{"dp_type": "Project", "free_text": "Seismometer"}
[{"awards": "2023355 Schmandt, Brandon", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "A seismic catalog for the southernmost continent", "datasets": [{"dataset_uid": "601805", "doi": "10.15784/601805", "keywords": "Antarctica; Cryosphere; Earthquakes; Icequakes; Volcanic Events", "people": "Pena Castro, Andres", "repository": "USAP-DC", "science_program": null, "title": "A seismic catalog for the southernmost continent", "url": "https://www.usap-dc.org/view/dataset/601805"}], "date_created": "Tue, 20 Feb 2024 00:00:00 GMT", "description": "Part 1: Nontechnical\u003cbr/\u003e \u003cbr/\u003eUnlike other locations on the globe Antarctica is not known for having large earthquakes and the remote nature and harsh conditions make it difficult to install and maintain seismometers for earthquake detection. Some researchers believe the lack of large earthquakes is due to the continent being surrounded by inactive tectonic margins. However, in the last two decades, scientists have discovered that more earthquakes occur in the interior of the continent than previously observed. This suggests that there are many earthquakes missing from historic earthquake catalogs. This study aims to find the missing earthquakes using novel earthquake detection and location techniques from seismic data collected from temporary and permanent seismic stations in Antarctica over the last 25 years. Locating these earthquakes will help understand if and where earthquakes are located in Antarctica and will help in planning future seismic deployments. As part of the project broader impacts, a field expedition with the Girls on Rock program will be conducted to teach high school age girls, and especially those from underrepresented backgrounds, data visualization techniques using scientific data. \u003cbr/\u003e \u003cbr/\u003ePart 2: Technical\u003cbr/\u003e \u003cbr/\u003eThe spatial distribution of seismicity and the number of moderate magnitude earthquakes in Antarctica is not well-defined. The current catalog of earthquakes may be biased by uneven and sparse seismograph distribution on the continent. We will mine existing broadband seismic data from both permanent and temporary deployments to lower the earthquake detection threshold across Interior Antarctica, with a focus on tectonic earthquakes. The hypothesis is that Interior Antarctica has abundant moderate magnitude earthquakes, previously undetected. These earthquakes are likely collocated with major tectonic features such as the Transantarctic Mountains, the suspected Vostok collision zone, the West Antarctic Rift System, the crustal compositional boundary between East and West Antarctica, and the Cretaceous East Antarctic Rift. Previous seismic deployments have recorded earthquakes in the Antarctic interior, suggesting there are many earthquakes missing from the current catalog. We propose to use novel earthquake location techniques designed for automated detection and location using 25 years of continuous data archived at IRIS from PASSCAL experiments and permanent stations. The approach will use STA/LTA detectors on the first arrival P-wave to 90 degrees distance, Reverse Time Imaging to locate events, and beamforming at dense arrays strategically located on cratons for enhanced detection and location. The combination of detection and location techniques used in this work has not been used on teleseismic body waves, although similar methods have worked well for surface wave studies. If successful the project would provide an excellent training dataset for future scrutiny of newly discovered Antarctic seismicity with machine learning approaches and/or new targeted data collection. We plan to collaborate with Girls on Rock, a local and international organization committed to building a culturally diverse community in science, art, and wilderness exploration, in a summer field expedition and integrating computer coding into post-field scientific projects.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Seismic Events; Icequakes; TECTONICS; Earthquakes", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Polar Special Initiatives; Antarctic Earth Sciences", "paleo_time": null, "persons": "Schmandt, Brandon", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "EAGER: Lowering the detection threshold of Antarctic seismicity to reveal undiscovered intraplate deformation", "uid": "p0010450", "west": -180.0}, {"awards": "1841467 MacAyeal, Douglas; 1841607 Banwell, Alison", "bounds_geometry": "POLYGON((-68.28 -71.1,-68.202 -71.1,-68.124 -71.1,-68.046 -71.1,-67.968 -71.1,-67.89 -71.1,-67.812 -71.1,-67.734 -71.1,-67.656 -71.1,-67.578 -71.1,-67.5 -71.1,-67.5 -71.14999999999999,-67.5 -71.19999999999999,-67.5 -71.25,-67.5 -71.3,-67.5 -71.35,-67.5 -71.39999999999999,-67.5 -71.44999999999999,-67.5 -71.5,-67.5 -71.55,-67.5 -71.6,-67.578 -71.6,-67.656 -71.6,-67.734 -71.6,-67.812 -71.6,-67.89 -71.6,-67.968 -71.6,-68.046 -71.6,-68.124 -71.6,-68.202 -71.6,-68.28 -71.6,-68.28 -71.55,-68.28 -71.5,-68.28 -71.44999999999999,-68.28 -71.39999999999999,-68.28 -71.35,-68.28 -71.3,-68.28 -71.25,-68.28 -71.19999999999999,-68.28 -71.14999999999999,-68.28 -71.1))", "dataset_titles": "Dataset for: Banwell et al. 2024, \u0027Observed meltwater-induced flexure and fracture at a doline on George VI Ice Shelf, Antarctica\u0027, Journal of Glaciology.", "datasets": [{"dataset_uid": "601771", "doi": "10.15784/601771", "keywords": "Antarctica; Antarctic Peninsula; AWS; Cryosphere; GNSS; GPS Data; Ice-Shelf Flexure; Ice Shelf Fracture; Ice-Shelf Melt; Timelaps Images", "people": "Stevens, Laura; Dell, Rebecca; Banwell, Alison; Willis, Ian; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Dataset for: Banwell et al. 2024, \u0027Observed meltwater-induced flexure and fracture at a doline on George VI Ice Shelf, Antarctica\u0027, Journal of Glaciology.", "url": "https://www.usap-dc.org/view/dataset/601771"}], "date_created": "Thu, 15 Feb 2024 00:00:00 GMT", "description": "The evolution of surface and shallow subsurface meltwater across Antarctic ice shelves has important implications for their (in)stability, as demonstrated by the 2002 rapid collapse of the Larsen B Ice Shelf. It is vital to understand the causes of ice-shelf (in)stability because ice shelves buttress against the discharge of inland ice and therefore influence ice-sheet contributions to sea-level rise. Ice-shelf break-up may be triggered by stress variations associated with surface meltwater movement, ponding, and drainage. These variations may cause an ice shelf to flex and fracture. This four-year project will provide key geophysical observations to improve understanding of ice-shelf meltwater and its effects on (in)stability. The work will be conducted on the George VI Ice Shelf on the Antarctic Peninsula, where hundreds of surface lakes form each summer. \u003cbr/\u003e\u003cbr/\u003eOver a 27-month period, global positioning systems, seismometers, water pressure transducers, automatic weather stations, and in-ice thermistor strings will be deployed to record ice shelf flexure, fracture seismicity, water depths, and surface and subsurface melting, respectively, in and around several surface lakes on the George VI Ice Shelf, within roughly 20 km of the British Antarctic Survey\u0027s Fossil Bluff Station. Field data will be used to validate and extend the team\u0027s approach to modelling ice-shelf flexure and stress, and possible \"Larsen-B style\" ice-shelf instability and break-up.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -67.5, "geometry": "POINT(-67.89 -71.35)", "instruments": null, "is_usap_dc": true, "keywords": "ICE SHEETS; Antarctica; ICE MOTION; Ice-Shelf Flexure; GPS Data", "locations": "Antarctica", "north": -71.1, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Banwell, Alison; Macayeal, Douglas", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -71.6, "title": "NSFGEO-NERC: Ice-shelf Instability Caused by Active Surface Meltwater Production, Movement, Ponding and Hydrofracture", "uid": "p0010449", "west": -68.28}, {"awards": "2201129 Fischer, Karen", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 14 Jun 2022 00:00:00 GMT", "description": "The western portion of the Antarctic continent is active in terms of plate tectonic processes that can produce significant variations in the Earth\u0027s mantle temperature as well as partial melting of the mantle. In addition to these internal processes, the ice sheet in western Antarctica is melting due to Earth\u0027s warming climate and adding water to the ocean. These changes in ice mass cause adjustments in rocks within the Earth\u0027s crust, allowing the surface to rebound in some locations and fall in others, altering the geographical pattern of sea-level change. However, the solid Earth response depends strongly on the strength of the rocks at a wide range of timescales which is not well-known and varies with temperature and other rock properties. This project has three primary goals. (1) It will assess how processes such as rifting, mantle upwelling and lithospheric instability have altered the lithosphere and underlying asthenosphere of western Antarctica, contributing to a planet-wide understanding of these processes. (2) It will use new measurements of mantle and crust properties to estimate the rate at which heat from the solid Earth flows into the base of the ice, which is important for modeling the rates at which the ice melts and flows. (3) It will places bounds on mantle viscosity, which is key for modeling the interaction of the solid Earth with changing ice and water masses and their implications for sea-level rise. To accomplish these goals, new resolution of crust and mantle structure will be obtained by analyzing seismic waves from distant earthquakes that have been recorded at numerous seismic stations in Antarctica. These analyses will include new combinations of seismic wave data that provide complementary information about mantle temperature, heat flow and viscosity. \u003cbr\u003e\u003cbr\u003eTechnical Description: This research addresses key questions about mantle processes and properties in western Antarctica. What are the relative impacts of rifting, mantle plumes, and lithospheric delamination in the evolution of the lithosphere and asthenosphere? Where is topography isostatically compensated, and where are dynamic processes such as plate flexure or tractions from 3-D mantle flow required? What are the bounds on heat flow and mantle viscosity, which represent important inputs to models of ice sheet evolution and its feedback from the solid Earth? To address these questions, this project will measure mantle and crust properties using seismic tools that have not yet been applied in Antarctica: regional-scale measurement of mantle attenuation from surface waves; Sp body wave phases to image mantle velocity gradients such as the lithosphere-asthenosphere boundary; and surface wave amplification and ellipticity. The resulting models of seismic attenuation and velocity will be jointly interpreted to shed new light on temperature, bulk composition, volatile content, and partial melt, using a range of laboratory-derived constitutive laws, while considering data from mantle xenoliths. To test the relative roles of rifting, mantle plumes, and delamination, and to assess isostatic support for Antarctic topography, the predictions of these processes will be compared to the new models of crust and mantle properties. To improve bounds on western Antarctic heat flow, seismic attenuation and velocity will be used in empirical comparisons and in direct modeling of vertical temperature gradients. To better measure mantle viscosity at the timescales of glacial isostatic adjustment, frequency-dependent viscosity will be estimated from the inferred mantle conditions. \u003cbr\u003e\u003cbr\u003eThis project will contribute to the education and career development of a Brown University Ph.D. student, Brown undergraduates, and undergraduates from outside the university who will be involved through the Department of Earth, Environmental and Planetary Sciences (DEEPS) Leadership Alliance NSF Research Experience for Undergraduates (REU) Site which focuses on geoscience summer research experiences for underrepresented students. The project will be the basis for a seminar at Brown that explores the connections between the solid Earth and cryosphere in Antarctica and will contribute to outreach in local public elementary and high schools.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "USAP-DC; West Antarctica; USA/NSF; SEISMIC SURFACE WAVES; AMD; PLATE TECTONICS; Amd/Us; GLACIERS/ICE SHEETS; FIELD INVESTIGATION", "locations": "West Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Fischer, Karen; Dalton, Colleen", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -90.0, "title": "Probing the Western Antarctic Lithosphere and Asthenosphere with New Approaches to Imaging Seismic Wave Attenuation and Velocity", "uid": "p0010339", "west": -180.0}, {"awards": "1914698 Hansen, Samantha; 1914743 Becker, Thorsten; 1914668 Aschwanden, Andy; 1914767 Winberry, Paul", "bounds_geometry": "POLYGON((90 -65,99 -65,108 -65,117 -65,126 -65,135 -65,144 -65,153 -65,162 -65,171 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,171 -90,162 -90,153 -90,144 -90,135 -90,126 -90,117 -90,108 -90,99 -90,90 -90,90 -87.5,90 -85,90 -82.5,90 -80,90 -77.5,90 -75,90 -72.5,90 -70,90 -67.5,90 -65))", "dataset_titles": "East Antarctic Seismicity from different Automated Event Detection Algorithms; Full Waveform Ambient Noise Tomography for East Antarctica", "datasets": [{"dataset_uid": "601762", "doi": "10.15784/601762", "keywords": "Antarctica; Geoscientificinformation; Machine Learning; Seismic Event Detection; Seismology; Seismometer", "people": "Walter, Jacob; Ho, Long; Hansen, Samantha", "repository": "USAP-DC", "science_program": null, "title": "East Antarctic Seismicity from different Automated Event Detection Algorithms", "url": "https://www.usap-dc.org/view/dataset/601762"}, {"dataset_uid": "601763", "doi": "10.15784/601763", "keywords": "Ambient Noise; Antarctica; East Antarctica; Geoscientificinformation; Seismic Tomography; Seismology", "people": "Emry, Erica; Hansen, Samantha", "repository": "USAP-DC", "science_program": null, "title": "Full Waveform Ambient Noise Tomography for East Antarctica", "url": "https://www.usap-dc.org/view/dataset/601763"}], "date_created": "Fri, 25 Jun 2021 00:00:00 GMT", "description": "Part I: Nontechnical \u003cbr/\u003eEarths warming climate has the potential to drive widespread collapse of glaciers and ice sheets across the planet, driving global sea-level rise. Understanding both the rate and magnitude of such changes is essential for predicting future sea-level and how it will impact infrastructure and property. Collapse of the ice sheets of Antarctica has the potential to raise global sea-level by up to 60 meters. However, not all regions of Antarctica are equally suspectable to collapse. One area with potential for collapse is the Wilkes Subglacial Basin in East Antarctica, a region twice the size of California\u0027s Central Valley. Geologic evidence indicates that the ice-sheet in this region has retreated significantly in response to past global warming events. While the geologic record clearly indicates ice-sheets in this area are vulnerable, the rate and magnitude of any future retreat will be influenced significantly by geology of the region. Constraining the geologic controls on the stability of the ice-sheets of the Wilkes Subglacial Basin remains challenging since the ice-sheet hides the geology beneath kilometers of ice. As a step in understanding the potential for future ice loss in the Wilkes Subglacial Basin this project will conduct geophysical analysis of existing data to better constrain the geology of the region. These results will constrain new models designed to understand the tectonics that control the behavior of the ice-sheets in the region. These new models will highlight the geological properties that exert the most significant control on the future of the ice-sheets of the Wilkes Subglacial Basin. Such insights are critical to guide future efforts aimed at collecting in-situ observations needed to more fully constrain Antarctica\u0027s potential for future sea-level. \u003cbr/\u003e\u003cbr/\u003e Part II: Technical Description \u003cbr/\u003eIn polar environments, inward-sloping marine basins are susceptible to an effect known as the marine ice-sheet instability (MISI): run-away ice stream drainage caused by warm ocean water eroding the ice shelf from below. The magnitude and time-scale of the ice-sheet response strongly depend on the physical conditions along the ice-bed interface, which are, to a first order, controlled by the tectonic evolution of the basin. Topography, sedimentology, geothermal heat flux, and mantle viscosity all play critical roles in ice-sheet stability. However, in most cases, these solid-Earth parameters for regions susceptible to the MISI are largely unknown. One region with potential susceptibility to MISI is the Wilkes Subglacial Basin of East Antarctica. The project will provide an integrated investigation of the Wilkes Subglacial Basin, combining geophysical analyses with both mantle flow and ice-sheet modeling to understand the stability of the ice sheet in this region, and the associated potential sea level rise. The work will be focused on four primary objectives: (1) to develop an improved tectonic model for the region based on existing seismic observations as well as existing geophysical and geological data; (2) to use the new tectonic model and seismic data to estimate the thermal, density, and viscosity structure of the upper mantle and to develop a heat flow map for the WSB; (3) to simulate mantle flow and to assess paleotopography based on our density and viscosity constraints; and (4) to assess ice-sheet behavior by modeling (a) past ice-sheet stability using our paleotopography estimates and (b) future ice-sheet stability using our heat flow and mantle viscosity estimates. Ultimately, the project will generate improved images of the geophysical structure beneath the WSB that will allow us to assess the geodynamic origin for this region and to assess the influence of geologic parameters on past, current, and future ice-sheet behavior. These efforts will then highlight areas and geophysical properties that should be the focus of future geophysical deployments.", "east": 180.0, "geometry": "POINT(135 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "TECTONICS; AMD; Wilkes Subglacial Basin; ICE SHEETS; USA/NSF; Amd/Us; SEISMOLOGICAL STATIONS; SEISMIC SURFACE WAVES; East Antarctica; USAP-DC", "locations": "East Antarctica; Wilkes Subglacial Basin", "north": -65.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Becker, Thorsten; Binder, April; Hansen, Samantha; Aschwanden, Andy; Winberry, Paul", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Resolving earth structure influence on ice-sheet stability in the Wilkes\r\nSubglacial Basin (RESISSt)", "uid": "p0010204", "west": 90.0}, {"awards": "1739027 Tulaczyk, Slawek", "bounds_geometry": "POLYGON((-125 -73,-122.1 -73,-119.2 -73,-116.3 -73,-113.4 -73,-110.5 -73,-107.6 -73,-104.7 -73,-101.8 -73,-98.9 -73,-96 -73,-96 -73.7,-96 -74.4,-96 -75.1,-96 -75.8,-96 -76.5,-96 -77.2,-96 -77.9,-96 -78.6,-96 -79.3,-96 -80,-98.9 -80,-101.8 -80,-104.7 -80,-107.6 -80,-110.5 -80,-113.4 -80,-116.3 -80,-119.2 -80,-122.1 -80,-125 -80,-125 -79.3,-125 -78.6,-125 -77.9,-125 -77.2,-125 -76.5,-125 -75.8,-125 -75.1,-125 -74.4,-125 -73.7,-125 -73))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 24 Jun 2021 00:00:00 GMT", "description": "This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Collapse of the West Antarctic Ice Sheet (WAIS) could raise the global sea level by about 5 meters (16 feet) and the scientific community considers it the most significant risk for coastal environments and cities. The risk arises from the deep, marine setting of WAIS. Although scientists have been aware of the precarious setting of this ice sheet since the early 1970s, it is only now that the flow of ice in several large drainage basins is undergoing dynamic change consistent with a potentially irreversible disintegration. Understanding WAIS stability and enabling more accurate prediction of sea-level rise through computer simulation are two of the key objectives facing the polar science community today. This project will directly address both objectives by: (1) using state-of-the-art technologies to observe rapidly deforming parts of Thwaites Glacier that may have significant control over the future evolution of WAIS, and (2) using these new observations to improve ice-sheet models used to predict future sea-level rise. This project brings together a multidisciplinary team of UK and US scientists. This international collaboration will result in new understanding of natural processes that may lead to the collapse of the WAIS and will boost infrastructure for research and education by creating a multidisciplinary network of scientists. This team will mentor three postdoctoral researchers, train four Ph.D. students and integrate undergraduate students in this research project.\r\n\r\nThe project will test the overarching hypothesis that shear-margin dynamics may exert powerful control on the future evolution of ice flow in Thwaites Drainage Basin. To test the hypothesis, the team will set up an ice observatory at two sites on the eastern shear margin of Thwaites Glacier. The team argues that weak topographic control makes this shear margin susceptible to outward migration and, possibly, sudden jumps in response to the drawdown of inland ice when the grounding line of Thwaites retreats. The ice observatory is designed to produce new and comprehensive constraints on englacial properties, including ice deformation rates, ice crystal fabric, ice viscosity, ice temperature, ice water content and basal melt rates. The ice observatory will also establish basal conditions, including thickness and porosity of the till layer and the deeper marine sediments, if any. Furthermore, the team will develop new knowledge with an emphasis on physical processes, including direct assessment of the spatial and temporal scales on which these processes operate. Seismic surveys will be carried out in 2D and 3D using wireless geophones. A network of broadband seismometers will identify icequakes produced by crevassing and basal sliding. Autonomous radar systems with phased arrays will produce sequential images of rapidly deforming internal layers in 3D while potentially also revealing the geometry of a basal water system. Datasets will be incorporated into numerical models developed on different spatial scales. One will focus specifically on shear-margin dynamics, the other on how shear-margin dynamics can influence ice flow in the whole drainage basin. Upon completion, the project aims to have confirmed whether the eastern shear margin of Thwaites Glacier can migrate rapidly, as hypothesized, and if so what the impacts will be in terms of sea-level rise in this century and beyond.\r\n", "east": -96.0, "geometry": "POINT(-110.5 -76.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; GLACIER MOTION/ICE SHEET MOTION; Thwaites Glacier; USAP-DC; USA/NSF; Magmatic Volatiles; AMD; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; ICE SHEETS; Amd/Us", "locations": "Thwaites Glacier", "north": -73.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Tulaczyk, Slawek", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": "Thwaites (ITGC)", "south": -80.0, "title": "NSF-NERC: Thwaites Interdisciplinary Margin Evolution (TIME): The Role of Shear Margin Dynamics in the Future Evolution of the Thwaites Drainage Basin", "uid": "p0010199", "west": -125.0}, {"awards": "1543399 Peng, Zhigang; 1745135 Walter, Jacob; 1543286 Walter, Jacob", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 19 May 2021 00:00:00 GMT", "description": "The continent of Antarctica has approximately the same surface area as the continental United States, though we know significantly less about its underlying geology and seismic activity. Multinational investments in geophysical infrastructure over the last few decades, especially broadband seismometers operating for several years, are allowing us to observe many interesting natural phenomena, including iceberg calving, ice stream slip, and tectonic earthquakes. To specifically leverage those past investments, we will analyze past and current data to gain a better understanding of Antarctic seismicity. Our recent research revealed that certain large earthquakes occurring elsewhere in the world triggered ice movement near various stations throughout Antarctica. We plan to conduct an exhaustive search of the terabytes of available data, using cutting-edge computational techniques, to uncover additional evidence for ice crevassing, ice stream slip, and earth movement during earthquakes. One specific focus of our research will include investigating whether some of these phenomena may be triggered by external influences, including passing surface waves from distant earthquakes, ocean tides, or seasonal melt. We plan to produce a catalog of the identified activity and share it publicly, so the public and researchers can easily access it. To reach a broader audience, we will present talks to high school classes, including Advanced Placement classes, in the Austin, Texas and Atlanta, Georgia metropolitan areas with emphasis on general aspects of seismic hazard, climate variability, and the geographies of Antarctica. This project will provide research opportunities for undergraduates, training for graduate students, and support for an early-career scientist.