{"dp_type": "Dataset", "free_text": "Solid Earth"}
[{"awards": "1643873 Hansen, Samantha; 1643798 Emry, Erica", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Mon, 16 Oct 2023 00:00:00 GMT", "description": "This dataset provides the shear wave velocity model resulting from a full-waveform inversion that was constrained using long-period empirical Green\u0027s functions extracted from ambient seismic noise. These results were presented by Emry and Hansen at the 2022 Fall Meeting of the American Geophysical Union.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Ambient Seismic Noise; Antarctica; Full-Waveform Inversion; Seismic Tomography; Shear Wave Velocity; Solid Earth", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Emry, Erica", "project_titles": "Collaborative Research: Imaging Seismic Heterogeneity within the Antarctic Mantle with Full Waveform Ambient Noise Tomography", "projects": [{"proj_uid": "p0010139", "repository": "USAP-DC", "title": "Collaborative Research: Imaging Seismic Heterogeneity within the Antarctic Mantle with Full Waveform Ambient Noise Tomography"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Shear Wave Velocity of the Antarctic Upper Mantle from Full Waveform Inversion and Long Period Ambient Seismic Noise", "uid": "601744", "west": -180.0}, {"awards": "1443576 Panter, Kurt", "bounds_geometry": ["POLYGON((-154.1 -86.9,-154.03 -86.9,-153.96 -86.9,-153.89 -86.9,-153.82 -86.9,-153.75 -86.9,-153.68 -86.9,-153.61 -86.9,-153.54 -86.9,-153.47 -86.9,-153.4 -86.9,-153.4 -86.92,-153.4 -86.94,-153.4 -86.96,-153.4 -86.98,-153.4 -87,-153.4 -87.02,-153.4 -87.04,-153.4 -87.06,-153.4 -87.08,-153.4 -87.1,-153.47 -87.1,-153.54 -87.1,-153.61 -87.1,-153.68 -87.1,-153.75 -87.1,-153.82 -87.1,-153.89 -87.1,-153.96 -87.1,-154.03 -87.1,-154.1 -87.1,-154.1 -87.08,-154.1 -87.06,-154.1 -87.04,-154.1 -87.02,-154.1 -87,-154.1 -86.98,-154.1 -86.96,-154.1 -86.94,-154.1 -86.92,-154.1 -86.9))"], "date_created": "Fri, 05 Jun 2020 00:00:00 GMT", "description": "Mt. Early and Sheridan Bluff (87\u00b0S) are the above ice expression of Earth\u2019s southernmost volcanic field that lies approximately 300 km from the South Pole. The dataset supplies the locations and lithological descriptions of the units that the samples were collected from for dating and petrological study. Fundamental compositional information on the mafic volcanic rock samples include whole rock MgO concentrations (wt.%), the forsterite content of olivine and the oxygen isotopic composition of olivine. The dataset also provides a record of what samples have been analyzed for major and trace elements by XRF and ICP-MS, mineral chemistry by EMPA, radiogenic isotopes of Sr, Nd and Pb on whole rock powders by ICP-MS and dating by 40Ar/39Ar method.", "east": -153.4, "geometry": ["POINT(-153.75 -87)"], "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochronology; Glacial Volcanism; Magma Differentiation; Major Elements; Mantle Melting; Solid Earth; Trace Elements; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica", "north": -86.9, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Panter, Kurt", "project_titles": "Investigating Early Miocene Sub-ice Volcanoes in Antarctica for Improved Modeling and understanding of a Large Magmatic Province", "projects": [{"proj_uid": "p0010105", "repository": "USAP-DC", "title": "Investigating Early Miocene Sub-ice Volcanoes in Antarctica for Improved Modeling and understanding of a Large Magmatic Province"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.1, "title": "Volcanological and Petrological measurements on Mt. Early and Sheridan Bluff volcanoes, upper Scott Glacier, Antarctica ", "uid": "601331", "west": -154.1}, {"awards": "1656518 Gumport, Patricia; 1542885 Dunham, Eric", "bounds_geometry": null, "date_created": "Mon, 11 May 2020 00:00:00 GMT", "description": "We quantify sliding stability and rupture styles for a horizontal interface between an elastic layer and stiffer elastic half-space with a free surface on top and rate-and-state friction on the interface. Specific motivation (and model parameters) comes from quasi-periodic slow slip events on the Whillans Ice Plain in West Antarctica. We quantify the influence of layer thickness on sliding stability, specifically whether steady loading of the system produces steady sliding or sequences of stick-slip events. This dataset contains input files from different parts of parameter space to demonstrate different styles of slip (steady sliding, slow slip sequences, and fast slip sequences).", "east": null, "geometry": null, "keywords": "Antarctica; Computer Model; Glaciology; Model Data; Shear Stress; Solid Earth; Whillans Ice Stream", "locations": "Whillans Ice Stream; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Abrahams, Lauren", "project_titles": "Collaborative Research: Characterizing Brittle Failure and Fracture Propagation in Fast Ice Sliding with Dynamic Rupture Models based on Whillans Ice Stream Seismic/Geodetic Data", "projects": [{"proj_uid": "p0010138", "repository": "USAP-DC", "title": "Collaborative Research: Characterizing Brittle Failure and Fracture Propagation in Fast Ice Sliding with Dynamic Rupture Models based on Whillans Ice Stream Seismic/Geodetic Data"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Earthquake Sequence Dynamics at the Interface Between an Elastic Layer and Underlying Half-Space in Antiplane Shear", "uid": "601320", "west": null}, {"awards": "9978236 Bell, Robin; 9911617 Blankenship, Donald", "bounds_geometry": ["POLYGON((101.5 -75.5,102.15 -75.5,102.8 -75.5,103.45 -75.5,104.1 -75.5,104.75 -75.5,105.4 -75.5,106.05 -75.5,106.7 -75.5,107.35 -75.5,108 -75.5,108 -75.85,108 -76.2,108 -76.55,108 -76.9,108 -77.25,108 -77.6,108 -77.95,108 -78.3,108 -78.65,108 -79,107.35 -79,106.7 -79,106.05 -79,105.4 -79,104.75 -79,104.1 -79,103.45 -79,102.8 -79,102.15 -79,101.5 -79,101.5 -78.65,101.5 -78.3,101.5 -77.95,101.5 -77.6,101.5 -77.25,101.5 -76.9,101.5 -76.55,101.5 -76.2,101.5 -75.85,101.5 -75.5))"], "date_created": "Tue, 28 Apr 2020 00:00:00 GMT", "description": "Processed Magnetometer Data acquired during the SOAR Twin Otter expedition SOAR-LVS (2000)\r\nThis data set was acquired with a Magnetometer during SOAR Twin Otter expedition SOAR-LVS conducted in 2000 (Chief Scientist: Dr. Robin Bell; Investigator(s): Dr. Robin Bell and Dr. Michael Studinger). These data files are of ASCII format and include IGRF Anomaly Magnetic data and were processed after data collection. Data were acquired as part of the project(s): SOAR-Lake Vostok Survey (LVS) and Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work", "east": 108.0, "geometry": ["POINT(104.75 -77.25)"], "keywords": "Airborne Magnetic; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Lake Vostok; Magnetic; Magnetic Anomaly; Magnetometer; Potential Field; SOAR; Solid Earth", "locations": "Antarctica; Lake Vostok; East Antarctica", "north": -75.5, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Studinger, Michael S.; Bell, Robin", "project_titles": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR); Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work\r\n", "projects": [{"proj_uid": "p0000125", "repository": "USAP-DC", "title": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR)"}, {"proj_uid": "p0010097", "repository": "USAP-DC", "title": "Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work\r\n"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "SOAR-Lake Vostok survey magnetic anomaly data", "uid": "601296", "west": 101.5}, {"awards": "9978236 Bell, Robin; 9911617 Blankenship, Donald", "bounds_geometry": ["POLYGON((101.5 -75.5,102.15 -75.5,102.8 -75.5,103.45 -75.5,104.1 -75.5,104.75 -75.5,105.4 -75.5,106.05 -75.5,106.7 -75.5,107.35 -75.5,108 -75.5,108 -75.85,108 -76.2,108 -76.55,108 -76.9,108 -77.25,108 -77.6,108 -77.95,108 -78.3,108 -78.65,108 -79,107.35 -79,106.7 -79,106.05 -79,105.4 -79,104.75 -79,104.1 -79,103.45 -79,102.8 -79,102.15 -79,101.5 -79,101.5 -78.65,101.5 -78.3,101.5 -77.95,101.5 -77.6,101.5 -77.25,101.5 -76.9,101.5 -76.55,101.5 -76.2,101.5 -75.85,101.5 -75.5))"], "date_created": "Tue, 28 Apr 2020 00:00:00 GMT", "description": "Processed Gravimeter Data acquired during the SOAR Twin Otter expedition SOAR-LVS (2000). This data set was acquired with a Gravimeter during SOAR Twin Otter expedition SOAR-LVS conducted in 2000 (Investigator(s): Dr. Robin Bell and Dr. Michael Studinger). These data files are of ASCII format and include Free Air Anomaly Gravity data and were processed after data collection. Data were acquired as part of the project(s): SOAR-Lake Vostok Survey (LVS) and Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work.", "east": 108.0, "geometry": ["POINT(104.75 -77.25)"], "keywords": "Airborne Gravity; Airplane; Antarctica; East Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Lake Vostok; Potential Field; Solid Earth", "locations": "East Antarctica; Lake Vostok; Antarctica", "north": -75.5, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Studinger, Michael S.; Bell, Robin", "project_titles": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR); Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work\r\n", "projects": [{"proj_uid": "p0000125", "repository": "USAP-DC", "title": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR)"}, {"proj_uid": "p0010097", "repository": "USAP-DC", "title": "Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work\r\n"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "SOAR-Lake Vostok Survey Gravity data", "uid": "601295", "west": 101.5}, {"awards": "9319854 Bell, Robin", "bounds_geometry": ["POLYGON((-155 -77.5,-150 -77.5,-145 -77.5,-140 -77.5,-135 -77.5,-130 -77.5,-125 -77.5,-120 -77.5,-115 -77.5,-110 -77.5,-105 -77.5,-105 -78.2,-105 -78.9,-105 -79.6,-105 -80.3,-105 -81,-105 -81.7,-105 -82.4,-105 -83.1,-105 -83.8,-105 -84.5,-110 -84.5,-115 -84.5,-120 -84.5,-125 -84.5,-130 -84.5,-135 -84.5,-140 -84.5,-145 -84.5,-150 -84.5,-155 -84.5,-155 -83.8,-155 -83.1,-155 -82.4,-155 -81.7,-155 -81,-155 -80.3,-155 -79.6,-155 -78.9,-155 -78.2,-155 -77.5))"], "date_created": "Fri, 24 Apr 2020 00:00:00 GMT", "description": "Free air gravity anomaly data collected as part of the Corridor Aerogeophysics of Eastern Ross Transect Zone CASERTZ/WAIS project.", "east": -105.0, "geometry": ["POINT(-130 -81)"], "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Solid Earth; WAIS", "locations": "Antarctica; Marie Byrd Land; WAIS", "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Bell, Robin; Arko, Robert A.", "project_titles": "Collaborative Research: Lithospheric Controls on the Behavior of the West Antarctic Ice Sheet: Corridor Aerogeophysics of Eastern Ross Transect Zone", "projects": [{"proj_uid": "p0010094", "repository": "USAP-DC", "title": "Collaborative Research: Lithospheric Controls on the Behavior of the West Antarctic Ice Sheet: Corridor Aerogeophysics of Eastern Ross Transect Zone"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.5, "title": "Airborne gravity data for the CASERTZ/WAIS project", "uid": "601288", "west": -155.0}, {"awards": "9615281 Luyendyk, Bruce", "bounds_geometry": ["POLYGON((-175 -76,-171 -76,-167 -76,-163 -76,-159 -76,-155 -76,-151 -76,-147 -76,-143 -76,-139 -76,-135 -76,-135 -76.8,-135 -77.6,-135 -78.4,-135 -79.2,-135 -80,-135 -80.8,-135 -81.6,-135 -82.4,-135 -83.2,-135 -84,-139 -84,-143 -84,-147 -84,-151 -84,-155 -84,-159 -84,-163 -84,-167 -84,-171 -84,-175 -84,-175 -83.2,-175 -82.4,-175 -81.6,-175 -80.8,-175 -80,-175 -79.2,-175 -78.4,-175 -77.6,-175 -76.8,-175 -76))"], "date_created": "Fri, 24 Apr 2020 00:00:00 GMT", "description": "Free air gravity anomaly data collected along flight tracks of the Western Marie Byrd Land and Ross Sea Boundary", "east": -135.0, "geometry": ["POINT(-155 -80)"], "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Ross Sea; Solid Earth", "locations": "Antarctica; Ross Sea; Marie Byrd Land", "north": -76.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Bell, Robin", "project_titles": "Air-Ground Study of Tectonics at the Boundary Between the Eastern Ross Embayment and Western Marie Byrd Land, Antarctica: Basement Geology and Structure", "projects": [{"proj_uid": "p0010096", "repository": "USAP-DC", "title": "Air-Ground Study of Tectonics at the Boundary Between the Eastern Ross Embayment and Western Marie Byrd Land, Antarctica: Basement Geology and Structure"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.0, "title": "SOAR-WMB Airborne gravity data", "uid": "601294", "west": -175.0}, {"awards": "9615704 Bell, Robin", "bounds_geometry": ["POLYGON((115 -74,121 -74,127 -74,133 -74,139 -74,145 -74,151 -74,157 -74,163 -74,169 -74,175 -74,175 -74.4,175 -74.8,175 -75.2,175 -75.6,175 -76,175 -76.4,175 -76.8,175 -77.2,175 -77.6,175 -78,169 -78,163 -78,157 -78,151 -78,145 -78,139 -78,133 -78,127 -78,121 -78,115 -78,115 -77.6,115 -77.2,115 -76.8,115 -76.4,115 -76,115 -75.6,115 -75.2,115 -74.8,115 -74.4,115 -74))"], "date_created": "Fri, 24 Apr 2020 00:00:00 GMT", "description": "Free air gravity anomaly data collected along flight tracks of the Wilkes Basin Corridor as part of the Contrasting Architecture and Dynamics in the Transantarctic Mountains project.", "east": 175.0, "geometry": ["POINT(145 -76)"], "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Potential Field; Solid Earth; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica", "north": -74.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Bell, Robin", "project_titles": "Contrasting Architecture and Dynamics of the Transantarctic Mountains", "projects": [{"proj_uid": "p0010095", "repository": "USAP-DC", "title": "Contrasting Architecture and Dynamics of the Transantarctic Mountains"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "SOAR-WLK Airborne gravity data", "uid": "601293", "west": 115.0}, {"awards": "9615704 Bell, Robin", "bounds_geometry": ["POLYGON((-180 -84,-176 -84,-172 -84,-168 -84,-164 -84,-160 -84,-156 -84,-152 -84,-148 -84,-144 -84,-140 -84,-140 -84.6,-140 -85.2,-140 -85.8,-140 -86.4,-140 -87,-140 -87.6,-140 -88.2,-140 -88.8,-140 -89.4,-140 -90,-144 -90,-148 -90,-152 -90,-156 -90,-160 -90,-164 -90,-168 -90,-172 -90,-176 -90,180 -90,179.5 -90,179 -90,178.5 -90,178 -90,177.5 -90,177 -90,176.5 -90,176 -90,175.5 -90,175 -90,175 -89.4,175 -88.8,175 -88.2,175 -87.6,175 -87,175 -86.4,175 -85.8,175 -85.2,175 -84.6,175 -84,175.5 -84,176 -84,176.5 -84,177 -84,177.5 -84,178 -84,178.5 -84,179 -84,179.5 -84,-180 -84))"], "date_created": "Fri, 24 Apr 2020 00:00:00 GMT", "description": "Free air gravity anomaly data collected along flight tracks of the Pensacola-Pole Transect as part of the Contrasting Architecture and Dynamics in the Transantarctic Mountains project.", "east": -140.0, "geometry": ["POINT(-162.5 -87)"], "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Potential Field; Solid Earth; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica", "north": -84.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Bell, Robin", "project_titles": "Contrasting Architecture and Dynamics of the Transantarctic Mountains", "projects": [{"proj_uid": "p0010095", "repository": "USAP-DC", "title": "Contrasting Architecture and Dynamics of the Transantarctic Mountains"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "SOAR-PPT Airborne gravity data", "uid": "601292", "west": 175.0}, {"awards": "9319854 Bell, Robin", "bounds_geometry": ["POLYGON((-155 -77.5,-150 -77.5,-145 -77.5,-140 -77.5,-135 -77.5,-130 -77.5,-125 -77.5,-120 -77.5,-115 -77.5,-110 -77.5,-105 -77.5,-105 -78.2,-105 -78.9,-105 -79.6,-105 -80.3,-105 -81,-105 -81.7,-105 -82.4,-105 -83.1,-105 -83.8,-105 -84.5,-110 -84.5,-115 -84.5,-120 -84.5,-125 -84.5,-130 -84.5,-135 -84.5,-140 -84.5,-145 -84.5,-150 -84.5,-155 -84.5,-155 -83.8,-155 -83.1,-155 -82.4,-155 -81.7,-155 -81,-155 -80.3,-155 -79.6,-155 -78.9,-155 -78.2,-155 -77.5))"], "date_created": "Fri, 24 Apr 2020 00:00:00 GMT", "description": "Free air gravity anomaly data collected as part of the Corridor Aerogeophysics of Eastern Ross Transect Zone CASERTZ/WAIS project.", "east": -105.0, "geometry": ["POINT(-130 -81)"], "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Solid Earth; WAIS", "locations": "Antarctica; WAIS; Marie Byrd Land", "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Bell, Robin; Arko, Robert A.", "project_titles": "Collaborative Research: Lithospheric Controls on the Behavior of the West Antarctic Ice Sheet: Corridor Aerogeophysics of Eastern Ross Transect Zone", "projects": [{"proj_uid": "p0010094", "repository": "USAP-DC", "title": "Collaborative Research: Lithospheric Controls on the Behavior of the West Antarctic Ice Sheet: Corridor Aerogeophysics of Eastern Ross Transect Zone"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.5, "title": "SOAR-WAZ Airborne gravity data for the CASERTZ/WAIS project", "uid": "601291", "west": -155.0}, {"awards": "9319854 Bell, Robin", "bounds_geometry": ["POLYGON((-155 -77.5,-150 -77.5,-145 -77.5,-140 -77.5,-135 -77.5,-130 -77.5,-125 -77.5,-120 -77.5,-115 -77.5,-110 -77.5,-105 -77.5,-105 -78.2,-105 -78.9,-105 -79.6,-105 -80.3,-105 -81,-105 -81.7,-105 -82.4,-105 -83.1,-105 -83.8,-105 -84.5,-110 -84.5,-115 -84.5,-120 -84.5,-125 -84.5,-130 -84.5,-135 -84.5,-140 -84.5,-145 -84.5,-150 -84.5,-155 -84.5,-155 -83.8,-155 -83.1,-155 -82.4,-155 -81.7,-155 -81,-155 -80.3,-155 -79.6,-155 -78.9,-155 -78.2,-155 -77.5))"], "date_created": "Fri, 24 Apr 2020 00:00:00 GMT", "description": "Free air gravity anomaly data collected as part of the Corridor Aerogeophysics of Eastern Ross Transect Zone CASERTZ/WAIS project. IRE field season", "east": -105.0, "geometry": ["POINT(-130 -81)"], "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Solid Earth; WAIS", "locations": "Antarctica; Marie Byrd Land; WAIS", "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Bell, Robin; Arko, Robert A.", "project_titles": "Collaborative Research: Lithospheric Controls on the Behavior of the West Antarctic Ice Sheet: Corridor Aerogeophysics of Eastern Ross Transect Zone", "projects": [{"proj_uid": "p0010094", "repository": "USAP-DC", "title": "Collaborative Research: Lithospheric Controls on the Behavior of the West Antarctic Ice Sheet: Corridor Aerogeophysics of Eastern Ross Transect Zone"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.5, "title": "SOAR-IRE airborne gravity data for the CASERTZ/WAIS project", "uid": "601290", "west": -155.0}, {"awards": "9319854 Bell, Robin", "bounds_geometry": ["POLYGON((-155 -77.5,-150 -77.5,-145 -77.5,-140 -77.5,-135 -77.5,-130 -77.5,-125 -77.5,-120 -77.5,-115 -77.5,-110 -77.5,-105 -77.5,-105 -78.2,-105 -78.9,-105 -79.6,-105 -80.3,-105 -81,-105 -81.7,-105 -82.4,-105 -83.1,-105 -83.8,-105 -84.5,-110 -84.5,-115 -84.5,-120 -84.5,-125 -84.5,-130 -84.5,-135 -84.5,-140 -84.5,-145 -84.5,-150 -84.5,-155 -84.5,-155 -83.8,-155 -83.1,-155 -82.4,-155 -81.7,-155 -81,-155 -80.3,-155 -79.6,-155 -78.9,-155 -78.2,-155 -77.5))"], "date_created": "Fri, 24 Apr 2020 00:00:00 GMT", "description": "Free air gravity anomaly data collected as part of the Corridor Aerogeophysics of Eastern Ross Transect Zone CASERTZ/WAIS project.", "east": -105.0, "geometry": ["POINT(-130 -81)"], "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Solid Earth; WAIS", "locations": "Antarctica; WAIS; Marie Byrd Land", "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Bell, Robin; Arko, Robert A.", "project_titles": "Collaborative Research: Lithospheric Controls on the Behavior of the West Antarctic Ice Sheet: Corridor Aerogeophysics of Eastern Ross Transect Zone", "projects": [{"proj_uid": "p0010094", "repository": "USAP-DC", "title": "Collaborative Research: Lithospheric Controls on the Behavior of the West Antarctic Ice Sheet: Corridor Aerogeophysics of Eastern Ross Transect Zone"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.5, "title": "SOAR-TKD airborne gravity data for the CASERTZ/WAIS project", "uid": "601289", "west": -155.0}, {"awards": "1341728 Stone, John", "bounds_geometry": ["POLYGON((-86.3 -81,-86.17 -81,-86.04 -81,-85.91 -81,-85.78 -81,-85.65 -81,-85.52 -81,-85.39 -81,-85.26 -81,-85.13 -81,-85 -81,-85 -81.03,-85 -81.06,-85 -81.09,-85 -81.12,-85 -81.15,-85 -81.18,-85 -81.21,-85 -81.24,-85 -81.27,-85 -81.3,-85.13 -81.3,-85.26 -81.3,-85.39 -81.3,-85.52 -81.3,-85.65 -81.3,-85.78 -81.3,-85.91 -81.3,-86.04 -81.3,-86.17 -81.3,-86.3 -81.3,-86.3 -81.27,-86.3 -81.24,-86.3 -81.21,-86.3 -81.18,-86.3 -81.15,-86.3 -81.12,-86.3 -81.09,-86.3 -81.06,-86.3 -81.03,-86.3 -81))"], "date_created": "Wed, 09 Oct 2019 00:00:00 GMT", "description": "This data set contains measurements of cosmic-ray-produced Be-10 and Al-26 in quartz from the RB-2 core, recovered from bedrock at a depth of 150 m below the West Antarctic Ice Sheet surface in the Pirrit Hills. The core site is located at latitude S81.09948, longitude W85.15694. Core length is approximately 8 meters. Lithology is A-type granite, similar in composition to bedrock exposed on nearby Harter Nunatak and other mountains in the Pirrit Hills (Lee et al. Geosci. J. 16, 421-433). Samples were processed at the University of Washington Cosmogenic Nuclide Laboratory. Chemical processing and purification methods are described at http://depts.washington.edu/cosmolab/chem.shtml. Beryllium isotope ratios were measured at the Lawrence Livermore Center for Accelerator Mass Spectrometry (LLNL-CAMS) relative to the KNSTD-Be-01-5-4 standard, assuming a standard Be-10/Be-9 ratio of 2.851E-12 (07KNSTD normalization). Aluminum isotope ratios were measured at PRIME Lab, Purdue University, relative to the KNSTD-Al-01-5-2 standard, assuming a standard Al-26/Al-27 ratio of 1.818E-12 (KNSTD normalization). Uncertainties are 1-sigma and include full AMS errors and all known sources of laboratory uncertainty.", "east": -85.0, "geometry": ["POINT(-85.65 -81.15)"], "keywords": "Aluminum-26; Antarctica; Be-10; Bedrock Core; Beryllium-10; Chemistry:rock; Chemistry:Rock; Cosmogenic; Cosmogenic Dating; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope Data; Pirrit Hills; Rocks; Solid Earth; Subglacial Bedrock", "locations": "Pirrit Hills; Antarctica", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Stone, John", "project_titles": "EXPROBE-WAIS: Exposed Rock Beneath the West Antarctic Ice Sheet, A Test for Interglacial Ice Sheet Collapse", "projects": [{"proj_uid": "p0010057", "repository": "USAP-DC", "title": "EXPROBE-WAIS: Exposed Rock Beneath the West Antarctic Ice Sheet, A Test for Interglacial Ice Sheet Collapse"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -81.3, "title": "Pirrit Hills subglacial bedrock core RB-2, cosmogenic Be-10, Al-26 data", "uid": "601214", "west": -86.3}, {"awards": "1758224 Salvatore, Mark", "bounds_geometry": ["POLYGON((-180 -83,-177 -83,-174 -83,-171 -83,-168 -83,-165 -83,-162 -83,-159 -83,-156 -83,-153 -83,-150 -83,-150 -83.5,-150 -84,-150 -84.5,-150 -85,-150 -85.5,-150 -86,-150 -86.5,-150 -87,-150 -87.5,-150 -88,-153 -88,-156 -88,-159 -88,-162 -88,-165 -88,-168 -88,-171 -88,-174 -88,-177 -88,180 -88,177 -88,174 -88,171 -88,168 -88,165 -88,162 -88,159 -88,156 -88,153 -88,150 -88,150 -87.5,150 -87,150 -86.5,150 -86,150 -85.5,150 -85,150 -84.5,150 -84,150 -83.5,150 -83,153 -83,156 -83,159 -83,162 -83,165 -83,168 -83,171 -83,174 -83,177 -83,-180 -83))"], "date_created": "Fri, 15 Mar 2019 00:00:00 GMT", "description": "This data set contains reflectance spectra (350 - 2500 nm) of a range of rocks and sediments from the Central Transantarctic Mountains. Data were acquired using an Analytical Spectral Devices (ASD) FieldSpec4 high-resolution spectrometer under illumination with a high-output halogen bulb, with illumination and observation angles fixed at 0 and 30 degrees off-nadir, respectively. Data were acquired for the purposes of validation and \u0027ground truthing\u0027 of orbital multispectral data.", "east": -150.0, "geometry": ["POINT(180 -85.5)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Remote Sensing; Rocks; Solid Earth; Spectroscopy; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica", "north": -83.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Salvatore, Mark", "project_titles": "EAGER: Surface Variability and Spectral Analyses of the Central Transantarctic Mountains, Antarctica", "projects": [{"proj_uid": "p0010020", "repository": "USAP-DC", "title": "EAGER: Surface Variability and Spectral Analyses of the Central Transantarctic Mountains, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -88.0, "title": "Laboratory Hyperspectral Reflectance Data of Central Transantarctic Mountain Rocks and Sediments", "uid": "601163", "west": 150.0}, {"awards": "1543313 VanTongeren, Jill", "bounds_geometry": ["POLYGON((-55 -82,-54.5 -82,-54 -82,-53.5 -82,-53 -82,-52.5 -82,-52 -82,-51.5 -82,-51 -82,-50.5 -82,-50 -82,-50 -82.2,-50 -82.4,-50 -82.6,-50 -82.8,-50 -83,-50 -83.2,-50 -83.4,-50 -83.6,-50 -83.8,-50 -84,-50.5 -84,-51 -84,-51.5 -84,-52 -84,-52.5 -84,-53 -84,-53.5 -84,-54 -84,-54.5 -84,-55 -84,-55 -83.8,-55 -83.6,-55 -83.4,-55 -83.2,-55 -83,-55 -82.8,-55 -82.6,-55 -82.4,-55 -82.2,-55 -82))"], "date_created": "Mon, 29 Oct 2018 00:00:00 GMT", "description": "The dataset contains preliminary CA-ID-TIMS U-Pb zircon ages for 4 samples from the Dufek Intrusion, as well as major element mineral compositions for samples throughout the stratigraphy.", "east": -50.0, "geometry": ["POINT(-52.5 -83)"], "keywords": "Antarctica; Chemical Composition; Chemistry:rock; Chemistry:Rock; Crystallization; Dufek Complex; Geochemistry; Magma Chamber Procesess; Mass Spectrometry; Rocks; Snow/ice; Snow/Ice; Solid Earth; TIMS; Volcanic Deposits", "locations": "Antarctica", "north": -82.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "VanTongeren, Jill", "project_titles": "Collaborative Research: Testing the Hypothesis that Bigger Magma Chambers Crystallize Faster", "projects": [{"proj_uid": "p0000135", "repository": "USAP-DC", "title": "Collaborative Research: Testing the Hypothesis that Bigger Magma Chambers Crystallize Faster"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.0, "title": "U-Pb ages and mineral compositions from Dufek Intrusion", "uid": "601132", "west": -55.0}, {"awards": "1142002 Kaplan, Michael", "bounds_geometry": ["POLYGON((-58 -63.7,-57.95 -63.7,-57.9 -63.7,-57.85 -63.7,-57.8 -63.7,-57.75 -63.7,-57.7 -63.7,-57.65 -63.7,-57.6 -63.7,-57.55 -63.7,-57.5 -63.7,-57.5 -63.73,-57.5 -63.76,-57.5 -63.79,-57.5 -63.82,-57.5 -63.85,-57.5 -63.88,-57.5 -63.91,-57.5 -63.94,-57.5 -63.97,-57.5 -64,-57.55 -64,-57.6 -64,-57.65 -64,-57.7 -64,-57.75 -64,-57.8 -64,-57.85 -64,-57.9 -64,-57.95 -64,-58 -64,-58 -63.97,-58 -63.94,-58 -63.91,-58 -63.88,-58 -63.85,-58 -63.82,-58 -63.79,-58 -63.76,-58 -63.73,-58 -63.7))"], "date_created": "Sat, 16 Sep 2017 00:00:00 GMT", "description": "These are data sets obtained with the supported award. The ages concern the histories of glaciers, ice sheets, and general cryospheric and climatic activities of the northern Antarctic Peninsula and surrounding area.They cover periods from prior to the last global glacial maximum (stage 3 and older?) as well as since deglaciation.", "east": -57.5, "geometry": ["POINT(-57.75 -63.85)"], "keywords": "Antarctica; Antarctic Peninsula; Glaciers/ice Sheet; Glaciers/Ice Sheet; GPS; James Ross Island; Sample/collection Description; Sample/Collection Description; Solid Earth", "locations": "Antarctic Peninsula; James Ross Island; Antarctica", "north": -63.7, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Kaplan, Michael", "project_titles": "Terrestrial Geological Context for Glacier Change in the Northeast Antarctica Peninsula", "projects": [{"proj_uid": "p0000337", "repository": "USAP-DC", "title": "Terrestrial Geological Context for Glacier Change in the Northeast Antarctica Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.0, "title": "10Be and 14C data from northern Antarctic Peninsula", "uid": "601051", "west": -58.0}, {"awards": "0839031 Severinghaus, Jeffrey", "bounds_geometry": ["POLYGON((161.41425 -77.73489,161.486884 -77.73489,161.559518 -77.73489,161.632152 -77.73489,161.704786 -77.73489,161.77742 -77.73489,161.850054 -77.73489,161.922688 -77.73489,161.995322 -77.73489,162.067956 -77.73489,162.14059 -77.73489,162.14059 -77.747868,162.14059 -77.760846,162.14059 -77.773824,162.14059 -77.786802,162.14059 -77.79978,162.14059 -77.812758,162.14059 -77.825736,162.14059 -77.838714,162.14059 -77.851692,162.14059 -77.86467,162.067956 -77.86467,161.995322 -77.86467,161.922688 -77.86467,161.850054 -77.86467,161.77742 -77.86467,161.704786 -77.86467,161.632152 -77.86467,161.559518 -77.86467,161.486884 -77.86467,161.41425 -77.86467,161.41425 -77.851692,161.41425 -77.838714,161.41425 -77.825736,161.41425 -77.812758,161.41425 -77.79978,161.41425 -77.786802,161.41425 -77.773824,161.41425 -77.760846,161.41425 -77.747868,161.41425 -77.73489))"], "date_created": "Fri, 16 Jun 2017 00:00:00 GMT", "description": "Taylor Glacier Gas Isotope Data", "east": 162.14059, "geometry": ["POINT(161.77742 -77.79978)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciology; Ice Core Records; Isotope; Solid Earth; Taylor Glacier; Transantarctic Mountains", "locations": "Taylor Glacier; Transantarctic Mountains; Antarctica", "north": -77.73489, "nsf_funding_programs": null, "persons": "Severinghaus, Jeffrey P.", "project_titles": "Collaborative Research: A \"Horizontal Ice Core\" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica", "projects": [{"proj_uid": "p0000099", "repository": "USAP-DC", "title": "Collaborative Research: A \"Horizontal Ice Core\" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.86467, "title": "Taylor Glacier Gas Isotope Data", "uid": "601033", "west": 161.41425}, {"awards": "1245659 Petrenko, Vasilii", "bounds_geometry": ["POINT(161.71353 -77.75855)"], "date_created": "Wed, 24 May 2017 00:00:00 GMT", "description": "This dataset contains measurements of paleoatmospheric 14C of methane (14CH4) for the Younger Dryas - Preboreal Transition from Taylor Glacier, Antarctica, as well as a range of supporting data. The supporting data include [CH4], [CO], [14CO], sample ages, CH4 emissions and analysis of uncertainties.", "east": 161.71353, "geometry": ["POINT(161.71353 -77.75855)"], "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Critical Zone; Geochemistry; Methane; Paleoclimate; Sample/collection Description; Sample/Collection Description; Solid Earth; Taylor Glacier; Transantarctic Mountains; Younger Dryas", "locations": "Transantarctic Mountains; Taylor Glacier; Antarctica", "north": -77.75855, "nsf_funding_programs": null, "persons": "Petrenko, Vasilii; Severinghaus, Jeffrey P.", "project_titles": "Collaborative Research: A \"Horizontal Ice Core\" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica", "projects": [{"proj_uid": "p0000099", "repository": "USAP-DC", "title": "Collaborative Research: A \"Horizontal Ice Core\" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.75855, "title": "Measurements of 14C-methane for the Younger Dryas - Preboreal Transition from Taylor Glacier, Antarctica", "uid": "601029", "west": 161.71353}, {"awards": "1148982 Hansen, Samantha", "bounds_geometry": ["POLYGON((153.327 -73.032547,154.5063012 -73.032547,155.6856024 -73.032547,156.8649036 -73.032547,158.0442048 -73.032547,159.223506 -73.032547,160.4028072 -73.032547,161.5821084 -73.032547,162.7614096 -73.032547,163.9407108 -73.032547,165.120012 -73.032547,165.120012 -73.3530275,165.120012 -73.673508,165.120012 -73.9939885,165.120012 -74.314469,165.120012 -74.6349495,165.120012 -74.95543,165.120012 -75.2759105,165.120012 -75.596391,165.120012 -75.9168715,165.120012 -76.237352,163.9407108 -76.237352,162.7614096 -76.237352,161.5821084 -76.237352,160.4028072 -76.237352,159.223506 -76.237352,158.0442048 -76.237352,156.8649036 -76.237352,155.6856024 -76.237352,154.5063012 -76.237352,153.327 -76.237352,153.327 -75.9168715,153.327 -75.596391,153.327 -75.2759105,153.327 -74.95543,153.327 -74.6349495,153.327 -74.314469,153.327 -73.9939885,153.327 -73.673508,153.327 -73.3530275,153.327 -73.032547))"], "date_created": "Thu, 20 Apr 2017 00:00:00 GMT", "description": "Using data from the Transantarctic Mountains (TAMs) Northern Network, the shear wave velocity structure beneath the northern TAMs was investigated with surface wave tomography. Rayleigh wave phase velocities were calculated using a two-plane wave approximation and were then inverted for shear velocity structure. The resulting model shows a low velocity zone (~4.24 km/s) at ~160 km depth offshore and adjacent to Mt. Melbourne that extends inland and vertically upwards to ~100 km depth beneath the northern TAMs and Victoria Land. Another low velocity zone (~4.16-4.24 km/s) is also seen at ~150 km depth beneath Ross Island, and relatively slow velocities (~4.24-4.32 km/s) along the Terror Rift connect the two low velocity zones. This structure has been interpreted to reflect rift-related decompression melting along the TAMs