological sampling techniques. Fluids will be tested at in situ temperatures under aerobic and anaerobic conditions to determine biodegradation constants. Sorption will be determined between the drilling fluids and core samples using standard isotherm methods. Geochemical and microbial fingerprints of the fluids and the changes during biodegradation will determine the potential impact of the drilling fluids on the isolated microbial communities and the geochemistry within various subsurface lithologic units beneath the southern McMurdo Sound in Antarctica. The results of this study could potentially provide guidelines on developing less detrimental methods for future exploration, if deemed necessary through this research. This proposed project will train a graduate student. The methods developed for analyses of samples in this project will serve as a guide for future studies of similar interest and will improve the understanding of ecological impacts of geologic drilling in Antarctica. The results of this study will be used as a reference for comparison with future studies examining newly developed, and improved, sample collection methods in future exploratory drilling projects in pristine environments. The PI is new to Antarctic research. | ["POLYGON((165 -77.5,165.3 -77.5,165.6 -77.5,165.9 -77.5,166.2 -77.5,166.5 -77.5,166.8 -77.5,167.1 -77.5,167.4 -77.5,167.7 -77.5,168 -77.5,168 -77.6,168 -77.7,168 -77.8,168 -77.9,168 -78,168 -78.1,168 -78.2,168 -78.3,168 -78.4,168 -78.5,167.7 -78.5,167.4 -78.5,167.1 -78.5,166.8 -78.5,166.5 -78.5,166.2 -78.5,165.9 -78.5,165.6 -78.5,165.3 -78.5,165 -78.5,165 -78.4,165 -78.3,165 -78.2,165 -78.1,165 -78,165 -77.9,165 -77.8,165 -77.7,165 -77.6,165 -77.5))"] | ["POINT(166.5 -78)"] | false | false |
Validating contrasting terrestrial climate-sensitive Pliocene deposits through high resolution modeling of paleo-environments in the Transantarctic Mountains
|
1354231 |
2014-01-01 | Kowalewski, Douglas |
Validating contrasting terrestrial climate-sensitive Pliocene deposits through high resolution modeling of paleo-environments in the Transantarctic Mountains |
Intellectual Merit: Neogene sediment records recovered by ANDRILL suggest multiple events of open water conditions and elevated sea surface temperatures at times when terrestrial data from the McMurdo Dry Valleys indicate hyper arid, cold, desert conditions. Interpretation of the ANDRILL data suggests the West Antarctic Ice Sheet is highly sensitive to changes in Pliocene sea surface temperatures and this conclusion has been supported by recent Global Circulation Model results for the early to mid Pliocene. The PIs propose to model paleo-ice configurations and warm orbits associated with a WAIS collapse to assess potential climate change in East Antarctica. During such episodes of polar warmth they propose to answer: What is the limit of ablation along the East Antarctic Ice Sheet?; Are relict landforms in the Dry Valleys susceptible to modification from increase in maximum summertime temperatures?; and Is there sufficient increase in minimum wintertime temperatures to sustain a tundra environment in the Dry Valleys? Integration of depositional records and model outputs have the potential to test the performance of numerical models currently under development as part of ANDRILL; reconcile inconsistencies between marine and terrestrial paleoclimate records in high Southern Latitudes; and improve understanding of Antarctic climate and ice volume sensitivity to forcing for both the East Antarctic and West Antarctic Ice Sheets. Broader impacts: Results from this study have the potential to be used widely by the research community. Outreach to local elementary schools from other funded efforts will continue and be extended to homeschooled students. A Post Doc will be supported as part of this award. | ["POLYGON((-160 -70,-156 -70,-152 -70,-148 -70,-144 -70,-140 -70,-136 -70,-132 -70,-128 -70,-124 -70,-120 -70,-120 -71.5,-120 -73,-120 -74.5,-120 -76,-120 -77.5,-120 -79,-120 -80.5,-120 -82,-120 -83.5,-120 -85,-124 -85,-128 -85,-132 -85,-136 -85,-140 -85,-144 -85,-148 -85,-152 -85,-156 -85,-160 -85,-160 -83.5,-160 -82,-160 -80.5,-160 -79,-160 -77.5,-160 -76,-160 -74.5,-160 -73,-160 -71.5,-160 -70))"] | ["POINT(-140 -77.5)"] | false | false |
Impact of Rising Oceanic Temperatures on the Embryonic Development of Antarctic Notothenioid Fishes
|
1019305 |
2014-01-01 | Grim, Jeffrey |
PostDoctoral Research Fellowship |
Survival of Antarctic notothenioid fishes in the context of global climate change will depend upon the impact of rising oceanic temperatures on their embryonic development, yet little is known regarding the molecular mechanisms underlying this complex suite of processes. Many notothenioids are characterized by secondary pelagicism, which enables them to exploit food sources in the water column and is supported in part by skeletal pedomorphism. Here the PI proposes to examine the hypothesis that reactive oxygen species (ROS) regulate notothenioid skeletal pedomorphism. The research objectives are : 1) To quantify and localize ROS production and identify the point(s) of origin of ROS production in embryonic Antarctic fishes that differ in skeletal phenotypes 2) To determine whether the time course of embryogenesis and the extent of osteological development in embryonic Antarctic fishes can be altered by changing the oxidative status of the animal during embryogenesis 3) To evaluate whether transgenic alteration of oxidative status can induce skeletal pedomorphism in a fish model. Broader Impacts will include teaching undergraduate lectures, recruiting undergraduate students to help with lab analyses (and possibly field work), lectures and demonstrations to high school students, and allowing secondary educators access to personal photos and videos of research animals for curriculum development. | [] | [] | false | false |
