{"dp_type": "Project", "free_text": "GNSS"}
[{"awards": "1940473 Banwell, Alison; 1940483 Datta-Barua, Seebany", "bounds_geometry": "POLYGON((166.502 -77.947,166.52630000000002 -77.947,166.5506 -77.947,166.5749 -77.947,166.5992 -77.947,166.6235 -77.947,166.64780000000002 -77.947,166.6721 -77.947,166.6964 -77.947,166.7207 -77.947,166.745 -77.947,166.745 -77.9479,166.745 -77.9488,166.745 -77.9497,166.745 -77.95060000000001,166.745 -77.95150000000001,166.745 -77.9524,166.745 -77.9533,166.745 -77.9542,166.745 -77.9551,166.745 -77.956,166.7207 -77.956,166.6964 -77.956,166.6721 -77.956,166.64780000000002 -77.956,166.6235 -77.956,166.5992 -77.956,166.5749 -77.956,166.5506 -77.956,166.52630000000002 -77.956,166.502 -77.956,166.502 -77.9551,166.502 -77.9542,166.502 -77.9533,166.502 -77.9524,166.502 -77.95150000000001,166.502 -77.95060000000001,166.502 -77.9497,166.502 -77.9488,166.502 -77.9479,166.502 -77.947))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 27 Aug 2025 00:00:00 GMT", "description": "Part I: Nontechnical \r\nGlobal navigation satellite systems (GNSS) such as the Global Positioning System (GPS) are continuously transmitting signals toward Earth. While many people may be familiar with using the GPS signals for positioning and navigation, these signals are also usable for sensing Earth\u2019s environment. Ice and snow surfaces are continuously awash with radio signals broadcast from GNSS. When the signal bounces off the ice or snow surface and then arrives at a receiver, it acts as a form of radar, in which the radar transmitter is free, covers the globe, is always on, and is unaffected by precipitation. This work will build and deploy a GNSS reflectometry (GNSS-R) system specifically to detect reflections off glaciated surfaces. The goal of the work is to find out how the signal changes depending on surface type, and specifically, whether using GNSS as a radar can be effective for monitoring snow and ice melt and freeze on a glaciated surface. In this system, two GNSS antennas and receivers will be used, one facing upward for positioning, and one directed downward to collect the surface reflections. Setting up the GNSS-R system near the ice runways on the McMurdo Ice Shelf, near to the US McMurdo Station, Antarctica, the system will monitor for variations in the signal as it reflects off alternately surface ice, meltwater, and snow. With camera images and lidar surveys at the site will relate the GNSS \u201cradar\u201d signal and the area it bounced from (knowable from geometry because the GNSS satellite and receiver locations are known) to the surface type. If GNSS-R is developed to the point of being comparable to or better than existing ways of characterizing frozen surfaces, it would find a niche in applications ranging from local ablation monitoring to assessment of aircraft runway safety. \r\n\r\nPart II: Technical Description \r\nThe proposed research aspires to answer the question: Can global navigation satellite system (GNSS) reflectometry (GNSS-R) be used to reliably map snow-cover, ice, and surface water in a harsh glaciated environment at high spatio-temporal resolution? Our working hypothesis is that GNSS-R can differentiate among cold snow, wet snow, bare ice, wet ice, and surface water in a way that will yield observations that can inform how glacial surfaces accumulate and ablate. This project will test this hypothesis by conducting GNSS-R instrument design, field trial and signal processing, and comparison with other methods, including the single-antenna interferometric reflectometry (GNSS-IR) method currently in use. The objective is to develop GNSS-R instrumentation and data-processing techniques as an effective high-spatiotemporal-resolution method of characterizing the composition of snow, firn and melting ice surfaces relevant to climate change on the Antarctic Ice Sheet. The GNSS-R receiver system will capture the signal after it has interacted with the surface (glaciated in this case), in order to infer variable compositions of the surface. Passive radar return intensity will be used to characterize the surface type, whether snow, firn, ice, or water. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 166.745, "geometry": "POINT(166.6235 -77.95150000000001)", "instruments": null, "is_usap_dc": true, "keywords": "Supraglacial Lake; Camera; McMurdo; GNSS; Surface Melt; Remote Sensing; GLACIERS/ICE SHEETS; GPS; LIDAR; Multi-Frequency Passive Remote Sensing", "locations": "McMurdo", "north": -77.947, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Instrumentation and Facilities; Antarctic Instrumentation and Facilities", "paleo_time": null, "persons": "Datta-Barua, Seebany; Banwell, Alison", "platforms": null, "repositories": null, "science_programs": null, "south": -77.956, "title": "EAGER: Collaborative Research: Mapping Melting Glacial Surfaces with GNSS Reflectometry", "uid": "p0010533", "west": 166.502}, {"awards": "2114454 Greenbaum, Jamin", "bounds_geometry": "POLYGON((-107.5 -74.5,-107.3 -74.5,-107.1 -74.5,-106.9 -74.5,-106.7 -74.5,-106.5 -74.5,-106.3 -74.5,-106.1 -74.5,-105.9 -74.5,-105.7 -74.5,-105.5 -74.5,-105.5 -74.6,-105.5 -74.7,-105.5 -74.8,-105.5 -74.9,-105.5 -75,-105.5 -75.1,-105.5 -75.2,-105.5 -75.3,-105.5 -75.4,-105.5 -75.5,-105.7 -75.5,-105.9 -75.5,-106.1 -75.5,-106.3 -75.5,-106.5 -75.5,-106.7 -75.5,-106.9 -75.5,-107.1 -75.5,-107.3 -75.5,-107.5 -75.5,-107.5 -75.4,-107.5 -75.3,-107.5 -75.2,-107.5 -75.1,-107.5 -75,-107.5 -74.9,-107.5 -74.8,-107.5 -74.7,-107.5 -74.6,-107.5 -74.5))", "dataset_titles": "AXCTD and AXBT Profiles from the Amundsen Sea", "datasets": [{"dataset_uid": "601894", "doi": "10.15784/601894", "keywords": "Amundsen Sea; Antarctica; Araon; AXBT; AXCTD; Cryosphere; CTD; Helicopter; Icebreaker; Oceans; Thwaites Glacier; XBT", "people": "Greenbaum, Jamin Stevens; Greenbaum, Jamin", "repository": "USAP-DC", "science_program": null, "title": "AXCTD and AXBT Profiles from the Amundsen Sea", "url": "https://www.usap-dc.org/view/dataset/601894"}], "date_created": "Mon, 10 Feb 2025 00:00:00 GMT", "description": "The ice shelves around the perimeter Antarctica hold back inland ice that has the potential to raise global sea level by meters. By how much and how rapidly this could occur is a central question in glaciology. The underside of these ice shelves is in contact with the ocean, and there are signs that warming of ocean water is causing melting and retreat of these shelves, with direct implications for sea-level rise. This project will seize an emergent opportunity to work with Australian and South Korean colleagues to acquire snapshot profiles of ocean temperature, salinity, and velocity, and improve bathymetric knowledge, where no prior data exist. The team will work near three glaciers draining ice with substantial sea-level potential from the East and West Antarctic Ice Sheets. The targets are Shackleton and Cook Ice Shelves in East Antarctica, and Thwaites Glacier in West Antarctica. An undergraduate student will be engaged through the Scripps Undergraduate Research Fellowship program and the team will work through the Scripps Educational Alliances program to identify educational outreach opportunities through which to build community engagement in this project. The team will use high-resolution general circulation model simulations to optimize sensor targeting (to be deployed from helicopter and fixed-wing aircraft) and evaluate the relative roles of subglacial freshwater discharge and ocean forcing on subglacial melt rates. The aim is to better understand why grounding-line melt rates are higher at the East Antarctic sites despite data indicating warmer ambient ocean temperatures at the West Antarctic sites. Such behavior could be explained by discharge of subglacial freshwater into ice-shelf cavities, but insufficient data currently exist to test this hypothesis. The team aims to build on ongoing international, collaborative airborne oceanographic sampling with colleagues in the Republic of Korea, Australia, and the United States. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -105.5, "geometry": "POINT(-106.5 -75)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e BEIDOU \u003e GNSS RECEIVER", "is_usap_dc": true, "keywords": "ROTORCRAFT/HELICOPTER; CONDUCTIVITY; OCEAN TEMPERATURE; Amundsen Sea", "locations": "Amundsen Sea", "north": -74.5, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Greenbaum, Jamin", "platforms": "AIR-BASED PLATFORMS \u003e ROTORCRAFT/HELICOPTER", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.5, "title": "RAPID: International Collaborative Airborne Sensor Deployments near Antarctic Ice Shelves", "uid": "p0010497", "west": -107.5}, {"awards": "1841607 Banwell, Alison; 1841467 MacAyeal, Douglas", "bounds_geometry": "POLYGON((-68.28 -71.1,-68.202 -71.1,-68.124 -71.1,-68.046 -71.1,-67.968 -71.1,-67.89 -71.1,-67.812 -71.1,-67.734 -71.1,-67.656 -71.1,-67.578 -71.1,-67.5 -71.1,-67.5 -71.14999999999999,-67.5 -71.19999999999999,-67.5 -71.25,-67.5 -71.3,-67.5 -71.35,-67.5 -71.39999999999999,-67.5 -71.44999999999999,-67.5 -71.5,-67.5 -71.55,-67.5 -71.6,-67.578 -71.6,-67.656 -71.6,-67.734 -71.6,-67.812 -71.6,-67.89 -71.6,-67.968 -71.6,-68.046 -71.6,-68.124 -71.6,-68.202 -71.6,-68.28 -71.6,-68.28 -71.55,-68.28 -71.5,-68.28 -71.44999999999999,-68.28 -71.39999999999999,-68.28 -71.35,-68.28 -71.3,-68.28 -71.25,-68.28 -71.19999999999999,-68.28 -71.14999999999999,-68.28 -71.1))", "dataset_titles": "Dataset for: Banwell et al. 2024, \u0027Observed meltwater-induced flexure and fracture at a doline on George VI Ice Shelf, Antarctica\u0027, Journal of Glaciology.", "datasets": [{"dataset_uid": "601771", "doi": "10.15784/601771", "keywords": "Antarctica; Antarctic Peninsula; AWS; Cryosphere; GNSS; GPS Data; Ice-Shelf Flexure; Ice Shelf Fracture; Ice-Shelf Melt; Timelaps Images", "people": "Stevens, Laura; Dell, Rebecca; Willis, Ian; Banwell, Alison; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Dataset for: Banwell et al. 2024, \u0027Observed meltwater-induced flexure and fracture at a doline on George VI Ice Shelf, Antarctica\u0027, Journal of Glaciology.", "url": "https://www.usap-dc.org/view/dataset/601771"}], "date_created": "Thu, 15 Feb 2024 00:00:00 GMT", "description": "The evolution of surface and shallow subsurface meltwater across Antarctic ice shelves has important implications for their (in)stability, as demonstrated by the 2002 rapid collapse of the Larsen B Ice Shelf. It is vital to understand the causes of ice-shelf (in)stability because ice shelves buttress against the discharge of inland ice and therefore influence ice-sheet contributions to sea-level rise. Ice-shelf break-up may be triggered by stress variations associated with surface meltwater movement, ponding, and drainage. These variations may cause an ice shelf to flex and fracture. This four-year project will provide key geophysical observations to improve understanding of ice-shelf meltwater and its effects on (in)stability. The work will be conducted on the George VI Ice Shelf on the Antarctic Peninsula, where hundreds of surface lakes form each summer. Over a 27-month period, global positioning systems, seismometers, water pressure transducers, automatic weather stations, and in-ice thermistor strings will be deployed to record ice shelf flexure, fracture seismicity, water depths, and surface and subsurface melting, respectively, in and around several surface lakes on the George VI Ice Shelf, within roughly 20 km of the British Antarctic Survey\u0027s Fossil Bluff Station. Field data will be used to validate and extend the team\u0027s approach to modelling ice-shelf flexure and stress, and possible \"Larsen-B style\" ice-shelf instability and break-up. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -67.5, "geometry": "POINT(-67.89 -71.35)", "instruments": null, "is_usap_dc": true, "keywords": "ICE SHEETS; Antarctica; ICE MOTION; Ice-Shelf Flexure; GPS Data", "locations": "Antarctica", "north": -71.1, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Banwell, Alison; Macayeal, Douglas", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -71.6, "title": "NSFGEO-NERC: Ice-shelf Instability Caused by Active Surface Meltwater Production, Movement, Ponding and Hydrofracture", "uid": "p0010449", "west": -68.28}, {"awards": "2019719 Brook, Edward", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "2019-2020 Allan Hills Field Report; 2022-23 Allan Hills Intermediate Ice Core Site Selection Field Report; 2023-2024 Allan Hills End-of-Season Science Report; 2024-2025 I-187 End of season science report ; Airborne Radar Data: 2022-23 (CXA1) flight based HDF5/matlab format data; Airborne Radar Data: 2022-23 (CXA1) transect based (science organized) unfocused data; Airborne Radar Data: 2023-24 (CXA2) flight based data HDF5/matlab format; Airborne Radar Data: 2023-24 (CXA2) transect based (science organized) unfocused data; ALHIC2201 and ALHIC2302 3D ECM and Layer Orientations; Allan Hills 2022-23 Shallow Ice Core Field Report; Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022; Allan Hills I-188 Field Season Report 2022-2023; Allan Hills ice water stable isotope record for dD, d18O; Basal Ice Unit Thickness Mapped by the NSF COLDEX MARFA Ice Penetrating Radar; CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903; COLDEX VHF MARFA Open Polar Radar radargrams; Concentration and flux of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area; Fractional Thickness of Incoherent Scattering Within the Basal Unit Mapped by the NSF COLDEX MARFA Ice-Penetrating Radar; Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903; I-165-M GPR Field Report 2019-2020; MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903; NSF COLDEX 2022-2023 Airborne Season (CXA1): Level 1B Serial Instrument Measurements; NSF COLDEX 2022-2023 Airborne Season (CXA1): Level 1 gravimeter instrument measurements; NSF COLDEX 2022-23 GNSS/IMU Level 1 instrument measurements from Dome A, East Antarctica; NSF COLDEX 2022-23 Level 2 Basal Specularity Content Profiles; NSF COLDEX 2022-23 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets; NSF COLDEX 2023-24 Level 2 Basal Specularity Content Profiles; NSF COLDEX 2023-24 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets; NSF COLDEX Ice Penetrating Radar Derived Grids of the Southern Flank of Dome C; NSF COLDEX/Open Polar Radar Example Delay Doppler Classification of Englacial Reflectors; NSF COLDEX Raw MARFA Ice Penetrating Radar data; Oxygen and hydrogen isotope compositions and associated d-excess of ice from ALHIC1903 drilled at the Allan Hills Blue Ice Area; Rare earth elemental concentrations of leached ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area; Replicate O-17-excess by continuous flow laser spectroscopy for an ice core section at Summit, Greenland; Rising Seas: Representations of Antarctica, Climate Change, and Sea Level Rise in U.S. Newspaper Coverage; Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old; Social network analysis to understand participant engagement in transdisciplinary team science: a large U.S. science and technology center case study; Strontium and neodymium isotope compositions of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "datasets": [{"dataset_uid": "601972", "doi": "10.15784/601972", "keywords": "Antarctica; Coldex; Cryosphere; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Penetrating Radar", "people": "Blankenship, Donald D.; Vega Gonzalez, Alejandra; Li, Duyi; Singh, Shivangini; Young, Duncan A.; Kerr, Megan; Yan, Shuai", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Fractional Thickness of Incoherent Scattering Within the Basal Unit Mapped by the NSF COLDEX MARFA Ice-Penetrating Radar", "url": "https://www.usap-dc.org/view/dataset/601972"}, {"dataset_uid": "200468", "doi": "https://doi.org/10.15784/601820", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Strontium and neodymium isotope compositions of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "url": "https://www.usap-dc.org/view/dataset/601820"}, {"dataset_uid": "601878", "doi": "10.15784/601878", "keywords": "Allan Hills; Antarctica; Blue Ice; Carbon Dioxide; Cryosphere; Methane", "people": "Hishamunda, Valens; Shackleton, Sarah; Severinghaus, Jeffrey P.; Brook, Edward; Kalk, Michael; Marks Peterson, Julia", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old", "url": "https://www.usap-dc.org/view/dataset/601878"}, {"dataset_uid": "601967", "doi": "10.15784/601967", "keywords": "Allan Hills; Antarctica; Cryosphere; Electrical Conductivity; Ice Core Data", "people": "Carter, Austin; Kirkpatrick, Liam; Fudge, T. J.; Shackleton, Sarah; Marks Peterson, Julia", "repository": "USAP-DC", "science_program": "COLDEX", "title": "ALHIC2201 and ALHIC2302 3D ECM and Layer Orientations", "url": "https://www.usap-dc.org/view/dataset/601967"}, {"dataset_uid": "601933", "doi": "10.15784/601933", "keywords": "Aerogeophysics; Antarctica; Cryosphere; South Pole", "people": "Young, Duncan A.; Kerr, Megan; Blankenship, Donald D.; Kempf, Scott D.; Greenbaum, Jamin Stevens; Ng, Gregory; Buhl, Dillon; Singh, Shivangini; Chan, Kristian; Young, Duncan; Echeverry, Gonzalo", "repository": "USAP-DC", "science_program": "COLDEX", "title": "NSF COLDEX 2022-23 GNSS/IMU Level 1 instrument measurements from Dome A, East Antarctica", "url": "https://www.usap-dc.org/view/dataset/601933"}, {"dataset_uid": "200419", "doi": "", "keywords": null, "people": null, "repository": "University Digital Conservancy", "science_program": null, "title": "Rising Seas: Representations of Antarctica, Climate Change, and Sea Level Rise in U.S. Newspaper Coverage", "url": "https://hdl.handle.net/11299/265195"}, {"dataset_uid": "200464", "doi": "10.18738/T8/DM10IG", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX/Open Polar Radar Example Delay Doppler Classification of Englacial Reflectors", "url": "https://doi.org/10.18738/T8/DM10IG"}, {"dataset_uid": "601669", "doi": "10.15784/601669", "keywords": "Allan Hills; Antarctica; GPR; Ice Core; Report", "people": "Brook, Edward J.; Nesbitt, Ian", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "I-165-M GPR Field Report 2019-2020", "url": "https://www.usap-dc.org/view/dataset/601669"}, {"dataset_uid": "200465", "doi": "10.18738/T8/DM10IG", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "COLDEX