front, which would provide thermal buoyancy to uplift the mountain range.", "east": 165.120012, "geometry": ["POINT(159.223506 -74.6349495)"], "keywords": "Antarctica; Geology/Geophysics - Other; Model; Seismology; Solid Earth; Tomography; Transantarctic Mountains", "locations": "Antarctica; Transantarctic Mountains", "north": -73.032547, "nsf_funding_programs": null, "persons": "Hansen, Samantha", "project_titles": "CAREER: Deciphering the Tectonic History of the Transantarctic Mountains and the Wilkes Subglacial Basin", "projects": [{"proj_uid": "p0000300", "repository": "USAP-DC", "title": "CAREER: Deciphering the Tectonic History of the Transantarctic Mountains and the Wilkes Subglacial Basin"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.237352, "title": "Upper Mantle Shear Wave Velocity Structure beneath the Northern Transantarctic Mountains", "uid": "601018", "west": 153.327}, {"awards": "1148982 Hansen, Samantha", "bounds_geometry": ["POLYGON((153.327 -73.032547,154.5063012 -73.032547,155.6856024 -73.032547,156.8649036 -73.032547,158.0442048 -73.032547,159.223506 -73.032547,160.4028072 -73.032547,161.5821084 -73.032547,162.7614096 -73.032547,163.9407108 -73.032547,165.120012 -73.032547,165.120012 -73.3530275,165.120012 -73.673508,165.120012 -73.9939885,165.120012 -74.314469,165.120012 -74.6349495,165.120012 -74.95543,165.120012 -75.2759105,165.120012 -75.596391,165.120012 -75.9168715,165.120012 -76.237352,163.9407108 -76.237352,162.7614096 -76.237352,161.5821084 -76.237352,160.4028072 -76.237352,159.223506 -76.237352,158.0442048 -76.237352,156.8649036 -76.237352,155.6856024 -76.237352,154.5063012 -76.237352,153.327 -76.237352,153.327 -75.9168715,153.327 -75.596391,153.327 -75.2759105,153.327 -74.95543,153.327 -74.6349495,153.327 -74.314469,153.327 -73.9939885,153.327 -73.673508,153.327 -73.3530275,153.327 -73.032547))"], "date_created": "Thu, 20 Apr 2017 00:00:00 GMT", "description": "Using data from the Transantarctic Mountains (TAMs) Northern Network, shear-wave splitting analysis has been employed to constrain azimuthal anisotropy beneath a portion of the northern TAMs. Splitting measurements were made for PKS, SKS, and SKKS phases with the eigenvalue method in SplitLab. The results show two distinct geographic regions of anisotropy: one behind the TAMs front and the other along the Ross Sea coastline. The anisotropic structure behind the TAMs front is best attributed to relict fabric associated with past tectonic episodes. Along the coastline, the anisotropy is interpreted to reflect mantle flow associated with rift-related decompression melting and Cenozoic extension.", "east": 165.120012, "geometry": ["POINT(159.223506 -74.6349495)"], "keywords": "Antarctica; Geology/Geophysics - Other; GPS; Sample/collection Description; Sample/Collection Description; Seismology; Shearwave Spitting; Solid Earth; Transantarctic Mountains", "locations": "Antarctica; Transantarctic Mountains", "north": -73.032547, "nsf_funding_programs": null, "persons": "Hansen, Samantha", "project_titles": "CAREER: Deciphering the Tectonic History of the Transantarctic Mountains and the Wilkes Subglacial Basin", "projects": [{"proj_uid": "p0000300", "repository": "USAP-DC", "title": "CAREER: Deciphering the Tectonic History of the Transantarctic Mountains and the Wilkes Subglacial Basin"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.237352, "title": "Shear Wave Splitting Analysis and Seismic Anisotropy beneath the Northern Transantarctic Mountains", "uid": "601019", "west": 153.327}, {"awards": "1148982 Hansen, Samantha", "bounds_geometry": ["POLYGON((153.327 -73.032547,154.5063012 -73.032547,155.6856024 -73.032547,156.8649036 -73.032547,158.0442048 -73.032547,159.223506 -73.032547,160.4028072 -73.032547,161.5821084 -73.032547,162.7614096 -73.032547,163.9407108 -73.032547,165.120012 -73.032547,165.120012 -73.3530275,165.120012 -73.673508,165.120012 -73.9939885,165.120012 -74.314469,165.120012 -74.6349495,165.120012 -74.95543,165.120012 -75.2759105,165.120012 -75.596391,165.120012 -75.9168715,165.120012 -76.237352,163.9407108 -76.237352,162.7614096 -76.237352,161.5821084 -76.237352,160.4028072 -76.237352,159.223506 -76.237352,158.0442048 -76.237352,156.8649036 -76.237352,155.6856024 -76.237352,154.5063012 -76.237352,153.327 -76.237352,153.327 -75.9168715,153.327 -75.596391,153.327 -75.2759105,153.327 -74.95543,153.327 -74.6349495,153.327 -74.314469,153.327 -73.9939885,153.327 -73.673508,153.327 -73.3530275,153.327 -73.032547))"], "date_created": "Thu, 06 Apr 2017 00:00:00 GMT", "description": "Stretching ~3,500 km across Antarctica, with peak elevations up to 4,500 m, the Transantarctic Mountains (TAMs) are the largest non-compressional mountain range on Earth and represent a tectonic boundary between the East Antarctica (EA) craton and the West Antarctic Rift System. The origin and uplift mechanism associated with the TAMs is controversial, and multiple models have been proposed. Seismic investigations of the TAMs\u0027 subsurface structure can provide key constraints to help evaluate these models, but previous studies have been primarily focused only on the central TAMs near Ross Island. Using data from the new 15-station Transantarctic Mountain Northern Network as well as data from several smaller networks, this study investigates the upper mantle velocity structure beneath a previously unexplored portion of the northern TAMs through regional body wave tomography. Relative travel-times were calculated for 11,182 P-wave and 8,285 S-wave arrivals from 790 and 581 Mw \u2265 5.5 events, respectively, using multi-channel cross correlation, and these data were then inverted for models of the upper mantle seismic structure. Resulting P- and S-wave tomography images reveal two focused low velocity anomalies beneath Ross Island (RI; \u03b4VP \u2248 -2.0%; \u03b4VS \u2248 -1.5% to -4.0%) and Terra Nova Bay (TNB; \u03b4VP \u2248 -1.5% to -2.0%; \u03b4VS \u2248 -1.0% to -4.0%) that extend to depths of ~200 and ~150 km, respectively. The RI and TNB slow anomalies also extend ~50-100 km laterally beneath the TAMs front and sharply abut fast velocities beneath the EA craton (\u03b4VP \u2248 0.5% to 2%; \u03b4VS \u2248 1.5% to 4.0%). A low velocity region (\u03b4VP \u2248 -1.5%), centered at ~150 km depth beneath the Terror Rift (TR) and primarily constrained within the Victoria Land Basin, connects the RI and TNB anomalies. The focused low velocities are interpreted as regions of partial melt and buoyancy-driven upwelling, connected by a broad region of slow (presumably warm) upper mantle associated with Cenozoic extension along the TR. Dynamic topography estimates based on the imaged S-wave velocity perturbations are consistent with observed surface topography in the central and northern TAMs, thereby providing support for uplift models that advocate for thermal loading and a flexural origin for the mountain range.", "east": 165.120012, "geometry": ["POINT(159.223506 -74.6349495)"], "keywords": "Antarctica; Geology/Geophysics - Other; Model; Seismology; Solid Earth; Tomography; Transantarctic Mountains", "locations": "Antarctica; Transantarctic Mountains", "north": -73.032547, "nsf_funding_programs": null, "persons": "Hansen, Samantha", "project_titles": "CAREER: Deciphering the Tectonic History of the Transantarctic Mountains and the Wilkes Subglacial Basin", "projects": [{"proj_uid": "p0000300", "repository": "USAP-DC", "title": "CAREER: Deciphering the Tectonic History of the Transantarctic Mountains and the Wilkes Subglacial Basin"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.237352, "title": "Upper Mantle Seismic Structure beneath the Northern Transantarctic Mountains from Regional P- and S-wave Tomography", "uid": "601017", "west": 153.327}, {"awards": "1246379 Smith, Nathan", "bounds_geometry": ["POLYGON((160 -85,160.6 -85,161.2 -85,161.8 -85,162.4 -85,163 -85,163.6 -85,164.2 -85,164.8 -85,165.4 -85,166 -85,166 -85.2,166 -85.4,166 -85.6,166 -85.8,166 -86,166 -86.2,166 -86.4,166 -86.6,166 -86.8,166 -87,165.4 -87,164.8 -87,164.2 -87,163.6 -87,163 -87,162.4 -87,161.8 -87,161.2 -87,160.6 -87,160 -87,160 -86.8,160 -86.6,160 -86.4,160 -86.2,160 -86,160 -85.8,160 -85.6,160 -85.4,160 -85.2,160 -85))"], "date_created": "Wed, 29 Mar 2017 00:00:00 GMT", "description": "This proposal supports research on the Early Jurassic Hanson Formation vertebrate fauna of the Beardmore Glacier region of Antarctica. The project supports preparation and systematic and paleobiological research on four Antarctic dinosaurs, including two new species, collected in the Central Transantarctic Mountains. With the new material Cryolophosaurus will become one of the most complete Early Jurassic theropods known, and thus has the potential to become a keystone taxon for resolving the debated early evolutionary history of theropod dinosaurs, the group that gave rise to birds. Two new dinosaur specimens include a nearly complete articulated skeleton of a juvenile sauropodomorph, and the articulated hip region of another small individual. Both appear to be new taxa. The dinosaurs from the Hanson Formation represent some of the highest paleolatitude vertebrates known from the Jurassic. The PIs generated CT datasets for Cryolophosaurus and the more complete new sauropodomorph species to mine for phylogenetic trait information, and to investigate their comparative neuroanatomy and feeding behavior. Histological datasets have been generated from multiple skeletal elements for all four Mt. Kirkpatrick taxa to understand patterns of growth in different clades of polar dinosaurs and compare them to relatives from lower paleolatitudes. This paleohistological study of a relatively diverse sample of sauropodomorph taxa from Antarctica may contribute to determining whether and how these dinosaurs responded to contemporary climatic extremes. The PIs have established a successful undergraduate training program as part of previous research. Summer interns from Augustana are trained at the Field Museum in specimen preparation, curation, molding/casting, and histological sampling. They also participate in existing Field Museum REU programs, including a course on phylogenetic systematics. Four undergraduate internships and student research projects will be supported through this proposal. A postdoctoral researcher has also been supported on this project The PIs are developing a traveling exhibit on Antarctic Dinosaurs that they estimate will be seen by over 2 million people over the five-year tour (opening June 2018 at the Field Museum of Natural History).", "east": 166.0, "geometry": ["POINT(163 -86)"], "keywords": "Antarctica; Beardmore Glacier; Biota; Fossil; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains", "locations": "Antarctica; Transantarctic Mountains; Beardmore Glacier", "north": -85.0, "nsf_funding_programs": null, "persons": "Smith, Nathan", "project_titles": "Collaborative Research: Continued Research on the Jurassic Vertebrate Fauna from the Beardmore Glacier Region of Antarctica", "projects": [{"proj_uid": "p0000083", "repository": "USAP-DC", "title": "Collaborative Research: Continued Research on the Jurassic Vertebrate Fauna from the Beardmore Glacier Region of Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.0, "title": "Vertebrate fossils from the Hanson Formation at Mt. Kirkpatrick, in the Beardmore Glacier region of Antarctica", "uid": "601016", "west": 160.0}, {"awards": "1043761 Young, Duncan", "bounds_geometry": ["POLYGON((-156 -74.5,-151.4 -74.5,-146.8 -74.5,-142.2 -74.5,-137.6 -74.5,-133 -74.5,-128.4 -74.5,-123.8 -74.5,-119.2 -74.5,-114.6 -74.5,-110 -74.5,-110 -75.05,-110 -75.6,-110 -76.15,-110 -76.7,-110 -77.25,-110 -77.8,-110 -78.35,-110 -78.9,-110 -79.45,-110 -80,-114.6 -80,-119.2 -80,-123.8 -80,-128.4 -80,-133 -80,-137.6 -80,-142.2 -80,-146.8 -80,-151.4 -80,-156 -80,-156 -79.45,-156 -78.9,-156 -78.35,-156 -77.8,-156 -77.25,-156 -76.7,-156 -76.15,-156 -75.6,-156 -75.05,-156 -74.5))"], "date_created": "Mon, 20 Feb 2017 00:00:00 GMT", "description": "GIMBLE was proposed as the first systematic aerogeophysical investigation of the subglacial massif underlying central Marie Byrd Land. Aerogeophysically configured Baslers conducted 14 flights from Byrd Surface Camp and WAIS Divide Camp over two field seasons (January 2013 and December 2014). Airborne ice penetrating radar, gravity and magnetics were the primary datasets collected. Level 2 data represent geolocated geophysical properties (e.g ice thickness), derived from Level 1B measurements (e.g. radar echo delay). Dataset structures are based on those used for Operation Ice Bridge, and are line based data in ASCII space delimited .txt files, with a header delimited by leading \"#\" characters documenting column assignment and metadata. Georefering data is contained in .met files. GIMBLE.GGCMG2 contains line based data relating to gravity disturbance, processed from raw acceleration and position data by propriety software from Gravimetric Technologies and Novatel. The raw data was obtained a Canadian MicroGravity GT-1A gravimeter in ICP5, and a GT-2A gravimeter in ICP6. Data reduction was led by T. Richter.", "east": -110.0, "geometry": ["POINT(-133 -77.25)"], "keywords": "Antarctica; Gimble; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravity; Marie Byrd Land; Navigation; Potential Field; Solid Earth", "locations": "Marie Byrd Land; Antarctica", "north": -74.5, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Young, Duncan A.; Holt, John W.; Blankenship, Donald D.", "project_titles": "Geophysical Investigations of Marie Byrd Land Lithospheric Evolution (GIMBLE)", "projects": [{"proj_uid": "p0000435", "repository": "USAP-DC", "title": "Geophysical Investigations of Marie Byrd Land Lithospheric Evolution (GIMBLE)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "Gravity disturbance data over central Marie Byrd Land, West Antarctica (GIMBLE.GGCMG2)", "uid": "601003", "west": -156.0}, {"awards": "1043761 Young, Duncan", "bounds_geometry": ["POLYGON((-156 -74.5,-151.4 -74.5,-146.8 -74.5,-142.2 -74.5,-137.6 -74.5,-133 -74.5,-128.4 -74.5,-123.8 -74.5,-119.2 -74.5,-114.6 -74.5,-110 -74.5,-110 -75.05,-110 -75.6,-110 -76.15,-110 -76.7,-110 -77.25,-110 -77.8,-110 -78.35,-110 -78.9,-110 -79.45,-110 -80,-114.6 -80,-119.2 -80,-123.8 -80,-128.4 -80,-133 -80,-137.6 -80,-142.2 -80,-146.8 -80,-151.4 -80,-156 -80,-156 -79.45,-156 -78.9,-156 -78.35,-156 -77.8,-156 -77.25,-156 -76.7,-156 -76.15,-156 -75.6,-156 -75.05,-156 -74.5))"], "date_created": "Mon, 20 Feb 2017 00:00:00 GMT", "description": "GIMBLE was proposed as the first systematic aerogeophysical investigation of the subglacial massif underlying central Marie Byrd Land. Aerogeophysically configured Baslers conducted 14 flights from Byrd Surface Camp and WAIS Divide Camp over two field seasons (January 2013 and December 2014). Airborne ice penetrating radar, gravity and magnetics were the primary datasets collected. Level 2 data represent geolocated geophysical properties (e.g ice thickness), derived from Level 1B measurements (e.g. radar echo delay). Dataset structures are based on those used for Operation Ice Bridge, and are line based data in ASCII space delimited .txt files, with a header delimited by leading \"#\" characters documenting column assignment and metadata. Georefering data is contained in .met files. GIMBLE.GMGEO2 contains line based data (in ASCII space delimited txt files) relating to magnetic anomaly. The raw data was obtained by a tail mounted Geometrics G-823A magnetometer. No heading correction, cross over correction, continuation or base correction have been applied. Data with significant geomagnetic activity (restricted to 07-Dec-2014 and 23-Dec-2014) were removed.", "east": -110.0, "geometry": ["POINT(-133 -77.25)"], "keywords": "Antarctica; Gimble; Glaciers/ice Sheet; Glaciers/Ice Sheet; Magnetic; Marie Byrd Land; Navigation; Potential Field; Solid Earth", "locations": "Antarctica; Marie Byrd Land", "north": -74.5, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Young, Duncan A.; Holt, John W.; Blankenship, Donald D.", "project_titles": "Geophysical Investigations of Marie Byrd Land Lithospheric Evolution (GIMBLE)", "projects": [{"proj_uid": "p0000435", "repository": "USAP-DC", "title": "Geophysical Investigations of Marie Byrd Land Lithospheric Evolution (GIMBLE)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "Magnetic anomaly data over central Marie Byrd Land, West Antarctica (GIMBLE.GMGEO2)", "uid": "601002", "west": -156.0}, {"awards": "0947821 Ashworth, Allan", "bounds_geometry": ["POLYGON((166.58793 -85.11733,166.595533 -85.11733,166.603136 -85.11733,166.610739 -85.11733,166.618342 -85.11733,166.625945 -85.11733,166.633548 -85.11733,166.641151 -85.11733,166.648754 -85.11733,166.656357 -85.11733,166.66396 -85.11733,166.66396 -85.117836,166.66396 -85.118342,166.66396 -85.118848,166.66396 -85.119354,166.66396 -85.11986,166.66396 -85.120366,166.66396 -85.120872,166.66396 -85.121378,166.66396 -85.121884,166.66396 -85.12239,166.656357 -85.12239,166.648754 -85.12239,166.641151 -85.12239,166.633548 -85.12239,166.625945 -85.12239,166.618342 -85.12239,166.610739 -85.12239,166.603136 -85.12239,166.595533 -85.12239,166.58793 -85.12239,166.58793 -85.121884,166.58793 -85.121378,166.58793 -85.120872,166.58793 -85.120366,166.58793 -85.11986,166.58793 -85.119354,166.58793 -85.118848,166.58793 -85.118342,166.58793 -85.117836,166.58793 -85.11733))"], "date_created": "Tue, 17 Jan 2017 00:00:00 GMT", "description": null, "east": 166.66396, "geometry": ["POINT(166.625945 -85.11986)"], "keywords": "Antarctica; Beardmore Glacier; Biota; Fossil; GPS; Oliver Bluffs; Paleoclimate; Sample/collection Description; Sample/Collection Description; Seeds; Solid Earth; Transantarctic Mountains", "locations": "Transantarctic Mountains; Beardmore Glacier; Antarctica; Oliver Bluffs", "north": -85.11733, "nsf_funding_programs": null, "persons": "Ashworth, Allan", "project_titles": "Neogene Paleoecology of the Beardmore Glacier Region", "projects": [{"proj_uid": "p0000424", "repository": "USAP-DC", "title": "Neogene Paleoecology of the Beardmore Glacier Region"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.12239, "title": "Neogene Paleoecology of the Beardmore Glacier Region", "uid": "600387", "west": 166.58793}, {"awards": "1142083 Kyle, Philip", "bounds_geometry": ["POINT(167.15334 -77.529724)"], "date_created": "Sat, 03 Dec 2016 00:00:00 GMT", "description": "Mt. Erebus is one of only a handful of volcanoes worldwide that have lava lakes with readily observable and nearly continuous Strombolian explosive activity. Erebus is also unique in having a permanent convecting lava lake of anorthoclase phonolite magma. Over the years significant infrastructure has been established at the summit of Mt. Erebus as part of the Mount Erebus Volcano Observatory (MEVO), which serves as a natural laboratory to study a wide range of volcanic processes, especially magma degassing associated with an open convecting magma conduit. The PI proposes to continue operating MEVO for a further five years. The fundamental fundamental research objectives are: to understand diffuse flank degassing by using distributed temperature sensing and gas measurements in ice caves, to understand conduit processes, and to examine the environmental impact of volcanic emissions from Erebus on atmospheric and cryospheric environments. To examine conduit processes the PI will make simultaneous observations with video records, thermal imaging, measurements of gas emission rates and gas compositions, seismic, and infrasound data.\n An important aspect of Erebus research is the education and training of students. Both graduate and undergraduate students will have the opportunity to work on MEVO data and deploy to the field site. In addition, this proposal will support a middle or high school science teacher for two field seasons. The PI will also continue working with various media organizations and filmmakers.\nThis dataset contains video taken from a series of cameras that were installed at Shackleton\u0027s Cairn (-77.525337, 167.157509) looking into the lava lake. This dataset contains all such video taken between 2005 and 2011. Camera downlink depended on power at a relay station at the Cones site. The camera was operational during G-081 field seasons and often for a period of weeks or months thereafter.", "east": 167.15334, "geometry": ["POINT(167.15334 -77.529724)"], "keywords": "Antarctica; Cable Observatory; Geology/Geophysics - Other; Infrared Imagery; Intracontinental Magmatism; IntraContinental Magmatism; MEVO; Mount Erebus; Photo/video; Photo/Video; Ross Island; Solid Earth; Thermal Camera; Volcano", "locations": "Antarctica; Ross Island; Mount Erebus", "north": -77.529724, "nsf_funding_programs": null, "persons": "Oppenheimer, Clive; Kyle, Philip", "project_titles": "Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)", "projects": [{"proj_uid": "p0000383", "repository": "USAP-DC", "title": "Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "MEVO", "south": -77.529724, "title": "Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)", "uid": "600381", "west": 167.15334}, {"awards": "0838817 Kyle, Philip", "bounds_geometry": null, "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Mount Erebus is Antarctica\u0027s most active volcano that has been in a persistent state of activity for at least the last 35 years. It has a unique geochemistry among the Earth\u0027s active volcanoes and is also unique in hosting a persistent convecting lake(s) of anorthclase phonolite magma in its summit crater. The relative simplicity of the magmatic system, consistency of activity, and accessibility of close-range observation make Erebus attractive as a target for extensive studies. Although the Erebus\u0027 seismicity and eruptive activity and processes are becoming increasingly well understood over years of research, there is a near total lack of understanding its deeper magmatic system. The primary goal of this proposal is to continue supporting the Mt. Erebus Volcano Observatory (MEVO III) improving our current understanding of the Erebus eruptive and non-eruptive magmatic system using an integrated approach from geophysical, geochemical and remote sensing observations. This goal can be grouped into the following fundamental research objectives: (a) to sustain year-round surveillance of on-going volcanic activity primarily using geophysical observatories; (b) to understand processes within the convecting conduit which feeds the persistent lava lakes; and (c) to understand the impact of Erebus eruptive activity upon the Antarctic environment. Continued reliance on students provides a broader impact to this proposed research and firmly grounds this effort in its educational mission.", "east": null, "geometry": null, "keywords": "Antarctica; Cable Observatory; Intracontinental Magmatism; IntraContinental Magmatism; MEVO; Mount Erebus; Photo/video; Photo/Video; Ross Sea; Solid Earth; Volcano", "locations": "Mount Erebus; Antarctica; Ross Sea", "north": null, "nsf_funding_programs": null, "persons": "Kyle, Philip", "project_titles": "Mount Erebus Volcano Observatory III (MEVO III): Conduit Processes and Surveillance", "projects": [{"proj_uid": "p0000488", "repository": "USAP-DC", "title": "Mount Erebus Volcano Observatory III (MEVO III): Conduit Processes and Surveillance"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "MEVO", "south": null, "title": "Mount Erebus Volcano Observatory III (MEVO III): Conduit Processes and Surveillance", "uid": "600153", "west": null}, {"awards": "1142162 Stone, John", "bounds_geometry": ["POLYGON((-104.14 -81.07,-102.24 -81.07,-100.34 -81.07,-98.44 -81.07,-96.54 -81.07,-94.64 -81.07,-92.74 -81.07,-90.84 -81.07,-88.94 -81.07,-87.04 -81.07,-85.14 -81.07,-85.14 -81.207,-85.14 -81.344,-85.14 -81.481,-85.14 -81.618,-85.14 -81.755,-85.14 -81.892,-85.14 -82.029,-85.14 -82.166,-85.14 -82.303,-85.14 -82.44,-87.04 -82.44,-88.94 -82.44,-90.84 -82.44,-92.74 -82.44,-94.64 -82.44,-96.54 -82.44,-98.44 -82.44,-100.34 -82.44,-102.24 -82.44,-104.14 -82.44,-104.14 -82.303,-104.14 -82.166,-104.14 -82.029,-104.14 -81.892,-104.14 -81.755,-104.14 -81.618,-104.14 -81.481,-104.14 -81.344,-104.14 -81.207,-104.14 -81.07))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award supports a reconnaissance geological and radar-sounding study of promising sites in West Antarctica for a future project to measure cosmogenic nuclides in subglacial bedrock. Field work will take place in the Whitmore Mountains, close to the WAIS divide, and on the Nash and Pirrit Hills, downflow from the divide in the Weddell Sea drainage. At each site geological indicators of higher (and lower) ice levels in the past will be mapped and evidence of subglacial erosion or its absence will be documented. Elevation transects of both glacial erratics and adjacent bedrock samples will be collected to establish the timing of recent deglaciation at the sites and provide a complement to similar measurements on material from depth transects obtained by future subglacial drilling. At each site, bedrock ridges will be traced into the subsurface with closely-spaced ice-penetrating radar surveys, using a combination of instruments and frequencies to obtain the highest possible surface detail. Collectively the results will define prospective sites for subglacial sampling, and maximize the potential information to be obtained from such samples in future studies. The intellectual merit of this project is that measurements of cosmogenic nuclides in subglacial bedrock hold promise for resolving the questions of whether the West Antarctic ice sheet collapsed completely in the past, whether it is prone to repeated large deglaciations, and if so, what is their magnitude and frequency. Such studies will require careful choice of targets, to locate sites where bedrock geology is favorable, cosmogenic nuclide records are likely to have been protected from subglacial erosion, and the local ice-surface response is indicative of large-scale ice sheet behavior. The broader impacts of this work include helping to determine whether subglacial surfaces in West Antarctica were ever exposed to cosmic rays, which will provide unambiguous evidence for or against a smaller ice sheet in the past. This is an important step towards establishing whether the WAIS is vulnerable to collapse in future, and will ultimately help to address uncertainty in forecasting sea level change. The results will also provide ground truth for models of ice-sheet dynamics and long-term ice sheet evolution, and will help researchers use these models to identify paleoclimate conditions responsible for WAIS deglaciation. The education and training of students (both undergraduate and graduate students) will play an important role in the project, which will involve Antarctic fieldwork, technically challenging labwork, data collection and interpretation, and communication of the outcome to scientists and the general public.", "east": -85.14, "geometry": ["POINT(-94.64 -81.755)"], "keywords": "Antarctica; Be-10; Chemistry:rock; Chemistry:Rock; Cosmogenic Dating; Glaciology; Nunataks; Sample/collection Description; Sample/Collection Description; Solid Earth; Whitmore Mountains", "locations": "Antarctica; Whitmore Mountains", "north": -81.07, "nsf_funding_programs": null, "persons": "Stone, John", "project_titles": "Glacial-interglacial History of West Antarctic Nunataks and Site Reconnaissance for Subglacial Bedrock Sampling", "projects": [{"proj_uid": "p0000335", "repository": "USAP-DC", "title": "Glacial-interglacial History of West Antarctic Nunataks and Site Reconnaissance for Subglacial Bedrock Sampling"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.44, "title": "Glacial-interglacial History of West Antarctic Nunataks and Site Reconnaissance for Subglacial Bedrock Sampling", "uid": "600162", "west": -104.14}, {"awards": "0944282 Hasiotis, Stephen", "bounds_geometry": ["POINT(175 -86)"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This proposal will study the diversity, abundance, and tiering patterns of ichnofossils in continental and marine deposits of the Beacon Supergroup in the Beardmore Glacier Area (BGA). The PIs will focus on continental strata that contain a variety of ichnofossils and paleosols. Ichnofossils will be evaluated for their architectural and surficial morphologies, and will be compared to modern and ancient traces to interpret the tracemaker behavior and paleoenvironmental setting. Distribution of ichnofossils within these units may indicate the effect of lateral variability of pedogenesis, the magnitude and frequency of depositional events, and the amount of moisture within the sediment, as well as the effects of climate change. The paleoclimatic significance of ichnofossils will be determined by comparing the burrow size, occurrence, tiering, and pedogenic significance of ichnofossils in measured sections of stratigraphic units deposited during global warming and cooling episodes. Comparisons will be made between BGA formations to stratigraphically equivalent rocks deposited at low paleolatitudes with previously determined paleoclimatic settings. The objectives of this project are to address two major questions: what differences existed in ichnodiversity, abundance, and tiering in marine and continental deposits between high- and low-paleolatitudes, and was there a dearth of habitat usage in continental deposits during the late Paleozoic and Mesozoic, particularly in fluvial and lacustrine environments compared to the habitat usage in the marine realm at that time?\nThis study will enhance the ability to interpret paleoenvironments to the subenvironmental scale, understand the evolution of soil biota and ecosystems at high paleolatitudes, determine the role of organisms in soil formation at high paleolatitudes, explore the effects of climate change on the body size and diversity of organisms in the soil communities, and develop new tools to interpret paleoclimate in high latitudes. There is a strong education component associated with this proposal.", "east": 175.0, "geometry": ["POINT(175 -86)"], "keywords": "Antarctica; Beardmore Glacier; Biota; Fossil; Paleoclimate; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica; Beardmore Glacier", "north": -86.0, "nsf_funding_programs": null, "persons": "Hasiotis, Stephen", "project_titles": "Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica", "projects": [{"proj_uid": "p0000423", "repository": "USAP-DC", "title": "Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.0, "title": "Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica", "uid": "600156", "west": 175.0}, {"awards": "1146399 Sidor, Christian", "bounds_geometry": ["POLYGON((162.41 -84.27,163.409 -84.27,164.408 -84.27,165.407 -84.27,166.406 -84.27,167.405 -84.27,168.404 -84.27,169.403 -84.27,170.402 -84.27,171.401 -84.27,172.4 -84.27,172.4 -84.353,172.4 -84.436,172.4 -84.519,172.4 -84.602,172.4 -84.685,172.4 -84.768,172.4 -84.851,172.4 -84.934,172.4 -85.017,172.4 -85.1,171.401 -85.1,170.402 -85.1,169.403 -85.1,168.404 -85.1,167.405 -85.1,166.406 -85.1,165.407 -85.1,164.408 -85.1,163.409 -85.1,162.41 -85.1,162.41 -85.017,162.41 -84.934,162.41 -84.851,162.41 -84.768,162.41 -84.685,162.41 -84.602,162.41 -84.519,162.41 -84.436,162.41 -84.353,162.41 -84.27))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "The PI requests support for preparation of a large collection of vertebrate fossils recently recovered from the Central Transantarctic Mountains (CTAM) of Antarctica. These fossils will be used to place early Mesozoic Antarctic dinosaurs and other vertebrates into a global evolutionary, biogeographic, and faunal context; assess the degree of endemism in Triassic vertebrate faunas of Antarctica; constrain temporal relationships of the Triassic Antarctic vertebrate faunas; and refine the stratigraphic context for the Triassic Antarctic vertebrate assemblages to establish a paleoenvironmental framework. The lower and middle Triassic fossils offer a rare window on life in terrestrial environments at high-latitudes immediately after the Permian mass extinction.\n\nThe PI will use their fossils to educate the public about the geologic, climatic, and biologic history of Antarctica by visiting local schools. They will create and publish at least two new videos to the Burke Museum blog that relate the graduate student\u0027s experience of fieldwork in Antarctica. They will also update the Antarctica section on the UWBM \u0027Explore Your World\u0027 website with images and findings from their field season.