Metabolic Activities and Gene Expression of Marine Psychrophiles in Cold Ice
|
0739783 |
2013-01-01 | Junge, Karen |
Metabolic Activities and Gene Expression of Marine Psychrophiles in Cold Ice |
The mechanisms enabling bacteria to be metabolically active at very low temperatures are of considerable importance to polar microbial ecology, astrobiology, climate and cryopreservation. This research program has two main objectives. The first is to investigate metabolic activities and gene expression of polar marine psychrophilic bacteria when confronted with freezing conditions at temperatures above the eutectic of seawater (<54C) to unveil cold adaptation mechanisms with relevance to wintertime sea-ice ecology. The second objective is to discern if psychrophilic processes of leucine incorporation into proteins, shown to occur to -196C, amount to metabolic activity providing for the survival of cells or are merely biochemical reactions still possible in flash-frozen samples without any effect on survival. We will examine extracellular and intracellular processes of psychrophilic activity above and below the eutectic by (i) determining the temperature range of metabolic activities such as DNA synthesis, carbon utilization, respiration and ATP generation using radioactive tracer technology, including a control at liquid helium temperature (-268.9C), (ii) analyzing gene expression in ice using whole genome and microarray analyses and iii) examining the role of exopolymeric substances (EPS) and ice micro-physics for the observed activity using an in-situ microscopy technique. Results of the proposed research can be expected to aid in the determination of cellular and genetic strategies that allow cells to maintain activity at extremely low temperatures within an icy matrix and/or to resume activity again when more growth-permissive conditions are encountered. The research is an interdisciplinary collaboration involving three different institutions with participants in Oceanography, Genomics, and Geophysical Sciences. The proposed activity will support the beginning professional career of a female researcher and will serve as the basis for several undergraduate student laboratory projects. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Geochemistry and Microbiology of the Extreme Aquatic Environment in Lake Vida, East Antarctica
|
0739681 0739698 |
2013-01-01 | Murray, Alison |
Collaborative Research: Geochemistry and Microbiology of the Extreme Aquatic Environment in Lake Vida, East Antarctica |
Lake Vida is the largest lake of the McMurdo Dry Valleys, with an approximately 20 m ice cover overlaying a brine of unknown depth with at least 7 times seawater salinity and temperatures below -10 degrees C year-round. Samples of brine collected from ice above the main water body contain 1) the highest nitrous oxide levels of any natural water body on Earth, 2) unusual geochemistry including anomalously high ammonia and iron concentrations, 3) high microbial counts with an unusual proportion (99%) of ultramicrobacteria. The microbial community is unique even compared to other Dry Valley Lakes. The research proposes to enter, for the first time the main brine body below the thick ice of Lake Vida and perform in situ measurements, collect samples of the brine column, and collect sediment cores from the lake bottom for detailed geochemical and microbiological analyses. The results will allow the characterization of present and past life in the lake, assessment of modern and past sedimentary processes, and determination of the lake's history. The research will be conducted by a multidisciplinary team that will uncover the biogeochemical processes associated with a non-photosynthetic microbial community isolated for a significant period of time. This research will address diversity, adaptive mechanisms and evolutionary processes in the context of the physical evolution of the environment of Lake Vida. Results will be widely disseminated through publications, presentations at national and international meetings, through the Subglacial Antarctic Lake Exploration (SALE) web site and the McMurdo LTER web site. The research will support three graduate students and three undergraduate research assistants. The results will be incorporated into a new undergraduate biogeosciences course at the University of Illinois at Chicago which has an extremely diverse student body, dominated by minorities. | ["POINT(161.931 -77.3885)"] | ["POINT(161.931 -77.3885)"] | false | false |
The Cellular Stress Response in Cold-adapted Organisms: Building Novel Mechanistic Links between Heat Stress, Cell Cycle Arrest and Apoptosis in Antarctic Fishes.