VHF MARFA Open Polar Radar radargrams", "url": "https://doi.org/10.18738/T8/DM10IG"}, {"dataset_uid": "200435", "doi": "10.18738/T8/PNBFOL", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2023-24 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets", "url": "https://doi.org/10.18738/T8/PNBFOL"}, {"dataset_uid": "601945", "doi": "10.15784/601945", "keywords": "Allan Hills; Antarctica; Cryosphere", "people": "Fudge, T. J.; Epifanio, Jenna; Hudak, Abigail; Kirkpatrick, Liam; Shaya, Margot; Ishraque, Fairuz; Chalif, Jacob; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "COLDEX", "title": "2024-2025 I-187 End of season science report ", "url": "https://www.usap-dc.org/view/dataset/601945"}, {"dataset_uid": "601620", "doi": "10.15784/601620", "keywords": "18O; Allan Hills; Allan Hills Blue Ice; Antarctica; Blue Ice; Delta 15N; Delta 18O; Dole Effect; Firn Thickness; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Chronology; Ice Core Records", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022", "url": "https://www.usap-dc.org/view/dataset/601620"}, {"dataset_uid": "601863", "doi": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Higgins, John; Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Kurbatov, Andrei; Severinghaus, Jeffrey P.; Brook, Edward", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}, {"dataset_uid": "200421", "doi": "10.18738/T8/J38CO5", "keywords": null, "people": null, "repository": "OPR", "science_program": null, "title": "Airborne Radar Data: 2023-24 (CXA2) flight based data HDF5/matlab format", "url": "https://data.cresis.ku.edu/data/rds/2023_Antarctica_BaslerMKB/"}, {"dataset_uid": "601863", "doi": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Kurbatov, Andrei; Introne, Douglas; Severinghaus, Jeffrey P.; Higgins, John; Brook, Edward; Mayewski, Paul A.; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}, {"dataset_uid": "601659", "doi": "10.15784/601659", "keywords": "Antarctica; Continuous Flow; Glaciology; Greenland; Ice Core Data; Laser Spectroscopy; Oxygen Isotope; Triple Oxygen Isotopes", "people": "Davidge, Lindsey", "repository": "USAP-DC", "science_program": "Hercules Dome Ice Core", "title": "Replicate O-17-excess by continuous flow laser spectroscopy for an ice core section at Summit, Greenland", "url": "https://www.usap-dc.org/view/dataset/601659"}, {"dataset_uid": "200434", "doi": "10.18738/T8/99IEOG", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2022-23 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets", "url": "https://doi.org/10.18738/T8/99IEOG"}, {"dataset_uid": "200467", "doi": "doi:10.15784/601825", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Concentration and flux of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "url": "https://www.usap-dc.org/view/dataset/601825"}, {"dataset_uid": "601768", "doi": "10.15784/601768", "keywords": "Antarctica; Coldex; East Antarctic Plateau; Glaciology; Radar Echo Sounder", "people": "Chan, Kristian; Ng, Gregory; Kempf, Scott D.; Kerr, Megan; Greenbaum, Jamin; Young, Duncan A.; Blankenship, Donald D.; Buhl, Dillon", "repository": "USAP-DC", "science_program": "COLDEX", "title": "NSF COLDEX Raw MARFA Ice Penetrating Radar data", "url": "https://www.usap-dc.org/view/dataset/601768"}, {"dataset_uid": "200420", "doi": "10.18738/T8/J38CO5", "keywords": null, "people": null, "repository": "OPR", "science_program": null, "title": "Airborne Radar Data: 2022-23 (CXA1) flight based HDF5/matlab format data", "url": "https://data.cresis.ku.edu/data/rds/2022_Antarctica_BaslerMKB/"}, {"dataset_uid": "200470", "doi": "doi:10.15784/601822", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Oxygen and hydrogen isotope compositions and associated d-excess of ice from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "url": "https://www.usap-dc.org/view/dataset/601822"}, {"dataset_uid": "200469", "doi": "https://doi.org/10.15784/601821", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Rare earth elemental concentrations of leached ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "url": "https://www.usap-dc.org/view/dataset/601821"}, {"dataset_uid": "601897", "doi": "10.15784/601897", "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciology; Ice Core Data; MOT; Ocean Temperature; Paleoclimate; Xe/Kr", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601897"}, {"dataset_uid": "601896", "doi": "10.15784/601896", "keywords": "Allan Hills; Antarctica; Ch4; CO2; Cryosphere; Glaciology; Glaciology; Ice Core Data; Ice Core Records", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601896"}, {"dataset_uid": "601895", "doi": "10.15784/601895", "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Noble Gas", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601895"}, {"dataset_uid": "601912", "doi": "10.15784/601912", "keywords": "Antarctica; Coldex; Cryosphere; East Antarctica; East Antarctic Plateau; Glaciology; Radar Echo Sounder", "people": "Yan, Shuai; Blankenship, Donald D.; Young, Duncan A.; Vega Gonzalez, Alejandra; Singh, Shivangini; Kerr, Megan", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Basal Ice Unit Thickness Mapped by the NSF COLDEX MARFA Ice Penetrating Radar", "url": "https://www.usap-dc.org/view/dataset/601912"}, {"dataset_uid": "601819", "doi": "10.15784/601819", "keywords": "Allan Hills; Antarctica; Cryosphere", "people": "Morgan, Jacob; Epifanio, Jenna; Kuhl, Tanner; Morton, Elizabeth; Zajicek, Anna; Nesbitt, Ian; Carter, Austin; Shackleton, Sarah; Higgins, John", "repository": "USAP-DC", "science_program": "COLDEX", "title": "2019-2020 Allan Hills Field Report", "url": "https://www.usap-dc.org/view/dataset/601819"}, {"dataset_uid": "200461", "doi": "10.18738/T8/6T5JS6", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2022-23 Level 2 Basal Specularity Content Profiles", "url": "https://doi.org/10.18738/T8/6T5JS6"}, {"dataset_uid": "200462", "doi": "10.18738/T8/KHUT1U", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2023-24 Level 2 Basal Specularity Content Profiles", "url": "https://doi.org/10.18738/T8/KHUT1U"}, {"dataset_uid": "200452", "doi": "https://hdl.handle.net/11299/270020", "keywords": null, "people": null, "repository": "UMN University Digital Conservancy", "science_program": null, "title": "Social network analysis to understand participant engagement in transdisciplinary team science: a large U.S. science and technology center case study", "url": "https://hdl.handle.net/11299/270020"}, {"dataset_uid": "601824", "doi": "10.15784/601824", "keywords": "Allan Hills; Antarctica; Coldex; Cryosphere", "people": "Shackleton, Sarah; Manos, John-Morgan; Hudak, Abigail; Banerjee, Asmita; Morton, Elizabeth; Epifanio, Jenna; Mayo, Emalia; Goverman, Ashley; Jayred, Michael; Marks Peterson, Julia; Higgins, John; Brook, Edward J.; Carter, Austin", "repository": "USAP-DC", "science_program": "COLDEX", "title": "2023-2024 Allan Hills End-of-Season Science Report", "url": "https://www.usap-dc.org/view/dataset/601824"}, {"dataset_uid": "200463", "doi": "10.18738/T8/M77ANK", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX Ice Penetrating Radar Derived Grids of the Southern Flank of Dome C", "url": "https://doi.org/10.18738/T8/M77ANK"}, {"dataset_uid": "200433", "doi": "10.18738/T8/FV6VNT", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "Airborne Radar Data: 2023-24 (CXA2) transect based (science organized) unfocused data", "url": "https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/FV6VNT"}, {"dataset_uid": "601826", "doi": "10.15784/601826", "keywords": "Allan Hills; Antarctica; Cryosphere", "people": "Shaya, Margot; Manos, John-Morgan; Horlings, Annika; Epifanio, Jenna; Conway, Howard", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Allan Hills I-188 Field Season Report 2022-2023", "url": "https://www.usap-dc.org/view/dataset/601826"}, {"dataset_uid": "601696", "doi": "10.15784/601696", "keywords": "Allan Hills; Antarctica; Ice Core", "people": "Shackleton, Sarah; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills 2022-23 Shallow Ice Core Field Report", "url": "https://www.usap-dc.org/view/dataset/601696"}, {"dataset_uid": "200498", "doi": "10.18738/T8/ANTMMV", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2022-2023 Airborne Season (CXA1): Level 1B Serial Instrument Measurements", "url": "https://doi.org/10.18738/T8/ANTMMV"}, {"dataset_uid": "200497", "doi": "10.18738/T8/ANTMMV", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2022-2023 Airborne Season (CXA1): Level 1 gravimeter instrument measurements", "url": "https://doi.org/10.18738/T8/ANTMMV"}, {"dataset_uid": "601697", "doi": "10.15784/601697", "keywords": "Allan Hills; Antarctica; Apres; Ice Core; Ice Penetrating Radar; Temperature Profiles", "people": "Brook, Edward J.; Conway, Howard", "repository": "USAP-DC", "science_program": "COLDEX", "title": "2022-23 Allan Hills Intermediate Ice Core Site Selection Field Report", "url": "https://www.usap-dc.org/view/dataset/601697"}, {"dataset_uid": "200432", "doi": "10.18738/T8/XPMLCC", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "Airborne Radar Data: 2022-23 (CXA1) transect based (science organized) unfocused data", "url": "https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/XPMLCC"}], "date_created": "Sat, 21 May 2022 00:00:00 GMT", "description": "Cores drilled through the Antarctic ice sheet provide a remarkable window on the evolution of Earth\u2019s climate and unique samples of the ancient atmosphere. The clear link between greenhouse gases and climate revealed by ice cores underpins much of the scientific understanding of climate change. Unfortunately, the existing data do not extend far enough back in time to reveal key features of climates warmer than today. COLDEX, the Center for Oldest Ice Exploration, will solve this problem by exploring Antarctica for sites to collect the oldest possible record of past climate recorded in the ice sheet. COLDEX will provide critical information for understanding how Earth\u2019s near-future climate may evolve and why climate varies over geologic time. New technologies will be developed for exploration and analysis that will have a long legacy for future research. An archive of old ice will stimulate new research for the next generations of polar scientists. COLDEX programs will galvanize that next generation of polar researchers, bring new results to other scientific disciplines and the public, and help to create a more inclusive and diverse scientific community. Knowledge of Earth\u2019s climate history is grounded in the geologic record. This knowledge is gained by measuring chemical, biological and physical properties of geologic materials that reflect elements of climate. Ice cores retrieved from polar ice sheets play a central role in this science and provide the best evidence for a strong link between atmospheric carbon dioxide and climate on geologic timescales. The goal of COLDEX is to extend the ice-core record of past climate to at least 1.5 million years by drilling and analyzing a continuous ice core in East Antarctica, and to much older times using discontinuous ice sections at the base and margin of the ice sheet. COLDEX will develop and deploy novel radar and melt-probe tools to rapidly explore the ice, use ice-sheet models to constrain where old ice is preserved, conduct ice coring, develop new analytical systems, and produce novel paleoclimate records from locations across East Antarctica. The search for Earth\u2019s oldest ice also provides a compelling narrative for disseminating information about past and future climate change and polar science to students, teachers, the media, policy makers and the public. COLDEX will engage and incorporate these groups through targeted professional development workshops, undergraduate research experiences, a comprehensive communication program, annual scientific meetings, scholarships, and broad collaboration nationally and internationally. COLDEX will provide a focal point for efforts to increase diversity in polar science by providing field, laboratory, mentoring and networking experiences for students and early career scientists from groups underrepresented in STEM, and by continuous engagement of the entire COLDEX community in developing a more inclusive scientific culture. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; AMD; Antarctica; Amd/Us; Coldex; USAP-DC; FIELD SURVEYS; ICE DEPTH/THICKNESS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Polar Special Initiatives", "paleo_time": null, "persons": "Neff, Peter; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "OPR; Texas Data Repository; UMN University Digital Conservancy; University Digital Conservancy; USAP-DC", "science_programs": "COLDEX", "south": -90.0, "title": "Center for Oldest Ice Exploration", "uid": "p0010321", "west": -180.0}, {"awards": "2039432 Grapenthin, Ronni", "bounds_geometry": "POLYGON((165.5 -77.1,165.91 -77.1,166.32 -77.1,166.73 -77.1,167.14 -77.1,167.55 -77.1,167.96 -77.1,168.37 -77.1,168.78 -77.1,169.19 -77.1,169.6 -77.1,169.6 -77.18,169.6 -77.26,169.6 -77.34,169.6 -77.42,169.6 -77.5,169.6 -77.58,169.6 -77.66,169.6 -77.74,169.6 -77.82,169.6 -77.9,169.19 -77.9,168.78 -77.9,168.37 -77.9,167.96 -77.9,167.55 -77.9,167.14 -77.9,166.73 -77.9,166.32 -77.9,165.91 -77.9,165.5 -77.9,165.5 -77.82,165.5 -77.74,165.5 -77.66,165.5 -77.58,165.5 -77.5,165.5 -77.42,165.5 -77.34,165.5 -77.26,165.5 -77.18,165.5 -77.1))", "dataset_titles": "Erebus GPS timeseries ", "datasets": [{"dataset_uid": "601471", "doi": "10.15784/601471", "keywords": "Antarctica; GPS; Mount Erebus; Ross Island", "people": "Grapenthin, Ronni", "repository": "USAP-DC", "science_program": null, "title": "Erebus GPS timeseries ", "url": "https://www.usap-dc.org/view/dataset/601471"}], "date_created": "Fri, 03 Sep 2021 00:00:00 GMT", "description": "Nontechnical Abstract Mount Erebus volcano on Ross Island, Antarctica, is the southernmost active volcano on the planet. It provides a natural laboratory to study a volcanic system that has been in a continuous state of activity with a persistent lava lake over at least the last 40 years. Worldwide only four other volcanoes with such long-lived lava lakes exist: Erta Ale, Ethiopia; Kilauea, Hawaii; Nyiragongo, Congo; and Ambrym, Vanuatu. These volcanoes are a rare anomaly that provide a window into the underlying magmatic system and behavior. Erebus is of particular interest as it cycles through phases of very explosive activity every 20 thousand years. This project will investigate interactions between the magmatic system, the rift it is located in, and the impact of the gravitational load the volcano imposes on the underlying crust and its own magmatic system. Possible interactions between these factors may explain the changes in activity. The project will analyze geophysical data that have been collected at Erebus over at least the last two decades. The results of this work will be available to the public and scientific community and inform geodynamic models in this region. The project funds an early-career scientist and a graduate student at New Mexico Tech and contributes to the development of the next generation of scientists. Technical Abstract The proposed work targets scientific questions recently formulated by the community during the 2016 NSF-sponsored Scientific Drivers and Future of Mount Erebus Volcano Observatory workshop. The location and geometry of the magmatic plumbing from vent to lower crust system remain poorly constrained, particularly below 1 km depth. The style and causes for changes in volcanic and magmatic activity over the short term (minutes to hours) and on the decadal scale remains enigmatic. Two decades of campaign and continuous GPS data on Ross Island will inform about the longer term dynamics of both, Ross Island growing within the Terror Rift, and Erebus? deeper magmatic system. This project will organize and analyze all existing GPS data for Ross Island, and interpret any anomalies in the resulting time series. These activities require organization, consistent processing and interpretation/modeling of the existing ~20 years of GPS data, which include campaign, continuous, and high-rate GPS observations. We will generate these position time series in a consistent local reference frame and make the results, including models of transient deformation available to the community. Volcanic, tectonic and isostatic adjustment related deformation will be modeled to place Erebus in a broad volcano-tectonic framework of West Antarctica. During the data analysis phase, the utility of existing GPS data for reflection studies of snow and sea-level dynamics will also be evaluated.", "east": 169.6, "geometry": "POINT(167.55 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Ross Island; TECTONICS; USAP-DC; Amd/Us; AMD; CRUSTAL MOTION; USA/NSF; FIELD SURVEYS", "locations": "Ross Island", "north": -77.1, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Instrumentation and Facilities", "paleo_time": null, "persons": "Grapenthin, Ronni", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Collaborative Research: Multi-Parameter Geophysical Constraints on Volcano Dynamics of Mt. Erebus and Ross Island, Antarctica", "uid": "p0010255", "west": 165.5}, {"awards": "1246416 Stephen, Ralph; 1246151 Bromirski, Peter", "bounds_geometry": "POLYGON((-180 -77,-179.5 -77,-179 -77,-178.5 -77,-178 -77,-177.5 -77,-177 -77,-176.5 -77,-176 -77,-175.5 -77,-175 -77,-175 -77.4,-175 -77.8,-175 -78.2,-175 -78.6,-175 -79,-175 -79.4,-175 -79.8,-175 -80.2,-175 -80.6,-175 -81,-175.5 -81,-176 -81,-176.5 -81,-177 -81,-177.5 -81,-178 -81,-178.5 -81,-179 -81,-179.5 -81,180 -81,179 -81,178 -81,177 -81,176 -81,175 -81,174 -81,173 -81,172 -81,171 -81,170 -81,170 -80.6,170 -80.2,170 -79.8,170 -79.4,170 -79,170 -78.6,170 -78.2,170 -77.8,170 -77.4,170 -77,171 -77,172 -77,173 -77,174 -77,175 -77,176 -77,177 -77,178 -77,179 -77,-180 -77))", "dataset_titles": "Collaborative Research: Dynamic Response of the Ross Ice Shelf to Wave-Induced Vibrations and Collaborative Research: Mantle Structure and Dynamics of the Ross Sea from a Passive Seismic Deployment on the Ross Ice Shelf. International Federation of