\n", "east": 172.4, "geometry": ["POINT(167.405 -84.685)"], "keywords": "Antarctica; Biota; Fossil; Paleoclimate; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains; Triassic", "locations": "Transantarctic Mountains; Antarctica", "north": -84.27, "nsf_funding_programs": null, "persons": "Sidor, Christian", "project_titles": "Preparation of Vertebrate Fossils from the Triassic of Antarctica", "projects": [{"proj_uid": "p0000418", "repository": "USAP-DC", "title": "Preparation of Vertebrate Fossils from the Triassic of Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.1, "title": "Preparation of Vertebrate Fossils from the Triassic of Antarctica", "uid": "600144", "west": 162.41}, {"awards": "1303896 Kirschvink, Joseph", "bounds_geometry": ["POLYGON((-57 -63,-56.9 -63,-56.8 -63,-56.7 -63,-56.6 -63,-56.5 -63,-56.4 -63,-56.3 -63,-56.2 -63,-56.1 -63,-56 -63,-56 -63.2,-56 -63.4,-56 -63.6,-56 -63.8,-56 -64,-56 -64.2,-56 -64.4,-56 -64.6,-56 -64.8,-56 -65,-56.1 -65,-56.2 -65,-56.3 -65,-56.4 -65,-56.5 -65,-56.6 -65,-56.7 -65,-56.8 -65,-56.9 -65,-57 -65,-57 -64.8,-57 -64.6,-57 -64.4,-57 -64.2,-57 -64,-57 -63.8,-57 -63.6,-57 -63.4,-57 -63.2,-57 -63))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "The PI will collect samples to extend the magneto-stratigraphic record of late Cretaceous sediments of the James Ross Basin, Antarctica. RAPID support will allow him to take advantage of an invitation from the Instituto Antartico Argentino (IAA) to participate on an excursion to James Ross Island in the Antarctic Peninsula. The PI hopes to collect samples that will refine the position of several geomagnetic reversals between the end of the Cretaceous long normal Chron and the lower portion of Chron 31R. The Brandy Bay locality targeted by this expedition is the best place in the basin for calibrating the biostratigraphic position of the top of the Cretaceous Long Normal Chron, which is one of the most reliable correlation horizons in the entire Geological Time Scale.\n\nThe top of the Cretaceous long normal Chron is not properly correlated to southern hemisphere biostratigraphy. Locating this event will be a major addition to understanding geological time. This expedition will provide opportunities for an undergraduate student. This project is based on a productive collaboration with an Argentine scientist.", "east": -56.0, "geometry": ["POINT(-56.5 -64)"], "keywords": "Antarctica; GPS; James Ross Basin; Sample/collection Description; Sample/Collection Description; Solid Earth", "locations": "James Ross Basin; Antarctica", "north": -63.0, "nsf_funding_programs": null, "persons": "Kirschvink, Joseph", "project_titles": "Magnetostratigraphy of Cretaceous Sediments in the James Ross Island Basin, Antarctica", "projects": [{"proj_uid": "p0000419", "repository": "USAP-DC", "title": "Magnetostratigraphy of Cretaceous Sediments in the James Ross Island Basin, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Magnetostratigraphy of Cretaceous Sediments in the James Ross Island Basin, Antarctica", "uid": "600136", "west": -57.0}, {"awards": "1142156 Marschall, Horst", "bounds_geometry": ["POLYGON((-6.44 -71.93,-5.378 -71.93,-4.316 -71.93,-3.254 -71.93,-2.192 -71.93,-1.13 -71.93,-0.068 -71.93,0.994 -71.93,2.056 -71.93,3.118 -71.93,4.18 -71.93,4.18 -71.998,4.18 -72.066,4.18 -72.134,4.18 -72.202,4.18 -72.27,4.18 -72.338,4.18 -72.406,4.18 -72.474,4.18 -72.542,4.18 -72.61,3.118 -72.61,2.056 -72.61,0.994 -72.61,-0.068 -72.61,-1.13 -72.61,-2.192 -72.61,-3.254 -72.61,-4.316 -72.61,-5.378 -72.61,-6.44 -72.61,-6.44 -72.542,-6.44 -72.474,-6.44 -72.406,-6.44 -72.338,-6.44 -72.27,-6.44 -72.202,-6.44 -72.134,-6.44 -72.066,-6.44 -71.998,-6.44 -71.93))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "Geochemical studies of single mineral grains in rocks can be probed to reconstruct the history of our planet. The mineral zircon (ZrSiO4) is of unique importance in that respect because of its reliability as a geologic clock due to its strong persistence against weathering, transport and changes in temperature and pressure. Uranium-Lead (U-Pb) dating of zircon grains is, perhaps, the most frequently employed method of extracting time information on geologic processes that shaped the continental crust, and has been used to constrain the evolution of continents and mountain belts through time. In addition, the isotopic composition of the element Hafnium (Hf) in zircon is used to date when the continental crust was generated by extraction of magma from the underlying mantle. Melting of rocks in the mantle and deep in the continental crust are key processes in the evolution of the continents, and they are recorded in the Hf isotopic signatures of zircon. Although the analytical procedures for U-Pb dating and Hf isotope analyses of zircon are robust now, our understanding of zircon growth and its exchange of elements and isotopes with its surrounding rock or magma are still underdeveloped. The focus of the proposed study, therefore, is to unravel the evolution of zircon Hf isotopes in rocks that were formed deep in the Earth\u0027s crust, and more specifically, to apply these isotopic methods to rocks collected in Dronning Maud Land (DML), East Antarctica.\n\nDronning Maud Land (DML) occupied a central location during the formation of supercontinents - large landmasses made up of all the continents that exist today - more than 500 million years ago. It is currently thought that supercontinents were formed and dismembered five or six times throughout Earth\u0027s history. The area of DML is key for understanding the formation history of the last two supercontinents. The boundaries of continents that were merged to form those supercontinents are most likely hidden in DML. In this study, the isotopic composition of zircon grains recovered from DML rocks will be employed to identify these boundaries across an extensive section through the area. The rock samples were collected by the investigator during a two-month expedition to Antarctica in the austral summer of 2007-2008. The results of dating and isotope analyses of zircon of the different DML crustal domains will deliver significant insight into the regional geology of East Antarctica and its previous northern extension into Africa. This has significance for the reconstruction of the supercontinents and defining the continental boundaries in DML.\n", "east": 4.18, "geometry": ["POINT(-1.13 -72.27)"], "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Dronning Maud Land; Geochemistry; Geochronology; Solid Earth", "locations": "Antarctica; Dronning Maud Land", "north": -71.93, "nsf_funding_programs": null, "persons": "Marschall, Horst", "project_titles": "Zircon Hf Isotopes and the Continental Evolution of Dronning Maud Land, East Antacrtica", "projects": [{"proj_uid": "p0000448", "repository": "USAP-DC", "title": "Zircon Hf Isotopes and the Continental Evolution of Dronning Maud Land, East Antacrtica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -72.61, "title": "Zircon Hf Isotopes and the Continental Evolution of Dronning Maud Land, East Antarctica", "uid": "600135", "west": -6.44}, {"awards": "1139739 Hansen, Samantha", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: Numerous candidate models for the geologic processes that have shaped the Antarctic continent have been proposed. To discriminate between them, detailed images of the upper mantle structure are required; however, the only existing continental-scale images of seismic structure beneath Antarctica lack sufficient resolution to delineate important, diagnostic features. Using newly available data from various Antarctic seismic networks, the PI will employ the adaptively parameterized tomography method to develop a high-resolution, continental-scale seismic velocity model for all of Antarctica. The proposed tomography method combines regional seismic travel-time datasets in the context of a global model to create a composite continental-scale model of upper mantle structure. The proposed method allows for imaging of finer structure in areas with better seismic ray coverage while simultaneously limiting the resolution of features in regions with less coverage. This research will help advance understanding of important global processes, such as craton formation, mountain building, continental rifting and associated magmatism. Additionally, the proposed research will have important impacts on other fields of Antarctic science. Constraints provided by tomographic results can be used to develop thermal models of the lithosphere needed to characterize the history and dynamics of ice sheets. Also, further constraints on lithospheric structure are required by climate-ice models, which are focused on understanding the cooling history of the Antarctic continent.\n\nBroader impacts: The PI is a new faculty member at the University of Alabama after having been funded as a National Science Foundation Postdoctoral Fellow in Polar Regions Research. The graduate student supported by this project is new to polar research. Through the UA-Tuscaloosa Magnet School partnership program, the PI will educate K-12 students about the Antarctic environment and associated career opportunities through various online and hands-on activities. University of Alabama dedicates a significant percentage of its enrollment space to underrepresented groups.\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Geology/Geophysics - Other; Lithosphere; Seismic Tomography; Solid Earth", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Hansen, Samantha", "project_titles": "New Approach to Investigate the Seismic Velocity Structure beneath Antarctica", "projects": [{"proj_uid": "p0000354", "repository": "USAP-DC", "title": "New Approach to Investigate the Seismic Velocity Structure beneath Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "A New Approach to Investigate the Seismic Velocity Structure beneath Antarctica", "uid": "600132", "west": -180.0}, {"awards": "0838849 Bender, Michael", "bounds_geometry": ["POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "This award supports a project to generate an absolute timescale for the Allan Hills Blue Ice Area (BIA), and then to reconstruct details of past climate changes and greenhouse gas concentrations for certain time periods back to 2.5 Ma. Ice ages will be determined by applying emerging methods for absolute and relative dating of trapped air bubbles (based on Argon-40/Argon-38, delta-18O of O2, and the O2/N2 ratio). To demonstrate the potential of the Allan Hills BIAs as a paleoclimate archive trenches and ice cores will be collected for age intervals corresponding to 110-140 ka, 1 Ma, and 2.5 Ma. During the proposed two field seasons a total of 6x100 m and additional 15 m cores will be combined with trenching. The intellectual merit of the proposed activity is that the results of this work will extend the landmark work of EPICA and other deep ice coring efforts, which give records dating back to 0.8 Ma, and will complement work planned by IPICS to drill a continuous Antarctic ice core extending to 1.5 Ma. The results will help to advance understanding of major climate regimes and transitions that took place between 0-2.5 Ma, including the 40 kyr world and the mid-Pleistocene climate transition. A major long-term scientific goal is to provide a transformative approach to the collection of paleoclimate records by establishing an \u0027International Climate Park\u0027 in the Allan Hills BIA that would enable sampling of large quantities of known age ice as old as 2.5 Ma, by any interested American or foreign investigator. The broader impacts resulting from the proposed activity include training students who are well versed in advanced field, laboratory and numerical modeling methods combining geochemistry, glaciology, and paleoclimatology. We will include material relevant to our proposed research in our ongoing efforts in local education and in our outreach efforts for media. The University of Maine already has cyberinfrastructure, using state of the art web-based technology, which can provide a wide community of scientists with fast access to the results of our research. The work will contribute to the broad array of climate change studies that is informing worldwide understanding of natural and anthropogenic forced climate change, and the options for responding. This award has field work in Antarctica.\n", "east": 159.41667, "geometry": ["POINT(159.29167 -76.7)"], "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Ice Core Records; Paleoclimate; Solid Earth", "locations": "Antarctica; Allan Hills", "north": -76.66667, "nsf_funding_programs": null, "persons": "Bender, Michael", "project_titles": "Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "projects": [{"proj_uid": "p0000046", "repository": "USAP-DC", "title": "Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73333, "title": "Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "uid": "600099", "west": 159.16667}, {"awards": "1043619 Hemming, Sidney", "bounds_geometry": ["POLYGON((-180 -63.997,-179.7982 -63.997,-179.5964 -63.997,-179.3946 -63.997,-179.1928 -63.997,-178.991 -63.997,-178.7892 -63.997,-178.5874 -63.997,-178.3856 -63.997,-178.1838 -63.997,-177.982 -63.997,-177.982 -66.3324,-177.982 -68.6678,-177.982 -71.0032,-177.982 -73.3386,-177.982 -75.674,-177.982 -78.0094,-177.982 -80.3448,-177.982 -82.6802,-177.982 -85.0156,-177.982 -87.351,-178.1838 -87.351,-178.3856 -87.351,-178.5874 -87.351,-178.7892 -87.351,-178.991 -87.351,-179.1928 -87.351,-179.3946 -87.351,-179.5964 -87.351,-179.7982 -87.351,180 -87.351,172.54273 -87.351,165.08546 -87.351,157.62819 -87.351,150.17092 -87.351,142.71365 -87.351,135.25638 -87.351,127.79911 -87.351,120.34184 -87.351,112.88457 -87.351,105.4273 -87.351,105.4273 -85.0156,105.4273 -82.6802,105.4273 -80.3448,105.4273 -78.0094,105.4273 -75.674,105.4273 -73.3386,105.4273 -71.0032,105.4273 -68.6678,105.4273 -66.3324,105.4273 -63.997,112.88457 -63.997,120.34184 -63.997,127.79911 -63.997,135.25638 -63.997,142.71365 -63.997,150.17092 -63.997,157.62819 -63.997,165.08546 -63.997,172.54273 -63.997,-180 -63.997))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: The PIs proposed a provenance study of glacial deposits in the Ross Embayment that will provide a broad scale geochronologic survey of detrital minerals in till to help characterize bedrock beneath the East Antarctic ice sheet and constrain Antarctica?s glacial history. This project capitalizes on previous investments in field sampling. Analytical tools applied to single mineral grains extracted from existing collections of glacial till will generate ?fingerprints? of East Antarctic outlet glaciers and West Antarctic till to refine paleo-ice flow models for the Ross Embayment during the last glacial maximum, older records from ANDRILL cores, and to assess IRD sources in the Southern Ocean. New provenance tracers will include a suite of geochronological methods that together provide greater insights into the orogenic and erosional history the region. This project will include U/Pb of detrital zircons, (U-Th)/He on a subset of the U/Pb dated zircons, as well as Ar-Ar of detrital hornblende, mica and feldspars.\nBroader Impacts: This research will train one M.S. student at IUPUI, a Ph.D. student at Columbia, and several undergraduates at both institutions. Graduate students involved in the project will be involved in mentoring undergraduate researchers. Incorporation of research discoveries will be brought into the classroom by providing concrete examples and exercises at the appropriate level. Licht and Columbia graduate student E. Pierce are developing outreach projects with local secondary school teachers to investigate the provenance of glacial materials in their local areas. The research will have broad applicability to many fields.", "east": 105.4273, "geometry": ["POINT(143.72265 -75.674)"], "keywords": "Antarctica; East Antarctica; Geochemistry; Ross Sea; Sample/collection Description; Sample/Collection Description; Solid Earth; Southern Ocean; West Antarctica", "locations": "East Antarctica; West Antarctica; Southern Ocean; Ross Sea; Antarctica", "north": -63.997, "nsf_funding_programs": null, "persons": "Hemming, Sidney R.", "project_titles": "Collaborative Research: East Antarctic outlet glacier contributions to the Ross Sea from chronology of detrital grains", "projects": [{"proj_uid": "p0000333", "repository": "USAP-DC", "title": "Collaborative Research: East Antarctic outlet glacier contributions to the Ross Sea from chronology of detrital grains"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.351, "title": "East Antarctic outlet glacier contributions to the Ross Sea from chronology of detrital grains", "uid": "600124", "west": -177.982}, {"awards": "1043700 Harry, Dennis", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: This research will place the subsidence history of the southern Victoria Land Basin into a quantitative geodynamic context and will assess the influence of flexure associated with late Neogene volcanic loading of the crust by the Erebus Volcanic Group. This will be done by extending geodynamic models of extension in the West Antarctic Rift System to include extensional hiatuses hypothesized to have occurred during the Late Paleogene and Miocene, and by developing a new geodynamic model of volcanic loading and associated lithosphere flexure. Finite element and finite difference modeling methods will be used. In the first phase of the project, a series of extensional geodynamic models will be developed to examine the effect that proposed extensional hiatuses have on the style of extension, with emphasis placed on developing a process based understanding of the change in rift style from diffuse during the Late Cretaceous to more focused during the Cenozoic. The models will test the hypotheses that extensional hiatuses led to the change in rifting style, and will place constraints on the timing and duration of the hiatuses. The second phase of the project will use the thermal and rheological properties of the previous models to constrain the flexural rigidity of the lithosphere in order to model the flexural response to volcanic loading to test the hypotheses that flexural subsidence contributed to cyclic changes between grounded and floating ice at the ANDRILL AND-1A site, complicating interpretations of the climatic record from this core, and that flexure contributes to the stress orientation at the AND-2B site, which is inconsistent with the expected regional extensional stress orientation. Broader impacts: The project will train an undergraduate student and an M.S. student. Outreach activities include a planned series of talks at regional high schools, junior colleges, and 4-year colleges that have geology programs.\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Andrill; Antarctica; Continental Rift; Geology/Geophysics - Other; Lithosphere; Model; Ross Sea; Solid Earth; Tectonic; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica; Ross Sea", "north": -60.0, "nsf_funding_programs": null, "persons": "Harry, Dennis L.", "project_titles": "Geodynamic Models of Subsidence and Lithospheric Flexure at the ANDRILL Drill Sites: Implications for Cenozoic Tectonics and Ice Sheet History", "projects": [{"proj_uid": "p0000467", "repository": "USAP-DC", "title": "Geodynamic Models of Subsidence and Lithospheric Flexure at the ANDRILL Drill Sites: Implications for Cenozoic Tectonics and Ice Sheet History"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ANDRILL", "south": -90.0, "title": "Geodynamic Models of Subsidence and Lithospheric Flexure at the ANDRILL Drill Sites: Implications for Cenozoic Tectonics and Ice Sheet History", "uid": "600128", "west": -180.0}, {"awards": "0944475 Kaplan, Michael", "bounds_geometry": ["POLYGON((-180 -84.1,-176.97 -84.1,-173.94 -84.1,-170.91 -84.1,-167.88 -84.1,-164.85 -84.1,-161.82 -84.1,-158.79 -84.1,-155.76 -84.1,-152.73 -84.1,-149.7 -84.1,-149.7 -84.43,-149.7 -84.76,-149.7 -85.09,-149.7 -85.42,-149.7 -85.75,-149.7 -86.08,-149.7 -86.41,-149.7 -86.74,-149.7 -87.07,-149.7 -87.4,-152.73 -87.4,-155.76 -87.4,-158.79 -87.4,-161.82 -87.4,-164.85 -87.4,-167.88 -87.4,-170.91 -87.4,-173.94 -87.4,-176.97 -87.4,180 -87.4,178.12 -87.4,176.24 -87.4,174.36 -87.4,172.48 -87.4,170.6 -87.4,168.72 -87.4,166.84 -87.4,164.96 -87.4,163.08 -87.4,161.2 -87.4,161.2 -87.07,161.2 -86.74,161.2 -86.41,161.2 -86.08,161.2 -85.75,161.2 -85.42,161.2 -85.09,161.2 -84.76,161.2 -84.43,161.2 -84.1,163.08 -84.1,164.96 -84.1,166.84 -84.1,168.72 -84.1,170.6 -84.1,172.48 -84.1,174.36 -84.1,176.24 -84.1,178.12 -84.1,-180 -84.1))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: The proposed work will investigate changes in the compositional variation of glacial tills over time across two concentric sequences of Pleistocene moraines located adjacent to the heads of East Antarctic outlet glaciers in the Transantarctic Mountains (TAM). The chronologic framework for this work will be generated from cosmogenic exposure ages of boulders on prominent morainal ridges. The PIs hypothesize that variations in till composition may indicate a change in ice flow direction or a change in the composition of the original source area, while ages of the moraines provide a long-term terrestrial perspective on ice sheet dynamics. Both results are vital for modeling experiments that aim to reconstruct the East Antarctic Ice Sheet and assess its role in the global climate system and its potential impact on global sea level rise. The variation of till compositions through time also allows for a more accurate interpretation of sediment cores from the Ross Sea and the Southern Ocean. Additionally, till exposures at the head of some East Antarctic outlet glaciers have been shown to contain subglacial material derived from East Antarctic bedrock, providing a window through the ice to view East Antarctica\u0027s inaccessible bedrock. Till samples will be collected from two well-preserved sequences of moraine crests at Mt. Howe (head of Scott Glacier) and Mt. Achernar (between Beardmore and Nimrod Glaciers). Each size fraction in glacial till provides potentially valuable information, and the PIs will measure the petrography of the clast and sand fractions, quantitative X-ray diffraction on the crushed \u003c2mm fraction, elemental abundance of the silt/clay fraction, and U/Pb of detrital zircons in the sand fraction. Data collection will rely on established methods previously used in this region and the PIs will also explore new methods to assess their efficacy. On the same moraines crests sampled for provenance studies, the PIs will sample for cosmogenic surface exposure analyses to provide a chronologic framework at the sites for provenance changes through time.\nBroader Impact: The proposed research involves graduate and undergraduate training in a diverse array of laboratory methods. Students and PIs will be make presentations to community and campus groups, as well as conduct interviews with local news outlets. The proposed work also establishes a new, potentially long-term, collaboration between scientists at IUPUI and LDEO and brings a new PI (Kaplan) into the field of Antarctic Earth Sciences.", "east": -149.7, "geometry": ["POINT(-174.25 -85.75)"], "keywords": "Antarctica; Cosmogenic Dating; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains", "locations": "Antarctica; Transantarctic Mountains", "north": -84.1, "nsf_funding_programs": null, "persons": "Kaplan, Michael", "project_titles": "Collaborative Research: Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "projects": [{"proj_uid": "p0000459", "repository": "USAP-DC", "title": "Collaborative Research: Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.4, "title": "Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "uid": "600115", "west": 161.2}, {"awards": "0944489 Williams, Trevor", "bounds_geometry": ["POLYGON((-55 -58,-33.2 -58,-11.4 -58,10.4 -58,32.2 -58,54 -58,75.8 -58,97.6 -58,119.4 -58,141.2 -58,163 -58,163 -60,163 -62,163 -64,163 -66,163 -68,163 -70,163 -72,163 -74,163 -76,163 -78,141.2 -78,119.4 -78,97.6 -78,75.8 -78,54 -78,32.2 -78,10.4 -78,-11.4 -78,-33.2 -78,-55 -78,-55 -76,-55 -74,-55 -72,-55 -70,-55 -68,-55 -66,-55 -64,-55 -62,-55 -60,-55 -58))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to study the stability and dynamics of the East Antarctic ice sheet during the Pliocene in the area of the Wilkes and Aurora subglacial basins. Models indicate the ice sheet is most sensitive to warming in these low-lying areas. This study is important as there is very little direct evidence about which parts of the East Antarctic ice sheet became unstable under warm conditions. In a pilot study the PIs have shown that the isotopic geochemical signature of downcore ice-rafted debris (IRD) can be linked to continental source areas indicating which parts of the ice sheet reached the coast and calved IRD-bearing icebergs. Their initial results suggest rapid iceberg discharge from the Wilkes Land and Adelie Land coastal areas at times in the late Miocene and early Pliocene. In this study the PIs will analyze IRD from IODP sediment cores collected on the continental rise off East Antarctica. By analyzing 40Ar/39Ar ages of hornblende IRD grains, U-Pb ages of zircons, and Sm-Nd isotopes of the fine fraction of several IRD-rich layers for each core, they will be able to fingerprint continental source areas that indicate ice extent and dynamics on East Antarctica. The PIs will also carry out detailed studies across a few of these layers to characterize the anatomy of the ice-rafting event and better understand the mechanism of ice destabilization. Broader impacts: The data collected will be important for scientists in a broad variety of fields. The project will involve one undergraduate student and one summer intern at LDEO, and a graduate student at Imperial College London. The project will expose to cutting edge methodologies as well as an international research team. Data from the project will be deposited in the online databases (SedDB) and all results and methods will be made available to the scientific community through publications in peer-reviewed journals and attendance at international conferences\n", "east": 163.0, "geometry": ["POINT(54 -68)"], "keywords": "Geochronology; George V Land; IODP U1356; IODP U1361; Marine Sediments; ODP1165; Prydz Bay; Solid Earth; Southern Ocean; Wilkes Land", "locations": "Prydz Bay; Southern Ocean; Wilkes Land; George V Land", "north": -58.0, "nsf_funding_programs": null, "persons": "Williams, Trevor; Hemming, Sidney R.", "project_titles": "History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris", "projects": [{"proj_uid": "p0000353", "repository": "USAP-DC", "title": "History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris", "uid": "600116", "west": -55.0}, {"awards": "0837883 Mayewski, Paul; 9725057 Mayewski, Paul", "bounds_geometry": ["POLYGON((-76.1 -77.68,-53.253 -77.68,-30.406 -77.68,-7.559 -77.68,15.288 -77.68,38.135 -77.68,60.982 -77.68,83.829 -77.68,106.676 -77.68,129.523 -77.68,152.37 -77.68,152.37 -78.912,152.37 -80.144,152.37 -81.376,152.37 -82.608,152.37 -83.84,152.37 -85.072,152.37 -86.304,152.37 -87.536,152.37 -88.768,152.37 -90,129.523 -90,106.676 -90,83.829 -90,60.982 -90,38.135 -90,15.288 -90,-7.559 -90,-30.406 -90,-53.253 -90,-76.1 -90,-76.1 -88.768,-76.1 -87.536,-76.1 -86.304,-76.1 -85.072,-76.1 -83.84,-76.1 -82.608,-76.1 -81.376,-76.1 -80.144,-76.1 -78.912,-76.1 -77.68))"], "date_created": "Thu, 11 Jul 2013 00:00:00 GMT", "description": "This data set contains sub-annually resolved ice core chemistry data from various sites on the Antarctic Ice Sheet during the US International Trans-Antarctic Scientific Expedition (US ITASE) deployments. Researchers conducted experiments approximately every 30 - 300 km looking for clues representing climatic conditions over the past 200-1000+ years. Ice cores obtained for the glaciochemical component of the US ITASE research were analyzed for soluble major ion content and in some cases trace elements. Extreme events, such as volcanic eruptions, provide absolute age horizons within each core that are easily identified in chemical profiles. Our chemical analysis is also useful for quantifying anthropogenic impact, biogeochemical cycling, and for reconstructing past atmospheric circulation patterns.", "east": 152.37, "geometry": ["POINT(38.135 -83.84)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; ITASE; Paleoclimate; Solid Earth; WAIS", "locations": "WAIS; Antarctica", "north": -77.68, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Dixon, Daniel A.; Mayewski, Paul A.", "project_titles": "Science Management for the United States Component of the International Trans-Antarctic Expedition", "projects": [{"proj_uid": "p0000221", "repository": "USAP-DC", "title": "Science Management for the United States Component of the International Trans-Antarctic Expedition"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "US International Trans-Antarctic Scientific Expedition (US ITASE) Glaciochemical Data", "uid": "609273", "west": -76.1}, {"awards": "1039365 Rimmer, Susan", "bounds_geometry": null, "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "This project studies the Permian-Triassic extinction event as recorded in sedimentary rocks from the Transantarctic Mountains of Antarctica. Two hundred and fifty million years ago most life on Earth was wiped out in a geologic instant. The cause is a subject of great debate. Researchers have identified a unique stratigraphic section near Shackleton glacier laid down during the extinction event. Organic matter from these deposits will be analyzed by density gradient centrifugation (DGC), which will offer detailed information on the carbon isotope composition. The age of these layers will be precisely dated by U/Pb-zircon-dating of intercalated volcanics. Combined, these results will offer detailed constraints on the timing and duration of carbon isotope excursions during the extinction, and offer insight into the coupling of marine and terrestrial carbon cycles. The broader impacts of this project include graduate and undergraduate student research, K12 outreach and teacher involvement, and societal relevance of the results, since the P/T extinction may have been caused by phenomena such as methane release, which could accompany global warming.\n", "east": null, "geometry": null, "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Solid Earth; Transantarctic Mountains", "locations": "Antarctica; Transantarctic Mountains", "north": null, "nsf_funding_programs": null, "persons": "Rimmer, Susan", "project_titles": "Collaborative Research: The Permian -Triassic Transition in Antarctica: Evaluating the Rates and Variability of Carbon Isotope Fluctuatios in Terrestrial Organic Matter", "projects": [{"proj_uid": "p0000507", "repository": "USAP-DC", "title": "Collaborative Research: The Permian -Triassic Transition in Antarctica: Evaluating the Rates and Variability of Carbon Isotope Fluctuatios in Terrestrial Organic Matter"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "The Permian-Triassic Transition in Antarctica: Evaluating the Rates and Variability of Carbon Isotope Fluctuations in Terrestrial Organic Matter", "uid": "600121", "west": null}, {"awards": "0724929 Simms, Alexander", "bounds_geometry": null, "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "This data set includes optically stimulated luminescence (OSL) ages and elevations obtained from raised beach ridges across the Antarctic Peninsula.", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula; Sample/collection Description; Sample/Collection Description; Solid Earth", "locations": "Antarctic Peninsula; Antarctica", "north": null, "nsf_funding_programs": null, "persons": "Simms, Alexander", "project_titles": "SGER: Testing the use of OSL dating of beach deposits along the Antarctic Peninsula", "projects": [{"proj_uid": "p0000266", "repository": "USAP-DC", "title": "SGER: Testing the use of OSL dating of beach deposits along the Antarctic Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Optically Stimulated Luminescence Ages of Raised Beaches", "uid": "600026", "west": null}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POLYGON((-70 -63,-68.5 -63,-67 -63,-65.5 -63,-64 -63,-62.5 -63,-61 -63,-59.5 -63,-58 -63,-56.5 -63,-55 -63,-55 -63.7,-55 -64.4,-55 -65.1,-55 -65.8,-55 -66.5,-55 -67.2,-55 -67.9,-55 -68.6,-55 -69.3,-55 -70,-56.5 -70,-58 -70,-59.5 -70,-61 -70,-62.5 -70,-64 -70,-65.5 -70,-67 -70,-68.5 -70,-70 -70,-70 -69.3,-70 -68.6,-70 -67.9,-70 -67.2,-70 -66.5,-70 -65.8,-70 -65.1,-70 -64.4,-70 -63.7,-70 -63))"], "date_created": "Mon, 30 Apr 2012 00:00:00 GMT", "description": "This data set provides a 100 meter resolution surface topography Digital Elevation Model (DEM) of the Antarctic Peninsula. The DEM is based on Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) data.", "east": -55.0, "geometry": ["POINT(-62.5 -66.5)"], "keywords": "Antarctica; Antarctic Peninsula; ASTER; Digital Elevation Model; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Solid Earth", "locations": "Antarctica; Antarctic Peninsula", "north": -63.