|
0944743 |
2013-01-01 | Buckley, Bradley |
The Cellular Stress Response in Cold-adapted Organisms: Building Novel Mechanistic Links between Heat Stress, Cell Cycle Arrest and Apoptosis in Antarctic Fishes. |
The research will investigate a novel mechanism by which cold-adapted fishes of the Southern Ocean sense and respond to elevated temperatures. It is hypothesized that sub-lethal heat stress may induce cell cycle arrest and/or programmed cell death through apoptosis. The study will use genome-enabled technologies to examine the environmental control over gene expression in Antarctic species and will build direct mechanistic links between the expression of a specific signaling pathway gene and heat-induced changes in cells. Prior results support the hypothesis that heat stress results in cell cycle arrest and, in some cases, programmed cell death in Antarctic fishes. If so, this represents a novel, modified version of the well-conserved cellular stress response found in essentially all other species and suggests that warming ocean temperatures may have profound cellular and physiological impacts on these extremely stenothermal species. The P.I. conducts outreach activities with the Oregon Museum of Science and Industry, will be involved in developing a science curriculum for the Native American Youth and Family Center (NAYA) Early College Academy in Portland, and supports the educational and professional development of both undergraduate and graduate students at Portland State University. | ["POINT(166.66667 -77.83333)"] | ["POINT(166.66667 -77.83333)"] | false | false |
Atmospheric Boundary Layer Measurements on the Weddell Sea Drifting Station
|
9024544 |
2010-01-01 | Andreas, Edgar |
Atmospheric Boundary Layer Measurements on the Weddell Sea Drifting Station |
Location: Ice camp on perennial sea ice in the southwestern corner of the Weddell Sea, Antarctic The first direct radiative and turbulent surface flux measurements ever made over floating Antarctic sea ice. The data are from Ice Station Weddell as it drifted in the western Weddell Sea from February to late May 1992. Data Types: Hourly measurements of the turbulent surface fluxes of momentum and sensible and latent heat by eddy covariance at a height of 4.65 m above snow-covered sea ice. Instruments were a 3-axis sonic anemometer/thermometer and a Lyman-alpha hygrometer. Hourly, surface-level measurements of the four radiation components: in-coming and out-going longwave and shortwave radiation. Instruments were hemispherical pyranometers and pyrgeometers. Hourly mean values of standard meteorological variables: air temperature, dew point temperature, wind speed and direction, barometric pressure, surface temperature. Instruments were a propeller-vane for wind speed and direction and cooled-mirror dew-point hygrometers and platinum resistance thermometers for dew-points and temperatures. Surface temperature came from a Barnes PRT-5 infrared thermometer. Flux Data The entire data kit is bundled as a zip file named ISW_Flux_Data.zip The main data file is comma delimited. The README file is ASCII. The associated reprints of publications are in pdf. Radiosounding data: On Ice Station Weddell, typically twice a day from 21 February through 4 June 1992 made with both tethered (i.e., only boundary-layer profiles) and (more rarely) free-flying sondes that did not measure wind speed. (168 soundings). ISW Radiosoundings The entire data kit is bundled as a zip file named ISW_Radiosounding.zip. The README file is in ASCII. Two summary files that include the list of sounding and the declinations are in ASCII. The 168 individual sounding files are in ASCII. Two supporting publications that describe the data and some analyses are in pdf. Radiosounding data collected from the Russian ship Akademic Fedorov from 26 May through 5 June 1992 at 6-hourly intervals as it approached Ice Station Weddell from the north. These soundings include wind vector, temperature, humidity, and pressure. (40 soundings) Akademic Federov Radiosoundings The entire data kit is bundled as a zip file named Akad_Federov_Radiosounding.zip. The README file is in ASCII. A summary file that lists the soundings is in ASCII. The 40 individual sounding files are in ASCII. Two supporting publications that describe the data and some analyses are in pdf. Documentation: Andreas, E. L, and K. J. Claffey, 1995: Air-ice drag coefficients in the western Weddell Sea: 1. Values deduced from profile measurements. Journal of Geophysical Research, 100, 4821–4831. Andreas, E. L, K. J. Claffey, and A. P. Makshtas, 2000: Low-level atmospheric jets and inversions over the western Weddell Sea. Boundary-Layer Meteorology, 97, 459–486. Andreas, E. L, R. E. Jordan, and A. P. Makshtas, 2004: Simulations of snow, ice, and near-surface