Digital Seismograph Networks. ; Dynamic Response of the Ross Ice Shelf to Wave-induced Vibrations 2015/2016, UNAVCO, Inc., GPS/GNSS Observations Dataset", "datasets": [{"dataset_uid": "200209", "doi": "10.7283/58E3-GA46", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Dynamic Response of the Ross Ice Shelf to Wave-induced Vibrations 2015/2016, UNAVCO, Inc., GPS/GNSS Observations Dataset", "url": "https://doi.org/10.7283/58E3-GA46"}, {"dataset_uid": "200207", "doi": "10.7914/SN/XH_2014", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Collaborative Research: Dynamic Response of the Ross Ice Shelf to Wave-Induced Vibrations and Collaborative Research: Mantle Structure and Dynamics of the Ross Sea from a Passive Seismic Deployment on the Ross Ice Shelf. International Federation of Digital Seismograph Networks. ", "url": "http://www.fdsn.org/networks/detail/XH_2014/"}], "date_created": "Thu, 15 Apr 2021 00:00:00 GMT", "description": "Bromirski/1246151 This award supports a project intended to discover, through field observations and numerical simulations, how ocean wave-induced vibrations on ice shelves in general, and the Ross Ice Shelf (RIS), in particular, can be used (1) to infer spatial and temporal variability of ice shelf mechanical properties, (2) to infer bulk elastic properties from signal propagation characteristics, and (3) to determine whether the RIS response to infragravity (IG) wave forcing observed distant from the front propagates as stress waves from the front or is \"locally\" generated by IG wave energy penetrating the RIS cavity. The intellectual merit of the work is that ocean gravity waves are dynamic elements of the global ocean environment, affected by ocean warming and changes in ocean and atmospheric circulation patterns. Their evolution may thus drive changes in ice-shelf stability by both mechanical interactions, and potentially increased basal melting, which in turn feed back on sea level rise. Gravity wave-induced signal propagation across ice shelves depends on ice shelf and sub-shelf water cavity geometry (e.g. structure, thickness, crevasse density and orientation), as well as ice shelf physical properties. Emphasis will be placed on observation and modeling of the RIS response to IG wave forcing at periods from 75 to 300 s. Because IG waves are not appreciably damped by sea ice, seasonal monitoring will give insights into the year-round RIS response to this oceanographic forcing. The 3-year project will involve a 24-month period of continuous data collection spanning two annual cycles on the RIS. RIS ice-front array coverage overlaps with a synergistic Ross Sea Mantle Structure (RSMS) study, giving an expanded array beneficial for IG wave localization. The ice-shelf deployment will consist of sixteen stations equipped with broadband seismometers and barometers. Three seismic stations near the RIS front will provide reference response/forcing functions, and measure the variability of the response across the front. A linear seismic array orthogonal to the front will consist of three stations in-line with three RSMS stations. Passive seismic array monitoring will be used to determine the spatial and temporal distribution of ocean wave-induced signal sources along the front of the RIS and estimate ice shelf structure, with the high-density array used to monitor and localize fracture (icequake) activity. The broader impacts include providing baseline measurements to enable detection of ice-shelf changes over coming decades which will help scientists and policy-makers respond to the socio-environmental challenges of climate change and sea-level rise. A postdoctoral scholar in interdisciplinary Earth science will be involved throughout the course of the research. Students at Cuyamaca Community College, San Diego County, will develop and manage a web site for the project to be used as a teaching tool for earth science and oceanography classes, with development of an associated web site on waves for middle school students.", "east": 170.0, "geometry": "POINT(177.5 -79)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; GLACIER MOTION/ICE SHEET MOTION; USAP-DC; Amd/Us; AMD; USA/NSF; Iris; Ross Ice Shelf", "locations": "Ross Ice Shelf", "north": -77.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Bromirski, Peter; Gerstoft, Peter; Stephen, Ralph", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "UNAVCO", "repositories": "IRIS; UNAVCO", "science_programs": null, "south": -81.0, "title": "Collaborative Research: Dynamic Response of the Ross Ice Shelf to Wave-induced Vibrations", "uid": "p0010169", "west": -175.0}, {"awards": "1738992 Pettit, Erin C; 1929991 Pettit, Erin C", "bounds_geometry": "POLYGON((-114 -74,-113 -74,-112 -74,-111 -74,-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-104 -74.2,-104 -74.4,-104 -74.6,-104 -74.8,-104 -75,-104 -75.2,-104 -75.4,-104 -75.6,-104 -75.8,-104 -76,-105 -76,-106 -76,-107 -76,-108 -76,-109 -76,-110 -76,-111 -76,-112 -76,-113 -76,-114 -76,-114 -75.8,-114 -75.6,-114 -75.4,-114 -75.2,-114 -75,-114 -74.8,-114 -74.6,-114 -74.4,-114 -74.2,-114 -74))", "dataset_titles": "AMIGOS-IIIa \"Cavity\" Aquadopp current data Jan 2020 - Mar 2021; AMIGOS-IIIa \"Cavity\" Seabird CTD data Jan 2020 - Dec 2021; AMIGOS-III Cavity and Channel Snow Height and Thermistor Snow Temperature Data; AMIGOS-IIIc \"Channel\" Aquadopp current data Jan 2020 - Mar 2021; AMIGOS-IIIc \"Channel\" Seabird CTD data Jan 2020 - Dec 2021; Cavity AMIGOS Distributed Temperature Sensing (DTS) complete record; Channel 3c AMIGOS DTS Data Collection January 2023; Channel AMIGOS Distributed Temperature Sensing (DTS) complete record; Channel Camp borehole CTD data (January 2020); CTD data from the NBP 19/02 cruise as part of the TARSAN project in the Amundsen Sea during austral summer 2018/2019; Dotson-Crosson Ice Shelf data from a tale of two ice shelves paper; Pinning-point shear-zone fractures in Thwaites Eastern Ice Shelf (2002 - 2022); Sentinel-1-derived monthly-averaged velocity components from Thwaites Eastern Ice Shelf, 2016 - 2022; SIIOS Temporary Deployment; Sub-ice-shelf seafloor elevation derived from point-source active-seismic data on Thwaites Eastern Ice Shelf and Dotson Ice Shelf, December 2019 and January 2020; Thwaites Eastern Ice Shelf GPS displacements; Thwaites Glacier grounding lines for 2014 and 2019/20 from height above flotation; Two-year velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2001-2020; Visala WXT520 weather station data at the Cavity and Channel AMIGOS-III sites; Yearly velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2013-2022", "datasets": [{"dataset_uid": "601904", "doi": "10.15784/601904", "keywords": "Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Glaciology; Ice Shelf; Remote Sensing; Satellite Imagery; Thwaites; Thwaites Glacier; Velocity", "people": "Luckman, Adrian; Alley, Karen; Muto, Atsuhiro; Scambos, Ted; Pettit, Erin; Wild, Christian; Banerjee, Debangshu; Lilien, David; Truffer, Martin", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Yearly velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2013-2022", "url": "https://www.usap-dc.org/view/dataset/601904"}, {"dataset_uid": "601980", "doi": null, "keywords": "AMIGOS; Antarctica; Cryosphere; DTS; Glaciology; ice and ocean temperature; Thwaites", "people": "Tyler, Scott; Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Channel 3c AMIGOS DTS Data Collection January 2023", "url": "https://www.usap-dc.org/view/dataset/601980"}, {"dataset_uid": "601939", "doi": "10.15784/601939", "keywords": "Antarctica; Cryosphere; Ocean Temperature; Thwaites Glacier; Thwaites Region", "people": "Tyler, Scott; Scambos, Ted; White, Timothy; Wallin, Bruce; Kratt, Christopher", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Cavity AMIGOS Distributed Temperature Sensing (DTS) complete record", "url": "https://www.usap-dc.org/view/dataset/601939"}, {"dataset_uid": "601478", "doi": "10.15784/601478", "keywords": "Antarctica; Glaciology; Ice Shelf; Ice Velocity; Strain Rate; Thwaites Glacier", "people": "Wallin, Bruce; Klinger, Marin; Alley, Karen; Wild, Christian; Scambos, Ted; Muto, Atsu; Pettit, Erin; Truffer, Martin", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Two-year velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2001-2020", "url": "https://www.usap-dc.org/view/dataset/601478"}, {"dataset_uid": "601925", "doi": "10.15784/601925", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GNSS; Ice Shelf; Ice Velocity; Thwaites Glacier", "people": "Scambos, Ted; Alley, Karen; Pettit, Erin; Wild, Christian; Truffer, Martin", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Thwaites Eastern Ice Shelf GPS displacements", "url": "https://www.usap-dc.org/view/dataset/601925"}, {"dataset_uid": "601903", "doi": "10.15784/601903", "keywords": "Antarctica; Cryosphere; Fractures; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Thwaites", "people": "Alley, Karen; Muto, Atsuhiro; Scambos, Ted; Pettit, Erin; Wild, Christian; Luckman, Adrian; Truffer, Martin; Lilien, David; Banerjee, Debangshu", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Pinning-point shear-zone fractures in Thwaites Eastern Ice Shelf (2002 - 2022)", "url": "https://www.usap-dc.org/view/dataset/601903"}, {"dataset_uid": "601938", "doi": "10.15784/601938", "keywords": "Antarctica; Cryosphere; Ocean Temperature; Thwaites Glacier; Thwaites Region", "people": "Wallin, Bruce; Kratt, Christopher; Tyler, Scott; White, Timothy; Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Channel AMIGOS Distributed Temperature Sensing (DTS) complete record", "url": "https://www.usap-dc.org/view/dataset/601938"}, {"dataset_uid": "601981", "doi": null, "keywords": "AMIGOS; Antarctica; Cryosphere; DTS; Glaciology; ice and ocean temperature; Thwaites", "people": "Tyler, Scott; Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Channel 3c AMIGOS DTS Data Collection January 2023", "url": "https://www.usap-dc.org/view/dataset/601981"}, {"dataset_uid": "200321", "doi": "10.5285/e338af5d-8622-05de-e053-6c86abc06489", "keywords": null, "people": null, "repository": "British Oceanographic Data Centre", "science_program": null, "title": "CTD data from the NBP 19/02 cruise as part of the TARSAN project in the Amundsen Sea during austral summer 2018/2019", "url": "https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/e338af5d-8622-05de-e053-6c86abc06489/"}, {"dataset_uid": "601544", "doi": "10.15784/601544", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Salinity; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIa \"Cavity\" Seabird CTD data Jan 2020 - Dec 2021", "url": "https://www.usap-dc.org/view/dataset/601544"}, {"dataset_uid": "601545", "doi": "10.15784/601545", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Salinity; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIc \"Channel\" Seabird CTD data Jan 2020 - Dec 2021", "url": "https://www.usap-dc.org/view/dataset/601545"}, {"dataset_uid": "601914", "doi": null, "keywords": "Antarctica; Cryosphere; Glaciology; Ice Shelf; Thwaites Glacier; Velocity", "people": "Wild, Christian; Banerjee, Debangshu; Lilien, David; Luckman, Adrian; Truffer, Martin; Pettit, Erin; Scambos, Ted; Muto, Atsuhiro; Alley, Karen", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Sentinel-1-derived monthly-averaged velocity components from Thwaites Eastern Ice Shelf, 2016 - 2022", "url": "https://www.usap-dc.org/view/dataset/601914"}, {"dataset_uid": "601547", "doi": "10.15784/601547", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIa \"Cavity\" Aquadopp current data Jan 2020 - Mar 2021", "url": "https://www.usap-dc.org/view/dataset/601547"}, {"dataset_uid": "601548", "doi": "10.15784/601548", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIc \"Channel\" Aquadopp current data Jan 2020 - Mar 2021", "url": "https://www.usap-dc.org/view/dataset/601548"}, {"dataset_uid": "601549", "doi": "10.15784/601549", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Pine Island Bay; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Visala WXT520 weather station data at the Cavity and Channel AMIGOS-III sites", "url": "https://www.usap-dc.org/view/dataset/601549"}, {"dataset_uid": "601578", "doi": "10.15784/601578", "keywords": "Antarctica; Dotson Ice Shelf; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology", "people": "Segabinazzi-Dotto, Tiago; Wild, Christian", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Dotson-Crosson Ice Shelf data from a tale of two ice shelves paper", "url": "https://www.usap-dc.org/view/dataset/601578"}, {"dataset_uid": "601965", "doi": "10.15784/601965", "keywords": "Antarctica; Cryosphere; CTD Data", "people": "Wild, Christian", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Channel Camp borehole CTD data (January 2020)", "url": "https://www.usap-dc.org/view/dataset/601965"}, {"dataset_uid": "601552", "doi": "10.15784/601552", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Pine Island Bay; Snow Accumulation; Snow Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-III Cavity and Channel Snow Height and Thermistor Snow Temperature Data", "url": "https://www.usap-dc.org/view/dataset/601552"}, {"dataset_uid": "200204", "doi": "https://doi.org/10.7914/SN/1L_2019", "keywords": null, "people": null, "repository": "International Federation of Digital Seismograph Networks", "science_program": null, "title": "SIIOS Temporary Deployment", "url": "http://www.fdsn.org/networks/detail/1L_2019/"}, {"dataset_uid": "601979", "doi": null, "keywords": "AMIGOS; Antarctica; Cryosphere; DTS; Glaciers/ice Sheet; Glaciers/Ice Sheet; ice and ocean temperature; Thwaites", "people": "Tyler, Scott; Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Channel 3c AMIGOS DTS Data Collection January 2023", "url": "https://www.usap-dc.org/view/dataset/601979"}, {"dataset_uid": "601499", "doi": "10.15784/601499", "keywords": "Amundsen Sea; Antarctica; Glaciology; Grounding Line; Ice Shelf; Thwaites Glacier", "people": "Muto, Atsu; Truffer, Martin; Pettit, Erin; Scambos, Ted; Alley, Karen; Wild, Christian", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Thwaites Glacier grounding lines for 2014 and 2019/20 from height above flotation", "url": "https://www.usap-dc.org/view/dataset/601499"}, {"dataset_uid": "601827", "doi": "10.15784/601827", "keywords": "Antarctica; Cryosphere; Dotson Ice Shelf; Thwaites Glacier", "people": "Pettit, Erin; Scambos, Ted; Wallin, Bruce; Pomraning, Dale; Wild, Christian; Muto, Atsuhiro; Alley, Karen; Roccaro, Alexander; Truffer, Martin", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Sub-ice-shelf seafloor elevation derived from point-source active-seismic data on Thwaites Eastern Ice Shelf and Dotson Ice Shelf, December 2019 and January 2020", "url": "https://www.usap-dc.org/view/dataset/601827"}], "date_created": "Mon, 22 Feb 2021 00:00:00 GMT", "description": "This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Thwaites and neighboring glaciers in the Amundsen Sea Embayment are rapidly losing mass in response to recent climate warming and related changes in ocean circulation. Mass loss from the Amundsen Sea Embayment could lead to the eventual collapse of the West Antarctic Ice Sheet, raising the global sea level by up to 2.5 meters (8 feet) in as short as 500 years. The processes driving the loss appear to be warmer ocean circulation and changes in the width and flow speed of the glacier, but a better understanding of these changes is needed to refine predictions of how the glacier will evolve. One highly sensitive process is the transitional flow of glacier ice from land onto the ocean to become a floating ice shelf. This flow of ice from grounded to floating is affected by changes in air temperature and snowfall at the surface; the speed and thickness of ice feeding it from upstream; and the ocean temperature, salinity, bathymetry, and currents that the ice flows into. The project team will gather new measurements of each of these local environmental conditions so that it can better predict how future changes in air, ocean, or the ice will affect the loss of ice to the ocean in this region. Current and anticipated near-future mass loss from Thwaites Glacier and nearby Amundsen Sea Embayment region is mainly attributed to reduction in ice-shelf buttressing due to sub-ice-shelf melting by intrusion of relatively warm Circumpolar Deep Water into sub-ice-shelf cavities. Such predictions for mass loss, however, still lack understanding of the dominant processes at and near grounding zones, especially their spatial and temporal variability, as well as atmospheric and oceanic drivers of these processes. This project aims to constrain and compare these processes for the Thwaites and the Dotson Ice Shelves, which are connected through upstream ice dynamics, but influenced by different submarine troughs. The team\u0027s specific objectives are to: 1) install atmosphere-ice-ocean multi-sensor remote autonomous stations on the ice shelves for two years to provide sub-daily continuous observations of concurrent oceanic, glaciologic, and atmospheric conditions; 2) measure ocean properties on the continental shelf adjacent to ice-shelf fronts (using seal tagging, glider-based and ship-based surveys, and existing moored and conductivity-temperature-depth-cast data), 3) measure ocean properties into sub-ice-shelf cavities (using autonomous underwater vehicles) to detail ocean transports and heat fluxes; and 4) constrain current ice-shelf and sub-ice-shelf cavity geometry, ice flow, and firn properties for the ice-shelves (using radar, active-source seismic, and gravimetric methods) to better understand the impact of ocean and atmosphere on the ice-sheet change. The team will also engage the public and bring awareness to this rapidly changing component of the cryosphere through a \"Live from the Ice\" social media campaign in which the public can follow the action and data collection from the perspective of tagged seals and autonomous stations. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -104.0, "geometry": "POINT(-109 -75)", "instruments": null, "is_usap_dc": true, "keywords": "Thwaites Glacier; FIELD SURVEYS; GLACIERS/ICE SHEETS", "locations": "Thwaites Glacier", "north": -74.