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Cook, Allison", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -70.0, "title": "Antarctic Peninsula 100 m Digital Elevation Model Derived from ASTER GDEM", "uid": "609516", "west": -70.0}, {"awards": "0838722 Reiners, Peter", "bounds_geometry": ["POLYGON((61.9 -67.28,63.218 -67.28,64.536 -67.28,65.854 -67.28,67.172 -67.28,68.49 -67.28,69.808 -67.28,71.126 -67.28,72.444 -67.28,73.762 -67.28,75.08 -67.28,75.08 -67.922,75.08 -68.564,75.08 -69.206,75.08 -69.848,75.08 -70.49,75.08 -71.132,75.08 -71.774,75.08 -72.416,75.08 -73.058,75.08 -73.7,73.762 -73.7,72.444 -73.7,71.126 -73.7,69.808 -73.7,68.49 -73.7,67.172 -73.7,65.854 -73.7,64.536 -73.7,63.218 -73.7,61.9 -73.7,61.9 -73.058,61.9 -72.416,61.9 -71.774,61.9 -71.132,61.9 -70.49,61.9 -69.848,61.9 -69.206,61.9 -68.564,61.9 -67.922,61.9 -67.28))"], "date_created": "Sun, 01 Jan 2012 00:00:00 GMT", "description": "Much of the inventory of East Antarctic bedrock geochronology, as well as a record of its erosional history, is preserved in Cenozoic sediments around its margin. This project is to use these sediments to understand their sub-ice provenance and the erosional history of the shield by measuring ages of multiple geo- and thermochronometers on single detrital crystals and on multiple crystals in detrital clasts (U/Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar). The combination of multi-chronometer ages in single grains and clasts provides a powerful fingerprint of bedrock sources, allowing us to trace provenance in Eocene fluvial sandstones through Quaternary diamicts around the margin. Multiple thermochronometric (cooling) ages in the same grains and clasts also allows us to interpret the timing and rates of erosion from these bedrock sources. Delineating a distribution of bedrock age units, their sediment transport connections, and their erosional histories over the Cenozoic, will in turn allow us to test tectonic models bearing on: (1) the origin of the Gamburtsev Subglacial Mountains, (2) fluvial and topographic evolution, and (3) the history of glacial growth and erosion.\n", "east": 75.08, "geometry": ["POINT(68.49 -70.49)"], "keywords": "Antarctica; Fission Track Thermochronology; Gamburtsev Mountains; Geochronology; Marine Sediments; NBP0101; ODP1166; ODP739; Prydz Bay; Solid Earth; Southern Ocean", "locations": "Prydz Bay; Southern Ocean; Antarctica; Gamburtsev Mountains", "north": -67.28, "nsf_funding_programs": null, "persons": "Gehrels, George; Reiners, Peter; Thomson, Stuart", "project_titles": "Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology", "projects": [{"proj_uid": "p0000506", "repository": "USAP-DC", "title": "Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -73.7, "title": "Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology", "uid": "600093", "west": 61.9}, {"awards": "0838914 Wannamaker, Philip", "bounds_geometry": ["POLYGON((141.01732 -82.13,144.910279 -82.13,148.803238 -82.13,152.696197 -82.13,156.589156 -82.13,160.482115 -82.13,164.375074 -82.13,168.268033 -82.13,172.160992 -82.13,176.053951 -82.13,179.94691 -82.13,179.94691 -82.351835,179.94691 -82.57367,179.94691 -82.795505,179.94691 -83.01734,179.94691 -83.239175,179.94691 -83.46101,179.94691 -83.682845,179.94691 -83.90468,179.94691 -84.126515,179.94691 -84.34835,176.053951 -84.34835,172.160992 -84.34835,168.268033 -84.34835,164.375074 -84.34835,160.482115 -84.34835,156.589156 -84.34835,152.696197 -84.34835,148.803238 -84.34835,144.910279 -84.34835,141.01732 -84.34835,141.01732 -84.126515,141.01732 -83.90468,141.01732 -83.682845,141.01732 -83.46101,141.01732 -83.239175,141.01732 -83.01734,141.01732 -82.795505,141.01732 -82.57367,141.01732 -82.351835,141.01732 -82.13))"], "date_created": "Sun, 01 Jan 2012 00:00:00 GMT", "description": "The investigators will examine competing hypotheses for the mechanism of extension and creation of the Transantarctic Mountains, and evolution of the thermal regimes of rifted West Antarctica and stable East Antarctica using magnetotelluric (MT) profiles. Surrounded almost entirely by ocean ridges, Antarctica is a special tectonic situation because of the need to make accommodation space for rifting in the Transantarctic region. In the MT method, temporal variations in the Earth\u0027s natural electromagnetic field are used as source fields to probe the electrical resistivity structure in the depth range of 1 to 200 km, or more. Geophysical methods, such as MT, are appropriate in Antarctica because of the predominance of thick ice cover over most of the Continent and the difficult operating environment. The proposed effort will consist of approximately 50 sites over a distance approaching 500 km with a 10 km average spacing, oriented normal to the Transantarctic Mountains (TAM), in the Beardmore glacier area. High quality MT soundings will be collected over thick ice sheets using a custom electrode preamp design, updated from previous Antarctic projects. Data acquisition will take place over two field seasons. The primary goals are three-fold: to establish the location of the deeper tectonic transition between East and West Antarctica that may be offset from the physiographic transition at the surface, using deep resistivity structure distinguish between modes of extensional upwelling and magmatism that may be vertically non-uniform, depth and magnitude of quasi-layered deep crustal low resistivity, particularly below West Antarctica, will be used to estimate crustal heat flux into the ice sheet base.\n", "east": 179.94691, "geometry": ["POINT(160.482115 -83.239175)"], "keywords": "Antarctica; Magnetotelluric; Potential Field; Solid Earth; Transantarctic Mountains", "locations": "Antarctica; Transantarctic Mountains", "north": -82.13, "nsf_funding_programs": null, "persons": "Wannamaker, Philip", "project_titles": "Rift Mechanisms and Thermal Regime of the Lithosphere across Beardmore Glacier Region, Central Transantarctic Mountains, from Magnetotelluric Measurements", "projects": [{"proj_uid": "p0000247", "repository": "USAP-DC", "title": "Rift Mechanisms and Thermal Regime of the Lithosphere across Beardmore Glacier Region, Central Transantarctic Mountains, from Magnetotelluric Measurements"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.34835, "title": "Rift Mechanisms and Thermal Regime of the Lithosphere across Beardmore Glacier Region, Central Transantarctic Mountains, from Magnetotelluric Measurements", "uid": "600102", "west": 141.01732}, {"awards": "0739781 Blythe, Ann", "bounds_geometry": ["POLYGON((155.77667 -79.793335,156.208836 -79.793335,156.641002 -79.793335,157.073168 -79.793335,157.505334 -79.793335,157.9375 -79.793335,158.369666 -79.793335,158.801832 -79.793335,159.233998 -79.793335,159.666164 -79.793335,160.09833 -79.793335,160.09833 -79.8578345,160.09833 -79.922334,160.09833 -79.9868335,160.09833 -80.051333,160.09833 -80.1158325,160.09833 -80.180332,160.09833 -80.2448315,160.09833 -80.309331,160.09833 -80.3738305,160.09833 -80.43833,159.666164 -80.43833,159.233998 -80.43833,158.801832 -80.43833,158.369666 -80.43833,157.9375 -80.43833,157.505334 -80.43833,157.073168 -80.43833,156.641002 -80.43833,156.208836 -80.43833,155.77667 -80.43833,155.77667 -80.3738305,155.77667 -80.309331,155.77667 -80.2448315,155.77667 -80.180332,155.77667 -80.1158325,155.77667 -80.051333,155.77667 -79.9868335,155.77667 -79.922334,155.77667 -79.8578345,155.77667 -79.793335))"], "date_created": "Sun, 01 Jan 2012 00:00:00 GMT", "description": "This project studies formation of the TransAntarctic Mountains (TAM) through numerical modeling based on cooling histories of apatite mineral grains. The TAM are the highest and longest rift-related mountain range in the world. Various models for their uplift have been proposed, the most provocative of which is that they are not uplifted, but instead are the eroded remnant of a plateau. This project evaluates that hypothesis by collecting apatites from around Byrd Glacier for fission track thermochronology. Results will be combined with a kinematic and thermal model to determine the TAM\u0027s structural evolution. The plateau model, if correct, implies that the Byrd Glacier originated not as a glacier-carved valley through the TAM, but as a river system flowing in the opposite direction. Given that the Byrd Glacier is a key drainage for the East Antarctic ice sheet, this result has important implications for ice sheet models and interpretation of both regional geology and sediment records. The main broader impacts are undergraduate research and a new collaboration between a primarily undergraduate and a research institution. Students will be involved in the field program, sample analyses, and numerical modeling.", "east": 160.09833, "geometry": ["POINT(157.9375 -80.1158325)"], "keywords": "Antarctica; Fission Track Thermochronology; Geochemistry; Solid Earth; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica", "north": -79.793335, "nsf_funding_programs": null, "persons": "Blythe, Ann Elizabeth; Huerta, Audrey D.", "project_titles": "Collaborative Research: Thermochronologic and modelling test for a Mesozoic West Antarctic Plateau", "projects": [{"proj_uid": "p0000677", "repository": "USAP-DC", "title": "Collaborative Research: Thermochronologic and modelling test for a Mesozoic West Antarctic Plateau"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.43833, "title": "Thermochronologic and modelling test for a Mesozoic West Antarctic Plateau", "uid": "600082", "west": 155.77667}, {"awards": "0838729 Hemming, Sidney", "bounds_geometry": ["POLYGON((-67.2 -58,-43.98 -58,-20.76 -58,2.46 -58,25.68 -58,48.9 -58,72.12 -58,95.34 -58,118.56 -58,141.78 -58,165 -58,165 -59.2,165 -60.4,165 -61.6,165 -62.8,165 -64,165 -65.2,165 -66.4,165 -67.6,165 -68.8,165 -70,141.78 -70,118.56 -70,95.34 -70,72.12 -70,48.9 -70,25.68 -70,2.46 -70,-20.76 -70,-43.98 -70,-67.2 -70,-67.2 -68.8,-67.2 -67.6,-67.2 -66.4,-67.2 -65.2,-67.2 -64,-67.2 -62.8,-67.2 -61.6,-67.2 -60.4,-67.2 -59.2,-67.2 -58))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "Much of the inventory of East Antarctic bedrock geochronology, as well as a record of its erosional history, is preserved in Cenozoic sediments around its margin. This project is to use these sediments to understand their sub-ice provenance and the erosional history of the shield by measuring ages of multiple geo- and thermochronometers on single detrital crystals and on multiple crystals in detrital clasts (U/Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar). The combination of multi-chronometer ages in single grains and clasts provides a powerful fingerprint of bedrock sources, allowing us to trace provenance in Eocene fluvial sandstones through Quaternary diamicts around the margin. Multiple thermochronometric (cooling) ages in the same grains and clasts also allows us to interpret the timing and rates of erosion from these bedrock sources. Delineating a distribution of bedrock age units, their sediment transport connections, and their erosional histories over the Cenozoic, will in turn allow us to test tectonic models bearing on: (1) the origin of the Gamburtsev Subglacial Mountains, (2) fluvial and topographic evolution, and (3) the history of glacial growth and erosion.", "east": 165.0, "geometry": ["POINT(48.9 -64)"], "keywords": "Antarctica; Fission Track Thermochronology; Gamburtsev Mountains; Geochronology; Marine Sediments; Solid Earth; Southern Ocean", "locations": "Gamburtsev Mountains; Antarctica; Southern Ocean", "north": -58.0, "nsf_funding_programs": null, "persons": "Hemming, Sidney R.", "project_titles": "Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology", "projects": [{"proj_uid": "p0000506", "repository": "USAP-DC", "title": "Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology", "uid": "600094", "west": -67.2}, {"awards": "0537609 Gee, Jeffrey", "bounds_geometry": ["POLYGON((-52.9943 -82.6146,-52.990539 -82.6146,-52.986778 -82.6146,-52.983017 -82.6146,-52.979256 -82.6146,-52.975495 -82.6146,-52.971734 -82.6146,-52.967973 -82.6146,-52.964212 -82.6146,-52.960451 -82.6146,-52.95669 -82.6146,-52.95669 -82.615118,-52.95669 -82.615636,-52.95669 -82.616154,-52.95669 -82.616672,-52.95669 -82.61719,-52.95669 -82.617708,-52.95669 -82.618226,-52.95669 -82.618744,-52.95669 -82.619262,-52.95669 -82.61978,-52.960451 -82.61978,-52.964212 -82.61978,-52.967973 -82.61978,-52.971734 -82.61978,-52.975495 -82.61978,-52.979256 -82.61978,-52.983017 -82.61978,-52.986778 -82.61978,-52.990539 -82.61978,-52.9943 -82.61978,-52.9943 -82.619262,-52.9943 -82.618744,-52.9943 -82.618226,-52.9943 -82.617708,-52.9943 -82.61719,-52.9943 -82.616672,-52.9943 -82.616154,-52.9943 -82.615636,-52.9943 -82.615118,-52.9943 -82.6146))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "This project studies remnant magnetization in igneous rocks from the Dufek igneous complex, Antarctica. Its primary goal is to understand variations in the Earth\u0027s magnetic field during the Mesozoic Dipole Low (MDL), a period when the Earth\u0027s magnetic field underwent dramatic weakening and rapid reversals. This work will resolve the MDL\u0027s timing and nature, and assess connections between reversal rate, geomagnetic intensity and directional variability, and large-scale geodynamic processes. The project also includes petrologic studies to determine cooling rate effects on magnetic signatures, and understand assembly of the Dufek as an igneous body. Poorly studied, the Dufek is amongst the world\u0027s largest intrusions and its formation is connected to the break-up of Gondwana. The broader impacts of this project include graduate and undergraduate education and international collaboration with a German and Chilean IPY project.", "east": -52.95669, "geometry": ["POINT(-52.975495 -82.61719)"], "keywords": "Antarctica; Dufek Complex; Geology/Geophysics - Other; Paleomagnetism; Solid Earth", "locations": "Antarctica", "north": -82.6146, "nsf_funding_programs": null, "persons": "Gee, Jeffrey", "project_titles": "Collaborative Research: An Integrated Geomagnetic and Petrologic Study of the Dufek Complex", "projects": [{"proj_uid": "p0000510", "repository": "USAP-DC", "title": "Collaborative Research: An Integrated Geomagnetic and Petrologic Study of the Dufek Complex"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.61978, "title": "An Integrated Geomagnetic and Petrologic Study of the Dufek Complex", "uid": "600053", "west": -52.9943}, {"awards": "0440523 Baker, Ian; 0538195 Marone, Chris; 0424589 Gogineni, S. Prasad", "bounds_geometry": ["POINT(-147.753056 61.781667)", "POINT(-83.006944 40.067222)", "POINT(147.758889 61.779444)"], "date_created": "Wed, 14 Apr 2010 00:00:00 GMT", "description": "This data set includes the results of laboratory experiments examining the constitutive properties of subglacial till, under dynamic stressing. The data include the results of shear strain and stress experiments. Testing was carried out in a servo-controlled biaxial shear device under controlled temperature and stress conditions, allowing both sliding and microstructural processes to be studied in detail. Till samples were collected from Matanuska, Alaska and from Caesar till at the Laurentide Ice Sheet. \n\nThe data are available via FTP in ASCII text format (.txt).", "east": 147.758889, "geometry": ["POINT(-147.753056 61.781667)", "POINT(-83.006944 40.067222)", "POINT(147.758889 61.779444)"], "keywords": "Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Shear Stress; Solid Earth; Strain", "locations": null, "north": 61.781667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Marone, Chris; Anandakrishnan, Sridhar", "project_titles": "Laboratory Study of Stick-Slip Behavior and Deformation Mechanics of Subglacial Till", "projects": [{"proj_uid": "p0000554", "repository": "USAP-DC", "title": "Laboratory Study of Stick-Slip Behavior and Deformation Mechanics of Subglacial Till"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": 40.067222, "title": "Laboratory Study of Stick-Slip Behavior and Deformation Mechanics of Subglacial Till", "uid": "609460", "west": -147.753056}, {"awards": "0634619 Hammer, William", "bounds_geometry": ["POINT(166 -84)"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "This award supports preparation and study of fossil dinosaurs discovered on Mt. Kirkpatrick, Antarctica, during the 2003-04 field season. The 4,000 pounds of bone bearing matrix to be processed includes new pieces of Cryolophosaurus, a 22 foot long meat eating theropod, as well as a new unnamed sauropod dinosaur and other yet to be identified taxa. This project advances our understanding of dinosaur evolution and adaptation at the beginning of the reign of the dinosaurs, the Late Triassic and Early Jurassic. This period is poorly understood due to lack of fossils, which makes these fossils from Antarctica particularly unique. Also, since these fossils are from high paleolatitudes they will contribute to our understanding of past climates and the physiologic adaptations of dinosaurs to lengthy periods of darkness. The broader impacts include outreach to the general public through museum exhibits and presentations.", "east": 166.0, "geometry": ["POINT(166 -84)"], "keywords": "Antarctica; Beardmore Glacier; Biota; Geochronology; Solid Earth", "locations": "Antarctica; Beardmore Glacier", "north": -84.0, "nsf_funding_programs": null, "persons": "Hammer, William R.", "project_titles": "Continued Research on the Jurassic Vertebrate Fauna from the Beardmore Glacier Region of Antarctica", "projects": [{"proj_uid": "p0000538", "repository": "USAP-DC", "title": "Continued Research on the Jurassic Vertebrate Fauna from the Beardmore Glacier Region of Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.0, "title": "Continued Research on the Jurassic Vertebrate Fauna from the Beardmore Glacier Region of Antarctica", "uid": "600062", "west": 166.0}, {"awards": "0538580 Hemming, Sidney", "bounds_geometry": ["POLYGON((60 -60,72 -60,84 -60,96 -60,108 -60,120 -60,132 -60,144 -60,156 -60,168 -60,180 -60,180 -61,180 -62,180 -63,180 -64,180 -65,180 -66,180 -67,180 -68,180 -69,180 -70,168 -70,156 -70,144 -70,132 -70,120 -70,108 -70,96 -70,84 -70,72 -70,60 -70,60 -69,60 -68,60 -67,60 -66,60 -65,60 -64,60 -63,60 -62,60 -61,60 -60))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "This project studies sediment from the ocean floor to understand Antarctica\u0027s geologic history. Glacially eroded from the Antarctic continent, these sediments may offer insight into the 99% Antarctica covered by ice. The work\u0027s central focus is determining crust formation ages and thermal histories for three key areas of East Antarctica--Prydz Bay, eastern Weddell Sea, and Wilkes Land--through a combination of petrography, bulk sediment geochemistry and radiogenic isotopes, as well as isotope chronology of individual mineral grains. One specific objective is characterizing the composition of the Gamburtsev Mountains through studies of Eocene fluvial sediments from Prydz Bay. In addition to furthering our understanding of the hidden terrains of Antarctica, these terrigenous sediments will also serve as a natural laboratory to evaluate the effects of continental weathering on the Hf/Nd isotope systematics of seawater. An important broader impact of the project is providing exciting research projects for graduate and postdoctoral students using state of the art techniques in geochemistry.", "east": 180.0, "geometry": ["POINT(120 -65)"], "keywords": "Antarctica; Chemistry:sediment; Chemistry:Sediment; Geochemistry; Geochronology; Isotope Data; Marine Sediments; Oceans; Prydz Bay; Solid Earth; Southern Ocean; Weddell Sea; Wilkes Land", "locations": "Antarctica; Weddell Sea; Prydz Bay; Wilkes Land; Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "van de Flierdt, Tina; Goldstein, Steven L.; Hemming, Sidney R.", "project_titles": "Antarctica\u0027s Geological History Reflected in Sedimentary Radiogenic Isotopes", "projects": [{"proj_uid": "p0000524", "repository": "USAP-DC", "title": "Antarctica\u0027s Geological History Reflected in Sedimentary Radiogenic Isotopes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Antarctica\u0027s Geological History Reflected in Sedimentary Radiogenic Isotopes", "uid": "600056", "west": 60.0}, {"awards": "0816934 Thomson, Stuart", "bounds_geometry": ["POLYGON((65 -66,72.9 -66,80.8 -66,88.7 -66,96.6 -66,104.5 -66,112.4 -66,120.3 -66,128.2 -66,136.1 -66,144 -66,144 -66.3,144 -66.6,144 -66.9,144 -67.2,144 -67.5,144 -67.8,144 -68.1,144 -68.4,144 -68.7,144 -69,136.1 -69,128.2 -69,120.3 -69,112.4 -69,104.5 -69,96.6 -69,88.7 -69,80.8 -69,72.9 -69,65 -69,65 -68.7,65 -68.4,65 -68.1,65 -67.8,65 -67.5,65 -67.2,65 -66.9,65 -66.6,65 -66.3,65 -66))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This Small Grant for Exploratory Research investigates the origin and evolution of the Gamburtsev subglacial mountains (GSM). These mountains are considered the nucleation point for Antarctica\u0027s largest ice sheets; however, being of indeterminate age, they may postdate ice sheet formation. As well, their formation could reflect tectonic events during the breakup of Gondwana. The project studies GSM-derived detrital zircon and apatite crystals from Prydz Bay obtained by the Ocean Drilling Program. Analytical work includes triple-dating thermochronometry by U/Pb, fission track, and (U/Th)/He methods. The combined technique offers insight into both high and low temperature processes, and is potentially sensitive to both the orogenic events and the subsequent cooling and exhumation due to erosion. In terms of broader impacts, this project supports research for a postdoctoral fellow.", "east": 144.0, "geometry": ["POINT(104.5 -67.5)"], "keywords": "Antarctica; Fission Track Thermochronology; Gamburtsev Mountains; Geochronology; Solid Earth", "locations": "Antarctica; Gamburtsev Mountains", "north": -66.0, "nsf_funding_programs": null, "persons": "Thomson, Stuart", "project_titles": "Collaborative Research: SGER: Triple-dating (Pb-FT-He) of Antarctic Detritus and the Origin of the Gamburtsev Mountains", "projects": [{"proj_uid": "p0000210", "repository": "USAP-DC", "title": "Collaborative Research: SGER: Triple-dating (Pb-FT-He) of Antarctic Detritus and the Origin of the Gamburtsev Mountains"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -69.0, "title": "Triple-dating (Pb-FT-He) of Antarctic Detritus and the Origin of the Gamburtsev Mountains", "uid": "600089", "west": 65.0}, {"awards": "0228842 Grew, Edward", "bounds_geometry": ["POLYGON((76 -69.3,76.05 -69.3,76.1 -69.3,76.15 -69.3,76.2 -69.3,76.25 -69.3,76.3 -69.3,76.35 -69.3,76.4 -69.3,76.45 -69.3,76.5 -69.3,76.5 -69.32,76.5 -69.34,76.5 -69.36,76.5 -69.38,76.5 -69.4,76.5 -69.42,76.5 -69.44,76.5 -69.46,76.5 -69.48,76.5 -69.5,76.45 -69.5,76.4 -69.5,76.35 -69.5,76.3 -69.5,76.25 -69.5,76.2 -69.5,76.15 -69.5,76.1 -69.5,76.05 -69.5,76 -69.5,76 -69.48,76 -69.46,76 -69.44,76 -69.42,76 -69.4,76 -69.38,76 -69.36,76 -69.34,76 -69.32,76 -69.3))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the role and fate of Boron in high-grade metamorphic rocks of the Larsemann Hills region of Antarctica. Trace elements provide valuable information on the changes sedimentary rocks undergo as temperature and pressure increase during burial. One such element, boron, is particularly sensitive to increasing temperature because of its affinity for aqueous fluids, which are lost as rocks are buried. Boron contents of unmetamorphosed pelitic sediments range from 20 to over 200 parts per million, but rarely exceed 5 parts per million in rocks subjected to conditions of the middle and lower crust, that is, temperatures of 700 degrees C or more in the granulite-facies, which is characterized by very low water activities at pressures of 5 to 10 kbar (18-35 km burial). Devolatization reactions with loss of aqueous fluid and partial melting with removal of melt have been cited as primary causes for boron depletion under granulite-facies conditions. Despite the pervasiveness of both these processes, rocks rich in boron are locally found in the granulite-facies, that is, there are mechanisms for retaining boron during the metamorphic process. The Larsemann Hills, Prydz Bay, Antarctica, are a prime example. More than 20 lenses and layered bodies containing four borosilicate mineral species crop out over a 50 square kilometer area, which thus would be well suited for research on boron-rich granulite-facies metamorphic rocks. While most investigators have focused on the causes for loss of boron, this work will investigate how boron is retained during high-grade metamorphism. Field observations and mapping in the Larsemann Hills, chemical analyses of minerals and their host rocks, and microprobe age dating will be used to identify possible precursors and deduce how the precursor materials recrystallized into borosilicate rocks under granulite-facies conditions. \n\nThe working hypothesis is that high initial boron content facilitates retention of boron during metamorphism because above a certain threshold boron content, a mechanism \u0027kicks in\u0027 that facilitates retention of boron in metamorphosed rocks. For example, in a rock with large amounts of the borosilicate tourmaline, such as stratabound tourmalinite, the breakdown of tourmaline to melt could result in the formation of prismatine and grandidierite, two borosilicates found in the Larsemann Hills. This situation is rarely observed in rocks with modest boron content, in which breakdown of tourmaline releases boron into partial melts, which in turn remove boron when they leave the system. Stratabound tourmalinite is associated with manganese-rich quartzite, phosphorus-rich rocks and sulfide concentrations that could be diagnostic for recognizing a tourmalinite protolith in a highly metamorphosed complex where sedimentary features have been destroyed by deformation. Because partial melting plays an important role in the fate of boron during metamorphism, our field and laboratory research will focus on the relationship between the borosilicate units, granite pegmatites and other granitic intrusives. The results of our study will provide information on cycling of boron at deeper levels in the Earth\u0027s crust and on possible sources of boron for granites originating from deep-seated rocks. An undergraduate student will participate in the electron microprobe age-dating of monazite and xenotime as part of a senior project, thereby integrating the proposed research into the educational mission of the University of Maine. In response to a proposal for fieldwork, the Australian Antarctic Division, which maintains Davis station near the Larsemann Hills, has indicated that they will support the Antarctic fieldwork.", "east": 76.5, "geometry": ["POINT(76.25 -69.4)"], "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Geochronology; Solid Earth", "locations": "Antarctica", "north": -69.3, "nsf_funding_programs": null, "persons": "Grew, Edward", "project_titles": "Boron in Antarctic granulite-facies rocks: under what conditions is boron retained in the middle crust?", "projects": [{"proj_uid": "p0000431", "repository": "USAP-DC", "title": "Boron in Antarctic granulite-facies rocks: under what conditions is boron retained in the middle crust?"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -69.5, "title": "Boron in Antarctic granulite-facies rocks: under what conditions is boron retained in the middle crust?", "uid": "600030", "west": 76.0}, {"awards": "0440954 Miller, Molly", "bounds_geometry": ["POLYGON((159 -76.61667,159.05 -76.61667,159.1 -76.61667,159.15 -76.61667,159.2 -76.61667,159.25 -76.61667,159.3 -76.61667,159.35 -76.61667,159.4 -76.61667,159.45 -76.61667,159.5 -76.61667,159.5 -76.630003,159.5 -76.643336,159.5 -76.656669,159.5 -76.670002,159.5 -76.683335,159.5 -76.696668,159.5 -76.710001,159.5 -76.723334,159.5 -76.736667,159.5 -76.75,159.45 -76.75,159.4 -76.75,159.35 -76.75,159.3 -76.75,159.25 -76.75,159.2 -76.75,159.15 -76.75,159.1 -76.75,159.05 -76.75,159 -76.75,159 -76.736667,159 -76.723334,159 -76.710001,159 -76.696668,159 -76.683335,159 -76.670002,159 -76.656669,159 -76.643336,159 -76.630003,159 -76.61667))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project studies fossils from two to three hundred million year old rocks in the Allan Hills area of Antarctica. Similar deposits from lower latitudes have been used to develop a model of Permo-Triassic climate, wherein melting of continental glaciers in the early Permian leads to the establishment of forests in a cold, wet climate. Conditions became warmer and dryer by the early Triassic, inhibiting plant growth until a moistening climate in the late Triassic allowed plant to flourish once again. This project will test and refine this model and investigate the general effects of climate change on landscapes and ecosystems using the unique exposures and well-preserved fossil and sediment records in the Allan Hills area. The area will be searched for fossil forests, vertebrate tracks and burrows, arthropod trackways, and subaqueously produced biogenic structures, which have been found in other areas of Antarctica. Finds will be integrated with previous paleobiologic studies to reconstruct and interpret ecosystems and their changes. Structures and rock types documenting the end phases of continental glaciation and other major episodic sedimentations will also be described and interpreted. This project contributes to understanding the: (1) evolution of terrestrial and freshwater ecosystems and how they were affected by the end-Permian extinction, (2) abundance and diversity of terrestrial and aquatic arthropods at high latitudes, (3) paleogeographic distribution and evolution of vertebrates and invertebrates as recorded by trace and body fossils; and (3) response of landscapes to changes in climate. In terms of broader impacts, this project will provide an outstanding introduction to field research for graduate and undergraduate students, and generate related opportunities for several undergraduates. It will also stimulate exchange of ideas among research and primarily undergraduate institutions. Novel outreach activities are also planned to convey Earth history to the general public, including a short film on the research process and products, and paintings by a professional scientific illustrator of Permo-Traissic landscapes and ecosystems.", "east": 159.5, "geometry": ["POINT(159.25 -76.683335)"], "keywords": "Allan Hills; Antarctica; Paleontology; Sample/collection Description; Sample/Collection Description; Solid Earth", "locations": "Allan Hills; Antarctica", "north": -76.61667, "nsf_funding_programs": null, "persons": "Miller, Molly", "project_titles": "Collaborative Research: Reconstructing the High Latitude Permian-Triassic: Life, Landscapes, and Climate Recorded in the Allan Hills, South Victoria Land, Antarctica", "projects": [{"proj_uid": "p0000207", "repository": "USAP-DC", "title": "Collaborative Research: Reconstructing the High Latitude Permian-Triassic: Life, Landscapes, and Climate Recorded in the Allan Hills, South Victoria Land, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.75, "title": "Reconstructing the High Latitude Permian-Triassic: Life, Landscapes, and Climate Recorded in the Allan Hills, South Victoria Land, Antarctica", "uid": "600045", "west": 159.0}, {"awards": "0536526 Le Masurier, Wesley", "bounds_geometry": ["POLYGON((-136 -73,-133.4 -73,-130.8 -73,-128.2 -73,-125.6 -73,-123 -73,-120.4 -73,-117.8 -73,-115.2 -73,-112.6 -73,-110 -73,-110 -73.425,-110 -73.85,-110 -74.275,-110 -74.7,-110 -75.125,-110 -75.55,-110 -75.975,-110 -76.4,-110 -76.825,-110 -77.25,-112.6 -77.25,-115.2 -77.25,-117.8 -77.25,-120.4 -77.25,-123 -77.25,-125.6 -77.25,-128.2 -77.25,-130.8 -77.25,-133.4 -77.25,-136 -77.25,-136 -76.825,-136 -76.4,-136 -75.975,-136 -75.55,-136 -75.125,-136 -74.7,-136 -74.275,-136 -73.85,-136 -73.425,-136 -73))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project uses geochemical studies to determine the origin of volcanic rocks from Marie Byrd Land (MBL), Antarctica. Surprisingly, adjacent volcanoes in the MBL have dramatically different compositions, ranging from phonolite to trachyte to rhyolite. This diversity offers an opportunity to constrain the processes responsible for generating silica oversaturated and undersaturated magmas in a single geologic setting. Previous work suggests that the most obvious and simplest explanation--crustal contamination--is not a significant factor, and that polybaric fractional crystallization is the major cause. This study evaluates these factors through analyses and interpretation of trace and rare earth element abundances, as well as Sr and Nd isotopic ratios. The broader impacts include