atmospheric processes on Ice Station Weddell. Journal of Hydrometeorology, 5, 611–624. Andreas, E. L, R. E. Jordan, and A. P. Makshtas, 2005: Parameterizing turbulent exchange over sea ice: The Ice Station Weddell results. Boundary-Layer Meteorology, 114, 439–460. Andreas, E. L, P. O. G. Persson, R. E. Jordan, T. W. Horst, P. S. Guest, A. A. Grachev, and C. W. Fairall, 2010: Parameterizing turbulent exchange over sea ice in winter. Journal of Hydrometeorology, 11, 87–104. Claffey, K. J., E. L Andreas, and A. P. Makshtas, 1994: Upper-air data collected on Ice Station Weddell. Special Report 94-25, U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH, 62 pp. ISW Group, 1993: Weddell Sea exploration from ice station. Eos, Transactions, American Geophysical Union, 74, 121–126. Makshtas, A. P., E. L Andreas, P. N. Svyaschennikov, and V. F. Timachev, 1999: Accounting for clouds in sea ice models. Atmospheric Research, 52, 77–113. | ["POLYGON((-53.8 -61.2,-52.74 -61.2,-51.68 -61.2,-50.62 -61.2,-49.56 -61.2,-48.5 -61.2,-47.44 -61.2,-46.38 -61.2,-45.32 -61.2,-44.26 -61.2,-43.2 -61.2,-43.2 -62.22,-43.2 -63.24,-43.2 -64.26,-43.2 -65.28,-43.2 -66.3,-43.2 -67.32,-43.2 -68.34,-43.2 -69.36,-43.2 -70.38,-43.2 -71.4,-44.26 -71.4,-45.32 -71.4,-46.38 -71.4,-47.44 -71.4,-48.5 -71.4,-49.56 -71.4,-50.62 -71.4,-51.68 -71.4,-52.74 -71.4,-53.8 -71.4,-53.8 -70.38,-53.8 -69.36,-53.8 -68.34,-53.8 -67.32,-53.8 -66.3,-53.8 -65.28,-53.8 -64.26,-53.8 -63.24,-53.8 -62.22,-53.8 -61.2))"] | ["POINT(-48.5 -66.3)"] | false | false |
Ice Nucleation by Marine Psychrophiles
|
0801392 |
2010-01-01 | Swanson, Brian |
Ice Nucleation by Marine Psychrophiles |
The primary objective of this research is to investigate polar marine psychrophilic bacteria for their potential to nucleate ice using a combination of microbiological, molecular biological and atmospheric science approaches in the laboratory. Very little is known about how psychrophiles interact and cope with ice or their adaptations to conditions of extreme cold and salinity. This work will involve a series of laboratory experiments using a novel freeze-tube technique for assaying freezing spectra which will provide quantitative information on: (i) the temperature-dependent freezing rates for heterogeneously frozen droplets containing sea-ice bacteria, (ii) the proportional occurrence of ice-nucleation activity versus anti-freeze activity among sea-ice bacterial isolates and (iii) the temperature-dependent freezing rates of bacteria with ice-nucleation activity grown at a range of temperatures and salinities. The compound(s) responsible for the observed activity will be identified, which is an essential step towards the development of an in-situ bacterial ice-nucleation detection assay that can be applied in the field to Antarctic water and cloud samples. One of the goals of this work is to better understand survival and cold adaptation processes of polar marine bacteria confronted with freezing conditions in sea ice. Since sea ice strongly impacts polar, as well as the global climates, this research is of significant interest because it will also provide data for accessing the importance of bacterial ice nucleation in the formation of sea ice. These measurements of ice-nucleation rates will be the first high-resolution measurements for psychrophilic marine bacteria. Another goal is to better understand the impact of bacterial ice initiation processes in polar clouds by making high-resolution measurements of nucleation rates for cloud bacteria found over Arctic and Antarctic regions. Initial measurements indicate these bacteria nucleate ice at warmer temperatures and the effect in polar regions may be quite important, since ice can strongly impact cloud dynamics, cloud radiative properties, precipitation formation, and cloud chemistry. If these initial measurements are confirmed, the data collected here will be important for improving the understanding of polar cloud processes and models. A third goal is to better understand the molecular basis of marine bacterial ice nucleation by characterizing the ice-nucleation compound and comparing it with those of known plant-derived ice-nucleating bacteria, which are the only ice-nucleating bacteria examined in detail to date. The proposed activity will support the beginning academic career of a post-doctoral researcher and will serve as the basis for several undergraduate student laboratory projects. Results from this research will be widely published in various scientific journals and outreach venues. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes
|
0436190 |
2009-01-01 | Eastman, Joseph |
Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes |
Patterns of biodiversity, as revealed by basic research in organismal biology, may be derived from ecological and evolutionary processes expressed in unique settings, such as Antarctica. The polar regions and their faunas are commanding increased attention as declining species diversity, environmental change, commercial fisheries, and resource management are now being viewed in a global context. Commercial fishing is known to have a direct and pervasive effect on marine biodiversity, and occurs in the Southern Ocean as far south as the Ross Sea. The nature of fish biodiversity in the Antarctic is different than in all other ocean shelf areas. Waters of the Antarctic continental shelf are ice covered for most of the year and water temperatures are nearly constant at -1.5 C. In these waters components of the phyletically derived Antarctic clade of Notothenioids dominate fish diversity. In some regions, including the southwestern Ross Sea, Notothenioids are overwhelmingly dominant in terms of number of species, abundance, and biomass. Such dominance by a single taxonomic group is unique among shelf faunas of the world. In the absence of competition from a taxonomically diverse fauna, Notothenioids underwent a habitat or depth related diversification keyed to the utilization of unfilled niches in the water column, especially pelagic or partially pelagic zooplanktivory and piscivory. This has been accomplished in the absence of a swim bladder for buoyancy control. They also may form a special type of adaptive radiation known as a species flock, which is an assemblage of a disproportionately high number of related species that have evolved rapidly within a defined area where most species are endemic. Diversification in buoyancy is the hallmark of the notothenioid radiation. Buoyancy is the feature of notothenioid biology that determines whether a species lives on the substrate, in the water column or both. Buoyancy also influences other key aspects of life history including swimming, feeding and reproduction and thus has implications for the role of the species in the ecosystem. With similarities to classic evolutionary hot spots, the Antarctic shelf and its Notothenioid radiation merit further exploration. The 2004 'International Collaborative Expedition to collect and study Fish Indigenous to Sub-Antarctic Habitats,' or, 'ICEFISH,' provided a platform for collection of notothenioid fishes from sub-Antarctic waters between South America and Africa, which will be examined in this project. This study will determine buoyancy for samples of all notothenioid species captured during the ICEFISH cruise. This essential aspect of the biology is known for only 19% of the notothenioid fauna. Also, the gross and microscopic anatomy of brains and sense organs of the phyletically basal families Bovichtidae, Eleginopidae, and of the non-Antarctic species of the primarily Antarctic family Nototheniidae will be examined. The fish biodiversity and endemicity in poorly known localities along the ICEFISH cruise track, seamounts and deep trenches will be quantified. Broader impacts include improved information for comprehending and conserving biodiversity, a scientific and societal priority. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis
|
0437887 |
2009-01-01 | Sidell, Bruce |
Collaborative Research: Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis. |
The polar ocean presently surrounding Antarctica is the coldest, most thermally stable marine environment on earth. Because oxygen solubility in seawater is inversely proportional to temperature, the cold Antarctic seas are an exceptionally oxygen-rich aquatic habitat. Eight families of a single perciform suborder, the Notothenioidei, dominate the present fish fauna surrounding Antarctica. Notothenioids account for approximately 35% of fish species and 90% of fish biomass south of the Antarctic Polar Front. Radiation of closely related notothenioid species thus has occurred rapidly and under a very unusual set of conditions: relative oceanographic isolation from other faunas due to circumpolar currents and deep ocean trenches surrounding the continent, chronically, severely cold water temperatures, very high oxygen availability, very low levels of niche competition in a Southern Ocean depauperate of species subsequent to a dramatic crash in species diversity of fishes that occurred sometime between the mid-Tertiary and present. These features make Antarctic notothenioid fishes an uniquely attractive group for the study of physiological and biochemical adaptations to cold body temperature. Few distinctive features of Antarctic fishes are as unique as the pattern of expression of oxygen-binding proteins in one notothenioid family, the Channichthyidae (Antarctic icefishes). All channichthyid icefishes lack the circulating oxygen-binding protein, hemoglobin (Hb); the intracellular oxygen-binding