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences; Antarctic Glaciology; Antarctic Glaciology; Antarctic Integrated System Science", "paleo_time": null, "persons": "Pettit, Erin; Truffer, Martin; Scambos, Ted; Muto, Atsu; Heywood, Karen; Boehme, Lars; Hall, Robert; Wahlin, Anna; Lenaerts, Jan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "British Oceanographic Data Centre; International Federation of Digital Seismograph Networks; USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -76.0, "title": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment", "uid": "p0010162", "west": -114.0}, {"awards": "1643301 Gerbi, Christopher; 1643353 Christianson, Knut", "bounds_geometry": null, "dataset_titles": "ImpDAR: an impulse radar processor; SeidarT; South Pole Lake ApRES Radar; South Pole Lake GNSS; South Pole Lake: ground-based ice-penetrating radar", "datasets": [{"dataset_uid": "601503", "doi": "10.15784/601503", "keywords": "Antarctica; Apres; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; South Pole; Subglacial Lakes; Vertical Velocity", "people": "Hills, Benjamin", "repository": "USAP-DC", "science_program": null, "title": "South Pole Lake ApRES Radar", "url": "https://www.usap-dc.org/view/dataset/601503"}, {"dataset_uid": "200202", "doi": "http://doi.org/10.5281/zenodo.3833057", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "ImpDAR: an impulse radar processor", "url": "https://www.github.com/dlilien/ImpDAR"}, {"dataset_uid": "200203", "doi": "", "keywords": null, "people": null, "repository": "Uni. Washington ResearchWorks Archive", "science_program": null, "title": "South Pole Lake: ground-based ice-penetrating radar", "url": "http://hdl.handle.net/1773/45293"}, {"dataset_uid": "200244", "doi": " https://zenodo.org/badge/latestdoi/382590632", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "SeidarT", "url": "https://github.com/UMainedynamics/SeidarT"}, {"dataset_uid": "601502", "doi": "10.15784/601502", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GNSS; GPS; GPS Data; South Pole; Subglacial Lakes", "people": "Hills, Benjamin", "repository": "USAP-DC", "science_program": null, "title": "South Pole Lake GNSS", "url": "https://www.usap-dc.org/view/dataset/601502"}], "date_created": "Wed, 17 Feb 2021 00:00:00 GMT", "description": "Gerbi/1643301 This award supports a project to develop software that will allow researchers considering seismic or radar field surveys to test, ahead of time, whether the data they plan to collect will have sufficient resolution to measure the natural variations in the mechanical properties of ice, which determine the response of flowing ice to changing climatic conditions. The mechanical properties of ice depend largely on the temperature and the orientation of the crystals that make up the ice. The most accurate method for measuring ice crystal orientation and temperature is through drilling and direct analysis of an ice core. However, this method is very costly, time-consuming, and limited in spatial coverage. Geophysical techniques, such as seismic and radar, can cover much more area, but we have little knowledge about the practical limitations of these techniques as they relate to calculating mechanical properties. This project addresses that knowledge gap through construction of a computational toolbox that will allow accurate assessment of the ability of geophysical surveys to image crystal orientation and ice temperature. Researchers can then use these tools to adjust the field survey plans to maximize the return on investment. By working to improve the efficiency and effectiveness of future geophysical work related to glacial flow, this proposal will improve scientists? ability to quantify sea-level variations within the larger context of climate change. The project includes building new user-friendly, publicly accessible software and instructional modules. The work will provide training for graduate and undergraduate students, who will play a role in research and develop instructional materials. Ice viscosity, the resistance of ice to flow, exerts significant control over ice velocity. Therefore, mapping ice viscosity is important for understanding the current and future behavior of glaciers and ice sheets. To do so, scientists must determine the temperature and crystal orientation fabric throughout the ice. Seismic and radar techniques can survey large areas quickly, and thus are promising, yet not fully tested, methods to efficiently measure the thermal and mechanical structure of flowing ice. As part of this project, scientists will develop and use a computational framework to quantify the degree to which seismic and radar techniques can resolve the crystal orientation fabric and temperature of streaming ice, and then test how sensitive ice flow is to the attendant uncertainty. To meet these goals, a numerical toolbox will be built which will allow the glacier/ice stream geometry and physical properties (temperature, crystal orientation fabric, density and acidity) to be varied. The toolbox will be capable of both creating synthetic radar and seismic profiles through forward modeling and inverting synthetic profiles to allow evaluation of how well geophysical techniques can image the original thermal and mechanical structure. These simulated radar and seismic data will allow scientists to better quantify the influence of the variability in mechanical properties of the ice on flow velocities and patterns. The results of this work will guide planning for future field campaigns, making them more effective and efficient. This project does not require fieldwork in the Antarctic.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "United States Of America; GLACIERS/ICE SHEETS; USAP-DC; GLACIER MOTION/ICE SHEET MOTION; GLACIER THICKNESS/ICE SHEET THICKNESS; ICE SHEETS; South Pole; USA/NSF; AMD; GLACIER TOPOGRAPHY/ICE SHEET TOPOGRAPHY; FIELD SURVEYS; Amd/Us", "locations": "South Pole; United States Of America", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Christianson, Knut; Gerbi, Christopher; Campbell, Seth; Vel, Senthil", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "GitHub; Uni. Washington ResearchWorks Archive; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Computational Methods Supporting Joint Seismic and Radar Inversion for Ice Fabric and Temperature in Streaming Flow", "uid": "p0010160", "west": null}, {"awards": "1543347 Rosenheim, Brad; 1543453 Lyons, W. Berry; 1543405 Leventer, Amy; 1543537 Priscu, John; 1543441 Fricker, Helen; 1543396 Christner, Brent", "bounds_geometry": "POLYGON((-163.611 -84.33543,-162.200034 -84.33543,-160.789068 -84.33543,-159.378102 -84.33543,-157.967136 -84.33543,-156.55617 -84.33543,-155.145204 -84.33543,-153.734238 -84.33543,-152.323272 -84.33543,-150.912306 -84.33543,-149.50134 -84.33543,-149.50134 -84.3659157,-149.50134 -84.3964014,-149.50134 -84.4268871,-149.50134 -84.4573728,-149.50134 -84.4878585,-149.50134 -84.5183442,-149.50134 -84.5488299,-149.50134 -84.5793156,-149.50134 -84.6098013,-149.50134 -84.640287,-150.912306 -84.640287,-152.323272 -84.640287,-153.734238 -84.640287,-155.145204 -84.640287,-156.55617 -84.640287,-157.967136 -84.640287,-159.378102 -84.640287,-160.789068 -84.640287,-162.200034 -84.640287,-163.611 -84.640287,-163.611 -84.6098013,-163.611 -84.5793156,-163.611 -84.5488299,-163.611 -84.5183442,-163.611 -84.4878585,-163.611 -84.4573728,-163.611 -84.4268871,-163.611 -84.3964014,-163.611 -84.3659157,-163.611 -84.33543))", "dataset_titles": "Antarctica - PI Continuous - GZ01-WIS_GroundingZone_01 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - GZ13-WIS_GroundingZone_13 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA02-WIS_LAKES_02 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA06-WIS_LAKES_06 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA07-WIS_LAKES_07 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA09-WIS_LAKES_09 P.S. - GPS/GNSS Observations Dataset; Bistatic Radar Sounding of Whillans Ice Stream, Antarctica and Store Glacier, Greenland; CTD data from Mercer Subglacial Lake and access borehole; Discrete bulk sediment properties data from Mercer Subglacial Lake; Isotopic data from Whillans Ice Stream grounding zone, West Antarctica; Mercer Subglacial Lake radiocarbon and stable isotope data ; Mercer Subglacial Lake (SLM) microbial composition: 16S rRNA genes (Sequence Read Archive; BioProject: PRJNA790995); Mercer Subglacial Lake (SLM) noble gas and isotopic data; Mercer Subglacial Lake water column viral metagenomic sequencing; Salsa sediment cores; Sediment porewater properties data from Mercer Subglacial Lake; Water column biogeochemical data from Mercer Subglacial Lake", "datasets": [{"dataset_uid": "200282", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Mercer Subglacial Lake (SLM) microbial composition: 16S rRNA genes (Sequence Read Archive; BioProject: PRJNA790995)", "url": "https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA790995"}, {"dataset_uid": "200246", "doi": "", "keywords": null, "people": null, "repository": "OSU-MGR", "science_program": null, "title": "Salsa sediment cores", "url": "https://osu-mgr.org"}, {"dataset_uid": "601657", "doi": "10.15784/601657", "keywords": "Antarctica; Conductivity; CTD; Depth; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hot Water Drill; Mercer Subglacial Lake; Physical Properties; SALSA; Subglacial Lake; Temperature", "people": "Leventer, Amy; Priscu, John; Dore, John; Rosenheim, Brad", "repository": "USAP-DC", "science_program": null, "title": "CTD data from Mercer Subglacial Lake and access borehole", "url": "https://www.usap-dc.org/view/dataset/601657"}, {"dataset_uid": "601661", "doi": "10.15784/601661", "keywords": "Antarctica; Carbon; Glacier; Glaciers/ice Sheet; Glaciers/Ice Sheet; Iron; Mercer Subglacial Lake; Mineralogy; Particle Size; Physical Properties; SALSA; Sediment Core; Sulfur; West Antarctic Ice Sheet", "people": "Science Team, SALSA; Venturelli, Ryan A; Tranter, Martyn; Skidmore, Mark; Hawkings, Jon; Michaud, Alexander; Campbell, Timothy; Dore, John", "repository": "USAP-DC", "science_program": null, "title": "Discrete bulk sediment properties data from Mercer Subglacial Lake", "url": "https://www.usap-dc.org/view/dataset/601661"}, {"dataset_uid": "601663", "doi": "10.15784/601663", "keywords": "Antarctica; Carbon; Cell Counts; Geochemistry; Glacier; Glaciers/ice Sheet; Glaciers/Ice Sheet; Mercer Subglacial Lake; Microbes; Nutrients; SALSA; Stable Isotopes; Trace Elements; West Antarctic Ice Sheet", "people": "Barker, Joel; Li, Wei; Steigmeyer, August; Science Team, SALSA; Hawkings, Jon; Priscu, John; Skidmore, Mark; Tranter, Martyn; Dore, John", "repository": "USAP-DC", "science_program": null, "title": "Water column biogeochemical data from Mercer Subglacial Lake", "url": "https://www.usap-dc.org/view/dataset/601663"}, {"dataset_uid": "601664", "doi": "10.15784/601664", "keywords": "Antarctica; Gas; Geochemistry; Glacier; Glaciology; Mercer Subglacial Lake; Methane; SALSA; Sediment Core; West Antarctic Ice Sheet", "people": "Dore, John; Science Team, SALSA; Steigmeyer, August; Tranter, Martyn; Skidmore, Mark; Michaud, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Sediment porewater properties data from Mercer Subglacial Lake", "url": "https://www.usap-dc.org/view/dataset/601664"}, {"dataset_uid": "601672", "doi": "10.15784/601672", "keywords": "Antarctica; Isotope; Mercer Subglacial Lake; Radiocarbon; Subglacial Lake", "people": "Venturelli, Ryan; Rosenheim, Brad", "repository": "USAP-DC", "science_program": null, "title": "Mercer Subglacial Lake radiocarbon and stable isotope data ", "url": "https://www.usap-dc.org/view/dataset/601672"}, {"dataset_uid": "200214", "doi": "10.7283/YW8Z-TK03", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA02-WIS_LAKES_02 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/YW8Z-TK03"}, {"dataset_uid": "200212", "doi": "10.7283/PT0Q-JB95", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - GZ01-WIS_GroundingZone_01 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/PT0Q-JB95"}, {"dataset_uid": "200213", "doi": "10.7283/F7BB-JH05", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - GZ13-WIS_GroundingZone_13 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/F7BB-JH05"}, {"dataset_uid": "200342", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Mercer Subglacial Lake water column viral metagenomic sequencing", "url": "https://www.ncbi.nlm.nih.gov/biosample/32811410"}, {"dataset_uid": "601498", "doi": "10.15784/601498", "keywords": "Antarctica; Mercer Subglacial Lake; Noble Gas", "people": "Lyons, W. Berry; Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "Mercer Subglacial Lake (SLM) noble gas and isotopic data", "url": "https://www.usap-dc.org/view/dataset/601498"}, {"dataset_uid": "200217", "doi": "10.7283/3JMY-Y504", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA09-WIS_LAKES_09 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/3JMY-Y504"}, {"dataset_uid": "200216", "doi": "10.7283/F8NH-CV04", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA07-WIS_LAKES_07 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/F8NH-CV04"}, {"dataset_uid": "601360", "doi": "10.15784/601360", "keywords": "Antarctica; Radiocarbon; Sediment; Whillans Ice Stream", "people": "Venturelli, Ryan A", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Isotopic data from Whillans Ice Stream grounding zone, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/601360"}, {"dataset_uid": "200215", "doi": "10.7283/C503-KS23", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA06-WIS_LAKES_06 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/C503-KS23"}, {"dataset_uid": "601472", "doi": "10.15784/601472", "keywords": "Antarctica; Bistatic Radar; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS Data; Greenland; Lake Whillans; Radar; Store Glacier; Whillans Ice Stream; WISSARD", "people": "Dawson, Eliza; Schroeder, Dustin; Bienert, Nicole; MacKie, Emma; Peters, Sean; Christoffersen, Poul; Siegfried, Matthew", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Bistatic Radar Sounding of Whillans Ice Stream, Antarctica and Store Glacier, Greenland", "url": "https://www.usap-dc.org/view/dataset/601472"}], "date_created": "Thu, 16 Jul 2020 00:00:00 GMT", "description": "The Antarctic subglacial environment remains one of the least explored regions on Earth. This project will examine the physical and biological characteristics of Subglacial Lake Mercer, a lake that lies 1200m beneath the West Antarctic Ice Sheet. This study will address key questions relating to the stability of the ice sheet, the subglacial hydrological system, and the deep-cold subglacial biosphere. The education and outreach component aims to widely disseminate results to the scientific community and to the general public through short films, a blog, and a website. Subglacial Lake Mercer is one of the larger hydrologically active lakes in the southern basin of the Whillans Ice Plain, West Antarctica. It receives about 25 percent of its water from East Antarctica with the remainder originating from West Antarctica, is influenced by drain/fill cycles in a lake immediately upstream (Subglacial Lake Conway), and lies about 100 km upstream of the present grounding line of the Ross Ice Shelf. This site will yield information on the history of the Whillans and Mercer Ice Streams, and on grounding line migration. The integrated study will include direct sampling of basal ice, water, and sediment from the lake in concert with surface geophysical surveys over a three-year period to define the hydrological connectivity among lakes on the Whillans Ice Plain and their flow paths to the sea. The geophysical surveys will furnish information on subglacial hydrology, aid the site selection for hot-water drilling, and provide spatial context for interpreting findings. The hot-water-drilled boreholes will be used to collect basal ice samples, provide access for direct measurement of subglacial physical, chemical, and biological conditions in the water column and sediments, and to explore the subglacial water cavities using a remotely operated vehicle equipped with sensors, cameras, and sampling equipment. Data collected from this study will address the overarching hypothesis \"Contemporary biodiversity and carbon cycling in hydrologically-active subglacial environments associated with the Mercer and Whillans ice streams are regulated by the mineralization and cycling of relict marine organic matter and through interactions among ice, rock, water, and sediments\". The project will be undertaken by a collaborative team of scientists, with expertise in microbiology, biogeochemistry, hydrology, geophysics, glaciology, marine geology, paleoceanography, and science communication.", "east": -149.50134, "geometry": "POINT(-156.55617 -84.4878585)", "instruments": null, "is_usap_dc": true, "keywords": "SEDIMENTS; Antarctica; ISOTOPES; Subglacial Lake; USAP-DC; VIRUSES; PALEOCLIMATE RECONSTRUCTIONS; BACTERIA/ARCHAEA; LABORATORY; Radiocarbon; Whillans Ice Stream; AMD; SALSA; ECOSYSTEM FUNCTIONS; RADIOCARBON; FIELD INVESTIGATION; ICE MOTION; Mercer Ice Stream; Amd/Us; USA/NSF; GLACIERS/ICE SHEETS", "locations": "Antarctica; Mercer Ice Stream; Whillans Ice Stream", "north": -84.33543, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Instrumentation and Support; Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Rosenheim, Brad; Fricker, Helen; Priscu, John; Leventer, Amy; Dore, John; Lyons, W. Berry; Christner, Brent", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "NCBI GenBank", "repositories": "GenBank; NCBI GenBank; OSU-MGR; UNAVCO; USAP-DC", "science_programs": null, "south": -84.640287, "title": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments", "uid": "p0010119", "west": -163.611}, {"awards": "1246111 Dalziel, Ian", "bounds_geometry": "POLYGON((-44 -53,-42.9 -53,-41.8 -53,-40.7 -53,-39.6 -53,-38.5 -53,-37.4 -53,-36.3 -53,-35.2 -53,-34.1 -53,-33 -53,-33 -53.4,-33 -53.8,-33 -54.2,-33 -54.6,-33 -55,-33 -55.4,-33 -55.8,-33 -56.2,-33 -56.6,-33 -57,-34.1 -57,-35.2 -57,-36.3 -57,-37.4 -57,-38.5 -57,-39.6 -57,-40.7 -57,-41.8 -57,-42.9 -57,-44 -57,-44 -56.6,-44 -56.2,-44 -55.8,-44 -55.4,-44 -55,-44 -54.6,-44 -54.2,-44 -53.8,-44 -53.4,-44 -53))", "dataset_titles": "BAS Geological Collection: Central Scotia Sea (full data link not provided); Nathaniel B Palmer NBP 1408; South Georgia: SOG1, SOG2, SOG3", "datasets": [{"dataset_uid": "200107", "doi": "", "keywords": null, "people": null, "repository": "British Antarctic Survey", "science_program": null, "title": "BAS Geological Collection: Central Scotia Sea (full data link not provided)", "url": "https://www.bas.ac.uk/data/our-data/collections/geological-collections/"}, {"dataset_uid": "200105", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "South Georgia: SOG1, SOG2, SOG3", "url": "https://www.unavco.org/data/gps-gnss/gps-gnss.html"}, {"dataset_uid": "200106", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Nathaniel B Palmer NBP 1408", "url": "http://www.marine-geo.org/tools/search/entry.php?id=NBP1408"}], "date_created": "Tue, 28 Jan 2020 00:00:00 GMT", "description": "Intellectual Merit: Opening of Drake Passage and the West Scotia Sea south of Tierra del Fuego broke the final continental barrier to onset of a complete Antarctic Circumpolar Current (ACC). Initiation of the ACC has been associated in time with a major, abrupt, drop in global temperatures and the rapid expansion of the Antarctic ice sheets at 33-34 Ma. Events leading to the formation of the Drake Passage gateway are poorly known. Understanding the tectonic evolution of the floor of the Central Scotia Sea (CSS) and the North Scotia Ridge is a key to this understanding. Previous work has demonstrated that superimposed constructs formed a volcanic arc that likely blocked direct eastward flow from the Pacific to the Atlantic through the opening Drake Passage gateway as the active South Sandwich arc does today. The PIs propose a cruise to test, develop and refine, with further targeted mapping and dredging, their theory of CSS tectonics and the influence it had on the onset and development of the ACC. In addition they propose an installation of GPS receiver to test their paleogeographic reconstructions and determine whether South Georgia is moving as part of the South American plate. Broader impacts: A graduate student will be involved in all stages of the research. Undergraduate students will also be involved as watch-standers. A community college teacher will participate in the cruise. The PIs will have a website on which there will be images of the actual ocean floor dredging in operation. The teacher will participate with web and outreach support through PolarTREC. Results of the cruise are of broad interest to paleoceanographers, paleoclimate modelers and paleobiogeographers.", "east": -33.0, "geometry": "POINT(-38.5 -55)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Scotia Sea; PLATE BOUNDARIES; TECTONIC PROCESSES; NOT APPLICABLE; COASTAL ELEVATION; Southern Ocean; USAP-DC", "locations": "Scotia Sea; Southern Ocean", "north": -53.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Dalziel, Ian W.; Lawver, Lawrence; Krissek, Lawrence", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "British Antarctic Survey", "repositories": "British Antarctic Survey; MGDS; UNAVCO", "science_programs": null, "south": -57.0, "title": "Collaborative Research: Role of the Central Scotia Sea Floor and North Scotia Ridge in the Onset and Development of the Antarctic Circumpolar Current", "uid": "p0010078", "west": -44.0}, {"awards": "1419268 Aster, Richard; 1246776 Nyblade, Andrew; 1249631 Wilson, Terry; 1249513 Dalziel, Ian; 1246666 Huerta, Audrey; 1246712 Wiens, Douglas; 1247518 Smalley, Robert", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Network/Campaign: Antarctica POLENET - ANET; POLENET - Network YT", "datasets": [{"dataset_uid": "200012", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "POLENET - Network YT", "url": "http://ds.iris.edu/mda/YT/?timewindow=2007-2018"}, {"dataset_uid": "200011", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Network/Campaign: Antarctica POLENET - ANET", "url": "https://www.unavco.org/data/gps-gnss/data-access-methods/dai2/app/dai2.html#grouping=Antarctica%20POLENET%20-%20ANET;scope=Station;sampleRate=normal;groupingMod=contains"}], "date_created": "Sun, 17 Feb 2019 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to continue and expand GPS and seismic for ANET-POLENET Phase 2 to advance understanding of geodynamic processes and their influence on the West Antarctic Ice Sheet. ANET-POLENET science themes include: 1) determining ice mass change since the last glacial maximum, including modern ice mass balance; 2) solid earth influence on ice sheet dynamics; and 3) tectonic evolution of West Antarctica and feedbacks with ice sheet evolution. Nine new remote continuous GPS stations, to be deployed in collaboration with U.K. and Italian partners, will augment ANET-POLENET instrumentation deployed during Phase 1. Siting is designed to better constrain uplift centers predicted by GIA models and indicated by Phase 1 results. ANET-POLENET Phase 2 builds on Phase 1 scientific, technological, and logistical achievements including 1) seismic images of crust and mantle structure that resolve the highly heterogeneous thermal and viscosity structure of the Antarctic lithosphere and underlying mantle; 2) newly identified intraplate glacial, volcanic, and tectonic seismogenic processes; 3) improved estimates of intraplate vertical and horizontal crustal motions and refinement of the Antarctic GPS reference frame; and 4) elucidation of controls on glacial isostatic adjustment-induced crustal motions due to laterally varying earth structure. The PIs present a nominal plan to reduce ANET by approximately half to a longer-term community \"backbone network\" in the final 2 years of this project. Broader impacts: Monitoring and understanding mass change and dynamic behavior of the Antarctic ice sheet using in situ GPS and seismological studies will help improve understanding of how Antarctic ice sheets respond to a warming world and how will this response impacts sea-level and other global changes. Seismic and geodetic data collected by the backbone ANET-POLENET network are openly available to the scientific community. ANET-POLENET is integral in the development and realization of technological and logistical innovations for year-round operation of instrumentation at remote polar sites, helping to advance scientifically and geographically broad studies of the polar regions. The ANET-POLENET team will establish a training initiative to mentor young polar scientists in complex, multidisciplinary and internationally collaborative research. ANET-POLENET will continue the broad public outreach to the public about polar science through the polenet.org website, university lectures, and K-12 school visits. This research involves multiple international partners.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Geodesy; USAP-DC; SEISMIC SURFACE WAVES; CRUSTAL MOTION; TECTONICS; Broadband Seismic; NOT APPLICABLE; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Wilson, Terry; Dalziel, Ian W.; Bevis, Michael; Aster, Richard; Huerta, Audrey D.; Winberry, Paul; Anandakrishnan, Sridhar; Nyblade, Andrew; Wiens, Douglas; Smalley, Robert", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "IRIS", "repositories": "IRIS; UNAVCO", "science_programs": "POLENET", "south": -90.0, "title": "Collaborative Research: POLENET-Antarctica: Investigating Links Between Geodynamics and Ice Sheets - Phase 2", "uid": "p0010013", "west": -180.0}, {"awards": "1144192 Tulaczyk, Slawek; 1144177 Pettit, Erin; 1144176 Lyons, W. Berry; 1727387 Mikucki, Jill", "bounds_geometry": "POLYGON((161.8 -77.7,161.88 -77.7,161.96 -77.7,162.04000000000002 -77.7,162.12 -77.7,162.2 -77.7,162.28 -77.7,162.36 -77.7,162.44 -77.7,162.51999999999998 -77.7,162.6 -77.7,162.6 -77.70700000000001,162.6 -77.714,162.6 -77.721,162.6 -77.728,162.6 -77.735,162.6 -77.742,162.6 -77.749,162.6 -77.756,162.6 -77.76299999999999,162.6 -77.77,162.51999999999998 -77.77,162.44 -77.77,162.36 -77.77,162.28 -77.77,162.2 -77.77,162.12 -77.77,162.04000000000002 -77.77,161.96 -77.77,161.88 -77.77,161.8 -77.77,161.8 -77.76299999999999,161.8 -77.756,161.8 -77.749,161.8 -77.742,161.8 -77.735,161.8 -77.728,161.8 -77.721,161.8 -77.714,161.8 -77.70700000000001,161.8 -77.7))", "dataset_titles": "Ablation Stake Data from of Taylor Glacier near Blood Falls; Antarctica Support 2014/2015 - C-528 Blood Falls GPS/GNSS Observations Dataset; Blood Falls, McMurdo Dry Va. International Federation of Digital Seismograph Networks. Dataset/Seismic Network; FLIR thermal imaging data near Blood Falls, Taylor Glacier; Ground Penetrating Radar Data near Blood Falls, Taylor Glacier; Ice Temperature in Shallow Boreholes Near Blood Falls at the Terminus of Taylor Glacier, McMurdo Dry Valleys, Antarctica; NCBI short read archive -Metagenomic survey of Antarctic Groundwater; Terrestrial Radar Interferometry near Blood Falls, Taylor Glacier; The Geochemistry of englacial brine from Taylor Glacier, Antarctica; Time Lapse imagery of the Blood Falls feature, Antarctica ; Vaisala Integrated Met Station near Blood Falls, Taylor Glacier", "datasets": [{"dataset_uid": "601164", "doi": "10.15784/601164", "keywords": "Antarctica; Basal Crevassing; Glacier Hydrology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Snow/ice; Snow/Ice", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": null, "title": "Ablation Stake Data from of Taylor Glacier near Blood Falls", "url": "https://www.usap-dc.org/view/dataset/601164"}, {"dataset_uid": "601167", "doi": "10.15784/601167", "keywords": "Antarctica; Basal Crevassing; Glacier Hydrology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Photo; Photo/video; Photo/Video; Snow/ice; Snow/Ice; Taylor Glacier; Timelaps Images", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": null, "title": "Time Lapse imagery of the Blood Falls feature, Antarctica ", "url": "https://www.usap-dc.org/view/dataset/601167"}, {"dataset_uid": "601166", "doi": "10.15784/601166", "keywords": "Antarctica; Basal Crevassing; Glacier Hydrology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Radar; Snow/ice; Snow/Ice; Taylor Glacier", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": null, "title": "Terrestrial Radar Interferometry near Blood Falls, Taylor Glacier", "url": "https://www.usap-dc.org/view/dataset/601166"}, {"dataset_uid": "601165", "doi": "10.15784/601165", "keywords": "Antarctica; Basal Crevassing; Glacier Hydrology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Radar; Snow/ice; Snow/Ice; Taylor Glacier", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": null, "title": "Ground Penetrating Radar Data near Blood Falls, Taylor Glacier", "url": "https://www.usap-dc.org/view/dataset/601165"}, {"dataset_uid": "601139", "doi": "10.15784/601139", "keywords": "Antarctica; Borehole; Borehole Logging; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Temperature; Snow/ice; Snow/Ice; Temperature; Temperature Profiles", "people": "Tulaczyk, Slawek", "repository": "USAP-DC", "science_program": null, "title": "Ice Temperature in Shallow Boreholes Near Blood Falls at the Terminus of Taylor Glacier, McMurdo Dry Valleys, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601139"}, {"dataset_uid": "200028", "doi": "10.7283/FCEN-8050", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica Support 2014/2015 - C-528 Blood Falls GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/fcen-8050"}, {"dataset_uid": "200029", "doi": "10.7914/SN/YW_2013", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Blood Falls, McMurdo Dry Va. International Federation of Digital Seismograph Networks. Dataset/Seismic Network", "url": "http://www.fdsn.org/networks/detail/YW_2013/"}, {"dataset_uid": "200074", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "NCBI short read archive -Metagenomic survey of Antarctic Groundwater", "url": "https://www.ncbi.nlm.nih.gov/sra/?term=SRR6667787"}, {"dataset_uid": "601179", "doi": "10.15784/601179", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Subglacial Brine", "people": "Lyons, W. Berry; Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "The Geochemistry of englacial brine from Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601179"}, {"dataset_uid": "601169", "doi": "10.15784/601169", "keywords": "Antarctica; Basal Crevassing; Glacier Hydrology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Infrared Imagery; Photo/video; Photo/Video; Taylor Glacier; Thermal Camera; Timelaps Images", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": null, "title": "FLIR thermal imaging data near Blood Falls, Taylor Glacier", "url": "https://www.usap-dc.org/view/dataset/601169"}, {"dataset_uid": "601168", "doi": "10.15784/601168", "keywords": "Antarctica; Atmosphere; Basal Crevassing; Glacier Hydrology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Meteorology; Taylor Glacier; Temperature; Weather Station Data; Wind Speed", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": null, "title": "Vaisala Integrated Met Station near Blood Falls, Taylor Glacier", "url": "https://www.usap-dc.org/view/dataset/601168"}], "date_created": "Wed, 28 Nov 2018 00:00:00 GMT", "description": "Recent discoveries of widespread liquid water and microbial ecosystems below the Antarctic ice sheets have generated considerable interest in studying Antarctic subglacial environments. Understanding subglacial hydrology, the persistence of life in extended isolation and the evolution and stability of subglacial habitats requires an integrated, interdisciplinary approach. The collaborative project, Minimally Invasive Direct Glacial Exploration (MIDGE) of the Biogeochemistry, Hydrology and Glaciology of Blood Falls, McMurdo Dry Valleys will integrate geophysical measurements, molecular microbial ecology and geochemical analyses to explore a unique Antarctic subglacial system known as Blood Falls. Blood Falls is a hypersaline, subglacial brine that supports an active microbial community. The subglacial brine is released from a crevasse at the surface of the Taylor Glacier providing an accessible portal into an Antarctic subglacial ecosystem. Recent geochemical and molecular analyses support a marine source for the salts and microorganisms in Blood Falls. The last time marine waters inundated this part of the McMurdo Dry Valleys was during the Late Tertiary, which suggests the brine is ancient. Still, no direct samples have been collected from the subglacial source to Blood Falls and little is known about the origin of this brine or the amount of time it has been sealed below Taylor Glacier. Radar profiles collected near Blood Falls delineate a possible fault in the subglacial substrate that may help explain the localized and episodic nature of brine release. However it remains unclear what triggers the episodic release of brine exclusively at the Blood Falls crevasse or the extent to which the brine is altered as it makes its way to the surface. The MIDGE project aims to determine the mechanism of brine release at Blood Falls, evaluate changes in the geochemistry and the microbial community within the englacial conduit and assess if Blood Falls waters have a distinct impact on the thermal and stress state of Taylor Glacier, one of the most studied polar glaciers in Antarctica. The geophysical study of the glaciological structure and mechanism of brine release will use GPR, GPS, and a small passive seismic network. Together with international collaborators, the \u0027Ice Mole\u0027 team from FH Aachen University of Applied Sciences, Germany (funded by the German Aerospace Center, DLR), MIDGE will develop and deploy innovative, minimally invasive technologies for clean access and brine sample retrieval from deep within the Blood Falls drainage system. These technologies will allow for the collection of samples of the brine away from the surface (up to tens of meters) for geochemical analyses and microbial structure-function experiments. There is concern over the contamination of pristine subglacial environments from chemical and biological materials inherent in the drilling process; and MIDGE will provide data on the efficacy of thermoelectric probes for clean access and retrieval of representative subglacial samples. Antarctic subglacial environments provide an excellent opportunity for researching survivability and adaptability of microbial life and are potential terrestrial analogues for life habitats on icy planetary bodies. The MIDGE project offers a portable, versatile, clean alternative to hot water and mechanical drilling and will enable the exploration of subglacial hydrology and ecosystem function while making significant progress towards developing technologies for minimally invasive and clean sampling of icy systems.", "east": 162.6, "geometry": "POINT(162.2 -77.735)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; BACTERIA/ARCHAEA; USAP-DC", "locations": null, "north": -77.7, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Tulaczyk, Slawek; Pettit, Erin; Lyons, W. Berry; Mikucki, Jill", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "IRIS; NCBI GenBank; UNAVCO; USAP-DC", "science_programs": null, "south": -77.77, "title": "Collaborative Research: MIDGE: Minimally Invasive Direct Glacial Exploration of Biogeochemistry, Hydrology and Glaciology of Blood Falls, McMurdo Dry Valleys", "uid": "p0000002", "west": 161.8}, {"awards": "0632136 Nyblade, Andrew; 0632322 Wilson, Terry", "bounds_geometry": "POLYGON((-20 -70,-1 -70,18 -70,37 -70,56 -70,75 -70,94 -70,113 -70,132 -70,151 -70,170 -70,170 -72,170 -74,170 -76,170 -78,170 -80,170 -82,170 -84,170 -86,170 -88,170 -90,151 -90,132 -90,113 -90,94 -90,75 -90,56 -90,37 -90,18 -90,-1 -90,-20 -90,-20 -88,-20 -86,-20 -84,-20 -82,-20 -80,-20 -78,-20 -76,-20 -74,-20 -72,-20 -70))", "dataset_titles": "Incorporated Research Institutions for Seismology (IRIS); University NAVSTAR Consortium (UNAVCO)", "datasets": [{"dataset_uid": "000131", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "University NAVSTAR Consortium (UNAVCO)", "url": "http://www.unavco.org/data/gps-gnss/data-access-methods/dai2/app/dai2.html#groupingMod=contains;grouping=POLENET%20-%20ANET;scope=Station;sampleRate=normal"}, {"dataset_uid": "000132", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Incorporated Research Institutions for Seismology (IRIS)", "url": "http://www.iris.edu/mda/YT?timewindow=2007-2018"}], "date_created": "Thu, 22 Jan 2015 00:00:00 GMT", "description": "This project constructs POLENET a network of GPS and seismic stations in West Antarctica to understand how the mass of the West Antarctic ice sheet (WAIS) changes with time. The information is ultimately used to predict sea level rise accompanying global warming and interpret climate change records. The GPS (global positioning system) stations measure vertical and horizontal movements of bedrock, while the seismic stations characterize physical properties of the ice/rock interface, lithosphere, and mantle. Combined with satellite data, this project offers a more complete picture of the ice sheet\u0027s current state, its likely change in the near future, and its overall size during the last glacial maximum. This data will also be used to infer sub-ice sheet geology and the terrestrial heat flux, critical inputs to models of glacier movement. As well, this project improves tomographic models of the earth\u0027s deep interior and core through its location in the Earth\u0027s poorly instrumented southern hemisphere. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eBroader impacts of this project are varied. The work is relevant to society for improving our understanding of the impacts of global warming on sea level rise. It also supports education at the postdoctoral, graduate, and undergraduate levels, and outreach to groups underrepresented in the sciences. As an International Polar Year contribution, this project establishes a legacy of infrastructure for polar measurements. It also involves an international collaboration of twenty four countries. For more information see IPY Project #185 at IPY.org. NSF is supporting a complementary Arctic POLENET array being constructed in Greenland under NSF Award #0632320.", "east": 170.0, "geometry": "POINT(75 -80)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "Antarctica; Bedrock; Ice/Rock Interface; Climate Change; Seismic; West Antarctic Ice Sheet; FIELD SURVEYS; LABORATORY; Not provided; FIELD INVESTIGATION; Mass Balance; COMPUTERS; Sub-Ice Sheet Geology; Sea Level; Terrestrial Heat Flux", "locations": "Antarctica; West Antarctic Ice Sheet", "north": -70.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Wilson, Terry; Bevis, Michael; Anandakrishnan, Sridhar; Wiens, Douglas; Aster, Richard; Smalley, Robert; Nyblade, Andrew; Winberry, Paul; Hothem, Larry; Dalziel, Ian W.; Huerta, Audrey D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "UNAVCO", "repositories": "IRIS; UNAVCO", "science_programs": null, "south": -90.0, "title": "Collaborative Research: IPY: POLENET-Antarctica: Investigating Links Between Geodynamics and Ice Sheets", "uid": "p0000315", "west": -20.0}, {"awards": "1142083 Kyle, Philip", "bounds_geometry": "POINT(167.15334 -77.529724)", "dataset_titles": "Database of Erebus cave field seasons; Icequakes at Erebus volcano, Antarctica; Mount Erebus Observatory GPS data; Mount Erebus Seismic Data; Mount Erebus Thermodynamic model code; Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO); Seismic data used for high-resolution active-source seismic tomography", "datasets": [{"dataset_uid": "200030", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Database of Erebus cave field seasons", "url": "https://github.com/foobarbecue/troggle"}, {"dataset_uid": "200027", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Mount Erebus Observatory GPS data", "url": "https://www.unavco.org/data/gps-gnss/data-access-methods/dai1/monument.php?mid=22083\u0026parent_link=Permanent\u0026pview=original"}, {"dataset_uid": "600381", "doi": "10.15784/600381", "keywords": "Antarctica; Cable Observatory; Geology/Geophysics - Other; Infrared Imagery; Intracontinental Magmatism; IntraContinental Magmatism; MEVO; Mount Erebus; Photo/video; Photo/Video; Ross Island; Solid Earth; Thermal Camera; Volcano", "people": "Kyle, Philip; Oppenheimer, Clive", "repository": "USAP-DC", "science_program": "MEVO", "title": "Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)", "url": "https://www.usap-dc.org/view/dataset/600381"}, {"dataset_uid": "200034", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Seismic data used for high-resolution active-source seismic tomography", "url": "http://ds.iris.edu/mda/ZW/?timewindow=2007-2009http://ds.iris.edu/mda/Y4?timewindow=2008-2009http://ds.iris.edu/ds/nodes/dmc/forms/assembled-data/?dataset_report_number=09-015"}, {"dataset_uid": "200033", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Icequakes at Erebus volcano, Antarctica", "url": "http://ds.iris.edu/mda/ZW/?timewindow=2007-2009http://ds.iris.edu/mda/Y4?timewindow=2008-2009http://ds.iris.edu/mda/ZO?timewindow=2011-2012"}, {"dataset_uid": "200032", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Mount Erebus Seismic Data", "url": "http://ds.iris.edu/mda/ER/"}, {"dataset_uid": "200031", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Mount Erebus Thermodynamic model code", "url": "https://github.com/kaylai/Iacovino2015_thermodynamic_model"}], "date_created": "Tue, 03 Sep 2013 00:00:00 GMT", "description": "Intellectual Merit: Mt. Erebus is one of only a handful of volcanoes worldwide that have lava lakes with readily observable and nearly continuous Strombolian explosive activity. Erebus is also unique in having a permanent convecting lava lake of anorthoclase phonolite magma. Over the years significant infrastructure has been established at the summit of Mt. Erebus as part of the Mount Erebus Volcano Observatory (MEVO), which serves as a natural laboratory to study a wide range of volcanic processes, especially magma degassing associated with an open convecting magma conduit. The PI proposes to continue operating MEVO for a further five years. The fundamental fundamental research objectives are: to understand diffuse flank degassing by using distributed temperature sensing and gas measurements in ice caves, to understand conduit processes, and to examine the environmental impact of volcanic emissions from Erebus on atmospheric and cryospheric environments. To examine conduit processes the PI will make simultaneous observations with video records, thermal imaging, measurements of gas emission rates and gas compositions, seismic, and infrasound data. Broader impacts: An important aspect of Erebus research is the education and training of students. Both graduate and undergraduate students will have the opportunity to work on MEVO data and deploy to the field site. In addition, this proposal will support a middle or high school science teacher for two field seasons. The PI will also continue working with various media organizations and filmmakers.", "east": 167.15334, "geometry": "POINT(167.15334 -77.529724)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e TIRS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e SPECTROMETERS \u003e FTIR SPECTROMETER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e SPECTROMETERS \u003e DOAS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e LASER RANGING \u003e MOBLAS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e PETROGRAPHIC MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e HRDI; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e TIRS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e INFRASONIC MICROPHONES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e AMS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e XRF; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-ES; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e LASER RANGING \u003e MOBLAS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e IRGA; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE CHAMBERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e SPECTROMETERS \u003e FTIR SPECTROMETER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e MICROTOMOGRAPHY; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e SIMS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Earthquakes; Vesuvius; Cosmogenic Radionuclides; Infrasonic Signals; Icequakes; Magma Shells; Phase Equilibria; Passcal; Correlation; Backscattering; Eruptive History; Degassing; Volatiles; Magma Convection; Thermodynamics; Tremors; Optech; Uv Doas; Energy Partitioning; Erebus; Cronus; Holocene; Lava Lake; Phonolite; Vagrant; Thermal Infrared Camera; Flir; USA/NSF; Mount Erebus; Active Source Seismic; GROUND-BASED OBSERVATIONS; Interferometry; Volatile Solubility; Redox State; Viscosity; Hydrogen Emission; Seismicity; Eruptions; Explosion Energy; FIELD SURVEYS; Radar Spectra; OBSERVATION BASED; Seismic Events; Strombolian Eruptions; Anorthoclase; Ice Caves; Iris; VOLCANO OBSERVATORY; Melt Inclusions; Ftir; Alkaline Volcanism; Tomography; TLS; Volcanic Gases; ANALYTICAL LAB", "locations": "Vesuvius; Cronus; Vagrant; Mount Erebus; Passcal", "north": -77.529724, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Kyle, Philip; Oppenheimer, Clive; Chaput, Julien; Jones, Laura; Fischer, Tobias", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e VOLCANO OBSERVATORY; OTHER \u003e MODELS \u003e OBSERVATION BASED; OTHER \u003e PHYSICAL MODELS \u003e ANALYTICAL LAB", "repo": "GitHub", "repositories": "GitHub; IRIS; UNAVCO; USAP-DC", "science_programs": "MEVO", "south": -77.529724, "title": "Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)", "uid": "p0000383", "west": 167.15334}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EAGER: Collaborative Research: Mapping Melting Glacial Surfaces with GNSS Reflectometry
|
1940473 1940483 |
2025-08-27 | Datta-Barua, Seebany; Banwell, Alison | No dataset link provided | Part I: Nontechnical Global navigation satellite systems (GNSS) such as the Global Positioning System (GPS) are continuously transmitting signals toward Earth. While many people may be familiar with using the GPS signals for positioning and navigation, these signals are also usable for sensing Earth’s environment. Ice and snow surfaces are continuously awash with radio signals broadcast from GNSS. When the signal bounces off the ice or snow surface and then arrives at a receiver, it acts as a form of radar, in which the radar transmitter is free, covers the globe, is always on, and is unaffected by precipitation. This work will build and deploy a GNSS reflectometry (GNSS-R) system specifically to detect reflections off glaciated surfaces. The goal of the work is to find out how the signal changes depending on surface type, and specifically, whether using GNSS as a radar can be effective for monitoring snow and ice melt and freeze on a glaciated surface. In this system, two GNSS antennas and receivers will be used, one facing upward for positioning, and one directed downward to collect the surface reflections. Setting up the GNSS-R system near the ice runways on the McMurdo Ice Shelf, near to the US McMurdo Station, Antarctica, the system will monitor for variations in the signal as it reflects off alternately surface ice, meltwater, and snow. With camera images and lidar surveys at the site will relate the GNSS “radar” signal and the area it bounced from (knowable from geometry because the GNSS satellite and receiver locations are known) to the surface type. If GNSS-R is developed to the point of being comparable to or better than existing ways of characterizing frozen surfaces, it would find a niche in applications ranging from local ablation monitoring to assessment of aircraft runway safety. Part II: Technical Description The proposed research aspires to answer the question: Can global navigation satellite system (GNSS) reflectometry (GNSS-R) be used to reliably map snow-cover, ice, and surface water in a harsh glaciated environment at high spatio-temporal resolution? Our working hypothesis is that GNSS-R can differentiate among cold snow, wet snow, bare ice, wet ice, and surface water in a way that will yield observations that can inform how glacial surfaces accumulate and ablate. This project will test this hypothesis by conducting GNSS-R instrument design, field trial and signal processing, and comparison with other methods, including the single-antenna interferometric reflectometry (GNSS-IR) method currently in use. The objective is to develop GNSS-R instrumentation and data-processing techniques as an effective high-spatiotemporal-resolution method of characterizing the composition of snow, firn and melting ice surfaces relevant to climate change on the Antarctic Ice Sheet. The GNSS-R receiver system will capture the signal after it has interacted with the surface (glaciated in this case), in order to infer variable compositions of the surface. Passive radar return intensity will be used to characterize the surface type, whether snow, firn, ice, or water. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((166.502 -77.947,166.52630000000002 -77.947,166.5506 -77.947,166.5749 -77.947,166.5992 -77.947,166.6235 -77.947,166.64780000000002 -77.947,166.6721 -77.947,166.6964 -77.947,166.7207 -77.947,166.745 -77.947,166.745 -77.9479,166.745 -77.9488,166.745 -77.9497,166.745 -77.95060000000001,166.745 -77.95150000000001,166.745 -77.9524,166.745 -77.9533,166.745 -77.9542,166.745 -77.9551,166.745 -77.956,166.7207 -77.956,166.6964 -77.956,166.6721 -77.956,166.64780000000002 -77.956,166.6235 -77.956,166.5992 -77.956,166.5749 -77.956,166.5506 -77.956,166.52630000000002 -77.956,166.502 -77.956,166.502 -77.9551,166.502 -77.9542,166.502 -77.9533,166.502 -77.9524,166.502 -77.95150000000001,166.502 -77.95060000000001,166.502 -77.9497,166.502 -77.9488,166.502 -77.9479,166.502 -77.947)) | POINT(166.6235 -77.95150000000001) | false | false | |||||||||||
RAPID: International Collaborative Airborne Sensor Deployments near Antarctic Ice Shelves
|
2114454 |
2025-02-10 | Greenbaum, Jamin |
|
The ice shelves around the perimeter Antarctica hold back inland ice that has the potential to raise global sea level by meters. By how much and how rapidly this could occur is a central question in glaciology. The underside of these ice shelves is in contact with the ocean, and there are signs that warming of ocean water is causing melting and retreat of these shelves, with direct implications for sea-level rise. This project will seize an emergent opportunity to work with Australian and South Korean colleagues to acquire snapshot profiles of ocean temperature, salinity, and velocity, and improve bathymetric knowledge, where no prior data exist. The team will work near three glaciers draining ice with substantial sea-level potential from the East and West Antarctic Ice Sheets. The targets are Shackleton and Cook Ice Shelves in East Antarctica, and Thwaites Glacier in West Antarctica. An undergraduate student will be engaged through the Scripps Undergraduate Research Fellowship program and the team will work through the Scripps Educational Alliances program to identify educational outreach opportunities through which to build community engagement in this project. The team will use high-resolution general circulation model simulations to optimize sensor targeting (to be deployed from helicopter and fixed-wing aircraft) and evaluate the relative roles of subglacial freshwater discharge and ocean forcing on subglacial melt rates. The aim is to better understand why grounding-line melt rates are higher at the East Antarctic sites despite data indicating warmer ambient ocean temperatures at the West Antarctic sites. Such behavior could be explained by discharge of subglacial freshwater into ice-shelf cavities, but insufficient data currently exist to test this hypothesis. The team aims to build on ongoing international, collaborative airborne oceanographic sampling with colleagues in the Republic of Korea, Australia, and the United States. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-107.5 -74.5,-107.3 -74.5,-107.1 -74.5,-106.9 -74.5,-106.7 -74.5,-106.5 -74.5,-106.3 -74.5,-106.1 -74.5,-105.9 -74.5,-105.7 -74.5,-105.5 -74.5,-105.5 -74.6,-105.5 -74.7,-105.5 -74.8,-105.5 -74.9,-105.5 -75,-105.5 -75.1,-105.5 -75.2,-105.5 -75.3,-105.5 -75.4,-105.5 -75.5,-105.7 -75.5,-105.9 -75.5,-106.1 -75.5,-106.3 -75.5,-106.5 -75.5,-106.7 -75.5,-106.9 -75.5,-107.1 -75.5,-107.3 -75.5,-107.5 -75.5,-107.5 -75.4,-107.5 -75.3,-107.5 -75.2,-107.5 -75.1,-107.5 -75,-107.5 -74.9,-107.5 -74.8,-107.5 -74.7,-107.5 -74.6,-107.5 -74.5)) | POINT(-106.5 -75) | false | false | |||||||||||
NSFGEO-NERC: Ice-shelf Instability Caused by Active Surface Meltwater Production, Movement, Ponding and Hydrofracture
|
1841607 1841467 |
2024-02-15 | Banwell, Alison; Macayeal, Douglas |
|
The evolution of surface and shallow subsurface meltwater across Antarctic ice shelves has important implications for their (in)stability, as demonstrated by the 2002 rapid collapse of the Larsen B Ice Shelf. It is vital to understand the causes of ice-shelf (in)stability because ice shelves buttress against the discharge of inland ice and therefore influence ice-sheet contributions to sea-level rise. Ice-shelf break-up may be triggered by stress variations associated with surface meltwater movement, ponding, and drainage. These variations may cause an ice shelf to flex and fracture. This four-year project will provide key geophysical observations to improve understanding of ice-shelf meltwater and its effects on (in)stability. The work will be conducted on the George VI Ice Shelf on the Antarctic Peninsula, where hundreds of surface lakes form each summer. Over a 27-month period, global positioning systems, seismometers, water pressure transducers, automatic weather stations, and in-ice thermistor strings will be deployed to record ice shelf flexure, fracture seismicity, water depths, and surface and subsurface melting, respectively, in and around several surface lakes on the George VI Ice Shelf, within roughly 20 km of the British Antarctic Survey's Fossil Bluff Station. Field data will be used to validate and extend the team's approach to modelling ice-shelf flexure and stress, and possible "Larsen-B style" ice-shelf instability and break-up. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-68.28 -71.1,-68.202 -71.1,-68.124 -71.1,-68.046 -71.1,-67.968 -71.1,-67.89 -71.1,-67.812 -71.1,-67.734 -71.1,-67.656 -71.1,-67.578 -71.1,-67.5 -71.1,-67.5 -71.14999999999999,-67.5 -71.19999999999999,-67.5 -71.25,-67.5 -71.3,-67.5 -71.35,-67.5 -71.39999999999999,-67.5 -71.44999999999999,-67.5 -71.5,-67.5 -71.55,-67.5 -71.6,-67.578 -71.6,-67.656 -71.6,-67.734 -71.6,-67.812 -71.6,-67.89 -71.6,-67.968 -71.6,-68.046 -71.6,-68.124 -71.6,-68.202 -71.6,-68.28 -71.6,-68.28 -71.55,-68.28 -71.5,-68.28 -71.44999999999999,-68.28 -71.39999999999999,-68.28 -71.35,-68.28 -71.3,-68.28 -71.25,-68.28 -71.19999999999999,-68.28 -71.14999999999999,-68.28 -71.1)) | POINT(-67.89 -71.35) | false | false | |||||||||||