outreach programs to the Girl Scouts of America, and dissemination of results through publications and meetings.", "east": -110.0, "geometry": ["POINT(-123 -75.125)"], "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Intracontinental Magmatism; IntraContinental Magmatism; Marie Byrd Land; Solid Earth", "locations": "Marie Byrd Land; Antarctica", "north": -73.0, "nsf_funding_programs": null, "persons": "Le Masurier, Wesley", "project_titles": "Geochemistry and Petrologic Evolution of Felsic Volcanoes in Western Marie Byrd Land, Antarctica", "projects": [{"proj_uid": "p0000534", "repository": "USAP-DC", "title": "Geochemistry and Petrologic Evolution of Felsic Volcanoes in Western Marie Byrd Land, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.25, "title": "Geochemistry and Petrologic Evolution of Felsic Volcanoes in Western Marie Byrd Land, Antarctica", "uid": "600051", "west": -136.0}, {"awards": "0538195 Marone, Chris", "bounds_geometry": null, "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This award supports a project to conduct laboratory experiments and numerical modeling to determine the constitutive properties of subglacial till under dynamic stressing and to test the hypothesis that granular properties of till are sufficient, when coupled elastically to a large ice stream, to reproduce the field observations of triggered slip and subglacial seismicity. Testing will be carried out in a servo-controlled biaxial shear device under controlled temperature and stress conditions, which will allow both sliding and microstructural processes to be studied in detail. The main focus of the work will be on laboratory measurements. In addition, we will construct continuum models to evaluate whether our results can predict complex ice sheet motions and observed characteristics of subglacial seismicity. In terms of broader impacts, the proposed work will encourage interactions between the rock-mechanics and glaciology communities and will bring together members of different scientific backgrounds and vocabularies, but similar problems and data. The project will train undergraduate and graduate students at Penn State University and the scientists involved plan to give presentations to grade school classes, scout groups, and at community open houses. Results will be presented at professional meetings and will be published in a timely manner. The work will result in a better understanding of glacial motion and the physics of earthquake slip, which is essential for understanding ice sheet dynamics and earthquake hazard.", "east": null, "geometry": null, "keywords": "Antarctica; Glacial Till; Glaciers/ice Sheet; Glaciers/Ice Sheet; Lab Experiment; Marine Sediments; Physical Properties; Solid Earth", "locations": "Antarctica", "north": null, "nsf_funding_programs": null, "persons": "Marone, Chris; Anandakrishnan, Sridhar", "project_titles": "Laboratory Study of Stick-Slip Behavior and Deformation Mechanics of Subglacial Till", "projects": [{"proj_uid": "p0000554", "repository": "USAP-DC", "title": "Laboratory Study of Stick-Slip Behavior and Deformation Mechanics of Subglacial Till"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Laboratory Study of Stick-Slip Behavior and Deformation Mechanics of Subglacial Till", "uid": "600054", "west": null}, {"awards": "0739452 Mukhopadhyay, Sujoy", "bounds_geometry": ["POLYGON((161 -76,161.2 -76,161.4 -76,161.6 -76,161.8 -76,162 -76,162.2 -76,162.4 -76,162.6 -76,162.8 -76,163 -76,163 -76.2,163 -76.4,163 -76.6,163 -76.8,163 -77,163 -77.2,163 -77.4,163 -77.6,163 -77.8,163 -78,162.8 -78,162.6 -78,162.4 -78,162.2 -78,162 -78,161.8 -78,161.6 -78,161.4 -78,161.2 -78,161 -78,161 -77.8,161 -77.6,161 -77.4,161 -77.2,161 -77,161 -76.8,161 -76.6,161 -76.4,161 -76.2,161 -76))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project seeks to answer a simple question: how old are potholes and related geomorphic features found in the uplands of the McMurdo Dry Valleys, Antarctica? Some research suggests that they are over ten million years old and date the growth of the East Antarctic Ice Sheet, the world\u0027s largest. However, some evidence suggests that these are young, erosional features that continuing to evolve to this day. This project uses cosmogenic nuclide dating to determine the age of the pothole floors. The results are important for determining the ice sheet?s history and interpreting the O-isotope record from the marine sediment cores, key records of global climate. Broader impacts include K12 outreach and incorporation of outcomes into university courses.", "east": 163.0, "geometry": ["POINT(162 -77)"], "keywords": "Antarctica; Cosmogenic Dating; Dry Valleys; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Paleoclimate; Sample/collection Description; Sample/Collection Description; Solid Earth", "locations": "Dry Valleys; Antarctica", "north": -76.0, "nsf_funding_programs": null, "persons": "Mukhopadhyay, Sujoy", "project_titles": "Landform Evolution in the Dry Valleys and its implications for Miocene-Pliocene Climate Change in Antarctica", "projects": [{"proj_uid": "p0000461", "repository": "USAP-DC", "title": "Landform Evolution in the Dry Valleys and its implications for Miocene-Pliocene Climate Change in Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Landform Evolution in the Dry Valleys and its implications for Miocene-Pliocene Climate Change in Antarctica", "uid": "600074", "west": 161.0}, {"awards": "0739693 Ashworth, Allan", "bounds_geometry": ["POLYGON((160 -77,160.2 -77,160.4 -77,160.6 -77,160.8 -77,161 -77,161.2 -77,161.4 -77,161.6 -77,161.8 -77,162 -77,162 -77.1,162 -77.2,162 -77.3,162 -77.4,162 -77.5,162 -77.6,162 -77.7,162 -77.8,162 -77.9,162 -78,161.8 -78,161.6 -78,161.4 -78,161.2 -78,161 -78,160.8 -78,160.6 -78,160.4 -78,160.2 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project studies the last vestiges of life in Antarctica from exceptionally well-preserved fossils of tundra life--mosses, diatoms, ostracods, Nothofagus leaves, wood, and insect remains recently discovered in ancient lake sediments from the McMurdo Dry Valleys. The area will be studied by an interdisciplinary team to elucidate information about climate and biogeography. These deposits offer unique and direct information about the characteristics of Antarctica during a key period in its history, the time when it was freezing. This information is critical for correlation with indirect proxies, such as though obtained from drill cores, for climate and state of the ice sheet. The results will also help understand the origin and migration of similar organisms found in South America, India and Australia. In terms of broader impacts, this project supports an early career researcher, undergraduate and graduate student research, various forms of outreach to K12 students, and extensive international collaboration. The work also has societal relevance in that the outcomes will offer direct constraints on Antarctica\u0027s ice sheet during a time with atmospheric CO2 contents similar to those of the earth in the coming centuries, and thus may help predictive models of sea level rise.", "east": 162.0, "geometry": ["POINT(161 -77.5)"], "keywords": "Antarctica; Geochronology; Geology/Geophysics - Other; GPS; Solid Earth", "locations": "Antarctica", "north": -77.0, "nsf_funding_programs": null, "persons": "Ashworth, Allan; Lewis, Adam", "project_titles": "Collaborative Research: Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains", "projects": [{"proj_uid": "p0000188", "repository": "USAP-DC", "title": "Collaborative Research: Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains", "uid": "600081", "west": 160.0}, {"awards": "0817163 Reiners, Peter", "bounds_geometry": ["POLYGON((72 -66,72.3 -66,72.6 -66,72.9 -66,73.2 -66,73.5 -66,73.8 -66,74.1 -66,74.4 -66,74.7 -66,75 -66,75 -66.3,75 -66.6,75 -66.9,75 -67.2,75 -67.5,75 -67.8,75 -68.1,75 -68.4,75 -68.7,75 -69,74.7 -69,74.4 -69,74.1 -69,73.8 -69,73.5 -69,73.2 -69,72.9 -69,72.6 -69,72.3 -69,72 -69,72 -68.7,72 -68.4,72 -68.1,72 -67.8,72 -67.5,72 -67.2,72 -66.9,72 -66.6,72 -66.3,72 -66))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This Small Grant for Exploratory Research investigates the origin and evolution of the Gamburtsev subglacial mountains (GSM). These mountains are considered the nucleation point for Antarctica\u0027s largest ice sheets; however, being of indeterminate age, they may postdate ice sheet formation. As well, their formation could reflect tectonic events during the breakup of Gondwana. The project studies GSM-derived detrital zircon and apatite crystals from Prydz Bay obtained by the Ocean Drilling Program. Analytical work includes triple-dating thermochronometry by U/Pb, fission track, and (U/Th)/He methods. The combined technique offers insight into both high and low temperature processes, and is potentially sensitive to both the orogenic events and the subsequent cooling and exhumation due to erosion. In terms of broader impacts, this project supports research for a postdoctoral fellow.", "east": 75.0, "geometry": ["POINT(73.5 -67.5)"], "keywords": "Antarctica; Gamburtsev Mountains; Geochronology; Marine Sediments; NBP0101; ODP1166; Prydz Bay; Solid Earth; Southern Ocean", "locations": "Antarctica; Southern Ocean; Prydz Bay; Gamburtsev Mountains", "north": -66.0, "nsf_funding_programs": null, "persons": "Gehrels, George; Reiners, Peter", "project_titles": "Collaborative Research: SGER: Triple-dating (Pb-FT-He) of Antarctic Detritus and the Origin of the Gamburtsev Mountains", "projects": [{"proj_uid": "p0000210", "repository": "USAP-DC", "title": "Collaborative Research: SGER: Triple-dating (Pb-FT-He) of Antarctic Detritus and the Origin of the Gamburtsev Mountains"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -69.0, "title": "Triple-dating (Pb-FT-He) of Antarctic Detritus and the Origin of the Gamburtsev Mountains", "uid": "600090", "west": 72.0}, {"awards": "0230197 Holt, John", "bounds_geometry": ["POLYGON((-134.9 -71.7,-129.86 -71.7,-124.82 -71.7,-119.78 -71.7,-114.74 -71.7,-109.7 -71.7,-104.66 -71.7,-99.62 -71.7,-94.58 -71.7,-89.54 -71.7,-84.5 -71.7,-84.5 -72.7,-84.5 -73.7,-84.5 -74.7,-84.5 -75.7,-84.5 -76.7,-84.5 -77.7,-84.5 -78.7,-84.5 -79.7,-84.5 -80.7,-84.5 -81.7,-89.54 -81.7,-94.58 -81.7,-99.62 -81.7,-104.66 -81.7,-109.7 -81.7,-114.74 -81.7,-119.78 -81.7,-124.82 -81.7,-129.86 -81.7,-134.9 -81.7,-134.9 -80.7,-134.9 -79.7,-134.9 -78.7,-134.9 -77.7,-134.9 -76.7,-134.9 -75.7,-134.9 -74.7,-134.9 -73.7,-134.9 -72.7,-134.9 -71.7))"], "date_created": "Wed, 25 Oct 2006 00:00:00 GMT", "description": "This data set includes 5 km gridded data from the Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA) conducted during the 2004-2005 austral summer. Investigators derived maps of the ice sheet surface and subglacial topography, which covers the entire catchments of both the Thwaites Glacier and the Pine Islands Glacier, from airborne survey systems mounted on a Twin Otter aircraft. The surveys had sufficient density to identify critical ice dynamic transitions within the Amundsen Sea Embayment (ASE). \n\nThe ASE is the only major drainage to exhibit significant elevation change over the period of available satellite observations. Modeling of the Western Antarctic Ice Sheet (WAIS) deglaciation pinpointed the Pine Island Glacier and the Thwaites Glacier, which comprise a major portion of the ASE, as the most vulnerable features of the WAIS. Present knowledge of the ice thickness and subglacial boundary conditions in the ASE are insufficient to understand its evolution or its sensitivity to climatic change, and it is not yet determined whether these changes are evidence of ongoing deglaciation or simply a fluctuation that does not threaten the equilibrium of the ice sheet. This research will support the efforts of a community of United States and international researchers to assess the present and predict the future behavior of the ice sheet in the ASE. \n\nThese data are available via FTP.", "east": -84.5, "geometry": ["POINT(-109.7 -76.7)"], "keywords": "AGASEA; Airborne Radar; Amundsen Sea; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Solid Earth", "locations": "Antarctica; Amundsen Sea", "north": -71.7, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Holt, John W.; Blankenship, Donald D.; Morse, David L.; Vaughan, David G.; Corr, Hugh F. J.; Young, Duncan A.", "project_titles": "Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA)", "projects": [{"proj_uid": "p0000243", "repository": "USAP-DC", "title": "Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -81.7, "title": "Subglacial Topography: Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica", "uid": "609292", "west": -134.9}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 02 Nov 2005 00:00:00 GMT", "description": "The MODIS Mosaic of Antarctica 2003-2004 (MOA2004) Image Map consists of two cloud-free digital image maps that show mean surface morphology and a quantitative measure of optical snow grain size on the Antarctic continent and surrounding islands. The 260 orbit swaths used to create the 2003/2004 MOA Surface Morphology Image Map and the 2003/2004 MOA Grain Size Image Map were acquired 20 November 2003 through 29 February 2004 by the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on board the NASA EOS Aqua and Terra satellites. The 122 orbit swaths used to create the 2003 MOA Grain Size Image Map were acquired 1 November 2003 through 17 December 2003. Vector data sets with the corresponding coastlines, ice sheet grounding lines, and islands are also provided.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; MODIS; Sample/collection Description; Sample/Collection Description; Solid Earth", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Haran, Terry; Bohlander, Jennifer; Scambos, Ted; Painter, Thomas; Fahnestock, Mark", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "MODIS Mosaic of Antarctica 2003-2004 (MOA2004) Image Map", "uid": "609280", "west": -180.0}, {"awards": "9120464 Blankenship, Donald; 9319369 Blankenship, Donald; 9319379 Blankenship, Donald; 9911617 Blankenship, Donald", "bounds_geometry": ["POLYGON((-90 -68.73,-72 -68.73,-54 -68.73,-36 -68.73,-18 -68.73,0 -68.73,18 -68.73,36 -68.73,54 -68.73,72 -68.73,90 -68.73,90 -69.357,90 -69.984,90 -70.611,90 -71.238,90 -71.865,90 -72.492,90 -73.119,90 -73.746,90 -74.373,90 -75,72 -75,54 -75,36 -75,18 -75,0 -75,-18 -75,-36 -75,-54 -75,-72 -75,-90 -75,-90 -74.373,-90 -73.746,-90 -73.119,-90 -72.492,-90 -71.865,-90 -71.238,-90 -70.611,-90 -69.984,-90 -69.357,-90 -68.73))"], "date_created": "Tue, 13 Jul 2004 00:00:00 GMT", "description": "The data that the Support Office for Aerogeophysical Research (SOAR) provides include various aerogeophysical measurements taken in the West Antarctic Ice Shelf (WAIS) from 1994 to 2001. \n\nThe instruments used in experiments include ice-penetrating radar, laser altimetry and magnetics, and an integrated aerogeophysical platform that includes airborne gravity with carrier-phase GPS to support kinematic differential positioning.\n\nSOAR is a part of the University of Texas Institute for Geophysics (UTIG) and provides several types of data associated with various campaigns over the years. This material is based on work supported by the National Science Foundation under Grants: OPP-9120464, 9319369, 9319379, and 9911617.", "east": 90.0, "geometry": ["POINT(-180 -71.865)"], "keywords": "Airborne Radar; Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Navigation; Potential Field; SOAR; Solid Earth", "locations": "Antarctica", "north": -68.73, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Blankenship, Donald D.; Morse, David L.; Holt, John W.; Dalziel, Ian W.", "project_titles": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR)", "projects": [{"proj_uid": "p0000125", "repository": "USAP-DC", "title": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.0, "title": "Antarctic Aerogeophysics Data", "uid": "609240", "west": -90.0}, {"awards": "0087151 Cole-Dai, Jihong", "bounds_geometry": ["POINT(0 -90)"], "date_created": "Fri, 09 Apr 2004 00:00:00 GMT", "description": "This data set contains concentrations of soluble chemical species (ions) within a 120 m ice core retrieved at the South Pole station in 2001. The ice core was dated with annual resolution using annual layer counting. Investigators measured chemical species, ions, and volcanic deposits found in the cores. The analysis was conducted at South Dakota State University between 2001 and 2003. Data are available in Microsoft Excel or ASCII text format via FTP from NSIDC.", "east": 0.0, "geometry": ["POINT(0 -90)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Solid Earth; South Pole", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Cole-Dai, Jihong", "project_titles": "A Sulfate-based Volcanic Record from South Pole Ice Cores", "projects": [{"proj_uid": "p0000167", "repository": "USAP-DC", "title": "A Sulfate-based Volcanic Record from South Pole Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Sulfate-Based Volcanic Record from South Pole Ice Core", "uid": "609215", "west": 0.0}, {"awards": "9615347 Conway, Howard", "bounds_geometry": ["POLYGON((-161.5307 -79.3539,-161.3584 -79.3539,-161.1861 -79.3539,-161.0138 -79.3539,-160.8415 -79.3539,-160.6692 -79.3539,-160.4969 -79.3539,-160.3246 -79.3539,-160.1523 -79.3539,-159.98 -79.3539,-159.8077 -79.3539,-159.8077 -79.37757,-159.8077 -79.40124,-159.8077 -79.42491,-159.8077 -79.44858,-159.8077 -79.47225,-159.8077 -79.49592,-159.8077 -79.51959,-159.8077 -79.54326,-159.8077 -79.56693,-159.8077 -79.5906,-159.98 -79.5906,-160.1523 -79.5906,-160.3246 -79.5906,-160.4969 -79.5906,-160.6692 -79.5906,-160.8415 -79.5906,-161.0138 -79.5906,-161.1861 -79.5906,-161.3584 -79.5906,-161.5307 -79.5906,-161.5307 -79.56693,-161.5307 -79.54326,-161.5307 -79.51959,-161.5307 -79.49592,-161.5307 -79.47225,-161.5307 -79.44858,-161.5307 -79.42491,-161.5307 -79.40124,-161.5307 -79.37757,-161.5307 -79.3539))"], "date_created": "Fri, 23 May 2003 00:00:00 GMT", "description": "This data set consists of bedrock and surface elevation readings taken by ground penetrating radar and Global Positioning System (GPS) on Roosevelt Island, an ice dome within the Ross Ice Shelf. Locations were validated by GPS readings of poles set in the surface snow. The data was collected between November and December, 1997.\n\nData are available via ftp, and are provided in a text file with an accompanying file that provides GPS locations. Surface and bedrock elevations are given in meters above WGS84.", "east": -159.8077, "geometry": ["POINT(-160.6692 -79.47225)"], "keywords": "Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Roosevelt Island; Solid Earth", "locations": "Antarctica; Roosevelt Island", "north": -79.3539, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Conway, Howard", "project_titles": "Radar Investigations of Former Shear Margins: Roosevelt Island and Ice Stream C", "projects": [{"proj_uid": "p0000164", "repository": "USAP-DC", "title": "Radar Investigations of Former Shear Margins: Roosevelt Island and Ice Stream C"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.5906, "title": "Roosevelt Island Bedrock and Surface Elevations", "uid": "609140", "west": -161.5307}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Shear Wave Velocity of the Antarctic Upper Mantle from Full Waveform Inversion and Long Period Ambient Seismic Noise
|
1643873 1643798 |
2023-10-16 | Emry, Erica |
Collaborative Research: Imaging Seismic Heterogeneity within the Antarctic Mantle with Full Waveform Ambient Noise Tomography |
This dataset provides the shear wave velocity model resulting from a full-waveform inversion that was constrained using long-period empirical Green's functions extracted from ambient seismic noise. These results were presented by Emry and Hansen at the 2022 Fall Meeting of the American Geophysical Union. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Volcanological and Petrological measurements on Mt. Early and Sheridan Bluff volcanoes, upper Scott Glacier, Antarctica
|
1443576 |
2020-06-05 | Panter, Kurt |
Investigating Early Miocene Sub-ice Volcanoes in Antarctica for Improved Modeling and understanding of a Large Magmatic Province |
Mt. Early and Sheridan Bluff (87°S) are the above ice expression of Earth’s southernmost volcanic field that lies approximately 300 km from the South Pole. The dataset supplies the locations and lithological descriptions of the units that the samples were collected from for dating and petrological study. Fundamental compositional information on the mafic volcanic rock samples include whole rock MgO concentrations (wt.%), the forsterite content of olivine and the oxygen isotopic composition of olivine. The dataset also provides a record of what samples have been analyzed for major and trace elements by XRF and ICP-MS, mineral chemistry by EMPA, radiogenic isotopes of Sr, Nd and Pb on whole rock powders by ICP-MS and dating by 40Ar/39Ar method. | ["POLYGON((-154.1 -86.9,-154.03 -86.9,-153.96 -86.9,-153.89 -86.9,-153.82 -86.9,-153.75 -86.9,-153.68 -86.9,-153.61 -86.9,-153.54 -86.9,-153.47 -86.9,-153.4 -86.9,-153.4 -86.92,-153.4 -86.94,-153.4 -86.96,-153.4 -86.98,-153.4 -87,-153.4 -87.02,-153.4 -87.04,-153.4 -87.06,-153.4 -87.08,-153.4 -87.1,-153.47 -87.1,-153.54 -87.1,-153.61 -87.1,-153.68 -87.1,-153.75 -87.1,-153.82 -87.1,-153.89 -87.1,-153.96 -87.1,-154.03 -87.1,-154.1 -87.1,-154.1 -87.08,-154.1 -87.06,-154.1 -87.04,-154.1 -87.02,-154.1 -87,-154.1 -86.98,-154.1 -86.96,-154.1 -86.94,-154.1 -86.92,-154.1 -86.9))"] | ["POINT(-153.75 -87)"] | false | false |
Earthquake Sequence Dynamics at the Interface Between an Elastic Layer and Underlying Half-Space in Antiplane Shear
|
1656518 1542885 |
2020-05-11 | Abrahams, Lauren |
Collaborative Research: Characterizing Brittle Failure and Fracture Propagation in Fast Ice Sliding with Dynamic Rupture Models based on Whillans Ice Stream Seismic/Geodetic Data |
We quantify sliding stability and rupture styles for a horizontal interface between an elastic layer and stiffer elastic half-space with a free surface on top and rate-and-state friction on the interface. Specific motivation (and model parameters) comes from quasi-periodic slow slip events on the Whillans Ice Plain in West Antarctica. We quantify the influence of layer thickness on sliding stability, specifically whether steady loading of the system produces steady sliding or sequences of stick-slip events. This dataset contains input files from different parts of parameter space to demonstrate different styles of slip (steady sliding, slow slip sequences, and fast slip sequences). | [] | [] | false | false |
SOAR-Lake Vostok survey magnetic anomaly data
|
9978236 9911617 |
2020-04-28 | Studinger, Michael S.; Bell, Robin |
Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR) Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work |
Processed Magnetometer Data acquired during the SOAR Twin Otter expedition SOAR-LVS (2000) This data set was acquired with a Magnetometer during SOAR Twin Otter expedition SOAR-LVS conducted in 2000 (Chief Scientist: Dr. Robin Bell; Investigator(s): Dr. Robin Bell and Dr. Michael Studinger). These data files are of ASCII format and include IGRF Anomaly Magnetic data and were processed after data collection. Data were acquired as part of the project(s): SOAR-Lake Vostok Survey (LVS) and Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work | ["POLYGON((101.5 -75.5,102.15 -75.5,102.8 -75.5,103.45 -75.5,104.1 -75.5,104.75 -75.5,105.4 -75.5,106.05 -75.5,106.7 -75.5,107.35 -75.5,108 -75.5,108 -75.85,108 -76.2,108 -76.55,108 -76.9,108 -77.25,108 -77.6,108 -77.95,108 -78.3,108 -78.65,108 -79,107.35 -79,106.7 -79,106.05 -79,105.4 -79,104.75 -79,104.1 -79,103.45 -79,102.8 -79,102.15 -79,101.5 -79,101.5 -78.65,101.5 -78.3,101.5 -77.95,101.5 -77.6,101.5 -77.25,101.5 -76.9,101.5 -76.55,101.5 -76.2,101.5 -75.85,101.5 -75.5))"] | ["POINT(104.75 -77.25)"] | false | false |
SOAR-Lake Vostok Survey Gravity data
|
9978236 9911617 |
2020-04-28 | Studinger, Michael S.; Bell, Robin |
Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR) Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work |
Processed Gravimeter Data acquired during the SOAR Twin Otter expedition SOAR-LVS (2000). This data set was acquired with a Gravimeter during SOAR Twin Otter expedition SOAR-LVS conducted in 2000 (Investigator(s): Dr. Robin Bell and Dr. Michael Studinger). These data files are of ASCII format and include Free Air Anomaly Gravity data and were processed after data collection. Data were acquired as part of the project(s): SOAR-Lake Vostok Survey (LVS) and Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work. | ["POLYGON((101.5 -75.5,102.15 -75.5,102.8 -75.5,103.45 -75.5,104.1 -75.5,104.75 -75.5,105.4 -75.5,106.05 -75.5,106.7 -75.5,107.35 -75.5,108 -75.5,108 -75.85,108 -76.2,108 -76.55,108 -76.9,108 -77.25,108 -77.6,108 -77.95,108 -78.3,108 -78.65,108 -79,107.35 -79,106.7 -79,106.05 -79,105.4 -79,104.75 -79,104.1 -79,103.45 -79,102.8 -79,102.15 -79,101.5 -79,101.5 -78.65,101.5 -78.3,101.5 -77.95,101.5 -77.6,101.5 -77.25,101.5 -76.9,101.5 -76.55,101.5 -76.2,101.5 -75.85,101.5 -75.5))"] | ["POINT(104.75 -77.25)"] | false | false |
Airborne gravity data for the CASERTZ/WAIS project
|
9319854 |
2020-04-24 | Bell, Robin; Arko, Robert A. |
Collaborative Research: Lithospheric Controls on the Behavior of the West Antarctic Ice Sheet: Corridor Aerogeophysics of Eastern Ross Transect Zone |
Free air gravity anomaly data collected as part of the Corridor Aerogeophysics of Eastern Ross Transect Zone CASERTZ/WAIS project. | ["POLYGON((-155 -77.5,-150 -77.5,-145 -77.5,-140 -77.5,-135 -77.5,-130 -77.5,-125 -77.5,-120 -77.5,-115 -77.5,-110 -77.5,-105 -77.5,-105 -78.2,-105 -78.9,-105 -79.6,-105 -80.3,-105 -81,-105 -81.7,-105 -82.4,-105 -83.1,-105 -83.8,-105 -84.5,-110 -84.5,-115 -84.5,-120 -84.5,-125 -84.5,-130 -84.5,-135 -84.5,-140 -84.5,-145 -84.5,-150 -84.5,-155 -84.5,-155 -83.8,-155 -83.1,-155 -82.4,-155 -81.7,-155 -81,-155 -80.3,-155 -79.6,-155 -78.9,-155 -78.2,-155 -77.5))"] | ["POINT(-130 -81)"] | false | false |
SOAR-WMB Airborne gravity data
|
9615281 |
2020-04-24 | Bell, Robin |
Air-Ground Study of Tectonics at the Boundary Between the Eastern Ross Embayment and Western Marie Byrd Land, Antarctica: Basement Geology and Structure |
Free air gravity anomaly data collected along flight tracks of the Western Marie Byrd Land and Ross Sea Boundary | ["POLYGON((-175 -76,-171 -76,-167 -76,-163 -76,-159 -76,-155 -76,-151 -76,-147 -76,-143 -76,-139 -76,-135 -76,-135 -76.8,-135 -77.6,-135 -78.4,-135 -79.2,-135 -80,-135 -80.8,-135 -81.6,-135 -82.4,-135 -83.2,-135 -84,-139 -84,-143 -84,-147 -84,-151 -84,-155 -84,-159 -84,-163 -84,-167 -84,-171 -84,-175 -84,-175 -83.2,-175 -82.4,-175 -81.6,-175 -80.8,-175 -80,-175 -79.2,-175 -78.4,-175 -77.6,-175 -76.8,-175 -76))"] | ["POINT(-155 -80)"] | false | false |
SOAR-WLK Airborne gravity data
|
9615704 |
2020-04-24 | Bell, Robin |
Contrasting Architecture and Dynamics of the Transantarctic Mountains |
Free air gravity anomaly data collected along flight tracks of the Wilkes Basin Corridor as part of the Contrasting Architecture and Dynamics in the Transantarctic Mountains project. | ["POLYGON((115 -74,121 -74,127 -74,133 -74,139 -74,145 -74,151 -74,157 -74,163 -74,169 -74,175 -74,175 -74.4,175 -74.8,175 -75.2,175 -75.6,175 -76,175 -76.4,175 -76.8,175 -77.2,175 -77.6,175 -78,169 -78,163 -78,157 -78,151 -78,145 -78,139 -78,133 -78,127 -78,121 -78,115 -78,115 -77.6,115 -77.2,115 -76.8,115 -76.4,115 -76,115 -75.6,115 -75.2,115 -74.8,115 -74.4,115 -74))"] | ["POINT(145 -76)"] | false | false |
SOAR-PPT Airborne gravity data
|
9615704 |
2020-04-24 | Bell, Robin |
Contrasting Architecture and Dynamics of the Transantarctic Mountains |
Free air gravity anomaly data collected along flight tracks of the Pensacola-Pole Transect as part of the Contrasting Architecture and Dynamics in the Transantarctic Mountains project. | ["POLYGON((-180 -84,-176 -84,-172 -84,-168 -84,-164 -84,-160 -84,-156 -84,-152 -84,-148 -84,-144 -84,-140 -84,-140 -84.6,-140 -85.2,-140 -85.8,-140 -86.4,-140 -87,-140 -87.6,-140 -88.2,-140 -88.8,-140 -89.4,-140 -90,-144 -90,-148 -90,-152 -90,-156 -90,-160 -90,-164 -90,-168 -90,-172 -90,-176 -90,180 -90,179.5 -90,179 -90,178.5 -90,178 -90,177.5 -90,177 -90,176.5 -90,176 -90,175.5 -90,175 -90,175 -89.4,175 -88.8,175 -88.2,175 -87.6,175 -87,175 -86.4,175 -85.8,175 -85.2,175 -84.6,175 -84,175.5 -84,176 -84,176.5 -84,177 -84,177.5 -84,178 -84,178.5 -84,179 -84,179.5 -84,-180 -84))"] | ["POINT(-162.5 -87)"] | false | false |
SOAR-WAZ Airborne gravity data for the CASERTZ/WAIS project
|
9319854 |
2020-04-24 | Bell, Robin; Arko, Robert A. |
Collaborative Research: Lithospheric Controls on the Behavior of the West Antarctic Ice Sheet: Corridor Aerogeophysics of Eastern Ross Transect Zone |
Free air gravity anomaly data collected as part of the Corridor Aerogeophysics of Eastern Ross Transect Zone CASERTZ/WAIS project. | ["POLYGON((-155 -77.5,-150 -77.5,-145 -77.5,-140 -77.5,-135 -77.5,-130 -77.5,-125 -77.5,-120 -77.5,-115 -77.5,-110 -77.5,-105 -77.5,-105 -78.2,-105 -78.9,-105 -79.6,-105 -80.3,-105 -81,-105 -81.7,-105 -82.4,-105 -83.1,-105 -83.8,-105 -84.5,-110 -84.5,-115 -84.5,-120 -84.5,-125 -84.5,-130 -84.5,-135 -84.5,-140 -84.5,-145 -84.5,-150 -84.5,-155 -84.5,-155 -83.8,-155 -83.1,-155 -82.4,-155 -81.7,-155 -81,-155 -80.3,-155 -79.6,-155 -78.9,-155 -78.2,-155 -77.5))"] | ["POINT(-130 -81)"] | false | false |
SOAR-IRE airborne gravity data for the CASERTZ/WAIS project
|
9319854 |
2020-04-24 | Bell, Robin; Arko, Robert A. |
Collaborative Research: Lithospheric Controls on the Behavior of the West Antarctic Ice Sheet: Corridor Aerogeophysics of Eastern Ross Transect Zone |
Free air gravity anomaly data collected as part of the Corridor Aerogeophysics of Eastern Ross Transect Zone CASERTZ/WAIS project. IRE field season | ["POLYGON((-155 -77.5,-150 -77.5,-145 -77.5,-140 -77.5,-135 -77.5,-130 -77.5,-125 -77.5,-120 -77.5,-115 -77.5,-110 -77.5,-105 -77.5,-105 -78.2,-105 -78.9,-105 -79.6,-105 -80.3,-105 -81,-105 -81.7,-105 -82.4,-105 -83.1,-105 -83.8,-105 -84.5,-110 -84.5,-115 -84.5,-120 -84.5,-125 -84.5,-130 -84.5,-135 -84.5,-140 -84.5,-145 -84.5,-150 -84.5,-155 -84.5,-155 -83.8,-155 -83.1,-155 -82.4,-155 -81.7,-155 -81,-155 -80.3,-155 -79.6,-155 -78.9,-155 -78.2,-155 -77.5))"] | ["POINT(-130 -81)"] | false | false |
SOAR-TKD airborne gravity data for the CASERTZ/WAIS project
|
9319854 |
2020-04-24 | Bell, Robin; Arko, Robert A. |
Collaborative Research: Lithospheric Controls on the Behavior of the West Antarctic Ice Sheet: Corridor Aerogeophysics of Eastern Ross Transect Zone |
Free air gravity anomaly data collected as part of the Corridor Aerogeophysics of Eastern Ross Transect Zone CASERTZ/WAIS project. | ["POLYGON((-155 -77.5,-150 -77.5,-145 -77.5,-140 -77.5,-135 -77.5,-130 -77.5,-125 -77.5,-120 -77.5,-115 -77.5,-110 -77.5,-105 -77.5,-105 -78.2,-105 -78.9,-105 -79.6,-105 -80.3,-105 -81,-105 -81.7,-105 -82.4,-105 -83.1,-105 -83.8,-105 -84.5,-110 -84.5,-115 -84.5,-120 -84.5,-125 -84.5,-130 -84.5,-135 -84.5,-140 -84.5,-145 -84.5,-150 -84.5,-155 -84.5,-155 -83.8,-155 -83.1,-155 -82.4,-155 -81.7,-155 -81,-155 -80.3,-155 -79.6,-155 -78.9,-155 -78.2,-155 -77.5))"] | ["POINT(-130 -81)"] | false | false |
Pirrit Hills subglacial bedrock core RB-2, cosmogenic Be-10, Al-26 data
|
1341728 |
2019-10-09 | Stone, John |
EXPROBE-WAIS: Exposed Rock Beneath the West Antarctic Ice Sheet, A Test for Interglacial Ice Sheet Collapse |
This data set contains measurements of cosmic-ray-produced Be-10 and Al-26 in quartz from the RB-2 core, recovered from bedrock at a depth of 150 m below the West Antarctic Ice Sheet surface in the Pirrit Hills. The core site is located at latitude S81.09948, longitude W85.15694. Core length is approximately 8 meters. Lithology is A-type granite, similar in composition to bedrock exposed on nearby Harter Nunatak and other mountains in the Pirrit Hills (Lee et al. Geosci. J. 16, 421-433). Samples were processed at the University of Washington Cosmogenic Nuclide Laboratory. Chemical processing and purification methods are described at http://depts.washington.edu/cosmolab/chem.shtml. Beryllium isotope ratios were measured at the Lawrence Livermore Center for Accelerator Mass Spectrometry (LLNL-CAMS) relative to the KNSTD-Be-01-5-4 standard, assuming a standard Be-10/Be-9 ratio of 2.851E-12 (07KNSTD normalization). Aluminum isotope ratios were measured at PRIME Lab, Purdue University, relative to the KNSTD-Al-01-5-2 standard, assuming a standard Al-26/Al-27 ratio of 1.818E-12 (KNSTD normalization). Uncertainties are 1-sigma and include full AMS errors and all known sources of laboratory uncertainty. | ["POLYGON((-86.3 -81,-86.17 -81,-86.04 -81,-85.91 -81,-85.78 -81,-85.65 -81,-85.52 -81,-85.39 -81,-85.26 -81,-85.13 -81,-85 -81,-85 -81.03,-85 -81.06,-85 -81.09,-85 -81.12,-85 -81.15,-85 -81.18,-85 -81.21,-85 -81.24,-85 -81.27,-85 -81.3,-85.13 -81.3,-85.26 -81.3,-85.39 -81.3,-85.52 -81.3,-85.65 -81.3,-85.78 -81.3,-85.91 -81.3,-86.04 -81.3,-86.17 -81.3,-86.3 -81.3,-86.3 -81.27,-86.3 -81.24,-86.3 -81.21,-86.3 -81.18,-86.3 -81.15,-86.3 -81.12,-86.3 -81.09,-86.3 -81.06,-86.3 -81.03,-86.3 -81))"] | ["POINT(-85.65 -81.15)"] | false | false |