\r\n\r\nIn recent years, a new generation of geodetic and seismic instrumentation has been deployed as permanent stations throughout Antarctica (POLENET), in addition to stations deployed for shorter duration (less than 3 years) experiments (e.g. AGAP/TAMSEIS). These efforts are providing critical infrastructure needed to address fundamental questions about both crustal-scale tectonic structures and ice sheets, and their interactions. We plan to conduct a systematic detection of tectonic and icequake activities in Antarctica, focusing primarily on background seismicity, remotely-triggered seismicity, and glacier slip events. Our proposed tasks include: (1) Identification of seismicity throughout the Antarctic continent for both tectonic and ice sources. (2) An exhaustive search for additional triggered events in Antarctica during the last ~15 years of global significant earthquakes. (3) Determination of triggered source mechanisms and whether those triggered events also occur at other times, by analyzing years of data using a matched-filter analysis (where the triggered local event is used to detect similar events). (4) Further analysis of GPS measurements over a ~5.5 year period from Whillans Ice Plain, which suggests that triggering of stick-slip events occurred after the largest earthquakes. An improved knowledge of how the Antarctic ice sheet responds to external perturbations such as dynamic stresses from large distant earthquakes and recent ice unloading could lead to a better understanding of ice failure and related dynamic processes. By leveraging the vast logistical investment to install seismometers in Antarctica over the last decade, our project will build an exhaustive catalog of tectonic earthquakes, icequakes, calving events, and any other detectable near-surface seismic phenomena.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; GLACIERS/ICE SHEETS; USA/NSF; TECTONICS; Amd/Us; AMD; USAP-DC; SEISMOLOGICAL STATIONS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Walter, Jacob; Peng, Zhigang", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Triggering of Antarctic Icequakes, Slip Events, and other Tectonic Phenomena by Distant Earthquakes", "uid": "p0010182", "west": -180.0}, {"awards": "1246151 Bromirski, Peter; 1246416 Stephen, Ralph", "bounds_geometry": "POLYGON((-180 -77,-179.5 -77,-179 -77,-178.5 -77,-178 -77,-177.5 -77,-177 -77,-176.5 -77,-176 -77,-175.5 -77,-175 -77,-175 -77.4,-175 -77.8,-175 -78.2,-175 -78.6,-175 -79,-175 -79.4,-175 -79.8,-175 -80.2,-175 -80.6,-175 -81,-175.5 -81,-176 -81,-176.5 -81,-177 -81,-177.5 -81,-178 -81,-178.5 -81,-179 -81,-179.5 -81,180 -81,179 -81,178 -81,177 -81,176 -81,175 -81,174 -81,173 -81,172 -81,171 -81,170 -81,170 -80.6,170 -80.2,170 -79.8,170 -79.4,170 -79,170 -78.6,170 -78.2,170 -77.8,170 -77.4,170 -77,171 -77,172 -77,173 -77,174 -77,175 -77,176 -77,177 -77,178 -77,179 -77,-180 -77))", "dataset_titles": "Collaborative Research: Dynamic Response of the Ross Ice Shelf to Wave-Induced Vibrations and Collaborative Research: Mantle Structure and Dynamics of the Ross Sea from a Passive Seismic Deployment on the Ross Ice Shelf. International Federation of Digital Seismograph Networks. ; Dynamic Response of the Ross Ice Shelf to Wave-induced Vibrations 2015/2016, UNAVCO, Inc., GPS/GNSS Observations Dataset", "datasets": [{"dataset_uid": "200207", "doi": "10.7914/SN/XH_2014", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Collaborative Research: Dynamic Response of the Ross Ice Shelf to Wave-Induced Vibrations and Collaborative Research: Mantle Structure and Dynamics of the Ross Sea from a Passive Seismic Deployment on the Ross Ice Shelf. International Federation of Digital Seismograph Networks. ", "url": "http://www.fdsn.org/networks/detail/XH_2014/"}, {"dataset_uid": "200209", "doi": "10.7283/58E3-GA46", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Dynamic Response of the Ross Ice Shelf to Wave-induced Vibrations 2015/2016, UNAVCO, Inc., GPS/GNSS Observations Dataset", "url": "https://doi.org/10.7283/58E3-GA46"}], "date_created": "Thu, 15 Apr 2021 00:00:00 GMT", "description": "This award supports a project intended to discover, through field observations and numerical simulations, how ocean wave-induced vibrations on ice shelves in general, and the Ross Ice Shelf (RIS), in particular, can be used (1) to infer spatial and temporal variability of ice shelf mechanical properties, (2) to infer bulk elastic properties from signal propagation characteristics, and (3) to determine whether the RIS response to infragravity (IG) wave forcing observed distant from the front propagates as stress waves from the front or is \"locally\" generated by IG wave energy penetrating the RIS cavity. The intellectual merit of the work is that ocean gravity waves are dynamic elements of the global ocean environment, affected by ocean warming and changes in ocean and atmospheric circulation patterns. Their evolution may thus drive changes in ice-shelf stability by both mechanical interactions, and potentially increased basal melting, which in turn feed back on sea level rise. Gravity wave-induced signal propagation across ice shelves depends on ice shelf and sub-shelf water cavity geometry (e.g. structure, thickness, crevasse density and orientation), as well as ice shelf physical properties. Emphasis will be placed on observation and modeling of the RIS response to IG wave forcing at periods from 75 to 300 s. Because IG waves are not appreciably damped by sea ice, seasonal monitoring will give insights into the year-round RIS response to this oceanographic forcing. The 3-year project will involve a 24-month period of continuous data collection spanning two annual cycles on the RIS. RIS ice-front array coverage overlaps with a synergistic Ross Sea Mantle Structure (RSMS) study, giving an expanded array beneficial for IG wave localization. The ice-shelf deployment will consist of sixteen stations equipped with broadband seismometers and barometers. Three seismic stations near the RIS front will provide reference response/forcing functions, and measure the variability of the response across the front. A linear seismic array orthogonal to the front will consist of three stations in-line with three RSMS stations. Passive seismic array monitoring will be used to determine the spatial and temporal distribution of ocean wave-induced signal sources along the front of the RIS and estimate ice shelf structure, with the high-density array used to monitor and localize fracture (icequake) activity. The broader impacts include providing baseline measurements to enable detection of ice-shelf changes over coming decades which will help scientists and policy-makers respond to the socio-environmental challenges of climate change and sea-level rise. A postdoctoral scholar in interdisciplinary Earth science will be involved throughout the course of the research. Students at Cuyamaca Community College, San Diego County, will develop and manage a web site for the project to be used as a teaching tool for earth science and oceanography classes, with development of an associated web site on waves for middle school students.\n\r\nUnderstanding and being able to anticipate changes in the glaciological regime of the Ross Ice Shelf (RIS) and West Antarctic Ice Sheet (WAIS) are key to improving sea level rise projections due to ongoing ice mass loss in West Antarctica. The fate of the WAIS is a first-order climate change and global societal issue for this century and beyond that affects coastal communities and coastal infrastructure globally. \r\n\r\nIce shelf--ocean interactions include impacts from tsunami, ocean swell (10-30s period), and very long period ocean waves that impact ice shelves and produce vibrations that induce a variety of seismic signals detected by seismometers buried in the ice shelf surface layer, called firn. To study the wave-induced vibrations in the RIS, an extensive seismic array was deployed from Nov. 2014 to Nov. 2016. This unique seismometer array deployment on an ice shelf made continuous observations of the response of the RIS to ocean wave impacts from ocean swell and very long period waves. An extensive description of the project motivation and background (including photos and videos of the deployment operations), and list of published studies of analyses of the seismic data collected by this project, are available at the project website https://iceshelfvibes.ucsd.edu. \r\n\r\nTwo types of seismic signals detected by the seismic array are most prevalent: flexural gravity waves (plate waves) and icequakes (signals analogous to those from earthquakes but from fracturing of the ice). \r\nLong period ocean waves flex the ice shelf at the same period as the ocean waves, with wave energy at periods greater than ocean swell more efficient at coupling energy into flexing the ice shelf. Termed flexural gravity waves or plate waves (Chen et al., 2018), their wave-induced vibrations can reach 100\u2019s of km from the ice edge where they are excited, with long period wave energy propagating in the water layer below the shelf coupled with the ice shelf flexure. Flexural gravity waves at very long periods (\u003e 300 s period), such as from tsunami impacts (Bromirski et al., 2017), can readily reach grounding zones and may play a role in long-term grounding zone evolution. \r\nSwell-induced icequake activity was found to be most prevalent at the shelf front during the austral summer (January \u2013 March) when seasonal sea ice is absent and the associated damping of swell by sea ice is minimal (Chen et al., 2019). \r\n\r\nIn addition to the seismic array, a 14 station GPS (global positioning system) array was installed during seismic data retrieval and station servicing operations in October-November 2015. The GPS stations, co-located with seismic stations, extended from the shelf front southward to about 415 km at interior station RS18. Due to logistical constraints associated with battery weight during installation, only one station (at DR10) operated year-round. The GPS data collected give a detailed record of changes in iceflow velocity that are in close agreement with the increasing velocity estimates approaching the shelf front from satellite observations. Importantly, the year-round data at DR10 show an unprecedented seasonal cycle of changes in iceflow velocity, with a speed-up in northward (seaward) ice flow during Jan.-May and then a velocity decrease from June-Sep. (returning to the long-term mean flow velocity). This annual ice flow velocity change cycle has been attributed in part to seasonal changes in ice shelf mass (thinning, reducing buttressing) due to melting at the RIS basal (bottom) surface from intrusion of warmer ocean water (Klein et al., 2020). ", "east": 170.0, "geometry": "POINT(177.5 -79)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; GLACIER MOTION/ICE SHEET MOTION; USAP-DC; Amd/Us; AMD; USA/NSF; Iris; Ross Ice Shelf", "locations": "Ross Ice Shelf", "north": -77.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Bromirski, Peter; Gerstoft, Peter; Stephen, Ralph", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "IRIS", "repositories": "IRIS; UNAVCO", "science_programs": null, "south": -81.0, "title": "Collaborative Research: Dynamic Response of the Ross Ice Shelf to Wave-induced Vibrations", "uid": "p0010169", "west": -175.0}, {"awards": "1443525 Schwartz, Susan", "bounds_geometry": "POLYGON((-165 -83.8,-163 -83.8,-161 -83.8,-159 -83.8,-157 -83.8,-155 -83.8,-153 -83.8,-151 -83.8,-149 -83.8,-147 -83.8,-145 -83.8,-145 -83.92,-145 -84.04,-145 -84.16,-145 -84.28,-145 -84.4,-145 -84.52,-145 -84.64,-145 -84.76,-145 -84.88,-145 -85,-147 -85,-149 -85,-151 -85,-153 -85,-155 -85,-157 -85,-159 -85,-161 -85,-163 -85,-165 -85,-165 -84.88,-165 -84.76,-165 -84.64,-165 -84.52,-165 -84.4,-165 -84.28,-165 -84.16,-165 -84.04,-165 -83.92,-165 -83.8))", "dataset_titles": "YD (2012-2017): Whillians Ice Stream Subglacial Access Research Drilling", "datasets": [{"dataset_uid": "200201", "doi": "https://doi.org/10.7914/SN/YD_2012", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "YD (2012-2017): Whillians Ice Stream Subglacial Access Research Drilling", "url": "http://www.fdsn.org/networks/detail/YD_2012/"}], "date_created": "Fri, 12 Feb 2021 00:00:00 GMT", "description": "Ice fracturing plays a crucial role in mechanical processes that influence the contribution of glaciers and ice sheets to the global sea-level rise. Such processes include, among others, ice shelf disintegration, iceberg calving, and fast ice sliding. Over the last century, seismology developed highly sensitive instrumentation and sophisticated data processing techniques to study earthquakes. This interdisciplinary project used seismological research methods to investigate fracturing beneath and within ice on a fast-moving ice stream in West Antarctica that is experiencing rapid sliding and flexure driven by ocean tides. Data were collected from two strategically located clusters of seismometers. One was located in the epicenter zone where tidally triggered rapid sliding events of the ice stream start. The other was placed in the grounding zone, where the ice stream flexes with tides where it goes afloat and becomes an ice shelf.\r\n\r\n Seismometers in the epicenter cluster recorded many thousands of microearthquakes coming from beneath ice during ice stream sliding events. Analyses of these microearthquakes suggest that the geologic materials beneath the ice stream are fracturing. The spatial pattern of fracturing is not random but forms elongated stripes that resemble well-known glacial landforms called megascale glacial lineations. These findings indicate that the frictional resistance to ice sliding may change through time due to these landforms changing as a result of erosion and sedimentation beneath ice. This may have implications for the rate of ice loss from Antarctic ice streams that drain about 90% of all ice discharged into the Southern Ocean. In addition to microearthquakes, the epicenter cluster of seismometers also recorded vibrations (tremors) from beneath the ice stream. These may be caused by the rapid repetition of many microearthquakes coming from the same source.\r\n\r\n The grounding zone cluster of seismometers recorded many thousands of microearthquakes as well. However, they are caused by ice fracturing near the ice stream\u0027s surface rather than at its base. These microearthquakes originate when the grounding zone experiences strong tension caused by ice flexure during dropping ocean tide. This tension causes the opening of near-surface fractures (crevasses) just before the lowest tide, rather than at the lowest tide as expected from elasticity of solids. This unexpected timing of ice fracturing indicates that ice in the grounding zone behaves like a viscoelastic material, i.e., partly like a solid and partly like a fluid. This is an important general finding that will be useful to other scientists who are modeling interactions of ice with ocean water in the Antarctic grounding zones. Overall, the observed pervasive fracturing in the grounding zone, where an ice stream becomes an ice shelf, may make ice shelves potentially vulnerable to catastrophic collapses. It also may weaken ice shelves and make it easier for large icebergs to break off at their fronts.\r\n\r\n In addition to Antarctic research, this award supported education and outreach activities, including presentations and field trips during several summer schools at UCSC for talented and diverse high school students. The students were exposed to glaciological and seismological concepts and performed hands-on scientific exercises. The field trips focused on the marine terrace landscape around Santa Cruz. This landscape resulted from interactions between the uplift of rocks along the San Andreas fault with global-sea level changes caused by the waxing and waning of polar ice sheets in response to Ice Age climate cycles.\r\n\r\n", "east": -145.0, "geometry": "POINT(-155 -84.4)", "instruments": null, "is_usap_dc": true, "keywords": "Whillans Ice Stream; GLACIERS/ICE SHEETS; FIELD INVESTIGATION", "locations": "Whillans Ice Stream", "north": -83.8, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Tulaczyk, Slawek; Schwartz, Susan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "IRIS", "repositories": "IRIS", "science_programs": "WISSARD", "south": -85.0, "title": "High Resolution Heterogeneity at the Base of Whillans Ice Stream and its Control on Ice Dynamics", "uid": "p0010159", "west": -165.0}, {"awards": "1643795 Mikesell, Thomas", "bounds_geometry": "POLYGON((-134.5 -75,-130.85 -75,-127.2 -75,-123.55 -75,-119.9 -75,-116.25 -75,-112.6 -75,-108.95 -75,-105.3 -75,-101.65 -75,-98 -75,-98 -75.85,-98 -76.7,-98 -77.55,-98 -78.4,-98 -79.25,-98 -80.1,-98 -80.95,-98 -81.8,-98 -82.65,-98 -83.5,-101.65 -83.5,-105.3 -83.5,-108.95 -83.5,-112.6 -83.5,-116.25 -83.5,-119.9 -83.5,-123.55 -83.5,-127.2 -83.5,-130.85 -83.5,-134.5 -83.5,-134.5 -82.65,-134.5 -81.8,-134.5 -80.95,-134.5 -80.1,-134.5 -79.25,-134.5 -78.4,-134.5 -77.55,-134.5 -76.7,-134.5 -75.85,-134.5 -75))", "dataset_titles": "2D shear-wave velocity model across the West Antarctic Rift System from POLENET-ANET seismic data", "datasets": [{"dataset_uid": "601423", "doi": "10.15784/601423", "keywords": "Antarctica; Crust; Moho; Seismic Tomography; Seismology; Seismometer; Shear Wave Velocity; Surface Wave Dispersion; West Antarctica", "people": "Mikesell, Dylan", "repository": "USAP-DC", "science_program": "POLENET", "title": "2D shear-wave velocity model across the West Antarctic Rift System from POLENET-ANET seismic data", "url": "https://www.usap-dc.org/view/dataset/601423"}], "date_created": "Fri, 15 Jan 2021 00:00:00 GMT", "description": "In this project, the researchers processed and analyzed previously acquired seismic data from the POLENET-ANET array (2010-2011) to estimate variations in seismic shear-wave speed beneath the array. This investigation used a passive seismology method call ambient noise tomography, whereby repetitive seismic noise correlation functions were computed from records of Earth\u0027s ambient seismic noise field. The main results indicate a shallower Moho beneath Marie Byrd Land compared to previous studies in the region.", "east": -98.0, "geometry": "POINT(-116.25 -79.25)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; SEISMIC SURFACE WAVES; West Antarctica", "locations": "West Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Mordret, Aurelien; Mikesell, Dylan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "POLENET", "south": -83.5, "title": "Collaborative Research: Monitoring Antarctic Ice Sheet Changes with Ambient Seismic Noise Methods", "uid": "p0010155", "west": -134.5}, {"awards": "1643873 Hansen, Samantha; 1643798 Emry, Erica", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "GEOSCOPE Network; IU: Global Seismograph Network; Shear Wave Velocity of the Antarctic Upper Mantle from Full Waveform Inversion and Long Period Ambient Seismic Noise; XP (2000-2004): A Broadband Seismic Investigation of Deep Continental Structure Across the East-West Antarctic Boundary ; YT (2007-2023): IPY POLENET-Antarctica: Investigating links between geodynamics and ice sheets; ZJ (2012-2015): Transantarctic Mountains Northern Network ; ZM (2007-2013): A Broadband Seismic Experiment to Image the Lithosphere beneath the Gamburtsev Mountains, East Antarctica", "datasets": [{"dataset_uid": "200173", "doi": "10.7914/SN/ZJ_2012", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "ZJ (2012-2015): Transantarctic Mountains Northern Network ", "url": "http://www.fdsn.org/networks/detail/ZJ_2012/"}, {"dataset_uid": "200168", "doi": "10.18715/GEOSCOPE.G", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "GEOSCOPE Network", "url": "http://geoscope.ipgp.fr/networks/detail/G/"}, {"dataset_uid": "601744", "doi": "10.15784/601744", "keywords": "Ambient Seismic Noise; Antarctica; Full-Waveform Inversion; Seismic Tomography; Shear Wave Velocity; Solid Earth", "people": "Emry, Erica", "repository": "USAP-DC", "science_program": null, "title": "Shear Wave Velocity of the Antarctic Upper Mantle from Full Waveform Inversion and Long Period Ambient Seismic Noise", "url": "https://www.usap-dc.org/view/dataset/601744"}, {"dataset_uid": "200169", "doi": "10.7914/SN/IU", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IU: Global Seismograph Network", "url": "http://www.fdsn.org/networks/detail/IU/"}, {"dataset_uid": "200170", "doi": "10.7914/SN/XP_2000", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "XP (2000-2004): A Broadband Seismic Investigation of Deep Continental Structure Across the East-West Antarctic Boundary ", "url": "http://www.fdsn.org/networks/detail/XP_2000/"}, {"dataset_uid": "200171", "doi": "10.7914/SN/YT_2007", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "YT (2007-2023): IPY POLENET-Antarctica: Investigating links between geodynamics and ice sheets", "url": "http://www.fdsn.org/networks/detail/YT_2007/"}, {"dataset_uid": "200172", "doi": "10.7914/SN/ZM_2007", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": " ZM (2007-2013): A Broadband Seismic Experiment to Image the Lithosphere beneath the Gamburtsev Mountains, East Antarctica", "url": "http://www.fdsn.org/networks/detail/ZM_2007/"}], "date_created": "Thu, 15 Oct 2020 00:00:00 GMT", "description": "Our project is focused on better resolving the three-dimensional Antarctic mantle structure to further understanding of continental tectonics. To accomplish this, we are utilizing a full-waveform tomographic inversion technique that incorporates long-period ambient noise data and which has been shown to more accurately resolve structure than traditional tomographic approaches. The new models have been developed using the Alabama supercomputer facilities in conjunction with software developed at The University of Rhode Island. Our new tomographic results highlight the lithospheric structure beneath the Wilkes and Aurora Subglacial Basins in East Antarctica, where previous rifting episodes and mid-lithospheric discontinuities are being explored. In West Antarctica, the work is elucidating the easternmost extent of the West Antarctic Rift System as well as rifted structure and possible compositional variations within the Weddell Sea. We are also highlighting regions of Antarctica where tomographic resolution is still lacking and where future deployments are needed to improve resolution.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "SEISMIC SURFACE WAVES; USA/NSF; USAP-DC; SEISMOLOGICAL STATIONS; Amd/Us; AMD; POLNET; TECTONICS; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Emry, Erica; Hansen, Samantha", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS", "repo": "IRIS", "repositories": "IRIS; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Imaging Seismic Heterogeneity within the Antarctic Mantle with Full Waveform Ambient Noise Tomography", "uid": "p0010139", "west": -180.0}, {"awards": "1542885 Dunham, Eric", "bounds_geometry": null, "dataset_titles": "Earthquake Sequence Dynamics at the Interface Between an Elastic Layer and Underlying Half-Space in Antiplane Shear", "datasets": [{"dataset_uid": "601320", "doi": "10.15784/601320", "keywords": "Antarctica; Computer Model; Glaciology; Model Data; Shear Stress; Solid Earth; Whillans Ice Stream", "people": "Abrahams, Lauren", "repository": "USAP-DC", "science_program": null, "title": "Earthquake Sequence Dynamics at the Interface Between an Elastic Layer and Underlying Half-Space in Antiplane Shear", "url": "https://www.usap-dc.org/view/dataset/601320"}], "date_created": "Fri, 09 Oct 2020 00:00:00 GMT", "description": "This project investigates a rapidly moving section of the West Antarctic Ice Sheet known as the Whillans Ice Stream. Ice streams and outlet glaciers are the major pathways for ice discharge from ice sheets into the ocean. Consequently, understanding ice stream dynamics, specifically the processes controlling the frictional resistance of ice sliding on sediments at its base, is essential for predictive modeling of how Earth\u0027s ice sheets will respond to a changing climate. Rather than flowing smoothly, Whillans Ice Stream advances in stick-slip cycles: brief periods of rapid sliding, equivalent to magnitude 7 earthquakes, alternating with much longer periods of repose. The PIs will perform simulations of these stick-slip cycles using computer codes originally developed for modeling tectonic earthquakes. By matching observed ice motions, the PIs will constrain the range of frictional processes acting at the base of the ice stream. An additional focus of the project is on brittle fracture processes in ice, expressed through seismic waves radiated by faulting and/or crevassing episodes that accompany the large-scale sliding events. An understanding of ice fracture provides a basis for assessing the susceptibility of ice shelves to rifting and catastrophic disintegration. Project results will be incorporated into outreach activities (from elementary school to community college events) as well as a polar science class for the California State Summer School for Mathematics and Science (COSMOS) program for high school students.