Center for Oldest Ice Exploration
|
2019719 |
2022-05-21 | Neff, Peter; Brook, Edward J. | Cores drilled through the Antarctic ice sheet provide a remarkable window on the evolution of Earth’s climate and unique samples of the ancient atmosphere. The clear link between greenhouse gases and climate revealed by ice cores underpins much of the scientific understanding of climate change. Unfortunately, the existing data do not extend far enough back in time to reveal key features of climates warmer than today. COLDEX, the Center for Oldest Ice Exploration, will solve this problem by exploring Antarctica for sites to collect the oldest possible record of past climate recorded in the ice sheet. COLDEX will provide critical information for understanding how Earth’s near-future climate may evolve and why climate varies over geologic time. New technologies will be developed for exploration and analysis that will have a long legacy for future research. An archive of old ice will stimulate new research for the next generations of polar scientists. COLDEX programs will galvanize that next generation of polar researchers, bring new results to other scientific disciplines and the public, and help to create a more inclusive and diverse scientific community. Knowledge of Earth’s climate history is grounded in the geologic record. This knowledge is gained by measuring chemical, biological and physical properties of geologic materials that reflect elements of climate. Ice cores retrieved from polar ice sheets play a central role in this science and provide the best evidence for a strong link between atmospheric carbon dioxide and climate on geologic timescales. The goal of COLDEX is to extend the ice-core record of past climate to at least 1.5 million years by drilling and analyzing a continuous ice core in East Antarctica, and to much older times using discontinuous ice sections at the base and margin of the ice sheet. COLDEX will develop and deploy novel radar and melt-probe tools to rapidly explore the ice, use ice-sheet models to constrain where old ice is preserved, conduct ice coring, develop new analytical systems, and produce novel paleoclimate records from locations across East Antarctica. The search for Earth’s oldest ice also provides a compelling narrative for disseminating information about past and future climate change and polar science to students, teachers, the media, policy makers and the public. COLDEX will engage and incorporate these groups through targeted professional development workshops, undergraduate research experiences, a comprehensive communication program, annual scientific meetings, scholarships, and broad collaboration nationally and internationally. COLDEX will provide a focal point for efforts to increase diversity in polar science by providing field, laboratory, mentoring and networking experiences for students and early career scientists from groups underrepresented in STEM, and by continuous engagement of the entire COLDEX community in developing a more inclusive scientific culture. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||||||||
Collaborative Research: Multi-Parameter Geophysical Constraints on Volcano Dynamics of Mt. Erebus and Ross Island, Antarctica
|
2039432 |
2021-09-03 | Grapenthin, Ronni |
|
Nontechnical Abstract Mount Erebus volcano on Ross Island, Antarctica, is the southernmost active volcano on the planet. It provides a natural laboratory to study a volcanic system that has been in a continuous state of activity with a persistent lava lake over at least the last 40 years. Worldwide only four other volcanoes with such long-lived lava lakes exist: Erta Ale, Ethiopia; Kilauea, Hawaii; Nyiragongo, Congo; and Ambrym, Vanuatu. These volcanoes are a rare anomaly that provide a window into the underlying magmatic system and behavior. Erebus is of particular interest as it cycles through phases of very explosive activity every 20 thousand years. This project will investigate interactions between the magmatic system, the rift it is located in, and the impact of the gravitational load the volcano imposes on the underlying crust and its own magmatic system. Possible interactions between these factors may explain the changes in activity. The project will analyze geophysical data that have been collected at Erebus over at least the last two decades. The results of this work will be available to the public and scientific community and inform geodynamic models in this region. The project funds an early-career scientist and a graduate student at New Mexico Tech and contributes to the development of the next generation of scientists. Technical Abstract The proposed work targets scientific questions recently formulated by the community during the 2016 NSF-sponsored Scientific Drivers and Future of Mount Erebus Volcano Observatory workshop. The location and geometry of the magmatic plumbing from vent to lower crust system remain poorly constrained, particularly below 1 km depth. The style and causes for changes in volcanic and magmatic activity over the short term (minutes to hours) and on the decadal scale remains enigmatic. Two decades of campaign and continuous GPS data on Ross Island will inform about the longer term dynamics of both, Ross Island growing within the Terror Rift, and Erebus? deeper magmatic system. This project will organize and analyze all existing GPS data for Ross Island, and interpret any anomalies in the resulting time series. These activities require organization, consistent processing and interpretation/modeling of the existing ~20 years of GPS data, which include campaign, continuous, and high-rate GPS observations. We will generate these position time series in a consistent local reference frame and make the results, including models of transient deformation available to the community. Volcanic, tectonic and isostatic adjustment related deformation will be modeled to place Erebus in a broad volcano-tectonic framework of West Antarctica. During the data analysis phase, the utility of existing GPS data for reflection studies of snow and sea-level dynamics will also be evaluated. | POLYGON((165.5 -77.1,165.91 -77.1,166.32 -77.1,166.73 -77.1,167.14 -77.1,167.55 -77.1,167.96 -77.1,168.37 -77.1,168.78 -77.1,169.19 -77.1,169.6 -77.1,169.6 -77.18,169.6 -77.26,169.6 -77.34,169.6 -77.42,169.6 -77.5,169.6 -77.58,169.6 -77.66,169.6 -77.74,169.6 -77.82,169.6 -77.9,169.19 -77.9,168.78 -77.9,168.37 -77.9,167.96 -77.9,167.55 -77.9,167.14 -77.9,166.73 -77.9,166.32 -77.9,165.91 -77.9,165.5 -77.9,165.5 -77.82,165.5 -77.74,165.5 -77.66,165.5 -77.58,165.5 -77.5,165.5 -77.42,165.5 -77.34,165.5 -77.26,165.5 -77.18,165.5 -77.1)) | POINT(167.55 -77.5) | false | false | |||||||||||
Collaborative Research: Dynamic Response of the Ross Ice Shelf to Wave-induced Vibrations
|
1246416 1246151 |
2021-04-15 | Bromirski, Peter; Gerstoft, Peter; Stephen, Ralph | Bromirski/1246151 This award supports a project intended to discover, through field observations and numerical simulations, how ocean wave-induced vibrations on ice shelves in general, and the Ross Ice Shelf (RIS), in particular, can be used (1) to infer spatial and temporal variability of ice shelf mechanical properties, (2) to infer bulk elastic properties from signal propagation characteristics, and (3) to determine whether the RIS response to infragravity (IG) wave forcing observed distant from the front propagates as stress waves from the front or is "locally" generated by IG wave energy penetrating the RIS cavity. The intellectual merit of the work is that ocean gravity waves are dynamic elements of the global ocean environment, affected by ocean warming and changes in ocean and atmospheric circulation patterns. Their evolution may thus drive changes in ice-shelf stability by both mechanical interactions, and potentially increased basal melting, which in turn feed back on sea level rise. Gravity wave-induced signal propagation across ice shelves depends on ice shelf and sub-shelf water cavity geometry (e.g. structure, thickness, crevasse density and orientation), as well as ice shelf physical properties. Emphasis will be placed on observation and modeling of the RIS response to IG wave forcing at periods from 75 to 300 s. Because IG waves are not appreciably damped by sea ice, seasonal monitoring will give insights into the year-round RIS response to this oceanographic forcing. The 3-year project will involve a 24-month period of continuous data collection spanning two annual cycles on the RIS. RIS ice-front array coverage overlaps with a synergistic Ross Sea Mantle Structure (RSMS) study, giving an expanded array beneficial for IG wave localization. The ice-shelf deployment will consist of sixteen stations equipped with broadband seismometers and barometers. Three seismic stations near the RIS front will provide reference response/forcing functions, and measure the variability of the response across the front. A linear seismic array orthogonal to the front will consist of three stations in-line with three RSMS stations. Passive seismic array monitoring will be used to determine the spatial and temporal distribution of ocean wave-induced signal sources along the front of the RIS and estimate ice shelf structure, with the high-density array used to monitor and localize fracture (icequake) activity. The broader impacts include providing baseline measurements to enable detection of ice-shelf changes over coming decades which will help scientists and policy-makers respond to the socio-environmental challenges of climate change and sea-level rise. A postdoctoral scholar in interdisciplinary Earth science will be involved throughout the course of the research. Students at Cuyamaca Community College, San Diego County, will develop and manage a web site for the project to be used as a teaching tool for earth science and oceanography classes, with development of an associated web site on waves for middle school students. | POLYGON((-180 -77,-179.5 -77,-179 -77,-178.5 -77,-178 -77,-177.5 -77,-177 -77,-176.5 -77,-176 -77,-175.5 -77,-175 -77,-175 -77.4,-175 -77.8,-175 -78.2,-175 -78.6,-175 -79,-175 -79.4,-175 -79.8,-175 -80.2,-175 -80.6,-175 -81,-175.5 -81,-176 -81,-176.5 -81,-177 -81,-177.5 -81,-178 -81,-178.5 -81,-179 -81,-179.5 -81,180 -81,179 -81,178 -81,177 -81,176 -81,175 -81,174 -81,173 -81,172 -81,171 -81,170 -81,170 -80.6,170 -80.2,170 -79.8,170 -79.4,170 -79,170 -78.6,170 -78.2,170 -77.8,170 -77.4,170 -77,171 -77,172 -77,173 -77,174 -77,175 -77,176 -77,177 -77,178 -77,179 -77,-180 -77)) | POINT(177.5 -79) | false | false | ||||||||||||
NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment
|
1738992 1929991 |
2021-02-22 | Pettit, Erin; Truffer, Martin; Scambos, Ted; Muto, Atsu; Heywood, Karen; Boehme, Lars; Hall, Robert; Wahlin, Anna; Lenaerts, Jan | This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Thwaites and neighboring glaciers in the Amundsen Sea Embayment are rapidly losing mass in response to recent climate warming and related changes in ocean circulation. Mass loss from the Amundsen Sea Embayment could lead to the eventual collapse of the West Antarctic Ice Sheet, raising the global sea level by up to 2.5 meters (8 feet) in as short as 500 years. The processes driving the loss appear to be warmer ocean circulation and changes in the width and flow speed of the glacier, but a better understanding of these changes is needed to refine predictions of how the glacier will evolve. One highly sensitive process is the transitional flow of glacier ice from land onto the ocean to become a floating ice shelf. This flow of ice from grounded to floating is affected by changes in air temperature and snowfall at the surface; the speed and thickness of ice feeding it from upstream; and the ocean temperature, salinity, bathymetry, and currents that the ice flows into. The project team will gather new measurements of each of these local environmental conditions so that it can better predict how future changes in air, ocean, or the ice will affect the loss of ice to the ocean in this region. Current and anticipated near-future mass loss from Thwaites Glacier and nearby Amundsen Sea Embayment region is mainly attributed to reduction in ice-shelf buttressing due to sub-ice-shelf melting by intrusion of relatively warm Circumpolar Deep Water into sub-ice-shelf cavities. Such predictions for mass loss, however, still lack understanding of the dominant processes at and near grounding zones, especially their spatial and temporal variability, as well as atmospheric and oceanic drivers of these processes. This project aims to constrain and compare these processes for the Thwaites and the Dotson Ice Shelves, which are connected through upstream ice dynamics, but influenced by different submarine troughs. The team's specific objectives are to: 1) install atmosphere-ice-ocean multi-sensor remote autonomous stations on the ice shelves for two years to provide sub-daily continuous observations of concurrent oceanic, glaciologic, and atmospheric conditions; 2) measure ocean properties on the continental shelf adjacent to ice-shelf fronts (using seal tagging, glider-based and ship-based surveys, and existing moored and conductivity-temperature-depth-cast data), 3) measure ocean properties into sub-ice-shelf cavities (using autonomous underwater vehicles) to detail ocean transports and heat fluxes; and 4) constrain current ice-shelf and sub-ice-shelf cavity geometry, ice flow, and firn properties for the ice-shelves (using radar, active-source seismic, and gravimetric methods) to better understand the impact of ocean and atmosphere on the ice-sheet change. The team will also engage the public and bring awareness to this rapidly changing component of the cryosphere through a "Live from the Ice" social media campaign in which the public can follow the action and data collection from the perspective of tagged seals and autonomous stations. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-114 -74,-113 -74,-112 -74,-111 -74,-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-104 -74.2,-104 -74.4,-104 -74.6,-104 -74.8,-104 -75,-104 -75.2,-104 -75.4,-104 -75.6,-104 -75.8,-104 -76,-105 -76,-106 -76,-107 -76,-108 -76,-109 -76,-110 -76,-111 -76,-112 -76,-113 -76,-114 -76,-114 -75.8,-114 -75.6,-114 -75.4,-114 -75.2,-114 -75,-114 -74.8,-114 -74.6,-114 -74.4,-114 -74.2,-114 -74)) | POINT(-109 -75) | false | false | ||||||||||||
Collaborative Research: Computational Methods Supporting Joint Seismic and Radar Inversion for Ice Fabric and Temperature in Streaming Flow
|
1643301 1643353 |
2021-02-17 | Christianson, Knut; Gerbi, Christopher; Campbell, Seth; Vel, Senthil |
|
Gerbi/1643301 This award supports a project to develop software that will allow researchers considering seismic or radar field surveys to test, ahead of time, whether the data they plan to collect will have sufficient resolution to measure the natural variations in the mechanical properties of ice, which determine the response of flowing ice to changing climatic conditions. The mechanical properties of ice depend largely on the temperature and the orientation of the crystals that make up the ice. The most accurate method for measuring ice crystal orientation and temperature is through drilling and direct analysis of an ice core. However, this method is very costly, time-consuming, and limited in spatial coverage. Geophysical techniques, such as seismic and radar, can cover much more area, but we have little knowledge about the practical limitations of these techniques as they relate to calculating mechanical properties. This project addresses that knowledge gap through construction of a computational toolbox that will allow accurate assessment of the ability of geophysical surveys to image crystal orientation and ice temperature. Researchers can then use these tools to adjust the field survey plans to maximize the return on investment. By working to improve the efficiency and effectiveness of future geophysical work related to glacial flow, this proposal will improve scientists? ability to quantify sea-level variations within the larger context of climate change. The project includes building new user-friendly, publicly accessible software and instructional modules. The work will provide training for graduate and undergraduate students, who will play a role in research and develop instructional materials. Ice viscosity, the resistance of ice to flow, exerts significant control over ice velocity. Therefore, mapping ice viscosity is important for understanding the current and future behavior of glaciers and ice sheets. To do so, scientists must determine the temperature and crystal orientation fabric throughout the ice. Seismic and radar techniques can survey large areas quickly, and thus are promising, yet not fully tested, methods to efficiently measure the thermal and mechanical structure of flowing ice. As part of this project, scientists will develop and use a computational framework to quantify the degree to which seismic and radar techniques can resolve the crystal orientation fabric and temperature of streaming ice, and then test how sensitive ice flow is to the attendant uncertainty. To meet these goals, a numerical toolbox will be built which will allow the glacier/ice stream geometry and physical properties (temperature, crystal orientation fabric, density and acidity) to be varied. The toolbox will be capable of both creating synthetic radar and seismic profiles through forward modeling and inverting synthetic profiles to allow evaluation of how well geophysical techniques can image the original thermal and mechanical structure. These simulated radar and seismic data will allow scientists to better quantify the influence of the variability in mechanical properties of the ice on flow velocities and patterns. The results of this work will guide planning for future field campaigns, making them more effective and efficient. This project does not require fieldwork in the Antarctic. | None | None | false | false | |||||||||||
Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments
|
1543347 1543453 1543405 1543537 1543441 1543396 |
2020-07-16 | Rosenheim, Brad; Fricker, Helen; Priscu, John; Leventer, Amy; Dore, John; Lyons, W. Berry; Christner, Brent | The Antarctic subglacial environment remains one of the least explored regions on Earth. This project will examine the physical and biological characteristics of Subglacial Lake Mercer, a lake that lies 1200m beneath the West Antarctic Ice Sheet. This study will address key questions relating to the stability of the ice sheet, the subglacial hydrological system, and the deep-cold subglacial biosphere. The education and outreach component aims to widely disseminate results to the scientific community and to the general public through short films, a blog, and a website. Subglacial Lake Mercer is one of the larger hydrologically active lakes in the southern basin of the Whillans Ice Plain, West Antarctica. It receives about 25 percent of its water from East Antarctica with the remainder originating from West Antarctica, is influenced by drain/fill cycles in a lake immediately upstream (Subglacial Lake Conway), and lies about 100 km upstream of the present grounding line of the Ross Ice Shelf. This site will yield information on the history of the Whillans and Mercer Ice Streams, and on grounding line migration. The integrated study will include direct sampling of basal ice, water, and sediment from the lake in concert with surface geophysical surveys over a three-year period to define the hydrological connectivity among lakes on the Whillans Ice Plain and their flow paths to the sea. The geophysical surveys will furnish information on subglacial hydrology, aid the site selection for hot-water drilling, and provide spatial context for interpreting findings. The hot-water-drilled boreholes will be used to collect basal ice samples, provide access for direct measurement of subglacial physical, chemical, and biological conditions in the water column and sediments, and to explore the subglacial water cavities using a remotely operated vehicle equipped with sensors, cameras, and sampling equipment. Data collected from this study will address the overarching hypothesis "Contemporary biodiversity and carbon cycling in hydrologically-active subglacial environments associated with the Mercer and Whillans ice streams are regulated by the mineralization and cycling of relict marine organic matter and through interactions among ice, rock, water, and sediments". The project will be undertaken by a collaborative team of scientists, with expertise in microbiology, biogeochemistry, hydrology, geophysics, glaciology, marine geology, paleoceanography, and science communication. | POLYGON((-163.611 -84.33543,-162.200034 -84.33543,-160.789068 -84.33543,-159.378102 -84.33543,-157.967136 -84.33543,-156.55617 -84.33543,-155.145204 -84.33543,-153.734238 -84.33543,-152.323272 -84.33543,-150.912306 -84.33543,-149.50134 -84.33543,-149.50134 -84.3659157,-149.50134 -84.3964014,-149.50134 -84.4268871,-149.50134 -84.4573728,-149.50134 -84.4878585,-149.50134 -84.5183442,-149.50134 -84.5488299,-149.50134 -84.5793156,-149.50134 -84.6098013,-149.50134 -84.640287,-150.912306 -84.640287,-152.323272 -84.640287,-153.734238 -84.640287,-155.145204 -84.640287,-156.55617 -84.640287,-157.967136 -84.640287,-159.378102 -84.640287,-160.789068 -84.640287,-162.200034 -84.640287,-163.611 -84.640287,-163.611 -84.6098013,-163.611 -84.5793156,-163.611 -84.5488299,-163.611 -84.5183442,-163.611 -84.4878585,-163.611 -84.4573728,-163.611 -84.4268871,-163.611 -84.3964014,-163.611 -84.3659157,-163.611 -84.33543)) | POINT(-156.55617 -84.4878585) | false | false | ||||||||||||
Collaborative Research: Role of the Central Scotia Sea Floor and North Scotia Ridge in the Onset and Development of the Antarctic Circumpolar Current
|
1246111 |
2020-01-28 | Dalziel, Ian W.; Lawver, Lawrence; Krissek, Lawrence |
|
Intellectual Merit: Opening of Drake Passage and the West Scotia Sea south of Tierra del Fuego broke the final continental barrier to onset of a complete Antarctic Circumpolar Current (ACC). Initiation of the ACC has been associated in time with a major, abrupt, drop in global temperatures and the rapid expansion of the Antarctic ice sheets at 33-34 Ma. Events leading to the formation of the Drake Passage gateway are poorly known. Understanding the tectonic evolution of the floor of the Central Scotia Sea (CSS) and the North Scotia Ridge is a key to this understanding. Previous work has demonstrated that superimposed constructs formed a volcanic arc that likely blocked direct eastward flow from the Pacific to the Atlantic through the opening Drake Passage gateway as the active South Sandwich arc does today. The PIs propose a cruise to test, develop and refine, with further targeted mapping and dredging, their theory of CSS tectonics and the influence it had on the onset and development of the ACC. In addition they propose an installation of GPS receiver to test their paleogeographic reconstructions and determine whether South Georgia is moving as part of the South American plate. Broader impacts: A graduate student will be involved in all stages of the research. Undergraduate students will also be involved as watch-standers. A community college teacher will participate in the cruise. The PIs will have a website on which there will be images of the actual ocean floor dredging in operation. The teacher will participate with web and outreach support through PolarTREC. Results of the cruise are of broad interest to paleoceanographers, paleoclimate modelers and paleobiogeographers. | POLYGON((-44 -53,-42.9 -53,-41.8 -53,-40.7 -53,-39.6 -53,-38.5 -53,-37.4 -53,-36.3 -53,-35.2 -53,-34.1 -53,-33 -53,-33 -53.4,-33 -53.8,-33 -54.2,-33 -54.6,-33 -55,-33 -55.4,-33 -55.8,-33 -56.2,-33 -56.6,-33 -57,-34.1 -57,-35.2 -57,-36.3 -57,-37.4 -57,-38.5 -57,-39.6 -57,-40.7 -57,-41.8 -57,-42.9 -57,-44 -57,-44 -56.6,-44 -56.2,-44 -55.8,-44 -55.4,-44 -55,-44 -54.6,-44 -54.2,-44 -53.8,-44 -53.4,-44 -53)) | POINT(-38.5 -55) | false | false | |||||||||||
Collaborative Research: POLENET-Antarctica: Investigating Links Between Geodynamics and Ice Sheets - Phase 2
|
1419268 1246776 1249631 1249513 1246666 1246712 1247518 |
2019-02-17 | Wilson, Terry; Dalziel, Ian W.; Bevis, Michael; Aster, Richard; Huerta, Audrey D.; Winberry, Paul; Anandakrishnan, Sridhar; Nyblade, Andrew; Wiens, Douglas; Smalley, Robert |
|
Intellectual Merit: The PIs propose to continue and expand GPS and seismic for ANET-POLENET Phase 2 to advance understanding of geodynamic processes and their influence on the West Antarctic Ice Sheet. ANET-POLENET science themes include: 1) determining ice mass change since the last glacial maximum, including modern ice mass balance; 2) solid earth influence on ice sheet dynamics; and 3) tectonic evolution of West Antarctica and feedbacks with ice sheet evolution. Nine new remote continuous GPS stations, to be deployed in collaboration with U.K. and Italian partners, will augment ANET-POLENET instrumentation deployed during Phase 1. Siting is designed to better constrain uplift centers predicted by GIA models and indicated by Phase 1 results. ANET-POLENET Phase 2 builds on Phase 1 scientific, technological, and logistical achievements including 1) seismic images of crust and mantle structure that resolve the highly heterogeneous thermal and viscosity structure of the Antarctic lithosphere and underlying mantle; 2) newly identified intraplate glacial, volcanic, and tectonic seismogenic processes; 3) improved estimates of intraplate vertical and horizontal crustal motions and refinement of the Antarctic GPS reference frame; and 4) elucidation of controls on glacial isostatic adjustment-induced crustal motions due to laterally varying earth structure. The PIs present a nominal plan to reduce ANET by approximately half to a longer-term community "backbone network" in the final 2 years of this project. Broader impacts: Monitoring and understanding mass change and dynamic behavior of the Antarctic ice sheet using in situ GPS and seismological studies will help improve understanding of how Antarctic ice sheets respond to a warming world and how will this response impacts sea-level and other global changes. Seismic and geodetic data collected by the backbone ANET-POLENET network are openly available to the scientific community. ANET-POLENET is integral in the development and realization of technological and logistical innovations for year-round operation of instrumentation at remote polar sites, helping to advance scientifically and geographically broad studies of the polar regions. The ANET-POLENET team will establish a training initiative to mentor young polar scientists in complex, multidisciplinary and internationally collaborative research. ANET-POLENET will continue the broad public outreach to the public about polar science through the polenet.org website, university lectures, and K-12 school visits. This research involves multiple international partners. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||
Collaborative Research: MIDGE: Minimally Invasive Direct Glacial Exploration of Biogeochemistry, Hydrology and Glaciology of Blood Falls, McMurdo Dry Valleys
|
1144192 1144177 1144176 1727387 |
2018-11-28 | Tulaczyk, Slawek; Pettit, Erin; Lyons, W. Berry; Mikucki, Jill | Recent discoveries of widespread liquid water and microbial ecosystems below the Antarctic ice sheets have generated considerable interest in studying Antarctic subglacial environments. Understanding subglacial hydrology, the persistence of life in extended isolation and the evolution and stability of subglacial habitats requires an integrated, interdisciplinary approach. The collaborative project, Minimally Invasive Direct Glacial Exploration (MIDGE) of the Biogeochemistry, Hydrology and Glaciology of Blood Falls, McMurdo Dry Valleys will integrate geophysical measurements, molecular microbial ecology and geochemical analyses to explore a unique Antarctic subglacial system known as Blood Falls. Blood Falls is a hypersaline, subglacial brine that supports an active microbial community. The subglacial brine is released from a crevasse at the surface of the Taylor Glacier providing an accessible portal into an Antarctic subglacial ecosystem. Recent geochemical and molecular analyses support a marine source for the salts and microorganisms in Blood Falls. The last time marine waters inundated this part of the McMurdo Dry Valleys was during the Late Tertiary, which suggests the brine is ancient. Still, no direct samples have been collected from the subglacial source to Blood Falls and little is known about the origin of this brine or the amount of time it has been sealed below Taylor Glacier. Radar profiles collected near Blood Falls delineate a possible fault in the subglacial substrate that may help explain the localized and episodic nature of brine release. However it remains unclear what triggers the episodic release of brine exclusively at the Blood Falls crevasse or the extent to which the brine is altered as it makes its way to the surface. The MIDGE project aims to determine the mechanism of brine release at Blood Falls, evaluate changes in the geochemistry and the microbial community within the englacial conduit and assess if Blood Falls waters have a distinct impact on the thermal and stress state of Taylor Glacier, one of the most studied polar glaciers in Antarctica. The geophysical study of the glaciological structure and mechanism of brine release will use GPR, GPS, and a small passive seismic network. Together with international collaborators, the 'Ice Mole' team from FH Aachen University of Applied Sciences, Germany (funded by the German Aerospace Center, DLR), MIDGE will develop and deploy innovative, minimally invasive technologies for clean access and brine sample retrieval from deep within the Blood Falls drainage system. These technologies will allow for the collection of samples of the brine away from the surface (up to tens of meters) for geochemical analyses and microbial structure-function experiments. There is concern over the contamination of pristine subglacial environments from chemical and biological materials inherent in the drilling process; and MIDGE will provide data on the efficacy of thermoelectric probes for clean access and retrieval of representative subglacial samples. Antarctic subglacial environments provide an excellent opportunity for researching survivability and adaptability of microbial life and are potential terrestrial analogues for life habitats on icy planetary bodies. The MIDGE project offers a portable, versatile, clean alternative to hot water and mechanical drilling and will enable the exploration of subglacial hydrology and ecosystem function while making significant progress towards developing technologies for minimally invasive and clean sampling of icy systems. | POLYGON((161.8 -77.7,161.88 -77.7,161.96 -77.7,162.04000000000002 -77.7,162.12 -77.7,162.2 -77.7,162.28 -77.7,162.36 -77.7,162.44 -77.7,162.51999999999998 -77.7,162.6 -77.7,162.6 -77.70700000000001,162.6 -77.714,162.6 -77.721,162.6 -77.728,162.6 -77.735,162.6 -77.742,162.6 -77.749,162.6 -77.756,162.6 -77.76299999999999,162.6 -77.77,162.51999999999998 -77.77,162.44 -77.77,162.36 -77.77,162.28 -77.77,162.2 -77.77,162.12 -77.77,162.04000000000002 -77.77,161.96 -77.77,161.88 -77.77,161.8 -77.77,161.8 -77.76299999999999,161.8 -77.756,161.8 -77.749,161.8 -77.742,161.8 -77.735,161.8 -77.728,161.8 -77.721,161.8 -77.714,161.8 -77.70700000000001,161.8 -77.7)) | POINT(162.2 -77.735) | false | false | ||||||||||||
Collaborative Research: IPY: POLENET-Antarctica: Investigating Links Between Geodynamics and Ice Sheets
|
0632136 0632322 |
2015-01-22 | Wilson, Terry; Bevis, Michael; Anandakrishnan, Sridhar; Wiens, Douglas; Aster, Richard; Smalley, Robert; Nyblade, Andrew; Winberry, Paul; Hothem, Larry; Dalziel, Ian W.; Huerta, Audrey D. |
|
This project constructs POLENET a network of GPS and seismic stations in West Antarctica to understand how the mass of the West Antarctic ice sheet (WAIS) changes with time. The information is ultimately used to predict sea level rise accompanying global warming and interpret climate change records. The GPS (global positioning system) stations measure vertical and horizontal movements of bedrock, while the seismic stations characterize physical properties of the ice/rock interface, lithosphere, and mantle. Combined with satellite data, this project offers a more complete picture of the ice sheet's current state, its likely change in the near future, and its overall size during the last glacial maximum. This data will also be used to infer sub-ice sheet geology and the terrestrial heat flux, critical inputs to models of glacier movement. As well, this project improves tomographic models of the earth's deep interior and core through its location in the Earth's poorly instrumented southern hemisphere. <br/><br/><br/><br/>Broader impacts of this project are varied. The work is relevant to society for improving our understanding of the impacts of global warming on sea level rise. It also supports education at the postdoctoral, graduate, and undergraduate levels, and outreach to groups underrepresented in the sciences. As an International Polar Year contribution, this project establishes a legacy of infrastructure for polar measurements. It also involves an international collaboration of twenty four countries. For more information see IPY Project #185 at IPY.org. NSF is supporting a complementary Arctic POLENET array being constructed in Greenland under NSF Award #0632320. | POLYGON((-20 -70,-1 -70,18 -70,37 -70,56 -70,75 -70,94 -70,113 -70,132 -70,151 -70,170 -70,170 -72,170 -74,170 -76,170 -78,170 -80,170 -82,170 -84,170 -86,170 -88,170 -90,151 -90,132 -90,113 -90,94 -90,75 -90,56 -90,37 -90,18 -90,-1 -90,-20 -90,-20 -88,-20 -86,-20 -84,-20 -82,-20 -80,-20 -78,-20 -76,-20 -74,-20 -72,-20 -70)) | POINT(75 -80) | false | false | |||||||||||
Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)
|
1142083 |
2013-09-03 | Kyle, Philip; Oppenheimer, Clive; Chaput, Julien; Jones, Laura; Fischer, Tobias | Intellectual Merit: Mt. Erebus is one of only a handful of volcanoes worldwide that have lava lakes with readily observable and nearly continuous Strombolian explosive activity. Erebus is also unique in having a permanent convecting lava lake of anorthoclase phonolite magma. Over the years significant infrastructure has been established at the summit of Mt. Erebus as part of the Mount Erebus Volcano Observatory (MEVO), which serves as a natural laboratory to study a wide range of volcanic processes, especially magma degassing associated with an open convecting magma conduit. The PI proposes to continue operating MEVO for a further five years. The fundamental fundamental research objectives are: to understand diffuse flank degassing by using distributed temperature sensing and gas measurements in ice caves, to understand conduit processes, and to examine the environmental impact of volcanic emissions from Erebus on atmospheric and cryospheric environments. To examine conduit processes the PI will make simultaneous observations with video records, thermal imaging, measurements of gas emission rates and gas compositions, seismic, and infrasound data. Broader impacts: An important aspect of Erebus research is the education and training of students. Both graduate and undergraduate students will have the opportunity to work on MEVO data and deploy to the field site. In addition, this proposal will support a middle or high school science teacher for two field seasons. The PI will also continue working with various media organizations and filmmakers. | POINT(167.15334 -77.529724) | POINT(167.15334 -77.529724) | false | false |