protein, myoglobin (Mb) is not uniformly expressed in species of this family. Both proteins are normally considered essential for adequate delivery of oxygen to aerobically poised tissues of animals. To compensate for the absence of Hb, icefishes have developed large hearts, rapidly circulate a large blood volume and possess elaborate vasculature of larger lumenal diameter than is seen in red-blooded fishes. Loss of Mb expression in oxidative muscles correlates with dramatic elevation in density of mitochondria within the cell, although each individual organelle is less densely packed with respiratory proteins. Within the framework of oxygen movement, the adaptive significance of greater vascular density and mitochondrial populations is understandable but mechanisms underlying development of these characteristics remain unknown. The answer may lie in another major function of both Hb and Mb, degradation of the ubiquitous bioactive compound, nitric oxide (NO). The research will test the hypothesis that loss of hemoprotein expression in icefishes has resulted in an increase in levels of NO that mediate modification of vascular systems and expansion of mitochondrial populations in oxidative tissues. The objectives of the proposal are to quantify the vascular density of retinas in +Hb and -Hb notothenioid species, to characterize NOS isoforms and catalytic activity in retina and cardiac muscle of Antarctic notothenioid fishes, to evaluate level of expression of downstream factors implicat ed in angiogenesis (in retinal tissue) and mitochondrial biogenesis (in cardiac muscle), and to determine whether inhibition of NOS in vivo results in regression of angiogenic and mitochondrial biogenic responses in icefishes. Broader impacts range from basic biology, through training of young scientists, to enhanced understanding of clinically relevant biomedical processes. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Boron in Antarctic granulite-facies rocks: under what conditions is boron retained in the middle crust?
|
0228842 |
2009-01-01 | Grew, Edward |
Boron in Antarctic granulite-facies rocks: under what conditions is boron retained in the middle crust? |
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the role and fate of Boron in high-grade metamorphic rocks of the Larsemann Hills region of Antarctica. Trace elements provide valuable information on the changes sedimentary rocks undergo as temperature and pressure increase during burial. One such element, boron, is particularly sensitive to increasing temperature because of its affinity for aqueous fluids, which are lost as rocks are buried. Boron contents of unmetamorphosed pelitic sediments range from 20 to over 200 parts per million, but rarely exceed 5 parts per million in rocks subjected to conditions of the middle and lower crust, that is, temperatures of 700 degrees C or more in the granulite-facies, which is characterized by very low water activities at pressures of 5 to 10 kbar (18-35 km burial). Devolatization reactions with loss of aqueous fluid and partial melting with removal of melt have been cited as primary causes for boron depletion under granulite-facies conditions. Despite the pervasiveness of both these processes, rocks rich in boron are locally found in the granulite-facies, that is, there are mechanisms for retaining boron during the metamorphic process. The Larsemann Hills, Prydz Bay, Antarctica, are a prime example. More than 20 lenses and layered bodies containing four borosilicate mineral species crop out over a 50 square kilometer area, which thus would be well suited for research on boron-rich granulite-facies metamorphic rocks. While most investigators have focused on the causes for loss of boron, this work will investigate how boron is retained during high-grade metamorphism. Field observations and mapping in the Larsemann Hills, chemical analyses of minerals and their host rocks, and microprobe age dating will be used to identify possible precursors and deduce how the precursor materials recrystallized into borosilicate rocks under granulite-facies conditions. The working hypothesis is that high initial boron content facilitates retention of boron during metamorphism because above a certain threshold boron content, a mechanism 'kicks in' that facilitates retention of boron in metamorphosed rocks. For example, in a rock with large amounts of the borosilicate tourmaline, such as stratabound tourmalinite, the breakdown of tourmaline to melt could result in the formation of prismatine and grandidierite, two borosilicates found in the Larsemann Hills. This situation is rarely observed in rocks with modest boron content, in which breakdown of tourmaline releases boron into partial melts, which in turn remove boron when they leave the