\u003cbr/\u003e\u003cbr/\u003eSimulations of the stick-slip cycle will employ 3D dynamic rupture models that simultaneously solve for the seismic wavefield and rupture process, consistent with elastodynamic material response and friction laws on the ice stream bed. Stresses and frictional properties will be varied to achieve consistency with surface GPS and broadband seismic data as well as borehole seismograms from the WISSARD project. The results will be interpreted using laboratory till friction experiments, which link velocity-weakening/strengthening behavior to temperature and water content, and to related experiments quantifying basal drag from ice flow over rough beds. The source mechanism of seismicity accompanying the slip events (shear faulting versus crevassing) will be determined using 3D waveform modeling in conjunction with mechanical models of the seismic source processes. This proposal does not require fieldwork in the Antarctic.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "SEISMIC PROFILE; AMD; Antarctica; GROUND-BASED OBSERVATIONS; USA/NSF; USAP-DC; Amd/Us", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Dunham, Eric", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Characterizing Brittle Failure and Fracture Propagation in Fast Ice Sliding with Dynamic Rupture Models based on Whillans Ice Stream Seismic/Geodetic Data", "uid": "p0010138", "west": null}, {"awards": "0839107 Powell, Ross; 0839059 Powell, Ross; 0838947 Tulaczyk, Slawek; 0838764 Anandakrishnan, Sridhar; 0838763 Anandakrishnan, Sridhar; 0838855 Jacobel, Robert; 0839142 Tulaczyk, Slawek", "bounds_geometry": null, "dataset_titles": "Basal melt rates of the Ross Ice Shelf near the Whillans Ice Stream grounding line; Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats in W Antarctica - Lake and Ice Stream Subglacial Access Research Drilling (LISSARD); Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats - Robotic Access to Grounding-zones for Exploration and Science (RAGES); IRIS ID#s 201035, 201162, 201205; IRIS offers free and open access to a comprehensive data store of raw geophysical time-series data collected from a large variety of sensors, courtesy of a vast array of US and International scientific networks, including seismometers (permanent and temporary), tilt and strain meters, infrasound, temperature, atmospheric pressure and gravimeters, to support basic research aimed at imaging the Earth\u0027s interior.; Paleogene marine and terrestrial development of the West Antarctic Rift System: Biomarker Data Set; Paleogene marine and terrestrial development of the West Antarctic Rift System: Palynomorph Data Set; Radar Studies of Subglacial Lake Whillans and the Whillans Ice Stream Grounding Zone; The IRIS DMC archives and distributes data to support the seismological research community.; UNAVCO ID#s WHL1, WHL2, LA02, LA09 (full data link not provided)", "datasets": [{"dataset_uid": "000148", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IRIS ID#s 201035, 201162, 201205", "url": "http://ds.iris.edu/"}, {"dataset_uid": "601122", "doi": "10.15784/601122", "keywords": "Antarctica; Flexure Zone; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Ice-Shelf Basal Melting; Ice-Shelf Strain Rate", "people": "Begeman, Carolyn", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Basal melt rates of the Ross Ice Shelf near the Whillans Ice Stream grounding line", "url": "https://www.usap-dc.org/view/dataset/601122"}, {"dataset_uid": "001406", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "The IRIS DMC archives and distributes data to support the seismological research community.", "url": "http://ds.iris.edu/ds/nodes/dmc/"}, {"dataset_uid": "001405", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IRIS offers free and open access to a comprehensive data store of raw geophysical time-series data collected from a large variety of sensors, courtesy of a vast array of US and International scientific networks, including seismometers (permanent and temporary), tilt and strain meters, infrasound, temperature, atmospheric pressure and gravimeters, to support basic research aimed at imaging the Earth\u0027s interior.", "url": "http://www.iris.edu/hq/data_and_software"}, {"dataset_uid": "601234", "doi": "10.15784/601234", "keywords": "ACL; Antarctica; Biomarker; BIT Index; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Stream; Whillans Ice Stream; WISSARD", "people": "Baudoin, Patrick; Askin, Rosemary; Casta\u00f1eda, Isla; Coenen, Jason; Scherer, Reed Paul; Warny, Sophie", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Paleogene marine and terrestrial development of the West Antarctic Rift System: Biomarker Data Set", "url": "https://www.usap-dc.org/view/dataset/601234"}, {"dataset_uid": "601245", "doi": "10.15784/601245", "keywords": "Antarctica; Pollen; West Antarctica; WISSARD", "people": "Coenen, Jason; Baudoin, Patrick; Warny, Sophie; Scherer, Reed Paul; Askin, Rosemary; Casta\u00f1eda, Isla", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Paleogene marine and terrestrial development of the West Antarctic Rift System: Palynomorph Data Set", "url": "https://www.usap-dc.org/view/dataset/601245"}, {"dataset_uid": "600155", "doi": "10.15784/600155", "keywords": "Antarctica; Glaciology; Oceans; Southern Ocean; WISSARD", "people": "Powell, Ross", "repository": "USAP-DC", "science_program": null, "title": "Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats - Robotic Access to Grounding-zones for Exploration and Science (RAGES)", "url": "https://www.usap-dc.org/view/dataset/600155"}, {"dataset_uid": "000150", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "UNAVCO ID#s WHL1, WHL2, LA02, LA09 (full data link not provided)", "url": "http://www.unavco.org/"}, {"dataset_uid": "609594", "doi": "10.7265/N54J0C2W", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; GPS; Radar; Whillans Ice Stream", "people": "Jacobel, Robert", "repository": "USAP-DC", "science_program": null, "title": "Radar Studies of Subglacial Lake Whillans and the Whillans Ice Stream Grounding Zone", "url": "https://www.usap-dc.org/view/dataset/609594"}, {"dataset_uid": "600154", "doi": "10.15784/600154", "keywords": "Antarctica; Biota; Diatom; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Lake Whillans; Paleoclimate; Ross Sea; Southern Ocean; Subglacial Lake; WISSARD", "people": "Powell, Ross", "repository": "USAP-DC", "science_program": null, "title": "Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats in W Antarctica - Lake and Ice Stream Subglacial Access Research Drilling (LISSARD)", "url": "https://www.usap-dc.org/view/dataset/600154"}], "date_created": "Mon, 10 Sep 2018 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The LISSARD project (Lake and Ice Stream Subglacial Access Research Drilling) is one of three research components of the WISSARD integrative initiative (Whillans Ice Stream Subglacial Access Research Drilling) that is being funded by the Antarctic Integrated System Science Program of NSF\u0027s Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The LISSARD component of WISSARD focuses on the role of active subglacial lakes in determining how fast the West Antarctic ice sheet loses mass to the global ocean and influences global sea level changes. The importance of Antarctic subglacial lakes has only been recently recognized, and the lakes have been identified as high priority targets for scientific investigations because of their unknown contributions to ice sheet stability under future global warming scenarios. LISSARD has several primary science goals: A) To provide an observational basis for improving treatments of subglacial hydrological and mechanical processes in models of ice sheet mass balance and stability; B) To reconstruct the past history of ice stream stability by analyzing archives of past basal water and ice flow variability contained in subglacial sediments, porewater, lake water, and basal accreted ice; C) To provide background understanding of subglacial lake environments to benefit RAGES and GBASE (the other two components of the WISSARD project); and D) To synthesize data and concepts developed as part of this project to determine whether subglacial lakes play an important role in (de)stabilizing Antarctic ice sheets. We propose an unprecedented synthesis of approaches to studying ice sheet processes, including: (1) satellite remote sensing, (2) surface geophysics, (3) borehole observations and measurements and, (4) basal and subglacial sampling. \u003cbr/\u003e\u003cbr/\u003eINTELLECTUAL MERIT: The latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations. \u003cbr/\u003e\u003cbr/\u003eBROADER IMPACTS: Societal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS", "is_usap_dc": true, "keywords": "USAP-DC; Ice Penetrating Radar; Antarctic; Subglacial Lake; Subglacial Hydrology; Grounding Line; Sea Level Rise; Bed Reflectivity; Ice Sheet Stability; Stability; Radar; Sub-Ice-Shelf; Geophysics; Biogeochemical; LABORATORY; Sediment; Sea Floor Sediment; Ice Thickness; Model; Ice Stream Stability; Basal Ice; SATELLITES; Ice Sheet Thickness; Subglacial; Antarctica; NOT APPLICABLE; Antarctic Ice Sheet; Ice Sheet; FIELD SURVEYS; Surface Elevation; Geochemistry; FIELD INVESTIGATION; Not provided", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Tulaczyk, Slawek; Fisher, Andrew; Powell, Ross; Anandakrishnan, Sridhar; Jacobel, Robert; Scherer, Reed Paul", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES", "repo": "IRIS", "repositories": "IRIS; UNAVCO; USAP-DC", "science_programs": "WISSARD", "south": null, "title": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)", "uid": "p0000105", "west": null}, {"awards": "1043784 Schwartz, Susan", "bounds_geometry": "POLYGON((-160 -79,-158 -79,-156 -79,-154 -79,-152 -79,-150 -79,-148 -79,-146 -79,-144 -79,-142 -79,-140 -79,-140 -79.3,-140 -79.6,-140 -79.9,-140 -80.2,-140 -80.5,-140 -80.8,-140 -81.1,-140 -81.4,-140 -81.7,-140 -82,-142 -82,-144 -82,-146 -82,-148 -82,-150 -82,-152 -82,-154 -82,-156 -82,-158 -82,-160 -82,-160 -81.7,-160 -81.4,-160 -81.1,-160 -80.8,-160 -80.5,-160 -80.2,-160 -79.9,-160 -79.6,-160 -79.3,-160 -79))", "dataset_titles": "PASSCAL experiment 201205 (full data link not provided)", "datasets": [{"dataset_uid": "000194", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "PASSCAL experiment 201205 (full data link not provided)", "url": "http://ds.iris.edu/ds/nodes/dmc/"}], "date_created": "Tue, 07 Nov 2017 00:00:00 GMT", "description": "This award provides support for \"Investigating (Un)Stable Sliding of Whillans Ice Stream and Subglacial Water Dynamics Using Borehole Seismology: A proposed Component of the Whillans Ice Stream Subglacial Access and Research Drilling\" from the Antarctic Integrated Systems Science (AISS) program in the Office of Polar Programs at NSF. The project will use the sounds naturally produced by the ice and subglacial water to understand the glacial dynamics of the Whillans Ice Stream located adjacent to the Ross Ice Shelf in Antarctica.\u003cbr/\u003e\u003cbr/\u003eIntellectual Merit: The transformative component of the project is that in addition to passive surface seismometers, the team will deploy a series of borehole seismometers. Englacial placement of the seismometers has not been done before, but is predicted to provide much better resolution (detection of smaller scale events as well as detection of a much wider range of frequencies) of the subglacial dynamics. In conjunction with the concurrent WISSARD (Whillans Ice Stream Subglacial Access and Research Drilling) project the team will be able to tie subglacial processes to temporal variations in ice stream dynamics and mass balance of the ice stream. The Whillans Ice Stream experiences large changes in ice velocity in response to tidally triggered stick-slip cycles as well as periodic filling and draining of subglacial Lake Whillans. The overall science goals include: improved understanding of basal sliding processes and role of sticky spots, subglacial lake hydrology, and dynamics of small earthquakes and seismic properties of ice and firn.\u003cbr/\u003e\u003cbr/\u003eBroader Impact: Taken together, the research proposed here will provide information on basal controls of fast ice motion which has been recognized by the IPCC as necessary to make reliable predictions of future global sea-level rise. The information collected will therefore have broader implications for global society. The collected information will also be relevant to a better understanding of earthquakes. For outreach the project will work with the overall WISSARD outreach coordinator to deliver information to three audiences: the general public, middle school teachers, and middle school students. The project also provides funding for training of graduate students, and includes a female principal investigator.", "east": -140.0, "geometry": "POINT(-150 -80.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.0, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Schwartz, Susan; Tulaczyk, Slawek", "platforms": "Not provided", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": -82.0, "title": "Investigating (Un)Stable Sliding of Whillians Ice Stream and Subglacial Water Dynamics Using Borehole Seismology: A Proposed Component of WISSARD", "uid": "p0000393", "west": -160.0}, {"awards": "0944794 Winberry, J. Paul; 0944671 Wiens, Douglas", "bounds_geometry": "POLYGON((-163 -83.7,-161.9 -83.7,-160.8 -83.7,-159.7 -83.7,-158.6 -83.7,-157.5 -83.7,-156.4 -83.7,-155.3 -83.7,-154.2 -83.7,-153.1 -83.7,-152 -83.7,-152 -83.8,-152 -83.9,-152 -84,-152 -84.1,-152 -84.2,-152 -84.3,-152 -84.4,-152 -84.5,-152 -84.6,-152 -84.7,-153.1 -84.7,-154.2 -84.7,-155.3 -84.7,-156.4 -84.7,-157.5 -84.7,-158.6 -84.7,-159.7 -84.7,-160.8 -84.7,-161.9 -84.7,-163 -84.7,-163 -84.6,-163 -84.5,-163 -84.4,-163 -84.3,-163 -84.2,-163 -84.1,-163 -84,-163 -83.9,-163 -83.8,-163 -83.7))", "dataset_titles": "Geophysical Study of Ice Stream Stick Slip; Whillans Ice Stream Stick-slip", "datasets": [{"dataset_uid": "000169", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Geophysical Study of Ice Stream Stick Slip", "url": "http://ds.iris.edu/mda/2C/?timewindow=2010-2011"}, {"dataset_uid": "609632", "doi": "10.7265/N5PC309V", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Whillans Ice Stream", "people": "Alley, Richard; Anandakrishnan, Sridhar; Winberry, Paul; Wiens, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Whillans Ice Stream Stick-slip", "url": "https://www.usap-dc.org/view/dataset/609632"}], "date_created": "Wed, 16 Nov 2016 00:00:00 GMT", "description": "This award supports a three-year study of the ongoing deceleration and stick-slip motion of Whillans Ice Stream (WIS), West Antarctica. Understanding the dynamic behavior of ice streams is essential for predicting the future of the West Antarctic Ice Sheet (WAIS). Despite being one of the best-studied ice streams in Antarctica, the surprising flow characteristics of WIS continue to demand interdisciplinary research. Recent estimates indicate that the WIS may stagnate within 50 years, resulting in a significant change to the mass balance of the Siple Coast sector of West Antarctica. The reasons for the ongoing stagnation are not well known, and are possibly linked (causally or coincidentally) to the stick-slip behavior. Our recent work on WIS stick-slip motion suggest that all slip events nucleate from a common location on the ice stream, suggesting that a relatively small (approximately 10 km in diameter) region of the exerts fundamental control over the flow of this large ice stream (100s of km long and 100 kilometers wide). We hypothesize that this is a region of increased bed strength and our measurements will address that hypothesis. We will deploy a series of GPS receivers and seismometers on the ice stream to accurately locate the nucleation region so that a comprehensive ground based geophysical survey can be conducted to determine the physical properties of bed at the nucleation point. The ground geophysical program will consist of reflection seismic and ice-penetrating radar studies that will better constrain the properties of both the hypothesized higher-friction nucleation zone and the surrounding regions. Slip events also generate seismic energy that can be recorded 100s of km away from the ice stream, thus, the GPS and seismometer deployment will also aid us in relating seismic waveforms directly with the rapid motion that occurs during slip events. The increased ability to relate rupture processes with seismic emissions will allow us to use archived seismic records to explore changes in the behavior of WIS during the later half of the 20th century. Broader impacts of this study include improved knowledge ice sheet dynamics, which remain a poorly constrained component of the climate system, thus, limiting our ability to predict the Earth\u0027s response to climate change. The scientific work includes the education of two graduate students and continued training of one post-doctoral scholar, thus helping to train the next generation of polar scientists. We will expose the broader public to polar science through interactions with the media and by take advantaging of programs to include K-12 educators in our field work.", "east": -152.0, "geometry": "POINT(-157.5 -84.2)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "West Antarctic Ice Sheet; Geodesy; GROUND-BASED OBSERVATIONS; Not provided; Seismic; Geodetic Gps Data", "locations": "West Antarctic Ice Sheet", "north": -83.7, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Winberry, Paul; Anandakrishnan, Sridhar; Alley, Richard; Wiens, Douglas", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided", "repo": "IRIS", "repositories": "IRIS; USAP-DC", "science_programs": null, "south": -84.7, "title": "Collaborative Research: Geophysical Study of Ice Stream Stick-slip Dynamics", "uid": "p0000053", "west": -163.0}, {"awards": "1039982 Anandakrishnan, Sridhar", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Seismological Data at IRIS (full data link not provided)", "datasets": [{"dataset_uid": "000170", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Seismological Data at IRIS (full data link not provided)", "url": "http://ds.iris.edu/"}], "date_created": "Mon, 23 Nov 2015 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eKnowledge of englacial and subglacial conditions are critical for ice sheet models and predictions of sea-level change. Some of the critical variables that are poorly known but essential for improving flow models and predictions of sea-level change are: basal roughness, subglacial sedimentary and hydrologic conditions, and the temporal and spatial variability of the ice sheet flow field. Seismic reflection and refraction imaging and dense arrays of continuously operating GPS receivers can determine these parameters. The PIs propose to develop a network of wirelessly interconnected geophysical sensors (geoPebble) that will allow glaciologists to carry out these experiments simultaneously. This sensor web will provide a new way of imaging the ice sheet that is not possible with current instruments. With this sensor web, the PIs will extend the range of existing instruments from 2D to 3D, from low resolution to high resolution, but more importantly, all the geophysical measurements will be conducted synchronously. By the end of the proposal period the PIs will produce a network of 150-200 geoPebbles that will be available for NSF-sponsored glaciology research projects. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eImproved knowledge of the flow law of ice, the sliding of glaciers and ice streams, and paleoclimate history will contribute to assessments of the potential for abrupt ice-sheet mass change, with consequent sea-level effects and significant societal impacts. This improved modeling ability will be a direct consequence of better knowledge of the physical properties of ice sheets, which this project will facilitate. The development effort will be integrated with the undergraduate education program via the capstone design classes in EE and the senior thesis requirement in Geoscience. The PIs will also form a cohort of first-year and sophomore students who will work in their labs from the beginning of the project to develop specifications through the commissioning of the network.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anandakrishnan, Sridhar; Bilen, Sven; Urbina, Julio", "platforms": "Not provided", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": -90.0, "title": "MRI: Development of a Wirelessly-Connected Network of Seismometers and GPS Instruments for Polar and Geophysical Research", "uid": "p0000405", "west": -180.0}, {"awards": "1142083 Kyle, Philip", "bounds_geometry": "POINT(167.15334 -77.529724)", "dataset_titles": "Database of Erebus cave field seasons; Icequakes at Erebus volcano, Antarctica; Mount Erebus Observatory GPS data; Mount Erebus Seismic Data; Mount Erebus Thermodynamic model code; Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO); Seismic data used for high-resolution active-source seismic tomography", "datasets": [{"dataset_uid": "200027", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Mount Erebus Observatory GPS data", "url": "https://www.unavco.org/data/gps-gnss/data-access-methods/dai1/monument.php?mid=22083\u0026parent_link=Permanent\u0026pview=original"}, {"dataset_uid": "200034", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Seismic data used for high-resolution active-source seismic tomography", "url": "http://ds.iris.edu/mda/ZW/?timewindow=2007-2009http://ds.iris.edu/mda/Y4?timewindow=2008-2009http://ds.iris.edu/ds/nodes/dmc/forms/assembled-data/?dataset_report_number=09-015"}, {"dataset_uid": "200033", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Icequakes at Erebus volcano, Antarctica", "url": "http://ds.iris.edu/mda/ZW/?timewindow=2007-2009http://ds.iris.edu/mda/Y4?timewindow=2008-2009http://ds.iris.edu/mda/ZO?timewindow=2011-2012"}, {"dataset_uid": "200032", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Mount Erebus Seismic Data", "url": "http://ds.iris.edu/mda/ER/"}, {"dataset_uid": "200031", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Mount Erebus Thermodynamic model code", "url": "https://github.com/kaylai/Iacovino2015_thermodynamic_model"}, {"dataset_uid": "600381", "doi": "10.15784/600381", "keywords": "Antarctica; Cable Observatory; Geology/Geophysics - Other; Infrared Imagery; Intracontinental Magmatism; IntraContinental Magmatism; MEVO; Mount Erebus; Photo/video; Photo/Video; Ross Island; Solid Earth; Thermal Camera; Volcano", "people": "Oppenheimer, Clive; Kyle, Philip", "repository": "USAP-DC", "science_program": "MEVO", "title": "Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)", "url": "https://www.usap-dc.org/view/dataset/600381"}, {"dataset_uid": "200030", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Database of Erebus cave field seasons", "url": "https://github.com/foobarbecue/troggle"}], "date_created": "Tue, 03 Sep 2013 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eMt. Erebus is one of only a handful of volcanoes worldwide that have lava lakes with readily observable and nearly continuous Strombolian explosive activity. Erebus is also unique in having a permanent convecting lava lake of anorthoclase phonolite magma. Over the years significant infrastructure has been established at the summit of Mt. Erebus as part of the Mount Erebus Volcano Observatory (MEVO), which serves as a natural laboratory to study a wide range of volcanic processes, especially magma degassing associated with an open convecting magma conduit. The PI proposes to continue operating MEVO for a further five years. The fundamental fundamental research objectives are: to understand diffuse flank degassing by using distributed temperature sensing and gas measurements in ice caves, to understand conduit processes, and to examine the environmental impact of volcanic emissions from Erebus on atmospheric and cryospheric environments. To examine conduit processes the PI will make simultaneous observations with video records, thermal imaging, measurements of gas emission rates and gas compositions, seismic, and infrasound data.