Laboratory Hyperspectral Reflectance Data of Central Transantarctic Mountain Rocks and Sediments
|
1758224 |
2019-03-15 | Salvatore, Mark |
EAGER: Surface Variability and Spectral Analyses of the Central Transantarctic Mountains, Antarctica |
This data set contains reflectance spectra (350 - 2500 nm) of a range of rocks and sediments from the Central Transantarctic Mountains. Data were acquired using an Analytical Spectral Devices (ASD) FieldSpec4 high-resolution spectrometer under illumination with a high-output halogen bulb, with illumination and observation angles fixed at 0 and 30 degrees off-nadir, respectively. Data were acquired for the purposes of validation and 'ground truthing' of orbital multispectral data. | ["POLYGON((-180 -83,-177 -83,-174 -83,-171 -83,-168 -83,-165 -83,-162 -83,-159 -83,-156 -83,-153 -83,-150 -83,-150 -83.5,-150 -84,-150 -84.5,-150 -85,-150 -85.5,-150 -86,-150 -86.5,-150 -87,-150 -87.5,-150 -88,-153 -88,-156 -88,-159 -88,-162 -88,-165 -88,-168 -88,-171 -88,-174 -88,-177 -88,180 -88,177 -88,174 -88,171 -88,168 -88,165 -88,162 -88,159 -88,156 -88,153 -88,150 -88,150 -87.5,150 -87,150 -86.5,150 -86,150 -85.5,150 -85,150 -84.5,150 -84,150 -83.5,150 -83,153 -83,156 -83,159 -83,162 -83,165 -83,168 -83,171 -83,174 -83,177 -83,-180 -83))"] | ["POINT(180 -85.5)"] | false | false |
U-Pb ages and mineral compositions from Dufek Intrusion
|
1543313 |
2018-10-29 | VanTongeren, Jill |
Collaborative Research: Testing the Hypothesis that Bigger Magma Chambers Crystallize Faster |
The dataset contains preliminary CA-ID-TIMS U-Pb zircon ages for 4 samples from the Dufek Intrusion, as well as major element mineral compositions for samples throughout the stratigraphy. | ["POLYGON((-55 -82,-54.5 -82,-54 -82,-53.5 -82,-53 -82,-52.5 -82,-52 -82,-51.5 -82,-51 -82,-50.5 -82,-50 -82,-50 -82.2,-50 -82.4,-50 -82.6,-50 -82.8,-50 -83,-50 -83.2,-50 -83.4,-50 -83.6,-50 -83.8,-50 -84,-50.5 -84,-51 -84,-51.5 -84,-52 -84,-52.5 -84,-53 -84,-53.5 -84,-54 -84,-54.5 -84,-55 -84,-55 -83.8,-55 -83.6,-55 -83.4,-55 -83.2,-55 -83,-55 -82.8,-55 -82.6,-55 -82.4,-55 -82.2,-55 -82))"] | ["POINT(-52.5 -83)"] | false | false |
10Be and 14C data from northern Antarctic Peninsula
|
1142002 |
2017-09-16 | Kaplan, Michael |
Terrestrial Geological Context for Glacier Change in the Northeast Antarctica Peninsula |
These are data sets obtained with the supported award. The ages concern the histories of glaciers, ice sheets, and general cryospheric and climatic activities of the northern Antarctic Peninsula and surrounding area.They cover periods from prior to the last global glacial maximum (stage 3 and older?) as well as since deglaciation. | ["POLYGON((-58 -63.7,-57.95 -63.7,-57.9 -63.7,-57.85 -63.7,-57.8 -63.7,-57.75 -63.7,-57.7 -63.7,-57.65 -63.7,-57.6 -63.7,-57.55 -63.7,-57.5 -63.7,-57.5 -63.73,-57.5 -63.76,-57.5 -63.79,-57.5 -63.82,-57.5 -63.85,-57.5 -63.88,-57.5 -63.91,-57.5 -63.94,-57.5 -63.97,-57.5 -64,-57.55 -64,-57.6 -64,-57.65 -64,-57.7 -64,-57.75 -64,-57.8 -64,-57.85 -64,-57.9 -64,-57.95 -64,-58 -64,-58 -63.97,-58 -63.94,-58 -63.91,-58 -63.88,-58 -63.85,-58 -63.82,-58 -63.79,-58 -63.76,-58 -63.73,-58 -63.7))"] | ["POINT(-57.75 -63.85)"] | false | false |
Taylor Glacier Gas Isotope Data
|
0839031 |
2017-06-16 | Severinghaus, Jeffrey P. |
Collaborative Research: A "Horizontal Ice Core" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica |
Taylor Glacier Gas Isotope Data | ["POLYGON((161.41425 -77.73489,161.486884 -77.73489,161.559518 -77.73489,161.632152 -77.73489,161.704786 -77.73489,161.77742 -77.73489,161.850054 -77.73489,161.922688 -77.73489,161.995322 -77.73489,162.067956 -77.73489,162.14059 -77.73489,162.14059 -77.747868,162.14059 -77.760846,162.14059 -77.773824,162.14059 -77.786802,162.14059 -77.79978,162.14059 -77.812758,162.14059 -77.825736,162.14059 -77.838714,162.14059 -77.851692,162.14059 -77.86467,162.067956 -77.86467,161.995322 -77.86467,161.922688 -77.86467,161.850054 -77.86467,161.77742 -77.86467,161.704786 -77.86467,161.632152 -77.86467,161.559518 -77.86467,161.486884 -77.86467,161.41425 -77.86467,161.41425 -77.851692,161.41425 -77.838714,161.41425 -77.825736,161.41425 -77.812758,161.41425 -77.79978,161.41425 -77.786802,161.41425 -77.773824,161.41425 -77.760846,161.41425 -77.747868,161.41425 -77.73489))"] | ["POINT(161.77742 -77.79978)"] | false | false |
Measurements of 14C-methane for the Younger Dryas - Preboreal Transition from Taylor Glacier, Antarctica
|
1245659 |
2017-05-24 | Petrenko, Vasilii; Severinghaus, Jeffrey P. |
Collaborative Research: A "Horizontal Ice Core" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica |
This dataset contains measurements of paleoatmospheric 14C of methane (14CH4) for the Younger Dryas - Preboreal Transition from Taylor Glacier, Antarctica, as well as a range of supporting data. The supporting data include [CH4], [CO], [14CO], sample ages, CH4 emissions and analysis of uncertainties. | ["POINT(161.71353 -77.75855)"] | ["POINT(161.71353 -77.75855)"] | false | false |
Upper Mantle Shear Wave Velocity Structure beneath the Northern Transantarctic Mountains
|
1148982 |
2017-04-20 | Hansen, Samantha |
CAREER: Deciphering the Tectonic History of the Transantarctic Mountains and the Wilkes Subglacial Basin |
Using data from the Transantarctic Mountains (TAMs) Northern Network, the shear wave velocity structure beneath the northern TAMs was investigated with surface wave tomography. Rayleigh wave phase velocities were calculated using a two-plane wave approximation and were then inverted for shear velocity structure. The resulting model shows a low velocity zone (~4.24 km/s) at ~160 km depth offshore and adjacent to Mt. Melbourne that extends inland and vertically upwards to ~100 km depth beneath the northern TAMs and Victoria Land. Another low velocity zone (~4.16-4.24 km/s) is also seen at ~150 km depth beneath Ross Island, and relatively slow velocities (~4.24-4.32 km/s) along the Terror Rift connect the two low velocity zones. This structure has been interpreted to reflect rift-related decompression melting along the TAMs front, which would provide thermal buoyancy to uplift the mountain range. | ["POLYGON((153.327 -73.032547,154.5063012 -73.032547,155.6856024 -73.032547,156.8649036 -73.032547,158.0442048 -73.032547,159.223506 -73.032547,160.4028072 -73.032547,161.5821084 -73.032547,162.7614096 -73.032547,163.9407108 -73.032547,165.120012 -73.032547,165.120012 -73.3530275,165.120012 -73.673508,165.120012 -73.9939885,165.120012 -74.314469,165.120012 -74.6349495,165.120012 -74.95543,165.120012 -75.2759105,165.120012 -75.596391,165.120012 -75.9168715,165.120012 -76.237352,163.9407108 -76.237352,162.7614096 -76.237352,161.5821084 -76.237352,160.4028072 -76.237352,159.223506 -76.237352,158.0442048 -76.237352,156.8649036 -76.237352,155.6856024 -76.237352,154.5063012 -76.237352,153.327 -76.237352,153.327 -75.9168715,153.327 -75.596391,153.327 -75.2759105,153.327 -74.95543,153.327 -74.6349495,153.327 -74.314469,153.327 -73.9939885,153.327 -73.673508,153.327 -73.3530275,153.327 -73.032547))"] | ["POINT(159.223506 -74.6349495)"] | false | false |
Shear Wave Splitting Analysis and Seismic Anisotropy beneath the Northern Transantarctic Mountains
|
1148982 |
2017-04-20 | Hansen, Samantha |
CAREER: Deciphering the Tectonic History of the Transantarctic Mountains and the Wilkes Subglacial Basin |
Using data from the Transantarctic Mountains (TAMs) Northern Network, shear-wave splitting analysis has been employed to constrain azimuthal anisotropy beneath a portion of the northern TAMs. Splitting measurements were made for PKS, SKS, and SKKS phases with the eigenvalue method in SplitLab. The results show two distinct geographic regions of anisotropy: one behind the TAMs front and the other along the Ross Sea coastline. The anisotropic structure behind the TAMs front is best attributed to relict fabric associated with past tectonic episodes. Along the coastline, the anisotropy is interpreted to reflect mantle flow associated with rift-related decompression melting and Cenozoic extension. | ["POLYGON((153.327 -73.032547,154.5063012 -73.032547,155.6856024 -73.032547,156.8649036 -73.032547,158.0442048 -73.032547,159.223506 -73.032547,160.4028072 -73.032547,161.5821084 -73.032547,162.7614096 -73.032547,163.9407108 -73.032547,165.120012 -73.032547,165.120012 -73.3530275,165.120012 -73.673508,165.120012 -73.9939885,165.120012 -74.314469,165.120012 -74.6349495,165.120012 -74.95543,165.120012 -75.2759105,165.120012 -75.596391,165.120012 -75.9168715,165.120012 -76.237352,163.9407108 -76.237352,162.7614096 -76.237352,161.5821084 -76.237352,160.4028072 -76.237352,159.223506 -76.237352,158.0442048 -76.237352,156.8649036 -76.237352,155.6856024 -76.237352,154.5063012 -76.237352,153.327 -76.237352,153.327 -75.9168715,153.327 -75.596391,153.327 -75.2759105,153.327 -74.95543,153.327 -74.6349495,153.327 -74.314469,153.327 -73.9939885,153.327 -73.673508,153.327 -73.3530275,153.327 -73.032547))"] | ["POINT(159.223506 -74.6349495)"] | false | false |
Upper Mantle Seismic Structure beneath the Northern Transantarctic Mountains from Regional P- and S-wave Tomography
|
1148982 |
2017-04-06 | Hansen, Samantha |
CAREER: Deciphering the Tectonic History of the Transantarctic Mountains and the Wilkes Subglacial Basin |
Stretching ~3,500 km across Antarctica, with peak elevations up to 4,500 m, the Transantarctic Mountains (TAMs) are the largest non-compressional mountain range on Earth and represent a tectonic boundary between the East Antarctica (EA) craton and the West Antarctic Rift System. The origin and uplift mechanism associated with the TAMs is controversial, and multiple models have been proposed. Seismic investigations of the TAMs' subsurface structure can provide key constraints to help evaluate these models, but previous studies have been primarily focused only on the central TAMs near Ross Island. Using data from the new 15-station Transantarctic Mountain Northern Network as well as data from several smaller networks, this study investigates the upper mantle velocity structure beneath a previously unexplored portion of the northern TAMs through regional body wave tomography. Relative travel-times were calculated for 11,182 P-wave and 8,285 S-wave arrivals from 790 and 581 Mw ≥ 5.5 events, respectively, using multi-channel cross correlation, and these data were then inverted for models of the upper mantle seismic structure. Resulting P- and S-wave tomography images reveal two focused low velocity anomalies beneath Ross Island (RI; δVP ≈ -2.0%; δVS ≈ -1.5% to -4.0%) and Terra Nova Bay (TNB; δVP ≈ -1.5% to -2.0%; δVS ≈ -1.0% to -4.0%) that extend to depths of ~200 and ~150 km, respectively. The RI and TNB slow anomalies also extend ~50-100 km laterally beneath the TAMs front and sharply abut fast velocities beneath the EA craton (δVP ≈ 0.5% to 2%; δVS ≈ 1.5% to 4.0%). A low velocity region (δVP ≈ -1.5%), centered at ~150 km depth beneath the Terror Rift (TR) and primarily constrained within the Victoria Land Basin, connects the RI and TNB anomalies. The focused low velocities are interpreted as regions of partial melt and buoyancy-driven upwelling, connected by a broad region of slow (presumably warm) upper mantle associated with Cenozoic extension along the TR. Dynamic topography estimates based on the imaged S-wave velocity perturbations are consistent with observed surface topography in the central and northern TAMs, thereby providing support for uplift models that advocate for thermal loading and a flexural origin for the mountain range. | ["POLYGON((153.327 -73.032547,154.5063012 -73.032547,155.6856024 -73.032547,156.8649036 -73.032547,158.0442048 -73.032547,159.223506 -73.032547,160.4028072 -73.032547,161.5821084 -73.032547,162.7614096 -73.032547,163.9407108 -73.032547,165.120012 -73.032547,165.120012 -73.3530275,165.120012 -73.673508,165.120012 -73.9939885,165.120012 -74.314469,165.120012 -74.6349495,165.120012 -74.95543,165.120012 -75.2759105,165.120012 -75.596391,165.120012 -75.9168715,165.120012 -76.237352,163.9407108 -76.237352,162.7614096 -76.237352,161.5821084 -76.237352,160.4028072 -76.237352,159.223506 -76.237352,158.0442048 -76.237352,156.8649036 -76.237352,155.6856024 -76.237352,154.5063012 -76.237352,153.327 -76.237352,153.327 -75.9168715,153.327 -75.596391,153.327 -75.2759105,153.327 -74.95543,153.327 -74.6349495,153.327 -74.314469,153.327 -73.9939885,153.327 -73.673508,153.327 -73.3530275,153.327 -73.032547))"] | ["POINT(159.223506 -74.6349495)"] | false | false |
Vertebrate fossils from the Hanson Formation at Mt. Kirkpatrick, in the Beardmore Glacier region of Antarctica
|
1246379 |
2017-03-29 | Smith, Nathan |
Collaborative Research: Continued Research on the Jurassic Vertebrate Fauna from the Beardmore Glacier Region of Antarctica |
This proposal supports research on the Early Jurassic Hanson Formation vertebrate fauna of the Beardmore Glacier region of Antarctica. The project supports preparation and systematic and paleobiological research on four Antarctic dinosaurs, including two new species, collected in the Central Transantarctic Mountains. With the new material Cryolophosaurus will become one of the most complete Early Jurassic theropods known, and thus has the potential to become a keystone taxon for resolving the debated early evolutionary history of theropod dinosaurs, the group that gave rise to birds. Two new dinosaur specimens include a nearly complete articulated skeleton of a juvenile sauropodomorph, and the articulated hip region of another small individual. Both appear to be new taxa. The dinosaurs from the Hanson Formation represent some of the highest paleolatitude vertebrates known from the Jurassic. The PIs generated CT datasets for Cryolophosaurus and the more complete new sauropodomorph species to mine for phylogenetic trait information, and to investigate their comparative neuroanatomy and feeding behavior. Histological datasets have been generated from multiple skeletal elements for all four Mt. Kirkpatrick taxa to understand patterns of growth in different clades of polar dinosaurs and compare them to relatives from lower paleolatitudes. This paleohistological study of a relatively diverse sample of sauropodomorph taxa from Antarctica may contribute to determining whether and how these dinosaurs responded to contemporary climatic extremes. The PIs have established a successful undergraduate training program as part of previous research. Summer interns from Augustana are trained at the Field Museum in specimen preparation, curation, molding/casting, and histological sampling. They also participate in existing Field Museum REU programs, including a course on phylogenetic systematics. Four undergraduate internships and student research projects will be supported through this proposal. A postdoctoral researcher has also been supported on this project The PIs are developing a traveling exhibit on Antarctic Dinosaurs that they estimate will be seen by over 2 million people over the five-year tour (opening June 2018 at the Field Museum of Natural History). | ["POLYGON((160 -85,160.6 -85,161.2 -85,161.8 -85,162.4 -85,163 -85,163.6 -85,164.2 -85,164.8 -85,165.4 -85,166 -85,166 -85.2,166 -85.4,166 -85.6,166 -85.8,166 -86,166 -86.2,166 -86.4,166 -86.6,166 -86.8,166 -87,165.4 -87,164.8 -87,164.2 -87,163.6 -87,163 -87,162.4 -87,161.8 -87,161.2 -87,160.6 -87,160 -87,160 -86.8,160 -86.6,160 -86.4,160 -86.2,160 -86,160 -85.8,160 -85.6,160 -85.4,160 -85.2,160 -85))"] | ["POINT(163 -86)"] | false | false |
Gravity disturbance data over central Marie Byrd Land, West Antarctica (GIMBLE.GGCMG2)
|
1043761 |
2017-02-20 | Young, Duncan A.; Holt, John W.; Blankenship, Donald D. |
Geophysical Investigations of Marie Byrd Land Lithospheric Evolution (GIMBLE) |
GIMBLE was proposed as the first systematic aerogeophysical investigation of the subglacial massif underlying central Marie Byrd Land. Aerogeophysically configured Baslers conducted 14 flights from Byrd Surface Camp and WAIS Divide Camp over two field seasons (January 2013 and December 2014). Airborne ice penetrating radar, gravity and magnetics were the primary datasets collected. Level 2 data represent geolocated geophysical properties (e.g ice thickness), derived from Level 1B measurements (e.g. radar echo delay). Dataset structures are based on those used for Operation Ice Bridge, and are line based data in ASCII space delimited .txt files, with a header delimited by leading "#" characters documenting column assignment and metadata. Georefering data is contained in .met files. GIMBLE.GGCMG2 contains line based data relating to gravity disturbance, processed from raw acceleration and position data by propriety software from Gravimetric Technologies and Novatel. The raw data was obtained a Canadian MicroGravity GT-1A gravimeter in ICP5, and a GT-2A gravimeter in ICP6. Data reduction was led by T. Richter. | ["POLYGON((-156 -74.5,-151.4 -74.5,-146.8 -74.5,-142.2 -74.5,-137.6 -74.5,-133 -74.5,-128.4 -74.5,-123.8 -74.5,-119.2 -74.5,-114.6 -74.5,-110 -74.5,-110 -75.05,-110 -75.6,-110 -76.15,-110 -76.7,-110 -77.25,-110 -77.8,-110 -78.35,-110 -78.9,-110 -79.45,-110 -80,-114.6 -80,-119.2 -80,-123.8 -80,-128.4 -80,-133 -80,-137.6 -80,-142.2 -80,-146.8 -80,-151.4 -80,-156 -80,-156 -79.45,-156 -78.9,-156 -78.35,-156 -77.8,-156 -77.25,-156 -76.7,-156 -76.15,-156 -75.6,-156 -75.05,-156 -74.5))"] | ["POINT(-133 -77.25)"] | false | false |
Magnetic anomaly data over central Marie Byrd Land, West Antarctica (GIMBLE.GMGEO2)
|
1043761 |
2017-02-20 | Young, Duncan A.; Holt, John W.; Blankenship, Donald D. |
Geophysical Investigations of Marie Byrd Land Lithospheric Evolution (GIMBLE) |
GIMBLE was proposed as the first systematic aerogeophysical investigation of the subglacial massif underlying central Marie Byrd Land. Aerogeophysically configured Baslers conducted 14 flights from Byrd Surface Camp and WAIS Divide Camp over two field seasons (January 2013 and December 2014). Airborne ice penetrating radar, gravity and magnetics were the primary datasets collected. Level 2 data represent geolocated geophysical properties (e.g ice thickness), derived from Level 1B measurements (e.g. radar echo delay). Dataset structures are based on those used for Operation Ice Bridge, and are line based data in ASCII space delimited .txt files, with a header delimited by leading "#" characters documenting column assignment and metadata. Georefering data is contained in .met files. GIMBLE.GMGEO2 contains line based data (in ASCII space delimited txt files) relating to magnetic anomaly. The raw data was obtained by a tail mounted Geometrics G-823A magnetometer. No heading correction, cross over correction, continuation or base correction have been applied. Data with significant geomagnetic activity (restricted to 07-Dec-2014 and 23-Dec-2014) were removed. | ["POLYGON((-156 -74.5,-151.4 -74.5,-146.8 -74.5,-142.2 -74.5,-137.6 -74.5,-133 -74.5,-128.4 -74.5,-123.8 -74.5,-119.2 -74.5,-114.6 -74.5,-110 -74.5,-110 -75.05,-110 -75.6,-110 -76.15,-110 -76.7,-110 -77.25,-110 -77.8,-110 -78.35,-110 -78.9,-110 -79.45,-110 -80,-114.6 -80,-119.2 -80,-123.8 -80,-128.4 -80,-133 -80,-137.6 -80,-142.2 -80,-146.8 -80,-151.4 -80,-156 -80,-156 -79.45,-156 -78.9,-156 -78.35,-156 -77.8,-156 -77.25,-156 -76.7,-156 -76.15,-156 -75.6,-156 -75.05,-156 -74.5))"] | ["POINT(-133 -77.25)"] | false | false |
Neogene Paleoecology of the Beardmore Glacier Region
|
0947821 |
2017-01-17 | Ashworth, Allan |
Neogene Paleoecology of the Beardmore Glacier Region |
None | ["POLYGON((166.58793 -85.11733,166.595533 -85.11733,166.603136 -85.11733,166.610739 -85.11733,166.618342 -85.11733,166.625945 -85.11733,166.633548 -85.11733,166.641151 -85.11733,166.648754 -85.11733,166.656357 -85.11733,166.66396 -85.11733,166.66396 -85.117836,166.66396 -85.118342,166.66396 -85.118848,166.66396 -85.119354,166.66396 -85.11986,166.66396 -85.120366,166.66396 -85.120872,166.66396 -85.121378,166.66396 -85.121884,166.66396 -85.12239,166.656357 -85.12239,166.648754 -85.12239,166.641151 -85.12239,166.633548 -85.12239,166.625945 -85.12239,166.618342 -85.12239,166.610739 -85.12239,166.603136 -85.12239,166.595533 -85.12239,166.58793 -85.12239,166.58793 -85.121884,166.58793 -85.121378,166.58793 -85.120872,166.58793 -85.120366,166.58793 -85.11986,166.58793 -85.119354,166.58793 -85.118848,166.58793 -85.118342,166.58793 -85.117836,166.58793 -85.11733))"] | ["POINT(166.625945 -85.11986)"] | false | false |
Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)
|
1142083 |
2016-12-03 | Oppenheimer, Clive; Kyle, Philip |
Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO) |
Mt. Erebus is one of only a handful of volcanoes worldwide that have lava lakes with readily observable and nearly continuous Strombolian explosive activity. Erebus is also unique in having a permanent convecting lava lake of anorthoclase phonolite magma. Over the years significant infrastructure has been established at the summit of Mt. Erebus as part of the Mount Erebus Volcano Observatory (MEVO), which serves as a natural laboratory to study a wide range of volcanic processes, especially magma degassing associated with an open convecting magma conduit. The PI proposes to continue operating MEVO for a further five years. The fundamental fundamental research objectives are: to understand diffuse flank degassing by using distributed temperature sensing and gas measurements in ice caves, to understand conduit processes, and to examine the environmental impact of volcanic emissions from Erebus on atmospheric and cryospheric environments. To examine conduit processes the PI will make simultaneous observations with video records, thermal imaging, measurements of gas emission rates and gas compositions, seismic, and infrasound data. An important aspect of Erebus research is the education and training of students. Both graduate and undergraduate students will have the opportunity to work on MEVO data and deploy to the field site. In addition, this proposal will support a middle or high school science teacher for two field seasons. The PI will also continue working with various media organizations and filmmakers. This dataset contains video taken from a series of cameras that were installed at Shackleton's Cairn (-77.525337, 167.157509) looking into the lava lake. This dataset contains all such video taken between 2005 and 2011. Camera downlink depended on power at a relay station at the Cones site. The camera was operational during G-081 field seasons and often for a period of weeks or months thereafter. | ["POINT(167.15334 -77.529724)"] | ["POINT(167.15334 -77.529724)"] | false | false |
Mount Erebus Volcano Observatory III (MEVO III): Conduit Processes and Surveillance
|
0838817 |
2016-01-01 | Kyle, Philip |
Mount Erebus Volcano Observatory III (MEVO III): Conduit Processes and Surveillance |
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Mount Erebus is Antarctica's most active volcano that has been in a persistent state of activity for at least the last 35 years. It has a unique geochemistry among the Earth's active volcanoes and is also unique in hosting a persistent convecting lake(s) of anorthclase phonolite magma in its summit crater. The relative simplicity of the magmatic system, consistency of activity, and accessibility of close-range observation make Erebus attractive as a target for extensive studies. Although the Erebus' seismicity and eruptive activity and processes are becoming increasingly well understood over years of research, there is a near total lack of understanding its deeper magmatic system. The primary goal of this proposal is to continue supporting the Mt. Erebus Volcano Observatory (MEVO III) improving our current understanding of the Erebus eruptive and non-eruptive magmatic system using an integrated approach from geophysical, geochemical and remote sensing observations. This goal can be grouped into the following fundamental research objectives: (a) to sustain year-round surveillance of on-going volcanic activity primarily using geophysical observatories; (b) to understand processes within the convecting conduit which feeds the persistent lava lakes; and (c) to understand the impact of Erebus eruptive activity upon the Antarctic environment. Continued reliance on students provides a broader impact to this proposed research and firmly grounds this effort in its educational mission. | [] | [] | false | false |
Glacial-interglacial History of West Antarctic Nunataks and Site Reconnaissance for Subglacial Bedrock Sampling
|
1142162 |
2016-01-01 | Stone, John |
Glacial-interglacial History of West Antarctic Nunataks and Site Reconnaissance for Subglacial Bedrock Sampling |
This award supports a reconnaissance geological and radar-sounding study of promising sites in West Antarctica for a future project to measure cosmogenic nuclides in subglacial bedrock. Field work will take place in the Whitmore Mountains, close to the WAIS divide, and on the Nash and Pirrit Hills, downflow from the divide in the Weddell Sea drainage. At each site geological indicators of higher (and lower) ice levels in the past will be mapped and evidence of subglacial erosion or its absence will be documented. Elevation transects of both glacial erratics and adjacent bedrock samples will be collected to establish the timing of recent deglaciation at the sites and provide a complement to similar measurements on material from depth transects obtained by future subglacial drilling. At each site, bedrock ridges will be traced into the subsurface with closely-spaced ice-penetrating radar surveys, using a combination of instruments and frequencies to obtain the highest possible surface detail. Collectively the results will define prospective sites for subglacial sampling, and maximize the potential information to be obtained from such samples in future studies. The intellectual merit of this project is that measurements of cosmogenic nuclides in subglacial bedrock hold promise for resolving the questions of whether the West Antarctic ice sheet collapsed completely in the past, whether it is prone to repeated large deglaciations, and if so, what is their magnitude and frequency. Such studies will require careful choice of targets, to locate sites where bedrock geology is favorable, cosmogenic nuclide records are likely to have been protected from subglacial erosion, and the local ice-surface response is indicative of large-scale ice sheet behavior. The broader impacts of this work include helping to determine whether subglacial surfaces in West Antarctica were ever exposed to cosmic rays, which will provide unambiguous evidence for or against a smaller ice sheet in the past. This is an important step towards establishing whether the WAIS is vulnerable to collapse in future, and will ultimately help to address uncertainty in forecasting sea level change. The results will also provide ground truth for models of ice-sheet dynamics and long-term ice sheet evolution, and will help researchers use these models to identify paleoclimate conditions responsible for WAIS deglaciation. The education and training of students (both undergraduate and graduate students) will play an important role in the project, which will involve Antarctic fieldwork, technically challenging labwork, data collection and interpretation, and communication of the outcome to scientists and the general public. | ["POLYGON((-104.14 -81.07,-102.24 -81.07,-100.34 -81.07,-98.44 -81.07,-96.54 -81.07,-94.64 -81.07,-92.74 -81.07,-90.84 -81.07,-88.94 -81.07,-87.04 -81.07,-85.14 -81.07,-85.14 -81.207,-85.14 -81.344,-85.14 -81.481,-85.14 -81.618,-85.14 -81.755,-85.14 -81.892,-85.14 -82.029,-85.14 -82.166,-85.14 -82.303,-85.14 -82.44,-87.04 -82.44,-88.94 -82.44,-90.84 -82.44,-92.74 -82.44,-94.64 -82.44,-96.54 -82.44,-98.44 -82.44,-100.34 -82.44,-102.24 -82.44,-104.14 -82.44,-104.14 -82.303,-104.14 -82.166,-104.14 -82.029,-104.14 -81.892,-104.14 -81.755,-104.14 -81.618,-104.14 -81.481,-104.14 -81.344,-104.14 -81.207,-104.14 -81.07))"] | ["POINT(-94.64 -81.755)"] | false | false |
Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica
|
0944282 |
2016-01-01 | Hasiotis, Stephen |
Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica |
This proposal will study the diversity, abundance, and tiering patterns of ichnofossils in continental and marine deposits of the Beacon Supergroup in the Beardmore Glacier Area (BGA). The PIs will focus on continental strata that contain a variety of ichnofossils and paleosols. Ichnofossils will be evaluated for their architectural and surficial morphologies, and will be compared to modern and ancient traces to interpret the tracemaker behavior and paleoenvironmental setting. Distribution of ichnofossils within these units may indicate the effect of lateral variability of pedogenesis, the magnitude and frequency of depositional events, and the amount of moisture within the sediment, as well as the effects of climate change. The paleoclimatic significance of ichnofossils will be determined by comparing the burrow size, occurrence, tiering, and pedogenic significance of ichnofossils in measured sections of stratigraphic units deposited during global warming and cooling episodes. Comparisons will be made between BGA formations to stratigraphically equivalent rocks deposited at low paleolatitudes with previously determined paleoclimatic settings. The objectives of this project are to address two major questions: what differences existed in ichnodiversity, abundance, and tiering in marine and continental deposits between high- and low-paleolatitudes, and was there a dearth of habitat usage in continental deposits during the late Paleozoic and Mesozoic, particularly in fluvial and lacustrine environments compared to the habitat usage in the marine realm at that time? This study will enhance the ability to interpret paleoenvironments to the subenvironmental scale, understand the evolution of soil biota and ecosystems at high paleolatitudes, determine the role of organisms in soil formation at high paleolatitudes, explore the effects of climate change on the body size and diversity of organisms in the soil communities, and develop new tools to interpret paleoclimate in high latitudes. There is a strong education component associated with this proposal. | ["POINT(175 -86)"] | ["POINT(175 -86)"] | false | false |
Preparation of Vertebrate Fossils from the Triassic of Antarctica
|
1146399 |
2015-01-01 | Sidor, Christian |
Preparation of Vertebrate Fossils from the Triassic of Antarctica |
The PI requests support for preparation of a large collection of vertebrate fossils recently recovered from the Central Transantarctic Mountains (CTAM) of Antarctica. These fossils will be used to place early Mesozoic Antarctic dinosaurs and other vertebrates into a global evolutionary, biogeographic, and faunal context; assess the degree of endemism in Triassic vertebrate faunas of Antarctica; constrain temporal relationships of the Triassic Antarctic vertebrate faunas; and refine the stratigraphic context for the Triassic Antarctic vertebrate assemblages to establish a paleoenvironmental framework. The lower and middle Triassic fossils offer a rare window on life in terrestrial environments at high-latitudes immediately after the Permian mass extinction. The PI will use their fossils to educate the public about the geologic, climatic, and biologic history of Antarctica by visiting local schools. They will create and publish at least two new videos to the Burke Museum blog that relate the graduate student's experience of fieldwork in Antarctica. They will also update the Antarctica section on the UWBM 'Explore Your World' website with images and findings from their field season. | ["POLYGON((162.41 -84.27,163.409 -84.27,164.408 -84.27,165.407 -84.27,166.406 -84.27,167.405 -84.27,168.404 -84.27,169.403 -84.27,170.402 -84.27,171.401 -84.27,172.4 -84.27,172.4 -84.353,172.4 -84.436,172.4 -84.519,172.4 -84.602,172.4 -84.685,172.4 -84.768,172.4 -84.851,172.4 -84.934,172.4 -85.017,172.4 -85.1,171.401 -85.1,170.402 -85.1,169.403 -85.1,168.404 -85.1,167.405 -85.1,166.406 -85.1,165.407 -85.1,164.408 -85.1,163.409 -85.1,162.41 -85.1,162.41 -85.017,162.41 -84.934,162.41 -84.851,162.41 -84.768,162.41 -84.685,162.41 -84.602,162.41 -84.519,162.41 -84.436,162.41 -84.353,162.41 -84.27))"] | ["POINT(167.405 -84.685)"] | false | false |
Magnetostratigraphy of Cretaceous Sediments in the James Ross Island Basin, Antarctica
|
1303896 |