system. Stratabound tourmalinite is associated with manganese-rich quartzite, phosphorus-rich rocks and sulfide concentrations that could be diagnostic for recognizing a tourmalinite protolith in a highly metamorphosed complex where sedimentary features have been destroyed by deformation. Because partial melting plays an important role in the fate of boron during metamorphism, our field and laboratory research will focus on the relationship between the borosilicate units, granite pegmatites and other granitic intrusives. The results of our study will provide information on cycling of boron at deeper levels in the Earth's crust and on possible sources of boron for granites originating from deep-seated rocks. An undergraduate student will participate in the electron microprobe age-dating of monazite and xenotime as part of a senior project, thereby integrating the proposed research into the educational mission of the University of Maine. In response to a proposal for fieldwork, the Australian Antarctic Division, which maintains Davis station near the Larsemann Hills, has indicated that they will support the Antarctic fieldwork. | ["POLYGON((76 -69.3,76.05 -69.3,76.1 -69.3,76.15 -69.3,76.2 -69.3,76.25 -69.3,76.3 -69.3,76.35 -69.3,76.4 -69.3,76.45 -69.3,76.5 -69.3,76.5 -69.32,76.5 -69.34,76.5 -69.36,76.5 -69.38,76.5 -69.4,76.5 -69.42,76.5 -69.44,76.5 -69.46,76.5 -69.48,76.5 -69.5,76.45 -69.5,76.4 -69.5,76.35 -69.5,76.3 -69.5,76.25 -69.5,76.2 -69.5,76.15 -69.5,76.1 -69.5,76.05 -69.5,76 -69.5,76 -69.48,76 -69.46,76 -69.44,76 -69.42,76 -69.4,76 -69.38,76 -69.36,76 -69.34,76 -69.32,76 -69.3))"] | ["POINT(76.25 -69.4)"] | false | false |
Ross Ice Shelf Firn Temperature, Antarctica
|
0229546 |
2008-12-15 | Scambos, Ted; Muto, Atsu; Sergienko, Olga; MacAyeal, Douglas |
Collaborative Research of Earth's Largest Icebergs |
Since November of 2006, 12 thermistors were planted in the upper 16 meters of the firn on the Ross Ice Shelf near its calving front. Temperature data are collected every 20 minutes and are transmitted via ARGOS satellite relay. Data are intended to provide a view of how firn temperatures change as the ice shelf evolves. Data are available in comma-delimited ASCII format. Data are available via FTP. | ["POINT(-178 -78)"] | ["POINT(-178 -78)"] | false | false |
Iceberg Firn Temperatures, Antarctica
|
0229546 |
2008-11-28 | Thom, Jonathan; Sergienko, Olga; MacAyeal, Douglas |
Collaborative Research of Earth's Largest Icebergs |
Since November of 2005, 12 thermistors were planted in the upper 2.5 meters of the firn on iceberg C16, Antarctica. Temperature data are collected every 20 minutes and are transmitted via ARGOS satellite relay. Data are intended to provide a view of how firn temperatures change as an iceberg moves north into warmer climate. | ["POINT(168 -78)"] | ["POINT(168 -78)"] | false | false |
Marine Invertebrates of McMurdo Sound
|
0238281 |
2008-01-01 | Marsh, Adam G. |
CAREER: Genomic Networks for Cold-Adaptation in Embryos of Polar Marine Invertebrates |
Although we envision the coastal margins of Antarctica as an extreme environment challenging to the existence of life, there are many marine invertebrates that are adapted to live and thrive under the sea ice. For two field seasons, the SCUBA diving activities of this project routinely involved photographing these animals in all the dive locations as a way to document what we observed as the dominant organisms at each site. Ice diving is very strenuous for humans, and often the constraints of managing the work on a dive, monitoring air reserves, tracking proximity to the dive hole, and the 50 minute exposure to subfreezing temperatures limits a divers ability to "catalog" observations that are not essential to the current dive plan. The photographs archived here have provided the project's dive team with the ability to "debrief" following a dive and more or less reenact the dive by moving through the photograph images. Studying these images often served as a visual trigger for divers to recall more specific observations and in many cases details in the photographs were captured without the photographer (A. Marsh) realizing that they were there (such as small, cryptic species hiding in a shadow until the strobe light fires for the photo, illuminating these secondary subjects). These photographs are intended to serve as a record of what organisms we encountered in the McMurdo Sound area in 2004 and 2005. All photographs were taken with a Nikon D-70 in a polycarbonate underwater housing using either a 18 mm (wide) or 60 mm (macro) lens. | ["POLYGON((163 -77,163.4 -77,163.8 -77,164.2 -77,164.6 -77,165 -77,165.4 -77,165.8 -77,166.2 -77,166.6 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.6 -78,166.2 -78,165.8 -78,165.4 -78,165 -78,164.6 -78,164.2 -78,163.8 -78,163.4 -78,163 -78,163 -77.9,163 -77.8,163 -77.7,163 -77.6,163 -77.5,163 -77.4,163 -77.3,163 -77.2,163 -77.1,163 -77))"] | ["POINT(165 -77.5)"] | false | false |