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eAn important aspect of Erebus research is the education and training of students. Both graduate and undergraduate students will have the opportunity to work on MEVO data and deploy to the field site. In addition, this proposal will support a middle or high school science teacher for two field seasons. The PI will also continue working with various media organizations and filmmakers.", "east": 167.15334, "geometry": "POINT(167.15334 -77.529724)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e TIRS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e SPECTROMETERS \u003e FTIR SPECTROMETER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e SPECTROMETERS \u003e DOAS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e LASER RANGING \u003e MOBLAS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e PETROGRAPHIC MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e HRDI; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e TIRS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e INFRASONIC MICROPHONES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e AMS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e XRF; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-ES; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e LASER RANGING \u003e MOBLAS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e IRGA; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE CHAMBERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e SPECTROMETERS \u003e FTIR SPECTROMETER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e MICROTOMOGRAPHY; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e SIMS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Earthquakes; Vesuvius; Cosmogenic Radionuclides; Infrasonic Signals; Icequakes; Magma Shells; Phase Equilibria; Passcal; Correlation; Backscattering; Eruptive History; Degassing; Volatiles; Magma Convection; Thermodynamics; Tremors; Optech; Uv Doas; Energy Partitioning; Erebus; Cronus; Holocene; Lava Lake; Phonolite; Vagrant; Thermal Infrared Camera; Flir; USA/NSF; Mount Erebus; Active Source Seismic; GROUND-BASED OBSERVATIONS; Interferometry; Volatile Solubility; Redox State; Viscosity; Hydrogen Emission; Seismicity; Eruptions; Explosion Energy; FIELD SURVEYS; Radar Spectra; OBSERVATION BASED; Seismic Events; Strombolian Eruptions; Anorthoclase; Ice Caves; Iris; VOLCANO OBSERVATORY; Melt Inclusions; Ftir; Alkaline Volcanism; Tomography; TLS; Volcanic Gases; ANALYTICAL LAB", "locations": "Vesuvius; Cronus; Vagrant; Mount Erebus; Passcal", "north": -77.529724, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Kyle, Philip; Oppenheimer, Clive; Chaput, Julien; Jones, Laura; Fischer, Tobias", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e VOLCANO OBSERVATORY; OTHER \u003e MODELS \u003e OBSERVATION BASED; OTHER \u003e PHYSICAL MODELS \u003e ANALYTICAL LAB", "repo": "UNAVCO", "repositories": "GitHub; IRIS; UNAVCO; USAP-DC", "science_programs": "MEVO", "south": -77.529724, "title": "Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)", "uid": "p0000383", "west": 167.15334}, {"awards": "0838973 Nyblade, Andrew; 0838934 Wiens, Douglas", "bounds_geometry": "POLYGON((40 -76,50 -76,60 -76,70 -76,80 -76,90 -76,100 -76,110 -76,120 -76,130 -76,140 -76,140 -76.8,140 -77.6,140 -78.4,140 -79.2,140 -80,140 -80.8,140 -81.6,140 -82.4,140 -83.2,140 -84,130 -84,120 -84,110 -84,100 -84,90 -84,80 -84,70 -84,60 -84,50 -84,40 -84,40 -83.2,40 -82.4,40 -81.6,40 -80.8,40 -80,40 -79.2,40 -78.4,40 -77.6,40 -76.8,40 -76))", "dataset_titles": "Seismological Record ID# ZM 2007-12; Seismological Record Network Code# ZM (full data link not provided)", "datasets": [{"dataset_uid": "000149", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Seismological Record ID# ZM 2007-12", "url": "http://www.iris.edu/"}, {"dataset_uid": "000152", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Seismological Record Network Code# ZM (full data link not provided)", "url": "http://www.iris.edu/"}], "date_created": "Mon, 21 Jan 2013 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The high elevations of East Antarctica are critical in localizing the initial Cenozoic glaciation and stabilizing it with respect to melting during warm interglacials. However, the geological history for this region and the geophysical mechanism for maintaining the highlands are poorly understood. In 2007-2009, an array of 24 broadband seismographs (named GAMSEIS) was installed across the Gamburtsev Mountains area of the East Antarctic Plateau as part of the Antarctica?s Gamburtsev Province (AGAP) International Polar Year project. The IPY AGAP/GAMSEIS program included plans by other international partners to install seismographs at locations along the flanks of the Gamburtsev Mountains and in other East Antarctic regions. The proposed project will continue operating six of the deployed AGAP/GAMSEIS stations for two more years together with two new broadband seismic stations added to broaden the geographic scope of the array. Most stations will be located at the existing U.S. Autonomous Geophysical Observatories and the USAP fuel cache locations in order to minimize logistical support. This array, combined with seismographs deployed by China and Japan (and possibly Australia, France, and Italy in near future) will provide a sparse but large-scale network of seismometers for the longer-term studies of the crustal and upper mantle structures underneath the East Antarctic Plateau. Continued reliance on students provides a broader impact to this proposed research and firmly grounds this effort in its educational mission.", "east": 140.0, "geometry": "POINT(90 -80)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Wiens, Douglas; Nyblade, Andrew", "platforms": "Not provided", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": -84.0, "title": "Collaborative Research: Polenet East: An International Seismological Network for East Antarctica", "uid": "p0000504", "west": 40.0}, {"awards": "0739769 Fricker, Helen", "bounds_geometry": "POLYGON((-57.22 74.58,-55.343 74.58,-53.466 74.58,-51.589 74.58,-49.712 74.58,-47.835 74.58,-45.958 74.58,-44.081 74.58,-42.204 74.58,-40.327 74.58,-38.45 74.58,-38.45 73.822,-38.45 73.064,-38.45 72.306,-38.45 71.548,-38.45 70.79,-38.45 70.032,-38.45 69.274,-38.45 68.516,-38.45 67.758,-38.45 67,-40.327 67,-42.204 67,-44.081 67,-45.958 67,-47.835 67,-49.712 67,-51.589 67,-53.466 67,-55.343 67,-57.22 67,-57.22 67.758,-57.22 68.516,-57.22 69.274,-57.22 70.032,-57.22 70.79,-57.22 71.548,-57.22 72.306,-57.22 73.064,-57.22 73.822,-57.22 74.58))", "dataset_titles": "Amery Ice Shelf metadata (IRIS); Columbia Glacier metadata (IRIS); Greenland Ice Sheet Seismic Network metadata (IRIS)", "datasets": [{"dataset_uid": "000100", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Amery Ice Shelf metadata (IRIS)", "url": "http://www.iris.edu/mda/X9?timewindow=2004-2007"}, {"dataset_uid": "000101", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Columbia Glacier metadata (IRIS)", "url": "http://www.iris.edu/mda/YM?timewindow=2004-2005"}, {"dataset_uid": "000103", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Greenland Ice Sheet Seismic Network metadata (IRIS)", "url": "http://www.iris.edu/mda/_GLISN"}], "date_created": "Thu, 22 Mar 2012 00:00:00 GMT", "description": "This award supports a project to strengthen collaborations between the various research groups working on iceberg calving. Relatively little is known about the calving process, especially the physics that governs the initiation and propagation of fractures within the ice. This knowledge gap exists in part because of the diverse range in spatial and temporal scales associated with calving (ranging from less than one meter to over a hundred kilometers in length scale). It is becoming increasingly clear that to predict the future behavior of the Antarctic Ice Sheet and its contribution to sea level rise, it is necessary to improve our understanding of iceberg calving processes. Further challenges stem from difficulties in monitoring and quantifying short-time and spatial-scale processes associated with ice fracture, including increased fracturing events in ice shelves or outlet glaciers that may be a precursor to disintegration, retreat or increased calving rates. Coupled, these fundamental problems currently prohibit the inclusion of iceberg calving into numerical ice sheet models and hinder our ability to accurately forecast changes in sea level in response to climate change. Seismic data from four markedly different environmental regimes forms the basis of the proposed research, and researchers most familiar with the datasets will perform all analyses. Extracting the similarities and differences across the full breadth of calving processes embodies the core of the proposed work, combining and improving methods previously developed by each group. Techniques derived from solid Earth seismology, including waveform cross-correlation and clustering will be applied to each data set allowing quantitative process comparisons on a significantly higher level than previously possible. This project will derive catalogues of glaciologically produced seismic events; the events will then be located and categorized based on their location, waveform and waveform spectra both within individual environments and between regions. The intellectual merit of this work is that it will lead to a better understanding of iceberg calving and the teleconnections between seismic events and other geophysical processes around the globe. The broader impacts of this work are that it relates directly to socio-environmental impacts of global change and sea level rise. Strong collaborations will form as a result of this research, including bolstered collaborations between the glacier and ice sheet communities, as well as the glaciology and seismology communities. Outreach and public dissemination of findings will be driven by SIO\u0027s Visualization Center, and Birch Aquarium, hosting presentations devoted to the role of the cryosphere in global change. Time-lapse movies of recent changes at Columbia Glacier will be used to engage potential young scientists. A program of presentations outside the university setting to at-risk and gifted youth will be continued. This study will also involve undergraduates in analyses and interpretation and presentation of the seismic data assembled. The work will also support two junior scientists who will be supported by this project.", "east": 72.949097, "geometry": "POINT(72.8836975 -69.008701)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS", "is_usap_dc": false, "keywords": "PASSCAL; Not provided; Antarctic; SEISMOLOGICAL STATIONS; Iceberg; Seismology; Calving", "locations": "Antarctic", "north": -68.993301, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fricker, Helen", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e PASSCAL; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS; Not provided", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": -69.024101, "title": "An Investigation into the Seismic Signatures Generated by Iceberg Calving and Rifting", "uid": "p0000683", "west": 72.818298}, {"awards": "0619708 Simpson, David", "bounds_geometry": "POINT(180 90)", "dataset_titles": "IRIS data management center: seismic data and metadata for the engineering testing of these designs can be found under the XD network code (Polar Equipment Development) at stations PMC01, PMC02, PSP01, PSP02, and PSP03.", "datasets": [{"dataset_uid": "001460", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IRIS data management center: seismic data and metadata for the engineering testing of these designs can be found under the XD network code (Polar Equipment Development) at stations PMC01, PMC02, PSP01, PSP02, and PSP03.", "url": "http://ds.iris.edu/ds/nodes/dmc/"}], "date_created": "Mon, 20 Dec 2010 00:00:00 GMT", "description": "This project develops power and communications systems to support the operation of seismometers and GPS receivers in Antarctica throughout the polar night. In terms of intellectual merit, this system would allow a new class of geophysical questions to be approached, in areas as varied as ice sheet movement, plate tectonics, and deep earth structure. In terms of broader impacts, this project represents research infrastructure of potential use to many scientific disciplines. In addition, the results will improve society\u0027s understanding of the Antarctic ice sheet and its behavior in response to global warming.", "east": -180.0, "geometry": "POINT(-180 -90)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": false, "keywords": "IRIS-GSN; PASSCAL; SEISMOLOGICAL STATIONS; Not provided; GSN", "locations": null, "north": -90.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, Kent; Parker, Tim", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GSN; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e IRIS-GSN; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e PASSCAL; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS; Not provided", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Development of a Power and Communication System for Remote Autonomous GPS and Seismic Stations in Antarctica", "uid": "p0000691", "west": -180.0}, {"awards": "0538097 Anandakrishnan, Sridhar", "bounds_geometry": "POLYGON((140 -89.8,144 -89.8,148 -89.8,152 -89.8,156 -89.8,160 -89.8,164 -89.8,168 -89.8,172 -89.8,176 -89.8,180 -89.8,180 -89.82,180 -89.84,180 -89.86,180 -89.88,180 -89.9,180 -89.92,180 -89.94,180 -89.96,180 -89.98,180 -90,176 -90,172 -90,168 -90,164 -90,160 -90,156 -90,152 -90,148 -90,144 -90,140 -90,140 -89.98,140 -89.96,140 -89.94,140 -89.92,140 -89.9,140 -89.88,140 -89.86,140 -89.84,140 -89.82,140 -89.8))", "dataset_titles": "IRIS Data Management Center (DMC) holds the full resolution seismic data. Keyword: POLELAKE. Dataset ID: 10-019; seismic data. Keyword: POLELAKE. Dataset ID: 10-019", "datasets": [{"dataset_uid": "001466", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IRIS Data Management Center (DMC) holds the full resolution seismic data. Keyword: POLELAKE. Dataset ID: 10-019", "url": "http://www.iris.edu/dms/dmc"}, {"dataset_uid": "000102", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "seismic data. Keyword: POLELAKE. Dataset ID: 10-019", "url": "http://ds.iris.edu/ds/nodes/dmc/"}], "date_created": "Wed, 08 Sep 2010 00:00:00 GMT", "description": "0538097\u003cbr/\u003eAnandakrishnan\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to intensively study a subglacial Antarctic lake near the geographic South Pole using seismic and radar methods. These ground-based experiments are better suited to determine the presence of water and its thickness than are airborne methods. We hypothesize that there are two end-member explanations for this feature: either the lake is thawed, but freezing on (and likely to have been freezing on through much of the current interglacial period), or it is a frozen, relict lake for which the high basal radar reflectivity is due to intergranular water in a permafrost-like layer beneath the ice. The seismic experiment we propose is ideally suited to examine these alternatives. Intermediate cases of, e.g., a thawed saturated sedimentary base or a smooth crystalline basement layer would also be resolved by this experiment. Seismic reflections are sensitive to changes in acoustic impedance which is strongly variable with fluid content, porosity, and lithology. Water has low density relative to most rocks and low seismic velocity (and nil shear wave velocity) relative to both ice and rock. Thus, discriminating between subglacial water and subglacial rock is a task ideally suited to the seismic reflection technique. This project has significant impacts outside the directly affected fields of Antarctic glaciology and geology. The lake (either thawed or sediments with thin liquid layers around the matrix particles) will have the potential for harboring novel life forms. The experiment has the potential for expanding our information about the newest frontier in life on Earth. The collaboration between PIs in the seismic community and the marine acoustics community will foster cross-disciplinary pollination of ideas, techniques, and tools. In addition to traditional seismic techniques, new methods of data analysis that have been developed by acousticians will be applied to this problem as an independent measure of lake properties. We will train students who will have a wider view of seismology than would be possible in a traditional ocean acoustics or traditional geoscience seismology program of study.", "east": 180.0, "geometry": "POINT(160 -89.9)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS", "is_usap_dc": false, "keywords": "Antarctica; South Pole; Porosity; Not provided; Seismic; Lithology; FIELD INVESTIGATION; Subglacial; Subglacial Lake; FIELD SURVEYS; LABORATORY; Fluid Content; Acoustic Impedance", "locations": "Antarctica; South Pole", "north": -89.8, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Anandakrishnan, Sridhar; Holland, Charles", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": -90.0, "title": "Characterization of Lake Amundsen-Scott, S. Pole: A Ground Geophysical Program", "uid": "p0000693", "west": 140.0}, {"awards": "9814622 Wiens, Douglas", "bounds_geometry": "POLYGON((-70.90604 -52.35474,-69.307306 -52.35474,-67.708572 -52.35474,-66.109838 -52.35474,-64.511104 -52.35474,-62.91237 -52.35474,-61.313636 -52.35474,-59.714902 -52.35474,-58.116168 -52.35474,-56.517434 -52.35474,-54.9187 -52.35474,-54.9187 -53.658393,-54.9187 -54.962046,-54.9187 -56.265699,-54.9187 -57.569352,-54.9187 -58.873005,-54.9187 -60.176658,-54.9187 -61.480311,-54.9187 -62.783964,-54.9187 -64.087617,-54.9187 -65.39127,-56.517434 -65.39127,-58.116168 -65.39127,-59.714902 -65.39127,-61.313636 -65.39127,-62.91237 -65.39127,-64.511104 -65.39127,-66.109838 -65.39127,-67.708572 -65.39127,-69.307306 -65.39127,-70.90604 -65.39127,-70.90604 -64.087617,-70.90604 -62.783964,-70.90604 -61.480311,-70.90604 -60.176658,-70.90604 -58.873005,-70.90604 -57.569352,-70.90604 -56.265699,-70.90604 -54.962046,-70.90604 -53.658393,-70.90604 -52.35474))", "dataset_titles": "Expedition Data; Expedition data of LMG0003A", "datasets": [{"dataset_uid": "002688", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0003A", "url": "https://www.rvdata.us/search/cruise/LMG0003A"}, {"dataset_uid": "001854", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0106"}, {"dataset_uid": "002059", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9905"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided jointly by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to transform three temporary seismometers in the Antarctic Peninsula into semi-permanent stations and to continue basic research using these data. During 1997 and 1998, a network of 11 broadband seismographs in the Antarctic Peninsula region and southernmost Chilean Patagonia were installed and maintained. Data return from this project has been excellent and interesting initial results have been produced. The continued operation of these instruments over a longer time period would be highly beneficial because the number of larger magnitude regional earthquakes is small and so a longer time is needed to acquire data. However, instruments from this project are borrowed from the IRIS-PASSCAL instrument pool and must be returned to PASSCAL in April, 1999. This award provides funds to convert three stations at permanent Chilean bases in the Antarctic to permanent stations, and to continue the seismological investigation of the region for a period of four years. As part of this project, a fourth station, in Chilean Patagonia, will continue to be operated using Washington University equipment. The funding of this project will enable continued collaboration between Washington University and the Universidad de Chile in the operation of these stations, and the data will be forwarded to the IRIS data center as well as to other international seismological collaborators. Mutual data exchanges with other national groups with Antarctic seismology research programs will provide access to broadband data from a variety of other proprietary broadband stations in the region. The data will be used to study the seismicity and upper mantle velocity structure of several complicated tectonic regions in the area, including the South Shetland subduction zone, the Bransfield backarc rift, and diffuse plate boundaries in Patagonia, Drake Passage, and along the South Scotia Ridge. In particular, the operation of these stations over a longer time period will allow a better understanding of the seismicity of the South Shetland Trench, an unusual subduction zone showing very slow subduction of young lithosphere. These seismometers will also be used to record airgun shots during a geophysical cruise in the Bransfield Strait that is being planned by the University of Texas for April, 2000. These data will provide important constraints on the crustal structure beneath the stations, and the improved structural models will enable implementation of more precise earthquake location procedures in support of a seismological understanding of the region.", "east": -54.9187, "geometry": "POINT(-62.91237 -58.873005)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V LMG; R/V NBP", "locations": null, "north": -52.35474, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Wiens, Douglas; Visbeck, Martin", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.39127, "title": "Acquisition and Operation of Broadband Seismograph Equipment at Chilean Bases in the Antarctic Peninsula Region", "uid": "p0000604", "west": -70.90604}, {"awards": "9814041 Austin, Jr., James", "bounds_geometry": "POLYGON((-70.90616 -52.35281,-69.390587 -52.35281,-67.875014 -52.35281,-66.359441 -52.35281,-64.843868 -52.35281,-63.328295 -52.35281,-61.812722 -52.35281,-60.297149 -52.35281,-58.781576 -52.35281,-57.266003 -52.35281,-55.75043 -52.35281,-55.75043 -53.463301,-55.75043 -54.573792,-55.75043 -55.684283,-55.75043 -56.794774,-55.75043 -57.905265,-55.75043 -59.015756,-55.75043 -60.126247,-55.75043 -61.236738,-55.75043 -62.347229,-55.75043 -63.45772,-57.266003 -63.45772,-58.781576 -63.45772,-60.297149 -63.45772,-61.812722 -63.45772,-63.328295 -63.45772,-64.843868 -63.45772,-66.359441 -63.45772,-67.875014 -63.45772,-69.390587 -63.45772,-70.90616 -63.45772,-70.90616 -62.347229,-70.90616 -61.236738,-70.90616 -60.126247,-70.90616 -59.015756,-70.90616 -57.905265,-70.90616 -56.794774,-70.90616 -55.684283,-70.90616 -54.573792,-70.90616 -53.463301,-70.90616 -52.35281))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001987", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0002"}, {"dataset_uid": "001810", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0007A"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to study the deep crustal structure of the Bransfield Strait region. Bransfield Strait, in the northern Antarctic Peninsula, is one of a small number of modern basins that may be critical for understanding ancient mountain-building processes. The Strait is an actively-extending marginal basin in the far southeast Pacific, between the Antarctic Peninsula and the South Shetland Islands, an inactive volcanic arc. Widespread crustal extension, accompanied by volcanism along the Strait\u0027s axis, may be associated with slow underthrusting of oceanic crust at the South Shetland Trench; similar \"back-arc\" extension occurred along the entire Pacific margin (now western South America/West Antarctica) of the supercontinent known as Gondwanaland during the Jurassic-Early Cretaceous. Mid-Cretaceous deformation of these basins some 100 million years ago initiated uplift of the Andes. By understanding the deep structure and evolution of Bransfield rift, it should be possible to evaluate the crustal precursor to the Andes, and thereby understand more fully the early evolution of this globally important mountain chain.