2015-01-01 | Kirschvink, Joseph |
Magnetostratigraphy of Cretaceous Sediments in the James Ross Island Basin, Antarctica |
The PI will collect samples to extend the magneto-stratigraphic record of late Cretaceous sediments of the James Ross Basin, Antarctica. RAPID support will allow him to take advantage of an invitation from the Instituto Antartico Argentino (IAA) to participate on an excursion to James Ross Island in the Antarctic Peninsula. The PI hopes to collect samples that will refine the position of several geomagnetic reversals between the end of the Cretaceous long normal Chron and the lower portion of Chron 31R. The Brandy Bay locality targeted by this expedition is the best place in the basin for calibrating the biostratigraphic position of the top of the Cretaceous Long Normal Chron, which is one of the most reliable correlation horizons in the entire Geological Time Scale. The top of the Cretaceous long normal Chron is not properly correlated to southern hemisphere biostratigraphy. Locating this event will be a major addition to understanding geological time. This expedition will provide opportunities for an undergraduate student. This project is based on a productive collaboration with an Argentine scientist. | ["POLYGON((-57 -63,-56.9 -63,-56.8 -63,-56.7 -63,-56.6 -63,-56.5 -63,-56.4 -63,-56.3 -63,-56.2 -63,-56.1 -63,-56 -63,-56 -63.2,-56 -63.4,-56 -63.6,-56 -63.8,-56 -64,-56 -64.2,-56 -64.4,-56 -64.6,-56 -64.8,-56 -65,-56.1 -65,-56.2 -65,-56.3 -65,-56.4 -65,-56.5 -65,-56.6 -65,-56.7 -65,-56.8 -65,-56.9 -65,-57 -65,-57 -64.8,-57 -64.6,-57 -64.4,-57 -64.2,-57 -64,-57 -63.8,-57 -63.6,-57 -63.4,-57 -63.2,-57 -63))"] | ["POINT(-56.5 -64)"] | false | false |
Zircon Hf Isotopes and the Continental Evolution of Dronning Maud Land, East Antarctica
|
1142156 |
2015-01-01 | Marschall, Horst |
Zircon Hf Isotopes and the Continental Evolution of Dronning Maud Land, East Antacrtica |
Geochemical studies of single mineral grains in rocks can be probed to reconstruct the history of our planet. The mineral zircon (ZrSiO4) is of unique importance in that respect because of its reliability as a geologic clock due to its strong persistence against weathering, transport and changes in temperature and pressure. Uranium-Lead (U-Pb) dating of zircon grains is, perhaps, the most frequently employed method of extracting time information on geologic processes that shaped the continental crust, and has been used to constrain the evolution of continents and mountain belts through time. In addition, the isotopic composition of the element Hafnium (Hf) in zircon is used to date when the continental crust was generated by extraction of magma from the underlying mantle. Melting of rocks in the mantle and deep in the continental crust are key processes in the evolution of the continents, and they are recorded in the Hf isotopic signatures of zircon. Although the analytical procedures for U-Pb dating and Hf isotope analyses of zircon are robust now, our understanding of zircon growth and its exchange of elements and isotopes with its surrounding rock or magma are still underdeveloped. The focus of the proposed study, therefore, is to unravel the evolution of zircon Hf isotopes in rocks that were formed deep in the Earth's crust, and more specifically, to apply these isotopic methods to rocks collected in Dronning Maud Land (DML), East Antarctica. Dronning Maud Land (DML) occupied a central location during the formation of supercontinents - large landmasses made up of all the continents that exist today - more than 500 million years ago. It is currently thought that supercontinents were formed and dismembered five or six times throughout Earth's history. The area of DML is key for understanding the formation history of the last two supercontinents. The boundaries of continents that were merged to form those supercontinents are most likely hidden in DML. In this study, the isotopic composition of zircon grains recovered from DML rocks will be employed to identify these boundaries across an extensive section through the area. The rock samples were collected by the investigator during a two-month expedition to Antarctica in the austral summer of 2007-2008. The results of dating and isotope analyses of zircon of the different DML crustal domains will deliver significant insight into the regional geology of East Antarctica and its previous northern extension into Africa. This has significance for the reconstruction of the supercontinents and defining the continental boundaries in DML. | ["POLYGON((-6.44 -71.93,-5.378 -71.93,-4.316 -71.93,-3.254 -71.93,-2.192 -71.93,-1.13 -71.93,-0.068 -71.93,0.994 -71.93,2.056 -71.93,3.118 -71.93,4.18 -71.93,4.18 -71.998,4.18 -72.066,4.18 -72.134,4.18 -72.202,4.18 -72.27,4.18 -72.338,4.18 -72.406,4.18 -72.474,4.18 -72.542,4.18 -72.61,3.118 -72.61,2.056 -72.61,0.994 -72.61,-0.068 -72.61,-1.13 -72.61,-2.192 -72.61,-3.254 -72.61,-4.316 -72.61,-5.378 -72.61,-6.44 -72.61,-6.44 -72.542,-6.44 -72.474,-6.44 -72.406,-6.44 -72.338,-6.44 -72.27,-6.44 -72.202,-6.44 -72.134,-6.44 -72.066,-6.44 -71.998,-6.44 -71.93))"] | ["POINT(-1.13 -72.27)"] | false | false |
A New Approach to Investigate the Seismic Velocity Structure beneath Antarctica
|
1139739 |
2014-01-01 | Hansen, Samantha |
New Approach to Investigate the Seismic Velocity Structure beneath Antarctica |
Intellectual Merit: Numerous candidate models for the geologic processes that have shaped the Antarctic continent have been proposed. To discriminate between them, detailed images of the upper mantle structure are required; however, the only existing continental-scale images of seismic structure beneath Antarctica lack sufficient resolution to delineate important, diagnostic features. Using newly available data from various Antarctic seismic networks, the PI will employ the adaptively parameterized tomography method to develop a high-resolution, continental-scale seismic velocity model for all of Antarctica. The proposed tomography method combines regional seismic travel-time datasets in the context of a global model to create a composite continental-scale model of upper mantle structure. The proposed method allows for imaging of finer structure in areas with better seismic ray coverage while simultaneously limiting the resolution of features in regions with less coverage. This research will help advance understanding of important global processes, such as craton formation, mountain building, continental rifting and associated magmatism. Additionally, the proposed research will have important impacts on other fields of Antarctic science. Constraints provided by tomographic results can be used to develop thermal models of the lithosphere needed to characterize the history and dynamics of ice sheets. Also, further constraints on lithospheric structure are required by climate-ice models, which are focused on understanding the cooling history of the Antarctic continent. Broader impacts: The PI is a new faculty member at the University of Alabama after having been funded as a National Science Foundation Postdoctoral Fellow in Polar Regions Research. The graduate student supported by this project is new to polar research. Through the UA-Tuscaloosa Magnet School partnership program, the PI will educate K-12 students about the Antarctic environment and associated career opportunities through various online and hands-on activities. University of Alabama dedicates a significant percentage of its enrollment space to underrepresented groups. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)
|
0838849 |
2014-01-01 | Bender, Michael |
Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA) |
This award supports a project to generate an absolute timescale for the Allan Hills Blue Ice Area (BIA), and then to reconstruct details of past climate changes and greenhouse gas concentrations for certain time periods back to 2.5 Ma. Ice ages will be determined by applying emerging methods for absolute and relative dating of trapped air bubbles (based on Argon-40/Argon-38, delta-18O of O2, and the O2/N2 ratio). To demonstrate the potential of the Allan Hills BIAs as a paleoclimate archive trenches and ice cores will be collected for age intervals corresponding to 110-140 ka, 1 Ma, and 2.5 Ma. During the proposed two field seasons a total of 6x100 m and additional 15 m cores will be combined with trenching. The intellectual merit of the proposed activity is that the results of this work will extend the landmark work of EPICA and other deep ice coring efforts, which give records dating back to 0.8 Ma, and will complement work planned by IPICS to drill a continuous Antarctic ice core extending to 1.5 Ma. The results will help to advance understanding of major climate regimes and transitions that took place between 0-2.5 Ma, including the 40 kyr world and the mid-Pleistocene climate transition. A major long-term scientific goal is to provide a transformative approach to the collection of paleoclimate records by establishing an 'International Climate Park' in the Allan Hills BIA that would enable sampling of large quantities of known age ice as old as 2.5 Ma, by any interested American or foreign investigator. The broader impacts resulting from the proposed activity include training students who are well versed in advanced field, laboratory and numerical modeling methods combining geochemistry, glaciology, and paleoclimatology. We will include material relevant to our proposed research in our ongoing efforts in local education and in our outreach efforts for media. The University of Maine already has cyberinfrastructure, using state of the art web-based technology, which can provide a wide community of scientists with fast access to the results of our research. The work will contribute to the broad array of climate change studies that is informing worldwide understanding of natural and anthropogenic forced climate change, and the options for responding. This award has field work in Antarctica. | ["POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667))"] | ["POINT(159.29167 -76.7)"] | false | false |
East Antarctic outlet glacier contributions to the Ross Sea from chronology of detrital grains
|
1043619 |
2014-01-01 | Hemming, Sidney R. |
Collaborative Research: East Antarctic outlet glacier contributions to the Ross Sea from chronology of detrital grains |
Intellectual Merit: The PIs proposed a provenance study of glacial deposits in the Ross Embayment that will provide a broad scale geochronologic survey of detrital minerals in till to help characterize bedrock beneath the East Antarctic ice sheet and constrain Antarctica?s glacial history. This project capitalizes on previous investments in field sampling. Analytical tools applied to single mineral grains extracted from existing collections of glacial till will generate ?fingerprints? of East Antarctic outlet glaciers and West Antarctic till to refine paleo-ice flow models for the Ross Embayment during the last glacial maximum, older records from ANDRILL cores, and to assess IRD sources in the Southern Ocean. New provenance tracers will include a suite of geochronological methods that together provide greater insights into the orogenic and erosional history the region. This project will include U/Pb of detrital zircons, (U-Th)/He on a subset of the U/Pb dated zircons, as well as Ar-Ar of detrital hornblende, mica and feldspars. Broader Impacts: This research will train one M.S. student at IUPUI, a Ph.D. student at Columbia, and several undergraduates at both institutions. Graduate students involved in the project will be involved in mentoring undergraduate researchers. Incorporation of research discoveries will be brought into the classroom by providing concrete examples and exercises at the appropriate level. Licht and Columbia graduate student E. Pierce are developing outreach projects with local secondary school teachers to investigate the provenance of glacial materials in their local areas. The research will have broad applicability to many fields. | ["POLYGON((-180 -63.997,-179.7982 -63.997,-179.5964 -63.997,-179.3946 -63.997,-179.1928 -63.997,-178.991 -63.997,-178.7892 -63.997,-178.5874 -63.997,-178.3856 -63.997,-178.1838 -63.997,-177.982 -63.997,-177.982 -66.3324,-177.982 -68.6678,-177.982 -71.0032,-177.982 -73.3386,-177.982 -75.674,-177.982 -78.0094,-177.982 -80.3448,-177.982 -82.6802,-177.982 -85.0156,-177.982 -87.351,-178.1838 -87.351,-178.3856 -87.351,-178.5874 -87.351,-178.7892 -87.351,-178.991 -87.351,-179.1928 -87.351,-179.3946 -87.351,-179.5964 -87.351,-179.7982 -87.351,180 -87.351,172.54273 -87.351,165.08546 -87.351,157.62819 -87.351,150.17092 -87.351,142.71365 -87.351,135.25638 -87.351,127.79911 -87.351,120.34184 -87.351,112.88457 -87.351,105.4273 -87.351,105.4273 -85.0156,105.4273 -82.6802,105.4273 -80.3448,105.4273 -78.0094,105.4273 -75.674,105.4273 -73.3386,105.4273 -71.0032,105.4273 -68.6678,105.4273 -66.3324,105.4273 -63.997,112.88457 -63.997,120.34184 -63.997,127.79911 -63.997,135.25638 -63.997,142.71365 -63.997,150.17092 -63.997,157.62819 -63.997,165.08546 -63.997,172.54273 -63.997,-180 -63.997))"] | ["POINT(143.72265 -75.674)"] | false | false |
Geodynamic Models of Subsidence and Lithospheric Flexure at the ANDRILL Drill Sites: Implications for Cenozoic Tectonics and Ice Sheet History
|
1043700 |
2014-01-01 | Harry, Dennis L. |
Geodynamic Models of Subsidence and Lithospheric Flexure at the ANDRILL Drill Sites: Implications for Cenozoic Tectonics and Ice Sheet History |
Intellectual Merit: This research will place the subsidence history of the southern Victoria Land Basin into a quantitative geodynamic context and will assess the influence of flexure associated with late Neogene volcanic loading of the crust by the Erebus Volcanic Group. This will be done by extending geodynamic models of extension in the West Antarctic Rift System to include extensional hiatuses hypothesized to have occurred during the Late Paleogene and Miocene, and by developing a new geodynamic model of volcanic loading and associated lithosphere flexure. Finite element and finite difference modeling methods will be used. In the first phase of the project, a series of extensional geodynamic models will be developed to examine the effect that proposed extensional hiatuses have on the style of extension, with emphasis placed on developing a process based understanding of the change in rift style from diffuse during the Late Cretaceous to more focused during the Cenozoic. The models will test the hypotheses that extensional hiatuses led to the change in rifting style, and will place constraints on the timing and duration of the hiatuses. The second phase of the project will use the thermal and rheological properties of the previous models to constrain the flexural rigidity of the lithosphere in order to model the flexural response to volcanic loading to test the hypotheses that flexural subsidence contributed to cyclic changes between grounded and floating ice at the ANDRILL AND-1A site, complicating interpretations of the climatic record from this core, and that flexure contributes to the stress orientation at the AND-2B site, which is inconsistent with the expected regional extensional stress orientation. Broader impacts: The project will train an undergraduate student and an M.S. student. Outreach activities include a planned series of talks at regional high schools, junior colleges, and 4-year colleges that have geology programs. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines
|
0944475 |
2014-01-01 | Kaplan, Michael |
Collaborative Research: Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines |
Intellectual Merit: The proposed work will investigate changes in the compositional variation of glacial tills over time across two concentric sequences of Pleistocene moraines located adjacent to the heads of East Antarctic outlet glaciers in the Transantarctic Mountains (TAM). The chronologic framework for this work will be generated from cosmogenic exposure ages of boulders on prominent morainal ridges. The PIs hypothesize that variations in till composition may indicate a change in ice flow direction or a change in the composition of the original source area, while ages of the moraines provide a long-term terrestrial perspective on ice sheet dynamics. Both results are vital for modeling experiments that aim to reconstruct the East Antarctic Ice Sheet and assess its role in the global climate system and its potential impact on global sea level rise. The variation of till compositions through time also allows for a more accurate interpretation of sediment cores from the Ross Sea and the Southern Ocean. Additionally, till exposures at the head of some East Antarctic outlet glaciers have been shown to contain subglacial material derived from East Antarctic bedrock, providing a window through the ice to view East Antarctica's inaccessible bedrock. Till samples will be collected from two well-preserved sequences of moraine crests at Mt. Howe (head of Scott Glacier) and Mt. Achernar (between Beardmore and Nimrod Glaciers). Each size fraction in glacial till provides potentially valuable information, and the PIs will measure the petrography of the clast and sand fractions, quantitative X-ray diffraction on the crushed <2mm fraction, elemental abundance of the silt/clay fraction, and U/Pb of detrital zircons in the sand fraction. Data collection will rely on established methods previously used in this region and the PIs will also explore new methods to assess their efficacy. On the same moraines crests sampled for provenance studies, the PIs will sample for cosmogenic surface exposure analyses to provide a chronologic framework at the sites for provenance changes through time. Broader Impact: The proposed research involves graduate and undergraduate training in a diverse array of laboratory methods. Students and PIs will be make presentations to community and campus groups, as well as conduct interviews with local news outlets. The proposed work also establishes a new, potentially long-term, collaboration between scientists at IUPUI and LDEO and brings a new PI (Kaplan) into the field of Antarctic Earth Sciences. | ["POLYGON((-180 -84.1,-176.97 -84.1,-173.94 -84.1,-170.91 -84.1,-167.88 -84.1,-164.85 -84.1,-161.82 -84.1,-158.79 -84.1,-155.76 -84.1,-152.73 -84.1,-149.7 -84.1,-149.7 -84.43,-149.7 -84.76,-149.7 -85.09,-149.7 -85.42,-149.7 -85.75,-149.7 -86.08,-149.7 -86.41,-149.7 -86.74,-149.7 -87.07,-149.7 -87.4,-152.73 -87.4,-155.76 -87.4,-158.79 -87.4,-161.82 -87.4,-164.85 -87.4,-167.88 -87.4,-170.91 -87.4,-173.94 -87.4,-176.97 -87.4,180 -87.4,178.12 -87.4,176.24 -87.4,174.36 -87.4,172.48 -87.4,170.6 -87.4,168.72 -87.4,166.84 -87.4,164.96 -87.4,163.08 -87.4,161.2 -87.4,161.2 -87.07,161.2 -86.74,161.2 -86.41,161.2 -86.08,161.2 -85.75,161.2 -85.42,161.2 -85.09,161.2 -84.76,161.2 -84.43,161.2 -84.1,163.08 -84.1,164.96 -84.1,166.84 -84.1,168.72 -84.1,170.6 -84.1,172.48 -84.1,174.36 -84.1,176.24 -84.1,178.12 -84.1,-180 -84.1))"] | ["POINT(-174.25 -85.75)"] | false | false |
History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris
|
0944489 |
2014-01-01 | Williams, Trevor; Hemming, Sidney R. |
History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris |
Intellectual Merit: The PIs propose to study the stability and dynamics of the East Antarctic ice sheet during the Pliocene in the area of the Wilkes and Aurora subglacial basins. Models indicate the ice sheet is most sensitive to warming in these low-lying areas. This study is important as there is very little direct evidence about which parts of the East Antarctic ice sheet became unstable under warm conditions. In a pilot study the PIs have shown that the isotopic geochemical signature of downcore ice-rafted debris (IRD) can be linked to continental source areas indicating which parts of the ice sheet reached the coast and calved IRD-bearing icebergs. Their initial results suggest rapid iceberg discharge from the Wilkes Land and Adelie Land coastal areas at times in the late Miocene and early Pliocene. In this study the PIs will analyze IRD from IODP sediment cores collected on the continental rise off East Antarctica. By analyzing 40Ar/39Ar ages of hornblende IRD grains, U-Pb ages of zircons, and Sm-Nd isotopes of the fine fraction of several IRD-rich layers for each core, they will be able to fingerprint continental source areas that indicate ice extent and dynamics on East Antarctica. The PIs will also carry out detailed studies across a few of these layers to characterize the anatomy of the ice-rafting event and better understand the mechanism of ice destabilization. Broader impacts: The data collected will be important for scientists in a broad variety of fields. The project will involve one undergraduate student and one summer intern at LDEO, and a graduate student at Imperial College London. The project will expose to cutting edge methodologies as well as an international research team. Data from the project will be deposited in the online databases (SedDB) and all results and methods will be made available to the scientific community through publications in peer-reviewed journals and attendance at international conferences | ["POLYGON((-55 -58,-33.2 -58,-11.4 -58,10.4 -58,32.2 -58,54 -58,75.8 -58,97.6 -58,119.4 -58,141.2 -58,163 -58,163 -60,163 -62,163 -64,163 -66,163 -68,163 -70,163 -72,163 -74,163 -76,163 -78,141.2 -78,119.4 -78,97.6 -78,75.8 -78,54 -78,32.2 -78,10.4 -78,-11.4 -78,-33.2 -78,-55 -78,-55 -76,-55 -74,-55 -72,-55 -70,-55 -68,-55 -66,-55 -64,-55 -62,-55 -60,-55 -58))"] | ["POINT(54 -68)"] | false | false |
US International Trans-Antarctic Scientific Expedition (US ITASE) Glaciochemical Data
|
0837883 9725057 |
2013-07-11 | Dixon, Daniel A.; Mayewski, Paul A. |
Science Management for the United States Component of the International Trans-Antarctic Expedition |
This data set contains sub-annually resolved ice core chemistry data from various sites on the Antarctic Ice Sheet during the US International Trans-Antarctic Scientific Expedition (US ITASE) deployments. Researchers conducted experiments approximately every 30 - 300 km looking for clues representing climatic conditions over the past 200-1000+ years. Ice cores obtained for the glaciochemical component of the US ITASE research were analyzed for soluble major ion content and in some cases trace elements. Extreme events, such as volcanic eruptions, provide absolute age horizons within each core that are easily identified in chemical profiles. Our chemical analysis is also useful for quantifying anthropogenic impact, biogeochemical cycling, and for reconstructing past atmospheric circulation patterns. | ["POLYGON((-76.1 -77.68,-53.253 -77.68,-30.406 -77.68,-7.559 -77.68,15.288 -77.68,38.135 -77.68,60.982 -77.68,83.829 -77.68,106.676 -77.68,129.523 -77.68,152.37 -77.68,152.37 -78.912,152.37 -80.144,152.37 -81.376,152.37 -82.608,152.37 -83.84,152.37 -85.072,152.37 -86.304,152.37 -87.536,152.37 -88.768,152.37 -90,129.523 -90,106.676 -90,83.829 -90,60.982 -90,38.135 -90,15.288 -90,-7.559 -90,-30.406 -90,-53.253 -90,-76.1 -90,-76.1 -88.768,-76.1 -87.536,-76.1 -86.304,-76.1 -85.072,-76.1 -83.84,-76.1 -82.608,-76.1 -81.376,-76.1 -80.144,-76.1 -78.912,-76.1 -77.68))"] | ["POINT(38.135 -83.84)"] | false | false |
The Permian-Triassic Transition in Antarctica: Evaluating the Rates and Variability of Carbon Isotope Fluctuations in Terrestrial Organic Matter
|
1039365 |
2013-01-01 | Rimmer, Susan |
Collaborative Research: The Permian -Triassic Transition in Antarctica: Evaluating the Rates and Variability of Carbon Isotope Fluctuatios in Terrestrial Organic Matter |
This project studies the Permian-Triassic extinction event as recorded in sedimentary rocks from the Transantarctic Mountains of Antarctica. Two hundred and fifty million years ago most life on Earth was wiped out in a geologic instant. The cause is a subject of great debate. Researchers have identified a unique stratigraphic section near Shackleton glacier laid down during the extinction event. Organic matter from these deposits will be analyzed by density gradient centrifugation (DGC), which will offer detailed information on the carbon isotope composition. The age of these layers will be precisely dated by U/Pb-zircon-dating of intercalated volcanics. Combined, these results will offer detailed constraints on the timing and duration of carbon isotope excursions during the extinction, and offer insight into the coupling of marine and terrestrial carbon cycles. The broader impacts of this project include graduate and undergraduate student research, K12 outreach and teacher involvement, and societal relevance of the results, since the P/T extinction may have been caused by phenomena such as methane release, which could accompany global warming. | [] | [] | false | false |
Optically Stimulated Luminescence Ages of Raised Beaches
|
0724929 |
2013-01-01 | Simms, Alexander |
SGER: Testing the use of OSL dating of beach deposits along the Antarctic Peninsula |
This data set includes optically stimulated luminescence (OSL) ages and elevations obtained from raised beach ridges across the Antarctic Peninsula. | [] | [] | false | false |
Antarctic Peninsula 100 m Digital Elevation Model Derived from ASTER GDEM
|
None | 2012-04-30 | Cook, Allison | No project link provided | This data set provides a 100 meter resolution surface topography Digital Elevation Model (DEM) of the Antarctic Peninsula. The DEM is based on Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) data. | ["POLYGON((-70 -63,-68.5 -63,-67 -63,-65.5 -63,-64 -63,-62.5 -63,-61 -63,-59.5 -63,-58 -63,-56.5 -63,-55 -63,-55 -63.7,-55 -64.4,-55 -65.1,-55 -65.8,-55 -66.5,-55 -67.2,-55 -67.9,-55 -68.6,-55 -69.3,-55 -70,-56.5 -70,-58 -70,-59.5 -70,-61 -70,-62.5 -70,-64 -70,-65.5 -70,-67 -70,-68.5 -70,-70 -70,-70 -69.3,-70 -68.6,-70 -67.9,-70 -67.2,-70 -66.5,-70 -65.8,-70 -65.1,-70 -64.4,-70 -63.7,-70 -63))"] | ["POINT(-62.5 -66.5)"] | false | false |
Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology
|
0838722 |
2012-01-01 | Gehrels, George; Reiners, Peter; Thomson, Stuart |
Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology |
Much of the inventory of East Antarctic bedrock geochronology, as well as a record of its erosional history, is preserved in Cenozoic sediments around its margin. This project is to use these sediments to understand their sub-ice provenance and the erosional history of the shield by measuring ages of multiple geo- and thermochronometers on single detrital crystals and on multiple crystals in detrital clasts (U/Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar). The combination of multi-chronometer ages in single grains and clasts provides a powerful fingerprint of bedrock sources, allowing us to trace provenance in Eocene fluvial sandstones through Quaternary diamicts around the margin. Multiple thermochronometric (cooling) ages in the same grains and clasts also allows us to interpret the timing and rates of erosion from these bedrock sources. Delineating a distribution of bedrock age units, their sediment transport connections, and their erosional histories over the Cenozoic, will in turn allow us to test tectonic models bearing on: (1) the origin of the Gamburtsev Subglacial Mountains, (2) fluvial and topographic evolution, and (3) the history of glacial growth and erosion. | ["POLYGON((61.9 -67.28,63.218 -67.28,64.536 -67.28,65.854 -67.28,67.172 -67.28,68.49 -67.28,69.808 -67.28,71.126 -67.28,72.444 -67.28,73.762 -67.28,75.08 -67.28,75.08 -67.922,75.08 -68.564,75.08 -69.206,75.08 -69.848,75.08 -70.49,75.08 -71.132,75.08 -71.774,75.08 -72.416,75.08 -73.058,75.08 -73.7,73.762 -73.7,72.444 -73.7,71.126 -73.7,69.808 -73.7,68.49 -73.7,67.172 -73.7,65.854 -73.7,64.536 -73.7,63.218 -73.7,61.9 -73.7,61.9 -73.058,61.9 -72.416,61.9 -71.774,61.9 -71.132,61.9 -70.49,61.9 -69.848,61.9 -69.206,61.9 -68.564,61.9 -67.922,61.9 -67.28))"] | ["POINT(68.49 -70.49)"] | false | false |
Rift Mechanisms and Thermal Regime of the Lithosphere across Beardmore Glacier Region, Central Transantarctic Mountains, from Magnetotelluric Measurements
|
0838914 |
2012-01-01 | Wannamaker, Philip |
Rift Mechanisms and Thermal Regime of the Lithosphere across Beardmore Glacier Region, Central Transantarctic Mountains, from Magnetotelluric Measurements |
The investigators will examine competing hypotheses for the mechanism of extension and creation of the Transantarctic Mountains, and evolution of the thermal regimes of rifted West Antarctica and stable East Antarctica using magnetotelluric (MT) profiles. Surrounded almost entirely by ocean ridges, Antarctica is a special tectonic situation because of the need to make accommodation space for rifting in the Transantarctic region. In the MT method, temporal variations in the Earth's natural electromagnetic field are used as source fields to probe the electrical resistivity structure in the depth range of 1 to 200 km, or more. Geophysical methods, such as MT, are appropriate in Antarctica because of the predominance of thick ice cover over most of the Continent and the difficult operating environment. The proposed effort will consist of approximately 50 sites over a distance approaching 500 km with a 10 km average spacing, oriented normal to the Transantarctic Mountains (TAM), in the Beardmore glacier area. High quality MT soundings will be collected over thick ice sheets using a custom electrode preamp design, updated from previous Antarctic projects. Data acquisition will take place over two field seasons. The primary goals are three-fold: to establish the location of the deeper tectonic transition between East and West Antarctica that may be offset from the physiographic transition at the surface, using deep resistivity structure distinguish between modes of extensional upwelling and magmatism that may be vertically non-uniform, depth and magnitude of quasi-layered deep crustal low resistivity, particularly below West Antarctica, will be used to estimate crustal heat flux into the ice sheet base. | ["POLYGON((141.01732 -82.13,144.910279 -82.13,148.803238 -82.13,152.696197 -82.13,156.589156 -82.13,160.482115 -82.13,164.375074 -82.13,168.268033 -82.13,172.160992 -82.13,176.053951 -82.13,179.94691 -82.13,179.94691 -82.351835,179.94691 -82.57367,179.94691 -82.795505,179.94691 -83.01734,179.94691 -83.239175,179.94691 -83.46101,179.94691 -83.682845,179.94691 -83.90468,179.94691 -84.126515,179.94691 -84.34835,176.053951 -84.34835,172.160992 -84.34835,168.268033 -84.34835,164.375074 -84.34835,160.482115 -84.34835,156.589156 -84.34835,152.696197 -84.34835,148.803238 -84.34835,144.910279 -84.34835,141.01732 -84.34835,141.01732 -84.126515,141.01732 -83.90468,141.01732 -83.682845,141.01732 -83.46101,141.01732 -83.239175,141.01732 -83.01734,141.01732 -82.795505,141.01732 -82.57367,141.01732 -82.351835,141.01732 -82.13))"] | ["POINT(160.482115 -83.239175)"] | false | false |
Thermochronologic and modelling test for a Mesozoic West Antarctic Plateau
|
0739781 |
2012-01-01 | Blythe, Ann Elizabeth; Huerta, Audrey D. |
Collaborative Research: Thermochronologic and modelling test for a Mesozoic West Antarctic Plateau |
This project studies formation of the TransAntarctic Mountains (TAM) through numerical modeling based on cooling histories of apatite mineral grains. The TAM are the highest and longest rift-related mountain range in the world. Various models for their uplift have been proposed, the most provocative of which is that they are not uplifted, but instead are the eroded remnant of a plateau. This project evaluates that hypothesis by collecting apatites from around Byrd Glacier for fission track thermochronology. Results will be combined with a kinematic and thermal model to determine the TAM's structural evolution. The plateau model, if correct, implies that the Byrd Glacier originated not as a glacier-carved valley through the TAM, but as a river system flowing in the opposite direction. Given that the Byrd Glacier is a key drainage for the East Antarctic ice sheet, this result has important implications for ice sheet models and interpretation of both regional geology and sediment records. The main broader impacts are undergraduate research and a new collaboration between a primarily undergraduate and a research institution. Students will be involved in the field program, sample analyses, and numerical modeling. | ["POLYGON((155.77667 -79.793335,156.208836 -79.793335,156.641002 -79.793335,157.073168 -79.793335,157.505334 -79.793335,157.9375 -79.793335,158.369666 -79.793335,158.801832 -79.793335,159.233998 -79.793335,159.666164 -79.793335,160.09833 -79.793335,160.09833 -79.8578345,160.09833 -79.922334,160.09833 -79.9868335,160.09833 -80.051333,160.09833 -80.1158325,160.09833 -80.180332,160.09833 -80.2448315,160.09833 -80.309331,160.09833 -80.3738305,160.09833 -80.43833,159.666164 -80.43833,159.233998 -80.43833,158.801832 -80.43833,158.369666 -80.43833,157.9375 -80.43833,157.505334 -80.43833,157.073168 -80.43833,156.641002 -80.43833,156.208836 -80.43833,155.77667 -80.43833,155.77667 -80.3738305,155.77667 -80.309331,155.77667 -80.2448315,155.77667 -80.180332,155.77667 -80.1158325,155.77667 -80.051333,155.77667 -79.9868335,155.77667 -79.922334,155.77667 -79.8578345,155.77667 -79.793335))"] | ["POINT(157.9375 -80.1158325)"] | false | false |
Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology
|
0838729 |
2011-01-01 | Hemming, Sidney R. |
Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology |
Much of the inventory of East Antarctic bedrock geochronology, as well as a record of its erosional history, is preserved in Cenozoic sediments around its margin. This project is to use these sediments to understand their sub-ice provenance and the erosional history of the shield by measuring ages of multiple geo- and thermochronometers on single detrital crystals and on multiple crystals in detrital clasts (U/Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar). The combination of multi-chronometer ages in single grains and clasts provides a powerful fingerprint of bedrock sources, allowing us to trace provenance in Eocene fluvial sandstones through Quaternary diamicts around the margin. Multiple thermochronometric (cooling) ages in the same grains and clasts also allows us to interpret the timing and rates of erosion from these bedrock sources. Delineating a distribution of bedrock age units, their sediment transport connections, and their erosional histories over the Cenozoic, will in turn allow us to test tectonic models bearing on: (1) the origin of the Gamburtsev Subglacial Mountains, (2) fluvial and topographic evolution, and (3) the history of glacial growth and erosion. | ["POLYGON((-67.2 -58,-43.98 -58,-20.76 -58,2.46 -58,25.68 -58,48.9 -58,72.12 -58,95.34 -58,118.56 -58,141.78 -58,165 -58,165 -59.2,165 -60.4,165 -61.6,165 -62.8,165 -64,165 -65.2,165 -66.4,165 -67.6,165 -68.8,165 -70,141.78 -70,118.56 -70,95.34 -70,72.12 -70,48.9 -70,25.68 -70,2.46 -70,-20.76 -70,-43.98 -70,-67.2 -70,-67.2 -68.8,-67.2 -67.6,-67.2 -66.4,-67.2 -65.2,-67.2 -64,-67.2 -62.8,-67.2 -61.6,-67.2 -60.4,-67.2 -59.2,-67.2 -58))"] | ["POINT(48.9 -64)"] | false | false |
An Integrated Geomagnetic and Petrologic Study of the Dufek Complex
|
0537609 |
2011-01-01 | Gee, Jeffrey |
Collaborative Research: An Integrated Geomagnetic and Petrologic Study of the Dufek Complex |
This project studies remnant magnetization in igneous rocks from the Dufek igneous complex, Antarctica. Its primary goal is to understand variations in the Earth's magnetic field during the Mesozoic Dipole Low (MDL), a period when the Earth's magnetic field underwent dramatic weakening and rapid reversals. This work will resolve the MDL's timing and nature, and assess connections between reversal rate, geomagnetic intensity and directional variability, and large-scale geodynamic processes. The project also includes petrologic studies to determine cooling rate effects on magnetic signatures, and understand assembly of the Dufek as an igneous body. Poorly studied, the Dufek is amongst the world's largest intrusions and its formation is connected to the break-up of Gondwana. The broader impacts of this project include graduate and undergraduate education and international collaboration with a German and Chilean IPY project. | ["POLYGON((-52.9943 -82.6146,-52.990539 -82.6146,-52.986778 -82.6146,-52.983017 -82.6146,-52.979256 -82.6146,-52.975495 -82.6146,-52.971734 -82.6146,-52.967973 -82.6146,-52.964212 -82.6146,-52.960451 -82.6146,-52.95669 -82.6146,-52.95669 -82.615118,-52.95669 -82.615636,-52.95669 -82.616154,-52.95669 -82.616672,-52.95669 -82.61719,-52.95669 -82.617708,-52.95669 -82.618226,-52.95669 -82.618744,-52.95669 -82.619262,-52.95669 -82.61978,-52.960451 -82.61978,-52.964212 -82.61978,-52.967973 -82.61978,-52.971734 -82.61978,-52.975495 -82.61978,-52.979256 -82.61978,-52.983017 -82.61978,-52.986778 -82.61978,-52.990539 -82.61978,-52.9943 -82.61978,-52.9943 -82.619262,-52.9943 -82.618744,-52.9943 -82.618226,-52.9943 -82.617708,-52.9943 -82.61719,-52.9943 -82.616672,-52.9943 -82.616154,-52.9943 -82.615636,-52.9943 -82.615118,-52.9943 -82.6146))"] | ["POINT(-52.975495 -82.61719)"] | false | false |
Laboratory Study of Stick-Slip Behavior and Deformation Mechanics of Subglacial Till
|
0440523 0538195 0424589 |
2010-04-14 | Marone, Chris; Anandakrishnan, Sridhar |
Laboratory Study of Stick-Slip Behavior and Deformation Mechanics of Subglacial Till |
This data set includes the results of laboratory experiments examining the constitutive properties of subglacial till, under dynamic stressing. The data include the results of shear strain and stress experiments. Testing was carried out in a servo-controlled biaxial shear device under controlled temperature and stress conditions, allowing both sliding and microstructural processes to be studied in detail. Till samples were collected from Matanuska, Alaska and from Caesar till at the Laurentide Ice Sheet. The data are available via FTP in ASCII text format (.txt). | ["POINT(-147.753056 61.781667)", "POINT(-83.006944 40.067222)", "POINT(147.758889 61.779444)"] | ["POINT(-147.753056 61.781667)", "POINT(-83.006944 40.067222)", "POINT(147.758889 61.779444)"] | false | false |
Continued Research on the Jurassic Vertebrate Fauna from the Beardmore Glacier Region of Antarctica
|
0634619 |
2010-01-01 | Hammer, William R. |
Continued Research on the Jurassic Vertebrate Fauna from the Beardmore Glacier Region of Antarctica |
This award supports preparation and study of fossil dinosaurs discovered on Mt. Kirkpatrick, Antarctica, during the 2003-04 field season. The 4,000 pounds of bone bearing matrix to be processed includes new pieces of Cryolophosaurus, a 22 foot long meat eating theropod, as well as a new unnamed sauropod dinosaur and other yet to be identified taxa. This project advances our understanding of dinosaur evolution and adaptation at the beginning of the reign of the dinosaurs, the Late Triassic and Early Jurassic. This period is poorly understood due to lack of fossils, which makes these fossils from Antarctica particularly unique. Also, since these fossils are from high paleolatitudes they will contribute to our understanding of past climates and the physiologic adaptations of dinosaurs to lengthy periods of darkness. The broader impacts include outreach to the general public through museum exhibits and presentations. | ["POINT(166 -84)"] | ["POINT(166 -84)"] | false | false |
Antarctica's Geological History Reflected in Sedimentary Radiogenic Isotopes
|
0538580 |
2010-01-01 | van de Flierdt, Tina; Goldstein, Steven L.; Hemming, Sidney R. |
Antarctica's Geological History Reflected in Sedimentary Radiogenic Isotopes |
This project studies sediment from the ocean floor to understand Antarctica's geologic history. Glacially eroded from the Antarctic continent, these sediments may offer insight into the 99% Antarctica covered by ice. The work's central focus is determining crust formation ages and thermal histories for three key areas of East Antarctica--Prydz Bay, eastern Weddell Sea, and Wilkes Land--through a combination of petrography, bulk sediment geochemistry and radiogenic isotopes, as well as isotope chronology of individual mineral grains. One specific objective is characterizing the composition of the Gamburtsev Mountains through studies of Eocene fluvial sediments from Prydz Bay. In addition to furthering our understanding of the hidden terrains of Antarctica, these terrigenous sediments will also serve as a natural laboratory to evaluate the effects of continental weathering on the Hf/Nd isotope systematics of seawater. An important broader impact of the project is providing exciting research projects for graduate and postdoctoral students using state of the art techniques in geochemistry. | ["POLYGON((60 -60,72 -60,84 -60,96 -60,108 -60,120 -60,132 -60,144 -60,156 -60,168 -60,180 -60,180 -61,180 -62,180 -63,180 -64,180 -65,180 -66,180 -67,180 -68,180 -69,180 -70,168 -70,156 -70,144 -70,132 -70,120 -70,108 -70,96 -70,84 -70,72 -70,60 -70,60 -69,60 -68,60 -67,60 -66,60 -65,60 -64,60 -63,60 -62,60 -61,60 -60))"] | ["POINT(120 -65)"] | false | false |
Triple-dating (Pb-FT-He) of Antarctic Detritus and the Origin of the Gamburtsev Mountains
|
0816934 |
2009-01-01 | Thomson, Stuart |
Collaborative Research: SGER: Triple-dating (Pb-FT-He) of Antarctic Detritus and the Origin of the Gamburtsev Mountains |
This Small Grant for Exploratory Research investigates the origin and evolution of the Gamburtsev subglacial mountains (GSM). These mountains are considered the nucleation point for Antarctica's largest ice sheets; however, being of indeterminate age, they may postdate ice sheet formation. As well, their formation could reflect tectonic events during the breakup of Gondwana. The project studies GSM-derived detrital zircon and apatite crystals from Prydz Bay obtained by the Ocean Drilling Program. Analytical work includes triple-dating thermochronometry by U/Pb, fission track, and (U/Th)/He methods. The combined technique offers insight into both high and low temperature processes, and is potentially sensitive to both the orogenic events and the subsequent cooling and exhumation due to erosion. In terms of broader impacts, this project supports research for a postdoctoral fellow. | ["POLYGON((65 -66,72.9 -66,80.8 -66,88.7 -66,96.6 -66,104.5 -66,112.4 -66,120.3 -66,128.2 -66,136.1 -66,144 -66,144 -66.3,144 -66.6,144 -66.9,144 -67.2,144 -67.5,144 -67.8,144 -68.1,144 -68.4,144 -68.7,144 -69,136.1 -69,128.2 -69,120.3 -69,112.4 -69,104.5 -69,96.6 -69,88.7 -69,80.8 -69,72.9 -69,65 -69,65 -68.7,65 -68.4,65 -68.1,65 -67.8,65 -67.5,65 -67.2,65 -66.9,65 -66.6,65 -66.3,65 -66))"] | ["POINT(104.5 -67.5)"] | false | false |
Boron in Antarctic granulite-facies rocks: under what conditions is boron retained in the middle crust?
|
0228842 |
2009-01-01 | Grew, Edward |
Boron in Antarctic granulite-facies rocks: under what conditions is boron retained in the middle crust? |
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the role and fate of Boron in high-grade metamorphic rocks of the Larsemann Hills region of Antarctica. Trace elements provide valuable information on the changes sedimentary rocks undergo as temperature and pressure increase during burial. One such element, boron, is particularly sensitive to increasing temperature because of its affinity for aqueous fluids, which are lost as rocks are buried. Boron contents of unmetamorphosed pelitic sediments range from 20 to over 200 parts per million, but rarely exceed 5 parts per million in rocks subjected to conditions of the middle and lower crust, that is, temperatures of 700 degrees C or more in the granulite-facies, which is characterized by very low water activities at pressures of 5 to 10 kbar (18-35 km burial). Devolatization reactions with loss of aqueous fluid and partial melting with removal of melt have been cited as primary causes for boron depletion under granulite-facies conditions. Despite the pervasiveness of both these processes, rocks rich in boron are locally found in the granulite-facies, that is, there are mechanisms for retaining boron during the metamorphic process. The Larsemann Hills, Prydz Bay, Antarctica, are a prime example. More than 20 lenses and layered bodies containing four borosilicate mineral species crop out over a 50 square kilometer area, which thus would be well suited for research on boron-rich granulite-facies metamorphic rocks. While most investigators have focused on the causes for loss of boron, this work will investigate how boron is retained during high-grade metamorphism. Field observations and mapping in the Larsemann Hills, chemical analyses of minerals and their host rocks, and microprobe age dating will be used to identify possible precursors and deduce how the precursor materials recrystallized into borosilicate rocks under granulite-facies conditions. The working hypothesis is that high initial boron content facilitates retention of boron during metamorphism because above a certain threshold boron content, a mechanism 'kicks in' that facilitates retention of boron in metamorphosed rocks. For example, in a rock with large amounts of the borosilicate tourmaline, such as stratabound tourmalinite, the breakdown of tourmaline to melt could result in the formation of prismatine and grandidierite, two borosilicates found in the Larsemann Hills. This situation is rarely observed in rocks with modest boron content, in which breakdown of tourmaline releases boron into partial melts, which in turn remove boron when they leave the system. Stratabound tourmalinite is associated with manganese-rich quartzite, phosphorus-rich rocks and sulfide concentrations that could be diagnostic for recognizing a tourmalinite protolith in a highly metamorphosed complex where sedimentary features have been destroyed by deformation. Because partial melting plays an important role in the fate of boron during metamorphism, our field and laboratory research will focus on the relationship between the borosilicate units, granite pegmatites and other granitic intrusives. The results of our study will provide information on cycling of boron at deeper levels in the Earth's crust and on possible sources of boron for granites originating from deep-seated rocks. An undergraduate student will participate in the electron microprobe age-dating of monazite and xenotime as part of a senior project, thereby integrating the proposed research into the educational mission of the University of Maine. In response to a proposal for fieldwork, the Australian Antarctic Division, which maintains Davis station near the Larsemann Hills, has indicated that they will support the Antarctic fieldwork. | ["POLYGON((76 -69.3,76.05 -69.3,76.1 -69.3,76.15 -69.3,76.2 -69.3,76.25 -69.3,76.3 -69.3,76.35 -69.3,76.4 -69.3,76.45 -69.3,76.5 -69.3,76.5 -69.32,76.5 -69.34,76.5 -69.36,76.5 -69.38,76.5 -69.4,76.5 -69.42,76.5 -69.44,76.5 -69.46,76.5 -69.48,76.5 -69.5,76.45 -69.5,76.4 -69.5,76.35 -69.5,76.3 -69.5,76.25 -69.5,76.2 -69.5,76.15 -69.5,76.1 -69.5,76.05 -69.5,76 -69.5,76 -69.48,76 -69.46,76 -69.44,76 -69.42,76 -69.4,76 -69.38,76 -69.36,76 -69.34,76 -69.32,76 -69.3))"] | ["POINT(76.25 -69.4)"] | false | false |
Reconstructing the High Latitude Permian-Triassic: Life, Landscapes, and Climate Recorded in the Allan Hills, South Victoria Land, Antarctica
|
0440954 |
2009-01-01 | Miller, Molly |
Collaborative Research: Reconstructing the High Latitude Permian-Triassic: Life, Landscapes, and Climate Recorded in the Allan Hills, South Victoria Land, Antarctica |
This project studies fossils from two to three hundred million year old rocks in the Allan Hills area of Antarctica. Similar deposits from lower latitudes have been used to develop a model of Permo-Triassic climate, wherein melting of continental glaciers in the early Permian leads to the establishment of forests in a cold, wet climate. Conditions became warmer and dryer by the early Triassic, inhibiting plant growth until a moistening climate in the late Triassic allowed plant to flourish once again. This project will test and refine this model and investigate the general effects of climate change on landscapes and ecosystems using the unique exposures and well-preserved fossil and sediment records in the Allan Hills area. The area will be searched for fossil forests, vertebrate tracks and burrows, arthropod trackways, and subaqueously produced biogenic structures, which have been found in other areas of Antarctica. Finds will be integrated with previous paleobiologic studies to reconstruct and interpret ecosystems and their changes. Structures and rock types documenting the end phases of continental glaciation and other major episodic sedimentations will also be described and interpreted. This project contributes to understanding the: (1) evolution of terrestrial and freshwater ecosystems and how they were affected by the end-Permian extinction, (2) abundance and diversity of terrestrial and aquatic arthropods at high latitudes, (3) paleogeographic distribution and evolution of vertebrates and invertebrates as recorded by trace and body fossils; and (3) response of landscapes to changes in climate. In terms of broader impacts, this project will provide an outstanding introduction to field research for graduate and undergraduate students, and generate related opportunities for several undergraduates. It will also stimulate exchange of ideas among research and primarily undergraduate institutions. Novel outreach activities are also planned to convey Earth history to the general public, including a short film on the research process and products, and paintings by a professional scientific illustrator of Permo-Traissic landscapes and ecosystems. | ["POLYGON((159 -76.61667,159.05 -76.61667,159.1 -76.61667,159.15 -76.61667,159.2 -76.61667,159.25 -76.61667,159.3 -76.61667,159.35 -76.61667,159.4 -76.61667,159.45 -76.61667,159.5 -76.61667,159.5 -76.630003,159.5 -76.643336,159.5 -76.656669,159.5 -76.670002,159.5 -76.683335,159.5 -76.696668,159.5 -76.710001,159.5 -76.723334,159.5 -76.736667,159.5 -76.75,159.45 -76.75,159.4 -76.75,159.35 -76.75,159.3 -76.75,159.25 -76.75,159.2 -76.75,159.15 -76.75,159.1 -76.75,159.05 -76.75,159 -76.75,159 -76.736667,159 -76.723334,159 -76.710001,159 -76.696668,159 -76.683335,159 -76.670002,159 -76.656669,159 -76.643336,159 -76.630003,159 -76.61667))"] | ["POINT(159.25 -76.683335)"] | false | false |
Geochemistry and Petrologic Evolution of Felsic Volcanoes in Western Marie Byrd Land, Antarctica
|
0536526 |
2009-01-01 | Le Masurier, Wesley |
Geochemistry and Petrologic Evolution of Felsic Volcanoes in Western Marie Byrd Land, Antarctica |
This project uses geochemical studies to determine the origin of volcanic rocks from Marie Byrd Land (MBL), Antarctica. Surprisingly, adjacent volcanoes in the MBL have dramatically different compositions, ranging from phonolite to trachyte to rhyolite. This diversity offers an opportunity to constrain the processes responsible for generating silica oversaturated and undersaturated magmas in a single geologic setting. Previous work suggests that the most obvious and simplest explanation--crustal contamination--is not a significant factor, and that polybaric fractional crystallization is the major cause. This study evaluates these factors through analyses and interpretation of trace and rare earth element abundances, as well as Sr and Nd isotopic ratios. The broader impacts include outreach programs to the Girl Scouts of America, and dissemination of results through publications and meetings. | ["POLYGON((-136 -73,-133.4 -73,-130.8 -73,-128.2 -73,-125.6 -73,-123 -73,-120.4 -73,-117.8 -73,-115.2 -73,-112.6 -73,-110 -73,-110 -73.425,-110 -73.85,-110 -74.275,-110 -74.7,-110 -75.125,-110 -75.55,-110 -75.975,-110 -76.4,-110 -76.825,-110 -77.25,-112.6 -77.25,-115.2 -77.25,-117.8 -77.25,-120.4 -77.25,-123 -77.25,-125.6 -77.25,-128.2 -77.25,-130.8 -77.25,-133.4 -77.25,-136 -77.25,-136 -76.825,-136 -76.4,-136 -75.975,-136 -75.55,-136 -75.125,-136 -74.7,-136 -74.275,-136 -73.85,-136 -73.425,-136 -73))"] | ["POINT(-123 -75.125)"] | false | false |
Laboratory Study of Stick-Slip Behavior and Deformation Mechanics of Subglacial Till
|
0538195 |
2009-01-01 | Marone, Chris; Anandakrishnan, Sridhar |
Laboratory Study of Stick-Slip Behavior and Deformation Mechanics of Subglacial Till |
This award supports a project to conduct laboratory experiments and numerical modeling to determine the constitutive properties of subglacial till under dynamic stressing and to test the hypothesis that granular properties of till are sufficient, when coupled elastically to a large ice stream, to reproduce the field observations of triggered slip and subglacial seismicity. Testing will be carried out in a servo-controlled biaxial shear device under controlled temperature and stress conditions, which will allow both sliding and microstructural processes to be studied in detail. The main focus of the work will be on laboratory measurements. In addition, we will construct continuum models to evaluate whether our results can predict complex ice sheet motions and observed characteristics of subglacial seismicity. In terms of broader impacts, the proposed work will encourage interactions between the rock-mechanics and glaciology communities and will bring together members of different scientific backgrounds and vocabularies, but similar problems and data. The project will train undergraduate and graduate students at Penn State University and the scientists involved plan to give presentations to grade school classes, scout groups, and at community open houses. Results will be presented at professional meetings and will be published in a timely manner. The work will result in a better understanding of glacial motion and the physics of earthquake slip, which is essential for understanding ice sheet dynamics and earthquake hazard. | [] | [] | false | false |
Landform Evolution in the Dry Valleys and its implications for Miocene-Pliocene Climate Change in Antarctica
|
0739452 |
2009-01-01 | Mukhopadhyay, Sujoy |
Landform Evolution in the Dry Valleys and its implications for Miocene-Pliocene Climate Change in Antarctica |
This project seeks to answer a simple question: how old are potholes and related geomorphic features found in the uplands of the McMurdo Dry Valleys, Antarctica? Some research suggests that they are over ten million years old and date the growth of the East Antarctic Ice Sheet, the world's largest. However, some evidence suggests that these are young, erosional features that continuing to evolve to this day. This project uses cosmogenic nuclide dating to determine the age of the pothole floors. The results are important for determining the ice sheet?s history and interpreting the O-isotope record from the marine sediment cores, key records of global climate. Broader impacts include K12 outreach and incorporation of outcomes into university courses. | ["POLYGON((161 -76,161.2 -76,161.4 -76,161.6 -76,161.8 -76,162 -76,162.2 -76,162.4 -76,162.6 -76,162.8 -76,163 -76,163 -76.2,163 -76.4,163 -76.6,163 -76.8,163 -77,163 -77.2,163 -77.4,163 -77.6,163 -77.8,163 -78,162.8 -78,162.6 -78,162.4 -78,162.2 -78,162 -78,161.8 -78,161.6 -78,161.4 -78,161.2 -78,161 -78,161 -77.8,161 -77.6,161 -77.4,161 -77.2,161 -77,161 -76.8,161 -76.6,161 -76.4,161 -76.2,161 -76))"] | ["POINT(162 -77)"] | false | false |
Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains
|
0739693 |
2009-01-01 | Ashworth, Allan; Lewis, Adam |
Collaborative Research: Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains |
This project studies the last vestiges of life in Antarctica from exceptionally well-preserved fossils of tundra life--mosses, diatoms, ostracods, Nothofagus leaves, wood, and insect remains recently discovered in ancient lake sediments from the McMurdo Dry Valleys. The area will be studied by an interdisciplinary team to elucidate information about climate and biogeography. These deposits offer unique and direct information about the characteristics of Antarctica during a key period in its history, the time when it was freezing. This information is critical for correlation with indirect proxies, such as though obtained from drill cores, for climate and state of the ice sheet. The results will also help understand the origin and migration of similar organisms found in South America, India and Australia. In terms of broader impacts, this project supports an early career researcher, undergraduate and graduate student research, various forms of outreach to K12 students, and extensive international collaboration. The work also has societal relevance in that the outcomes will offer direct constraints on Antarctica's ice sheet during a time with atmospheric CO2 contents similar to those of the earth in the coming centuries, and thus may help predictive models of sea level rise. | ["POLYGON((160 -77,160.2 -77,160.4 -77,160.6 -77,160.8 -77,161 -77,161.2 -77,161.4 -77,161.6 -77,161.8 -77,162 -77,162 -77.1,162 -77.2,162 -77.3,162 -77.4,162 -77.5,162 -77.6,162 -77.7,162 -77.8,162 -77.9,162 -78,161.8 -78,161.6 -78,161.4 -78,161.2 -78,161 -78,160.8 -78,160.6 -78,160.4 -78,160.2 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77))"] | ["POINT(161 -77.5)"] | false | false |
Triple-dating (Pb-FT-He) of Antarctic Detritus and the Origin of the Gamburtsev Mountains
|
0817163 |
2009-01-01 | Gehrels, George; Reiners, Peter |
Collaborative Research: SGER: Triple-dating (Pb-FT-He) of Antarctic Detritus and the Origin of the Gamburtsev Mountains |
This Small Grant for Exploratory Research investigates the origin and evolution of the Gamburtsev subglacial mountains (GSM). These mountains are considered the nucleation point for Antarctica's largest ice sheets; however, being of indeterminate age, they may postdate ice sheet formation. As well, their formation could reflect tectonic events during the breakup of Gondwana. The project studies GSM-derived detrital zircon and apatite crystals from Prydz Bay obtained by the Ocean Drilling Program. Analytical work includes triple-dating thermochronometry by U/Pb, fission track, and (U/Th)/He methods. The combined technique offers insight into both high and low temperature processes, and is potentially sensitive to both the orogenic events and the subsequent cooling and exhumation due to erosion. In terms of broader impacts, this project supports research for a postdoctoral fellow. | ["POLYGON((72 -66,72.3 -66,72.6 -66,72.9 -66,73.2 -66,73.5 -66,73.8 -66,74.1 -66,74.4 -66,74.7 -66,75 -66,75 -66.3,75 -66.6,75 -66.9,75 -67.2,75 -67.5,75 -67.8,75 -68.1,75 -68.4,75 -68.7,75 -69,74.7 -69,74.4 -69,74.1 -69,73.8 -69,73.5 -69,73.2 -69,72.9 -69,72.6 -69,72.3 -69,72 -69,72 -68.7,72 -68.4,72 -68.1,72 -67.8,72 -67.5,72 -67.2,72 -66.9,72 -66.6,72 -66.3,72 -66))"] | ["POINT(73.5 -67.5)"] | false | false |
Subglacial Topography: Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica
|
0230197 |
2006-10-25 | Holt, John W.; Blankenship, Donald D.; Morse, David L.; Vaughan, David G.; Corr, Hugh F. J.; Young, Duncan A. |
Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA) |
This data set includes 5 km gridded data from the Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA) conducted during the 2004-2005 austral summer. Investigators derived maps of the ice sheet surface and subglacial topography, which covers the entire catchments of both the Thwaites Glacier and the Pine Islands Glacier, from airborne survey systems mounted on a Twin Otter aircraft. The surveys had sufficient density to identify critical ice dynamic transitions within the Amundsen Sea Embayment (ASE). The ASE is the only major drainage to exhibit significant elevation change over the period of available satellite observations. Modeling of the Western Antarctic Ice Sheet (WAIS) deglaciation pinpointed the Pine Island Glacier and the Thwaites Glacier, which comprise a major portion of the ASE, as the most vulnerable features of the WAIS. Present knowledge of the ice thickness and subglacial boundary conditions in the ASE are insufficient to understand its evolution or its sensitivity to climatic change, and it is not yet determined whether these changes are evidence of ongoing deglaciation or simply a fluctuation that does not threaten the equilibrium of the ice sheet. This research will support the efforts of a community of United States and international researchers to assess the present and predict the future behavior of the ice sheet in the ASE. These data are available via FTP. | ["POLYGON((-134.9 -71.7,-129.86 -71.7,-124.82 -71.7,-119.78 -71.7,-114.74 -71.7,-109.7 -71.7,-104.66 -71.7,-99.62 -71.7,-94.58 -71.7,-89.54 -71.7,-84.5 -71.7,-84.5 -72.7,-84.5 -73.7,-84.5 -74.7,-84.5 -75.7,-84.5 -76.7,-84.5 -77.7,-84.5 -78.7,-84.5 -79.7,-84.5 -80.7,-84.5 -81.7,-89.54 -81.7,-94.58 -81.7,-99.62 -81.7,-104.66 -81.7,-109.7 -81.7,-114.74 -81.7,-119.78 -81.7,-124.82 -81.7,-129.86 -81.7,-134.9 -81.7,-134.9 -80.7,-134.9 -79.7,-134.9 -78.7,-134.9 -77.7,-134.9 -76.7,-134.9 -75.7,-134.9 -74.7,-134.9 -73.7,-134.9 -72.7,-134.9 -71.7))"] | ["POINT(-109.7 -76.7)"] | false | false |
MODIS Mosaic of Antarctica 2003-2004 (MOA2004) Image Map
|
None | 2005-11-02 | Haran, Terry; Bohlander, Jennifer; Scambos, Ted; Painter, Thomas; Fahnestock, Mark | No project link provided | The MODIS Mosaic of Antarctica 2003-2004 (MOA2004) Image Map consists of two cloud-free digital image maps that show mean surface morphology and a quantitative measure of optical snow grain size on the Antarctic continent and surrounding islands. The 260 orbit swaths used to create the 2003/2004 MOA Surface Morphology Image Map and the 2003/2004 MOA Grain Size Image Map were acquired 20 November 2003 through 29 February 2004 by the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on board the NASA EOS Aqua and Terra satellites. The 122 orbit swaths used to create the 2003 MOA Grain Size Image Map were acquired 1 November 2003 through 17 December 2003. Vector data sets with the corresponding coastlines, ice sheet grounding lines, and islands are also provided. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Antarctic Aerogeophysics Data
|
9120464 9319369 9319379 9911617 |
2004-07-13 | Blankenship, Donald D.; Morse, David L.; Holt, John W.; Dalziel, Ian W. |
Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR) |
The data that the Support Office for Aerogeophysical Research (SOAR) provides include various aerogeophysical measurements taken in the West Antarctic Ice Shelf (WAIS) from 1994 to 2001. The instruments used in experiments include ice-penetrating radar, laser altimetry and magnetics, and an integrated aerogeophysical platform that includes airborne gravity with carrier-phase GPS to support kinematic differential positioning. SOAR is a part of the University of Texas Institute for Geophysics (UTIG) and provides several types of data associated with various campaigns over the years. This material is based on work supported by the National Science Foundation under Grants: OPP-9120464, 9319369, 9319379, and 9911617. | ["POLYGON((-90 -68.73,-72 -68.73,-54 -68.73,-36 -68.73,-18 -68.73,0 -68.73,18 -68.73,36 -68.73,54 -68.73,72 -68.73,90 -68.73,90 -69.357,90 -69.984,90 -70.611,90 -71.238,90 -71.865,90 -72.492,90 -73.119,90 -73.746,90 -74.373,90 -75,72 -75,54 -75,36 -75,18 -75,0 -75,-18 -75,-36 -75,-54 -75,-72 -75,-90 -75,-90 -74.373,-90 -73.746,-90 -73.119,-90 -72.492,-90 -71.865,-90 -71.238,-90 -70.611,-90 -69.984,-90 -69.357,-90 -68.73))"] | ["POINT(-180 -71.865)"] | false | false |
Sulfate-Based Volcanic Record from South Pole Ice Core
|
0087151 |
2004-04-09 | Cole-Dai, Jihong |
A Sulfate-based Volcanic Record from South Pole Ice Cores |
This data set contains concentrations of soluble chemical species (ions) within a 120 m ice core retrieved at the South Pole station in 2001. The ice core was dated with annual resolution using annual layer counting. Investigators measured chemical species, ions, and volcanic deposits found in the cores. The analysis was conducted at South Dakota State University between 2001 and 2003. Data are available in Microsoft Excel or ASCII text format via FTP from NSIDC. | ["POINT(0 -90)"] | ["POINT(0 -90)"] | false | false |
Roosevelt Island Bedrock and Surface Elevations
|
9615347 |
2003-05-23 | Conway, Howard |
Radar Investigations of Former Shear Margins: Roosevelt Island and Ice Stream C |
This data set consists of bedrock and surface elevation readings taken by ground penetrating radar and Global Positioning System (GPS) on Roosevelt Island, an ice dome within the Ross Ice Shelf. Locations were validated by GPS readings of poles set in the surface snow. The data was collected between November and December, 1997. Data are available via ftp, and are provided in a text file with an accompanying file that provides GPS locations. Surface and bedrock elevations are given in meters above WGS84. | ["POLYGON((-161.5307 -79.3539,-161.3584 -79.3539,-161.1861 -79.3539,-161.0138 -79.3539,-160.8415 -79.3539,-160.6692 -79.3539,-160.4969 -79.3539,-160.3246 -79.3539,-160.1523 -79.3539,-159.98 -79.3539,-159.8077 -79.3539,-159.8077 -79.37757,-159.8077 -79.40124,-159.8077 -79.42491,-159.8077 -79.44858,-159.8077 -79.47225,-159.8077 -79.49592,-159.8077 -79.51959,-159.8077 -79.54326,-159.8077 -79.56693,-159.8077 -79.5906,-159.98 -79.5906,-160.1523 -79.5906,-160.3246 -79.5906,-160.4969 -79.5906,-160.6692 -79.5906,-160.8415 -79.5906,-161.0138 -79.5906,-161.1861 -79.5906,-161.3584 -79.5906,-161.5307 -79.5906,-161.5307 -79.56693,-161.5307 -79.54326,-161.5307 -79.51959,-161.5307 -79.49592,-161.5307 -79.47225,-161.5307 -79.44858,-161.5307 -79.42491,-161.5307 -79.40124,-161.5307 -79.37757,-161.5307 -79.3539))"] | ["POINT(-160.6692 -79.47225)"] | false | false |