Comprehensive Biological Study of Vostok Accretion Ice
|
0536870 |
2008-01-01 | Rogers, Scott O. |
Comprehensive Biological Study of Vostok Accretion Ice |
The large subglacial Lake Vostok in Antarctica is unique ecological site with a novel microbial biota. The temperatures, pressures and lack of light all select for organisms that may not exist anywhere else on Earth. The accretion ice (lake water frozen to the bottom of the lower surface of the glacier) has preserved microbial samples from each region of Lake Vostok as the glacier passes over and into the lake. Thus, without contaminating the lake with microorganisms from the surface, microbes originating from the lake can be collected, transported to the laboratory and studied. Two of the deepest ice cores sections in this project are part of the international allocation. The will be shared between four researchers (Sergey Bulat from Russia, Jean-Robert Petit and Daniel Prieur from France, Scott Rogers from USA). The United States team will study, isolate, and characterize bacteria, fungi, and viruses that have been sampled from the lake through the process of ice accretion to the lower surface of 3500+m thick glacier overriding the lake. The project will involve a suite of methods, including molecular, morphological, and cultural. This includes observation and description by fluorescence, light, and electron microscopy, isolation on thirteen separate cultural media, polymerase chain reaction amplification, DNA sequencing, and phylogenetic analyses. Eleven accretion ice core sections, as well as two glacial ice core sections. As well as two glacial ice core sections will be studied. The accretion ice core sections, as well as two glacial ice core sections will be studied. The accretion ice core sections represent all of the major regions of the lake that have been sampled by the accretion process in the vicinity of the Vostok 5G ice core. The broader impacts of the work relate to the impact the results will have on the filed. These long=isolated lakes, deep below the Antarctic ice sheet may contain novel uniquely adapted organisms. Glacial ice contains an enormous diversity of entrapped microbes, some of which may be metabolically active in the ice. The microbes from Lake Vostok are of special interest, since they are adapted to cold, dark, and high pressure. Thus, their enzyme systems and biochemical pathways may be significantly different from those in the microbes that are the subject of current studies. As such, these organisms may form compounds that may have useful applications. Also, study of the accretion ice, and eventually the water, from Lake Vostok will provide a basis for the study of other subglacial lakes. Additionally, study of the microbes in the accretion ice will be useful to those planning to study analogous systems on ice-covered planets and moons. | ["POINT(106.8 -72.4667)"] | ["POINT(106.8 -72.4667)"] | false | false |
Decadal-Length Composite West Antarctic Air Temperature Records
|
9526566 |
2006-11-28 | Shuman, Christopher A.; Stearns, Charles R. |
Passive Microwave Remote Sensing for Paleoclimate Indicators at Siple Dome, Antarctica |
This data set includes daily, monthly, and yearly mean surface air temperatures for four interior West Antarctic sites between 1978 and 1997. Data include air surface temperatures measured at the Byrd, Lettau, Lynn, and Siple Station automatic weather stations. In addition, because weather stations in Antarctica are difficult to maintain, and resulting multi-decade records are often incomplete, the investigators also calculated surface temperatures from satellite passive microwave brightness temperatures. Calibration of 37-GHz vertically polarized brightness temperature data during periods of known air temperature, using emissivity modeling, allowed the investigators to replace data gaps with calibrated brightness temperatures. MS Excel data files and GIF images derived from the data are available via ftp from the National Snow and Ice Data Center. | ["POINT(160.41 -74.21)", "POINT(-174.45 -82.52)", "POINT(-84 -75.9)", "POINT(-119.4 -80.01)"] | ["POINT(160.41 -74.21)", "POINT(-174.45 -82.52)", "POINT(-84 -75.9)", "POINT(-119.4 -80.01)"] | false | false |
Stable isotope and minor element proxies for Eocene climate of Seymour Island, Antarctica
|
9980538 |
2001-06-11 | Lohmann, Kyger |
Evolution of Sea Surface Temperatures in the Coastal Antarctic Paleoenvironment During the Late Cretaceous and Paleogene |
Geochemical composition of shells of the bivalve, Cucullaea from the La Meseta Formation, Seymour Island, Antarctica. | [] | [] | false | false |