\u003cbr/\u003e\u003cbr/\u003eYears of international earth sciences research in Bransfield Strait has produced consensus on important aspects of its geologic environment: (1) It is probably a young (probably ~4 million years old) rift in preexisting Antarctic Peninsula crust; continued stretching of this crust results in complex fault patterns and associated volcanism. The volcanism, high heat flow, and mapped crustal trends are all consistent with the basin\u0027s continuing evolution as a rift; (2) The volcanism, which is recent and continuing, occurs along a \"neovolcanic\" zone centralized along the basin\u0027s axis. Multichannel seismic data collected aboard R/V Maurice Ewing in 1991 illustrate the following basin-wide characteristics of Bransfield Strait - a) widespread extension and faulting, b) the rise of crustal diapirs or domes associated with flower-shaped normal-fault structures, and c) a complicated system of fault-bounded segments across strike. The geophysical evidence also suggests NE-to-SW propagation of the rift, with initial crustal inflation/doming followed by deflation/subsidence, volcanism, and extension along normal faults.\u003cbr/\u003e\u003cbr/\u003eAlthough Bransfield Strait exhibits geophysical and geologic evidence for extension and volcanism, continental crust fragmentation does not appear to have gone to completion in this \"back-arc\" basin and ocean crust is not yet being generated. Instead, Bransfield rift lies near the critical transition from intracontinental rifting to seafloor-spreading. The basin\u0027s asymmetry, and seismic evidence for shallow intracrustal detachment faulting, suggest that it may be near one end-member of the spectrum of models proposed for continental break-up. Therefore, this basin is a \"natural lab\" for studying diverse processes involved in forming continental margins.\u003cbr/\u003e\u003cbr/\u003eUnderstanding Bransfield rift\u0027s deep crustal structure is the key to resolving its stage of evolution, and should also provide a starting point for models of Andean mountain-building. This work will define the deep structure by collecting and analyzing high-quality, high-density ocean bottom seismometer (OBS) profiles both along and across the Strait\u0027s strike. Scientific objectives are as follows: (1) to develop a detailed seismic velocity model for this rift; (2) to calibrate velocity structure and crustal thickness changes associated with presumed NE-to-SW rift propagation, as deduced from the multichannel seismic interpretations; (3) to document the degree to which deep velocity structure corresponds to along- and across-strike crustal segmentation; and (4) to assess structural relationships between the South Shetland Islands \"arc\" and Bransfield rift.\u003cbr/\u003e\u003cbr/\u003eThe proposed OBS data, integrated with interpretations of both Ewing profiles and those from other high-quality geophysical coverage in Bransfield Strait, will complement ongoing deep seismic analysis of Antarctic Peninsula crust to the southwest and additional OBS monitoring for deep earthquakes, in order to understand the complex plate tectonic evolution of this region.", "east": -55.75043, "geometry": "POINT(-63.328295 -57.905265)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.35281, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Austin, James; Austin, James Jr.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -63.45772, "title": "The Young Marginal Basin as a Key to Understanding the Rift-Drift Transition and Andean Orogenesis: OBS Refraction Profiling for Crustal Structure in Bransfield Strait", "uid": "p0000615", "west": -70.90616}, {"awards": "0229546 MacAyeal, Douglas", "bounds_geometry": "POINT(-178 -78)", "dataset_titles": "collection of nascent rift images and description of station deployment; Continuous GPS (static) Data from the Ross Ice Shelf, Antarctica; Giant Icebergs of the Ross Sea, in situ Drift and Weather Measurements, Antarctica; Iceberg Firn Temperatures, Antarctica; Iceberg Harmonic Tremor, Seismometer Data, Antarctica; Iceberg Satellite imagery from stations and ice shelves (full data link not provided); Iceberg Tiltmeter Measurements, Antarctica; Ice Shelf Rift Time-Lapse Photography, Antarctica; Incorporated Research Institutions for Seismology; Nascent Iceberg Webcam Images available during the deployment period; Ross Ice Shelf Firn Temperature, Antarctica; The files contain a short header (number of data samples, sample rate, start time, stop time, channel title)The time series data then follow the header above.; This site mirrors the NSIDC website archive.", "datasets": [{"dataset_uid": "001684", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "This site mirrors the NSIDC website archive.", "url": "http://uwamrc.ssec.wisc.edu/"}, {"dataset_uid": "002568", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Iceberg Satellite imagery from stations and ice shelves (full data link not provided)", "url": "http://amrc.ssec.wisc.edu/"}, {"dataset_uid": "609347", "doi": "10.7265/N57W694M", "keywords": "Antarctica; Geodesy; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ross Ice Shelf; Southern Ocean", "people": "King, Matthew; Brunt, Kelly; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Continuous GPS (static) Data from the Ross Ice Shelf, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609347"}, {"dataset_uid": "002504", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Nascent Iceberg Webcam Images available during the deployment period", "url": "https://amrc.ssec.wisc.edu/data/iceberg.html"}, {"dataset_uid": "001639", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "collection of nascent rift images and description of station deployment", "url": "http://thistle.org/nascent/index.shtml"}, {"dataset_uid": "609354", "doi": "10.7265/N5BP00Q3", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ross Ice Shelf; Snow/ice; Snow/Ice; Temperature", "people": "Muto, Atsu; Sergienko, Olga; MacAyeal, Douglas; Scambos, Ted", "repository": "USAP-DC", "science_program": null, "title": "Ross Ice Shelf Firn Temperature, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609354"}, {"dataset_uid": "609353", "doi": "10.7265/N5GF0RFF", "keywords": "Glaciology; Iceberg; Oceans; Ross Ice Shelf; Sea Ice; Southern Ocean; Tiltmeter", "people": "Kim, Young-Jin; MacAyeal, Douglas; Bliss, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Iceberg Tiltmeter Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609353"}, {"dataset_uid": "609352", "doi": "10.7265/N5M61H55", "keywords": "Glaciology; Iceberg; Oceans; Ross Ice Shelf; Sea Ice; Snow/ice; Snow/Ice; Southern Ocean; Temperature", "people": "Sergienko, Olga; MacAyeal, Douglas; Thom, Jonathan", "repository": "USAP-DC", "science_program": null, "title": "Iceberg Firn Temperatures, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609352"}, {"dataset_uid": "609349", "doi": "10.7265/N5445JD6", "keywords": "Geology/Geophysics - Other; Glaciology; Iceberg; Oceans; Ross Sea; Sea Ice; Seismometer; Southern Ocean", "people": "Aster, Richard; Bassis, Jeremy; MacAyeal, Douglas; Okal, Emile", "repository": "USAP-DC", "science_program": null, "title": "Iceberg Harmonic Tremor, Seismometer Data, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609349"}, {"dataset_uid": "001598", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "The files contain a short header (number of data samples, sample rate, start time, stop time, channel title)The time series data then follow the header above.", "url": "http://nsidc.org"}, {"dataset_uid": "609351", "doi": "10.7265/N5QV3JGV", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Photo/video; Photo/Video; Ross Ice Shelf", "people": "MacAyeal, Douglas; Brunt, Kelly", "repository": "USAP-DC", "science_program": null, "title": "Ice Shelf Rift Time-Lapse Photography, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609351"}, {"dataset_uid": "609350", "doi": "10.7265/N5VM496K", "keywords": "AWS; Glaciology; GPS; Iceberg; Meteorology; Oceans; Ross Sea; Sea Ice; Southern Ocean; Weatherstation", "people": "Aster, Richard; Okal, Emile; MacAyeal, Douglas; Bassis, Jeremy", "repository": "USAP-DC", "science_program": null, "title": "Giant Icebergs of the Ross Sea, in situ Drift and Weather Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609350"}, {"dataset_uid": "001685", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Incorporated Research Institutions for Seismology", "url": "http://www.iris.edu/data/sources.htm"}], "date_created": "Fri, 19 Sep 2008 00:00:00 GMT", "description": "This award supports the study of the drift and break-up of Earth\u0027s largest icebergs, which were recently released into the Ross Sea of Antarctica as a result of calving from the Ross Ice Shelf. The scientific goals of the study are to determine the physics of iceberg motion within the dynamic context of ocean currents, winds, and sea ice, which determine the forces that drive iceberg motion, and the relationship between the iceberg and geographically and topographically determined pinning points on which the iceberg can ground. In addition, the processes by which icebergs influence the local environments (e.g., sea ice conditions near Antarctica, access to penguin rookeries, air-sea heat exchange and upwelling at iceberg margins, nutrient fluxes) will be studied. The processes by which icebergs generate globally far-reaching ocean acoustic signals that are detected within the global seismic (earthquake) sensing networks will also be studied. A featured element of the scientific research activity will be a field effort to deploy automatic weather stations, seismometer arrays and GPS-tracking stations on several of the largest icebergs presently adrift, or about to be adrift, in the Ross Sea. Data generated and relayed via satellite to home institutions in the Midwest will motivate theoretical analysis and computer simulation; and will be archived on an \"iceberg\" website (http://amrc.ssec.wisc.edu/amrc/iceberg.html) for access by scientists and the general public. At the most broad level, the study is justified by the fact that icebergs released by the Antarctic ice sheet represent the largest movements of fresh water within the natural environment (e.g., several of the icebergs to be studied, B15, C19 and others calved since 2000 CE, represent over 6000 cubic kilometers of fresh water-an amount roughly equivalent to 100 years of the flow of the Nile River). A better understanding of the impact of iceberg drift through the environment, and particularly the impact on ocean stratification and mixing, is essential to the understanding of the abrupt global climate changes witnessed by proxy during the ice age and of concern under conditions of future greenhouse warming. On a more specific level, the study will generate a knowledge base useful for the better management of Antarctic logistical resources (e.g., the shipping lanes to McMurdo Station) that can occasionally be influenced by adverse effects icebergs have on sea ice conditions.", "east": -178.0, "geometry": "POINT(-178 -78)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e MMS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e TEMPERATURE LOGGERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e TEMPERATURE PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "SEISMOLOGICAL STATIONS; Pressure; AWS; Velocity Measurements; Firn Temperature Measurements; Ice Velocity; Seismology; Ice Sheet Elevation; Harmonic Tremor; Ice Shelf Temperature; Wind Speed; Iceberg; Ice Surface Elevation; Non-Volcanic Tremor; Not provided; Antarctic; Iceberg Tremor; Solar Radiation; Antarctic Ice Sheet; Ross Ice Shelf; Elevation; GPS; Temperature Profiles; Ice Shelf Rift Camera; GROUND STATIONS; Latitude; GROUND-BASED OBSERVATIONS; Ice Shelf Weather; FIELD INVESTIGATION; ARWS; Surface Elevation; Ice Shelf Flow; Antarctica; FIELD SURVEYS; Camera; Seismometer; Iceberg Weather (aws); Ice Movement; Photo; Wind Direction; Iceberg Snow Accumulation; Tremor And Slow Slip Events; AWS Climate Data; Location; Iceberg Drift; Iceberg Collisions; Iceberg Tilt; Atmospheric Pressure; Iceberg Seismicity; Firn Temperature", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; Ross Ice Shelf", "north": -78.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Okal, Emile; Aster, Richard; Bassis, Jeremy; Kim, Young-Jin; Bliss, Andrew; Sergienko, Olga; Thom, Jonathan; Scambos, Ted; Muto, Atsu; Brunt, Kelly; King, Matthew; Parker, Tim; Okal, Marianne; Cathles, Mac; MacAyeal, Douglas", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e ARWS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS; Not provided; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "AMRDC", "repositories": "AMRDC; IRIS; NSIDC; Project website; USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research of Earth\u0027s Largest Icebergs", "uid": "p0000117", "west": -178.0}, {"awards": "0233823 Fountain, Andrew; 0230338 Hallet, Bernard", "bounds_geometry": "POLYGON((162.132 -77.73,162.1495 -77.73,162.167 -77.73,162.1845 -77.73,162.202 -77.73,162.2195 -77.73,162.237 -77.73,162.2545 -77.73,162.272 -77.73,162.2895 -77.73,162.307 -77.73,162.307 -77.7303,162.307 -77.7306,162.307 -77.7309,162.307 -77.7312,162.307 -77.7315,162.307 -77.7318,162.307 -77.7321,162.307 -77.7324,162.307 -77.7327,162.307 -77.733,162.2895 -77.733,162.272 -77.733,162.2545 -77.733,162.237 -77.733,162.2195 -77.733,162.202 -77.733,162.1845 -77.733,162.167 -77.733,162.1495 -77.733,162.132 -77.733,162.132 -77.7327,162.132 -77.7324,162.132 -77.7321,162.132 -77.7318,162.132 -77.7315,162.132 -77.7312,162.132 -77.7309,162.132 -77.7306,162.132 -77.7303,162.132 -77.73))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 02 Jul 2008 00:00:00 GMT", "description": "This award supports a comprehensive study of land-based polar ice cliffs. Through field measurements, modeling, and remote sensing, the physics underlying the formation of ice cliffs at the margin of Taylor Glacier in the McMurdo Dry Valleys will be investigated. At three sites, measurements of ice deformation and temperature fields near the cliff face will be combined with existing energy balance data to quantify ice-cliff evolution over one full seasonal cycle. In addition, a small seismic network will monitor local \"ice quakes\" associated with calving events. Numerical modeling, validated by the field data, will enable determination of the sensitivity of ice cliff evolution to environmental variables. There are both local and global motivations for studying the ice cliffs of Taylor Glacier. On a global scale, this work will provide insight into the fundamental processes of calving and glacier terminus A better grasp of ice cliff processes will also improve boundary conditions required for predicting glaciers\u0027 response to climate change. Locally, the Taylor Glacier is an important component of the McMurdo Dry Valleys landscape and the results of this study will aid in defining ecologically-important sources of glacial meltwater and will lead to a better understanding of moraine formation at polar ice cliffs. This study will help launch the career of a female scientist, will support one graduate student, and provide experiential learning experiences for two undergraduates. The post-doctoral researcher will also use this research in the curriculum of a wilderness science experiential education program for high school girls.", "east": 162.307, "geometry": "POINT(162.2195 -77.7315)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOCOUPLES \u003e THERMOCOUPLES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e SURVEYING TOOLS", "is_usap_dc": false, "keywords": "SEISMOLOGICAL STATIONS; Ice Quakes; Ice Cliffs; Not provided; Taylor Glacier; FIELD SURVEYS; Remote Sensing; GROUND-BASED OBSERVATIONS; Modeling; Ice Deformation; Glacial Meltwater; FIELD INVESTIGATION; McMurdo Dry Valleys", "locations": "McMurdo Dry Valleys; Taylor Glacier", "north": -77.73, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Pettit, Erin; Hallet, Bernard; Fountain, Andrew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS; Not provided", "repositories": null, "science_programs": null, "south": -77.733, "title": "Collaborative Research: Mechanics of Dry-Land Calving of Ice Cliffs", "uid": "p0000721", "west": 162.132}, {"awards": "0337838 Fricker, Helen", "bounds_geometry": "POINT(71 -69.75)", "dataset_titles": "Access to data", "datasets": [{"dataset_uid": "001537", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Access to data", "url": "http://www.iris.edu/data/data.htm"}], "date_created": "Fri, 27 Apr 2007 00:00:00 GMT", "description": "This award supports a comprehensive study of rift growth on the Amery Ice Shelf (AIS), East Antarctica, using a combination of in situ and remote sensing data with numerical modeling. On the AIS there is an opportunity to examine an active rift system, which is a combination of two longitudinal-to-flow rifts, which originated at the ice shelf front in the suture zones between merging flowbands, and two transverse-to-flow rifts, which formed at the tip of the western longitudinal rift around 1996. Work in progress indicates that these two transverse rifts do not propagate independently of each other, but somehow grow more or less synchronously. The longest of these rifts-the eastern one-grows at an average rate of about 8m per day. When it meets the eastern longitudinal rift, an event that is expected to occur during the funding period (mid-2006), an iceberg (~30 x 30 km) will calve. Based on observations collected over the past half century, there is reason to believe that such a calving event may be a part of a repetitive sequence. In the proposed project, the expansion and propagation of both transverse rifts will be studied using a network of GPS and seismometers deployed around the tip of each transverse rift. Once the iceberg has calved, the effects its calving has on the dynamics of the ice shelf and the activation of previously inactive rifts will also be studied. Insofar as the rate of calving activity is a proxy for local and regional climate conditions, a broader impact of the proposed work is directly related to the socio-environmental topics of climate and sea-level change. The subject of iceberg calving has a history of sparking a great deal of interest from the media and the public alike, especially since the recent large calving events from the Ross and Ronne ice shelves and the remarkably sudden break-up of the Larsen Ice Shelf. The work will involve at least one graduate student, and will involve a partnership with a local charter high school. Field work, instrument deployments, and data collection and analysis will be conducted in close collaboration with the Australian Antarctic Division and the University of Tasmania, which has been a crucial component of research conducted to date. This project will also make use of the Scripps Institution of Oceanography Visualization Center as a means to display results to faculty and researchers of the University of California, San Diego, undergraduate and graduate students, to school children and their teachers, and ultimately to the visiting public.", "east": 71.0, "geometry": "POINT(71 -69.75)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS", "is_usap_dc": false, "keywords": "Not provided; Geodesy; Seismic", "locations": null, "north": -69.75, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fricker, Helen; Minster, Jean-Bernard", "platforms": "Not provided", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": -69.75, "title": "Monitoring an Active Rift System at the Front of Amery Ice Shelf, East Antarctica", "uid": "p0000668", "west": 71.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EAGER: Lowering the detection threshold of Antarctic seismicity to reveal undiscovered intraplate deformation
|
2023355 |
2024-02-20 | Schmandt, Brandon |
|
Part 1: Nontechnical<br/> <br/>Unlike other locations on the globe Antarctica is not known for having large earthquakes and the remote nature and harsh conditions make it difficult to install and maintain seismometers for earthquake detection. Some researchers believe the lack of large earthquakes is due to the continent being surrounded by inactive tectonic margins. However, in the last two decades, scientists have discovered that more earthquakes occur in the interior of the continent than previously observed. This suggests that there are many earthquakes missing from historic earthquake catalogs. This study aims to find the missing earthquakes using novel earthquake detection and location techniques from seismic data collected from temporary and permanent seismic stations in Antarctica over the last 25 years. Locating these earthquakes will help understand if and where earthquakes are located in Antarctica and will help in planning future seismic deployments. As part of the project broader impacts, a field expedition with the Girls on Rock program will be conducted to teach high school age girls, and especially those from underrepresented backgrounds, data visualization techniques using scientific data. <br/> <br/>Part 2: Technical<br/> <br/>The spatial distribution of seismicity and the number of moderate magnitude earthquakes in Antarctica is not well-defined. The current catalog of earthquakes may be biased by uneven and sparse seismograph distribution on the continent. We will mine existing broadband seismic data from both permanent and temporary deployments to lower the earthquake detection threshold across Interior Antarctica, with a focus on tectonic earthquakes. The hypothesis is that Interior Antarctica has abundant moderate magnitude earthquakes, previously undetected. These earthquakes are likely collocated with major tectonic features such as the Transantarctic Mountains, the suspected Vostok collision zone, the West Antarctic Rift System, the crustal compositional boundary between East and West Antarctica, and the Cretaceous East Antarctic Rift. Previous seismic deployments have recorded earthquakes in the Antarctic interior, suggesting there are many earthquakes missing from the current catalog. We propose to use novel earthquake location techniques designed for automated detection and location using 25 years of continuous data archived at IRIS from PASSCAL experiments and permanent stations. The approach will use STA/LTA detectors on the first arrival P-wave to 90 degrees distance, Reverse Time Imaging to locate events, and beamforming at dense arrays strategically located on cratons for enhanced detection and location. The combination of detection and location techniques used in this work has not been used on teleseismic body waves, although similar methods have worked well for surface wave studies. If successful the project would provide an excellent training dataset for future scrutiny of newly discovered Antarctic seismicity with machine learning approaches and/or new targeted data collection. We plan to collaborate with Girls on Rock, a local and international organization committed to building a culturally diverse community in science, art, and wilderness exploration, in a summer field expedition and integrating computer coding into post-field scientific projects.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||
NSFGEO-NERC: Ice-shelf Instability Caused by Active Surface Meltwater Production, Movement, Ponding and Hydrofracture
|
1841467 1841607 |
2024-02-15 | Banwell, Alison; Macayeal, Douglas |
|
The evolution of surface and shallow subsurface meltwater across Antarctic ice shelves has important implications for their (in)stability, as demonstrated by the 2002 rapid collapse of the Larsen B Ice Shelf. It is vital to understand the causes of ice-shelf (in)stability because ice shelves buttress against the discharge of inland ice and therefore influence ice-sheet contributions to sea-level rise. Ice-shelf break-up may be triggered by stress variations associated with surface meltwater movement, ponding, and drainage. These variations may cause an ice shelf to flex and fracture. This four-year project will provide key geophysical observations to improve understanding of ice-shelf meltwater and its effects on (in)stability. The work will be conducted on the George VI Ice Shelf on the Antarctic Peninsula, where hundreds of surface lakes form each summer. <br/><br/>Over a 27-month period, global positioning systems, seismometers, water pressure transducers, automatic weather stations, and in-ice thermistor strings will be deployed to record ice shelf flexure, fracture seismicity, water depths, and surface and subsurface melting, respectively, in and around several surface lakes on the George VI Ice Shelf, within roughly 20 km of the British Antarctic Survey's Fossil Bluff Station. Field data will be used to validate and extend the team's approach to modelling ice-shelf flexure and stress, and possible "Larsen-B style" ice-shelf instability and break-up.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-68.28 -71.1,-68.202 -71.1,-68.124 -71.1,-68.046 -71.1,-67.968 -71.1,-67.89 -71.1,-67.812 -71.1,-67.734 -71.1,-67.656 -71.1,-67.578 -71.1,-67.5 -71.1,-67.5 -71.14999999999999,-67.5 -71.19999999999999,-67.5 -71.25,-67.5 -71.3,-67.5 -71.35,-67.5 -71.39999999999999,-67.5 -71.44999999999999,-67.5 -71.5,-67.5 -71.55,-67.5 -71.6,-67.578 -71.6,-67.656 -71.6,-67.734 -71.6,-67.812 -71.6,-67.89 -71.6,-67.968 -71.6,-68.046 -71.6,-68.124 -71.6,-68.202 -71.6,-68.28 -71.6,-68.28 -71.55,-68.28 -71.5,-68.28 -71.44999999999999,-68.28 -71.39999999999999,-68.28 -71.35,-68.28 -71.3,-68.28 -71.25,-68.28 -71.19999999999999,-68.28 -71.14999999999999,-68.28 -71.1)) | POINT(-67.89 -71.35) | false | false | |||||||
Probing the Western Antarctic Lithosphere and Asthenosphere with New Approaches to Imaging Seismic Wave Attenuation and Velocity
|
2201129 |
2022-06-14 | Fischer, Karen; Dalton, Colleen | No dataset link provided | The western portion of the Antarctic continent is active in terms of plate tectonic processes that can produce significant variations in the Earth's mantle temperature as well as partial melting of the mantle. In addition to these internal processes, the ice sheet in western Antarctica is melting due to Earth's warming climate and adding water to the ocean. These changes in ice mass cause adjustments in rocks within the Earth's crust, allowing the surface to rebound in some locations and fall in others, altering the geographical pattern of sea-level change. However, the solid Earth response depends strongly on the strength of the rocks at a wide range of timescales which is not well-known and varies with temperature and other rock properties. This project has three primary goals. (1) It will assess how processes such as rifting, mantle upwelling and lithospheric instability have altered the lithosphere and underlying asthenosphere of western Antarctica, contributing to a planet-wide understanding of these processes. (2) It will use new measurements of mantle and crust properties to estimate the rate at which heat from the solid Earth flows into the base of the ice, which is important for modeling the rates at which the ice melts and flows. (3) It will places bounds on mantle viscosity, which is key for modeling the interaction of the solid Earth with changing ice and water masses and their implications for sea-level rise. To accomplish these goals, new resolution of crust and mantle structure will be obtained by analyzing seismic waves from distant earthquakes that have been recorded at numerous seismic stations in Antarctica. These analyses will include new combinations of seismic wave data that provide complementary information about mantle temperature, heat flow and viscosity. <br><br>Technical Description: This research addresses key questions about mantle processes and properties in western Antarctica. What are the relative impacts of rifting, mantle plumes, and lithospheric delamination in the evolution of the lithosphere and asthenosphere? Where is topography isostatically compensated, and where are dynamic processes such as plate flexure or tractions from 3-D mantle flow required? What are the bounds on heat flow and mantle viscosity, which represent important inputs to models of ice sheet evolution and its feedback from the solid Earth? To address these questions, this project will measure mantle and crust properties using seismic tools that have not yet been applied in Antarctica: regional-scale measurement of mantle attenuation from surface waves; Sp body wave phases to image mantle velocity gradients such as the lithosphere-asthenosphere boundary; and surface wave amplification and ellipticity. The resulting models of seismic attenuation and velocity will be jointly interpreted to shed new light on temperature, bulk composition, volatile content, and partial melt, using a range of laboratory-derived constitutive laws, while considering data from mantle xenoliths. To test the relative roles of rifting, mantle plumes, and delamination, and to assess isostatic support for Antarctic topography, the predictions of these processes will be compared to the new models of crust and mantle properties. To improve bounds on western Antarctic heat flow, seismic attenuation and velocity will be used in empirical comparisons and in direct modeling of vertical temperature gradients. To better measure mantle viscosity at the timescales of glacial isostatic adjustment, frequency-dependent viscosity will be estimated from the inferred mantle conditions. <br><br>This project will contribute to the education and career development of a Brown University Ph.D. student, Brown undergraduates, and undergraduates from outside the university who will be involved through the Department of Earth, Environmental and Planetary Sciences (DEEPS) Leadership Alliance NSF Research Experience for Undergraduates (REU) Site which focuses on geoscience summer research experiences for underrepresented students. The project will be the basis for a seminar at Brown that explores the connections between the solid Earth and cryosphere in Antarctica and will contribute to outreach in local public elementary and high schools. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||
Collaborative Research: Resolving earth structure influence on ice-sheet stability in the Wilkes
Subglacial Basin (RESISSt)
|
1914698 1914743 1914668 1914767 |
2021-06-25 | Becker, Thorsten; Binder, April; Hansen, Samantha; Aschwanden, Andy; Winberry, Paul |
|
Part I: Nontechnical <br/>Earths warming climate has the potential to drive widespread collapse of glaciers and ice sheets across the planet, driving global sea-level rise. Understanding both the rate and magnitude of such changes is essential for predicting future sea-level and how it will impact infrastructure and property. Collapse of the ice sheets of Antarctica has the potential to raise global sea-level by up to 60 meters. However, not all regions of Antarctica are equally suspectable to collapse. One area with potential for collapse is the Wilkes Subglacial Basin in East Antarctica, a region twice the size of California's Central Valley. Geologic evidence indicates that the ice-sheet in this region has retreated significantly in response to past global warming events. While the geologic record clearly indicates ice-sheets in this area are vulnerable, the rate and magnitude of any future retreat will be influenced significantly by geology of the region. Constraining the geologic controls on the stability of the ice-sheets of the Wilkes Subglacial Basin remains challenging since the ice-sheet hides the geology beneath kilometers of ice. As a step in understanding the potential for future ice loss in the Wilkes Subglacial Basin this project will conduct geophysical analysis of existing data to better constrain the geology of the region. These results will constrain new models designed to understand the tectonics that control the behavior of the ice-sheets in the region. These new models will highlight the geological properties that exert the most significant control on the future of the ice-sheets of the Wilkes Subglacial Basin. Such insights are critical to guide future efforts aimed at collecting in-situ observations needed to more fully constrain Antarctica's potential for future sea-level. <br/><br/> Part II: Technical Description <br/>In polar environments, inward-sloping marine basins are susceptible to an effect known as the marine ice-sheet instability (MISI): run-away ice stream drainage caused by warm ocean water eroding the ice shelf from below. The magnitude and time-scale of the ice-sheet response strongly depend on the physical conditions along the ice-bed interface, which are, to a first order, controlled by the tectonic evolution of the basin. Topography, sedimentology, geothermal heat flux, and mantle viscosity all play critical roles in ice-sheet stability. However, in most cases, these solid-Earth parameters for regions susceptible to the MISI are largely unknown. One region with potential susceptibility to MISI is the Wilkes Subglacial Basin of East Antarctica. The project will provide an integrated investigation of the Wilkes Subglacial Basin, combining geophysical analyses with both mantle flow and ice-sheet modeling to understand the stability of the ice sheet in this region, and the associated potential sea level rise. The work will be focused on four primary objectives: (1) to develop an improved tectonic model for the region based on existing seismic observations as well as existing geophysical and geological data; (2) to use the new tectonic model and seismic data to estimate the thermal, density, and viscosity structure of the upper mantle and to develop a heat flow map for the WSB; (3) to simulate mantle flow and to assess paleotopography based on our density and viscosity constraints; and (4) to assess ice-sheet behavior by modeling (a) past ice-sheet stability using our paleotopography estimates and (b) future ice-sheet stability using our heat flow and mantle viscosity estimates. Ultimately, the project will generate improved images of the geophysical structure beneath the WSB that will allow us to assess the geodynamic origin for this region and to assess the influence of geologic parameters on past, current, and future ice-sheet behavior. These efforts will then highlight areas and geophysical properties that should be the focus of future geophysical deployments. | POLYGON((90 -65,99 -65,108 -65,117 -65,126 -65,135 -65,144 -65,153 -65,162 -65,171 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,171 -90,162 -90,153 -90,144 -90,135 -90,126 -90,117 -90,108 -90,99 -90,90 -90,90 -87.5,90 -85,90 -82.5,90 -80,90 -77.5,90 -75,90 -72.5,90 -70,90 -67.5,90 -65)) | POINT(135 -77.5) | false | false | |||||||
NSF-NERC: Thwaites Interdisciplinary Margin Evolution (TIME): The Role of Shear Margin Dynamics in the Future Evolution of the Thwaites Drainage Basin
|
1739027 |
2021-06-24 | Tulaczyk, Slawek | No dataset link provided | This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Collapse of the West Antarctic Ice Sheet (WAIS) could raise the global sea level by about 5 meters (16 feet) and the scientific community considers it the most significant risk for coastal environments and cities. The risk arises from the deep, marine setting of WAIS. Although scientists have been aware of the precarious setting of this ice sheet since the early 1970s, it is only now that the flow of ice in several large drainage basins is undergoing dynamic change consistent with a potentially irreversible disintegration. Understanding WAIS stability and enabling more accurate prediction of sea-level rise through computer simulation are two of the key objectives facing the polar science community today. This project will directly address both objectives by: (1) using state-of-the-art technologies to observe rapidly deforming parts of Thwaites Glacier that may have significant control over the future evolution of WAIS, and (2) using these new observations to improve ice-sheet models used to predict future sea-level rise. This project brings together a multidisciplinary team of UK and US scientists. This international collaboration will result in new understanding of natural processes that may lead to the collapse of the WAIS and will boost infrastructure for research and education by creating a multidisciplinary network of scientists. This team will mentor three postdoctoral researchers, train four Ph.D. students and integrate undergraduate students in this research project. The project will test the overarching hypothesis that shear-margin dynamics may exert powerful control on the future evolution of ice flow in Thwaites Drainage Basin. To test the hypothesis, the team will set up an ice observatory at two sites on the eastern shear margin of Thwaites Glacier. The team argues that weak topographic control makes this shear margin susceptible to outward migration and, possibly, sudden jumps in response to the drawdown of inland ice when the grounding line of Thwaites retreats. The ice observatory is designed to produce new and comprehensive constraints on englacial properties, including ice deformation rates, ice crystal fabric, ice viscosity, ice temperature, ice water content and basal melt rates. The ice observatory will also establish basal conditions, including thickness and porosity of the till layer and the deeper marine sediments, if any. Furthermore, the team will develop new knowledge with an emphasis on physical processes, including direct assessment of the spatial and temporal scales on which these processes operate. Seismic surveys will be carried out in 2D and 3D using wireless geophones. A network of broadband seismometers will identify icequakes produced by crevassing and basal sliding. Autonomous radar systems with phased arrays will produce sequential images of rapidly deforming internal layers in 3D while potentially also revealing the geometry of a basal water system. Datasets will be incorporated into numerical models developed on different spatial scales. One will focus specifically on shear-margin dynamics, the other on how shear-margin dynamics can influence ice flow in the whole drainage basin. Upon completion, the project aims to have confirmed whether the eastern shear margin of Thwaites Glacier can migrate rapidly, as hypothesized, and if so what the impacts will be in terms of sea-level rise in this century and beyond. | POLYGON((-125 -73,-122.1 -73,-119.2 -73,-116.3 -73,-113.4 -73,-110.5 -73,-107.6 -73,-104.7 -73,-101.8 -73,-98.9 -73,-96 -73,-96 -73.7,-96 -74.4,-96 -75.1,-96 -75.8,-96 -76.5,-96 -77.2,-96 -77.9,-96 -78.6,-96 -79.3,-96 -80,-98.9 -80,-101.8 -80,-104.7 -80,-107.6 -80,-110.5 -80,-113.4 -80,-116.3 -80,-119.2 -80,-122.1 -80,-125 -80,-125 -79.3,-125 -78.6,-125 -77.9,-125 -77.2,-125 -76.5,-125 -75.8,-125 -75.1,-125 -74.4,-125 -73.7,-125 -73)) | POINT(-110.5 -76.5) | false | false | |||||||
Collaborative Research: Triggering of Antarctic Icequakes, Slip Events, and other Tectonic Phenomena by Distant Earthquakes
|
1543399 1745135 1543286 |
2021-05-19 | Walter, Jacob; Peng, Zhigang | No dataset link provided | The continent of Antarctica has approximately the same surface area as the continental United States, though we know significantly less about its underlying geology and seismic activity. Multinational investments in geophysical infrastructure over the last few decades, especially broadband seismometers operating for several years, are allowing us to observe many interesting natural phenomena, including iceberg calving, ice stream slip, and tectonic earthquakes. To specifically leverage those past investments, we will analyze past and current data to gain a better understanding of Antarctic seismicity. Our recent research revealed that certain large earthquakes occurring elsewhere in the world triggered ice movement near various stations throughout Antarctica. We plan to conduct an exhaustive search of the terabytes of available data, using cutting-edge computational techniques, to uncover additional evidence for ice crevassing, ice stream slip, and earth movement during earthquakes. One specific focus of our research will include investigating whether some of these phenomena may be triggered by external influences, including passing surface waves from distant earthquakes, ocean tides, or seasonal melt. We plan to produce a catalog of the identified activity and share it publicly, so the public and researchers can easily access it. To reach a broader audience, we will present talks to high school classes, including Advanced Placement classes, in the Austin, Texas and Atlanta, Georgia metropolitan areas with emphasis on general aspects of seismic hazard, climate variability, and the geographies of Antarctica. This project will provide research opportunities for undergraduates, training for graduate students, and support for an early-career scientist. In recent years, a new generation of geodetic and seismic instrumentation has been deployed as permanent stations throughout Antarctica (POLENET), in addition to stations deployed for shorter duration (less than 3 years) experiments (e.g. AGAP/TAMSEIS). These efforts are providing critical infrastructure needed to address fundamental questions about both crustal-scale tectonic structures and ice sheets, and their interactions. We plan to conduct a systematic detection of tectonic and icequake activities in Antarctica, focusing primarily on background seismicity, remotely-triggered seismicity, and glacier slip events. Our proposed tasks include: (1) Identification of seismicity throughout the Antarctic continent for both tectonic and ice sources. (2) An exhaustive search for additional triggered events in Antarctica during the last ~15 years of global significant earthquakes. (3) Determination of triggered source mechanisms and whether those triggered events also occur at other times, by analyzing years of data using a matched-filter analysis (where the triggered local event is used to detect similar events). (4) Further analysis of GPS measurements over a ~5.5 year period from Whillans Ice Plain, which suggests that triggering of stick-slip events occurred after the largest earthquakes. An improved knowledge of how the Antarctic ice sheet responds to external perturbations such as dynamic stresses from large distant earthquakes and recent ice unloading could lead to a better understanding of ice failure and related dynamic processes. By leveraging the vast logistical investment to install seismometers in Antarctica over the last decade, our project will build an exhaustive catalog of tectonic earthquakes, icequakes, calving events, and any other detectable near-surface seismic phenomena. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||
Collaborative Research: Dynamic Response of the Ross Ice Shelf to Wave-induced Vibrations
|
1246151 1246416 |
2021-04-15 | Bromirski, Peter; Gerstoft, Peter; Stephen, Ralph | This award supports a project intended to discover, through field observations and numerical simulations, how ocean wave-induced vibrations on ice shelves in general, and the Ross Ice Shelf (RIS), in particular, can be used (1) to infer spatial and temporal variability of ice shelf mechanical properties, (2) to infer bulk elastic properties from signal propagation characteristics, and (3) to determine whether the RIS response to infragravity (IG) wave forcing observed distant from the front propagates as stress waves from the front or is "locally" generated by IG wave energy penetrating the RIS cavity. The intellectual merit of the work is that ocean gravity waves are dynamic elements of the global ocean environment, affected by ocean warming and changes in ocean and atmospheric circulation patterns. Their evolution may thus drive changes in ice-shelf stability by both mechanical interactions, and potentially increased basal melting, which in turn feed back on sea level rise. Gravity wave-induced signal propagation across ice shelves depends on ice shelf and sub-shelf water cavity geometry (e.g. structure, thickness, crevasse density and orientation), as well as ice shelf physical properties. Emphasis will be placed on observation and modeling of the RIS response to IG wave forcing at periods from 75 to 300 s. Because IG waves are not appreciably damped by sea ice, seasonal monitoring will give insights into the year-round RIS response to this oceanographic forcing. The 3-year project will involve a 24-month period of continuous data collection spanning two annual cycles on the RIS. RIS ice-front array coverage overlaps with a synergistic Ross Sea Mantle Structure (RSMS) study, giving an expanded array beneficial for IG wave localization. The ice-shelf deployment will consist of sixteen stations equipped with broadband seismometers and barometers. Three seismic stations near the RIS front will provide reference response/forcing functions, and measure the variability of the response across the front. A linear seismic array orthogonal to the front will consist of three stations in-line with three RSMS stations. Passive seismic array monitoring will be used to determine the spatial and temporal distribution of ocean wave-induced signal sources along the front of the RIS and estimate ice shelf structure, with the high-density array used to monitor and localize fracture (icequake) activity. The broader impacts include providing baseline measurements to enable detection of ice-shelf changes over coming decades which will help scientists and policy-makers respond to the socio-environmental challenges of climate change and sea-level rise. A postdoctoral scholar in interdisciplinary Earth science will be involved throughout the course of the research. Students at Cuyamaca Community College, San Diego County, will develop and manage a web site for the project to be used as a teaching tool for earth science and oceanography classes, with development of an associated web site on waves for middle school students. Understanding and being able to anticipate changes in the glaciological regime of the Ross Ice Shelf (RIS) and West Antarctic Ice Sheet (WAIS) are key to improving sea level rise projections due to ongoing ice mass loss in West Antarctica. The fate of the WAIS is a first-order climate change and global societal issue for this century and beyond that affects coastal communities and coastal infrastructure globally. Ice shelf--ocean interactions include impacts from tsunami, ocean swell (10-30s period), and very long period ocean waves that impact ice shelves and produce vibrations that induce a variety of seismic signals detected by seismometers buried in the ice shelf surface layer, called firn. To study the wave-induced vibrations in the RIS, an extensive seismic array was deployed from Nov. 2014 to Nov. 2016. This unique seismometer array deployment on an ice shelf made continuous observations of the response of the RIS to ocean wave impacts from ocean swell and very long period waves. An extensive description of the project motivation and background (including photos and videos of the deployment operations), and list of published studies of analyses of the seismic data collected by this project, are available at the project website https://iceshelfvibes.ucsd.edu. Two types of seismic signals detected by the seismic array are most prevalent: flexural gravity waves (plate waves) and icequakes (signals analogous to those from earthquakes but from fracturing of the ice). Long period ocean waves flex the ice shelf at the same period as the ocean waves, with wave energy at periods greater than ocean swell more efficient at coupling energy into flexing the ice shelf. Termed flexural gravity waves or plate waves (Chen et al., 2018), their wave-induced vibrations can reach 100’s of km from the ice edge where they are excited, with long period wave energy propagating in the water layer below the shelf coupled with the ice shelf flexure. Flexural gravity waves at very long periods (> 300 s period), such as from tsunami impacts (Bromirski et al., 2017), can readily reach grounding zones and may play a role in long-term grounding zone evolution. Swell-induced icequake activity was found to be most prevalent at the shelf front during the austral summer (January – March) when seasonal sea ice is absent and the associated damping of swell by sea ice is minimal (Chen et al., 2019). In addition to the seismic array, a 14 station GPS (global positioning system) array was installed during seismic data retrieval and station servicing operations in October-November 2015. The GPS stations, co-located with seismic stations, extended from the shelf front southward to about 415 km at interior station RS18. Due to logistical constraints associated with battery weight during installation, only one station (at DR10) operated year-round. The GPS data collected give a detailed record of changes in iceflow velocity that are in close agreement with the increasing velocity estimates approaching the shelf front from satellite observations. Importantly, the year-round data at DR10 show an unprecedented seasonal cycle of changes in iceflow velocity, with a speed-up in northward (seaward) ice flow during Jan.-May and then a velocity decrease from June-Sep. (returning to the long-term mean flow velocity). This annual ice flow velocity change cycle has been attributed in part to seasonal changes in ice shelf mass (thinning, reducing buttressing) due to melting at the RIS basal (bottom) surface from intrusion of warmer ocean water (Klein et al., 2020). | POLYGON((-180 -77,-179.5 -77,-179 -77,-178.5 -77,-178 -77,-177.5 -77,-177 -77,-176.5 -77,-176 -77,-175.5 -77,-175 -77,-175 -77.4,-175 -77.8,-175 -78.2,-175 -78.6,-175 -79,-175 -79.4,-175 -79.8,-175 -80.2,-175 -80.6,-175 -81,-175.5 -81,-176 -81,-176.5 -81,-177 -81,-177.5 -81,-178 -81,-178.5 -81,-179 -81,-179.5 -81,180 -81,179 -81,178 -81,177 -81,176 -81,175 -81,174 -81,173 -81,172 -81,171 -81,170 -81,170 -80.6,170 -80.2,170 -79.8,170 -79.4,170 -79,170 -78.6,170 -78.2,170 -77.8,170 -77.4,170 -77,171 -77,172 -77,173 -77,174 -77,175 -77,176 -77,177 -77,178 -77,179 -77,-180 -77)) | POINT(177.5 -79) | false | false | ||||||||
High Resolution Heterogeneity at the Base of Whillans Ice Stream and its Control on Ice Dynamics
|
1443525 |
2021-02-12 | Tulaczyk, Slawek; Schwartz, Susan |
|
Ice fracturing plays a crucial role in mechanical processes that influence the contribution of glaciers and ice sheets to the global sea-level rise. Such processes include, among others, ice shelf disintegration, iceberg calving, and fast ice sliding. Over the last century, seismology developed highly sensitive instrumentation and sophisticated data processing techniques to study earthquakes. This interdisciplinary project used seismological research methods to investigate fracturing beneath and within ice on a fast-moving ice stream in West Antarctica that is experiencing rapid sliding and flexure driven by ocean tides. Data were collected from two strategically located clusters of seismometers. One was located in the epicenter zone where tidally triggered rapid sliding events of the ice stream start. The other was placed in the grounding zone, where the ice stream flexes with tides where it goes afloat and becomes an ice shelf. Seismometers in the epicenter cluster recorded many thousands of microearthquakes coming from beneath ice during ice stream sliding events. Analyses of these microearthquakes suggest that the geologic materials beneath the ice stream are fracturing. The spatial pattern of fracturing is not random but forms elongated stripes that resemble well-known glacial landforms called megascale glacial lineations. These findings indicate that the frictional resistance to ice sliding may change through time due to these landforms changing as a result of erosion and sedimentation beneath ice. This may have implications for the rate of ice loss from Antarctic ice streams that drain about 90% of all ice discharged into the Southern Ocean. In addition to microearthquakes, the epicenter cluster of seismometers also recorded vibrations (tremors) from beneath the ice stream. These may be caused by the rapid repetition of many microearthquakes coming from the same source. The grounding zone cluster of seismometers recorded many thousands of microearthquakes as well. However, they are caused by ice fracturing near the ice stream's surface rather than at its base. These microearthquakes originate when the grounding zone experiences strong tension caused by ice flexure during dropping ocean tide. This tension causes the opening of near-surface fractures (crevasses) just before the lowest tide, rather than at the lowest tide as expected from elasticity of solids. This unexpected timing of ice fracturing indicates that ice in the grounding zone behaves like a viscoelastic material, i.e., partly like a solid and partly like a fluid. This is an important general finding that will be useful to other scientists who are modeling interactions of ice with ocean water in the Antarctic grounding zones. Overall, the observed pervasive fracturing in the grounding zone, where an ice stream becomes an ice shelf, may make ice shelves potentially vulnerable to catastrophic collapses. It also may weaken ice shelves and make it easier for large icebergs to break off at their fronts. In addition to Antarctic research, this award supported education and outreach activities, including presentations and field trips during several summer schools at UCSC for talented and diverse high school students. The students were exposed to glaciological and seismological concepts and performed hands-on scientific exercises. The field trips focused on the marine terrace landscape around Santa Cruz. This landscape resulted from interactions between the uplift of rocks along the San Andreas fault with global-sea level changes caused by the waxing and waning of polar ice sheets in response to Ice Age climate cycles. | POLYGON((-165 -83.8,-163 -83.8,-161 -83.8,-159 -83.8,-157 -83.8,-155 -83.8,-153 -83.8,-151 -83.8,-149 -83.8,-147 -83.8,-145 -83.8,-145 -83.92,-145 -84.04,-145 -84.16,-145 -84.28,-145 -84.4,-145 -84.52,-145 -84.64,-145 -84.76,-145 -84.88,-145 -85,-147 -85,-149 -85,-151 -85,-153 -85,-155 -85,-157 -85,-159 -85,-161 -85,-163 -85,-165 -85,-165 -84.88,-165 -84.76,-165 -84.64,-165 -84.52,-165 -84.4,-165 -84.28,-165 -84.16,-165 -84.04,-165 -83.92,-165 -83.8)) | POINT(-155 -84.4) | false | false | |||||||
Collaborative Research: Monitoring Antarctic Ice Sheet Changes with Ambient Seismic Noise Methods
|
1643795 |
2021-01-15 | Mordret, Aurelien; Mikesell, Dylan |
|
In this project, the researchers processed and analyzed previously acquired seismic data from the POLENET-ANET array (2010-2011) to estimate variations in seismic shear-wave speed beneath the array. This investigation used a passive seismology method call ambient noise tomography, whereby repetitive seismic noise correlation functions were computed from records of Earth's ambient seismic noise field. The main results indicate a shallower Moho beneath Marie Byrd Land compared to previous studies in the region. | POLYGON((-134.5 -75,-130.85 -75,-127.2 -75,-123.55 -75,-119.9 -75,-116.25 -75,-112.6 -75,-108.95 -75,-105.3 -75,-101.65 -75,-98 -75,-98 -75.85,-98 -76.7,-98 -77.55,-98 -78.4,-98 -79.25,-98 -80.1,-98 -80.95,-98 -81.8,-98 -82.65,-98 -83.5,-101.65 -83.5,-105.3 -83.5,-108.95 -83.5,-112.6 -83.5,-116.25 -83.5,-119.9 -83.5,-123.55 -83.5,-127.2 -83.5,-130.85 -83.5,-134.5 -83.5,-134.5 -82.65,-134.5 -81.8,-134.5 -80.95,-134.5 -80.1,-134.5 -79.25,-134.5 -78.4,-134.5 -77.55,-134.5 -76.7,-134.5 -75.85,-134.5 -75)) | POINT(-116.25 -79.25) | false | false | |||||||
Collaborative Research: Imaging Seismic Heterogeneity within the Antarctic Mantle with Full Waveform Ambient Noise Tomography
|
1643873 1643798 |
2020-10-15 | Emry, Erica; Hansen, Samantha | Our project is focused on better resolving the three-dimensional Antarctic mantle structure to further understanding of continental tectonics. To accomplish this, we are utilizing a full-waveform tomographic inversion technique that incorporates long-period ambient noise data and which has been shown to more accurately resolve structure than traditional tomographic approaches. The new models have been developed using the Alabama supercomputer facilities in conjunction with software developed at The University of Rhode Island. Our new tomographic results highlight the lithospheric structure beneath the Wilkes and Aurora Subglacial Basins in East Antarctica, where previous rifting episodes and mid-lithospheric discontinuities are being explored. In West Antarctica, the work is elucidating the easternmost extent of the West Antarctic Rift System as well as rifted structure and possible compositional variations within the Weddell Sea. We are also highlighting regions of Antarctica where tomographic resolution is still lacking and where future deployments are needed to improve resolution. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||||
Collaborative Research: Characterizing Brittle Failure and Fracture Propagation in Fast Ice Sliding with Dynamic Rupture Models based on Whillans Ice Stream Seismic/Geodetic Data
|
1542885 |
2020-10-09 | Dunham, Eric |
|
This project investigates a rapidly moving section of the West Antarctic Ice Sheet known as the Whillans Ice Stream. Ice streams and outlet glaciers are the major pathways for ice discharge from ice sheets into the ocean. Consequently, understanding ice stream dynamics, specifically the processes controlling the frictional resistance of ice sliding on sediments at its base, is essential for predictive modeling of how Earth's ice sheets will respond to a changing climate. Rather than flowing smoothly, Whillans Ice Stream advances in stick-slip cycles: brief periods of rapid sliding, equivalent to magnitude 7 earthquakes, alternating with much longer periods of repose. The PIs will perform simulations of these stick-slip cycles using computer codes originally developed for modeling tectonic earthquakes. By matching observed ice motions, the PIs will constrain the range of frictional processes acting at the base of the ice stream. An additional focus of the project is on brittle fracture processes in ice, expressed through seismic waves radiated by faulting and/or crevassing episodes that accompany the large-scale sliding events. An understanding of ice fracture provides a basis for assessing the susceptibility of ice shelves to rifting and catastrophic disintegration. Project results will be incorporated into outreach activities (from elementary school to community college events) as well as a polar science class for the California State Summer School for Mathematics and Science (COSMOS) program for high school students.<br/><br/>Simulations of the stick-slip cycle will employ 3D dynamic rupture models that simultaneously solve for the seismic wavefield and rupture process, consistent with elastodynamic material response and friction laws on the ice stream bed. Stresses and frictional properties will be varied to achieve consistency with surface GPS and broadband seismic data as well as borehole seismograms from the WISSARD project. The results will be interpreted using laboratory till friction experiments, which link velocity-weakening/strengthening behavior to temperature and water content, and to related experiments quantifying basal drag from ice flow over rough beds. The source mechanism of seismicity accompanying the slip events (shear faulting versus crevassing) will be determined using 3D waveform modeling in conjunction with mechanical models of the seismic source processes. This proposal does not require fieldwork in the Antarctic. | None | None | false | false | |||||||
Collaborative Research: Integrative Study of Marine Ice Sheet Stability & Subglacial Life Habitats in W Antarctica - Lake & Ice Stream Subglacial Access Research Drilling (LISSARD)
|
0839107 0839059 0838947 0838764 0838763 0838855 0839142 |
2018-09-10 | Tulaczyk, Slawek; Fisher, Andrew; Powell, Ross; Anandakrishnan, Sridhar; Jacobel, Robert; Scherer, Reed Paul | This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The LISSARD project (Lake and Ice Stream Subglacial Access Research Drilling) is one of three research components of the WISSARD integrative initiative (Whillans Ice Stream Subglacial Access Research Drilling) that is being funded by the Antarctic Integrated System Science Program of NSF's Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The LISSARD component of WISSARD focuses on the role of active subglacial lakes in determining how fast the West Antarctic ice sheet loses mass to the global ocean and influences global sea level changes. The importance of Antarctic subglacial lakes has only been recently recognized, and the lakes have been identified as high priority targets for scientific investigations because of their unknown contributions to ice sheet stability under future global warming scenarios. LISSARD has several primary science goals: A) To provide an observational basis for improving treatments of subglacial hydrological and mechanical processes in models of ice sheet mass balance and stability; B) To reconstruct the past history of ice stream stability by analyzing archives of past basal water and ice flow variability contained in subglacial sediments, porewater, lake water, and basal accreted ice; C) To provide background understanding of subglacial lake environments to benefit RAGES and GBASE (the other two components of the WISSARD project); and D) To synthesize data and concepts developed as part of this project to determine whether subglacial lakes play an important role in (de)stabilizing Antarctic ice sheets. We propose an unprecedented synthesis of approaches to studying ice sheet processes, including: (1) satellite remote sensing, (2) surface geophysics, (3) borehole observations and measurements and, (4) basal and subglacial sampling. <br/><br/>INTELLECTUAL MERIT: The latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations. <br/><br/>BROADER IMPACTS: Societal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars. | None | None | false | false | ||||||||
Investigating (Un)Stable Sliding of Whillians Ice Stream and Subglacial Water Dynamics Using Borehole Seismology: A Proposed Component of WISSARD
|
1043784 |
2017-11-07 | Schwartz, Susan; Tulaczyk, Slawek |
|
This award provides support for "Investigating (Un)Stable Sliding of Whillans Ice Stream and Subglacial Water Dynamics Using Borehole Seismology: A proposed Component of the Whillans Ice Stream Subglacial Access and Research Drilling" from the Antarctic Integrated Systems Science (AISS) program in the Office of Polar Programs at NSF. The project will use the sounds naturally produced by the ice and subglacial water to understand the glacial dynamics of the Whillans Ice Stream located adjacent to the Ross Ice Shelf in Antarctica.<br/><br/>Intellectual Merit: The transformative component of the project is that in addition to passive surface seismometers, the team will deploy a series of borehole seismometers. Englacial placement of the seismometers has not been done before, but is predicted to provide much better resolution (detection of smaller scale events as well as detection of a much wider range of frequencies) of the subglacial dynamics. In conjunction with the concurrent WISSARD (Whillans Ice Stream Subglacial Access and Research Drilling) project the team will be able to tie subglacial processes to temporal variations in ice stream dynamics and mass balance of the ice stream. The Whillans Ice Stream experiences large changes in ice velocity in response to tidally triggered stick-slip cycles as well as periodic filling and draining of subglacial Lake Whillans. The overall science goals include: improved understanding of basal sliding processes and role of sticky spots, subglacial lake hydrology, and dynamics of small earthquakes and seismic properties of ice and firn.<br/><br/>Broader Impact: Taken together, the research proposed here will provide information on basal controls of fast ice motion which has been recognized by the IPCC as necessary to make reliable predictions of future global sea-level rise. The information collected will therefore have broader implications for global society. The collected information will also be relevant to a better understanding of earthquakes. For outreach the project will work with the overall WISSARD outreach coordinator to deliver information to three audiences: the general public, middle school teachers, and middle school students. The project also provides funding for training of graduate students, and includes a female principal investigator. | POLYGON((-160 -79,-158 -79,-156 -79,-154 -79,-152 -79,-150 -79,-148 -79,-146 -79,-144 -79,-142 -79,-140 -79,-140 -79.3,-140 -79.6,-140 -79.9,-140 -80.2,-140 -80.5,-140 -80.8,-140 -81.1,-140 -81.4,-140 -81.7,-140 -82,-142 -82,-144 -82,-146 -82,-148 -82,-150 -82,-152 -82,-154 -82,-156 -82,-158 -82,-160 -82,-160 -81.7,-160 -81.4,-160 -81.1,-160 -80.8,-160 -80.5,-160 -80.2,-160 -79.9,-160 -79.6,-160 -79.3,-160 -79)) | POINT(-150 -80.5) | false | false | |||||||
Collaborative Research: Geophysical Study of Ice Stream Stick-slip Dynamics
|
0944794 0944671 |
2016-11-16 | Winberry, Paul; Anandakrishnan, Sridhar; Alley, Richard; Wiens, Douglas |
|
This award supports a three-year study of the ongoing deceleration and stick-slip motion of Whillans Ice Stream (WIS), West Antarctica. Understanding the dynamic behavior of ice streams is essential for predicting the future of the West Antarctic Ice Sheet (WAIS). Despite being one of the best-studied ice streams in Antarctica, the surprising flow characteristics of WIS continue to demand interdisciplinary research. Recent estimates indicate that the WIS may stagnate within 50 years, resulting in a significant change to the mass balance of the Siple Coast sector of West Antarctica. The reasons for the ongoing stagnation are not well known, and are possibly linked (causally or coincidentally) to the stick-slip behavior. Our recent work on WIS stick-slip motion suggest that all slip events nucleate from a common location on the ice stream, suggesting that a relatively small (approximately 10 km in diameter) region of the exerts fundamental control over the flow of this large ice stream (100s of km long and 100 kilometers wide). We hypothesize that this is a region of increased bed strength and our measurements will address that hypothesis. We will deploy a series of GPS receivers and seismometers on the ice stream to accurately locate the nucleation region so that a comprehensive ground based geophysical survey can be conducted to determine the physical properties of bed at the nucleation point. The ground geophysical program will consist of reflection seismic and ice-penetrating radar studies that will better constrain the properties of both the hypothesized higher-friction nucleation zone and the surrounding regions. Slip events also generate seismic energy that can be recorded 100s of km away from the ice stream, thus, the GPS and seismometer deployment will also aid us in relating seismic waveforms directly with the rapid motion that occurs during slip events. The increased ability to relate rupture processes with seismic emissions will allow us to use archived seismic records to explore changes in the behavior of WIS during the later half of the 20th century. Broader impacts of this study include improved knowledge ice sheet dynamics, which remain a poorly constrained component of the climate system, thus, limiting our ability to predict the Earth's response to climate change. The scientific work includes the education of two graduate students and continued training of one post-doctoral scholar, thus helping to train the next generation of polar scientists. We will expose the broader public to polar science through interactions with the media and by take advantaging of programs to include K-12 educators in our field work. | POLYGON((-163 -83.7,-161.9 -83.7,-160.8 -83.7,-159.7 -83.7,-158.6 -83.7,-157.5 -83.7,-156.4 -83.7,-155.3 -83.7,-154.2 -83.7,-153.1 -83.7,-152 -83.7,-152 -83.8,-152 -83.9,-152 -84,-152 -84.1,-152 -84.2,-152 -84.3,-152 -84.4,-152 -84.5,-152 -84.6,-152 -84.7,-153.1 -84.7,-154.2 -84.7,-155.3 -84.7,-156.4 -84.7,-157.5 -84.7,-158.6 -84.7,-159.7 -84.7,-160.8 -84.7,-161.9 -84.7,-163 -84.7,-163 -84.6,-163 -84.5,-163 -84.4,-163 -84.3,-163 -84.2,-163 -84.1,-163 -84,-163 -83.9,-163 -83.8,-163 -83.7)) | POINT(-157.5 -84.2) | false | false | |||||||
MRI: Development of a Wirelessly-Connected Network of Seismometers and GPS Instruments for Polar and Geophysical Research
|
1039982 |
2015-11-23 | Anandakrishnan, Sridhar; Bilen, Sven; Urbina, Julio |
|
Intellectual Merit: <br/>Knowledge of englacial and subglacial conditions are critical for ice sheet models and predictions of sea-level change. Some of the critical variables that are poorly known but essential for improving flow models and predictions of sea-level change are: basal roughness, subglacial sedimentary and hydrologic conditions, and the temporal and spatial variability of the ice sheet flow field. Seismic reflection and refraction imaging and dense arrays of continuously operating GPS receivers can determine these parameters. The PIs propose to develop a network of wirelessly interconnected geophysical sensors (geoPebble) that will allow glaciologists to carry out these experiments simultaneously. This sensor web will provide a new way of imaging the ice sheet that is not possible with current instruments. With this sensor web, the PIs will extend the range of existing instruments from 2D to 3D, from low resolution to high resolution, but more importantly, all the geophysical measurements will be conducted synchronously. By the end of the proposal period the PIs will produce a network of 150-200 geoPebbles that will be available for NSF-sponsored glaciology research projects. <br/><br/>Broader impacts: <br/>Improved knowledge of the flow law of ice, the sliding of glaciers and ice streams, and paleoclimate history will contribute to assessments of the potential for abrupt ice-sheet mass change, with consequent sea-level effects and significant societal impacts. This improved modeling ability will be a direct consequence of better knowledge of the physical properties of ice sheets, which this project will facilitate. The development effort will be integrated with the undergraduate education program via the capstone design classes in EE and the senior thesis requirement in Geoscience. The PIs will also form a cohort of first-year and sophomore students who will work in their labs from the beginning of the project to develop specifications through the commissioning of the network. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||
Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)
|
1142083 |
2013-09-03 | Kyle, Philip; Oppenheimer, Clive; Chaput, Julien; Jones, Laura; Fischer, Tobias | Intellectual Merit: <br/>Mt. Erebus is one of only a handful of volcanoes worldwide that have lava lakes with readily observable and nearly continuous Strombolian explosive activity. Erebus is also unique in having a permanent convecting lava lake of anorthoclase phonolite magma. Over the years significant infrastructure has been established at the summit of Mt. Erebus as part of the Mount Erebus Volcano Observatory (MEVO), which serves as a natural laboratory to study a wide range of volcanic processes, especially magma degassing associated with an open convecting magma conduit. The PI proposes to continue operating MEVO for a further five years. The fundamental fundamental research objectives are: to understand diffuse flank degassing by using distributed temperature sensing and gas measurements in ice caves, to understand conduit processes, and to examine the environmental impact of volcanic emissions from Erebus on atmospheric and cryospheric environments. To examine conduit processes the PI will make simultaneous observations with video records, thermal imaging, measurements of gas emission rates and gas compositions, seismic, and infrasound data.<br/><br/>Broader impacts: <br/>An important aspect of Erebus research is the education and training of students. Both graduate and undergraduate students will have the opportunity to work on MEVO data and deploy to the field site. In addition, this proposal will support a middle or high school science teacher for two field seasons. The PI will also continue working with various media organizations and filmmakers. | POINT(167.15334 -77.529724) | POINT(167.15334 -77.529724) | false | false | ||||||||
Collaborative Research: Polenet East: An International Seismological Network for East Antarctica
|
0838973 0838934 |
2013-01-21 | Wiens, Douglas; Nyblade, Andrew |
|
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The high elevations of East Antarctica are critical in localizing the initial Cenozoic glaciation and stabilizing it with respect to melting during warm interglacials. However, the geological history for this region and the geophysical mechanism for maintaining the highlands are poorly understood. In 2007-2009, an array of 24 broadband seismographs (named GAMSEIS) was installed across the Gamburtsev Mountains area of the East Antarctic Plateau as part of the Antarctica?s Gamburtsev Province (AGAP) International Polar Year project. The IPY AGAP/GAMSEIS program included plans by other international partners to install seismographs at locations along the flanks of the Gamburtsev Mountains and in other East Antarctic regions. The proposed project will continue operating six of the deployed AGAP/GAMSEIS stations for two more years together with two new broadband seismic stations added to broaden the geographic scope of the array. Most stations will be located at the existing U.S. Autonomous Geophysical Observatories and the USAP fuel cache locations in order to minimize logistical support. This array, combined with seismographs deployed by China and Japan (and possibly Australia, France, and Italy in near future) will provide a sparse but large-scale network of seismometers for the longer-term studies of the crustal and upper mantle structures underneath the East Antarctic Plateau. Continued reliance on students provides a broader impact to this proposed research and firmly grounds this effort in its educational mission. | POLYGON((40 -76,50 -76,60 -76,70 -76,80 -76,90 -76,100 -76,110 -76,120 -76,130 -76,140 -76,140 -76.8,140 -77.6,140 -78.4,140 -79.2,140 -80,140 -80.8,140 -81.6,140 -82.4,140 -83.2,140 -84,130 -84,120 -84,110 -84,100 -84,90 -84,80 -84,70 -84,60 -84,50 -84,40 -84,40 -83.2,40 -82.4,40 -81.6,40 -80.8,40 -80,40 -79.2,40 -78.4,40 -77.6,40 -76.8,40 -76)) | POINT(90 -80) | false | false | |||||||
An Investigation into the Seismic Signatures Generated by Iceberg Calving and Rifting
|
0739769 |
2012-03-22 | Fricker, Helen |
|
This award supports a project to strengthen collaborations between the various research groups working on iceberg calving. Relatively little is known about the calving process, especially the physics that governs the initiation and propagation of fractures within the ice. This knowledge gap exists in part because of the diverse range in spatial and temporal scales associated with calving (ranging from less than one meter to over a hundred kilometers in length scale). It is becoming increasingly clear that to predict the future behavior of the Antarctic Ice Sheet and its contribution to sea level rise, it is necessary to improve our understanding of iceberg calving processes. Further challenges stem from difficulties in monitoring and quantifying short-time and spatial-scale processes associated with ice fracture, including increased fracturing events in ice shelves or outlet glaciers that may be a precursor to disintegration, retreat or increased calving rates. Coupled, these fundamental problems currently prohibit the inclusion of iceberg calving into numerical ice sheet models and hinder our ability to accurately forecast changes in sea level in response to climate change. Seismic data from four markedly different environmental regimes forms the basis of the proposed research, and researchers most familiar with the datasets will perform all analyses. Extracting the similarities and differences across the full breadth of calving processes embodies the core of the proposed work, combining and improving methods previously developed by each group. Techniques derived from solid Earth seismology, including waveform cross-correlation and clustering will be applied to each data set allowing quantitative process comparisons on a significantly higher level than previously possible. This project will derive catalogues of glaciologically produced seismic events; the events will then be located and categorized based on their location, waveform and waveform spectra both within individual environments and between regions. The intellectual merit of this work is that it will lead to a better understanding of iceberg calving and the teleconnections between seismic events and other geophysical processes around the globe. The broader impacts of this work are that it relates directly to socio-environmental impacts of global change and sea level rise. Strong collaborations will form as a result of this research, including bolstered collaborations between the glacier and ice sheet communities, as well as the glaciology and seismology communities. Outreach and public dissemination of findings will be driven by SIO's Visualization Center, and Birch Aquarium, hosting presentations devoted to the role of the cryosphere in global change. Time-lapse movies of recent changes at Columbia Glacier will be used to engage potential young scientists. A program of presentations outside the university setting to at-risk and gifted youth will be continued. This study will also involve undergraduates in analyses and interpretation and presentation of the seismic data assembled. The work will also support two junior scientists who will be supported by this project. | POLYGON((-57.22 74.58,-55.343 74.58,-53.466 74.58,-51.589 74.58,-49.712 74.58,-47.835 74.58,-45.958 74.58,-44.081 74.58,-42.204 74.58,-40.327 74.58,-38.45 74.58,-38.45 73.822,-38.45 73.064,-38.45 72.306,-38.45 71.548,-38.45 70.79,-38.45 70.032,-38.45 69.274,-38.45 68.516,-38.45 67.758,-38.45 67,-40.327 67,-42.204 67,-44.081 67,-45.958 67,-47.835 67,-49.712 67,-51.589 67,-53.466 67,-55.343 67,-57.22 67,-57.22 67.758,-57.22 68.516,-57.22 69.274,-57.22 70.032,-57.22 70.79,-57.22 71.548,-57.22 72.306,-57.22 73.064,-57.22 73.822,-57.22 74.58)) | POINT(72.8836975 -69.008701) | false | false | |||||||
Collaborative Research: Development of a Power and Communication System for Remote Autonomous GPS and Seismic Stations in Antarctica
|
0619708 |
2010-12-20 | Anderson, Kent; Parker, Tim | This project develops power and communications systems to support the operation of seismometers and GPS receivers in Antarctica throughout the polar night. In terms of intellectual merit, this system would allow a new class of geophysical questions to be approached, in areas as varied as ice sheet movement, plate tectonics, and deep earth structure. In terms of broader impacts, this project represents research infrastructure of potential use to many scientific disciplines. In addition, the results will improve society's understanding of the Antarctic ice sheet and its behavior in response to global warming. | POINT(180 90) | POINT(-180 -90) | false | false | ||||||||
Characterization of Lake Amundsen-Scott, S. Pole: A Ground Geophysical Program
|
0538097 |
2010-09-08 | Anandakrishnan, Sridhar; Holland, Charles |
|
0538097<br/>Anandakrishnan<br/><br/>This award supports a project to intensively study a subglacial Antarctic lake near the geographic South Pole using seismic and radar methods. These ground-based experiments are better suited to determine the presence of water and its thickness than are airborne methods. We hypothesize that there are two end-member explanations for this feature: either the lake is thawed, but freezing on (and likely to have been freezing on through much of the current interglacial period), or it is a frozen, relict lake for which the high basal radar reflectivity is due to intergranular water in a permafrost-like layer beneath the ice. The seismic experiment we propose is ideally suited to examine these alternatives. Intermediate cases of, e.g., a thawed saturated sedimentary base or a smooth crystalline basement layer would also be resolved by this experiment. Seismic reflections are sensitive to changes in acoustic impedance which is strongly variable with fluid content, porosity, and lithology. Water has low density relative to most rocks and low seismic velocity (and nil shear wave velocity) relative to both ice and rock. Thus, discriminating between subglacial water and subglacial rock is a task ideally suited to the seismic reflection technique. This project has significant impacts outside the directly affected fields of Antarctic glaciology and geology. The lake (either thawed or sediments with thin liquid layers around the matrix particles) will have the potential for harboring novel life forms. The experiment has the potential for expanding our information about the newest frontier in life on Earth. The collaboration between PIs in the seismic community and the marine acoustics community will foster cross-disciplinary pollination of ideas, techniques, and tools. In addition to traditional seismic techniques, new methods of data analysis that have been developed by acousticians will be applied to this problem as an independent measure of lake properties. We will train students who will have a wider view of seismology than would be possible in a traditional ocean acoustics or traditional geoscience seismology program of study. | POLYGON((140 -89.8,144 -89.8,148 -89.8,152 -89.8,156 -89.8,160 -89.8,164 -89.8,168 -89.8,172 -89.8,176 -89.8,180 -89.8,180 -89.82,180 -89.84,180 -89.86,180 -89.88,180 -89.9,180 -89.92,180 -89.94,180 -89.96,180 -89.98,180 -90,176 -90,172 -90,168 -90,164 -90,160 -90,156 -90,152 -90,148 -90,144 -90,140 -90,140 -89.98,140 -89.96,140 -89.94,140 -89.92,140 -89.9,140 -89.88,140 -89.86,140 -89.84,140 -89.82,140 -89.8)) | POINT(160 -89.9) | false | false | |||||||
Acquisition and Operation of Broadband Seismograph Equipment at Chilean Bases in the Antarctic Peninsula Region
|
9814622 |
2010-05-04 | Wiens, Douglas; Visbeck, Martin |
|
This award, provided jointly by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to transform three temporary seismometers in the Antarctic Peninsula into semi-permanent stations and to continue basic research using these data. During 1997 and 1998, a network of 11 broadband seismographs in the Antarctic Peninsula region and southernmost Chilean Patagonia were installed and maintained. Data return from this project has been excellent and interesting initial results have been produced. The continued operation of these instruments over a longer time period would be highly beneficial because the number of larger magnitude regional earthquakes is small and so a longer time is needed to acquire data. However, instruments from this project are borrowed from the IRIS-PASSCAL instrument pool and must be returned to PASSCAL in April, 1999. This award provides funds to convert three stations at permanent Chilean bases in the Antarctic to permanent stations, and to continue the seismological investigation of the region for a period of four years. As part of this project, a fourth station, in Chilean Patagonia, will continue to be operated using Washington University equipment. The funding of this project will enable continued collaboration between Washington University and the Universidad de Chile in the operation of these stations, and the data will be forwarded to the IRIS data center as well as to other international seismological collaborators. Mutual data exchanges with other national groups with Antarctic seismology research programs will provide access to broadband data from a variety of other proprietary broadband stations in the region. The data will be used to study the seismicity and upper mantle velocity structure of several complicated tectonic regions in the area, including the South Shetland subduction zone, the Bransfield backarc rift, and diffuse plate boundaries in Patagonia, Drake Passage, and along the South Scotia Ridge. In particular, the operation of these stations over a longer time period will allow a better understanding of the seismicity of the South Shetland Trench, an unusual subduction zone showing very slow subduction of young lithosphere. These seismometers will also be used to record airgun shots during a geophysical cruise in the Bransfield Strait that is being planned by the University of Texas for April, 2000. These data will provide important constraints on the crustal structure beneath the stations, and the improved structural models will enable implementation of more precise earthquake location procedures in support of a seismological understanding of the region. | POLYGON((-70.90604 -52.35474,-69.307306 -52.35474,-67.708572 -52.35474,-66.109838 -52.35474,-64.511104 -52.35474,-62.91237 -52.35474,-61.313636 -52.35474,-59.714902 -52.35474,-58.116168 -52.35474,-56.517434 -52.35474,-54.9187 -52.35474,-54.9187 -53.658393,-54.9187 -54.962046,-54.9187 -56.265699,-54.9187 -57.569352,-54.9187 -58.873005,-54.9187 -60.176658,-54.9187 -61.480311,-54.9187 -62.783964,-54.9187 -64.087617,-54.9187 -65.39127,-56.517434 -65.39127,-58.116168 -65.39127,-59.714902 -65.39127,-61.313636 -65.39127,-62.91237 -65.39127,-64.511104 -65.39127,-66.109838 -65.39127,-67.708572 -65.39127,-69.307306 -65.39127,-70.90604 -65.39127,-70.90604 -64.087617,-70.90604 -62.783964,-70.90604 -61.480311,-70.90604 -60.176658,-70.90604 -58.873005,-70.90604 -57.569352,-70.90604 -56.265699,-70.90604 -54.962046,-70.90604 -53.658393,-70.90604 -52.35474)) | POINT(-62.91237 -58.873005) | false | false | |||||||
The Young Marginal Basin as a Key to Understanding the Rift-Drift Transition and Andean Orogenesis: OBS Refraction Profiling for Crustal Structure in Bransfield Strait
|
9814041 |
2010-05-04 | Austin, James; Austin, James Jr. |
|
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to study the deep crustal structure of the Bransfield Strait region. Bransfield Strait, in the northern Antarctic Peninsula, is one of a small number of modern basins that may be critical for understanding ancient mountain-building processes. The Strait is an actively-extending marginal basin in the far southeast Pacific, between the Antarctic Peninsula and the South Shetland Islands, an inactive volcanic arc. Widespread crustal extension, accompanied by volcanism along the Strait's axis, may be associated with slow underthrusting of oceanic crust at the South Shetland Trench; similar "back-arc" extension occurred along the entire Pacific margin (now western South America/West Antarctica) of the supercontinent known as Gondwanaland during the Jurassic-Early Cretaceous. Mid-Cretaceous deformation of these basins some 100 million years ago initiated uplift of the Andes. By understanding the deep structure and evolution of Bransfield rift, it should be possible to evaluate the crustal precursor to the Andes, and thereby understand more fully the early evolution of this globally important mountain chain.<br/><br/>Years of international earth sciences research in Bransfield Strait has produced consensus on important aspects of its geologic environment: (1) It is probably a young (probably ~4 million years old) rift in preexisting Antarctic Peninsula crust; continued stretching of this crust results in complex fault patterns and associated volcanism. The volcanism, high heat flow, and mapped crustal trends are all consistent with the basin's continuing evolution as a rift; (2) The volcanism, which is recent and continuing, occurs along a "neovolcanic" zone centralized along the basin's axis. Multichannel seismic data collected aboard R/V Maurice Ewing in 1991 illustrate the following basin-wide characteristics of Bransfield Strait - a) widespread extension and faulting, b) the rise of crustal diapirs or domes associated with flower-shaped normal-fault structures, and c) a complicated system of fault-bounded segments across strike. The geophysical evidence also suggests NE-to-SW propagation of the rift, with initial crustal inflation/doming followed by deflation/subsidence, volcanism, and extension along normal faults.<br/><br/>Although Bransfield Strait exhibits geophysical and geologic evidence for extension and volcanism, continental crust fragmentation does not appear to have gone to completion in this "back-arc" basin and ocean crust is not yet being generated. Instead, Bransfield rift lies near the critical transition from intracontinental rifting to seafloor-spreading. The basin's asymmetry, and seismic evidence for shallow intracrustal detachment faulting, suggest that it may be near one end-member of the spectrum of models proposed for continental break-up. Therefore, this basin is a "natural lab" for studying diverse processes involved in forming continental margins.<br/><br/>Understanding Bransfield rift's deep crustal structure is the key to resolving its stage of evolution, and should also provide a starting point for models of Andean mountain-building. This work will define the deep structure by collecting and analyzing high-quality, high-density ocean bottom seismometer (OBS) profiles both along and across the Strait's strike. Scientific objectives are as follows: (1) to develop a detailed seismic velocity model for this rift; (2) to calibrate velocity structure and crustal thickness changes associated with presumed NE-to-SW rift propagation, as deduced from the multichannel seismic interpretations; (3) to document the degree to which deep velocity structure corresponds to along- and across-strike crustal segmentation; and (4) to assess structural relationships between the South Shetland Islands "arc" and Bransfield rift.<br/><br/>The proposed OBS data, integrated with interpretations of both Ewing profiles and those from other high-quality geophysical coverage in Bransfield Strait, will complement ongoing deep seismic analysis of Antarctic Peninsula crust to the southwest and additional OBS monitoring for deep earthquakes, in order to understand the complex plate tectonic evolution of this region. | POLYGON((-70.90616 -52.35281,-69.390587 -52.35281,-67.875014 -52.35281,-66.359441 -52.35281,-64.843868 -52.35281,-63.328295 -52.35281,-61.812722 -52.35281,-60.297149 -52.35281,-58.781576 -52.35281,-57.266003 -52.35281,-55.75043 -52.35281,-55.75043 -53.463301,-55.75043 -54.573792,-55.75043 -55.684283,-55.75043 -56.794774,-55.75043 -57.905265,-55.75043 -59.015756,-55.75043 -60.126247,-55.75043 -61.236738,-55.75043 -62.347229,-55.75043 -63.45772,-57.266003 -63.45772,-58.781576 -63.45772,-60.297149 -63.45772,-61.812722 -63.45772,-63.328295 -63.45772,-64.843868 -63.45772,-66.359441 -63.45772,-67.875014 -63.45772,-69.390587 -63.45772,-70.90616 -63.45772,-70.90616 -62.347229,-70.90616 -61.236738,-70.90616 -60.126247,-70.90616 -59.015756,-70.90616 -57.905265,-70.90616 -56.794774,-70.90616 -55.684283,-70.90616 -54.573792,-70.90616 -53.463301,-70.90616 -52.35281)) | POINT(-63.328295 -57.905265) | false | false | |||||||
Collaborative Research of Earth's Largest Icebergs
|
0229546 |
2008-09-19 | Okal, Emile; Aster, Richard; Bassis, Jeremy; Kim, Young-Jin; Bliss, Andrew; Sergienko, Olga; Thom, Jonathan; Scambos, Ted; Muto, Atsu; Brunt, Kelly; King, Matthew; Parker, Tim; Okal, Marianne; Cathles, Mac; MacAyeal, Douglas | This award supports the study of the drift and break-up of Earth's largest icebergs, which were recently released into the Ross Sea of Antarctica as a result of calving from the Ross Ice Shelf. The scientific goals of the study are to determine the physics of iceberg motion within the dynamic context of ocean currents, winds, and sea ice, which determine the forces that drive iceberg motion, and the relationship between the iceberg and geographically and topographically determined pinning points on which the iceberg can ground. In addition, the processes by which icebergs influence the local environments (e.g., sea ice conditions near Antarctica, access to penguin rookeries, air-sea heat exchange and upwelling at iceberg margins, nutrient fluxes) will be studied. The processes by which icebergs generate globally far-reaching ocean acoustic signals that are detected within the global seismic (earthquake) sensing networks will also be studied. A featured element of the scientific research activity will be a field effort to deploy automatic weather stations, seismometer arrays and GPS-tracking stations on several of the largest icebergs presently adrift, or about to be adrift, in the Ross Sea. Data generated and relayed via satellite to home institutions in the Midwest will motivate theoretical analysis and computer simulation; and will be archived on an "iceberg" website (http://amrc.ssec.wisc.edu/amrc/iceberg.html) for access by scientists and the general public. At the most broad level, the study is justified by the fact that icebergs released by the Antarctic ice sheet represent the largest movements of fresh water within the natural environment (e.g., several of the icebergs to be studied, B15, C19 and others calved since 2000 CE, represent over 6000 cubic kilometers of fresh water-an amount roughly equivalent to 100 years of the flow of the Nile River). A better understanding of the impact of iceberg drift through the environment, and particularly the impact on ocean stratification and mixing, is essential to the understanding of the abrupt global climate changes witnessed by proxy during the ice age and of concern under conditions of future greenhouse warming. On a more specific level, the study will generate a knowledge base useful for the better management of Antarctic logistical resources (e.g., the shipping lanes to McMurdo Station) that can occasionally be influenced by adverse effects icebergs have on sea ice conditions. | POINT(-178 -78) | POINT(-178 -78) | false | false | ||||||||
Collaborative Research: Mechanics of Dry-Land Calving of Ice Cliffs
|
0233823 0230338 |
2008-07-02 | Pettit, Erin; Hallet, Bernard; Fountain, Andrew | No dataset link provided | This award supports a comprehensive study of land-based polar ice cliffs. Through field measurements, modeling, and remote sensing, the physics underlying the formation of ice cliffs at the margin of Taylor Glacier in the McMurdo Dry Valleys will be investigated. At three sites, measurements of ice deformation and temperature fields near the cliff face will be combined with existing energy balance data to quantify ice-cliff evolution over one full seasonal cycle. In addition, a small seismic network will monitor local "ice quakes" associated with calving events. Numerical modeling, validated by the field data, will enable determination of the sensitivity of ice cliff evolution to environmental variables. There are both local and global motivations for studying the ice cliffs of Taylor Glacier. On a global scale, this work will provide insight into the fundamental processes of calving and glacier terminus A better grasp of ice cliff processes will also improve boundary conditions required for predicting glaciers' response to climate change. Locally, the Taylor Glacier is an important component of the McMurdo Dry Valleys landscape and the results of this study will aid in defining ecologically-important sources of glacial meltwater and will lead to a better understanding of moraine formation at polar ice cliffs. This study will help launch the career of a female scientist, will support one graduate student, and provide experiential learning experiences for two undergraduates. The post-doctoral researcher will also use this research in the curriculum of a wilderness science experiential education program for high school girls. | POLYGON((162.132 -77.73,162.1495 -77.73,162.167 -77.73,162.1845 -77.73,162.202 -77.73,162.2195 -77.73,162.237 -77.73,162.2545 -77.73,162.272 -77.73,162.2895 -77.73,162.307 -77.73,162.307 -77.7303,162.307 -77.7306,162.307 -77.7309,162.307 -77.7312,162.307 -77.7315,162.307 -77.7318,162.307 -77.7321,162.307 -77.7324,162.307 -77.7327,162.307 -77.733,162.2895 -77.733,162.272 -77.733,162.2545 -77.733,162.237 -77.733,162.2195 -77.733,162.202 -77.733,162.1845 -77.733,162.167 -77.733,162.1495 -77.733,162.132 -77.733,162.132 -77.7327,162.132 -77.7324,162.132 -77.7321,162.132 -77.7318,162.132 -77.7315,162.132 -77.7312,162.132 -77.7309,162.132 -77.7306,162.132 -77.7303,162.132 -77.73)) | POINT(162.2195 -77.7315) | false | false | |||||||
Monitoring an Active Rift System at the Front of Amery Ice Shelf, East Antarctica
|
0337838 |
2007-04-27 | Fricker, Helen; Minster, Jean-Bernard |
|
This award supports a comprehensive study of rift growth on the Amery Ice Shelf (AIS), East Antarctica, using a combination of in situ and remote sensing data with numerical modeling. On the AIS there is an opportunity to examine an active rift system, which is a combination of two longitudinal-to-flow rifts, which originated at the ice shelf front in the suture zones between merging flowbands, and two transverse-to-flow rifts, which formed at the tip of the western longitudinal rift around 1996. Work in progress indicates that these two transverse rifts do not propagate independently of each other, but somehow grow more or less synchronously. The longest of these rifts-the eastern one-grows at an average rate of about 8m per day. When it meets the eastern longitudinal rift, an event that is expected to occur during the funding period (mid-2006), an iceberg (~30 x 30 km) will calve. Based on observations collected over the past half century, there is reason to believe that such a calving event may be a part of a repetitive sequence. In the proposed project, the expansion and propagation of both transverse rifts will be studied using a network of GPS and seismometers deployed around the tip of each transverse rift. Once the iceberg has calved, the effects its calving has on the dynamics of the ice shelf and the activation of previously inactive rifts will also be studied. Insofar as the rate of calving activity is a proxy for local and regional climate conditions, a broader impact of the proposed work is directly related to the socio-environmental topics of climate and sea-level change. The subject of iceberg calving has a history of sparking a great deal of interest from the media and the public alike, especially since the recent large calving events from the Ross and Ronne ice shelves and the remarkably sudden break-up of the Larsen Ice Shelf. The work will involve at least one graduate student, and will involve a partnership with a local charter high school. Field work, instrument deployments, and data collection and analysis will be conducted in close collaboration with the Australian Antarctic Division and the University of Tasmania, which has been a crucial component of research conducted to date. This project will also make use of the Scripps Institution of Oceanography Visualization Center as a means to display results to faculty and researchers of the University of California, San Diego, undergraduate and graduate students, to school children and their teachers, and ultimately to the visiting public. | POINT(71 -69.75) | POINT(71 -69.75) | false | false |